
IRIS R&

BUSINESS

BASIC

MANUAL

on

WwW’(

ry POINT DATA CORPORATION
Revision 02

NOTICE

Every attempt has been made to make this manual completeaccurate and up-to-date. However, all information herern is
Subject to change due to updates. All inquiries concerning this
manual should be directed to POINT 4 Data Corporation,

PRELIMINARY

Copyright © 1982, 1983, 1984 by POINT 4 Data Corporation
(formerly Educational Data Systems, Inc). Printed in the United
States of America. All rights reserved. No part of this work
covered by the copyrights hereon may ‘be reproduced or copied in

any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information and

retrieval systems--without the prior written permission of:

POINT 4 Data Corporation
2569 McCabe Way

Irvine, CA 92714

(714) 863-1111

§SM-030-0012-02 PRELIMINARY
POINT 4 Data Corporation di - IRIS Business BASIC Manual

REVISION RECORD

PUBLICATION NUMBER: SM-030-0012

01 Draft Version 10/01/82

02 Preliminary Release 02/01/84

(

—

' +2

—

SM-030-0012-02 PRELIMINARY
POINT 4 Data Corporation iii IRIS Business BASIC Manual

° & E

: - . Paegt ap Ft at... 8

LIST OF EFFECTIVE PAGES

Changes, additions, and deletions to information in this manual

are indicated by vertical bars in the margins or by a dot near

the page number if the entire page is affected. A vertical bar
by the page number indicates pagination rather than content has

changed. The effective revision for each page is shown below.

Page Rev Page Rev Page Rey

Cover -

Title 02

ii thru x 02

1-1 thru 1-3 02

2-1 thru 2-57 02

3-1 thru 3-143 02

Appendix Title -

A-1 thru A-14 02

B-l thru B-4 02

C-1 02

D-1 thru D-4 02

E-1l 02
Comment Sheet 02

Mailer -

Back Cover -

SM-030-0012-02 PRELIMINARY
POINT 4 Data Corporation iv IRIS Business BASIC Manual

PREFACE

This manual describes IRIS data files and the statements which

make up IRIS Business BASIC. Section 2 describes each type‘of
IRIS data file, and discusses features common to all files.

Section 3 presents each Business BASIC statement in alphabetical

order.

In Section 3, each statement is presented on facing pages. “The
discussion of the statement is usually confined to the left Bayes
with appropriate examples on the right page.

Five appendices are included in the manual. Appendix A includes

twelve examples of BASIC programs. Appendix B lists BASIC error

numbers and codes. Appendix C lists ASCII codes. Appendix D

shows a listing of the BUILDXF program. — E lists

terminal control codes.

This manual assumes that the reader has had some previous

programming experience in the BASIC language.

IRIS Business BASIC is upward compatible with Dartmouth BASIC as

described in Kemeny and Kertz's BASIC Programming, First Edition.

Programs written under Dartmouth BASIC will run without

modification under IRIS Business BASIC, except that a

appropriate statements must be executed.

Standard Writing Conventions

The following syntax conventions are used throughout the manual.:

variable simple or subscripted numeric or string |
variable

list the elements of a list must be separated

by commas; for example, an expression

list might be: A,B,C*5,D+tl

expression a group of characters that may be

evaluated to a simple numeric value;

sometimes abbreviated expr

filename an IRIS filename

filename string a quoted literal or string variable
containing a filename

SM-030-0012-02 PRELIMINARY
POINT 4 Data Corporation Vv IRIS Business BASIC Manual

4%

r

-~> 4

A indicates that either A or B may be

B included, but not both

{} braces indicate that the parameters they

enclose are optional

= an asterisk following information
enclosed in braces indicates that the

enclosed information may be repeated up

to the length of the BASIC I/O and edit

buffers

input user input is underlined

<CTRL-X> indicates a control character where X is
an alpha key

<RETURN> angle brackets around any word refer to

a specific key on the keyboard; the

RETURN key is shown

Related Manuals

Related manuals include:

Title Pub, Number

IRIS Operations Manual SM-030-0010

IRIS R8 User Manual SM-030-0011

IRIS Installation and Configuration

Manual SM-030-0009

SM-030-0012-02 PRELIMINARY

POINT 4 Data Corporation vi IRIS Business BASIC Manual

CONTENTS

Section Title Page

1 INTRODUCTION 1-1

2 IRIS DATA FILES 2-1

261 DEFINITION OF TERMS ASSOCIATED WITH FILES 2-1

2.2 INTRODUCTION TO IRIS DATA FILES 2-2

Zea DATA FILE ACCESS 2-4

2.361 Overview of the File Handling Statements 2-4

2esee Records and Items for Contiguous and Text

Files 2-5

PE Sequential and Repeated Access 2-6
2.3.4 Record Locking 2-8

2.34.1 Deadly Embraces 2-9

2.3.4.2 Delay Clause 2-9

2.360 The Channel Functions 2-10
aoe FORMATTED FILES 2-1)
2.4.1 Characteristics of Formatted Files 2-i1i
2.4.2 Accessing Formatted Files orks
24.2% WRITE for Formatted Files Z27-k3
2.4.2.2 READ for Formatted Files 2-14
2.4.2.3 PRINT for Formatted Files 2-15

2.4.2.4 MAT WRITE Statement for Formatted Files 2-195
2.452.5 The MAT READ Statement for Formatted Files 2-16
2.4.3 Creating a Formatted File Using FORMAT 21]
2.4.4 Creating a Formatted File Using the BUILD

Statement 2=18

i, CONTIGUOUS FILES 2-19
26550 Characteristics of Contiguous Files 2-19
Zee Accessing Contiguous Files 2-20

25 5swer WRITE for Contiguous Files 2=22

2.Sseue READ for Contiguous Files 2-22

2.9%58ss PRINT for Contiguous Files 2-23

2eDete4 The Matrix Statements for Contiguous Files 2-23

2.5.2% 49%) MAT WRITE Statement for Contiguous Files 2-24

2.5. 25442 The MAT READ Statement for Contiguous
Files 2-24

Pe 5u3 Creating a Contiguous File Using FORMAT 2-25

2.5.4 Creating a Contiguous File Using the BUILD
Statement 2-25

2.6 TEXT FILES 2-26
Zoot Characteristics of Text Files 2-26
Botice Accessing Text Files 2-26
2. Oeees WRITE for Text Files 2-2)

SM-030-0012-02 PRELIMINARY
POINT 4 Data Corporation vii IRIS Business BASIC Manual

’ 4-

2.6.2.2 READ for Text Files 2-28

226223 PRINT for Text Files 2-28
2.6.3 Creating a Text File Using a Text Editor 2-29

2.6.4 Creating a Text File Using the BUILD Statement 2-29

Zed KEYED FILES 2-30
2e7 el Types of Keyed Files 2-30
Zelelot Indexed File Features 2-30

Zeleka2 Types of Indexed files 2-31

Zolches Polyfile Features 2-31

2.7.1.4 Types of Polyfile Volumes 2-32

27 ol.4el1 Polyfile Data Volume 2-32

207 01.4.2 Polyfile Directory and Directory Extension
Volumes 2-32

20702 Managing Free Records 2-33

2-7 o4elk Indexed File: Free Record Chain 2-33

yy Pe Polyfiles: Bit Map 2-33

Zelss Characteristics of Data Portion of Keyed Files 2-34
2.7.4 Structure of Keyed File Directories 2-34

207 40k Indexed File Directories 2-36

Zelekes Polyfile Directories 2-37
22725 Use of the SEARCH Statement 2-38
201 eed Search Mode 0: Directory Definition 2-41

2. 1eDee Search Mode l: Directory Information 2-42

2el sDed Search Mode 2: Key Match 2-43

2.7.5.4 Search Mode 3: Next Key 2-43

267 eded Search Mode 4: Insert a Key 2-44

207 2526 Search Mode 5: Delete a Key 2-44

20l cDel Search Mode 7: Reorganize Directory 2-45

2e7 oD 8 Inserting a Record into a Keyed File 2-45

2.7 ded Deleting a Record from a Keyed File 2-46
Zeled0d0 Finding and Updating a Record in a Keyed

File 2-47

2-76 Accessing the Data Portion of Keyed Files 2-48
Zoled Creating Keyed Files Using BUILDXF and BUILDPF 2-48
201 oe Creating an Indexed File from Within a BASIC

Program 2-50

2.7.9 Creating a Polyfile from Within a BASIC Program 2-51
2o7 Dod Step 1: Build a Contiguous File 2-51
207092 Step 2: Convert to Polyfile Volume 2-52
2.7.9.3 Step 3: Structure Polyfile 2-55
2-710 Converting an Application from Using Indexed

Files to Using Polyfiles 2-56
2.7.11 Special Polyfile CALL (91) Modes 2-57

SM-030-0012-02 PRELIMINARY
POINT 4 Data Corporation viii IRIS Business BASIC Manual

3 BUSINESS BASIC STATEMENTS 3=

BUILD# coe ecee reer eee eee ee eeeeeeeeeeeeeeeeeeeeeeee 3

CALL eoeeee eee ee eee eeeseeeeseeereeeeseeeeeeseeeeeeese 3

CALL 91 eoeeceese ee eeeeeeeeeeeeeeeeeeeeeereeeeeeeeee 3

CALL $FINDF (CALL 96) eeoeeereeeeeeeeeeeereeeeeeeees 3-

CALL $LOGIC (CALL 88) eoeeeeeeree eee eeeseeseseeeeee 3

CALL $RDFHD (CALL 97) eoeeeeeerer eee eeeereeeeseeeeees 3

CALL $STRING (CALL 82) eoeoeeererereeoeereereeeeeeeeeeeee 3-16

CALL STIME (CALL 99) eoeeeeeeereeoeeeeeeeeeeeeeeeee 3-20

CALL $TRXCO (CALL 98) eeceeeeeereeeeeeeeseereeeeeeee 3-22

CHAIN eeeerececereeerereeeeeseeeesresreeeeeeeeeeeeeeeeeeee 3-26

CLOSE# eeoeeeeo ere ees eee eeeeeeeeeeeeeeeeeeeeeeeeeee 3-28

DEGAS soo. ce we ce 0 ww se 56-6 10 <6 10 1b AGS swe sOSeKO1 020205020105 6; OO G0, 620 CD GAL ELOTE O00 3-30

DEF eoeeeeeceereeseeereeeeeeeeeeeeeeeeeeeeeeeeeeee eee 3-32

DELETE eocereeoewe eee eee eee eeee eee eeeeeeeesesreeeeeeee 3-34

RR co 6 6056-0 050 6-0. 6_0.0:6.¥ 60-00: 6.6.0 6.4 0.0.0 0.0.0 6.68 6 0:8 66 5.08 3-36

SERS oa6 the boa r0's 6 W010i 6 0a 0L6 0:6 6.0:020 0 0.0 06-4616. 666.6600 6 6.0 0 3-38

END eeoeeereereee errors eee eeeeeeeeeeeeeeeeseeeeeeeeeee 3-40

EXIT eeoeoeeecee errr ree eeeseeeeeeeeeeeeeeeeeseeeeeeeee 3-42

FOR coer ereeeoeeesee eee eeeereeeeeereereereeeeseeeeeeeeee 3-44

GOSUB eeoeeree ere ee eeeseeer eee eeeeeeseeeeeereeeeeeeeee 3-50

GOTO eevee ecee reese eee eereeeeeeeeeeeeeeeeeeeeeeeeee 3-52

HELP Coc eccc eee eee ee ee eeeeeeeeeeeeeeeereseseeeeece 3-54

IF eeoeeerereereer eee eee eeeereseseeeeeeeeeeeeeeseeeeeeeee 3-56

IF ERR eoeerecerer eee eereeeeeeeeeeeeeeeeeeseeeeeee eee 3-58
INPUT eecererr eee eee eee eee ee ee eeeeeeeeeeeeeseeereeeeee 3-60
KILL eeoeeerereoeeeeeeeeeeeeereeeeeeeeeeeeeeseeeeeeeeee 3-62
LET eeoeeeeer eee ee eer eeseeseseeeeeeeeeeeeeereeeeeeeeee 3-64
Ea: a, SOTA 0-0-0. 0 os hee 568055 O04 bb0000 basnsaceess 2766
List cover eeoe eee eee eee eeeeeeereeseeeeseeeeseeeeeeeees 3-68
REE eg koh 64.5 0405 Ee Eas ORES OMS CON FER E A 40% PO
MAT eooeoevere eee eee eee eeeeeeeeeeeeeeeereeeeeeeeeeeee 3-72

MAT INPUT eoeereereer eee eeeeeeeeeeseeeeeeeeeeeeeeeeee 3-74

MAT PRINT coer er eee eee r eee eeeeeeeeeereseeeeeeeeeee 3-76

rs cp abs hoe 6 pa Saag Ob oases ceed vee hese ct 3>78
MAT READ# eeoeceeereeer ee eeee ee eeeeeeeeeeereeeeeeeeeee 3-80
MAT WRITE# coer er eee eee eee ee ee eee eeeeeeeeeeeeeeeee 3-82

MAT. o.--8 CON eevee eeeeereeeeeeeeeeeeeeeeeeeeeeee 3-84

MAT. . EDM: cc ce 0 cthlahinwb ce © 66 6 0.60 816 0 e's 60 06.60 6% 3-86
Meas *e.' INW. 6-eceie.bob e-6:6 6 6 0 6.5.00 46 620.0 6:mi60'6. 6.8 1056-0 06-8 3-88

MAT. . . TRN eevee ereereeeereeeeeeeeeeeeeeeeeeeeee 3-90
MAT. . . ZER eoeeeeee eee ee eee eeeeeeeeeeeseeeeeee 3-92

NEXT eevee erereoeveer eee eweeer eee eeereeeeeeeeeeeeeeeeeeeee 3-94

ON eoeeee ee ere eee e eee eeeeeeeeeeeeeeeeseseereseeeeeee 3-96
OPEN eevee eer eee eee eereereeeeeeeereeeeeeeeeeeeeeeeeee 3-98
PRINT coer ereer eee eres eeeeeeeeeeeeseeeeeeeeeeeeeeeee 3-100

PRINT USING eoeererereer eee eereeeeeeeeeeeeeeeeeeeeeeee 3-104
PRINT # eoeeoere ee eer eee eee eeeeeeeeeeeeeeeeeeeeeeeee 3-108
PRINT ¥ WO ENG 6 6 00 9066 00-6 Coble 6 be 668 6 66 0 6 6 00 60 w Oe 3-110

RANDOM eevee eseereseeoereseeereeeeeeeeeeeeeeeeeeeeeeeee 3-112
READ coer er eee ee ee eee eee eeeeeeeeeeeeeeeseeeeeeeeeee 3-114

READ e eeoeeeeeeereereoeeeereeeeeeeseeeeeeeeeeeeeeeeeere 3-116

REM eereeveveeeveeeeeereereereeereeeeeeeeeeeeeeeeeeeeeeee 3-118
RENUMBER oreeeree eee eee e ewww eee eee eee eeerere eee eeeee 3-120

SM-030-0012-02 PRELIMINARY

POINT 4 Data Corporation ix IRIS Business BASIC Manual

° &-

ay 6

RESTOR eecevoeceeeveeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 3-122
RETURN eeeeeeneveevee cee eevee eeeeeeeeeeeeeeeeeeeeeee 3-124

RUN eeceeceese eee ee eseeeseseeeeeeeeeeeeeeeeeeeeeeeeoe 3-126

SEARCH ¢ e@eeeeveeveeveee ee eee eeeeeeeeeeeeeeeeeeeeeeeee 3-128

SIGNAL 1 eeeeeveeveve ev eevee eeveeeeeneeeeeeeeeeeeeeee ee 3-132

SIGNAL 2 eeeeveeveeveveeeeeeeveeeeeveeeeveeeeeeeeeeee ee ee 3-134

SIGNAL 3 eeeeeveevvoevev eee eevee eeee ee eeeeeeeeeeeeeeee ee 3-136

SIZE eeeeveeveeeveneev ee eevee eeeeeeeeeeeeeeeeeeeee eee 3-138

STOP eeeeveeeeveevee eevee eevee eeeveeeeeeeeeeeeeeeeeeee 3-140

WRITE # e@eeoeveveeeeeeeeeeeee ee eeeeeeeeeeeeeeeeee e288 3-142

APPENDICES

A BASIC Program Examples A-1

B BASIC Error Numbers B-1

Cc ASCII Code in Octal C-1

D BUILDXF Listing . D-1

E Terminal Control Codes E-1

FIGURES

Number Title Page

2-1 Directory Structure of Keyed Files 2-35

3-1 Format of Statement Descriptions 3-1

TABLES

2-1 Search Error Status 2-39
2-2 Search Mode Zero 2-41

2-3 Search Mode One 2-42

2-4 File Parameters 2-53

2-5 CALL 91 Status Values 2-54

3-1 Format Fields for Print Using 3-106

3-2 Summary of Search Modes 3-130

SM-030-0012-02 PRELIMINARY
POINT 4 Data Corporation s IRIS Business BASIC Manual

Section 1

INTRODUCTION

BASIC is an easy-to-learn yet powerful programming language

well-suited to interactive use on a time-sharing computer. The
features of BASIC include the following:

e Simple grammar based on a small number of statements

e Facilities for handling strings, matrices and arithmetic

expressions

@e Built-in editing features that facilitate debugging and
program modification

e Ease of translation by an interpreter. Use of an interpreter

makes it possible to write and debug problems interactively.
For example, a section of a program can be written and run;

lines can be added, deleted, or modified; and the revised

program can be rerun immediately without waiting for a
compilation

IRIS Business BASIC, the version of BASIC described here, is

designed to preserve the characteristics which have made BASIC
practically the universal time-sharing language. It adds further

capabilities which enhance its utility, especially for business

applications. The extensions of Business BASIC are:

@e Extended precision decimal arithmetic - provides up to

fourteen decimal digits of accuracy

@ PRINT USING - provides business oriented formatting of output

e Chaining - allows large applications to be segmented

e Signalling - allows communication between programs on

different ports or within a single program

@e Extended function set - provides special functions and

facilities

e Error branching - allows BASIC programs to detect errors and

attempt correction

e Provision for large strings and arrays - increases the

usefulness of string and matrix operations

SM-030-0012-02 INTRODUCTION

POINT 4 Data Corporation y=. IRIS Business BASIC Manual

’ &-

-~> .

e Five types of data files: formatted, contiguous, text

polyfile and indexed - provide random access data storage on

the disc

Each extension of Business BASIC is discussed in detail below.

Extended precision decimal arithmetic overcomes two problems in
most BASIC systems: limited precision and conversion errors.
Most BASIC systems represent numbers internally in floating point
binary form, typically to an accuracy of 21 to 24 bits. This
results in six decimal digits of precision in which the sixth may
be faulty because of errors introduced through the conversion
from decimal to binary and back. Business BASIC provides four
precision options: one-word integers (in the range +7999) and
two-, three- and four-word floating point numbers which give,
respectively, six, ten, and fourteen decimal digits of accuracy.
Furthermore, all numbers are carried in decimal form and the
arithmetic is entirely decimal, so that conversion and its
inherent errors are eliminated.

The second major extension is PRINT USING, which simplifies

report generation by providing COBOL-like picture formats. These
are used to position column headings, line up decimal points,
float dollar signs, insert commas, and provide. the other controls
required for technical and financial reporting.

Chaining allows programs to be segmented for execution in a
system with a small memory. Small segments also permit faster
swapping for more efficient system operation.

Signalling allows programs on different ports and program

segments to communicate with each other.

The extended function set includes facilities for taking floating

point numbers apart and putting them back together.

Error branching allows turnkey systems to be written where the
BASIC program detects errors and attempts corrective action
(instead of printing an error message), perhaps by asking for
additional information from the user.

The usefulness of the string and matrix operations is increased
by the provision for large strings and matrices, which are
limited only by the program storage available and such features
as substrings, string comparisons, MAT INPUT, and matrix
inversion.

All files provide random access data storage on the disc. The
five types of IRIS data files provide programming flexibility.

e Formatted files may store over 16 million bytes of
information each, perform item-type checking and allow random

addressing of items.

e Contiguous files store large amounts of data and provide fast
access, without item-type checking.

SM-030-0012-02 INTRODUCTION
POINT 4 Data Corporation 1-2 IRIS Business BASIC Manual

e Text files have a capacity of over 16.7 million characters in

an extended file. They provide a common data base between

IRIS Business BASIC and other processors.

e Polyfiles may consist of up to 64 volumes and up to 63

directories. Each volume may reside on a different logical

unit, thereby eliminating size restrictions imposed on other

types of files.

e Indexed files offer up to 15 directories each and provide

fast random access by data content. The user specifies the
key length for each directory. Index-only files may also be

created.

Polyfiles and indexed files are grouped under the heading "Keyed

Files", because they both employ directories.

In addition to these extensions, IRIS Business BASIC provides the

following features: direct execution (calculator mode), string
processing, matrix algebra and the CALL statement.

SM-030-0012-02 INTRODUCTION

POINT 4 Data Corporation 1-3 IRIS Business BASIC Manual

. é.

Section 2

IRIS DATA FILES

IRIS file classes include system files, processor files, program

files and data files. This section describes IRIS data files and

how they are used.

2.1 DEFINITION OF TERMS ASSOCIATED WITH FILES

The use of terms associated with files often varies from system

to system. This section defines important terms in order to

prevent confusion.

BLOCK - the fundamental unit by which IRIS manages data on disc.

Each block is 512 bytes long. Normally, files are accessed

by record, leaving block manipulation to IRIS.

CHANNEL - a logical connection between a BASIC program and a file

(or device). It allows the program to access the file using

only an internal channel number for identification. This
number is associated with the actual file (or device) in the

statement which opens or builds it.

DIRECTORY - a method used to find records by key. The terms

"directory" and "index" are used interchangeably.

Directories are described in more detail in Section 2.7.4.

(Note that this is not a logical unit directory.)

FILE - a collection of data which is stored on disc. Files are

created, modified and retrieved by the use of system commands

Or application programs. (Files may also be stored on other
Magnetic media, but this is outside the scope of this

section.)

ITEM - a logical segment of a record. A record usually consists

of several related items. The terms "item" and "field" are

used interchangeably.

KEY - a keyword or identifier used for identification when

searching for a record in a keyed file. A key is a character

string.

RECORD - a logical segment of a file. Each record consists of a

variable number of bytes that can be used to store numbers

and strings of characters. Each record may be accessed

individually.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-1 IRIS Business BASIC Manual

’ & -

-~> ‘

2.2 INTRODUCTION TO IRIS DATA FILES

Four IRIS file types are offered: formatted, contiguous, text and

keyed. Keyed files include two types of files: polyfiles and
indexed files. The major features of each file type are
summarized below. Further details and more strict definitions of
gach. fate type may be found under each file heading later in this
section.

IRIS provides two structurally different forms of data files:
contiguously~allocated and randomly-allocated. These terms refer
to the organization on the disc of the data blocks which make up

the file. The data blocks of a contiguously-allocated file are

physically contiguous to each other, and all the blocks of the

file are allocated when the file is built. The data blocks of a

randomly-allocated file are allocated dynamically as they are

needed. They may or may not be physically contiguous on the

disc.

A formatted file is randomly-allocated and formatted. When

formatting a file, the user specifies whether each item in the

file is a string or a decimal number of precision one, two, three

or four. Every record has the same format, which is recorded in
a format map in the file header. When a formatted file is

accessed, the item type and type of variable are checked. If the

types do not correspond, an error is generated.

A contiguous file is contiguously-allocated. Contiguous files

offer the potential of faster access than formatted files because

the position of the data record may be calculated by the system

without accessing the file header blocks. Because contiguous

files are not formatted and do not have item-type checking, they

offer greater flexibility than files which are formatted.

Text files are randomly-allocated. A text file may be regarded

as a string of up to 16 million ASCII characters terminated by a

null character. Text files may be accessed sequentially, but

IRIS allows the additional feature of random access.

There are two types of keyed files: polyfiles and indexed files.

Polyfiles and indexed files are grouped as keyed files because

they both allow random access by key.

Polyfiles consist of one or more associated files; each file is

called a volume of the polyfile. Each volume is contiguously-

allocated. Additional volumes may be added when necessary, so

polyfiles need not be entirely allocated when they are created.

They may employ an optional bit map to keep track of free

records. Polyfiles offer practically unlimited storage, greater

key size, and higher record capacity than any other type of file.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-2 IRIS Business BASIC Manual

An indexed file is contiguously-allocated. Part or all of every
indexed file is reserved for a directory. When a key is created,
a record may be associated with it. The record may then be
identified by unique keys contained in a directory. Unused data
records may be linked together to form a structure known as the
free record chain,

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-3 IRIS Business BASIC Manual

’ &-

-> act

2.3 DATA FILES ACCESS

This section describes the file handling statements, access
method for each type of file, sequential and repeated record
access, record locking and the channel functions.

2.3.1 OVERVIEW OF THE FILE HANDLING STATEMENTS

The following summary overviews the statements which are commonly
used to manipulate files and briefly describes their functions:

BUILD used to build the specified type of file
from within a program

CLOSE used to dissociate a channel from the file
it was used to access; a file being built
is deleted if the program run is stopped
before the file is closed

KILL used to delete specified files

MAT READ used to read the elements of a matrix (or
an entire string) from a file

MAT WRITE used to write the elements of a matrix (or
any variable) into a file

OPEN used to associate a file (or a peripheral
device) with the specified channel number

PRINT used to output information to a file. When
PRINTing to a file, the output is formatted
as it is for PRINT. A terminating

semicolon is not a record unlock command;
it is a formatting directive which
suppresses the RETURN at the end of the
line

READ used to read information from a file

SEARCH used for polyfiles and indexed files to
Manipulate directories and manage record
allocation

WRITE used to write information into a file

The syntax of each of these statements may be found in Section 3.
The BUILD, MAT READ, MAT WRITE, READ, SEARCH and WRITE statements

are discussed as they apply to each file type later in this
section.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-4 IRIS Business BASIC Manual

2.3.2 RECORDS AND ITEMS FOR CONTIGUOUS AND TEXT FILES

The syntax of the READ, WRITE, MAT READ and MAT WRITE statements

(are shown below:

READ #channel{ ,record{,item{ ,delay}}};variable list{;}

WRITE #channel{,record{ ,item{ ,delay}}};expression list{;}

~ MAT READ #channel{ ,record{ ,item{,delay}}};array or string variable{;}

MAT WRITE #channel{ ,record{ ,item{ ,delay}}};array or string variablef;}

The syntax of these statements allows specification of the record
and item numbers. However, contiguous files do not employ
records in the strict sense and text files do not employ records
and items in the strict sense. These terms have different
meanings for contiguous and text files.

For contiguous files, the item refers to the byte displacement
from the beginning of the record. For example, the following
statement reads data into variable A from a contiguous file open
on channel 0:

100 READ #0,R,24;A

This statement reads record R (R contains the integer value of
the record number), beginning at byte 24. (Byte 24 is the

twenty-fifth byte, because the record starts at byte zero.)
(oai 5 eee eee ee a

eee 4 data fields must start at an even byte displacement

within the file.
ow i ee ee : 5

For text files, the record refers to the relative block number

and the item refers to the byte displacement within that block.

(Each "record" in a text file is 512 bytes long.) For example,

the following statement accesses a text file on channel 1:

200 READ #1,3,15;A$

This statement reads block 3, beginning at byte 15.

For comparison, the following summary shows the meaning of

"record" and “item" for each file type:

File type Record item

text block byte displacement into the block
contiguous record byte displacement into the record

polyfile record byte displacement into the record

indexed record byte displacement into the record

formatted record item

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-5 IRIS Business BASIC Manual

. &-

-? 4

2.3.3 SEQUENTIAL AND REPEATED ACCESS

When accessing sequentially numbered records, it is not necessary
to specify the number of each record. Instead, the values shown
below may be used as the record expression to access the records
sequentially or repeatedly. If the record expression is omitted,
sequential access is used by default.

Record

Expr Effect

none Accesses the next sequential record and assumes

item zero. The record number of the last access
on that channel is incremented by one and used

as the record number.

-1 Same as none, except that it allows
specification of the item number.

=-2 Repeats access of the same record. The record
number of the last access on that channel is
used as the record number.

Sequential access operates somewhat differently for text files,
as described in Section 2.6.2.

If a statement which uses sequential or repeated access is
executed after opening the file or after building a new file,
record number zero is accessed.

The following lines demonstrate sequential access:

10 OPEN #2, “PAYROLL”

100 READ #2;A, BS$

110 READ #2,6; X,Y$

120 READ #2,-1,5; A,B$

140 READ #2,-1; A,B$

Line 10 opens the file named PAYROLL on channel 2. Line 100

accesses item zero of record number zero of that file. Line 110

accesses items zero and one of record number 6 of the file. Line
120 reads from record number seven of the file, because the
previous access of the file on channel 2 referenced record six.
Item five is read into variable A and item six is read into
variable B$. Line 130 is similar to line 120; record number

eight is read, since the previous access read record seven. Item

zero is read into A, and item one is read into B$. Line 140

operates similarly, referencing record nine.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-6 IRIS Business BASIC Manual

The following example shows repeated access of the same record.
This technique is especially useful for updating a record:

250 WRITE #5, -2,1; B+D

Line 200 reads items zero, one and two of the next sequential
record of the file open on channel five. Line 250 updates the
same record by writing the value B+D into item one.

The channel functions, described in section 2.3.5, may be used to
determine the number of the record last accessed.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-7 IRIS Business BASIC Manual

’ &- :

-~> 4

2.3.4 RECORD LOCKING

Whenever a READ, WRITE, MAT READ or MAT WRITE statement is used,
IRIS locks the record being accessed unless the statement ends

with a semicolon. When a given file may be accessed
simultaneously by more than one user, record locking restricts

access to the record to one user. Thus, several statements may
be executed to update a record before the next user has access to
the record.

For example, suppose two users named Smith and Jones are working
on an inventory control system. Smith checks how many walnut

desks are in stock by reading the appropriate record using a READ
statement with no ending semicolon. The record is locked. If

Jones attempts to;access the same record, Jones" program is
paused until Smith unlocks the record. Jones may then read an
accurate count of the remaining inventory.

IRIS locks individual records (not entire blocks like some other
operating systems). If two or more records are stored in one
block, only the record being accessed is locked; other records in
that block may be accessed. A record which is two blocks long or
which extends over a block boundary is entirely locked and
therefore is safeguarded from simultaneous access. One record
per channel only may be locked at any one time.

For text files, the exact block number and byte offset at which
the file is currently positioned is locked. The current position
is the next byte to be read or written. A record-lock condition
occurs in a text file only if a READ or WRITE is directed to the
exact current position.

Upon reading or writing to a new record, the old record remains
locked until the new record is successfully accessed. As a
result, a channel which is waiting to access a locked record can
itself have a record locked.

A record may be accessed without being locked by including a
semicolon at the end of the READ, WRITE, MAT READ or MAT WRITE

statement.

A record is automatically unlocked if the program is terminated
(except by a CHAIN statement); if the file is closed; if another
access is made to the same record (without re-locking it); or if
any other record is successfully accessed on the same channel. A
record may also be unlocked by executing a statement of the form

WRITE #c3}3

where c is the number of the channel on which the record is
locked.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-8 IRIS Business BASIC Manual

2.3.4.1 Deadly Embraces

A deadly embrace may occur if two users are each trying to access

the record which the other user has locked. Each user is paused
indefinitely while waiting for the other user to unlock the
desired record. Deadly embraces may also occur between three or

more users.

2.3.4.2 Delay Clause

A delay clause may be included in READ, WRITE and PRINT

statements to generate an error when a program is paused longer

than a specified period of time because a record (or device) is

locked. If the program is paused longer than the specified delay

period, error 123 is generated. The syntax of the delay clause
is shown under READ, WRITE and PRINT statements in Section 3.

The delay is specified in tenths of a second.

The method of recovery from error 123 depends on the type of file

(or device) involved, the statement used and whether access was

random or sequential. For formatted, contiguous or keyed files,

the aborted I/O may simply be re-executed. For text files, the

statement should be re-executed only if random access was used.
If the error occurred during sequential access to a text file,
the operation might have been only partially completed and the
file position might have changed. A record-locked error on any
data file may always be followed by random access to the same
record or to a different record.

In the following example, if record zero, item zero of the file
named "TEMP" remained locked by another user longer than
two-tenths of a second, the system would generate error 123 at
line 30:

10 DIM A$[100]

20 OPEN #1, "TEMP"

30 READ #1,0,0,2;A$

40 PRINT A$

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-9 IRIS Business BASIC Manual

’ ‘..

-> si

2.3.5 THE CHANNEL FUNCTIONS

The channel functions provide the current file size and current
access position within a file. The function CHF(x) may be used

in any arithmetic expression, like any other function. The
function type and channel number are combined in the expression

(x) by adding the function type (0, 100, 200 or 300) to the
appropriate channel number. For example, the value 302 selects
the function type 300 and channel number two.

Each of the channel functions and its result is shown below,
where c is the number of the channel on which the file is open.

Function Result

CHF (c) For the file open on the specified channel,

returns an integer one greater than the

record number of the highest numbered

record into which at least one item has

been written. If the file is a contiguous

file, the value returned is the number of

records in the file, regardless of where

data has been written in the file.

CHF (c+100) Returns the number of the record last
accessed on the specified channel. If the

file has not been accessed since it was

opened or built, returns -l.

CHF (c+200) Returns the byte displacement into the

block last accessed on the specified

channel. This function is most useful on

text files.

CHF (c+300) Returns the record size in words.

If a device is open on the specified channel, CHF(c) yields zero

and the other channel functions yield unpredictable results.

Error 49 occurs if the specified channel number is illegal or is
not open.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-10 IRIS Business BASIC Manual

2.4 FORMATTED FILES

Formatted files have the following features:

6 randomly-allocated

e formatted; that is, the type and length of each item in a

record are specified

e format is recorded in a format map in the file header

e@ each item may be an ASCII string, a decimal number, or one or
more binary words

e item type and length are checked whenever information and

length are transferred to or from a formatted file

e@ every record of the file has the same format

e each record may be up to 1 block (256 words) long and may

have up to 64 items

e records may not span block boundaries; an integral number of
records is stored in each block ‘

@ maximum capacity is 32768 blocks

This section describes the use and creation of formatted files.

2.4.1 CHARACTERISTICS OF FORMATTED FILES

Records may be written in any order, and records may be skipped.

However, if a skipped record is read from a block which has been

allocated, a "Record not written" error is not returned. A

"Record not written" error occurs only if the program attempts to

read a record in a block which has not been allocated.

For example, suppose an allocated block contains records four,

five and six. Records four and six have been written into. If

the program attempts to read record five, zero values would be

returned; a “Record not written” error would not occur.

SM-030-0012-02 : IRIS DATA FILES
POINT 4 Data Corporation 2-11 IRIS Business BASIC Manual

’ a

-> 34,

2.4.2 ACCESSING FORMATTED FILES

This section includes examples of the use of WRITE, READ, PRINT,
MAT READ and MAT WRITE statements on formatted files. The

general syntax of these statements is shown in Section 3.

Error 15 is generated if the program variable type is different
from the file item type, except when data is transferred between
binary and numeric types.

Data are always translated to the precision of the destination
variable/item. However, if a number outside the range +/-7999 is
read into a 1% variable, the value +/-7999 is read or written and
error 15 is generated.

For example, suppose a formatted file had the following record
layout:

Item Variable Length/precision

0 AS 12 character

i Al 1%

2 A2 2%

3 A3 3%

4 A4 4%

The following lines manipulate data in this file:

10 DIM 3%,A3,4%,A4

760 READ #C,R,4;A3

Line 760 reads item 4, a precision 4% variable, into A3, which is

a 3% variable. This is accomplished by modifying the 4% value to

fit into the 3% variable.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-12 IRIS Business BASIC Manual

2.4.2.1 WRITE for Formatted Files

For formatted files, a single WRITE statement may write into
sequential items of a single record only. An error results if a

variable type does not match the item type in the file.

An explicit WRITE to record zero is used to define the format of

a formatted file newly built from within a BASIC program, as

described in Section 2.4.4.

The following examples show the use of the WRITE statement on

formatted files.

200 WRITE #4, 19; F, Y1+3, "EXAMPLE", D-E

Line 200 sets item zero of record 19 of the file open on channel

4 to the value of F, item one of the same record to the value of
(Y1+3), item two to the string value EXAMPLE, and item three to

the value of (D-E). Items zero, one and three must be formatted
as numerics; item two must be formatted as a string.

In line 700, the channel number is given by the value of the
expression (C-1) and the record number is given by the value of
the expression (2*R). The item number may also be an expression.
The line sets item 8 of the specified record to 0, item nine to
the value of (2 A), and item ten to characters four through the
value of Q of the string M$. The final semicolon leaves the
specified record unlocked while the statement is executed, as
described in Section 2.3.4.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-13 IRIS Business BASIC Manual

’ GQ.

as, “yell

2.4.2.2 READ For Formatted Files

In formatted files, sequential items of a single record only may
be read by each READ statement. An error results if a variable

type is not compatible with the item type in the file.

The following examples show the use of the READ statement on
formatted files.

400 READ #2, 6; D, WS, KI7, A-2]

Line 400 reads item zero of record 6 of the file open on channel
2 into variable D, item one (which must be a string) into string
variable W$, and item two into the element of K at row 7, column
A-2. The record is left locked.

500 READ #C[4]+l, R8, 5; FS[4], J, J;

In line 500, the channel number is given by the value of the
expression (C[{4]+1) and the record number is given by the value
of R8. The item number may also be an expression. The line
reads items five, six and seven of the specified record. Item
five is read into F$ beginning at character four; characters one
through three remain unaffected. Item six is. read into J, then
item seven is read into J, thereby overwriting the value of item
six. This technique may be used when the value of item six is
not required. The final semicolon leaves the specified record

unlocked while the statement is executed, as described in Section
2.3.4. .

Numeric expressions are allowed for the channel, record and item,

but an item value from the file may not be read into an
expression.

When reading values from a formatted file into string variables

listed in a READ statement, the system terminates the READ to a

given string variable when a zero byte is encountered in the file

or when the string variable is full, whichever occurs first. The
system then proceeds to the next item listed and begins to READ
into it. If a string specified in a READ statement is larger
than the item in the file, the system reads the item into the

string and adds a zero byte, leaving some unused space in the
string.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-14 IRIS Business BASIC Manual

2.4.2.3 PRINT for Formatted Files

The PRINT statement can be used on formatted files, and results

in output of one or more strings. Output must be to an ASCII

string item. The use of PRINT on formatted files requires a

thorough knowledge of how PRINT operates. POINT 4 suggests the

use of alternate statements, such as LET USING.

2.4.2.4 MAT WRITE Statement for Formatted Files

When using MAT WRITE, the entire matrix, string or variable is

written into a single item. The item type in the file must be

binary.

If the item is too small, then the data are truncated; no error

message is given. No data conversion takes place; the user's

program must ensure that the data will later be read back into

the same type of variable.

The following examples show the use of the MAT WRITE statement on

formatted files.

910 MAT WRITE #1, 20; A

Line 910 writes all elements of the matrix A into item zero of
record 20 of the file open on channel 1.

300 MAT WRITE #C, 2*R, 8; B

Line 300 writes all elements of the matrix B into item 8 of the
record given by the value of (2*R) of the file open on channel C.

700 MAT WRITE #L, R, 3; BS

Line 700 writes the string B$ into item 3 of record R of the file

open on channel L. Item three must be a binary field. The
system WRITEs the entire contents of B$, including all zero
bytes, to the end of B$ or until the item is full, whichever

occurs first.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-15 IRIS Business BASIC Manual

’ 4.

-> 4

2.4.2.5 The MAT READ Statement for Formatted Files

When using MAT READ, the entire matrix or string is read into a

single item. The type of the item must be binary. If the item

is too small, then the data are truncated; no error message is

given. No data conversion takes place; the program must ensure

that the data is read into the type of variable which matches the

data form.

The following examples show the use of the MAT READ statement on

formatted files.

400 MAT READ #2, 21; M

Line 400 reads all the elements of the matrix M into item zero of

record 21 of the file open on channel 2.

600 MAT READ #J, R+3, 7; N

Line 600 reads all the elements of the matrix N into item 7 of

the record given by the value of (R+3) of the file open on

channel J.

800 MAT READ #3, 10, 2; A$

Line 800 reads the string A$ into item 2 of record 10 of the file

open on channel 3. Item two must be a binary field. The system

READS the entire contents of B$, including all zero bytes, until

A$ is full or to the end of the item, whichever occurs first.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-16 IRIS Business BASIC Manual

2.4.3 CREATING A FORMATTED FILE USING FORMAT

The FORMAT processor, described in the IRIS R8 User Manual, may

be used to create a formatted file. To create a formatted file
using FORMAT, enter a statement of the following form at the IRIS
system prompt:

#FORMAT filename

where filename is the name of the formatted file to be created.
The cost, protection and logical unit on which the file will be

created may also be specified ahead of the filename.

The processor will then prompt for the format of each item in a
record. The appropriate codes are described in the IRIS R8 User

Manual.

NOTE

For an item which will be accessed by a

matrix statement (MAT READ or MAT WRITE), the

item type must be binary. For example, a

5x10 matrix dimensioned at 3% has six columns

(0 through 5) and eleven rows (0 through 10).

The item for this matrix must be formatted

B198 (6xl1x3). A 29-byte string must be

dimensioned for 30 bytes, which is an even

number. Its item type would be B15.

Refer to the IRIS R8 User Manual for details on the FORMAT

processor.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-17 IRIS Business BASIC Manual

. 4-

«> ot

2.4.4 CREATING A FORMATTED FILE USING THE BUILD STATEMENT

To create a formatted file from within a BASIC program, the BUILD

statement is used followed by an explicit WRITE to record zero.
The explicit WRITE to record zero sets the format of the record;

this is called “auto-formatting" the file. For detailed syntax

of the BUILD and WRITE statements, refer to Section 3.

To build a formatted file, execute a statement of the following

form:

BUILD #c, “FMTFILE"

where "FMTFILE" is the name of the formatted file to be created

and c is the channel number expression. This statement must be

followed by a WRITE statement of the following form:

WRITE #c, 0; X, Y, 2

where c is the channel on which the formatted file being created

is open, zero is the record number and X, Y and Z are the items.

This statement automatically stores the format of each specified

item into the file's format map in its header block. The first

WRITE to a record other than zero ends auto-formatting.

The cost, protection and number of the logical unit on which the

file will be built may be specified within the quotation marks,

ahead of the filename. For example, the following statement

creates a formatted file named "FMTSAMPLE" with protection 33, and

cost $10 on logical unit 3:

BUILD #C,"<33> $10.00 3/FMTSAMPLE"

The detailed syntax of the BUILD statement is listed in

Section 3.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-18 IRIS Business BASIC Manual

2.5 CONTIGUOUS FILES

Contiguous files have the following features:

e contiguously-allocated, so the entire file is allocated when

it is: first built

e every record must be of the same size; multiple records may

be read or written by a single statement to have the effect

of variable record size

@ record lengths should be a factor of the block size to
prevent records from spanning block boundaries. Records

which span block boundaries may require more than one disc

access to transfer

e unformatted; therefore, there is no item type checking. The

program must ensure that data are read back into the same

variable types as those from which they were written

@ maximum record length is 32768 words

e maximum file size is limited by the size of the logical unit

only :

This section describes the use and creation of contiguous files.

2.5.1 CHARACTERISTICS OF CONTIGUOUS FILES

A contiguous file can be built only if an adequate number of
physically contiguous blocks are available on the specified
logical unit. All blocks are allocated initially. When the file
is built or opened, all information required to calculate the
disc address where the data transfer is to begin is stored in
memory.

Items are addressed by record number and byte position. A single
data transfer may span record boundaries because the address

specifies only a starting location.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-19 IRIS Business BASIC Manual

v &-

2.5.2 ACCESSING CONTIGUOUS FILES

This section includes examples of the use of the WRITE, READ,
PRINT, MAT READ and MAT WRITE statements on contiguous files.

The general syntax of these statements is shown in Section 3.

For contiguous files, the specified record number is the
reference point at which the operation begins. The "item" refers
to the byte displacement from the beginning of a record. The
transfer continues, possibly across record boundaries (and
possibly across disc block boundaries) until all the data on the
expression list have been written. If the end of the file is

reached, the data are truncated with no error message. Two or
more records may be transferred in one command.

Reading or writing beyond the specified record is possible in
contiguous files if the "item" value (byte displacement) is
beyond the defined range or if the expression list contains more
data than will fit in one record.

In order to calculate the record size of randomly accessed

individual items, individual item types must be understood. For
a numeric item, its size (and displacement to the next item)
equals the number of bytes equivalent to the precision of the
variable if a variable is written, or four words if an expression

is written. Ruy nunes See Cee area cnt forealen aay oe
is_ written in four= precision. The following rmulas may be
used to calculate the size and displacement of a string item.

Source string Number of bytes (n)

A$ n = dtl
AS (x) n = d-x+2 (0 < x <= d)

A$ (x,y) n = y-x+tl (x <= y <= d)

@, Sse nse ctl

where

n- the number of string bytes written into the file,
including a terminating zero byte, if written

A$ - any string variable

d - the dimension of the string variable A$

x and y - numeric expressions

c L the number of characters in a literal string

Writing into a file is always terminated if a zero byte is
encountered in the source string, and the zero byte is written.
Writing of the zero byte may be prevented only by the use of two
subscripts on a string variable.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-20 IRIS Business BASIC Manual

The above formulas for n can also be used to determine the byte

displacement from the beginning of one item to the starting

location of the next item to be written sequentially by the same

statement. The value of n is determined by the dimensioned

length of the string, not by the current length of the string.

If the next item written is numeric (or any word-oriented data),

and the displacement results in an odd byte displacement from the

beginning of the record, then one byte in the file is skipped so

that the following field begins on a word boundary. The skipped
byte is not changed in the file.

The system maintains a byte pointer during READ operations. A

READ into a string variable terminates either on a zero byte in
the file or py filling the string, whichever occurs first. A

READ into a numeric variable is terminated by transferring the
number of words appropriate to the precision of the variable. In

both cases, the byte pointer in the file is moved n bytes (as
defined above) from the beginning of the field just read. If the

pointer does not land on a word boundary and the next variable in

the expression list is numeric, the pointer is advanced to the
next word boundary and the READ begins there.

Take care not to supply a byte number which is in the middle of a

previously written numeric item.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-21 IRIS Business BASIC Manual

® &-

2.5.2.1 WRITE for Contiguous Files

The following examples show the use of the WRITE statement on

contiguous files.

10 DIM A${(13] ,D$[20],2%,B,E

Line 100 writes the string value of A$ followed by a terminator
character into the file open on channel C, beginning at the
twenty-second byte of record seven. The values of the remaining
variables are written sequentially into the record. No null is

written following D$[{1,8]. The following columns show how the
byte displacement of the items in line 100 is determined

(assuming A$ is filled):

A$ n = 13+1 = 14 bytes 0-13
B 2% precision = 4 bytes 14-17
D$[1,8] n = (8-1)+1 = 8 bytes 18-25
E 2% precision = 4 bytes 26-29

200 WRITE #0,7,26;E

Line 200 writes the value of variable E into the file open on
channel 0, beginning at byte 26 of record 7.

2.5.2.2 READ for Contiguous Files

The following example shows the use of the READ statement on
contiguous files.

10 DIM W$[10] ,2%,D

Line 200 reads record 6 of the file open on channel 2 into
variable D starting with byte zero. A total of four bytes (bytes

zero, one, two and three) are transferred to D. The line then
reads bytes four and on into W$, continuing the transfer until W$

is filled or until a zero byte is encountered in the file.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-22 IRIS Business BASIC Manual

i

2.5.2.3 PRINT for Contiguous Files

The following examples show the use of the PRINT statement on
contiguous files. When PRINT is executed, the output is
formatted as it is for PRINT.

170 PRINT #3, 21, 63 254.6, D+tE, F/6

Line 170 prints the value 254.6 beginning 6 bytes into record 21
of the file open on channel 3, followed by the values of (D+E)
and (F/6) to successive bytes.

Line 240 prints the value of element 1 of variable X beginning at
byte zero of record J of the file open on channel C, followed by

the values of element 3,6 of array Y and (Z+W) to successive
bytes.

310 PRINT #C2+1, R-1; USING B$(15)3 P; J; M$;

In line 310, the channel number is given by the value of the
expression (C2+1) and the record number is given by the value of

(R-1). The byte displacement may also be an expression. The
line prints the values of the variables P, J and M$ beginning at
byte zero and proceeding successively, using the format specified

in the format string B$(15). The final semicolon is treated as a

formatting directive which suppresses the RETURN at the end of

the line, not as a record unlock command.

2.5.2.4 The Matrix Statements for Contiguous Files

When using MAT READ or MAT WRITE, the entire matrix, string or
variable is read in one statement. For contiguous files, the

"item" is used as a byte displacement into the record; however,

all transfers are word oriented. If an odd byte displacement is
given, then the transfer begins at the next higher byte

displacement.

If writing a string variable, then the entire string as

dimensioned is written, including all zero bytes within that

string. If the string's dimension is odd, then a zero byte is

written at the end of the string bytes. As a general rule, the

—— always adds a zero byte if necessary to fill the last

word,

The following formulas may be used to calculate the number of

words that will be transferred.

For an array variable: (r+1)(ct+l)p

For a string variable: INT [(d+1l)/2)]

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-23 IRIS Business BASIC Manual

* 5

6 sae NSTar Pie

where

- row dimension of the matrix

- column dimension of the matrix

- number precision of the matrix

- string dimension (number of bytes)a 0A N
2.5.2.4.1 MAT WRITE STATEMENT FOR CONTIGUOUS FILES

The following examples show the use of the MAT WRITE statement on

contiguous files.

910 MAT WRITE #1, 20; A

Line 910 writes all elements of the matrix A beginning at byte
zero of record 20 of the file open on channel l.

300 MAT WRITE #C, 2*R, 8; B

Line 300 writes all elements of the matrix B beginning at byte 8

of the record given by the value of (2*R) of the file open on

channel C.

700 MAT WRITE #L, R, 4; B$

Line 700 writes the entire string B$, including zero bytes,

beginning at byte 4 of record R of the file open on channel L.

2.5.2.4.2 THE MAT READ STATEMENT FOR CONTIGUOUS FILES

The following examples show the use of the MAT READ statement on

contiguous files.

400 MAT READ #2, 21; M

Line 400 reads all the elements of the matrix M beginning at byte

zero of record 21 of the file open on channel 2.

600 MAT READ #J, Rt+3, 8; N

Line 600 reads all the elements of the matrix N beginning at byte

8 of the record given by the value of (R+3) of the file open on

channel J.

800 MAT READ #3, 10, 2; A$

Line 800 reads the entire string A$, including zero bytes,

beginning at byte 2 of record 10 of the file open on channel 3.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-24 IRIS Business BASIC Manual

2.5.3 CREATING A CONTIGUOUS FILE USING FORMAT

To create a contiguous file using FORMAT, enter a statement of
the following form at the IRIS system prompt:

#FORMAT [records:words]) filename

where

records - number of records in the file

words - number of words per record

filename - name of the formatted file to be created

The cost, protection and logical unit on which the file will be
created may also be specified ahead of the [records:words]

specification.

FORMAT then displays the size of the file in blocks.

Refer to the IRIS R8 User Manual for detailed syntax and more

information on FORMAT.

2.5.4 CREATING A CONTIGUOUS FILE USING THE BUILD STATEMENT

To create a contiguous file from within a BASIC program, the

number of records and number of words per record is specified in

a BUILD statement. For the detailed syntax of the BUILD

statement, refer to Section 3.

To build a contiguous file, execute a statement of the following

form:

BUILD #c, "({10:256] CONTIGFILE"

where

c - channel number expression

10 -— number of records

256 - number of words per record

CONTIGFILE - name of the contiguous file to be created

The cost, protection and number of the logical unit on which the

file will be built may be specified within the quotation marks

before the [records:words] specification. For example, the

following statement creates a contiguous file named “CONSAMPLE"
with protection 33 and cost $20 on logical unit 4:

BUILD #C, "<33> $20.00 [10:256] 4/CONSAMPLE"

The detailed syntax of the BUILD statement is listed in
Section 3.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-25 IRIS Business BASIC Manual

U Go

-~> 4

2.6 TEXT FILES

Text files have the following features:

@ randomly-allocated, so blocks are allocated to the file only

when they are needed

e unformatted

e system regards text files as a single string of zero to
16,777,215 characters (or the size of a logical unit,

whichever is less) terminated by a null byte (binary zero)

This section describes the use and creation of text files.

2.6.1 CHARACTERISTICS OF TEXT FILES

Characters in a text file are packed and span block boundaries.
Each character is stored as a seven-bit ASCII code with the
eighth bit set unconditionally to one. If the file contains any
RETURN codes, the system recognizes them as end-of-line markers.

Although text files are not organized around data records in the
same sense as other data file types, a fixed record length of 512
bytes (one disc block) is adopted to facilitate random
addressing.

2.6.2 ACCESSING TEXT FILES

This section includes examples of the use of the WRITE, READ and
PRINT statements on text files. The general syntax of these

statements is shown in Section 3. The matrix statements may be
used on text files. However, if non-string data is output to a

text file, other programs and utilities may be unable to access
the data correctly. For this reason, MAT READ and MAT WRITE are

not discussed in this section.

For text files, the record refers to the block and the item
refers to the byte displacement within that block.

Text file access is usually sequential and line oriented, where a
line is defined as any string of characters up to and including a
RETURN code. Text files may also be accessed randomly as a
series of one-block records.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-26 IRIS Business BASIC Manual

Sequential and repeated access of a "record" operates differently

for text files than for other file types. The values shown below

may be used as the record number expression for the designated
access.

Record

Expr Effect

none Accesses from the next byte to the next RETURN
code or zero byte in the file (or until the

specified variable is filled, whichever occurs

first).

= Same effect as none.

-2 Has the same effect as -l except that when

READing, the transfer is terminated by the length

of the variable being read into or by the end of

the file, not by a RETURN code.

If a statement which employs sequential access (as described

above) is executed after opening or building a text file, byte

zero of block zero is accessed.

2.6.2.1 WRITE For Text Files

The following example shows the use of the WRITE statement on

text files.

700 WRITE #1; A$, DS$, C$

Line 700 concatenates the values of A$, D$ and C$ and writes them

into the file open on channel 1 as a single string, with no
RETURN code at any point. If this statement were the first

executed after opening or building a text file, byte zero of
block zero would be accessed. Otherwise the strings would be
written immediately following the data last accessed. If line
700 were repeated, the file would show a continuous concatenation

of the fields written.

The WRITE statement does not add any return codes to the output.
The program may output zero, one or more return codes in the
output variables.

For text files, all expressions in the expression list of the
WRITE statement must be string expressions.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2=27 IRIS Business BASIC Manual

’ &-

-> 4

2.6.2.2 READ for Text files

The following examples show the use of the READ statement on text

files.

400 READ #1;A$;

Line 400 reads from the first byte following the data last
accessed up to the first RETURN found in the file open on channel

one into the string variable A$. If this statement were the
first executed after opening a text file, the data from byte zero
of block zero to the first RETURN code would be read. The final

semicolon disables record locking.

500 READ #0,-2;B$;

Line 500 reads from the first byte following the data last
accessed until filling B$ from the file open on channel 0. The

final semicolon disables record locking.

When the end of a text file is encountered, the system returns

either an empty string or a "Record not written” error.

2.6.2.3 PRINT for Text Files

The following examples show the use of the PRINT statement on

text files.

840 PRINT #1,-1;A$

Line 840 prints the contents of A$ followed by a RETURN code to
the file open on channel 1. If this statement were the first
executed after opening or building a text file, byte zero of
block zero would be accessed. Otherwise the string would be

written immediately following the data last accessed.

The following codes may be included in PRINT statements:

Code Meaning

\207\ ring bell

\214\ form feed

\215N\ . carriage return

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-28 IRIS Business BASIC Manual

-

2.6.3 CREATING A TEXT FILE USING A TEXT EDITOR

To create a text file using EDIT, enter a command of the

following form at the IRIS system prompt:

#EDIT, filename

where filename is the unique name of a file to be created. EDIT

prompts for further commands with an asterisk. Enter XEND to
exit the editor. The cost, protection and logical unit on which
the file will be created may also be specified ahead of the
filename.

The IRIS R8 User Manual describes the use of EDIT in detail.

2.6.4 CREATING A TEXT FILE USING THE BUILD STATEMENT

To build a text file from within a BASIC program, execute a
statement of the following form:

BUILD #¢c, +"TEXFILE"

where

c - channel number expression

+ - indicates that the file is to be a text file

TEXFILE - name of the text file to be created

The cost and protection of the file and the logical unit on which

it will be built may be specified ahead of the filename, within

the quotation marks. For example, the following statement

creates a text file named "TXSAMPLE" with protection 33 and cost

$10 on logical unit 4:

BUILD #c, +"<33> $10.00 4/TXSAMPLE"

The detailed syntax of the BUILD statement is listed in

Section 3.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-29 IRIS Business BASIC Manual

’ tn

-> «

2.7 KEYED FILES

Keyed files have the following characteristics:

2sTa

unformatted

contiguously-allocated

allow random access by key

may have two parts: the data portion and the directory

portion

directories are accessed via the SEARCH statement; data
records are accessed in the same way as contiguous files

keyed files may have more than one directory

1 TYPES OF KEYED FILES

There are two types of keyed files: indexed files and polyfiles.

2.7-1.1 Indexed File Features

Indexed files have the following characteristics in addition to

those of keyed files:

maximum key size is 30 bytes; maximum number of 30-byte keys
per file is 1830

key size must be specified in word increments (multiples of
two bytes)

maximum number of data records is 65,535

require the use of search mode seven (described in Section
2.7.5.7) to redistribute directory keys; this process
necessitates the suspension of timesharing

the size of a given directory may not be changed

employ a free record chain to keep track of free records; it
is possible to disrupt this chain by improper programming

data records start at a variable location depending on the
size of the directory

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-30 IRIS Business BASIC Manual

2.7.1.2 Types of Indexed Files

Indexed files may include up to 15 directories, as specified by
the user, within the data file itself. In addition, indexes may

be set up and used independently of any data file. Files used in

this way are called "index-only" files. The key length may be

different for each directory.

2.7.1.3 Polyfile Features

Each polyfile is made up of one or more associated contiguous

files, called "volumes" of the polyfile. Although each volume is

contiguously-allocated and must be allocated in its entirety when

built, additional volumes may be added to the polyfile when

necessary. Polyfiles offer practically unlimited storage,

greater key size and higher record capacity than any other type

of file.

The volumes may reside on different logical units, except that no

volume may reside on logical unit zero. The volumes are
associated by the master volume, which holds linkage information

in its header block. The master volume is always volume zero of
the polyfile.

Polyfiles have the following characteristics:

e key size may be specified in exact number of bytes; maximum
key size is 121 bytes

| e keys are redistributed automatically, so search mode seven is
not needed

@e directories may be enlarged by dynamically adding new
directory extension volumes

@ a bit map keeps track of free records; this bit map cannot
be disrupted by user programming

e data records always begin at record zero

@ maximum number of keys per polyfile depends on the key size:

- 121-byte keys = 8 million keys per polyfile

- 60-byte keys = 20 million keys per polyfile

- 32-byte keys = 40 million keys per polyfile

@ maximum number of data records is 4,128,768

@ maximum volume size is 65536 blocks (including the header) or

the size of the logical unit, whichever is smaller

Polyfiles can not be transferred by the MAGTAPE utility or any
other program which uses the $MTAS file transfer function.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-31 IRIS Business BASIC Manual

v 4.

~> ‘

2.7.1.4 Types of Polyfile Volumes

Three types of polyfile volumes exist:

e data volume

e base directory volume

e directory extension volume

It is possible to reserve space on an LU for a polyfile or to
link a file to a polyfile via the polyfile CALL (91), without
structuring the space or file as a data, directory or directory
extension volume. This reserved space or linked file is called
an unstructured volume of the polyfile.

2.7.1.4.1 POLYFILE DATA VOLUME

A polyfile may have a maximum of 64 data volumes, numbered 0
to. 63.

The record length must be the same throughout every volume of a
given polyfile. Records may cross block boundaries and are
numbered sequentially through ascending volumes. For example, if
volume two of a polyfile has 100 records, volume six has 200
records, and volume seven has 300 records, then records 0-99 will

be found in volume two, 100-299 in volume six and 300-599 in

volume seven.

New data volumes cannot be inserted into the existing data volume
numbers because the system does not renumber records. It is best
to allow the system to assign data volume numbers or number them
as low as. possible.

Polyfiles may employ a bit map to keep track of free records.
The entire polyfile must be either mapped or unmapped; mapped and

unmapped data volumes may not be combined in the same polyfile.

2.7.1.4.2 POLYFILE DIRECTORY AND DIRECTORY EXTENSION VOLUMES

Each directory volume may have a maximum of 15 directories. When
a directory volume is filled with keys, a directory extension

volume may be used. An extension is used to extend a given

directory volume only; it provides a pool of additional disc

blocks which are available to any directory in the associated

base directory volume.

Section 2.7.4 describes the structure of keyed file directories.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-32 IRIS Business BASIC Manual

2.7.2 MANAGING FREE RECORDS

Indexed files use a free record chain to keep track of free

records. Polyfiles may employ a bit map to keep track of free

records. (Record allocation may be managed by the program
itself, if the programmer chooses to develop a free record

structure.)

2.7.2.1 Indexed File: Free Record Chain

When an indexed file with internal directories is created, the

data records are linked together in the free record chain. To

allocate a record, the user obtains the number of an unused

record from the free record chain and uses that record for the

new file entry. To release a record, the user specifies the

number of the record to be released using search mode one, and

the record is returned to the free chain.

The free record chain is maintained on a Last-In-First-Out (LIFO)

basis. The file header contains the number of the first record

on the chain. The first word of that record contains the record

number of the next free record, which contains the record number

of the next free record, and so on.

When a program requests a free record, the first record on the

chain is allocated to the program and the record number contained

in its first word is inserted into the file header.

WARNING

The free record chain can be destroyed when

data written to one record overwrites

portions of the next record.

2.7.2.2 Polyfiles: Bit Map

Polyfiles use bit maps to allocate records in data volumes and

disc blocks in directory volumes. Bit maps are optional for data

volumes, but are required in directory volumes. All data volumes

in a given polyfile must be mapped or all of them must be

unmapped.

Each bit in a map block is used to map a block or record (in a
data volume each bit maps a record number; in a directory each
bit maps a disc block). Any map block can map up to 4096 units.

Each polyfile bit map also maps itself; thus, when allocating a
new record, the system does not have to search through an entire
bit map to find a bit which indicates a free record.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-33 IRIS Business BASIC Manual

’ &-

sg

2.7.3 CHARACTERISTICS OF DATA PORTION OF KEYED FILES

The data portion of an indexed file or data volume of a polyfile

has the same characteristics as contiguous files. Section 2.5
describes contiguous files.

2.7.4 STRUCTURE OF KEYED FILE DIRECTORIES

In keyed file directories, each key in the master level is linked

to the corresponding level below it, as shown in Figure 2-1.

Each key in the subsequent levels is linked to the corresponding

level below it. Finally, each key in the fine level references a

data record by its real record number.

Keys within each block are sorted in ascending order. To locate

a given key, the system scans the master, coarse and fine levels

in turn for a key of a matching or greater value. Each time a

key of matching or greater value is found, the system follows the

appropriate pointer to the subsequent level.

Directories for indexed files and polyfiles have one major

difference. Indexed files have only three levels: master, coarse

and fine. Polyfiles must have at least a one-block master level

and a one-block fine level, but may have any appropriate number

of coarse levels between.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-34 IRIS Business BASIC Manual

Master Level Coarse Level

=
r=

joe

=

-
c

or

?

>
oS
>

=

=x

z z
a4 =z

—

=J--= >

=
-

x w

z
< eo
=

oe g
-—

o =

8 >

c
w

4 :Co—

Fine Level

--&

“vow

"Yrs

c-0*x ty Vetedq«2z2oao>

ade

Zuwws>

zacrx

~ 20>

w-und

2-20<¢

z<a2z~x

odadc> rye the teuw owod Directory Structure of Keyed Files
we trys

ty ae Te Pointers To Data Records
wow 2— >

ooz }§__—$(Lit ge h oda2z Pe Figure 2-1.ortuwac>

odri>

ecco a

ow> —

@eqcr toe

<«zoa>

<a 2> a| atan | anoy | 808 |LiL
SM-030-0012-02

POINT 4 Data Corporation

. &-

qudZz te

<oo> ry

2-35

IRIS DATA FILES

IRIS Business BASIC Manual

~> ‘4

2.7.4.1 Indexed File Directories

Each directory of an indexed file consists of three levels:
master, coarse and fine. The master level is always one disc

block long. The sizes of the coarse and fine levels depends on
the number of data records in the file.

The keys in each level are sorted in ascending alphabetic order.
Each entry in the master level contains the address of the

corresponding plock of coarse level entries and the highest key

held by that block. Each entry in the coarse level contains the
address of the corresponding block of fine level entries and the

highest key held by that block. Each entry in the fine level
contains a numeric value, which is usually a record number. The
numeric value need not be unique in each entry.

The maximum number of data records that can be indexed depends on
the longest key length to be used. The following table

summarizes the number of keys per block of the directory and the
maximum number of indexed data records for various key lengths:

Longest Key Length K_ Keys per Block Max Number of Indexed

(number of words) = + = AQ

1 127 6553 4*

2 84 6553 4*

3 63 6553 4*

4 50 62475

5 42 37023

6 36 23310

7 31 14880

8 28 10962

9 25 7800

10 23 6072

ll 21 4620

12 19 3420

13 18 2907

14 16 2040

15 14 1680

*maximum number of records in any file

The system uses two words from each block of each directory.
Each key has a one-word pointer associated with it. Therefore,
the number of keys per block may be calculated using the
following equation: :

N=INT 254/ (L+1)

where N is the number of keys per block and L is is the length of

each key in words. The string supplied for each key may be up to
2L bytes long.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-36 IRIS Business BASIC Manual

O

Because the master level is always one block long, it may contain
N keys. Each key in the master level points to one block on the

coarse level, so the coarse level may have a maximum of N blocks.

Theoretically, there could be N 2 blocks in the fine level

pointing to (N 3)-1 data records (one dummy key is inserted by

the system at the end of each level).

In practice, however, the insert and delete key algorithms may

cause every other block in the fine or coarse levels to contain

only one key. As a result, the number of blocks in the fine

level (F) must be:

F=2*R/ (N+1)

where R is the number of data records to be indexed. In

addition, the number of blocks in the coarse level (C) must be:

C=F/ (N-1)

where F is the number of blocks in the fine level and N is the

number of keys in the master level.

If a fraction results from the calculation, the number of blocks

is rounded up.

There must be at least two blocks in the fine and coarse levels.

2.7.4.2 Polyfile Directories

Each directory of a polyfile begins with a one-block master level

and a one-block fine level. When the fine level requires more
keys than can be indexed by the master level, the master level is

split to create an intermediate level, and a new one-block master
level is formed. The maximum number of levels allowed is 127.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-37 IRIS Business BASIC Manual

. 4-

-> 4

2.7.5 USE OF THE SEARCH STATEMENT

Indexed file and polyfile directories are accessed via the SEARCH

statement. The SEARCH statement has seven modes which may be

used to manipulate keys and directories.

The syntax of the SEARCH statement is shown below:

SEARCH #channel, mode, directory expr; K$, R, S

where

channel - channel number expression giving the number of the

channel on which the appropriate file is open

mode - search mode expression, as defined in the following

subsections

directory expr - expression giving the number of the appropriate

directory associated with the file or which may be set to

defined values to provide miscellaneous directory

information, as defined in the following text

K$ - any string variable which contains the appropriate key

R - any variable which will contain or receive the record number

of the key being acted upon

S - a variable which receives error status as shown in Table 2-1

or which may be set to defined values to provide
miscellaneous search functions, as defined in the following

subsections

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-38 IRIS Business BASIC Manual

TABLE 2-1. SEARCH ERROR STATUS

€ Value Meaning

0 no error, Operation was successful

—_ a operation was unsuccessful (usually indicates key not
found)

z end of directory (when inserting a key, indicates

directory is full)

3 end of data; all data records are allocated

4 file has no index

5 undetermined error or, for polyfiles, file structure

error

6 directory number not in sequence

7 file is not contiguous

8 indexed file or polyfile volume is already indexed

9 the value of the record number (R) is negative or too

(large

10 too many directories: for indexed files, the limit

Ye is 15 per file; for polyfiles, the limit is 63 per
volume/polyfile

eI for indexed files: master directory level exceeds

one block; for polyfiles: volume not found (possible

structure error)

12 for indexed files: directories exceed size of file;

for polyfiles: volume too small

<3 no such directory

14 file not indexed

15 data volume number is less than pre-existing data
volume

16 data volume map request not consistent with
pre-existing volumes

4 data volume does not have record length matching that

of the polyfile

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-39 IRIS Business BASIC Manual

’ 4-

ay 4

TABLE 2-1. SEARCH ERROR STATUS (Cont)

Value Meaning

18 block/record out of range

19 record was not allocated (already released)

20 volume has no bit map

For indexed files, status 5 (undetermined error) occurs in four

cases: if the system's Auxiliary Buffer Area (ABA) is less than
1004 words octal; if an illegal command is given; if K$ is
dimensioned shorter than the specified directory's key; or if the

file is not structured as expected (for example, if there are
less directories than the specified directory number).

Errors 6 through 12 occur in mode zero operations only.

The record number and status variables (R and S) must contain
legal values (0 through 32767, 0 through 2431-1) on entry even if

those values are not used in a given mode.

The modes provided by SEARCH are summarized below:

Mode Description

0 directory definition

1 directory information

2 key match

3 next key

4 insert a key

5 delete a key

6 unused

¥ reorganize directory (not used on polyfiles)

Each of these modes are described in detail in the following
subsections.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-40 IRIS Business BASIC Manual

a

a

2.7.5.1 Search Mode 0: Directory Definition

Search mode zero is used when setting up a new file. Line 50 is

an example of search mode zero: ee ieee

50 SEARCH #C,0,1;K$,R,S

The function of search mode zero depends on the value of the

directory expression, as shown in Table 2-2.

TABLE 2-2. SEARCH MODE ZERO

Directory

Expression Effect

one.

> 0 Defines the directory specified by the

directory number expression.

key length (number of words) equal to the

value of R and the number of keys per block

equal to the integer value of

length + 1)] for the specified directory.

The directories must be specified in

sequential order starting with directory

It sets the

[254/ (key

executed.

= 0 Organizes all directories.

freezes the directory configuration to that

specified by previous mode zero commands,

assumes a number of data records as given

in R, and sets up the internal linkage for

all directories. All mode zero commands

are rejected after this statement is

This mode

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-41 IRIS Business BASIC Manual

’ &-

~> ‘

2.7.5.2 Search Mode 1: Directory Information

Search mode one is used to read the attributes of an existing

file after it has been opened. Line 100 is an example of search
mode one:

100 SEARCH #C,1,0,K$,R,S

The effect of search mode one depends on the values of the
directory number expression and status variable S, as shown in
Table 2-3.

TABLE 2-3. SEARCH MODE ONE

Dir. Status

Expr. Var. Effect

> 0 any Returns the key length (number of words)
value of the specified directory into R. If

the specified directory does not exist,

R remains unchanged and S is set to

five.

= 0 0 Returns the record number of the first
real data record into R. The returned
value is always zero for polyfiles.

a Returns the number _of free records in R.
the number of free

records is taken from_the free record
chain. [For polyfiles) the number of
free records is the sum of all available

records across all data volumes in the
polyfile.

2 [Indexed files] files: returns the record
number of a free data record and removes

that record from the free record chain.

Allocates and returns the

record number of the first available
free record and marks it "in use" in the
bit map (if provided).

3 Releases the record specified by the
value of R. returns

the record to the free record chain.

marks the record "free"

n the b map (if provided). Sets S to

19 if the record was already free and to

20 if the file does not have that record
number,

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-42 IRIS Business BASIC Manual

2.7.5.3 Search Mode 2: Key Match

Search mode two searches the specified directory for a match with

the key specified by K$. Line 200 is an example of search mode

two:

200 SEARCH #C,2,D;K$,R,S

If the key is found, the system returns the entire key in KS,

returns the associated data record number in R, and sets S to

zero. If the key is not found, K$ and R remain unchanged, and S

is set to one.

A match is found if the compared strings are equal to the end of

K$, even if the found key is longer than the original key. If

the strings match, the entire found key is returned in K$. For

example, if the key "SMITH" were compared to "SMITH,ALAN", a

match would be found and "SMITH,ALAN" would be returned in KS.

A match is not found if the key in the directory is shorter than

the key specified in KS.

2.7.5.4 Search Mode 3: Next Key

Search mode three is used to process sequential entries, starting

from a selected point. Line 300 is an example of search mode

threes:

300 SEARCH #C,3,D;K$,R,S

Mode three searches the specified directory for the first key

whose value logically exceeds the value specified by K$. If the

key is found, the system returns the entire found key in K$&,

returns the associated data record number in R, and sets S to

zero. If the key is not found, K$ and R remain unchanged, and S

is set to two.

For example, suppose K$ is set to "SMITH", and the directory

contains the entries SMITH,ALAN and SMITH,BETH. The first search

would return SMITH,ALAN, because it is the first key which
logically exceeds SMITH. A second search, with SMITH,ALAN in KS,

would return SMITH,BETH.

If the directory being searched may contain an entry which is
equal to the entire value of K$, mode two should be used for the
first search.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-43 IRIS Business BASIC Manual

» 4 -

“> =

2.7.5.5 Search Mode 4: Insert a Key

Search mode four is used to insert a key. Line 400 is an example
of search mode four:

400 SEARCH #C,4,D;K$,R,S

Mode four searches the specified directory for a match with the
key specified by K$. If the key is not found and there is space
available in the directory, the system inserts the key into the
specified directory, references the key to the data record number
in R, and sets S to zero. If the key is not found but cannot be
inserted, S is set to two. If the key is found, the system
returns the associated data record number in R and sets S to one.

Before inserting a new key, the data record must have been
allocated using search mode one and the data record number for
the new key must be specified in R. The data should be written
into the record before the key is inserted into the directory.

For indexed files, if a key cannot be inserted because of
inadequate space in a directory, search mode seven may be used to

reorganize the directory. Section 2.7.5.7 describes search mode
seven. Search mode four may then be repeated.

2.7.5.6 Search Mode 5: Delete a Key

Search mode five is used to delete a key from a directory. Line
500 is an example of search mode five:

500 SEARCH #C,5,D;K$,R,S

Mode five searches the specified directory for a match with the
key specified by K$. If the key is found, the system deletes the
key from the directory, returns the data record number in R, and

sets S to zero. If the key is not found, R remains unchanged and
S is set to one.

Search mode one must be used after deleting the key to return the
freed data record to the free record chain.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-44 IRIS Business BASIC Manual

im

2.7.5-7 Search Mode 7: Reorganize Directory

Search mode seven reorganizes the specified directory by
optimizing it for efficient packing. Search mode seven is

usually used when a key insertion (mode four) has failed. Line
700 is an example of search mode seven:

Mode seven usually frees sufficient room for the key to be

inserted. However, if a directory is nearly full, mode seven may

not free sufficient space; provisions for this should be included

in the program.

Search mode seven is not used on polyfiles because the keys in

polyfile directories are redistributed automatically.

2.7.5.8 Inserting a Record into a Keyed File

To insert a record into a keyed file, write the data into the

file before inserting the key in the directory. The following

program shows how to insert a record into a keyed file:

100 DIM B${10], K$[10]

150 INPUT “ENTER KEY: "“"BS$

190 REM Insertion Routine

200 KS$=BS$

210 LET S=2

220 REM Get unused data_record from free list

230 SEARCH #1,1,0; K$,R,S :

240 IF S<>0 GOTO 460

250 WRITE #1,R; A,B,C

260 R1=R

270 REM Put key for insertion into directory #1

280 SEARCH #1,4,1; K$,R,S

290 IF S<>0 GOTO 500

300 GOTO 150

460 PRINT "ABNORMAL MODE 1 RETURN; S= "S

470 STOP

500 REM Put record back on free chain

510 LET S1=3

520 SEARCH #1,1,0; K$,R1,S1

530 IF S1<>0 GOTO 580

540 IF S=1-PRINT "DUPLICATE KEY"
550 IF S=2 PRINT "DIRECTORY FULL OR DAMAGED"

560 IF S=5 PRINT "UNKNOWN DIRECTORY DAMAGE"

570 GOTO 1000

580 PRINT "ABNORMAL MODE 1 RETURN; Sl= "Sl

1000 STOP

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-45 IRIS Business BASIC Manual

’ 4-

-~Y e

2.7-5-9 Deleting a Record from a Keyed File

To delete a record from a keyed file, delete the key from the

directory before deleting the data records from the file. The
following program shows how to delete a record from a keyed file.

100

110

120

500

510

520

530

540

550

560

570

700
710

800

810

SM-030-0012-02
POINT 4

DIM K$[20], B$[20]

INPUT “ENTER KEY: "B$

K$=B$

REM Delete key and return record number to free list

SEARCH #1,5,13; K$,R,S

IF S<>0 GOTO 700

LET S=3

SEARCH #1,1,0;K$,R,S

IF S<>0 GOTO 800

PRINT "KEY DELETED; RECORD RETURNED TO FREE CHAIN"
GOTO 110

PRINT "KEY NOT FOUND; S= "S

GOTO 110

PRINT "ABNORMAL MODE 1 RETURN; S= "S

STOP

IRIS DATA FILES

Data Corporation 2-46 IRIS Business BASIC Manual

2.75.10 Finding and Updating A Record in a Keyed File

The following program shows how to find a given key in directory
one, check for an exact or partial match, and update the

associated data record.

100 DIM A$[30], B$[30], K${[30]

110 OPEN #0; "FMTSAMPLE"

120 INPUT "ENTER NAME: "B$

130 K$=B$

500 REM Find the key and associated record number.

510 SEARCH #0,2,1; K$,R,S

520 IF S=l GOTO 1000

530 IF S<>0 GOTO 1500

540 REM Branch if exact or partial match.

550 IF K$<>B$ GOTO 900

560 READ #0,R; A$,N

570 REM Update variables, then write the record.

600 WRITE #0,R;AS$,J

700 GOTO 120

900 PRINT "PARTIAL MATCH; FOUND KEY IS: "K$

910 PRINT "KEY BEING SEARCHED FOR WAS: "BS$

1000 REM Exception Routine--no match of any kind.

1500 REM Error Exit.

1510 PRINT “ABNORMAL RETURN; S= "S
1520 STOP

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-47 IRIS Business BASIC Manual

© &.

-> a,

2.7.6 ACCESSING THE DATA PORTION OF KEYED FILES

The use of the READ, WRITE, PRINT, MAT READ and MAT PRINT

statements on keyed files is the same as their use on contiguous
files. Section 2.5.2 describes how contiguous files are
accessed.

2.7.7 CREATING KEYED FILES USING BUILDXF AND BUILDPF

BUILDXF may be used to build an indexed file; BUILDPF may be used
to build a polyfile. BUILDXF and BUILDPF are both described in
the IRIS R8 User Manual.

To create an indexed file using BUILDXF, enter the following

command at the IRIS system prompt:

#BUILDXF

BUILDXP then prompts for information regarding the data records

and directories. The prompts and appropriate user responses are
described in the IRIS R8 User Manual.

To create a polyfile using BUILDPF, enter the following command
at the IRIS system prompt:

#BUILDPF

BUILDPF then prompts:

BUILDPF - Build polyfiles Utility

POLYFILENAME [must have "LU/" (not 0)]:

The number of the logical unit must precede the name of the

polyfile; the LU may not be LU zero. The name must end with
an @.

BUILDPF then attempts to open the polyfile. If the polyfile is

found, BUILDPF enters the polyfile extension mode (refer to the
IRIS R8 User Manual). If the file is not found, BUILDPF prompts:

POLYFILE NOT FOUND

DO YOU WISH TO CREATE A NEW ONE? (Y/N)

If the answer is No, the system returns to the IRIS system

prompt. If the answer is Yes, BUILDPF requests a record size:

RECORD SIZE (in words for the entire polyfile):

After the record size has been entered, BUILDPF prints the
following:

VOLUME: 0

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-48 IRIS Business BASIC Manual

-~

This reminds the user that the following parameters are for
volume zero, the master volume. BUILDPF then requests a volume
type:

VOLUME TYPES: "B" Base Directory
"E" Extension Directory

"D" Data Volume

VOLUME TYPE:

Enter the appropriate letter. BUILDPF then requests information

pertinent to the type of volume specified, as described in the

IRIS R8 User Manual.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-49 IRIS Business BASIC Manual

: ie

-> 4

2.7.8 CREATING AN INDEXED FILE FROM WITHIN A BASIC PROGRAM

An indexed file may be built within an application program using

the following five steps:

1. Create the filename string and BUILD a contiguous file of the
proper size. Section 2.5.4 describes how to BUILD a

contiguous file. Information on determining directory size
is provided below.

2. Define each directory with a SEARCH #C,M,D;, where M=0.

3. Organize the directory structure with a single SEARCH #C,M,D;

statement, where M=0 and D=0.

4. Determine the numbers of the first and last real data records
with a SEARCH #C,M,D;K$,R,S statement, where M=l, D=0, and

S=0, and a CHF(0) statement, respectively.

5. Link all real data records on the free record chain with
SEARCH #C,M,D;K$,R,S statements, where M=l, D=0 and S=3.

The overall size of each directory may be calculated using the
following formulas:

N = INT [254/(K+1)]

F = FNR [R*2/(N+1)] >= 2

C = FNR [F/(N-1)] >= 2

T = F+C+l

where

R - number of indexed records

K - key length (words)

N - number of keys per directory block

F - number of blocks in the fine level

C - number of blocks in the coarse level
T - total number of blocks used by the directory

FNR - a function defined as FNR(x) = INT(x) + SGNIFRA(x)]

Function FNR is used to round up any fractional part of a block
in the fine or coarse levels.

Multiply the total number of blocks for all directories by 256,
and divide the product by the data record length (words) to

compute the equivalent number of records (which must not exceed
65534). Apply FNR to the result, and add this equivalent number
of records for all directories to the number of desired data
records when building the file. If this total number of records
co 65534, then the data and directories must be in separate
files.

The BUILDXF processor, listed in Appendix D, is a good example of
how to build an indexed file from within a BASIC program.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-50 IRIS Business BASIC Manual

cme

_—

2.7.9 CREATING A POLYFILE FROM WITHIN A BASIC PROGRAM

Three steps are involved in creating each polyfile volume. Each
of these steps is described in detail in the following

subsections.

1. Build a contiguous file.

2. Transform the contiguous file into a polyfile volume via the
polyfile call (91). The parameter “v" in CALL 91 assigns the

volume numbers.

NOTE

Volume 0, the master volume, must be built

first,

3. Structure the polyfile volume via search mode zero.

2.7.9.1 Step 1: Build a Contiguous File

Build the contiguous file with the same name as the polyfile, but

omit the "@". Use the FORMAT processor (described in Section

2.5.3) or the BUILD statement (described in Section 2.5.4).

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-51 IRIS Business BASIC Manual

» 4-

-> Sa

2.7.9.2 Step 2: Convert to Polyfile Volume

The contiguous file is then converted to a polyfile volume by

CALL 91, which must be executed while the file is still in the
BUILD mode. After the call is executed, channel CO must be

closed to make the volume permanent on the disc. When building

the master volume (0), channel Cl should be closed. Use the

following statements:

IF ERR 0 STOP

CALL C,C0,C1,V,S,P

where:

C - CALL number (91)

CO - Channel number on which the file is open

Cl - Channel number on which the master volume is open

V - Volume number

S - Status after the CALL is completed

P - File parameter array (see Table 2-4)

NOTE

The variable S and the array P must be

declared in a DIM statement; otherwise, the
"IF ERR" branch will take effect and S will

return error 17, 18, or 19 (see Table 2-5).
Use the following format:

DIM S,PIn])

where n is a value of 10 or greater. This

permits validation of the P array dimensions.

If CALL 91 detects any errors, error #38 (error detected by a

called subroutine) is returned. CALL 91 checks to see that the
filename matches and that the volume is three or more blocks in

size.

If CO is less than 0, then only file parameters are returned.

If CO is greater than or equal to 0, and if:

v>0 - this volume is linked to volume 0.

v=0 - a master volume is created.

v<0 - CALL C assigns the next available volume number and
returns the number of that volume in V.

If the volume is a data volume, then the record length of the
volume must match that of the master volume.

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-52 IRIS Business BASIC Manual

‘a8

~

When CO is non-negative, the value of S indicates the following:

S=0 - volume is to be a base directory or directory extension

S<>0 - volume is to be a data volume

If S is returned from the call with value 0, then file parameters

are to be found in the array P. The parameters, ordered by
index, are shown in Table 2-4.

TABLE 2-4. FILE PARAMETERS

Contents

of P Description

0 VLU (Volume/Logical Unit)

1 BNR (Base Number of Records)

2 LU flag (O=installed; <>0=not installed)

3 ACNT
4 TYPE

3 NBLK

6 LRCD

a NRCD

8 LDAT

9 LDAT+1

10 Keylength of lst directory in volume (FMAP+ 4)

11 Keylength of 2nd directory in volume (FMAP+5)

u2 Keylength of 63rd directory in volume (FMAP+102)

76 Logical Unit number

a7 DHDR

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-53 IRIS Business BASIC Manual

&-

-—} sti

If the value of S is nonzero, an error is indicated. The

possible status values for S are shown in Table 2-5.

TABLE 2-5. CALL 91 STATUS VALUES

Contents

of S Description

0 No error

a Invalid channel number

2 File not being built

3 Illegal volume number

4 File Cl is not a polyfile

5 File name invalid

6 Invalid variable type

7 Invalid number

8 Volume already exists on the desired LU, possibly

as part of another polyfile of the same name

9 File CO not found (deleted?)

10 Not enough nodes to link into extended DFT

ad Volume already exists for this polyfile

a2 Volume V not found

13 Account numbers do not match

14 Volume in extended DFT but not on disc

15 No available volume number for this polyfile

16 Volume V is not defined

a7 P is not allocated as the next variable after S

18 P is not an array

19 P is not dimensioned P[10] or greater

20 File CO is not contiguous

21 File Cl is open elsewhere

22 File CO is already a polyfile

23 HSLAs do not match for assign operations

24 VLU or BNR do not match for assign operations

25 Cannot move volume 0

26 Illegal move operation

27 File CO is not write protected

28 Illegal write enable operation

SM-030-0012-02 IRIS DATA FILES
POINT 4 Data Corporation 2-54 IRIS Business BASIC Manual

~

2.7.9.3 Step 3: Structure Polyfile

Search mode zero is used to structure a polyfile. For polyfiles,

search mode zero requires that a volume number be given and that

key sizes be given in bytes. The format is:

where:

m=0,d+128 - Define volume number d to be a data volume; 0<=d<=63;
R=number of records.

e If R=0, the number of records is computed and
returned in R.

e If S=0, a bit map is not built.

e If S<>0, a bit map is built with R free records

init;

m=0,d+64 - Define volume number d to be an extension of the base
directory volume in S; 0<=d<=63.

m=0,d - Define directory d: volume number in S, key length in
R (in bytes); 1<=d<=63.

m=0 ,d=0 - Organize all directories for the volume number given

in S.

SM-030-0012-02 ; IRIS DATA FILES
POINT 4 Data Corporation 2-55 IRIS Business BASIC Manual

i a3

-> 4

2.7.10 CONVERTING AN APPLICATION FROM USING INDEXED FILES
TO USING POLYFILES

An indexed file may be converted to a polyfile by using the steps
outlined below. Programs which use indexed files may also be
changed to handle polyfiles.

To convert an indexed file to a polyfile, build a polyfile with
key and data record sizes matching the current indexed file.
Then construct and execute a program which will:

e read each key and its associated data from the indexed file

e get a free record from the polyfile

e write the data record into the polyfile

e insert the key into the polyfile

e allow at least a 3% (precision) variable for the polyfile

record number

@ use separate variables for indexed file access and polyfile
access to prevent R and S being greater than 65535 for
indexed file access

To convert a program which uses indexed files to one which uses

polyfiles, do the following:

1. Modify OPEN statements to reference the polyfile.

2. Remove all search mode seven statements from the program.

Because polyfiles redistribute keys automatically, search

mode seven has no effect on polyfiles. A program containing

search mode seven may safely be used; however, mode seven is

unnecessary and should be eliminated.

3. Check that any variable intended for polyfile record numbers

is large enough to hold 3% (precision) numbers.

SM-030-0012-02 : IRIS DATA FILES

POINT 4 Data Corporation 2-56 IRIS Business BASIC Manual

-~

2.7.11 SPECIAL POLYFILE CALL (91) MODES

Three special modes of CALL 91 are available. They allow the

following:

e an individual volume of an existing polyfile to be moved to

another logical unit

e the polyfile master volume and nonzero volume headers to be
updated after a logical unit number is changed during an
INSTALL procedure

e writing to an individual volume of a polyfile that is open in
read-only mode

These modes are described in detail in the IRIS R8 Polyfile

Document.

SM-030-0012-02 IRIS DATA FILES

POINT 4 Data Corporation 2-57 IRIS Business BASIC Manual

e ~

er sesh

Section 3

BUSINESS BASIC STATEMENTS

This section gives a detailed discussion of each Business BASIC
Statement. The discussions include information such as whether

the statement may be entered at the keyboard for immediate
execution, whether it may be executed within a program, its

syntax, and a description of its effect. Examples illustrating

correct use of the statement are shown on the facing page. The
format used in these discussions is illustrated in Example 3-1.

The statements are presented in alphabetical order.

STATEMENT

KEYBOARD: YES indicates the statement may be entered at the keyboard without

a line number and executed immediately.

PROGRAM: YES indicates the statement may be entered as part of a program and

executed when the program is run.

SYNTAX: shows all legal forms of the statement using the following
conventions:

variable = simple or subscripted numeric or string variable

xx list = each element (such as xx) of a list except the last must

be followed by a comma

expression = a group of characters that may be evaluated to a

simple numeric value; sometimes abbreviated expr

filename = an IRIS filename

filename string = a quoted literal or string variable containing a
filename

indicates that either A or B may be included, but not both

{} braces indicate that the parameters they enclose are optional

® an asterisk following information enclosed in braces indicates

that the enclosed information may be repeated up to the length

of the BASIC I/O and edit buffers

EFFECT: description of what the statement does when it is executed

NOTES: additional comments on using the statement

Example 3-1. Format of Statement Descriptions

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-1 IRIS Business BASIC Manual

S: ge

BUILD#¥

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES :

4.

-~> 4

NO

YES

EQRMAT FORMAT (*
BUILD #channel, CONTIG \{,#channel}, CONTIG

+TEXT +TEXT

where FORMAT defines a formatted file as follows:

"{<prot>}{$ddd.cc} {LU/}filename string or string var{!}"

and CONTIG defines a contiguous file as follows:

"{<prot>} { $ddd.cc} Lrecords:words]{LU/}filename string or string var{!}"

and +TEXT defines a text file as follows:

+"{<prot>} {$ddd.cc} {LU/}filename string or string var{!}"

Used to build a data file. Creates a new file or
replaces an old file, identified by the filename
string, on a specified channel. Several files may be

created by one statement, and filenames not preceded
by a channel expression are created on successive

channels.

Refer to Section 2 for specific information on using
BUILD to create each file type.

If the file's protection or cost are not specified,
then the protection is 77 (maximum protection), and
the cost is zero.

An existing file of the same type on the user's own
account may be replaced by following the filename with

an exclamation mark (!). If the cost or protection is
changed, both must be re-entered or the default is
assumed.

A new formatted file is automatically formatted by
data written to record zero (record zero must be
specified explicitly).

Unless the channel on which a file is built is closed

using a CLOSE statement, any new file created using a

BUILD statement is deleted when the program is exited

or by an abortive error because the system

automatically clears all open channels. When CHAINing
to another BASIC program the channels are not cleared,

s0 new files created using BUILD are not deleted.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-2 IRIS Business BASIC Manual

BUILD#

C EXAMPLES:

120 BUILD #2,"NEWFILE", #H3,N$

This example builds a formatted data file with the name NEWFILE

—_ on sae two, and a data file with the name given in N$ on the
channel number given by variable H3.

220 BUILD #3,"<33> $14.50 [200:250] LEDGER"

This example builds a contiguous data file called LEDGER, with
200 records of 250 words each, and opens it on channel three.
The file's cost is $14.50 and its protection is 33.

320 BUILD #1,"<33> $10.00 [10:256] 1/EXAMPLE!"

This example builds a contiguous file called EXAMPLE on logical

unit one, replacing an existing file of the same name. It is

built on channel one with protection 33, costs $10.00 each time

it is accessed and has 10 records of 256 words each.

A new text file may be built by a statement of the form

BUILD #c,+filename string. . .-

(where c is a channel number expression, and the filename is the
name under which the text file is to be built. For example:

\ 100 BUILD #3,+"TEXT6.4"

150 BUILD #5,"FFILE",+D6$

Line 100 builds a text file named TEXT6.4 on channel three. Line

150 builds a formatted data file on channel five and a text file,

whose filename is given in D6$, on channel six. The "+" symbol

is part of the statement syntax and is not included as part of

the filename string.

(
~

SM-030-0012-02 : BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-3 IRIS Business BASIC Manual

¢ fs

:

CALL

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

-> ala

YES

YES

CALL mnemonic or routine expr,variable{,variable}*

The CALL statement is used to execute a Business BASIC

or user-defined subroutine.

The integer value of the routine expression or the

routine mnemonic selects a specific subroutine.

(Subroutine numbers greater than 99 are reserved for

use by POINT 4.) CALLs $FINDF, $LOGIC, $RDFHD,
S$STRING, $TIME, $TRXCO and the polyfile CALL are
discussed on the following pages.

The variables are used to pass argument values to and

from the subroutine. Up to twelve such parameters may

be used. Simple variables and string variables may be

used. Expressions may not be used as parameters;

subscripts may not be used in strings.

For examples of some uses of CALLed subroutines, see

program 1 in Appendix A for use of CALL 99 (system

time) and programs 6 and 7 in Appendix A for use of

CALL 98 (transmit system command).

When assigning a mnemonic to a subroutine, POINT 4
recommends that the mnemonic begin with a prefix of

your choice to differentiate it from POINT 4

mnemonics.

CALLS 79, 93, 94 and 95 are reserved. CALL 91 is the

polyfile CALL. CALLs 82, 88, 96, 97, 98 and 99 are

used for subroutines which have mnemonics.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-4 IRIS Business BASIC Manual

, *

EXAMPLES :

625 CALL 14,F2,P2,D$

980 CALL §$LOGIC,L,P1,P2,R

SM-030-0012-02

POINT 4 Data Corporation

a “a.

3=5

CALL

BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

CALL 91

KEYBOARD:

PROGRAM :

SYNTAX:

EFFECT:

NOTES :

YES

YES

CALL 91, file channel,master vol channel,v,S,P

where

v - volume number

S - status after the CALL is completed

P - file parameter array (see note 8)

Converts a contiguous file to a polyfile volume.

This CALL must be executed while the contiguous file
is being built. For a description of the steps
involved in creating a polyfile, refer to Section 2.7.

For further information on CALL 91, refer to Section
Zels

The variable S and the array P must be declared using
the following format in a DIM statement:

S, Pin]

where n is a value of 10 or greater. If S and P are

not dimensioned as shown, the required IF ERR branch

will take effect and S will return error 17, 18 or 19.
This permits validation of the dimensions of array P.

CALL 91 checks to see that the filename matches and

that the volume is three or more blocks in size.

If the file channel (the channel on which the file is

open) is set less than zero, only file parameters are

returned. If it is set greater than or equal to zero,

cor effect depends on the value of v as described
below:

v > 0 - links this volume to volume zero

v = 0 - creates a master volume

v < 0 - assigns the next variable volume number and
returns the number of that volume in v

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-6 IRIS Business BASIC Manual

Ss

EXAMPLES :

CALL 91

IF ERR 0 STOP

CALL 91, CO, Cl, V, S, P

IF ERR 1 STOP

CALL X, CO, Cl, V, Sr P

NOTES: (Continued)

6.

7.

10.

If the volume is a data volume, then the record length
of the volume must match that of the master volume.

If the file channel is non-negative, S should be set

to zero to indicate that the volume is to be a base

directory or directory extension volume or to a

non-zero value to indicate that the volume is to be a

data volume.

If S is returned from the CALL with the value zero,

then array P contains file parameters. The parameters

are shown in Table 2-4. If S is returned with a

non-zero value, then an error is indicated. The

possible status values for S are listed in Table 2-5.

After CALL 91 is executed, the file channel must be

closed to make the volume permanent on the disc. When
the master volume (0) is created, the master volume

channel should be closed, and the new master volume

accessed through the file channel.

CALL 91 offers three special modes which may be used

to move an existing polyfile to a new logical unit,
update headers after changing the number of a logical

unit, and write to an individual polyfile volume in

read-only mode. These special modes are described in

Section 2.7.11.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-7 IRIS Business BASIC Manual

: =

-> nal

CALL $FINDF (CALL 96)

KEYBOARD: YES

PROGRAM: YES

SYNTAX: CALL $FINDF, filename string variable,header variable

EFFECT: Calls a subroutine used to find a file.

NOTES:

l. The filename, in the form required in an OPEN

statement, is passed to the routine in the filename

string variable.

2. The routine returns the header block address of the
file in the header variable. If the file is not

found, zero is returned.

3. The file is not opened and the protection or file type

is not checked.

4. This CALL is usually used to determine whether a given

file exists.

5. $FINDF may also be CALLed by its subroutine number,

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-8 IRIS Business BASIC Manual

ne

Catt gS

Cai AS 8, o, 7, 2 oe V$

Where)
| ee Log scat Unit rr

R - ADA

D - Dusplacemert iwto Glock

T = TYPE

C276) ow

Where No Siw = keaDd

3 ier} = Ogre

Ty» 3 1%

2% 2h

ee | 38

A= 4%

s+ hy
G: Binary

TOR Mor > STG

Ze Reap -— Recieves Value Oap

Wire - V ale TO be Writer

Vd> ean ~ STaus Tt be tend
Watt -- S Task To write

Cai aq [PI . a a
CAIIC) cz, AS, BE

C- 841

C2-2 /(

pr ¢ = SEARS |Tem 7o Search bop
Bir SIR Te “wand * »

fa = Pos ee manera “an CTA
JHuatsat k

TiS

Cais whe
wh ge adios si ALA OW

Moce d= Find March titeher Chen 9 AS WW
me Set = Tox « Lec Ation)

Mobt- Ep marel ——— Eatin Ad iN The
By. Cet locatiow fou “d.
Sther Are oar iad ats Exh

eee f copeomat Oa S17 Se Qo

—— a
gi ee

‘ V4 ¢ Ci. r

OOM) sy) 2euaasd | — gasw# o=

AST ss GF J = st UU

\ ~~)

haw sy ut gasiic = easy =p oo

sas shana STi ST Awe = Sin)

en

CALL $FINDF

(EXAMPLES:

75 CALL $FINDF,A$,X

—

—

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-9 IRIS Business BASIC Manual

: ie ;

-> oii

CALL $LOGIC (CALL 88)

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

5.

YES

YES

CALL $LOGIC, operator ,Yardablet »Yariable? result variable

String varl,atring var?2,result string var

Operator - a numeric variable containing the number of

the appropriate logical operator

where

1 - specifies AND

2 - specifies OR

3 - specifies XOR

4 - specifies NOT

Performs the specified logic operation (AND, OR, XOR,

and NOT) on variablel and variable2 and returns the
result in the result variable or on string varl and

sting var2 and returns the result in the result string

var.

All variables in the calling statement, except the

operator variable, must be of the same type (either

string or numeric). Numeric integers must be in the
range 0 to 65535.

Although NOT requires only one operand, the second

operand must be specified and is used as a dummy

variable to satisfy syntax requirements.

Numeric values are converted to unsigned 16-bit

integers before the logical operation is performed.

For strings, the operation is performed byte by byte
until the dimensioned length of the shortest string is

reached.

This subroutine may be used to copy strings which
include multiple binary zeros by ANDing the string
with itself, and to fill a string with binary zeros by
XORing it with itself. This is possible because the
subroutine does not recognize binary zero as a string
terminator.

$LOGIC may also be CALLed by its subroutine number,
8

$M-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Surpovation 3-10 IRIS Business BASIC Manual

CALL $LOGIC

EXAMPLES :

100 CALL $LOGIC, A, M, N, R

200 CALL $LOGIC, S, A$, BS, C§

10 LET Pl=3 \ P2=22

20 LET A=l \ CALL $LOGIC,A,P1,P2,R

30 PRINT “Logical AND of Pl & P2="R
40 LET A=2 \ CALL $LOGIC,A,P1,P2,R

50 PRINT "Logical OR of Pl & P2="R

60 LET A=3 \ CALL $LOGIC,A,P1,P2,R

70 PRINT "Logical XOR of Pl & P2="R

80 LET A=4 \ CALL $LOGIC,A,P1,P2,R

90 PRINT "Logical NOT of Pl="R

100 DIM A$[15],B${[50]

110 LET A$="HELLO THERE"

120 LET A=l \ CALL $LOGIC,A,A$,A$,B$

130 PRINT "A$ ANDed with itself is:"B$
140 LET A=2 \ CALL $LOGIC,A,A$,A$,B$

150 PRINT "A$ ORed with itself is:"B$

160 LET A=3 \ CALL $LOGIC,A,A$,A$,B$

170 PRINT “A$ XORed with itself is:"B$

180 LET A=4 \ CALL $LOGIC,A,A$,A$,B$

190 PRINT "The logical NOT of A$ is:"B$

RUN

Logical AND of Pl & P2 = 2

Logical OR of Pl & P2 = 23

‘ Logical XOR of Pl & P2 = 21

Logical NOT of Pl= 65532

A$ ANDed with itself is:HELLO THER

A$ ORed with itself is:HELLO THERE

A$ XORed with itself is:

The logical NOT of A$ is:

READY

NOTES: (Continued)

7. The logic operators cause the binary quantities x and
y to attain the values below:

xy x_AND_y x_OR y %_XOR_ y
00 0 0 0

0-1 0 1 1

10 0 q: 1
ed 1 1 0

x NOT x
0 1

1 0

For further information on logic operators, consult a

text on boolean algebra.

SM-030-0012-02 : BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-11 IRIS Business BASIC Manual

= ge

-> 4

CALL $RDFHD (CALL 97)

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

CALL $RDFHD, lu,r,;n$,a,t,8,q,C,i,d,l,h

Calls a subroutine which reads the file header
indicated by the record number r. The logical unit
and record number must be specified. The subroutine
returns the account number and the file's name, type,
size, status, cost, total income, creation date, last

access date and header disc address in the other
variables.

lu,r,a,t,S,q,C,i,d,;l, and h are any numeric variable

names, and n$ is any string variable dimensioned as 15

characters or longer. Lu specifies the logical unit,

r specifies a starting record number in the INDEX

file, and the other variables receive information

about the file as follows:

n$ Filename

a Account number word. The bits and their meanings

are shown below:

fis-14[13-6|5-0 |

Bits Meaning

15-14 Privilege level

13=6 Account group number

5-0 Account user number

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-12 IRIS Business BASIC Manual

CALL $RDFHD

t File type word. The bits and their meanings are shown

below:

[is]14]13[12]11] 10] 9] 8[7] 6] 5] 4-0}

Bit Meaning

15 Not used

14 Read protected against users of lower privilege

13 Write protected against users of lower privilege

12 Copy protected against users of lower privilege

11 Read protected against users of the same privilege

10 Write protected against users of the same privilege

9 Copy protected against users of the same privilege

8 Runnable processor

7. Load active file when selected

6 Initiate input before first swap-in

5 May be locked in memory

4-0 File type

The value of t may be substituted in the following

equations to extract the information shown below:

T1 = File Type = t-32*INT(t/32)
R = R,L,I control digit = INT[(t ~INT(t/512) #512-T1)/64) |

P = Protection digits = INT(t/512)

P1 = Protection digit #1 = INT(P/8)

P2 = Protection digit #2 = INT(P-P1#8)

The meaning and use of this information is described in the
IRIS R8 User Manual.

8 File size. Number of disc blocks used by the file.

q File status word. The bits and their meanings are shown

below:

115] 14] 13] 12] 11 {10} 9-1] 0 |

Bit Meaning (if set)

15 File is being built; has not been closed yet

14 A file is being built to replace this one

13 File is to be deleted

12 File is mapped (ie, it is a formatted data file)

11 File has been opened with an open-lock

10 File can not be deleted

9-1 Not used

0 File is extended

If bits 14 or 13 are set, the file will be overwritten/

deleted when it is closed.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-13 IRIS Business BASIC Manual

v- &-

-~> 2

CALL $RDFHD (Continued)

c File cost to the dime.

i Total income to the file, to the dime. This is
increased by the value of c each time a user ona

different account accesses the file. Note: if
the value of variable i was zero before the call,

then the file's income will be cleared to zero by

use of the call; otherwise, the file's income is
not changed by the call.

d File creation date (hours after the base date).

The age in hours may be calculated as Age =

SPC(2)-D. SPC (18) returns the system base year.

1 Last access date (hours after the base date). The

hours since last access may be calculated as HSLA

= SPC(2)-1. SPC (18) returns the system base

year.

h Disc address of file's header.

All numeric values are returned in decimal. (LIBR

lists the t, q, and h values in octal. The t, q, and

h values returned by $RDFHD must be converted to octal

for comparison with a LIBR listing.)

If the INDEX record specified by R does not contain an

entry, then the next entry is automatically tried

until an entry is found or the end of the INDEX is

reached. If the end of the INDEX is reached, then R

is set to -l1, and all other variables remain

unchanged. When a valid entry is found, R is set to

the record number of the next INDEX entry, and all

variables are loaded from information in the file's

header as indicated above.

$RDFHD may also be CALLed by its subroutine number,

97.

8M-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-14 IRIS Business BASIC Manual

O

~

EXAMPLES :

CALL $RDFHD (Continued)

110 CALL $RDFHD,X,J,M$,P,K,0,L,S,N1,N2,H9,T2

320 CALL $RDFHD,S,B,B$,P,L,T1,T2,T3,T4,T5,T6,T7

SM-030-0012-02

POINT 4 Data Corporation

‘ a

355

BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

CALL $STRING (CALL 82)

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

CALL $STRING, modeA, string expression

where modeA - a variable set equal to l, 2 or 5

CALL $STRING, modeB, string expression, value

where modeB - a variable set equal to 3 or 6

CALL $STRING, modeC, value, string expression

where modeC - a variable set equal to 4 or 7

The subroutine $STRING provides the following
functions: convert string to upper case, convert

string to lower case, convert one or two characters to
a numeric value, convert an 8-bit or 16-bit value to a
character or characters, and read the I/O Buffer.

The variables shown by modeA, modeB and modeC in the

syntax statements above represent the mode. The mode
determines which function will be employed, as
described below.

Mode Function

convert string to upper case

convert string to lower case

convert a single character to an ASCII value

convert an ASCII value to a single character

read the Input/Output Buffer

convert two characters to a 16-bit number

convert a given value to two charactersNADU RWNE
When modes 1 and 2 are used, the subroutine converts

alphabetical letters only to the appropriate case.

Any characters already in the case being converted to

or any nonalphabetic characters remain unchanged.

When mode 3 is used, the subroutine converts the first

character of the string to an ASCII value in the range

zero to 255, depending on the binary value of the

character.

When mode 4 is used, if the specified value is greater

then 255, the value modulus 256 is used in the

conversion. The generated character overlays the

first character of the string, if any, and the second

character is overlayed with a null.

(Discussion of this statement is continued.)

SM-030-0012-02 , BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-16 IRIS Business BASIC Manual

~

EXAMPLES :

Modes 1 and 2:

10 DIM A$[100]

CALL $STRING

20 LET A$="ABCdef GhIj K!L@m3n$;:+= OPQRST uvwxyz"
30 INPUT “MODE:

40 CALL $STRING,

50 PRINT A$

RUN
MODE: 1

ABCDEF GHIJ KIL@M3N$;3:+=

READY

RUN
MODE: 2

abcdef ghij

Modes 3 and 4:

A$

k11@m3n$

10 DIM A$[10],B$[10]

20 LET A$ = "Z"

30 LET M=3 !Mode 3

40 CALL $STRING,

50 PRINT A

60 LET M=4 !Mode 4

70 CALL $STRING,

80 PRINT B$

RUN
218

Z

SM-030-0012-02

POINT 4 Data Corporation

© e:

M, AS, A

A, BS

3-47

\ PRINT

OPQRST UVWXYZ

opgqrst uvwxyz

BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

-> 4

CALL $STRING (Continued)

NOTES: (Continued)

5. When mode 5 is used, the returned string consists of
the contents of the I/O Buffer up to the first

<RETURN> found in the buffer. Because of this, when
mode 5 is used, the CALL must precede any input or

output within the program; otherwise, the contents of

the I/O Buffer may be lost. The buffer contents are
also destroyed if the program generates a BASIC error

message.

6. When mode 6 is used, the subroutine converts the first
two characters of the string to a value determined by

the following equation:

(A * 256) + B = value

where A = ASCII value of the first character
B = ASCII value of the second character

value = the calculated result

The subroutine returns a 16-bit value in the range

zero to 65535 which is calculated using the above
equation and which depends on the characters and

parity setting.

7. When mode 7 is used, the pair of generated characters
overlays the first two characters of the string.

8. Only values in the range zero to 65535 may be
converted to characters using this subroutine.

9. A program which uses mode 5 of $STRING may allow the
user to enter

#DISPLAY REPORT

which uses the program "DISPLAY" on the file named

"REPORT". See the example on the facing page.

10. $STRING may also be CALLed using its subroutine
number, 82.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-18 IRIS Business BASIC Manual

C

an

EXAMPLES :

Mod

10

20

30

40

50

CALL $STRING (Continued)

e 5:

DIM C$[100])

LET M=5

CALL $STRING,M,C$

PRINT "THE PARAMETERS ARE: ";C$

CHAIN...“ *

EXIT
#

#

SAVE ECHO
SAVED! 1! CHECK CODE = CDI1A

THE PARAMETERS ARE: THIS TEXT

Modes 6 and 7:

10

20

DIM A$[10],B$[10]

LET A$= "XX"

30 LET M=6 !Mode 6

40 CALL $STRING,M,AS$,A

50 PRINT A

60 LET M=7 !Mode 7

70 CALL $STRING,M,A,B$

80 PRINT B$

RUN
S02

XX

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-19 IRIS Business BASIC Manual

. a:

CALL $TIME (CALL 99)

CALL $TIME, string variable

Calls a subroutine which is used to read or set system

If CALL $TIME is issued with the string variable

empty, the system time is returned in the string

variable. The string variable must be dimensioned at

If CALL $TIME is issued from account 0,1 only with

contents in the string variable, the system uses the

string variable to set the time.

$TIME may also be CALLed by its subroutine number, 99.

KEYBOARD: NO

PROGRAM : YES

SYNTAX:

EFFECT:

time.

NOTES:

5.

least 23 bytes.

ia

3.

SM-030-0012-02
POINT 4 Data Corporation 3-20

BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

we

CALL $TIME

EXAMPLE A:

From Any Account

CALL $TIME may be issued from any account to read the current

system time.

10 DIM A$ (25)

20 A$ = ""

30 CALL $TIME, A$

40 PRINT A$

RUN

AUG 30, 1983 16:22:36

A$ was set to an empty string in line 20. A$ must be dimensioned

at least 23 bytes.

EXAMPLE B:

From Account 0,] Only

The system time may be adjusted by the system manager from
account 0,1 by use of a CALL $TIME in a BASIC program. For
example:

10 DIM A$ (25)

20 INPUT A$

30 CALL $TIME, A$

This program will work only from the system manager account

(account #0,1). The string entered for A$ must represent the

current time. The time may be represented in either of the
following forms:

NOV 15, 1975 16:22:36

or

1975,11,15,16,22

where the “seconds” portion (the last colon and last two digits)

is optional. All leading zeroes are also optional.

This usage differs from Example 1 above only in that A$ is not

empty when entering CALL $TIME. BASIC Error #38 will result if

the program in Example B is run on any account other than 0,1.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-21 IRIS Business BASIC Manual

‘ aes

-> ae

CALL $TRXCO (CALL98)

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

SM-030-0012-02

YES

YES

CALL $TRXCO, port no. var,command string var{,status var}{,priority no.}

Calls a subroutine which transmits a system command to

any other port. Business BASIC programs and other

processors may be run on another port by use of the

CALL $TRXCO statement.

The value of the port number variable is used to

specify the number of an interactive port. A constant

may not be given for the port number. The port may or

may not have a keyboard or any I/O device of its own.

If the port has a terminal, it is called a "slave

port" while being used in this manner; if it has no

terminal, it is called a "phantom port". Phantom

ports can be activated only by system commands
transmitted from another port using CALL $TRXCO. Any

program to be run or command to be executed ona

phantom port should not require any operator

interaction, because an operator can not interact with

the port.

The command string variable may be any string variable

which contains a legal system command (any command

accepted at the system prompt). When CALL $TRXCO is

executed, it logs on the specified port if necessary,

and executes the specified command as though it had

been typed at a keyboard of the specified port.

Often, the command is to run a BASIC program.

(Discussion of this statement is continued.)

BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-22 IRIS Business BASIC Manual

(

~

CALL $TRXCO

NOTES: (Continued)

Js The status variable is an optional numeric variable

which receives error status. If included, this

variable must be set to zero in the program before the

CALL $TRXCO statement is executed. If an error is

detected by the system while executing CALL $TRXCO,
this variable is set to a value as defined below:

Meaning

no error; successful operation

port no. variable is not a numeric variable

specified port (that specified by the value
of the port number variable) does not exist

specified port is not interactive

specified port is the user's own port

command string var is not a string variable

specified port is compute bound or is
actively outputting information

specified port has input in progress

string is longer than the specified port's

input buffer

user is privilege level zero and therefore
cannot use CALL $TRXCO

10 user is privilege level one and specified

port is not a phantom port

at user is privilege level one and specified

port is in use by another account

ze user must be privilege level two to issue an

abort

ON AuNewWw NKHO F
©

If the status variable is not includeed, then Error 38
occurs if an error is detected.

The priority no. is used to set a priority for a

phantom port. The priority may be set in the range

one to seven; the priority must be set less than or

equal to the user's own priority. Priority is often

used to assign a low priority so the operation on the

phantom port runs as a background task.

A privilege level 2 or greater user may abort any

operation in progress on the selected port by

transmitting a backslash code (octal 334) in the

command string variable. This is equivalent to

entering <CTRL-C> at the keyboard. Note that an

application program with error branching in effect may

not respond to <CTRL-C>, so some other mechanism must

be used to abort the program. The suggested technique

is to include a SIGNAL 2 statement in the program to

receive an abort signal.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-23 IRIS Business BASIC Manual

’ &~

-> ‘

CALL $TRXCO (Continued)

NOTES: (Continued)

6. Only privilege level one and higher accounts may use

CALL $TRXCO; privilege level zero accounts may not use

it. Privilege level one users can transmit commands
only to a phantom port which is not in use or which is

in use by the same account. Privilege level two users

can transmit commands to any interactive port

regardless of its status.

7. $TRXCO may also be CALLed by its subroutine number,

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-24 IRIS Business BASIC Manual

Hee

EXAMPLES:

CALL $TRXCO (Continued)

110 CALL $TRXCO,S,N1$,T

200 CALL $TRXCO,P,A$,S

The following program may be used to initiate a procedure ona

phantom port. This program assumes that the user knows the

number of an available phantom port and is running on a manager

account.

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

DIM A${(100) ,BS[1]

INPUT "\215\PHANTOM PORT #, COMMAND "P,A$

LET v=0

LET V1=0

REM LOG OFF PORT IF IN USE

LET B$= "\334\"

CALL 98,P,B$,V1

REM WAIT FOR PORT TO LOG OFF

SIGNAL 3,20

REM WAIT IF PORT IS IN USE

IF V1<>0 GOTO 160

REM NOW ISSUE SYSTEM COMMAND

CALL 98,P,A$,V

SIGNAL 3,20

REM LOG OFF AND RESTART IF PORT WAS IN USE

IF v<> 0 GOTO 120

CHAIN ""

If lines 140, 150 and 160 are deleted, the above program may be
run on a non-manager account. (Lines 130, 170, 180 and 190 could
also be deleted.)

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3+25 IRIS Business BASIC Manual

4-

CHAIN

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

a;

-> .

YES

YES

CHAIN quoted literal or variable string

Terminates running of the program in which it is

included and transmits the quoted literal or variable

string for execution.

There are two forms of the CHAIN statement: a long

CHAIN and a short CHAIN. Both forms terminate running

of the program in which they are executed. A long

CHAIN chains to SCOPE and the commands in the
statement are processed as though they were entered at

the IRIS system prompt. A short CHAIN chains from one
BASIC program to another BASIC program. The syntax of

both types of CHAINS is the same. A short CHAIN is

performed if the parameter string begins with the name
of a BASIC program.

When CHAINing to another BASIC program (using a short
CHAIN), the user's data channels remain open. This
allows one program segment to open a set of data

files, and succeeding program segments to access the

same files on the same channels without requiring the
filenames. All variables are cleared.

Several system commands may be given in a long CHAIN

statement, and they will be executed in sequence. The

commands must be separated by RETURN codes (enter

<CTRL-Z> or \215\). In a long CHAIN, the first

command may not be to run a BASIC program. For

example, line 900 in the examples saves the program in

its current state (including the values of all

variables), and then starts running it again at line

910; this is called checkpointing a program.

Statement 950 causes COPY to list the file LISTFILE

(presumably a text file on Logical Unit #3) on the

line printer, and then start the program PART3. The

command string is executed from the Intermediate Input

Buffer (IIB), so the length of the string must not

exceed the size of IIB.

CAUTION! Do NOT type ahead while a program that may

CHAIN to a system command is running. Since the IIB

is used for both functions, the characters from the

two sources may become intermixed. Type ahead is

allowed during programs that CHAIN only to other BASIC

programs. The IIB is not affected when CHAINing from
one BASIC program to another BASIC program.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-26 IRIS Business BASIC Manual

CHAIN

EXAMPLES:

520 CHAIN "“PART2"

710 CHAIN "0/BYE"

840 CHAIN M$

900 CHAIN "0/SAVE TEMP!\215\BASIC\215\910 RUN"

950 CHAIN "0/COPY $LPT=3/LISTFILE\215\PART3"

990 CHAIN ""

1000 CHAIN "\230\MYPROG\215\INPUT1\215\INPUT2"

Statement 520 terminates running the current program and

initiates execution of the BASIC program named PART2. An error

message is printed by SCOPE if PART2 does not exist and the
system returns to SCOPE. Any data channels that were opened by

the current program remain open and can be referenced by PART2

without re-opening them.

The other examples show additional uses for the CHAIN statement.

The port may be automatically logged off after all calculations

are finished (and the results have been stored in data files or

printed) by giving a BYE command as in statement 710. In

statement 840, the string variable M$ must contain a BASIC

program filename or a system command.

CHAIN looks first on the user's assigned LU or on the specified

LU for the first filename given; it then looks on LU/0. Because
of this, a "0/" should precede any system command as shown in

lines 710, 900, and 950. Each system command given in a CHAIN
statement is printed on the user's terminal, preceded by a #
symbol, just before it is executed, as if the user had entered
the command at the system prompt. Nothing is printed for a
direct CHAIN to another BASIC program.

Statement 990 shows the use of an empty string in the CHAIN
statement to exit to the system, similar in effect to using the
EXIT statement. All channels are cleared if the program chains

to BYE or to system control mode as in examples 990 and 710.

Statement 1000 shows how to CHAIN to a BASIC program (or through

multiple BASIC programs) and pass inputs as though they were
entered on the keyboard. The "\230\" causes entry into SCOPE,

thereby closing all channels.

SM-030-0012-02 : BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-27 IRIS Business BASIC Manual

ae 4-

CLOSE#

KEYBOARD: NO

PROGRAM: YES .

SYNTAX: CLOSE #c{,#c}*

EFFECT: Dissociates the specified channel or channels from the
file or device which was opened on that channel.

NOTES:

1. An open channel must be closed before another file or

device can be opened or built on the same channel.

2. If a file is being built, closing the channel makes

the file accessible to other users for the first time.

3. A file being built is deleted if the program run is
stopped before the file is closed.

4. Attempting to close a channel which is not open

generates an error. If a CLOSE statemment includes
multiple channels and one of the channels generates

this error, the following channels will not be closed.

5. Expressions may be used to provide the channel number,

which may range from zero to the maximum channel

number. The maximum channel number depends on the

configuration of the system, but is usually nine.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-28 IRIS Business BASIC Manual

CLOSE¥

C EXAMPLES:

160 CLOSE #1

Line 160 above closes the file or device on channel one. Line
345 closes channels A-l, four, and R, where A-1 and R are

expressions whose values each identify a channel number.

—

.o
SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-29 IRIS Business BASIC Manual

ae &~-

DATA

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

DATA {precision$, }constant{,constant}*

The DATA statement is used to supply constant numeric
data of a specified precision within a program.

If a DATA statement does not contain a precision

setting, then its data is stored with two-word

precision. "n" (n = 1, 2, 3, or 4) may be used ina

DATA statement, in which case the numbers in that DATA

statement are stored with precision n.

Only one % symbol may be used in each DATA statement,

and the n% must immediately follow the word DATA. All

numbers in a given DATA statement are of the same

precision. The % symbol in a DATA statement does not

affect the dimension of a numeric variable specified

in the DIM statement. Data from a DATA statement is

stored in the precision of the variable into which it

is read. Truncation or overflow (Error 15) may occur.

The data is read in sequence from the first to the

last DATA statement and from left to right within each

DATA statement. The system initially sets a pointer

to the first item of data. As the READ statements

request each data item, the pointer is moved to the

next data item. The RESTORE statement may be used to

reset the pointer.

DATA statements are not executed and may be placed

anywhere in the program. Items in a DATA statement

must be separated by commas, but no comma should

follow the last item of data.

Although DATA statements may be entered in keyboard

mode, they are useless because they can not be

referenced by a READ statement. DATA statements must

be entered with line numbers in order to be referenced

by a READ statement.

SM-030-0012-02 f BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-30 IRIS Business BASIC Manual

EXAMPLE:

10

20

30

ww 40
50

60

70

80

90

DATA

FOR J = 1 TO 4

READ Y

PRINT "THE SQUARE ROOT OF "Y"IS"SQR(Y)

NEXT J

DATA 3%,2,3.7,94.61,.0024

READ C,Z

LET E=C+Z

PRINT E A

DATA 12,-32.4,9999,4E-16

In line 50 above, 2,3.7,94.61, and .0024 are stored as three-word

precision numbers. In line 70, variable E is a two-word variable

because the 3% specification in the preceding DATA statement

affects only those numbers in the DATA statement.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-31 IRIS Business BASIC Manual

° & -

DEF

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

-> “

NO

YES

DEF FN letter (dummy variable) =numeric expression

where

dummy variable is a single letter

This statement defines functions for use throughout
the program in which they are defined.

Up to 26 functions, FNA through FNZ, may be defined in
each program. Defined functions may be nested by

using other defined functions within the definition.

Up to 5 levels of nesting are allowed.

The DEF statement must be executed for the definition

to become effective. The definition may be changed at

any time by executing another DEF-statement for the

same function.

A defined function is used primarily when the same

expression appears in several places in a program. A

function is defined equal to that expression, and then

the function is used in the program in place of the

expression.

The variable name in the function definition is called

a dummy variable because its name is independent of

all other program variables. If there is a variable

with the same name elsewhere in the program, it is not

affected by the defined function nor does it enter

into the evaluation. Also, the dummy variable is

assigned the value of the argument in the function

call only for the duration of the function evaluation.

Any single letter may be used for the dummy variable.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-32 IRIS Business BASIC Manual

DEF

EXAMPLES :

10 DEF FNR(B) =2*B-C/3

20 DEF FNC(D) =2*D-C/3

30 DEF FNN(L) =FNC(L) +FNR(L)-1

Because of the definition in line 10 above, the following two

statements are identical in operation:

100 LET G=B+4* (2*Y¥*Z-C/3) -M

100 LET G=B+4*FNR(Y*Z) -M

The argument (Y*Z in lines 100) of the function call (FNR) may be

any expression. The expression is evaluated, and the dummy

variable in the definition (D in line 20) is assigned that value.

Lines 10 and 20 define equivalent functions.

SM-030-0012-02 : BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-33 IRIS Business BASIC Manual

cy oe

DELETE

KEYBOARD: YES

PROGRAM: NO

SYNTAX: {beginning line} DELETE {ending line}

EFFECT: Deletes a group of statements.

NOTES:

1. I£ the beginning line number is omitted, then 1 is
assumed. All lines from 1 through the specified

ending line will be deleted.

2. If the ending line number is omitted, then 9999 is

assumed. All lines from the specified beginning line

through 9999 will be deleted.

3. DELETE with no arguments deletes the entire program.

4. An individual line may be deleted by entering its line

number only.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-34 IRIS Business BASIC Manual

DELETE

EXAMPLES:

100 DELETE

DELETE

100 DELETE 200

150

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-35 IRIS Business BASIC Manual

y 4-

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

-~> “

YES

YES

DIM dimension list

where

dimension list consists of array, string, vector or

variable declarations or precision settings in any order,

with each element except the first preceded by a comma.

The DIM statement instructs the system to reserve the correct

amount of storage space for a number, an array, or a string by

specifying an upper limit on the amount of space that will be

required.

DIM is used to specify the precision of variables and the maximum

number of elements which may be stored in a one- or two-dimensional

array or ina string.

When a variable is first encountered in a program, it is set to the

precision specified in the last DIM statement, or to the default of

2% if no DIM settings containing a precision setting have been

encountered. Precision may be set at 1%, 2%, 3%, or 4%.

To specify the maximum number of elements that may be stored ina

one- or two-dimensional array or ina string, the DIM statement is

followed by a variable name and one or two expressions enclosed in

brackets. For a two-dimensional array, the first expression

specifies the highest row number, and the second expression

specifies the highest column number. If the value of an expression

is not integral, the integer portion of the value is used.

Negative dimensions are not allowed. Since an array always

includes a row zero and a column zero, an array dimensioned A[3,5]

contains four rows and six columns for a total of 24 elements.
Lines 20, 40 and 500 in the example include two-dimensional arrays

in DIM statements.

A one-dimensional array is treated as a column vector; i.e., it has

only one column (column 0). The expression in the DIM statement

specifies the highest row number. Lines 10, 20, and 40 include

one-dimensional arrays in DIM statements.

A one-dimensional array which is not included in a DIM statement is

automatically dimensioned 10 by 0. A two-dimensional array which

is not included in a DIM statement is automatically dimensioned 10

by 10.

The dimension of a string variable specifies the maximum number of
bytes that the string can store. Strings are stored two characters

to a word. String variables must always appear in a DIM statement

because they are not automatically dimensioned. Lines 20 and 40
include strings in a DIM statement.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-36 IRIS Business BASIC Manual

DIM

EXAMPLES:

10 DIM A[15]

20 DIM B2[7,8],C4[40],D$([50]

30 INPUT B

40 DIM D[2,3],4%,G[15],H,B$[100],3%,R

50 LET C=B+M

60 READ X,Y,Z

70 DATA 44%,17,34.4669980257 ,2

500 DIM Q5[X, INT(Y)]

In the program above, variable B and array D in lines 30 and 40 are set to

two-word precision because the default of 2% has not been changed in the

preceding DIM statements. The specification of 4% in line 40 then causes all

variables which are encountered for the first time to be set to four-word
precision. Thus, vector G and variable H are both set to four-word precision.

The % precision specification has no effect on strings, so B$ is dimensioned

as a 100 character string. The specification of 3% then causes any new

variables following it to have three-word precision. Thus, R, C, and M in

lines 40 and 50 have three-word precision, but since variable B was already

encountered in line 30, its precision remains at 2%. The variables X, Y and Z

also have three-word precision, and they receive the values 17, 344.6699802

and 2, respectively. Variables or expressions may be used to dimension an

array, as shown in line 500.

NOTES: (Continued)

5. The number of words required to hold data and variables in Business

BASIC may be calculated from the following formulas, where

"precision" is the precision at which the variable was allocated.

type number of words

simple variable 2 + precision

array 4 + (number of elements) *(precision)

string 3 + INT [(DIM+2)/2]

DATA statement 3 + (number of elements) *(precision)

The number of elements in an array dimensioned [R,C] is (R+1)#*(C+1)

including row zero and column zero.

6. Numeric arrays may be redimensioned when the program is run by

execution of a second DIM statement. The total size of the array

given by the new dimensions may not exceed the total size of the

original array. The precision of the array is fixed by the initial

DIM statement.

7. Strings may be dimensioned once only; arrays may be redimensioned

if the total number of elements does not increase. If an array is

redimensioned, it uses the same precision as the first time it was

dimensioned, thus ignoring the current precision setting.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-37 IRIS Business BASIC Manual

. &-

DUMP

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES :

-> ay

YES

NO

{beginning line} DUMP{<prot>} {$ddd.cc} {LU/}f£ilename{!} {ending line}

Saves the program currently in the user's active file

in a text file.

The user may specify numbers of the beginning and

ending lines, inclusive, to be saved. If the
beginning line number is not specified, the first line

is used; if the ending line number is not specified,
the last line is used.

The user may specify the cost and protection of the

file. If not specified, the protection is set to 77

(maximum protection) and the cost to zero.

The user may specify the number of the logical unit on

which the text file is to be saved. If not specified,

then the user's assigned logical unit is used.

An existing text file on the user's own account may be

overwritten by following the filename with an

exclamation point (1). If the cost or protection is

changed, both must be re-entered or the default is

assumed.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-38 IRIS Business BASIC Manual

DUMP

EXAMPLES:

DUMP <72> $2.58 4/CASHFLOW3

This command saves the user's program in source form in the text

file named CASHFLOW3 on logical unit four and protects it against

any access by lower privilege users.

A BASIC program in the user's active file may be listed on a line

printer by giving the command of the form

DUMP $LPT

where $LPT designates the appropriate printer.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-39 IRIS Business BASIC Manual

° &-

-> a4

END

KEYBOARD: YES 2
PROGRAM: YES

SYNTAX: END

EFFECT: Terminates program execution.

NOTES:

1. END is similar to STOP (which usually terminates
execution to indicate an error) and may be used

anywhere in a program.

2. It is not mandatory that the last statement ina

program be an END statement.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-40 IRIS Business BASIC Manual

EXAMPLES:

1000 END

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-41 IRIS Business BASIC Manual

. 4-

-> 4

EXIT

KEYBOARD: YES

PROGRAM: NO

SYNTAX: EXIT

EFFECT: Causes BASIC to exit to SCOPE.

NOTES:

1. EXIT is useful while debugging. The user may EXIT a

program, perform functions which do not disturb the
active file, and then re-enter BASIC to find the

variables unchanged.

2. The effect of EXIT is similar to using <CTRL-C> or

CHAIN "" except that EXIT does not disturb the stored

program or current value of the program's variables.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-42 IRIS Business BASIC Manual

EXIT

EXAMPLE:

#BASIC

NEW

LOAD ABC.
EXIT

—_ #SAVE_ABCL

—_

oo

SM-030-0012-02 BUSINESS BASIC STATEMENTS
3-43 IRIS Business BASIC Manual

POINT 4 Data Corporation

’ ,

FOR

KEYBOARD:

PROGRAM :

SYNTAX:

EFFECT:

NOTES:

YES

YES

FOR control variable = initial expr TO limiting expr {STEP step expr}

NEXT control variable

Creates a program loop and repeats it a predetermined

(or calculated) number of times. The control

variable, sometimes called the "index variable", must

be the same in the FOR statement and in its matching

NEXT statement.

The FOR statement assigns the value of the initial
expression to the control variable, and saves the

value of the limiting expression as a 4% number. If

the initial value does not already exceed the limiting
value, control passes to the statement following the
FOR statement.

The value of the control variable exceeds the limiting
value if it is greater than the limit (for a positive
step value) or less than the limit (for a negative
step value). If the initial value exceeds the
limiting value, a search is made for the matching NEXT
statement, and control is immediately transferred to
the statement followng the NEXT statement without
executing the statements within the loop.

When a NEXT statement is encountered, the value of the
step expression (assumed to be +1 unless specified) is
added to the control variable. The control value is
then checked against the limiting value. If the
control value does not exceed the limiting value,
control is transferred to the statement following the
FOR statement. If the control value does exceed the
limiting value, control passes to the next statement

in sequence following the NEXT statement.

(Discussion of this statement is continued.)

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-44 IRIS Business BASIC Manual

2

FOR

EXAMPLES:

110 FOR A = 11 TO 5

120 FOR B3 = 6 TO -4 STEP -2

130 FOR M = J TO K+4 STEP B-D

250 NEXT M
300 NEXT B3

600 NEXT A

The FOR and NEXT statements simplify the creation of a loop,
eliminating the need for multiple GOTO statements. For instance,
the following two programs perform similar functions:

Program J] Program 2

10 FOR A=B TO C STEP D 10 LET A=B

S 20S 45

100 NEXT A :

TAG hess 100 LET A=A+D

105 IF A<=C GOTO 20

TIO 3= 5

There is one important difference between these two programs:
changing the values of C and D within the FOR-NEXT loop has no
effect on the limit or step values because they are evaluated
only once when the FOR statement is executed; changing C and D
within the other program affects lines 100 and 105. The above
example assumes that the value of D is positive.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-45 IRIS Business BASIC Manual

. & -

FOR (Continued)

NOTES:

The initial value of the control variable is assigned

before calculating the limiting and step values;

therefore, use caution if the control variable is used

within expressions for the limiting or step values.

FOR-NEXT loops may be nested up to eight levels deep

as shown in the examples on the facing page. Note

that for legal nesting, the matching FOR and NEXT

statements can be connected without crossing lines.

The FOR-NEXT stack is used to keep track of FOR-NEXT
loops. When a FOR statement is encountered, the

control variable is added to the FOR-NEXT stack. When
a second FOR statement is encountered, its control
variable is added to the top of the stack, and the

original control variable is pushed down the stack.
This process continues with up to eight FOR
statements. When a NEXT statement is encountered, the
control variable which is at the top of the stack is

"popped off", or eliminated, and the remaining control

variables move back up.

As many as eight control variables may be on the

FOR-NEXT stack at a time; if a ninth control variable

is added to the stack, the stack overflows and an

error message appears.

Two examples of illegal nesting are shown on the

facing page. In the first example, the two loops

interfere with each other. When the NEXT A statement

is encountered, the system checks whether the last FOR

statement encountered was a FOR A. It was not, so the

FOR B loop is dropped, and the FOR A statement is

found. The FOR A/NEXT A loop is processed to
completion, but an error occurs when the NEXT B

statement is encountered.

The second type of illegal nesting involves use of the

same control variable in nested loops. In this case

the inner two loops are executed properly, but the

outer loop is lost. When a FOR statement is executed,

the system checks whether an existing loop uses the
same control variable, and if so, the existing loop is

dropped. Thus, the A loop created by line 10 in the

example is aborted when line 30 is executed, and a

"NEXT without matching FOR" error occurs at line 90.

Because the previously existing loop is dropped,

programs similar to the last program on the facing
page can be properly executed.

(Discussion of this statement is continued.)

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-46 IRIS Business BASIC Manual

FOR (Continued)

EXAMPLES:

i i ij il) 1 7

10 FOR A} ee es 10: FOR = a: :s eae

20 FOR B. . 20 FOR Be six

—_ 2 <

60 NEXT B 60 NEXT A o-3-2-- -
70 NEXT A 70 Neat Sora eores= =

110-FOR CC 35234

]] t . * it)] t .

iron nh. 18: FORA 4 Cree

20 FOR B.. es 20 FOR Baws

30 POR SS 7 2% 30 FOr A> se 6 ;

a e ;

. . i

; it :
170 NEXT C 70 NEXT A 7**°oo-- - {
180 Nea 80 NEXT B weer ecerer--- 7 1

190 FOR B ————— 90 NEXT A oneeen--------- aa

300 NEXT B

310 NEXT A

—
legal nesting

Ti -FOR A: ce. se

60 GOTO 240

90 NEXT A

240 FORA... .4

—_

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-47 IRIS Business BASIC Manual

° &-

-> 4

FOR (Continued)

NOTES:

If the control variable (D in the example on the

facing page) is an integer (1% precision), then the

step and limit values are also evaluated as integers.

The step and limit values are truncated to integers

using simple truncation (not evaluated as though the

INT function had been used). Thus, all arithmetic

which must be performed by the system will be done

using integers, and it will take approximately

one-third as long to execute the looping function.

Integers should be used whenever a short FOR-NEXT loop

is used and maximum speed is desired.

The difference between using an integer (1%) control

variable and a non-integer control variable is

illustrated by Example B on the facing page. Line 10

sets X to 2% precision. Since X is not an integer

variable, the step value is not truncated and -1.2 is

used. Line 50 sets A to 1% precision. Since A is an

integer variable, the step value -1.2 is truncated to

-l.

The maximum limit value when using an integer control

variable is 7998; a limit of 7999 cannot be exceeded,

and the loop would continue indefinitely after the

value of the control variable reached 7999.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-48 IRIS Business BASIC Manual

nt

(

~

EXAMPLE A:

10

20

30

40

50

This program's

5

1

1wonunwry
EXAMPLE B:

10

20

30

40

50

60

70

80

This program's

X=

<=

X=

X=

X=

x=

SM-030-0012-02

POINT 4 Data C

FOR (Continued)

DIM 1%,D,3%

FOR D=l1 TO 10 STEP 2.9

LET X=5/D

PRINT D;X

NEXT D

output would be:

- 666666666

7142857142

5555555555

DIM 2%,X

FOR X= 10.2 TO 1.2 STEP -1.2

PRINT "X= "X

NEXT X

DIM 1%,A

FOR A= 10 TO 1 STEP -1.2

PRINT "A= "A

NEXT A

output would be:

10.2

9

7.8

6.6

5.4

4.2

3

iss

10

9

8

7

6

5

4

3

2

1

BUSINESS BASIC STATEMENTS

Orporation 3-49 IRIS Business BASIC Manual

& -

GOSUB

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

GOSUB subroutine line no.

The GOSUB statement transfers control to the specified

line number.

The GOSUB and RETURN statements eliminate the need to

repeat frequently used groups of statements in a

program. Such a group of statements is called a

subroutine. The subroutine must be exited using a

RETURN statement.

A subroutine that has been entered with a GOSUB can

itself contain a GOSUB statement. This nesting

process can be carried out to eight levels. Each

RETURN returns to the previous level. A RETURN

statement cannot be executed without the previous

execution of a GOSUB statement.

SM-030-0012-02) BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-50 IRIS Business BASIC Manual

GOSUB

EXAMPLES:

10 DIM R$[10]

100 INPUT "Continue? (Enter YES or NO) "R$

110 PRINT

120 GOSUB 1000 !Check whether YES or NO was entered.

130 GOTO 500

140 GOTO 600

150 PRINT "You must enter YES or NOI"

160 GOTO 100

500 REM Perform the YES alternative

510 PRINT "The user entered YES"

520 STOP

600 REM Perform the NO alternative

610 PRINT "The user entered NO"

620 STOP

1000 REM Routine to check for YES or NO

1010 IF R$="YES" RETURN !return to next statement if YES

1020 IF R$="NO" RETURN 1 !return and skip next statement if NO

1030 RETURN 2 !return and skip 2 statements if neither

RUN
Continue? (Enter YES or NO) MAYBE

You must enter YES or NO!

Continue? (Enter YES or NO) YES

The user entered YES

STOP AT 520

RUN
Continue? (Enter YES or NO) NO

The user entered NO

STOP at 620

This program uses a subroutine to check whether the input string

R$ is equal to "YES", "NO" or neither. If R$ is equal to "YES",

the subroutine returns to the next statement following the GOSUB,

which is "GOTO 500".

If R$ is equal to "NO", the subroutine returns to the program,

skips one statement, and continues execution with the following

statement, which is "GOTO 600".

If R$ is not equal to "YES" or "NO", the subroutine returns to
the program, skips two statements, and continues execution with

the following statement, which is "PRINT "You must enter YES or

noi""

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-51 IRIS Business BASIC Manual

Gi

GOTO

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

GOTO line number

This statement transfers control to the specified
line.

GOTO must be followed by a line number to which

control is to be transferred; there must be a
statement in the program with that line number or an

error will occur.

The statement is useful for jumping to another part of

the program or for repeating a task indefinitely.

A GOTO should not be used to jump inside a FOR/NEXT

loop because a "NEXT without matching FOR" error will
occur when the NEXT statement is encountered (unless

the FOR/NEXT loop is exited before the NEXT statement

is encountered). A GOTO statement can be used to jump

out of a FOR/NEXT loop.

A GOTO should not be used to jump inside a subroutine

because a "'RETURN' WITHOUT 'GOSUB'" error will occur

when a RETURN statement is encountered. A GOTO should

not be used to jump out of a subroutine because the

return address will be left on the stack, probably

causing a "GOSUB STACK OVERFLOW" error.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-52 IRIS Business BASIC Manual

GOTO

EXAMPLES :

10 INPUT "Please enter a number from 1 to 5: "A

20 PRINT

30 IF A=l GOTO 60

40 PRINT "A is not equal to 1"

50 GOTO 70

60 PRINT "A is equal to 1”

70 END

Please enter a number from 1 to 5: 3

A is not equal to l

READY

RUN
Please enter a number from 1 to 5: 1

A is equal to l

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-53 IRIS Business BASIC Manual

’ &-

HELP

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

NO

HELP {error number}

Prints a message describing the type of error
encountered.

Some types of errors are serious enough that the
program is stopped when the error is detected, and the
word READY is printed following the error message.
Other types of errors allow the program to continue

with the next statement in sequence, thus allowing
several errors to be detected in a single run.

If the error number is not specified, a message which
describes the most recently encountered error, if any,
is printed. If the error number is specified, a
message which describes the specified error number is

printed.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-54 IRIS Business BASIC Manual

HELP

EXAMPLES :

ERROR #6

HELP
NO SUCH LINE NUMBER

HELP 30
USER FUNCTION NOT DEFINED

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3=55 IRIS Business BASIC Manual

’ &-

IF

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

5.

a} 4

YES

YES

IF logical expression statement {\statement}*

Provides conditional branching capabilities. The

logical expression is evaluated and, if it is found to
be true, the following statements on that line are
executed.

Any BASIC statement is permitted as the conditionally
executed statement, including another IF. Thus, the
statement IF A>B IF C>D GOTO 100 transfers program

control to statement 100 only if A is greater than B
and C is greater than D. In these cases the second IF
statement and its logical expression is executed only
if the first is satisfied. Any assignment statement

which immediately follows the logical expression must
begin with the keyword LET.

If the test condition is false, control passes to the
next line which begins with a line number (which may

not be the next sequential statement if multi-

statement lines are used).

The comparison symbols which may be used in the

logical expression of an IF statement are listed

below.

Symbol Meaning

> greater than

< less than

>= greater than or equal to

<= less than or equal to

<> not equal to

B equal to

IRIS Business BASIC does not use IF/THEN construction.

A statement such as IF A>B THEN 500 may be entered,

but the reserved word THEN has the same effect as GOTO

and is converted to "GOTO" by BASIC.

Line 900 in the examples shows the advantage of using

multiple-statement lines after an IF statement. If A

is originally greater than B, the following statements

on that line swap the value of A and B. If A is not

originally greater than B, control transfers to the

next numbered line, thereby skipping the remaining

statements on line 900.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-56 IRIS Business BASIC Manual

IF

EXAMPLES:

10 IF A>B GOTO 100

200 IF B GOTO 100

70 IF LEN(A$)>10 LET C=D

800 IF A=5 PRINT "TRUE"

100 IF B$<>"YES" IF B$<>"NO" PRINT "Please enter YES or NO."

900 IF A>B LET T= A \ A=B \ B=T

170 IF A$,B$=C$ GOTO 1000

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-57 IRIS Business BASIC Manual

, Qs

IF ERR

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

IF ERR error modeistatement}

The IF ERR statement sets or clears an error branch
which may be used to trap non-abortive errors within
the BASIC program instead of allowing them to cause an

error printout; the error trapping allows the program

to attempt corrective action. Escape (ESC, <CTRL-C>,

and <CTRL-D>) is also trapped.

If the error mode is set to zero, error 99 is

generated when error trapping is enabled and either

<ESC> or <CTRL-C> is pressed. If the error mode is

set to one, error 99 is generated when <ESC> is

pressed and error 199 is generated when <CTRL-C> is

pressed.

The statement is not executed at the time the IF ERR

is encountered, but an error branch is set so that any

non-abortive error or ESC causes the statement to be

executed as if it were at the line where the error

occurred. Therefore, unless the statement is a GOTO,

GOSUB, RETURN or ON statement, the next statement

executed will be the one following the statement in

which the error occurred. If the statement is a

GOSUB, then a normal RETURN from the subroutine will

also return to the statement following the statement

in which the error occurred, and a RETURN -1l will
return control to the statement in which the error

occurred.

If the statement is an assignment statement, it must

begin with the keyword LET.

An IF ERR statement may be used anywhere in the

program to set the error branch to point to its

statement. An IF ERR with no following statement

clears the switch so that any error will cause a

normal error message printout.

(Discussion of this statement is continued.)

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-58 IRIS Business BASIC Manual

EXAMPLES:

IF ERR

10 IF ERR O LET E=E+1

20 IF ERR 0 GOSUB 1000

150 IF ERR 1 GOTO 9000

200 IF ERR 0

NOTES: (Continued)

5A SPC (8) may be used in the error handling subroutine

to determine the type of error that occurred. IF ERR

also causes ESC and <CTRL-C> to be trapped. In this

case, SPC (8) returns 99 as the error type if the

error mode is set to 0, and returns error 99 if ESC is

trapped and 199 if <CTRL-C> is trapped if the error

mode is set to l. If the program is not

copy-protected against the user, then the user can

bypass the ESC trap by pressing <CTRL-Y> followed by

ESC.

SPC (10) may be used in the error handling subroutine

to determine the line number where the last error

occurred. Thus, an error message may be printed

giving the line number of the error if the program

cannot recover from the error.

An IF ERR statement must be the first executable

statement of a program in order to trap <ESC> and

<CTRL-C> when chaining from one BASIC program to

another BASIC program. Executable statements include

all statements except REM and DATA,

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-59 IRIS Business BASIC Manual

, ee

INPUT

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

INFUT{6c,r;} {LENLimit;} ("lit prompt"}var list{, {@c,r{LENLimit;}{"Lit prompt" }var list}#*

ar

INPUT {@c,r;} {LEN limit;} ("literal prompt"}string variable

where

c - column

r - row

var list - a list of vector or array variables in any
order, with each element except the first

preceded by a comma

This statement directs the system to accept data
entered from the keyboard. The system temporarily
suspends program execution, prints a question mark or

the literal prompt, and awaits data to be entered by
the user.

When the RETURN key is pressed after entering data in

response to an INPUT statement, the cursor does not

move, but remains at the same position.

To enter more than one number in response to an INPUT
statement, either separate the numbers by commas or

press the RETURN key after entering each number.

The standard question mark prompt character may be

replaced by any prompt message given in quotes at the

beginning of the statement. If there is nothing
between the quotes, then input will be enabled with no

prompt at all.

If the user's response to an INPUT statement is

rejected, the system prints a backslash and question

mark and outputs a bell. The user may then enter
appropriate information and press RETURN. INPUT

response is rejected if input for a numeric variable
is required and the user enters nothing or enters

illegal characters. However, if error trapping is

enabled, then an empty input is accepted as a zero

value and entry of an illegal character causes an

error branch.

Two string variables or a numeric variable following a

string variable may not be input using a single INPUT

statement.

8M-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-60 IRIS Business BASIC Manual

>

INPUT

EXAMPLES:

110 INPUT A,B

120 INPUT C,D4,E

130 INPUT B[2]

140 INPUT "WHAT IS YOUR NAME? "N$

150 INPUT ""J

300 INPUT LEN 5;A$

500 INPUT @10,5;"AGE: "A,@10,10;"STATUS: "B

The following program inputs two numbers from the keyboard, adds
them, prints the sum, and asks for two more numbers. Line 20
causes the program to stop if the first value entered is zero.
The user may also press the ESC key at any time to abort the
program run.

10 INPUT "ENTER THE FIRST NUMBER: "A,"ENTER THE SECOND NUMBER: "B

20 IF A=0 STOP

30 PRINT " THE SUM IS"A+B

40 GOTO 10

The following program accepts only the letters "Y" or "N" as
input. The user may type "YES" or "NO", but the system acts as

though <RETURN> were pressed as soon as the specified input

length was reached. The excess letters ("ES" or "O") are queued
up as type-ahead.

10 INPUT LEN l; "Yes (Y¥) or No (N)? "A$

20 IF A$= "Y" GOTO 100

30 IF A$= "N" GOTO 200

40 PRINT "PLEASE ANSWER YES OR NO" \ GOTO 10

NOTES: (Continued)

6. The LEN clause may be used to limit the length of user
input to the number of characters specified by

"limit". For example, line 300 limits the length of

user input for A$ to five characters. The LEN clause

affects only the next read from the terminal. Setting

the input length to zero or greater than the I/0

Buffer size has the same effect as not including a LEN

clause.

7. The @column,row clause may be used to specify the

column and row at which the input prompt will be

displayed (or the cursor position, if no input prompt

is to be displayed). Note that the column is

specified first, then the row.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-61 IRIS Business BASIC Manual

Oo Fey

KILL

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

KILL filename string{,filename string}*

Deletes the specified data files.

The filename string may contain a literal string or

string variable which contains the filename of a data

file. It may also include the number of the logical

unit on which the file is stored (LU/). The effect is

the same as if the KILL command were given in the

system command mode. The user's account on which the

file was created will be credited for the disc blocks.

An error occurs in three cases: if any of the

specified strings do not contain a legal filename; if

a specified file is write protected; or if a specified

file does not exist. .

If a legal command is given to kill a file that is

open at the time on a data channel, the filename will

be removed from the INDEX immediately, but the file

will remain open on the channel. The file will be

deleted later when the channel is closed by a CLOSE

statement or cleared by program termination.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-62 IRIS Business BASIC Manual

KILL

EXAMPLES:

KILL "FILE23"

KILL M$,"3/XPRL",D$

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-63 IRIS Business BASIC Manual

’ Qo

LET

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES :

3.

4.

YES

YES J
LET destination variable = source expression or source string expression

This statement assigns a value to a variable.

In a LET statement, the symbol "=" should be read as

"take the value of", not as "equals". For example,

LET P=6

should be read "LET P take the value of 6".

Therefore, it is possible to have

LET B=B+l

which means let the new value of B take the existing
value of B with one added to it.

The word LET is not required when entering an ms

assignment statement except when the assignment

statement follows the logical expression of an IF
statement or error mode of an IF ERR statement. LET y

will be assumed as the statement type if no directive
word is entered, and the word LET will be printed when
the program is listed.

Any numeric expressions are allowed in subscripts.

Only one element of an array may be changed by a

single LET statement.

When using a LET statement such as LET A=A$, only a
literal string, subscripted string variable or string
variable may be used; concatenated strings are not
allowed.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-64 IRIS Business BASIC Manual

zi

EXAMPLES :

10

20

30

40

50

60

70

10

20

30

40

50

60

70

80

90

LET

LET P=6

LET R2=Q+(T/5)

LET A[2]=C+5

LET B=B+l

D=P+5*Q-SQR(A[Z])

LET A$="THIS IS A STRING"

LET A$= B$,C$

DIM A$ [50],BS[50]

LET A$="THIS WAS A LONG STRING"

LET A$ [6,8]="IS"

LET A$ [11,15]=""

PRINT A$

LET A$ [5]="HELLO"

LET BS$=A$

PRINT B$

PRINT A$ [10]

100 LET BS$="=",BS$

110 PRINT B$

This program's output would be:

THIS IS A STRING

THISHELLO

SM-030-0012-02

merrrrreserese ere ere See See SSeS SS SS SS SSS SS SE SS SS SS SS SS SS SS

BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-65 IRIS Business BASIC Manual

° & -

LET ... USING

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

LET string variable = numeric expr list USING format string expr

Assigns a value to a string variable according to the
format specified by the format string.

The value of the format string expression is used to

specify the form in which the values represented in
the expression list is to be printed. The format
string expression may contain one or more format
fields. It may also contain blanks (spaces) and any

characters other than format control characters. The
numeric expression may include numeric expressions,
string expressions, commas, semi-colons, and TAB

functions. The format fields which may be used are

shown in Table 4-3, which follows the PRINT...USING
statement. J

Subscripted string variables may be used in the format

string expression. However, the format string may not

contain concatenated strings or concatenated string

variables.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-66 IRIS Business BASIC Manual

LET ... USING

EXAMPLE:

10 READ A,B

20 DIM A$(20),B$[20]

30 LET A$= 12.345 USING "$S###.##"
40 PRINT A$

50 LET B$[(1,4]=A+B USING "####"

60 PRINT B$

70 DATA 5, 10

RUN

$ 12.34

15

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-67 IRIS Business BASIC Manual

’ &-

LIST

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES :

YES y
NO

LIST

{first line} LIST {last line}

Lists the current program from the first line

specified (or from the beginning) through the last

line (or through the end).

If the first line is not specified, the system

defaults to 1 or the beginning of the program; if the
last line is not specified, the system defaults to

9999 or the end of the program.

The <ESC> key may be pressed at any time to terminate

listing.

When a program containing FOR-NEXT loops is listed,

statements within each loop are indented for easy ~

identification of loops and nesting.

If a first line number is specified and there is no >

statement with the specified line number, then the

listing starts with the next higher numbered line.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-68 IRIS Business BASIC Manual

33

LIST

EXAMPLES :

Command: Effect:

LIST lists the entire program as it stands

180 LIST lists from line 180 through the end of
the program

270 LIST 600 lists lines 270 through 600 of the
program

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-69 IRIS Business BASIC Manual

° &-

LOAD
e

KEYBOARD: YES)
PROGRAM: NO

SYNTAX: LOAD {-}filename

EFFECT: Accesses a text file.

NOTES:

1. This command may be used to access a program that was
saved as a text file by use of the DUMP command.

2. This command may be used to load BASIC source code

which is in text file form.

3. If the filename is preceded by a minus sign "-" all
end-of-line comments (!comment) are not loaded.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-70 IRIS Business BASIC Manual

LOAD

EXAMPLES:

LOAD CASHFLOW3

LOAD -CASHFLOW3

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-71 IRIS Business BASIC Manual

. &-

MAT

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

SM-030-0012-02

YES

YES

MAT destination matrix variable=source matrix variable

This statement sets all the elements of a destination

matrix equal to the corresponding elements of a source
matrix.

The destination matrix is automatically dimensioned
the same as the source matrix and each element of the

source matrix is copied to the same position in the

destination matrix.

If the destination matrix existed prior to executing
this statement, then it must be the same precision as
the source matrix. The destination matrix will also
be redimensioned automatically (an error occurs if the

destination is not large enough).

A matrix is defined as a two-dimensional array

excluding row zero and column zero. Therefore, the

MAT statement has no effect on row zero or column

zero.

BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-72 IRIS Business BASIC Manual

‘ee

MAT

EXAMPLES

200 MAT C = Y

500 MAT M2 = Q6

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-73 IRIS Business BASIC Manual

’ 4-

MAT INPUT

KEYBOARD: YES

PROGRAM: YES

SYNTAX: MAT INPUT matrix variable{[exnr{,expr}]}{,matrix variablef[exor{,expr}]}}*

EFFECT: This statement allows the entry of an entire matrix
from the keyboard during program execution. The
matrix may be dimensioned in the INPUT statement or
given a new working size.

NOTES:

1. When entering the elements of each row, each element

must be separated by a comma, and each complete row of
data must be entered before pressing RETURN. For

example, while entering the data necessary for the
execution of

190 MAT INPUT A[3,4]

Four data items separated by three commas must be

typed in before pressing RETURN. If too few or too

many data items are entered, the system prints a

backslash and requests the entire new line of data.

2. The matrix is filled from left to right across one row

at a time. For example, element 1,1 is filled first,

then element 1,2, then element 1,3 and so on.

3. Any matrix created by a MAT statement with a single

dimension assumes a second dimension of one. For

example, line 180 of the examples is equivalent to

180 MAT INPUT R[5,1]

4. A matrix is defined as a two-dimensional array

excluding row zero and column zero. Therefore, the

MAT INPUT statement has no effect on row zero or

column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-74 IRIS Business BASIC Manual

MAT INPUT

EXAMPLES :

170 MAT INPUT F

180 MAT INPUT R[5]

190 MAT INPUT CIE,J],F

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3=75 IRIS Business BASIC Manual

° & -

MAT PRINT

KEYBOARD: NO

PROGRAM: YES

SYNTAX: MAT PRINT matrix variable{’matrix variable}*
’

EFFECT:

NOTES:

This statement causes the system to print one or more
entire matrices, row by row.

MAT PRINT simplifies programming with matrices by
reducing the number of statements required to print a

matrix. This is illustrated by programs A and B on
the facing page.

A matrix may be printed in a "packed" form with up to

12 elements on a line by placing a semi-colon after
the matrix variable. Otherwise, the matrix is printed
with five elements per row.

If the matrix variable is followed by a comma or
semi-colon, an extra line feed is generated after
printing the matrix to provide double spacing between
matrices. More than one matrix may be printed in one

statement by separating the matrix variable names by a

comma or semi-colon.

A matrix is defined as a two-dimensional array

excluding row zero and column zero. Therefore, the

MAT PRINT statement has no effect on row zero or

column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-76 IRIS Business BASIC Manual

ww

MAT PRINT

EXAMPLES:

10 MAT INPUT A[3,4]
20 MAT INPUT B[2,3]

30 MAT PRINT A

40 MAT PRINT A;

50 MAT PRINT A,B

RUN

2?1,2,3,4

?5,6,7,8

2?9,10,11,12

?10,20,30

?40,50,60

1 2 3 4

a 6 4 8
9 10 11 12

1 2 3 a

5 6 7 8

9 10 ll 12

1 z 3 -

5 6 7 8

2 10 11 12

10 20 30

40 50 60

A. Sample Program Without MAT Statements

100 DIM A(3,3)

110 FOR R= 1 TO 3

120 FOR C= 1 TO 3

130 READ A(R,C)

140 NEXT C

150 NEXT R

160 FOR R= 1 TO 3

170 FOR C= 1 TO 3

180 PRINT A(R,C)

190 NEXT C

200 NEXT R

210 DATA 1,2,3,4,5,6,7,8,9

220 END

B. Sample Program With MAT Statements

100 DIM A(3,3)

110 MAT READ A

120 MAT PRINT A

130 DATA 1,2,3,4,5,6,7,8,9

140 END

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-77 IRIS Business BASIC Manual

° &-

MAT READ

KEYBOARD: YES

PROGRAM: YES

SYNTAX: MAT READ matrix variable{[exnr{,expr}]}{,matrix variable {Lexor{,expr}J}}*

EFFECT: This statement allows the computer to read an entire
Matrix from DATA statements. The matrix may be

dimensioned in this statement or given a new working
size.

NOTES:

1. MAT READ simplifies programming with matrices by

reducing the number of statements required to read
values into a matrix. This is illustrated by the two
sample programs on the facing page.

2. The matrix is filled from left to right across one row

at a time. For example, element 1,1 is filled first,

then element 1,2, then element 1,3 and so on,

3. Any matrix created by a MAT statement with a single

dimension assumes a second dimension of one. For

example, line 415 in the examples is equivalent to

line 420.

4. A matrix is defined as a two-dimensional array

excluding row zero and column zero. Therefore, the

MAT READ statement has no effect on row zero or column

zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-78 IRIS Business BASIC Manual

EXAMPLES:

400 MAT READ A

405 MAT READ B,C

410 MAT READ EI[L,N],A

415 MAT READ F[7]

420 MAT READ F[7,1]

A. Program Without MAT Statements:

100 DIM A(3,3)

110 FOR R= 1 TO 3

120 FOR C= 1 TO 3

130 READ A(R,C)

140 NEXT C

150 NEXT R

160 FOR R= 1 TO 3

170 FOR C= 1 TO 3

180 PRINT A(R,C)

190 NEXT C

200 NEXT R

210 DATA 1,2,3,4,5,6,7,8,9

220 END

B. Program With MAT Statements:

100 DIM A(3,3)

110 MAT READ A

120 MAT PRINT A

130 DATA 1,2,3,4,75,76+7,8,9

140 END

RUN

1 2 3

4 5 6

Z 8 9

SM-030-0012-02

POINT 4 Data Corporation 3=79

4-

MAT READ

BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

MAT READ#

KEYBOARD: NO)

PROGRAM: YES

SYNTAX: MAT READ #channel, {record{ ,item{,delay}}};array or string variable ;}

EFFECT: Reads data from a single binary item of a formatted
data file or, starting at a specified location, froma
contiguous data file into an entire numeric array or
into an entire string variable.

NOTES:

1. The MAT READ# statement functions exactly as the READ#

statement except that an entire array (including row

zero and column zero), or an entire string is read in

one statement. No matrix or string subscripts are

allowed. For contiguous files, the value of the item

number expression is used as a byte displacement into

the record, but all transfers are word-oriented; if an

odd byte displacement is given (as in line 220 of the

examples), then the transfer begins at the next higher

even byte displacement. The entire array or string

variable is filled by copying directly from the file

unless the item (formatted file only), or the file

(contiguous file only) ends before the entire array or

string variable is filled, in which case the remainder .

of the array or string variable remains unchanged. >
For formatted files, the item type must be binary. No

data conversion takes place, and it is the

responsibility of the user's program to ensure that

the data is read into the type of variable that

matches the data form.

2. For a contiguous file, the byte displacement to the

next item in the file is equal to twice the number of
words transferred. The number of words transferred

will be INT(d/2+1) for a string variable or

(r+1)*(c+1)*p for an array variable, where:

row dimension of array,

column dimension of array,

number precision of array, and

string dimension (number of bytes).acoan uouud

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-80 IRIS Business BASIC Manual

EXAMPLES:

MAT READ#¥

190 MAT READ #1,20;A

200 MAT READ #K+2,8;B

210 MAT READ #3,10;A$

220 MAT READ #1,R*2,3;B$

NOTES: (Continued)

3. ‘If the item is not specified, the system defaults to

item zero. If the record is not specified, the

system defaults to sequential access.

4. A string variable might be used in a MAT READ#

statement when, for example, it is necessary to read

the full dimensioned size of the variable, ignoring

terminators.

5. The terminating semicolon may be used as a record-lock

command.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-81 IRIS Business BASIC Manual

, &-

MAT WRITE#

KEYBOARD: NO

PROGRAM: YES

SYNTAX: MAT WRITE #channel, {record{ ,item{,delay}}};array or string variablef;}

EFFECT: This statement writes all data from a numeric array or
from a string variable into the specified single

binary item of a formatted data file or into a

contiguous data file at a specified starting point.

NOTES:

1. The MAT WRITE# statement functions exactly as the

WRITE# statement except that an entire array
(including row zero and column zero) or an entire

string variable is written by one statement. No
matrix or string subscripts are allowed. In the case
of a contiguous file, the value of the item number.
expression is used as a byte displacement into the

record, but all transfers are word-oriented; if an odd
byte displacement is given (as in line 220 of the

examples), then the transfer begins at the next higher
even byte displacement. If there is enough space in

the file, then the entire array or string is written.

However, if the item is too small (formatted file

only), or the end of the file is reached (contiguous

file only), then the data is truncated and no error

message is given. In the case of a formatted file,

the entire array or string is written into a single

item whose type must be binary. No data conversion

takes place, and it is the responsibility of the

user's program to ensure that the data will later be

read back into the same type of variable.

2. If an array variable is specified, then the entire

array, including row zero and column zero, will be

written. If writing a string variable, then the

entire string as dimensioned, including the byte

reserved for a terminator and any intermediate

terminator bytes, will be written.

3. For a contiguous file, the byte displacement to the

next item in the file is equal to twice the number of

words transferred. The number of words transferred

will be INT (d/2+1) for a string variable or

(r+1)*(c+1)*p for an array variable, where:

row dimension of array,

column dimension of array,

number precision of array, and

string dimension (number of bytes).abuwan wuud

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-82 IRIS Business BASIC Manual

MAT WRITE#

EXAMPLES:

190 MAT WRITE #1,20;A

200 MAT WRITE #C,2*R,8;B

210 MAT WRITE #3,10;A$

220 MAT WRITE #L,R,3;B$

Li

nr Ch/24t)

Cat) x G4) KP

Bs ane... Ba Me Be
C= Cen es

P= Precis imei 2

= 442

2 &

NOTES: (Continued)

4. A string variable might be used in a MAT WRITE#

statement when, for example, it is necessary to write

the full dimensioned size of the variable, ignoring

terminators.

5. The terminating semicolon may be used as a record-lock

command.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-83 IRIS Business BASIC Manual

» Qu

-> 4

MAT ... =CON

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

MAT matrix variable=CON{ (dimension expr{,dimension expr})}

Sets all of the elements of the specified matrix equal
to one.

This statement simplifies the process of setting all
elements of a matrix to one. This is shown on the
facing page.

Any matrix created by a MAT statement with a single
dimension assumes a second dimension of one. For
example, line 155 of the examples is equivalent to

line 160.

The matrix may be dimensioned or given a new working

size by including dimension expression(s) in this

statement.

A matrix is defined as a two-dimensional array

excluding row zero and column zero. Therefore, the

MAT ...=CON statement has no effect on row zero or

column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-84 IRIS Business BASIC Manual

EXAMPLES :

150 MAT D =

155 MAT E =

160 MAT E =

165 MAT Z

Line 155 and 160 above

160 DIM EI[X,

170 FOR I=1 TO X

CON

CON

CON

CON

are

Y]

MAT ...=CON

(8)

(8,1)

(X,Y)

equivalent to the following program:

180 FOR J=1 TO Y

190 LET E[I,J]=1

200 NEXT J

210 NEXT I

SM-030-0012-02

POINT 4 Data Corporation

Gs

BUSINESS BASIC STATEMENTS

3-85 IRIS Business BASIC Manual

MAT ...=IDN

KEYBOARD: YES

PROGRAM: YES

SYNTAX: MAT matrix variable=IDN {(dimension expr,dimension expr) }

EFFECT: This statement establishes an identity matrix. The
elements comprising the main diagonal are set equal to

one, and all other elements are set equal to zero.

NOTES:

1. The identity matrix must be two-dimensional and should

be square; i.e., the two dimensions should be equal.
For example, line 220 of the examples assigns the

matrix G:

ooor ooro oroo roOo°o°o
2. If the matrix is not square, then the main diagonal is

assumed to start at the lower right corner. For

example, line 250 of the examples assigns matrix B the

value

ie

0010

0oo0ol

3. A new working size may be specified by including

dimension expressions in this statement.

4. A matrix is defined as a two-dimensional array

excluding row zero and column zero. Therefore, the

MAT ...=IDN statement has no effect on row zero or

column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-86 IRIS Business BASIC Manual

EXAMPLES :

210 MAT F =

220 MAT G =

230 MAT H

240 MAT I

250 MAT B =

SM-030-0012-02

IDN

IDN

IDN

IDN

IDN

POINT 4 Data Corporation

, &-

(4,4)

(5,5)

(B4,B4)

(3,4)

3-87

MAT ... =IDN

BUSINESS BASIC STATEMENTS

IRIS BusSiness BASIC Manual

MAT ... =INV

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

MAT destination matrix variable = INV (source matrix variable)

This statement inverts the elements of a source matrix

according to the rules of matrix arithmetic and

assigns the result to a destination matrix.

Only square, two-dimensional matrices may be used in
this statement; i.e., the dimensions must be equal and
non-zero. If the destination matrix existed prior to

executing this statement, then it must be of the same

precision as the source matrix.

A matrix may take on the value of the inverse of its
former self, as in statement 200. *

As a side effect of matrix inversion, the determinant
value is evaluated according to the rules of matrix
arithmetic. (The determinant value is defined as the
sum of the products formed according to the rules of

matrix arithmetic from a series of quantities arranged
in an equal number of columns and rows.) After

inverting a matrix, the DET function may be used to

return the matrix's determinant value. This

determinant value is available until another matrix is

inverted or until a new run is initiated by the RUN

command.

The facing page shows a matrix and the result of its

inversion according to the rules of matrix arithmetic.

A matrix is defined as a two-dimensional array

excluding row zero and column zero. Therefore, the

MAT ...=INV statement has no effect on row zero or

column zero.

For further information on matrix arithmetic, consult

an appropriate text book.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-88 IRIS Business BASIC Manual

MAT ... =INV

EXAMPLES :

100 MAT B = INV (A)

200 MAT F = INV (F)

eS sl" 6:6" 6-75 eS Se eo ~1 6 6.6-6.5

4296 8 Sees S -6 6 6 6 6 339235353

71 33 -1 666 5.9 So. Ste 73<.0;6-6 6 .6

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-89 IRIS Business BASIC Manual

° &-

MAT ... =TRN

KEYBOARD: NO

PROGRAM: YES

SYNTAX: MAT destination matrix variable = TRN (source matrix variable)

EFFECT: This statement establishes a matrix which is the
transposition of a specified matrix; i.e., it

exchanges the rows and columns.

NOTES:

1. If the source matrix has the dimensions (M,N), then
the destination matrix is dimensioned (N,M). A sample

transposition, as commanded in line 450 of the
examples, produces the following results.

R (source matrix) Q (destination matrix)

ag 14

456 25

2a 6

2. It is not necessary for the destination matrix to have

been previously dimensioned; however, if the

destination matrix does exist previous to executing

this statement, it must be the same precision as the

source matrix.

3. CAUTION! A statement of the form

120 MAT S = TRN (S)

is illegal. It may be executed, but the result will
not be an acccurate transposition.

4. A matrix is defined as a two-dimensional array

excluding row zero and column zero. Therefore, the

MAT ...=TRN statement has no effect on row zero or

column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-90 IRIS Business BASIC Manual

MAT ...=TRN

EXAMPLES :

450 MAT Q = TRN (R)

460 MAT L = TRN (A)

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-91 IRIS Business BASIC Manual

’ &-

MAT ...=ZER

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

MAT matrix variable=ZER {(dimension expri,dimension expr}) }

This statement sets all the elements of the specified

matrix equal to zero. The matrix may be created or
given a new working size in this statement.

This statement simplifies the process of setting all

the elements of a matrix to zero. The facing page

illustrates this.

Any array created by a MAT statement with a single

dimension assumes a second dimension of one. For

example, line 200 of the examples is equivalent to

line 300.

A matrix may be dimensioned or given a new working

size by including dimension expression(s) in this

statement.

A matrix is defined as a two-dimensional array

excluding row zero and column zero. Therefore, the

MAT ...=ZER statement has no effect on row zero or

column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-92 IRIS Business BASIC Manual

EXAMPLES:

100

200

300

400

500

600

Line 600 above

40

50

60

70

80

90

SM-030-0012-02

MAT

MAT

MAT

MAT

MAT

MAT

vo WU FY
L

B

ZER

ZER

ZER

ZER

ZER

ZER

MAT ...=ZER

(15)

(15,1)

(9,14)

(E,F)

(R,C)

is equivalent to the following program:

DIM BIR,C]

FOR I = 1TOR

POR K =

NEXT I

i= TO: ¢

LET BII,K] = 0

NEXT K

POINT 4 Data Corporation

&

BUSINESS BASIC STATEMENTS

3-93 IRIS Business BASIC Manual

NEXT

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

NEXT control variable

Transfers control out of a FOR...NEXT loop when the

value of the control variable exceeds the value of the

limiting expression specified in the matching FOR
statement.

The value of the index variable exceeds the limit

value if it is greater than the limit (for a positive
step value) or less than the limit (for a negative

step value). If the initial value in the FOR

statement exceeds the limit value, a search is made

for the matching NEXT statement, and control is

immediately transferred to the statement following the

NEXT statement without executing the statements within

the loop. .

When a NEXT statement is encountered, the step value

(assumed to be +1 unless specified) is added to the
control variable.

The control value is then checked against the limiting

value. If the control value does not exceed the

limiting value, control is transferred to the
statement following the FOR statement. If the control
value does exceed the limiting value, control passes

to the next statement in sequence following the NEXT
statement.

Refer to the FOR statement in this section for further
information on FOR/NEXT loops.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-94 IRIS Business BASIC Manual

NEXT

EXAMPLES :

110 FOR A = 1 T0 5

120 FOR B3 = 6 TO -4 STEP -2

130 FOR M = J TO K+4 STEP B-D

250 NEXT M
300 NEXT B3

600 NEXT A

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-95 IRIS Business BASIC Manual

id 4-

ON

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

; GOTO ‘
selecting expression list of line numberson GOSUB

Transfers control to one of several line numbers,

depending on the integer value of the selecting

expression.

When the ON statement is encountered, the selecting

expression is evaluated and the resulting value is
truncated (not rounded) to an integer. The result is

used as an index to the list of line numbers. Control

then passes to the selected line number and proceeds
from that statement. For example, if the expression
evaluates to 1, control passes to the first specified

line number; if it evaluates to 2, control passes to
the second specified line number.

If the integer value of the selecting expression is
zero, a negative number, or greater than the number of
line numbers listed, the GOTO or GOSUB is not
executed; control is transferred to the statement

immediately following the ON statement.

The subroutine given control by an ON. . .GOSUB
statement should be exited only with a RETURN
statement.

‘The line numbers following GOTO or GOSUB must be
separated by commas. There may be any number of line

numbers listed as long as the statement fits on one
line.

To illustrate the concept, statement 20 of the

examples will transfer control to line 130, 140, 200,

or 210 if the integer value of J is 1, 2, 3, or 4,
respectively.

ON. . .GOTO is similar to the statement GOTO. . .OF

implemented on some systems.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-96 IRIS Business BASIC Manual

(2

ON

EXAMPLES :

10 ON LOG(R)+1 GOTO 95,407

20 ON J GOSUB 130,140,200,210

30 ON P+l1 GOSUB 190,500,650

40 ON A GOSUB 400,400,350,410,430

60 ON J/2-5 GOTO 150,300,100,300,40

70 ON A+l GOTO 100,200,300

100 REM CONTROL PASSES TO THIS LINE IF Atl= 1

200 REM CONTROL PASSES TO THIS LINE IF A+l= 2

300 REM CONTROL PASSES TO THIS LINE IF A+l= 3

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-97 IRIS Business BASIC Manual

° & x

OPEN

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

OPEN #c{=mode} ,filename string{{,#c{=mode}},filename string}#

Opens a data file or peripheral device on a channel.

This statement opens an existing data file or

peripheral device, identified by a filename string, on

each channel identified by a channel number

expression. Additional filenames not preceded by a

channel number are opened on successive channels.

The mode indicates whether the file is to be opened in

file maintenance mode for special manipulations. Mode

zero is the default and indicates a normal open; it

may be selected by omitting the clause. Any other

value selects a file maintenance-mode. All files

listed in a given OPEN statement are opened in the

specified mode until the mode is respecified.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-98 IRIS Business BASIC Manual

fe.

OPEN

EXAMPLES:

20 OPEN #0,"PRIME",BS$

45 OPEN #A,D$(6,M-1],#4,"JOE5","$LPT"

70 OPEN #1=2, "INDEX"

In line 20 above, the file PRIME is opened on channel zero, and

the file identified by the string in B$ is opened on channel one.

In line 45, the file identified by characters 6 through M-1 of D$

is opened on the channel specified by the value of A, the file

JOE5 is opened on channel four, and the line printer is opened on

channel five.

In line 70, the file INDEX is opened on channel one for file

maintenance access by a program whose GUARD bits are set. The

program must be guarded by the system manager before the file can

be opened in mode two.

SM-030-0012-02 : BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-99 IRIS Business BASIC Manual

* &.

PRINT

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

PRINT {{'xx';}{@col,row; }numeric/string expri’}}*
’

Prints text, numbers, and computational results on the

user's terminal.

Most terminals have 80 columns or print spaces
numbered zero through 79 across each line. The line
is divided into five fields of 15 spaces each,
starting at columns 0, 15, 30, 45 and 60. A comma in
a PRINT statement causes a column tab; i.e., it causes

spacing to the beginning of the next field.

On terminals with a longer line, the comma tabs extend
to the end of the line at every 15 character
positions, and then wrap around the specified line

length. A precision three or four variable or any
expression may cause too many significant digits for
15 character spaces, so that the value printout and
the comma tab occupy 30 spaces total.

When a PRINT statement contains more than one
expression, the expressions must be separated by

commas or semicolons. A semicolon causes close
packing (no column tabs). Each number is printed with
either a leading minus sign or space, the value, and

one trailing space. Therefore, the use of semicolons

will print numbers in the closest readable form.

A verbatim message may be printed by enclosing it in

quotation marks as shown in example 300. Semicolons

are optional before and after literal strings except
following the use of the TAB function.

A quotation mark may be included in a literal string
by using two apostrophes, and a carriage return may be

included by using <CTRL-Z> where the RETURN is
desired. Any special characters may be included in

literal strings.

(Discussion of this statement is continued.)

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-100 IRIS Business BASIC Manual

PRINT

EXAMPLES:

100 PRINT A

140 PRINT 6*A,B,SQR(B)+C,

300 PRINT "THE ''BEST'' ANSWER IS"R

440 PRINT "THE SUM OF"X"AND"Y"IS"X+Y

610 PRINT

770 PRINT E;TAB(20);"*"

990 PRINT EXP(D+SQR(X))

If A=10, B=20, c=30, R=40, X=50, Y=60,

E=70 and D=80, the output of this program would be:

10

60 20 34.472135954999

THE "BEST" ANSWER IS 40

THE SUM OF 50 AND 60 IS 110

70 =

6 .5235543368236E+37

Statement 100 above prints the current value of variable A and

then causes a carriage return and line feed.

Statement 140 prints the value of 6*A starting at column zero,

the value of B starting at column 15 and the value of SQR(B)+C

starting at column 30. The comma at the end of the statement

causes spacing to column 45 where printing ceases with a carriage

return.

Statement 300 shows how to enter and print quotation marks.

Statement 440 and its output is a good example of the use of

literal strings.

The spaces before and after the printed numbers are actually part

of the numeric value printouts as described previously. Each

printout is followed by a carriage return and line feed unless

this is suppressed by either a comma or a semi-colon at the end
of the PRINT statement. Therefore, an empty PRINT statement, as

in example 610, causes only a carriage return and line feed.

Statement 770 above prints the value of E, spaces to column 20,

and prints an asterisk.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-101 IRIS Business BASIC Manual

. a:

PRINT (Continued)

NOTES:

The TAB function may be used for further control of a

printout. A field of the form

TAB (expression) ;

within a PRINT statement causes spacing to the column

number specified by the integer value of the

expression. If printing has already occurred beyond

the specified column, no further spacing takes place.

The print line is considered to be circular, so ona

terminal with a 75 character print line, columns 75,
150, 225, etc. are the same as. column zero. A

negative value for the TAB expression causes an error.

The TAB function may be used only in a PRINT, PRINT#
Or PRINT USING statement.

The resulting string from PRINT that goes into the I/0

buffer is not printed each time but is buffered up

until the buffer is filled, the user is swapped out,

Or another BASIC statement needs to use the I/O buffer
for something other than PRINT (such as INPUT). The

user can force printing with a SIGNAL 3,0 statement.

A sequence of two-digit terminal control codes, shown
by xx in the syntax statement, may be included to
specify special printing instructions. Terminal
control codes which may be used are described in

Appendix E. Note that the sequence of control codes
is enclosed in single quotation marks.

The row and column may be included to specify the

position on the terminal screen at which the
information should be printed. The row and column may

be represented by expressions.

A final semicolon may be included at the end of the

expression list to suppress the output of RETURN/LINE
FEED.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-102 IRIS Business BASIC Manual

PRINT (Continued)

EXAMPLES:

170 PRINT ‘CS'‘

250 PRINT @ 10,20;A$

560 PRINT 'CS';@10,5;A$ @X,Y;B$

840 PRINT 'MUMURB';"THE NUMBER "X" IS TOO LARGE";

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-103 IRIS Business BASIC Manual

’ 4 -

PRINT USING

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

PRINT USING format string;expression list{;}

Prints text, numbers, and computational results in a

format specified by a string.

The value of the format string is used to specify the
form in which the expression list is to be printed.

One subscript is allowed in the designation of the
format string; if a second subscript is specified, it

is ignored. The format string may contain one or more
format fields which control the form of printout of
the numeric expressions in the expression list. It

May also contain blanks (spaces) and any characters

other than format control characters. The expression
list may include numeric expressions, string
expressions, commas, semi-colons, and TAB functions.

Printing is accomplished by starting a scan of the
expression list. Any string expressions are printed

and tabulations are executed in response to commas,

semi-colons, and TAB functions until the first numeric

expression is reached. Then, a scan of the format

string is begun and all characters other than format

control characters in the format string are printed
until the first format field is reached. The value of

the numeric expression is then printed in the format

specified by the format field. Next, all non-format

characters in the format string are printed until
either the end of the string or another format field

is encountered. Format fields are separated by

spaces. The scan is then resumed in the expression

list, printing until the next numeric expression is

reached. In this way, scans of the expression list
and of the format string alternate until the

expression list is exhausted. When the format string

is exhausted, it is used over.again starting at the

beginning.

Table 3-1 lists and describes the types of format

fields which may be used in format strings.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-104 IRIS Business BASIC Manual

EXAMPLES :

If C = 20.5, x=

would be:

The output

PRINT USING

0 DIM A$[(10],B${(30]

20

30

LET AS="###.##"

PRINT USING A$;"ANSWER=";1.50*4

40 ‘PRINT USING A$;8.006,300;TAB(40) ;C

50 LET BS= "+++## SSS.### -SH,8#8. HE"

60

70

80

90

PRINT USING B$;7.6,5.4,-8500

PRINT USING B$ [15];X;¥

PRINT USING B$;X"TIMES"Y"="X*Y

LET BS="#.###°°"" S****#,##"

100 PRINT USING B$;15360000; 23.469

110 PRINT USING "####.##";X

ANSWER=

8.00

+ 7

$1,000.00 $

6.00

1000, and Y = 9.999, the output of these lines

300.00 20.50

$5.400

9.99

-$8,500.00

+1000 TIMES $9.999 = $9,999.00

1.536E+07 $***23.46

PRINT #1;"THE ENTRY IS "A

PRINT #1; USING "SS#,###,###";A

USING. .*$$*, **8 , #48" 5A,

1000.00

5 OPEN #1,"$LPT1"

10 INPUT A

15

20 PRINT #1;

30

40 PRINT #1;

50 GOTO 10

of

THE ENTRY IS

$ 2
S$ kKK KKKD

THE ENTRY IS

$ 20,000

$ **20,000

THE ENTRY IS

$2,222,220

$2,222,220

THE ENTRY IS

$ 222
$ *kkk 222

THE ENTRY IS

Saal pece

PP 2227222

SM-030-0012-02

POINT 4 Data Corporation

’ fs

this program to a printer is shown below.

2

20000

2222220

222

222222

BUSINESS BASIC STATEMENTS

3-105 IRIS Business BASIC Manual

PRINT USING (Continued)

TABLE 3-1. FORMAT FIELDS FOR PRINT USING

Format Field Description

#tt? For each # in the format field, a digit
(0-9) or blank (space) is substituted.

Integers are right justified with leading

blanks; a single zero is printed in the

last position if the value is zero. The

final zero digit may be suppressed by

using "----" instead of "####" (see

below). Only integers are represented; no

decimal point or fractional portion is

printed, and the sign is ignored if only
#'s are given. If the data is too large,

an asterisk is printed in each position.

tt. F# Prints a decimal point where indicated.
Digit positions (#) following the decimal
point are filled; no blanks are left in

these positions. Ifthe ELract ronal

portion is too long, it is truncated to

fit the format. Leading zeros in the

integer portion are replaced by blanks

except for a single leading zero preceding
a decimal point.

aAanan

Exponent Four consecutive carets () indicate an
Indicator (%) exponent field and will be filled by E+tnn

where nn is two digits showing the
exponentiation.

Signs A fixed sign (+ or -) may appear as the
(+,-,++,--) first symbol of a format field to indicate

the following:

+ Outputs "+" if value is positive, "-"

if negative.

- Outputs " " if value is positive, "-"

if negative.

A floating sign (++... OF -~.e.) may

appear as the first two or more symbols in
the format field. Positions occupied by
the second and subsequent signs can be

used for numeric positions in the data,
and the sign is printed immediately
preceding the data. Comma separators may

be used within a floating sign field, but
the sign will not float into a comma

position.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-106 IRIS Business BASIC Manual

——)

PRINT USING (Continued)

TABLE 3-1. FORMAT FIELDS FOR PRINT USING (Cont)

Format Field Description

Fixed and A fixed $ may appear as the first or
Floating second character in the format field,
dollar causing a $ to be printed in that
sign ($) character position. The $ may appear as

the second character if it is preceded by

a fixed sign.

A floating dollar sign ($$...) consists of

at least two $ symbols beginning at either

the first or second character position in

the numeric field of the format string.

it: causée.:a Sito bet: placed: in the

character position immediately preceding

the first digit. If the floating $ begins
in the second character position, it is

preceded by a fixed sign. Only one

fleating Character Usigqgn Vor $) is

permitted in a given field. Comma

separators may be used within a floating §$

field, but the $ will not float into a

comma position.

Separator (,) The separator (,) places a comma in the
position indicated except where leading

zeroes (blanks) occur.

Asterisk (*) The asterisk (*) specifies that asterisks
should be printed in all leading positions

which would otherwise print as blanks.

Leading asterisks are commonly used for

protection, as when printing checks.

Comma separators may be used within an

asterisk field, but blanks (not asterisks)

will be printed in the comma positions.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-107 IRIS Business BASIC Manual

° & -

PRINT #

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES :

NO

YES

PRINT #channel{,record{,item{,delay}}};expression list{;}

Prints text, numbers, and computational results toa

data file or to a peripheral device.

When the PRINT # statement is used, all output is in
the form of an ASCII string identical to the string

that would be printed on the user's terminal if an
ordinary PRINT statement were used, but the string is
output instead to whatever file or device is open on

the specified channel. If nothing is open on the
channel, or the specified channel number is greater

than the number of channels on the system, then the
output defaults to the user's terminal. This allows

the destination for all output to be selected when the
program is run. .

The final semicolon at the end of the expression list
may be included to suppress the output of RETURN/LINE
FEED.

If printing is directed to a formatted data file,
Output must be to an ASCII string item within the

record. If printing is directed to a peripheral
device, the device must be capable of accepting an
ASCII string; such devices include line printers and
paper tape punches.

The record number may be omitted or -1l for sequential
access, or may be -2 to reference the last record
which was accessed, as described in Section 2.3.3.

When information is printed to any data file, the
record is always left locked since the semicolon has
special syntactical meaning in a PRINT statement. A

WRITE #c;; statement should be used to unlock the
record unless another transfer on the same channel
will soon follow the PRINT# statement.

If the expression list includes terminal control codes
such as 'CS' or "@5,10" and the output is directed to
a file, the internal representation of each control
code is written to the file.

Refer to Section 2 for examples of how to use PRINT#

for each file type.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-108 IRIS Business BASIC Manual

PRINT #

EXAMPLES :

10 OPEN #1, "EXAMPLE"

20. READ A,B,C,R,X,Y¥,E,D

30 PRINT #1;A

40 PRINT #1;6*A,B, SQR (B)+C

50 PRINT #1;"THE '' BEST'' ANSWER IS"R

60 PRINT #1;"THE SUM OF"X"AND"Y"IS"X+Y

70 PRINT #1;

80 PRINT #1;E; TAB (20);"*"

90 PRINT #1; EXP (D+ SQR (X))

100 DATA 10, 20, 30, 40, 50, 60, 70, 80

The output from this program to a file would be:

10

60 20 34.472135954999

THE "BEST" ANSWER IS 40

THE SUM OF 50 AND 60 IS 110

*70

6 .5235543368236E+37

NOTES (Continued)

8. The delay may be included to generate error 123 when a
program is paused longer than the specified period of
time because a record or device is locked. The delay
must be specified in tenths of a second. Setting the
delay to -l allows an unlimited delay period; setting
it to 0 specifies no delay and no I/O retries.. Note
that the delay specifies the maximum amount of time to
be spent retrying input or output. For example, a

delay equal to 600 (60 seconds) allows 200 retries,

given a .3 second delay between retries.

9. The item has special meaning when open file

Maintenance is in effect.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-109 IRIS Business BASIC Manual

’ & -

PRINT # USING

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES :

NO

YES

PRINT #channel{ ,record{ ,item{,delay}}};USING format string;expr list{;}

Prints text, numbers, and computational results, using

a format string, to a data file or to a peripheral
device.

This statement combines the features of the PRINT

USING statement with the facilities of the PRINT#

statement. All output is in the form of an ASCII
string identical to the string that would be printed

on the user's terminal if an ordinary PRINT USING

statement were used, but the string goes instead to

whatever file or device is open on the specified
channel. The format fields which may be used are

shown in Table 3-1, which follows the PRINT...USING
statement. If nothing is open on the channel, or if

the specified channel number is greater than the

number of channels on the system, then the output

defaults to the user's terminal. This allows the
destination for all output to be selected when the

program is run.

If printing is directed to a formatted data file, the

selected item must be an ASCII string. If printing is
directed to a peripheral device, the device must be

capable of accepting an ASCII string; such devices
include line printers and paper tape punches.

The record number may be omitted for sequential
access, or may be -1l for sequential access or may be
-2 to reference the last record which was accessed, as

described in Section 2.3.3.

When output is directed to any data file, the record
is always left locked since the semi-colon has special
syntactical meaning in a PRINT statement. A

WRITE #c33 statement should be used to unlock the

record unless another transfer on the same channel
will soon follow the PRINT# statement.

If the expression list includes terminal control codes
such as 'CS' or "@5,10" and the output is directed to

a file, the internal representation of each control

code is written to the file.

SM~-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-110 IRIS Business BASIC Manual

EXAMPLES :

The output

PRINT # USING

10 OPEN #1, "EXAMPLE"

20 DIM A${[10],B$(30]

30 READ C,X,Y

40 LET AS="###.##"

50 PRINT #1; USING A$;"ANSWER=";1.5*4

60 PRINT #1; USING A$; 8.006, 300; TAB (40) ;C

70 LET BS="+++## SSS.### -SH, HEE. FE"

80 PRINT #1; USING BS; 7.6, 5.4, -8500

90 PRINT #1; USING B$; (15);X;Y

100 PRINT #1; USING BS$;X"TIMES"Y"="X*Y

110 LET BS="#.###°°"” S****E, 8H"

120 PRINT #1; USING B$; 15360000; 23.469

130 PRINT #1; USING "#####.##";X

140 DATA 20.5, 1000, 9.999

from this program to a file would be:

ANSWER= 6.00

8.00 300.00 20.50

7. $5.400 -$8,500.00

ES Eee SPs § 593

+1000 TIMES $9.999 = $9,999.00

1.536E+07 $***23.46

1000.00

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation Se AEL IRIS Business BASIC Manual

’ &-

RANDOM

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

YES

RANDOM numeric expression

The RANDOM statement allows the user to exercise
control over the random number sequence generated by

the RND function,

The RANDOM statement solves the following problems,
which are common to most programs using random

numbers:

a. The program may be difficult to debug since each

run produces different results.

b. Successive runs of a debugged program may not

behave independently if the "random" numbers are
from a single pseudo-random sequence.

The RANDOM statement is often the first statement in a
program which uses the RND function. The use of a

non-zero expression, as in the first example, causes a

certain sequence of pseudo-random numbers to be
generated. Different non-zero expressions initiate
different sequences, but each RANDOM statement with

the same non-zero value initiates the same sequence.

Execution of a RANDOM statement with a zero value
expression, as in the second example, causes the
system clock to be used to initiate the random number
sequence. Since the system clock changes each tenth
second, the random number sequence which follows a
RANDOM 0 statement is unpredictable.

For best results when using the RND function, the

following procedure is recommended:

a. Include a RANDOM statement with a non-zero

expression at the beginning of the program while
debugging.

b. Once the program has. been tested, change the
expression in the RANDOM statement to zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-112 IRIS Business BASIC Manual

RANDOM

EXAMPLES:

10 RANDOM 2

5 RANDOM 0

100 INPUT "SEED: "S

110 PRINT

120 RANDOM -S

200 INPUT "NUMBER OF VALUES: "N

210 PRINT

300 INPUT "MODULO: "M

310 PRINT

500 FOR I=l1 TO N

510 LET R= RND (65536)

520 LET X= INT (R- INT(R/M) *M)

530 LET Rl= INT (R+ 1E-06) !correct rounding error

S40: “PRN Rk" 7 3

550 NEXT I

NOTES (Continued)

5. The seed value set by RANDOM and numbers used in

computation are 16-bit binary numbers.

The sign of the value specified in the RANDOM

statement affects the setting. If the value is

positive, the four most significant decimal digits are

placed in packed decimal notation. These four digits

are placed in a 16-bit word which is interpreted as a

16-bit binary number when computing the pseudo-random

number sequence. In effect, there are 9999 unique

initial Varues; For example, the four most

significant digits of RANDOM (12) are 1200, which is

represented by 11000 octal in packed BCD. Lf the

value is negative, the internal 16-bit value is set to

the absolute value of the expression in binary. There

are 65535 (2A16-1) unique initial values. This allows

the user to pause the pseudo-random sequences, thus

allowing two processes to maintain separate
pseudo-random sequences.

The program above shows how this may be accomplished.

Given a seed value and a modulus, the example outputs

N value pairs. The pairs are printed "seed value/".
For example, if a seed of the fifth number is input

for the seed value with the Same modulus, the sequence

of values produced by the second run will match those

of the first, starting with the sixth output. Line

530 was required because of a rounding error when

converting the 16-bit internal value.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3=>12:3 IRIS Business BASIC Manual

° & -

READ

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES :

YES

YES

READ numeric variable list

where each element of the numeric variable list

except the first is preceded by a comma.

The READ statement reads numbers from DATA statements

and assigns the values to the corresponding specified

variables.

The data is read in sequence from the first to the

last DATA statement and from left to right within each

DATA statement. The system initially sets a pointer

to the first item of data. As the READ statements

request each data item, the pointer is moved to the
next data item. The RESTOR statement may be used to

reset the pointer. .

String variables may not be included in READ

statements because strings may not be entered in DATA
statements.

A READ statement may be executed from the keyboard if
one or more DATA statements preceded by line numbers
have been entered. If all the data in the DATA
statements has been READ, a RESTOR statement may be
used to set the pointer to the first data element.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-114 IRIS Business BASIC Manual

EXAMPLES :

10

20

30

40

50

60

70

80

90

READ

FOR J = 1 TO 4

READ Y

PRINT "THE SQUARE ROOT OF "Y"IS"SQR(Y)

NEXT J

DATA 2, 3.7, 94.61,- 2.46-03

READ C,Z

LET E=C+Z

PRINT E

DATA 12, -32.4, 9999, 4E-16

In line 50 above, 2, 3.7, 94.61 and 2.4E-03 are stored as

two-word precision numbers. Variable E is a two-word variable.

The output of this program would be:

THE SQUARE ROOT OF 2 IS 1.414213562373

THE SQUARE ROOT OF 3.7 IS 1.9235384061671

THE SQUARE ROOT OF 94.61 IS 9.7267671916212
THE SQUARE ROOT OF 2.4E-03 IS 4.8989794855663E-02
—20.4

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-115 IRIS Business BASIC Manual

Ge.

READ #

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES :

NO

YES

READ #channel{,record{,item{,delay}}};variable list{;}

where each element of the variable list except the

first is preceded by a comma.

Reads item values from a data file or from a
peripheral device into the variables listed.

The file or device to be accessed must have been
previously opened on the channel specified by the

channel number expression. The record number from

which data are to be read may also be specified. A

starting item number may be given if desired;
otherwise, item zero is assumed.

The variables in the variable list are set to the
values contained in the specified record of the

specified file, starting with the specified item

number or with item zero if no item is specified. The
data in the file is not affected. The item number
field is used as a byte offset for text or contiguous
files (refer to Sections 2.3.2, 2.5 and 2.6).

In a formatted file, only sequential items of a single

record may be read by each READ# statement, and an

error results if a variable type does not match the
item type in the file.

A semi-colon may be included at the end of the

statement (as in the second example) to leave the
record unlocked.

Numeric expressions are allowed in the file address

(channel, record, and item numbers), delay and
subscripts, but an item value from the file can not be
read into an expression.

The record number may be omitted or -1 for sequential
access or may be -2 to reference the last record which

was accessed, as described in Section 2.3.3.

When reading into a string variable, a string

terminator (zero byte) is stored after the last
character read unless two subscripts are given on the

string variable and there is enough data to fill the

area specified by the subscripts. The rules for

string assignment are not followed; the destination

string is not closed up if the source string is too

short, and overlaying a terminator byte has no effect.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-116 IRIS Business BASIC Manual

iB

READ #

EXAMPLES :

240 READ #2,6;D,W$,KI[7,A-2]

415 READ #C[4]+1,R8,5;F$(4],J,J;

In line 240, item zero of record six of the file open on channel

two is read into variable D, item one (which must be a string) is

read into string variable W$, and item two is read into the

element of array K at row seven, column A-2. The record is

locked since there is no final semi-colon.

In line 415, the channel number and record number are given by

the expressions C[4]+l and R8, respectively. The string variable

FS is loaded from item five of that record starting at character

position four in F$; characters one through three of F$ are not

affected. Variable J will be set to the value in item six, but

this value is replaced immediately by the value of item seven.

This technique may be used if the value of item six is of no

immediate interest. The final semi-colon unlocks the record.

NOTES: (Continued)

8. The delay may be included to generate error 123 when a

program is paused longer than the specified period of

time because a record or device is locked. The delay

must be specified in tenths of a second. Setting the

delay to -l allows an unlimited delay period; setting

it to 0 specifies no delay and no I/O retries. Note

that the delay specifies the maximum amount of time to

be spent retrying input or output. For example, a

delay equal to 600 (60 seconds) allows 200 retries,

given a .3 second delay between retries.

9. Refer to Section 2 for examples of how to use READ#

for each file type.

10. The item has special meaning when open file

maintenance is in effect.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-117 IRIS Business BASIC Manual

r &-

REM

KEYBOARD: YES

PROGRAM: YES

SYNTAX: REM series of printable characters

EFFECT: The REM statement allows the insertion of a remark
into a program.

NOTES:

1. REM lines are saved as part of the program. They
appear when the program is listed, but they are not
executed.

2. Comments may be appended to the end of any line by

entering an exclamation mark and comment following the

statements on the line.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-118 IRIS Business BASIC Manual

NJ

REM

EXAMPLES :

10 REM THIS PROGRAM ADDS NUMBERS

20 REM “#$%&'()

100 LET A=100 !set A to initial value

200 PRINT S !print the total

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-119 IRIS Business BASIC Manual

&-

RENUMBER

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

NO

{new beginning line no,} RENUMBER {increment}

Renumbers an entire program's line numbers.

All line numbers referenced in the program (such as in

GOTO and GOSUB statements) are adjusted so that they
remain pointing to the same statements.

The program is renumbered so that it will start with
the specified beginning line number and subsequent
lines are increased by the specified increment. If
the increment is omitted, a value of 10 is assumed.

If the line number is omitted, a value equal to the
increment is assumed,

If a statement references a line number that does not

exist, then the line number will be changed to zero

and an error message will be printed giving the old
line number of the statement where the error occurred.
Because the error message gives the old line number,

POINT 4 recommends SAVE-ing or DUMPing the program

prior to renumbering.

CAUTION! Do not press <ESC> while renumbering, or the
entire program will be lost.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-120 IRIS Business BASIC Manual

(EXAMPLES:

BASIC SAMPLE

LIST
10

20
—_ 30

40

50

60

70

80

90

100

LIST
100

110

120

130

140

150

160

170

180

190

DATA 1,2,3,4,5,99

LET C=0

LET D=0

READ X

IF X=99 THEN 90

LET C=C+X

LET D=D+X

GOTO 40

PRINT C,D,C/D

END

DATA 1,2,3,4,5,99

LET C=0

LET D=0

READ X

IF X=99 THEN 180

LET C=C+X

LET D=D+X

GOTO 130

PRINT C,D,C/D

END

RENUMBER 100

LIST
100

— 200
300

400

500

600

700

800

900

100

‘J

SM-030-0012-02

DATA 1,2,3,4,5,99

LET C=0

LET D=0

READ X

IF X=99 THEN 900

LET C=C+xX

LET D=D+X

GOTO 400

PRINT C,D,C/D

0 END

POINT 4 Data Corporation 3-121

. Gs

RENUMBER

BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

RESTOR

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

YES

YES

RESTOR

Resets the data pointer to the first item of data ina

DATA statement, making it possible for the data to be

re-read.

NOTES:

1. This statement may be used in keyboard mode to affect

keyboard execution of the READ or MAT READ statements.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-122 IRIS Business BASIC Manual

RESTOR

EXAMPLES:

10 FOR I=1 TO 4

20 READ X,Y

30 INPUT Z

40 PRINT X"+"Z"divided by "Y"="(X+Z)/Y

50 RESTOR

60 NEXT I

70 DATA 150,20,900,30

Line 50 in the example program resets the data pointer so that
the same values are read for X and Y each time through the loop.

If the user entered 10, 20, 30 and 40 at the respective input
prompts, the output from this program would be:

150 + 10 divided by 20 = 8

150 + 20 divided by 20 = 8.5

150 + 30 divided by 20 = 9

150 + 40 divided by 20 = 9.5

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-123 IRIS Business BASIC Manual

° &-

RETURN

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

> a

NO

YES

RETURN {numeric expression}

Transfers control (from a subroutine) to the statement
immediately following the matching GOSUB statement (in

the main program) which originally transferred
control.

Every subroutine must be exited using a RETURN

statement. A RETURN statement may be used at any

desired exit point in a subroutine, and there may be

as many RETURN statements as needed in each
subroutine.

A subroutine that has been entered with a GOSUB can

itself contain a GOSUB statement. This nesting

process can be carried out to eight levels. Each

RETURN is to the previous level, but a RETURN
statement cannot be executed without the previous

execution of a GOSUB statement.

If any expression is included in the RETURN statement,

then its integer value specifies transferring control
to a number of statements forward (or backward if the

expression is negative) from the normal return point.
For example: RETURN 0 is the same as RETURN; RETURN

+2 skips two statements and returns to the third

statement following the GOSUB; and RETURN -l returns
to the GOSUB statement itself.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-124 IRIS Business BASIC Manual

RETURN

EXAMPLES:

10 DIM R$[10]

100 INPUT "Continue? (Enter YES or NO) "R$

110 PRINT

120 GOSUB 1000 !Check whether YES or NO was entered.

130 GOTO 500

140 GOTO 600

150 PRINT "You must enter YES or NO!"

160 GOTO 100

500 REM Perform the YES alternative

510 PRINT "The user entered YES"

520 STOP

600 REM Perform the NO alternative

610 PRINT "The user entered NO"

620 STOP

1000 REM Routine to check for YES or NO

1010 IF R$="YES" RETURN !return to next statement if YES

1020 IF R$="NO" RETURN 1 !return and skip next statement if NO

1030 RETURN 2 !return and skip 2 statements if neither

RUN
Continue? (Enter YES or NO) Maybe

You must enter YES or NO!

Continue? (Enter YES or NO) Yes

The user entered YES

STOP AT 520

RUN
Continue? (Enter YES or NO) NO

The user entered NO

STOP at 620

This program uses a subroutine to check whether the input string

R$ is equal to "YES", "NO" or neither. If R$ is equal to "YES =;

the subroutine returns to the next statement following the GOSUB,

which is "GOTO 500".

If R$ is equal to "NO", the subroutine returns to the program,

skips one statement, and continues execution with the following
statement, which is "GOTO 600".

If R$ is not equal to "YES" or "NO", the subroutine returns to

the program, skips two statements, and continues execution with

the following statement, which is "PRINT "You must enter YES or

no!""

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-125 IRIS Business BASIC Manual

. & -

RUN

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

YES

NO

{line number} RUN

Executes a BASIC program.

When the RUN command is given, the program in the
user's active file is executed starting with the
specified line number. If no line number is
specified, execution begins with the lowest line
number. All variables are initially assumed to be
zero, all user functions are assumed undefined, and
all arrays and strings assumed dimensionless until a
statement is encountered to provide the necessary

information.

If a line number is specified, the variables,
user-defined functions, arrays, and strings remain as
they were at the time the last run was stopped.

A run may be aborted at any time by pressing <ESC>
unless error trapping is enabled (IF ERR 0 or IF ERR

1). If error trapping is enabled, the run may be
aborted by pressing <CTRL-Y> followed by <ESC> (unless

the program is protected against it).

A saved program may also be run using the IRIS
processor RUN by giving the following command at the

IRIS system prompt

RUN Filename

or simply

Filename

which brings a copy of the program identified by the

Filename into the active file (if it is not read
protected) and immediately begins running the program.
This has the same effect as entering RUN within BASIC.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-126 IRIS Business BASIC Manual

RUN

EXAMPLE:

4 SQUARED = 16

THE SQUARE ROOT OF 4 IS 2

9 SQUARED = 81

THE SQUARE ROOT OF 9 IS 3

16 SQUARED = 256

THE SQUARE ROOT OF 16 IS 4

25 SQUARED = 625

THE SQUARE ROOT OF 25 IS 5

625 SQUARED = 390625

THE SQUARE ROOT OF 625 IS 25

ALL NUMBERS HAVE BEEN PROCESSED

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-127 IRIS Business BASIC Manual

° & -

SEARCH #

KEYBOARD: NO

PROGRAM: YES

SYNTAX: SEARCH #channel,mode,directory expr; KS, R, S

where

channel - channel number expression giving the number

of the channel on which the appropriate file is
open

mode - search mode expression; the function of each
mode is summarized in Table 3-2

directory expr - expression giving the number of the

K$

appropriate directory associated with the file or
which may be set to defined values to provide
miscellaneous directory information, as defined in
Table 3-2

- any string variable which contains the
appropriate key

- any variable which will contain or receive the

record number of the key being acted upon

- a variable which receives error status as shown

in note #2 or which may be set to defined values

to provide miscellaneous search functions, as
defined in Table 3-2

EFFECT: Used to search for and manipulate keys within indexed
file and polyfile directories and to initialize and
provide information about indexed files and polyfiles.

NOTES:

1. The

2.7.

SEARCH statement is described in detail in Section
5. The information provided here is a summary

only. Read Section 2.7.5 to gain familiarity with the
SEARCH statement.

(Discussion of this statement is continued.)

8M-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-128 IRIS Business BASIC Manual

SEARCH #

(NOTES: (Continued)

2. S may receive a status value as defined below:

- S
1

oO & WwW

wow on vn
10

12

13

14

25

16

17

18

19

20

i

—_

SM-030-0012-02

No error, operation was successful

Operation was not successful

End of directory (when inserting a key, indicates

directory is full)

End of data (no free records available)

File has no index

Undetermined error (usually incorrect use of file)
or, for polyfiles, file structure error

Directory number not in sequence

File is not contiguous

Indexed file or polyfile volume is already indexed

The value of the record number (R) is negative or

too large

Too many directories: for indexed files, the

limit is 15 per file; for polyfiles, the limit

is 63 per volume/polyfile

For indexed files: master directory level exceeds

one block

For polyfiles: volume not found (possible

structure error)

For indexed files: directories exceed size of

file

For polyfiles: volume too small

No such directory

File not indexed

Data volume number is less than pre-existing data

volume

Data volume map request not consistent with
pre-existing volumes

Data volume does not have record length matching

that of the polyfile

Block/record out of range

Record was not allocated (already released)

Volume has no map

BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-129 IRIS Business BASIC Manual

. <

SEARCH # (Continued)

SUMMARY OF SEARCH MODES

Effect

sets key length equal to the value

of R and the number of keys/block

= INT[254/(key length+1)] for the

specified directory; must specify

directories in sequential order,

beginning with directory one

freezes directory configuration to

that specified by previous mode

zero commands; assumes a number of

data records as given in R; sets

up internal linkage for all

directories

returns key length of specified

directory in R

returns record number of first

real data record (always zero for

polyfiles)

returns number of free records in

R

returns the number of a free

record

releases record R; returns the

record to the free chain or bit

map, if provided

searches the specified directory

for a match with K$; if found,

returns found key in K$,

associated data record number in R

and the value zero in S

searches the specified directory

for the first key whose value

logically exceeds K$; if found,

returns found key in K$,

associated data record number in R

and the value zero in S

TABLE 3-2.

Directory Status

Mode Expression (S)

0 >0

=0

1 >0

=0 0

1

2

a

2

3

SM-030-0012-02

POINT 4 Data Corporation 3-130

BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

SEARCH # (Continued)

TABLE 3-2. SUMMARY OF SEARCH MODES (Continued)

Directory Status

— Mode Expression (S) Effect

4 inserts the key specified by K$,
references the key to record

number R and sets S to zero unless

a key is found which matches K$ or

there is insufficient room in the

directory

5 deletes the key specified by K$,
returns the associated data record

number in R and sets S to zero

(unless the specified key is not

found); for indexed files, use

mode one to return free record to

chain

4 reorganizes the specified

directory so key can be inserted

(using mode four; include error

code in case directory is too full

after reorganization to allow

wow insertion; not used on polyfiles

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-131 IRIS Business BASIC Manual

° a

SIGNAL 1

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

SIGNAL 1,port number expression,paraml,param2

Sends a signal which consists of the integer values of

expressions paraml and param2, to the port number

given by the value of the port number expression.

The signal will be received by the addressee only if
the program running on that port executes a SIGNAL 2

(Receive Signal) statement.

The signal resides in the signal list until a program
at the destination port executes a SIGNAL 2 statement.
However, a Signal is ignored by the system if there is
no user logged on at the destination port. An error
occurs if the signal list is full at the time a SIGNAL
1 statement is executed, and the signal is lost. An

error also occurs if a signal is set to a non-existent

port.

To reduce the probability of the list being filled,

the system scans the signal list each hour on the

hour, and any signal that is more than one hour old is

automatically deleted from the list. Also, the

appropriate signal is deleted if the user at the

destination port logs off.

The expressions paraml and param2 must evaluate to

values not exceeding + 32767. Their integer values

are then placed in a signal list along with the

integer value of the destination port number

expression.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-132 IRIS Business BASIC Manual

SIGNAL 1

EXAMPLES :

250 SIGNAL 1,5,61,2140

365 SIGNAL 1,D,R+1,2*I-Q

In line 250, the values 61 and 2140 are sent as a signal to port
number 5.

In line 365, the integer values of R+l and 2*I-Q are sent to the
port specified by the integer value of D.

See Supplemont 1S - 6-33
fre Sn sy ¢

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-133 IRIS Business BASIC Manual

’ we

SIGNAL 2

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

SIGNAL 2,port number expression,Daram] var,Daram2 var{ ,delay}

Receives any signal which has been sent to the port on

which this statement is executed (see SIGNAL 1).

The port number expression is set to the number of the

port from which the signal was sent, and variables

paraml and param2 are set to the signal values (the

values of paraml and param2 from the SIGNAL 1

statement). If there is no signal to be received, the

port number expression is set to minus one, and paraml

and param2 remain unchanged.

A delay may be included when it is desirable to pause

and wait for a signal. The value of the delay is
specified in tenth-seconds. If a signal is received

before the delay runs out, the program is immediately

re-activated, and the port number and variables paraml

and param2 are set to the signal values. If the delay
runs out first, the program is re-activated, the port

number is set to minus one, and paraml and param2
remain unchanged.

The port number expression and paraml and param2
variables must be simple variables or subscripted
variables; expressions are not allowed. However, the
delay may be an expression. The maximum value for the
delay is 32767 which gives a delay of nearly one hour.

A user may send a signal to his or her own program by
pressing the BREAK key on the keyboard (use <CTRL-B>

if the BREAK key is disabled). When a SIGNAL 2

statement is executed, the port number is set to the
user's own port number, and paraml and param2 are both
set to zero. The SPC (6) function may be used by the

program to determine its own port number,

A program may clear all signals addressed to its port
by looping on a SIGNAL 2 statement until the value of

the port number expression is less than zero.

If the addressee is in a “receive signal with
time-out" statement, then that user's program is
activated and receives the signal immediately.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-134 IRIS Business BASIC Manual

SIGNAL 2

C EXAMPLES :

; 420 SIGNAL 2,P,A,B

610 SIGNAL 2,S,M[2,3],Y¥,30

In line 610, the program pauses for three seconds (30 tenths of a

second) or until a signal is received. The port number of the

sender (or -l1 if no signal received) is put into variable S, and

the two signal values are put into M[2,3] and Y.

(

/

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-135 IRIS Business BASIC Manual

’ &-

SIGNAL 3

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

4.

NO

YES

SIGNAL 3,delay

Allows a program to pause (defer further execution)

for a specified period of time.

The delay is specified in tenth-seconds. All inputs
(except ESCAPE) and all signals are saved until the
delay is exhausted. An output in progress at the time
the SIGNAL 3 statement is executed is allowed to
finish. The maximum value for the delay is 32767,
which gives a delay of nearly one hour.

This statement may be used whenever it is desired to
pause before executing the next statement in the

program. One example of this is a program which is to
loop periodically. It also forces the output of the
user's output buffer on demand. At the beginning of
the pause, output to the terminal is started if the

user's output buffer contains any data.

If the value of the delay is 0, then an immediate
return is made to the next BASIC statement, but

printout is initiated if any output is waiting in the

user's output buffer.

CAUTION

The SIGNAL 3,0 statement must be used with great

restraint. The only proper place for a SIGNAL 3,0 is

following one or more PRINT statements where the

following code will be compute-bound for a significant

period of time. This causes the printout to occur

while the computation progresses. Use of a SIGNAL 3
statement in cases where the next PRINT would occur
within a few seconds may cause excessive swapping and

may seriously degrade system throughput.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-136 IRIS Business BASIC Manual

Py

SIGNAL 3

(EXAMPLES:

660 SIGNAL 3,100

400 SIGNAL 3,A+42

Line 660 delays further program execution for ten seconds.

Line 400 delays further program execution for (A+42)/10 seconds.

-_

‘.
SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3=137 IRIS Business BASIC Manual

. 4-

SIZE

KEYBOARD: YES

PROGRAM: NO

SYNTAX: SIZE

EFFECT: Displays current size of a BASIC program by printing a
message of the form "=x WORDS OUT OF m"

where

x is the current size of the program in decimal

mis the maximum size in decimal for a BASIC

program on the system as it is configured

NOTES:

1. If the program has saa been run, then the value x

includes the program's variable storage space. After

exiting to SCOPE with a <CTRL-C> and re-entering

BASIC, the value of x represents the size of the
program itself.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-138 IRIS Business BASIC Manual

EXAMPLES:

#BASIC SAMPLE

LIST
10

20

30

40

50

60

70

80

90

DATA 1,2,3,4,5,99

LET C=0

LET D=0

READ X

IF X=99 THEN 90

LET C=C+X

LET D=D+X

GOTO 40

PRINT C,D,C/D

100 END

RUN

13 ist

SIZE = 75 WORDS OUT OF 7774

SCTRL=-C>
\

#

SM-030-0012-02

BASIC SAMPLE

SIZE = 69 WORDS OUT OF 7774

POINT 4 Data Corporation 3=139

O Qe

SIZE

BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

STOP

KEYBOARD: YES

PROGRAM: YES

SYNTAX: STOP

EFFECT: Terminates the execution of a program.

NOTES:

1. The END and STOP statements have similar effects, and

may be used anywhere in a program to terminate
execution of the program. It is not mandatory that

the last statement in a program be an END statement.

2. The END statement causes the simple message "READY" to

be printed, while a STOP statement causes

STOP AT line number of STOP statement

to be printed. Pressing the ESC key aborts a program

run at any time and causes a similar STOP message to

be printed unless error branching is in effect (see

the IF ERR statement).

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-140 IRIS Business BASIC Manual

STOP

EXAMPLE:

150 STOP

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-141 IRIS Business BASIC Manual

r &-

WRITE #

KEYBOARD:

PROGRAM:

SYNTAX:

EFFECT:

NOTES:

NO

YES

WRITE #channel{ ,record{ ,item{,delay}}}; {expression list} {;}

where the expression list consists of numeric or

string expressions with each element except the

first preceded by a comma.

Writes the values of the expressions in the expression
list into a data file or to a peripheral device. The

file or device to be accessed must have been
previously opened on the channel specified by the
channel number expression. The record number into

which data is to be written may also be specified. A
starting item number may be given if desired;

otherwise, item zero is assumed.

The expressions following the first semi-colon are
evaluated and the values are written into the
specified record of the specified file, starting with

the item number specified or starting with item zero
if none is specified. Items not addressed in the file
are not affected. The item number field is used

differently for a text file or a contiguous file.

In a formatted file, only sequential items of a single
record may be written into by each WRITE# statement,
and an error results if a variable type does not match

the item type in the file.

The final semicolon at the end of the statement may be
used to leave the record unlocked.

The record number may be omitted or -1 for sequential
file access or may be -2 to reference the last record
which was accessed, as described in Section 2.3.3.

A locked record may be unlocked by a statement of the
form

line number WRITE #c;;

which unlocks any record that may be locked on the
specified channel without writing into the file.

Refer to Section 2 for examples of how to use WRITE#

for each file type.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
POINT 4 Data Corporation 3-142 IRIS Business BASIC Manual

WRITE #

EXAMPLES :

195 WRITE #4,19;F,Y1+3,"JUNK",D-E

In line 195, item zero of record 19 of the file open on channel

four is set to the value of F, item one of the same record is set

to the value of the expression Y1+3, item two (which must be

formatted as a string) is set to the string value JUNK, item

three is set to the value of D-E, and the record is locked since

there is no final semi-colon.

In line 600, the channel number and record number are given by

the expressions C-2 and 2*R, respectively. The item number could

also be given as an expression if desired. In this example, item

eight of the specified record is set to zero, item nine is set to

2AA, and item ten receives characters four through the value of

Q of string M$. The final semi-colon unlocks the record.

NOTES: (Continued)

7. The delay may be included to generate error 123 when a

program is paused longer than the specified period of

time because a record or device is locked. The delay

must be specified in tenths of a second. Setting the

delay to -1l allows an unlimited delay period; setting

it to 0 specifies no delay and no I/O retries. Note

that the delay specifies the maximum amount of time to

be spent retrying input or output. For example, a

delay equal to 600 (60 seconds) allows 200 retries,

given a .3 second delay between retries.

8. The record and item numbers have special meaning when

open file maintenance is in effect.

SM-030-0012-02 BUSINESS BASIC STATEMENTS

POINT 4 Data Corporation 3-143 IRIS Business BASIC Manual

’ x

<

TABLE 5-1. CONFIG PILE

Location

(octal) Description

0-277 Reserved.

300-377 Initialization Table, reserved for use by SIR.
DO NOT CHANGE!

400-577 | General Information Table. See Section 5.2.1.

600-777 System Information Table. See Section 5.2.2.

1000-1177 Memory-resident Discsub Table. See

Section 5.3.

1200-1377 Reserved.

1400-2777 Disc Driver Table. See Section 5.4.1.

3000-13377 Reserved.

13400-13577 Specific IPL sequences.

13600-13777 Reserved.

14000-15777 BZUD and R/W entry addresses of the disc
drivers.

16000-16377 Log-on Restrictions Table. See Section 5.5.

16400-17377 Log-on Program Startup Table. See Section
D0ie2s

17400-17777 IPL Program Startup Table. See Section 5.6.1.

20000-77777 Disc Drivers.

SM-030-0009-07 A GUIDE TO CONFIGURATION

20INT 4 Data Corporation 5-5 IRIS Installation/Config

5.2.1 GENERAL INFORMATION TABLE (PSI2Z)

The General Information Table contains data that is referenced
during the IPL process. Its location is 400 (octal) in the

CONFIG file.

Currently, the General Information Table consists of the

following:

Location

foctal) Label Description

400 PSIZ Partition Size. The size of each
memory partition.

401 NPART Number of memory-resident
partitions. For a MARK 9, include

partitions in mapped memory.

402 MTYPE Memory type:

0 = standard MARK 3 or 5 memory

1 = MARK 9 or Nova 3-type mapped
memory

For information on BASIC program partition requirements, refer to
Section S:i2.1.

5.2.2 SYSTEM INFORMATION (INFO) TABLE

The System Information (INFO) Table contains system parameters

starting at location 600 in the CONFIG file. Some of these

parameters are set at IPL time, others may be modified to reflect

the requirements of a particular system configuration. The

—— (in octal) of the various parameters are shown in Table

-2.

SM-030-0009-11 A GUIDE TO CONFIGURATION
POINT 4 Data Corporation 5-6 IRIS Installation/Config

om

TABLE 5-2. INFO TABLE

Location

(octal) Label Description

600 SDAT System creation date (hours after

Ness” BASEYEAR). DO NOT CHANGE!

601 SPED Average CPU speed in instructions per
millisecond:

Speed

Computer

POINT 4 MARK 9 2500

POINT 4 MARK 5 2000

POINT 4 MARK 3 1200

NOVA 302

NOVA 1200 or D-116 653

NOVA 2 or D-116H 770
NOVA 800 1325

NOVA 3 770

SUPER NOVA i255

SUPER NOVA SC 1762

602 MILU Maximum number of installed logical

units - The total number of physical

disc partitions defined in the Disc

Driver Table. See Section 5.4.1.

—_
603 NDCH Number of data channels per port - Each

data channel occupies eight words of

memory. NDCH is usually set to 12

(decimal 10). Minimum NDCH is 2.

604 LPCA Location of port control area - Contains

the address of port control block (PCB)

for Port.0°. It is automatically

modified by SIR if any driver's

attributes table specifies a PCB

location.

(Table continues on next page)

SM-030-0009-11 A GUIDE TO CONFIGURATION
POINT 4 Data Corporation 5-7 IRIS Installation/Config

—

TABLE 5-2. INFO TABLE (Cont)

Location

(octal) Label Description

605 TNAP Total number of active ports - If the

value in TNAP represents less than the

total number of interactive ports

contained in all driver's attributes

tables, SIR increases the value

automatically.

NOTE

This value is NEVER decreased

automatically by the system - If

the number of ports on the system

is decreased, set TNAP to l. SIR

will then increase the number of

interactive ports automatically.

606 SPCF Special conditions flags - These are

flags which control certain system

functions and options:

Bit 13 - Temporary Dirty Page Flag

(TDPF) writes to disc at end of a

user's time slice (see Section

Ste S2

Bit 14 - Suppress Error Message Flag

(SEMF). Set to 0, error message

text is printed. Set to 1 (40000

octal), messages are suppressed.

Bit 15 - No Dirty Page Flag (NDPF).

Set bit. 15: to 1: (100000 octal) to

force a write-to-disc of any dirty

buffer pool page. (Refer to

Sections 5.13 and 5.14.)

All other bits are reserved.

607 LEPS Location of end of processor storage -

This cell indicates the first available

memory space above the processor overlay

area. LEPS must be a multiple of 400

octal greater than the beginning of

processor storage (BPS). DO NOT CHANGE

LEPS unless RUN is modified accordingly!

SM-030-0009-08

——

A GUIDE TO CONFIGURATION

POINT 4 Data Corporation 5=8 IRIS Installation/Config

TABLE 5-2. INFO TABLE (Cont)

Location

(octal) Label Description

610 TOPW Highest addressable word in memory -

IRIS ignores any memory above this

address. The memory available above

77777 octal is used for user partitions

and buffer pooling. Do not set TOPW

above 77777 unless the CPU and all disc

controllers on the system use a 16-bit

memory address. All other devices use

lower (<32K) memory.

611 ABUF Size of auxiliary buffer area (number of

words) - Must be at least 1004 words

octal if indexed data files are to be

used.

612 UDSB Number of user discsubs - The minimum

value is one greater than the largest

subroutine number in the DISCSUBS.USER

file.

613 NCQN Number of extra character queue nodes -

SIR allocates two nodes per interactive

port plus this number of extra nodes.

Extra nodes are required to handle peak

input rates if extra heavy character

processing is required. Each node

occupies two words of memory. Minimum

value is two.

614 NNOD Minimum number of free nodes - Each node

occupies 32 words (decimal).

615 NSIG Number of signal buffer nodes - This is

the maximum number of signals which can

be waiting to be received. Each node

occupies 4 words of memory. Minimum

value is l.

616 SDSB Number of System discsubs - The minimum

value is one greater than the largest

subroutine number in the DISCSUBS file.

k

wWY

SM-030-0009-07

POINT 4 Data Corporation 5-9

A GUIDE TO CONFIGURATION

IRIS Installation/Config

—

TABLE 5-2. INFO TABLE (Cont)

Location

(octal) Label Description

617 KTSL Time slice parameters - Used by the
scheduler for determining the time slice

rw (Long Time Slice * 400 + Short Time
Slice). See Section 5.10.

620 Default (application) logical unit -
Used by the system when searching for a
specified program.

If invoked from SCOPE, the system

searches for the program in the

following sequence:

e LU/0

@ assigned LU

e default LU

If invoked from CHAIN, the system

searches for the program in the

following sequence:

© the default LU
e assigned LU

e LU/0

Value of 177777 indicates no default LU.

ed

621 Reserved.

622 SZLNK Pseudo-device linkage table size - A
pseudo-device has no device code (e.g.,

$CTUS).

623 Reserved.

to

631

632 Reserved.

to

777

SM-030-0009-11 A GUIDE TO CONFIGURATION
POINT 4 Data Corporation 5-10 IRIS Installation/Config

ow

2.3 DISC SERVICE PROCESSOR (DSP)

DSP is an on-line interactive utility package for the debugging

and servicing of processors and other files under IRIS. Any

location in memory or any file on disc can be accessed by the use
of DSP. The system manager may allow limited access to DSP for
authorized accounts (see Section 5.11.2.3).

CAUTION

DSP is a powerful tool! Use with care!

2.3.1 DSP ACCESS/EXIT

To use DSP, first log on to the manager's account. DSP is

accessed as follows:

DSP <CTRL-E>key<CTRL-E>

where key is the password assigned by the system manager (the

default password is X).

DSP may be exited either with <CTRL-C> or the X command.

.@ If you exit DSP using <CTRL-C>, it may be reentered from the

same terminal without a password. It will have retained the

previously selected context (i.e., file, disc block, or

memory).

e To prevent unauthorized use of DSP, be sure to exit with an xX

command when leaving the terminal.

2.3.2 USING DSP

Unless otherwise noted, a <RETURN> is required to activate the
command string. The <RETURN> is not shown unless it is the only

command required.

Any command which follows an F, G, or H command, examines and/or
modifies data and operates either on real memory, on a file, or

on a disc. block.

Any address may be specified as a byte address by adding a hyphen

to the address. For example, D3025- will dump bytes starting

with the right-hand byte of word address 1412, and E17000- will

allow entry of bytes st&rting at the left-hand byte of word
address 7400. The contents of any byte address may not exceed

377 octal. If a byte address is given when an enabled driver

file (i.e., $file) is selected, then that byte address in real
memory is referenced; this eliminates the need to select real

memory to examine the driver's buffers.

SM-030-0009-11 I&C SERVICE ROUTINES
POINT 4 Data Corporation 2-26 IRIS Installation/Config

F$filename may be used to select an enabled driver. The Dx'
command may then be used to display the memory-resident copy of
that driver including the current value of the local temporary
cells.

where :
x - the address in the disc file; corresponds to the

Assembly language listing

— ' - (apostrophe) selects the memory-resident copy of the
driver instead of the disc file

The memory-resident copy of the driver does not reside at address
x but address translation is handled by DSP automatically.

Similarly, FDISCSUBS allows x' to display the memory-resident
copy of a memory-resident discsub.

When a symbolic instruction such as a user defined function is
entered via an insert (x:v or E) or an append (Ax) command, the
system translates it into Assembly language instruction format.
For example, the user enters

SEQ 0,1

When the L command is used to check the entry, DSP displays

SUB# 0,1,SZR

Commands may be entered in lower case letters with the exception

of N in the LxN command which must be upper case.

For a description of the commands used in DSP see Table 2-6.

TABLE 2-6. DSP FUNCTIONS

Command Description

XiV Insert the value v at address x. This is very

useful for entering into a single memory

location. The value v may be either a symbolic

instruction (i.e., user-defined function) or an

octal number. If v is omitted, a zero is

written into address x. See the E command for
more information.

Ax Append the block which is to contain address x

(x does not have to be on a block boundary) to
the file selected by the last F command. The
first memory address and the real disc address
of the appended block will be displayed. The
block is filled with 077377 halt instructions.

SM-030-0009-11 I&C SERVICE ROUTINES
POINT 4 Data Corporation 2-27 IRIS Installation/Config

~~

TABLE 2-6. DSP FUNCTIONS (Cont)

Command Description

Bx Insert a breakpoint at address x. This command

is meaningful only if the specified file is a

runnable processor. If that processor is then

used on the same port, and the breakpoint is

encountered, control will revert to DSP, and

the contents of the registers and carry

flip-flop are displayed. The breakpoint is

cleared when it is encountered, and it is also

cleared by any F, G, H, or X command. Te 2s8

impossible to resume processor execution after

encountering the breakpoint.

Bxcond'n Insert a conditional breakpoint at address x.

A breakpoint may be conditional on a register

containing a specified value (indicated by

Ar=v, where r is a register number 0 to 3, and

v is an octal value), and/or conditional on a

memory cell containing a specified value

(indicated by x=v, where x is a memory

address), and/or the breakpoint may be

activated only after executing the instruction

at the breakpoint location a specified number

of times (indicated by an octal value by

itself). For example

B7235,A1=260,225=16003,4

will breakpoint the fourth time location 7235

is reached with the value 260 in register Al

and the value 16003 in memory location 225.
The conditions may be given in any order, and

the memory location may be specified

indirectly; e.g., @37422=177723 means that the

contents of location 37422 is used as a pointer

to a cell that is to be checked for the value

TPTAQS

Ccommand The "command" given is passed.on to SCOPE as a
system command. This is equivalent to pressing

<CTRL-C> and then entering the command.

Dx Dump octal starting at address x. The contents
of storage starting at location x are printed

in octal, eight words per line. The address of
the first word of the line is printed at the

beginning of each line. Listing may be
terminated by pressing <ESC>.

SM-030-0009-11 I&C SERVICE ROUTINES
POINT 4 Data Corporation 2-28 IRIS Installation/Config

TABLE 2-6. DSP FUNCTIONS (Cont)

Command Description

Dx,Y Dump table starting at address x. Prints
storage starting at location x in octal, y

words per line; y ranges from 1 through 10

(octal). The address of the first word in each

line prints at the beginning of the line.
<ESC> terminates dump.

Ex Enter octal or symbolic instruction (i.e.,

user-defined instruction) sequentially in
memory starting at address x. Each entry must
be followed by a <RETURN>. If <RETURN> is

pressed without a preceding entry, a zero is
stored at address x. Machine instructions may

be entered in symbolic form, but the device
address must be given in octal (rather than

using device name) in I/O instructions (e.g.,
10 rather than TTI). Labels may not be used,

but absolute addresses will be converted to

relative if possible. Press <ESC> to terminate
entry mode.

F Select real memory to be examined and/or

modified.

Ffilename Select the file identified by filename to be
examined and/or modified. Logical unit zero is
assumed unless given in the form LU/filename,

where LU is the logical unit number in decimal.

NOTE

If an extended random file is
selected, any address x given will

refer to a location in the header
extenders rather than to the data

blocks.

Fe Select this port's active file to be examined
and/or modified. The form Fén will select the

active file of port number n to be examined

and/or modified. The main memory address in

the active file header is ignored, and all

addressing is relative to the beginning of user

storage in the partition.

SM-030-0009-11 I&C SERVICE ROUTINES
POINT 4 Data Corporation 2-29 IRIS Installation/Config

TABLE 2-6. DSP FUNCTIONS (Cont)

Command Description

F. Select the body of the file of the currently

selected file header block (i.e., selected by

an H command) for examination and/or

modification. An error message is displayed if

a file's header is not currently selected.

Gu/x or Gx Select, on logical unit u (where u is in

octal), the disc block at real disc address x

to be examined and/or modified. In this mode,

only cells 0 through 377 (octal) will be

accepted. The simple form Gx asumes logical

unit zero.

Select the header block of the currently

selected file to be examined and/or modified.

In this mode, only addresses less than 400

octal will be accepted.

Ixstext Input ASCII string, where "text" is any string

of characters terminated by <RETURN>, starting
at address x. The result is identical to use

of assembler pseudo-op .TXTF with reverse
packing (i.e., preceded by .TXTM 1). <RETURN>

may be imbedded in the string as a <CTRL-Z>.

TX+Y Search for potential address errors. Scans

from address x-200 through x+177 for all

relative reference instructions spanning

address x that are less than y words from

maximum relative displacement; i.e., any place

that an address error would be caused by

inserting y lines of code at location x.

Displays these instructions in octal and

symbolic form.

Kx ,;Yrz Store the octal constant z in locations x
through y, inclusive.

Lx List both octal values and symbolic Assembly

language instructions starting at address x.

Output must be terminated by pressing <ESC>.

SM-030-0009-11

—

I&C SERVICE ROUTINES

POINT 4 Data Corporation 2-30 IRIS Installation/Config

TABLE 2-6. DSP FUNCTIONS (Cont)

Command Description

LxN Same as Lx except only the Assembly language

instructions are printed.

Mx,;Y,/Z Move the contents of locations x through y,

inclusive, to locations starting at z. The
destination will receive the contents of the

original source, even if source and destination

overlap.

NX;YrZ Search location x through y inclusively for a
location not equal to the octal constant z. If
found, displays the location and its content in
octal and symbolic form.

Nx,;Y,Z,/TM Same as Nx,y,z but the contents of each cell
are ANDed with mask m before being compared

with constant z. For example, the command

N400,1120,53,101777

applies the mask, 101777, to the contents of

locations 400 through 1120 and checks for any

value not equal to octal 53.

_ Ox Output ASCII string starting at address x.
Output terminates on any byte equal to 0, 200

octal, or if <ESC> is pressed. Control

characters (<40 octal) are displayed with a

caret followed by the corresponding printable

character.

Px,y Punch locations x through y, inclusive, on the
high-speed paper tape punch in binary loader

format. If the system does not have a high-

speed punch (no $PTP driver) then DSP attempts

to use the master terminal ($PTM driver).

NOTE

Leader is automatically punched when

the first Px,y command is given.

SM-030-0009-11 I&C SERVICE ROUTINES
POINT 4 Data Corporation 2-31 IRIS Installation/Config

-_

TABLE 2-6. DSP FUNCTIONS (Cont)

Command Description

Px Punch an end block with a starting address x,

which must be nonzero, then punch trailer.

Must be preceded by at least one Px,y command.

Punch an end block with no starting address,
then punch trailer. Must be preceded by at

least one Px,y command.

Query cell continuously. Repeatedly displays

the contents of address x in octal, allowing a

swap after each display. May be used from one

terminal to monitor changes to a cell, either

in memory or in a disc file, while executing

tasks from another terminal to cause such

changes. Terminate by pressing <ESC>.

Read binary-format paper tape into the

destination selected by last F, G, or H

command. Each tape record (about four inches)

is read into a buffer and checksummed before

data is stored. The first 21 words octal of

the last breakpoint snapshot (see U and Y

commands) will be lost because the same buffer

area is used. If the system does not have $PTR

enabled, then $PTM will be assumed. See "Copy

Processor" in the IRIS R8 User Manual for

restrictions on using $PTM.

Rx Same as R except that all addresses on the tape

are displaced the same amount so that the first

word on the tape goes into address x, which

must be nonzero.

SX+YrZ Search locations x through y, inclusive, for

the octal constant z. If found, displays the

location and its content in octal and symbolic

form.

SM-030-0009-11

—

I&C SERVICE ROUTINES

POINT 4 Data Corporation 2-32 IRIS Installation/Config

a:

C

—_

TABLE 2-6. DSP FUNCTIONS (Cont)

Command Description

Sx,;Yr,Z,TM Same as Sx,y,z except that the contents of each

cell are ANDed with mask m before being
compared with constant z. For example, the

command

$400,1120,53,101777

searches locations 400 through 1120, inclusive,

for any instruction referencing location 53.

Not used.

Ux Display snapshot yanked into FMAP cells of

active file at last breakpoint. Start display

(in octal dump format) at virtual address x

where y <= x <= y+100 and y is the snapshot
address set by the last Y command.

CAUTION

The addresses will be wrong if a

different Y command has been given

since the breakpoint was encountered.

Verify paper tape. This and the Vx command are

the same as the respective R commands except

that information from the tape is compared with

the contents of the selected file (or memory)

instead of being stored. If a difference is

detected, the address and the word from storage

are displayed.

Wu/x or Wx Write the disc block selected by the last G or

H command on disc at real disc address x of

logical unit u. This command is rejected if

u/x is not a legal real disc address or if a

single disc block has not been selected. The
simple form Wx assumes logical unit zero.

Exit from DSP, clear any existing file

selection or breakpoint, and prevent re-entry

to DSP without the password.

f KG, 1777 Calculate Check Sum
————

SM-030-0009-11
oe

I&C SERVICE ROUTINES

POINT 4 Data Corporation 2-33 IRIS Installation/Config

TABLE 2-6. DSP FUNCTIONS (Cont)

Command Description

Xx,y Compute and display a "rotating" checksum over

memory locations x through y. The checksum is

produced by an SUBL instruction in order to

detect a change (e.g., if two words in memory

are swapped). Useful for testing if a change

has occurred anywhere in a section of memory or

on disc.

Xx',y Checksum the memory-resident copy of a discsub

or driver as selected by a Ffilename command.

Yx Set first address of 101 word (octal) memory

area to be yanked into the FMAP cells of the

active file header as a memory "Snapshot" when

a breakpoint is encountered. If x=0, do not

yank any area of memory.

zx Search for relative reference. The 256 words

centered on location x are searched for any

storage reference instruction that references

location x using relative addressing. Any such

instruction is displayed in octal and symbolic

form.

2xX,Y Same as Zx except a search is done for each

address x through y.

= Comment. Any line starting with a semi-colon
will be ignored by DSP. This is used mainly to

include comments on patch tapes.

SM-030-0009-11 : I&C SERVICE ROUTINES

POINT 4 Data Corporation 2-34 IRIS Installation/Config

TABLE DISPLACEMENT CONTENTS COMMENTS

ATRIB 0 x ATRIB IS LOCATED AT THE END
; 1 x OF THE DRIVER FILE. ITS ADDRESS

2 x IS FOUND THROUGH THE POINTER
IN WORD 1 OF THE ENTRY TABLE.

LINKAGE TABLE 0 x i 1 THE LINKAGE TABLE FOLLOWS THE
1 x ATRIB TABLE. EACH DRIVER MAY

2 x4, HAVE 0 OR MORE LINKAGE TABLE ENTRIES

3 x (2 WORDS PER ENTRY). THE LINKAGE

4 x i 3 TABLE TERMINATES WITH A —1(177777).

5 x IN THIS EXAMPLE THERE ARE 3 LINKAGE
6 177777 TABLE ENTRIES.

PDT 0 PORTS =) THE PORT DEFINITION TABLE FOLLOWS
1 PCW THE LINKAGE TABLE. IT MAY HAVE 0 OR
2 BUFFER MORE PORT DEFINITION ENTRIES (8 WORDS

3 RDE/TTC) 1 PER ENTRY). THE PORT DEFINITION TABLE

4 RESERVED TERMINATES WITH A —1(177777).
5 RESERVED

6 AF

7 RESERVED)

70 PORTS a

11 PCW

12 BUFFER

13 RDE/TTC ?
14 RESERVED

15 RESERVED

16 AF

17 RESERVED }
20 177777

—

Figure 5-5. Driver File Tables

SM-030-0009-08

POINT 4 Data Corporation 5-49

—

A GUIDE TO CONFIGURATION

IRIS Installation/Config

5.8.1.4 Port Definition Table (PDT)

The Port Definition Table (PDT) follows the Linkage Table's
terminator. POINT 4 recommends that the system configurator
(SETUP) be used to set up the PDT (see Section 6). PDT consists
of zero or more entries and must be terminated by Tile Ft is

located at ATRIB+3+Linkage Table. If there is no PDT, there will

be a terminator at its location.

The Port Definition Table consists of eight words per entry as

follows:

Word 0 - Number of ports (with the characteristics described in
words 1-7).

Word 1 - Port Control Word (PCW) in the Port Definition Table

(PDT) and in the port control block (PCB) controls

various characteristics of the port such as baud rate,

modem control, parity checking, etc., provided that the

hardware allows these parameters to be controlled by

software. (For example, with the POINT 4 MARK 3, baud

rate is hardware controlled.) PCW should be zero for

any device which cannot control any of these

characteristics. The general format of the PCW is shown

in Figure 5-6. Values that may be entered into PCW for
a MARK 3 System are shown in Table 5-8.

Word 2 - Input/output buffer size (bytes)

Word 3 - Return delay (RDE) and terminal type code (TTC)

RDE - Carriage return delay. For a port on a POINT 4
Mux, the delay is in fiftieths of a second. For

ports on all other devices, the delay is the

number of null codes before the next character.

RDE is given in the upper (left-hand) byte.

TTC - The number assigned to a Terminal Translation

Module (see Section 5.9). TTC is given in the

lower (right-hand) byte.

Word 4 - Reserved.

Word 5 - Reserved.

Word 6 - Size of active file on disc in blocks. The recommended

size is 40 (octal) blocks.

Word 7 - Reserved.

The port entries must be terminated by a -l; the table may be

empty, but the -l terminator is required. A Port Control Block

(PCB) is assigned for each port listed.

NOTE

PDT cannot extend over a block boundary.

SM-030-0009-07 A GUIDE TO CONFIGURATION

POINT 4 Data Corporation 5-50 IRIS Installation/Config

BAUD RATE:

0=110 1=150 i
2=300 3~600°°
4=1200 5=2400
6=1800 7=9600
ea

PARITY (IF NOT

INHIBITED):

0-ODD 1=EVEN

(CHARACTER LENGTH: =

3-8 BITS

2=7 BITS

1=6 BITS

= 0-5 BITS

O==>ONE STOP BIT,

1==>TWO STOP BITS

INHIBIT PARITY CHECK 5

AND GENERATION Za

AUTO FREQUENCY SCAN

Is ENABLED

nl,

AUTO LOG-OFF IS

_ ENABLED

PORT IS A PHANTOM

PORT

NORMAL DEVICE READY U4

STATUS (1=HIGH, 0=LOW)

Sie eee

INITIAL DEVICE CONTROL

OUTPUT (1=HIGH, 0=LOW) Ss

PORT IS ON

A POINT 4 MIGHTY MUX

*BIT 15 IS THE MOST SIGNIFICANT BIT

**ON A POINT 4 MUX WITH THE 19200

BAUD OPTION, 3=19200, NOT 600

Figure 5-6. Port Control Word Format
(Does Not Apply to MARK 3)

3M-030-0009-08 A GUIDE TO CONFIGURATION
POINT 4 Data Corporation S=51 IRIS Installation/Config

TABLE 5-8. PCW VALUES FOR A MARK 3 SYSTEM

No. of No. of

Data Bits Parity Stop Bits PCW Value

- Even 2 140201

7 Odd 2 140205

7 Even 2 140211

7 Odd t 140215

8 Inhibited 2 140221

8 Inhibited 1 140225

8 Even 1 140231

8 Odd 1 140235

NOTE

The PCW value for a phantom port ona

MARK 3 is 2000.

SM-030-0009-10

POINT 4 Data Corporation

A GUIDE TO CONFIGURATION

5-52 IRIS Installation/Config

Gwe

| YEADEL. er ee
7 ACMT - Aecouré No

Bibs 15-14 few Level

13-6 fer CRroupt
5-0 Heer User &

2X: /0000/

Pe nee. Ci
tae ecw ot

ae
Mead, ae ee
(ee a/falfow ¢f w0é 74 gtd eet

Uo NELK \/a STAT ae | ATAN/Y Lked /S- ery 4 Webs
e | £~tle Sbebus Soe ads in| <a

Shee | ural." | tone) teagth= GEN" nctgeres
et Fert Jake Ale tael, \girias) Formetteel aS. #cods of Lee seed Se

oA EeCate CL itHeng Core eT: ReadtlEef &IT Ons Exterded|$ this Be: record, vent oe. ea ts
es 4G Oe. ip See ee | Pea ota, no Sas porniett

fete ex: 2 . eo er: ay os a exrtisa
bes 4 PS | LArQF ae |R4AS COAT eat 265 si: ye a. eee
ecu rma pee eae od é dest caessS =| Gf, ae Weigh

Chel mere arteieg | be | aden 7 sc tePS RE RAS at ex! SYO8/ = CX! JBYOAS ER | RRS
303/ CLASS Yate aE FPRE % SHU :
ae ea ears Zéa Aas or Be Nees hagrem's priors is sco # fast Aephet74 hes ' , es :

B cetearen | Sees | <aags, 5277 | ;
140-97 DASA Lee/na/ oie deck feta Save. hook

‘ UO ect. by WIFSETUP” fo Gave the s ees ees ee Bea; wx DA eel/s ee Swan ~oced go theé they 2 é

sr eck “by “Loadusée” at the nexé SwWOQ0 27. peer ene -
67 OSRS * Use onty Sy PDise Servece aaa eh o ether syste Petts ze

28h a leo. eses: U/TH (wil13) NOPE (wel IS) FHAP Cols Oe Se ee
B — £ROD Cad sy), NLCD Cul He aa sh sees oe ae

ora: FAAP J HEH \lia STAD \r2732 A DS A787 CORA zs: a for. ares: i Sten Alone yy yes es ae Alor te A
PRE a 0. 07 ae 272 Ze 5 fo Se

eceing |eetsve aelive mie ae | tedeta deck.) yong file
nes. \bbele bo be\specified ta \Zerv for tert resides |

penighe. OF +l bneas ferred Pi0t AAryers | or pee aces bis aa
ei ge ; ates. Cadg/e 7 ex: “5 ni

Con basns — R24 yy, tees ates bleak; an lees exle. ve
cen Se o aoe sei: Eisen eaten Betton O19 0@he ‘Saeenes 700 arse addr Lis « “Z7- Lacks § seasertiat/y es

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Scan 428.PDF
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94

	Scan 429.PDF
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48

	Scan 431.PDF
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

