
Educational Data Systems 2415 Windward Lane, Newport Beach, California 92660

INTERACTIVE REAL-TIME

INFORMATION SYSTEM

(IRIS)

SYSTEM SUBROUTINE

REFERENCE MANUAL

This manual contains a detailed description and calling sequence for

each system subroutine listed in APPENDIX 1 of the IRIS System

Reference Manual. The reader should refer to Section 2 of that

manual for additional information.

This manual is to be used only by a licensee of an IRIS system and only

for the purpose of extending or modifying an IRIS system. No portion

of this manual may be reproduced or copied in any form without w ritten

permission of Educational Data Systems.

Disclaimer: Every attempt has been-made to make this manual

complete, accurate, and up to date. However, there is no warranty,

express or implied, as to the accuracy or the suitability for any purpose

of the information contained herein. This manual is offered only subject

to this disclaimer.

EDS 1020-4Copyright (C) 1974
July, 1974

Educational Data Systems

(IRIS) SYSTEM SUBROUTINE REFERENCE MANUAL

TABLE OF CONTENTS

iv. INTRODUCTION

1. INPUT/OUTPUT

1-1

J I ! |

ee eet et oo oe Se oo ! om vo 190 oF PP W DPD DO
WONA

STOB

MSG

MESSAGE

ERROR

CIA

STO

STI

ACIB

ACSB

QCHAR

2. DECIMAL ROUTINES

NONWONMNONNMNNONNMNNNNN NNN NM ND DW! i I ! }) J I ooomomomwmowmowmomonrnrN omuwonrkt FW Wr
DEC |

DEC ADDI

DEC SUBI

DEC SIGN |

DEC WRAPUP

DEC SET

DEC BRK

FIX

FLOT

STDA

LODA

SPECIAL

PSQRF

PLOGF

PEXPF

PSINF

PCOSF

PTANF

PATNF

Copyright (C) 1974

Educational Data Systems

Wait for Output Not Active

Store Output Byte

Text Message Output

Canned Message Output

Error Number Output

Convert Integer to ASCII

Start Output

Start Input

Access Input Byte

Access String Byte

Gueue Character for Processing

Decimal Arithmetic & Input/Output

Add Decimal Integers

Subtract Decimal Integers

Get or Set Sign of DA

Wrap up Decimal Operation

Set Value in DA

Break Decimal Number

Fix Decimal to Binary

Float Binary to Decimal

Store Result in DA

Load Result from DA

Special Functions

Square Root Function

Natural Logarithm Function

Exponential Function

Sine Function

Cosine Function |

Tangent Function

Arc Tangent Function

DISC AND FILE ACCESS

3-1

ww www ww w w1BPR OO NTN Dobe
WwW W i otbe pemm Whee ©Qo I

3-15

3-15

3-16

3-16

3-16

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-24

3-26

3-27

3-28

3-29

3-30

3-3]

3-31

3-32

3-32

3-33

3-34

3-35

3-37

BUILD

BILDD

ALLOCATE

EXTEND

ALCONTIG

DATLLC

DELETE

PDELETE

FPRILE

FOFT

FOFC

OPEN |

OPENUPDATE

OPENREF

OPENLOCK

CHKRP

CHKWP

CHKCP

CHARGE

CLOSE

CHKCHANNEL

CLEAR

ALLCLEAR

GETRW

GETRR

WRITITEM

READITEM

FINDITEM

UNLOCK

WBLK

RBLK

CBSA

FLUT

CLRA

CRLA

IRDA

RDF HI

DIREC TORY

SEARCH

Copyright (C) 1974

Educational Data Systems

Build a File

Build a Device File ©

Allocate Disc Blocks

Eixtend a File

Allocate a Contiguous File

Deallocate Disc Blocks

‘Delete a File

Delete a Processor

Find File

Find Open File, Initialize

Find Open File, Continue

Open a File

Open a File for Update

Open a File for Reference

Open and Lock a File

~ Check Read Protection

Check Write Protection

Check Copy Protection

Charge for File Access

Close a Channel

Check a Channel

Clear a Channel

Clear All Channels

Get Record, Write

Get Record, Read

Write an [Item

Read an Item

Find an Item

Unlock Record

Write Disc Block

Read Disc Block

Check "BSA Changed" Flag —

Find Logical Unit Tables

Convert Logical to Real Disc Address

Convert Real to Logical Disc Address

Increment Real Disc Address

Read File Header Information

Set up Directories for an Indexed File

Search Directory of an Indexed File

LL

MISCELLANEOUS

STBY

ACBY

TA2D

TA2L

MOVE

MOVBYTES

CPNRP

CRPPN

CDTA

SIGPAUSE

SIGPAUSE

SIGPAUSE

CSTR

PASSC

ACNTLOOKUP

FLAGCH

BUMP

LUSR

EXIT

STIPL

FAULT

BMUL

BDIV

CNVDA

CNVAD

CNVDT

SYSCO

LINKP

Copyright (C) 1974

Educational Data Systems

Store Byte

Access Byte

Is (A2) a Digit?

Is (A2) a Letter?

Move Words in Core

Move Bytes in Core

Convert Port Number to RTA Pointer

Convert RTA Pointer to Port Number

Convert Dratsab to ASCII

Send Signal

Receive Signal

Pause

Compare Strings

Password Compare

Account Lookup

Change or Check a Flag

Bump Regnant User

Load User's Active File

Exit from Processor

Start an IPL

Abort and Print Fault Message

Binary Multiply

Binary Divide

Convert Date to ASCII

Convert ASCII to Date

Convert Date and Time

System Command Transmitter

Link to a New Processor

LiL

INTRODUCTION

The IRIS environment includes many subroutines which may be called

by processors, tasks, or other subroutines. These subroutines have

been divided into four general catagories as seen ir the Table of Contents.

In each catagory, some subroutines are always core-resident while others

are disc-resident (in the DISCSUBS file). All subroutines called with a

JSR calling sequence are always core-resident. Most disc-resident

subroutines may be made core-resident if sufficient core space is available

(see ''How to Cause a DISCSUB to be Core Resident"' in the IRIS Manager

Reference Manual). The calling sequence and operation of a subroutine

are not changed by making it core-resident.

Several subroutines are not described in this manual because they are

either for use only Ly the system itself (BREAK and RECOVER), are called

indirectly through another subroutine (READC, WRITC, WRITN, SHUFF, DEKEY,

and RELEA), or are for a special purpose and are subject to change as

required for a particular system (MTAPE, MTASK, etc).

Timing considerations are given for some subroutines. In all cases, the

times given assume operation on a Nova 800 series computer. For

approximate timing on a 1200 type computer, muitiply the time given by

1.4. All timing given assumes that the subroutine is core-resident; if

it is not, then the time required to read it from the disc must be added to

the value given: |

The contents of all registers and the carry flip-flop are shown for etry

to and return from the subroutine. An x for an entry value means that

the register is ignored and the value in the register doesn't matter. An

x for a return value means that the contents of the register are undeter-

mined. The term "unchanged" as a return value means that the register's

contents are the same as at entry time. Core buffer areas (BSA, etc.) are

listed along with the registers if used by the Subroutine.

The subroutines are divided into three groups as follows:

Group 1 - IRIS System Subroutines

Group 2 - BASIC Subroutines

Group 3 - Data File Extensions

These groups correspond to the respective item numbers on the EDS

Software Price List. Group 2 and group 3 subroutines areavailable on a

given system only if the respective software items have been licensed on

the system.

Copyright (C) 1974

Educational Data Systems iV

Subroutine: WAIT FOR OUTPUT NOT ACTIVE (Group 1)

Calling Sequence: CALL

WONA

Use: Assures that a previous output has been completed before

beginning another output.

Ac Entry Return

0 x x

1 x x

2 x x

3 x x

C x Xx

When an output is in progress it is illegal to disturb the user's I/O buffer

or Output Byte Pointer (OBP). A call to WONA will return immediately

if an output is not in progress or will bump the user if an output is in

progress. In either case, the user's OBP is set equal to FBA before

control is returned to the caller.

A call to WONA or STI must occur somewhere between a call to STO and

any call to STOB, MSG, STO, or any other operations which might disturb

the users I/O buffer or Output Byte Pointer. WONA may not be called

from a disc-resident subroutine.

WONA is always core-resident. /

Copyright (C) 1974

Educational Data Systems 1-1

Subroutine: STORE OUTPUT BYTE (Group 1)

Calling Sequence: JSR @.STOB

Use: Stores a byte in the regnant user's I/O buffer.

Ac Entry Return

0 x byte

1 x x

2 byte x

3 x return address

C X left/right byte flag

A2 is masked with 377 octal to clear the top half of the word and the
result is copied to AO. The user's Output Byte Pointer (OBP) is

incremented if and only if it is less than the Last Byte Address (LBA)
of the user's I/O buffer and the byte bring stored is not a zero byte.
The byte is then stored at the resulting byte address.

Refer to the writup on STORE BYTE for more information.

Subroutine: TEXT MESSAGE OUTPUT (Group 1)

Calling Sequence: JSR @.MSG

.TXTF "text"

Use: Copies a text string into the regnant user's I/O buffer.

Ac Entry Return (following ‘'text'')

0 x 0

1 X xX

2 x (RUP)

3 x address of next instruction

C x x

Copies the text string given into the regnant user's I/O buffer by use of the

STOB subroutine, and returns to the next location following the first zero

byte in the text string. Copies the zero byte at the end of the text string but

leaves OBP pointing at the last non-zero byte. Therefore, a call to MSG

may be followed by a call to STO or by additional calls to MSG, STOB, or CIA.

Copyright (C) 1974

Educational Data Systems 1-2

Subroutine: CANNED MESSAGE OUTPUT (Group 1)

Calling Sequence: CALL

MESSAGE

Use: Outputs canned message from the "MESSAGES" file.

Ac Entry Return (2-skip)

0 x x

] message number x

2 x x

3 x x

C x x

BSA x desired message block

HBA x header of MESSAGES file

MESSAGE looks through the "MESSAGES" file pointer table, finds
the requested message, and stuffs it into the regnant user's I/O

buffer. A terminator code (zero byte) is appended to the end of the message.

There are three possible returns as follows:

Non-skip if the "MESSAGES" file does not exist on the system disc

1-skip if message number is illegal

2-skip if message found and outputted

Copyright (C) 1974

Educational Data Systems 1-3

Subroutine: ERROR NUMBER OUTPUT (Group 2)

Calling Sequence: CALL

ERROR

Use; Output the message ERROR # to the regnant user's I/O Buffer.

Ac Entry Return

0 n*400,,+100010 unchanged

1 x 8 x
2 x x

3 x x

C x x

Example: JSR EROU

2* K+NOP

EROU: LDA 0,0,3

CALL

ERROR

The Software Definitions tape assigns K=400 and NOP=100010 octal.

ERROR is disc-resident.

Copyright (C) 1974

Educational Data Systems 1-4

Subroutine: CONVERT INTEGER TO ASCII (Group 1)

Calling Sequence: CALL

CIA

Use: Outputs a binary number to the regnant user's I/O buffer after

converting it to any radix 2 through 36.

Ac Entry Return

0 radix x

1 binary integer x

2 # digit positions x

3 x x

C x X

The value in AO specifies the number radix into which the 16-bit binary

integer in Al is to be converted for output. Letters are used to represent

digits greater than nine; i.e. A+=10, B=11, C=12,..., Z=35.

The value in A2 specifies the minimum number of character positions for the

result. For example, if (A2)=6 and the converted value of (Al) is 2 digits

long, it will be preceded by 4 spaces; however, if (A2)=2 and the converted

value of (Al) is 3 digits long, three digits will be printed.

CIA uses STOB to place ASCII digits and spaces in the regnant user's I/O

buffer.

CIA is disc-resident.

Copyright (C) 1974

Educational Data Systems 1-5

Subroutine: START OUTPUT (Group 1)

Calling Sequence: JSR @.STO

Use: Initiates output from the regnant user's I/O buffer to the user's

terminal.

Ac Entry Return

0 x x

1 x x

2 x x

3 x x

C xX x

START OUTPUT copies the port's Output Byte Pointer (OBP) into its Last

Output Byte pointer (LOB), then initiates output starting with the first byte

in the user's I/O buffer and continuing until a zero byte is encountered.

Control is immediately returned to the instruction following the JSR @.STO

so that computation may continue while the output is in progress.

START INPUT may be issued while the output is in progress, but the I/O

Buffer and the Output Byte Pointer must not be disturbed until the output

is completed. For this reason, STORE OUTPUT BYTE (STOB), MESSAGE

(MSG), etc. must not be called during an output. If another output is to

follow, WAIT FOR OUTPUT NOT ACTIVE (WONA) must be called before

calling STOB, MSG, MESSAGE, CIA, ERROR, or STO.

Copyright (C) 1974

Educational Data Systems 1-6

Subroutine: START INPUT (Group 1)

Calling Sequence: JSR @.STI

Use: Enables input from the regnant user's terminal into the user's I/O buffer.

Ac Entry Return

0 x Xx

1 x x

2 x X

3 x x

C x x

START INPUT enables input into the user's I/O buffer starting at the

beginning of the buffer. Input is from the user's terminal unless some

peripheral device has been selected for input.

The user is bumped from core until input is terminated normally by a

RETURN code or aborted by an ESC or CTRL C code, whereupon the user

is swapped back into core. In the case of a RETURN code, control is

returned to the next instruction following the JSR @.STI. In the case of

an ESC or CTRL C code, control is transferred to either the ESCAPE or the

CTRL C processor entry, respectively.

In any case, both the user's Input Byte Pointer (IBP) and his Output Byte

Pointer (OBP) will be reset to point to the beginning of his I/O buffer when he

is swapped back in.

It is permissable to start input while an output is in progress, in which case

input will be enabled when the output is terminated normally by accessing a

zero byte.

If a non-active character is typed by the user at a time when input is not

enabled, this character is placed in the user's Temporary Input Buffer (TIB)

until such time as input is enabled, whereupon it will become the first input

character and will then be echoed if echo is not disabled. Only the last char-

acter typed while input is not enabled will be retained in TIB.

Refer to BUMP for more information on swapping.

Copyright (C) 1974

Educational Data Systems 1-7

Subroutine: ACCESS INPUT BYTE (Group 1)

Calling Sequence: JSR @.ACIB

Use: Accesses the next byte from the regnant user's I/O puffer,

ignoring spaces.

Ac Entry Return

0 x x

1 x X

2 x byte (not a space)

3 Xx return address

C x left/right byte flag

Accesses the next byte from the regnant user's I/O buffer. If the

byte is a space (octal 240) it is ignored, and the next byte is accessed

until any non-space byte is obtained. A RETURN code (octal 215) is
the final input byte.

Subroutine: ACCESS STRING BYTE (Group 1)

Calling Sequence: JSR @.ACSB

Use: Accesses the next byte from the regnant user's I/O buffer.

Ac Entry Return

0 (see text) x

1 x x

2 x byte

3 x return address

C x left/right byte flag

Accesses the next byte from the regnant user's I/O buffer. A RETURN code

is the final input byte.

No bytes are ignored. If register AO is zero then the Input Byte Pointer is not

incremented; i.e., the next subsequent ACSB or ACIB will access the same

byte again. Otherwise, calls to ACSB and ACIB may be intermixed to access

sequential input bytes until a RETURN code (octal. 215) is encountered.

Copyright (C) 1974 |

Educational Data Systems 1-8

Subroutine: QUEUE CHARACTER FOR PROCESSING (Group 1)

Calling Sequence: QCHARACTER

Use: Queues input characters and output character requests for

processing by the system.

Ac Entry Return

0 see text see text

1 Xx | see text

2 RTA pointer unchanged

3 x return address

C xX x

If (A0)< 0 this is a request for an output character. The character in

TOB is returned in AO, and TOB is zeroed. If TOB was non-zero

then a request for another output character is put on the queue. The

top bit of (AO) will be a one" to indicate the presence of a character

in the lower byte; zero in AO indicates end of output. In either case

Al will be zero on return.

If 0¢(A0)< 4009 then it is an input character which is put on the queue

to be processed. On return, register AO is unchanged and (A1) = (A2)

If (AG)> 4009 then it is an interrupt task which is being queued. Values

in the range 400 to 437 octal select a task by number. Any value

greater than 437 is taken as the absolute core address of the entry

point to the task. On return from QCHARACTER, register AO is un-

changed and (Al) = (A2) _ in either case.

Inte rrupts must be disabled when QCHARACTER is used. Timing:
21.7 ps typical, 31.6 yS maximum on a Nova 800. QCHARACTER

is always core-resident.

Copyright (C) 1974

Educational Data Systems 1-9

Subroutine: DECIMAL ARITHMETIC & INPUT/OUTPUT (Group 2)

Calling Sequence: JSR @. DEC

Use: Loads or stores the decimal accumulator (DA), performs an arithmetic
operation, or inputs or outputs a value in DA as an ASCII string.

Ac | Entry

0 function code

]

2 argument pointer

3 x

C x

Return —

4

number type or buffer pointer (see text)

(see text)

x

x

Register AO must contain a value from zero to ll] (octal) to specify one of

the following functions:

AO Function

store

load

subtract

add

divide

multiply

input

output .

output

output

_ oN OOH WD FO
posse—

Remarks

(DA) (A2)

((A2))-DA

(DA)-((A2))>DA *

(DA)+((A2))%DA

(DA)*((A2))%DA *

(DA)x((A2))>DA |

uses byte address in Al or ACIB if (Al)=0

uses byte address in Al or STOB if (A1)=0

Same as 7 except no leading space for +

same as 7 except formatted by siring at (A2)

For functions 0 through 5 an argument pointer must be supplied in register A2,

and a number type must be specified by a value in register Al as follows:

Al Number Type

unsigned integer

Signed integer

2-word floating

3-word floating

4-word floating

6-word unpackednop wh oO:
Remarks

range 0 to 9999

range +7999

Six digit mantissa

ten digit mantissa

14 digit mantissa

15 digit mantissa

* Note: add 10 foctal) to the number type in Al for inverse subtract or divide; i.e.,

((A2)) -(DA}*DA or ((A2)=(DA)}>DA, respectively.

Copyright (C) 1974

Educational Data Systems

(continued)

DECIMAL ARITHMETIC & I/O (continued)

See below for use of registers Al and A2 by functions 6 through ll. All returns

are non-skip except as indicated in the following detailed descriptions:

0 Store

1 Load

2 subtract

3 Add

4 Divide

3 Multiply

6 Input

¢ Output

10 Output

ll} Formatted

Output

Copyright (C) 1974

Packs the value in DA into the form specified in Al and stores

at (A2). If the value is too large to store in the specified form

then the error flag (ERRF) is set and the largest possible

value is stored. The value in DA is not changed.

Unpacks the argument at (A2), which is assumed to be

of the form specified in Al, and normalizes the result in

DA. The argument is not changed.

Unpacks the argument into DB and then performs the

specified arithmetic operation. In case of overflow (such

as division by zero) the error flag is set. Result is

Normalized and returned in DA.

Register A2 is ignored. If (Al) is zero then the Access

Input Byte subroutine (ACIB) is used to scan an input string

in the regnant user's I/O buffer. If (Al) is non-zero then

it is used as the starting byte address of the input string.

Clears DA to zero and does a non-skip return if no digits

are found; otherwise does a skip return with the converted

value in DA and the number of significant digits scanned

in AO. The conversion routine will accept ASCII codes

for an optional leading plus or minus sign and any number

of decimal digits with one optional imbedded period (decimal

point). A trailing exponent in the form Etdd will also be
accepted. In any case, the first character which is not

converted will be returned in register A2. If a byte address

was supplied in Al then the byte address of the terminating

character will be returned in Al.

If (Al) is zero then STOB is used to Store Output Bytes as

follows: either a space if (DA) is positive or a minus sign if

(DA) is negative, a string of up to 14 digits, and an im-

bedded period if required. if (Al) is non-zero, then the

output string is stored starting at the byte address in Al,

and the next byte address is returned in Al. Defaults to

floating form if the vaiue in DA is outside the range

107 le(Da)e10 }4,

Same as 7 above except no leading space if (DA) is positive.

Same as 10 above except register A2 must contain the byte

address of a format string. The value in DA is outputted in

the format specified by that string as described in the

PRINT USING statement in the EDS Business BASIC Pro-

gramming Manual. Returns byte address of first unused format

character in A2. Skip return is normal;non-skip return if an

error is detected in the format string.

Educational Data Systems 2-2

Subroutine: ADD DECIMAL INTEGERS (Group 2)

Calling Sequence: LDA 3,.DEC

: JSR @ -2,3

Use: Adds two unsigned 4-digit Binary Coded Decimal integers,

Ac Entry Return

0 augend sum

] addend x

2 x carry out (in MSB)

3 x x

C x x

Registers AQ and Al must each contain a 4-digit BCD integer, the sum of which
will be returned in AO, also in BCD. If the sum exceeds 9999 then the most
Significant bit of A2 will be a one, and AO will contain the excess over 10000;
otherwise, the most significant bit of A2 will be zero. The remaining 15 bits

of A2 are undetermined in either case. For multiple precision addition, the
carry may be propagated by incrementing the addend in Al (the least signi-
ficant BCD digit of the addend may be ten),

Subroutine: SUBTRACT DECIMAL INTEGERS (Group 2)

Calling Sequence: LDA 3,.DEC

JSR @-1,3

Use: Subtracts two unsigned 4-digit Binary Coded Decimal integers.

Ac Entry Return

0 Subtrahend | difference

] minuend x

2 x borrow out (in MSB)

3 x x

C x x

Registers AO and Al must each contain a 4-digit BCD integer, the difference of
which will be returned in AO, also in BCD. If (Al) exceeds (AO) then the most
Significant bit of A2 will be a one and AO will contain the value (A0)+10000-(Al):
otherwise, the most significant bit of A2 will be zero. The remaining 15 bits of

A2 are undtermined in any case. For multiple precision subtraction, the borrow

may be propagated by incrementing the minuend in Al (the least significant

BCD digit of the minuend may be ten). :

Copyright (C) 1974

Educational Data Systems 2-3

Subroutine: SET OR GET SIGN OF DA (Group 2)

Calling Sequence: JSR @.DEC

Use: Sets or retrieves the sign bit of the decimal accumulator.

Ac Entry Return

0 see text x

1 see text new sign of DA

2 x x

3 x x

C x xX

The mantissa and characteristic of the value in DA are unchanged. Only

the sign bit is affected as determined by the value in AO as follows:

(A0) octal Effect

12 set sign of mantissa = (Al) 9

13 get sign of mantissa

If (AO) = 12g then the least significant bit of Al must contain either

zero or one to set the sign of the mane either positive or negative,

respectively. Al is ignored if (AO) =

Subroutine: WRAPUP DECIMAL OPERATION (Group 2)

Calling Sequence: JSR @.DEC

Use: Ensures completion of last decimal store.

Ac Entry Return

48

Qwnr oe Mm mM Pe aw MM
May be called after other decimal operations to ensure that the last store
into core by the Decimal Arithmetic Unit has been completed before computation
is resumed.

Copyright (C) 1974

Educational Data Systems bo. i. aN

Subroutine: SET VALUE IN DA (Group 2)

Calling Sequence: JSR @.DEC

Use: Sets the decimal accumulator (DA) to contain the floating value

zero, one, or "plus infinity’.

Ac Entry Return

0 see text 0

1 x (DAC)

2 x unchanged

3 x return address

C x x

The value set into DA is determined by (AO) as follows:

(AO) octal Value set into DA

15 Zero

16 Plus one

17 "nlus infinity" = 0.999999 x 10 63

Note: the error flag (ERRF) is also set when "plus infinity'' is set into

the accumulator.

Subroutine: BREAK DECIMAL NUMBER (Group 2)

Calling Sequence: JSR @.DEC)

Use: Separates a floating-point decimal number into its integer and fractional

. parts.

Ac Entry Return

0 20 8 x

1 x xX

2 xX, xX

3 x x

C xX xX

The integer portion of the decimal floating-point number in the decimal accumu-

lator (DA) is copied into the decimal bffer register (DB). The fractional portion
is left in DA and is normalized.

Copyright (C) 1974

Educational Data Systems _ 2-5

Subroutine: FIX DECIMAL TO BINARY (Group 2)

Calling Sequence: JSR @. FIX

Use: Converts a floating-point decimal number to binary form.

Ac Entry Return (skip)

0 x sign (0 for +, 1 for -)

1 x binary integer

2 x x

3 x x

C x x

FIX ignores any fractional portion of the floating-point decimal value in the

decimal accumulator (DA) and converts the integer portion to a 16-bit binary

integer with sign. There are two possible returns as follows:

Non-skip if (DA) is outside the range of a one-word binary integer;

l.e., -177777 to +177777 octal or -65535 to +65535 decimal

Skip if (DA) is within the range of a one-word binary integer plus sign;

the value returned in register Al will be a 16-bit positive integer,

and (AO) represents the sign (0 for positive or 1 for negative)

Subroutine: FLOAT BINARY TO DECIMAL (Group 2)

Calling Sequence: JSR @, FLOT

Use: Converts a signed binary integer to floating-point decimal form.

Ac Entry Return

Q sign x

1 binary integer x

2 x x

3 x x

C Xx x

The value given in AO must be zero if the value in Al is positive,

or 1 if the value in Al is negative. In either case, the value in Al is

taken as an unsigned 16-bit binary integer. FLOAT leaves the

equivalent value in the decimal accumulator (DA) as a normalized

floating point decimal number.

Copyright (C) 1974

Educational Data Systems 2-6

Subroutine: STORE DECIMAL ACCUMULATOR (Group 2)

Calling Sequence: JSR @.STDA

Use: Stores the contents of the Decimal Arithmetic Unit (DAU)

accumulator into core in DA, DAS, and DAC.

Ac Entry Return

0 x (DA first word)

1 x (DAS)

2 x unchanged

3 x x

C x x

This call must be made prior to an actual manipulation of DA, DAS,

or DAC by any processor, whether a DAU is actually installed or

not. This call assures that the memory result and DAU result of an

arithmetic operation will be identical. DA and DAS are loaded into

AO and Al asa convenience to the user.

Subroutine: LOAD DECIMAL ACCUMULATOR | (Group 2)

Calling Sequence: JSR @, LODA

Use: Loads the contents of DA, DAS, and DAC from core memory

into the Decimal Arithmetic Unit (DAU) accumulator.

Ac Entry Return

0 x unchanged

1 x unchanged

2 x unchanged

3 x x

C x x

This call must be made to load the memory contents of DA, DAS, and

DAC into the Decimal Arithmetic Unit (DAU) if the processor has

modified the value in DA, DAS, or DAC. This call assures that any

modified values of DA, DAS, or DAC in core can also be loaded into

the DAU.

Copyright (C) 1974

Educational Data Systems 2-7

Subroutine: SPECIAL FUNCTIONS (Group 2)

Calling Sequence: CALL

SPECIAL

Use: Obtains special information about the system or the. regnant user.

Ac Entry Return (skip)

0 0 x

l desired function function value

2 a(SLT) x

3 x xX

C x x

The vaiue in register Al determines the information to be returned in

the decimal accumulator (DA) and in register Al as follows:

Al Function

0 CPU time used in tenth-seconds

l Connect time used in minutes

2 Hours since 1-1-7383 REAL TIME

3 Part of hour (in tenth-seconds) J

4 System Creation date (Hours after 1-1-73)

oO Account number of regnant user

6 Port number of regnant user

7 Value set on console switches

10 Last BASIC error type number

11 Current BASIC line number

If bit 15 of (Al) is one, then bits 0 through 14 are taken as an absolute
core address, and the contents of that cell are returned as the function

value.

There are two possible returns as follows:

Non-skip if an illegal function number in Al

Skip if function completed; the function value returns in DA

as an unpacked floating-pcint BCD number and in register

Al as a i6-bit binary integer

Copyright (C) 1974

Educational Data Systems 2-8

Subroutines: TRANCENDENTAL FUNCTIONS (Group 2)

Calling Sequence: JSR @.STDA

CALL

Function

‘where Function is one of the following:

PSQRF - square root function

PLOGF - natural log function

PEXPF - exponential function

PSINF - sine function

PCOSF -_ cosine function

PTANF -_ tangent function

PATNF - arctangent function

Use: Calculates the specified function of a given argument value.

Ac Imtry Return

0 x x

1 x x

2 x xX

3 x xX

C x x

Both DA in memory and the DAU will have the result of the selected

function. If an error occurs then the result will be one of the following:

Function Argument Result Error Flag Set

SQR <0 Viaref yes
LOG 210716 -Infinity if arguementé 0
EXP \ >148 +Infinity yes

<-148 Zero no

The trigonometric functions (SIN, COS, and TAN) will never get an

underflow or overflow error because the initial argument is reduced to

the range 0 to 24 . All argument values are legal for the Arctangent

function.

Copyright (C) 1974

Educational Data Systems 2-9

Subroutine: BUILD FILE or BUILD DEVICE FILE (Group 1)

Calling Sequence: CHANNEL or CHANNEL

BUILD BILDD

Use: Creates a new file, which may replace an old file by the same Filename.

Ac Entry Return (7-skip)

0 channel number | d(file header)

1 B(Filename string) B(terminator)

2 a(header information) a(channel)

3 x x

C x x

BSA x x

HBA x x

BUILD creates a new file or replaces an old one. The old file is replaced if and

only if the Filename is followed by an exclamation mark "!"', The old file is

marked as being replaced and is deletéd when the new file is closed or, if the

old file is open an another channel, it will be deleted later when no one is using

it. A file that is being built or replaced cannot be opened. The new file cannot

be opened until CLOSE is called on the channel where it is being built. Ifa

format map is supplied, a FAULT will occur if the map has zero or more than

G4 item entries.

(A2) upon entry must point to a table of header information as follows:

Word #0 TYPE file type

Word #1 NBLK number of blocks (14 NBLK#$129)

Word #2 STAD starting address

Word #3 COST cost in dimes (BCD)

Word #4 UNIT Logical Unit number

Word #9 .FMAFP pointer to a format map

If TYPE=37 a formatted data file will be built unless the Filename

string indicates a contiguous data file.

If the FMAP pointer given in word #5 is zero then there is no format map.

The FMAP pointer may be indirect. The FMAP pointer word must be zero
for all data files except type 31 (formatted). The selected Logical Unit must

be on the system or a FAULT will occur; if the UNIT number given in word #4

is -l, BUILD uses the regnant user's Logical Unit (via RUP). If the user

‘supplies a Logical Unit as a part of the Filename, e.g. 7/Fllename, it will

supersede the Logical Unit number given in word #4.

(continued)

Copyright (C) 1974

Educational Data Systems 3-1

BUILD FILE (continued)

BUILD scans the Filename string for three parameters: protection, cost,

and contiguous file size. These parameters may be given in any order

providing they precede the Filename. The general form of the string is as

follows:

<pp> $ddd.cc [n:b] lu/Filename !

This allows the caller to grant access to his file by otner users at his

privilege level and lower, to charge all others for its use, to create a

contiguous file, to specify a Logical Unit other than the one assigned to his

account, and to specify that a file on his account by the same name may be

replaced. In this case pp represents a two digit number specifying the

desired protection. The first digit gives protection against users at lower

privilege levels, and the second digit gives protection against users on

other accounts at your own privilege level. It is not possible to protect

against higher privilege users. A file may be protected against other users

of the same account only by use of apassword, Each digit indicates pro-

tection as follows:

p protection

0 None

1 Copy protect. Prohibits others from listing the

file or saving it under a different Filename or on

a different Logical Unit.

2 Write protect, Prohibits others from deleting the

file or writing data into it. |

4 Read protect, Prohibits others from using the

file or reading data from it.

The types of protection may be combined by adding the values given for each

desired type (see example below). The protection given in the TYPE

(information word #0) will be used if and only if the protection is not speci-

fied in the Filename string, |

Tne dollar sign indicates that the amount ddd.cc (dollars and cents) is to be

charged to the account of any other user who gains access to the file. The

cost given will be truncated to the nearest ten cents. The cost specified in

information word #3 will be used if and only if the cost is not specified in

the Filename string.

The ''(" indicates that this file is to be a contiguous file containing n

records of b bytes per record. The values of n and b must be in the

range 1g x #65534, <A contiguous file will be built if and only if a type

of 37 was selected in the header's information table. Caution: a space

must precede the Filename or lu/Filename. :

(continued)

Copyright (C) 1974

Educational Data Systems 3-2

BUILD FILE (continued)

There are eight possible returns as follows:

Non-skip if illegal channel number

A0=unchanged

BSA and HBA are unchanged

1-skip if channel in use

AO=unchanged

A1=FDA of channel

A2=a (channel) :

BSA and HBA are unchanged

2-skip if illegal Filename, protection, cost, or syntax, or inactive

Logical Unit

AO=same as (A3) for non-skip return from FFILE

3-skip if old file is type zero or typesdon't match

AO=TYPE of old file

A1=B(terminator)

BSA=an INDEX block

HBA=INDEX header

4-skip if old file is being built or replaced

AO=STAT of old file

Ai=B(terminator)

BSA=unknown

HBA=file header

9-skip if an old file can't be replaced
BSA=unknown

HBA=file header

6-skip if disc or account is full

AO=# of blocks the disc needs if positive, or

AO= -# of blocks the account needs if negative

BSA=unknown

HBA=file header

7-skip if file is successfully built; registers and buffer areas
as shown in table —

Copyright (C) 1974

Educational Data Systems | 3-3

Subroutine: ALLOCATE DISC BLOCKS (Group 1)

Calling Sequence: CALL

ALLOCATE

Use: Allocates disc blocks to a file.

Ac Entry Return

0 number of blocks see text

1 x x

2 pointer into header x

3 x x

C x x

BSA X x

HBA file header file header

(AO) must be the desired number of blocks to add to the file; e.g., if NBLK of

the file equaled two and a user wanted to allocate a third block to that file,

(A0)} should contain one.

(A2} must be a core address in HBA or HXA. ALLOC will allocate (AO)

blocks sequentially starting at (A2).

ALLOC will non-skip return if it cannot allocate the desired number of blocks.

(AO) will contain the number needed (positive if the disc was full, or negative

if the user's account was full) or (AO) will be zero if the Logical Unit is not -

active.

ALLOC will optimize its selection of disc addresses based on the allocation

information bit of the DFLG cell of the appropiate LUFIX table.

Copyright (C) 1974
Educational Data Systems 3-4

Subroutine: EXTEND FILE (Group 3)

Calling Sequence: CALL

EXTEND

Use: Increases a file's size to greater than 128 data blocks.

Ac Entry Return (2-skip)

0 Xx Logical Unit number of header

1 X d(extension block)

2 x a(HXA)

3 x Xx

C x X

HBA file header extended file header

HXA x header extension block

EXTEND allocates a header extension block to a file and moves all disc addresses

of the data blocks into the new block. The disc address of the extension block is

put into the header as the only entry, and bit zero of the file's STAT word is

set by EXTEND after the file tas been extmaded. Each of the disc addresses of

an extended header points to a disc block holding up to 256 words of data.

EXTEND will FAULT if the header in HBA is already extended.

There are two possible returns as follows:

Non-skip if disc or account is full

AO=number of blocks needed (positive if dise full, or negative if

account was full)

Skip if the file extended; registe rs as shown

Copyright (C) 1974

Educational Data Systems 3-5

Subroutine: ALLOCATE A CONTIGUOUS FILE (Group 3)

Calling Sequence: CALL

ALCONTIG

Use: Allocates sequential disc blocks on the specified Logical Unit for

a contiguous data file.

Ac Entry Return (skip)

0 # of blocks desired Logical Unit number

1 x x

2 x a (BSA)

3 x xX

C x x

BSA x x

HBA file header file header

HXA x x

ALCONTIG searches through the disc map until it finds (A0) contiguous

(physically sequential) disc blocks available on the specified Logical

Unit. Only the disc eddress of the header is stored in the file header.

There are two returns as follows:

Non-skip if not enough contiguous space or account is full

(AC) 0 => not enough contiguous space

(AQ) <0 => account full

Skip if successful; registers as shown in table

Copyright (C) 1974

Educational Data Systems 3-5

Subroutine: DEALLOCATE DISC BLOCKS (Group 1)

Calling Sequence: CALL

DALLC

Use: Deallocates disc blocks from a file.

Ac Entry Return

0 # of blocks to be in file x

1 x xX

2 pointer into header x

3 x x

C x x

BSA x x

HBA file header file header

DALLC will deallocate disc blocks until (A0) blocks remain in the file.

NBLK must be greater than (AO). If (AO) is non-zero, blocks are de-

allocated starting at (A2) and working toward the beginning of the file

until (AO) blocks remain. (A2) is ignored if (AO) is zero. ALLOC and

DALLC are the only map manipulating routines, and any alterations to

the map should be made via them. The file owner's account Is credited

for the freed blocks.

Copyright (C) 1974

Educational Data Systems 3-7

Subroutine: DELETE FILE (Group 1)

Calling Sequence : CALL

DELETE

Use: Deletes a file.

Ac Entry Return(4 & 5-skip)

0 Logical Unit number x

l x B(terminator)

2 B(Filename) x

3 x xX

C xX x

BSA x x

HBA x file heaaer

If (AO) =-1, the regnant user's Logical Unit will be assumed. The Filename at

(A2) may not be in HBA. |

DELETE removes the Filename from the INDEX. If the file's income

is non-zero then it is subtracted from the accrued charges in the file

owner's account. If the file is not open on any port, the blocks of the

file are immediately deallocated, and the original owner of the file is

credited for the blocks. If the file is open, then the Filename is removed

from the INDEX, and the file is marked to be deleted (bit 13 of the STAT

word). CLEAR or CLOSE will deallocate the blocks and credit the original

owner when the file ts no longer in use.

There are six possible returns as follows:

Non-skip if illegal name

Al=byte address of terminator

BsA=unchanged

HBA=INDEX header

l-skip if not found

AO=dise address of an INDEX block which is in BSA

Al=byte address of terminator

A3=core address of empty INDEX entry in block in BSA

BSA=INDEX block |

HBA=INDEX header

(continued)

Copyright (C) 1974

Educational Data Systems 3-8

DELETE FILE (continued)

2-skip if file was a processor, a driver, or type 0

AO=file type :

Al=B(terminator)

BSA=INDEX block

HBA= file header

3- skip if file was write protected

Al=byte address of terminator

BSA=INDEX block

HBA= file header

4-skip if file was deleted but is being replaced; registers as shown in

table

o-skip if file was deleted; registers as shown in table

Subroutine: DELETE PROCESSOR (Group 1)

Calling Sequence: CALL

PDELETE

Use: Deletes a processor file or a driver file.

Ac Entry | Return (4 & 5-skip)

0 Logical Unit number x

1 x B(terminator)

2 B(Filename) x

3 X X

C x x

BSA xX x

HBA x file header

If (AO) =-1 the regnant user's Logical Unit will be assumed.

The Filename at (A2) may not be in HBA.

DELETE PROCESSOR is the same in all respects as DELETE FILE except

that the 2-skip return will occur only for a type 0 file; i.e., a processor ora

driver may be deleted.

Copyright (C) 1974 |

Educational Data Systems 3-9

Subroutine: FIND FILE (Group 1)

Calling Sequence: CALL

FFILE

Use: Finds a file or a device in an INDEX.

Ac Entry Return (skip)

0 Logical Unit number d{INDEX block in BSA)

1 x B(ierminator)

2 B(Filename) Logical Unit number

3 Xx a(INDEX entry)

C x Xx

BSA x INDEX block

HBA x H(UINDEX)

If the Filename supplied is of the form number/Filename then. (AQ) is

ignored and only the Logical Unit given by the number in the Filename

will be searched. Otherwise, only the Logical Unit given by (AO) will

be searched. |

FFILE searches the INDEX on the selected Logical Unit, comparing

the Filename given at B(A2) with each INDEX entry. There are two

possible returns as follows: |

Non-skip return if file not found. in this case, (A3) indicates

the reason as follows:

(A3)=0 if illegal Filename

(A2)=Logical Unit number

(A3)=1 if Logical Unit net active

(A0)=a(Logical Unit table entry)

(A2)=Logical Unit number

(A3)=2if file not found, INDEX is full, and not enough room

on Logical Unit to add a block to the INDEX

(Ai)=byte address of terminator

(A2)=Logical Unit number

(continued)

Copyright (C) 1974

Educational Data Systems 3-10

FIND FILE (continued)

(A3)= BSA if Filename is legal and Logical Unit is active, but

file not in INDEX; FFILE will allocate a block to the INDEX

if necessary

(AO) = d(INDEX block in BSA)
(Al) = byte address of terminator

(A2) = Logical Unit number

(A3) = a(empty INDEX entry)

(BSA) = an INDEX block

(HBA) = INDEX header

Skip return if file is found; registers and buffers as shown in table

Subroutine: FIND OPEN FILE, INITIALIZE (Group 1)

Calling Sequence: CALL

FOFT

Use: Initializes a search for an open file or Logical Unit.

Ac Entry Return

0 Logical Unit number number of ports

I Real Disc Address (see text) unchanged

2 x a(first RTA)

3 x FOFC entry address

C x 1

FOFT initializes pointers and counters for FOFC. Specifically, FOFI sets

up FOFC to start looking at the data channel number minus four of port

number zero, and it sets a counter to total number of active ports. If FOFI

is called with zero in Al then FOFC will check for any file open on the

specified Logical Unit.

FOFI and FOFC are both core-resident.

Copyright (C) 1974

Educational Data Systems 3-11

Subroutine: FIND OPEN FILE, CONTINUE (Group 1)

Calling Sequence: CALL or JSR 0,3

FOFC

Use: Determines whethera file or Logical Unit is open.

Ac Entry Return (skip)

0 X a (RTA) of port where open

1 x x

2 x a (DFT entry where open) - CHM4

3 x FOFC entry address

C x x

FOFI must be called to identify a file before FOFC is called. The second

calling sequence (JSR 0,3) may be used only if A3 is unchanged since the

last call to FOFT or FOFC. FOFC will scan the Data File Table of each

port to determine whether the file is open by any user. If (Al) was zero

when FOFT was called, then FOFC will look for any file open on the

specified Logical Unit. There are two possible returns as follows:

Non-skip if no open file is found

Al=number of data channels per port

A2=a (RTA of last port)

A3=return address

Skip if the file {cr Logical Unit) is found to be open; registers as

shown in table

After a skip return, FOFC may be called again to determine whether the
file (or Logical Unit) is also open on another channel. Calls to FOFC may

be repeated without calling FOFI until FOFC does a non-skip return.

Copyright (C) 1974 |

Educational Data Systems 3-12

Subroutine: OPEN | (Group 1)

Calling Sequence: CHANNEL

OPEN

Use: Opens a file or a device on a channel.

Ac Entry Return(8- skip)

0 channei number B(terminator)

l B(Filename) d(file header)

2 a(Control Block) a (channel)

3 x x

C x xX

BSA X x

HBA x x

where the Control Block is as follows: |

word #0: desired file type, or -1 for any type

word #1: Logical Unit number, or -1 if the regnant user's Logical Unit

is to be used

OPEN opens a file on channel #(A0) providing there are no restrictions;

e.g., user call errors, protection, etc. Only runnable processors may

be opened on channel -1. A default file type -1 is allowed to open any file

whether or not it is a data file. A default file type 37 will allow any file of

type 30 through 36 to be opened. Opening a type 36 file (peripheral driver)

will cause a JSR to the driver's INIT routine. Ifa file is write protected

but not read protected it will be opened, but the write locked status of that

channel is set. If the file is opened then CHARGE is called to charge the

user for access to the file.

There arenine possible returns as follows:

Non-skip if illegal channel number

BSA and HBA are unchanged

1-skip if channel in use

AO=unchanged

Al=FDA of channel

A2=a(channel)

BSA and HBA are unchanged

(continued) ©

Copyright (C) 1974

Educational Data Systems 3-13

OFEN (continued)

2-skip if illegal Filename, inactive Logical Unit, or INDEX is

full and not enough room on Logical Unit to add block to

INDEX

Al=B(terminator)

(A3)=0 if illegal Filename

(A3)=1 if Logical Unit inactive

(A3)=2 if INDEX full

BSA is unchanged

HBA=INDEX header

3-Skip if no sucn file

A0=d(an INDEX block)

Al=B(terminator)

A3=a(empty INDEX entry)

BsA=the INDEX header

HBA=INDEX header

4-skip if file is being built or replaced

AO=status word of file

Al=B(terminator)

BSA= the INDEX block

HBA=file header

5-skip if wrong TYPE, or channel= -1 and file is not runnable

AO=file's type if channel -1 was selected, or

AO0=requested type if channel=0

Al=B(terminator)

BsA=the INDEX block

HBA-file header

6-skip if file was read protected

AO=user's privilege level

Al=B(terminator)

BSA=the INDEX block

HBA=file header

7-skip will not occur (this is a return for OPENUPDATE or

OPENLOCK)

8-skip if file is successfully opened; registers as shown in table

Copyright (C) 1974 |

Educational Data Systems 3-14

Subroutines: OPEN FOR UPDATE (Group 1)

OPEN FOR REFERENCE

OPEN AND LOCK

Calling Sequence: CHANNEL or CHANNEL or CHANNEL

OPENUPDATE . | OPENREF | OPENLOCK

Use: Opens a file or a device for a special purpose.

Ac Entry Return (8-skip)

07 channel number B(terminator)

l B(Filename) d(file header)

2 a(Input Block) a(channel)

3 x x

C x xX

BSA x x

HBA x x

where the Input Block is as follows:

word #0: desired file type, or -1 for any type

word #1: Logical Unit number, or-1 if the regnant user's

Logical Unit is to be used

If opening a peripheral driver, OPENLOCK will do a JSR to the driver's

INIT routine, but OPENREF and OPENUPDATE will not.

OFENREF does not change the Last Accessed Date in the file's header or

charge the user for access to the file, but it unconditionally sets the write

locked status of the channel.

There are nine possible returns from these routines. All are the same as for

OPEN with the following exceptions:

7-skip return from OPENUPDATE if the file or device is write protected

Al=B(terminator)

BsA=the INDEX block

HBA=file header

7-skip return from OPENLOCK if the file is already open elsewhere

or is write protected

AO=-1

Ai=B(terminator)

BSA=the INDEX block

HBA=file header

Copyright (C) 1974 |

Educational Data Systems 3-15

Subroutine: CHECK PROTECTION (Group 1)

CallingSequence: CALL or CALL or CALL

CHKRP CHKWP CHKCP

Use: Determines whether a file is protected

Ac Entry Return

0 ACNT word from file x

1 TYPE wor from file x

2 x x

3 x return address

C x x

Call CHKRP to check read protection, CHKWP to check write protection,

or CHKCP to check copy protection. Access is granted if:

a) file's account number is same as user's account number, or

b) user is privilege level three or has a privilege level higter than

the file, or

c) the protection specified in the file does not prohibit the type of

access requested by this user.

There are two possible returns as follows:

Non-skip if file is protected

Skip if access is granted

Copyright (C) 1974

Educational Data Systems | 3-16

Subroutine: CHARGE FOR FILE ACCESS (Group 1)

Calling Sequence: CALL

CHARGE

Use: Charges a user for access to another user's file.

Ac Entry Return

0 Logical Unit number x

1 d(file header) x

2 a(buffer) x

3 x x

C x
m

BSA and HBA are unaffected depending on (A2) entry.

(A2) entry must be a 256, word buffer to be used by CHARGE,

CHARGE updates the Last Accessed Date (LDAT) cells and increments
the Number of Times Accessed (NTAC) cell in a file's header. If the user
is on a different account than the file and there is a non-zero cost for the .
file, then the cost is added to the "total charges" (CHGS) cells in the file's
header and also added to the "net accrued charges" cells in the user's entry
in the ACCOUNTS file.

‘Return is non-skip.

Copyright (C) 1974

Educational Data Systems 3-17

Subroutine: CLOSE CHANNEL (Group 1)

CallingSequence: CHANNEL

CLOSE

Use: Closes a file or device which is open on a channd..

Ac Entry Return (2-skip)

0 channel number x

l x x

2 x x

3 x x

C Xx x

BSA x x

HBA Xx X

CLOSE closes the file open on channel #(A0). If the file's delete bit is set

and the file is not open elsewhere then the file is deleted. If the file's build

bit (bit 15) is set, that bit is reset, and if an old file was being replaced then

the new file repiaces the old one in the INDEX, and the old file's blocks are

deallocated unless the old file is open elsewhere.

There are three possible returns as follows:

Non-skip if illegal channel number

| AO=unchanged

BSA=unchanged

HBA=unchanged

1-skip if channel not in use

AO=unchanged

A2=a(channel)

BsA=unchanged

HBA=unchanged

2-skip if channel closed; registers as shown in table

Copyright (C) 1974) |

Educational Data Systems 3-18

Subroutine: CHECK CHANNEL (Group 1)

Calling Sequence: CALL

CHKCHANNEL

Use: Determines whether a channel is itn use.

Ac Entry Return

Q channel number unchanged

1 x see text

2 x see text

3 x return address

C x xX

Examines the regnant user's channel #(A0O).

There are three possible returns as follows:

Non-skip if illegal channel number

Al=number of channels available

l-skip if channel not in use

Al=0

A2=a(channel)

2-skip if channel is in use

Al=d(file header) (bit 15 may be set)

A2=a(channel)

Copyright (C) 1974

Educational Data Systems 3-19

— Subroutine: CLEAR CHANNEL

Calling Sequence: CHANNEL

CLEAR

Use: Clears a channel.

Ac Entry

0 channel number

] x

2 x

3 x

C X

BSA x

HBA x

(Group 1)

Return(skip)

mx mM Mm Ke OM
x

CLEAR CHANNEL clears the channel #(AO) of the regnant user's port. [If

the file open on (AO) is marked to be deleted and is not open elsewhere then

CLEAR deallccates the file's disc blocks. If a file is marked as being built

then CLEAR @deallocates the file's disc blocks; also, if an older file was being

replaced, then CLEAR resets the replace bit of the old file.

There are two possibie returns as follows:

Non-skip if ijlegal channel number

AO=unchanged

A2=a(channel)

BSA=unchanged

HBA=unchanged

Skip if channel cleared; registers as shown in table

Copyright (C) 1974

Educational Data Systems

Subroutine: CLEAR ALL CHANNELS (Group 1)

CallingSequence: CALL

ALLCLEAR

Use: Clears all channels of the regnant user's port.

Ac Entry Return

0 x xX

l x xX

2 x x

3 x x

C x x

BSA x x

HBA x xX

ALLCLEAR uses CLEAR to clear all of the regnant user's data channels

(all channels with non-negative numbers).

Return is non-skip.

Copyright (C) 1974

Educational Data Systems | 3-21

Subroutine: GET RECORD, WRITE (Group 1)

Calling Sequence: CALL

GETRW

Use: Locates and reads a setected record of a file for writing data.

Ac Entry Return (2-skip)

0 x x

1 record number (see text) d(data block)

2 a(channel) B(record)

3 xX x

C x x

BSA x data biock

HBA x File header

EXA x extender if file is extended

GET RECORD, WRITE uses the STS word of the channel to determine if the

open file is formatted, unformatted, or contiguous. From this information,

GETRW determines the disc address of the appropriate data block and reads

that block into BSA. GETRW then determines the location in that block of the

desired record and generates a byte pointer to it.

If a -1 is supplied in Al as the record number, GETRW will look up the next

record by using information in the channel. For formatted files, the record

number will be (FSZ)+1. For contiguous files, the record address will be

(CBN)*400 (octal)+9(STS))+2*(W PR). For text or unformatted files, the record

address will be (CBN)*400(octal)+g(STS)p.

If a -2 is supplied in Al as the record number, GETRW will look up the preseni
record. For formatted files, the record number is (FSZ). For all others, the.

record address will be (CBN)*400(octal)+g(STS)g. Note that for a text file this

is the same as for -1 in Al.

If the block containing the record requested does not exist, GETRW will

allocate the proper block. GETRW will then write all zeroes into that block,

There are three possible returns as follows:

Non-skip if record is locked

(A0) = 0

(A2) = a(channel)

1-skip if record not ailocated and disc or account full

(AO) 0O if account is full

(AO) O if disc is full

2-skip if record found and block read; registers as shown in table

Copyright (C) 1974

Educational Data Systems 3-22

Subroutine: GET RECORD, READ (Group 1)

Calling Sequence: CALL

GETRR

Use: Locates and reads a selected record ofa file for reading data.

Ac Entry Return (2-skip)

0 xX xX

1 record number (see text) d (data block)

2 a (channel) B (record)

3 x | x

C x x

BSA xX data block

HBA x File header

HXA x extender if file is extended

GET RECORD, READ uses the STS word of the channel to determine if

the open file is formatted, unformatted, or contiguous. From this

information, GETRR determines the disc address of the appropriate

data block and reads that block into BSA, GETRR then determines the

location in that block of the desired record and generates a byte pointer to it.

If a -1 is supplied in Al as the record number, GETRR will look up the next

record by using information in the channel. For formatted fiies, the record

number will be (FSZ)+1. For contiguous files, the record address will be

(CBN)*400(octal)+g(STS)g+2*(WPR). For text or unformatted files, the record

address will be (CBN)*400(octai)+g(STS)o.

If a -2 is supplied in Al as the record number, GETRR will look up the present

record. For formatted files, the record number is (FSZ). For all others, the

record address will be (CBN)*400(octal)+g(STS)g. Note that for a text file this

is the same as for -1 in Al.

There are three possible returns as follows:

Non-skip if record is locked

(AO) = 0

(A2) = a(channel)

1-skip if record not written

2-skip if record found and block read; registers as shown in table

Copyright (C) 1974

Educational Data Systems 3-23

Subroutine: WRITE ITEM (Group 1)

Calling Sequence: CHANNEL

WRITITEM

Use: Writes an item into a data file or to a device.

Ac Entry Return (8-skip)

0 channel number Xx

1 x x

2 a(ICB) x

3 x x

C x x

BSA X data block (if file write)

HBA x file header (if file write)

HXA x | file extender (if extended file write)

where ICB is the "Item Control Block" as follows:

word #0 record number

word #1 item number (origin 0) or byte displacement

word #2 item type |

word #3 item length (#words or bytes)

werd #4 a(source) or a byte address for a string

WRITE ITEM writes an item into a data file or to a peripheral device opened on

the selected cnannel. The number of words or bytes transferred will be the.

smaller of the item length and the source length. If the item length is less than

the source length, the transfer is truncated. If the item length is greater than .

the source length then a non- string will be padded with zeroes, anda string item

will be terminated with a single zero byie. Word #1 of the ICB is stepped to
point to the next item in the record after a successful write.

There are nine returns as follows:

Non-skip if illegal channel number

BsA=unchanged

HBA=unchanged

l-skip if channel not open

AO=unchanged

A2= a(channel)

BSA=unchanged

HBA=unchan ged

(continued)
Copyright (C) 1974

Educational Data Systems 3-24

WRITE ITEM (continued)

2-skip if file not formatted

Al=d(file header)

BSA=unchanged

HBAsfile header (if file access)

3-skip if file is write protected

BSA=unchanged

HBA=file header (if file access)

4-skip if disc or user's account is full

AO=# of blocks the disc needs if positive, or

AO=-# of blocks user's account needs if negative

BSA=unknown

HBA=file header (if file access)

5-skip if record is locked |

AO0=0 - |

Alsrecommended pause (tenth-seconds)

BsA=unknown

HBA=file header (if file access)

6-skip if item number is illegal

Registers are indeterminate

BSA=data block (if file access)

HBA=file header (if file access)

7-skip if item types don't match

AO=desired type

Al=actual type

A2=a(Item Control Block)

BSA=data block (if file access)

HBA=file header (if file access)

8-skip if item is written; registers as shown in table |

The item number in ICB is incremented if file access

BSA=data block (if file access)

HBA=file header (if file access)

Copyright (C) 1974

Educational Data Systems 3-29

Subroutine: READ ITEM (Group 1)

Calling Sequence: CHANNEL

READITEM

Use: Reads an item from a data file or from a device.

Ac Entry Return (8-skip)

0 channel number #words or byes transferred

] x x

2 a(ICB) x

3 x x

C x x

BSA x data block (if file read)

HBA X file header (if file read)

HXA x file extender (if extended file read)

where ICB is the "Item Control Block" as follows:
word #0 record number

word #1 item number (origin 0)

word #2 item type

word #3 desired length (#words or bytes)

word #4 a(destination) or a byte address for a string

READ ITEM accesses an item from a data file or from a peripheral device

opened on the selected channel. The amcunt of data transferred will be the

smaller of the item length and the user's destination size. If the item

length is greater than the destination, the item is truncated. If the item

length is less than the destination length, a non-string item will be padded

with zeroes, and a string item will be terminated with a single zero byte.

The returns frorn READ ITEM are the same as for WRITE ITEM except for

the 4-skip return:

4-skip if record not written

Registers are indeterminant

BSA=unknown

HBA=file header

Copyright (C) 1974
Educational Data Systems | 3-26

Subroutine: FIND ITEM (Group 3)

Calling Sequence: CHANNEL

FINDITEM

Use: Locates an item in a data file by its contents.

(to be added)

Copyright (C) 1974

Educational Data Systems 3-27

Subroutine: UNLOCK RECORD (Group 1)

Calling Sequence: CALL

UNLOCK

Use: Unlocks a record on a specified channel.

Ac Entry Return (skip)

0 channel number STS of channel

1 X FDA of channel

2 x a(Data File Table entry)

3 x x

C x x

UNLOCK unlocks the record by clearing bit 15 of the STS cell in the data

channel.

There are two possible returns as follows:

Non-skip if illegal channel number or channel not open

(Al)=number of channels availabie if illegal channel number, or

(Al)=0 if channel not open

(A2)=a(channel)

Skip if successful; registers as shown in table

Copyright (C) 1974

Educational Data Systems -28©)

Subroutine: WRITE DISC BLOCK (Group 1)

Calling Sequence: JSR @. WBLK

Use: Writes one block (256 words) from core onto a disc.

Ac Eatry Return

0 Logical Unit number unchanged

1 Real Disc Address unchanged

2 core address unchanged

o x x

C Xx x

WBLK checks for certain software errors, then checks whether the Logical

Unit and disc address given are tne same as that of a block in BSA, HBA,

HXA, or SSA. If the same as the block in BSA; the BSA change flag (BSACF) is

cleared. If the same as any of the fivebuffer areas, that buffer's disc address

flag is cleared.

If the core address is BSA, HBA, HXA, or SSA, then (AO) and (Al)

are stored in the corresponding disc address flags. If the core address is

HBA, the DHDR cell in HBA must equal (Al), and the UNIT cell in HBA must

equal (At).

WBLK does a non-skip return if successful or branches to FAULT if any

software error or disc write error is detected. In the case of a disc write

error, 16 attempts are made to write the biock before a FAULT is indicated.

Software errors checked for include:

a) Core address greater than BSA and not exactly equal to HBA, HXA, or

SSA, and not wholy within ABA.

b) Core address less than BPS and not equal to 200 octal.

c) Invalid disc eddress.

d) Core address equal to HBA, and DHDR cell in HBA not equal to (Al) or

UNIT cell in HBA not equal to (AO).

e) Disc address zero (attempt to overwrite BZUP).

Copyright (C) 1974

Educational Data Systems Co -29

Subroutine: READ DISC BLOCK (Group 1)

Calling Sequence: JSR @. RBLK

Use: Reads one block (256 words) from a diSc into core.

Ac Entry Return

0 Logical Unit number unchanged

1 Real Disc Address unchanged

2 core address unchanged

3 x x

C x X

RBLK checks for certain software e*rors, then checks whether the

core address is BSA, HBA, HXA, or SSA. If it is one of these

buffer areas, RBLK checks whether the desired disc blocs is already

in core where desired, and retur:zs without actually reading if it is.

The core address is tnen checked to see if BSA wiil be overlayed; if so,

the BSA change flag is checked, and BSA is first written back on the disc

if it has been caanged. Finally, the selected disc block is read into core

at the address in Ad.

RBLK does a non-skip return if successful orbranches to FAULT if any

software error or disc read error is deteced. In the case of a read

error, 16 attempts are made to read the block before a FAULT is indicated,

software errors checked for include:

a) Core address greater than BSA and not exactly equal to HBA, HXA, or

SSA, and not wholy within ABA.

b) Core address less than BPS and not equal to 200 octal,

c) Invalid disc address.

Copyright (C) 1974

Educational Data Systems 3-30

Subroutine: CHECK "BSA CHANGED" FLAG (Group 1)

Calling Sequence: CALL

CBSA

Use: Allows new information to be stored in BSA, —

Ac Entry Return

J x x

1 x unchanged

2 Xx unchan ved

3 x see text

C x x

If the BSA CHANGED flag (BSACF) is non-zero then the block in BSA

wili be written on tne disc at the disc address in DBSA, and BSACF will

be zeroed.

If CBSA is called from RBLK, then A3 will contain the original return

address from tre call to RBLK. Otherwise, (A3) is undetermited.

Subroutine: FIND LOGICAL UNIT TABLES (Group 1)

Calling Sequence: JSR @. FLUT

Use: Finds the LUFIX, LUVAR, and LUT pointers for a Logical Unit.

Ac Eintry Return (skip)

0 Logical Unit number unchanged

1 x a(LUT entry)

2 x a(L UFIX)

3 x a(LUVAR)

C x 0

The Logical Unit Table (LUT) is searched forthe Logical Unit number

given in AO. There are two possible returns as follows:

Non-skip if Logical Unit is not active
AO=unchanged

Skip if Logical Unit found; registers as shown in table

Copyright (C) 1974

Educational Data Systems 3-31

Subroutine: CONVERT LOGICAL TO REAL DISC ADDRESS (Group 1)

Calling Sequence: CALL

CLRA

Use: Builds a Real Disc Address from its logical components.

Ac Entry Return

0 a(IL.UFIX) x

l x , Real Dise Address

2 a(logical address table) unchanged

3 x logical sector

C x x

CLRA uses the conversion factors from the LUFIX at (AO) to convert

the logical cylinder at (A2), the logical track at (A2)+1, and the logical

sector at (A2)+2 into a Real Disc Address which is returned in Al. The

logical address table is unchanged. |

Subroutine: CONVERT REAL TO LOGICAL DISC ADDRESS’ (Group 1)

Calling Sequence: CALL

CRLA

Use: Converts a Real Disc Address to its logical components.

Ac Entry Retum

0 a(LUFIX) x

l Real Disc Address logical sector

2 a(logical address table) uncharged

3 x logical track

C X x

A Real Disc Address given in register Al is converted to a logical disc

address and stored in the three word logical address table at (A2). CRLA

will put the logical cylinder at (A2), the logical track at (A2)+1, and the

logical sector at (A2)+2.

No checking is done for an illegal address. The LUFIX pointer in AO

is used to find the conversion factors.

Copyright (C) 1974

Educational Data Systems | 3-32

Subroutine: INCREMENT REAL DISC ADDRESS (Group 1)

Calling Sequence: CALL

IRDA

Use: To determine the nth legal Real Disc Address after a given Real Disc
Address.

Ac Entry Return(skip)

0 Logical Unit number first unused Real Disc Address

l any Real Disc Address incremented Real Disc Address

2 increment value a(Logical Address)

3 x a(LUVAR)

C X x

Determines the n'4 legal Real Disc Address after the Real Disc Address given
in Al, where n is given in A2. Information from the LUFIX and LUVAR of

the specified Logical Unit ts used to control the method of determination.

On return, (A2) points to a table containing the logical cyclinder, logical

track, and logical sector of the incremented disc address. There are two

possible returns as follows:

Non-skip if the incremented Real Disc Address has not been determined

In this case, (AO) indicates the reason as follows:

(A0)=unchanged if Logical Unit is inactive

(A0)<0 if result is not a legal Real Disc Address

Skip if the desired Real Disc Address has been determined; registers

as shown in table

Copyright (C) 1974

Educational Data Systems 3-33

Subroutine: READ FILE HEADER INFORMATION | (Group 2)

Calling Sequence: CALL

RDFHI

Use: To determine a disc file's characteristics.

Ac Entry Return (skip)

0 x x

1 x x

2 a (Argument pointer list) x

3 x x

C x x

where the Argument pointer list contains pointers to UNIT, RECORD,

FILENAME, ACCOUNT #, TYPE, SIZE, STATUS, COST, INCOME,

CREATION DATE, LAST ACCESS DATE, AND D(FILE'S HEADER) in

the form:

Register A2

lo Address of “ , Argument pointer list Tae of

Cy| 0 address of = —7 UNIT

number type
value of

0 address of — RECQRD

number type

1 address of —s
Filename string[Adimension

etc,

RDFHI is accessable as CALL 97 from a BASIC program. RDFHI will

look in INDEX for the file at the selected record. If an empty INDEX

record is encountered, the next record will be examined. Ifa negative
record number is specified or the selected record is beyond the INDEX,

-1 is returned as the record. At each call, the record number is incre-

mented to the next ertry. If a file exists in the record, the header is read,

and pertinant information is stored as the argument values. If the value of

the INCOME argument is zero at the time of the call, the file's income is_

cleared, and the header is written back. There are two possible returns

as follows:

Non-skip if:

1) Not logged onto an account at least priv 2, and group 0

2) Too small a number type to store a parameter

3) String Dimension<14

Skip if record read

Copyright (C) 1974

Educational Data Systems | ‘3-34

Subroutine: DIRECTORY (Group 3)

Calling Sequence: CALL

DIREC TORY

Use: Sets up and initializes the directories for an indexed contiguous

data file.

Ac Entry Return (skip)

0 a(argument list) x

1 directory number status (see text)

2 channel pointer x

3 x | x

C x x

BSA x x

HBA X file header

where the argument list at (AO) is as follows:

word #0 (not used)

word #1 (not used)

word #2 address of numeric item #1

word #3 number type for item #1

word #4 address of numeric item #2

word #9 number type for item #2

If (Al) is non-zero then it specifies a directory number which must

be exactly one greater than the last directory already specified for

the file. (A1) must equal one if no directories have yet been specified.

The key length of the specified directory is set equal to the integer

value of item #1.

If (Al) is zero then an initializing operation is performed. The

number of data records given in item #1 is assumed for the purpose

of calculating the size of each directory. Each directory will consist

of three levels: a one-block master level, a coarse level, anda

fine level. All spare blocks in each level of each directory are linked

together on a free block chain. The file header is then marked as

"indexed" and written back on the disc.

(continued)

Copyright (C) 1974

Educational Data Systems 3-35

DIRECTORY (continued)

The size of each directory is computed as follows:

254

key length (# words) + 1
number of keys per block =

x# data records * 2 blocks
l f fire 1] =

S126 ON ENE TENE # keys per block + 1

fine level blocks blocks

keys per block - 1
size of coarse level =

The number of blocks in the coarse level must not exceed the

number of keys per block since this would cause the master level

to exceed one block.

There are two possible returns as follows:

Non-skip if the file is write protected

Skip if the file is not write protected; register Al indicates —

the status as follows:

(Al) — Status

0 Successful operation

6 Directory number not in sequence

t File is not contiguous

10 File is already indexed

11 Item #1 igs negative or too large

12 Too many directories

13 Master level of directory exceeds one block

14 Directories exceed file size

Copyright (C) 1974

Educational Data Systems 3-36

Subroutine: SEARCH (Group 3)

Calling Sequence: CALL

Use:

SEARCH

Searches a specified directory of an indexed contiguous data file and

inserts or deletes an index entry if required. Also maintains a free

data record chain.

Ac Entry Return (skip)

0 a(argument list) x

1 mode, directory # status (see text)

2 channel pointer x

3 x x

C x x

BSA x x

HBA x x

HXA x x

ABA x x

where the argument list at (AO) is as follows:

word #0 address of a string item v$

word #1 dimension of string v$

word #2 address of numeric item vl

word #3 number type for item vl

word #4 address of numeric item v2

word #9 number type for item v2

Register Al contains the mode (m) in the top byte and the directory

number (d) in the lower byte, and register A2 points to the data channel

where the file is open. The variable list is defined as follows:

v$ contains the key for which the search is being made.

vl receives the record number (result of the search).

v2 receives a Status value as follows:

No error, search was successful

Search was not successful

ind of directory

Eind of data

Wrong variable type

Undetermined error

File not indexedOooh wh KF ©
Error 5 will occur if the system's Auxiliary Buffer Area (ABA) is

less than 1004 words octal, if an illegal command is given, or if the

file is not structured as expected; for example, if there are fewer ©

directories than the directory number specified.

(continued)

Copyright (C) 1974

Educational Data Systems 3-37

SEARCH (continued)

The available modes of operation are as follows:

m=l

d#0

m=2

m=3

m=)

Reads the key length (number of words) of directory d into vl. If

directory d does not exist then vl is set equal to zero.

Performs the operation specified by the value given in v2 as follows:

v2=0 Reads into vl the record number of the first real data record.

v2=1 Reads into vl the number of available data records on the free

record list.

v2=2 Reads into vil the record number of an available data record

and removes that record from the free record list.

v2=3 Releases the data record whose record number if given in vl

and puts the record on the free record list. |

searches directory d for a match with the key valuein v$. If a match
is found (even if the key in the directory entry is longer then v$).
returns the entire key in v$, returns the associated data record number
in vl, and sets v2 equal to zero. If not found, leaves v$ and vl
unchanged, and sets v2 equal to one.

Searches directory d for the first key whose value. logically exceeds

the value in v$, If found, returns the key value in v$, returns the

associated data record number in vl, and sets v2 equal to zero. If

not found,- leaves v$ and vl unchanged, and sets v2 equal to three.

Searches directory d for a match with the key value in v$, If found,

returns the associated data record number in vl, and sets v2 equal to

one. If not found, and there is directory space available, inserts the

key into directory d, references the key to the data record number

given in vl, and sets v2 equalto zero. If not found and the insert

cannot be made then v2 is set equal to two.

Searches directory d for a match with the key value in v$. If found,

deletes the key from directory d, returns -the data record number in

vl, and sets v2 equal to zero. If not found, vl is left unchanged, and

v2 is set equal to one. |

There are two possible returns as follows:

Non-skip if file is write protected; registers undetermined

Skip if not write protected; registers as shown in table

Copyright (C) 1974

Educational Data Systems 3-38

Subroutine: STORE BYTE (Group 1)

Calling Sequence: JSR @.STBY

Use: Stores one byte at a given address in core.

Ac Entry Return

0 byte byte

1 byte address word

2 x word address

3 x return address

C x left/right byte flag

AO is masked with 377 octal to clear the top half of the word, and the

result is stored at the byte address in Al. The other byte in that word

is not disturbed. The resuiting word is also returned in Al and its core

address in Ad.

Subroutine: ACCESS BYTE (Group 1)

Calling Sequence: JSR @. ACBY

Use: Accesses one byte from a given location in core.

Ac Entry Return

0 Xx x

1 byte address unchanged

2 x byte from B(Al)

3 x return address

C x left/right byte flag

Accesses one byte from the byte address in Al and returns that byte in the

lower 8 bits of A2. The upper 8 bits of A2 will be zero.

A byte address is defined as follows:

word address (15 bits) byte zero byte 1

left/right byte flag 7 S/
(0 for left byte or 1 for right byte)

Copyright (C) 1974

Educational Data Systems | 4-]

Subroutine: IS (A2) A DIGIT? (Group 1)

Calling Sequence: JSR @.1A2D

Use: Determines whether register A2 contains an ASCII code for a

decimal digit.

Ac Entry Return

0 X unchanged

1 x see text

2 byte unchanged

3 x return address

C x unchanged

There are two possible returns as follows:

Non-skip if (A2) is not an ASCII code for a digit; Al will contain

octal 271 if (A2)>271 or octal 260 if (A2)< 260

Skip if (A2) is an ASCII digit (i.e., 260 € (A2)€ 271); in this case,

Al will contain octal 260 (ASCII zero) so that a SUB 1,2

instruction will generate the binary value of the digit

Subroutine: IS (A2) A LETTER? _ (Group 1)

Calling Sequence: JSR @, IA2L

Use: Determines whether register A2 contains an ASCII code for a letter.

Ac Entry Return

0 x 332

1 x 301

2 byte see text

3 x return address

C x see text

There are two possible returns as follows:

Non-skip if {A2) is not an ASCII code for an upper case letter;

in this case, A2 and the carry flip-flop are unchanged

Skip if (A2) is an upper case ASCII letter (i.e., 301 & (A2) < 332);

in this case, the carry flip-flop will be toggled, and 301 will

be subtracted from A2; thus, the letter A will be represented

by zero, Bbyone..., and Z by 31 octal

Copyright (C) 1974

Educational Data Systems 4-2

Subroutine: MOVE WORDS (Group 1)

Calling Sequence: CALL

MOVE

Use: Moves the contents of a group of words in core to another area in

core,

Ac Entry Return

0 first source address x

1 last source address x

2 first dest. address see text

3 x see text

C x x

Registers AO and Al point to the first and last words of the area to be

moved. Register A2 points to the first word of the destination area,

which is the same size as the source area. A2 may point to any location

in core, including any location within the Source area. The data is

moved to the destination area in such a way that the destination area

is an exact copy of the source area as it was before the move, even if

the source and destination areas overlap.

If (A0Q)< (A2) then the last scurce word is moved first, then each

preceeding word is copied until the first word has been moved.

On return, the registers will contain:

A2 = first destination address

A3 = first source address

If (AO) > (A2) then the first source word is moved first. On return,

the registers will contain:

A2 = last destination address

A3 = last source address

Note: if (AQ) =(A2) there is an immediate return with no change to the

contents of any register.

Copyright (C) 1974 |

Educational Data Systems — 4-3

Subroutine: MOVE BYTES (Group 1)

Calling Sequence: CALL

MOVBYTES

Terminator code

Use: Moves a block of bytes in core.

Ac Entry Return

0 B(beginning of source) B(last dest byte transferred) —

1 B(end of source) number of bytes not transferred

2 B(beginning of destination) last byte transferred

3 x x

C x Xx

MOVE BYTE tranfers the byte at the byte address given in AO to the

byte address given in A2, Both byte addresses are incremented, and

the move continues in this manner until terminated by one of three

conditions:

a) The source byte address of the byte just transferred equals
(or exceeds) the byte address given in Al,

b) The byte just transferred was zero, or

c) The byte just trensferred is identical to the terminator code

following the CALL MOVBYTES.,

If on entry (A0) >(A1) then no bytes will be transferred, and registers
AO and A2 will be unchanged.

In any case the return is to the location after the terminator code. There

are no error indications.

Copyright (C) 1974

Educational Data Systems 4-4

Subroutine: CONVERT PORT NUMBER TO RTA POINTER (Group 1)

Calling Sequence: CALL

CPNRP

Use: To locate the Resident Table Area for a given port,.

Ac Entry Return

0 port number a(port's RTA)

1 x 0

2 x size of RTA

3 x return address

C x x

There are two possible returns as follows:

Non-skip if (AO) is not a legal port number

AO0=uncnanged

Al=number of active ports

A2=unchanged

A3=return address

Skip if RTA located; registers as shown in table

Subroutine: CONVERT RTA POINTER TO PORT NUMBER (Group 1)

Calling Sequence: CALL

CRPPN

Use: To determine the port number for a given Resident Table Area.

Ac Entry Return (skip)

0 a(any RTA) port number

1 x port number

2 x size of RTA

3 x return address

C x x

There are two possible returns as follows:

Non-skip if (AO) is not an RTA pointer

A2=size of RTA

Skip if port number determined; registers as shown in table

Copyright (C) 1974

Educational Data Systems 4-9

Subroutine: CONVERT DRATSAB TO ASCII (Group 3)

Calling Sequence: CALL

CDTA

Use: Converts a String of bytes in DRATSAB code into the corresponding
ASCTE codes and stores the results in a specified destination.

Ac Entry Return

0. Hollerith/BASIC flag number of bytes transferred

1 B(source string) non-zero if error, data not transferred

2 a(ICB). x

3 x skip distance for return
C

}

xX xX

where ICB is the Item Control Block described under READ ITEM. CDTA

first checks that the item type is a string, and then accesses each

DRATSAB code in the source string, converts it to the equivalent ASCII

code, and stores the result in the destination string. This continues

for each byte in the string Starting at the byte address in Al and ending

when either a RETURN character or an END OF RECORD code (300 or 310,

respectively, in DRATSAB code) is converted.

DRATSAB code is compressed from the twelve row punched card code

as follows:

| 8} 9 ji2}1ij o} t=7 |

In the above DRATSAB byte, each number indicates the card row stored

in that bit. There may be only one punch in rows one through seven;

the number of the punched row is converted to binary and placed in the

lower three bits of the DRATSAB code.

Register AO must be zero if the cards are punched in Hollerith standard key
punch codes. or non-zero if the cards are marked as shown on the EDS

BASIC Card Programmer.

The following control codes are translated the same for either Holierith

or BASIC cards: 7

Card rows DRATSAB Meaning

8-9 300 RE TU RN

8-9-5 305 CTRL E

8-9-0 310 End of Card

Copyright (C) 1974

Educational Data Systems 4-6

Subroutine: SEND SIGNAL (Group 1)

Calling Sequence: CALL

SIGPAUSE

Use: Sends a signal to a user on another port-or to a later program

segment on the same port.

Ac Entry Return

0 1 : x

1 Sender's RTA pointer x

2 a(parameter list) x

3 x x

C x x

Register A2 must point to a three-word parameter list of the form:

word0: Destination port number or RTA pointer

word1: Signal value#1

word2: Signal value #2

A signal value may be any 16-bit binary word. There are two possible

returns as follows:

Non-skip if signal buffer is full or if there is no such destination port

Skip if signal was successfully stored in the signal buffer

Copyright (C) 1974

Educational Data Systems 4-7

Subroutine: RECIEVE SIGNAL (Group 1)

Signal Sequence: CALL

SIG PAUSE

Use: Receives a signal if any have been sent to the regnant user's port.

Ac Entry Return

0 2 x

1 x x

2 a(parameter list) a(sender's RTA)

3 x x

C x x

Register A2 must point to a three-word parameter list. The contents

of the list are ignored. If a signal is received, it will be stored in the

list in the form:

word 0: Port number of sender

word 1: Signal value #1

word 2: Signal value #2

There are two possible returns as follows:

Non-skip if no signal was received; in this case, the parameter

list is unchanged

Skip return if a Signal was received; the signal will be in the

parameter list as shown above

Copyright (C) 1974 J
Educational Data Systems 4-8

Subroutine: PAUSE (Group 1)

Calling Sequence: CALL

SIGPAUSE

Use: Bumps the regnant user for a specified time duration or (optionally)

until a Signal is sent to the user in the pause state.

Ac Entry Return

0 3 or 4 (see text) x

1 delay in tenth-seconds x

2 x | X

3 x x

C x x

The regnant user's task will be bumped, and the Pause Delay Counter (PDC)

in his RTA will be set to the value in Al. If (A0)=3, he will be put in

the task queue only after a delay of (Al) tenth-seconds. If (AG0)=4, he

will be put in the task queue after the delay or when any signal is sent to

him, whichever occurs first (immediate return without bump if a signal

is waiting for this port).

In any case, the return is non-skip.

Subroutine: COMPARE STRINGS (Group 1)

Calling Sequence: CALL

CSTR

Use: Tests whether two strings are equivalent.

Ac Entry Return

0 B(string-one) B(terminator of string one)
1 B(string two) B(terminator of string two)

2 x Last character of string two

3 x zero if strings are equivalent

C x | x

CSTR compares two alphameric strings until diffe ring bytes are found
or terminating characters are found in one or both. If returns zero

in A3 if the strings are equivalent.

Copyright (C} 1974

Educational Data Systems 4-9

Subroutine: PASSWORD COMPARE (Group 1)

Calling Sequence: CALL

PASSCOMPARE

Use: Tests whether the user supplied the correct password.

Ac Entry Return (skip)

0 x x

1 B(password) x

2 x terminating character

3 x x

C x | x

PASSC compares a password pointed to by the byte address in Al against

the string in thr regnant user's I/O buffer. For correct comparison,

the string in the I/O buffer must terminate with a RETURN or CTRL E

at the same point that the password is terminated by a zero byte.

There are three possible returns as follows:

Non-skip if no password given

A0=205 (CTRL E)

A2=first non-space character of input

Next byte accessed will be the first non-space

Non-skip if incorrect password given

A0=mismatched byte of password

A2=mismatched byte of input

Next byte accessed is next after mismatched byte

Skip if correct password given; registers as shown

Next byte accessed is next after end of password (a trailing

CTRL E will be scanned off as part of the password)

Copyright (C) 1974

Educational Data Systems 4-16

Subroutine: ACCOUNT LOOKUP (Group 1)

Calling Sequence: CALL

ACN TLOOKUP

Use: Finds a user's account entry in the ACCOUNTS file via the Account

I.D., account number, or entry position.

Ac Entry Return (skip)

0 see text account entry position

1 see text d(ACCOUNTS block)

2 a(256 word buffer) a(account I. D.)

3 x x

C x x

BSA x x

HBA see text unchanged

ACNTL looks up an account in the ACCOUNTS file on Logical Unit zero.

It uses a caller-supplied disc buffer to read in the ACCOUNTS file and

returns with information so that the caller may modify or create a user's

account,

(AO) prescribes the method by which the account is looked up as follows:

If (AQ)=0, then (Al)=account entry position: i.e. 1 for first account,

2 for second, etc. :

If (AO)=-1,then (A1)=B(Account I. D.) which is an ASCII string of
not more than twelve characters.

If (AO)=1, then (Ai)=account number (user number is in bits 7-0,
group number in bits 13-8; bits 15 and 14 areignored).

If (A0)>1, then (Al)=account number as above and HBA must have

‘a file's header. ACNTL will lookup on the Logical Unit of the

file. This mode should be used for all disc block usage updates.

There are two possible returns as follows:

Non-skip if account does not exist

(A0)=available account record number (zero if none available)
(A1)=d(ACCOUNTS block)
(A2)=alavailable account entry in core)

Skip'if account found; registers as shown

Copyright (C) 1974

Educational Data Systems 4-1}

Subroutine: CHANGE OR CHECK FLAG (Group 1)
\

Calling Sequence: FLAGCHANGE

command+tdisplacementtskip

mask

Use: To change and/or check the state of a specified bit (or bits)
in a flag word.

Ac Entry Return

0 x x

1 x x

2 table pointer pointer to flag word

5 x address of command word

Cc x x

The ''command"' in the calling sequence may be omitted if it is desired

to check the state of a flag without changing it, or it may be one of the

following words:

SET Set the masked bit(s) to one.

RESET Reset the masked bit(s) to zero.

TOGGLE Toggle the masked bit.

The ''displacement” in the calling sequence is the number of words from

the pointer in A2 to the desired flag word. The ''skip’ in the calling

sequence may be omitted for an unconditional non-skip return, or it

may be one of the following words:

SKI PZ Skip if all masked bits are zero.

SKIPO Skip tf any masked bit is one,

Typical usage of FLAGCHANGE is shown ,by the following examples:

LDA 2,,SLT LDA 2,.RTA

FLAGCHANGE FLAGCHANGE

SET+FLAG TOGGLE+FLW. +SKIPO

2000 4

The first example will set bit 10 of the FLAG word in the table pointed

to by. SLT and will non-skip return.

The second example will toggle bit two of the FLW word in the master

port's RTA and will skip return if the result in bit two is a one, or non-skip

return if the result in bit two is a zero.

Note: For a TOGGLE command, only one bit in the mask may be a one.

Interrupts are disabled for a short time, then re-enabled.

Copyright (C) 1974

Educational Data Systems 4-12

Subroutine: BUMP REGNANT USER (Group 1)

Calling Sequence: JSR @. BUMP or LDA 3, address

JMP @. BUMP

Use: Bumps the regnant user from core,

Ac Entry Return

0 x x

1 X x

2 x x

3 see text 4

C x x

Any processor which does not complete its task within one-half second or
less must periodically check the Run Time Limiter (RTL). If RTL becomes

zero or negative (indicating end of time slice) then BUMP should be called.

Specifically, the processor should pericdically execute the instruction

sequence.

LDA 0, RTL

NEGL# 0,0,SNC

JSR @. BUMP

The processor's Swap-Out and Swap-in subroutines must save and restore
any information . will be required for the next time slice. Such
information is usually stored in the user's active file or in the FMAP
cells of the active file header,

The second caliing sequence may be used if control is to be given to the

processor ata different location whe brought in for the next time slice.

Otherwise, control will resume at the instruction immediately following

the JSR @.BUMP.

Copyright (C) 1974

Educational Data Systems 4-13

Subroutine : LOAD USER'S ACTIVE FILE (Group 1)

Calling Sequence: CALL

LUSR

Use: Loads the regnant user's active file into core.

Ac Entry Return (skip)

QwnNr O&O Ae A i a aw Mm MM
LUSR is usually called by a processor's swap-in subroutine. There are

two possible returns as follows:

Non-skip if the file type of the active file is not the same as the file

type of the processor

AO=file type of active file

Al=d(active file header)

A2=a(HBA)

Skip if file types match; the active file has been loaded into core

In either case, HBA will contain the active file header.

Copyright (C) 1974

Educational Data Systems 4-14

Subroutine: EXIT (Group 1)

Calling Sequence: CALL

EXIT

Use: Exits from a processor.

Ac Entry

0 x

1 x

2 x

3 x

C x

When processor has finished its task or has been aborted for any reason

(such as a non-recoverable error or an ESCAPE) then the processor

must jump to EXIT to return the port to systern control mode; i.e., to

cause a # symbol to be printed and to set up SCOPE as the user's processor.

If an output is currently in progress, it will bé allowed to finish before

the # Symbol is printed.

Subroutine: START IPL (Group 1)

Calling Sequence: JMP @.STPL

Use: Aborts all system operations and perform an Initial Program Load.

Ac Entry

WN KF © am em Mm OMC

START IPL wiil be called by RECOVER if the Recover Inhibit Flag is set.

Copyright (C) 1974

Educational Data Systems 4-13

Subroutine: FAULT | (Group 1)

Calling Sequence: JSR @.FALT or JSR @.FALT

n*K+NOP

Use: Aborts a process due to an illegal condition or a hardware failure.

Ac Entry

0 x

1 xX

2 x

3 x

C x

FAULT is a DISCSUB, but it has a special calling routine in core to

prevent nesting if it is called by another DISCSUSB.

FAULT prevents swapping while it types out a status message giving

the trap number and location and the contents of all registers and the

carry flip-flop. If the call was from another DISCSUB, then the location

in the DISCSUBS file is also given. This status message is printed

on the regnant user's terminal or on the master terminal if there is

no regnant user.

If an expression of the form n*K+NOP follows the JSR @.FALT then

the value of n, where nis any value from zero to 177 octal, is printed

in decimal as the trap number. If the expression n*K+NOP is not given

then trap number zero is assumed.

FAULT waits for the type out to finish rather than calling WONA. Only

the interrupt handling tasks will be processed during the type out. After

completion, FAULT aborts the regnant task and transfers control to

the system via the RECOVER routine.

Refer to 'Trap Messages" in the Manager's Reference Manual for a

discussion of the trap message itself. Refer also to Appendix 2 of the

same manual for a list of currently assigned trap numbers.

Copyright (C) 1974

Educational Data Systems 4-16

Subroutine: BINARY MULTIPLY (Group 1)

Calling Sequence: JSR @. BMUL

Use: Multiplies two unsigned 16-bit binary integers to produce a 32-bit

product.

Ac Entry Return

0 Multiplier Product

1 x unchanged

2 Multiplicand unchanged

3 x Product overflow

C x x

Return is non-skip, The 32-bit product is returned in registers AO

and A3 with the most significant half in A3.

Subroutine: BINARY DIVIDE (Group 1)

Calling Sequence: JSR @. BDIV

Use: Divides two unsigned 16-bit binary integers to produce a 16-bit

quotient and a 16-Lit remainder.

Ac Entry Return

0 Divisor unchanged

1 Dividend Remainder

2 x 0

3 x | Quotient

C x x

Return is non-skip. The quotient returned in A3 will be equal to the

integer part of dividend/divisor, and the remainder in Al will be

less than the divisor.

Copyright (C) 1974

Educational Data Systems 4-17

Subroutine: CONVERT DATE TO ASCII (Group 1)

Calling Sequence: CALL

CNVDA

Use: Converts the system's representation of the date and time to an

ASCII string.

Ac Entry Return (skip)

0. see text x

1 B(dest) see text B(terminator)

2 a(clock) see text x

3 x x

C x x

If (Al) #0 it will be used as the byte address to store the string, and (AO)

must contain the dimension of the destination string.

If (A1) = 0 then the string will be stored in the regnant user's I/O buffer,

and (AO) is ignored.

If (A2) = 0 then the system's clock is used to determine the current date

and time, which is then converted to a String of ASCII characters in the

form

JUN 16, 1973 14:25:08

The string is exactly 22 characters long, plus a zero byte as a terminator.

The time, which is based on a 24 hour clock, is given in hours, minutes,

and seconds.

If (A2)+# 0 then it must be a pointer to the date and time to be converted,

which must be in the form:

(A2) —»| hours after 1 January 1973

part of hour in tenth-seconds

Both values are in binary; the hours value must assume that all months

have 31 days.

There are two possible returns as follows:

Non-skip if illegal time value (second word > 35999 decimal).

Skip if conversion successful

Copyright (C) 1974

Educational Data Systems 4-18

Subroutine: CONVERT ASCII TO DATE (Group 1)

Calling Sequence: CALL

CNVAD

Use: Converts an ASCII string representing a date and time to a pair

of binary words. |

Ac Entry Return (skip or non-skip)

0 x hours afterl1 January 1973

i B (string) part of hour in tenth-seconds

2 x terminating code

3 x B (next byte of string)

C Xx x

The string representing the date and time may be in either of two

forms as follows:

FEB 20, 1973 11:09:56

or

73,20, 2,11, 09, 56

where the second string is the same form as requested when an IPL is

performed. In either case, the first two digits of the year, the

seconds" value, and all leading zeroes are optional. Spaces, commas,
and colons are interchangeable as field separators, and the string may

be terminated with a zero byte, a RETURN code, or any other character

that is not acceptable as part of the date/time representation.

Both values returned are binary integers... The "hours" value assumes

that all months have 31 days. |

There are two possible returns as follows:

Non-skip if the string is not an acceptable representation of the

date and time; any value already converted is returned in

the registers

Skip if the complete date and time have been converted (with the

possible exception of the ''seconds'' value, which is assumed

to be zero if not given)

Copyright (C) 1974 |
Educational Data Systems 4-19

Subroutine: CONVERT DATE AND TIME Group 1)

Calling Sequence: CALL

CNVDT

Use: Reads or sets the system's real time clock.

Ac Entry Return (skip)

0 x x

1 x x

2 a(argument pointer) x

3 x x

C x x

where the argument pointer list contains pointers to a string pointer

in the form:

Register A2

| 0| address of string argument

byte 1 byte 2

byte 3 byte 4

1| address of ~
dimension byte 9 byte 6

etc.

There are two modes of operation as follows:

1) If byte 1 of the string is zero then CNVDA is called to read the

system's real time clock and convert it to a string as described

in the write up for that subroutine. This mode will always skip

return.

2) If byte 1 is non-zero then a non-skip return will occur unless the

user is logged on to the Manager or the System account, in which

case CNVAD is called to convert the string to two binary words

as described in the write up for that subroutine. If CNVAD does

a skip return with a RETURN or a zero byte as the terminating code

then the result is placed in the system's real time clock, all active

users! log-on times are adjusted to avoid erroneous connect times,

and CNVDI does a skip return. Return will be non-skip if any

error is detected, and the system's clock is not affected.

CNVDT is accessable as CALL 99 from a BASIC program.

Copyright (C) 1974

Educational Data Systems 4-20

Subroutine: SYSTEM COMMAND TRANSMITTER (Group 2)

Calling Sequence: CALL

| SYSCO

Use: Transmits a system command to another port.

Ac Entry © . Return (skip)

0 x x

1 x x

2 a (argument pointer list) x

3 x x

C x x

BSA x x

HBA x x

HXA x x

where the argument pointer list contains pointers to a port number and

a system command string in the form:

Register A2

0 |address of port number

BCD value

Argument pointer list
command string

0} address of —

byte 1 byte 2

number type byte 3 byte 4

1] address of — byte 9 byte 6

dimension. etc.

SYSCO transmits the system command given to the specified port as if

a user at that port had typed the same system command in response to

the system's # prompt character. |

The destination port must be an interactive port, but it need not have a

terminal connected to it. If there is no terminal associated with the

specified port, the user should be cautioned that any non-channel input
or output will freeze that port's operation. The port must be in the

system command mode in order to accept anew system command. The

caller may place a port in the system command mode by supplying a

'\' character (shift L) as the command string.

SYSCO is accessable as CALL 98 from a BASIC program.

Copyright (C) 1974

Educational Data Systems 4-21

