
Educational Data Systems 17981 Sky Park Circle, Irvine, California 92707

INTERACTIVE REAL-TIME

INFORMATION SYSTEM

(IRIS)

SYSTEM

REFERENCE MANUAL

This manual is intended for use by persons intending to extend IRIS by the

addition of anew module. It contains all information necessary to write a

new processor, subroutine, or peripheral driver for the IRIS system.

The reader should refer to the IRIS Manager Reference Manual for infor-

mation regarding operating the system, adding new modules to the system,

and using utility packages. Refer also to the Glossary in the IRIS User

Reference Manual.

This manual is to be used only by a licensee of an IRIS system and only for

the purpose of extending or modifying an IRIS system. No portion of this

manual may be reproduced in any form without written permission of

Educational Data Systems.

Disclaimer: Every attempt has been made to make this manual complete,

accurate, and up todate. However, there is no warranty, express or im-

plied, as to the accuracy of the information contained herein or to its

suitability for any purpose. This manual is offered only subject to this

‘disclaimer.

Copyright (C)1974 | | August 1974

Educational Data Systems EDS 1019-4

IRIS System Reference Manual

TABLE OF CONTENTS

1. INTRODUCTION TO IRIS

.1 Components of IRIS

Initial Program Load Sequence

Disc and Core Usage

Disc File Structures

File Types

Formatted Data Files

Contiguous Data Files

Control and Information Tables

Flag and Status Words

Number Types and Formats

]

}

]

1

l.

]

]

1

1 oo wan Dom Lf W WH—_— —

2. HOW TO WRITE A PROCESSOR

Core Locations and Entry Points

Sequence of Events

Use of Active File

Swap In Procedure

Swap Out Procedure

Use of System Subroutines

Input/Output

File Access

Processor Type

Debugging Procedures

oONwMONMNMO NNN ND LO oo wonton uh whndA) —

3. DISC -RESIDENT SUBROUTINES

3.1 How to Write a DISCSUB

3.2 How to Add a DISCSUB to IRIS

3.3 How to Debug a DISCSUB

3.4 How to Write a DISCSUB for Business BASIC

DDING DEVICES TO THE SYSTEM

1 Interactive and Peripheral Device Drivers

2 How to Write a Peripheral Driver

3 How to Write an Interactive or System Device Driver

4 How to-Write a Multiplexer Driver

.9 How to Drive a Peripheral on a Multiplexer

6 How to Write a System Subroutine Replacement

7 How to Write a System Disc Driver

8 How to Write a Disc Driver for BZUP

YSTEM ASSEMBLIES

.1 Software Definitions Tape

.2 Page Zero Definitions Tape

.3 How to Assemble System Components

APPENDIX 1: System Subroutines

APPENDIX 2: Canned Messages

oS

o

oD

O

Copyright (C) 1974

Educational Data Systems L

1. INTRODUCTION TO IRIS

IRIS is an Interactive Real-time Information System designed to support

real time data acquisition, communications, interactive timesharing,

and background processing simultaneously. To be practical for use in

such a variety of applications a system must be modular and open-ended;

that is, it must be easy to configure a system using only the necessary

modules such as peripheral drivers, task processors, etc., and it must

also be easy to add new drivers, tasks, etc. at any time. IRIS was

designed to meet these goals, and this manual is intended for. the

programmer who must write such an extension and add it to IRIS.

1.1 Components of IRIS

The IRIS environment consists of several disc files as follows:

BZUP The Block Zero Utility Package, which resides in block

zero of the disc (each Logical Unit), is brought into core

from the system disc by the Initial Program Load (IPL)

bootstrap. BZUP may be used for debugging purposes, or

the IPL sequence may be allowed to continue, in which case

the REX disc file is brought into core and initialized.

TEX The TEX file contains the remainder of the IPL routine

(in the file's header), the Time-sharing Executive (TEX)

which occupies approximately the first 4K words of core

(excepting locations 200 through 577 octal), the System

Initializing Routine (SIR) which is executed once after the

IPL, and P.S. which may be used for troubleshooting

SIR and TEX, .

INDEX The INDEX contains the Filename and disc address of each

file on the disc. Each Logical Unit has its own INDEX,

DMAP The Disc Map indicates which disc blocks are in use and

which are available for creating new files or expanding old

ones. Each Logical Unit has its own DMAP.

DISCSUBS A number of subroutines that are a requisite part of the

operating system but are used too infrequently to be kept in

core are stored in the Disc- Resident Subroutines (DISCSUBS)

file. Many of these subroutines are also used by the various

processors. The system manager may specify that certain

of these subroutines are to become core-resident at next

IPL time by setting flags in the CONFIG file.

Copyright (C) 1974

Educational Data Systems 1-1

ACCOUNTS

CONFIG

The ACCOUNTS file contains the Account ID, priority, Oe

assigned Logical Unit, privilege level, account number si

(group and user), CPU and connect time allotments, disc

usage information, and accumulated net charges for each

user's account.

This file contains all information about the current configu-

ration of the system, a system disc driver for each known

type of disc controller, and a disc driver for BZUP for each

type of disc controller. The system manager may change

the system configuration by modifying this file and then doing

an IPL. All other components of IRIS are configuration

independent. |

The following processors are also required in the minimum IRIS environment:

SCOPE

BYE

DSP

INSTALL

REMOVE

PLOAD

The System Command Processor analyzes all system commands

and provides the means for a user to get from one processor

to another.

This is the Log-on/Log-off processor which keeps track of

the user's CPU time and connect time usage and updates the

user's entry in the ACCOUNTS file accordingly.

The Disc Service Processor is used for debugging and

updating the system or any file. DSP may be used while the

system is in normal use.

The Logical Unit Installation processor is used to bring up

each Logical Unit other than the system disc and when

installing a disc pack on any changeable cartridge disc drive.

The Logical Unit Removing processor is used when removing

a disc pack from a changeable cartridge drive or when it is

desired to destroy all data on a given Logical Unit.

The Program Loader is used to load new files from paper

tape to update or extend the system.

Other processors, such as BASIC, RUN, SAVE, KILL, COPY, and LIBR,

are optional components of the complete IRIS environment, but they are not

required for operation of the system.

Copyright (C) 1974

Educational Data Systems 1-2

1.2 Initial Program Load Sequence

Initial Program Load (IPL) must be performed after a crash or after

using the system in batch mode. IPL brings a fresh copy of TEX into core

from the disc, and the System Initializing Routine (SIR), which is

included in the TEX disc file, performs all required initializing functions.

The first step of an IPL is to get BZUP from the system disc block zero

into core page zero. Refer to the section on Start Up and Shut Down

Procedures in the IRIS Manager Reference Manual for the various methods

of starting IPL. Also refer to the sections on BZUP and P.S. if the IPL

sequence is to be interrupted for use of a debugging package.

Location 377 is overlayed by a JMP instruction in the last word of BZUP.

This transfers control to a routine in BZUP which copies BZUP to the 400

words (octal) starting at location LBZUP (defined in the Software Defini-

tions). LBZUP is currently 20000 (octal). If switch zero is up, control

is then transferred to BZUP. If switch zero is down, then-the TEX

header is loaded into core, and control is passed to the IPL routine in

the TEX header.

IPL reads the remainder of the TEX file into core by use of the disc

driver in BZUP. If the switches are set to the starting location of

P.S. (currently 21000 octal) control is then transferred to P.S.; other-

wise, control goes to SIR. Control may be passed from P.5S. to SIR

by executing a jump to location LSIR (defined in the Software Defini-

tions). LSIR is currently 10000 (octal). SIR examines the CONFIG

file to bring the necessary disc drivers into core, sets up LUFIX

and LUVAR tables for each disc, sets up the DISCSUB location table

for CALL, locates the SCOPE, DSP, DISCSUBS, MESSAGES and

BYE files and puts their disc addresses in the information table,

requests a type-in of the date and time, sets up each port's Resident

Table Area (RTA), Data File Table (DFT), and Input/Output buffer,

scans the INDEX to create a fresh copy of the Disc Map (DMAP), and

creates an active file for each port. Control is then transferred to the

START routine in TEX where the interrupt system is initialized, and

finally to the idle task.

SIR allocates space for Data File Tables, I/O Buffers, etc. in the shaded

areas of the core map (see Section 1.3). The space above RTA is filled

first, then the area between ENDPS and BPs, and finally below RTA.

This sequence is used because some multiplexers require the RTAs to

be in a particular location in core.

Copyright (C) 1974

Educational Data Systems 1-3

Figure 1.1: Map of Core

The diagram below shows how core is used by IRIS.

Location or label

>.

17? —

Contents

TEX Page Zero

200 — —— |"Processor

577 _..| Page Zero

600 —— | INFO |

Disc Driver

PATSP— | Patch space

EN DPS.— — \

BPS__ Nd
| Processor

User storage

BSA

BSA

HBA

HBA

HXA

HXA

SSA

SSA

ABA

ABA

ura Y\N\

RTA

Copyright (C) 1974

Educational Data Systems 1-4

Remarks

Pointers, constants,

decimal accumulator, etc.

This block is part of the

processor file.

System information table.

Core-resident portion of

the Time-sharing Executive

Driver for system disc.

As specified by manager.

see note below.

This area and locations 200-

977 are occupied by one processor

such as BASIC, RUN, SAVE,

LIBR, etc. Space not occupied

by the processor may be used

by it for the user's active file.

Block Swap Area

Header Block Area

Header Extender Area

Subroutine Swap Area

Auxiliary Buffer Area (optional)

See note below.

Resident Table Area

Note; shaded areas are allocated

by SIR for Data File Tables,

Drivers, I/O Buffers, etc.

(see Section 1.3).

1.3 Disc and Core Usage

Each Logical Unit has a copy of BZUP in Real Disc Address zero, an

INDEX whose header is in Real Disc Address one, an ACCOUNTS file

whose header is in Real Disc Address three, and a DMAP (disc block

usage map) whose header is in cylinder zero, track one, sector zero.

Figure 1.2 shows the structure of the disc map. The system disc

(Logical Unit zero) also has the TEX (Time-sharing Executive) file whose

header is at Real Disc Address two, and a DISCSUBS file which immed-

iately follows DMAP. These files must be forced into these specific

locations so that they can be found without looking through the INDEX.

Because of this it is necessary that tracks zero and one of each Logical

Unit do not cause hard dataerrors. Also, since DMAP and DISCSUBS

are forced into successive blocks on Logical Unit zero, there must be

enough good tracks on the system disc to hold these files without errors.

Any other blocks on any Logical Unit may be marked as "bad" to pre-

vent their use by any IRIS file.

Figure 1.1 is a map depicting the use of core memory by IRIS. The

first 128 words are occupied by various pointers and constants used

by TEX. The decimal accumulator (DA), which is used for all decimal

arithmetic and input/output is also in this area. The next 256 words

(one disc block)are part of theregnant processor. Next comes the

system information table which contains various configuration and

status information. The Real-time Executive occupies approximately

the next 4K words, following which is patch space up to the defined

Beginning of Processor Storage. The various disc block buffer areas

begin near the top of core, and the processor may use all of the space

from BPS to BSA.

The Resident Table Area (RTA) may be forced into a specific location

by hardware restrictions; therefore, there may be space left on each

side of it. SIR then allocates space in the shaded areas of the core

map for Data File Tables, I/O buffers, stacks and tables used by TEX,

peripheral drivers, etc.

Copyright (C) 1974
Educational Data Systems 1-5

Figure 1.2: Structure of Disc Map (DMAP)

0 cylinder

] blocks available

2 Track 0 map

3 Track 1 map

4 Track 2 map

3 Track 3 map

6 cylinder

7 blocks available

10 Track 0 map

il Track 1 map |

that track. A ‘'one".

Pr

There are WCM words per cylinder

entry in the Disc Map. WCM is

defined as thenumber of tracks

per cylinder plus two.

Real disc address of first block

in this cylinder.

Total number of blocks available |

(not currently in use) in this cylinder.

Each track mapword maps the available blocks (sectors) in

bit indicates that the sector is unavail-

able orin use, and a ''zero" bit indicates an available sector.

The least significant bit represents sector zero. Bits at

left end of word representing non-existant sectors are set

to all ones.

The above example assumes four disc surfaces (four tracks per cylinder).

The DSPS cells and FMAP cells of the DMAP file header are used for the

"bad blocks" list, which is terminated by a zero word. Up to 80 blocks

may be listed as bad on each Logical Unit.

Copyright (C) 1974

Educational Data Systems 1-6

Figure 1.3: File Header Displacements

Displacement

symbol [value Attribute (see text for details)

NAME 0 Filename (seven words)

ACNT t privilege level, account number

TYPE 10 file type and protection

NBLK 11 number of blocks in the file

STAT 12 file status

NITM 13 number of items per record

LRCD 14 length of each record (# words)

NRPB 15 number of records per block

NRCD 16 number of records in file

COST 17 charge for access to file (in dimes)

CHGS 20 charges for file access (income)

LDAT 22 last access date (hours, tenth-seconds)

CDAT 24 file creation date (hours, tenth-seconds)

CATR 26 CATALOG record number

27 (27-47 not currently assigned)

DSPS 50 storage reserved for DSP (20 words)

FMAP 70 data file format map (101 words)

HTEM 171 temp cell used bysystem subroutines

STAD 172 starting address (driver or batch program)

DREP 173 disc address of replacing file

LUND 174 Logical Unit of data blocks

CORA 175 core address of first data block

UNIT 176 disc drive Logical Unit number

DHDR 177 Real Disc Address of header

200 200-377 may hold Real Disc Addresses

Note: all values are in octal.

Copyright (C) 1974
Educational Data Systems 1-7

1.4 Disc File Structures

IRIS provides facilities for two structurally different forms of disc

files: random and contiguous. Both consist of a header and a number

of data blocks. The basic difference between the two forms is that

a random file's header contains the Real Disc Address of each data

block while the contiguous file's header contains only a value indicating

the total number of blocks in the file. The differences are discussed

in detail in Sections 1.6 and 1.7. The remainder of this section will

describe only the characteristics of a disc file that are common to both

forms.

Each file's header contains its Filename, all of the file's attributes,

and information regarding the location of all of the file's data blocks.

Displacements are defined in the Software Definitions for all of the

attributes. The displacement symbol and its currently assigned value

(in octal) are given in Figure 1.2 along with a brief description of each

attribute; more detailed descriptions follow. Bit 15 is the most signi-

ficant bit, and all values are carried in binary except as noted.

NAME - The Filename is a string of up to fourteen ASCII characters,

not including the Logical Unit number.

ACNT - This word is divided into three fields:

bits 15,14 Privilege level

bits 13-6 Account group number

bits 5-0 Account user number

TYPE - The bits in this word are used as follows:

bit 15 (not used)

bit 14 read protected (against users at any
bit 13 write protected lower privilege level)

bit' 12 copy protected

bit 11 read protected (against users at the

bit 10 write protected same privilege level)

bit 9 copy protected

bit 8 runnable processor

bit 7 load active file when selected

bit 6 initiate input before first swap-in

bit 5 (not used)

bits 4-0 contain the file's type (see Section 1. 5).

NBLK - The total number of disc blocks currently allocated to the

file, including the header.

Copyright (C) 1974

Educational Data Systems 1-8

STAT - Each bit of the file status word is a flag with a specific meaning

as follows:

bit meaning

15 File is incomplete (being built, not yet closed)

14 + «=A file is being built to replace this file

13 File is to be deleted when no longer open

12 +#£=File is mapped (formatted data file)

11 File is locked (has been opened with an OPENLOCK)

10 File is not deleteable

0 File is extended (disc addresses are extender blocks)

Bits nine through one are not currently in use. A file that is being
built and is locked (bits 15 and 11 both set) cannot be closed; an

attempt to CLOSE the channel will CLEAR and delete the file.

NITM - In a formatted data file (type 31) this word specifies the number

of items in each record, including the record written flag if used.

LRCD - In any data file this word specifies the length (number of words)

of each record.

NRPB - The number of records per block has meaning only for a formatted

data file. In all other files, including contiguous data files, this word must

be zero.

NRCD - This is the total number of records contained in a contiguous

data file, or the number of records through the last one currently written

(including lower number records not yet written) in a formatted data file.

COST - This is the amount that will be charged to other users who access
(open) this file. It is carried as an unsigned decimal (BCD) integer which

indicates a multiple of ten cents, thus allowing $999. 90 as the maximum

cost.

CHGS - This is the accumulated amount that has been charged to other

users for access to this file. It is carried as a two-word floating-point

decimal number, thus allowing charges to accumulate to $99, 999. 90 before

the least significant digit of the cost is ignored due to truncation of the

charges to six digits.

LDAT - The last access date is copied from the system clock each time

the file is opened by any user. The first word represents hours since

1 January 1973, and the second word represents the remaining part of an

hour in tenths of a second,

Copyright (C) 1974
Educational Data Systems 1-9

CDAT - The file's creation date is in the same form as LDAT, but it

is set from the system clock only once when the file is initially built.

CATR - If the file is cataloged then this cell will hold the number of

the record, in a file whose Filename is CATALOG, which contains the

catalog entry for this file.

DSPS - These sixteen words are reserved in each file's header for use

only by the Disc Service Processor and other system routines.

FMAP - These 65 words are used only in a formatted data file (see

Section 1.6). The format map cells in an active file header may be used

for temporary storage by a processor since the active file can not be

formatted.

HTEM - This word is reserved for temporary storage by the allocate,

deallocate, and account lookup system subroutines.

STAD - For a machine code (batch or executable) file, this word indicates

the program's starting address, or bit 15 is set to indicate that no starting

address has been specified. In a peripheral device driver file, this word

will be set by SIR to the actual core address of the initializing routine's

entry point after the driver has been brought into core. The STAD word

is not used for other types of files.

DREP - If another file is being built on the same Logical Unit and with

the same Filename to replace this file, then this cell will contain the

Real Disc Address of the replacing file's header.

LUND - The Logical Unit number for the data blocks will be different from

UNIT only if this is a copy of the file's header that has been placed on the

system disc for faster access to the data blocks.

CORA - This is the core address of the first data block, and all other data

blocks start at 400 word (octal) increments from the first. If an entire block

of core addresses is unused then there will be no disc block allocated, and

the corresponding cell in the disc address list (starting at 200 octal) will be

zero.

UNIT - The number of the Logical Unit where this file resides.

DHDR - The Real Disc Address of the file's header (on the specified Logical

Unit).

Copyright (C) 1974

Educational Data Systems 1-10

Disc Address List - Cells 200 through 377 contain the Real Disc

Address (on the Logical Unit specified by LUND) of each data

block in the file unless this is an extended or a contiguous file.

In the case of an extended file, this disc address list points not

to data blocks but to header extender blocks, each of which con-

tains up to 256 Real Disc Addresses of data blocks. The first

address in this list points to the extender for the first 256 data

blocks, etc. A contiguous file has no disc address list; all

NBLK-1 data blocks are at sequential disc addresses immedi-

ately following DHDR.

1.5 File Types

The lower five bits of the TYPE word in a file's header contain the

actual file type discussed under ''How to CHANGE File Characteristics"

in the IRIS User Reference Manual. The type is used by SCOPE to

match a program file to its related processor and by LUSR to load

the active file only if its type matches the processor. The use of

the file type is discussed further in Section 2 of this manual.

1.6 Formatted Data Files

Any file that is mapped (see STAT and FMAP in Section 1. 4) can

be accessed as a formatted data file provided it is not protected

against the caller. Each record in a formatted data file has the

same format as specified by the format map. Each word in the

map specifies the format and displacement into the record of the

respective item in the record (word zero of the map for item zero,

word one of the map for item one,etc.) The top seven bits of each

word indicate the item type according to this table:

0 end of map

1

2

3

4. floating point binary

5 decimal (BCD)

6

7

10

11 ASCII string

12 unsigned binary

14

77 file mark

Copyright (C) 1974
Educational Data Systems 1-11

1.

Types left blank are not currently defined. See Section 1.10 for

more information on number types.

The lower nine bits of each word indicate the item's displacement

(number of words from the beginning of the record to the beginning

of the item). The size of each item is determined as the difference

between its displacement and the following item's displacement.

Therefore, the map is terminated by an "end of map’ dummy item

to determine the size of the last item.

A formatted file may be either a non-extended random file (requiring

two disc transfers per access) or an extended random file (requiring

three disc transfers per access) but may not be a contiguous file.

The system's READ ITEM and WRITE ITEM routines use the format

map to locate the item addressed by the caller and to check for

the correct item type. However, since it is a random file, only

the blocks into which data are actually written need be allocated to

a formatted file.

Contiguous Data Files

A contiguous file consists of only a header and the data blocks. There

is no format map; the only "format" is the record length. Since there

is no disc address list in the header, the entire file must be allocated

when it is first built. No holes are allowed in the file (all blocks must

be allocated whether in use or not), and the file can not be expanded

at a later time except by building a new larger file and copying the data.

Although it is up to the caller (a processor or an application program)
to determine item locations and types within each record, the contiguous

file does offer the sophisticated user several advantages over the for-

matted file:

‘ The maximum record length is 65535 words, compared

' to 256 words in a formatted file.

° The maximum size of a file is 65534 data blocks, compared

to 32768 data blocks in a formatted file.

° Records are packed tightly, spanning block boundaries if

necessary, rather than storing an integral number of records

per block.

° A single data transfer may span record boundaries since

the address (record number and byte position) specify only

a Starting location.

Copyright (C) 1974

Educational Data Systems 1-12

Note:

° The record's location is calculated from information

in core rather than reading the file's header for a

format map, thus saving up to two disc accesses per

data transfer.

e Although all records are the same length, their formats

may be different as determined by the application program.

it is strongly recommended that the record length be made a power

of two so that records are packed without spanning block boundries since

transferring such a record requires two or more disc accesses.

1.8 Control and Information Tables

IRIS uses several core-resident system control and information tables as

follows:

INFO

LUT

This table contains various system information such as the current

real time, CPU speed, disc addresses of certain processors and

files, size of core, number of Logical Units, etc. Its location,

INFO, is specified in the Software Definitions tape as are displace-

ments for all items in the table. A page zero pointer to the

beginning of the table is defined in the Page Zero Definitions.

Refer to a listing of the Software Definitions for a complete list of

all items in the INFO table.

The Logical Unit Table contains a three-word entry for each active

Logical Unit. Each entry consists of:

LUFIX pointer

LUVAR pointer

Logical Unit number

see Section 4.7 for descriptions of the LUVAR and LUFIX tables.

The Find Logical Unit Tables subroutine may be used to look up

the LUFIX and LUVAR for a given Logical Unit.

Copyright (C) 1974

Educational Data Systems 1-13

RTA Each active port has a Resident Table Area which contains

various information about the state of the port and the user on

the port. The Regnant User Pointer (RUP) in page zero points

to the RTA of the user whose processor has control of the

system at any given time. Refer to a listing of the Software

Definitions for descriptions and displacements of all items in

the RTA.

DFT Each active port also has a Data File Table which can be found

via a pointer in its RTA. Each DFT has six words per channel

as described in the Software Definitions.

1.9 Flag and Status Words

One of the items in each RTA is a flag word defined as FLW. Each bit

in FLW is a flag as follows (bit 15 is the most significant bit):

bit meaning in FLW

15 Binary input mode (pass byte as is)

14 Binary output mode (no parity)

13. . DSP breakpoint is set

12 DSP is active on this port

11 Signal will activate from pause

10 A break has been detected

9 Suppress RETURN in RUN

8 System is to swap out active file

7 Output is active

6 Input is active

3D End of pause will cause auto log off

4 Ignore CTRL E (log-on mode)

3 Ignore CTRL O

2 Suppress XOFF and XON

1 Suppress parity check

0 Echo input characters

Copyright (C) 1974

Educational Data Systems | 1-14

One of the items in each DFT is a status word defined as STS. Each bit

in STS is a flag as follows (bit 15 is the most significant bit):

bit meaning in STS

15 Record is locked

14 File is write protected

13 File is contiguous

12 File is not formatted

11 Peripheral device

10

9 (reserved for byte number overflow)

Displacement of

record into block

(number of bytes)OrRFnN WHOM AN ©
A blank entry in either of the above tables means that the bit is not

currently in use.

1.10 Number Types and Formats

Nine different number formats are used in the IRIS system. Two

of the forms, signed and unsigned binary integers, can be manip-

ulated directly with the computer's machine code instructions. A

third form is floating point binary. The other six are variations

of binary-coded-decimal formats. All nine forms are shown in

detail in Figure 2.4 along with some examples of a decimal num-

ber's appearance in octal notation. The floating binary and BCD

formats are manipulated by software subroutines or by use of

the EDS-10 Decimal Arithmetic Unit.

Copyright (C) 1974

Educational Data Systems 1-15

Figure 1.4: Number Formats

Unsigned binary integer (type 12 in a format map)

15

16-bit binary integer

Signed binary integer (not used in a data file)

154,14 0

15-bit binary integer

S| (two's complement if < 0) e

Floating point binary (type 4 in a format map)

word 0 word 1

15 0 15 9|8 1; 0

absolute value of mantissa _ exponent of two

(23-bit binary fraction) | (excess 128) S

Unsigned BCD (not used in a data file)

15 12|11 817 43 0 |

BCD BCD | BCD BCD

digit digit digit digit

Signed BCD integer (see note 4)

15}14 12411 87 4 13 01

5] 3-bit BCD BCD BCD

digit digit digit digit

Floating point BCD (see notes 4 and 5)

word 0 word 1

15 12;11 8,7 413 O 415 _12 11 847 110

BCD | BCD | BCD | BCD BCD > BCD characteristic

digit | digit | digit | digit digit digit (see note 6) s

Copyright (C) 1974

Educational Data Systems 1-16

Six word unpacked BCD (not used in a data file)

word 1 word 2

O715 01} 15 O715
al

word 0

15

bo |p |p |p] p |p |p{ pr] pv [p p|D/D]pD]|pD |b

word 4 word 9 |

Ls O{ts 1/0 D represents a BCD digit
characteristic not used

(see note 6) (all zeroes)]|S

Notes:

1) A heavy dot represents the binary point or decimal point of the
mantissa.

2) An S represents the sign bit. In all cases, zero means positive,

and one means negative.

3) The numbers above each figure are bit position numbers.

4) Any signed BCD integer or floating point BCD number is type § in

aformat map. The number size is determined by the item size

(see Section 1.6). The number is carried as absolute value and

sign.

5) The three word and four word BCD formats are the same as the

two word format shown, except that the mantissa holds ten or

fourteen BCD digits, respectively.

6) The characteristic of a floating point BCD number is a binary

integer representing a power of ten. In any packed form it is

carried in excess 64 notation, but in the six word unpacked form

it is carried as an ordinary 16-bit binary number which will be

in two's complement form if negative.

Copyright (C) 1974

Educational Data Systems 1-17

2. HOW TO WRITE A PROCESSOR

A processor is a machine language program written ina specific config-
uration for proper interaction with the Time-sharing Executive (TEX). Each
IRIS system command, such as SAVE, LIBRor BYE, is executed by a pro-

cessor. Likewise, the user languages and services, such as BASIC, TUTOR,

EDIT, and ASSEMBLE, are provided by processors. New processors may

be added to IRIS at any time by the system manager, either by using PLOAD

to load a tape provided by Educational Data Systems or by assembling it on

the disc. Other users may write a processor, but only the manager can

make it accessable as a system command. This chapter provides all infor-

mation necessary to write anew processor, add it to the system, debug it,

and make it accessable for general use.

2.1 Core Locations and Entry Points

Core locations 200 through 577 (octal) and locations BPS through BSA-1

are available for use by a processor (see Figure 2.1). BPS (Beginning of

Processor Storage) is defined in the Software Definitions tape, and .BSA

(a pointer to BSA) is in page zero of TEX along with many other pointers

(refer to a listing of the TEX Page Zero Definitions). The available space

may be used as desired by the processor, except that cells 370 through 373

are reserved for pointers to the ''swap-in", ''swap-out'', ''escape'’ and

‘control C" entry points, and the ‘initial entry'' isat location BPS. Usually

the processor occupies the page zero area 200-577 and additional space

starting at BPS, using the space between the end of the processor and BSA

for data and for user program storage. The disc block buffer areas (BSA,

HBA and HXA) may also be used if certain restrictions are observed.

The user's I/O buffer, data file table, and other information are found in

his RTA (Resident Table Area) via RUP (the Regnant User Pointer) in TEX

page zero. RUP is set by the system before swap-in to point to the current

user's RTA. |

2.2 Sequence of Events

The sequence of events in a processor's operation is as follows:

1) A # symbol is printed by SCOPE (the System Command Processor)

as a system prompt character. The user types in a command which

consists of a processor's Filename and may include additional elements

such as the Filenames of program files or text files or other informa-

tion required by the processor. In some cases SCOPE will process

one such element (see Section 2.9). In any case, SCOPE finds and

selects the desired processor and loads the address of BPS into the

URA (User's Return Address) of the user's RTA (Resident Table

Area).

Copyright (C) 1974

Educational Data Systems 2-1

FIGURE 2061: PROCESSOR CORE LOCATIONS

3 THIS IS A TYPICAL PROCESSOR FOR "IRIS"

3 9-10-73

$3 ALL RIGHTS RESERVED

3 COPYRIGHT ¢C) 1973 BY EDUCATIONAL DATA SYSTEMS

3 2415 WINDWARD LANEs NEWPORT BEACHs CALIFe 92660

© TXTM 1 sREQUIRED FOR CORRECT PACKING OF TEXT

e LOC INFO-400 3s ALL PROCESSORS MUST START AT 200

} CELL 200 MUST CONTAIN AN ASSEMBLED VALUE.
3 CDQ NOT START WITH A «BLK OR ANOTHER +L@C)

3 USE THIS AREA FOR CONSTANTSs POINTERSs ETC.

LOC SWAPI SENTRY POINTERS

SW PI 3POINTER T@ SWAP-IN SUBROUTINE

SWP@ : POINTER T@ SWAP-@UT SUBROUTINE

ESCR SPOINTER T@ ESCAPE KOUTINE

CTLC SP@INTER T@ CONTROL C ROUTINE

3 LOCATIONS 374 THROUGH 577 MAY BE USED FOR SWAP-IN AND

3 SWAP-@UT SUBROUTINES @R FOR ANY OTHER DESIRED PURPOSE.

LOC INFO-- s PAGE ZERO OVERFLOW TEST

LOC BPS 3s BEGINNING @F PROCESS@R STORAGE

3 INITIAL ENTRY IS AT THIS POINT.

«END 3END OF THE PROCESSOR

3 ALL REMAINING SPACE UP T@ BSA-1 MAY BE USED BY THE

PROCESS@R AS DESIREDe TYPICALLY» THE ACTIVE FILE

3 IS BROUGHT INTO THIS AREA BY THE SWAP-IN ROUTINE.

SOME SPACE SH@ULD BE RESERVED IN THE PROCESS@R

AREA FOR PATCHES DURING DEBUGGING PROCEDURES.

Copyright (C) 1974

Educational Data Systems 2-2

2)

3)

At the next time slice the system loads the selected processor into core

if it is not already in core, inserts a breakpoint jump if a DSP break-

point has been set in this proccessor on this port, and does a JSR to the

swap-in routine via the pointer in location 370. The swap-in routine

performs any initializing required (see Section 2. 4) and returns to the

system which in turn jumps to the address in URA. The initial entry

(first time in since the command was given) will be at BPS as set up by

SCOPE. Subsequent entries will resume operation (after the JSR to

"swap-in") at the point where execution was terminated in the preceeding

time slice.

The processor performs its intended functions until its time slice is

terminated for one of the following reasons:

a) Processor starts input (JSR @.STI).

b) Processor wants to do output and it already has an output in

progress (CALL WONA).

c) End of time slice (JSR @. BUMP due to RTL £0).

d) User presses ESC or CTRL C.

e) Processor completes or aborts its task (CALL EXIT).

f) Processor detects a hardware or software error (JSR @.FALT).

g) A DSP breakpoint is encountered.

Any of the first three conditions will cause the return address to be

saved in URA for re-entry at the next time slice. Any of the last three

conditions will cause this to be the last time slice. Condition e or f will select

SCOPE as the user's processor; condition g will select DSP and cause

the registers, carry bit, and a 65-word area of core to be saved. The

action of the ESC and CTRL C keys depends upon the current state of the

processor as follows:

a) If the processor is in core for this user at the time ESC or CTRL

C is pressed then the only immediate action is to terminate any

’ output in progress and set the escape flag (ESCF in REX page zero).

The processor Should periodically check ESCF. If ESCF is non-

zero, the processor should clear it and take whatever action is

appropriate.

b) If the processor is not in core for this user at the time ESC or

CTRL C is pressed then the system's action consists of entering

the processor via the pointer in location 372 or 373, respectively,

for the next time slice (after the JSR to 'swap-in"), CTRL C

will act as an escape unless input is enabled.

4) After the time slice is terminated for any of the above reasons (except

a JSR @.FALT or a DSP breakpoint) the system does a JSR to the

processors's ''swap-out' routine via the pointer in location 371. The

Swap-out routine must perform any wrap up required to save information

for the next time slice (see Section 2.5).

Copyright (C) 1974

Educational Data Systems 2-3

2.3 Use of Active File

2. 4

The active file is a special file on the system disc reserved for interim

storage of a processor's data between time slices. There is an active

file associated with each interactive port. The size of each active file is

usually configured to be the size of the area between the end of the BASIC

interpreter (RUN) and BSA, plus a block for its header. TEX provides

facilities to read in and write out the active file; however, the processor's

Swap-out routine must define how much is to be written out.

The processor may not need to use the active file if it has little or no interim

storage to save between swaps. If the processor has no interim storage

requirements it merely has a pointer toa JMP 0,3 in cells 370 and 371 (see

Figure 2.2). If the processor has 101 (octal) or less cells of interim storage

required, it may use cells FMAP through FMAP+100 (octal) in the active file

header for interim storage. The processor must read the active file header

into HBA, copy its interim storage, and write the header out if it chooses this

method. See Figure 2.3 for a programming example. The active file header's

real disc address is contained in AHA of the regnant user's RTA.

If a processor has more than 101 (octal) words to save between swaps then

it must use the active file. See Figure 2.4 for a programming example.

Swap In Procedure

Each time a user's time slice begins, the selected processor is brought

into core and the system does a JSR to its swap-in routine via the pointer

in location 370. If the active file and/or its header is used for storage

between time slices then the Swap-in routine must read it into core and

perform any other initializing required. A "load user’ subroutine is pro-

vided in TEX and may be reached by a CALL LUSR instruction sequence.

LUSR reads the active file header into HBA and, if its type (lower five bits

of TYPE word) matches the processor, the active file is also read into

core, and LUSR does a skip return. LUSR does a non-skip return if the

types don't match. Alternately, the swap-in routine may read the active

file header itself, may read any other file or header into core as required,

or may simply JMP 0, 3 if no initializing is required.

In some cases the swap-in routine must know whether this is the first

or a subsequent time slice. This can be determined by comparing BPS

with the address in URA; equality indicates that this is the initial entry.

Copyright (C) 1974

Educational Data Systems 2-4

2.5 Swap Out Procedure

2. 6

After each time slice is terminated for any of the reasons given in Section

2.2 (except a fault or a breakpoint) the system will do a JSR to the proces-

sor's swap-out routine via the pointer in location 371. If no wrap up is

required then location 371 may point toa JMF 0,3 instruction; other-

wise, the swap-out routine must save all information necessary for the

next time slice. Typically, the swap-out routine will either:

a) copy a temporary storage area in page zero into the FMAP through

FMAP+100 cells of the active file header, and/or

b) set up the core address (CORA) and the disc addresses in the active

file header for use by the system in writing out the active file.

If LUSR was called by the swap-in routine then the system will auto-

matically write out the active file after the swap-out routine has been

called, but the processor's Swap-out routine must read the active file

header into HBA. If only the active file header is used for temporary

storage then the swap-out routine must write it out itself.

The active file contains SAF blocks, including the header, where SAF

(Size of Active File) is defined in the System Configuration tape and may

be modified later in the CONFIG file. The active file header contains the

real disc addresses of these blocks, but another processor may have left

them distributed anywhere in the last 200 words (octal) of the header. Each

cell in the last half of a header is "wired" to a particular core address

relative to CORA (see Section 1.4, File Structure). Also, any disc address

in an active file header may be complemented to indicate that it is inactive

(the block is not to be transferred in or out of core). The processor's

Swap-out routine must set CORA to the first core address of the active file

area in core and position the disc addresses in the header so that there are

disc addresses in true form for blocks that are to be transferred. All

other disc addresses must be retained in the active file header in comple-

mented form. Additional blocks may be allocated to the active file if SAF

blocks are insufficient to hold the active area.

Use of System Subroutines

All system subroutines listed in APPENDIX 1 may be used by a processor.

The most commonly used subroutines are described elsewhere in this

section, and APPENDIX 1 lists all available system subroutines. If the

active file is used,or if the processor uses the disc block buffer areas for

other purposes, then the programmer should be especially watchful for pos-

sible conflicts in the use of these areas. Also, it is illegal to use HBA for

anything other than a file header block.

Copyright (C) 1974

Educational Data Systems 2-5

2.7 Input/Output

All I/O is via a one-line buffer for each port. Pointers in each port's

RTA determine the location of the buffer and the next character position.

It is illegal for a processor to examine or modify the I/O pointers. Sys-

tem subroutines are provided for all required I/O functions as follows:

Start Input is called by a JSR @.STI instruction. The user is bumped

and input is enabled. The processor will be swapped in and control returned

to the next instruction after the user presses RETURN to terminate input.

Access Input Byte’ is then called by a JSR @.ACIB instruction to access

each byte of input. The byte is returned in A2 with the top bit of the ASCII

code set to "one'' and zeroes in the top half of the register. Space codes

(octal 240) are ignored. A RETURN code (octal 215) indicates end of input.

Access String Byte, which is called by a JSR @.ACSB instruction, is

the same as ACIB except that no characters are ignored. Every character

typed by the user will be given to the processor. If AO is zero when ACSB is

called then the byte pointer is not incremented, and the same byte will
be again accessed by the next use of ACIB or ACSB.

Wait for Output Not Active must be called by a CALL WONA instruction

sequence before the first use of any of the following output routines. WONA

will bump the user if an output is already in progress. This allows com-

putation to continue during an output, but prevents a second output from

overlaying one that is in progress.

Store Output Byte is called bya JSR @.STOB instruction to store the

byte in the lower half of register A2 into the user's I/O buffer. The byte

is returned in AO with the top half of the word cleared. Buffer overflow

is prevented by overlaying the last byte in the buffer rather than incrementing

‘the pointer beyond the end of the I/O buffer.

Text Message Output is called by a JSR @. MSG instruction followed

by a.TXTF "text'' pseudo-op. Copies any given ''text'' string to the user's

I/O buffer and returns to the next instruction following the text.

Canned Message Output is called by a CALL MESSAGE instruction sequence

with the number of any available "canned" message in register Al. APPEN-

DIX II of this manual lists the currently available messages.

Copyright (C) 1974

Educational Data Systems 2-6

Convert Integer to ASCII is called by a CALL CIA instruction sequence

with an integer to be outputted in Al. Register AO must contain the radix

to which it is to be converted, and A2 must contain the minimum number

of digit positions desired. Leading zeroes are suppressed and the result

is padded with leading spaces for a total of (A2) characters. Set (A2)=0

for no leading spaces. Letters will be used as digits if the radix exceeds

ten; i.e. A for eleven, B for twelve, etc.

Start Output is called bya JSR @.STO instruction after using the above

routines in any combination to store ASCII codes in the user's I/O buffer.

The string of ASCII codes must be terminated by a zero byte by clearing A2

and executing a JSR @.STOB before startihg output (this is not necessary
if the last output was generated by a JSR @. MSG).

All of the above routines destroy the contents of all registers except as

noted in the subroutine description.

2.8 File Access

File I/O is handled by the processor via several system subroutines.

These subroutines provide facilities for opening existing files, creating

new files and deleting files. A processor may access and update data

via system calls or may access data directly by use of the read block

and write block subroutines. Nearly all file access is done via channels.

Channels allow the system to guarantee that a file will not be deleted by

one user while being accessed by another. Channel I/O also allows

devices to appear. as data files to the processor, thereby requiring no

changes to the application software when a device is added to the system.

A file may be opened on a channel in any of four ways. CHANNEL OPEN

will open a FILENAME on a channel passed to it. If the file is not the

regnant user's and there exist a charge for it, the regnant user will be

charged. If the file is write protected, this information is retained in

core and the user will receive an error if he attempts to write to the

file. .The HSLA (hours since last accessed) cell will be zeroed. CHANNEL

OPENR will open the file, but the regnant user will not be charged for

its use, the HSLA cell will not be changed, and the file will be marked

as write protected. CHANNEL OPENU will do the same as OPEN except

it will error on write protection. CHANNEL OPENLOCK will do the same

as OPEN except that all other users will be locked out of thefile, but an

error will be indicated if another user already has the file open.

A new file is created via a CHANNEL BUILD system eall. The file File-

name is built on the requested channel. Errors are provided for illegal

Filename, out of disc space, etc. If the Filename exists, BUILD will

mark the old file as being replaced if the new name is of the form File-

name!, and both the types and account numbers are the same; otherwise,

an existing file will not be replaced. The new file will be marked as

being built until it is CLOSED.

Copyright (C) 1974

‘Educational Data Systems 2-7

If the processor CALLS EXIT before closing the channel, the processor

channels will be CLEARed and the file being built will be destroyed. If

the new file was replacing an old file, the old file will be restored.

If the processor wishes to delete a file, it issues a CALL DELETE

system call. DELETE will check to see if the file is open by any

user. If it is not open, DELETE will credit the owner's account and

release the disc blocks to the system. If the file is in use, it will

be marked to be deleted and deleted when the last user has CLOSEd

or CLEARed it.

Any new file being created must be closed by the processor by issuing

a CHANNEL CLOSE instruction before exiting to the system. Any

particular channel may be cleared (its contents aborted) by a CHANNEL

CLEAR call. All channels may be cleared by a CALL ALLCLEAR

system command. Since the system clears all channels after a

processor's exits to it, a CALL ALLCLEAR is usually not used by a

processor.

Data may be transferred to a file in either of two ways. A highly struc-

tured means of transferring data to and from files is CHANNEL READ-

ITEM or WRITITEM. They will read (write) from (to) a particular

file location to (from) a supplied core address. If a device has been

opened on the channel, the system will automatically cause the data

to be transferred to the device so that the processor does need to recog-

nize devices as being different from files.

For faster access, a processor might determine the data block of a

file directly from the file's header and then use the system's RBLK

or WBLK to transfer 256 (decimal) words from the file.

A processor may use the system calls FOFI and FOFC (Find Open
File Initialize and Find Open File Continue) to determine if a given

file is open by any user. A processor may determine whether there

is any file open on a given Logical Unit by supplying zero for the file

address when calling FOFC,

Copyright (C) 1974

Educational Data Systems 2-8

2.9 Processor Type

Each file's header has a TYPE word which is described under Disc File

Structures (Section 1.4 of this manual). The file type of a processor,

however, has special significance not discussed in that section.

Protection - All processors should be write protected to prevent

inadvertant replacement or deletion. Read protect a processor only

if it is for private use. Copy protection has no significance ona

processor except to prevent QUERYing the processor's attributes.

File type - The file type is used to identify a program file with its

related processor. Therefore, processors with incompatible program

files must have different file types. The active file will not be loaded

by LUSR if its type does not match the processor. The file type should

be 1 if the active file is not used or if it is used only for temporary

storage and is not to be saved as a program file.

Control bits - Bits 6 through 8 of the TYPE word are control bits that

are examined by SCOPE when anew processor is selected. Bit 8

must be set to indicate that the file is a runnable processor; files not

structured aS a processor must have zero in bit 8. A one in bit 7

indicates that SCOPE should continue to scan the command line for a

program Filename and load the selected program file (if any) into the

port's active file. Bit 6 indicates that SCOPE should not cause the

new processor to be swapped in immediately but should start input and

cause initial entry when input is terminated.

2.10 Debugging Procedures

If a new processor was created by use of ASSEMBLE it will be neces-

sary to change it into a runnable processor. See ''How to CHANGE

File Characteristics" in the IRIS User Reference Manual.

The Disc Service Processor is a powerful tool for use in debugging a

processor. The breakpoint is especially useful for this purpose.

Refer to ''How to Use DSP" in the IRIS Manager Reference Manual.

The recommended procedure is to first set a breakpoint early in the

Swap-in Subroutine, and then issue a system command to use the

processor (either exit to the system with a CTRL C and issue the

command or use the C instruction in DSP to issue the command).

Note that encountering the breakpoint causes the normal JSR to the

processor's Swap-out subroutine to be inhibited, and control is

returned to DSP.

Copyright (C) 1974

Educational Data Systems 2-9

Set breakpoints successively further along in the swap-in routine,

checking the contents of the registers at significant points in the code,

until the swap-in procedure is fully debugged. Then use the same

procedure in the body of the processor, starting at location BPS.

Note that the breakpoint is cleared and the processor must start over

from scratch each time a breakpoint is encountered.

At some point early in the check out it will be necessary to debug the

Swap-out subroutine. This must be done before a point is reached in

the main code where a swap out might occur. A forced swap out for

this purpose may be used by temporarily entering a CALL EXIT in the

main body of the code.

In some cases it is desirable to temporarily enter a JSR @.FALT

instruction in the code in case the processor takes an unexpected

branch. Such a case may occur following a call to a DISCSUB that

has two or more possible returns.

After the processor is fully debugged, its protection may be changed to

33 or 22 to allow it to be used by other users.

Copyright (C) 1974

Educational Data Systems 2-10

FIGURE 2-2: PROCESS@R WITH N@ SWAPPING

3 THIS PROCESS@R PRINTS "I AM A PROCESSOR"

3 9-10-73

$3 ALL RIGHTS RESERVED

3 COPYRIGHT ¢(C) 1973 BY EDUCATIONAL DATA SYSTEMS

3 2415 WINDWARD LANEs NEWPORT BEACHs CALIFe 92660

o TXTM

«LOC

Cks

LOC

CEXITs

eL@C

XYZ8

e END

!

IN FO@-400

215

SWAPI SENTRY POINTERS

o+4 3 SWAP-IN

0 +3 3 SWAP-@OUT

CEXIT 3 ESCAPE

CEXIT sCONTROL C-

JMP 033

CALL

EXIT

BPS

LDA 2seCR sST@RE A RETURN CODE

JSK @. STOB

JSR @e-MSG sST@RE THE MESSAGE

o TXTF "TT AM A PROCESSOR"

JSR - @. STO 3START OUTPUT

CALL

WONA

JMP XYZ

3"T AM A PROCESSOR" SOURCE

Copyright (C) 1974

Educational Data Systems 2-11

FI GU RE

LOC SWAPI

SWPI

SW PO

QEXIT

QEXIT

Q@EXITs: CALL

EXIT

0

SWPIs STA

LDA

LDA

LDA

SNE

JMP

LDA

LDA

SUB

JSR

LDA

LDA

SWPI1: LDA

STA

INC

INC

INC

JMP

JMP

SWPOs STA

LDA

LDA

LDA

SUB

JSR

LDA

LDA

LDA

STA

INC

INC

INC

JMP

LDA

LDA

LDA

SUB

JSK

JMP

Copyright (C) 1974

2e33 SWAPPING STORAGE IN ACTIVE FILE HEADER

SENTRY POINTERS

SSWAP-IN SUBROUTINE

SSWAP-@UT SUBROUTINE

SESCAPE ENTRY

SCONTROL C ENTRY

SEXIT FROM PROCESSOR

Sse-] sSSWAP IN SUBROUTINE

3s RUP 3 REGNANT USER POINTER

Os - BPS

1,URA. 93

Os 1 sINITIAL ENTRY ?

@SWPI-1 3: YESs START-UP NOT REQUI KED

2seHBA $POINTER TO HEADER BLOCK AREA

ls AHAes SSACTIVE FILE HEADER ADDRESS

Os O s ACTIVE FILES ARE ON LOGICAL UNIT #0

@.RBLK sREAD ACTIVE FILE HEADER

ls SAV s-CNUMBER OF CELLS TO SWAP-INJ

32SAV1 3sPOINTER TO 1ST PAGE ZERO CELL TO SWAP IN

Os FMAPs 23LQAD TEMPORARY CELLS

0s 0s 3

3393

222

lx isSZR sDONE COPYING ?

SWPI 1 3; NO

@SWPI-1 3: YES» RETURN TO SYSTEM

39SWPI-13SWAP @UT SUBROUTINE

2xse-HBA 3KEAD ACTIVE HEADER

3s RUP

ls AHAc 33

0» 0

@e RBLK

1,SAV 3-CNUMBER OF CELLS TO SWAP-OUT]

3asSAV1 3sPOINTER TO 1ST PAGE ZERO CELL TO SWAP-@UT

0s 093

Os FMAPs 23 STORE TEMP CELLS IN FMAP OF ACTIVE HEADER

2322

333

ls isSZR 3sDONE COPYING ?

e #5 3 N@

2seHBA 3 YES

3s RUP

1» AHAcs3

O» O

@e-WBLK 3sWRITE @UT HEADER

@SWPI-1 8s AND RETURN TO SYSTEM

Educational Data Systems 2-12

LOC

eTS3

TS:

eLOC

«LOC

SWPIs:

SWPI 1s

FIGURE 2.4: SWAPPING WITH ACTIVE FILE

IN FO -400

TS

e BLK 20

SWAPI SENTRY POINTERS

SWPI 3 SWAP-IN

SWPO 3 SWAP-O UT

ESCR 3 ESCAPE

CTLC SCONTROL C

400

STA 32 SWPO-13SET UP AFTER SWAP-IN

CALL S3L@AD USER'S ACTIVE FILE

LUSR |

JMP SWPI 1 3FILE TYPES DON'T MATCH

LDA Ose TPZ 3sPAGE ZERQ SAVE AREA IN ACTIVE AREA

LDA 1sC20 SNUMBER OF PAGE ZERO CELLS SAVED

ADD O» 1 $3LAST SOURCE ADDRESS FOR MOVE

LDA 2aeTS 3SPOINTER T@ PAGE ZER@ TEMP STORAGE

JSR @-MO@VE sMOVE INTERIM STORAGE INTO PAGE ZERO

JMP @SWPO-1 3RETURN TO SYSTEM

SUB Os» 0 SINITIALIZE ACTIVE FILE

STA Os TS

STA Os TS+ 1

STA Os TS+4

STA Os TS+ 6

STA - O» TS+12

LDA 2seHBA

LDA: Os» PTYPE 3s TYPE OF THIS PROCESSOR

STA Os TYPEs 2

STA O»COSTs» 23CLEAR COST OF ACTIVE FILE

STA OsNAMEs 23 ALSO CLEAR THE NAME

LDA 3s RUP

LDA ls AHAse» 33WRITE @UT NEW HEADER

JSR @. WBLK

JMP @SWP@-1 SRETURN TO SYSTEM

(FIGURE 264 CONTINUED @N NEXT PAGE)

Copyright (C) 1974

Educational Data Systems 2-13

(FIGURE 2@e4 CONTINUED)

Yee

0

SWPOs: STA Gael SWRAP UP FOR SWAP-@UT

LDA Os-TS

LDA 1,C20

ADD Os 1

LDA 2CsxseTPZ sMOVE INTERIM PAGE ZER@ STORAGE CELLS

JSR @-MO@VE 3: T@ USER ACTIVE AREA

LDA 2s RUP

LDA ls FLWes» 23SET BIT 8 OF CFLW) SO SYSTEM WILL

LDA 0,C400 3: WRITE @UT USER AREA

ADD 120

STA Os FLWes 2

LDA 1» AHAe 3 2

LDA 2seHBA

SUB 0s 0

JSR @e-RBLK sREAD ACTIVE HEADER INTO HBA

LDA Ose TPZ 3sSET UP ACTIVE FILE

STA Os CORAs 23 BEGINNING OF ACTIVE AREA IN CORE

LDA OsNBLK»s 2

LDA 1»Ce

SUB 150

STA OsTEMP sNUMBER @F DISC ADDRESSES TO SHUFFLE

INC 222 3POINTERS FOR SHUFFLING DISC ADDRESSES

MOV 2393

LDA OsNBS sNUMBER OF BLOCKS TO SWAP QUT

NEG 0» 0 |

SWPO1s INC ese 3SET UP HEADER WITH CONTINU@US DISC ADDRESSES

INC 333 $3 FROM 200 THRU 2004+NBLK-1 (NO EMPTY CELLS)

LDA 1» DHDRs 3

SNZ ls 1 SEMPTY SLOT ?

JIMP e-3 3 YES» IGNORE

SKZ 0» 0 3 FINISHED WITH ACTIVE AREA ?

SSP ls] 3 YES» ALREADY NEGATIVE ?

JMP +4 3 YES

JMP e+2 3 NOs NEGATE IT

SSP ls 1 sPOSITIVE ?

NEG ls 1 3 NOs SET POSITIVE

STA 1» DHDRs 2

DSZ TEMP sDONE ?

JIMP SWPO 1 3; NO

JMP @SWPO-1 3 YES» RETURN AND WRITE OUT USER ACTIVE AREA

“LOC INFO@-. $PAGE ZERO @VERFLOW CHECK

Copyright (C) 1974

Educational Data Systems 2-14

3. DISC-RESIDENT SUBROUTINES

All disc-resident subroutines are assembled together from a single set

of source tapes to produce a Single object tape which is loaded onto the

disc as the file DISCSUBS. To be executed, the subroutine must be

brought into a 256-word core block called the Subroutine Swap Area

(SSA). Provision is also made for a larger subroutine to be brought

into HXA and SSA as a 512 word block.

The CALL routine, which is core-resident, performs the task of bringing

the proper block of DISCSUBS into core and transferring control to the

desired subroutine. Two lines of assembly code are required to calla

Subroutine:

CALL or CHANNEL

Subroutine subroutine

where ''Subroutine'' is the name of a routine in the DISCSUBS file and

has been equated to that subroutine's number by the Software Definitions

tape. The word CALL or CHANNEL is actually a JSR via a page zero

pointer to a core-resident calling routine. The word CHANNEL is used

only when calling a channel-oriented routine, as CHANNEL checks the
selected channel before transferring control to the subroutine. One

DISCSUB may call another, and subroutines may be nested up to NSTL

levels deep in this manner. The nesting limit, NSTL, is defined in the

INFO table. When one DISCSUB calls another, SSA is written on the

disc to save any temporary storage cells in the first DISCSUB.

In the case of an extended DISCSUB, the first block is brought into HXA

and the second block is brought into SSA. Caution must be exercized

when nesting extended subroutines since only SSA is Saved on the

disc when nesting occurs. For the same reason, an extended subroutine

should not call or cause nesting to any subroutine which uses HXA.,

However, if the first block of an extended subroutine will not be used

later, then a call may be made from its second block to another extended

subroutine or to a subroutine that uses HXA.

One of the tasks of the System Initializing Routine (SIR) is to scan the

DISCSUBS file and set up the Disc Address Table (DAT) and the Starting

Address Table (SAT) with the disc address and the actual in-core

Starting address, respectively, of each disc-resident subroutine. SIR

also reserves NSTL-1 disc blocks for use in saving SSA when nesting

subroutines.

Copyright (C) 1974

Educational Data Systems 3-1

Disc-resident subroutines are slow since a disc access is required to

get the subroutine into core. A nested DISCSUB call requires three

disc accesses to (1) write the calling subroutine on the disc, (2)

read the called subroutine into core, and (3) read the calling subroutine

back into core when the called subroutine is finished. In IRIS it is

possible to eliminate some or all of these disc accesses and thereby

enhance the system throughout by specifying that certain DISCSUBS

routines are to become core-resident. See section 5.4 of the IRIS

Manager Reference Manual for detailed information.

3.1 How to Write a DISCSUB

Several restrictions are imposed upon a disc-resident subroutine due

to the conditions under which it must operate:

1. It must fit within a single disc block (256 words) or, if extended,

it may occupy two disc blocks (up to 512 words).

2. It must be intrinsically relocatable; i.e., all storage reference

instructions must use either relative addressing or page zero system

pointers.

3. It must be self-initializing; i.e., any cell which is changed by the

routine must not be assumed to initially contain the value which

was assembled into the cell.

Actually, since linkage information is required at the beginning of each

block (see Section 3.2), a maximum of 253 words may be used by a

subroutine, or 509 words in an extended subroutine. Most system

subroutines may be used (access and store byte routines, STO, MSG,

RBLK, WBLK, etc.), but routines such as BUMP, WONA, and STI,

which might bump the user, may not be called.

Arguments may be passed both to and from the DISCSUB in registers

AO, Al, A2, and the carry bit. A3 may also be used to pass informa-

tion from the subroutine back to the caller. Control is returned to the

caller bya JMP 0,3 oraJMP @.CRET instruction for a non-skip

return, or bya JMP 1,3 ora JMP @.SRET instruction for a skip

return. Many DISCSUBS use a non-skip return under error conditions

and a skip return when the task is successfully completed. Provision

is also made for multiple skip returns by the two-word instruction:

JSR @.NRET

n*K! NRET

where n indicates the return point (e.g., 3 to skip three words after

Copyright (C) 1974 |

Educational Data Systems 3-2

the call). This return is equivalent toa JSR @.CRET if n=0 ora

JSR @.SRET if n=1. Obviously, A3 cannot pass information back to the

caller in this case, but the other registers and carry may still be used.

NRET has been defined such that the expression n*K! NRET will also be

a no-op if executed as an instruction; therefore, it is acceptable for a

test instruction just ahead of the JSR @.NRET to skip over it.

The only legal exit from a DISCSUB other than a return to the caller is

a JSR @. FALT instruction upon discovery of a hardware or software

fault. This will cause all nested subroutines as well as the core copy

of the calling processor and the regnant user's active file to be aborted.

3.2 How to Add aDISCSUB to the System

Each block of DISCSUBS must begin at a zero modulo 400 (octal) address.

The first thing in each block is a linkage table for all routines in the

block. There are two words in the linkage table for each routine. The

first of these two words is the name of the routine. This name, which

must be defined in the Software Definitions, will also be used with a

CALL or CHANNEL instruction to call the routine. The second word is

the displacement from the beginning of the block to the entry point of the

routine. The first word of the linkage table is labeled DSBn, where n

is the block number in decimal. The second word of each pair in the

linkage table may, therefore, be coded as LABEL-DSBn, where LABEL

is the label on the routine's entry point. This label should be similar

to the name of the routine, but it should end with an X. For example,

the entry point of the FAULT subroutine is labeled FALTX. The entry

point must be the first word of the subroutine.

The new subroutine must be assigned a number, and its name is equated

to this number on the Software Definitions tape. Be sure that the number

of DISCSUBS routines does not exceed the definition for NSUB. If

necessary, increase NSUB to be greater than the last DISCSUB number.

The new routine is then edited into the DISCSUBS source tapes, and

Discsubs is re-assembled. See "How to Replace DISCSUBS" in the IRIS

Manager Reference Manual if this new version is to be put on the system

without doing a complete system generation.

A single block may be added to DISCSUBS by using DSP to append a block

and then to copy the new block from a newly assembled object file. DSP's

R command may also be used to read an object tape into the new block. An

IPL must be performed to make the new subroutine accessable via CALL

or CHANNEL.

Copyright (C) 1974

Educational Data Systems 3-3

The higher order bits of the subroutine's assigned number are used as flags

indicating various attributes of the routine as follows:

bit 15 subroutine is core-resident (part of REX)

bit 14 subroutine is extended (occupies 2 blocks)

bit 13 include with preceding routine if core-resident

bit 12 can't be made core-resident (use alternate)

bit 11 alternate version for core-residency only

bit 10 (not used)

bit 9 (not used)

bits 0-8 subroutine identification number

Note: bit 15 is the most significant bit of the word.

If a subroutine is extended, it must be the last one in the block in which it

begins, and the extension must be in the next block of DISCSUBS. There is

no linkage table in the extension block, thus allowing an extended subroutine

to be up to 509 words long.

The linkage table must be terminated by a negated displacement to the last

word occupied or used by the last routine in the block. This is used by SIR

to determine the size of the last subroutine if making it core-resident.

A completed DISCSUBS block would look something like this:

.LOC 11400. ;"DISCSUBS" BLOCK #21

DSB21: SINH

SINHX-DSB21

COSH Linkage Table

COSHX-DSB21

DSB21-D21E

SINHX: JSR SINHI ;

102663 | This technique is recommended

015252 to get a table pointer, yet main-

135661 tain relocatability.

002447

:

SIN HI: STA 3,SADDR

SADDR: 0

COSHX: JSR COSHI

e

6

D21E =~ ;END OF "DISCSUBS" BLOCK #21

. LOC DSB21+400-.;BLOCK OVERFLOW TEST

Copyright (C) 1974

Educational Data Systems 3-4

It is also possible to replace or add a single block of DISCSUBS without

replacing the entire file. Make up a source tape of the new block or

blocks, and assemble it without the rest of the DISCSUBS source tapes.

Put the object file on the disc temporarily (either ASSEMBLE it on the

disc or use PLOAD under a different name such as DSUB. Use the R

and W commands in BZUP to copy this new version into the DISCSUBS

file, then do an IPL. If new blocks are being added, use the A command

in DSP to first append the required blocks to DISCSUBS. When finished

copying blocks, kill the temporary file, or leave it on the disc for backup.

If increasing NSUB without a complete system generation, NSUB in the

CONFIG file must be increased.

3.3 How to Debug a DISCSUB

DSP may be used to examine and/or modify subroutines in the DISCSUBS

file the same as for a processor. Breakpoints may be set in the calling

processor just ahead of or just after the subroutine call, but breakpoints

cannot be set in the disc-resident subroutine itself. Two alternatives are

possible, however: If there are no other users on the system, halts may

be inserted in the routine. If the system is in use, insert a JSR @. FALT

instruction in the routine where a breakpoint would be desired. Although

not as convenient, this will give the effect of a breakpoint except that the

JSR @. FALT will affect anyone who uses the subroutine, whereas a DSP

breakpoint affects only the user who sets it. Other users should not be

allowed to call anew routine, however, before it has been debugged.

3.4 How to Write a DISCSUB for Business BASIC

Machine code subroutines written to be used by the CALL statement in

Business BASIC must accept and return information in a specific format.

These parameters are passed to the subroutine in the registers as follows:

(AO) = Pointer to first available core location

(Al) = Pointer to last available core location

(A2) = Pointer to argument pointer list

Registers AO and Al contain the first and last addresses of the currently

unused cells in the BASIC user's storage area. This space is available

for use as temporary storage by the subroutine. |

At the time control is transferred to the subroutine, BASIC has analyzed the

arguments supplied in the CALL statement and has placed pointers to these

parameters in the argument pointer list. Register A2 contains the address

of the first cell of this list which can hold a maximum of twelve argument

pointers. Each argument may be either a decimal number or a String. In

the case of a decimal number, the sign bit of the pointer will be zero, the

pointer will point to the first of the words where that number is stored, and

Copyright (C) 1974

Educational Data Systems 3-5

the next word after the pointer will contain the number type (1, 2, 3, or

4 words). In the case of a string, the sign bit of the pointer will be one,

the pointer will point to the word containing the first two bytes of the string.

The string dimension will also be found in the parameter table following

the pointer to the string.

For example, suppose a Business BASIC program contains the statement:

120 CALL 5, R, B$, N(1, 3)

These parameters will be passed to the subroutine number 5 as follows:

Register A2

[0 address of | Value of
variable R

1

GSE pointer list
t 1°

O| address of —-TM

number type byte l byte 2 Bg

1] address of —— byte 3 byte 4

string dimension etc.

0} address of ——

number type

Array

Value of N

. N(1, 3)

The remainder of the argument pointer list will be filled with pointers to_

a dummy variable which is ignored by BASIC when the subroutine returns.

The subroutine must do a skip return if its operation is successful. A

non-skip return will cause Business BASIC to print an error message.

To make the subroutine available to be CALLed by BASIC it must be

included in the DISCSUBS file. Refer to Sections 3.1 and 3.2 for special

considerations in writing a disc-resident subroutine and how to include

anew routine in the DISCSUBS file. |

Once the new routine has been included as a DISCSUB, an entry must be

‘inserted in the call table (CALLT) in the RUN processor. There isa

pointer to CALLT in location 203 (octal) in RUN. Look through CALLT

for the first minus one (177777 octal), and replace it with a word containing

the desired BASIC subroutine call number (in octal) in the lower (right hand)

byte and the actual DISCSUB number in the higher (left hand) byte. Be sure

the next cell in CALLT is 177777. CALLT may be extended through location

o77 octal.

Copyright (C) 1974

Educational Data Systems 3-6

4, ADDING DEVICES TO THE SYSTEM

An input/output or mass storage device may be added to IRIS in

any of three different ways depending on the characteristics of

the device and its intended use. In general, a device may be:

1) An interactive port through which a user communicates with

processors and application programs, or

2) A peripheral device which may be OPENed by any caller

granted access; the caller then does input or output by

READing or WRITEing to the device as if it were a data

file, or

3) A Logical Unit having its own INDEX, thus allowing any

caller granted access to READ, WRITE, and BUILD files

on the device

User oriented devices such as typewriters, teleprinters, and

CRT terminals are desirable as interactive ports, although a

line printer - card reader combination could also be used in this

manner Devices such as line printers, card readers, paper

tape units, cassette tape drives, graph plotters, data acquisition

devices, and communications channels are usually interfaced as

peripheral devices. Disc and drum memories are usually inter-

faced as Logical Units, but a cartridge disc could be interfaced

as a peripheral device if the cartridge is to be used to transfer

data between IRIS and another computer system. A high perform-

ance magnetic tape drive is usually interfaced as a peripheral

device, but if such a unit has the ability to rewrite a record without

destroying the following record it could be set up as a Logical Unit.

A multiplexer driver may be written such that some of its channels

are interactive ports and others are used to interface peripheral

devices.

4.1 Interactive and Peripheral Device Drivers

Each device driver is written as an independent module and loaded

onto Logical Unit zero as a separate file by use of ASSEMBLE,

COPY, or PLOAD. The Filename must begin with a dollar sign

and should indicate the device type; e.g. $LPT for a line printer,

$CRD for acard reader, etc. Any dollar sign file must start at

location BPS with pointers to its interrupt handler and attributes

table, plus three other pointers dependant on its type. The fifth

pointer must be followed immediately by the entry to the driver's

Copyright (C) 1974

Educational Data Systems 4-1

initializing routine. Also, each file ends with an attributes table,

a linkage pointer table, and a port definition table. When scanning

the INDEX during an IPL, SIR sees the dollar sign Filename, brings

the driver into core, and links it into the system as indicated by

these pointers and tables. There are two catagories of files given

Filenames starting with adollar sign. They are:

1) Peripheral drivers (file type 36 octal plus whatever protection

is desired against use of the device). The driver has FINIS,

WRITE, and READ subroutine pointers following the attributes

table pointer (at BPS+1) or a -1 in the pointer if a subroutine is

not included. This catagory includes only drivers for devices

that are to be OPENed on a data channel and used for data input

and/or output, such as a line printer, card reader, paper tape

equipment, etc.

2) System subroutines and drivers (file type 77001). The WRITE

and READ subroutines and pointers are replaced by SEND

CHARACTER and SKIP IF NOT BUSY subroutines and pointers,

respectively; SIR places absolute pointers to these subroutines

in the SND and SNB cells of each RTA. Also, the FINIS pointer

is replaced by a pointer to the first word of the driver which is

to be core-resident. This catagory includes:

a) Interactive device drivers (e.g. $TTY),-

b) Multiplexer drivers (e.g. $EDS8),

c) System subroutines (e.g. $DEC), and

d) System device drivers (e.g. $DAU).

The attributes table, which is at the end of the driver, consists of

three words as follows:

ATRIB: This cell usually contains a zero. When brought into core,

SIR puts a pointer to the first RTA (if any are assigned) |.

into this cell. However, if the hardware requires a

specific first RTA location, that location should be put at

ATRIB rather than a zero, and SIR will attempt to allocate

core to accomodate this requirement. (There may be no

RTAs assigned; see below.)

ATRIB+1: This word should have a single "one" bit if desired to enable

interrupts from the device (this bit of the system's mask

word will be zeroed). This word may be zero if no interrupts

are to be enabled, but it may not have more than a single one

bit.

Copyright (C) 1974

Educational Data Systems 4-2

AT RIB+2: If the driver has an interrupt handler then this word must

contain the device address with which the device responds

to an INTA instruction. SIR will generate an interrupt

vector to the driver's INTH routine. A zero in this cell

means no interrupt vector will be generated.

If the driver does not have an interrupt handler then the INTH pointer

must be -1. However, if it does have an interrupt handler, then it

must also have a power fail restart subroutine whose entry point is at

INTH-1; the purpose of this routine is to re-initiate operation following

a power failure. If possible, the restart should be done without loss

of data.

ATRIB+2 is followed by a linkage pointer table and a port definition

table. Each entry in the linkage pointer table consists of two words

as follows:

a) absolute core location for pointer

b) assembled location to point to in file

The pointer table is terminated by a -1 which may be at ATRIB+3 if

no pointers are to be generated. This -1 is immediately followed by

the port definition table which consists of four words per entry as

follows:

a) number of ports (add @ if interactive)

b) default speed (characters per second)

c) buffer size (number of bytes)

d) line length (number of characters)

An RTA is assigned for each port in this list; alternately, the driver

may supply its own I/O buffer rather than supplying a list of ports

here. The list of ports must also be terminated by a-1. The table

may be empty, but the -1 terminator is required. No active files or

data file tables should be assigned for peripheral devices. The

attributes and these two tables must be entirely within the last block

of the file.

Caution: The driver must be intrinsically relocatable since SIR may

put it anywhere in core. There must be no absolute pointers or

references to absolute locations in the driver other than the five

entry pointers and the linkage pointer table.

4.2 How to Write a Peripheral Driver

Figure 4,1 shows the general form of a peripheral driver file. Every-

thing from the pointer to ATRIB (location BPS+1) through the cell

labeled ATRIB is brought into core by SIR, and the four pointers

(ATRIB, FINIS, WRITE and READ) are modified to point to the actual

Copyright (C) 1974

Educational Data Systems 4-3

oTXTM

e LOC

INIT:

INT Hs:

PFRST 8

FINIS :

WRITE 8

READ 8

ATRIB:

eE ND

FIGURE 4.13 PERIPHERAL DRIVER FILE

BPS

INTH

ATR IB

FINIS

WRITE

READ

JMP

JMP

JMP

JMP

JMP

JMP

JMP

0

400

XXX

~1

eRDX 10

3

10

200

75

3

30

80

80

-1

3FOR CORRECT TEXT PACKING

3ALL DRIVERS MUST START AT BPS

SP@INTER TO INTERRUPT HANDLER

SPQOINTER TO ATTRIBUTES TABLE

SP@INTER T@ WRAP-UP SUBROUTINE (COR -1)

SPOINTER TO OUTPUT SUBR@UTINE (COR -1)

SPQINTER T@ INPUT SUBR@UTINE (COR -1)

-<-- SINITIALIZING ROUT INE

023

PFRST 3PQ@WER FAIL RESTART ENTRY

-“-- 3 INTERRUPT HANDLER

@.INTR

--- 3PQWER FAIL RESTART SUBRQUT INE

053

--- 3WRAP -UP R®UT INE

053

--- 3QUTPUT SUBR@UT INE

053

--- sINPUT SUBR®OUT INE

053

3F IRST PORT’°S RTA LOCATION (SET BY SIR)

3MASK BIT

3DEVICE ADDRESS

SLINKAGE TABLE HERE IF REQUIRED (SEE TEAT)

SLINGAGE P@INTER TABLE TERMINATOR

3NUMBER @F RES IDENT TABLE AREAS T@ BE ASSIGNED ec.

3 WITH THIS DEFAULT SPEED (CHARACTERS /SECOND Dee.

3 THIS I/@ BUFFER SIZE CNUMBER OF BYTES Dees

3 AND THIS LINE LENGTH (NUMBER @F CHARACTERS)-

3ETC. CREPEAT THE FOUR PARAMETERS AS REQUIRED)

sPORT DEFINITION TABLE TERMINATOR

SEND @F DRIVER

Copyright (C) 1974

Educational Data Systems 4-4

resulting core locations. The entry to the initializing subroutine is

immediately following the pointer to the READ subroutine, and the

location of the INIT entry is written into the STAD cell of the file's

header for use by OPEN and to allow the programmer to locate the

driver in core for debugging. The system will do a JSR to the

initializing subroutine when a caller OPENs the device and will JSR

to the FINIS subroutine when the caller CLOSEs or CLEARs the

channel. If either of these routines is very long then it may be

written as a DISCSUB which is called by a short core-resident

routine in order to conserve core space. The READ and WRITE

routines must look the same to the system as the READ ITEM and

WRITE ITEM system subroutines. If a device does not have input

capabilities there must be a -1 in place of the READ entry pointer,

if there is no output capabilities there must be a -1 in place of the

WRITE entry pointer, and if there is no wrap-up routine there

must be a -1 in place of the FINIS pointer.

4.3 How to Write an Interactive or System Device Driver

A driver for a system device or an interactive device has the same

form as one for a peripheral device with the following exceptions:

1) An interactive port is never OPENed; the initializing routine is

not core-resident but is brought into core separately by the

system's startup or recover routine,

2) The wrap-up routine is not used; the FINIS entry pointer is re-

placed by a pointer to the first word which is to be core-resident.

3) The READ routine is not used; the READ entry pointer is

replaced by a minus one.

4) The WRITE routine is not used; the WRITE entry pointer

is replaced by a pointer to a send (SND) subroutine which

accepts a character in register AO and outputs it to the

port whose RTA pointer is given in register A2 (-1 in AO

means "start output", and -2 in AO means "start input"),

5) Each port is assigned an active file and data file table if and

only if bit 15 of the "number of ports" word is one (set by an @

symbol), and

6) The file type must be 77001.

Copyright (C) 1974
Educational Data Systems 4-5

FIGURE 4-232 SYSTEM DEVICE DRIVER FILE

oTXTM 1 3F@R C@RRECT TEXT PACKING

» LOC BPS 3ALL DRIVERS MUST START AT BPS

INTH sP@INTER TQ INTERRUPT HANDLER

ATRIB SP@INTER TO ATTRIBUTES TABLE
INTH-1 sPQ@INTER T@ FIRST C@RE-RESIDENT CELL

SEND 3P@INTER T@ "SEND CHARACTER" SUBRGUT INE
=) ;NoT USED

INIT: ~-- ~-- sINITIALIZING SUBRQOUT INE

JP 053

JMP PFRST 3PQWER FAIL RESTART ENTRY
INTH? -<-- — 3 INTERRUPT HANDLER

JMP @.INTR

PFRST: --- --- 3POWER FAIL RESTART SUBR®UT INE

JMP 0 23

SEND: won ~-- 3CHARACTER QUTPUT SUBR@UT INE

JMP 053

ATRIB: O 3FIRST PORT'S RTA LOCATION (SET BY SIR)

400 3MASK BIT

XXX 3DEVICE ADDRESS

sLINKAGE TABLE HERE IF REQUIRED (SEE TEXT)

-1 SLINGAGE POINTER TABLE TERMINATOR

eRDX 10 |

7@ 3NUMBER @F INTERACTIVE PORTS T@ BE ASS IGNEDece.

10 3 WITH THIS DEFAULT SPEED (CHARACTERS /SECQND) cece

200 3 THIS I/@ BUFFER SIZE CNUMBER @F BYTES Dees

75 3 AND THIS LINE LENGTH (NUMBER OF CHARACTERS).

1 3N@ “"@"* ==> N@T AN INTERACTIVE P@RT

165 ~ 3 (N@ ACTIVE FILE» NO DATA FILE TABLE)

135

132

=! 3PORT DEF INITI@N TABLE TERMINATOR

eEND SEND OF DRIVER

Copyright (C) 1974

Educational Data Systems 4-6

Note that in the case of a multiplexer each port may have a

different I/O buffer size, line length, and speed. The line

length and speed may be changed by the user after logging on

to the port.

The SND pointer is converted to an absolute pointer by SIR and

stored in the corresponding cell of each RTA for later use by

the system.

Caution: The initializing routine must be entirely within the first

block of the file, and the attributes table must be entirely within

the last block (for a small driver these may be one and the same

block).

4.4 How to Write a Multiplexer Driver

A multiplexer driver is the same as any other system device

driver (see Section 4.3) except that special consideration is

necessary to allow some ports to be used for interactive termi-

nals while others are used to interface peripheral devices. Which

ports are to be interactive and which. are for peripheral devices

is indicated by the presence or absence, respectively, of an @

symbol on each "number of ports'' word in the port definition table.

The @ symbol (i.e., a one in the top bit of the word) causes SIR to

allocate an active file and a data file table for each port so desig-

nated. Absence of an @ symbol means no active file or data file

table, hence the port cannot be used interactively, but it can be

used to interface a peripheral device if a suitable peripheral driver

if provided (see Section 4.5) and the multiplexer driver provides

facilities for peripheral drivers as described below.

To allow peripheral devices to operate through the multiplexer, the

mux driver must include the following code in its output interrupt

handler routine:

LDA 3, AHA, ,2

SKZ 3,3 sSINTERACTIVE PORT ?

JMP ~+5 ; YES

LDA 3, TON. , 2 ; NO

SKZ 3,3 ; PERIPHERAL SERVICE PROVIDED ?

JSR 1,3 ; YES

JMP (service next port)

. (service this port as an

interactive terminal)

Copyright (C) 1974

Educational Data Systems 4-7

eTATM

«LOC

INIT:

DEC:

ATRIB3

eE ND

Copyright (C) 1974

FIGURE 4233 SYSTEM SUBR®UT INE FILE

SEND OF

3FQ@R CORRECT TEXT PACKING

SALL DRIVERS MUST START AT BPS

SPQOINTER T@ INTERRUPT HANDLER

SP@INTER T@ ATTRIBUTES TABLE

SP@INTER T@ FIRST CORE-RES IDENT CELL

3N@ “SEND CHARACTER’ SUBROUTINE

3NO “SKIP N@T BUSY" SUBROUT INE

-o= SINITIALIZING SUBR®@OUT INE.

-<-- SSUBROUTINE ENTRY

053

3N@Q RTA

3NQ@ MASK BIT

3N@ DEVICE ADDRESS

STHIS PAGE ZER@ POINTERee-

31S TO POINT T@ THIS LOCATION

SREPEAT P@INTER PAIRS AS REQUIRED

SLINGAGE P@INTER TABLE TERMINATOR

3NQ@ PORT DEFINITIONS

3PQ@RT DEFINITION TABLE TERMINATOR

FILE

Educational Data Systems 4-8

FIGURE 4-4: TYPICAL DISC DRIVER FOR FIXED HEAD DISC

FD1 =20 SDEVICE ADDRESS

0 3CRESERVED FOR FUTURE USE)

0 3CRESERVED FOR FUTURE USE)

FDIRS=.42 3SSIZE OF DRIVER

5000 SPO“WER FAIL RESTART DELAY

1 S"ANY ERROR" STATUS MASK

20 s"WRITE PROTECTED" MASK

4 s*°*N@ SUCH DISC" MASK

10 3"DATA CHANNEL LATE" MASK

0 3"ADDRESS CHECK ERROR" MASK

0 3" ILLEGAL DISC ADDRESS" MASK

JMP 053 Ss" INITIALIZE DRIVER® SUBROUT INE

J MP 053 s"SKIP IF LU READY" SUBR@UT INE

JMP FDISN 3"SKIP IF N@T BUSY" SUBR®OUT INE

JMP FDIRS s"READ STATUS" SUBRQUT INE

JMP 023 S"SEEK @R RECALIBRATE" SUBR@UT INE

10 SNUMBER @F SECT@RS

100 3NUMBER OF TRACKS

10 3LOGOCAL-TO-REAL TRACK

1000 SLOGICAL-T@-REAL CYLINDER

2000 +FD1 SALLOC INF@s DEVICE ADDRESS

FDIE: D OBC 2sFD1 SDRIVER ENTRY POINT

MOV 0x2

LDA O»sPART s23F IRST REAL CYLINDER

ADD OslsSZC 3READ OR WRITE ?

JMP e +3

D@AS 1 sFD1 3 READ

JMP 0 +2

D@AP l sFD1 3 WRITE

SUB ZL 1 sil 3ONE BLOCK TRANSFERRING

JMP lod SRETURN

FDpISN: SKPBZ~ FDI SSKIP IF NOT BUSY

JMP 023

JMP 193

FDIRS: DIAC OsFD1 3READ STATUS

JMP 053

Copyright (C) 1974

Educational Data Systems 4-9

4,

4,

D

7

where register A2 contains the RTA pointer for the port being

serviced and AO contains the character to be processed. Also,

a Similar code sequence must be included in the mux driver's

input interrupt handler routine, except that the JSR 1,3 instruc-

tion must be replaced by aJSRO,3 instruction, and the character

(if any) will be returned in register AO. The peripheral device

driver is not allowed to change register A2.

How to Drive a Peripheral on a Multiplexer

A peripheral driver for a device which is interfaced through a

multiplexer is the same as any other peripheral driver (see

Section 4. 2) except that it has no interrupt handler of its own.

All interrupts are handled by the multiplexer driver; therefore,

the peripheral driver's INTH pointer must be -1, the attributes

table must be all zeroes (three words), and the port definition

table must be empty.

The multiplexer's interrupt handler passes control to the

peripheral driver for character processing by means of a

pointer in the RTA's TON cell (see Section 4.4). The peripheral

driver's INIT routine must generate an absolute pointer to its

input character processing subroutine and store that pointer in

the TON cell. The output character processing subroutine must

immediately follow the entry to the input processing routine entry.

The character processing subroutines must not change register A2

which contains the RTA pointer. Each subroutine returns witha

JMP 0,3 as Soon as possible since interrupts are disabled during

this processing.

How to Write a System Subroutine Replacement

Large system subroutines such as $DEC (the decimal arithmetic

routines) may be written as a separate module and loaded as a

dollar sign file (type 77001). The three words of the attributes

table must be zero, and all linkage with the system must be set

up by the linkage pointer table.

How to Write a System Disc Driver

All checks for legal disc and core addresses and the decision to

retry on an error are handled by the system's read/write block

routine. The only task of a disc driver is to issue the instructions

to read or write one or more blocks of 256 words at the given disc

and core addresses. Refer to the Glossary in the IRIS User Reference

Manual for definitions of terms used here.

Copyright (C) 1974

Educational Data Systems 4-10

The disc driver will be called with the registers containing:

AO pointer to LUVAR table

Al first Real Disc Address

A2 first core address

A3 pointer to block count

C zero for read, or one for write

The block count at (A3) will be one or, if consecutive disc and

core addresses are to be transferred, the number of such con-

secutive blocks. The driver issues the instructions to transfer

one or more blocks and returns to the location following the block

count (equivalent to a JMP 1,3) with the number of blocks being

transferred in register Al. The values returned in the other

registers are immaterial. Note that the driver does not wait

for the transfer to be completed.

The driver uses the information in its LUFIX table (Logical Unit

Fixed Information) at the beginning of the driver (see Figure 4. 4)

and in the LUVAR table(Logical Unit Variable Information) at the

location given in register AQ.

The form of a LUVAR table is:

Disp. Label Contents

0 NCYL number of cylinders

1 PART partitioning information

2 partitioning information

3 reserved (do not use)

4 AVBC available block count

9 MINB min blocks for building new file

6 CCYL current cylinder

7 FUDA first unused Real Disc Address

10 ERRC data check error count

11 address confirmation error count

12 data channel late count

The partitioning information is used only if a Physical Unit is

partitioned into two or more Logical Units; the form of the PART

word is as required by the driver. AVBC is the number of disc

blocks currently available (not allocated) on the Logical Unit.

MINB is the minimum value of AVBC to allow building a new file.

CCYL is to be used by the driver to inhibit seeking if the head is

already at the desired position; if not needed for this purpose it

may be used as desired by the driver, but it will be set to -1 by

Copyright (C) 1974

Educational Data Systems 4-11

the system if a head position error occurs. FUDA is used by the system

to determine whether the Real Disc Address supplied by the caller ts too

large. The three error count words are incremented by the system when-

ever such errors are detected.

The LUFIX table is assembled with the driver, just preceeding the driver's

entry point.

point as follows:

Disp. Label

-24 DIN T

-23 DMSK

-22 DSIZ

-21 PFRD

-20 EMSK

-17

-16

-15

-14

-13

-12 IDRV

-11 SLUR

-10 SKNB

-7 REDS

-6 SEEK

-9 NSCT

-4 NTRK

-3 LRTC

-2 LRCC

-1 DFLG

0

Its contents are at negative displacements from the entry

Contents

pointer to interrupt handler

disc controller's mask bit

size of driver (# words)

power fail restart delay

"any error’ status mask

write protected'’ mask

"no such disc’ mask

"data channel late'’ mask

"disc address check error'

"illegal disc address'' mask

"initialize driver’: subroutine entry

"skip if LU ready" subroutine entry

"skip if not busy’ subroutine entry

"read status'’ subroutine entry

"seek or recalibrate'’ subroutine entry

number of sectors (blocks/track)

number of tracks per cylinder

logical-to-real track conversion factor

logical-to-real cylinder conversion factor

flag word (see below)

driver read/write entry point

' mask

DINT and DMSK are not used in the current version of IRIS; these cells

should contain zeroes. DSIZ is used by SIR when bringing the dnver into

core. SIR will replace the value in DSIZ with a pointer to the LUFIX

table; this is for use by the driver if it is necessary to call CRLA (Convert

Real to Logical Address). There is a pointer to CRLA at (A3)+2 when the

driver's read/write routine is entered.

PFRD should be a binary integer representing the number of times around

a loop consisting of a JSR to the driver's SLUR subroutine (and other instruc-

tions totaling 13.65 microseconds) that the drive may require after a power

failure before it will again be ready for disc transfers. The timing for the

delay loop is always calculated assuming a Nova 1200 or a D116 computer;

the system will compensate for the speed difference if so indicated by the

SPEED value.

Copyright (C) 1974

Educational Data Systems 4-12

in the INFO table. PFRD must be zero if operator intervention

is required to restart the disc after a power failure.

EMSK must contain one or more ''one" bits to produce non-zero

when ANDed with the status word returned by the REDS subroutine

if an error of any type has been detected. The next five words are

similar masks for specific types of errors; if an error is indicated,

and none of these masks produce non-zero when ANDed with the

status word, then a data check error is assumed.

IDRV must contain a jump to a driver initializing subroutine if any

initialization other than an IORST is required on initial start up or

after a power failure. The CCYL cell in each LUVAR will be set

to -1 by the system after the JSR to IDRV.

SLUR must contain a jump to a subroutine that will test whether

the Logical Unit (identified by the LUVAR pointer given in register

A2) is on line and ready, and so indicate by a skip return. A

non-skip return indicates that the unit is not on line, not up to

speed, or the controller does not provide for a ready test. Ready

may be indicated even if the drive is busy. SLUR must not change

register A2,

SKNB must contain a jump to a subroutine that does a skip return if

| the disc is ready and is not busy, or a non-skip if it is busy or not

ready. SKNB must not change register Al or A2 or use any page

zero cells or constants.

REDS must contain a jump to a subroutine which reads the controller

status into register AO; if two or more status words are provided by

the controller then this subroutine must combine the significant bits

into one word. REDS must not change register Al or use any page

zero cells or constants.

SEEK must contain a jump to a ''seek or recallibrate"' subroutine

which will initiate a seek to the cylinder identified by the Real Disc

Address given in register Al or doa recallibrate and wait for it to

be completed if (Al)=-1. SEEK must not change register A2 which

contains the LUVAR pointer. Only certain moving arm discs require

this routine; in other cases, SEEK may contain a JMP 0,3 instruction.

The next four items define the physical configuration of the disc for

mapping and allocation purposes. NSCT indicates the number of

sectors (number of blocks per track, NTRK indicates the number of

tracks per cylinder (number of heads), LRCT indicates the Logical

to Real Track conversion factor, and LRCC indicates the Logical to

Real Cylinder conversion factor.

Copyright (C) 1974

Educational Data Systems 4-13

FIGURE 4-53

3

3

3

3

BPCF1 3

BRBF1 8

BWBF1 2

CAUTION !!

0

D@AS

LDA

JMP

D GAP

LDA

STA

D@BC

LDA

ADD

D GA

SUB

INC

JMP

SKPBZ

JMP

DIAC

MOVR#

JMP

JMP

eDMR BZF19=JMP

Copyright (C) 1974

TYPICAL DISC DRIVER FOR BZUP

BPCF1 MUST BE FIRST WORD OF DRIVER

BRBF1 MUST BE AT BPCF1 +2

BWBF 1 MUST BE AT BPCF1+5

ALL C@DE MUST BE INTRINSICALLY REL@OCATABLE

0 »sFD1

Ose-1

BWBF1 +1

OsFD1

Ose-l

Oae +4

2 sFD1

0 sBPCF1

1 20

OsFD1

020

050 sSNR

023

FD1

73

O»sFD1

020 sSZC

023

lod

BPCF1+BS IZE-.

Educational Data Systems

SPARTITIONING CONSTANT

SREAD A DISC BL@OCK

SWRITE A DISC BLOCK

SQUTPUT C@RE ADDRESS

SADD PARTITI@NING CONSTANT

3GUTPUT DISC ADDRESS AND START

STIME OUT

SREAD STATUS

SANY ERROR ?

3 YES

3 NO

3 BZUP OVERFLOW TEST

4-14

DFLG is a flag word made up as follows:

Bit(s) Meaning

15 changeable cartridge

14-11 (unused) |

tt k
> aereneneeal nent track next best block if desired

8 next sector, Same track block not abailable
7 skip sector between data blocks

6 skip sector after header block

9-0 device address

Bit 15 should be a one if the Logical Unit is on a changeable

cartridge. Bits 6 through 10 define allocation parameters so that

the file can be transferred in or out of core in the minimum time.

Bit 10 would only be set for a head-per-track disc. Bit 9 might be

set for a floppy disc drive where the track to track seek is faster

than one sector latency. Bit 8 would be set for any other moving

arm disc. One and only one of bits 8-10 should be set. Bit 7

should be set if the controller is incapable of transferring consecu-

tive sectors. Bit 6 should be set if there is not enough time after

reading one block to use information from that block for transferring

the next consecutive block.

4.8 How to Write a Disc Driver for BZUP

BZUP requires a simple disc driver that will transfer one disc

block on one particular Logical Unit, wait for transfer complete,

check status, and skip return ifnoerrors occur. It must doa

non-skip return with the disc status in register AO if any type of

error is detected.

The driver will be given a Real Disc Address in register Al anda

core address in A2. These registers must not be changed by the

driver. Each Logical Unit will have its own copy of BZUP witha

partitioning constant for converting the Real Disc Address to the

corresponding Physical Disc Address. See Figure 4.5 for a typical

BZUP disc driver. The .DMR pseudo-op line is included to check

that the driver does not exceed the available space in BZUP; there

are currently 41 words (octal) available for the driver.

Note: the Fl used in labels in Figure 4.5 should be replaced by

characters such as F3 or M5, indicating the third fixed head disc

type or the fifth moving arm disc type, respectively, and FD3 or

MD5 would be used as the corresponding device addresses.

Copyright (C) 1974

Educational Data Systems 4-15

5. SYSTEM ASSEMBLIES

All components of IRIS should be assembled using the absolute assembler

or (preferably) the ASSEMBLE processor. The SYMBOLS source tape

must be used as the first source tape on pass one of the first assembly

if ASSEMBLE is not used.

9.1 Software Definitions Tape

This tape defines such things as the structure of tables, control words

and file headers. It also includes various definitions and displacements

which are used throughout the system. If this tape is changed, then all

system components must be re-assembled. The Software Definitions

tape is required only on pass one of an assembly.

9.2 Page Zero Definitions Tape

Most of the pointers, constants and flags in page zero of REX are

available for use by processors and subroutines. The Page Zero

Definitions tape defines the locations of these cells when assembling

system components other than REX. If any change which affects

these definitions is madein page zero of REX then this tape must be

modified accordingly, and all other system components must be

re-assembled. The Page Zero Definitions tape is required only on

pass one of an assembly.

5.3 How to Assemble System Components

To assemble the Disc-Resident Subroutines (DISCSUBS), a peripheral

driver, or any processor, feed the source tapes to the assembler in the

following sequence:

Pass 1: Software Definitions

Page Zero Definitions

component source tapes

Pass 2: component source tapes

The Software Definitions and Page Zero Definitions are not necessary

on pass 2 but may be included if desired for listings. BASIC, RUN and

RUNMAT also require a Source tape number zero (the same tape is

used for all three processors) which should follow the Page Zero

Definitions on pass 1 and may be included on pass 2 if a listing of it is

desired.

Copyright (C) 1974

Educational Data Systems 5-1

APPENDIX 1: SYSTEM SUBROUTINES

The following subroutines are included in IRIS. Some are core-resident (in
REX) while others are in the DISCSUBS file and may be made core- resident

by the system manager (see Section 5.4 of the IRIS Manager Reference Manual).

All are available for use by any machine code routines added to IRIS, including

processors, DISCSUBS, task handlers, interrupt handlers, peripheral drivers,

etc.

STORE BYTE stores one byte at a given byte address in core.

STORE OUTPUT BYTE stores a byte in the regnant user's I/O buffer.

MESSAGE outputs a canned message from the MESSAGES file.

CONVERT INTEGER TO ASCII outputs a binary number to the regnant user's

I/O buffer after converting it to any radix.

TEXT MESSAGE OUTPUT outputs the message "ERROR # ' to the

regnant user's I/O buffer.

START OUTPUT initiates output from regnant user's I/O buffer to the

user's terminal.

WAIT FOR OUTPUT NOT ACTIVE assures that a previous output has been

completed before beginning another output.

START INPUT enables input from the regnant user's terminal into the user's

I/O buffer.

ACCESS BYTE accesses one byte from a given location in core.

ACCESS INPUT BYTE accesses the next byte from the regnant user's I/O

buffer, ignoring spaces and CTRL E codes.

ACCESS STRING BYTE accesses the next byte from the regnant user's I/O

buffer.

CONVERT DRATSAB TO ASCII converts a string of bytes in DRATSAB

code (compressed Hollerith) into the corresponding ASCII codes.

COMPARE STRINGS tests whether two strings are equivalent.

PASSWORD COMPARE tests whether the user supplied the correct password.

Copyright (C) 1974

Educational Data Systems Al -1

IS (A2) A DIGIT ? determines whether register A2 contains an ASCII

code for a decimal digit.

IS (A2) A LETTER? determines whether register A2 contains an ASCII

code for a letter.

LOAD USER loads the regnant user's active file into core.

BUMP USER bumps the regnant user from core.

FAULT aborts a process due to an illegal condition or a hardware failure

and prints a fault message

START IPL aborts all system operations and perform an Initial Program

Load.

EXIT exits from a processor.

CHECK "BSA CHANGED" FLAG allows new information to be stored in

BSA,

SEND SIGNAL sends a signal to a user on another port or to a later program

segment on the same port.

RECEIVE SIGNAL receives a signal if any have been sent to the regnant

user's port.

PAUSE bumps the regnant user for a specified time duration or (optionally)

until a signal is sent to the user in the pause State.

SPECIAL FUNCTIONS will access certain parameters such as system time,

port number, amount of time a user has used, etc.

ALLOCATE BLOCKS ON THE DISC allocates disc blocks to a file.

DEALLOCATE DISC BLOCKS deallocates blocks from a file on the disc.

CHECK CHANNEL determines whether a channel is in uSe.

CHECK PROTECT BITS determines whether a file or a Logical Unit is

protected.

BUILD FILE creates a new file, which may replace an old file by the

same Filename.

EXTEND FILE increases a file's size to greater than 128 data blocks.

DELETE FILE deletes a file.

Copyright (C) 1974

Educational Data Systems Al - 2

DELETE PROCESSOR deletes a processor file.

FIND FILE finds a file or a device in an INDEX,

FIND OPEN FILE scans all channels on all ports to determine whether

another user has a designated file or Logical Unit open.

OPEN opens a file or a device on a channel.

CHARGE charges a user for the use of another user's file.

MOVE moves the contents of a group of words in core to another area in

core,

MOVE BYTES moves a group of bytes in core to another area in core.

WRITE DISC BLOCK writes one block (256 words) from core onto a disc.

READ DISC BLOCK reads one block (256 words) from a disc into core.

GET RECORD locates a designated record in a file and brings the data

block into core.

WRITE ITEM writes an item into a file or to a peripheral device.

READ ITEM reads an item from a file or from a peripheral device.

UNLOCK RECORD unlocks a record that has been locked by a file access.

CLOSE CHANNEL closes a data channel.

CLEAR CHANNEL clears a data channel.

CLEAR ALL CHANNELS clears all channels of the regnant user's port.

ACCOUNT LOOKUP finds a user's account entry in an ACCOUNTS file

via the Account [.D., account number, or entry position.

SET DECIMAL ACCUMULATOR sets the decimal accumulator (DA) to

contain the floating value zero, one, or "plus infinity".

FLOAT BINARY TO DECIMAL converts a signed binary integer to floating-

point decimal form.

FIX DECIMAL TO BINARY converts a floating-point decimal number to

binary form.

Copyright (C) 1974

Educational Data Systems Al - 3

BREAK DECIMAL NUMBER _ separates a floating-point decimal number

into its integer and fractional parts.

DECIMAL ARITHMETIC & INPUT /OUTPUT loads or stores the decimal

accumulator (DA), performs an arithmetic operation, or inputs or

outputs a value in DA as an ASCII string.

ADD DECIMAL INTEGERS adds two unsigned 4-digit binary coded decimal

integers.

SUBTRACT DECIMAL INTEGERS subtracts two unsigned 4 - digit binary

coded decimal integers.

OPEN FOR UPDATE opens a file or a device on a channel with the intent

of writing or updating data.

OPEN FOR REFERENCE opens a file or a device for reference only.

Writing will not be allowed.

OPEN AND LOCK opens a file or a device and locks out all other users.

CONVERT LOGICAL TO REAL ADDRESS converts a logical disc address

to a real disc address.

CONVERT REAL TO LOGICAL ADDRESS converts a real disc address to

a logical disc address.

INCREMENT REAL.DISC ADDRESS determines the nth legal real disc
address after a given real disc address for a given Logical Unit.

FIND LOGICAL UNIT TABLES locates the entry in the Logical Unit table

and the fixed and variable information tables for a given Logical

Unit number.

BINARY MULTIPLY forms the 32-bit product of two 16-bit binary integers.

BINARY DIVIDE forms the 16-bit quotient of two 16-bit binary integers and

also returns the 16-bit remainder.

CONVERT RTA POINTER TO PORT NUMBER determines the number of

a port from the location of its Resident Table Area.

CONVERT PORT NUMBER TO RTA POINTER determines the location of

the Resident Table Area for a given port number.

Copyright (C) 1974

Educational Data Systems Al - 4

APPENDIX 2: CANNED MESSAGES

The MESSAGES file contains a variety of ''canned'' messages that can be

transferred to the regnant user's I/O buffer by a CALL MESSAGE instruction

sequence with the message number (see list below) in register Al. There

are no leading spaces, but a RETURN code is appended to the message. There

are three possible returns from the MESSAGE subroutine as follows:

Non-skip if MESSAGES file has not been loaded on the system disc.

1-skip if there is no message assigned to the number given.

2-skip if the message has been transferred to the regnant user's I/O

buffer.

The message may be appended to previous output and may be followed by more

output. The currently available messages are:

SYNTAX ERROR

ILLEGAL STRING OPERATION

STORAGE OVERFLOW (PROGRAM TOO LARGE)

FORMAT ERROR

ILLEGAL CHARACTER

NO SUCH LINE NUMBER

RENUMBER ABORTED BY ESCAPE, PROGRAM WAS LOST

TOO MANY VARIABLE NAMES (LIMIT IS 93)

9, UNRECOGNIZABLE WORD

10. LINE NUMBER,''RUN'" IS ILLEGAL BEFORE AN INITAIAL RUN

11. INCORRECT PARENTHESES CLOSURE

12. PROGRAM IS LIST/COPY PROTECTED

13. NUMBER TOO LARGE (9. 9999999999999E+62 IS MAXIMUM)

14. OUT OF DATA

15. ARITHMETIC OVERFLOW (SUCH AS DIVISION BY ZERO)

16. "GOSUB"S NESTED TOO DEEP

17. "RETURN" WITHOUT ''GOSUB'"

18. FOR-NEXT LOOPS NESTED TOO DEEP

19. "FOR" WITHOUT MATCHING "NEXT"

20. "“NEXT'' WITHOUT MATCHING "FOR'

21. EXPRESSION TOO COMPLEX (TOO MUCH FUNCTION NESTING) -

22. ARRAY TOO LARGE FOR SYSTEM

23. ARRAY SIZE EXCEEDS INITIAL DIMENSIONS

24, ONLY ONE DIMENSION ALLOWED FOR A STRING

won Dom PP WLW DK

Copyright (C) 1974

Educational Data Systems A2-1

25.

26.

27.

28.

29.

30.

31,

32.

33,

34,

35.

36.

37.

38.

39,

40.

41.

42,

43,

44,

45,

46.

47.

48.

49.

50.

51,

52.

53.

54,

55.

56.

57.

58.

59,

60.

61.

62.

63.

64.

APPENDIX 2: CANNED MESSAGES (continued)

STRING NOT DIMENSIONED

SYNTAX ERROR IN USER-DEFINED FUNCTION

SUBSCRIPT, CHANNEL NUMBER, OR SIGNAL PARAMETER OUT

OF RANGE

ILLEGAL FUNCTION USAGE

USER FUNCTION NOT DEFINED

USER FUNCTIONS NESTED TOO DEEP

MATRICES HAVE DIFFERENT DIMENSIONS

ARGUMENT IS NOT A MATRIX

DIMENSIONS ARE NOT COMPATIBLE

MATRIX IS NOT "SQUARE"

CALLED SUBROUTINE NOT IN STORAGE

EXPRESSION IN ARGUMENT FOR CALL

ERROR DETECTED BY CALLED SUBROUTINE

FORMATTED OUTPUT EXCEEDED BUFFER SIZE

CHANNEL ALREADY OPEN

BAD FILE NAME

NO SUCH FILE

FILE BEING DELETED, REPLACED, OR BUILT

NOT A DATA FILE (CAN'T OPEN OR REPLACE)

FILE IS READ PROTECTED

FILE IS WRITE PROTECTED

DISC FULL, CAN'T BUILD FILE OR ADD RECORDS

ACCOUNT'S DISC ALLOCATION USED UP, CAN'T BUILD FILE

CHANNEL NOT OPEN

FILE NOT FORMATTED

ILLEGAL RECORD NUMBER

RECORD NOT WRITTEN

ILLEGAL ITEM NUMBER

ITEM TYPES DON'T MATCH

STATEMENT IS ILLEGAL FROM KEYBOARD

CAN'T DUMP AN EMPTY PROGRAM

STRINGS CANNOT BE REDIMENSIONED

ERROR IN FORMAT STRING

"RUNMAT' PROCESSOR NOT IN SYSTEM _

TOO MANY NUMBERS ENTERED FOR INPUT

MATRICES HAVE DIFFERENT NUMBER SIZES

SIGNAL BUFFER IS FULL

COMMANDS ARE ILLEGAL IN "LOAD" MODE

LINE NUMBER MISSING IN "LOAD" MODE

Copyright (C) 1974

Edueational Data Systems A2 - 2

100.

101.

102.

103.

104.

109.

106.

107.

108.

109,

110.

111.

112,

113.

114,

11o.

116.

117.

118.

APPENDIX 2: CANNED MESSAGES (continued)

SOURCE FILE IS READ PROTECTED

SOURCE FILE IS NOT A TEXT FILE

SOU RCE FILE IS BEING MODIFIED

SOURCE FILE DOESN'T EXIST

SOURCE FILE NAME IS ILLEGAL

DESTINATION FILE EXISTS IN ANOTHER ACCOUNT

DESTINATION FILE EXISTS AND IS BEING MODIFIED

DESTINATION FILE EXISTS BUT IS NOT A TEXT FILE

DESTINATION FILE NAME IS ILLEGAL

ACCOUNT IS OUT OF DISC SPACE. THE FILES ARE SAVED!

SYSTEM IS OUT OF DISC SPACE. THE FILES ARE SAVED!

READ PROTECTED FILE

COPY PROTECTED FILE

WRITE PROTECTED FILE

FILE BEING MODIFIED

ILLEGAL NAME

NO SUCH FILE

SYSTEM FILE

FILE BEING BUILT, REPLACED, OR DELETED

Copyright (C) 1974

Educational Data Systems A2 - 3

