
IRIS 7.3

Interactive Real-time

Information System

MANAGER MANUAL

POINT“ '
DATACORPORATION “Sl 7

EDUCATIONAL DATA S9 YS TEMS

1682 Langley Avenue, Irvine, California 92714

(714) 556-4242

Interactive Real-time

Information System

IRIS 7.3

MANAGER

REFERENCE MANUAL

This manual is intended for use by the System Manager and other

persons requiring information about operating and extending an

IRIS R7.3 system. Included are detailed procedures for system

generation, system modifications and updates, system start up and

shut down, maintenance of the users’ accounts, use of the system

in stand-alone mode, writing a new processor, subroutine, or

peripheral driver, system commands and functions accessible only
to the manager, interpretation of trap messaoes, and other useful

information. It is assumed that the reader is already familiar

with IRIS. Refer to the IRIS User Reference Manual for log-on and

log~-off procedures, use of system commands, and use of standard

lanyuage processors. Refer also to the Glossary in Appendix 3 of

this manual for definitions of terms used herein.

DISCLAIMER: Every attempt has been made to make this reference

manual complete, accurat®, and up to date. However, there is no

warranty, either express or implied, ag to the accuracy of the

information contained herein or to its suitability for any

purpose. This manual is offered only subject to this disclaimer.

All Rights Reserved

Copyright © 1974, Educational Data Systems
This document contains secret and confidential

information of Educational Data Systems. It may
not ve reproduced, used, or disclosed without the

prior written permission of Educational Data Systems

Copyright 1978 | , EDS 1018-1)
Educational Data Systems 5 SEP 78

TABLE OF CONTENTS -- IRIS Manager Reference Manual

page section

I-1 l. INTRODUCTION TO IRIS

I-] le Components of IRIs

}=3 1.2 Initial Program Load Sequence

1-4 1.3 Disc and Core Usage
l-7 1.4 Disc File Structures

I-11 1.25 Formatted Data Files

l-l2 «1.6 Contiquous Data Files

I-12 I./7 Indexed Data Files

I-16 18 Control and Information Tables

I-17 LY Flaq and Status Words

I-17 1.10 Number Types and Formats

1-20 I.II System INDEX Structure

2-1 2. SYSTEM INSTALLATION AND CONFIGURATION
2-2 Qe! Site Preparation and Maintenance

2-3 202 rlardware Configuration
ond 203 system Seneration |

2-10 2.4 How to Modify the System Configuration
2-17 2.5 Time-Sharing Algorithm

2-21 2.6 Jise Driver Table

2-23 2.17 ‘low to Move Logical Unit Zero
2-24 2.8 How to Change Business BASIC’s Program Area
2-26 2.9 How to Cause a DISCSUB to be Core-Resident

2-26 2.10 How to Add Devices to the system

o-2/ 2.11 Log-On Messages

2-27 2.12 Loq-On Charges

2-26 2.13 Log-On Restrictions

2-30 2.14 Automatic Program start

3- | 3 DEBUGGING AND SERVICE ROUTINES

How to Use 382ZUP

dow to Use DBUG

How to Use DSPee ® oN —
OYOSTEM UPDATES

3

3

3

4

4—-] 4.1 How to Use PLOAD

4-2 4.2 rlow to Replace LZUP

4—2 4.3 How to Replace DISCSURS

4-3 4.4 flow to Replace DEUG

4—3 4.5 How to Replace REX, SIR, and PLOAD

4—5 4.6 How to Replace SCOPE, BYE, DSP, or MESSAGES

4-5 4./ tiow to Replace FASIC, RUN, and RUNMAT

4—=5 4.3 How to Replace Mthér Processors and Drivers

4-6 4.¥ ttow to Change Processor Passwords

4=-6 4.10 How to Enter Patches and Patch Tapes

Copyrignt 1978 | Table of Contents

Educational Data Systems O-| | 5 SEP 78

pace

5-1

5 I

5-3

5~E

o-|

6=|

6-2

6-2

6-5

7-1

7-2

7-3

7-3

7=4

om |

Ua |

o-]

b=—2

G5

s—/

GO

8-5

6-10

S=- 11

B= 12

G-13

G15

G=—16

GS-16

Y= |

y= |

Y= 3

Ye

Yed

y=-O

Y=-1G

ye lO

y=12

y-13

y=14

lable of Contents
b.9 OCP

section

De

e t WN —

e &WwNh-SNS AAKAD
e

e@

—- LK CO YOU BR WN oOhWwWh—OCSOoanrwewsenwotwonrcca®
e °@ SOUR WN —

— CG©

13

START-UP AND SHUT-DOWN PROCEDURES

System Start Up Procedure

IPL Bootstrap Programs

System SHUTDOWN Procedure

PROBLEM ANALYSIS AND REPORTING

Trap Messages |

Errors and Other Problems

Buca Reporting Procedure

Bad File Recovery

ACCOUNTING SYSTEM |

ACCOUNTS File Access from Businss BASIC

Account List Proaram

Account Utility Program

Suggestions for System Accounting

MISCELLANENUS INFORMATION

Wore on LIBRary

House Cleaning Procedures

How to CLEANUP a Logical Unit

tow to Use System in Stand-Alone lode

system BACKUP Procedures

Peal-Time Interrupt Systern

“ore on CHANGE and SCNPE

More on INSTALL © oe

tiow to Set System time sat

More PORT Control Functions

Priority Task Queuing

Dequeuina a Task

Form of a Task

Available System Tasks

HOW TO WRITE A PROCESSOR

Core Locations and Entry Points

sequence of &vents

Use of Active File

swap In Procecure

swap Mut Procedure

Use ofr System subroutines

Input and Output

Data File Access

Processor lyove “

Debuacing Procedures

Copyright 1978

Educational Data systens

page section

10-1 10. DISC-RESIDENT SUBROUTINES

10-2 10.1 How to Write a DISCSUB

10-3 10.2 How to Add a DISCSUB to the System

10-5 10.3 How to Debuq a DISCSUB

10-6 10.4 How to Write a DISCSURBR for B3usiness BASIC

ADDING DEVICES TQ THE SYSTEMHl.

li-l dtel Interactive and Peripheral Device Drivers

ll-b =611.2 How to Write a Peripheral Device Driver

l\l-7 1.3 How to Write an Interactive or System Device Driver

}l—4 I1.4 How to Write a System Subroutine Module

11-10 11.5 how to Write a Multiplexer Driver

}l-13 11.6 Character and Interrupt Task Queuing

ji-13 11.27 Wow to Drive a Peripheral on a Multiplexer

11-15 11.8 How to Write a System Disc Driver

l}-21 JI29 How to Write a Disc Driver for BZUP

l1-23 11.10 How to Write a Terminal Translation Module

I2—-1 «612.00 SYSTEM ASSEMBLIES |

l2—-1 12.1 software Definitions Tape (DEF5)

l2-1 12.2 Page Zero Definitions Tape (PZ)

I2—-! 12.3 dow to Assemble System Comnonents

Copyright 1978 Table of Contents

Educational Data systems O-3 | 5 SEP 78

11-6

11-3

Il-y

11-14

li-17

11-20

1-22

FIGURES AND APPENDICES

figure

l.| Map of Core

1. Structure of Disc Map (DMAP)

1.3 Indexed File Structure

1.4 Indexed File header

l.dD Directory Block Structure

1.6 Number Formats

Time-Sharing Parameters

Partition Size Selection Tablee _,) —

Task Queue Node

Task Priorities

Processor Core Locations

Processor With No Swappinc

Swapping Storage in Active File Header

Swapping With Active Fileccc e MO NN
e

WN wo
Typical Perioheral Driver Filebi. |

11.2 System Device Driver File

11.3 System Subroutine File
11.4 Driver for Peripheral on Multiplexer

[1.5 Typical Driver for rixed Head Disc
11.6 Typical Driver for Movina Head Disc

l1.¢ Typical Dise Driver for BZUP

Appendix 18 system Subroutines

Appendix 2: Canned Messages

Appendix 3: Glossary of Terms

Appendix 48 -Qctal Numbers

Appendix 5: software Definitions

Anpendix 68 Driver Attributes

Appendix 7: trap Numbers

Appendix 8 Paper lape Loader

IRIS Manager Manual Index

Fiaures and Appendices | Copyright 1978
5 SEP 13 0-4 Educational Data Systems

1. INTRODUCTION TO IRIS

IRIS is an Interactive Real-time Information System designed to

support real time data acquisition and process control, data

communications, interactive time-sharing, and background data
processing simultaneously. To be practical for use in such a

variety of applications a system must be modular and open-endced$

that is, it must be easy to configure a system using only the

necessary modules such as peripheral drivers, task processors,

etc., and it must also be easy to add new drivers, tasks, etc. at

any time. IRIS was designed to meet these goals, and this manual

is intended to supply all of the information required by the

manager of an IRIS system.

1.1 Components of IRIS

The IRIS environment consists of several disc files as follows?

BZUP The Block Zero Utility Package, which resides in block
zero of the disc (each Logical Unit), is brought into

core from the system disc by the Initial Program Load

(IPL) bootstrap. BZUP may be used for debuaqging
purposes, or the IPL sequence may be allowed to

continue, in which case the REX disc file is brought

into core and initialized (see Section 1.2). Strictly
speaking, BZUP is not actually a file, since it has no

header and does not appear in the INDEX.

REX The REX file contains the remainder of the IPL routine

(in the file’s header), the Real-time Executive (REX)

which occupies approximately the first 4K words of core

(excepting locations 200 through 577 octal), the System

Initializing Routine (SIR) which is executed once after

the IPL, and DBUG which may be used for troubleshooting

SIR and REX.

INDEX © The INDEX contains the Filename and Real Disc Address of
each file. Each Logical Unit has its own INDEX, which

is hash-addressed for fast file lookup. See Section

1.11 for details.

DMAP The Disc Map indicates which disc blocks are in use and
which are available for creating new files or expanding

Old ones. Each Loqgical Unit has its own DMAP.

DISCSUBS <A number of subroutines that are a requisite part of the

operating system but may be used too infrequently to be

kept in core are stored in this file of Disc-Resident

Subroutines. Many of these subroutines are also used by

the various processors. The system manager may specify

that certain of these subroutines are to become

core~-resident at next IPL time by setting flags in the

CONFIG file (see Section 2.9).

Copyright 1978 Introduction to IRIS

: 19 APR 78Educational Data Systems 1-1

ACCOUNTS This file contains the Account ID, assigned priority,

| assigned Logical Unit, privilege level, account number
(group and-user), CPU and connect time allotments, disc

block allotment and usage information, and accumulated

net charges for each user’s account (see Section 7).

CONFIG This file contains all information about the current

configuration of the system, .a system disc driver for

each known type of disc controller, and a disc driver

for BZUP for each type of disc controller. The system

Manager may modify this file and then do an [IPL to

change the system confiquration (see Section 2.4). All

other components of IRIS are configuration independent

except for actual peripheral device driver files.

The following processors are also required in the minimum IRIS

environment:

SCOPE The System Command Processor analyzes all system

commands and provides the means for a user to transfer

control of his port from one processor to another.

BYE This is the Log-on/Log-off processor which keeps track
- of the user’s CPU time and connect time usage and

updates the user’s entry in the ACCOUNTS file

accordingly.

DSP The Disc Service Processor is used for debugging and

updating the system or any file. DSP may be used from
any active port by the system manager while the system

is in normal use.

PLOAD The Program Loader is used to load new files from paper

tape to update or extend the system. PLOAD is contained

in the SYSGEN binary tape alona with SIP (the System
Initializing Routine) and SYSL (the SYStem Loader).

The following processors are also required if the system is to use

more than one Logical Units

INSTALL The Logical Unit Installation processor is used to bring
up each Loaical Unit other than the system disc and when

installing a disc pack on any changeable cartridge disc

drive.

REMOVE The Logical Unit Removing processor is used when

removing a disc pack from a changeable cartridge drive.

Other processors, such as BASIC, RUN, SAVE, KILL, COPY, and LIBR,

are optional components of the complete IRIS environment. They

are not required for operation of the system except when their

specific functions are required.

Components of IRIS Copyright 1978

19 APR 78 1-2 Educational Data Systems

1.2 Initial Program Load Sequence

Initial Program Load (IPL) must be performed after a crash or

after using the system in stand-alone mode. IPL brings a fresh

copy of REX into core from the disc, and the System Initializing

Routine (SIR), which is included in the REX disc file, performs

all required initializing functions.

The first step of an IPL is to get BZUP from block zero of the
system disc into core page zero. Refer to Section 5 for the

various methods of starting an IPL. Also refer to the sections on

BZUP and DBUG if the IPL sequence is to be interrupted for use of

a debugging package. Each bootstrap program initiates this

one-block transfer and then idles at location 377.

Location 377 is finally overlayed by a JMP instruction in the last

word of BZUP. This transfers control to a routine in BZUP which

copies BZUP to the 400 words (octal) starting at location LBZUP

(defined in the Software Definitions). LBZUP is currently 24000

octal. If switch zero is up, control is then transferred to

BZUP%s control mode. If switch zero is down, then the REX header

is loaded into core, and control is passed to the IPL routine in

the REX header.

IPL reads the remainder of the REX file into core by use of the

disc driver in BZUP. If the switches are set to the startina
location of DBUG (currently 25000 octal) control is then given to

DBUG$: otherwise, control goes to SIR. Control may be passed from

DBUG to SIR by executing a jump to location LSIR (defined in the

Software Definitions). LSIR is currently 14000 octal. SIR
examines the CONFIG file to bring the necessary disc drivers into
core, sets up LUFIX and LUVAR tables for each disc, scans the
DISCSUBS file to set up the Disc Address Table (DAT) and the
Starting Address Table (SAT) with the Real Disc Address and the

actual in-core starting address, respectively, of each
disc-resident subroutine, brings selected DISCSUBS into core,

reserves six disc blocks for use in saving SSA when nesting |
subroutines, locates the SCOPE, DSP, DISCSUBS, MESSAGES, and BYE
files and puts their disc addresses into the INFO table, sets up
each port’s Port Control Block (PCB), Data File Table (DFT), and

Input/Output buffer, scans the INDEX to create a fresh copy of the
Disc Map (DMAP), creates an active file for each port, and

requests a type-in of the date and time. Control is then

transferred to the START routine in REX where the interrupt system
is initialized, and finally to the idle task.

Note: if switch one is up at the time control is transferred to

SIR then the system will be initialized for minimum configuration

(master terminal only, no peripherals, only !6K of core, no
core-resident DISCSUBS, etc.). This allows use of DSP in case of

a problem such as core overflow, a bug in a peripheral driver,

etc. SIR will also do a new IPL and retry initializing for the

minimum configuration following any fault conditions see Appendix
7 for possible trap numbers and their meanings.

Copyright 1978 | IPL Sequence
Educational Data Systems 1-3 : 19 APR 78

1.3 Dise and Core Usage

Figure !.1 is a map depicting the use of core memory by IRIS. The

first 128 words are occupied by various pointers and constants
used by REX. The decimal accumulator (DA), which is used for all
decimal arithmetic and input/output is also in this area. The

next 256 words (one disc block) are part of the regnant

processor. Next comes the system information table. The
Real-time Executive (REX) occupies approximately the next 3K
words, following which is patch space up to the defined Begiming

of Processor Storage (BPS). The various disc block buffer areas
begin near the top of lower core. The processor may use all of
the space from 200 through 577, from BPS through MBUS—I, and one
user partition.

The Port Control Area (PCA) may be forced into a specific location

by hardware restrictions’ therefore, there may be space left on
each side of it. SIR then allocates space in the starred areas of
the core map for Data File Tables, I/O buffers, stacks and tables
used by REX, peripheral drivers, core-resident discsubs, task
nodes, etc. If there is more than 32K words of core then upper
core (ie, all core above 077777 octal) will be used only for

additional user partitions (see Sections 2.4 and 2.8).

Each Logical Unit has a copy of BZUP in Real Disc Address zero, an

INDEX whose header is in Real Disc Address one, an ACCOUNTS file
whose header is in Real Disc Address three, and a DMAP (disc block

usage map) whose header is in cylinder zero, track one, sector
zero (Real Disc Address LRT). Figure 1.2 shows the structure of
the disc map. The system disc (Logical Unit zero) also has the

REX (Real-time Executive) file whose header is at Real Disc
Address two, and a set of discsub nesting blocks and the DISCSUBS
file which immediately follow DMAP. These files must be forced
into these specific locations so that they can be found without
looking through the INDEX. Because of this it is necessary that
tracks zero and one of each Logical Unit do not cause hard data
errors. Also, since DMAP and DISCSUBS are forced into successive

blocks on Logical Unit zero, there must be enough good tracks on
the system disc to hold these files without errors. Any other

blocks on any Logical Unit may be marked as "bad" to prevent their

use by any IRIS file.

Disc and Core Usage | Copyright 1978
19. APR 78 : 1-4 Educational Data Systems

Figure |.1% Map of Core

The diagram below shows how core is used by IRIS.

Location Contents

O

200

600

PATSP

ENDPS

BPS

MBUS

BSA

HBA

HXA

OA

ABA

PCA

TOPW

REX page zero

Processor

page zero

INFO

REX

Patch space *

Dise driver

Processor area

Partition #0

Block Swap Area

Header Block Area

Header Extender Area

Subroutine Swap Area

Auxiliary Buffer Area

*

Port Control Area

Copyright 1978
Educational Data Systems }=5

Remarks

Pointers, constants, etc.

This block is part of

the processor file.

System information table.

Core-resident portion

of the Real-time

Executive.

See note below.

Driver for system disc.

This area and locations

200-577 are occupied by

one processor such as

BASIC, SAVE, LIBR, etc.

Used by processor for

user’s program and data.

\

\

) 256-word

) disc block

) buffers.

/

/

Used for indexed files.

See note below.

40 words (octal) per PCB.

* Note’ these areas are used

by SIR for user partitions, :

Data File Tables, I/0

buffers, drivers, etc.

(see Section 1.3).

Map of Core

19 APR 78

Figure 1.2: Structure of Disc Map (DMAP)

that the corresponding

block is not available.

word #

0 ! Cylinder address t
| me ae ee ne me eee ane manne eae mm wef N

| Blocks available i) There are WCM words
[oe ae ee ae ee cee ne me ee maaan eae) per cylinder entry in

2 : Track O map word) the Disc Map, where

| ae ae ee ae ee me mee me ee nee) WCM (Words per Cylinder
3 | Track |! map word) in Map) is two plus the

fe oe Smee aoa me aee ee ee ae a eee eee mee meme §) number of tracks per

4 : lrack 2 map word }) cylinder (see below).

[ee re me me ee ae ee ee mee fl /

5 : track 3 map word 1 7

en ee en re rr an tn en een Real Dise Address of first

6 | Cylinder address 1 t-- block in this cylinder.

qT | Blocks available 1 ¢=—- Total number of blocks
a ee ne rr rn nnn available (not currently

10 | Track O map word in use) in this cylinder.

11 ; Track | map word t «-—- Each available block is

| a rr rn rr rn indicated by a "0" in the

12 1 track 2 map word ' corresponding bit in the

fe me ee me me me ee ee me ej map word for its track.
13 + track 3 map word A "I" In a map word means

The least significant bit of a word is bit number zero, and it
Maps sector zero of the track mapped by each map word. Therefore,

for a disc with twelve sectors, the map word for an empty track
would be 170000 octal, indicatina that sectors zero through eleven
are available, and sectors twelve through fifteen are not

available (non~existent in this case).

The above figure represents the map for the first two cylinders of
a drive having four disc surfaces (four tracks per cylinder), and

the value of NT (number of tracks) in the LUFIX table would also
be four.

The DSPS cells and the FMAP cells (currently locations 50 through
170 octal) of the DMAP file header are used for the "bad blocks"

list, which is terminated by a zero word. Up to eighty Real isc

Addresses may be listed as bad on each Logical Unit.

Copyright 1978

Educational Data Systems

Structure of Disc Map.

IY APR 78 1-6

1.4 Disc File Structures

IRIS provides facilities for two structurally different forms of

disc files? random and contiguous. A file of either form consists

of a header and a number of data blocks. The basic difference

between the two forms is that a random file’s header contains the

Real Disc Address of each data block (or of each header extender

block if the file is extended) while the contiguous file’s header

contains only the header’s disc address and a value indicating the

total number of blocks in the file. The differences are discussed

in detail in Sections 1.5 and 1.6. The remainder of this section

will describe only the characteristics of a disc file that are

common to both forms.

Each file’s header contains its Filename, all of the file’s

attributes, and information regarding the location of all of the

file’s data blocks. The displacement symbol and its currently

assigned value (in octal) are given in the IRIS Software

Definitions (DEFS) along with a brief description of each

attribute$’ more detailed descriptions follow. Bit 15 is the most

significant bit, and all values are carried in binary except as

noted.

NAME - The Filename is a string of up to fourteen ASCII

characters, not including the Logical Unit number. As

with all strings in IRIS, the top bit of each ASCII code

is unconditionally set to one.

ACNT This account number word is divided into three fields:
bits 15,14 Privilege level

bits 13-6 Account group number

bits 5-0 Account user number

TYPE The bits in this word are used as follows?
bit 15 (not used)

bit 14 Read protected \ Against users

bit 13 Write protected) of any lower

bit l2 Copy protected / privilege.

bit 11 Read protected \ Against users

bit 10 Write protected) of the same

bit 9 Copy protected / privileae.

bit 8 Runnable processor

bit 7 Load active file when selected

bit 6 Initiate input before first swap-in

bit 5 May be locked in core

bits 4-0 contain the file’s type (see Section 8.7)

NBLK The total number of disc blocks currently allocated to

the file, including the heacer. |

Copyright 1978 | Disc File Strctures
Educational Data Systems |-7 : 19 APR 78

STAT

NITM

LRCD

NRPB

NRCD

COST

CHGS

LDAT

CDAT

Each bit of this file status word is a flaq with a

specific meaning as follows:

bit 15 File is being built, not yet closed

bit 14 A file is being built to replace this one
bit 13 File is to be deleted when no longer open

bit 12 File is mapped (formatted data file)

bit I File has been opened with an OPENLOCK
bit 10 File is not deleteable

bit 0 File is extended

Bits nine through one are not currently in use. A file

that is being built and is locked (bits 15 and I! both

set) cannot be closed’ an attempt to CLOSE the channel
will CLEAR the channel and delete the file.

In a formatted data file (bit 12 of STAT is set) this
word specifies the number of items in each record.

In any data file this word specifies the length (number

of words) of each record.

This Number of Records Per Block has meaning only for a
formatted data file. In all other files, includina
contiquous data files, this word must be zero.

This is the total number of records contained in a

contiquous data file, or the number of records through

the last one currently written (including lower number
records not yet written) in a formatted data file.

This is the amount that wili be charged to other users

who access (open) this file. It is carried as an

unsigned decimal (BCD) inteqer which indicates a

multiple of ten cents, thus allowing $999.90 as the
maximum cost.

This is the accumulated amount that has been charged to
other users for access to this file. It is carried as a

two-word floating-point decimal number, thus allowing
charges to accumulate to $99,999.90 before the least

Siqnificant digit of the cost is ignored due to

truncation of the charges to six significant digits.

Tne two-word last access date is copied from the system

clock each time the file is opened by any user. The

first word represents hours since | January 1976, and
the second word represents the remaining part of an hour

in tenths of a second. Each word is a binary intecer.

The file’s creation date is in the same form as LDAT,

but it is set from the system clock only once when the

file is initially built.

Disc File Structures Copyright 1978

19 APR 18 1-8 Educational] Data Systems

seijuateg se!

NTAC

CATR

CLAS

PPRI

ONUM

ADAT

DASA

DSPS

FMAP

HTEM

This Number of Times Accessed Counter is incremented

each time any user opens this file for any purpose. In

the active file header, this cell is used by the

timesharing algorithm to save the program value.

If the file is cataloged then this cell will hold the

number of the record, in a file whose Filename is

CATALOG, which contains the catalog entry for this file.

These two words are used to classify a cataloged file

into up to four classifications. One byte is used for
each classification specified, allowing up to 256
classes to be defined.

A program’s assigned priority is used by the timesharing

and partition assignment algorithms. A median value of

200 is assumed until a new value is assigned by the
system manager in the range zero to 377 octal.

This word holds the Software Change Order (SCO) Number
of the last SC) applied to this file.

This word holds the date (hours after I-!I-76) that the
last SCO was applied to this file.

This eight word Decimal Accumulator Save Area is used by
AFSETUP to save the six DA cells at swap-out so that

they can be restored by LNADUSER at the next swap-in.
The last two words of DASA hold the two save area
designator words at the end of AFSETUP’s pointer list

(see Sections 9.4 and 9.5).

These sixteen words are reserved in each file’s header

for use only by the Disc Service Processor and other

system routines. DSP also uses the NITM, LRCD, NRPB,

NRCD, and FMAP cells in the active file header.

These 65 words are used only in a formatted data file

(see Section |.5) or an indexed contiguous data file

(see Section 1.7). The FMAP cells in an active file

header may be used for temporary storage by a processor
Since the active file cannot be formatted (see DASA

above). The FMAP cells in a contiguous file header are

used for directory information if the file is indexed

(see Section |.7).

This word is reserved for temporary storage by the

allocate, deallocate, and account lookup system

subroutines.

Copyright 1978 ‘Disc File Structures
Educational Data Systems 1-9 19 APR 78

STAD For a machine code (stand-alone or executable) file,
this word indicates the program’s starting address, or a
zero value indicates that no starting address has been

specified. In a peripheral device driver file, this ©
word will be set by SIR to the actual core address of
the initializing routine’s entry point after the driver

has been brought into core. In a system driver file,
this word will be set by SIR to indicate the routine’s

actual core location as a debuaqging convenience. The
STAD word is not used for other types of files.

ABLK This Number of Active Blocks cell indicates to |
Read/Write File how many blocks are to be transferred?
ie, the first ABLK disc addresses starting at location
200 octal in the file header are active blocks. -. Used

only for reading a processor into core or for swapping

an active file. ABLK must not exceed NBLK-I.

DREP If another file is being built on the same Logical Unit
and with the same Filename to replace this file, then

this cell will contain the Real Disc Address of the

replacing file’s header. |

DSAF . This Default Size of Active File cell is used only in
the active file header to hold the size of active file

(number of blocks) specified in the port driver’s
attributes. table. This number of blocks will be

allocated to the active file initially at IPL time, and

the active file will be restored to this size by BYE
each time a user logs off.

CORA This is the core address of the first data block, and
all other data blocks start at 400 word (octal)
increments from the first. If an entire block of core

addresses is unused then there will be no disc block
allocated, and the corresponding cell in the disc

address list (starting at 200 octal) will be zero. CORA
will always be zero for a text file or any contiguous
file.

UNIT The number of the Logical Unit where this file resides.

DHDR The Real Disc Address of the file’s header (on the
specified Logical Unit).

Disc Address List -- Cells 200 through 377 contain the Real Disc
Address (on the Logical Unit specified by UNIT) of each data block

in the file unless this is an extended or a contiguous file. In

the case of an extended file, this disc address list points not to
data blocks but the header extender blocks, each of which contains
up to 256 Real Disc Addresses of data blocks. The first address
in this list points to the extender for the first 256 data blocks,

etc. A contiguous file has no disc address list$ all NBLK-I data
blocks are at sequential disc addresses immediately following the
header.

Disc File Structures | Copyright 1978

19 APR 78 1-10 Educational Data Systems

1.5 Formatted Data Files

Any file that is mapped (see STAT and FMAP in Section 1.4) can be

accessed as a formatted data file provided it is not protected

against the caller. Each record in a formatted data file has the

same format as specified by the format map. Each word in the map

specifies the format and displacement into the record of the

respective item in the record (word zero of the map for item zero,
word one of the map for item one, etc.). The top seven bits of

each word indicate the item type according to this table:

000 end of map

00 |

OO 2

00 3

004 floating point binary

005 decimal (BCD)

006

007

O10 |

Oll ASCII string

O12 unsigned binary

O13 :

O14

O77 file mark

Types not shown are not currently defined. See Section |.10 for

more information on number types. The lower nine bits of each

word indicate the item’s displacements: ie, the number of words

from the beginning of the record to the beginning of the item.

The size of each item is determined as the difference between its
displacement and the following item’s displacement. Therefore,

the map is terminated by an "end of map" dummy item to determine

the size of the last iten.

A formatted file may be either a non-extended random file

(requiring two disc transfers per access) or an extended random

file (requiring three disc transfers per access) but may not be a

contiguous file. The system’s READ ITEM and WRITE ITEM routines

use the format map to locate the item addressed by the caller and

to check for the correct item type. However, since it is a random

file, only the blocks into which data are actually written will be

allocated to a formatted file, anda "record not written" error

will occur if an attempt is made to read from a block that has not

been allocated.

Copyright 1978 Formatted Data Files

Educational Data Systems I-11 : 19 APR 78

1.6 Contiguous Data Files

A contiguous file consists of only a header and the data blocks.

There is no format map’ the only "format" is the record length.

Since there is no disc address list in the header the entire file
must be allocated when it is first built. No holes are allowed ia

the file (all blocks must be allocated whether in use or not), and
the file cannot be expanded at a later time except by building a
new larger file and copying the data. A contiquous file can be
built only if there are enough logically sequential blocks on the

Logical Unit. When the file is built or opened, its header

address, number of records, and record length (number of words)
are saved in the channel in the port’s Data File Table. When the
file is accessed, this information is sufficient to calculate the
disc address of the desired data block and the displacement into

that block for the data transfer to begin. Therefore, if the
Read/Write Contiguous subroutine and Get Record subroutines (READC
and GETRR) are core-resident (see Section 2.9), then the very

first disc access will be the desired data block. Is up to the

caller (a processor or an application program) to determine item

locations and types within each record.

1.7 Indexed Data Files

An indexed file is a contiguous data file in which a number of
data blocks and the header’s FMAP cells have been used for file

directories. Each directory of an indexed file consists of three one

levels? master, coarse, and fine. The master level is always one “sg
disc block in length. The sizes of the coarse and fine levels

depend of the maximum number of data records in the file. Two

words of each block of each directory are used by the system, and

each key has a one word pointer associated with it. The number of

keys per block is therefore the integer value of 254/(L+I), where

Lis the lenoth of the key in words. The string supplied for each
key mimay be up to 2L bytes long.

Associated with each key in the master level is the disc address
of the corresponding block in the coarse level, and associated

with each key in the coarse level is the disc address of the

corresponding block in the fine level. Each key in the master or
coarse level is equal in value to the last (highest value) key in

the block to which it points in the next level. The blocks within
each level may be in random order within the area reserved for
that level, but the keys within each block are in sorted
(ascending) order. The system locates a given key by scanning the

master level for the first key of equal or higher value. This
selects one block of the coarse level which is scanned in a like
manner to find the proper fine level block, which is then scanned

for a match with the cgiven key. Each key in the fine level

references a data record by its real record number.

Figures 1.3 through !.5 show the structure of an indexed data tae,

file. Also, see "Indexed Data Files" in the IRIS User Reference —

Manual.
|

Contiguous & Indexed Files Copyright 1978

19 APR 78 1-12 Educational Data Systems

Figure !.3: Indexed File Structure

This example shows an indexed contiguous data file with three

directories:

File header block.

i 4|i fi 64||i 4 it)={>i 4if|iti ofi ot| Directory #l master level.

Directory #2 master level.=N

! i{ {l l(i
i

1 |{ Ii iLG |Oe| I
{

i ii ii i| |{ i Directory #3 master level.

© Directory #1 coarse level.

F | Directory #1 fine level.

©)N Directory #2 coarse level.

F2 Directory #2 fine level.

C3 Directory #3 coarse level.

F3 Directory #3 fine level.

Data records. If the record

length (R) is not a power of

two words then there may be
up to R-| words unused at

the beginning of the first

data block and again at the

end of the last data block.

Data

Copyright 1978 oF. Indexed File Structure

Educational Data Systems 1-13 | : 19 APR 78

Figure 1.4: Indexed File Header

The FMAP cells of an indexed file’s header are used for directory
information as follows:

cell Contains

O Number of directories in file

Number of data records currently on free chain (NFDR)

2 Record number of first data record on free chain (FFDR)

3 First real data record number (FRDR)

4 F, N, L (see at right) \
\ For directory #l

5 (not used)) |

) F = Fine flag

6 d(first free block for coarse level)) N = # keys/block
/ L = Key lenath

t d(first free block for fine level) /

10 \

\

11 \ |

) Same as words 4-7, but for directory #2

12 /

/

13 /

14 etc. (four words per directory)

15

74 \

\

715 \

) Same as words 4-7, but for directory #15

716 /
/

TT] /

1 OO (not used)

Indexed File Header , Copyright 1978

19 APR 78 [-14 Educational Data Systems

Figure 1.5: Directory Block Format

Each block of each directory of

shown below.

iF y N i L

|| eye| |

KI

P2

K2

P3

K3

P4

K4

Pn

Kn

Copyright 1978

Educational Data Systems

an indexed file is structured as

N

Fine level flag. Zero

for master and coarse

levels of directory,

one in fine level.

Number of keys. Maximum

number of keys per block

in master level, number

of active keys in block

in coarse and fine levels.

Key length (#4 words).

Disc address of next

block of this level of

this directory (zero in

last block in level.

Key value (ASCII string).

Pointer. Disc address

of block at next level in

master and coarse levels,

or real record number of

data block in fine level.

There may be up to L words

unused at the end of each

directory block.

}-15

Directory Block Format

: 19 APR 78

1.86 Control and Information Tables

IRIS uses several core-resident system control and information
tables as folows:

INFO This table contains various system information such as
the current real time, CPU speed, disc addresses of
certain processors and files, size of core, number of
Logical Units, etc. The location, INFO, is specified in

the Software Definitions tape as are displacements for

all items in the table. A page zero pointer to the

beginning of the table is defined in the Page Zero

Definitions. Refer to a listing of the Software

.Definitions for a complete list of all items in the INFO
table. A replacement for the first part of the INFO

table is contained in the CONFIG files see Section 2.4

for changes that may be made here.

LUT The Logical Unit Table contains a three-word entry for

each active Logical Unit. Each entry consists of:

word 0: LUFIX pointer (identifies a disc driver)
word !: LUVAR pointer (identifies a partition)

word 2% Logical Unit number

Refer to Section 11.8 for descriptions of the LUVAR and
LUFIX tables. The Find Logical Unit Tables subroutine

may be used to look up the LUFIX and LUVAR for a given

Logical Unit. The LUFIX pointer will he complemented if
the unit is not currently active, and the top bit of the

Logical Unit number will be one if the unit is only
temporarily active (ie, being installed). The LUFIX
cell will be zero in each unused LUT entry. MILU (see
page 2-12) specifies the size of LUT. There is a
pointer to LUT in the INFO table (see paqe A5-2).

PCB Each active port has a Port Control Block which contains
various information about the status of the port and the

user on the port. The Regnant User Pointer (RUP) in

page zero points to the PCB of the user whose processor

is currently in core, and the Regnant Task Pointer (RTP)

points to the PCB or TCB (Task Control Block) of the

task that has control of the system at any given time.
Refer to a listing of the Software Definitions for
descriptions and displacements of all items in the PCR.

The PCB’s as a group make up the Port Control Area (PCA)

with the PCB’s arranged in order of increasing port

numbers: therefore, «PCA in REX page zero points to port

zero’s PCB.

DFT Each active port also has a Data File Table which can be

found via a pointer in its PCB. Each DFT has eight

words per channel as described in the Software
Definitions (see page A5-3).

Control and Info Tables Copyright 1978
ID APR 78 1-16 Educational Data Systems

1.9 Flag and Status Words

One of the items in each PCB is.a flaq word defined as FLW. Each

bit in FLW is a flag as follows (bit 15 is the most significant

bit):

Meaning in FLV _
Binary input mode (pass byte as is)

Binary output mode (no parity) .

DSP breakpoint is set

DSP is active on this port

A signal will activate from pause

A break has been detected

Processor task is in queue

Output is active

Input is active

End of pause will cause auto log off

Ignore CTRL E (loo-on mode)

Ignore CTRL 0

Enable XOFF and XON

Suppress parity check

Echo input charactersO=-NuUAUaVeCSING BOF
One of the items in each channel in a DFT is a status word defined

as STS. Each bit in STS is a flag as follows (bit 15 is the most

significant bit):

Bit Meaning in STS
15 Record is locked

14 File is write protected

13 File is contiguous

12 File is not formatted

11 Peripheral device

File is indexed

(reserved for byte number overflow)

\

) Displacement of

) record into block

) (number of bytes)

/O«eee OKO
1.10 Number Types and Formats

Nine different number formats are used in the IRIS system. Two of

the forms, signed and unsigned binary integers, can be manipulated

directly with the computer’s machine code instructions. A third

form is floating point binary. The other six forms are variations
of binary-coded-decimal (BCD) formats. All nine forms are shown
in detail in Figure 1.6. The floating binary and BCD formats are

manipulated either by software subroutines ($DEC) or by use of the

EDS 400-PI Micro-N (through the $DAU driver).

Copyright 1978 Flag and Status Words
Educational Data Systems l-17 : 19 APR 78

Figure 1.6% Number Formats

Unsigned binary integer 115 oF

(type 12 in a format map) ae en ne en en rn nn rn rn rr nn

| ' 16-bit binary integer

Signed binary integer © (15.84 | Oi;

: St 15-bit binary integer

rt (twos complement if <0) |:
Aen A GND She ORD SEDER, EDEN DEER Ge a ae aw aw ana me ae an eae aoe wen ()

Floating point binary number (type 4 in a format map)

word 0 ! word | |
+15 - QO 115 9; 8 1:0;

absolute value of mantissa ; exponent of 2 iS:

‘ (23-bit binary fraction) t+ excess 128) i
Oe re ee ee ce ee ee er ee ae ae re ee ee eee ee eee ee eee ee me Se ae me ame Smee Stee arom Soames ae ae ee aw eee eee aoe

Unsigned BCD integer 15) 12h41 8: 7 4: 3 0}
(not used in a data file) ee en en ne en a rn rn rn

| ‘+ BCD + BCD + BCD + BCD

‘ digit ! digit {| digit ! diait |

Signed BCD inteaer (15314 12tt) 8: 7 4! 3 O}
(see note 4) a nnn enn

‘Si3-bit! BCD ! BCD :! BCD |

: +digit: digit : diait : diait °
aqme ea ama Guam Gwen Gram enan aeaw ewes anes anem soem ae an emen awaw ema ()

Floating point BCD (see notes 4 through 7)

word O word | |
152d 81 7 4: 3 O15) = 12411 81 7 1:0!

‘+ BCD ! BCD ! BCD ! BCD ! BCD ! BCD {! exponent i $
+ digit | digit | digit : digit : digit + digit «| (see note 6)i51

QO 2 en women a GED GE CED GED GOD ED EDGED GED CD am ZED SREP GSD Hew SPE Gen GP ee Geen Bee Gees Geen wees Gee Grew GS Ge G42 GP aeee 42 G2 Ge GD 62en nas «pene

Number Formats | | Copyright 1978
19 APR 78 : 1-18 Educational Data Systems

Figure 1.6% Number Formats (continued)

Six word unpacked BCD (not used in a data file)

word 0O ‘ word | : word 2 : word 3 '

15 0:15 0:15 0:15 O;

(D:D: D:idD:DidD:idD:dDidDidDidDsedDidD:odDiDasdDi
OC = a coe oe am GP Oe 68D One CRD ree GSP GD GHEE 608 OE GD DOE em ae Ge Geen GEE SEE awe Gee Cee Gee ee ERPeT ERO OF aw Fe OD GDM GG awa os ws a

word 4 word 5

615 O;15 1:03

' exponent not used iS D represents a BCD digit
; (see note 6) : (all zeroes): |

Notes:

1) A small circle (0) in the hase line of a word represents

the binary point or decimal point of the mantissa.

2) An 5S represents the sion bit of the mantissa. In all

caseS, zero means positive, and one means negative.

3) The numbers above each fiaure are bit positions, where

bit zero is the least significant bit of each word.

4) Any signed BCD integer or floating point BCD number is

type 5 in a format mape- The number size is determined

by the item size (see Section 1.5). The mantissa is

Carried as absolute value and sign.

5) The three-word and four-word BCD formats are similar to

the two-word format shown, except that the mantissa

holds ten or fourteen BCD digits, respectively. The

exponent and sian are always in the last word.

6) The exponent of a floating point BCD number is a binary

integer representing a power of ten. In any packed form

it is carried in excess 64 notation, but in the six-word

unpacked form it is carried as an ordinary 16-bit binary

number which will be in two’s complement form if

negative.

7) Any floating number form is assumed to be zero if the

first word is zero (first digit if using hardware DAU).

Copyright 1978 | Number Formats

Educational Data Systems I-19 : I9 APR 78

lel) System INDEX Structure

Each Logical Unit has a system INDEX of the files on that unit
only. The Filenames are placed in the INDEX by uSe of a hashing
algorithm such that a file lookup (FIND FILE) will usually find a
desired Filename in the first block examined. Each INDEX is a

non~extended random file, thus limiting its size to 128 data
blocks. Each entry in an INDEX is eight words consisting of a
Filename (an ASCII string of up to 14 characters) which occupies

the first seven words of the entry, and the Real Disc Address of

the file’s header (on the same Logical Unit) in the eighth word.
Each block can hold 256/8 = 32 such entries for a total of 128%*32
= 4096 possible entries. Because of this limitation, a Logical
Unit can not hold more than 4093 user files (4096 less three for

the INDEX itself and the DMAP and ACCOUNTS files). Also, the

hashing algorithm may become inefficient and slow if the INDEX is
filled to more than 95% of capacity, so a Logical Unit should not
be expected to hold more than about 3890 files. The maximum size

of a Logical Unit is 65536 disc blocks, so this limitation will

not be a problem as long as the average file size is not less than
65536/3890 = 17 blocks. On smaller Logical Units, the averaae

file size can be proportionately smaller.

The INDEX is not hashed on Logical Unit number zero (the system

unit). Entries are made in unit zero’s INDEX in chronoloaical
order. A gap is left in the INDEX when a file is deleted, and the

INDEX entry for the next file built will fill the first gap.

During an IPL, SIR scans the INDEX on Logical Unit zero. As each
block is scanned, the disc addresses of the entries are sorted

into ascending order, then the files are examined in that sequence

in order to mark the used disc blocks in the DMAP. When any
driver file is encountered during this procedure, it is made
core-resident. Therefore, if it is necessary for two or more

drivers to be brought into core in a specific sequence, it is best
to put their INDEX entries in different blocks of the INDEX (DSP

must be used to do this manually).

CAUTION! Do not manually change or move an INDEX entry in any

INDEX other than for Logical Unit zero. Because of the hashing

algorithm used, FIND FILE may not be able to find such a modified

INDEX entry.

System INDEX Structure Copyright 1978
IY APR 78 : 1-20 Educational Data Systems

eo @2@oe 22 8&8 @@ 2282 82280808080 ©2828 @e @e @2®@8 ga @e @282 @2@2@ woe 22 @®@8 ane @e 282 @eae 2 e@ 2&@ 22 @e Be 2&2 @2e @e2 @S2 2a @2Boawewae @8 awa wa @®2 22 @e a2 & GOERS

2. OYSTEM INSTALLATION AND CONFIGURATION

The installation of a computer system may be separated into five
main tasks’

1) Site preparation and maintenance,

2) Hardware selection and configuration (the computer and all
peripheral devices),

3) Hardware installation and testing,

4) System generation (loading the operating system and other

software onto the disc), and

9) Configuring the system for optimum performance.

Site preparation and maintenance are discussed in Section 2.1, and

hardware selection is discussed in Section 2.2. [Installation and

testing procedures for the hardware must be derived from the
manuals supplied by the various hardware manufacturers, however

hardware testina is also discussed in the first few steps of the

system generation procedure in Section 2.3. These considerations

are often overlooked when purchasing or installing a computer
system, so their importance cannot be overly stressed here. Such

simple things as noisy devices on the power line (elevators, air
conditioners, mechanical business machines, etc.) or a dirty
environment may be overlooked or underrated when a mini computer

is being installed, but remember that special power distribution
and air conditioning are usually installed for a laraqe computer
system. A mini computer system is often expected to operate in

the normal office environment. The assumption that it will do

so with no special preparation may lead to distress.

system generation is outlined in a step-by-step procedure in

section 2.3, and this procedure should be followed carefully for

an efficiently operating IRIS system. System generation is then

followed by configuring the system to operate the most effeciently

in the specific user job mix. The configuration of an IRIS system

may be easily modified at any time if the job mix channes, or if

peripheral devices are added or replaced, etc. Updates can be

made to the system at any time to add new features or correct

problems.

Copyright 1978 System Installation

Educational Data Systems 2-l : | SEP 78

2.1 Site Preparation and Maintenance

Site preparation for an IRIS system is not very critical. Some

minimal precautions must be taken, however, to assure reliable

system performance. The following environmental conditions must

be maintained to keep the EDSI warranty in effects

Ambient Temperature: | 15 to 35 deqrees C
| (60 to 95 degrees F)

Relative humidity: 15% to 90% (non-condensating) .

Telephone: A telephone within reach of the
computer console, which can be | *

used for outgoing calls while seated

at the master terminal, is required

for maintenance purposes. ©

Electrical power? 105 to 125 VAC
47 to 63 Hz* single phase

* Some peripherals require 57 to 63 Hz line frequency and must

be ordered special if 50 Hz operation is desired. Some large

disc drives may require 230 VAC or three phase power.

The electrical power requires standard 3-wire, 15 ampere
receptacles with a good earth ground (green wire), and it should

be free of transients such as are caused by elevators, air

conditioners, and large motors. In some cases, a separate line.

from the main power distribution box may be necessary.

Do not plug any device that has a motor that is started and

stopped during system operation into the power outlet on the

computer or into the same electrical circuit. Teletypes and the
high speed paper tape punch are in this exclusion catagory, but

the high speed paper tape reader may be plugged into the CPU for

power. If an EDSI multiplexer is included in the system then its

power supply must be plunged into the CPU’%s convenience outlet.

The air should be free of dust, smoke, and corrosive chemicals.

Air filters must be inspected and cleaned reqularly. ,

Metal or wooden chairs are recommended. Plastic chairs (solid

plastic or vinyl upholstered) and carpets must be avoided in the

Computer room and at all terminals to avoid static electricity

problems.

After the system is installed, run thorough diagnostic tests on

the computer and each peripheral device before starting the system

generation. A minor hardware failure could cause much time to be
wasted in attempting to diagnose the problem later.

egg

Site Preparation Copyright 1978

1} SEP 78 2-2 Educational Nata Systems

2.2 Hardware Configuration

Any operating system requires a certain minimum set of hardware

for its operation. For IRIS, the hardware system must include?

1) Any Nova-type* computer (other than an Eclipse*) with at least
16K words of core or semiconductor memory and a control

console. Power Fail Auto Restart is recommended, although not
required. Automatic restart is impossible after power failure
if the computer has semiconductor memory without battery backup,

or if any disc drive on the system will not automatically

return to a ready state when power is restored.

2) Any disc or drum system with at least 128K 16-bit words, and
which will transfer data to and from CPU memory in blocks of

exactly 256 words or any sub-multiple of 256 words. At least

two disc drives (or one dual drive having a fixed platter and a
removable cartridge) are required so that the system can be

backed up by a disc-to-disc copy. See Section 2.2.2.

3) A master Teletype or program-equivalent terminal with standard
device codes 10 and !!. An EDSI model 310 multiplexer with a

user terminal on its first port will satisfy this requirement.

Hard copy is desirable for maintenance and update purposes. If

Teletypes are to he used in the system, it is recommended that

they be ordered with type NU print wheelss this print wheel has

the slashed letter QO and the plain numeral zero.

4) A real time clock. Any device which will supply interrupts at

ten Hertz or any multiple of ten Hz not exceeding 1000 Hz. The

standard Real Time Clock, an EDSI multiplexer, or a bit-banger

multiplexer will satisfy this requirement.

5) A paper tape reader. The standard device 12 hiah speed reader

is recommended, but the reader on the master terminal (device

10) will suffice if it has been modified so that an NIOS TTI

instruction will cause the reader to feed one character.

6) A telephone. A telephone which may be used for both incoming

and outgoing calls must be within easy reach of the master

terminal and the computer.

7) A Pico=-N. IRIS requires an EDSI Pico-N to be installed on the

computer backplane. A Pico-N is supplied without charge with

each paid IRIS license. The behavior of IRIS will be erratic

without a Pico-N. See Section 2.2.1 for details.

IRIS is a very open-ended system making it easy to add a wide

variety of devices to the system without modifying the system

itself. Drivers are already available for a wide variety of

devices, and IRIS has a straightforward and well defined software

* Nova and Eclipse are trademarks of Data General Corporation.

Nova-type refers to any computer that is software compatible with

Nova computers.

Copyright 1978 Minimum Configuration

Educational Data Systems 2-3 | | SEP 78

2ecel Pico-N Installation

IRIS requires a Pico-N for normal operation. The Pico-N consists

of a 100-pin connector with some encapsulated circuitry. Turn off
CPU power, and install the Pico-N by pushing its connector over

the "A" side pins of any slot except slot one on the computer
backplane. Be sure that the Pico-N is oriented properly (the top

and bottom are clearly markeca), and that all 100 pins are in its
connector’ the Pico-N may be destroyed if installed incorrectly

(ea, shifted either right or left). It does not matter whether or

not the selected slot contains a board. The Pico-N draws power
from pins AY7/ through AIOO, and connects to the even-numbered pins
A38 through A74, and to pins A80 and A82. There is no connection
to any other pin. The Pico-N will not affect normal operation of
the computer nor of any peripheral device.

In most cases, there is no need to remove the Pico-N to run
diaqnostics or any other programs or operating systems. The

standard test routines (CPU exerciser, logic test, memory adcress
test, memory checkerboard, disc reliability, etc.) should be run
if any hardware problem is suspected. If any standard test runs
with the Pico=-N removed, but errors are indicated when the Pico-N

is installed, it may be necessary to modify the test routine’ ENS]

will assist the user in making necessary modifications if provided
with a listing and object tape of the routine. If the Pico-h causes

errors with a test routine that has been so modified, then it

should be returned to Educational Data systems, and a new one

will be supplied.

The rPico-N will remain the pronerty of Educational Data Systems.
A Pico-N is supplied without charge under a non-transferrable

license with each paid [IS license.

2e2e2 Data Channel Priority

Route the data channel priority (NDCHP on pins A93 and A9¥4 on the

computer backplane) so that the disc controller has the highest
priority. If the system includes a nine-track maonetic tane then

its controller snould have second highest priority on the data

channel. Data Channel multiplexers and other DMA devices must

have lower priority so as not to interfere with disc and tape

transfers. ost disc controllers that are completely external to

the computer require modifications to allow the required routina?3
the System Industries models 3015 and 3045 disc controllers are in

this category. <A memo is available from Educational Data Systems

giving detailed modification instructions. If the system includes

a Micro-N, it should have the lowest DCH priority.

20223 Interrupt Priority

Poute the interrupt priority (INTP on pins A95 and A96 on the
computer backplane) in the normal manner. High interrupt rate
devices, such as most non-EJ)SI multipnlexers, should have the

highest interrupt priority. INTP must reach all devices.

Pico- Installation | Copyright 1978
1 SEP 72 2-4 Educational Data Systems

2e3 system Generation

The SysGen (SYStem GENeration) procedure is used only when it is
necessary to generate a complete new IRIS system on the disc.
Procedures for later additions and modifications are discussed in
Section 4 of this manual. Fill out an IRIS SysGen Record form as

the SysGen is done, and save this record for later reference. The
following steps should be followed carefully in the order given:

2.3.1 Run all computer diagnostic routines. It is particularly
important to run the Power Fail Auto Restart test, the Memory

Address test, and the Memory Checkerboard test. Also run the

Exerciser with the punch and reader operating to check out the
interrupt system. If the computer is new, the Exerciser should

be left rumning over night, but it is not necessary to run the

punch and reader for more than two passes of the Exerciser.

2e3e2 Run the disc reliability test routines, thoroughly testing
all disc surfaces. If there are any problems, correct them before

continuing the SysGen. The disc reliability test should be left

running over night. <Any bad blocks other than in the first few
tracks may be identified to IRIS in 2.3.4 below.

2.3.3 Use the EDSI binary paper tape loader (described in

Appendix 8) to load the four system qeneration tapes (REX, SYSGEN,

DBUG, and BZUP object tapes), then load the proper Sysaen fMVerlay

tape (SOV). The SQV tape must be loaded last, after which the

computer should automatically initiate system generation’ if it

does not, then RESET and START at location 34000.

2.3.4 SYSL (the SYStem Loader, which is contained in the SYSGEN

tape) will print instructions for its operation. The first

question asked is "BAD BLOCK?",. Type the Real Disc Address of any

block on the system disc that is known to be bad, and'press the

RETURN key. After all bad blocks have been reported in this

manner, or if there are none to report, press only the RETURN key

to proceed with the SysGen.

2e325 SYSL will ask for the DISCSUBS Group #1 object tape to be

loaded in the tape reader and will then ask which reader is to be

used. Place the tape in the reader, and then press the "{" key if

using the high speed paper tape reader, or press the "0" key if

loading through the master terminal. The DISCSUBS tape will be

loaded onto the disc. If tapes are loaded through the master

terminal’s reader then a null code will be sent to the master

terminal after each tape record (about four inches) is check

summec$ this will cause the master terminal to cycle (printing

nothing) to indicate that the tape is being read without errors.

Copyright 1978 system Generation

Educational Data Systems 2-5 : | SEP 78

2.3.6 SYSL will print PLEASE WAIT while it does the basic system

generation, and will then ask "NAME?" for each additional tape.
SCUPE, BYE, DSP, CONFIG, and the real time clock driver (eg $RTC,
sHMUX, or $RBMX) must be loaded at this time. The NAME requested
by SYSL is the Filename which will be written on each tape. The
standard IRIS names must be used for all files. The "TYPE?"

reguested by SYSL is a five-digit octal number: given on the SysGen

Record. See Section |.4 to determine the proper file type for a
file not listed on the SysGen Record.

2.3.7 Press CTRL C when asked "NAME?" after loading the five

tapes listed above. This will start an IPL (see Section 5.1 for
responses to printouts by SIR during an IPL). After the IPL,
check that the CARRY light is flashinos if it is not, there is a
problem that must be rectified before continuing the SysGen$

if the problem is in the hardware (eq, device not in system), the

sysGen may be resumed by doing another IPL after the problem is

fixed; the SysqUen must be restarted from scratch if it is a software

problem. After a successful IPL, press the ESC key and sian on to

the Manager’s account by typing MANAGER when asked for an Account

ID (see "How to Log In" in the IRIS User Reference Manual).

2.3.8 Use PLOAD (see Section 4.1) to load any remainina

interactive port drivers such as SNGMX, SALU, STTY, SPHA, anc

SCRT. Load $PTR and $PTP if the hich speed paper tape reader and

ounch are on the systems otherwise load sPTM to use the master

terminal’s punch and reader as peripherals. For best system

performance, do not load any other tapes at this time.

2.3.9 All processors requiring passwords are assembled with "X"

as the password. Therefore, DSP EX may now be typed to call the

Disc Service Processor (an underlined letter in a command

indicates a control character’ eq, CTRL E in this case). Use DSP

to make any necessary modifications to CONFIG and to set all
multiplexer, phantom port, and peripheral driver attributes as

required, then do another IPL (RESET and START at location 4) to

bring the drivers into core and allocate the active files. PLEASE

WAIL may be printed several times during this IPL as drivers are

encountered and adustments are made by SIR to accommodate them.

2.3.10 Log on to the manager account again, and load the DISCSU8S

Group #2 and/or Group #3 onect tapes if they have been supplied.

DISCSUBS Group #2 contains subroutines required by Business PASIC,

and Group #3 contains the subroutines for extended and contiquous

data files and text files. Give NSP an "F DISCSUBS" command, then

give an "R" command to load each of these tapes. Reload the tape

from the beginning if any error occurs. DSP%s "R" command will

not work if the real time clock is not running as indicated by the

one Hertz flashina of the CAPRY liaht. If the master terminal’s

reader is to be used, see "How to Load a Text File" in the IRIS oh,

User Reference Manual for restrictions on the use of $PIM, —

oystem Generation Copyright 1978

| SEP 73 | 2-6 Educational Data Systems

2.3.11 Use PLOAD to finish the SysGen by loading all remaining

tapes, starting with BASIC, RUN, RUNMAT, ASSEMBLE, and EDIT for

best proximity to the ac tive files. ASSEMBLE may be loaded under
the name ASM, if desired, for easier typing and to allow more room

on the command line for Filenames (see "How to ASSEMBLE a Program"
in the IRIS User Reference Manual). Text file and BASIC proaram

tapes (SYMBOLS, UTILITY, ACCOQUNTLIST, SPOMNLER, CRAM, BUILDXF,

USERID,. DEFS, PZ, etc.) are not loaded by SYSL or PLOADS$ see
20320 through 2.3.22.

2.3.12 Do another IPL (8ESET and START at location 4) to make all
subroutines accessible, and log on to the manager account again.
Use DSP to make any necessary patches (see Section 4.10). Also, a
password (any string of up to 15 letters) must be entered at 570

in KILL, PORT, DSP, CLEANUP, and SHUTDOWN. For example, if the

pa ss word to KILL is to be PROTECT, aqive DSP the commands:

F KILL

[5/708 PROTECT

2.3.13 BYE normally sets parity checking each time a port is
logged off. If this feature is not desired (ie, it is desired to

leave the parity check "switch" in its then current position when

a user logs off) then enter a zero at location 200 in BYE. Any
non-zero value in location 200 will cause BYE to set partty
checking each time a port is logged off. To change this switch,

give DSP the commands:

F BYE

20020 (or 20021 to set parity checking each loo off)

263.14 BYE normally prints all accountina information each time

any user logs on or off. However, if not all of this information

is desired, an entry may be made in location 201 of BYE to
suppress specific portions. Each bit in the word suppresses one

item of accounting information as follows:

LI Port # \

Account # \

Date & Time)} Durina

(not used) } Log-On

Time left /

Blocks Avail. /

Account # \

Date & Time \

Charges } During

CPU Time) Log-Off

Connect lime _ /

Blocks Avail. /CK nNWAUASNI OX ©
Notes Bit 15 is the most significant bit. Bits 15-12 are not

used. |

Copyright 1978 oystem Generation

Educational Data Systems 2-7 : | SEP 78

2e3-15 If a different welcome message is desired at loq-on time,

use DSP to enter the message (63 characters maximum) into BYE at
location 540. Enter CTRL Z codes for carriage returns. For

example, DSP might be given the commands:

F BYE

15408 ZZWELCOME TU "IRIS" TIMESHARING !

Also, see Sections 2.11 through 2.14 for provisions for additional

log-on messages, log-on charges, log-on restrictions, and

automatic program start after log on.

223.216 SHUTDOWN is normally restricted to the system manager. To
let a user on another account shut down the system, enter the

account number in octal (same as in ACCOUNTS file) in location 200
in SHUTDOWN, or enter 177777 octal in location 200 to allow any
account to shut down the system. Also, SHUTDOWN is normally

restricted to operation from port zero’ to allow its use from

another port, enter the port number (in octal) in location 201 of
SHUTDUWN, or enter 177777 octal in location 201 to allow the use

of SHUTDOWN from any port. In any case, a user must know the

password to SHUTDOWN to shut down the system.

2.3.17 INSTALL normally deletes a "bad" file (eg, Filename or
header disc address doesn’t match INDEX entry, wrong number of disc
addresses in header, or header uses a disc address already marked

as "in use"), but retains a file that has its "build" bit set (Cie,

it was being built and the system was stopped before it was closed)

and is otherwise correct. Location 200 of INSTALL controls the
decision on questionable files, and the value one in location 200

is the default value that causes the decision to be made as just

described. If it is desired to delete a file being built instead

of retaining it, then use DSP to enter the value two in location
200 of INSTALL. A zero in location 200 causes INSTALL to retain
all questionable files, but a 63277 halt will occur when a "had"

file is encountered (see Section 6.4).

2.3.18 INSTALL FAST is normally not allowed because of the

possibility of a bad DMAP in the Logical Unit. However, in a
system where disc packs are being changed often, the ability to

install the new pack without the long delay of a normal install

becomes very desirable. To permit the INSTALL FAST by the system

manager, enter the value one in location 201 of INSTALL. To allow

the INSTALL FAST by a user on any account, enter any value greater
than one in 201. A zero in 201 causes the INSTALL FAST .to be
prohibited. Notes: INSTALL FAST never deletes a file reqardless
of its status.

WARNING!

Do not use the INSTALL FAST after a system crash or if the data on
the Logical Unit being installed is suspect for any reason.

oystem Generation Copyright 1978

1 SEP 78 2-8 Educational Data Systems

OO

2.3.1¥ PORT MONITOR is normally restricted to the system

manager. To allow any user to use this function, enter a | in
location 200 of PORT.

tiv WARNING’ This function is usually
restricted to the system manager (by a zero in location 200)
because PORT MONITOR lists each user’s program’s Filename,

including the password (if any).

2.3.20 To load UTILITY, ACCOUNTLIST, CRAM, SPOOLER, BUILDXF, or
any other BASIC program, see "How to Load a BASIC Program from
Tape" in the IRIS User Reference Manual. After Loading each tape,

press CIRL C, and save the program (see "How to SAVE a BASIC
Program" in the same manual). Be sure to type NEW before loadinc

each tape.

263-21 If ASSEMBLE is on the system then SYMBOLS is required. To

load SYMBOLS or any other source file (such as DEFS or PZ) See
"How to Load a Text File" in the IRIS User Reference Manual.

SYMBOLS is not reauired for the extended assembler (XASSEMRBLE).

203222 Use FORMAT to build a file named USERID (formatted D2,514)

for use by the Account UTILITY and ACCOUNTLIST programs (see "How

to FORMAT a Data File" in the IRIS User Reference Manual). Then

use the Account UTILITY Program (see Section 7.3) to change the

MANAGER, PRIVI and FREE account ID%s to secret ID strinas, and acd

additional users’ accounts as desired. The record format of the

USERID file may be extended if desired for use in resource charge

accounting, etc. Item zero must be type D2, however, and item one

must be a string of at least 14 bytes because UTILITY uses these

two items. It is strongly recommended that the manager account

not be used for purposes other than the system itself!

203-23 Use DSP to make any further modifications necessary in the

COkFIG file (see Section 2.4). Also set up the port attributes

tables, etc., for each peripheral driver as described in Appendix

6. |

and there is a pointer to it at location 200 in REX. The baud

rate speciried for port zero is meaningful only if usina an EDSI

model 310 multiplexer with the device 10/11 option enabled.

223.24 If BASIC, RUN, and RUNMAT have been loaded then press CTRL

C, type BASIC, and press the RETURN key twice to link these three

processors together. Use BASIC’s "SIZE" command to cetermine if

the program area has the desired size: if not, see Section 2.8.

26362 A backup copy of the software system should be made at

this time and periodically hereafter (eg, once a day). See

vection 8.5 for system BACKUP Procedures.

Copyright 1978 System Generation

Educational Data Systems 2-9 | SEP 78

204 How to Modify the System Configuration

The IRIS system has been optimized for a particular hardware

configuration by either EDSI or one of EDSI’s licensees. [In your

application you may desire certain system modifications to
increase your system’s performance. EDSI will supply two system

listings: the CONFIG file listing showing the locations of system

parameters, and the IRIS Software. Definitions (see Appendix 5)
which defines all system subroutines, labels, and displacements.

264.1 The CONFIG file holds configuration parameters which may be
examined and modified by use of DSP. After any modi fications have

been made, an IPL must be done to load the newly confiqured system

into core.

Khe kk RR RR KK KK RK KR RK RA RK KK RR KK KK KK RR KR RR RR RR RR RK Ra KK RK

* The following table shows the location of various *

* information in the CONFIG file for IRIS R7.3 only! *

* Refer to the proper IRIS Software Definitions for *

* the correct locations in other IRIS systems. *
tok ek kkk thick kh kk ek kk kk RK RK RK RK RK RIK RIK RRA KE EERE KEKE

Location Contents of CONFIG File

6-277 “(Not currently used).

300-377 Yisc address of each peripheral driver’s
initializing routine (first block of driver).

this list is set up by SIR for use by

RECOVER. Do not chanae!

400 | LBSA (Location of BSA). The assiqned location

| of BSA as defined here must be at least 31400

to allow any DISCSUBS to become core-resident,

and the absolute minimum value of LRSA Is

MBUS+PSIZ (see paaes 2-11 and 2-12) or 30400,

whichever is greater. LBSA is usually set

equal to MBUS+PSIZ for optimum core usage’

otherwise, LRSA-MBUS=PSIZ words of core will

be wasted because the area between MBUS and
LBSA can be occupied only by partition zero.

See Sections 2.4.3 and 2.8 for other

considerations. |

401 . PSIZ (Partition SIZe). The size must be a

multiple of 400 octal, and all partitions are

the same size. The minimum value is 1000
octal, and the maximum value is LRSA=MRUS or

40000 octal, whichever is less. If the value

in this cell is not a multiple of 400 octal,
then cells 401-404 are ignored, and the system

is initialized with one non-lockable partition

of size LBSA-MBUS at the top of the processor

swappina area. See Sections 2.4.3 and 2.8 for
details.

Modify COnfiguration | Copyright 1978

| SEP 78 2-10 Educational Data Systems

A

402

403

404

405-577

6 00-6 22

623-777

1000-1377

1400-1777

2000-15 777

16000-16377

16400-17777

20000-77777

Copyright 19/6

NPLC (Number of Partitions in Lower Core,

including the partition at the top of the

processor swapping area). The minimum value

is one, and the maximum value will he

determined by the partition size (see PSIZ on

opposite page) and by the values of LBSA and

MBUS (see Section 2.8).

NPUC (Number of Partitions in Upper Core).

Must not exceed the amount of upper core

(TOPN-077777, or zero if TOPW < 190000)

divided by the partition size (see PSIZ

opposite), but it may be smaller if it is

desired to allow more core for the buffer

pool. The number of buffers in upper core

will equal (TMPW-0 77777—PSIZ*NPUC) / 400, or

zero if TOPW < 100000. SIR will allocate as

many buffers as possible in lower core just

before allocating the free nodes, and the

total number of buffers in the pool will be >
put in the NRBP cell of the INFO table.

NLOK (Number of LOcKable partitions). Must he

less than the total number of partitions

(§PLC+NPUC) so that there is at least one

non~lockable partition.

(Not currently used).

System information as defined for the INFO

Table in the IRIS Software Definitions. See

the following pages for changes that may be
made here.

(Not currently used).

Core-resident DISCSUB numbers. This list is

described in Section 2.9.

Disc driver table. See Section 2.6.

Disc drivers. A BZUP driver anda system

driver are included for every disc controller

to which IRIS has currently been interfaced.

see Sections 11.8 and I!.9 for information on

adding disc drivers in the CONFIG file.

Log-on Festrictions (see Section 2.13).

Auto Program Start table (see Section 2.14).

system history (not currently used).

Modify Configuration

Educational Data Systems 2-11 | SEP 78

The rollowina parameters in the CMiNFIG file’s INFO table may be
changed as described:

Loc, Lapel me

600 SDAT system creation DAte (hours after I-I1-/76). Do
not change! |

601 OPED Average CPU SPEeD in instructions per

millisecond:

Computer Speed (Octal)
Nova 302

Nova 1200 or D-116 653 .

Nova 2 or D-116H 770

Nova 800 1325

super Nova 1255

Super Nova SC 1762

Nova 3 100770 *

* Notes: bit 15 must be "I" for a Nova 3 only!

662 ‘MILU Maximum number of Installed Logical Units.
Must be at least equal to the number of

logical partitions (see Section 2.6).

603 NDCH Number of Data CHannels per port. Each cata
channel occupies eight words of core for each

interactive port. NDCH is usually set to ten

(octal 12). Minimum value is 2.

6C4 LPCA Location of Port Control Area (PCR for port

zero). ill be adjusted automatically by SI

if any driver’s attributes table specifies a

PCB location. LPCA must be in the range

LBSA+2 QOO+ABUF+TBUF <= LPCA <= TOPA+1-TNAP*49

where TUPW does not exceed O77777 for the

purposes of this calculation.

605 TNAP Total Number of interActive ports. Will he
automatically increased by SIR if less than

the number of interactive ports indicated in

All driver’s attributes tables.

6GO (Not currently used).

607 WbUd Minimum Begqinnina of User Storage. This cell
indicates the first available core space above

the RUN processor for user storaae. MRUS must
be an integral multiple of 400 octal oreater

than BPS. Do not change MBUS unless RUN is

modified accordincly!

INFO Table Copyriaht 1978

I SEP 78 2-12 Educational Data Systems

610

61]

612

613

614

615

O16

617

620

Copyright 1978

TOPW

ABUF

YBUr

siCQNn

NNOD

WOTG

NOUS

PYSL

TLOK

TOP Word of core memory to be used. IPIS will
iqnore any core above this address. The

minimum value for TOPW is 37777 octal (for I6K

words), and the maximum value is 177777 (for

64K words). Any core available above 7/7/77

octal will be used only for user partitions.

Size of Auxiliary BUFfer Area (number of
words). Must be 1004 words octal if indexed

data files are to be used.

Magnetic Tape BUFfer Area. This cell should

contain zero unless the system includes a

nine-track magnetic tape (S$MTAS), in which
case this cell should indicate the buffer size

for the largest tape record.

Number of extra Character Queue Nodes. SIR

allocates two nodes per interactive port plus

this number of extra nodes. Extra nodes are

required to handle peak input rates if

particularly heavy character processing is

required. cach node occupies two words of
core. Minimum value is two.

Mininum Number of free NCDes desired in core

for use as task queue nodes. This value is

the only limit on the number of concurrent

tasks in the system. Each node occupies ten

words (decimal) in core. The difference

between the value in this location in core and

in this location in the CONFIG file indicates

avallable space for core-resident discsuhs,

etc., because all remaining core at the end of

an IPL is allocated as free nodes.

Numoer of SIGnal buffer nodes. This is the

maximum total number of sicnals that can be

waiting to be received. Each node occupies

four words of core. Minimum value is one.

Maximum WNumper of DISCSURS subroutines. The

minimum value is one areater than the largest

subroutine number in the DISCSUBS file.

Causes NSUR*2 words of core to be used for

pointer tables.

Time SLice Parameters: Left byte =. lona time

Slice, right byte = short time slice, both in

tenth=—seconds (see section 2.5).

Minimum Time a LOcKed partition is kent locked

(see Section 2.5).

INFO Table

Educational Data Systems 2-13 | | | SEP 78

2.4.2 To determine the maximum partition size (PSIZ) for a qiven

IRIS system, start with the minimum configuration which is?

One user partition in !6K words core

SDEC (Decimal arithmetic routines)

SRIC (Real Time Clock driver)

Master terminal only (79 byte buffer, 10 data channels)

No core-resident DISCSUBS (system may be slow)

No optional dise buffer areas (can’t use indexed files)

NO peripheral devices, multiplexers, etc. |

In this configuration PsIZ may be 13000 octal. This will allow a

5214 word BASIC program, but a large system disc driver may reduce

this by 256 words decimal. This limit may be increased only by?

1) Adding a Micro-N (EDSI model 400-P1) to the system, and

loading SDAU (the driver for the Micro-N) instead of $DEC
(SDAU is about 500 words smaller than $DEC), or

2) Adding more core memory. All core added (up to 32K total)
becomes available for all purposes. Upper core (up to 64K

words total) may be added to provide more user partitions

and/or provide more buffers for the disc buffer pool.

fhe maximum Business BASIC program size will be decreased by any

other changes to the configuration. To add interactive ports, it

is necessary to add one or more of the following drivers:

SMAUX (Cone driver for up to 128 ports, see note) 431 words

SDUMX (Data General 4060, 4 ports) 108

SBBMX (bit-banger mux driver, up to 16 ports) 88

SALU (DCC ALU mux driver, up to 8 ports) 155
STTY (sinole TIY or CRT interface, one port) 51
SbHA (phantom port driver, one or more phantom ports) 7

Note: a PCB (see below) is required for each physical port on an

KDSIT multiplexer ($MMUX) even if the port is unused! The above

numbers are the size of the driver only. $RITC must he deleted (or

its name changed to RTC) when either $MMUX or S$BBMX is loaded$ the
size shown for $MMUX or SEBMX is the increase in size over that of
SRTC. For each interactive or phantom port, adds

Port Control Block (PCB) 32 words

Data File lable (N = # data channels) Gk (N+4)

Input/output buffer (3 = add # bytes) (B+1)72

Miscellaneous (character queue, etc.) 44

Signal buffer nodes (5 = # nodes) 4x

The input/output buffer for any interactive or phantom port must.

be at least two bytes laraer than the longest line to be output to

the port’s terminal or to any peripheral device such as the line

printer. For non-interactive ports (eq, a multiplexer port used

for a peripheral device) only the PCB is required (an I/O buffer

is also required ir not sunplied by the peripheral driver).

Maximum Program Size | Copyright 1978
| SEP 78 — a=l4 Educational Data Systems

Other drivers that may be added to the system include:

SPiR (Paper Tape Reader) 420 words
sPTP (Paper Tape Punch) 363 *
SPTM (use master terminal as peripheral) 620
SLPT (line printer, add buffer size also) 342
SCRD (DGC card reader on parallel interface) 250
SCRD (Documation card reader on EDSI mux) 212
SMTA (9=track magnetic tape, see VIBA below) 300 + 95/drive

STERMS (Form and cursor control system driver) 224
STERMN (Specific terminal type cursor control) 50 to 150

Either $PTR or $PTM is required for most system updates. It is
possible to load one of these as "PTR" or "PTM" and activate it

temporarily for an update by using CHANGE to put the "S" in its
Filename and doing an IPL, but this should be avoided if possible

as it is usually necessary to also change some other part of the

configuration to make the core space available.

The available core is also reduced by allocating optional disc
buffer areas. These core areas and their uses are?

ABA (516 words required for any indexed file access)

MIBA (as required for largest record on magnetic tape)

Disc block buffer pool (260 words per buffer)

The available core is also reduced by causing any disc-resident

subroutine (DISCSUB) to become core-resident (see Section 2.9).
Some that are recommended to be core-resident and their uses are?

AFSETUP (active file setup for swap-out) 90 *

GETRR (get record, used for all data file access) 249

READITEM (used for all formatted file access) 192

READCONTIG (contiguous and text file access) 247

BUILD (used when building any disc file) 490

ALLOCATE (build or add to non-contiguous file) 252

ALCONTIG (build contiguous file only) 246

OPEN, CHARGE (open any data file or driver) 2716

CLUSE, CLEAR (close any data file or driver) 188

ACNTL, FFILE (build, open, close any file) 470

SEARCH, DIRECTORY, etc. (indexed file operations) 1206

OPECIAL (BASIC’s SPC functions) 103

PATNF (BASIC’%s ATN function) 206

PLOGF (BASIC%s LONG function, "t" operator) 249

PEXPF (BASIC’%s EXP function, "t" operator) 320°

PSQRF (BASIC%s SAR, SIN, COS functions) 245

PSINF, PTANF (BASIC’s SIN, COS, TAN functions) 500

SIGPA (Sianal and Pause statements) - 119

Magnetic tape routines (reduce S$MIA overhead) 950

x lhe sizes given are approximate and may change as the system is

updated. It is strongly recommended that AFSETUP be made

core-resident as this will save at least one disc revolution

each time slice.

Copyright 1978 Sizes of Drivers, etc.

Educational Data Systems 2-15 : 1 SEP 78

204.3 Typical Configuration

A typical system might have 48K words of core in which it is 2
desired to have two user partitions in lower core. Assume three

phantom ports and an EDSI 8-port mux with one port used for a line
printer. The calculation for added port buffers is as follows: |

32 PCB (see page 2-14 for source of these numbers)

112 DFT (8*(€10+4) for ten channels)

67 I/0 buffer (133 bytes, not necessarily same for all ports)
44 Miscellaneous (fixed)

8 Two signal buffer nodes

263 x 10 ports (7 mux, 3 phantom) = 2630 words

The following modules and buffer areas will be required (the
numbers come from pages 2-14 and 2-15):

#_words For
q SPHA (Phantom ports driver)

516 ABA (For use of indexed files)

3328 13 buffers for buffer pool in lower core
431 SMMUX (For EDSI 300 or 310 multiplexer)

2630 I/O buffers, etc. for 10 ports (see above)
310 STERMS, STERMn (For cursor control)
374 SLPT plus 32-word PCB for mux port used
512 1024 byte buffer for SLPT
YO AFSETUP core-resident

249 GETRR core-resident

247 READCONTIG core-resident

216 | OPEN, CHARGE core-resident

1 88 CLOSE, CLEAR core~-resident
470 _ ACNTL, FFILE core-resident

1206 SEARCH, DIRECTORY core-resident

108 34 | Total of above

The increase in available lower core space can now be calculated
by subtracting the total words required above from the 16K added
to lower core to get 16384-10834 = 5550 (12656 octal). This may

be added to the minimum configuration PSIZ for a total of
13000+12056 = 25056 words available for user partitions. Dividing
this by two (for two partitions desired) results in a maximum PSIZ
of 12727, but this is not a multiple of 400, so set PSIZ = 12400

octal, and set LBSA = MBUS+#PSIZ = "30200412400 = 32600 after >
confirming that LBSA is not too small to allow core-resident
discsubs (see Section 2.4.1). The maximum BASIC program size will
be 4458 words (see Figure 2.2). There can be two partitions in
Upper core for a total of four user partitions, and all upper core

not occupied by user partitions will be assiqned to the buffer

pool, so the remaining 40000-15400*2 = 5000 words of upper core

would be used for 5000/4000 = 12 buffers octal. Preferrably, set

NPUC=!1 for a total of three partitions to allow. decimal 37 buffers —
in upper core for a total of 13+37 = 50 buffers. Five to ten
buffers per interactive port are recommended for the buffer pool.

Typical Configuration | | Copyright 1978
1 SEP 78 2-16 Educational Data Systems

(2.5 Time-Sharing Algorithm

This section describes the time sharing and partition assignment |
algorithm. It begins with a few.definitions.

2.5.1 States of a Job - A "job" is the set of all tasks required
to serve one user at one interactive port. A port, and hence the
job, may be in any of seven states as follows?

|. Input/output done \

2. Pause done }- Job wants CPU

3. Compute bound /

4. Regnant - Jab has CPU

5. Input/output active \N

6. Pause }- Doesn’t want CPU

7. Not loqged on / :

20562 Response Time —- system response time is the time after a

user presses a key that requires an interactive response (eg,

RETURN or ESC) until that user’s processor is given control so

that it can start processing and formulate a response. This

is not the same as "apparent response", which is the delay

seen by the user between pressing the key and getting the next

output (the formulated response). Apparent response is not

discussed further because the system has no control over the

amount of computing that must be done in an application program in

order to formulate the response. It should be noted, however,

that apparent response time can sometimes be improved in an
application program by outputtina some response (followed by a

SIGNAL 3,0), before beginnina a time-consuming disc operation.

225-3 I/0 Bound Job (States | or 2) - A job is I/fM) bound if, after

each input, it completes the calculations necessary to output a

prompt message (if required) and enables the next input before the

end of one time slice. A job is also I/N bound if it starts an

output each time slice. An output to a peripheral device such as

a line printer will also cause a program to be I/0 bound if the

program generates data faster than the peripheral can accept it,

thus causing the program to enter a pause state until the device
driver can accept more data.

2.94 Compute Bound Job (State 3) - A job is compute bound if it

does not start the next I[/90 in one time slice. Ina heavily

loaded system, a compromise must be made between keyboard response

and compute bound throughput. A normally interactive (I/0 bound)

job can become compute bound occasionally if its calculations take

longer than usual or if the time slice is short due to other

interactive users.

Copyright 1978 Time~Sharing Alagorithm
Educational Data Systems 2-17 | SEP 78

ae @e 22 @0@ @2202° @@2 age we @8 22 v2 e@ @©O@ 22 22 F828 @e ae wa @@2 2e 8 @ @2e 2 et Be @2 @e @©2 Be 22 22 BO @2EC2 @e2 882 22 &22 &P @Ba Be fe wa *©2 22 782° ae 2e@ w2e @2@e = e@ we 2 Be

2.5.5 Time Sharing Algorithm - All users who want the CPU (ie,
users in states | through 4 as defined above) are kept on the .

. priority task queue (see Section 8.11). Each processor task has a
priority in the range 3 to 1377 octal, and the queue is kept |
ordered py priority. A user’s priority gradually rises while
waiting for CPU time, and decreases while receiving CPU time Cle,

when the user is "regqnant").

‘Specifically, the algorithm is as follows:

a) The user’s Effective Priority (EFP) is computed when the
program is invoked, using the formula

EFP = 2 * APRI + FPPRI

where APRI = Account Priority (see Figure 2.1), and

PPRI = Program Priority

except that if PPRI < 100 octal then EFP = PPRI, and the job
remains a background job, regardless of the user’s APRI. The
initial CPR (Current Priority) is set equal to EFP. :

b) The reqnant user’s CPR drops at a rate such that it will |

reach EFP in one long time slice, starting at CPR at the time.
the user becomes regnant, or starting at 1200 if CPR < 1200. |
The CPR does not drop below =FP. If less than a long time
slice is used, then the job will be left with a CPP? areater
than its EFP.

c) All other users (both on and off the queue) except
background jobs have their CPR%s rise uniformly at a slower
rate, dependent on the number of users on the queue, and

determined such that the averaqe user becomes regnant with a
CPR = 1200. The CPR is not allowed to rise above 1377.

Background jobs (whose EFP is less that 100) keep their CPR
fixed at their EFP, so that they never compete for resources
with non-background jobs.

d) when a user’s time slice begins, a long time slice is

assigned, except that this is reduced to a short time slice
whenever there is any I/0 bound user with CPR > 1200 on the
queue.

e) When a user’s time slice ends compute bound (ie, the job

still wants CPU time), or when a user starts to want the CPU

because of I/0 done or pause done, such a job is put on the |
queue at a position indicated by its CPR at that time. Thus a
user who has been typing in input from the keyboard, and

therefore not using CPU time, will have its CPR rise to a high
value and will therefore get a hiqh position on the queue,

resulting in prompt response.

Time-Sharing Algorithm
Copyright 1978

1 SEP 78 2-18 Educational Data Systems

2.5.6 Partition Assignment Algorithm - When a job must he swapped

into core, it may be necessary to select a partition that is
assigned to another job and release it to make room for this job.
The algorithm for choosing the partition for the new user is the
following:

a) If any unused partitions are available, choose one (if
possible) whose lockability status matches the program’s. In
other words, if the choice exists, give a lockable program a

lockable partition and vice versa.

b) If any partitions exist which are not currently on the

queue (ie, they are in states 5, 6, or 7) choose the partition
which has been off the queue for the longest time, subject

however to the constraint that a locked partition is not chosen
ir its off-queue time is less than TLOK.

c) Qtherwise, choose the partition with the lowest CPR on the

queue (this is always possible since there must be at least one

non~lockable partition in the system).

2.5./ Time-sharing Parameters - Two words in the system INFO

table provide parameters for the partition assignment and

time-sharing algorithms. These are PTSL and TLOK. The use and

effect of these parameters is discussed in Figure 2.1 below. The

system manager may use DSP to modify these parameters in core

during normal system operation, then enter the values so

determined into the CONFIG file when the most satisfactory

compromise has been established.

Figure 2.1% Time Sharing Parameters

Para-

meter Kkemarks

APRI Account Priority - This is the user’s assiqned priority as

set by the system manager in the ACCOUNTS file. The
allowable range is | to 377 octal (1 to 255 decimal). A

nominal value of 200 octal is assumed if the assigned

value is O. APRI indirectly affects all scheduling for

the user (see EFP below).

PPRI Program Priority - The system manager may use DSP to

assign a priority to a user’s program by entering a value

In the range | to 377 in the progqram’s PPRI cell (location

35 of the file’s header). A nominal value of 200 is

assumed if this cell is zero. The program’s priority is

carried forward without change whenever it is reSAVEd. A

value less than 100 octal designates a background joh,

which receives CPU time only when no jobs with higher

priority want the CPU. See EFP below.

Copyright 1978 Partition Assionment

Educational Data Systems 2-19 | 1 SEP 78

=e 28 e@2e @eae woe 2@e nee 28 @e@ @2e 292 weae 22 2 e we 22 @@ 28 ea nw FS @2e@e @2@e 22 @28 208 2082 2e Be we 22 @2 8 28S @2e Boa we @&€8 208 wa woe “82 28 @2@e8 we wea © 2 © @

EFP

CPR

LPF

PSL

TLOK

Figure 2.|

| SEP

tffective Priority - This is not directly set by the
manager, but is calculated by the system when the program

is invoked as EFP = 2*APRI + PPRI. A user with high

effective priority tends to qet faster response and better
throughput than a user with lower priority. Since the

ranges of APRI and PPRI are 1 to 377 octal, the range of

EFP is 3 to 1375 octal with a nominal value of 600 octal.

Current Priority -~- CPR, the current priority of a

particular task, is not set directly by the user or system

Manager, but the system computes CPR from the user’s EFP
and his CPU usage as described in Section 2.5.5. Each
user’s job is made up of a sequence of tasks, and all

tasks are executed in order of highest CPR first. The
possible range is 100 to 1377 octal for a timesharina task

or | to 77 octal for a background task.

Lockable Program Flan -— The system manager may use CHANGE
to set a program’s Lockable Program Flaq (bit 5 of the

TYPE word of a program file’s header). User operation is

unchanged, but as soon as a lockable partition is

available after the program is invoked by any user, the

scheduler will assign the program to that partition. Once

in a lockable partition, a lockable program will remain
there without swapping until it is aborted, it terminates
itself, or it becomes inactive for a long period of time
(see TLOK below). The program’s lockable program flag is
carried forward when a proqram is reSAVEd.

Time Slice Parameters - Set the PTSL word to octal 400

times the desired long time slice (LTSL) plus the desired

short time slice (STSL). Both LTSL and SISL are in
tenth—seconds. Their default values are LISL = 2 seconds
and STSL = 0.3 second. Each user is given a time slice

equal to LTSL unless an I/O bound user is on the queue, in
which case the time slice is limited to STISL. Reducina

STSL may give faster response time but at the expense of

increased swapping overhead. Further, a user can easily
go from I/M bound to compute bound if he is not given

enough time to do some processing once he is swapped in.

Minimum time a locked partition is kept locked, in

tenth-seconds. Default value is 30 seconds. A locked

partition is not eligible for assiqnment to a different

program — not even to a lockable program - until at least

TLOK tenth-seconds after the last time it used the CPU.
4

\

Copyright 1978

2-20 Educational Data Systems

oe

2.6 Wisc Driver Table

The disc driver table starting at location 1400 of the CONFIG file

is set up by the SysGen Iverlay (SOV) tape for the disc system on
wnich IRIS is to operate. The table may be modified at any time
to reflect additional disc drives and even additional disc

controllers, and an IPL will cause the necessary drivers to he

linked in to the operating system. Assuming disc controllers for

which CONFIG already contains drivers, no other changes are

required as long as the system disc (Physical Unit 0.0) remains

unchanged, but a new disc controller or an unusual device code may

necessitate additional changes to the CONFIG file.

The Physical Unit designator consists of a one digit driver

number, a period, and the drive or partition number. Note that
the number before the period is the number of the driver (a plece
of software, not a controller or disc drive). Usually there is

one driver per controller because two controllers cannot have the
same device code, but a driver could be written to modify its own
I/O instructions to drive several similar controllers: all
partitions on all controllers interfaced by this driver would use

the same driver number. Active drivers are always numbered
sequentially starting with zero. |

One or more hardware disc drives are attached to the controller

interfaced by a software driver, and each drive has one or more

cartridges or other physical storage media. Each such cartridae,

fixed platter, etc., is one Physical Unit. A Physical Unit is

usually desiqnated to be one logical partition, but it may be
subdivided into two or more partitions. In some cases it is

necessary to partition a large Physical Unit into smaller parts so
that the Real Disc Address does not exceed sixteen bits (the Real
Disc Address for Logical Unit zero must not exceed fifteen bits).

Although IRIS will operate with two or more small Physical Units
combined into one logical partition, this is not recommended

because a human error could result in the union of two cartridges

that are not a true pair’ 2g, not part of the same Logical Unit,

or from backups at different dates. An attempt to install such a
mismatched set would likely result in the loss of many if not all

files on the discs.

Each entry in the disc driver table starts with four words as
follows:

word Of number of disc drivers in driver table |

word |: address of LUFIX (system disc driver) in CONFIG file

word 2: address of RBLK entry to BZUP disc driver in CONFIG

word 3: n = number of partitions on this driver

OIR replaces the value in word 0 with a pointer to the driver’s

actual location in core$ ie, the LUFIX pointer. The table is

terminated py a -I (octal 177777) where word O of the next table

entry would be.)

Copyright 1978 Disc Driver Table

educational Data Systems 2-2 |) 1 SEP 78

The next two words point to the proper system driver and BZUP

driver in the CONFIG file, and the forth word must designate the

number of physical partitions handled by this set of drivers. The

word containing n is immediately followed by n partition entries,

and each such entry consists of eight words as follows:

word O03 O (SIR puts LUVAR pointer here)

word It p,g,u Min priv,oroup,user to install

word 23 QU Max group,user to install
word 33 NC Number of cylinders

word 48 PART Partitioning information

word 5: PARTI Partitioning information

word 68 m Minimum block count
word 78 (not currently used)

Wiord | has the same form as an account number. The top two bits
specify the minimum privilege level any user must have to be

allowed to install any Logical Unit in this partition. The

remaining fourteen bits give the first group/user number that will

be allowed to install, and word 2 gives the last group/user that
will be allowed to install. Any user whose account number is

within this range or who has at least the minimum privileqe

specified will be allowed to install a Logical Unit in this

partition.

tiord 3 specifies the number of disc cylinders in this physical
partition, and words 4 and 5 are the partitioning constants for

the driver. Word 6 specifies the minimum number of available
blocks on a Logical Unit in this partition to allow building a new

file.

khekkick kk kk kk kk keke kk kk eh kek kk kk kk ek kk kk kk eka KK KK RK EK

* CAUTION *

* The configuration of physical partition 0.0 *
* must be such that a Real Disc Address on *

* Logical Unit zero can not exceed 15 bits. *
kKkarkkK KK KKK KKK KK KK KK KK KK KK KKK RK KR KK KK KK RAK RRR RIE

The information for Logical Unit zero (partition 0.0) is supplied

by the SysGen Overlay (SOV) tape and is repeated in CONFIG for
reference only. Words |, 2, and 6 of Logical Unit zero’s |

information may be modified in the REX file at the locations shown .

on the SOV listing. 7

“cael

Disc Driver Table Copyright 1978
| SEP 78 2-22 - Educational Data Systems

ool How to Move Loaical Unit Zero

In some cases it becomes desirable to move Logical Unit zero (the

system disc) from one Physical Unit to another. One example is
when a new [RIS system is received on a cartridge and is

configured to operate from the removable cartridaqe, and it is
desirable to move it to the fixed disc. To move the system from

one Physical Unit to another, follow these steps carefully in the
order givens

1)

2)

4)

»)

6)

1)

&)

Y)

Use NDCOPY (see section 8.5) to copy the system disc to

what is to be Physical Unit 0.0.

Do an IPL from new Physical Unit 0.0 (see Section 5.1)
with switch one up to get into BZUP. Set the switches to

025000 octal, and press the colon (3) key (or press

CONTINUE if the computer was halted) to start an IPL and

give control to DBUG.

Use DEUG to set the partitioning constants in the 8ZUP

driver to reference new Physical Unit G.0. The command

sequence is

24300%nart inter value of PART

24301] spnartl enter value of PARTI
WO ,24000 Write BZUP on disc

Locate the partitioning constants in the system LUVAR
table in the Sysven Overlay (SOV) listing, and use DRUG to

enter the proper values in core. If the SOV listing is

not available, find the system LUVAR table bv dumpina the

address in location 5763 the partitionina constants are at

that address plus | and plus 2.

Set switch one un, and aqive DRUG a J1400C0 command to

initialize the system with a minimum configuration.

Use DSP (see Section 3.3) to modify the SOV partitionina

constants in the "REX" file the same as in step 4 above.

Use DSP to modify all partitioning constants in the disc

driver table in CONFIG as necessary (see Section 2.6).

Do a normal IPL to bring up the system, and install other

Logical Units as desired.

Back up the new system disc once it is determined that it

is working properly. |

Copyright 19 /s Move Locical Unit Zero

Educational Data Systems 2-23 | 1 SEP 78

2.8 tiow to Change Business BASIC’s Program Area

The system’s response time must be considered when increasing the
maximum Business BASIC program size. Responses will be degraded

if there are not enouch partitions to keep swapping to a minimum,

especially if an active file larger than one cylinder is required

to hold a maximum size program. On most 10 meqabyte (or smaller)

discs, each cylinder holds 24 blocks. One block is used for the
header, leaving 23 blocks, which will handle a 5470 word procoram

size. A partition size of octal 13400 words is required for a

5470 word program, and at least 24K words of core are required for
an effeciently running system with one 13400 word partition. ‘See

page 2-16 for the method of cetermining the maximum partition size

for a given configuration. It is recommended that a partition

size larger than 12400 words be used only if the application

programs can not be divided into segments of 4958 words or less.

Many application proorams supplied by EDSI will operate in a 4958
word program area, thus allowing their use on a system with only
I6K words of core, a 12400 word partition size, and a 22 block
active file. To chanae the partition sizes

1) Make a backup copy of the system disc.

2) Determine the amount of free snace in lower core by

subtractina the minimum number of free nodes (at NNOD in

the CONFIG file) from the actual number of free nodes (at

NNOD in core) and multiplying the result by I2 octal.
cxamine W3SP in the INFO table in core to determine the

number of buffers actually in the buffer pool. If this

number (octal) seems excessive (more than ten times the

number of interactive ports) then multiply the excess by

260 decinal and add this to the free node space. Divide
this total by the number of lower core partitions to

determine the maximum amount that the partition size may

be increased. 5S2e NNOD and NPBP definitions on page Ad-2.

3) Select a suitable partition size (PSIZ) from the table in
Figure 2.2. nce an acceptable value is selected, enter
it in the PSIZ cell in the CONFIG file (see page 2-10),

and do an IPL to make this value effective.

4) Enter BASIC, and type SIZE to check the program size.

RPeturn to step 2 above if the desired size has not been

achieved.

5) Calculate the value of PSIZ/400. This is the required

active file size (number of blocks, includinag the header)

for a maximum size program. Rear in mind the comments at

the beginning of this Section.

6) Check the default active file sizes in each interactive

port driver’s port definition table (see Appendix 6). If

any active file sizes must be changed then do another IPL

to make the new values effective.

7) Back up the newly configured system.

Change BASIC size Copyright 1978
| SEP 78 2-24 Educational Data Systems

Fiqure 2.2% Partition Size Selection Table

POIZ | # partitions in upper core ; BASIC Proaram

(octal) | in 48K total | in 64K total : size (decimal)
wee ee | oe ee ee ee | ee ee | ee +

2000 16 32 606
2400 12 25 862
3000 10 2 | IIE

3400 9 18 1374

4000 8 16 1630

4400 7 14 1886

5000 6 12 2142

5400 5 i 2398

6000 5* 1O* 2654 *Partition sizes
6400 4 Y 2910 marked with an

7000 4 Ox 3166 asterisk are

1400 4 B 3422 recommended for

| OOOO 4k Bx 3678 optimum use of

10400 3 f 39 34 upper core for

11000 3 Tk 4190 user partitions
11400 3 6 4446 but all sizes

12000 3 6 4702 are practical

12400 3% 6* 4958 because all

| 3000 2 5 5214 remainina core

13400 2? 5 5470 will be used
14000 2 5 5726 for the buffer

14400 2 5% 5982 pool. The odd

15000 2 4 62 38 multiples of

15400 2 4 6494 400 octal are

16000 2 4 6750 not shown for

16400 2 4 7006 PSIZ > 25000,

17000 2? 4 12 62 but all are

17400 2 4 —75 18 allowable.

2 C000 o* 4k 7774

2U400 3 80 30

21000 3 8286

21400 3 8542

22000 | 3 8798

22400 | 3 9054
23000 to 3 Y310

2 3400 | 3 95 66

24000 | 3 9822

24400 | 3 10078

25000 3x 10334.

20090 | 2 10846

27000 2 11358

30000 | 2 11870

31000 2 12382

32000 1 ? 12894
330090 2 13406

34090 2 13918

35000 2 14439

36000 | 2 14942

34/000 | 2 15454

40000 2 15966

Copyright 1978 | Partition Sizes

Educational Data Systems 2-25 | 1 SEP 78

2.¥ How to Cause a DISCSUB to be Core-Resident

Selected DISCSUBS are brought into core during an IPL by SIR, as
specified by a list of DISCSUB numbers starting at location 1900
in the CONFIG file. The list is terminated by any value exceedina

777 octal. To cause a DISCSUB to be core-resident, use DSP to

modify CONFIG. Suppose vou wish to cause the square root function

to be core-resident?

#DSP EkeyE CONFIG

D1000 a

10008 3 15 30 177777 [escape]

EICO4

10G48 2 [number of PSQRF subroutine]

10058 1777

10063 [escape]

Start an IPL, and SI2 will attempt to load all core-resident
DISCSUBS. SIR will print a trap message if a core overflow

occurs, in which case a minimum IPL is done eutomatically to bring

up the system with only the master terminal active. DSP may then

be used to modify the core-resident DISCSUB list or to make other

changes to make room for the needed subroutines.

See page 2-15 for a list of DISCSUBS which are commonly made

core-resident. <A list of all DISCSUB numbers may be found in the

software Definitions listing or in Anpendix 7 of this manual.
Only the lower three digits of a DISCSUB number must be entered in

the list in CONFIG: eg, 20 for BUILD, not 40020. DISCSUBS that

are flagged “included with another if core-resident" must not

themselves be entered in the core-resident list. LBSA must be at

least 31400 to allow any DISCSUBS to become core-resident (see

section 2.4).

2.10 How to Add Devices to the Systen

PLUAD may be called to load a device driver. the driver must

conform to the driver specifications described in Section I1, and

must be loaded as a $Filename (the first character of the Filename

must be a dollar sign). File type 77001 is used for a system

subroutine, system device driver, or interactive port driver such

as SLEC, SDAU, SMTAS, $RTC, STIY, SMMUX, SMTI, SALU, SDGMX, SBBMX,

or any $TERM. File type 00036 is used for a peripheral device

driver such as $MTAO, $LPT, $CRD, SPLT, SPTP, $PTR, or SPIM.

After loading the tapes, an IPL is required for SIR to load the

drivers into core anc link them to the system. If there is not

enough available core then a core overflow will occur, in which

case a minimum IPL will be done, and the manager must restructure

core allocation in the CINFIG file or delete the driver loaded

(see Section 4.6). The CHANGE command may also be used to change

a driver’s Filename, dropping the dollar sign so that SIR will not

oring it into core.

DISCSUB Core Resident Copyright 1978
1 SEP 78 | 2-26 Educational Data Systems

oell Log-On Messaades

In some instances, it’ is desirable to type additional messages
when each user logs on, such as notices about programming seminars

or changing account ID%s, or a notice that the system will be down

at a certain time for periodic maintenance or for use in

stand-alone mode. To do so, create a data file with the name

LOGONMSG, and format it as a single string of 75 characters on

Logical Unit zero. All strings entered in this file will be

printed after each user logs on. Although the user may suppress

all or oart of his account status type out, these lon-on messages

can not be suppressed. <A null string will terminate the output of

messagese the following Business BASIC program may be used to

create such a file?’

10 DIM A$(75)

20 BUILD #1,"<33> LOGNNMSG!4

30 INPUT "\215\% "AS

40 WRITE #1,R3A$

50 LEY R=R+l

60 IF LEN(A$)>0 GUTO 30

70 CLOSE #1

ithe same’ program may be used later with line 20 channed to

20 OPEN #1, "LUGONMSG#

to enter new log on messages. Also, line 30 could be changed to

30 INPUT "\215NLINE#, LINE? "R,AS

to allow changing specific lines of the logq on messanes. Also,

see Paragraph 2.3.15 for changing the initial welcome messaae.

2212 Log-On Charges

If it is desired to assess a fixed charye each time a user lons
an, then change line 20 in the above program to

20 BUILD #41,"S$dd.cc <33> LOUGONMSG!"

where dd.cc is the desired charge. CHANGE may also be used at any

time to change the cost of the LUGONMSG file. Since the LOGONMSG

file is opened for the user by BYF each time a user loas on, the

user’s account is charges its cost for that access.

Copyright 1978 Loa-On Messages

Educational Data Systems 2-27) 1 SEP 78

2013 Log-On Restrictions

Selected users (identified by account group-user number) may be

restricted to log on only on certain ports and/or during certain

times of day. This is controlled by a table starting at location
16G00 (octal) in CONFIG. This block of CONFIG does not normally

exist, so before entering any log~-on restrictions it is necessary

to allocate and zero out this block by givina DSP the commands’

F CONFIG

A16000

K16000,16377,0

The log-on restrictions table has four words per entry as follows?

word O has an account number in the lower 14 bits (group-user

number). The top 2 bits define a mode as follows:

GO entry applies only to the group—user number aiven.

0} Entry applies to all users in aiven group with user number

greater than the user number given.

10 Entry applies to all account numbers greater than the

account number given as a 14-bit number (ie, aroup = G and

user > U, or aroup > G, where G-U is the oroup<user number

given).

1] Same as mode 10, but if match is found and it does not

allow log-on, then continue scanning table. In all other
cases, scan stoos with first match.

Any restrictions on a user are determined by the first table entry
where a match occurs’ if no match is found then there are no

restrictions on the particular user. When a match is found, then
words | through 3 are used as follows?

riord | has the form nnnpop in octal, where nnn s< I77 (octal).

Indicates that any account selected by word O may loa on only on

nOrts ppp, ppotl, - - « ppptnnn. Notes nnn = 177 ==> all ports 2

POP e

‘lords 2 and 3 each have the form OOaabb, where aa<bb and bb<é0
(octal), and each of aa and bb is a half-hour since midniaht Cin
octal). Any account selected by word O may log on only if the

current time t is in the rance aa < t < bb. The two words allow

two time ranges for each day.

The table is terminated by a zero where word O of the next entry
would be, unless the block is full (64 entries) in which case a ©

terminating zero word is not used. The value 100000 (octal) in
word O of an entry means "any account", and 177000 (octal) in word

l means "any port". |

Log-On Restrictions Copyright 1978

|} SEF 78 2-28 Educational Data Systems

eae wo e288 2D @2O 2 @ © @©2S 202 @©e ©Oe 2 @ 2S 22 we 2©@ 28 aes @e 2a 2® 2 Be Be 2882 8282 B28 e2 2S 722 28 “£2 2G 2S @eawS @©e2 @e Se 22 B22 2G 2 2Oe Be Be 2eE woe @©e 29 2a @e we Oe @e
.

For word 2 or 3, the time of day values are as follows?

GC 2 OO OO 12200 30

QO 2 30 Ol 12230 3]
O12 00 O2 13:00 32

O13: 30 03 133230 33
O23 90 O4 14300 34

O28 30 Ob 143 30 35

03:00 O06 15300 36

03:30 O7 15:30 37

043 00 10 16300 40

043 30 11 16230 4]

05300 12 17:00 42
05239 13 17:30 43

063 00 14 18:00 44

06330 15 183230 45
O07: 00 16 1y: 00 46
O78 30 17 19330 47

088 OO 20 203 00 50

088 30 2 | 208 30 51

OY OO oe 21300 5?

09:30 23 21230 53
1U8 OO 24 22800 54

1C:390 25 22230 55

11390 26 23300 56

11230 ae | 23230 57

12300 30 ~ 24300 60

rhe value OOCO60 (octal) in word 2? means "any time of day", and

word 3 will be ignored. Words 2 or 3 are iqnored if word |

indicates that the user is not on an allowable port.

The table is terminated by a zero where word O of the next entry

would we, unless the block is full (64 entries) in which case a

terminating zero word is not used. The value 100000 (octal) in

word 0 of an entry means "any account", and [7/7000 (octal) in word

| means "any port". For example, the entries

000314

00 2004

004160

0000 16

041140

1 77000

00 20 30

0032 42

00 00 00

would allow users to log on to account group 3 user 12 (decimal)

only on ports 4 through 6 and only between 4:30 PM and 7:00 AM,

and it would allow users to loa on to any account in group 9 with

user number 232 to loq on to any port but only durine the hours

6§COQ AM to noon or 12:00 PM to 5:00 PHM,

Copyright 1978

Educational Data systems 2

Log-Mn Resrtictions

2Y |) | SEP 78

=e @2@@2 wo @2@ e2@@ @e 2e 22 22 we @2©e 2a we 2282 29 *®2 now @2@e e2e 8 @ 282 woe 2a @2©6G 2 e @e 2e we 22 288 2S aoe we Be ©®e SO Ga 828828 2828 202 @2@08 wea 2S me @e we 28e awa 2eE8 828 wo @nm e2e wa

2-14 Automatic Program start

Selected users (indentified by account group-user number) may have

a specified BASIC program started automatically after log-on, and
the program to be started can he dependent on which port the user
is on. This is controlled by a table starting at 16400 (octal) in
CONFIG. This table may be up to three blocks long (16400 through

17777 octal), but the blocks do not normally exist. The NSP
commands to allocate these blocks are similar to those for the

log-on restrictions block (see above). Each block of the table
holds up to 16 entries of 16 (octal 20) words each. Words O and |

have the same form as in the log-on restrictions table if these

words indicate that a selected user is on a selected port then
words 2-11 are assumed to be a BASIC program Filename strina, and

that proaram is started running. The string may be in the form

lu/Filename$ otherwise, the user’s assigned Logical Unit is
assumed. For example, if DSP were used to make the entries

F CONFIG

A 16400

K16400,16777,0

164008 000201

—- 164012 000000

116402 sMENU

164203 140000

164213001003

1164222 INVENTORY

1644020

would cause the program MENU to be automatically started if user

2,1 logs on to port zero, and it would cause the prooram INVENTORY
to be started if any user loas on to port 3 or 4. The program is
started running on the port where the user logs on as soon as all
log on information and messanes have heen printed. See Section

2.3.14 if it is desired to suppress some or all of the accounting
information at loq on time.

Auto Program otart Copyriqht 1978

| SEP 73 2-30 Educational Data Systems

3. DEBUGGING AND SERVICE ROUTINES

Three utility programs are available for debugging and patching

IRIS. BZUP is a small (one disc block) utility program which

includes the initial portion of the IPL sequence. DBUG is

included in the REX disc file for use in debuagina core~resident

code such as SIR, discsubs, drivers, and the interrupt service

routines. DSP is the most used debugger, since it is a processor

which can be used from any interactive port while the system in in

normal use. :

3.1 How to Use BZUP

The Block Zero Utility Package (BZUP) is a debug package that

occupies a single block at disc address zero on Logical Unit
zeroe when in core, BZUP currently occupies locations 24000
through 24377 and uses locations 24400 throuch 24777 as a disc
block buffer area if disc transfers are performed. In addition,

BZUP contains the Initial Program Load start-up sequence for REX.
The disc driver in 3ZUP is also used by DEBUG, SYSL, INSTALL,
CONVERT, CLEANUP, and SHUTDOWN. 8BZUP is loaded initially during

the SysGen procedure, and it may be reloaded at any time (see

section 4.2).

Some disc controllers require a software driver that exceeds the

available space in BZUP? therefore, the BZUP for such a device

must be stripped down to become a disc driver only, and it will

not respond to any of th2 commands on the next paqe. Disc

controllers currently known to be in this category include:

Minicomouter Technology TDC-802

Diva DD-14 and 4231

Data General 4046 and 4234

Xedec XDF-70

Ball 3300

To get BZUP from the disc, initiate an IPL as described in section
5.1 or 3.2, except set switch |! up before pressing the START switch

(the IPL sequence will be executed if switch 1 is down). A space

will be printed if 8ZUP actually contains the debug facilities, or

the computer will halt if it is a stripped down versions if it

halts, CONLINUE may be pressed to resume the IPL sequence. Note’

switch | should usually be down hefore resumina the IPL sequence

because having it up causes SIR to initialize the system for

minimum configuration (see page 5-2).

BZUP contains a simple disc driver for one particular disc

controller, thus necessitating a different BZUP object tape for

each dirferent disc controller. The partitioning. constants at

locations 300 and 30! in BZUP (locations 24300 and 24301 in core)

determine to which disc drive and platter the Real Disc Addresses

will refer. The form of the partitioning constant depends on the

driver itself and is usually documented along with the code for

the driver in the BZUP or CONFIG listing. See Section 11.9.

Copyright 1978 Debuaqina Routines

Educational Data Systems 3-1 31 AUG 78

Each command to BZUP consists of a single letter or the RETURN

key, and the command character tnay be preceded by an octal
parameter as shown below.

Command Description

as Open cell at address a.

a/ Display and open cell at address a.

lf Display and open next cell. An error will be

indicated if no cell is open.

nlf Store number n in open cell, then display and open

next cell. Error if no cell is open.

cr Return carriage (no operation).

ncr Store number n in open cell, then open next cell.

Error if no cell is open.

aC Copy cells a through a+377 into disc buffer area.

ahi Move the contents of the disc buffer area Into

locations a through at+377.

R Set up for addresses to refer to real core.

dR Read disc block d into disc buffer area, and set up
for addresses O through 377 to refer to this block.

i ‘irite block in dise buffer back where it came from on

disc (d of last dR or di command).

di arite block in disc buffer onto disc at address d.

: Start IPL sequence and bring up IRIS$ or, if the

switches are set to the starting address of PDBUG

(x25000), then control will be transferred to NBUG
after the REX file is loaded into core, rather than to

SIR for system initialization.

where: a is any core address (octal 177776 maximum)

cl is any Real Disc Address

n is any octal number

lf is a LINE FEEP

cr is a Carriage RETURN

BZUP acknowledges execution of a leqal command by printing a

SNaCee Illegal commands cause a question mark to he printed. If
a disc read or write error occurs, the disc status word is printed

followed by a question mark. A command may be aborted by the user

by pressing the ESC key before pressina the command character.

Copyriaht 1978

Educational Data Systems
rlow to Use BZUP

31 AUG 78 3-2

3.2 How to Use DBUG

DBUG is a complete position-independent debug package for any

Nova-type computer. There is a copy of DBUG in the REX disc
file. To use DBUG, do an IPL with switch | up to enter BZUP, then

set the data switches to the DBUG starting address (currently

25000), and type a colon. After REX, SIR, and DBUG are loaded
into core, control will be transferred to DBUG instead of to SIR.

DBUG occupies octa] 3000 words of core.

All operations can be performed from the master terminal,

including transfer of control to a user’s program and back to

DBUG. All operations are executed by typing one letter followed

by octal parameters as required (except "st" which is also preceded

by an octal parameter) and endina with a RETURN (see also

"Alternate Terminators" on page 3-10). The followina functions

are provided; the number in parentheses is the number of

narameters required for that particular function.

A Type accumulators, carry flip-flop, and ION. (0)

B Insert or remove Breakpoint(s) in user program. (0, |! or 2)

C Change accumulator, carry flip-flop, or ION. (2)

D) Dump (octal, word or byte). (1 or 2)

E Enter octal or symbolic. (I or 2)

F set up an address offset. (0, |! or 2)

G Get (read) a block from disc. (2)

H Halt with accumulators, carry, and ION restored. (0, I! or 2)

I Input ASCII string on master terminal. (1 or 2, plus text)

J Jump with accumulators, carry, and ION restored. (0, |! or 2)

K otore a constant ina block of core. (3)

. List program (octal and symbolic). (1 or 2)

M Move block in core. (3)

N oearch inemory for not-equal (with mask). (3 or 4)

0 Butput ASCII string on master terminal. (1 or 2)

p Punch paper tape on TITY or PIP. (0, ! or 2)

() Query location of breakpoints. (0)

R Read paper tape from TITY or PTR. (0Oor 1)

3 search memory for constant (with mask). (3 or 4)

T Trace through user program. (1 or 2)

U (not used)

V Verify paper tape (TTY or PTR). (0 or 1)

"4 Write a block on disc. (2)

xX Compute a checksum for a section of core. (2)

Y (not used) .

Z Search for relative address reference. (1)

: Enter one value (octal or symbolic). (1 plus value)

These functions are described in detail on the following pages.

All parameters must be entered in octal. The letters x, yy, Z,y @,

mM, and n are used on the following pages to represent octal

parameters. Press the RETURN key after entering any command.

Copyright 1978 How to Use DBUG

Educational Data Systems 3-3 | 31 AUG 78

@w@ee we

RE-ENTRY TO DBUGs

To re-enter DBUG manually, RESET and START at 25000 or 25001.

DBUG’s normal starting address is 25000, which saves the CPU

statuss to preserve the previously saved CPU status, start at
2500! (this will also permit a return to a previous breakpoint via
H, J, or T command). The use of some processors, however, will
destroy the core copy of DBUG,

DBUG may also be brought into core, either by itself or with a
stand-alone file, by use of SHUTDOWN (see page 8-6). S8ZUP is not

brought into core by SHUTDOWN, however, so the G and W commands in
DBUG can not be used in this case.

ADDRESSING MODES8

For many commands, DBUG allows either word or byte addressing,

using either real core addresses or "offset" (virtual) core

addresses based on an offset that has been previously entered (by

an F command). DBUG also is designed to allow addressing up to

64K words of core memory. This is accomplished by having two word

addressing modes (real and virtual), and three byte addressing

modes (virtual plus two real modest lower 32K and upper 32K).

These modes are invoked by the optional second parameter "a" shown

- for commands D, E, H, I, J, L, and O (except that H and J do not

permit byte addresses).

a Meaning

omitted word address, including offset
07 word address, absolute

| byte address, using offset

2 byte address, lower 32K absolute

3 byte address, upper 32K absolute

For those commands where no "a" parameter is shown, the addressing
mode (if any) is the same as "a omitted" above’ ie, word address

including offset (if any).

WARNINGS If using the S and W commands, BZUP must be in core.
30th DBUG and BZUP are position independent, but BZUP must be 1090

words (octal) ahead of D3UG to supply the disc driver for the G

and i commands. A backslash is printed if a read or write error

occurs, or if DBUG is able to determine that BZUP is not present.

fhe partitioning constants in BZUP determine which Physical Unit

is to be used.

CAUTION: If using the Iomec disc, do not use the G command to

read a disc block into page zero of core, since cell 20 is used by

the disc controller as a word counter. Exceptions: BZUP and page

zero of REX each contain -357 octal in cell 20% therefore, these

blocks can be read into core in page zero without disturbing the
word counte

How to Use DBUG Copyright 1978
31 AUG 78 3-4 Educational Data Systems

eae,

DETAILED DESCRIPTION OF COMMANDS FOR DBUGs

A

BON

CXay

Dx,a

Copyright

Type the contents of registers AO, Al, A2, A3, the
carry flip-flop, and interrupt status as they were at

the time DBUG was entered. The interrupt status is
typed as an E for enabled or /|D for disabled. If DBUG

was entered from a breakpoint, the type-out is

preceded by that breakpoint location and a colon.

Insert breakpoint #n (n = O or 13 O assumed if n

omitteds see below for larger n) in the user proaram

at address x. If a previous breakpoint #n had been

established (and was not in the meantime modified), it

is restored to its original state before this new

breakpoint is inserted. The breakpoint itself is a

JMP @17 (for breakpoint #0) instruction, and D8UG puts

a pointer to its breakpoint routine in location 17

octal. For breakpoint #1, location 16 is used. If

control later reaches address x, then x is typed

followed by a type-out of the reaisters, carry

flip-flop, and interrupt status as in A above. Each

breakpoint requires its own page zero cell. If enough

such cells are available, up to four breakpoints may

be used (numbered 0 through 3). To create additional

breakpoints or change their page zero cells, simply

insert the desired page zero addresses at locations

lO, 12, 14, or 16 relative to the beginning of DRUG.

A zero at any of these locations marks the end of the

breakpoint list. DBUG itself can be used to do this}

then use Q to confirm the new values.

Remove breakpoint #n (#0 if n is omitted), restoring

the instruction at that location. Note that a

breakpoint cannot he put at location Zero.

Remove all breakpoints that have been established.

Change accumulator, carry flip-flop, or interrupt

status. If x is 0, Il, 2, or 3, then y is stored as

the saved value for accumulator x. If x is 4, then

the saved value of the carry flip-flop is set to 0 or

| depending on whether y is O or not. If x is 5, the

interrupt enable status (ION) is set to 0 (disabled)

or | (enabled) depending on whether y is O or not.

Dump memory in octal, beginning at location x, using

addressing mode a. Eight words (or bytes if a byte

address mode is used) are typed per line, with the

address of the first word (byte) at the beaqinning of

each line.

19 78 How to Use DBUG

Educational Data Systems 3-5 : 31 AUG 78

EX,a Enable entry at address x, using address mode a. The
address (changed to a word address if it was a byte
address) is printed, followed by a colon’ a value

(octal or symbolic) may then be entered, followed by a

RETURN. The next address (x+l) will then be printed

and opened for entry, and entry continues into

sequential cells until ESC is pressed to terminate

entry. Relative addresses may be entered either as

etn or as absolute. Absolute addresses less than 400

(octal) are interpreted as page zero rather than

relative. DBUG understands all standard assembler
syMbols and the arithmetic skips (SGR, SGE, SLS, SLE,
SEQ, SNE, SKZ, SNZ, SSP, SSN, SGZ, SZN, SKE, and SKO),

in addition to the following special CPU instructions:

IOR (62677 = ITORST) PNS n (DIA n,CPU = READS n)

HLT (63077 = HALT) ITA n (DIB n,CPU = INTA n)

IEN (60177 = INTEN) MSK n (DOB n,CPU = MSKM n)

IDS (60277 = INTDS)

Notes If no entry is typed in before the RETURN, the

present content of the opened location is typed out in
octal and symbolic form to allow examining the cell
before entering. If another RETURN is then typed,

again without an entry, the next address will be

printed and opened for entry. If "t" is typed instead

of RETURN, the previous address is typed and opened.

If "/" is typed instead of RETURN, the same address is

typed and opened. This last feature is convenient for
confirming an entry just typed in, and for examining

it in both octal and symbolic form.

FX,Y Establish an address offset} ite, a fixed difference
between real absolute core addresses and virtual

addresses as entered and listed in DBUG. Ihe
difference x-y (where x is the real core address andy

is the virtual address on the listing) is added to

each address entered and subtracted from each address
printed. If y is not entered then x is used as the

offset. An F is printed at the begiminag of each line
whenever a non-zero offset is in effect. Type FO to

revert to direct core addressing.

F save the current offset value, and reinstate previous
offset that was in effect before the current one was

established. Types the offset being reinstated. This
allows the user to alternate between two different
offsets (or between one offset and real core).

The offset can be used to convert a rea] address to virtual or
vice versa. For example, while in virtual mode, a temp cell
containing a return address (which is real) is dumped. To convert

this to virtual, put a breakpoint at that address, then revert to
real mode by typing F, and query the breakpoint he typing ©. The
address will be printed in real form. Return to virtual mode by
typing F again, and aet rid of the breakpoint by typina R.

How to Use DRUG Copyright 1978

31 AUG 78 | 3-6 Educational Nata Systems

aoe 28@ weere wa ©8828 @e @8® wo we @2e 20° *eoe

UX Vy

Hx,a

Ix,a

text

KX9VoZ

Lx,a

MX gV_Z

Copyright

Get a block from disc. Real Disc Address x is read

into core locations y through y+377. Gx will read

into page zero, and G will read block zero (BZUP) into

page zero. See WARNING on page 3-4! A backslash "N"

and the disc controller status word indicating the

error will be printed if any disc error is detected.

Halt with registers and carry restored. The
instructions after the halt will restore the interrupt

status and then execute a jump to location x, using
word addressing mode a. INST STEP may then be used to

steo through the user’s program.

Same as Hx,a except will return to the breakpoint from
which DBUG was entered. See "J" below.

Input ASCII. Characters following the RETURN are

stored in memory, using address mode a, startina at

location x, two characters per word, (similar to .TXTF
pseudo-op in the assembler with left-right packina).
Input is terminated hy pressing ESC, which causes a

zero byte or word to be stored,

Jump to location x, (using word addressina mode a) with

registers, carry, and interrupt status restored. Same
as Hx exceot that it does not halt before jumping.

Return to user program at the breakpoint from which

DBUG was entered, after restoring accumulators, carry,

and interrupt status. Does not remove the

breakpoint. May be used after setting a new

breakpoint (same # or different), in which case

control is still passed to the old breakpoint location

from which DBUG was entered. Types a backslash if

DBUG was not entered from a breakpoint.

Store the octal constant z in. absolute locations x

through y, inclusive.

List program, both octal and symbolic, starting at

location x, using address mode a. To terminate

listing, press ESC. Relative addresses more than /7

away are listed as absolute.

Move block in core. Absolute locations x through y,

inclusive, are moved to the area starting at location

ze ithe source and destination areas may overlap in

either direction without bad effects. May be used to

move DBUG as long as the destination area does not

overlap the source area.

1978 How to Use DBUG

Educational Data Systems 3-7] : 31 AUG 78

NXg¥_Z_m Search for not-equal. Same aS SX,Y,Z,m except that it
searches for a not-equal condition.

Ox,a Qutput ASCII. The contents of core starting at

location x (using address mode a) are typed out as

text, two characters per word. Output is terminated

if a zero byte is encountered.

PxX,y Punch paper tape from core locations x through y,
inclusive. Will punch on high-speed punch (device

code 13) if available and turned on, else punches on

TTY (device code 11). To punch on the TTY, type in
the command up to but not including the carriage

return, then turn on the punch, and press return.
When the punchina is complete, turn off the punch
before entering the next command. Punches about 2

feet of leader before the data if this is the first P
command since DBUG was started or since an end block

plus trailer were punched.

PX Punch an end block with starting address x, followed

by about 2? feet of trailer.

p Punch an end block without starting address, followed

by 2 feet of trailer.

Q Query breakpoints. Types the page zero cell

corresponding to each available breakpoint and the
core address (if any) where that breakpoint is

currently set.

RX Read punched paper tape, from the master Teletype if x
is omitted or is zero, or from the hiqh-sSpeed paper

tape reader (device code 12) if x=1l. If a checksum

error occurs, or if an attempt is made to write into

non-existent core or to overwrite DBUG itself, further

reading is stopped, and the address where the error

occurred is typed out. If the tape contains an end

block with a starting address, the computer will halt

with the starting address in A2. If CONTINUE is then

pressed, it will jump to the starting address.

OX gVoZq_mM Search locations x through y, inclusive, for the
constant z. Each word is first ANDed with mask m

before comparison with z. If mis not entered, it is

assumed to be 1777773 te, a search is made for an

exact match with z. The use of the mask is best

explained by an examples: the command :

SX yy ,60025,160077 will search locations x through y

for any I/9 instruction for device 25. When a

comparison is found, its address and contents are

typed in both octal and symbolic forms.

How to Use DBUG Copyright 1978
31 AUG 78 3-8 | Educational Data systems

Tx

Tx,y

Vx

WX 9¥

XXq¥

xt value

Copyright

Trace through user program for x steps, beginnina

where the last breakpoint was encountered or where a

previous trace left off, whichever occurred last.

Types a backslash if no such startina point exists.

If x = O or I77777, traces forever. If x is omitted,

traces one step. To start tracina at a certain

location, first put a breakpoint at that location,
then jump there using the J command, which will of
course immediately hit the breakpoint, and finally
give the desired T command. For every program step

that is traced, types the core address, the |

instruction in symbolic form, and the number and new

content of any accumulator which was involved in this

instruction. Note: trace works by pushing breakpoint
#0 ahead of itself. Therefore breakpoint #0 is not

independently available when using T.

Same as Tx except suppresses intermediate type-out

unless location y is written into by the instruction

being traced’ ie, the instruction is a STA, IS7, or

DSZ, and it addresses location y, regardless of

addressing mode. Can be used in the form TQ,y to

determine if location y is ever written into by the

user program. |

Verify paper tape from TITY (x = 0 or none) or PTR (x =
1). If a verification error is found, its address is

typed out.

mrite a block on disc. Locations y through y+377 are

written at Real Disc Address x. tix will write page

zero on the disc. See WARNING on page 3-4! A

backslash "\" and the disc controller status word will

be printed if any disc error is detected.

Compute and type a "rotating" checksum over core

locations x through y. The checksum is produced with

an ADDL instruction in order to detect a change if two

words in core are swapped. Useful for testing if a

search for relative addressinn reference. The 256

words centerad on location x (using the "a omitted"

addressing mode) are searched for any memory reference

instruction that references location x using relative

addressing. <Any such instruction is listed in octal

and symbolic form.

Enter octal or symbolic. The value aiven (either

octal or symbolic) is stored at location x, usina the

"a omitted" addressing mode. If "value" is omitted,

types the present contents of location x followed by a

colon, after which a new value may be entered. See

the "E" command on page 3-6 for more information.

1Y7& How to Use DBUG

Educational Vata Systems 3-9 : 31 AUG 78

REMARKSS$

The carry light flashes while DBUG is waiting for an input

character to be entered (except in I mode). This is a signal that

DBUG is active and will respond to input.

If an error is made while entering control information, three

choices are available for correcting it.

{. Press ESC (or CTRL D or ALT MODE) to delete the type-in and

enable a new type-in.

2. Press CIRL A (or CTRL H or RUBOUT) to backspace the last

character typed in, as in IRIS. CTRL H echoes itself the other

two echo the character being deleted.

3. If the error was in entering an octal value (not part of a

symbolic instruction), type a few zeroes followed by the correct

octal number, as DBUG only uses the last six octal digits typed in

for an octal word.

DBUG normally occupies core locations 25000 through 2/7777.

However, DBUG may be moved at any time by use of its Move

instruction (even into uoper 32K in a 64K system). After moving,

the P command may be used to punch a tape of DBUG for the new

location if desired. DS8UG cannot punch itself in its own

location, however, because it changes certain cells in core

between the time it punches the checksum and the time it punches

the data, thus producing a checksum error.

If it is desired to use DBUG with the EDSI Miqhty-Mux (TTY option)

at a Baud rate other than 110 Baud, enter the desired PCB and PCON

in words 2 and 3 relative to the beainnina of DBUG. PCB is the

port control block address to be used for setting up the

Mighty-iMMux, and PCON is the port control word for the desired Baud
rate and parity mode (eg., 50057 for 9600 Baud, even parity). To

disable Mighty-Mux setup, put a O in word 2 of DBUG.

A return delay may be caused by entering a non-zero value in word

4 of DEBUG. Smaller values cause longer delays.

ALTERNATE TERMINATORSS#

Instead of RETURN, two other terminators may be used in certain

cases, as already described under E above.

I. Slash (/) allows putting multiple commands on one line, as it

converts the usual RETURN into a slash. (Do not use with L, N, 5,

or Z, as it will not increment the operand address.) Examples

BI1234/ B1400,17 J1234/

2. Up-arrow (+) causes addresses to count backwards for the F, L,
Ny S, and Z commands. Can be used with S or N to find the last

location below a aiven point where the search conditions are met.

Hiow to Use DBUG Copyright 1978
31 AUG 78 3-10 Educational Data Svstems

3.3 How to Use DSP

the Disc Service Processor (DSP) is an on-line interactive utility
package for use in servicing and debuaging processors and other
files under IRIS. Any location in core or any file on the disc

can be easily examined and modified by use of DSPs therefore, the

use of DSP is restricted to the system manager and EDS personnel.
To initiate use of DSP, log on to the manager account at any
terminal, and enter the system command

DSP Ekey

or

NSP EkeyE Filename

whe re "key" is the password assigned to DSP (see Section 4.9), and

paqe 3-13). After “initially enterina ‘DSP in “this manner, it may
be re-entered from the same terminal without the password. Io

orevent unauthorized persons from using DSP, be sure to exit with

an X command, and always log off when leavino a terminal.

Each time DSP is entered, the identity of the currently selected

file (or core) is printed, and any of the commands described on

the following pages may be aiven. DSP mav operate on core or on

any disc file as "virtual core". Press the PETURN key after

typing any command. All commands which examine and/or modify

memory operate on either real core (assumed on initial entry) or

on the file or disc block last selected by an F, G, or H command.

REMARKS 8

Any address x may he given as a byte address by appendina a hyphen

to the acdress. For example, D3025— will dump bytes starting with

the rignt-hand byte of word address 1412, and EI 7000—- will allow

entry of bytes starting at the left hand byte of word address

7400. Wo value may exceed 377 octal when using byte addressing.

If a byte address is civen when a driver file is selected, then

that byte address in real core is referenced; this eliminates the
need to select real core to examine the driver’s buffers.

The core-resident copy of a discsub or driver may be addressed hy

appendina an apostrophe to any address x, where x is the virtual

adcress (as shown on the listing). PDSP does all address

conversions, and the user may examine or modify the core-resident

copy as if it were at the location shown on the assembly listing.

DoP will accept lower case command letters in place of the upper

case letters shown on the following pages, except that the "N" in

the "Lx" command must be entered as upper case.

Copyright 1978 How to Use DSP

Educational Data Systems 3-11 | 31 AUG 78

DETAILED DESCRIPTION OF CAMMANDS FOR DSPs

XV

AX

Bx

Insert the value v at address x. Very useful for

entering into a single memory location. The value v

may be either a symbolic instruction or an octal

number. See the "E" command for more information.

Append the block which will contain address x to the

file selected by the last F command. The first core

address and the Real Disc Address of the appended
block will be typed out. The block is filled with

O77377 halt instructions.)

Insert a breakpoint at address x. This command is

Meaningful only if the specified file is a processor.

If that processor is then used on the same port, and

the breakpoint is encountered, then control will

revert to DSP, anda print out of the registers and

carry flip-flop will occur. The breakpoint is cleared
when it is encountered, and it is also cleared by any

F, G, H, or X command.

—~—Bx, Cconditions] Insert a conditional breakpoint at address x.

C command

Dx

A breakpoint may be conditional on a register

containing a specified value (indicated by "Ar=v",
where r is a recister number O to 3, and v is an octal

value), and/or conditional on a memory cell containina

a specified value (indicated by "x=v", where x is a
memory address), and/or the breakpoint may be

activated only after executing the instruction at the

breakpoint location a specified number of times

(indicated by an octal value by itself). For examples

37235 ,A1=260, 225=16003, 4

will breakpoint the fourth time that location 7235 is

reached with the value 260 in reaister Al and the
value 16003 in memory location 225. The conditions

may be given in any order, and the memory location may

be specified indirectly? eq, @37422=177723 means that

the contents of location 37422 is used as a pointer to

a cell that is to be checked for the value 177723.
Notes the BREAK discsub must be core-resident before

using conditional breakpoints.

The "command" given is passed on to SCNPE as a system
command. This is equivalent to pressing CTRL C and

then entering the same command.

Jump octal starting at address x. The contents of

storage starting at location x are printed in octal,
eight words per line. The address of the first word
of the line is printed at the beainning of each line.

Listing may be terminated by pressing ESC.

low to Use DSP | Copyright 1978

31 AUG 718 3-12 Educational Data Systems

eo

ro

itX

F Filename

Gu/x or Gx

Ixttext

JXey

Enter octal or symbolic starting at address x. Each

entry must be followed by a RETURN. Press ESC to

terminate entry mode. Machine instructions may be

entered in symbolic form, but device addresses must be

given in octal rather than using the device name in
I/O instructions (eg, 10 rather that TTI). Labels may

not be used, but ahsolute addresses will be converted

to relative if possible.

Select the file identified by Filename to be examined

and/or modified by other commands. Logical Unit zero

is assumed unless given in the form u/Filename, where

u is the Logical Unit number in decimal. Note? if an

extended random file is selected then any address x

given will refer to a location in the header extenders

rathar than to the data blocks.

select this port’s active file to be examined and/or

modified by other commands. The form F@n will select

the active file of port number n to be examined and/or

modified by other commands. CORA in the active file

file header is ianored, and all addressing is relative

to the beainning of user storage in the partition.

Select real core to be examined and/or modified hy

other commands.

Select the disc block at Real Disc Address x on
Logical Unit u (where u is in octal) to he examined

and/or modified by other commands. In this mode, only

addresses less than 400 octal will be accepted. The

simple form Gx assumes Logical Unit zero.

Select the header block of the currently. selected file
to be examined and/or modi fied by other commands. In

this mode, only addresses: less than 400 octal will be

accepted. 7

Input ASCTI string, where "text" is any string of
characters, starting at address x. Result is

identical to use of assembler pseudo-op .TXIF with

reverse packing (preceded by .TXTM 1). A CTPL Z will

be entered in the string as a RETURN code.

Search for potential address errors. Scans from
address x-200 through x+177 for all relative reference

instructions Spanning address x that are less than y

words from maximum relative displacement’ ie, any

place that an address error would bce caused by

inserting y lines of code at location x.

Copyright 1978 Hw to Use DSP
Educational Data Systems $3=13 7 31 AUG 78

KX—9V9Z

Lx

LxN

MX 9 ¥9Z

NXgVZ

PX VY

Py

})

CX

Store the octal constant z in locations x through y,

inclusive.

List as symbolic instructions starting at address x.

Listing may be terminated by pressing ESC.

Same as Lx except each value is also printed in octal.

Move the contents of locations x through y, inclusive,

to the locations starting at z. The source and

destination areas may overlap if desired without bad

effects or loss of information.

This command and the similar Nx,y,z,m command are the

same as the respective S commands except that a
not-equal comparison (rather than equality) causes the

contents of a cell to be listed.

Output ASCII string starting at address x. Nutput
terminates on any byte less than 200 octal or if ESC
is pressed. A CTRL E code is printed as a colon.

Punch locations x through y, inclusive, on the high

speed paper tape punch in binary loader format. If

the system does not have a high speed punch (no $PTP

driver) then DSP attempts to use the master terminal

($PTM driver). Notet leader is automatically punched

when the first Px,y command is given. at,

Punch an end block with a starting address x, wnich

must be non-zero, then punch trailer. Must be

preceded by at least one Px,y command.

Punch an end block with no starting address, then

ounch trailer. Must be preceded by at least one Pxy,y
command.

Query cell continuously. Repeatedly prints the

contents of address x in octal, allowing a swap after

each print out. May be used from one terminal to

monitor changes to a cell, either in core or ina disc

file, while 2xecutinag tasks from another terminal to

cause such changes. Terminate by pressina ESC.

MOP,

How to Use DSP Copyright 1978
31 AUG 78 3-14 Educational Data systems

Rx

IX eV _Z

Ux

Read binary format paper tape on the high speed reader

into the destination selected by the last F command.
Each tape record (about four inches) is read into a

buffer and checksummed before data are stored. The

first 21 words octal of the last breakpoint snapshot
will be lost because the same buffer area is used. If

the system does not have a high speed reader (no SPTR
driver) then DSP attempts to use the master terminal

(SPTM driver). See "How to Load a Text File" in the

IRIS User Reference Manual for restrictions on using

SPTIM.

Same as R except that all addresses on the tape are

displaced the same amount so that the first word on

the tape qoes into address x, which must be non-zero.

search locations x throuah y, inclusive, for the octal

constant z. If found, the location is printed, and

the contents of that location are listed as a symbolic

instruction.

Same aS Sx,y,z except that the contents of each cell

are ANDed with mask m before being compared with

constant ze. For example, the command

S400, 1120,53, 101777

will search locations 400 through 1120, inclusive, for

any instruction referencing location 53.

(Not used)

Print snapshot yanked into FMAP cells of active file

at last breakpoint. Start print out (Cin octal dump

format) at virtual address x where y <= x <= y+#l0Q0 and

y is the snanshot address set by the last Y command.

Caution: the addresses will be wrong if a different Y

command has been given since the breakpoint was

encountered,

Copyright 1978 How to Use NSP

Educational Data Systems 3-15 : 31 AUG 78

liu/x or Wx

\

A

YX

ZXe¥

We

Verify paper tape. This command and the Vx command
are the same as the respective R commands except that

information from the tape is compared with the

contents of the selected file (or core) instead of

beina stored. If a difference is detected, the

address and the word from storage are listed.

“rite the disc block selected by the last G or H

command on disc at Real Disc Address x of Logica] Unit

ue: this command will be rejected if u/x is not a

legal Real Dise Address or if a single disc block has
not been selected. The simple form Wx assumes Loaical
Unit zero.

Exit from DSP, clear any existing file selection or
breakpoint, and prevent re-entry to DSP without the

password. |

Set first address of 101 word (octal) core area to hea

yanked into the FMAP cells of the active file header

as a core "snapshot" when a breakpoint is

encountered. If x=0, don’t yank any area of core.

Search for relative reference. The 256 words centered

on location x are searched for any storage reference

instruction that references location x usina relative

addressing. Any such instruction is listed in

symbolic form.

Same as 7x except a search is done for each address x

tnhroudh ye.

Comment. Any line startinac with a semi-colon will be

ignored by DSP. This is used mainly to include

comments on patch tapes.

row to Use DSP Copyright 1978
31 AUG 78 3-16 Educational Data Systems

4, SYSTEM UPDATES

Before making-any system update it is best to have a current

backup of Logical Unit zero and to REMOVE all other Logical
Units. Also, in some cases, it is necessary that no other users
are active on the system. Back up the updated system as soon as

it has been determined that the update is satisfactory.

There are five catagories of system updates which are entered as
follows:

1) A new processor (eg, a new language processor or a new

system utility processor) mav be loaded by use of PLNMAD

(see Section 4.1).

2) A new version of an old processor may be loaded in either
of two ways: |

a) CHANGE the name of the old processor (or KILL it),

then use PLOAD to load the new version, or

b) Use DSP%s "R" command to overlay the old version as
described for DISCSUBS in Section 4.3.

3) A new version of a system file must be loaded by

overlaying the old version as described in Section 4.3 or
by doing a sysGen.

4) Patches and patch tapes are entered by use of DSP (see
section 4.10).

5) The system configuration may be chanaed at any time as

described in Sections 2.4 through 2.10. »

4.1 How to Use PLOAD

To use PLOAD (the system Proaram Loader) you must be logged onto

the manager’s account on the master terminal. Then type the >

system command PLOAD, and press the RETURN key. Once called,

PLOAD disables interrupts and in effect stalls the system for the

duration of loading tapes, but the active files are not

disturbed. Upon exit, the system will resume all operations that

were running before PLOAN was called.

PLOAD first asks which reader you wish to use to load the tapes.

Two choices are available: (0) master Teletype reader, or (1)

high-speed tape reader. Press either the zero key or the one key

to select the desired reader.

When asked "NAME?" enter the Filename under which to huild the new

file, or press CIRL C to exit from PLOAD. Existing files cannot

be replaced by PLOAD. To replace an old file, either delete it or

change its name before calling PLNAD. |

Copyright 1978 System Updates, Use PLOAD
Educational Data Systems 4-| : | 19 APR 78

A "TYPE?" will be requested for each file being loaded. Refer to
Section 2.3.6 for a table of processor types, and to Section 8./
if making up a new file type.

If PLOAD prints "RDR OK?" the tape has aborted due to a reader

time out. Try loading the tape aqain from the beginning. A

second failure to load indicates either a bad tape or a hardware

problem in the tape reader.

After loading any file, be sure to make any necessary patches.

Multiple part processors such as BASIC/RUN/RUNMAT should not be
replaced while the system is in use since the parts refer directly

to each other.

A new version of a language processor (such as BASIC) might not be

compatible with saved files in that language. In such a case, all
such program files must be DUMPed to text files, and the saved
versions must all be deleted before replacing the processor. The

new version of the processor is then used to LMAD and reSAVE the

progralilS .

4.2 How to Replace BZUP

BZUP may be replaced by use of the binary paper tape loader.

SHUTDOWN may be used to get the loader into core (see Section
8.4). After the BZUP tape has been loaded into core, the computer

should halt at address 244033 if not, RESET and START at 24400.

Now press the CONTINUE switch to write 8ZUP on the disc, then
press the colon key to do an IPL and bring up IRIs.

4.3 tiow to Replace NISCSUBS

This file occupies a fixed location on the disc, thus requiring a

special procedure for replacement. DISCSUBS may be replaced,

either in whole or in part, by use of DSP%s "R" command (see

Section 3.3) to read the new tane in, overlaying the current
DISCSUBS file. To replace all or any part of DISCSUBS by this

method, be sure that there are no other users on the system, put

the tape to be loaded in the tape reader, and give DSP the

commands

F DISCSUBS

R

for each tape to he loaded. If a checksum error occurs, back up

the tape to a record gap at least one record ahead of where the

error occurred, and repeat the R command (restart the tape from

the beginnina if unsure of how to read record gaps and addresses
on the tape). See section 10.2 for more information. If usina

the master terminal tape reader, see to "How to Load a Text File"

if the IRIS User Reference Manual for restrictions on using $PIM.

WARWING! Do an IPL after loading all tapes and before usinoa the
system for any other purpose.

Replace BZUP, DIoCSUBS Copyright 1978
ID APR 7/3 4-2 Educational Data Systems

4.4 How to Replace DRUG

DBUG resides in the REX file. If it becomes necessary to replace

DBUG, put the DBUG tape in the paper tape reader, enter DSP, and
give an "F REX" command followed by an "R" command. The tape will
be read into the REX file, overlaying the old version of DBUG.

How to Replace REX, SIR, and PLOAD

The preferred method of replacino these system components is to do
a new System Generation. The following procedure will permit

doing this without loss of users’ files on the system disc?

1)

2)

3)

4)

5)

Use COPY to copy all users’ files on Logical Unit zero to

any other Logical Unit (see "How to Use COPY" in the IRIS

User Reference Manual).

Punch a tape of the current users’ accounts by giving the

system command

COPY $PTP = ACCOUNTS

‘or substitute $PTM for S$PTP if the system does not have a

high speed punch. Note: this step and step 4 are not

neccessary if using the default accounts or if all new
accounts are to be created,

Do a new SysGen on Logical Unit zero (see Section 2.3).

Exercise the new system to be sure it is working properly.

Load the tape of accounting information punched at step 2

by giving DSP the commands |

F ACCOUNTS

R

It will be necessary to append additional blocks if the

old ACCOUNTS file exceeded 16 entries. To do this, first

give DSP the commands

F ACCOUNTS

A 400

A 1000

etc. until enough blocks have been appended.

Use COPY to copy any desired users’ files back to Logical
Unit zero, or avoid steps | and 5 in future updates by not

allowing users’ files on Logical Unit zero.

Copyright 1978 Replace DBUG, REX, SIR, PLOAD

Educational Data systems 4-3 19 APR 78

An alternative method of replacing REX, SIR, and PLOAD without
having to move user’s files is as follows:

1) Do a backup of Logical Unit zero. Check that the REX and
SYSGEN tapes to be used have the same assembly and punch

dates. |

2) Enter DSP and give an “F REX" command.

3) . Put the REX tape in the paper tape reader, and give DSP an
"R" command. This reads the REX tape into the REX file,

overlaying the old version of REX.

4) Take the SYSGEN tape and visually locate the record that
starts at 14000 octal (the current starting address of

SIR). Put the tape in the reader starting at that record,

and give DSP another "R" command. SIR will be read from
the SYSGEN tape into the REX file, overlaying the old

version of SIR. A "NO SUCH ADDRESS" error will occur near

the end of the tape; this is okay since SYSL is also on
this tape but is not contained in the REX file.

5) Put the proper SOV (SysGen Overlay) tape in the reader,
‘and give DSP another "R" command. SOV will be read into

the REX file, overlaying the proper locations as it does

when it is read into core during a SysGen.

6) Take the REX tape and visually locate the record that

starts at 200 octal. Put the tape in the reader starting
at that record, and oive DSP an "F PLOAD" command followed
by an "R" command. A "NO SUCH ADDRESS" error will occur

after reading a few feet of tape? this is okay since only
400 words octal of this tape are read into PLOAD.

7) Put the SYSGEN tape in the reader (starting at the
beginning), and give DSP another "R" command. Since PLNOAND

is the first part of the tape, it will be read in and will
overlay the old contents of the PLOAD file. A "NO SUCH

ADDRESS" error will occur when the tape has been read

beyond the portion containing PLOAD$s this is okay because

only the first part is needed.

8) Do an IPL by starting at location 4. Check out the

system, including PLOAD, then do a backup.

It is necessary to replace all of REX, SIR, and PLOAD at the same

time from tapes with the same assembly and punch dates. Failure
to replace all of the components when any one is being replaced,

or the use of tapes with different dates, could result in loss of

the system.

Replace REX, SIR, PLOAD Copyright 1978
19 APR 78 4-4 Educational Data Systems

4.6 How to Replace SCOPE, BYE, DSP, or MESSAGES

To replace these files, first change the Filename (eq, to
OLDSCOPE, OLDBYE, etc.), use PLOAD to load the new tape under the
correct Filename (see Section 4.1), and then do an IPL immediately
after loading the new tape. To do this, RESET and START at
location 4 without first exiting from PLOAD. SCOPE, BYE, and DSP
are system processors, however, which cannot be changed or deleted
without first changing their file type. Use DSP to chanae the

type by giving the commands:

F SCOPE (or F BYE, or F DSP)

—

10333401

When finished, the old proce ssor (OLDSCOPE, etc.) may be deleted

by giving the command >

KILL EkeyE Filename

where "key" is the password to KILL for deleting a processor (See

section 4.9) and Filename is the name of the processor to be

killed (eg, OLDSCOPE).

4.7 How to Replace BASIC, RUN and RUNMAT

These processors may be replaced as described in Section 4.6

except that special action must he taken to link these processors

properly to each other. After exiting from PLOAD, use DSP to put

zero in location 200 in BASIC (not necessary if BASIC was

replaced). Exit to system command mode, type BASIC, and press the
RETURN key twice to cause BASIC to link itself and RUNMAT properly

to RUN.

4.8 How to Replace Other Processors and Drivers >

Other processors and peripheral device drivers may also be

replaced as described in Section 4.6. After deleting the old file

or changing its name, PLOAD may be used to load the new tape with

its normal type. New processors and drivers for new peripheral

devices may be also loaded by use of PLOAD. A new peripheral

driver will not be available for use, however until an IPL has

been performed.

Copyright 1978 Replace Processors

Educational Data Systems 4—5 : 19 APR 78

4.9 How to Change Processor Passwords

the SHUYDOWN, DSP, PORT, CLEANUP, and KILL processors each have a

password in location 5/70 of the processor to provide a double

protection aqainst unauthorized use. The object tapes have all
passwords assigned as "X",. Any time the tape is loaded, the

oassword should be changed. DSP may be used to examine and/or

modify a password. For example, if the password to DSP is to be

AR2Z then DSP may be qiven the following commands?

F DOP to select DSP

05/0 to examine the current password

Ib/OsXR2Z the password becomes XR2Z

Up to 15 ASCII characters (letters and digits only) may be
specified as the password.

4.10 How to Enter Patches and Patch Tapes

Minor modifications or patches may be made to the system at any

time by use of DSP. It must be realized, however, that someone
may be using a processor at the same time you are modifying it.
Do not enter a patch in such a way that the code may be used when
only partially complete. Enter the entire patch first in a free

area, and then enter the jump to the patch. Of course, the

processor to be patched must first be selected by use of DSP’%s F
command. : ——-

Many updates supplied by EDS are in the form of patch tapes. Each

tape contains all necessary instructions to DSP to make the patch,
including selecting the file (or files) to be patched. To use a
patch tape it is only necessary to log on to the manager’s account

and select DSP. Then place the patch tape in the terminal’s
reader, and press its START switch momentarily. The tape will
Make the patches and exit from DSP. In most cases, such patches

may be made while the system is in use’ in some cases, however,

the cover letter sent with the tape will instruct that all other
users must log off before the patch is entered. The PORT ALL
EVICT command may be used to insure that all users are off of the

system (see Section 8.10). ,

Patch space is available at the end of REX for patching the

operating system itself. The PATSP (Patch Space) and ENDP (End of
Patch Space) cells in the INFO table in the REX file (not in core)

indicate what space is available for such patches. A new patch

should be entered starting at the address in PATSP, and it must

not extend beyond the address given in ENDP. When the patch is

entered, PATSP (in REX) must be changed to point to the next

location after the end of the patch. The Software Definitions

listing gives the displacements of PATSP and ENDP in the INFN

table. |

Patches, Change Passwords | Copyright 1978
ly APR Te 4-6 Educational Data Systems

5. START-UP AND SHUT-DOWN PROCEDURES

Under most circumstances, it is recommended that the system be

left running 24 hours a day. However, some users find it |

necessary to shut down at night or on weekends. Also, if the

Power Fail Auto Restart option is not in the computer, it is

necessary to start up the system after a power failure. The

system must also be restarted after use in stand-alone Mode.

5.1 System Start Up Procedure

Turn the computer switch to the ON position, then turn on the

master terminal and the disc (in some installations the disc power

may go on with the computer). ‘Wait for the disc to reach full

speed; some disc drives have a "ready" light to indicate

operational speed.

Set the switches to address OO0000 and press RESET, then STAPT to

restart the system enly if it was shut down by use of a simple

SHUTDUHN command (see Section 5.3) or if a power failure occurred

and the computer does not have the Power Fail Auto Restart option

or the power switch was not in the LOCK position. Do not attempt

to start at location zero if the system was used in stand-alone

mode, or if system operation was terminated in any other manner.

Set the switches to address 000004 and press RESET, then START to
do an IPL and restart the system enly following a temporary shut
down without the use of SHUTDOWN or if a stall occurred.

If either procedure fails to start the system on the first try
then use the proper IPL bootstrap procedure as given in Section
5.2. Unce the computer is started, turn the computer power switch
to the LOCK position and remove the key. Note: a halt with 6/077

in the data lights indicates a disc read error that could not be
corrected with 16 retrys. Register Al contains the Real Disc
Address of the block which could not be read.

Tne IPL (Initial Program Loac) sequence brings a fresh copy of the

operating system into core from the disc. Then the System

Initializing Routine (SI) takes over to perform many start up
tasks, one of which is to examine all files on the system disc,

checkiny for several types of errors. This may take a minute or

more on a large disc. If an error is detected then a message is

printed identifying the file and the type of error. In most

cases, it is desirable to delete the file, which is done by

pressing the space key (or any key other than "@" or RUBNUT). If

the error message indicates that the file was beina built or
deleted, then the file may be saved (and the build and delete

status bits cleared) by pressing the "GO" key. If nothing is done
within 20 seconds then SIR examines location 201 of PEX3 if

location 201 contains 177 octal then SIR halts, and CONTINUE may

be pressed to transfer control to DRUG. If location 201 contains
any other value then SIR deletes the file and continues.

Copyright 1978 system Start Up

Educational Data Systems 5-1 | 31 AUG 78

the file can not be saved by pressing the "@" key in response to

other types of errors. However, if it is desired to save the

file, and you know enough about the system to attempt it, press

the RUBOUT key to halt the system3 then press CONTINUE to transfer
control to DBUG (see Section 3.2), and type an "A" command to

orint the register contents’ Al contains the header disc address,
and A2 is the location of the header in core. After any such

orocedure, the IPL sequence should be restarted from the

beginning. If the problem appears to be in a driver,

core-resident DISCSURB, etc., then the initializing sequence may he

minimized by startina SIR with switch | ups to do this, IPL into
8ZUP (see Section 3.1), leave switch |@p, and press the colon Key
(or press CONTINUE if the system halted). This will attempt to
bring up the system with no ports other than the master terminal,

no peripheral drivers, no core-resident DISCSUBS, etc., so that

DSP can be used from the master terminal to investigate the

problem.

SIR then asks for bad blocks. Press the RETURN key in response to

the "BAD BLOCK?" message if there are no new bad blocks to report
on the system disc, or type the address (as given in register Al
in a disc check error trap) and press PETURN. The message BLOCK
IN USE will be printed if the address entered is allocated to any
existing file. Certain disc blocks are required for operation of

IRIS, and such blocks may not be marked as bad$ otherwise, the
file may be deleted, and another IPL performed to mark the bad
block. The DSPS cells and FMAP cells of the DMAP header are used
for the "bad blocks" list, which is terminated by a zero word. Up
to 6O blocks may be listed as bad on each Logical Unit.

Finally, SI asks for the date and time which it uses to set the

real time clock. A typical date/time type-in miqht he:

78,2,10,16,33

wote that the hours must be based on a 24 hour clock. The above

example, therefore, represents February 10, 1978, at 4:33 PM. If

the time entered is earlier than the last access time of the most

recently accessed file, then the computer will ask "TIME RUNS
BACKWARDS 2". Check over your type-in, and press the Y key (for
yes) if it is correct. jJtherwise, press N and enter the date and

time ayain. If the system is left running 24 hours a day, then

the time must be set (see Section 8.9) on the first of each month

since the real time clock assumes 31 days in every month.

A stable light pattern with only lamp 14 bright and a flashina

carry light indicate that the system is up and ready for use. [he
carry light should flash at exactly one cycle per second’ a
different flash rate or lack of flashing altogether indicates a

problem in the Real Time Clock. Note? most multiplexers supply
the clock which is used for system times a high clock rate may be
due to the clock being supplied by two devices.

start Up Sequence Copyright 1978
31 AUG 78 Educational Data Systemsuw 'N

Only the system disc (Logical Unit zero) is activated by SIR. If
there are other Loyical Units on the system then they must be
"installed" before they will be accessible. See "How to INSTALL a
Logical Unit" in the IRIS User Reference Manual. Also, see
Section 8.8 in this manual.

5.2 IPL Bootstrap Programs

If the procedure given in Section 5.1 fails to start the Initial

Program Load sequence then it is necessary to do an IPL 8ootstrap.

If the computer has the Program Load option and the disc
controller will respond properly to the Program Load function,

then set 1000xx in the data switches (where xx is the controller’s

device address), press RESET, then PROGRAM LNAD.

In many cases either the computer does not have the Program Load
option or the disc controller will not respond properly. In such

cases it is-necessary to key in a bootstrap program. For most

head=per-track discs, such as with the Data General 4019
controller, or for the Ampex "Megastore" or the Dataram "Bulk

Core", the following procedure will suffice:

set data

switches then press

0003 76 RESET, EXAMINE
O601xx DEPOSIT

0003 77 DEPOSIT NEXT

090376 START

where xx is the controller’s device code (usually 20).

For a Telefile disc controller, the same bootstrap proaram shown

above may be used, but the device code is usually 33.

For any disc on a Data General 4046 or similar controller, one of

the followinn bootstraps may be used?

If Logical Unit zero is If Logical Unit zero is

on platter zero (usually on platter one (usually

the removable cartridge)? the non-removable disc)

set data set data

switches then press switches then press

000376 RESET, EXAMINE 000376 RESET, EXAMINE

0601 33 DEPOSIT 040000 DEPOSIT ACO

0003 77 DEPOSIT NEXT 061133 DEPOSIT

000376 OTART 000377 DEPOSIT NEXT

000376 START

Copyright 1978 -IPL Bootstraps
Educational Data systems 5-3 : 31 AUG 78

For any disc on a Data General 4234 or similar controller, one of
the following bootstraps may be used?

If Logical Unit zero is

on platter one (usually

the non-removable disc):

If Logical Unit zero is

on platter zero (usually

the removable cartridaqe):

set data set data

switches then press switches then press

000372 RESET, EXAMINE 000 372 RESET, EXAMINE
000000 DEPOSIT ACO O00 GeO DEPOSIT ACO

000000 DEPOSIT ACI 00 1 O00 DEPOSIT ACI

001400 DEPOSIT AC2 001400 DEPOSIT AC2
071333 DEPOSIT 071 333 DEPOSIT
063077 DEPOSIT NEXT O63077 DEPOSIT NEXT
0622 33 DEPOSIT NEXT 062233 DEPOSIT NEXT

067033 DEPOSTI NEXT 067033 DEPOSIT NEXT
061133 DEPOSTI NEXT 061133 DEPOSIT NEXT

000377 DEPOSIT NEXT 000377 DEPOSIT NEXT

000372 START, CONTINUE 000 372 START, CONTINUE

Copyright 1978IPL Bootstraps

Educational Data systems31 AUG 78 UW jas

For any disc on a Ball (Decision) 3150 or 3170 controller one of
the following bootstraps may be used?

If Logical Unit zero isIf Logical Unit zero is |
the removable cartridaesthe non-removable disct —

set dataset data

switches then press switches then press

000376 RESET, EXAMINE 000376 RESET, EXAMINE

0601 xx DEPOSIT 020 000* DEPOSIT ACO

0003 77 DEPOSIT NEXT O611xx DEPOSIT

0003 76 START 000377 DEPOSIT NEXT

| 000376 START

* 050000 for a 3170 controller

where xx is the controller’s device code (usually 40).

For an Iomec disc, the bootstrap is longer since the disc

controller uses cell 20 in core as a word counter. Use one of the

following bootstrap programs for an Iomec disc controller?

If Logical Unit zero isIf Logical Unit zero is

the non-removable discsthe removable cartridge:

Copyright 1978

Educational Data systems

set data set data

switches then press switches then press

0000 20 RESET, EXAMINE Q00020 PESET, EXAMINE
177401 DEPOSIT 177401 DEPOSIT
000012 DEPOSIT ACO O00CO12 DEPOSIT ACO.

0000 00 DEPOSIT ACI 000 200 DEPOSIT ACI

00 00 00 DEPOSIT AC2 000000 DEPNSIT AC2
0003 74 EXAMINE 000374 EXAMINE
061370 DEPOSIT 061370 DEPOSIT

066270 DEPOSIT NEXT 066270 DEPOSIT NEXT
073170 DEPOSIT NEXT 072170 DEPNSIT NEXT

000377 DEPOSIT NEAT 00C377 DEPOSIT NEXT

0003 74 START 000374 START

IPL Rootstraps

31 AUG 78

The System Industries disc controllers also require longer

bootstrap programs since they access some of the control

parameters from core. Use the following bootstrap programs for a

System Industries 3015 or 3045 controller:

If Logical Unit zero isIf Logical Unit zero is

the removable cartridge?the non-removable disc?

set data set data |
switches then press switches then press

000365 RESET, EXAMINE 000365 RESET, EXAMINE

020405 DEPOSIT ~ 020405 DEPOSIT
024405 DEPOSIT NEXT 024405 DEPOSIT NEXT

004405 DEPOSIT NEXT 004405 DEPNSIT NEXT

000400 DEPOSIT NEXT 000400 DEPOSIT NEXT

000000 DEPNSIT NEXT 000000 DEPOSIT NEXT
000000 DEPOSIT NEAT 020090* DEPOSIT NEXT
000100 DEPOSIT NEXT O0C 100 DEPOSIT NEXT
O771 xx DEPOSIT NEXT O771 xx DEPNSIT NEXT

0650 xx DEPOSIT NEXT 0659xx DEPOSIT NEXT

0632 xx DEPNSIT WEXT 0622xx DEPOSIT NEXT
000377 DEPOSIT NEXT 000377 DEPOSIT NEXT
000365 START O0C 365 START

* 100000 for a 3045 controller

where xx is the controller’s device code (usually 40).

For a System Industries "Kahili" controller (9500 series) the

following bootstrap program may be used:

set data

switches then press

000371 RESET, EXAMINE, DEPOSIT ACO

000000 DEPOSIT

000400 DEPISIT NEXT

OOQ0000* DEPOSIT NEXT

0900 00 DEPOSIT NEXT

000000 DEPOSIT NEXT

O611 xx DEPISIT NEXT

Q003 77 DEPOSIT NEXT

090376 START

* 002000 for drive #1]

004000 for drive #?2

OC6000 for drive #3

where xx is the controller’s device code (usually 50).

Copyright 1978

Educational Data Systems
IPL Bootstraps

31 AUG 78 | 5-6

For a Digital Computer Controls 116446 disc system, the Program

Load feature may be used if the system is on drive #0. Set the

data switches to 100030 octal, press RESET, then PROGRAM LOAD,

then press the colon (!) key on the master terminal. If the

system is not on drive #0, then key in this bootstrap procrams

set data

switches then press

0003 76 RESET, EXAMINE

On 0000 DEPOSIT ACI

065130 DEPOSIT |

0003 77 DEPOSIT NEAT

1003 76 START

where nis the drive number, then press the colon () key on the

master terminal.

For a Xebec XDF-50 system, the PROGRAM LOAD feature may he used if

the system is on physical partition 0.0% otherwise use one of the

following bootstrap vorograms?

If Logical Unit zero is If Logical Unit zero is

the removable cartridge? © the non-removable discs

set data | set data

switches then press — switches then press

0003 76 RESET, EXAMINE 000373 RESET, EXAMINE

060130 DEPOSIT 003400 DEPOSIT ACO

000377 DEPOSIT NEXT OO 1 OOO DEPOSIT ACI

000376 START 000400 DEPOSIT AC2 |

000 000 DEPOSIT AC3

076030 DEPNS ITT |

073030 DEPOSIT NEXT

067031 DEPOSIT NEXT

061130 DEPNSIT NEXT

000377 DEPOSIT NEXT

000373 START

ror a Minicomputer Technolocy TDC-802, use the following bootstrap

orogram to start an IPL from drive zero?

set data |

switches then press

00040 | RESET, EXAMINE

G60136 DEPOSIT

000400 DEPOSIT NEAT

00040 | OTART

Copyright 1978 IPL Bootstraps
Educational Data Systems 5-/ .) — 31 AUG 78

5.3 System SHUTDOWN Procedure

All users must be lodged off the system before it is shut down.

This is to ensure that all accounts have been properly updated and

that there are no open files. For this reason, the system command ©

SHUTDOWN Ekey

where "key" is the password assigned to SHUTDOWN (see Sections
2.3.11 and 4.9) should be given to shut down the system.

Normally, this command must be given by the system manager on the

master terminal (port zero), but other accounts and/or other ports
may be allowed to shut down the system (see Section 2.3.13).

SHUTDUNN will check all ports and, if any port is in use, the
message

PORT #n IS IN USE

will be printed, where n is the number of a port where the user
has not logged off. 7

The MAIL command may be used to send a messaane to port n to

request the user to log off, or the PORT EVICT command may be used

to force the port (or all ports) to be loaqged off (see Section

6.10). If all ports are inactive, SHUTDOWN will stop the
multiplexer so that no one can log on, and will then chain to BYE

and log off the master terminal.

The computer will halt after the master terminal has heen locaed

off. Now turn off the disc and the master terminal, and turn the
cofiputer power OFF. A RESET and START at location zero (octal
000000) may later be used to restart the system without an IPL

(see section 5.1).

WARNING! Do not attempt to restart the system at location zero

except after shutting down in exactly the manner described above.
Use the procedure in Section 5.2 under any other circumstances or

if the system fails to restart by this method on the first

attempt.

LPR.

System SHUTDOWN Copyright 1978

31 AUG 78 5-8 Educational Data Systems

6. PROBLEM ANALYSIS AND REPORTING

This section outlines a procedure for analyzing and reporting any

bugs found in Educational Data Systems’ hardware or software. The

use of this procedure assures efficient processing of bug reports
by EDS so that the problem can be fixed with a minimum delay.

6.1 Trap Messages

A trap message is printed when any error is detected that

indicates a hardware or software fault. A hardware fault is most

commonly caused by a disc error which, after sixteen tries, cannot

be corrected. A software fault occurs if one of the cross checks

built into the software detects an illegal condition, such as an

illegal disc or core address.

The trap message tells the type of fault (see Appendix 5), the

core location where the fault was detected, and the Filename of

the processor that was in core at the time (in some cases there

may be no processor in core). The next line of the message lists

the »>TATUS$ ie, the contents of registers AO through A3 and the —
carry flip-flop. If the fault was detected by a disc-resident

subroutine, a third line will be printed giving the address in the

DISCSUBS assembly listing. If disc-resident subroutines were

nested at the time, then the address in the DISCSUBS listing will

be printed for each nested call. An asterisk preceding a discsubs

address indicates that the trap did not actually occur within the

discsub itself, and the address given is an absolute core address
where the trap occurred -- usually by a core-resident routine

(within REX) that was called by the. discsub.

The message is printed on the terminal of the user that was in
core at the time the fault was detected, and that user’s active
file may then be cleared. The reason for clearing the active file
is that the fault may have been caused by an error in that file.

If no user was in core at the time, then the message is printed on.

the master terminal and will be lost if the master terminal is not
on at that time.

time-sharing is inhibited during the few seconds it takes to type
out the trap message. Any input or output in progress at the time
May continue, but there will be no response after that input or

output until the trap message is completed. :

All trap messages should be saved until they have been analyzed to

determine the cause of the fault. If a software problem is

suspected, the trap message should be forwarded to Educational

Data Systems along with a Bug Report (see Section 6.3) so that the

problem can be corrected. | :

Copyright 1978 | Problem Reporting
Educational Data systems 6—-| | 19 APR 78

6.2 Errors and Other Problems

This category includes all software problems that do not cause a

trap message, as well as all hardware problems. Any problem with
hardware that is under an EDS warranty or service contract should

be documented by running the diagnostic test. routine and including

a copy of its print out along with the bug report.

Software problems are harder to diagnose since they usually occur

somewhere in a very complex application program. To make
diagnosis possible, it is usually necessary to isolate the problem
to a single statement or a very small group of statements that
will produce the error.

Since this is more easily done by the person who wrote the

application program, it is best to attempt to isolate the problem

before sending the bug report. Include a complete listing and a

sample run of the smallest program that will cause the problem.

Many "software" problems occur because of a transient hardware
error or because the core copy of the operating system has somehow

been chanaed. In such a case, the problem may not re-occur or may

be cured by doing an IPL. For this reason it is best to try an
IPL first, especially if the problem occurs in a program that

previously ran without errors. Even if the problem is not

immediately repeatable, the documentation should be retained in

case the same problem occurs again at a later time. Information
in core can be changed by a hardware failure, a power line

transient, static electricity, or by another software bug which
may be completely unrelated to the symptom.

6.3 Bug Reporting Procedure

Please report any buq found in any Educational Data Systems’
product (software or hardware) by filling out an EDS BUG REPORT

form. If none is available then a Rediform 45474 three part form
may be used, filled out as follows:

TO Your company name

AT The name and address of the facility where the
person making the report can be contacted.

SUBJECT The name of the EDS product. Include any date,

revision number, or serial number. Examples:

IRIS User Reference Manual (EDS 1017-10)
FORMAL 8-17-77

EDS 310 MULTIPLEXER (Serial #405)
BASIC 7-15-77

DATE The date the report is made.

Errors and Other Problems Copyright 1978

19 APR 7& 6-2 Educational Nata Systems

Describe the problem in detail, including all symptoms. Include
information about any concurrent events or sequence of events
leading up to or needed to reproduce the problem. Be concise}
give an example of the smallest program that will demonstrate the

problem. Attach all applicable computer printout and programming
examples.

Use a separate BUG REPORT for each problem encountered. If you

feel that two or more bugs may be related, reference should be
made to the related reports. Sign the report, keep a copy, and

send the original to Educational Data Systems at the address shown
on the title page of this manual.

An isolated TRAP message with no background data is useless, as is

an out-of-context statement such as "string comparison doesn’t

always work." There are several types of software problems. Each

should be reported as outlined below:

a) TRAP MESSAGE. A TRAP messaae results from either a

hardware failure or from a cross=-check in the software.

Attach the TRAP print out and the six feet of paper from

your terminal leading up to the trap. Describe any

other symptoms noted and the effect, if any, on other

users. | |

ky) Incorrect Operation (system continues normal operation

but behaves incorrectly or gives the wrong answer in a

particular instance). Include hard copy of the error

with the BUG REPORT form (see Section 6.2).

Cc) Computer Stalls (RUN liqht on, but no response to any

user). Write down the state of the ION lioht and the

DEFER light, then press RESET, and write down the values

displayed in the ANDRESS, DATA, and CARRY lights, and

examine and write down the contents of each register ACO

through AC3. |

_d) Computer Stops (RUN liaht out). This may be any of

several problems. In any case, write down the values

displayed in the ADDRESS and DATA lights and the state

of the CARRY and ION lights then press RESET, and

examine and write down the contents of each reaister ACO

through AC3. The type of problem is indicated by the

state of the DATA lights as shown on the next page.

In any case other than a power failure, state whether the problem

is repeatable or occurred only once, describe the last action by

the user at each terminal, and include any other possibly

pertinent information. In cases (a) and (b) above, and the 067077

and 073077 halts on the next page, the problem will be self

Clearing, and the system sould continue normal operation except

for the particular error. In all other cases it will be necessary

to do an IPL (see Section 5.1) to restore system operation. |

Copyright 1978 Bug Reporting Procedure

Educational Data systems 6-3 : 19 APR 78

DATA light

OM/OT7

067077

073077

063377

073377

06/377

063277

O73 71

X XXXXX

Double TRAP. A trap occured while attempting to

print the trap message. After writing down all

information, press CONTINUE, then again examine and

write down the contents of all registers and the

CARRY light. The second set of information is from

the initial trap.

Power fail restart. A Power Fail Auto Restart was

being attempted, and one or more disc drives require
operator intervention. Ready all disc drives, and

press CONTINUE to resume system operation.

Power fail halt. A power failure occurred, and

there was a failure in the Power Fail Auto Restart

hardware. Ready all disc drives, and press CONTINUE
to resume system operation.

No free nodes or interrupt stack overflow. If A2=0

then there were not enough free nodes available for

task queuing’ do an IPL, and reduce the amount of

core-resident routines to allow more free nodes,
then do another IPL. If A2>0 then the interrupt

stack has overflowed: either there is an interrupt

mask hardware problem, or some device’s mask bit is
specified incorrectly in its driver.

Disc time-out. <A disc drive did not go ready within

the expected time after an initialize or recalibrate

command.

Interrupt not acknowledged. Some hardware device
has interrupted but did not present its device code

to an INTA instruction. This indicates a hardware
problem, most likely improper routing of the

interrupt priority line on the computer hackplane

(pins A95 and A96). A restart may be attempted by

pressing RESET, then CONTINUE.

INSTALL has encountered a bad file (see opposite).

Unknown halt. Unused areas of core are usually

filled with 077377 halt instructions. Such a halt,

or any other halt not shown above (eg, 063077),

indicates an abnormal jump in the software.

Any value other than above in the data lights. Most

likely, a power failure occurred, and either the

computer’s power switch was not set to LOCK, or the

computer does not have the Power Fail Auto Restart

option. Examine location zero; if it contains

062677 octal then this assumption is correct, and a

START at zero should resume system operation (first

be sure all disc drives are ready).

Bug Reporting Procedure _ Copyright 1978

IY APR 78 6-4 Educational Data Systems

ue

ony

If a “bad" file is encountered during an INSTALL, and location 200

of INSTALL contains zero (see paragraph 2.3.1/), then the computer
will halt (see 063277 opposite). Register Al will contain an

INDEX block Real Disc Address, AO will contain the displacement

into that block to the questionable file’s entry, and A2 will

contain an error indicator as follows:

Disc address in header doesn’t match INDEX entry

Filename in header doesn’t match INDEX entry

Incorrect number of disc addresses in header

File uses disc block already marked as in usei B&W Dh Hoa ou
Write down the contents of these registers, then press CONTINUES

this will cause the file to be deleted, and INSTALL will continue

installing the Logical Unit. Alternatively, press EXAMINE NEXT,

then CONTINUE to abort the INSTALL without deleting the file and

attempt to restore normal system operation. Then, at a time when

the manager is alone on the system, do an INSTALL FAST and use NSP
to examine the INDEX entry and file header and attempt restoration
of the file.

: WARNING -- Do not do an INSTALL FAST on a questionable Logical Unit
at a time when any one may attempt to use that unit!

Copyright 1978 | Bad File Recovery

Educational Data Systems 6-5 : 19 APR 78

7. ACCOUNTING SYSTEM

The operating system keeps track of the system resource usage by

each user account. Disc block usage is maintained on a dynamic

basis; ie, the user’s account is immediately updated to show the
change in disc usage each time the user deletes, creates, or

expands any file. CPU and connect time usage and neak disc block

usage are updated by BYE when a user logs off.

All accounting information is kept in a disc file named ACCOUNTS

which may be examined and/or modified by a BASIC proagram via data

file access. Only the system manager can run such a proaram
successfully since the ACCOUNTS file is read protected and write

protected against all users except the manager account (priv 2,
group 0, user |). This section gives information on how to write
BASIC pvroarams to perform the system accounting functions and how

to use programs provided by EDS to set up and examine user
accounts. |

Mnly one privilege three (system) account is allowed on the

system. The system account is the first entry in the ACCOUNTS

file. The system account ID cannot be changed by the system

manager. Only one inmanager account is allowed on the system. The

manager account number is group zero, user one, at privilege level

two (octal 100001). Do not change the manager’s account number or

its Logical Unit assignment!

Each block of the ACCOUNTS file will hold 16 account entries, and

each entry occupies octal 20 words as follows?

iords Contents

O-5 Account ID string (up to 12 characters)

6 Assigned priority level (9 to 377 octal)

7 Assigned Logical Unit

10 Account number (priv, group, user)

I! Connect minutes remaining *

12 CPU seconds remaining «x

13 Maximum disc blocks allotted **

[4 Disc blocks now in use |

15 Peak disc block usage

16,17 File use charges (floating 2-word BCD)

* The values for connect minutes remainina and CPU seconds

remaining must both be either positive or equal to 100000

octal (no limit), or the user will not be allowed to log on.

A positive value will be reduced by the amount of time used

each time a user logs off. |

*x The maximum disc blocks allotted is simply a limiting value

for disc block usage by this account. The blocks are not

reserved for this account Dut merely limit the number that

can be drawn from the general pool. Thus, the total hlock

allottnment to all accounts may, and generally should, exceed

the number of blocks available on a Logical Unit.

Copyright 1978 : Accounting System
Educational Data Systems T=] 20 APR 78

7.1 ACCOUNTS File Access from Business BASIC

The following statement forms may be used in a Business BASIC

program to access an ACCOUNTS file entry?

Line number OPEN #x,"lu/ACCOUNTS"

line oumber READ #x,R3A$,P,U,N,TI,72,M,D1,D2,C

Line number WRITE #x,RsA$,P,U,N,TI,T2,M,DI,D2,C

where

x = Desired channel number

lu = Logical Unit to be accessed
R = Record number in ACCOUNTS file

AS = Account ID (empty entry if A$ is a null string)

P = Assigned priority level

U = Assiqned Logical Unit

N = Account number (priv, group, user)

Tl = Connect time remaining (minutes)

T2 = CPU time remaining (seconds)

M = Maximum disc blocks allotted

DI! = Disc blocks currently in use

D2 = Peak disc block usage

C = Net file use charges in dimes

The account number "N" may be broken up as follows? ot
Privilege level L = INT(N/16384) O <= L <= 2 _
Group number G = INTC (N-L*1 6384) 764) QO <= G <= 255 ~
User number U = N-(L*16384+G6*64) Q <= U <= 63

and it may be recombined as N=L*16384+G*64+U. Group zero, user

zero is reserved for the system account.

The ACCOUNTS file is assiqned to the manager’s account and has 7/7

protection. Therefore, it can be accessed only from the maneger’s

account.

Before creating a new account, a search should first be made for

the intended ID string, and a second search should be made for the

intended account number, N, to be sure neither is already in use.

Then search for an entry with a null ID string, and write all
items into that entry’ the account ID should be written by the

last statement executed to ensure that no user can log onto the

account before it is comnlete. To delete an account, write into

that account with a null ID string.

ACCOUNTS File Access Copyright 1978
20 APR 78 1-2 Educational Data Systems

7.2 Account List Program

ACCOUNTLIST is a BASIC program that scans the ACCOUNTS file and

lists all users’ accounts and their current status. The items

listed for each account are record number, privilege level,
account number (group and user), assigned Logical Unit, assigned

priority level, maximum disc blocks allotted, user ID, and account

ID.

Record number zero is not an active account and is not listed.

All other active records will be listed in order of ascending

account numbers. Listing stops when 20 consecutive empty account

entries have been scanned.

This program will run only from the manager’s account because the

ACCOUNTS file is protected. |

7.3 Account Utility Program

UTILITY is a BASIC program that will allow the system manager to

examine and modify existing accounts and to create new accounts.

The program is self-descriptive. Merely give the command to RUN

UTILITY, and it will give instructions for its use.

UTILITY is a very general account utility program, and as such, it
is very wordy to prevent errors. All questions may be answered

via a single letter. Some system managers may elect to write

their own BASIC program to perform the functions in UTILITY as
well as to perform other system accounting functions.

One additional data file named USERID is used by both the UTILITY
and ACCOUNTLIST programs. This file must be created by the system

manager by use of FORMAT, and it is usually formatted D2,514.

Item zero holds the date that the account was created as a six
digit decimal number in the form MMDDYY where MM is the month

(l=January, 2=February, etc.), DD is the day of the month, and YY

is the last two digits of the year. Item one holds the name of
the user to whom the account is assigned. The limit of 14

characters in the name is arbitrary and may be changed as desired

by formatting USERID with a different string length in item one$

also, items may be added to the file’s format to carry other
information about each user as desired.

Each record in the USERID file corresponds to the entry with the

same record number in the ACCOUNTS file. Therefore, either may

easily be found if the location of the ather is known. If a user
forgets his account ID, the system manager can search the USERID

file for his name and then read the corresponding record in the
ACCOUNTS file. The ACCOUNTLIST program writes NONAME into any

empty USERID record for which a corresponding entry exists in the

ACCOUNTS file.

Copyright 1978 Accounting Programs
Educational Data Systems T=3 : 20 APR 78

7.4 Suggestions for System Accounting

A special Read File Header Information subroutine is also

available for accounting. It may be used by a Business BASIC

statement of the form:

line number CALL 97,U,R,FS,A,T,5,Q0,C,!1,D,L,H

where 97 is the file attributes access subroutine number, U, R, A,

T, S, Q, C, I, D, L, and H are any numeric variable names, and F$
is any string variable dimensioned as 15 characters or longer.
The value given in U specifies a desired Logical Unit, the value

given in R specifies a starting record number in the INDEX file,

oe ewe other variables receive information about the file as
follows:

FS Filename. <A string of up to 14 ASCII characters.

A Account number. Privilege level, Group number, and

User number (see Section 7.1).

T File type:

Tl = T-32*INT(T/32)
P = INT(T/512)

Pl = INTC (P-8*INT(P/8))

P2 = INTC P=P1+*8)

X = INT((T-$512*P)/64)

where: Tl = file type (see Section 8. /)

X = R,L,I control digit

P = Protection digits

Pl = Protection digit #1

P2 = Protection digit #2

S File size. Number of disc blocks used by the file.

Q File status. A non-zero value indicates that the -file

is mapped or is being built, replaced, or deteted. See
STAT in the Software Definitions for more information.

C File cost (charge for access to the file) in dimes.

I Total Income to the file in dimes. This is increased

by the value of C each time a user on a different

account accesses the file. Note: if the value of

variable I was zero before the call, then the file’s

income will be cleared to zero by use of the call’
otherwise, the file’s income is not changed by the

call.

D File creation Date (hours after I-1-76). The age in

hours may be calculated as Age = SPC(2)-D.

system Accounting Copyright 1978

20 APR 78 1-4 Educational Data Systems

L Last access date (hours after I-!I-76). The hours since
last access may be calculated as HSLA = SPC(2)-L.

H ‘Dise address of file’s header.

All values are returned in decimal. The T, 9, and H values must
be converted to octal for comparison with a LIBR listing or DSP
output. Variable U is zeroed by CALL 97.

If the INDEX record specified by R does not contain an entry then

the next entry is automatically tried until an. entry is found or
the end of the INDEX is reached.. If the end of the INDEX is

reached, then R will be set to -!, and all other variables will be

unchanged. When a valid entry is found, Ris set to the record
number of the next INDEX entry, and all variables are loaded from

information in the file’s header as indicated above.

The system manager can write a Business BASIC program using the

statements discussed in this chapter to perform ail accounting

necessary for commercial or other controlled use of the system. A
data file should be used to maintain records of each user’s

account and for invoicing purposes, or the format of the USERID

file may be extended to accommodate the needed information. An

itemized invoice could be produced automatically for each user.

Examples of possible charges are?’

$0.20 per CPU second

$0.10 per connect minute’ |

$2.00 per dise block per week

$0.50 per week for maintaining account

Higher charges might he made for the higher privilege level and/or

higher priority accounts. CPU and connect time used. are computed

by initially allotting a known amount and later determining the

difference between the remaining allotment and the initial

allotment. Disc usage may be charged either on current usage or

on peak usage. If peak usage is used, the peak value should then

be set back to the current level. A fixed charge may be made for

each log-on by setting a non-zero cost on the LOGONMSG file.

The accrued net charges for access to other users’ files must be

added to the above total, and the user must be credited for access

to his files by other users. (If a file is deleted, this credit.

is applied automatically by the system by subtracting the file’s

income from its owner’s accrued charges. Thus, a user’s accrued

charges will be negative if his income exceeds the charges for use

of other’s files.) The income must be accumulated for each

account when scannina the INDEX with CALL 97 statements. For each

file add the income to an accumulator for the account to which. the

file belongs. The accrued charges item in the user’s account may

be used as this accumulator if desired. |

Copyright 1978 | System Accounting
Educational Data Systems 7-5 20 APR 78

8. MISCELLANEOUS INFORMATION

This chapter discusses miscellaneous features not described

elsewhere. It also gives additional information of interest only

to the system manager on features that are described elsewhere.

S.!1 More on LIsRary

A library listing printed for a privilege zero or one user gives
only the information of interest to such a User. Additional
information is printed when the system manager or other privilege

two user requests a library listing. The additional columns are?

TYPE The last three octal digits of the file header’s TYPE

word. The first digit is the R,L,I control dioait

described in "How to CHANGE File Characteristics" in the

IRIS User Reference Manual. The other two digits are the

file type (see Section 8.7) from which the first column of
the library listing is derived.

PRIV The privilege level of the file. This is the same as that
of the user who created the file. ,

HBA Header Block Address. The Real Disc Address of the file’s
header block in octal.

One additional library command is also available for the system

manager. It is | |

LIBR ? or LIBR lu/?

which will give a summary of disc block usage by privileae level

on Logical Unit zero or on a specified Logical Unit.

8.2 House Cleaning Procedures

If the disc is filled near maximum capacity, users will qet a

message such as "LOGICAL UNIT NEEDS 5 MORE BLOCKS, NOT SAVED" when

an attempt is made to save a file. When this occurs, the system

manager should "clean house"; ie, he should delete any files that

are not currently being used. Ihe procedure for doina this may

vary dependina on how the system is being used at a particular

installation. However, in general, the manager should request a

complete library listing by giving the non-selective LIBR®

command. By examining the Hours Since Last Access (HSLA) column

of the listing, the mananer can determine whether certain files

have fallen into disuse. The ACCOUNT column tells whose files

they are. The manager may choose to KILL certain files, or he may

contact the file’s originator to determine if the file is still

needed. A LIBR @>h command may also be used to list only those

files which have not been accessed recently.

Copyright 1978 LIBRary, House Cleanina
Educational Data Systems 8—] | 31 AUG 78

8.3 How to CLEANUP a Logical Unit

CLEANUP is a system processor that will perform file compression

and "garbage collection" on a Logical Unit. At the same time, all

files and processors will be relocated in a special sequence to
optimize system throughput. To clean up a Logical Unit, first

back up all disc cartridges, then enter the system command

CLEANUP EkeyE x USING y

where "key":is the password assigned to CLEANUP (see Section 4.9),

x is the LU (Logical Unit) to be cleaned up, and y is the LU on
which a scratch file may be built to be used as a map to

reorganize unit x. X and y must be different units, and both must
be on line before CLEANUP is invoked. The number of disc blocks

needed for the scratch file is one block for the header plus the
number of total disc blocks on unit x divided by 256. Thus, for a
1000 block unit, the scratch file size would be 1+1000/256 = 5

blocks. For a 32000 block unit, the scratch file size would be

12Y blocks.

vihen CLEANUP is invoked, it first analyzes the input command.

Both x and y are verfied that they are on line. All ports are
scanned to make sure all users are logged off. The size of unit x
is calculated and then the scratch file is built on unit y using
the Filename GARBACO. Now the DMAP (Disc Map) on unit x is zeroed
out. The INDEX is then scanned on a file type priority basis, and

the file’s headers are relocated. The new and old disc addresses
of the blocks are stored in the scratch file.

After all files have been processed, the scratch file is used to
"jucgle" the disc blocks into their new positions. when the
"jugqling" is completed, CLEANUP will "remove" the LU if it is an

auxiliary unit, or do an IPL if it is the System Unit (LU #0).

Before running CLEANUP, a system backup should be performed. If a

TRAP occurs during the running of CLEANUP, the unit can be

considered useless since some of the blocks on the unit may have
been moved to their new locations while others have not. If the

unit is the System Unit, an IPL probably will not work. In this
case, the back up cartridge must be copied back to the original
one. Any known bad disc addresses of the unit to be cleaned up

should be entered during an IPL or INSTALL sequence to prevent
CLEANUP from usina a bad disc block which would cause a TRAP
during a read or write operation. If Logical Unit zero is being

cleaned up, it is a aood idea to have at least 100 available
blocks on the unit before CLEANUP is invoked; if there are very

few blocks available, CLEANUP may not he able to reallocate the
active files or DISCSUBS correctly and will produce a TRAP.

CLEANUP Logical Unit Copyright 1978

31 AUG 78 8=2 Educational Data Systems

Several error messages can occur. These are listed below

ILLEGAL INPUT - the input command was incorrectly entered.

SAME LU = x and y were not entered as different Logical
Unit numbers.

LU NOT ACTIVE = Logical Unit x or y is not INSTALLed.
e

NOT ALL USERS LOGGED OFF - a port was found that was in
use or not looged off.

"GARBACO" FILE ALREADY EXISTS - a file with the same name

as the scratch file created by CLEANUP already exists on

Logical Unit y.

OUT OF DISC SPACE — there are not enough disc blocks free
on Logical Unit y to create the scratch file.

NO "FIXDIRECTORIES" DISCSUB ON THE SYSTEM =— the subroutine

used to fix the directories of indexed files is not in the

DISCSUBS file.

BAD FILE DHDR IN INDEX = a file named in the index did not

have a correct header address. (FATAL ERROR !!!)

GAP IN "ACCOUNTS" FILE BLOCKS = the list of blocks in the

header of the ACCOUNTS file has a gap in it. (Do an IPL

or INSTALL to use the unit).

the time required to perform the juaqling of the disc blocks is

the longest part of the proaram. It depends on the type of disc,

size, number of files, and how much juaqling was required.

Typically, a IK block fixed head drum will take 5-10 minutes, and

a 5K block moving arm disc will take 10-20 minutes when 50% full

and | to 2 hours when 80% full. Once CLEANUP has been run on a

Logical Unit, it will take less time the next time it is run since

the files will be almost in order-instead of in random order.

Copyright 1978 CLEANUP Logical Unit

Educational Data Systems B=-3 : 31 AUG 78

Phase

4

4

4

4

-:

Up HOG

SO
Cc

Cc

® WG Ph
mw

OPTIMIZED DISC ARRANGEMENT (After running CLEANUP)

LOC

WN — ©
LRTC

Filename Comments

BZUP Fixed

INDEX header Fixed

REX header Fixed

ACCOUNTS header Fixed

ACCOUNTS

INDEA

DMAP Fixed

Nesting Blocks (Must follow DMAP)

INDEX

DISCSUBS, MESSAGES

SCOPE

CONFIG (Header, first block)

SAVE

RUNMAT

BASIC

RUN

Active riles (Reserve space)

LIBR, ASSEMBLE, XASSEMBLE, EDIT, ASGNL

Contiguous & Indexed files

Formatted & Text files

Other Processors

Drivers ($ files)

BASIC Programs, Miscellaneous

CONFIG (Rest of file)

REX

The phase numbers are printed as CLEANUP runs to indicate pronress

in the cleanup process. Phases one through three are fast

initializing steps, so their phase numbers are not printed. The

main cleanup work is done during the following phases:

16 Update file addresses in INDEX

17 Shuffle blocks as determined in phases 5 - 15

18 Correct indexed file directories

CLEANUP Logical Unit Copyright 1978

31 AUG 18 B=—4 Educational Data Systems

8.4 How to Use the System in Stand-Alone Mode

Any machine code file (types "A" and "X" on a LIBR listing) may be

used in stand-alone mode. The SHUTDOWN processor will reject any

call by a user of privilege O or |! or from any port other than the

Master terminal. This is to protect the system against

inadvertent shutdown, since time-sharing cannot be supported in

stand-alone mode. The command will also be rejected if there is a

user logged on at any port other than the master, in which case

that port’s number will be printed. |

To initiate use in stand-alone mode, the system manaaqer must type

a system command of the form |

SHUTDOWN EkeyE Filename

on the master terminal (port zero), where "key" is the password
assigned to SHUTDOWN, and where Filename is the name of a type A
or type X file. On some systems, the shutdown may be allowed by

other users and/or from other ports (see Section 2.3.13).
SHUTDOWN checks that there are no other users on the system (see

Section 5.3), moves itself to the top of core memory, fills all of

core below itself with a special halt instruction (077377 octal,
which is a DOCP 3,CPU instruction), and finally loads the selected

file into core, overlaying some of the halts. If a starting
address is specified in the stand-alone program file, then control

will be transferred to that location. The starting address may be
assigned or changed by use of the CHANGE command as described in
Section 8.7. If no starting address is given, the computer will

halt (standard 63077 halt) after the file is loaded into core. A

7/077 halt indicates that the object file was too big to be
loaded, and a 67/7077 halt indicates a disc read error. In either

case, registers Al and A2 give the disc and core addresses,

respectively, of the first block not loaded.

Up to eight stand-alone files can be brought into core together by

giving the command in the form

OHUTDOWN EkeyvE Filename,Filename,...

where each Filename identifies a stand-alone file. All files must

be on the same Logical Unit. The files will be loage? into core

in the sequence givens therefore, it is best to list, the files in

order of increasing core locations so that the beqinning of one

file is not destroyed in core by being overlayed with a partially

empty last block of another file. The starting address from the

last file having a starting address will be used.

SHUTDOWN includes an absolute binary paper tape loader which will

be left. at the top of core as defined by TOPW. The binary loader

is standard except that gach record is checksummed before being

stored in core. Also, when a tape is being loaded through the —

master terminal’s reader, the printer on the master terminal will

cycle (but not print anything) at the end of each data block

(about every four inches). This gives an indication that the tape

is being loaded properly.

Copyright 1978 Stand-Alone Mode

Educational Data Systems B=—5 : 31 AUG 78

SHUTDUWN also includes an absolute binary paper tape punch routine

which will punch from core to either the high speed paper tape
punch or to the punch on the master terminal. To punch a tape,
start at TOPW-2 (usually x7775) with switch zero down to select

the master terminal (be sure the punch is turned on) or up to
select the high speed punch. Leader will be punched, and the

computer will halt. «Set the first address to be punched in the

switches, and press CONTINUE, then put the last address to be

punched in the switches, and press CONTINUE agains repeat as

necessary if non-contiguous areas are being punched. When all

areas have been punched, set switch zero up, and press CONTINUES
only a few frames will be punched. If no starting address is

desired, press CONTINUE again (switch zero still up), else set the

starting address in the switches (switch zero down) and press
CUNTINUE$’ in either case, the proper end block and trailer will be
punched.

DBUG, the stand-alone debuaging routine (see Section 3.2), may be

brought into core along with a stand-alone program by including an
@ symbol and an octal address following the Filename. For

example, the command

SHUTDOWN EkeyE Filename &6000

will bring DBUG into core at location 6000 after loading the

selected file or files. All files must be on Logical Unit zero

if DBUG is to be brought into core. DBUG will be loaded last if

it is requested regardless of its position in the command line,

but all files must be on Logical Unit zero to allow DBUG to be

loaded.

The paper tape routines and DBUG may also be brought into core
without loadina a stand-alone program from the disc. To do this,

the manager may type a command of the form

SHUTDOWN EkeyE @address

which will cause all of the actions described above except loading
a stand-alone file into core. DBUG will be brouqht into core at

the specified address, and the computer will halt. Press the

CONTINUE switch to start the binary loader, or RESET and START at
location x7777. Switch zero must be down to select the master

terminal readgr and punch or up to select the high speed reader

and punch.

It is necesary to do an IPL to bring up IRIS after using the

system in stand-alone mode. Usually this may be done by a RESET

and START at location 1x7774, where xx7/77 is TOPW as defined in

the CONFIG file, then set switch one down, and press the "3s"

(colon) key. If this does not start the IPL then it will be

necessary to key in an IPL bootstrap routine as described in

section 5.2.

Stand-Alone Mode Copyright 1978
3! AUG 78 8=-6 Educational Data Systems

8.5 System BACKUP Procedure

To do a disc-to-disc copy to back up the system disc, log on to

the manager’s account on the master terminal, and enter the system

command

SHUTDOWN Ekey& DDCOPY

where "key" is the password assigned to SHUTDOWN, and press the

RETURN key. Then mount a scratch cartridge in Physical Unit 0.1,
and RESET and START at location 400 to start the copy process.
The entire system disc (on Physical Unit 0.0) will be copied to
the cartridge on Physical Unit 0.1.

A normal halt (63077 in the data lights) indicates successful
completion’ remove the backup cartridge, and press the CONTINUE
switch to start an IPL and bring up IRIS.

A 77077 halt indicates a disc time out. A 67077 halt indicates an

irrecoverable read error, and a 73077 halt indicates an
irrecoverable write error. In any case, register Al will contain
the disc address, and AO will contain the disc status word. For a
disc that is too big for a 16-bit disc address, register Al will

contain the cylinder number, and A2 will contain the track and

sector numbers. If the CONTINUE switch is pressed at this time

then the copy will be resumed starting with the next cylinder of
the disc. Note that a complete cylinder may be lost due to one

bad block. . |

If it is necessary to copy from the backup cartridge to the system

disc, the DDCOPY routine must be loaded from paper tape by use of

the binary loader. Examine the contents of locations 401 and 402

and interchange the values in these two cells this will cause the

copy to be from Physical Unit 0.1 to Physical Unit 0.0. Put the

backup cartridge in Physical Unit 0.1, then RESET and START at

location 400. When finished copying, replace the backup cartridge

with a blank cartridge or another Loqical Unit, and press the

CONTINUE switch to start an IPL and bring up IRIS.

Copyright 1978 System Backup Procedure

Educational Data Systems S=—7 : 31 AUG 78

8.6 Real-Time Interrupt System

The interrupt service routine in REX provides for true real-time

interrupt handling. When an interrupt occurs, an interrupt

acknowledge instruction determines the highest priority

interrupting device, and a mask is picked up from the device’s

interrupt handler and ORed with the current interrupt mask to
disable that device’s interrupt and any lower priority

interrupts. Control is then passed to the device’s interrupt

handler with interrupts enabled, thus allowing interrupts. from

higher priority devices. Notice that the determination of

priority is under control of the programmer writing the device

driver rather than arbitrarily assuming that a device has higher

oriority if its mask bit is to the left of another device’s mask
bite When the driver returns from the interrupt, the previous

mask and all registers are restored, and control is returned to

the interrupted task. An interrupt handler may create a task of

higher priority than the regnant task, In which case the new task

yoes at the head of the queue, and returning from the interrupt

"restores" to that task.

S./7 More on CHANGE and SCOPE

the CHANGE processor is described in "How to CHANGE File
Characteristics" in the IRIS User Reference Manual. There are

four additional features, however, for manager level users.

First, CHANGE will print

R, L, AiiD I CONTROL = x

NEW CONTROL DIGIT?

The R, L, and I control digit is the third digit from the rioht in
the file’s TYPE word, and it is made up of three bits as follows?

Value Bit feanina

R=4 s Runnable processor

L=2 1 Load active file

[=| 6 Initiate input

This feature exists so that a processor may be assembled usina

ASSEMBLE and then changed to a runnable processor to be used on

the system. CHANGE will allow the R bit to be set only if’

1) The first address in the processor is 200, and

2) The processor will not overlay locations 600 through
BPS-!, and

3) The file type is |, 3, or 4 (system, stand-alone, or

executable file).

Transmit System Command Copyright 1978

31 AUG 78 3=-8 Educational Data Systems

When a Filename is entered in response to the # prompt character,

SCOPE reads the file’s header and examines the control digit. If

the R bit is set then the file is opened on channel -! (minus one)

and thus becomes the port’s selected processors’ SCOPE then examines

the L and I bits. If the L bit is set then SCOPE looks for another
Filename following the processor’s Filename (eg, BASIC

ACCOUNTLIST). If such a Filename is found then its header is

read, and the file type compared with the type of the processor. A

match causes SCOPE to load the program file into the port’s active
file. SCOPE then checks the I bit whether L was set or not, and

enables input if I is set. When input is terminated (or

immediately on the next time slice if I was not set) the selected

processor is given control at its initial entry point. If the R

bit is not set then SCOPE examines the file type. For a BASIC
program, and for certain other types of files, SCOPE selects the

proper processor$ eg, "RUN Filename" is (in effect) substituted

for "Filename" if Filename identifies a BASIC program.

Second, if the ® bit is set, CHANGE will print

PROCESSOR TYPE = x

NEW TYPE?

This allows changing the file type (last two digits of the file’s
TYPE word) to match a processor with its proqram files. The disc
files on an IRIS system can be qrouped into several general
catagories as described under "Disc Files" in the IRIS User
Reference Manual. More specifically, however, the least

significant five bits of each file’s TYPE word define the actual
file type for classification purposes. Type zero indicates a

permanent system file, type one indicates a system utility file, a

system device file, or 4 system command processor, and types two

through 17 (octal) are used to match program files to respective

application processors as described above. Types 20 through 27
(octal) are used for special files such as the relocatable imaae

files, and types 30 throuch 35 (octal) are used for various types

of data files. Type 36 (octal) is used for peripheral device

drivers such as $LPT. Type 37 is: not used to identify any

narticular type of file but is used as a "wild card" to allow

opening any file of type 30 through 36.

Thirec, if the R bit is not set, CHANGE will print

STARTING ADDRESS = x
NEW STARTING ADDRESS?

If the file is now a type 3 or 4 then a new starting address may _

be entered in octal. The starting address may range from 0 to

T7777 inclusive (Ixxxxx indicates no startino address).

Processors do not require a starting addresss the system transfers

control to a processor starting at BPS+4 (the forth location after

Beginning of Processor Storage, which is defined in the [RIS

ooftware Definitions).

Copyright 1978

Educational Data Systems B=-9 : 31 AUG 78

Finally, if the file is a BASIC program, CHANCE will print

PROGRAM IS NOT LOCKABLE

LOCKABLE OR NOT (L OR N)?

or the first line may say PROGRAM IS LOCKABLE. In either case, no

change will be made if only the RETURN key is pressed, or either L

or N may be entered to set or reset the "lockable program" flag

(bit 5 of the TYPE word of the file’s header).

8.6 More on INSTALL

Refer to "How to INSTALL a Logical Unit" in the IRIS User

Re fe al for procedures on INSTALL. For the system
manager, INSTALL provides four additional features.

If the Physical Unit is not formatted (ie, it has never been

installed as an IRIS Logical Unit), or if it is desired to change

the Logical Unit number of an existing unit, then the system

manager may qive the command to

INSTALL d.p

and press the RETURN key. If the unit is not formatted, then the
manager will be asked "DESIRED LOGICAL UNIT NUMBER?", and the unit

will be formatted with the Logical Unit number given.

If the unit has been previously installed, then the current

Logical Unit number will be printed, and the manager will be asked

WVINSTALL CY/N)2". A "Y" response installs the unit as its current

number. An "N" response will cause INSTALL to ask "CHANGE LOGICAL

UNIT wUMBER CY/H)2"3 an "N" response will cause INSTALL to exit to

system command mode. If a "Y" response is given then the

manager will be asked "NEW LOGICAL UNIT NUMBER?", and if a number
is entered then the unit will be installed with the new Logical

Unit number without losina any files on the disc (see note below),

and all further references to the unit must use the new number.

For example?

#INSTALL 0.1

LOGICAL UNIT NUMBER = 4

INSTALL (Y/N)? N

CHANGE LOGICAL UNIT NUMBER (Y/N)? Y

NEW LOGICAL UNIT NUMBER? 36

when the installation is completed, any file on the unit must be

addressed as 36/Filename instead of as 4/Filename. |

Notes if a copy of Logical Unit zero is installed by changina its

Logical Unit number, all driver files (Filenames starting with a

dollar sign) will be deleted. These files may be saved by first

changing their names to omit the dollar sign (eg, MMUX instead of

SMMUX).

More on INSTALL Copyriaht 1978

31 AUG 78 B8=—10 Educational Data Systems

| | &

The third additional feature allows the system manager to give the

command

INSTALL AND CLEAR dep

which will clear the disc at location drive d, partition p, thus
formatting a new Logical Unit. If the unit at location d.p is an

IRIS Logical Unit, then INSTALL will ask for confirmation that the
unit is to be cleared. INSTALL then asks for the desired Loaical
Unit number and formats a new (empty) Logical Unit.

The fourth additional feature allows the system manager to give
the command

INSTALL FAST d.p

if cell 201 of INSTALL is non-zero. Cell 201 normally contains

zero, disallowing fast install} a 1! in location 201 allows only

the manager to do a fast install, and any larger value allows

anyone to install fast. The fast install is recommended gnly when

changing disc packs during normal system operation since the

housekeeping operation is bypassed’ a normal install is stronaqly

recommended in all other cases to build a new disc map.

G.¥ How to Set System Time

The system time resides in the HRS (hours since I-1-76) and the

TSC (part of hour in tenth-seconds) cells in the system INFO

table. The TSC cell is incremented each tenth of a second. When

ToC reaches 36000 (decimal) it is reset to zero, and HRS is

incremented. This counter can run for 2t!l6 hours (approximately

7.5 years) before an overflow will occur. If the system time must

be adjusted it may be done by the system manager by use of a CALL

G9 in a BASIC program. For examples

lO DIM ASl25]

20 INPUT A$

30 CALL 99,AS

this program will work only from the manaaer’s account, and the

string entered for AS must represent the current time. The time

may be represented as described in Section 5.1, or it may he of

the form

FEB 15, 1977 10822236

where the "seconds" portion (the last colon and last two digits)

is optional. All leading zeroes and the first two dinits of the

year are also optional. CALL 99 may also be used to read the

current system time (see SETTIME, example program one in Appendix

| of the IRIS User Reference Manual).

Copyright 1978 system Time

Educational Data systems 8=—11 : 31 AUG 78

8.10 More PORT Control Functions

Any user on an interactive port may change certain attributes of

his own port as described under "How to Change BAUD Rate" and "How

to Change Other PORT Characteristics" in the IRIS User Reference

Manual. The system manager may direct any of those same port

change functions to any active port by giving a port number after

the word PORT. For example, the manager may give the command

PORT 3 BAUD 110

to change the rate at port three to 110 Baud. This particular

command is useful when a user has changed his port’s speed to a

rate that is not available on his terminal. In addition, the

manager may give the word ALL in place of a port number. For

example, the command

PORT ALL DELAY 12

would cause a twelve character delay following a carriage return

on all ports (0.12 seconds delay for any ports on an ENDS-8

multiplexer).

In addition to the ahility to direct a PORT command to any

specified port or to all ports, the manager may cause a port to be

logged off regardless of what the user on that port is doing.

This is done by giving the command

PORT EkeyE n EVICT

where "key" is the password assiqned to PORT (see Section 4.9) and

n is a port number that is to be logged off. All users may he

logged off at once by giving the command |

PORT EkeyE ALL EVICT

which is a useful command for use before shuttina down the system

to back up the discs. The manager may also determine what is

going on at a particular port by giving the command

PORT n MONITOR

which will cause a print out of the account number of the user

loeged on to port n, the current Baud rate of that port, the

processor currently in use by that port, and the proaram file (if

any) being used on that port. All ports may be monitored by

giving the command

PORT ALL MONTTOR

which will list all of the above information about each active

port on the system. See Section 2.3.19 if it is desired to allow

users other than the system manacer to use PMRT MONITOR.

More PORT Functions Copyright 1978

31 AUG 78 — 8-12 Educational Data Systems

og

8.11 Priority Task Queuing

A task is put on the priority task queue by the instruction

QUEUE

Task

TCB pointer

Initial priority

(Unused word)

Register A3

where "Task" is either the name of a system task defined in the

Software Definitions (see Section 8.14) or the core address of a

task’s entry point. The TCB pointer word may be zero if no Task

Control Block is used by the task, or -!1 if the Regnant Task

Pointer (RTP) is to be used. The Task Control Block is usually a

Port Control Block (PCB). The TCB pointer is put in RTP when the

task is given control.

the carry bit, registers AO, Al, and A2, and the "register A3"

parameter are saved in the task node (see Fioure 8.1), and all of

these may be used to pass parameters to the task. Upon return

from GUEUE, register A2 points to the new queue node.

CAUTION! The initial priority of the task being queued must not
exceed the current priority of the task which calls QUEUE. An

interrupt handler may queue a new task with initial priority up to

|\777 octal.

tne task being queued must be core-resident, and it must have a

flag word in the cell preceding its entry point. The lower [4

bits of the flaq word must be zero, and the top two bits are used

as flags as follows:

Bit Meaning

15 possible task conflict

14 task is a processor

Copyright 19-78 , | | | . Priority Task Queuing
Educational Data Systems | B13 31 AUG 18

Fiqure 8.18% Task Queue Node

O + Register A2 i «== Next higher priority queue
[ee rn re er een node’s link pointer (or

| § Register Al TASKQ if this is highest

| fe ae me ee eee mre mee me ee me oriority task) points to

2 { Register AO cell zero of this node.
| ae ae eae eae cere meas mere mae nee mej

3 + Register A3 |

| a ae ae anne meee me mee meee nae me | (See below for a discussion
4 | Address, carry bit 5; of the use of each word in

[ee a a ee ee ee nj the node.)

CPRI = 5 j Current Priority i

| ae ee ee ae a om ne ene meee ne me

6 i Spare word i | |

[ee ee re eens LINK points to the next

TASK = 7 4} Task Pointer lower priority queue node.
fe ee rn ern men The link pointer in the

TCbBP = 8 3; TCB Pointer lowest priority queue node
[et ee en re nn ee | points to the fixed idle

LINK = ¥Y j{ Link Pointer ; t=— task node of priority zero.

ords Used to pass parameters to a task when it is created, and
O=- 3 to save the recisters if the task is interrupted.

“ord 4 Holds the task starting address when the task is created,

and is used to save the return address if the task is
interrupted. The address is shifted left one bit, and the

carry hit is saved in bit zero of the word.

Nord 5 Holds the current priority of the task.
(CPRI)

ord 7 Points to the entry point of the task. Task attributes

(TASK) are at neaative displacements from the entry point.

‘iord 8 Points to the Task Control Block (TCS) of the user for
(TCBP) which the task is to be performed, or it is zero for a

system task.

ord ¥Y Points to the next lower priority task node. This word

(LINK) is zero in the idle task, which ends the queue.

task Queue Node Copyright 1978
31 AUG 768 B-14 Educational Data Systems

G.12 Dequeuing a Task

when a task has been completed it must remove itself from the task
queue by executing the instruction

DQUE UE

There is no return from a DQUEUE instruction. The reanant task
node is removed from the task queue and released to the free node
chain, and control is given to the next task on the queue. Ihe

queue is never empty: the idle task (priority zero) is always at

the end of the queue and never dequeues itself.

Figure 8.2: Task Priorities

Educational Data Systems

2021 Power fail interrupt handler.
to

2020 Device interrupt handlers. These priority

2001 levels are determined by the interrupt mask.

2.000 Character processing (in REX).
| om

1777 oystem tasks that do not make disc accesses

may have any priority from 1400 to I 777.
1600 The Ten Hertz task is usually priority 1602.

1577 system tasks which do make disc accesses

1401 ' May have any priority from I40I to 1577.

1400 Task to queue a processor, and —

processor escape and sianal tasks.

1377 User tasks range in priority from | to 1377

and usually have dynamic priority. Tasks

having priority below 100 are considered to

000 | be background. See Section 2.5 for details.

OCOO Idle task has priority zero.

Copyright 1978 MNequeuing a Task

8-15 | 31 AUG 78

8.13 Form of a Task

A task is a core-resident assembly lanauage program written in the

following forms

x00000 #FLAG WORD

NAME® = xxx SENTRY PINT

° sBODY OF TASK

DQUEUE $sTASK COMPLETED

the flag word must be in the word preceding the task’s entry
point. Bit 15 of the flag word must be set to one if the task
does any disc access, if the task is not re-entrant, or if it may
conflict with other tasks in any other way’ otherwise bit 15

should be zero. Bits 14-0 must be zero for all tasks except the

system’s processor task which has a one in bit 14. The body of

the task may include calls to any re-entrant system subroutines

(not to DISCSUBS unless bit 15 of the flaca word is set), and it

may queue other tasks for work that is of lower priority than

itself. The entry point (NAME in the above example) is used in

the GUEUE instruction to queue the task, and its priority is

determined at the time it is queued (see page 8-13). At the time

the task is entered, registers AO, Al, A2, and the carry will

contain the same values as when the QUEUE instruction was given,

and A3 will contain the "Register A3" value given at that time.

8.14 Available System Tasks

two system tasks are available at this time. They are?

The Ten Hertz task (TENHZ)

The Signal task (SIGNAL)

YENHZ is to be queued only by the real time clock driver, and

there must be only one such driver on the system. TENHZ is queued

at priority 1602 once each tenth of a second with a pointer to

INFO in register A3.

SIGNAL may be queued by any task wishing to send a signal. It

must be queued at priority 1400 with the sender’s PCB pointer as

the task’s TCB pointer. Register AO must contain the destination

PCB ponter, Al the first signal value, and A2 the second signal

value. A3 is ianored. If the signal buffer is full then a bell
is echoed to the sender’s port.

Available System Tasks Copyriaht 1978

31 AUG 78 8-16 Educational Data Systems

meen 2 ww eewee@®w#ee @2e 288@ 2 BD 22 @ BS meme 2 Ee 28 Be @e *F8 22 22 2S © 278 2 we eG 2 Ee wee BO wee wee Oe 2e2 O28 BE oe wD ©2828 28 2S wee wee ee Oe eS oe om -
>

Y. HOW TO WRITE A PROCESSOR

A processor is a machine language proaram written in a specific

configuration for proper interaction with the Real-time Executive

(REX). Each IRIS system command, such as SAVE, LIBR or BYE, is

executed by a processor. Likewise, the user languages and

services, such as BASIC, TUTOR, EDIT, and ASSEMBLE are provided by

processors. New processors may be added to IRIS at any time by

the system manager, either by using PLOAD to load a tape provided

by Educational Data Systems, or by assembling it on the disc.

Other users may write a processor, but only the manager can make

it accessible as a system command. This section provides all

information necessary to write a new processor, add it to the

system, debug it, and make it accessible for general use.

Y.1 Core Locations and Entry Points

Core locations 200 through 577 (octal) and locations BPS through
M3US-1l are available for use by a processor (see Figure 9.1). BPS

(Beginning of Processor Storage) is defined in the Software

Definitions tape, and MBUS (Minimum Beginning of User Storage) is
in the INFO table along with many other pointers (refer to a
listing of the Software Definitions). The available space may be

used as desired by the processor, except that cells BPS through

83PS+3 are reserved for pointers to the "swap-in", "swap-out",

"escape" and "CTRL C" routine entry points, and the "initial

entry" is at location BPS+4. ‘The processor occupies the page zero

area 200-577 and additional space starting at BPS, and it may use

the space between the end of the processor and MBUS for temporary
data storage. A user partition and the port’s active file must be

used for program and data storage which is to last longer than one
time slice (see Sections 9.3 through 9.5). The disc block buffer
areas (BSA, HBA, HXA, and ABA) may also be used if certain

restrictions are observed.

fhe location of the user’s I/D buffer and data file table, as well

as other information, can be found in his PCB (Port Control Rlock)
via RUP (the Regnant User Pointer) in REX page zero. RUP is set

by the system before swap-in to point to the current user’s PCB.
Refer to a listing of the IRIS Software Definitions for more

information aoout the Port Control Blocks.

Two each of the auto-increment cells and auto-decrement cells are
available in page zero for use by processors. The auto-increment

cells are labeled AI1 and AI2, and the auto-decrement cells are

labeled ADI and AD2. These cells are not saved between time
slices unless they are copied into the user area by the.

processor’s swap-in and swap-out subroutines.

Copyright 1978 How to Write a Processor

Educational Data Systems 9—| : 19 APR 78

Figure 9.1% Processor Core Locations

; THIS IS THE FORM OF A PROCESSOR FOR "IRIS"

oT XTM | sREQUIRED FOR CMRRECT PACKING OF TEXT

eLOC INFO-400 3ALL PROCESSORS MUST START AT 200

@e 8
CELL 200 MUST CONTAIN AN ASSEMBLED VALUE.
(DO NOT START WITH A .BLK OR ANOTHER .LOC)

; USE LOCATIONS 200-377 FOR CONSTANTS, POINTERS, EITC.

3 LOCATIONS 400 THROUGH 577 MAY BE USED FOR SWAP-IN AND

$ SWAP-OUT SUBROUTINES OR FOR ANY OTHER DESIRED PURPOSE.

«LOC INFO-. ;PAGE ZERO OVERFLOW TEST

eLOC ~=—Sr BPS s;BEGINNING OF PROCESSOR STNRAGE

SWPI sPOINTER TQ SWAP=IN SUBROUTINE

SWPO sPUINTER TO SWAP-OUT SUBROUTINE

ESCR sPOINTER TO ESCAPE ROUTINE

CTLC sPGINTER [N CONTROL C ROUTINE

3 INITIAL ENTRY IS AT BPS+4. ° | | | —

~EWD sEND OF THE PROCESSOR

; ALL REMAINING SPACE UP TN MBUS MAY BE
; USED BY THE PROCESSOR AS DESIRED. a

@2e SOME SPACE SHOULD BE RESERVED IN THE PROCESSOR

; AREA FOR PATCHES DURING DEBUGGING PROCEDURES.

Processor Core Locations Copyright 1978
IY APR 78 Q—2 Educational Nata Systems

9.2 Sequence of Events

The sequence of events in a processor’s operation is as follows?

1) A # symbol is printed by SCOPE (the System Command Processor)

as a system prompt character. The user types in a command

which consists of a processor’s Filename and may include

additional elements such as the Filenames of proqram files or

text files or other information required by the processor. In

some cases, SCOPE will process one such element (see Sections

8.7 and ¥.9). In any case, SCOPE finds and selects the
desired processor and loads the initial entry address (BPS+4)

into the URA (User’s Return Address) cell of the user’s PCB
(Port Control Block).

2) At the next time slice the system loads the selected processor
into core if is not already in core, inserts a breakpoint jump

if a DSP breakpoint has been set in this processor on this
port, and does a JSR to the processor’s swap-in routine via

the pointer in location BPS. The swap-in routine must perform

any intializing required (see Section 9.4) and return to the
system, which in turn jumps to the address in URA. (The
initial entry (first time in since the command was given) will
be at BPS+4 as set up by SCOPE. Subsequent entries will

resume operation (after the JSR to "swap-in") at the point

where execution terminated in the preceding time slice.

3) The processor performs its intended functions until its time

slice is terminated for one of the following reasons?

a) Processor starts input (STINPUT)

b) Processor wants to do output and it already has an output

in progress (CALL WONA) | |

c) End of time slice (BUMPUSER due to RTL <= OQ)

d) A record locked condition is encountered in a READ or

WRITE (BUMPUSER following a CALL SIGPAUSE)

e) User presses ESC or CTRL C (see text)

f) Processor completes or aborts its task (CALL SCOPE)

g) The processor or a subroutine detects a hardware or

software error (TRAPFAULT)

h) A DSP breakpoint is encountered

Any of the first four conditions will cause the return address

to be saved in URA for re-entry at the next time slice. Any

of the last three conditions will cause this to be the last

time slice for this processor. Conditions f or g will select

SCOPE as the user’s processor. Condition h will select DSP

and cause the registers, carry bit, and a 65-word area of core

to be saved in the DSPS cells of the active file header for

print out by DSP’%s U command. See BUMPUSER on page AI-I6 for

the proper manner of determining end of time slice. :

Copyright 1978 : sequence of Fvents

Educational Data Systems 9-3 : 19 APR 78

4)

The actions of the ESCAPE and CTRL C keys depend upon the

current state of the processor as follows?

a)

b)

If the processor is in core for this user at the time ESC

or CTRL C is pressed then the only immediate action is to

terminate any output in progress and set the escape flag

(ESCF in REX page zero). The processor should

periodically check ESCFs if (ESCF) is non-zero then the

processor should clear it and take whatever action is

appropriate. If the escape flag is ignored by the

processor then re-entry for the next time slice will be at

the escape entry.

If the processor is not in core for this user at the time

then the system’s action consists of saving the URA

address in ORA (Old Return Address) and setting URA to

transfer control to the processor for the next time slice

(after the JSR to "swap-in") via the pointer in location

BPS+2 or BPS+3 for ESC or CTRL C, respectively.

After the time slice is terminated for any of the above

reasons (except a TRAPFAULT or a DSP breakpoint) the system

does a JSR to the processor’s "Swap-out" routine via the

pointer in location BPS+I. The swap-out routine must perform

any wrap up required to save information for the next time

Slice (see Section ¥.5).

Processor Events Copyright 1978

IY APR 78 Ym4 Educational Data Systems

9.3 Use of Active File

The active file is a-special file on the system disc reserved for

interim storage of a processor’s data between time slices. There

is an active file associated with each interactive port. The size

of each active file is usually confiaured to be the partition

size, including a block for its header. REX provides facilities
to read in and write out the active file’ however, the processor’s
swap-out routine must define how much is to be written out.

The processor may not need to use the active file if it has little
or no interim storage to save between swaps. If the processor has
no interim storage requirements then it merely has pointers to a
JMP 0,3 instruction in cells BPS and BPS+! (see Figure 9.2). If.
the processor has 101 (octal) or less cells of interim storage

required, it may use the FMAP cells in the active file header for
interim storage. The processor must copy the interim storage
itself, and it may have to read the active file header into HBA
and write it out if it chooses this method. See Fiaqure 9.3 for a

programming example. The active file header’s Real Pisc Address
is contained in AHA of the regnant user’s PCB.

If a processor has more than IO! (octal) words to save between |

swaps then it must use a partition and the active files’ see Figure
¥Y.4 for a programmina example.

¥.4 Oowap In Procedure

Each time a user’s time slice begins, RUP is set to point to the

user’s PCB, the selected processor is brought into core (unless it

is already in core), BBA is zeroed, and the system does a JSR to
its swap-in routine via the pointer in location BPS with zero in

register Al and (RUP) in register A2. If the active file and or

its header are used for storage between time slices then the

Swap~in routine must get it into core and perform any other

initializing required. A "load user" subroutine is provided and

may be reached by a CALL LOADUSER.instruction sequence with zero

in Al. LOADUSER selects a user partition, puts a pointer to that

partition’s entry in the partition table in RUS, puts a pinter to

the beginning of the partition in BBA, and reads the active file

header into the beqinning of the partition. If the active file’s

type (lower five bits of TYPE word) matches the processor, the

active file is also read into the partition, and LOADUSER does a

skip return. LOADUSER also restores the six DA (Decimal

Accumulator) cells and any save area specified to AFSETUP at last

sSwap-out (see Section 9.5). LOADUSER does a non-skip return if

the types don’t match. Alternatively, the swap-in routine may

read the active file header itself, may read any other file or

header into core as required, or may be simply a JMP 0,3

instruction if no initializing is required.

In some cases the swap-in routine must know whether this is the

first or a subsequent time slice. This can be determined by

comparing the value BPS+4 with the address in URA$ equality

indicates that this is the initial entry.

Copyright 1978 Active File, Swap In

Educational Data Systems Y=5 : 19 APR 78

¥.5 Swap Out Procedure

After each time slice is terminated for any of the reasons aiven

in Section 9.2 (except a fault or a breakpoint) the system will do

a JSR to the processor’s swap~out routine via the pointer in
location BPS+Il with RUP in register A2. If no wrap up is required

then location BPS+I may point to a JMP 0,3 instruction$ otherwise,

the swap-out routine must save all information necessary for the
next time slice. The swap-out routine may do a skip return (eg,
JMP 1,3) if the partition is to be released without writing it to

the active file. Typically, the swap-out routine will either:

a) Copy a temporary storage area from page zero into the FMAP
through FMAP+100 cells of the active file header and write
out the active file header (see Figure 9.3), or

b) Call AFSETUP (see below), which will copy the DA cells

from page zero to the DASA cells in the active file

header, will copy up to 101 (octal) temporary storage

cells from anywhere in core to the FMAP cells of the

active file header (optional), and will set ABLK in the
active file header to the number of active blocks needed

to swap out the active data in the user’s partition.

A non-skip return to the system from the processor’s swap-out
routine will cause the system to retain the partition (if one is
assigned) and to write out the active file if and when the
partition must be assigned to another usere A skip return causes

the partition to be released immediately without writing it to the
port’s active file.

The active file is a random file normally containina DSAF blocks,
including the header, where DSAF (Default Size of Active File) is
defined in the attributes table of the interactive port driver.

The active file header contains the Real Disc Address of each of
these blocks, and each cell in the last half of a header is
"“wired" to a particular core address relative to CORA as described

in Section 1.4. Also, any number.of these disc addresses may he
Nactive" as specified by the ABLK cell in the active file header.

The AFSETUP subroutine should be used to do the setup of the
active file header. Its calling sequence is CALL AFSETUP with

recister AO containina a pointer into the user’s partition to the

last word to be swapped out, register Al containing the hegimiing
address of an area of core of up to 101 words octal to be saved in
the active file header’s FMAP cells (or zero if. no temporary

storage cells are to be swapped), and A2 containing the size of
the temporary storage area (f#words-1). The starting address and

size indicator are saved in DASA+6 and NASA+7 of the header, or

DASA+6 is zeroed and A2 is ianored if no Save area is specified.
In any case, the Decimal Accumulator (DA) is copied to the first
six DASA cells.)

owap Out Procedure Copyright 1978

ly APR 78 9-6 Educational Data Systems

EP.

AFSETUP will set CORA to the first data address of the regnant

user’s partition (equal to ((RUS))+400) and will set the ABLK cell
in the header so that the correct number of blocks will be

transferred equal to INT[(A0)+377-—((RUS))/400]. ALLOCATE will be

called by AFSETUP if the active file is too small to hold the
portion of the partition to be swapped. If the processor is
either type O or type |, then the active file header’s TYPE word

is set equal to the processor’s type. In most other cases, the

processor’s swap-out routine must set the type word to match
itself after calling AFSETUP.

AFSETUP will do a non-skip return unless the active file is too
small and not enough additional disc blocks are available to be
allocated from the system account, in which case AFSETUP will do a
TRAPFAULT (trap #13).

Figure 9.2: Processor With No Swapping

; THIS PROCESSOR PRINTS "I AM A PROCESSOR" REPEATEDLY |

~TXTM |

CRs 215

JO33 JMP 0,3

CEXIT: CALL

SCOPE

.LOC BPS SENTRY POINTERS

JO3 sSWAP-IN (NONE) |
JO3 sSWAP-OUT (NONE)

CEXIT §ESCAPE

CEXIT $CONTROL C

AYZ8 LDA 2,CR sSTORE A RETURN CODE

OUTBYTE

QUTTEXT sSTORE THE MESSAGE

oelTXIF “TIT AM A PROCESSOR"

STOUTPUT 3START QUTPUT

CALL

WONA

JMP XYZ — s2EPEAT

»END 3; "T AM A PROCESSOR" SOURCE

Copyright 1978 No=swap Processor

Educational Data Systems Q—7 : 19 APR 78

Figure 9.3% Swanping Storaae in Active File Header

S¥PI: STA 3,SWPR sSWAP-IN SUBROUTINE

LDA 1,AHA.,2

LDA 3,DFT.,2

LDA 3,CBN+CHM1,3 sPARIITION TABLE ENTRY POINTER

LUA 2,0,3 sPOINTER TO BUS IF PARTITION ASSIGNED
3KZ ae) 31S A PARTITION ASSIGNED ?

JMP OWPT2 ; YES, GET SAVED DATA FROM PARTITION
SUB Q,0 ; NO, READ ACTIVE FILE HEADER

LDA 2,eHMBA

READBLOCK

SWPI23 LDA O,DFMAP sDISPLACEMENT TO FMAP CELLS
ADD 2,0

LDA | ,LENSV sLENGIH OF SAVE AREA - I

ADD O,|

LDA 2_eBOAV ;BEGINNING OF SAVE AREA IN CORE

CALL

MOVEWORDS sMOVE FMAP CELLS TO SAVE AREA

JidP Youd PR

SWPRe O s;RETURN ADDRESS

DFMAPsS FMAP $DISPLACEMENT TO FMAP CELLS

—BSAVs [Beginning of core area to be saved]
LEWSV: CLength of area to be saved - 1]

Is 3 O sTEMPORARY STORAGE

SHPO STA 3,SWPR sSWAP-OUT SUBROUTINE
LDA 1,AHA.,2

LDA 3,DFT.,2

LDA 3,CBN+CHM1,3

LDA 2,0,3

STA 3,TS

SKZ 3,3 SIS A PARTITION ASSIGNED ?

JMP = SWPO2 ; YES, USE IT

SUB 0,0 ; NU, READ ACTIVE FILE HEADER

LDA 2,.HBA

READBLOCK

SWPO2: LDA O,DFMAP sMOVE SAVE AREA TN FMAP CELLS

ADD 0,2

LDA 0,.BSAV

LDA 1,LENSV

ADD O,I|

CALL

MOVEWORDS

LDA 3,TS

SKZ 3,3 s1S A PARTITION ASSIGNED ?

JMP @SWPR ; YES, DONE

SUB 0,0 ; NO, MUST WRITE ACTIVE FILE HEADER

LDA 2,RUP

LDA 1,AlA.,2

LDA 2,.HBA

WRITBLOCK

JMP @SWPR

Temp Storage in Header Copyright 1978
IY APR 78 9-8 Educational Data Systems

Figure 9.43

INFO-400

educational Data Systems

Swapping With Active File

sTEMPORARY STORAGE
~$STACK POINTER

sSET UP AFTER SWAP-IN

s;LOAD USER’S ACTIVE FILE

; FILE TYPES DON’T MATCH

sRETURN TO SYSTEM

sINITIALIZE (FIRST SWAP-IN)

sINITIALIZE STACK POINTER

sCLEAR COST OF ACTIVE FILE

sALSO CLEAR THE NAME

sSET TYPE TO MATCH PROCESSOR

sNRITE OUT NEW HEADER

RETURN TO SYSTEM |

sWRAP UP FOR SWAP<0UT

3SIZE OF TEMP STORAGE - |

sPOINTER TON TEMP STORAGE AREA

sLAST WORD IN PARTITION

«LOC

PTYPES | s$PROCESSOR TYPE

TS ~BLK 20

OP 3 O

OWPT8 OTA 3 ,ohPN- 1

CALL

LOADUSER

JMP SWPT |

JMP Q@SWPN=1

SWPI1l: SUB 0,0

OTA QO,IS

OTA O,TS+1

OTA O,1S5+4

OTA 0, T5+6

OTA O,ifs5+12

LDA 2 ,8@RUS

LDA 3,C400

ADD 2,3

OTA 3,9P

OTA 0 ,COST, 2

OTA O,NAME,2

LDA 3,PLYPE

STA 3,TYPE,2

LDA 3,RUP

LDA | ,AHA., 3

WRITBLOCK

JMP QSWPO-

TS

17

0

SWPOs STA 3,-7l

LDA 2 ,oWPN—2

LDA 1 oWwPN-3

LDA O,SP

CALL

AFSETUP

JMP QSWPN=1

Copyright 1978 Swapping Active File

: 19 APR 78

Y¥.6 Use of System subroutines

All system subroutines listed in Appendix | may be used by a

processor. The most commonly used subroutines are also described

elsewhere in this manual. If the active file is used, or if the
processor uses the disc block buffer areas for other purposes,

then the programmer should be especially watchful for possible

conflicts in the use of these areas. Also, it is illegal to use

HBA for anything other than a file header block.

Y.7/ Input and Output

All I/O is via a one-line buffer for each port. Pointers in each
port’s PCB determine the location of the buffer and the next

character position. It is illegal for a processor to examine or
modify the I/O pointers. System subroutines are provided for all
required I/O functions as follows:

Start Input is called by a STINPUT instruction. The user is
bumped and input is enabled. The processor will be swapped in and
control returned to the next instruction with (RUP) in A2 after
the user presses a RETURN to terminate input. The processor may

change the ENM character from RETURN to any desired code by

putting that code in the lower half of the RDE cell in the PCB.

STINPUT may be issued even when output is active.

Access Input Byte is then called by an INBYTE instruction to ies,

access each byte of input. The byte is returned in A2 with the _
top bit of the ASCII code set to "one" and zeroes in the top half

of the register. Space codes (octal 240) are ignored. The EOM

code (usually a RETURN, octal 215) indicates end of input.

Access Input String byte which is called by an INSTBYTE

instruction, is the same as INBYTE except that no characters are
ignored. Every character typed by the user will be given to the

orocessor. If AO is zero when INSTBYTE is called then the byte

pointer is not incremented, and the same byte will be again
accessed by the next use of INBYTE or INSTBYTE.

Wait for Output Not Active must be called by a CALL WONA
instruction sequence before the first use of any of the following

output routines unless it is already known that output is not

active (eg, on initial entry or following a Start Input). WONA
will bump the user if an output is already in progress. This

allows computation to continue during an output, but prevents a

second output from overlaying one that is in prooress. The

processor will be swapped in and control returned to the next

instruction with (RUP) in A2 after the output is completed.

Use of Subroutines Copyright 1978:

19 APR 7/& Y=-10 Educational Data Systems

Output Byte is called by an OUTBYTE instuction to store the byte

in the lower half of register A2 into the user’s output buffer.
The byte is also returned in AO with the top half of the word

zeroed. If the buffer is filled then OUTBYTE overlays the last
byte in the buffer rather than incrementing the pointer beyond the

end of the output buffer.

Text Message Output is called by an OUTTEXT instruction followed
by a .TXTF "text" pseudo-op. Copies any given "text" string to

the user’s output buffer and returns to the next instruction
following the text. Neither OQUTBYTE nor OUTTEXT will increment

the Qutput Byte Pointer if the byte being stored is a zero.

Canned Message Qutput outputs any available "canned" messace
whose number is given in register Al. Appendix 2 of this manual

gives the calling sequence for MESSAGE, and lists the currently

available messages.

Convert Integer to ASCII is called by a CALL CIA instruction

sequence with an integer to be output in Al. Reqister AO must
contain the radix to which it is to be converted, and A2 must

contain the minimum number of digit positions desired. Leading

zeroes are suppressed, and the result is padded with leadino

spaces for a total of (A2) characters. Set (A2)=0 for no leadina

spaces. Letters will be used as digits if the radix exceeds ten3

ie, A for ten, B for eleven, etc.

start Output is called by a STOUTPUT instruction after using the

above routines in any combination to store ASCII codes in the

user’s output buffer. The strina of ASCII codes must be

terminated by a zero byte by clearing A2 and executina an OUTBYTE

before starting output (this is not necessary if the last output

was generated by an OUTTEXT or a CALL MESSAGE). |

All of the above routines destroy the contents of all reoisters

except as noted in the subroutine description.

Copyright 1978 Input/Nutput

Educational Data Systems Y=1] . 19 APR 78

Y.8 Data File Access

Data file transfers are handled by the processor via several

system subroutines. These subroutines provide facilities for

opening existing files, creating new files, and deleting files. A

processor may access and update data files via system calls or may

access data directly by use of the read block and write block

suoroutines.

Nearly all file access is done via channels. Channels allow the

system to guarantee that a file will not be deleted by one user

while being accessed by another. Channel I/N also allows devices

to appear as data files to the processor, thereby requiring no

changes to the application software when a device is added to the

system.

A file may be opened on a channel in any of four ways. CHANNEL

OPEN will open a Filename on a channel passed to it. If the file

is not the regnant user’s and there is a charge for it, the

regnant user will be charged. If the file is write protected,

this information is retained in core and the user will receive an

error if he attempts to write to the file. The LDAT cells will be

set equal to the current value in the system clock, and the NTAC

cell will be incremented. CHANNEL OPENREFERENCE will open the

file for reference only: the regnant user will not be charaed for

its use, the LDAT and NTAC cells will not be changed, and the

channel will be marked as write protected. CHANNEL OPENUPDATE

will do the same as OPEN except it will error if the file is write

protected. CHANNEL OPENLONCK will do the same as OPEN except that

all other users will be locked out of the file, but an error will

be indicated if another user already has the file open.

A new file is created via a CHANNEL BUILD system call. The file

Filename is built on the requested channel. Errors are provided

for illegal Filename, out of disc space, etc. If the Filename
exists, BUILD will mark the old file as veing replaced only if the

new name is of the form "Filename!" and both the types and account

numbers are the same; otherwise, an existing file will not be

replaced. The new file will be marked as beino built until it Is

CLOSEd. Any new file being created must be closed by the

orocessor by issuing a CHANNEL CLOSE instruction before exitina to.

the system. If the channel is CLEARed before it is CLOSEd then

the file being built will be lost, and if the new file was

replacing an old file then the old file will be restored to normal

status. Any particular channel may be cleared (its contents

aborted) by a CHANNEL CLEAR call. All channels may be cleared hy

a CALL ALLCLEAR system command. ALLCLEAR is seldom used by a

processor since the system clears all channels after the processor

exits.

rile Access Copyright 1978

IY APR 78 Q=-12 Educational Data Systems

If the processor wishes to delete a file, it issues a CALL DELETE

system call. DELETE will check. to see if the file is open by any

user. If it is not open, DELETE will credit the owner’s account
and release the disc blocks to the system. If the file is in use,

it will be marked to be deleted and will be deleted when the last

user has CLOSEd or CLEARed the channel where it is open.

Data may be transferred to a file in either of two ways. A highly
structured means of transferring data to and from files is CHANNEL
READITEM and WRITEITEM. They will read (write) from (to) a

particular file location to (from) a supplied core address. If a
device has been opened on the channel, the system will

automatically cause the data to be tranferred to the device so
that the processor does not need to recognize devices as being
different from files.

For faster access, a processor might determine the data block of a
file directly from the file’s header and then use RBLK or WBLK to

transfer 256 (decimal) words from or to the file.

A processor may use the system calls FOFI and FOFC (Find Open File

Initialize and Find Open File Continue) to determine if a given

file is open by any user. A processor may determine whether there

is any file open on a given Logical Unit by supplying zero for the

file address when calling FOFI.

Y.Y Processor Type

Each file’s header has a TYPE word which is descrihed in Sections

1.4 and 8.7. The file type of a processor, however, has special

significance not discussed in that section.

Protection - All processors should be write protected to prevent

inadvertent replacement or deletion. Read protect a processor

only if it is for private use. Copy protection will prevent

QUERYing the processor’s attributes.

File type -— The file type is used to identify a program file with

its related processor. Therefore, processors with incompatible

program files must have different file types. The active file
will not be loaded by LUSR if its type does not match the

processor. ihe file type should be zero only for a permanent

system processor. NOtherwise, the type should he one if the active
file is not used or if it is used only for temporary storage and

is not to be saved as a program file.

Control bits - Bits 6 through 8 of the TYPE word are control bits

that are examined by SCOPE as described in Section 8.7 when a new

processor is selected. Bit 8 must be set to indicate that the

file is a runnable processors’ files not structured as a processor:

must have zero in bit 8.

Copyright 1978 Processor Types |
Educational Data Systems Y=-13 : 19 APR 78

¥.10 Debuggina Procedures

If a new processor was created by use of ASSEMBLE it will he

necessary to change it into a runnable processor as described in

section 3./.

psp (the Disc Service Processor) is a powerful tool for use in

debugging a processor. The breakpoint and core snapshot are

especially useful for this purpose. See Section 3.3.

the recommended procedure is to first set a breakpoint early in :

the swap-in subroutine, and then issue a system command to use the

processor (either exit to the system with a CTRL C and issue the

command, or use the C instruction in NSP to issue the command).

Note that encountering the breakpoint causes the normal JSR to the

processor’s swap-out subroutine to be inhibited, and control is

returned to DoP.

Set breakpoints successively further along in the swap-in routine,

checking the contents of the registers at siqnificant points in

the code, until the swap-in procedure is fully debugged. Then use

the same procedure in the body of the processor, starting at

location BPS+4. Use conditional breakpoints for checking out

loops and special conditions. Note that the breakpoint is cleared

and the processor must start over from scratch each time a

breakpoint is encountered.

= a

At some point early in the check out it will be necessary to dehuq aos,

the swap~out subroutine. This must be done before a point is —
reached in the main code where a swap-out micht occur. A forced _

swap-out for this purpose may be used by temporarily enterina a

CALL SCUPE in the main body of the code.

In some cases it is desirable to temporarily enter a TRAPFAULT

instruction in the code in case the processor takes an unexpected
branch. Such a case may occur following a call to any subroutine

that has two or more possible returns. |

After the processor is fully debunged, its protection may be

changed to 33 or 22 to allow it to be used by other accounts.

Debuaqing a Processor Copyright 1978

IY APR 7/8 Y=14 Educational Data Systems

10. . DISC-RESIDENT SUBROUTINES

The disc-resident subroutines are assembled in three groups to

produce a set of three object tapes which are loaded onto the disc

as the file DISCSUBS. To be executed, the subroutine must be

brought into a 256-word core block called the Subroutine Swap Area

(SSA). Provision is also made for a larger (extended) subroutine

to be brought into HXA and SSA as a 512 word block.

The CALL routine, which is core-resident, performs the task of

bringing the proper block(s) of DISCSUBS into core and giving

control to the desired subroutine. Two lines of assembly code are

required to call a disc-resident subroutine:

CALL or CHA NNEL

Subroutine Subroutine

where "Subroutine" is the name of a routine in the DISCSUBS file

and has been equated to that subroutine’s number by the software

Definitions tape. The word CALL or CHANNEL is actually a JSR via

a page zero pointer to a core-resident calling routine. The word

CHANNEL is used only when calling a channel-oriented routine, as

CHANNEL replaces the Logical Unit number given in register AO with

a pointer: to the selected channel and checks the selected channel

before giving control to the subroutine.

One DISCSUB may call another, and subroutines may be nested up to

six levels deep in this manner. When one DISCSUB calls another,

SSA is written on the disc to save any temporary storage cells in
the first subroutine. In the case of an extended subroutine, the

first block is brought into HXA and the second block is broucht
into SSA. Caution must be exercised when nesting extended
subroutines since only SSA is saved on the disc when nesting
occurs. For the same reason, an extended subroutine should not

call, nor cause nesting to, any subroutine which uses HXA.
However, if the first block of an extended subroutine will not be

used later, then a call may be made from its second block to

another extended subroutine or to a subroutine that uses HXA.

Disc-resident subroutines are relatively slow since a disc access

is required to qet the subroutine into core. A nested DISCSUB
call requires three disc accesses to (1) write the calling

subroutine on the disc, (2) read the called subroutine into core,

and (3) read the calling subroutine back into core when the called
subroutine is finished. It is possible to eliminate some or all
of these disc accesses and thereby enhance the system throughput

by specifying that certain DISCSUBS routines are to become

core-resident as described in Section 2.9. |

Copyright 1978 | Disc=Resident Subroutings
Educational Data Systems 10-1 : 19 APR T®

10.1 How to firite a DISCSUB

Several restrictions are imposed upon a disc-resident subroutine
due to the conditions under which it must operate:

1) It must fit within a sinale disc block (256 words) or, if
extended, it may occupy two disc blocks (up to 512 words).

2) It must be intrinsically relocatable’ ie, all storaqe

reference instructions must use either relative addressing

or page zero system pointers, or pointers must be

generated locally as in the example in Section 10.2.

3) It must be self-initializing: ie, any cell which is
changed by the routine must not be assumed to initially

contain the value which was assembled into the cell.

Actually, since linkage information is required at the beginning

of each block (see Section 10.2), a maximum of 253 words may be

used by a subroutine, or 509 words in an extended subroutine.

Most system subroutines may be used (access and store byte

routines, STOUTPUT, NUTTEXT, READBLOCK, WRITBLOCK, etc.), but

routines such as KUMPUSER, WONA, and STINPUT, which will or miqht
bump the -user, may not be called because discsubs are not

re-entrant. |

Arauments may be passed both to and from the subroutine in

registers AO, Al, A2, and the carry bit. A3 may be used to pass

information from the subroutine back to the caller. Control is
returned to the caller by a JMP 0,3 or a JMP @.NRET instruction

for a non-skip return, or by a JMP 1,3 or a JMP @.SRET instruction

for a skip return. Most DISCSUBS use a non-skip return under

error conditions and a skip return when the task is successfully

completed. Provision is also made for a status value to be put

into register A3 on a non-skip return by the two-word instruction

JSP @.NRET

n*eK YE NOP

where n is the desired status value (not exceedina 177 octal) to

be returned in A3. Obviously, register A3 cannot pass any

information other than the status value back to the caller in this

case, hut the other reqisters and carrv may still be used. NOP

has been defined such that the exnression n*K!NOP will also be 9

no~op if executed as an instruction’ therefore, it is acceptable

for a test instruction just ahead of the JSR 9.NRET to skip over

it and "execute" the naKINOP.

The only legal exit from a DISCSUB other than a return to the

caller is a TRAPFAULT instruction upon discovery of a hardware or

software fault. This will cause all nested subroutines as well as

the core copy of the calling processor (if it is a swapping

processor) to be aborted.

How to Write a DISCSUB Capyriqht 1978

IS APR 7/8 |} O=-2 Educational Data Systems

10.2 How to Acdld a DISCSUB to the System

Ekach block of DISCSUBS must begin at a zero modulo 400 (octal)

address. The first thing in each block is a linkage table for all

routines in the block. There are two words in the linkage table

for each routine, and these pairs of wards must be in the same

sequence as the routines themselves. The first of each pair:-of

words is the name of the routine this name, which must he defined

in the software Definitions, will also be used with a CALL or

CHANNEL instruction to call the routine. The second word is the

displacement from the beginning of the block to the entry point of

the routine. The first word of the linkage table is labeled MSBn,

where n is the block number in decimal. The second word of each

pair in the linkage table may, therefore, be coded as LABEL-DSBn,

where LABEL is the label on the routine’s entry point. This label

should be similar to the name of the routine, but it should end

with an X. For example, the entry point of the TRAPFAULT

subroutine is labeled FALTX. The entry point must be the very

first word of the subroutine.

The new subroutine must be assigned a number, and its name is

equated to this number in the Software Definitions tape. The

number must be less than the definition for NSUR in the CONFIG

file. If necessary, increase NSUB to be greater than the last

DISCSUB number (see Section 2.4). Discsub numbers 129 through 127

octal have been set aside for customers to assign to subroutines

for their own use only. If a subroutine is to be used on other

systems to be supported by Ecucational Data Systems, please call

for a number assionment.

Higher order bits of the subroutine’s assianed number are used as

flags indicating various attributes of the routine as follows:

bit 15 subroutine is in REX (not in DISCSUBS)

bit 14 subroutine is extended (occupies two blocks)

bit Is included with preceeding routine if core-resident

bit Il alternate version for core-residency only

bit 10 (not used) .

bit 9 (not used)

bits 8-0 subroutine identification number (777 maxinum)

Note: bit I5 is the most significant bit of the word.

If a subroutine is extended, it must be the last one in the block

in which it beains, and the extension must be in the next block of

DISCSUBS. There is no linkace table in the extension block, thus

allowing an extended subroutine to be up to 509 words lona. There

may be no other subroutines in the extension block, but an

extended subroutine may be preceeded by small subroutines in the

first block.

The linkage table must he terminated by a neaqated displacement to

the last word occupied or used by the last routine in the block.

This is used by SIR to determine the size of the last subroutine

if making it core-resident.

Copyright 1978 Add DISCSUP to System

Educational Data Systems 1Q-3 | ID APR 78

It is also possible to replace or adda single block of DISCSUBS
without replacing the entire file. Make up a source tape of the

new block or blocks, and assemble it without the rest of the
DIoCSUBS source tapes. Put the object file on the disc

temporarily (either ASSEMBLE it on the disc or use PLOAD or CYPY
to load it under a different name such as [I)SUB). Use the G and i
conmands in DSP to copy this new version into the DISCSURS file,

then do an IPL. Any block of DISCSUBS containing 177400 in word
zero is a spare block into which the new subroutine may be

loaded. If new blocks are being added, use DSP’%s "A" command to

first append the required blocks to DISCSUBS, but be sure that an
extended subroutine occupies two logically sequential disc

addresses. See Section 4.3 also. When finished copying blocks,
kill the temporary file, or leave it on the cisc for backup. If
increasing NSUB without a complete system generation, then NSUB in

the CONFIG file must be increased.

WARWING! Do an IPL immediately after adding or replacing any

DISCSUBS block to be sure that the new subroutines are properly
linked to the systen.

A completed DISCSUBS block would look something like this:

eLOC 12400) $"DISCSUBS" BLOCK #21

DSB213 SINH \
SINHX-NSB2 | \

— COSH [> Linkage table

COSHX=DSB2 | /

DSB21-DS2 15 /

SINHXs JSR OTNH I \

102663 \

015252) This technique is

13566]) recommended to qet
002447) a table pointer,

.) yet maintain

° y relocatability.

SIWHI: STA 3,SADDR /

SADDRs O

CUOSHX: JSR COSHI sHYPERBOLIC COSINE FUNCTION

DS2IE =. SEND OF “DISCSUBS" BLOCK #21

. LOC DSB21+#400={. $BLOCK OVERFLOW TEST

Typical DISCSUBS Block Copyright 1978
IS APR 78 10-4 Educational Data Systems

10.3 How to Debug a DISCSUB

DSP may be used to examine and modify subroutines in the NDISCSUBS

file the same as for a processor. Breakpoints may be set in the

calling processor just ahead of or just after the suboutine call,

but breakpoints cannot be set in the DISCSUB itself. Two

alternatives are possible, however; if there are no other users on

the system, then halts may be inserted in the routine, or the
routine may be made core-resident and DBUG used to debug it. If
the system is in use, insert a TRAPFAULT instruction in the

routine where a breakpoint would be desired’ although not as
convenient, this will give the effect of a breakpoint except that

the TRAPFAULT will destroy the contents of register A3, and it

will affect anyone who uses the subroutine, whereas a DSP
breakpoint affects only the user who set it. Other users should
not be allowed to call a new routine, however, before it has been
fully checked out in all possible modes, and any instructions that
were modified for debugging have been restored.

The easiest way to debug a DISCSUB is to make it core-resident
(see Section 2.9) and use DBUG while there are no other users on

the system. Do an IPL to be sure of a fresh copy of DBUC in core,

then enter a HALT at the DISCSUB/’s entry point in core by giving
DSP the following instructions: | |

F DISCSUBS

entry’ 36 307/

where "entry" is the octal address of the subroutine’s entry point

as shown on the listing, and the apostrophy indicates that the

entry is to be made in the core-resident copy of the subroutine,

wherever it may be. Now run a small BASIC program that calls the

DISCSUB. The computer will halt when the DISCSUB is called.

Wirite down the address one less than that shown on the front panel

lights’ this is the actual location in core of the DISCSUB’s entry

point. Now ReSET and START at location 25000 to enter DBUG, and

type the instruction Fllights-1],lentry] and press the RETURN

keye For example, if the entry address on the listing was 26403

and the computer halted with 75306 in the address liahts, then the

command to DBUG would be F7/5305,26403. DBUG will print the

difference (46702) to indicate that this offset will he used

henceforth for all addresses. Now restore the first instruction

of the subroutine by typing [fentry]:Cinstruction], and type an A

command to get a print out of the contents of the reoisters at the

time the subroutine was entered. Serious debugging may now heain

by settinc breakpoints further along.in the subroutine and using

the J command to re-enter the subroutine after each breakpoint has

been encountered. The entry address must be given with the first

J command because there was no previous breakpoint, but a simple J

command without an address may be used thereafter if it is desired

to continue through the code to the next breakpoint. An F command

with no argument may be used to toggle between real core addresses

and virtual (subroutine listing) addresses. See Section 3.2 for

detailed information on using DBUG.

Copyright 1976 Debug a DISCSUB>

Educational Data Systems 10-5 : 19 APR 78

Cee

10.4) ~«6tiow to krite a DISCSUB for Business BASIC

rachine code subroutines written to he used by the CALL statement

in Business BASIC must accept and return information in a specific

formate dhree paraineeters are passed to the subroutine in the
recisters as follows?

(AO) = Pointer to first available core location
(Al) = Pointer to last available core location

(A2) = Pointer to arqument pointer list

Recisters AO and Al contain the first and last addresses of the

currently unused cells in the BASIC user’s storace area. This
space is available for use as temporary storage hy the subroutine.

At the time control is transferred to the subroutine, BASIC has

analyzed the arauments supplied in the CALL statement and has
pleced pointers to these BASIC variables in the argument pointer

list. Reqister A? contains the address of the first cell of this

list which can hold a maximum of twelve argument pointers. Fach
argument may be either a decimal number or a string. In the case

of a decimal number, the pointer will point to the first of the

words where that number is stored, and the next word after the

pointer will contain the number type (1, 2, 3, or 4 words). The

number may be one element of an array, but no provision is made

Tor usina an entire arrav.e In the case of a string, the pointer
will point to the word containing the first two bytes of the

string, and the next word after the pointer will be the string
Gimension with a one in bit 15 (the most significant bit).

CAUTIUN! These are absolute, not relative, word addresses.

tiowever, in a syste; with more than 32K words of core, a word

address requires the full Il6-bit word, so it can not be simply
shifted left for use as a byte address. Instead, convert to a

relative byte address hy subtractina the partition address and

shifting lefts ea, the sequence

LDA 0,BBA

SUBOL 0,

will convert an absolute word address in Al to a relative byte

acdress.

Debuy 3 WIOCoUuL a Copyriqht 1% 78

ly Aki (5 | | 1O-6 Educational Data syvstens

ow ww» @ CN edi di en ee ee ee ee ee ee ee ee ee oe ee

For example, stippose 3 Business BASIC program contains the

statement:

120 CALL b,kR,BS,NC 1,3]

The arguments will be passed to subroutine number 5 as follows:

Register A2

NC 1,3]

~----- ------------— X22 ! Value of !
address XI ! variable R

Argument pointer list | Variable R$ |

kin D aagress 32 uae byte TP byte 2

| 04 number type | i byte 3 1 byte 4 |

| address x3. Iete. of |

i 1 dimension |

Vases a array 1
OP number type ae

X43 : Value of

the remainder of the argument pointer list will be filled with

pointers to a dummy variable which is iqnored be BASIC when the

subroutine returns.

the subroutine must do a skip return if its operation is

successful. A non-skip return will cause Business BASIC to print

an error message.

To make the subroutine available to be CALLed by a BASIC procram,

it must be included in the DISCSURS file. Refer to Sections 10.1

and 10.2 for special considerations in writing a disc-resicdent

subroutine and how to include a new routine in the DISCSURS file.

Once the new routine has been included as a DISCSUB, an entry must

be inserted in the call table (CALLT) in the RUN processor. there

is a pointer to CALLT in location 200 (octal) in RUN. Use DSP to

look through CALLI for the first minus one (177777 octal), and

replace it with a word containing the desired RASIC subroutine

nunber (not exceeding |I77 octal or 127 decimal) in the lower

(right hand) byte and the actual DISCSUB number in the higher

(left hand) byte. Also, an extended discsub must be flagged by a

one in bit / of the word (add octal 200). Be sure the next cell

in CALL! is I|I//777 to terminate the table. CALLT may be extended

through location 577 octal in RUN.

Copyrignt 1978 NISCSUB for RASIC

educational Data systems 10-7 19 APR 78

ll. ADDING DEVICES YO THE SYSTEM

An input/output or mass storage device may be added to IRIS in any

of three different ways depending on the characteristics of the

device and its intended use. In general, a device may be’

1) An interactive port through which a user communicates with

processors and runs application programs, or

2) A peripheral device which may be MPENed by any caller
granted access’ the caller then does input or output by

doing a READ or WRITE to the device as if it were a data

file, or

3) A Logical Unit having its own INDEX, thus allowing any

user aranted access to READ or WRITE to files on the

device, and allowing any user given an account in the
Logical Unit’s ACCOUNTS file to BUILD files on the device.

User oriented devices such as typewriters, teleprinters, and CRT

terminals are desirable as interactive ports, although a
combination such as a line printer and card reader could also be

used in this manner. Devices such as line printers, card readers,

paper tape units, cassette tape drives, graph plotters, data
acquisition devices, and communications channels are usually
interfaced as peripheral devices. Disc and drum memories are

usually interfaced as Logical Units, but a cartridge disc
(especially a floppy disc) could be interfaced as a peripheral

device if the cartridge is to be used to transfer data between
IRIS and another computer system. A high performance maanetic

tape drive is usually interfaced as a peripheral device, but if

such a unit has the ability to rewrite a record without destroying
the following record it could be set up as a Logical Unit. A

multiplexer driver is usually written such that some of its

channels are interactive ports and others are used to interface
peripheral devices as determined by its attributes table. [ach

interactive port has its own active file on the system disc for

saving the current state of a job between time slices, but
non-interactive ports do not have active files.

ll.l Interactive and Peripheral Device Drivers

Each device driver is written as an independent module and loaded

onto Logical Unit zero as a separate file by use of ASSEMBLE,

COPY, or PLOAD. The Filename must begin with a dollar sign and

should indicate the device types: eq, S$LPT for a line printer, $CRD
for a card reader, etc. <Any dollar sian file must start at

location BPS with pointers to its interrupt handler and attributes

taple, plus three other nointers dependent on its type. The five

pointers must be followed immediately by the entry to the driver’s

initializing routine. Also, each file ends with an attributes

taple, a linkaoe pointer table, and a port definition table.

Copyright ly 7/8 | Adding Devices to Svstem

Phducational Lata oystens ll—1 1D APR 73

If the driver does not have an interrupt handler, then the INTH

pointer must be -|l. However, if it does have an interrupt

handler, then its entry point must be immediately preceeded by a

jump to the power fail restart subroutine or by a JMP 0,3

instruction if no special action is required for a power fail

restart. This jump instruction must be immediately preceeded by a

mask word containing a “one" bit to inhibit further interrupts

from this device during execution of the handler since interrupts

are enabled during this time. The mask word may also contain

additional "one" bits as desired to also inhibit interrupts from

lower priority devices. The interrupt handler returns control to

the system as soon as possible with a JMP 0,3 instruction, or with

a JMP @.INTR instruction if register A3 has been chanaed.

The purpose of the power fail restart subroutine is to re-initiate

operation of the device following a power failure, and the restart

should be done with minimal loss of data (with no data loss if
possible).

When scanning the INDEX during an IPL, SIR sees the dollar sign

Filename, brings the driver into core, and links it into the

system as indicated by these pointers and tables. There are two

categories of files given Filenames starting with a dollar sign.

they ares’

1) Peripheral drivers (file type 36 octal plus whatever

protection is desired against use of the device). The

driver has FINIS, WRITE, and READ subroutine pointers

following the attributes table pointer (at BPS+I) or a -l

in place of the pointer if a subroutine is not included.

This category includes only drivers for devices that are

to be MPENed on a data channel and used for data input

and/or output, such as a line printer, card reader, paper

tape equipment, etc.

2) System subroutines and drivers (file type 77001). The

WRITE subroutine and pointer are replaced by a SENN

CHARACTER subroutine and pointer’ SIR places an absolute

pointer to this subroutine in the SND cell of each PCB.

The READ pointer is not used, and the FINIS pointer is

replaced by a pointer to the first word of the driver

which is to be core-resident. This category includes:

a) Interactive device drivers (ea, STIY),

b) Multiplexer drivers (eq, SMMUX, SBBMX),

c) System subroutines (eg, $DEC, $TERMS), and

d) System device drivers (ea, SDAU, S$RIC).

CAUTION! The driver must be intrinsically relocatable (position

independent) since SIR may put it anywhere in core. There must he

no absolute pointers or references to absolute locations in the

driver other than the five entry pointers and the linkage pointer

table.

Device Drivers Copyright 1978

IY APR 78 1-2 Educational Data Systems

The attributes table, which is at the end of the driver, consists

of three words as follows:

OQ) This cell usually contains a zero. When broucht into

core, SIR puts a pointer to the first PCB for this driver

(if any are assigned) into this cell. However, if the

hardware requires a specific first PCB address, then that

location rather than a zero should be put at ATRIB, and

SIR will attempt to allocate core to accomodate this

requirement.

1) This word would have a single "one" bit if desired to

enable interrupts from the device, and that bit of the

system’s initial mask word will be zeroed by SIR. This

word may be zero if no interrupts are to be enabled, but

it may not have more than a single one bit.

2) If the driver has an interrupt handler then this word must

contain the device address with which the device responds

to an INIA instruction. SIR will generate an interrupt

vector to the driver’s INTH routine. A zero in this cell

means no interrupt vector is to be generated.

The attributes table is followed by a linkage pointer table and a

port. definition table. The linkage pointer table, which starts at

ATRIB+3, consists of two words per entry as follows:

OQ) Absolute core location for pointer (usually in page zero)
1) Assembled (virtual) location to point to in the file

the pointer table is terminated by a -Il, which may be at ATRIB+3
if no pointers are to be generated, and this -! is immediately

followed by the port definition table which consists of eight
words per entry as follows:

QO) Number of ports with the following characteristics

1) PCW ~ Port Control Word (see next page)

2) Buffer size (number of bytes for biggest I[/))
3) (RDE -— Return delay and EOM code or terminal type code
4) O (this cell reserved for future use)

) O (this cell reserved for future use)

6) Size of active file (number of blocks)

7) QO (this cell reserved for future use)

When one word holds two parameters, the first parameter is in the

top byte. The list of ports must also be terminated by a -I$ the

table may be empty, but the -I terminator is required. A PCB is
assigned for each port in this list; alternatively, the driver may

supply its own I/O buffer rather than supplying a list of ports

here. Wo active files or data file tables should be assigned for

peripheral devices (ie, size of active file should be zero).

CAUTION! The attributes and these two tables must be entirely
within the last block of the file. See the symbols BLKI and BLK?2

in Figure II.l! for a test to ensure that this is the case.

Copyright 1978 Device Drivers

Educational Data Systems 11-3 | : ID APR 78

The Port Control Word (PCW) in the Port Definition Table (PNT) and

in the Port Control block (PCB) controls various characteristics

of the port such as baud rate, modem control, parity checking,
etc., provided that the hardware allows these parameters to be

controlled by software. PCW should be zero for any device which

cannot control any of these characteristics. The format of the

Port Control tiord is as follows:

bit* meaning

15. =O

14 Port is on an EDSI multiplexer

13 O

12. Initial device control output (Il = hiah, O = low)

11 Normal device ready status (I = high, O = low)
lO Port is a phantom port

9. Auto log-off is enabled

8 Auto frequency scan is enabled

7 Inhibit parity check & generation

6 ==> one stop bit, | ==> two stop bits

5 \ Character lenath?:

4 / 3 = 8 bits, 2 = 7 bits, | = 6 bits, 0 = 5 bits

3. parity (if not inhibited): O=odd, l=even

2 \ Baud rates O = 110, 1 = 150, 2 = 300,

|) 3 = 600, 4 = 1200, 5 = 2400,

O / 6 = 4800, 7 = 9600.

* Bit 15 is the most siqnificant bit.

For easy reference, some of the most commonly used Port Control
words are listed below’

For CRIT terminals:

40077 = 8-bit character with even parity at 9600 baud
40067 = 8-bit character with odd parity at 9600 baud
40057 = 7-bit character with even parity at 9600 baud

40047 = 7-bit character with odd parity at 9600 baud

For teletype:

40360

40 150

8—-bit char., no parity, 2 stop bits, I!10 baud

7-bit char., even parity, 2 stop bits, 110 baud

For riodems?:

9bO054 7-bit character, even parity, | stop bit, 300 baud

with modem control (Data Terminal Ready = hich,

Auto Log-Off and Auto Frequency Scan enabled)

65452 = 7-bit character, even parity, | stop bit, 1200

baud, Data Terminal Ready, Auto Loq-Nff, but no

Auto Frequency scan

For Line Printers:

44277 = 8=<bit character, no parity, 9600 baud, printer

"ready" status (on pin 20 on mux connector) hich

40277 same as 44277 but "ready" status low

PC Format Copyriaht 1978

ly APR 7@ 11-4 Educational Data systems

~en wp we we mew eM eo we ee le ele el elU CB lel ell wel el elle ee Ce elle elle ele elle ee ele elm le ele eller Celle elle ew lUm OO mC el eel EC EO lee eel lel elle ele ewe eee et lel tlle eee ee le eet lee ewe lL COO UC Alle elUe Ce Ul TC Ole elle elle elle eee
OES

11.2 How to Write a Peripheral Device Driver

Figure I1.1 shows the general form of a peripheral driver file.

Everything from the pointer to ATRIB (location BPS+I) through the
cell labeled ATRIB, inclusive, is brought into core by SIR, and
the four pointers (ATRIB, CLOSE, WRITE, and READ) are modified to

point to the actual resulting core locations. The entry to the

initializing subroutine is immediately following the pointer to
the READ subroutine, and the location of the INIT entry is written
into the STAD cell of the file’s header for use by OPEN and to

allow the programmer to locate the driver in core for debuaginag.

The system will do a JSR to the INIT (initializing) subroutine

with the channel address in A2 when a caller OPENs the device, and
it will JSR to the CLOSE subroutine (if supplied) when the channel
is CLUSEd or CLEARed. If either of these routines is very long

then it may be written as a DISCSUB which is called by a short

core-resident routine in order to conserve core space. The INIT

initialization is not required. The INIT routine may do a
non-skip return with a status value in register A3 (see Appendix

2, page 4) if the device cannot be opened because it is off line,
etc.’ a skip return indicates that the device has been

successfully opened.

The READ and WRITE routines must look the same to the system as
the READ ITEM and WRITE ITEM system subroutines (see Catagory #3

in Appendix 1)3 these routines’ must skip return if the operation

is successful, or non-skip return with status in register A3 (see
Appendix 2, paae 4) if any error is detected. If a device does

not have input capabilities then there must he a -1 in place of

the READ entry pointer, if there are no output capabilities then

there must be a -|l in place of the WRITE entry pointer, and if

there is no wrap-up routine then there must be a -I in place of

the CLOSE pointer.

Interrupts are enabled when any driver subroutine (READ, WRITE,

INIT, or CLOSE) is invoked, and should remain enabled when the

Griver returns control to the system. The driver may disable

interrupts for brief periods if necessary. The driver’s interrunt

handler may not call any non-reentrant. subroutine nor may it do a

LRAPFAULT.

If a port control block is not needed then the -1! port definition

table terminator must immediately follow the linkage pointer table

terminator. If a port is defined then word 3 of the attributes

table is put into the RDE cell in the port’s PCB, and the two

special character delay words are put into the PCB’%s SDI and SD2

cells. It is up to the driver itself to implement these delays,

or these words may be used for another purpose by the driver if

the special character delays are not used. The top byte of word 6

is put Into the PCB’s TLL cell, and the lower byte of word 6,

which is the "size of active file" value, must be zero.

the file type for a peripheral device driver is 00036. See

LSection I1l.! for more cetails. |

Copyright 1978 } Peripheral Driver

Educational Data Systems 11-5 | 19 APR 78

INLH3

PFRSTS

CLUZ ?

WRITE s

READS:

BLK |

ALRIbs

BLK2

Peripheral Driver

Figure 11.12: ‘Typical Peripheral Driver File

o1XIM sFOR CORRECT TEXT PACKING

« LOC BPS sALL DRIVERS MUST START AT BPS

INTH sPOINTER TO INTERRUPT HANDLER
ATRIB sPUINTER TO ATTRIBUTES TABLE

CLOZ sPOINTER TO CLOSE SUBROUTINE (OR -!)

WRITE sPOINTER TO OUTPUT SUBROUTINE (OR -1)

READ sPUINTER TO INPUT SUBROUTINE (OR -1)

OTA 3, TEMP sINITIALIZE (OPEN) SUBROUTINE

JMP WwTEMP sERROR RETURN (STATUS IN A3)

ISZ TEMP :

JMP YTEMP sDEVICE SUCCESSFULLY MPENED

403 sMASK BIT(S) TO DISABLE

JMP PF RST sPOWER FAIL RESTART ENTRY

-—— -_—— ; INTERRUPT HANDLER

JMP 0,3 s$(JMP @.INTR IF A3 CHANGED)

-——— --— sPOWER FAIL RESTART SUBROUTINE

JMP 0,3

——— —— sWRAP-UP (CLOSE) SUBROUTINE (OPTIONAL)

JiP 0,3 s(SKIP RETURN OK, NO DIFFERENCE)

--- -——— s;DATA QUTPUT SUBROUTINE (OPTIONAL)

JMP 1,3 3(WON-SKIP WITH STATUS IN A3 IF ERROR)

——— -——— sDATA INPUT SUBROUTINE (OPTIONAL)

JMP 1,3 s(NON=SKIP WITH STATUS IN A3 IF ERROR)

=. -BPS/400 s;FOR TEST BELOW

0 3PCB LOCATION (SET BY SIR)

400 sMASK BIT TO BE ENABLED

XXX sDEVICE ADDRESS (RESPONSE TN INTA)

sLINKAGE POINTER TABLE HERE IF REQUIRED

-| sLINKAGE POINTER TABLE TERMINATOR

| sNUMBER OF PORT CONTROL BLOCKS TQ BE ASSIGNED .

40057 $ WITH THIS PORT CONTROL WORD...

200 ; THIS I/O BUFFER SIZE (NUMBER OF BYTES) .. .

3*K+215 s AND THIS RETURN DELAY AND ENM CODE.

O $ (THIS CELL RESERVED FOR FUTURE USE)

0 3 (THIS CELL RESERVED FOR FUTUPE USE)

0 $ NO ACTIVE FILE (NOT AN INTERACTIVE PORT)

O 3 (THIS CELL RESERVED FOR FUTURE USE)

-| sPORT DEFINITION TABLE TERMINATOR

LOC BLKI-BLK2 sTESY THAT ATRIB IS ALL IN LAST BLOCK

« END sEND OF DRIVER

IY APR 78

Copyright 1978.
11-6 Educational Data Systems

11.3 How to Write an Interactive or. System Device Driver

A driver for a system device or for an interactive device has the

same form as one for a peripheral device (see Sections I1.1 and

11.2) with the following exceptions:

a) An interactive port is never OPENed$ the initializing
routine is not core-resident but is brought into core
separately by the system’s startup or recover routine,

b) The wrap-up routine is not used3 the FINIS entry pointer
is replaced by a pointer to the first word which is to be

core-resident,

Cc) The WRITE routine is not used the WRITE entry pointer is
replaced by a pointer to a SEND CHARACTER subroutine,

d) The READ routine is not used$ the READ entry pointer is
replaced by a minus one,

e) Each port is assigned an active file and data file table
(ie, it is an interactive port) if and only if the lower

byte of word 6 is non-zero, and

f) The file type must be 7/7/7001.

Note that, in the case of a multiplexer, each port may have a

different speed, I/0 buffer size, line length, active file size,

EOM character or terminal type, and return delay. The terminal

type, return delay, and speed may be changed by the user after

logying on to the port. In most cases, the active file size

should be a number of complete tracks and at least as big as

calculated at step 8 in Section 2.8, but AFSET will attempt to

- allocate more blocks if an active file is too small for a user’s

program. See Section 2.8 for more comments on active file size.

The SEND pointer is converted to an absolute pointer by SIR and

stored in the SND cell of each PCB.for later user by the system.

The SEND routine must accept a character in reqister AO and output

it to the port whose PCs pointer is given in register A2, or put

the character in the PCB’s TOB cell if the device is busy (-I in

AO means "start output", -—2 in AO means "start input", and -3 in

AO means “stop any input or output"). The SEND subroutine must

not change reqister A2 in any of its modes of operation. The

“start output" subroutine must return with -| in AO if the system

is to process characters, or any other value in AO if the device

accesses characters directly from core. The "start input"

subroutine normally returns with a one in the most sianificant bit

Of AO, but it must zero this bit if DMA input is beina started and

a character is waiting to be processed in sinaqle character mode.

CAUTION! For this type of driver, the entire initializina routine

and the first core-resident cell must be within the first block of

the file, and the INIT routine Must always return non-skip.

Copyright 1978 . system Device Driver.

Educational Data Systems 11-7 19 APR 78

<-> --

LwiHs

PirRoTs

SEwDs

BLK I

ATRIbBS

ULK2

oystem Device Driver

Figure 11.2%: System Device Driver File

.TXTM sFOR CORRECT TEXT PACKING

.LOC BPS sALL DRIVERS MUST START AT BPS

INTH sPOINTER TO INTERRUPT HANDLER (OR -1)

ATRIB $POINTER TO ATTRIBUTES TABLE

INTH-2 $POINTER TN FIRST CORE-RESIDENT CELL

SEND sPOINTER TO "SEND CHARACTER" SUBROUTINE
-| (NOT USED)

--- on sINITIALIZING ROUTINE

JMP 0,3

773 sMASK BIT(S) TO DISABLE

JMP PF RST sPOWER FAIL RESTART ENTRY
--- — s; INTERRUPT HANDLER

JMP 0,3 2(JMP @.INTR IF A3 CHANGED)

--- --- ;POWER FAIL RESTART SUBROUTINE

JMP 0,3

--- --- s"SEND CHARACTER" SUBRNUTINE

IMP 0,3

=.-BPS/400 3;SEE TEST BELOW

0 sF IRST PORT’“S PCR LOCATION (SET BY SIR)

400 sMASK BIL TU BE ENABLED

XXX sDEVICE ADDRESS (RESPONSE TO INTA)

sLINKAGE POINTER TABLE HERE IF REQUIRED

-| sLINKAGE POINTER TABLE TERMINATOR

7 sNUMBER OF PORT CONTROL BLOCKS TO BE ASSIGNED. .
40057. +$ WITH THIS PCW. .

19 > THIS I/O BUFFER SIZE (NUMBER OF BYTES)...

OxK+215 $ AND THIS RETURN DELAY AND EOM CODE.

0 s (THIS CELL RESERVED FOR FUTURE USE)

0 s (THIS CELL RESERVED FOR FUTURE USE)

30 s ACTIVE FILE SIZE (24 BLOCKS)

0 * (THIS CELL RESERVED FOR FUTURE USE)

| SNUMBER OF PORT CONTROL BLOCKS TO BE ASSIGNED. .

40054 ¢$ WITH THIS PCW. .

1000 ; THIS I/O BUFFER SIZE (NUMBER MF BYTES) .. .

A*K+215 ¢ AND THIS RETURN DELAY ANI) EMM CNDE.

0 s (THIS CELL RESERVED FOR FUTURE USE)

0 * (THIS CELL RESERVED FOR FUTURE USE)

0 s NO ACTIVE FILE (NOT AN INTERACTIVE PORT)

0 3 (THIS CELL RESERVED FOR FUTURE USE)

| sPORT DEFINITION TABLE TERMINATOR

=.-BPS/400

.LOC BLKI-BLK2 3TESf£ THAT ATRIB IS ALL IN LAST BLOCK

. END SEND OF DRIVER

12 APR 76

Copyright 1978

11-8 Educational Data Systems

nom me

SO,

11.4 How to Write a System Subroutine Module

Large system subroutines such as $DEC (the decimal arithmetic

routines) may be written as a separate module and loaded as a

dollar sign file (type 77001). The three words of the attributes

table must be zero, and all linkage with the system must be set up

by the linkage pointer tables otherwise, it is similar to a system

device driver as described in Section 11.3. Figure 1I1.3 shows the

form of a system subroutine file.

Figure 11.3% System Subroutine File

oT XIM | sFOR CORRECT TEXT PACKING

«LOC BPS sALL $ FILES MUST START AT BPS

al | sNO INTERRUPT HANDLER

ATRIB sPOINTER TO ATTRIBUTES TABLE .

DEC sPOINTER TO FIRST CORE-RESIDENT CELL

-| sNO "SEND CHARACTER" SUBROUTINE

-| 3(NOT USED)

--- --~ INITIALIZING SUBROUTINE

JMP 0,3

DECs --- --- ;SUBRONUTINE ENTRY

JMP 0,3

BLK I =.-BP5/400 3FOR TEST BELOW

ATRIBs O 3NOQ PCB

O 3NO MASK BIT :

0 sNO DEVICE ADDRESS

eDEC sTHIS PAGE ZERO POINTER...

DEC ; IS TO POINT TN THIS LOCATION

» XXX sREPEAT POINTER PAIRS AS REQUIRED

XXX

-| sLINKAGE POINTER TABLE TERMINATOR

—| 3PORT DEFINITION TABLE TERMINATOR (NO PORTS)

bLK2 =.-BPS/400

«LOC BLKI-BLK2 sTEST THAT ATRIB IS ALL IN LAST BLOCK

e END sEND OF FILE

Copyright 1978 | System Subroutine File
Educational Data Systems 11-9 19 APR 78

11.5 How To Write a Multiplexer Driver

A multiplexer driver is a system device driver as described in

Section I1.3, except that special consideration is necessary to

allow some ports to be used for interactive terminals while others
are used to interface peripheral devices. Which ports are to be
interactive and which are for peripheral devices is indicated by a
zero or non-zero value, respectively, in the lower byte of word 6
of each entry in the port definitions table at the end of the

driver. Any non-zero value causes SIR to allocate an active file

with that number of blocks and also to allocate a data file table
in core for each port in the group. A zero value in the lower

byte of word 6 means that no active file or data file table will
be allocated$ hence the port cannot be used interactively, but it
can be used to interface a peripheral device if the multiplexer

driver provides facilities for peripheral drivers as described

below, and a suitable peripheral driver is provided (see Section
}1.7).

To allow peripheral devices to operate through the multiplexer,
the mux driver must include the following code in. its output

interrupt handler routine?

[LDA 3,AHA.,2

SKZ 3,3 s INTERACTIVE PORT ?

JMP ot / 3; YES

LDA 3,TON.,2 § NO

99 P 3,3 3CHAR. HANDLING REQUESTED ?

JMP +4 3 YES

OKZ 3,3 sPERIPHERAL SERVICE PROVIDED ?

JSR i,3 3; YES

JTP ;SERVICE NEXT PORT

° (service this port as an

. interactive terminal)

where register A2 contains the PCB pointer for the port being

serviced, and AO contains the character to be processed. Also, a

similar code sequence must be included in the mux driver’s input

interrupt handler routine, except that the JSR 1,3 instruction
must be replaced by a JSR 0,3 instruction, and the character (if
any) will be returned in register AO. The peripheral device
criver is not allowed to change register A2.

The mux driver’s power fail restart subroutine must also include a

similar code sequence in a loop that examines each port, except

that the JSR 1,3 instruction is replaced by a JSR -1,3
instruction. This is necessary to allow each peripheral driver to
restart its respective device. The multiplexer driver should then

restart the port hardware if and only if the peripheral driver’s

restert subroutine does a skip return.

multiplexer Driver Copyright 1978

IY APR 78 11-10 Educational Data Systems

EM.

The mux driver must accent commands from peripheral drivers via

its SEND subroutine. The peripheral driver may do a JSR @SND.,2
with a port’s PCB pointer in register A2 and a command in register
AO as follows?

(AQ) jv O Supplies an output character (not

exceeding 377) to be output in single character

mode. May be used to echo each character in

single character input mode and to echo control
characters which cause termination of buffered

input. The character is saved in TOB and

automatically sent later if the mux is busy. Does
not cause an "output done" condition.

(AO) —| Starts output (in auto buffer mode if mux

is capable). The peripheral driver must set the

"Output active" bit in FLW before starting

output. Mux driver will set LOB=OBP then set

OBP=FBA before starting output unless (AIl)=0.

Output is in ASCII mode with even parity unless

the "binary output mode" bit in FLW is set.

(AQ) —2 Starts input (in auto buffer mode if mux
is capable). The peripheral driver must set

IBP=FBA and LIB=LBA and set the "input active" bit

in FLW before starting input. Input is in ASCII
mode, and all input characters must have even

parity unless the "suppress parity check" bit in

FLW is set. Wormally returns with a one in bit 15

of AO (ea, AO unchanged), but must zero hit 15 of

AO and not start auto buffer input if a sinale

character mode input is pending.

(AQ) —3 Stops any input or output in progress.

—4 Sends port’s PCW (Port Control Word) to

the mux port. Usually preceded by a change to PCW

(eq, toggle device control output bit). Output

must not be active when this command is given.

i(AQ)

the mux driver must non-skip return to the peripheral driver with
register A2 unchanged.

The peripheral driver must clear the “input active" and "output

active" bits in FLW when an input or output is terminated for any

reason and is not being immediately restarted.

Copyright 1978 Multiplexer Driver >

Educational Data Systems ll—11 19 APR 78

The mux driver passes information about special conditions to the
peripheral driver by doing a JSR via the pointer in TON. In each
case, the registers will contains

(AO) = character or status

(Al) = condition

(A2) = port’s PCB pointer

(A3) = return address

Single character input will occur even if buffered input is not

enabled. Characters entered may be dismissed, if desired, by
simply returning without processing. If buffered input is not

enabled, the condition indicators possible in reqister Al are:

(Al)=O ==> Character entered

(AO) = O if terminator character entered

(AO) = ASCII character code if not terminator

(Al) =Il ==> Special condition

(AO) = | if parity error detected

(AO) = 202 if break detected

(AO) = 020 if CTRL P entered

(AO) = 233 if ESC entered

(Al)>1 (see below)

If buffered input is enabled, then the condition indicators

possible in register Al are:

(Al)=1 ==> Special condition

(AO) = O if terminator character entered

(AO) = | if parity error detected

(AO) = 2 if input buffer full

(AO) = 202 if break detected

(AO) = 020 if CTRL P entered

(AO) = 233 if ESC entered

(AO) = code < 240 if. any other control character

(Al)>I (see below)

The following status conditions are possible in register Al
wnether buffered input is enabled or not:

(Al)=2 ==> Status line (pin 20) chanae
(AO) = status (0 ==> negative, #0 ==> positive)

(Al)=3 ==> Buffered output done

the peripheral driver’s Process Special Condition subroutine (Cat

the address pointed to by TON) must return non-skip in anv case

with register A2 unchanged.

Multiplexer Driver Copyright 1978

1D APR 78 ll=-12 Educational Data Systems

11.6 Character and Interrupt Task Queuing

Input and output characters for interactive ports, as well as

other interrupt tasks, may be queued by a driver’s interrupt

handler by executing a QCHARACTER instruction with the character

or a task identifier in register AO and a PCB pointer in A2.

These two words are put on the character queue for later

processing as determined by the value in AO as follows?

(AQ) taken as

< 0 Qutput character request) (A2) = PCB pointer.

0-377 Input character /

400 Start input \

401 Terminate output) (A2) may be any
402-407 (not assigned)) value to be passed

> 407 Task starting location / to the task.

If (AO)<O then the character in the PCBb’%s TNB cell is returned in

AO, and TOB is zeroed. The top bit of (AO) will be a "one" to

indicate the presence of a character in the lower byte zero in AO
indicates end of output. If TOB was non-zero, then a request for
another output character is put on the queue. Any value qreater

than 407 octal in AO must be the starting location of a task, and

control will be transferred later to that location by a JSR

instruction with interrupts enabled and the same value in A2 as

when QCHARACTER was executed.

11.7 How to Drive a Peripheral on a Multiplexer

A peripheral driver for a device which is interfaced through a
multiplexer is the same as any other peripheral driver (see
Section 11.2) except that it has no interrupt handler or port of

its own. The multiplexer driver supplies the port and handles all
interrupts; therefore, the peripheral driver’s INTH pointer must
be -l, the attributes table must contain all zeroes (3 words), and

the port definition table must be empty.

The multiplexer’s interrupt handler passes control to the
peripheral driver for character processing by means of a pointer

in the PCB’%s TON cell as described in Section I1.5. The

peripheral driver’s INIT routine must check that the PCB’s AHA

cell is zero, generate an absolute pointer to its input character

processing subroutine, and store that pointer in the TON cell.

The output character processing subroutine must immediately follow
the entry to the input processina routine entry, and the power

fail restart entry must immediately preceed the entry to the input
orocessina routine entry. The character processing subroutines

must not chanae register A2 which contains the PCB pointer. Each

subroutine must return non-skip as soon as possible.

The peripheral driver may give commands to the mux driver via its

SEND subroutine as described in Section 11.5. Figure 11.4 shows
the form of a driver for a peripheral device which is connected to

the system through a multiplexer. No mask word is required.

Copyright 1978 QCHARACTEP Instruction

Educational Data Systems 11-13 | 19 APR 78

Figure 11.4: Driver for Peripheral on Multiplexer

ol XTM. sFOR CMORRECY TEXT PACKING ~
LOC BPS sALL DRIVERS MUST START AT BPS

-| sNO DIRECT INTERRUPT HANDLER

ATRIRB sPOINTER TO ATTRIBUTES TABLE
FINIS sPOINTER TON WRAP-UP SUBROUTINE (COR -1)

WRITE sPOINTER TO OUTPUT SUBROUTINE (OR =-1)

READ sPOINTER TO, INPUT SUBROUTINE (OR —1)

SLA 3, TEMP sINITIALIZE (OPEN) SUBROUTINE

JSR SETUP sGENERATE POINTER TO NEXT CELL

JMP PFRST s;POWER FAIL RESTART ENTRY

JMP INPCH sADDRESS OF THIS CELL PUT IN TON

--— --- sQOUTPUT CHARACTER HANDLER
JMP 0,3

INPCHS <-<= --— s; INPUT CHARACTER HANDLER
JMP 0,3

PFRST&S -=- —_—— s;POWER FAIL RESTART (MUST PRESERVE A2)

JMP [,3 3(NON-SKIP IF MUX DRIVER NOT TO RESTART)

SETUP: INC 3,3 3SET CHARACTER HANDLER ADDRESS

OTA 3,ATRIB $SAVE ADDRESS MF JMP INPCH INSTRUCTION tg,

-——— ——— sUSE CPNPP TQ COMPUTE PCB ADDRESS a
LDA 3,ATRIB $PUT JMP INPCH ADDRESS IN TON CELL

STA 3, TON.,2 3(SET TOP BIT TO GET ALL CHAR. HANDLING)

STA 2,ATRIB SAVE THIS PORT7S PCB ADDRESS

--- ——— sFINISH INITIALIZING

JMP YTEMP sERROR PETURN (STATUS IN A3)

JMP WwTEMP sNEVICE SUCCESSFULLY GPENED

FlwISs --- -—— sWRAP-UP (CLASE) SUBRNUTINE COPTIONAL)

JMP 0,3 3;(SKIP RETURN OK, NO DIFFERENCE)

eITE3 <= --— sDATA NUTPUT SUBROUTINE COPTIONAL)

JMP 1,3 3(NON-SKIP WITH STATUS IN A3 IF ERROR)

BiAD: -—— --- ;DATA INPUT SUBROUTINE (OPTIONAL)

JMP 1,3 s$(NUN-SKIP WITH STATUS IN A3 IF EPROR)

ATRIBs 0O sPCB SUPPLIED BY MUX DRIVER

O sNO MASK

0 sNO DEVICE AMDRESS

sLINKAGE POINTER TABLE HERE IF REQUIREN

- | sLINKAGE POINTER TABLE TERMINATOR som,

-| sPORT DEFINITION TABLE TERMINATOR (NO PORTS) _

eEND sEND OF DRIVER (See Fiaqure I!1.1 for ATRIB test)

Peripheral On Multiplexer Copyriqht 1978 -

IY APR 78 [1-14 Educational Data Systems

11.8 How to Write a System Disc Driver

All checks for legal disc and core addresses and the decision to

retry on an error are handled by the system’s read/write block

routine. The only task of a disc driver is to issue the

instructions to read or write one or more blocks of 256 words at

the qiven disc and core addresses. Refer to the Glossary in

Appendix 3 for definitions of terms used here.

the disc driver will be called with the registers containing:

AO Pointer to LUVAR table

Al First Real Disc Address

A2 First core address

A3 Pointer to block count and retry counter

C Zero for read, or one for write

The block count at (A3) will be one or, if consecutive disc and
core addresses are to be transferred, the number of such

consecutive blocks. The driver must convert the Real Disc Address
to the Physical Disc Address if they are different, issue the

instructions to the disc controller to transfer one or more

blocks, and return to the second location following the block

count (equivalent to a JMP 2,3 instruction) with the number of

blocks being transferred in register Al. The values returned in
the other registers are immaterial. See page 11-20 for other
notes, including power fail restart provisions.

The driver uses the information in its LUFIX table (Logical Unit
Fixed Information) at the beginning of the driver (see Fiqures

11.5 and 11.6) and in the LUVAR table (Logical Unit Variable

Information) at the location given in reaister AO to compute the
physical disc address. CRLA (see IDRV on pace II-I17) may be used

to assist in this conversion. The form of a LUVAR table is?

Disp. Label Contents
O NCYI Number of cylinders

| PART Partitioning information

2 Partitioning information

3 Reserved (do not use)

4 AVEC Available block count

5 MINB Min blocks for building new file

6 (spare)

7 FUDA First unused Real Disc Address

10 ERRC Data check error count

1 | Address check (seek) error count

12 Data channel late error count

The partitioning information in words PART and PART+1 specifies

the location of the Physical Unit, and the form of the information

in these words is determined by the disc driver itself. Usually,

the word at PART is used to determine the location of the Physical

Unit (which drive and cartridge), and the word at PART+I is used

for a starting cylinder number if that Physical Unit is to be

divided into two or more Logical Units. The same PART words must

also work for the corresponding BZUP driver without chanae.

Copyright 1978 system Disc Driver.

Educational Data Systems 11-15 : 19 APR 78

AVBC is set by SIR to be equal to the number of disc blocks

currently available to be

Logical Unit.

IW is the minimum value

thus, MINB blocks will be

Initially,

-KUDA is set by SIR to be equal to the first Real Disc Address

beyond the end of this Logical Units ie, FUDA = NCYL*LRCC. It

used by the system to determine whether the Real Disc Address

supplied by the caller is too large.

exceed 100000 octal for logical unit zero.

-PRC is the first of three error count words.

CAUTION!! FUDA must not

The appropriate

allocated (not currently in use) on the

AVEC = NCYLA¥NTRK&*ANSCT. |

of AVBC to allow building a new file.

reserved for expanding old files.

is

one

will be incremented by the system whenever a corresponding error

is detected.

jhe LUFIX table is assembled with the driver,

driver’s entry point.

~24

23

22

-21

-20

-17

-16

-15

-14

~13

-12

11

-10

-7

-6

Label
DINT

DMOK

DSIZ

PFRI)

EMSK

IDRV

SLUR

OKNB

REDS

SEEK

NOCT

NTRK

LRTC

LRCC

DF LG

Its contents are addressed by use of

negative displacements from the entry point as follows:

Contents

(reserved for future use)

(reserved for future use)

Size of drive r (# words)

Power fail restart delay

"Any error" status mask

"Write protected" mask

"ilo such disc" mask

tata channel

"MMisc

late" mask

address check error" mask

"Tllegal disc address" mask

"Initialize driver" subroutine entry

"Skip if LU ready" subroutine entry

"Skip if not

"Read status!

busy" subroutine entry

subroutine entry

just preceding the

"Seek or recalibrate" subroutine entry

Number of .sectors (blocks per track)

Number of tracks (per cylinder)

Logical-to-real track conversion

Logical-to-real cylinder conversion
”

Flaca word (see below)

Driver’s read/write entry point

DINT and DMSK are not used in the current version of IRIS$ these
cells should contain zeroes.

the driver into core from the CONFIG file.
DSIZ is used by SIR when bringing

SIR will replace the

value in DSIZ with a pointer to the LUFIX tables this is for use

by the driver if it is necessary to call CRLA (Convert Real to

Logical Address). There is a pointer to CRLA in AO when the

driver’s initialize subroutine is entered.

oystem Disc Driver

IY APR 78 11-16

Copyright 1978 -

Educational Data Systems

AEs,

FDI

Figure 11.5%: Typical Driver for Fixed Head Disc

=20

Q

O

FDILRS—.+2

JP

JMP

JhP

J i p

JiMP

5000.

GOO

2000+ FD I

FOES

PDOLSNs

hOITRO8

Copyright

Educational Data Systems

DO} BC

MOV

LDA

INTDS

LDA

NEGL#

JP

ADD

JP

DOAS

JlAP

DOAP

SUBZL

JiiP

SKPBZ

JP

JMP

DIAC

JMP

1978

sDEVICE ADDRESS

oe #0 se
(RESERVED FOR FUTURE USE)

(RESERVED FOR FUTURE USE)

sOIZE OF DRIVER

sPOWER FAIL RESTART DELAY

SHANY ERROR" STATUS MASK

S"WRITE PROTECTED" MASK

s"NOQ SUCH DISC" MASK

s"DATA CHANNEL LATE" MASK

s"ADDRESS CHECK ERROR" MASK
s"TLLEGAL NISC ADDRESS" MASK

s"INITIALIZE DRIVER" SUBROUTINE

s"SKIP

3"SKIP

TF LU READY" SUBROUTINE ,

IF NOT BUSY" SUBROUTINE

s"READ STATUS" SUBROUTINE

FUSEEK OR RECALIBRATE" SUBROUTINE

sNUMBER OF SECTORS (BLOCKS PER TRACK)

sNUMPER OF TRACKS (PER CYLINDER)

sLOGICAL-IN-REAL TRACK CONVERSION FACTOR
sLOGICAL-TIN=-REAL CYLINDER CONVERSION FACTOR

sDISC ALLOCATION INFOQ, DEVICE ADDRESS

2,FuU1

0,2

O,PART,2

21,3

2_92,0NC

+6

O,1,oZC

et3

PyFDI

et 2

1, Ful

l,l

243

FDI

0,3

1,3

O,FDI

0,3

sDRIVER ENTRY POINT

sFIRST REAL CYLINDER

sRETRY COUNTER

sHAS POWER FAIL OCCURRED ?

; YES, DON’T START

sREAD OR WRITE ?

$ READ

>; WRITE .

sONE BLOCK TRANSFEPRING

sRETURN

sOKIP IF NOT BUSY

$READ STATUS

ll-17 19 APR 78

Fixed Head Disc Driver.

PERD indicates the amount of time that the disc drive requires

after a power failure before it will again be ready for disc
transfers. To calculate the value for PFRD, use the formula

PFRD = ¢(T x 3500) 7 (R + 22)

vnere IT is the typical start up time of the disc drive in seconds,
R is the execution time in microseconds of the driver’s "skip if
ready" subroutine (excluding the JMP in the LUFIX) assuming a Nova

1200 or a DII16 computer’ the system will compensate for the speed

difference if so indicated by the SPEED value in the INF table.
the values 3500 and 22 are decimal constants. The inteaer value
of the result should be converted to octal and used as the value
for PERU. This formula provides approximately 50% extra delay to
allow for variations in CPU speed and disc start up time. PFRD
must be zero if operator intervention is required to restart the
disc after a power failure, such as for a Diablo drive with the
iwrite protect" option.

EsSK must contain one or more "one" bits to produce a non-zero

result when ANDed with the status word returned by the REDS

subroutine if an error of any type has been detected. The next
five words are similar masks for specific types of errors? if an

error is-indicated by a non-zero result when EMSK is ANDed with

the status word, and none of the other masks produce non-zero when

Awbded with the status word, then a data check error is assumed.

IJRV must contain a jump to a driver’s initializing subroutine if
the pointer to CRLA (Convert Real to Logical Address) qiven in AO
must be saved or if any initializing is required on initial start

up or after a disc error, a disc time-out, or a power failure. If

no initialization is required then IDRV may contain a JMP 0,3
instruction.

SLUR must contain a jump to a subroutine that will test whether
the Logical Unit (identified by the LUVAR pointer aiven in

reaister A2) is on line and ready, anc so indicate by a skip

return. A non-skip return indicates that the unit is not on line,

not up to speed, or the controller does not provide for a ready
test. Ready may be indicated even if the drive is busy. The SLUR

cell must contain a JMP 9,3 instruction if the disc controller
does not provide for testing whether an individual drive is ready.

SKB must contain a jump to a subroutine that does a skip return
if the disc controller is ready and is not busy, or a non-skip if

it is busy or not ready. SKNB must not chanoe reqister A2.

hEbS must contain a jump to a subroutine which reads the

controller status into reqister AO$ if two or more status words

are provided by the controller then this subroutine must combine

the significant bits into one word.

system Disc Driver Copyright 1978—
IY APR 78 11-18 Educational Data Systems

»yEEK must contain a jump to a "seek or recalibrate" subroutine

which will initiate a seek to the cylinder identified by the Real
Dise Address given in register Al or, if (Al)=-!, do a recalibrate

and wait for it to be completed. SEEK must not change reoister A2

which contains the LUVAR pointer. Only certain discs require this

routines in other cases, SEEK may contain a JMP O,3 instruction.

the next four items define the physical configuration of the disc
for mapping and allocation purposes. NSCT indicates the number of
sectors (number of blocks per track), not to exceed 16 (octal 20)

sectors. NTRK indicates the number of tracks per clinder (number
of heads), LRTC indicates the Logical-to-Real Track conversion
factor, and LRCC indicates the Logical-to-Real Cylinder conversion

factor. LRTC must equal NSCT, and LRCC must equal NTRK*NSCT. For
example, suppose a disc cartridge has 203 cylinders, two surfaces,

and 12 sectors. The corresponding constants for the LUVAR and

LUFIX tables would be (in octal): NCYL=313, NTRK=2, NSCT=14,
LRTC=14, and LRCC=30. AVBC will be calculated by SIR as

NCYL*NTRK*NSCT=11410, and FUDA will be calculated by SIR as

NCYL*LRCC=11410. FUDA must not exceed 100000 octal for Logical
Unit zero, but may be as large as 177776 octal for other Loaical

Units. Discs having more than 16 sectors must be specified

otherwise’ for example, a disc with five tracks and 32 sectors
should be specified as ten tracks and 16 sectors.

DFLG is a flag word made up as follows:

15 Chanaeable cartridae

14 Use ALLOCATE for active files

13,12 (unused)

1] Skip sector between tracks within cylinder

10 same sector, next track \ Next best block

9 Next sector, next track) if desired block
83 Next sector, same track / is not available
1 okip sector between data blocks

6 okip sector after header block

9-0 Device address

iit Ib should be a one if the Looical Unit is on a changeable

cartridge. Bit 14 should be a one if the drive has a head per

track and the heads do not move or if it is a larqe storage module
wnich does not require active files to start on cylinder

boundaries for efficient swapping. Bits 11-6 define allocation

oarameters so that files can be transferred in or out of core in

the minimum time. Bit 11 should be set if the controller will not

automatically cross track boundaries on multiple block transfers.

vit 10 would only be set for a head=-per-track disc. Bit 9 might

oe set for a floppy disc drive where the track to track seek is

faster than one sector latency. Bit 8 would be set for any other

moving arm disc. One and only one of bits 8-10 should be set.

Bit ¢ should be set if the controller is incapable of transferring

consecutive sectors. Bit 6 should be set if there is not enough

time afer reading one block to use information from that block for

transferring the next consecutive block.

Copyright 19738 system Disc Priver

crducational Data systems 11-19 : 19 APR 78

MLD

JiP

Jin P

JP

JmaP

JimP

wd

ADE 8

mO20R8

D2 8

MD2RO8

MD2OC8

mDoLs

noving

IY APR

I-igure

PL—-.+]

O

200

1 OO Q00

10
A

60

0,3

MD29R

MD2SN

MD 2 Ro

MD2SC

16

2

16

34

O0+hMD?

DOBC

ANY

LDA

DUC

LDA

ADD

OUBCR

ADD

INTDs

LDA

NEGL#

DOAS

LDA

OB

LDA

Ali D#

JP

Jtip

OK PBZ

JP

JiiP

DIAC

JiaP

Lis C#

JiaeP

DOAS

SK PBZ

JhP

JP

Arm Disc

18

P1.63 typical Driver for Movina Head Disc

sOIZE OF DRIVER

sCAN“T RECOVER FROM POWER FAIL

SHANY ERROR" SLATUS MASK

s"WRITL PROTECTED" MASK

s"NO) SUCH DISC" MASK

S"DATA CHANNEL LATE" MASK

S"ADDRESS CHECK ERROR" MASK

s"ILLEGAL DISC ADDRESS" MASK

s"INITIALIZE DRIVER" SUBROUTINE

s"SKIP ITF LU READY" SUBROUTINE

s"SKIP IF NOT BUSY" SUBROUTINE

S"READ oOLATUS" SUBROUTINE

S"SEEK OR RECALIBRATE" SUBROUTINE

s;NUMBER OF SECTURS (BLOCKS PER TRACK)

sNUMBER OF TRACKS (PER CYLINDER)

3LOGICAL-TO-REAL TRACK CONVERSION FACTOR

sSLOGICAL=TO-REAL CYLINDER CONVERSION FACTOR

sDISC ALLOUCATIUw INFO, DEVICE ADDRESS

2,2 sDRIVER ENTRY

Q,2

O,0,3

O,MD?2 s3LOCK COUNT

O,PART,2 sFIRST REAL CYLINDER

Q, | sADD TQ DISC ADDRESS

0,0 sREAD OR WRITE COMMAND FROM CARRY

O, | s;COMBINE WITH DISC ADDRESS

O,1,3

O,0,SZC HAS POWER FAIL OCCURRED ?

1, iD? s NO, START TRANSFER

1,0,3 sALL BLOCKS TRANSFEPRING

2,43 3 RETURN

O,mD2 sOKIP IF READY

L,PART4H1,2 ©

O,1,5N2

0,3

1,3

Mb? sSKIP IF NOT BUSY

0,3

l,2

O,MD2 READ oLTATUS

0,3

O,0,9Z2 $sSEEK OR RECALIBRATE

0,3 $ SEEK (NOT IMPLEMENTED)

O,MD2 3 RECALIBRATE

MD2

7 |

0,3

Driver Copyriaht 1978 —

11-20 Educational Data Systems

BER,

Just before issuing the final command to start the data transfer,

a system disc driver must disable interrupts and test whether a

power failure has occurred by examining the retry counter (see

examples). If the retry count is <0, then a power failure has

occurred, and the transfer must not be started’ a two-skip return
is performed without regard to the contents of any register. Note
that the driver does not wait for the transfer to be completed,

and all code must be position independent.

11.9 How to Write A Disc Driver for BZUP

B8ZUP requires a simple disc driver that will transfer one disc
block on one particular Logical Unit, wait for the transfer to
complete, check status, and skip return if no errors occur. It

must do a non-skip return with the disc status in register AO if

any type of error is detected or with zero in AO if a time-out
occurred.

the driver will be given a Real Disc Address in register Al and a

core address in A2. These registers must not be channed by the

driver. Each Logical Unit will have its own copy of BZUP with

partitioning constants for converting the Real Disc Address to the

corresponding Physical Disc Address. These partitionina constants

must be identical to the PART and PARTI words in the disc driver

table (see Section 2.6). BPCxx is at address 300 in RZUP
(location 24300 when BZUP is in core at its usual location). See

l-'igure I1l./7 for a typical BZUP disc driver. The .~DMR pseudo-op

line is included to check that the driver does not exceed the

available space in BZUP$ there are 61 words (octal) available for

the driver.

If the driver will not fit in 61 words then it may also occupy

iiuch of the space below BPART (see paqe I1-22), but in this case

iZUP will not have any utility commands available. BZUP is still

required, however, for the IPL and for use by DBUG and SHUTDONN.

Copyright 1978 | BZUP Disc Driver
i:ducational Data Systems 11-2] : 19 APR 78

bPCr I:

BRBFI:

BWBF I:

- DMR

4“ZUP U1SC

lY APK

Figure 11.78

18

Driver

iyoical Dise Driver for BZUP

O $sPARTITIUNING CONSTANTS MUST BE SAME AS IN DRIVER TABLE

O

DOAS O,FDI

LDA O,.-| sREAD A DISC BLOCK
JMP BWEF I+ |

DOAP O,FDI

LUA O,.-l sHRITE A DISC BLOCK

OTA O, +4

DOBC 2,FDI sQOUTPUT CORE ADDRESS

LDA O,BPCE |

ADD 1,0 sADD PARTITIONING CONSTANT

DOA O, FDI sQUTPUT DISC ADDRESS AND STAPT
oUB 0,9

INC O,O,oNR

MP 0,3 slIME WUT !

OKPRBZ FD |

JMP 073

DIAC OF I sREAD STATUS, CLEAR "DONE"

MUV RE O,0O,07C $sANY ERROR ?

JiiP 0,3 3 YES

SP l, 3 3 NWO

BZFIO =Ji{P bPCFI4BSIZE-. 3BZUP OVERFLOW TEST

KIC UK IK KK EK KEK KKK KKKEK KKK K IK KKK KK RK KK KK KK KK KK KK RR EK

* *

* CAUTION !?!! *

* *

* BPCxx must be at location 300 of BZUP *
* BRBxx must be at BPCxx+3 *

* ibnigxx inust be at BPCxx+é *

* All code must he position independent *

* Registers Al and A2 must not be chanaed *

* *

KA KK KK EK KKK KKK KKK RK KI KEI KKK KK KKK KK KEKE AKEKREREK ER

Copyriaht 1978

11-22 Educational Data svstems

11.10 How to write a Terminal Translation Module

Interface to System — A terminal translation module is the

interface between terminal-independent IRIS terminal control
functions and a specific type of interactive terminal. The driver
is a standard IRIS System Subroutine Module as described in

section 11.4 except that it does not have an initialization

routine. Location BPS+5 must contain a JMP 0,3 instruction, and

the first core-resident location must be at BPS+6.

Each terminal on a system has its own terminal type code (TTC).
this is the number specified to the system when a particular
driver is selected for use on a aiven port. This number ranges

from O to 144 octal, where type O means no driver is selected and

default character processing is cesired.

A driver identifies itself to the system during an IPI. by setting
a pointer to its first core-resident location at location 400+TTC.

this must be done using the pointer linkage table which starts at

ArRkIb+3 in a system driver. Terminal drivers are the only drivers

allowed to put pointers in this area with the pointer linkage
table. thus the system can determine each terminal driver’s

location and its TIC.

there is a maximum of 15 (decimal) terminal drivers allowed to be
activated on a system at a given time. A TRAP #136 will occur if
more than the maximum are activated. Also, if any terminal

drivers are activated, the system driver $TERMS must also be

activated. |

cach code that a terminal translation module will be required to

translate on output is initiated with a sinale byte whose value is

less than 200 octal. The majority of output codes consist only of

the single byte, but a cursor positioning request consists of a

177 byte followed by a number of bytes (depending on the

terminal), which are creater than O and less than 377, terminated

by a 377 byte. Most codes when sent out have no special

significance to the system except for the “RN% (read cursor)

code. fhis code sets the FC (expecting cursor) flac in the TIN

word of the user’s PCB when it is sent out.

The mnemonics and the octal values for all of the terminal control

codes are defined ina file called "CRIDEFS". <A number of flacs

in the TIN word that a terminal driver might need to concern

itself with are also defined there. This file is included on

every system, anda listing of CRTDEFS is included at the end of

tnis section.

Copyright 19 /% ferminal Translation Module
rducational Data Systems 11-23 1D APR 78

ae 2 @ mewe #2 @8 @2e 8 eG Fe we ee aw =m eon we 2 @ © @ ww @ oo aeew=e 8 @e 22 se @ = eee wFT@ wee @Faq a enews weeqoe 8 2 ® @® @& oeoenonewa wee se eB a2 @weenwe "82 282 = @ @aeea#e = ww

Internal Structure -- In addition to the fact that a terminal
translation module has the external structure of a Svsten

Subroutine Module, it has acdcitional structural features that must

be closely followed. Internally, starting with the first

core-resident location, a terminal translation module consists of
an e@ight-word header followed by various translation tables ana

nrocedures.e The structure of the tables and calling sequences for

the procedures will he discussed under the appropriate sections on
translations. The eicht-word heacer will be discussed here.

ord | =-— This word contains the TIC for the driver. In addition,

the most significant bit of the word is a special parity hit which
tells the system how to handle parity errors on input. If the hit

is off, noritial parity processing is done. If it is on, the /

low-order bits of an inout character will come in, renarcless of

vnether a parity error occurred or not. The top bit of an inout

character will oe O if a narity error occurred or | if no parity
error occurred. This snecial processing allows the parity of an

incoming character to he used as information.

word 2 -—- Input escane code. If there are any escape sequences

generated on input, the escane code used to nrefix these senuences

must be put here with the 200 bit set. In most cases this code

will be the standard 233 escape, but some terminals may use

another code. This code must he less than 240 octal.

sord 3 -— Virtual pointer* to input translation tale for

characters following the input escape code.

Jord 4 -— Virtual nointer to innut translation table for

characters that den’t follow the input escane sequence code.

Nord 5 -— QNutput escape character. If any control coces reaulire a

translation to an escane seauence for output, the code used to
nrefix these sequences must be out here with the 200 bit set. In
most cases this code wil] be the standard 232 escane, but some

terminals may use anothor coce.

sords 6 & 7 — special delay characters. If there are anv

characters which require a delay when output, thev should he

specified here. The character is in the right half of the word

and the delay required is in the lert half. Whe value of the
delay is in fiftieths of a second if the port is through an Eps!

multiplexer, or the number of nulls to be sent out otherwise.

wote that the character specified is the actual code outnut, not

the internal code before translation (if any). Thus, if a

terminal requires a delav after an escape sequence Cec, after a
clear screen), the delay must he handled by a procedure which

inserts an appropriate number of nulls.

word 8 -= Virtual pointer to output translation table.

* A “virtual pointer" is an absolute pointer as far as the source

file is concerned. It is relocated to the real core address of
the taole at IPL time by STERMS. If the table is emnty, the
pointer must point to a null table which is simply a zero entry.

derminal Translation “odule Conyright 1978

19 APR 72 11-24 Educational Data systems

aowene Sh ae *#S aes & 2&2 w&@ w@ =e wee = @ _—_e -_ we = @ =» nae m_— a =: 2 = ee =e te ee eS Se DS oF w-enewene em wee ee wee ee we Fee we Se wee See we ~weheeweew@e ae8# @ @®@e@ gfe ww @ @& @ ww @ aoeweuws"e we we @ Se ww @ ane = ee ow we EE,

Output Translation -- In general, translation is table driven.

The output translation table consists of a single word qivina the

number of table entries that follow, followed by entries of the

form:

TRANS 1 Py GIVEN |
E

The table must be sorted in ascending order by the 7-bit GIVEN

field.

All bytes output which are greater than or equal to 200 are |

treated normally and are output without translation by the

system. If a byte less than 200 is output, the system will then

search the output translation table’s GIVEN field for the byte.

If the search fails, an "t" is output instead of the byte. If the

search succeeds, action depends on the value of the P-bit. If P

QO, the 7-bit TRANS is output with the hiah-order eighth bit

unconditionally set. If the P = 1, the &=-bit TRANS + E field is
interpreted as an offset from the table entry toa procedure « The

procedure is then called as described below.

Al

Qutput franslation Procedures -- When an output translation

orecedure is called, AO contains the character to be processed and

A2 contains a pointer to the caller’s PCB. A3 contains the return

address - | which also points to a routine to store bytes in the
caller’s I/0N buffer.

So as the procedure needs to put bytes into the I/0 buffer, it

merely needs to do JSR’%s via the value that the procedure was

called with in A3, with the byte to be output in AO. WARNING —

these calls to the store byte routine clobber all reqisters.

vinen the procedure is finished with it’s translation, it should do

a skip-return with respect to the value it was called with in A3.

The procedure should return with a JSR instruction rather than

with a JMP instruction (see below). If the procedure returns with

AO = -1, then an error was detected in the translation and an "t#

ls stored in the I/0 buffer. If AO > O then the character in the

right half of AQ is stored in the I/N buffer. If AO = O then

nothiny is stored in the I/O buffer. |

Copyright 1978 terminal Translation Module

Ecucational Data Systems lb 1-25. | 19 APR 78

[f the procedure requires more than one character to complete its
translation (as with a cursor positioning request), it may do a

'resume" operation instead of a "return" operation. OMne does this

by setting the OTIP (output translation in proaress) flag in the

TIN word of the caller’s PCR. This causes the system to resume
operation of the procedure at the instruction followina the return

(hence the return with a JSR instead of a JP) with the next

Character in AO and a fresh PCB pointer in A?. It is up to the
procedure to clear the OQTIP flag when it is done with the

translation.

Something to note about the return address that is aiven to a

procedure when it is called is that it will always be the same for
each call or resume to the procedure, no matter when it is
called. Hence the return address may be preserved in a temporary
cell that is local to the procedure on the first call and it will
always be good thereafter. |

Another small detail is that for output translation procedures,
PTP will always be a valid PCB pointer, so the driver doesn’t need

to save it locally if it needs to preserve it.

Cursor Positioning -- A cursor positioning request is always a I7/
byte followed by an X-coordinate (column) followed by a

Y-coordinate (row) followed by an additional unsnecified number

(usually zero) of characters which depends on the terminal,

terminated by a 377 byte. The X and Y coordinates will come to

the driver as origin (1,1) where (1,1) is the topmost leftmost
position on the screen (this corresponds to origin (0,90) in PUN).
ii@nce most drivers will need to cecrement the coordinates to

origin (0,0) before sending them to the terminal. Every time a
cursor position goes out from RUN, the ICC Coutput column counter)
is updated to the value of the X-coordinate by the RUN processor.

ihe unspecified number of additional coordinates are used by

certain terminals for control functions. Their use is discouraged

as much as possible since any proaram that uses them becomes
terminal dependent. Hence, most terminal drivers will only need
to process two coordinates$ but they should, however, give an

error if the wrong number of coordinates is sent.

lerminal Translation todule Copyright 1978
1D APR 78 11-26 Educational Data Systems

Input Translation -- Input translation is handled in a fashion

quite similar to output translation. There are two input

translation tables, however: one for characters that follow the

input escape sequence character, and one for characters that
don’t. Each table consists of a single word givina the number of

entries in the table followed by entries of the form:

‘pf TRANS ! GIVEN !
ee ee ee ee ! os !

The table must be sorted in ascending order by the Shit CIVEN

field.

the input translation table for characters not following the

terminal’s escape sequence character will be searched any time an
input character less than 240 is encountered. If an escape has

been seen, the table for characters that do follow the terminal’s

escape sequence character will be searched no matter what the next
character is. If the character is found, the action taken is

based on the value of the P-bit. If P = 1, TRANS is interpreted

as a 7-bit character to be translated to. It goes in with the

high-order eighth bit unconditionally set to one. If P = O, TRANS
is interpreted as a 7-bit offset relative to the table of a

procedure. The procedure is then called as describec below. If
the character is not found (whether or not an escape has been

seen) it is passed on to the system as is.

Input Translation Procedures -- When an input translation

procedure is called, AO contains the character to be processed,

and A2 contains a pointer to the PCB from which the input came.

A3 contains the return address

in return from the procedure, if AO = 90, then nothina is aiven to

the system to process. If AO > O then the character in the riaht

half of AO is given to the system to process. If AO = -I then the

character is to be treated as an EMM (end of message) anc the

system will terminate innut. The procedure should be exited with

a JOR via the value that was in A3 when the procedure was called.

(as with a read. cursor position command) , the procedure may, as
with output, "resume" the system instead of "returnina" to it.

This is done by setting the ITIP (input translation in pronress)

tlag in the TIN word of the PCB before returning. When the next

character comes in, the procedure will be resumed at the

instruction following the return, with the next character to he

processed in AO and a fresh FCB pointer in A2. It is up to the

procedure to clear the ITIP flag when it is done translatina.

Copyright 19738 ‘Terminal Translation Module

educational Data systems | } 1-27 | 19 APR 78

As with output procedures, the return address for input procedures

will always be the same for everyone every time the procedure is

called. Hence, one can save it locally once, and it will always
be good. One should be cautioned, however, that RTP is not a
valid PCB pointer. If one needs to preserve it, it must be saved
locally.

Readina Cursor Position -- When a read cursor command (7RD7) qoes
out to a terminal, the system sets the EC (expecting cursor) flag

in the TIN word. A procedure to process the incoming cursor

position from the terminal should make sure this flaq is set
before processing the position. This is to make sure the operator
hasn’t accidently hit the correct characters to generate an

incoming cursor position. Unce the driver has made sure this flag

is set, it should clear it.

the system has input enabled when it expects the cursor position

to come in. It expects the X-coordinate (column), followed by the

Y-coordinate (row), origin (0,0) where (0,0) is the topmost

leftmost position on the screen. these two bytes should be stored

directly in the first two locations of the I/O buffer. The criver
should resume the system with AO = -—1 to terminate input.

Reentrancy and Storaae Requirements -- since these drivers may he

used by different ports at the same time, they must be mutually

and individually reentrant. If any temporaries are needed to be
preserved, they must (with the exception of the return addresses

as previously mentioned) be saved on a port by port basis. A free

node may be acquired by the FREENNDE command and linked to the

port’s PCB by putting a pointer in the NLP cell which is reserved
for this purpose. hiultiple nodes may be linked together if more

storage is required. ‘the last word of a node is reserved for a
linkage pointer to the next node in the chain (if more nodes are

required) and must be zero in the last node of the chain. The

retiainina words in these nodes may be freely allocated between

input and output procedures, but the input and output procedures
must be mutually reentrant’ ie, they must never share temporary

storage cells.

Terminal Vranslation iMNodule Copyriaht 1978

ly APR 7& | l{-28 Educational Data Systems

“ae age eo 2s @S @ B@Beewmoe nme waewneTs s#t wee @e Be wee eens Fe wo ebseeaeeee ws#ea nn *@ e S88 wwneee ~*~ oe 2 2 2 OE FO Be wn FEB wees wee 2 ee Oe 8

SYCRIDEFS"Y -- DEFINITIONS OF CRT CONTROL COWES FAR "IPIS" 7.3
$ 2-3-73

5 All Rioghts Reserved

; Copyright (C) 1978, Educational Nata Svstems
3 this document may not be renoroduced without the

; prior written permission of Educational Data svstems.

ay =3 si GA Code

Ris =/ srina bell

AL =10O $move left

Lr =12 $line feed

Vl =13 vertical tak

hr =14 ¢sform feed

CR =I5b $carriage return

wii =I1/7 gmove home

Co =20 sclear screen

MR =40 gmove right

RI) =4) sread cursor position

CU =43 $sclear unprotected

CL =44 $clear to end of line (unprotected)

Crk =45 ¢$clear to end of screen (unprotected)

Ub =52 gmove down

MU =53 §move up

nb =OG soegin Dlink

tp =61 send blink

bh =62 sbeain reverse video

tR =63 send reverse video

bl =64 gbheain dimming

LD =65 send climming

3P =66 jsbegin write protect

cP =O/ ¢end write protect

BU =/0 $sbegin underline

tU =/1 send underline

BX =/2 sboeain expanded print

EX =/3 send expanded print

bh =74 genter format mode

rA =/5 sexit format mode

Li =/6 Glock keyhoard

UK =// unlock keyboard

bl =10uU soegin transmission from CRT memory

SP =I1Gl 3use memory pointer instead of cursor

ao for next positionina.

stat -— start of multi-byte sequence

+ (usually a cursor positioning request)

; which is terminated by a 377 code.

§ OMe rLAG DEFINITIONS IN TEN. WORDS

iC =2(1) FE APEC TING. CURSOR

Pile =4Q0 $INPUL.TRANSLATION.IN.PROGRESS
MiTP =lou sOUVPUT. TRANSLATION. IN.PROGRESS

20CS =200 SESCAPE.SEEN

UT ; "CRTVEFS" BY.3 SOURCE

Copyright 1978 | CRIDEFS Listina
Lducational Data systems 11-29 19 APR 78

Pte,

12. SYSTEM ASSEMBLIES

All components of IRIS. should be assembled using the absolute

assembler or (preferably) the ASSEMBLE processor. The SYMBOLS

source tape must be used as the first source tape on pass one of

the first assembly if ASSEMBLE is not used.

12.1 Software Definitions Tape (DEFS)

This tape defines such things as the structure of tables, control

words, and file headers. It also includes various definitions and

displacements which are used throughout the system. If this tape

is changed, then all system components must be assembled with the

new. definitions. The Software Definitions tape is required only
on pass one of an assembly.

12.2 Page Zero Definitions Tape (PZ)

Most of the pointers, constants and flags in page zero of REX are
available for use by processors and subroutines. The Page Zero

Definitions tape defines the locations of these cells when ,
assembling system components other than REX. If any change which

affects these definitions is made in page zero of REX then this
tape must be modified accordingly, and all other system components
must be re-~assembled. The Page Zero Definitions tape is required

only on pass one of an assembly.

12.3 How to Assemble System Components

To assemble any IRIS system component other than REX or PZUP, feed
the source tapes to the assembler in the following sequence?

Pass 1% Software Definitions (DEFS)

Page Zero Definitions (PZ)

Comnonent source tapes

Pass 22 Component source tapes

For REX or BZUP the sequence 1s the same except that the Pane Zero

Definitions tape is omitted. The Software Definitions and Page

Zero Definitions are not necessary on pass 2 but may be included

if desired for listings. An assembly of REX, PLOAD, SIR, and/or

SYSL requires all of the DEFS, REX, PLOAD, SIR, and SYSL source

tapes, in that orders PZ must not be included.

BASIC, RUN, and RUNMAT also require a BASIC/RUN Definitions tape

(BRDEFS) which should follow the Page Zero Definitions on pass |

and may be included on pass 2 if a listing of it is desired. The

same definitions tape must be used for all three of these

processors which, together with DISCSUBS Group 2, comprise

Business BASIC. Note that the last two source tapes of RUN are

also used as the last two RUNMAT source tapes.

Copyright 1978 System Assemblies

Educational Data Systems }2-] 20 APR 78

APPENDICES

Category #1 -- Interactive I/) Subroutines. These must be used

to perform all input and output on an interactive port. Most
are group |, and are thus available on all IRIS systems.

ACCESS INPUT BYTE accesses the next non-space from the regnant
user’s input buffer. See Section 9.7 for calling sequence.

ACCESS INPUT STRING BYTE accesses the next byte from the regnant
user’s input buffer. See Section 9.7 for calling sequence.

CONVERT DRATSAB TO ASCII converts a string of bytes in DRATSAB
code (compressed Hollerith) into the corresponding ASCII codes.
DRATSAB and ASCII codes can be found in appendices of the IRIS

User Reference Manual. The calling sequence is CALL CDTA with the
byte address of the DRATSAB string in Al and a pointer to an Item
Control Block (ICB) in A2. Tne ICB is the same as described for
Read Item in Category #3. AO must contain zero if the cards are
punched in Hollerith standard key punch codes or non-zero if the
cards are marked as shown on the EDS BASIC Card Programmer. On
return, AO contains the number of bytes transferred, and A3
contains the status. Group 3.

CONVERT INTEGER TO ASCII outputs a binary number to the regnant
user’s output buffer after converting it to a specified radix.
See Section 9.7 for calling sequence.

DECIMAL INPUT uses the Access Input Byte subroutine to scan ASCII

codes from the user’s input buffer, converts the string to

floating point decimal, and leaves the result in the Decimal
Accumulator (DA). The calling sequence is DECIMAL with 6 in AO

and O in Al. Normal return is skip with AO containing the number
of significant digits scanned, and the terminating code in A2.
Return is non-skip with zero in DA and the terminating character

in A2 if no digits are found. Group 2.

DECIMAL OUTPUT converts the value in the Decimal Accumulator (DA)

into an ASCII string representing the value in standard form, and
uses the Store Output Byte subroutine to store the string in the
regnant user’s output buffer. The calling sequence is DECIMAL
with 7 in AO and O in Al. The output string will consist of

either a space if (DA) is positive or a minus sign if (DA) is
negative, a string of up to 14 decimal digits, and an imbedded

period if required. Defaults to floating form if the value in DA

is less than O.I or is greater than 99,999 ,999,999,999 decimal.
Group 2.

DECIMAL OUTPUT CLOSE SPACED is the same as Decimal Output above,

except that there will be no leading space if the value is

positive. The calling sequence is the same except that AO must.

contain 10 octal. Group 2.

Interactive [/0 Copyright 1978

25 APR 78 Al=-2 Educational Data Systems

‘DECIMAL OUTPUT, FORMATTED is the same as Decimal Output above

except that AO must contain octal II1, Al must contain zero, and

A2 must contain the byte address of a format string. The value in

DA is output in the format specified by that string as described
in the PRINT USING statement in the IRIS User Reference Manual.
Normal return is skip, but a non-skip return will occur if an

error is detected in the format string. In either case, the byte
address of the first unused byte of the format string is returned
in A2. Group 2.

ERROR outputs the message "ERROR #n" to the regnant user’s output
buffer, where n is any integer from zero to I77 octal. The
calling sequence is CALL ERROR with the value n*K!NOP in register

AO. The values K=400 and NOP=!100010 octal are assigned in the
Software Definitions. Group 2.

MESSAGE outputs a canned message from the MESSAGES file to the

regnant user’s output buffer. See Appendix 2 for calling sequence

and available messages. |

OUTTEXT outputs a given text string to the regnant user’s output

buffer. See Section 9.7 for calling sequence.

QUEUE CHARACTER queues an input character to be processed and

entered in a port’s input buffer, or requests an output character

from a port’s output buffer, or queues an interrupt task to be
executed. See Section 11.6 for calling sequences. Core resident.

START INPUT enables input from the reqnant user’s terminal into

the user’s input buffer. See Section 9.7 for calling sequence.

START OUTPUT initiates output from regnant user’s output buffer to

the user’s terminal. See Section 9.7 for calling sequence.

OUTPUT BYTE stores a byte in the regnant user’s output buffer.

see Section 9.7 for calling sequence.

WAIT FOR OUTPUT NOT ACTIVE assures that a previous output has been
completed. See Section 9.7 for calling sequence.

Copyright 1978 | | Interactive I/0

Educational Data Systems Al-3 | 25 APR 78

Category #2 -- Mathematical Functions. These arithmetic and
transcendental subroutines are available for use by a task or
processor. Note that most are group 2, and thus are available
only on IRIS systems including Business BASIC.

Mi,

ADD DECIMAL INTEGERS adds two unsigned 4-digit BCD (Binary Coded
Decimal) integers. The calling sequence is LDA 3,-DEC followed by
JSR @=2,3 with the augend in AO and the addend in Al. The sum
will be returned in AO, and the carry out will be in bit 15 (the

most significant bit) of A2. For multiple precision addition, the
carry may be propagated by incrementing the addend in Al (the
least significant BCD digit of the addend may be ten). Group 2.

BINARY DIVIDE forms the !16=—bit quotient of two unsigned [16-bit
binary integers and also returns the 16-bit remainder. The

calling sequence is BINDIVIDE with the divisor in AO and the
dividend in Al. The quotient is returned in A3 and will be equal
to the integer portion of dividend/quotient. Al will contain the
remainder which will be less than the divisor, which is returned

unchanged in AO.

BINARY MULTIPLY forms the 32-bit product of two unsigned 16-bit
binary integers. The calling sequence is BINMULTIPLY with the
multiplier in AO and the multiplicand in A2. The 32-bit product
is returned in registers AO and A3 with the most significant half
in A3. Registers Al and A2 are unchanged.

BREAK DECIMAL NUMBER separates the floating point value in the
Decimal Accumulator (DA) into its integer and fractional parts.
The calling sequence is DECIMAL with octal 20 in AO. The

fractional portion is left in DA and is normalized, and the

integer portion of the value is copied into the Decimal Buffer
area (DB) in six-word unpacked form. Group 2.

DECIMAL ADD adds the value from a specified location in core to
the Decimal Accumulator (DA), and leaves the sum in DA. The
calling sequence is DECIMAL with 3 in AO, the number type of the

augend in Al*, and the core address of the augend in A2. Group 2.

x The number types are as follows?

Al Number Type Remarks

O unsigned decimal integer range O to 9999

signed decimal integer range +7999

2 2~word floating decimal six digit mantissa

3 3-word floating decimal ten digit mantissa

4 4-word floating decimal 14 digit mantissa

5 6-word unpacked decimal 15 digit mantissa

Add 10 octal to the number type for reverse divide or reverse ome
subtract. Octal 10 may be added to the number type for other

decimal operations without bad effect. See Figure |!.6 for details
on the number types.

Math Functions Copyright 1978
25 APR 78 Al-4 Educational Data Systems

DECIMAL DIVIDE divides the value in the Decimal Accumulator (DA)

by the value at a specified location in core, and leaves the
quotient in DA. The calling sequence is DECIMAL with 4 in AO, the

number type of the divisor in Al*, and the core address of the

divisor in A2. Group 2.

DECIMAL DIVIDE REVERSE divides the value at a specified location

in core by the value in the Decimal Accumulator (DA), and leaves
the quotient in DA. The calling sequence is DECIMAL with 4 in AO,

the number type of thé dividend plus 10 octal in Al*, and the core
address of the dividend in A2. Group 2.

DECIMAL MULTIPLY multiplies the value in the Decimal Accumulator
(DA) by the value at a specified location in core, and leaves the
product in DA. The calling sequence is DECIMAL with 5 in AO, the
number type of the multiplier in Al*, and the core address of the
multiplier in A2. Group 2.

DECIMAL STORE stores the value in the Decimal Accumulator (DA) at

a specified location in core. The calling sequence is DECIMAL
with O in AO, a number type specifying the form of storage in Al*,

and the core address in A2.. Group 2.

DECIMAL SUBTRACT subtracts the value at a specified location in

core from the value in the Decimal Accumulator (DA), and leaves

the difference in DA. The calling sequence is DECIMAL with 2 in
AO, the number type of the minuend in AI*, and the core address of

the minuend in A2. Group 2. |

DECIMAL SUBRTACT REVERSE subtracts the value in the Decimal

Accumulator from the value at a specified location in core, and
leaves the difference in DA. The calling sequence is DECIMAL with
2 in AO, the number type of the subtrahend plus 10 octal in AI*,

and the core address of the subtrahend in A2. Group 2.

DECIMAL LOAD loads the Decimal Accumulator (DA) from a speci fied

location in core. The calling sequence is DECIMAL with | in AO,

the number type of the argument in. AI*, and the core address of
the argument in A2. Group 2.

DECIMAL WRAPUP may be called after other decimal operations to

ensure that the last store into core by the hardware Decimal

Arithmetic Unit (DAU) has been completed before computation is

resume. The calling sequence is DECIMAL with octal 14 in AO.

roup 2.

FIX DECIMAL TO BINARY converts a floating-point decimal number to

binary form. The calling sequence is FIX without regard to the

contents of any registers. Skip return is normal with the integer

portion of the value in DA in Al as an unsigned 16-bit binary

integer, and the sign in AO (O for positive or | for negative).

Return will be non-skip if the absolute value in DA exceeds 65535

decimal. Group 2.

* (see page Al-4)

Copyright 1978 | Math Functions

Educational Data Systems Al—-5 | 25 APR 78

GET SIGN OF DA may be used to determine the sign of the value in

the Decimal Accumulator (DA). The calling sequence is DECIMAL
with octal 13 in AO. - The sign of the value in DA will be returned

in bit O (the least significant bit) of Al, and the rest of Al
will be zero. Group 2.

FLOAT BINARY TO DECIMAL converts a signed binary integer to

floating-point decimal form. The calling sequence is FLOAT with a
I6-bit unsigned binary integer in Al and the ‘sign in AO (0 for

positive or | for negative). The result is placed in the Decimal
Accumulator (DA). Group 2.

LOAD DAU ACCUMULATOR will load the software Decimal Accumulator
(DA in REX page zero) into the hardware Decimal Arithmetic Unit

(DAU). The calling sequence is LOADDA without regard to the

contents of any registers. Registers AO, Al, and A2 are not
changed by LOADDA. This call must be made to load the contents of
DA, DAS, and DAC into the DAU if the value in any of these cells
has been changed. Group 2.

SET SIGN OF DA will force the sign of the Decimal Accumulator (DA)
to either state desired without changing the absolute value in
DA. The calling sequence is DECIMAL with octal !2 in AO and the
desired sign in Al (zero for "+" or one for "-"). Group 2.

SET INFINITY IN DA will set “plus infinity" in the Decimal
Accumulator (DA), where “plus infinity" is the largest value that
can be represented in floating point decimal (9.99999x10t62). The
calling sequence is DECIMAL with octal 17 in AO. On return, A2
will be unchanged. The error flag (ERRF) in REX page zero is set
to non-zero. Group 2.

SET ONE IN DA will set the value +! in the Decimal Accumulator
(DA). The calling sequence is DECIMAL with octal 16 in AO. Qn
return, A2 will be unchanged. Group 2.

SET ZERO IN DA will set the value O in the Decimal Accumulator
(DA). The calling sequence is DECIMAL with octal 15 in AQ. Qn
return, A2 will be unchanged. Group 2.

STORE DAU ACCUMULATOR stores the accumulator of the hardware
Decimal Arithmetic Unit (DAU) in the software Decimal Accumulator
(DA in REX page zero). The calling sequence is STORDA without

regard to the contents of any registers. . This call must be made

prior to manipulation of DA, DAS, or DAC by any processor or
subroutine, whether a hardware DAU is actually installed or not.

On return, AO will contain the first word of DA, Al will contain
the value in DAS (the sign of DA), and A2 will be unchanged.
Group 2.

Math Functions Copyright 1978
25 APR 78 Al=-6 Educational Data Systems

SUBTRACT DECIMAL INTEGERS subtracts two unsigned 4-digit BCD

(Binary Coded Decimal) integers. The calling sequence is LDA

3, —DEC followed by JSR @-1,3 with the subtrahend in AO and the

minuend in Ale The difference will be returned in AO, and the

borrow out will be returned in bit 15 (the most significant bit)

of A2. That is, if (Al) did not exceed (AO) then AO will contain

(AO)-(Al) and A2C15] will be zero; if (Al) did exceed (AO) then AO

will contain (AQO)+I0000=—(AIl) and A2(€15] will be one. For multiple

precision subtraction, the borrow may be propogated by

incrementing the minuend in Al (the least significant BCD digit of

the minuend may be ten). Group 2. |

TRANSCENDENTAL FUNCTIONS provide for evaluation of the square

root, natural log, exponential, sine, cosine, tangent, and

arctangent functions. The calling sequence requires three words

consisting of STORDA followed by CALL Function, where "Function"

is one of the following seven subroutine names?

PSQRF (square root function)

PLOGF (natural log function)

PEXPF (exponential function)

PSINF (sine function)

PCOSF (cosine function)

PTANF (tangent function)

PATNFE (arctangent function)

The argument of the function must be in the Decimal Accumulator
(DA in REX page zero or the hardware DAU accumulator), and the

result will be returned in DA. The argument for the square root
function may be any positive number’ if the argument is negative
then the error flag (ERRF) will be set, and the square root of the
absolute value will be returned in DA. The argument for the log
function may be any positive number; if the arqument is <1l0t(-16)
then DA will be set to -9.99999x10t623 if the argument is <0 then

the error flag will be set also. The exponential function is
valid for arguments in the range +1483 if the argument is greater

than +148 then the error flag will be set and DA will be set to
+9 .99999x10t62, or if the argument-is less than -148 then DA will
be set to zero with no error indication. The argument for the

sine, cosine, or tangent functions may be any angle expressed in

radians, but the result will be most accurate if the argument is
in the range zero to two pi. All argument values are valid for

the arctangent functions the result will be an angle in the range

+(pi/2) radians. Group 2. .

Copyright 1978 Math Functions

Educational Data Systems Al-7 : 25 APR 78

Category #3 -- Disc and File Access. These subroutines are

available to a processor or task and should be used for all
disc and file access on an IRIS system. Note that many are

group 3, and thus are not available on all systems. Section
9.8 contains more information on many of these subroutines.

ALLOCATE allocates blocks to a random disc file. The calling
sequence is CALL ALLOCATE with the number of additional blocks

desired in AO, the file header block in HBA, and a pointer in A2

pointing into the header where the first disc address is to be

entered. If the file is extended then A2 may point into a header
extender in HXA. Skip return is normal, indicating that the
blocks have been allocated. A non-skip return indicates that the
allocation was not successful, and A3 may contain status 10 or Il.

ALLOCATE CONTIGUOUS is called only by Build File when creating a

contiguous disc file. Group 3.

BUILD FILE creates a new file, which may replace an old file by

the same Filename if it is of the same type, on the same account,
and the Filename given is terminated by an exclamation mark. The

calling sequence is CHANNEL BUILD with a channel number in AO, the
byte address of the Filename string in Al, and a pointer to a
header information table in A2. The header information table
consists of six words as follows:

Word #0: TYPE File type word

Word #13: NBLK Number of blocks (1 < NBLK < 201 octal)
Word #2: STAD Starting address (stand-alone file only)

Word #3: COST Charge to other users in dimes (BCD)

Word #4: UNIT Logical Unit, or -I to use regnant user’s

Word #5: .FMAP Pointer to format map, or zero if none

If TYPE=37 a formatted data file will be built unless the Filename
string indicated a contiguous file. The FMAP pointer may be

indirect. Any protection, cost, or Logical Unit number given in
the Filename string will be used in preference to those given in

the table. Normal return is skip with the Real Disc Address of

the new file’s header in AO, the byte address of the Filename

string terminator in Al, and the address of the channel in Ae.

The following status values are possible in A3 on a non-skip

return: O, 1, 3, 4) 5, 6» 7, 10, 11, 12, 13, 14. See Appendix 2

for the meaning of these errors. On any non-skip return, the file
has not been built.

BUILD DEVICE FILE is identical to Build File except that it will

allow a Filename to begin with a dollar sign. The calling
sequence is CHANNEL BILDD with all other parameters identical to
BUILD above.

Disc & File Access Copyright 1978
25 APR 78 | Al-8 Educational Data Systems

CHARGE charges a user for access to another account’s file. The

calling sequence is CALL CHARGE with the file’s Logical Unit

number in AO, and its Real Disc Address in Al. The Last Access

Date cell in the file’s header is updated, its Number of Times
Accessed Counter (NTAC) is incremented, and the COST (if any) is
added to the total charges (CHGS) in the header and to the "net

accrued charges" cells in the regnant user’s entry in the ACCOUNTS

file on Logical Unit zero.

CHECK "BSA CHANGED" FLAG must be called before new information,is

stored in BSA. The calling sequence is CALL CBSA without regard
to the contents of any registers. The data in the Block Swap Area

(BSA) will be written on the disc at the disc address contained in
the DBSA cells if and only if the BSA Change Flag (BSACF in REX
page zero) is non-zero, and BSACF will be zeroed. DBSA is set by
the system whenever a block is read into BSA, and the calling

routine need only put a non-zero value in BSACF to cause the block
to be written back on the disc before BSA is used for some other

purpose. Core resident.

CHECK CHANNEL determines whether a channel is in use. The calling

sequence is CALL CHKCHANNEL with a channel number in AO, and that
channel of the regnant user is examined. Normal return is skip if
the channel is in use, with the disc address of the file’s header
in Al and the address of the channel in A2. Non-skip return if
channel not in use, with possible status values being O or Il.
Core resident.

CHECK COPY PROTECTION determines whether a file is copy

protected. The calling sequence is CALL CHKCP with the file’s

ACNT word in AO and its TYPE word in Al. Access will be granted

(indicated by a skip return) if the file’s account number is the

same as the regnant user’s account number, if the regnant user is

privilege level three or has a higher privilege level than the

file, or if the protection specified in the file does not include

copy protection. Non-skip return if access not granted. Core

resident.

CHECK READ PROTECTION determines whether a file is read

protected. The calling sequence is CALL CHKRP, but it is

otherwise the same as Check Copy Protection. Core resident.

CHECK WRITE PROTECTION determines whether a file is write

protected. The calling sequence is CALL CHKWP, but it is

otherwise the same as Check Copy Protection. Core resident.

CLEAR ALL CHANNELS clears all data channels of the reanant user’s

port. The calling sequence is CALL ALLCLEAR without regard to the

contents of any register. Clear Channel is used to clear each |

data channel on the regnant user’s port. Return is non-skip, and

there are no error indications. Core resident.

Copyright 1978 Disc & File Access

Educational Data Systems Al-9 | 25 APR 78

CLEAR CHANNEL clears a specified data channel. The calling

sequence is CHANNEL CLEAR with a channel number in AO. This

function is identical: to Close Channel unless a file was being

built on the channel and has never been closed$ in this case, the

new file will be deallocated, and any old file that it may have

been replacing will be restored to normal status.

CLOSE CHANNEL closes a specified data channel. The calling

sequence is CHANNEL CLOSE with a channel number in AQ. If a file

was being built on the specified channel then it will be made

accessible to other users, and any file being replaced by the new

file will be deleted at this time unless it is open elsewhere.

Normal return is skips non-skip returns are possible with error

status O or 2.

CONVERT LOGICAL TO REAL ADDRESS converts a logical disc address to

a Real Disc Address. The calling sequence is CALL CLRA with a
LUFIX pointer in AO and a pointer to a logical address table in

A2. The logical disc address must consist of a logical cylinder

number at (A2), a logical track number at (A2)+i, and a logical

sector number at (A2)+2. The conversion factors in the LUFIX are

used to combine the logical values into the correspondina Real

Disc Address which is returned in Al. The logical address table

is unchanged. Core resident.

CONVERT REAL TO LOGICAL ADDRESS converts a Real Disc Address to a

logical disc address. The calling sequence is CALL CRLA with a

LUFIX pointer in AO, a Real Disc Address in Al, and a pointer to a

logical disc address table in A2. The conversion factors in the

LUFIX are used to separate the given Real Disc Address into its

logical components, which will be stored in the logical address

table as described for input to Convert Logical To Real Address.

On return, Al contains the logical sector number, A2 is unchanged,

and A3 contains the logical track number. No checking is done for

an illegal address. Core resident.

DEALLOCATE deallocates blocks from a random disc file. The

calling sequence is CALL DALLC with a file header in HBA, the

desired number of blocks to be in the file in AO, and a pointer

into the header in A2. Disc blocks will be deallocated starting

at (A2) and working back toward the beginning of the file until
(AO) blocks remain, and the file’s owner is credited for the freed

blocks. (A2) is ignored if (AO) is zero.

DELETE KEY is used only by the Search subroutine for the purpose
of removing a key from a directory. |

Disc & File Access Copyriaht 1978

25 APR 78 Al=-10 Educational Data Systems

DELETE FILE deletes any file other than a processor, a driver, or

a permanent system file. The calling sequence is CALL DELETE with

a Logical Unit number in AO and a byte pointer to a Filename

string in Al. If (AO) is -I then the regnant user’s Logical Unit

will be assumed. The Filename string may not be in HBA. The

Filename is immediately removed from the specified INDEX, but the

file will not be deallocated until it is not open on any user’s

channel. Normal return is skip with the byte address of the

Filename terminator in Al, and AO will be non-zero if the file is
being replaced. Possible non-skip error status values are 7, |3,

15, 17, 22, and 24 (see Appendix 2).

DELETE PROCESSOR deletes any file except a permanent system file.
The calling sequence is CALL PDELETE with registers as described
for Delete. The operation is identical to Delete, except that a
processor or driver file may also be deleted.

DIRECTORY is used to set up an indexed file and to maintain the
free record list for the file. Used only by Business BASIC for
the mode zero functions of the SEARCH statement. Group 3.

EXTEND FILE increases a random file’s size to greater than 128
data blocks. The calling sequence is CALL EXTEND with a

non-extended random file’s header in HBA. Normal return is skip
with the modified header in HBA, the header extender block in HXA,
the file’s Logical Unit number in AO, the Real Disc Address of the
extension block in Al, and the address of HXA in A2. The callina

routine must write the new extender and the modified header to the
disc. Error status values !0 and I! are possible on a non-skip

return.

FIND FILE searches the INDEX of a specified Logical Unit for a

given Filename. The calling sequence is CALL FFILE with a Logical

Unit number in AO and a byte pointer to the Filename string in Al.

If the Filename string is supplied in the form number/Filename

then (AO) is ignored and only the Logical Unit specified by that

number will be searched otherwise, only the Logical Unit

specified by (AO) will be searched. Return is skip if the
Filename is found in the INDEX of the specified Logical Unit, or

non~skip if the Filename is not found. Error status values 13,

14, and 16 are possible on a non-skip return, but a larger value

in A3 means that the Filename simply was not found. On such a

return (or on a skip return) the INDEX block containing the

Filename (or entry for a new Filename) will be in BSA, AO will

contain the Logical Unit number, A2 will contain the Real Disc

Address of the INDEX block in BSA, and A3 will contain a pointer

into BSA to the actual INDEX entry.

FIND LOGICAL UNIT TABLES locates the Logical Unit Table entry and

the fixed and variable information tables (LUFIX and LUVAR,

respectively) for a given Logical Unit number. The calling

sequence is FINDLUT with a Logical Unit number in AO. Return is

non-skip with 14 in A3 if the Logical Unit is not active;

otherwise, skip return with the address of the Logical Unit Table

entry in Al, a pointer to the LUFIX table in A2, and a pointer to

the LUVAR table in A3. Register AO is unchanged in either case.

Copyright 1978 Dise & File Access
Educational Data Systems Al-11 a 25 APR 78

FIND OPEN FILE scans all channels on all ports to determine

whether another user has a designated file or any file ona

designated Logical Unit open. The calling sequence is a two-step

process. First CALL FOFI with a Logical Unit number in AO and the

Real Disc Address of the file in question in Al. Return is

non-skip with a pointer to FOFC in A3. Now CALL FOFC (or JSR 0,3

if A3 has not been changed) to look for a channel where the file

is open. Return is non-skip if no such channel is found. If the

file is found to be open anywhere, then return is skip with the

port’s PCB address in AO, the address of the channel less CHM4 in

A2, and the FOFC entry address still in A3. If Al was zero when

FOFI was called, then FOFC will look for any file open on the

specified Logical Unit. Core resident.

FLUSH BUFFER POOL assures that there are no dirty pages in the

disc block buffer pool. The calling sequence is LDA 2,.FALT

followed by JSR @-3,2 without reaard to the previous contents of

any register. FLUSH scans the entire buffer pool table, writes

each dirty page to its respective disc address, and clears the

dirty page flag. FLUSH is used by FAULT, SHUTDOWN, and REMOVE.

FIX DIRECTORIES adjusts the Real Disc Addresses in the directories

of an indexed file after the file has been moved. Used only by

COPY, CLEANUP, and $MTA. Group 3.

GET RECORD FOR READ locates a designated record ina file and

brings the data block into core. Used only by Read Item and Read

Contiguous.

GET RECORD FOR WRITE is identical to Get Record For Read, except

that it will error return if the file is write protected. Used

only by Write Item, Write New Item, and Write Contiguous.

Disc & File Access Copyright 1978

25 APR 78 Al-12 Educational Data Systems

OPEN opens a file or a device on a channel. OPEN FOR UPDATE opens

a file (but not a device) on a channel with the intent of writing
or updating data. OPEN FOR REFERENCE opens a file or a device for

reference only’ writing will not be allowed. OPEN AND LOCK opens

a file or a device and locks out all other users. For OPEN the
calling sequence is CHANNEL OPEN with a channel number in AO, the

byte address of a Filename in Al, and a pointer to a channel

control block in A2. The channel control block consists of two
words as follows?

Word #0: expected file type, or -I for any type

Word #1: Logical Unit number, or -! if the regnant

user’s assigned Logical Unit is to be used

If the desired file is found, is not read protected, and is of the

expected type, then it is opened on the specified channel. A

default file type 37 in word #0 will allow opening any file of

type 30 through 36. Opening a type 36 file (a device driver)
causes a JSR to the driver’s INIT routine. If the file is write

protected then the write locked status is set in the channel.
CHARGE is called by OPEN to charge the user for access to the

file. If a Logical Unit number is given in the Filename string

then this overrides the unit number given in CCB word #1. Skip

return is’normal with the Real Disc Address of the file’s header

in AO, the byte address of the Filename terminator in Al, and the

core address of the channel in A2. The following status values

are possible in A3 on a non-skip return? 0, I, 13, 14, 15, I7, 20,

21, 25, 34, 35, 36. See Appendix 2 for the meanings of the

errors. On any non-skip return, the file has not been opened.

The calling sequence for the other modes of OPEN are the same as

above except substitute the word OPENUPDATE, OPENREF, or MPENLNMCK

for the word OPEN following the word CHANNEL. All other aspects

are the same except for the following:

OPENUPDATE will return an error 22 if the file is write

protected. Also, OPENUPDATE will open a driver file itself

rather than the device interfaced by the driver.

OPENREF ignores the read protection, does not call CHARGE, and

does not JSR to a driver’s INIT routine. The write locked bit
is unconditionally set in the channel status word without

regard to the file’s protection.

OPENLOCK will return an error 22 if the file is write

protected or will return error 25 if the file is open

elsewhere.

Copyright 19/78 Disc & File Access
Educational Data Systems Al-13 | 25 APR 78

READ CONTIGUOUS reads data from a contiguous disc file or a text

file. The calling sequence is identical to that of Read Item

except that a byte displacement into the record must be given in
place of the item number. For a text file, the “record length" is
assumed to be 256 words (512 bytes), and record number ~2
functions the same as record number -!I for sequential access
except that reading will not be terminated by a RETURN code but

will attempt to fill the entire destination area. Group 3.

READ DISC BLOCK reads one block (256 words) from a Logical Unit

into coree The calling sequence is READBLOCK with a Logical Unit
number in AO, a Real Disc Address in Al, and a core address in A2.

Return is non-skip with registers AO, Al, and A2 unchanged after

the block has been read into core at the specified location. A

trap will occur in the case of an inactive Logical Unit or an

illegal disc or core address. Core resident.

READ FILE HEADER INFORMATION is used only by the CALL 97 statement

in Business BASIC. Group 2.

READ ITEM reads an item from a file or from a peripheral device.

The calling sequence is CHANNEL READITEM with a channel number in

AO and a pointer to an Item Control Block (ICB) in A2. The ICB

has the form

Word #0: record number (origin zero)

Word #1: item number (origin zero)

Word #2: item type (see Section 1!.5)

Word #3: desired length (number of Words or bytes)

word #4: destination pointer (byte address if string)

One item is accessed from the file or peripheral device open on

the specified channel, and the item is stored at the location

specified in word #4 of the ICB. The amount of data transferred

will be the smaller of the specified destination size in word #3

or the data supplied by the file or the device. If the item

length is smaller than the destination area then a non-string item

will be padded with zeroes or a string item will be terminated

with a single zero byte. If reading a string item then the byte

address given in word #4 of the ICB must be relative to (BBA).

Return is skip if successful with the number of words or bytes

actually transferred in AO, and A3 will be zero if and only if a

text file is being read. Return is non-skip with error status in

A3 if not successful.

neeqgaeee =e @2@

Disc & File Access | Copyright 1978

25 APR 78 Al-14 Educational Data Systems

RELEASE BLOCK is used only by the SEARCH subroutine to release a

block of a directory back to the free chain. Group 3.

SEARCH is used to search a directory of an indexed file or to
insert or delete a key entry in such a directory. Used only by

Business BASIC for the non-zero modes of the SEARCH statement.

Group 3.

SHUFFLE is used only by the Search subroutine to reorganize a
directory when an insertion overflows a block of a directory.
Group 3.

UNLOCK RECORD unlocks a record that has been locked by a file

access. The calling sequence is CALL UNLOCK with a channel. number

in AO. Normal return is skip, having unlocked any record which

may have been locked on the specified channel. Non-skip return is
possible if the channel number is illegal (A3=0) or if the channel
is not open (A3=2). Core resident.

WRITE CONTIGUOUS writes data into a contiguous disc file or a text

file. The calling sequence is identical to that of Write [tem

below except that a byte displacement into the record must be
given in place of the item number. For a text file, the "record

length" is assumed to be 256 words (512 bytes), and record number

-2 functions the same as record number -! for sequential access.
Group 3.

WRITE DISC BLOCK writes one block (256 words) from core to a

Logical Unit. The calling sequence is WRITBLOCK with the

registers as specified for Read Disc Block above. Return is
non-skip with registers AO, Al, and A2 unchanged after the

specified block has been written to the disc. A trap will occur

in the case of an inactive Logical Unit or an illeqal disc or core

address. Core resident.

WRITE ITEM writes an item into a file or to a peripheral device.

The calling sequence is CHANNEL WRITITEM with the registers and

ICB identical to that described for. READITEM opposite. The number
of words or bytes transferred will the the smaller of the source

length or the file item size. If the source length is smaller,

then a non-string will be padded with zeroes or a string will be

terminated with one zero byte. Rteurns are the same as for

READITEM except that the contents of AO are meaningless.

WRITE NEW ITEM is used only by Write Item when automatically
formatting a new formatted disc file by writing sequentially into

the first record. Group 3.

Copyright 1978 Disc & File Access

Educational Data Systems Al-15 : 25 APR 78

Category #4 -- Swapping and Tasking. These subroutines are

available for use by processors and tasks. All swapping and

tasking on an IRIS system must be done by use of these system

calls. Most subroutines in this category are group | and are

thus available on all IRIS systems.

ACTIVE FILE SETUP is used by a processor’s swap-out subroutine to
set up the active file header for the areas of core that are to be

swapped out. See Section 9.5 for calling sequence.

BUMP USER bumps the regnant user from core. The calling sequence

is BUMPUSER without regard to the contents of any registers. The

regnant user will be bumped unconditionally, and control will
later be transferred to the next location following the BUMPUSER

instruction when another time slice is granted. An alternative

calling sequence allows control to be transferred to any address x
at the next time slice it is LDA 3,x followed by JMP @.BUMP. The

processor should do a bump whenever its time slice is used up’

specifically, it should periodically execute the instruction

sequence

LDA O,RTL

NEGL# 0,0,SNC

BUMPUSER

DEQUEUE TASK removes a task from the priority task queue. See

Section 8.12 for calling sequence.

GET OR RELEASE A FREE NODE acquires a node from the free node

chain or releases a node no longer needed back to the chain. Each

node is ten words decimal. The callina sequence is FREENODE with

zero in A2 if a node is desired or with a pointer to the first
word of the node if a node is being released. When acquiring a

node, the node pointer is returned in A2. Al is unchanged in any

case, and return is non-skip.j Core resident.

LINK PROGRAMS is used only by BASIC’%s CHAIN statement.

LOAD USER loads the regnant user’s. active file into core if its

type matches the user’s processor. See Section 9.4 for calling

sequence. Core resident.

Swapping & Tasking Copyright 1978

25 APR 78 Al-16 Educational Data Systems

AEN,

PAUSE bumps the regnant user for a specified time duration or

(optionally) until a signal is sent to the user in the pause

state. The calling sequence is

CALL

SIGPAUSE

BUMPUSER

with a delay value (in tenth-seconds) in Al. AO must contain 3

for an unconditional pause or 4 if it is desired to terminate the

pause if a signal is sent to this port. Group 2.

QUEUE CHARACTER (Category #1) may also be used to queue an

interrupt task. See Section 11.6 for calling sequence.

QUEUE TASK puts a task on the priority task queue. See Section

8.11 for calling sequence.

REQUEUE is used only by the system to re-order the task queue as a

result of dynamic priorities.

SCOPE exits from a processor. The calling sequence is CALL SCOPE

without regard to the contents of any registers. Control is not

returned'to the processor except for one last JSR to its swap-out

subroutine. Core resident.

START INPUT will cause a user to be bumped. See Category #1].

WAIT FOR OUTPUT NOT ACTIVE may cause a user to be bumped. see

Category #l.

Copyright 19/78 Swapping & Tasking

Educational Data Systems Al=-I7 | 25 APR 78

Category #5 -- Miscellaneous. These subroutines are available
for use by all modules added to an IRIS system. This is
merely a catch-all catagory for subroutines that do not fit in

any of the four previous catagories. Most are in group |, and

are thus available on all IRIS systems.

ACCOUNT LOOKUP finds a user’s account entry in an ACCOUNTS file
via the Account I.D., account number, or entry position (record
number). The calling sequence is CALL ACNTLOOKUP with a mode
designator in AO and a pointer to a 256-word buffer area (may be
BSA) in A2. AO prescribes the mode as follows:

If (AQ)=0 then (Al) = account entry position

If (AO)=-! then (Al) = BCAccount ID string)

If (AO)=I then (Al) account number (bits O-13)

If (AO)>1 then (Al) = account number, and HBA must contain any
file header: the UNIT cell of that header indicates the
Logical Unit on which to look up the account number.

Return is non-skip if the account is not found. A skip return
gives the account entry position in AO, the disc address of the

ACCOUNTS block in Al, and a pointer to the account entry (in the
specified buffer area) in A2, and status 40 (octal) in A3.

BREAKPOINT is used only by the system when a DSP breakpoint is
encountered in a processor.

COMPARE STRINGS tests whether two strings are equivalent. The
calling sequence is CALL CSTR with the absolute byte addresses of
the strings to be compared in AO and Al. Return is non-skip with

the terminating byte addresses in AO and Al, and an equivalance

indicator in A3 (zero if equal or non-zero if not equal).

Misc. Subroutines Copyright 1978

25 APR 78 Al-18 Educational Data Systems

CONVERT ASCII TO DATE scans an ASCII string, which must represent

a date and time in standard format, and converts it to two binary

words representing “hours since I-!-76" and “part of hour in

tenth-seconds". The calling sequence is CALL CNVAD with the byte

address of the string in Al. The string may represent the date in
either of two forms as follows:

FEB 20, 1977 11809856

or

7742420, 11,09, 56

where the second string is the same form as requested when an IPL

is performed. In either case, the first two digits of the year,

the "seconds" value, and all leading zeroes are optional. Spaces,

commas, and colons are interchangable as field separators, and the

string may be terminated with a zero byte, a RETURN code, or any

other character that is not acceptable as part of the date/time

representation. Normal return is skip with the hours after I-I-/6

in AO, the part of hour in Al, the terminating code in A2, and the

byte address of the next byte after the terminator in A3. Return
is non-skip if an error is detected in the string, with the

registers containing any partial results as described above.

CONVERT DATE TO ASCII converts the two word binary date into an

ASCII string in standard format. The calling sequence is CALL
CNVDA with a pointer to the pair of clock words (hours after
l-1~76, and part of hour in tenth-seconds) in A2, or zero in A2 if

the system clock is to be used. Al must contain the byte address
where the string is to be stored, or zero if it is to be output to
the regnant user’s output buffer. If Al is non-zero then AO must

contain the destination string size (not less than 27 octal). The

string will be in the first form shown for CNVAD above. Return is
skip if successful, or non-skip if an illegal time value is given
(second word exceeds 35999 decimal).

CONVERT DATE & TIME is used only by the CALL 99 statement in

Business BASIC. This subroutine uses Convert Date Jo ASCII and

Convert ASCII To Date.

CONVERT PCB POINTER TO PORT NUMBER determines the numher of a port

from the location of its Port Control Block. The calling sequence

is CALL CPPPN with a PCB pointer in AO. Return is non-skip if

(AO) is not a valid PCB pointer’ otherwise return is skip with the

port number in both AO and Al. Core resident.

CONVERT PORT NUMBER TO PCB POINTER determines the location of the

Port Control Block for a given port number. The calling sequence

is CALL CPNPP with a port number in AO. Return is non-skip if

(AQ) is not a valid port number; otherwise skip return with the

port’s PCB pointer in AO. Core resident.

Copyright 1978 Misc. Subroutines

Educational Data Systems AlW19 : 25 APR 78

DECIMAL INPUT CONVERSION is identical to Decimal Input described
in Category #Il except that a byte address is given in Al when
calling the subroutine, and the ASCII string at that byte address
is scanned rather than using Access Input Byte. Returns are also

the same, except that Al will contain the byte address of the
first character not converted. If (BBA) is zero then (Al) must be
an absolute byte address, but if (BBA) is non-zero then (AI) must

be a byte displacement from (BBA). Group 2.

DECIMAL OUTPUT CONVERSION is identical to either Decimal Output or
Formatted Decimal Output described in Category #1, except that a
pointer to a two-word control table is given in Al when the
subroutine is called. The first word of the table is a starting

byte address where the output string is to be stored (instead of
using Store Output Byte). The second word of the table is the

maximum number of bytes that may be output to that location. In
the non-formatted case, if the byte count is exceeded then control
returns to the caller with the output incomplete. In the

formatted case, if the byte count is exceeded then a non-skip
return is given with the output incomplete. In any case, on

return, Al will contain the next byte address after the last byte

stored. If (BBA) is zero then (Al) must be an absolute byte

address, but if (BBA) is non-zero then (AI) must be a byte

displacement from (BBA). Group 2.

FLAGCHANGE allows changing and testing individual bits of a flag
word in core. The calling sequence is

FLAGCHANGE

command+displacement+skip

mask

with a table base pointer in register A2. The word "command" must

be replaced by either SET or RESET or TOGGLE indicating that the

selected bits are to be set to ones, reset to zeroes, or

complemented, respectively. The word "displacement" is either a

number or a symbol equated to a number giving the displacement

from the table pointer in A2 to the. flag word. The word "skip" is

either SKIPZ or SKIPO or is omitted, indicating that a skip is

desired if all of the selected bits are zero or if any of the

selected bits are one, respectively, as a result of the change, or

that no skip is desired. The "mask" word contains ones in the bit

positions of interest in the flaa word. Note: for toggle, only

one bit in the mask word may be a one.

GET BYTE accesses one byte from a given location in core. The

calling sequence is GETBYTE with any absolute byte address in

register Al. The byte is returned in register A2, and the top

half of A2 will be zero. Register Al is unchanged. See also

XGETBYTE on page Al-22. |

Misc. Subroutines Copyright 1978
25 APR 78 Al=20 Educational Data Systems

IS (A2) A DIGIT? determines whether register A2 contains an ASCII

code for a decimal digit. The callina sequence is ISA2DIGIT with

an ASCII code in A2. ‘Return will be non-skip if the ASCII code

does not represent a decimal digit (not in the range 260 to 27|

octal). Return is skip if it is a digit, and Al will contain the

ASCII code for a zero, so that a SUB 1,2 instruction will convert

the ASCII code to its binary value. A? is unchanged in any case.

AO is unused and unchanged.

IS (A2) A LETTER? determines whether register A2 contains an ASCII

code for a letter. The calling sequence is ISA2LETTER with an
ASCII code in A2. If the character is neither an upper case nor a

lower case letter then return is non-skip with A2 unchanged. If
the code is a letter then it is converted to a number’ i.e. |! for
either "A" or "a", 2 for "B" or "b", etc., and return is skip.

After a skip return, an ADD 1,2 instruction will restore the

original ASCII code in A2.

MOVE WORDS moves the contents of a group of words in core to

another area in core. The calling sequence is CALL MOVEWORDS with
the first address of the source area in AO, the last address of

the source area in Al, and the first address of the destination

area in A2. Return is non-skip. Core resident.

MOVE BYTES moves a group of bytes in core to another area in core.

The calling sequence is CALL MOVBYTES followed by a mode word

containina relative address flags in the top two bits (see below)

and an alternate terminating code in the lower 8 bits. AO is the
byte address of the beginning of the source area, Al is the byte

address of the end of the source area, and A2 is the byte address

of the beginning of the destination area. Bytes are moved from

the source to the destination area until either a) the source is

exhausted, b) a zero byte is transferred, or c) a byte equal to

the alternate terminator code given in bits O-7 of the mode word

is transferred. Return is non-skip with the source byte address

of the last byte transferred in AO, the number of bytes not

transferred in Al, and the last byte transferred in A2. If bit 15
of the mode word is one then the source byte addresses (in AO and

Al) are relative to the Byte Base Address in BBA$ if bit 14 of the

mode word is one then the destination byte address (in A?) is

relative to (BBA). If (BBA)=0O then all addresses are taken as

absolute regardless of these flag bits. Core resident.

PASSWORD COMPARE tests whether the user supplied the correct

password. The calling sequence is CALL PASSCOMPARE with the byte

address of the correct password in Al. Access String Byte is used

to get characters from the regnant user’s input buffer for

comparison with the string given. If the password entered by the

user ends with a RETURN or CTRL E code at the same time that the

given string ends with a zero byte then the return will be skip

with the terminating character in A2. Return is non-skip with a

CTRL E code in AO if no password was entered, or with the first

mismatched byte of the correct password in AQ if an incorrect

password was entered.

Copyright 1978 Misc. Subroutines

Educational Data Systems Al-21 : 25 APR 78

PUT BYTE stores one byte at a given byte address in core. The

calling sequence is PUTBYTE with any absolute byte address in
register Al and the byte to be stored in the lower half of

register AO. See also XPUTBYTE on page Al-22. Core~-resident.

RECEIVE SIGNAL receives a signal if any has been sent to the
regnant user’s port. The calling sequence is CALL SIGPAUSE with 2

in AO and a pointer to a parameter list in A2. Return is non-skip

if no signal was waiting for the regnant user, and the parameter
list is unchanged. Otherwise, return is skip with the port number

of the sender in word #0 of the parameter list and the two signal

values in words | and 2 of the parameter list. Group 2.

RECOVER is used only by the system to start the input/output

system after initialization or after a fault.

SEND SIGNAL sends a signal to a user on another port or to a later
program segment on the same port. The calling sequence is CALL

SIGPAUSE with | in AO, the sender’s PCB pointer in Al, anda
pointer to a parameter list in A2. The parameter list must
contain either the port number or the PCB pointer of the addressee

in word #0 and the two signal values in words |! and 2. Return is
non-skip if the signal buffer is full and the sianal cannot he

sents otherwise return is skip. Group 2.

SPECIAL FUNCTIONS will access certain parameters such as system

time, port number, amount of time used, etc. Used only by the SPC

function in Business BASIC. Group 2.

START IPL aborts all system operations and performs an Initial
Program Load. The calling sequence is JMP @.STPL without reoard
to the contents of any registers. There is no return.

SYSTEM COMMAND TRANSMITTER is used only by the CALL 98 statement
in Business BASIC. Group 2.

Misc. Subroutines Copyright 1978

25 APR 7/8 Al=—22 Educational Data Systems

ARR

TRAPFAULT aborts a process due to an illegal condition or a

hardware failure and prints a trap message. The calling sequence

is TRAPFAULT without regard to the contents of any registers. The

TRAPFAULT may be followed by a value of the form n*K!NOP where n

is an octal number not exceeding 177. The regnant user’s task
will be aborted, and a message of the form

TRAP #n AT location IN processor

will be printed on the user’s terminal, where n is the number

supplied in the n*K!NOP word (zero if no such word is supplied),
"location" is the location of the TRAPFAULT instruction (Cin

octal), and "processor" is the Filename of the ragnant user’s

current processor. This will be followed by a second line givina

the STATUS, which consists of the contents of registers AO, Al,

A2, A3, and the carry bit. If the fault was in a discsub, then a

third line will be printed givina the address in the DISCSUBS

listing (several addresses if discsubs were nested). If the fault

was in a core-resident subroutine called by a discsub, then the

absolute address is giv2n preceeded by an asterisk. If 200 octal

is added to the n*K!NOP expression (ie, it is given as

nxKINOP!200) then the regnant user’s active file will be cleared?

this should be done in any case where it is likely that the fault

condition’ was caused by garbage in the active file.

YGETBYTE (eXtended GET BYTE) is the same as GETIBYTE (see page

Al-20) except that the byte address qiven in Al is taken to be

relative to the Byte Base Addréss (the word address in BBA). If

(SBA)=O then XGETBYTE is identical to GETBYTE. Core-resident.

XPUTBYTE (eXtended PUT BYTE) is the same as PUTBYTE (see page

Al-22) except that the byte address aiven in Al is taken to he

relative to the Byte Base Address (the word address in BRA). If

(BBA)=0 then XPUTBYTE is identical to PUTBYTE. Core-resident.

Copyright 1978 | Misc. Subroutines
Educational Data Systems Al=-23 : 25 APR 78

Appendix 2?! CANNED MESSAGES

The MESSAGES file contains a variety of "canned" messages that can

be transferred to the regnant user’s output buffer by use of the

MESSAGE subroutine. The calling sequence is CALL MESSAGE with the

message number (see. list below) in register Al. The message will

be preceeded by a carriage return if (A0)=-1, or by a carriage

return, a question mark, and a space if (A0)=-2. If AO contains

any other value, then nothing preceeds the string from the

MESSAGES file. There are two possible returns from the MESSAGE

subroutine as follows?

Non~skip if MESSAGES file has not been loaded on the system
disc (indicated by A3=0), or if there is no message assigned

the number given (indicated by A3<>0). In the former case

the string *?? NO "MESSAGES" FILE’ has been output to the

regnant user’s output buffer, and in the later case the

string *?? NO SUCH MESSAGE NUMBER’ has been output.

Skip if the desired message has been transferred to the

regnant user’s output buffer.

The message may be appended to any previous output and may be
followed by more output by use of NUTBYTE, OUTTEXT, CIA, etc., or
the call to MESSAGE may be followed immediately be a Start Output.

Output must not be active when MESSAGE is called. Note that the
messages are numbered in decimal, but the octal equivalent of the
number must be given to MESSAGE in Al to output the desired
message. Messages one throuagh 99 coincide with the respective

BASTC error numbers, and messages 100 and up coincide with the
error status on a non-skip return from most DISCSUBS if decimal
100 (octal 144) is added to the status returned in reqister A3.
The status values shown on page A2-4 are in octal. The currently
avallable messages are listed on the following pages.

Copyright 1978 Canned Messages
Educational Data Systems —A2=1 : 25 APR 78

Appendix 2: CANNED MESSAGES (continued)
4

Message | |
2? NO SUCH MESSAGE NUMBER

SYNTAX ERROR
ILLEGAL STRING OPERATION

STURAGE OVERFLOW (PROGRAM TNN LARGE)

FORMAT ERROR

ILLEGAL CHARACTER

NO SUCH LINE NUMBER

RENUMBER ABORTED BY ESCAPE, PROGRAM WAS LOST

TOO MANY VARIABLE NAMES (LIMIT IS 93)

UNRECOGNIZABLE WORD

LINE NUMBER,"RUN" IS ILLEGAL BEFORE AN INITIAL RUN

INCORRECT PARENTHESES CLOSURE

PROGRAM IS LIST/COPY PROTECTED .

NUMBER TNO LARGE (9.9999999999999E+62 IS MAXIMUM)
OUT OF DATA

ARITHMETIC OVERFLOW (SUCH AS DIVISION BY ZERO)

N"GUSUB"S NESTED TOO DEEP

URETURN" WITHOUT “GNSUB"

FOR-NEXT LOOPS NESTED TOO DEEP

WEQR" WITHOUT MATCHING "NEXT"

20. NEXT" WITHOUT MATCHING "FOR"

? EXPRESSION TNO COMPLEX (TM MUCH FUNCTION NESTING)

22. NOT ENOUGH DISC BLOCKS AVAILABLE FOR SWAP-OUT

23. ARRAY SIZE EXCEEDS INITIAL DIMENSIONS

24. ONLY ONE DIMENSION ALLOWED FOR A STRING

25, STRING OR ARRAY NOT DIMENSIONED

26. LOGICAL UNIT NOT ACTIVE

27. SYNTAX ERROR IN USER-DEFINED FUNCTION

28. SUBSCRIPT, CHANNEL NUMBER, OR SIGNAL PARAMETER OUT OF RANGE

29. .ILLEGAL FUNCTION USAGE

30. USER FUNCTION NOT DEFINED

31. USER FUNCTIONS NESTED TNO DEEP

32. MATRICES HAVE DIFFERENT DIMENSIONS

33. ARGUMENT IS NOT A MATRIX ,

34. DIMENSIONS ARE NOT COMPATIBLE

35. MATRIX IS NOT "SQUARE"

36. CALLED SUBROUTINE NOT IN STORAGE

37. EXPRESSION IN ARGUMENT FOR CALL

38. ERROR DETECTED BY CALLED SUBROUTINE

39. EORMATTED OUTPUT EXCEEDED BUFFER SIZE

40. CHANNEL IN USE

41. ILLEGAL FILENAME

42. FILE NOT FOUND

43. SYNTAX ERROR IN COST OR PROTECTION

44, NOT A DATA FILE (CAN’T OPEN OR REPLACE)

45. FILE IS READ PROTECTED
46. FILE IS WRITE PROTECTED

47. LOGICAL UNIT DOES NOT HAVE ENOUGH FREE BLOCKS

48. ACCOUNT’S DISC BLOCK ALLOTMENT IS INSUFFICIENT
49. CHANNEL NOT OPEN |

P

e e ® e e ® e @ e e ® ® e e e
in &

e e ®
OM ~! OX ®

NO °

(continued on next page)

Canned Messages Copyright 1978

25 APR 78 A2-2 Educational Data Systems

ey,

Appendix 2: CANNED MESSAGES (continued)

50. FILE IS COPY PROTECTED

51. ILLEGAL RECORD NUMBER

52. RECORD NOT WRITTEN

53. ILLEGAL ITEM NUMBER

54. ITEM TYPES DON’T MATCH

55. STATEMENT IS ILLEGAL FROM KEYBOARD

56. CAN’T DUMP AN EMPTY PROGRAM

57. STRINGS CANNOT BE REDIMENSIONED

58. ERROR IN FORMAT STRING

59. “RUNMAT* PROCESSOR NOT IN SYSTEM

60. TAO MANY NUMBERS ENTERED FOR INPUT

61. MATRICES HAVE DIFFERENT NUMBER TYPES

62. SIGNAL BUFFER IS FULL OR NO SUCH PORT

63. COMMANDS ARE ILLEGAL IN "LOAD" MODE

64. LINE NUMBER MISSING IN "LOAD" MODE

65. FILENAME IN USE FOR DIFFERENT TYPE FILE |

66. FILENAME IN USE, OLD FILE BEING BUILT MR REPLACED

67. FILENAME IN USE AND NO "!" SUPPLIED

68. FILENAME IN USE BY A DIFFERENT ACCOUNT
69. FILE IS A PROCESSOR OR DRIVER

70. DATA READ ERROR

71. IPL NEEDED TO INITIALIZE DRIVER

72. DEVICE NOT ACCESSIBLE

73. DEVICE NOT ON LINE

74. DEVICE REQUIRES MANUAL INTERVENTION |

75. LINE EXCEEDS BUFFER SIZE IN "LOAD" MODE

76. j>FILE OR DEVICE IS OPEN ELSEWHERE

77. NO ACCOUNT ON SELECTED LOGICAL UNIT

78. j>FILE IS BEING BUILT, REPLACED, OR DELETED

79. ILLEGAL DEVICE OPERATION

80. LOGICAL UNIT DOES NOT HAVE ENONUGH CONTIGUQUS BLOCKS

97. NO SDEC OR SDAU ON SYSTEM

98. ILLEGAL VALUE ENTERED FOR INPUT

9Y. ESC OR CTRL C TRAPPED BY ERROR BRANCH

(continued on next page)

Copyright 1978 Canned Messages

Educational Data Systems A2—3 | | 25 APR 78

No. otatus
100. ©
1Ol. |

102. 2

103. 3

104. 4

105. 5
106. 6
107. 7

108. 10

1O¥. 1

110. 12

ltl. 13

112. 14

113. 15

114. 16

115. 17

116. 20

117. 2|
116. 22

lly. 23

120. 24
I2l. 25

[22. 26

123. 27
124. 30

125. 3]

126. 32

127. 33

128. 34

129. 35

130. 36
131. 37

132. 40

133. 41

134. 42

135. 4 3

Canned Messages

25 APR 78

Appendix 2: CANNED MESSAGES (continued)

Message
ILLEGAL CHANNEL NUMBER

CHANNEL IN USE

CHANNEL NOT OPEN

FILENAME IN USE FOR DIFFERENT TYPE FILE

FILENAME IN USE, OLD FILE BEING BUILT DR REPLACED

FILENAME IN USE AND NO "!" SUPPLIED

FILENAME IN USE BY A DIFFERENT ACCOUNT
FILENAME IN USE FOR A PERMANENT FILE

LOGICAL UNIT DOES NOT HAVE ENOUGH FREE BLOCKS
ACCUOUNT’S DISC BLOCK ALLOTMENT IS INSUFFICIENT

SYNTAX ERROR IN CUST, PROTECTION, OR SIZE

ILLEGAL FILENAME

LOGICAL UNIT NOT ACTIVE

FILE NOT FOUND

FILE NOT FOUND, AND NO INDEX ENTRY FOR NEW FILE

FILE IS BEING BUILT, REPLACED, OR DELETED

INCOPRECT FILE TYPE

FILE IS RFAD PROTECTED

FILE IS WRITE PROTECTED

FILE IS COPY PROTECTED

FILE IS A PROCESSOR OR DRIVER

FILE OR DEVICE IS OPEN ELSEWHERE

ILLEGAL RECORD NUMBER

RECORD IS LOCKED © a

ILLEGAL ITEM NUMBER sett

ITEM TYPES DON’T MATCH

RECORD NOT WRITTEN

DATA READ EPROR

IPL NEEDED TO INITIALIZE DRIVER

DEVICE NOT ACCESSIBLE

DEVICE NOT ON LINE
DEVICE REQUIRES MANUAL INTERVENTION

NO ACCOUNT ON SELECTED LOGICAL UNIT

ILLEGAL DEVICE OPERATION

LOGICAL UNIT DOES NOT HAVE ENOUGH CONTIGUNUS BLOCKS

DEVICE ATTRIBUTES NOT SET UP PROPERLY

Copyright 1978

A2-4 Educational Data Systems

Appendix 3: GLOSSARY.

IRIS - Interactive Real-time Information System. This is the name

of the system as a whole, including REX, the accounting and
security system, the INDEX, DISCSUBS, DMAP, CONFIG, and

ACCOUNTS files, and the system command processors.

REX ~ Real-time EXecutive. REX consists primarily of software

which resides in approximately the first 4000 core locations.

Page zero contains system flags and counters, many widely used

constants, and pointers to subroutines in REx that may be used

by processors and drivers. |

ROUTINE - Any sequence of instructions or program statements is

called a routine.

PROCESSOR - A machine language routine which operates under

control of the processor task and which may be called for

execution directly from any interactive terminal. Examples of

processors are BASIC, SAVE, KILL, LIBR, CHANGE, and QUERY.

STAND=ALONE PROGRAM - A machine language routine which takes over

full control of the system and does not operate under REX.

Stand-alone programs are loaded into core by use of the

SHUTDOWN command. Examples of stand-alone programs are GPM and

the computer diagnostic routines.

PROGRAM — A higher-level language routine which is executed by

being either interpreted or compiled by a processor. For

example, any routine written in BASIC is called a program.

Since a program is not in machine code it is treated by REX as

a data file to be operated on by a processor.

SUBROUTINE - A subroutine is any routine that is written as a

separate module (even though it may be included with the main

routine or other subroutines) and is used by a GOSUB statement,

a JSR (Jump to Subroutine) instruction, or a system CALL. A

subroutine may be part of REX, part of a processor, part of a

stand-alone program, or part of a higher level language

program.

DISCSUB - A discsub is a machine language subroutine that resides

in the DISCSUBS file as part of IRIS or an extension to REX.

Selected disc-resident subroutines may be made core-resident at

IPL time (see Section 2.9).

RE-ENTRANT - A re-entrant routine (usually a subroutine) is one
that may be interrupted at any time and re-entered to perform a

higher priority task, then will complete the first task
correctly when control is returned from the interrupt. A stack

is usually used for the routine’s temporary storage, including

the return address, to implement this capability.

RECURSIVE - A recursive routine is a re~entrant routine that calls
itself. See recursive.

Copyright 1978 Glossary

Educational Data Systems A3-1 : 25 APR 78

BIT - One binary digit. May contain a one or a zero.

BYTE - Eight bits. One byte may contain an ASCII code or a

special internal code.

WORD - Sixteen bits. The computer transfers information one word

at a time. One word may contain one machine instruction, one

integer number, or two bytes. Two or more words are required

to store a floating point number.

STRING - A sequence of ASCII codes stored one code per byte with
the top bit of each byte set to one and the first byte of each

pair in the left half (most significant byte) of the word. A

string is usually terminated by a zero byte which is octal 000

(not an ASCII zero which is 260 octal nor an ASCII null which

is 200 octal), but in some cases a string may be terminated by

any byte less than 200 octal.

ASCII - American Standard Code for Information Interchange. A

seven-bit code used for data transfers in and out of the

computer, usually with even parity’ ie, the eighth bit is set

to a "one" or "zero" such that the number of “one" bits in the

byte is even. When ASCII is used internally to the IRIS

system, the eighth bit is unconditionally set to a “one. An

Appendix in the IRIS User Reference Manual lists all 128 ASCII

codes.

ACCOUNT ID - A string consisting of a word or group of words and

symbols up to a maximum of 12 characters which must be typed in
by a user to activate his terminal and log him on to the

system. There are over 4 x 10t21 possible account [D’s.

PORT - An interactive input/output channel on the IRIS system.

For in-house operation, each port is usually hard-wired to one

terminal. For remote operation, each port is connected to a
data set, thereby allowing several terminals to use the same

port (one at a time). There is an input/output buffer, a data

file table, and an active file associated with each port.

IPL - the first phase of the IRIS startup procedure is the [Initial

Program Load which brings a fresh copy of REX, SIR, and DBUG

into core from the system disc.

SYSGEN - A System Generation (SysGen) is the process of writing

the operating system and all other files on the system disc

(Logical Unit number zero). All files currently on the system

disc will be lost if a SysGen is performed, but user files may

be saved by first copying them to another Logical Unit or to

paper tape or magnetic tape.

Glossary Copyright 1978

25 APR 78 A3-2 Educational Data Systems

TASK ~ A core-resident routine written in a specific form and
invoked by use of a QUEUE system command to put an entry on the
task queue. The task is executed when its task node reaches

the top of the task queue. See Section 8.13.

JOB - A set of tasks required to perform a desired complete

function such as running a user’s prooram. |

FILE - A set of blocks on a Logical Unit which may be accessed

from a processor or, via a processor, by a program. A file

consists of a file header block, from zero to 128 header

extender blocks, and from zero to 65000 data blocks. A file

may contain a system processor or other system component, a

binary core image of a stand-alone program, a high level

language program (such as a Business BASIC program), text

(including assembly language source code), or any other type of

data. See Section |1.4 for more information.

FILE HEADER ~- The first block of a file. The header does not

contain. any user’s data. What the header does contain is the

Filename, related information such as file type and protection,

and the disc address of each data block in the file (data block

disc addresses are not listed in the header of a contiguous

file). A data file header may also contain a data record

format map (formatted file) or directory information (indexed

file). See Section !.4 for more information.

ACTIVE FILE - There is an active file associated with each

interactive port. All programs and data entered through the

port are generally placed in its active file by a processor.

The active file does not have a Filename unless it has been

saved. The active file is active in the sense that it is used

for swapping: ie, it is used to store a user’s program and

local data between time slices.

PASSIVE FILE - All user files stored on the disc under a Filename

are passive files. A passive program file may be copied into a

port’s active file for processing without disturbing the

passive file. The SAVE command replaces a passive file or

creates a new passive file by copyiny the active file into the

passive file. |

PRIVATE FILE — A passive file which has a password included in the

Filename (offset by a CTRL E) so as to prevent access to the

file by other users on the same account.

PUBLIC FILE - A passive file with no password (no CTRL E) included

in the Filename.

Copyright 1978 Glossary

Educational Data Systems A3-3 25 APR 78

FILENAME - The word Filename is used to represent the name (and
optional password) assigned to a file by a user at the time he
creates the file. If a password is used, it is separated from

the name by a CTRL E character (written E). The name and

password may be any combination of letters, digits, and
periods, except that the first character of the name must be a

letter. Acceptable Filenames include:

NAMEEPASSWORD

XY 14099

TE54 3382XB.5

The password is not echoed (not printed) during type-in. This
is to prevent other users on your account from learning your

passwords and gaining access to files you wish to keep

private. The E must be typed again after the password to
resume normal echo operation. Up to fourteen characters total
are allowed including the E code, making a total of over 6 x

lOt2!1 possible Filenames. | ,

The same Filename may be used on different Logical Unitss
therefore, any Filename given by a user is assumed to be on

that user’s assigned Logical Unit unless otherwise specified by

entering the Filename in the form

lu/Filename

where lu is the number of the Logical Unit where the file is to
be found or built. The same Filename may be used to identify
one file on each Logical Unit. Any time a new file is being
built, the Filename may be given in the form

Sddd.cc <pp> lu/Filename!

where ddd.cc is the amount to be charged to the account of any

other user who accesses the file, and pp is the desired

protection (see Section 8.7). The cost and protection may be

given in either order, and both are optional, but the Filename

must be given last. If not specified, the cost will be zero

and the protection will be 77. An exclamation mark following

the Filename allows this file to replace another file of the

same type and on the user’s own account, in which case the old

file’s cost and protection will be used if not specified here.

For a peripheral driver file there is a special form of

Filename consisting of a dollar sign and the device’s mnemonic$
for example, $PTR is the paper tape reader, and $LPT is the

line printer. Dollar sign Filenames are also used for system

subroutine replacements. The first character after the dollar

Sign in such a Filename must be a letter.

Glossary | Copyriaht 1978
25 APR 78 A3-4 Educational Data Systems

PHYSICAL UNIT - A secondary data storage unit such as a disc

cartridge. Data are transferred to and from the Physical Unit

in blocks of 256 words.

LOGICAL UNIT -— A Physical Unit (or one partition of a Physical
Unit) which has been formatted by a SysGen or by INSTALL for
use by IRIS. Usually an entire Physical Unit is treated as one

Logical Unit, but pravision is made for partitioning a Physical

Unit into two or more units: this may be necessary in the case

of a very large disc pack where the Real Address would

otherwise require more than one word. A Logical Unit may not

include more than one Physical Units eg, the fixed disc and the

removable cartridge on a dual drive must be treated as two (or

more) Logical Units. Each Logical Unit has a copy of BZUP in
Real Address zero, an INDEX whose header is in Real Address

one, an ACCOUNTS file whose header is at Real Address three,

and a disc map (DMAP) whose header is at Logical Cylinder zero,

Logical Track one, Logical Sector zero (Real Address LRT).

CYLINDER = A set of tracks on one disc drive that can be accessed
without moving the heads. The term is derived from the high

stack disc packs where the set of tracks is a set of equal
sized circles around the same axis, one on each disc surface.
Such circles are all on the surface of the same imaginary

geometric cylinder. Note: a head-per-track disc is considered

as having one cylinder (number zero), whereas the cylinder
number specifies the head position on a moving arm disc.

SURFACE - One side of one platter of a disc or disc cartridge. A

2315 or 5440 type cartridae has only one disc platter and hence

two surfaces. Other discs or cartridges may have from one to

twenty usable surfaces. |

TRACK ~- The path traced on a disc surface by one head in one
position. A track is the intersection of one cylinder with one

surface.

SECTOR - A fraction of one revolution of a disc. May be thought
of as a pie shaped section of the disc. Within this amount of

rotation, one block of data may be recorded in each track.

BLOCK - The intersection of one track with one sector. Each block >

will store 256 |I6-bit words of data. Formatted files on

magnetic tape are also written in blocks of 256 words.

Copyright 1978 Glossary

Educational Data Systems A3=5 : 25 APR 78

DISC ADDRESS - A disc address is a means of identifying a
particular disc block on a given Logical Unit. A disc address
may be in any of three forms as follows?

LOGICAL ADDRESS - In this form the Logical Cylinder, Logical
Track, and Logical Sector are carried as binary integers in
separate words (see definitions of these terms below). This
form is generally used only in the system’s allocate and

deallocate routines and in some disc drivers.

REAL ADDRESS - A l6-bit binary number ranging from zero to one
less than the number of blocks on a Logical Unit. This is

the form carried within the system in file headers, etc. In
this form, the address is packed into one binary word

according to the formula

Real Disc Address = LC x LRC + LT x LRT + LS

wheres LC = Logical Cylinder
LT = Logical Track

LS = Logical Sector |

LRC = Logical-to-Real Cylinder Conversion Factor

LRT = Logical-to-Real Track Conversion Factor

LRT must be equal to the number of sectors (NSCT), and LRC

must be equal to the number of blocks in a cylinder (NSCT
times NTRK, where NTRK is the number of tracks). It is not

necessary to define a logical-to-real sector conversion

factor since it would always equal one.

PHYSICAL ADDRESS - The form of disc address used by the disc

controllor. The disc driver subroutine converts the Logical
Unit number and the Real Address into a Physical Address and
outputs it to the disc controller. For some controllers,

the Physical Address is identical to the Real Addressi
otherwise, the Physical Address is never stored within the

system.

LOGICAL CYLINDER —- An integer ranging from zero to one less than
the number of cylinders in a Logical Unit. The Logical

Cylinder is equal to the real cylinder unless the Physical Unit

is partitioned into two or more Logical Units, in which case

the physical cylinder number is derived by adding the Logical

Cylinder to the number of the first real cylinder.

LOGICAL TRACK ~ An integer ranging from zero to one less than the

number of heads on a disc drive. The Logical Track number

selects one head (track) for reading or writing.

LUGICAL SECTOR - An integer ranging from zero to one less than the

number of sectors on a disc. The Logical Sector selects the

sector time during which a transfer takes place, thereby

selecting one block within the track specified by the Logical

Cylinder and Logical Track numbers.

Glossary Copyright 1978
25 APR 78 A3-6 Educational Data Systems

eRe».

Appendix 4s OCTAL NUMBERS

The octal number system (radix eight) is used when operating the
computer via its control panel, although the computer operates
internally on binary (radix two) "words", each word consisting of
sixteen bits (binary digits). Each indicator light or data switch
on the control panel represents a single bit. The lights and
switches are arranged in groups of three, each group representing

one octal digit. The following table gives the light or switch

configurations for each octal digit:

Octal Switches

Digit or Lights

me 000

001

2 O10

3 O11]

4 1 00

5 1 ol

6 1 10

7 |

A "0" represents a dark lamp or a switch in the down position
(binary zero), anda "I" represents a lighted lamp or a switch in

the up position (binary one).

Note that there are five octal groups on the panel, and one bit by

itself at the left end, making up the sixteen bit word. For

example:

N >) O © O O O Oo106743

Copyright 1978 Octal Numbers

Educational Data Systems A4-1 : 25 APR 78

Appendix 58 SOFTWARE DEFINITIONS

This Appendix lists the IRIS Software Definitions and the REX Page

Zero Definitions of the latest issue in effect at the time this

manual was printed. Source tapes of the Software Definitions

(DEFS) and the Page Zero Definitions (PZ) are supplied with IRIs

systems delivered by EDSI, and new tapes will be supplied on
request for a nominal production charge.

This Appendix should be used for reference only, and the latest

tapes should be used for all assemblies of new IRIS modules@

SOFTWARE DEFINITIONS FOR "IRIS" R7.3

2-13-/8

All Rights Reserved

Copyright 1974, Educational Data Systems

Copyright 1978, Educational Data Systems

This document may not be reproduced without the

prior written permission of Educational Data Systems@2¢ we 20 we we 28 we
$ MISCELLANEOUS. DEFINITIONS

eDUSR K | =4 00 sBYTE SWAP CONSTANT
eDUSR NOP =|00010 sNU OPERATION

eDUSR INFOQ =600 sSYSTEM INFORMATION TABLE
~DUSR BPS =10200 ‘sBEGINNING OF PROCESSOR STORAGE
eDUSR MBUS =20200 $sMINIMUM BEGINNING USER STORAGE

~DUSR LSIR =14000 sLOCATION FOR SIR (MIN IS BPS+3600)
eDUSR LSYSL =34000 $sLOCATION FOR SYSL

3. DEFINITIONS FOR FLAGCHANGE SUBROUTINE

~DUSR SET =140000 3SET FLAG BIT

~DUSR RESET =100000 sRESET FLAG BIT

eDUSR TOGGL =040000 sTOGGLE FLAG BIT

eDUSR SKIPO =020000 $sSKIP IF RESULT IS ONE

eDUSR SKIPZ =010000 $SKIP IF RESULT IS ZERO

eRDX 10

; DISPLACEMENTS IN TASK QUEUE NODE

; A2 =0 $REGISTER A2

; Al =! sREGISTER Al

; AQ =2 $REGISTER AO

; A3 =3 sREGISTER A3

; PC =4 3$PROGRAM ADDRESS * 2 + CARRY

eDUSR FLAP =5 $FLAGS & CURRENT PRIORITY

eDUSR PRIL =6 sPRIORITY INCREMENT & LIMIT

eDUSR TASK =7 $TASK ENTRY POINTER

~DUSR TCBP =8 sTASK CONTROL BLOCK POINTER

eDUSR LINK =9 $LINK POINTER TO NEXT NODE

eRDX 8

The next page lists displacements into the system information

table (INFO).

Copyright 1978 Software Definitions

Educational Data Systems A5—1 : 25 APR 78

~DUSR

»DUSR

~DUSR

»DUSR

»DUSR

«DUSR

«DUSR

«DUSR

«DUSR

»DUSR

eDUSR

eDUSR

~DUSR

«DUSR

«DUSR

»DUSR

eDUSR

eDUSR

eDUSR

~DUSR

eDUSR

eDUSR

~DUSR

eDUSR

eDUSR

»DUSR

«DUSR

»DUSR

«DUSR

e DUSR

»DUSR

eDUSR

»DUSR

eDUSR

-DUSR

-DUSR

eDUSR

eDUSR

»DUSR

«DUSR

eDUSR

eDUSR

»DUSR

eDUSR

eDUSR

«DUSR

eDUSR

~DUSR

«DUSR

~DUSR

eDUSR

«DUSR

eDUSR

~DUSR

SDAT.

OPED.

MILU.

NDCH.

LPCA.

TNAP.

O

MBUS.= 7

TOPW.=10

ABUF.=11

TBUF.=12

NCQN.=13

NNOD .=14

NSIG.=15

NSUB.=16

KTSL.=17

KS CH .=20

KPV1 .=21

KPV2.=22

~LSA.=23

~[SB.=24

o1SQ.=25

oTSZ .=26

~TSC.=27

HRS. =30

TSC. =31

CPLU.=32

CPDA .=33

CPIN .=34

SDFT.=35

DSCO .=36

DBYE.=37

DDSP .=40

Ds UB. =41

DMSG .=42

DCON.=43

~ TIT.=44

[ASK .=45

oe OL K=46

oRGS.=47

« FASQ=50

~DBS.=51

oRCV .=52

»LUT.=53

~TBA.=54

eELB.=55

THT .=56

~SGB.=57

~BPT.=60

oUPT .=6]

THTC.=62

OVLA.=63

NBBP.=64

PFRF.=65

BPSP.=66

ENDP.=67

2

3.
4

5

$SYSTEM CREATION DATE

sAVG CPU

MAXIMUM

(HOURS AFTER 1-1-76)

SPEED (INSTR/MSEC), NOVA 3 FLAG

INSTALLED LOGICAL UNITS

sNUMBER OF DATA CHANNELS PER PORT

sLOCATION OF PORT CONTROL AREA

sTOTAL NUMBER OF ACTIVE PORTS

3MINIMUM BEGINNING OF USER STORAGE

sTOP WORD OF CORE TO BE USED

sAUXILIARY BUFFER SIZE (NUMBER OF WORDS)

3MAG TAPE BUFFER SIZE (NUMBER OF WORDS)

;NUMBER OF EXTRA CHARACTER QUEUE NODES

;MINIMUM NUMBER OF FREE NODES

sNUMBER OF SIGNAL BUFFER NODES

3 MAXIMUM NUMBER OF DISCSUBS

s;COEFFICIENTS FOR TIME SLICE CALCULATION
s;COEFFICIENTS FOR TIMESHARING SCHEDULER

sCOEFFICIENTS FOR PARTITION VALUATION

s;COEFFICIENTS FOR PARTITION VALUATION

3 TEMPORARY STORAGE

$TEMPORARY STORAGE

; TEMPORARY STORAGE

; TEMPORARY STORAGE

3 TEMPORARY STORAGE

(6 WORDS)

(6 WORDS)

(6 WORDS)

(6 WORDS)

(16 WORDS)

"A" POINTER

"BY POINTER

"Q" POINTER

"Z" POINTER

"CW POINTER

sCPU TIME — HOURS SINCE 1I-1-76

; PART

3CURRENT

$s CURRENT

3CUPRENT

;SIZE OF

$DISC

$DISC

sDISC

3DISC

$DISC

3DISC

3POINTER

sINITIAL

sPOINTER

$POINTER

;POINTER

;POINTER

sPOINTER

;POINTER

;POINTER

;POINTER

3POINTER

$POINTER

;POINTER

sPOINTER

ADDRESS

ADDRESS

ADDRESS

ADDRESS

ADDRESS

ADDRESS

OF HOUR IN TENTH-SECONDS

PROCESSOR LOGICAL UNIT

PROCESSOR DISC ADDRESS

PRNCESSIR TYPE NUMBER

EACH PORT’S DATA FILE TABLE

OF "SCOPE"

OF "BYE"

OF "DSP"

OF "DISCSUBS"

OF "MESSAGES"

OF "CONFIG"

TO TERMINAL TYPE TABLE

INTERRUPT MASK

TO "CALL" STACK POINTER

TO REGISTER BUFFER FOR "CALL"

TQ TASK QUEUE POINTER

TO D(BLOCK IN BSA) CELL

TO RECOVER ROUTINE

TN LOGICAL UNIT TABLE

TO MAGNETIC TAPE BUFFER AREA

TO END OF LAST DISC BUFFER

TO INTERRUPT HANDLER TABLE

T) SIGNAL BUFFER POINTERS

TO BUFFER PANL TABLE

TN USER PARTITION TABLE

3TEN HERTZ TASK COUNTER

sQVERLNAD CONDITION ACCUMULATOR

s$NUMBER OF BUFFERS IN BUFFER POOL

s;POWER FAIL RECOVER FLAG

;BEGIN PATCH SPACE (AFTER LAST PATCH)

$END OF PATCH SPACE

Software Definitions

25 APR 18

(SET BY SIR)

Copyright 1978

A5=2 Educational Data Systems

$ PORT CONTROL BLOCK (PCB) DISPLACEMENTS

eDUSR ICW. =.0 $INPUT CONTROL WORD

eDUSR OCW. = | sOQUTPUT CONTROL WORD .

~DUSR FBA. = 2 $FIRST BYTE ADDRESS OF I/7O BUFFER -1
eDUSR LBA. = 3 $LAST BYTE ADDRESS OF I/O BUFFER

eDUSR IBP. = 4 sINPUT BYTE POINTER

e-DUSR OBP. = 5 sQUTPUT BYTE POINTER

eDUSR LIB. = 6 $LAST INPUT BYTE POINTER

eDUSR LOB. = 7 $LAST OUTPUT BYTE POINTER

eDUSR TIB. =I10 sTEMPORARY INPUT CHARACTER BUFFER
~DUSR TOB. =I! sTEMPORARY OUTPUT CHARACTER BUFFER

eDUSR FLW. =12 sFLAG WORD (SEE BELOW)

eDUSR ULU. =13 $USER“S ASSIGNED LOGICAL UNIT NUMBER
»DUSR URA. =14 sUSER’S RETURN ADDRESS

eDUSR ORA. =15 sOLD RETURN ADDRESS

eDUSR CTU. =16 3CPU TIME USED (UPPER HALF = HOURS)
eDUSR CTL. =17 sCPU TIME USED (LOWER HALF = TENTH-SECONDS)

eDUSR ACT. =20 sACCOUNT NUMBER, PRIVILEGE LEVEL

eDUSR TON. =21 $CPU TIME AT LOG-ON (MINUTES)

eDUSR PRI. =22 $USER’7S ASSIGNED PRIORITY

eDUSR EFP. =23 sEFFECTIVE CURRENT PRIORITY, PAC

eDUSR DQT. =24 sDEQUEUVE TIME (TENTH-SECONDS)
eDUSR DFT. =25 sPOINTER TO DATA FILE TABLE (SEE PAGE 5)

eDUSR PDC. =26 3PAUSE DELAY COUNTER (TENTH-SECONDS)

eDUSR AHA. =27 sACTIVE FILE HEADER DISC ADDRESS
; =30 $(SPARE) .

eDUSR NLP. =31 $NODE LINK POINTER FOR $TERMS STORAGE

eDUSR SND. =32 $POINTER TO DRIVER’S "SEND" SUBROUTINE

eDUSR OCC. =33 sOUTPUT COLUMN COUNTER

eDUSR ODC. =34 sOUTPUT DELAY COUNTER

eDUSR RDE. =35 sRETURN DELAY, EFOM OR TERMINAL TYPE CODE

eDUSR PCW. =36 sPORT CONTROL WORD FOR SMMUX (SEE PAGE 4) ©

«DUSR =37 $TERMINAL TYPE NUMBER & FLAGS (SEE PAGE 4)TIN.

EACH BIT IN FLW IS A FLAG AS FOLLOWS:

BIT MEANING

I5>_ BINARY INPUT/OUTPUT MODE (PASS BYTE AS IS)

14 |

DSP BREAKPOINT I[S SET

DSP IS ACTIVE ON THIS PORT

SIGNAL WILL ACTIVATE FROM PAUSE

A BREAK HAS BEEN DETECTED

PROCESSOR TASK IS ON QUEUE

OUTPUT IS ACTIVE

INPUT IS ACTIVE

L0G OFF AFTER PAUSE DELAY

IGNORE CTRL E (LOG-ON MODE)

IGNORE CTRL O

ENABLE XOFF AND XON

$

;

3

3

5

3

; 1

5

§

5

;

;

@20e¢ @2e we
@e 620 we ECHO INPUT CHARACTERS

$ * NOTE: BIT 15 1S THE MOST SIGNIFICANT BIT

Copyright 1978

Educational Data Systems

finitionsSoftware De

: 25 APR 78A5=3

e

9

2s we 820 we we we we we Ce we we 28 2s we we we we
ae

@2e @2e @2e we we we 20 20 we we we we HO
~@we #20 se wo
ae

EACH BIT IN PCW IS A FLAG AS FOLLOWS:

BIT* MEANING

15_ O

14 THIS PORT IS ON EDSI MIGHTY-MUX

13. O

12. DEVICE CONTROL OUTPUT (1! = HIGH, O = LOW)

11 NORMAL DEVICE STATUS INPUT (1 = HIGH, O = LOW)

10 THIS IS A PHANTOM PORT

9_ AUTO LOG-OFF ENABLED

8 AUTO FREQUENCY SCAN ENABLED
7 INHIBIT PARITY CHECK AND GENERATION

6. TWO STOP BITS (NORMAL = ONE)

5 \ CHARACTER LENGTH: 11 = 8 BITS, 10 = 7 BITS

4 / Ol = 6 BITS, 00 = 5 BITS

3_ EVEN PARITY (IF ENABLED)

2 \ CURRENT BAUD RATE:

|) 7 = 9600, 6 = 4800, 5 = 2400, 4 = 1200,

O / 3 = 600, 2 = 300, 1! = 150, O= 110.

FORMAT OF TIN WORD, USED IN STERMS3

BIl* MEANING

15_ SPECIAL DELAY CHARACTERS EXIST - SEE STERM.xxx
14 :

13

12_

Hl

lO

ESCAPE SEEN IN INPUT, USE TRANSLATION TABLE #Il

OUTPUT TRANSLATION IN PROGRESS

INPUT TRANSLATION IN PROGRESS

EXPECTING CURSOR POSITION (7RD% HAS BEEN SENT)

\

) TERMINAL TYPE NUMBER (0 —- 17 OCTAL)

)

/O—MWwWFAMUANCC
* NOTE: BIT 15 IS THE MOST SIGNIFICANT BIT

Software Definitions Copyright 1978

25 APR 78 A5-—4 Educational Data Systems

$ DFT

»DUSR

~DUSR

»DUSR

eDUSR

~DUSR

»DUSR

»DUSR

eDUSR

EAC#8

BI

|

|

|

@e we 620 we we 258 we we we we we we se 46 16 we ZO
ve

Copyr

Educa

HAS EIGHT WORDS PER CHANNEL AS FOLLOWS:

FLU = O 3FILE“S LOGICAL UNIT NUMBER

3-1] IN FLU ==> DEVICE (ON LU #0)

FDA = | 3FILE HEADER DISC ADDRESS

CBN = 2 sCURRENT BLOCK NUMBER

;CBN = INIT ENTRY ADDRESS IF DEVICE

;CBN = PARTITION ENTRY POINTER IN CH # —|

STS = 3 $CHANNEL STATUS (SEE BELOW)

FSZ = 4 3FILE’S SIZE (# DATA BLOCKS IF CONTIGUOUS)

| 3FSZ = RECORD NUMBER IF NOT CONTIGUOUS FILE
WPR = 5 3NUMBER OF WORDS PER RECORD

FRR = 6 $FIRST REAL RECORD NUMBER

CNP = 7 $sCHANNEL NODE POINTER (FOR MODULAR FILES)

H BIT IN CHANNEL STS IS A FLAG AS FOLLOWS:

Ix MEANING

5. RECORD IS LOCKED (IN CHM! ==> PROGRAM IS LOCKED)

4 FILE IS WRITE PROTECTED

3 FILE IS CONTIGUOUS

2. FILE IS NOT FORMATTED

| PERIPHERAL DEVICE

QO FILE IS INDEXED

Y_ (RESERVED FOR BYTE NUMBER OVERFLOW)

\

\

\

) DISPLACEMENT OF

) RECORD INTO BLOCK

) (NUMBER OF BYTES)

/

/

/O—MOWAUANCL
* NOTE: BIT 15 IS THE MOST SIGNIFICANT BIT

ight 1978 software Definitions

tional Data Systems A5=—5 : 25 APR 78

3 TASK NUMBERS FOR

~DUSR

«DUSR

»DUSR

~DUSR

PROCE

TENHZ

SIGNA

ESCAP WN—O

"QUEUE"

s;PROCESSOR IN CHANNEL #-1

3TEN HERTZ TASKS

sSEND SIGNAL

3ESCAPE FROM PROCESSOR

; DEFINE SPECIAL FLAGS FOR DISCSUBS

»DUSR

eDUSR

~DUSR

eDUSR

X =40000

N =20000

D =10000

A =04000

sEXTENDED SUBROUTINE (TW BLOCKS)

;INCLUDED WITH ANOTHER IF CORE-RESIDENT

sVERSION IS DISC-RESIDENT ONLY _

sALTERNATE VERSION FOR CORE RESIDENCY

s DISCSUB NUMBERS FOR "CALL"

~DUSR

eDUSR

eDUSR

»DUSR

»DUSR

eDUSR

»DUSR

~DUSR

~DUSR

~DUSR

»DUSR

eDUSR

-DUSR

«DUSR

»DUSR

~DUSR

eDUSR

»DUSR

eDUSR

»DUSR

eDUSR

eDUSR

eDUSR

eDUSR

»DUSR

eDUSR

»DUSR

«DUSR

eDUSR

»DUSR

~DUSR

»DUSR

Software Definitions

25 APR

FAULT

ALLOC

DALLC

FFILE

EXTEN

ALCON

CDTA

CIA

CSTR

PASSC

ERROR

ME SSA

BREAK

ACNTL

DELET

PDELE

BUILD

BILDD =

OPEN

OPENU

OPENL

OPEN R

CLOSE

CLEAR

GETRR

GETRW

FINDI

READI

WRITI

WRITN

READC

WRITC

18

rind dt t hu bu i tow hoa
¥ 7,+ os 3;PRINT TRAP MESSAGE, ABORT TASK

sALLOCATE DISC BLOCKS

sDEALLOCATE DISC BLOCKS

sFIND FILE IN INDEX

sCHANGE TO EXTENDED FILE

sALLNCATE A CONTIGUOUS FILE

sCONVERT DRATSAB TO ASCII

sCONVERT INTEGER TN ASCII CANY RADIX)

s;COMPARE STRINGS

sPASSWORD COMPARE

sERROR ROUTINE FOR BASIC

CANNED MESSAGE TO I/O BUFFER

sBREAKPOINT SETUP FOR DSP

sACCOUNT LOOKUP

;DELETE A FILE

s;DELETE A PROCESSOR OR DRIVER

sBUILD A NEW FILE |

sBUILD A "S$" FILE

s0PEN A FILE OR A DEVICE

sOPEN A FILE OR A DEVICE FOR UPDATE

sQOPEN AND LOCK A FILE OR A DEVICE

sOPEN A FILE OR A DEVICE FOR REFERENCE

sCLOSE A CHANNEL

sCLEAR A CHANNEL

sGET RECORD FOR READ

;GET RECORD FOR WRITE |

sFIND AN ITEM (NOT IMPLEMENTED)

sREAD AN ITEM

sWRITE AN ITEM

sWRITE A NEW ITEM

sREAD FROM CONTIGUOUS FILE

sWRITE INTO CONTIGUOUS FILE

; (CINTINUED ON NEXT PAGE)

Copyright

Educational Data SystemsA5=-6

1978

; DISCSUB NUMBERS (CONTINUED)

eDUSR

«DUSR

~DUSR

eDUSR

-DUSR

eDUSR

»DUSR

»DUSR

»DUSR

»DUSR

eDUSR

.DUSR

eDUSR

-DUSR

»DUSR

eDUSR

»DUSR

eDUSR

»DUSR

eDUSR

»DUSR

eDUSR

»DUSR

«DUSR

»DUSR

eDUSR

eDUSR

eDUSR

»DUSR

eDUSR

eDUSR

eDUSR

eDUSR

eDUSR

eDUSR

~DUSR

eDUSR

eDUSR

eDUSR

«DUSR

eDUSR

eDUSR

~DUSR

eDUSR

»DUSR

+ DISCSUB NUMBERS

;

CHARG

SYSCN

CNVDA

CNVAD

CNVDT

RDFHI

SPECI

RECOV

PATNF

PLOGF

PSQRF

PEXPF

PS INF

PCOSF

PTANF

LINKP

DIREC

SEARC =

SHUFF

DEKEY

RELEA =

FIXDI =

REQUE

AFSET

SIGPA

MRDS

MTASK

MRFHD

MRFIL

MTPFPE

MNEXT =

MLAPA =

RWCTU =

PACK

UNPAC

EDITN

EDITA

EDITD

REOPT

FINDF

RDISC

CHFLT

WRWRD

XCOM 1

XCOM2

XCODE

=40

=4 |
=4?

=4 3

=44

=45

=46

=47+D

=50

=5 |

shy D

=5 3+X

=54+X

=55+N+X

=5 6

=57

inh on ub tou bot tan
=|17

© Gof+<

1O05+N

130 -

sCHARGE FOR FILE ACCESS

sTRANSMIT A SYSTEM COMMAND

sCONVERT DATE TO ASCII
sCONVERT ASCII TO..DATE

sCONVERT DATE AND TIME (CALL 99)

sREAD FILE HEADER INFO (CALL 97)

3SPECIAL FUNCTIONS

sRECOVER FROM A STALL OR CRASH

;PSEUDQ DIVIDE ARC TANGENT FUNCTION

;PSEUDN DIVIDE NATURAL LOG FUNCTION

;PSEUDN DIVINE SQUARE ROOT FUNCTION

;sPSEUDO DIVIDE EXPONENTIAL FUNCTION

sPSEUDO DIVIDE SINE FUNCTION

s;PSEUDO DIVIDE COSINE FUNCTION

;PSEUDN DIVIDE TANGENT FUNCTION

sLINK PROGRAMS (BASIC“S "CHAIN")

sSET UP DIRECTORIES FOR INDEXED FILE

s$SEARCH INDEXED FILE DIRECTORY

sSHUFFLE DIRECTORY BLOCKS

sDELETE KEY FROM DIRECTORY

sRELEASE A DIRECTORY BLOCK

sFIX DIRECTORIES OF MOMVED INDEXED FILE

sRE-ORDER TASK QUEUE

sSET UP ACTIVE FILE FOR SWAP-OQUT

s$SIGNAL OR PAUSE

3MAG TAPE READ STATUS

sMAG TAPE SUPPLEMENTARY TASKS

s MAG TAPE READ FILE HEADER
sMAG TAPE READ INPUT FILE

sMAG TAPE READ/WRITE TRANSFERS

sMAG TAPE GO TO NEXT DRIVE

sMAG TAPE ALL OTHER FUNCTIONS

sREAD/WRITE CASSETTE TAPE UNIT

(CALL 98)

sPACK NUMERIC TO STRING

sUNPACK STRING .TO NUMERIC

sNUMERIC EDIT

sARITHMETIC EDIT

sDATE EDIT (DD/MM/YY)

SRE-OPTIMIZE INDEXED FILE DIRECTORY

sFIND A FILE (CALL 96)

sREAD OR WRITE WORD TO DISC (CALL 95)

SCHANGE FILE TYPE (CALL 94)

sWRITE WORD TO CORE (CALL 93)

3FOR BI-SYNC DRIVER

3FOR BI-SYNC DRIVER

sAUXILIARY INPUT CODES FOR BASIC

137 ARE TO BE

USED FOR CUSTOMER’S OWN SUBROUTINES.

; NUMBERS UP TO 777 OCTAL MAY 38E USED

, IF NSUB

Copyright 1978

Educational Data Systems

IN INFO TABLE IS INCREASED.

software Definitions

A5-7 25 APR 78

$ CORE-RESIDENT SUBROUTINE NUMBERS FOR "CALL"

»DUSR

»DUSR

eDUSR

~DUSR

eDUSR

~DUSR

»DUSR

»DUSR

»DUSR

oLDUSR

eDUSR

eDUSR

«DUSR

~DUSR

eDUSR

eVUSR

eDUSR

eDUSR

eDUSR

SCOPE

RPZER

CHKCH

ALLCL

OFC

FOFI

LOADU

DISCB

UNLOC

WONA

CHKRP

CHRWP

CHKCP

MOVEW

MOVBY

CBSA

CRLA

CLRA

CPPPN =

CPNPP

; MAGNETIC

»DUSR

»DUSR

eDUSR

oDUSR

-DUSR

»DUSR

eDUSR

-DUSR

eDUSR

eDUSR

eDUSR

»DUSR

; COMMAND DISPLACEMENTS FROM INTH

~DUSR

~DUSR

«DUSR

eDUSR

»DUSR

eDUSR

eDUSR

oDUSR

eDUSR

»DUSR

~DUSR

eDUSR

Software Definitions

25 APR

CFN.

CRN.

MDE.

OTT.

CHA.

PHD.

PXH.

NWC.

MCN.

USR.

IlH.

UNT.

LADR

TSK.

SGD.

BSY.

EFG.

RDP.

RDT.

MWT.

MRD.

WEF,

RWD.

SPC.

18

=

=

=@

=

O

|

2

3

=u 4

=(v 5

=w 6

=@ 7

=w10

=@ ||

=wW12

= 13

=u14

15= (7

sEXIT TN "SCOPE" PROCESSOR

sRELEASE PARTITION ZERN

3CHECK CHANNEL

s;CLEAR ALL CHANNELS

sFIND OPEN FILE (CONTINUE)

sFIND OPEN FILE (INITIALIZE)
sLOAN USER“%S ACTIVE FILE

sREAD OR WRITE A GROUP OF BLOCKS

sUNLONCK RECORD

sWAIT FOR OUTPUT NOT ACTIVE

sCHECK READ PRITECTION

sCHECK WRITE PROTECTION

s¥CHECK COPY PROTECTION

sMOVE WORDS

;MOVE BYTES

s;CHECK "BSA CHANGED" FLAG

s;CONVERT REAL TN LOGICAL DISC ADDRESS

;CONVERT LOGICAL TO REAL DISC ADDRESS

$CONVERT PCB POINTER TU PORT NUMBER

sCONVERT PORT WUMBER TU PCR POINTER

TAPE DRIVE TABLE (IN $MTAO, SMTAI, ETC.)

Hu db ud td wd won wow tt
f—-—-—-—-— NN SORUANO—
{ On

‘

OF

ri Wo

3 CURRENT

3 CURRENT

3CURRENT

3CUPRRENT

3 CURRENT

sPOINTER INTO HEADER (0 IF CONTIGUOUS) | |

;POINTER INTO EXTENDER (O IF NOT EXTENDED)

3WORD COUNT (NEGATIVE)

COUNTER

s;CURRENT USER

sADDRESS OF INTH IN .$MTAS

;DRIVE NUMBER

TAPE FILE NUMBER

TAPE RECORD NUMBER

OPERATING MODE

STATUS OF DRIVE

CHANNEL ADDRESS

IN $MTAS

sLAST CONTROLLER ADDRESS

sSET TASK

;SIGNAL DONE ROUTINE

3BUSY SUBROUTINE

sERROR FLAG |

$REGNANT DRIVE POINTER

sREGNANT DRIVE TABLE (4 WORDS)

SWRITE RECORD

$READ RECORD

SWRITE EOF

$REWIKD

$SPACE FORWARD

Copyright 1978
A5-8 © Educational Data Systems

3; HEADER BLOCK DISPLACEMENTS (SEE MANAGER MANUAL)

»DUSR

eDUSR

»DUSR

~DUSR

eDUSR

eDUSR

»DUSR

»DUSR

eDUSR

eDUSR

eDUSR

»DUSR

oWUSR

eDUSR

eDUSR

»UUSR

9

«DUS RF

DUS

eDUSR

»DUSR

eDUSR

eJLOR

»DUSR

eDUSR

eDUSR

»DUSR

eDUSF

»DUSR

eDUSR

NAME

ACNT

TYPE

NBLK

SLAT

NITM

LRCD

NRPB

NRCD

COST

CHGS

LDAT

CDAT

TAC

CATR

CLAS

3

PPRI

ON UIA

ADAT

DASA

NOPS

riAAP

HPEM

STAD

ABLK

IS AF

CORA

UNIT

DHDR

§ 200-3 7/7

#20

3 DISPLACEMENTS

9

eDUSP

»DUSR

eDUSR

eDUSR

eDUSR

»DUSR

eDUSR

~DUSR

»DUSR

Copyright 1978

Educational Data Systems

APR.

ALU.

ACN.

CHR .

CoR.

IADB.

DBU,.

PDB.

CHG.

hud un ub nob db uu te tot ub bb th i bon ton tomb na
sFILENAME STRING (7 WORDS)

sPRIV LEVEL, ACCOUNT (GROUP, USER)

sFILE TYPE AND PROTECTION

sNUMBER QF BLOCKS IN FILE CINCL. HEADER)

sFILE STATUS (SEE MANAGER MANUAL)

sNUMBER OF ITEMS PER RECORD \ ALSO

;LENGTH OF EACH RECORD (# WORDS)) USED

sNUMBER OF RECORDS PER BLOCK) BY

sNUMBER OF RECORDS IN FILE / DSP.
;DIMES CHARGED FOR ACCESS TO FILE

sTOTAL CHARGES FOR FILE USAGE (2 WORDS)

sLAST ACCESS DATE (HOURS, TENTH=SECONNS)

sFILE CREATICN DATE (HOURS, TENTH-SECONDS)

SNUMBER OF TIMES ACCESSED

s"CATALOG" RECORD NUMBER

sCATALOG CLASSIFICATION (2 WORDS)

(SPARE)

sPROGRAM7S ASSIGNED PRIORITY

3SCO NUMBER OF LAST SCQ APPLIED

sDATE LAST SCO APPLIED (HOURS AFTER I-1-76)

3DECIMAL ACCUMULATOR SAVE AREA (10 WORDS)

sSTORAGE FOR DSP (20 WORDS)

;DATA FILE FORMAT MAP (IOI WORDS)

sTEMP CELL USED BY ALLONC, DALLC & ACNTL
sSTART ADDRESS (DRIVER OR STAND-ALONE)

sNUMBER OF ACTIVE DATA BLOCKS

sDEFAULT SIZE OF ACTIVE FILE (# BLACKS)
sCORE ADDRESS OF FIRST DATA BLOCK

sLOGICAL UNIT NUMBER WHERE FILE RESIDES

sREAL DISC ADDRESS MF HEADER BLOCK

REAL DISC ADDRESSES OF DATA BLOCKS

CORE ADDRESSES ARE AT 400 WORD STEPS FROM CORA

FOR EACH ENTRY IN "ACCOUNTS" FILE

sACCOUNT ID STRING

sASSTIGNE!) PRIORITY

sASSIGNED LOGICAL UNIT

sACCOUNT NUMBER (PRIV, GROUP, USER)

sCONNECT MINUTES REMAINING

$CPU SECONDS REMAINING

sMAX. DISC BLOCKS ALLOTTED

3DISC BLOCKS NOW IN USE

sPEAK DISC BLOCK USAGE

sFILE USE CHARGES (FLOATING 2-WORD BCD)

Software Definitions

A5-9 25 APR 78

LOGICAL

eUSR

eDUSR

eVUSR

eDUSR

»DUSR
e

9

,

;

5

@

eDUSR

eDUSR

oWUSR

eDUSR

»DUSR

eDUSR

eUS

eDUSR

»DUSR

oNUSR
2

9

@e ©23 @6 e 20 @6¢ we we we te Ee we

DINT

DMSK

SIZ

PFRD

EMOK

IDRV

SLUR

OKNB

REDS

OEEK

NOCT

PR WORK

LRTC

LRCC

NELG

NULE®

BIT

BIT

BIT

BIT

BIT

BIT

BIT

BIT

BIT

BIT

BITS

UNIT FIXED INFORMATION TABLE (LUFIX)

=—) 4

=—2 3

=—22

—2 |

-20

-17

~16

=15

-14

-13

=~|2

==1 |

nonuuw do ua non
BITS ARE USED IN DFLG

ID,

14

13

l2,

1]

10

=-10

-7

-¢

LUGICAL UNIT

sPOINTER TO INTERRUPT HANDLER

sDISC CONTROLLER’S MASK BIT

sOIZE OF DRIVER (# WORDS)

sPOWER FAIL RESTART DELAY

S"ANY ERROR" STATUS MASK

s"WRITE PROTECTED" MASK

s"NO SUCH DISC" MASK

s"DATA CHANNEL LATE" MASK

s"ADDRESS CHECK ERROR" MASK

s"TLLEGAL DISC ADDRESS" MASK

s" INITIALIZE DRIVER" SUBROUTINE ENTRY

s"SKIP IF LU READY" SUBROUTINE ENTRY ©
s"SKIP IF NOT BUSY" SUBROUTINE ENTRY

s"READ STATUS" SUBRNUTINE ENTRY ©

S"SEEK OR RECALIBRATE" SUBROUTINE ENTRY
sNUMRBER OF SECTORS (BLOCKS PER TRACK)

sINUMBER OF TRACKS PER CYLINDER |

sLOGICAL-TO-REAL TRACK CONVERSION FACTOR

;LUGICAL-TO-REAL CYLINDER CONVERSION FACTOR

3DISC FLAG WORD (SEE BELOW) _

sREAD/WRITE ENTRY TO DRIVER ROUTINE

WORD AS FOLLOWS:

CHANGEABLE CARTRIDGE FLAG

FIXEN HEAD DISC (USE ALLAC FOR ACTIVE FILE)
(UNUSED)

(UNUSED)

SKIP SECTOR BETWEEN TRACKS WITHIN CYLINDER

SAME SECTOR NEXT TRACK \ NEXT BEST BLOCK

NEXT SECTOR NEXT TRACK) IF DESIRED IS

NEXT SECTOR SAME TRACK 7 NOT AVAILABLE.

CANNOT TRANSFER SEQUENTIAL SECTORS

SECTORS APE PHYSICALLY SEQUENTIAL

DEVICE ADDRESS

VARIABLE INFORMATION TABLE (LUVAR)

~DUSR NCYL = O $NUMBER OF CYLINDERS

eDUSR PART = 1 $PARLITIOWING INFORMATION

; 2 $PARTITIONING INFORMATION

; 3 $(RESERVED -= DO NOT USE!!)

»DUSR AVBC = 4 sAVAILABLE BLOCK COUNT (SET BY SIR)
~—JUSR MINB = 5 $MIN. # OF BLOCKS FOR CREATING NEW FILE

5 = 6 $(SPARE)

eDUSR FUDA = 7 $FIRST UNUSED REAL DISC ADDRESS (SET BY SIR)

~DUSR ERRC =10 sDATA CHECK EPRNR COUNT
5 11 sADDRrSS CHECK ERROR COUNT

; 12 sDATA CHANNEL LATE COUNT

eENT - "TRIS" R723 SOFTWARE DEFINITIONS

Software Definitions

25 APR 78

Copyright 1978

A5=-10 Educational Data Systems

UREX" PAGE ZERO DEFINITIONS FOR "IRIS" R723

@e 20 }-23-7%

All Rights Reserved

Copyright 1974, Educational Data Systems
Copyright 1973, Educational Data Systems

This document may not be reproduced without the

prior written permission of Educational Data oystems@e0 @0e we we VO
C2 =2

C3=3

RUP=5

RUS=RUP+1

RTP=RUS+ |

~BSA=RTP+ |

eHBA=. BSA |

eHXA=.HBAtI

~O0A=.HXAF |

eABA=. SODAt 1

BBA=.ABA+ |

BPI=BBA+I -

CM4C:0=2 |

C4=CM400 +1

Cbh=C 4+ |

C6=C5+]

C/=C6+l

AT 1=C7/+]

AIT2=AT 1+

ADI=AT 2+ |

AD2=ADI1+ |

CIO=AD2+ 1

Cll=ClLO+ 1

Cl2=Cli+|

C1 3=C 12+ |

C14=C1 3+1

Cl5=C14+1

C16=C15+1

Cl 7=C16+1

C20=Cl1 7+

C37=C20+1

C40=C3 7+ 1

C7/=C40+ |

Copyright 1978 Page Zero Definitions

i:ducational Data Systems Ad5-11 25 APR 78

C1 O00=C 77+3

C1 77=C 100+ |

C200=C 177+ 1

C205=C 200+ |

C215=C 205+ |

C2 44=C 240+ |

C260=C 244+ |

C271=C260+ |

C300=C2 7141

C334=C 300+ 1

C377=C 334+ |

C4 00=C 377+ |

C777=C 400+ |

Cl OQ0=C 7 77/+!1

Cl 777=C 1 000+ |

C2000=C 1 77/+1

C4 000=C 2 000+ |

C714C=C4 0004 |

Cl /70K=C774C+ |

ESCF=C1 /OK+1

RTL=ESCF +]

BSACFHRTL+1|

ERRE=b SACK +1

eCALL=E®RF+I

CALL=JSR @.CALL

FLAGC=JSR w&w.CALL+I

OQCHAR=JSR weCALL+2

QUEUE=JoR e.CALL+3

we-CALL+4

CHANNEL=JSR we CALL+5

FREENODE=JSR &.CALL+6

D@UE UE=J5SR

Page Zero Definitions

25 APk 78 A5=-12

Copyright 1978

Educational Data Systems

MEMES

~PCA=.CALL+4+1 3

eBPS=.PCA+I

eI NFO=.3PS+1

C6 00=. INFO

»ACBY=.INFO+1

~ACIB=.ACBY+ |

~ACSB=.ACIB+ I

~BDIV=.ACSB+ |

-BMUL=.BDIV+|

»BUMP=.BMUL+1

eDEC=. BUMP+|

eFALT=.DEC+2

oFIX=.FALT+1

eFLOT=.FIX+1

eFLUT=.FLOT+1

eTA2D=.FLUT+1

~LA2L=. [TA2D+]

~INTR=.ITA2L+|

»LODA=. INTR+1

»MSG=. LODA+|

~NRET=.MSG+]

»RBLK=.NRET+ 1

eORET=.RBLK+ I

oO TBY=.oRET+1

eOLDA=.51BY+ |

eoll=.STDA+I

eOl0=.5TI+I

eo lLOB=.510+1

eolPL=.STOB+I

eNBLK=.STPL+I

-XACB=.NBLK+I

eXOTB=.XACB+ |

Copyright 1978 Page Zero Definitions

Educational Data Systems Ab=-13 : 25 APR 78

60
-

DA

DAC

DAS

Db

DBC

DBO VIO OOWN Oa Ot
eDA =1 74

eDA3=175

~DB =176

eDB3=1 77

Cl60=.DA

C163=.DA3

C166=.D8

Cl71=.DB3

BINDIVIDE =JSR

BINMULTIPLY=JSR

BUMPUSER =JSR

DECTIAL =JSR

FIA =JSR

FLOAL =JSR

FINDLUT =JSR

GETBYTE =JSR

INBYTE* =JSR

INSTBYTE =JSR

ISA2DIGIT =JSR

ISA2LETTER =JSR

LOADDA =JSR

QUTBYTE =JSR

OUTTEXT =JOR

PUTBYTE =JSR

READBLOCK =JSR

STORDA =JSR

STINPUT =JSR

STOUTPUT =JSR

TRAPFAULT =JSR

WRITBLOCK =JSR

XGETBYTE =JSR

XPUTLYTE =JSR

eEQT $ YREX"

®.BDIV

@. BMUL

@. BUMP

W.DEC

weFIX

@.FLOT

@.FLUT

@.ACBY

@.ACIB

w. ACSB

@.TA2D

Ye TAAL

@.LODA

@.STOB

@.MSG

we STRBY

@ ,RBLK
@.STDA

a. STI

@.STO

@.FALT

@.WBLK

@. XACB

@.XSTB

R7.3 PAGE ZERO DEFINITIONS.

Page Zero Definitions

25 APR 78 A5-14

Copyright 1978

Educational Data Systems

Appendix 6: DRIVER ATTRIBUTES

After loading or replacing any system device driver or peripheral
driver file, it may be necessary to modify the attributes table at
the end of the driver before doing an IPL. Also, these attributes
May be modified as required at any time to change buffer size,

active file size, or certain default characteristics such as the
EOM code, return delay, or special character delays.

This Appendix gives detailed information about setting up the
attributes tables in various drivers. Section I! of this manual
describes IRIS drivers in general, and detailed descriptions of a
driver’s attributes table and port definition table are given on
page 11-3. If the reader has not already done so, it is advisable
to read Section 11.1 and to understand the examples shown in
Figures I1.1 and 11.2 before attempting to modify the attributes

or port definitions for any driver.

In some drivers there are additional parameters just ahead of the
attributes table which may be set for special conditions. Since
each driver has different characteristics, a separate section of
this Appendix is devoted to each standard IRIS driver as follows:

page driver for —_

A6-2 - General Information

A6—-2 - Master Terminal (port 0)
A6=3 SMTI Multi-Terminal Interface

A6—-4 $ MMUX EDS 300 or 310 Multiplexer

A6-6 SALU DCC ALU Multiplexer

A6-6 S$ DGMX Data General 4060 Multiplexer

A6-6 STTY50 Nevice 50/51 I/N Board

A6-6 SPHA Pnaantom Ports

The following drivers do not have any parameters that can be

changed by the system manager?

Real Time Clock

Copyright 1978
Educational Data Systems

SRTC

$PTR High Speed Paper Tape Reader

S$PTP High Speed Paper Tape Punch

SPTM Paper Tape on Master Terminal

S$DEC Decimal Arithmetic Software

SDA U Decimal Arithmetic: Driver for Micro-N

S$MTAS Magnetic Tape System Driver

STERMS System Driver for Terminal Control

Driver Attributes

A6-| | SEP 78

Location BPS+I (currently 10201) of any driver file contains a
pointer to its attributes table, which is represented by "“atrib"
in the following example. To examine a driver’s attributes, give
DSP the commands:

F $driver

D10201

10201: atrib .. . (press ESC}

D atrib

where $driver is the Filename of the driver file, and "“atrib”
represents the address contained in location 1020I.

When dumping the attributes table, the ESC key should be pressed
after the second 177777 appears. The attributes table has the
form:

atrib: PCB location (or O if none)

Interrupt mask bit word

Device address code

/ Linkage pointer table \N

{ (two words per pointer))}
\ DO NOT CHANGE!! /

177777

/ Port definition table \N

{ (eight words per entry))
\ Change as desired /

177777

The attributes table and port definition table are described in
detail in Section I1.1. Some drivers also have special control

information just ahead of the "atrib" cell. Usually, only such
special information and the port definitions would be changed by

the manager to specify a new arrangement of ports and/or default
characteristics for each port. After loaging on, an interactive
user can change some of the characteristics of his port by use of

the PORT system command. See "How to Change Other PORT

Characteristics" in the IRIS User Reference Manual. the use of
PORT, however, changes the port’s attributes in core only’ an IPL
will again set up each port to the default values specified in the

driver’s port definition table.

MASTER TERMINAL (Port Q)

Port zero does not have an attributes table. The eight-word port
definition table for the master terminal is in the REX file, and
there is a pointer to it in location 200 of REX. If the system

includes an EDSI 310 multiplexer with the device 10/11 option
enabled, then port zero becomes a phantom port after a normal IPL mn,
with $MMUX active.

Master Terminal Attributes Copyright 1978
| SEP 78 A6=-2 Educational Data Systems

SMTI (Multi-Terminal Interface)

Use of $MTI requires $MAUX and set up of attributes information

for the ports to be used. The system manager must determine the
number of ports to be driven by SMTI and enter this number (in
octal) at location ATRIB-2 in the SMTI files’ this number of

physically sequential ports must be available on the multiplexer.

Then determine the physical port number of the first port to be
used, and enter this number (in octal) at location ATRIB-I in the

SMTI files this multiplexer port will become logical port number

zero ("record" number zero) when READing or WRITing to SMII from
the application program.

The attributes table in $MITI must be empty. The ports selected

above must be specified as non-interactive ports in the attributes
table of the multiplexer driver (active file size = 0), and all

other characteristics of the ports (speed, default EOM code,

buffer size, etc.) must be specified there.

set the number of signal buffer nodes (NSIG in CONFIG file) to be

a minimum of twice the number of ports to be controlled by SMTI

plus any other signalling requirements. It is recommended that
NSIG be at least four times the number of SMTI ports. Do an [IPL

to activate all attributes specified above.

The PORT processor may be used later by the system manager to

change the baud rate, return delay, and special character delays

for specific ports. Note, however, that the physical port number

rather than the $MTI port number must be given to PORT. PORT

cannot be used to set up or change line lengths for SMTI ports

Since $MTI does not force a return at the end of a line. PORT can

also be used to change the input terminating character, but this

is not generally done since the application program can easily

change the input terminator at any time. WARNING! A return delay

change made by use of PORT may not be effective if $MII is in use

at the time the change is made.

Copyright 1978 SMTI Attributes

Educational Data Systems A6-3 : 1 SEP 78

ae wwe © S@ 202 Be @2 8 © @ 28 ©8 282 2 @ @2e 202 2 oe ©e 8282 Be ee ©8 2 es *©@ 2&0 28 O@ 2S 2 @e we Be woe ©8e 2 ee 2h we 262 286 24

SMMUX (EDSI 300 or 310 Multiplexer)

In addition to setting up the Port Definition Table as described

in Section I|.1, the word just before ATRIB must. be set equal to

the total number of ports (in octal) being defined. This number
must also be exactly equal to the number of ports physically

present in the Mighty-Mux system, even if not all ports are

actually used. For example, if an EDS-30!1 expansion board with 16

ports is connected to the basic board (which has 8 ports), then
the total number of ports defined in the $MMUX Port Definition

Table must be exactly 24, and the word at ATRIB-I must contain 30

octal.

The Port Control Word (the second word in each set of eiaht) must
be set up in accordance with Section I|.1. In particular, be sure
to set the "EDSI MUX" bit (ie, the octal 40000 bit).

Example of a Port Definition Table (PDT) for $MMUX -- Assume a
Mighty-Mux system being used for the following configurations

EDSI 310 mux with a 301-A8 expansion board (16 ports
total).

Four interactive ports with CRT’%s on ports #1 - #4 running
at 1200 baud, 77-bit character plus even parity bit,

135-byte I/D buffer, and 24-block active file.

One interactive port with 300-baud modem on port #5, 7=-bit
character plus even parity bit, 79-byte I/O buffer,
24—-tlock active file, and automatic baud rate scan

enabled.

Two unused ports (ports #6 and #7).

Eight ports used to interface CRT’s to $MII at 9600 baud,

7-bit character plus even parity bit, and 95=-byte
I/O buffer.

One non-interactive port running a line printer at 9600

baud, 8-bit character without parity, "ready"

status = "high", and 5l2-byte I/0N buffer.

SMMUX Attributes Copyright 1978
| SEP 78 A6~-4 Educational Data Systems

The PDT for the configuration described on the preceding page

would look like this: .

20

ATRIB: 66000

2000

25

-l

4

40054

207

0

0

0

30

0

1

55452

}— — ~l

OOOOOMOOONOCOOOO Oo

Copyright 1978

Educational Data Systems

;TOTAL # PORTS ON MMUX = 16

;FIRST MMUX PORT'S PCB LOCATION

;MASK BIT

;DEVICE ADDRESS

;NO LINKAGE POINTERS

;FOUR CRT PORTS AS FOLLOWS:

7-BIT CHAR, EVEN PARITY, 1200 BAUD

135-BYTE I/O BUFFER

NO RETURN DELAY OR TERMINAL TYPE CODE

NO SPECIAL CHARACTER DELAYSme te MO MEO
24-BLOCK ACTIVE FILE

(THIS CELL NOT USED)

ONE INTERACTIVE MODEM PORT

PCW (SEE PAGE 11-4)

79-BYTE I/O BUFFER=e te MO BO WE

;TWO UNUSED PORTS

;EIGHT PORTS FOR SMTI

; 7-BIT CHAR, EVEN PARITY, 9600 BAUD

; 95-BYTE I/O BUFFER

; NO ACTIVE FILE (NOT INTERACTIVE)

;ONE PORT FOR LINE PRINTER

; PCW (SEE PAGE 11-4)

; 512-BYTE I/O BUFFER

NO ACTIVE FILE=e

;END OF PORT DEFINITION TABLE

SMMUX Attributes
A6-5 28 MAY 80

SALU (DCC ALU Multiplexer)
and . |

SDGMX (Data General 4060 Multiplexer).

The instructions for $MMUX also apply to SALU and $DGMX except for
the following:

Set the PCW word to zero, These multiplexers do not

provide for software control of parity, data bits, or
baud rate as does the #DS multiplexer. The user must

make sure that his terminals match his multiplexer in

these respects.

Auto log off and $MTI are also not available for these

multiplexers.

sTTy or TTY50 (Dual Device Code I/O Port)

The standard IRIS system provides for one extra I/O port in

addition to the Master Terminal (always device code 10/11).
Please note that the Master Terminal's driver is already built

into IRIS. Activating $TTY enables a second I/O port with device

code 50/51. Other device code pairs can be special ordered

through EDS, and all can be enabled on the same system.

To set up ATRIB, there must be only one port definition table, of

which the initial word is one and the next word (PCW) is zero.
The parity, data bits, and baud rate are not under software

control so the user must make sure that his terminal is set up

properly in this respect.

SPHA (Phantom Ports)

The standard IRIS system comes with one phantom Port. More ports

can be added by defining more ports in ATRIB in $PHA. If PRINT +

Channel is to be used in a BASIC program running on a phantom

port, that port must have a standard size I/O buffer.

SALU / $DGMX / S$TTY or TTY50 / SPHA Copyright 1978

28 MAY 80 A6-6 Educational Data Systems

“Yee

Appendix 7: TRAP NUMBERS

A trap number may appear in a trap message (see Section 6.1) in

the form “TRAP #n AT [location] IN [Cprocessor]", where n is a

number in the list on the following pages, [location] is the

location within the processor (the address on its listing) where

the fault was detected (or where a discsub was called that

detected a fault), and [processor] is the Filename of the

processor that was in core at the time the fault was detected.

For example, "TRAP #3 AT 7636 IN COPY" would indicate a disc error
(data check error, seek error, data channel late, or disc

time-out) which was not recoverable in 16 retries had occurred
while running the COPY processor, and the actual trap occurred at

location 7636. In the case of a TRAP #3, the actual location in

the calling processor (COPY in this example) is given in the first

status word (see page A/-3).

See page A7~2 for the meaning of the trap number and page A/7-3 for
the meaning of the contents of registers AO through A2 in the trap
status. Register A3 is usually the actual core address where the

fault was detected.

The following shorthand notations are used?

a() "core address of"

d() “disc address of" —

==> "implies"

X register contains no useful information

Trap numbers 100 and greater will occur only during an IPL, an
INSTALL, or a SysGen, and the computer will halt after any such

trap unless it determines that a retry is possible. Pages A/-4

and A7-5 give the meaning of the trap number and register
contents, respectively, for traps #100 and up.

Copyright 1978 | Trap Numbers

Educational Data Systems A7l-1 , 25 APR 78

Trap # Meaning

O Undetermined (refer to listings)

| Disc is write protected

2 No such disc

3 Can’t recover from disc error

4 Disc timed out

5 Illegal disc address

6 Disc busy before transfer started

7 Illegal or inactive Logical Unit

10 Illegal core address for disc read or write
11 Writing HBA, disc address or LU <> header in HBA

12 Fault in interrupt service (eg, lost character)

13 Active file too small and no blocks available

14 DISCSUB calls nested too deep

15 Called DISCSUB does not exist

16 Bad directory in indexed file

17 DSP has wrona file type (should be 77400)

20 BASIC not on Logical Unit zero

21 BASIC has wrong file type (should be 337/02)

22 RUN not found on Logical Unit zero

23 RUN has wrong file type (should be 33602)

24 RUNMAT has wrong file type (should be 33402)
25 BASIC user area is too small (must increase LBSA)

26 NBLK < 1 for read/write file

27 NBLK > # disc addresses for read/write file

30 Impossible status returned by a subroutine

31 No data blocks in active file

32 Store output byte while output is active

33 File is larger than user partition

34 Processor aborted due to 25.6 seconds overtime

35 Impossible statement code in BASIC program
36 Illegal priority given to queue a task

Trap Numbers Copyright 1978

25 APR 78 Al=-2 Educational Data Systems

MER,

[rap # AQ

N—ONAWMAWDH —

*x

2

Return address

Return address

Return address

Disc status

Return address

Return address

Logical Unit #

Return address

Logical Unit #

Trap address

blocks short

Subroutine ID

Subroutine #

Directory flags

x

BASIC’s Unit #

x

x

x

X

a(NVS)

NBLK: from header

x

x

x

Return address

NBLK

Address —

Partition addr

Return address

Un a trap #3,

QO ==>

] ==>

==>

3 ===>

On a trap #36,

Al

Disc address

Disc address

Disc address

Disc address

Disc address

Disc address

Disc address

Disc address

Disc address

x

x

Nesting limit

x

d(header)

x

x

BASIC’s type

4

RUN%s type

RUNMAT’s type

a(EUS)

d(header)

a(end of header)

x

blocks

OUTTEXT address

Maximum NBLK

(Al)

Statement address

Priority given

é A2.

Core address

Core address

Error type (see * below)

Return address

Core address

Core address

Return address

Core address

Return address

x

x

Return address

Return address

a (HBA)

~~ KKM
x

a(BUS)

a(HBA)

a(block not found)

Xx

x

PCB pointer

a(partition)

(A2)

Statement code

Node addr (see ** below)

the value in A2 indicates the type of disc

error as follows: |

Data Error (CRC error detected by controller)

Seek Error (Address check error)

Data Channel Late (Missed DMA cycle)

Time Out (Dise controller didn’t go DONE)

the node is not on any.queue or chain, so it

may be examined by use of DSP if desired.

Copyright 19/78

Educational Data Systems Al=3

Trap Status

25 APR 78

The following traps can occur only during a SysGen, IPL, or

INSTALLS

irap_# Meaning

100 More than 16 sectors defined for disc

101 Not enough disce space for system

102 Disc block already marked

103 INDEX has too few entries (header may be clobbered)

104 Disc driver. table in CONFIG is too large

105 Illegal DISCSUB number in core-resident list
106 SCOPE not on disc or not a processor

107 ACCOUNTS not on disc or not at real address 3

110 BYE not on disc or not a processor |
111 Core overflow on IPL as configured

112 PCA overflows allotted core (too many ports)

113. DISCSUBS file doesn’t exist or has been clobbered

114 Two DISCSUBS with the same number

115 DISCSUB with number greater than NSUB<-I (maximum)

116 Bad DISCSUBS object tape (has a gap or too large an address)
117 Not enough core for SysGen

120 Less than !6K core

121 Can’t initialize for minimum configuration

122 Not as much core as specified by TOPW

123 LBSA is less than minimum allowable

124 Auxiliary buffer area overlaps PCA |
125 Negative patch space (BPSP > ENDP in INFO table)

126 Too many lockable partitions

127 Partition size is too small or too large

130 Logical Unit is too large (FUDA > 177777)

131 Logical Unit zero is too large (FUDA > 100000)

132 Available block count exceeds FUDA

133. MBUS (at 607 in CONFIG) is too low for RUN or not 200 mod 400

134 Mighty-Mux missing (or has defective clock)

135 No STERMS (STERMS is required if any $TERMn is on system)
136 Too many $TERMn drivers on system (limit is 15)

137 Too many upper core partitions

Trap Numbers Copyright 1978

25 APR 78 A71-4 Educational Data Systems

Trap _# AQ

100 # sectors

iOl x

x

103 NBLK

104 x

105 Subroutine #

OPW + |

124 alend of ABUF)

125 ENDP+!1-BPSP

126 # partitions

127 Partition size

130 FUDA

131 FUDA

132 FUDA

133 MBUS

134 x

135 x

136 xX

137 # requested

Copyright 1978

Educational Data Systems

=> file empty

Al

x

x

Disc address

NRCD

X

May be NSUB .

d(SCOPE)

d(ACCOUNTS)

d(BYE)

x

x

d(DISCSUBS)

Table pointer

x

O ==> gap in tape

x XK OM
Minimum LBSA

~ # words overlap

ENDP

lockable

Maximum size

FUDA overflow
x

AVBC

Minimum value

x

x

x

possible

A7=-5

A2

Xx

X

X

a (HBA)

x

4

400 ==> not a processor

==> at wrong address

400 ==> not a processor

x

aC(end of PCA) + |

a(HBA) = DISCSUBS header

DISCSUB number

DISCSUB number
xX

x

a(INFO)

X

aC INFQ)

X

4

BPSP

x

Minimum size

4

x

Xx

MBUS mod 400 (shoul d=200)

~ KK X

Trap Status

25 APR 78

Appendix 8: PAPER TAPE LOADER

A special paper tape binary loader is supplied with IRIS. This

loader will accept tapes in standard Data General absolute format,

but each record read from the tape is read into a buffer and

checksummed before any data are stored in core. This prevents

data from being stored in the wrong place due to a read error on
the address word.

A special bootstrap program is required to load the EDSI paper tape
loader into core. The sequence is:

set data Then

switches press

xx 7600 | RESET, EXAMINE

060510* DEPOSIT

063610* DEPOSIT NEXT

000 777 DEPOSIT NEXT

00 | 400 ~ DEPOSIT NEXT

004 774 DEPOSIT NEXT

004 773 DEPOSIT NEXT

105305 DEPOSIT NEXT

000776 DEPOSIT NEXT
| 71 OOO DEPOSIT NEXT

004767 DEPOSIT NEXT

107300 DEPOSIT NEXT

045013 DEPOSIT NEXT

151400 DEPOSIT NEXT

004763 DEPOSIT NEXT

105300 DEPOSIT NEXT

010411 | DEPOSIT NEXT

000771 DEPOSIT NEXT

xx 1604 START

* Change last digit to 2 for high speed reader

xx selects the highest available core module

The binary loader occupies the area between the above bootstrap

program and the top of core. Jo use the loader, start at the top

word of core (location xx//77/) with switch zero down to select the

master terminal’s reader or up to select the high speed reader.

Copyright 1978 Paper Tape Loader

Educational Data Systems A8=-1 25 APR 78

INDEX

IRIS MANAGER MANUAL INDEX

Absolute value, BASIC function, U 8.3
Accounting Information, Suppression, M 2.3.14

Accounts

Generally, M 7.; U 1.7

See also System Files, ACCOUNTS

Accounting techniques, M 7.4

ACCOUNTLIST program, M 7.2

ACCOUNTS file, U 1.7

BYE, M 2.3.15

Disc blocks, U 1.7

INDEX, M 7.4

Manager account, U 1.7

Privilege, M 3., 7.;U 1.7

Read-File-Header Info subroutine, M 7.4

Setting up accounts, M 2.3.21

Status :

Log on, U 1.1

Querying, U 2.4

System, M 7., 7.1

UTILITY, M 7.3

ATN (arctangent), BASIC function, U 8.2

Assembly language

Generally,M 8.7, 12.; U 4.

ASSEMBLE, SYMBOLS, M 2.3.20

BASIC, Chaining to subroutines, U 9-28

Editing files, U 3.2

ASM, U 4.2

See also Assembly language

Backspace, erasing, U 1.9

BASIC .

Generally, U 6., 7.1

Accounting programs, M 7., 7.l

ACCOUNTLIST program, M 7.2

Arithmetic

Generally, U 7.5

Matrix algebra, U 10

Precision, U 7.3

Arrays, see Variables

ASCII codes

Strings, U 7.8

Calculator mode, U 6.10

Comments, U 9-27

Compatability with other systems, U 7.1

Discsubs, writing, M 10.4

Errors

Branching, U 7.1, 9-20, 9-18

Functions, U 8.8

Escape key

Error branching, U 9-18

Halting program, U 9-1

Files

Types, U 7.1

Functions

Generally, U 8

Absolute value, U 8.3

Account number, U 8.8 :

Channel function, U 8.7, 12.1, 12.5

Characteristic, U 8.6

Connect time, U 8.8

CPU time, U 8.8

Determinate value of matrix, U 10

Dummy, U 8.10, 9-13

Error detection, U 8.8

Exponential, U 8.2

Fractional portion, U 8.3

Integer exponent of radix, U 8.6

Index-1 .

BASIC {continued) .

LEN, U 11.8

Line number, U 8.8

Logarithms, U 8.2

Mantissa, U 8.6

Mathematical, U 8.3

Nesting, U 9.13

NOT, U 8.5

Number manipulation, U 8.6

Port number, U 8.8

Random numbers, U 8.4, 9-19

Sign, algebraic, U 8.3

SPC(n), U 8.8

Square root, U 8.2

Switch SETTINGS, front panel, U 8.8

Tab, U 9-8

Time, U 8.8

Trigonometric, U 8.1

User defined, U 9-13, 8.9

Numbers, see Variables

Printing

See also PRINT, MAT PRINT statements

Format, U 9-8, 9-10 |

Tabs, U 9-9 |

Programs

Automatic Start, M 2.4

Cost, U 6.7

Creating or modifying Text Files
with BASIC program, U 12.5

Entering, U 6.1

Errors, table of, U App 7

Executing, U 6.2, 6.8

Listing, U 6.3

Loading, U 6.11

Modifying, U 6.4, 6.9

Protection, U 6.7

Renumbering, U 6.6

Sample programs, U App 1

Saving, U 6.7

Segmenting, U 7.1, 9-29 '

Size, U 6.5

Size, Changing, M 2.8

Text files, stored as, U 6.7, 6.8

Read File Information subroutine, M 7.4

CALL 97, M 7.4

CALL 99, M 6.9

Relations, algebraic, U 9-16
Statements

Generally, U 7.2

BUILD #, U 12.3

CALL, U 9-30

CHAIN, U 9-29, 12.3

CLOSE #, U 12.3

DATA, U 7.3, 9-4

DEF, U 9-13

DIM, U 7.3, 9-14, ll.

END, U 9-1

FOR, U 9-20

GOTO, U 9-5

IF, U 9-16, 1l., 11.5

IF ERR, U 9-18

INPUT, U 9-3, 11., 11.7

KILL, U 9-27
LET, U 9-2, 11., 11.4

LET ... USING, U 11.4

MAT (add), U 10.

September 1978

BASIC (continued) |

MAT (determinate value), U 10.

MAT (invert), U 10.

MAT (subtract), U 10.

MAT ... CON, U 10.

MAT ... TRN, U 10.

MAT INPUT, U 10.

MAT PRINT, U 10.

MAT READ, U 10.

MAT WRITE #, U 10.

NEXT, U 9-5, 9-20

ON, U 9-7

OPEN #, U 12.3

PRINT, U 7.2, 9-8, 1l., 11.6

PRINT #, U 12.3, 12.5, 12.6, 12.7

PRINT USING, U 7.1, 9-10, 11.6

PRINT # USING, U 12.3, 12.7

RANDOM, U 9-19

READ #, U 12.3-12.9, 13.1.3

REM, U 9-27

RESTOR, U 9-5

RETURN, U 9-6, 9-7

SEARCH #, U 12.9, 12.10

SIGNAL 1, U 9-24

SIGNAL 2, U 9-25

SIGNAL 3, U 9-26

STOP, U 9-1

WRITE #, U 12.3, 12.5-12.9, 13.1.3

Strings

Generally, U 7.8

Arrays, U 11.9

Assignments, U 11.4

Carriage return, U 11.4

Characters permissable, U 11.4

Comparing, U 11.5

Concantenation of, U 11.4

Dimensioning, U 9-14, 11.3, 11.4

Expressions, U 11.1

Formatting, U 12.4

Inputing, U 11.7

Lengtn, U 11.8

Manipulation rules, U 11.4

Numbers, converting, U 11.4

Printing, U 9-8, 11.6

Quotation marks in, U 11.4

Subscripts, U 11.2, 11.4, 11.9

Terminators, U 11.2, 11.4, 12.5, 12.8

Text files, U 12.5

VS in indexed files, U 12.9

Subroutines, U 9-6

Variables

Arrays, U6.4,7.4,7.7,9-14,10.,11.8,12.

Assigning values, U 9-4

Comparing, U 9-16

Contiguous files, U 12.7

Dummy, U 8.10

Floating point, U 8.6

Index, FOR-NEXT loops, U 9-20

Input from keyboard, U 9-3

Matrix, see Arrays

Number of, U 6.4

Precision, U7.3,9-4,9-10,9-14,9-20,10.

Random numbers, U 9-19

Relations, U 11.5:

Sign, U 9-10

Simple, U 7.4
Strings, see Strings

BASIC (continued)

Vectors, see Variables, Arrays
Baud rate, changing rate on terminal, U 1.3
Bell on terminal, U 1.2, 1.7
Buffer

Auxillary Buffer Area, U 12.9
I-O buffer .

Generally, M 9.7

Emptying, U 9-26
Printing, U 9-9

Bugs, see Problem Analysis

Card readers, loading programs from, U 6.12 -
CHF (BASIC function), U 8.7

CHR (BASIC function), U 8.6
Commands

4

Subscripts, see Arrays, Strings, U 7.4

Value assignment, U 9-2

Variable Definition Table, U 6.4

September 1978 Index-2

Basic .
DELETE, U 6.4.

DUMP, U 6.4, 6.7, 6.8

DUMP SLPT, U 6.3

HELP, U 6.1, 6.2

LIST, U 6.3

NEW, U 6.1, 6.11

QUERY, U 2.4

RENUMBER, U 6.6

RUN, U 6.2, 6.8

SAVE, U 6.7

SIZE, U 6.5

TAPE, U 6.3

System

A (ctrl) (corrections), U 1.7

ACCOUNTLIST, M 7.2

ASM (ASSEMBLE), U 4.2

ASSEMBLE, M 8.7; U 4.2, 4.3

BASIC, U 6.8

BUILDXF, U 5.7 ig
BYE, U 1.5

C (ctrl) (ctrl mode), M 9.2: , 3.2

Chained from BASIC, U 9-29

CHANGE, M 8.7

CLEANUP, M 8.3

COPY, U 2.9, 3.1, 3.3, 4.1, 4.3, 4.4

EDIT, U 3.1, 3.2

Escape, M 9.2

EXECUTE, U 4.3

FORMAT, U 5.3, 5.5

H (control) (corrections), U 1.7

INSTALL, M 8.8; U 2.6

INSTALL FAST, M 8.8

KILL, U 2.10

LIBR, M 8.1, 8.2: U 2.1

LOAD, U 6.8

LOAD SCRD, U 6.12

LOAD SPTR, U 6.11

MAIL, U 2.5

PLOAD, M 4.1

P (ctrl) (parity check), U 1.2, 1.5

PORT ACTIVITY, U 1.4

PORT . . . AFTER, U 1.4

PORT ALL EVICT, M 8.10

PORT ALL, M 8.10

PORT ALL MONITOR, M 8.10

PORT BAUD » M 8.103; J 1.3

PORT DELAY, ; U 1.4

PORT LENGTH, U 1.4

PORT MONITOR, M 8.10

PORT TERMINATOR, U 1.4

QUERY, U 2.3

REMOVE, U 2.7

RUN, U 6.8

SAVE, U 6.7, 6.9

lie,

Commands (continued) |

SHUTDOWN, M 5.1, 5.3, 8.4, 8.5

UTILITY, M 7.3

X (ctrl) (corrections), U 1.7

Command processors, see entry under Files

CONFIG, see System Files, CONFIG

Connect time, terminating time, U 1.5

Copying files, U 2.9

Copy protect, see Protection

Core memory, use Of by IRIS, M Fig. 1.1 ,1.3

Correction, U 1.7

COS (BASIC function), U 8.1

Costs

See also Accounts

BASIC programs, U 6.7

Log off indication, U 1.5

CPU time (BASIC function), U 8.8

Data files, see Files

Debugging, See DBUS, DSP

DFA (BASIC function), U 8.10

DFP (BASIC function), U 8.10

DFV (BASIC function), U 8.10

Directories, see Files, Indexed

Disc blocks, allocation, U 1.7

Disc cartridges

Changing, U 2.8

Relation to logical units, U 2.6
Disc drivers, M 5.2, 11.8, 11.9
Disc files, see Files

Discsubs

Generally, M 10.1, App l

Adding to system, M 10.2

Core resident, M 1.6, 2.9

Get records, M 1.6
DISCSUBS (file), M 1.1

Read-Write Contiguous, M 1.6

Writing, M 10.1

BASIC, writing for, M 10.4

Debugging, M 10.3

DBUG, M 3.2

DSP (Disc Service Processor), M 3.3

EDS BASIC cards, U 6.12

Error correction, U 1.7

Escape (substitute keys), U 1.1

EXP (exponential function), U 8

Files

Generally, M 1.4; U 5.

Account numbers, M 1.4

Active, U Fig. 5-1

Application processors, U Fig. 5-1
Bad, deleting or saving at IPL, M 5.1

BASIC

Generally, U 12.

Deleting, U 9-27

segmented programs, U 9-29

String arrays, U 11.9

Types, U 7.1

Blocks

Addresses, U 5.2

Number of, U 5.2

Channels

BUILD # statement, U 12.3

Closing, U 12.2

CLOSE # statement, U 12.3

Numbers, U 12.1

Characteristics

Cnanging, U 2.2

Files, U 12.3

Querying, U 2.3

Charges, M 1.4

2

Index-3

Files (continued)

Classification, M 1.4

Contiguous |

Generally, M1.6; U 5., 5.1, 7.1, 12.7,

see also Indexed files

Access, U 12.8

Blocks, U 5.4

Byte displacement, U 8.7, 12.8

Copying, U 2.9

Creating, U 5.5, 12.3

DIM statement, U 9-14

Directory only type, U Fig. 5.1
Format, U 12.7, U 5.4

Header, U 5.4, 17.7

Locking records, U 12.8

MAT READ & WRITE ,U 12.4,

Modes of operation, U 12.9

PRINT & PRINT USING, U 12.4,

READ # statement, U 12.7, 12.8

Records, U 5-4, 12.3, 12.4, 12.7,

Sequential access, U 12.4

Size, U 12.1

Variables, U 12.8

WRITE # statement, U 12.7,

Cost, U 2.2, 12.3, 1.5, 5.2

Data

Generally, U Fig.

Cost, U 5.3

Header block, U 5.3

Protection, U 5.3

Records, data on, U 8.7

Size of, U 8.7

Data types in, U 5.1

Date of creation, M 1.4

Date of last access, M 1.4

Debugging, DSP, M 3.3

Decimal Accumulator, save area, M 1.4
Deleting, U 2.10, 9-27, 12.3

Disc block allocation, U 1.7

Disc transfers required, U 5.4 |
Dollar sign designation, effect of, M 2.10
Filenames

Changing, U 2.2

Expressions in BUILD, U 12.3

Header block, U 5.2

Formatted

Generally, M 1.5; U 7.1, 12.

CLOSE # statement, U 12.3

Constants, size of, U 12.3

Creating, U 12.3

Extended, M 1.5

Formatting, U 5.3

Header block, U 5.2

Items, U 12.3

Limitations, U 5.2

MAT READ # statement, U 12.4

MAT WRITE # statement, U 12.4

Non-extended, M 1.5

OPEN # statement, U 12.3

PRINT # statement, U 12.4

READ # statement, U 12.3, 12.4

Records, U 12.3, 12., 12.4

Sequential access, U 12.4

Size, U 12.1

Strings, U 12.3

Variables, precision of, User 12.3
Header Block

Agreement with index, U 2.3

Blocks, number. of, M 1.4
Contents, U 5.2

12.7

12.7

12.8

12.8

5.1

September 19378

Files (continued) Files (continued)

Delete flag, U 12.3 WRITE # statement, U 12.5

Items, number of, M 1.4 Types (chart), U Fig. 5.1, 5.2

Names, M 1.4 ‘ Designating letters, table of, U 2.1
Number of times accessed, N 1.4 Designation when copying, U 2.9

Priorjzy, M 1.4 User, U Fig. 5.1

Read-File-Header Info subroutine, M 7.4 Utility, U Fig. 5.1
Records, Length, M 1.4 FRA (fractional portion), BASIC func., U 8.3

Records, number of, M 1.4 Functions, see entry under BASIC

Software Change Order (SCO), M 1.4 Halts, see System crashes
Status, M 1.4 Hardware, see System Installation

Types, M 1.4 Header block, see entry under Files

Housecleaning HSLA (hours since last access), U 2.1

CLEANUP, M 8.3 Humidity, see System Installation.
Deleting unused filas, M 8.2 Index, library listing of files, U 2.1

File compression, optimization, M 8.3 Inputting, characters not accepted, U 1.7INDEX
Integer value (BASIC function), U 8.3

Generally, M 1.1 Interactive device drivers

Agreement with header, U 2.3

Removing files from, U 9-27

Adding, M ll.

Writing, M 11.3
Indexed IPL

Generally, M 1.7; U Fig. 5.1, 5.6, 7.1, BZUP, M 3.1

12.9, see also Contiguous files DBUG, access to, M 3.2° !
Accessing, U 12.10 REX, M 1.1 i
Block Format (chart), M Fig. 1.5 Sequence, M 1.2, 5.1
Copying, U 2.9

IXR (BASIC function), U 8.6

Creating, U 5.7, 12.9 Keys, see Files, Indexed files

Directories, U 12.9, 12.10 LOG (BASIC function), U 8.2
Errors, U 12.9 Log off, U 1.5, M 2.3.13, 2.3.14

Header, structure (chart), M Fig. 1.4 Log on
Keys, U 12.9, 12.10 Account identifiers, U 1.1

Modes of operation, U 12.10 : Account status, U 1.1
READ # Statement, U 12.9 Bad blocks, M Fig. 1.2, 5.1

Records, U 12.9, 12.10 Charges, waiting, M 2.12
SEARCH # statemant, U 12.7, 12.10 Messages
Structure (chart), M Fig. 1.3 BZUP, M 1.1

WRITE # statement, U 12.9 Creating, M 2.11
Listing files, U 2.1 DMAP, M 1.1

Logical unit, U 1.8 Procedure, U 1.1
Open files, U 12.3 Unusual responses and problems, U 1.2

Passive, U Fig. 5.1 , Welcome, M 2.3.15
Permanent, U Fig. 5.1 Restrictions, M 2.13

Private, U Fig. 5.L Logarithm (BASIC function), U 8.2

Privilege lavel, U 5.2 Logical Units

Processor control bits, M 8.7, U 2.2 Access to, U 1.7

Program, U Fig. 5.1 Allocation to account, U 1.7

Protection, U 12.3, 2.2, 2.10, 5.2, 5-5 Blocks, bad, M 5.1
Public, U Fig. 5.1 Contiguous space created in, M 8.3

Random, U Fig. 5.1 Definition of, M App 3-5, U App 2-5
Records Discs, relation to, U 2.6

Length, U 5.2 Disc controllers

Locking, U 12.2, 12.3 Generally, M 2.6, 8.8
Number of, U 5.2 Ball (Decision) 3150, 3170, M 5.2

Size, Maximum, U 5.2 Data General 4046, M 5.2
Strings, writing, U 12.3 Minicomputer Technology TDC-802, M 5.2
Structure, M 1.4 System Industries 3015,3045,9500, M 5.2
Taxt

Telefile, M 5.2

Creating, U 3.1, 3.2, 12.3 Disc drivers
Editing, U 3.2 , BZUP disc driver, M 1.1, 3.1, 11.9

Examining, U 3.2 Disc Driver Table, M 2.4, 2.6
Format, U 3. Samples, M 11.8

Loading, U 3.1 , SYSTEM OVERLAY disc driver, M 11.8

Locking, U 12.5 _ Writing, M 11.8
Merging, U 3.3 Disc Driver Table, CONFIG, M 2.6

Pages, U 3.1, 3.2 File layout optimization, M 8.3

PRINT # statement, U 12.5 : Formatting, U 2.6 ,
Punching tapes of, U 3.4 INDEX, M 1.1
READ # statement, U 12.5 INSTALL
Records, U 12.5 Generally, M 1.1, 8.8, U 2.6

Size, U 3. | Fast INSTALL, M 2.3.18, 8.8

September 1978 Index-4

Logical Units (continued)

INSTALL and CLEAR, M 8.8

INSTALL options, M 2.3.17, 2.3.18

LIBRARY listing of, U 2.1

Logical unit table, U 2.7

LUFIX pointer, M 1.8

LUT (Logical Unit Table), M 1.8

LUVAR pointer, M 1.8

Not active, U 1.1, M 2.7

Optimized disc arrangement, M 8. 3
Partitions, U 2.6

Physical units

Physical unit designator, M 2.6

Size and format of, M 2.6

Real Disc Addresses, limitations, M 2.6
REMOVE, M 1.1: U 2.7

System files in, M 1.3

Zero (Unit 0)

Generally, U 1.6

Moving, M 2.7 |

Real Disc Addresses, M 2.6

MAN (BASIC function), U 8.6

Map, Record Format Map, U 5.2

Messages

See also Log on, System files

MAIL, U 2.5

Modes of operation

Calculator, U 6.10

Control, U 1.1, 1.6

Idle state, U 1.6

Processor, U 1.6

Multiplexer

Changing speed of port, U 1.3

Driver

Adding, M 2.10

Sample, M Fig. 11.2

Writing, M 11.2, 11.3, 11.5, 11.7
Magnetic tape devices, M 2.2.2

Multiplexer driver commands, M 11.5

Paper tape devices, M 2.2, 8.4, App 8

PORT BAUD command, U 1.3

Replacing, M 4.8

Writing interactive drivers, M 11.3
NOT (BASIC function), U 8.5

Numbers, see Variables

Parity

Check, when reading paper tape, U 3.1
Supressing parity check, M 2.3.13; U 1.2

Partitions, Number, M 2.4

Peripheral devices

Generally, U 13.

‘Adding, M ll.
BASIC, Data file access in, M 12.

OPEN Statament, U 12.3
PRINT #, U 12.3

READ # statement, U 12.3

Signalling, U 9.25

WRITE # statement, U 12.1

CHF function, U 12.1

Card devices, U App 4,5

Channels, U 13.

Copying to, U 2.9

Drivers

Generally, M 1.1; U 12.6

Attributes, M 11.1

Multiplexer, M Fig. 11.4, 11.7
Pointer table, M 11.1
Peripheral driver

Sample, M Fig. 11.1

Peripheral devices (continued)

Multi-Terminal Interface, U 13.
Paper tape

BASIC programs, U 6.11

High speed unit, U 3.1, 3.4
Master terminal device, U 3.1, 3.4

Pico-N, M 2.2.1
Ports

Active file, M 9.3, 9.5; U 4.2, App 2.3
BASIC, signalling, U 9.24
Changing character., M 8.10: JU 1.3, 1.4
DFT (Data File Table)

Description, M 1.8 .

STS, M 1.9

PCB (Port Control Block)

Description, M 1.8

FLW, M 1.9

Phantom, U 1.8

Port Control Block, M 1.8, 1.9, 11.2
Port Definition Table, M 11.1
RTP (Regnant Task Pointer), M 1.8
RUP (Regnant User Pointer), M 1.8
Sending messages between ports, U 2.5
Swapping, M 2.5, see Time sharing, M 2.5.4
TCB (Task Control Block), M 1.8
Time sharing

Response time, maximum, M 2.5.4, 2.8
Power, see System Installation
Printer, see Peripheral devices
Problem Analysis and reporting

Errors not causing trap messages, M 6.2
Reporting bugs, M 6.3

Trap messages, M 6.1

See also System crashes, M 6.3
Processors, see System processors
Programs

Assembly language, se2 Assembly language
BASIC, see BASIC

Machine language, see Assembly language
Protection

see also Accounts

BASIC programs, U 6.7

Files, protection of, U 2.1,6.7
Queuing

See also Time sharing

Task format, M 8.13

Priority task, M 8.1l
Queuing tasks, M 5.12

Dequeing tasks, M 8.12
RND (random numbers), BASIC function, U 8.4
Read protect, see Protection
Real-time clock, M 5.1

Responses

See also List in M App 2
ALL DELETED, U 2.10

BAD BLOCK?,, M 5.1

BAD FILE DHDR IN INDEX, M 8.3
BLOCK IN USE, M 5.1

COPY PROTECTED, U 6.7
EMPTY FILE, U 6.7

ERROR #, U 6.1, 6.2

FILE BEING CHANGED, U 6.7

GAP IN "ACCONTS" FILE BLOCK, M 8.3
"GARBACO" FILE ALREADY EXISTS, M 8.3
ILLEGAL COMMAND, U 1.3

ILLEGAL COST, U 6.7

ILLEGAL FILENAME, U 6.7

ILLEGAL INPUT, M 8.3

INVALID PROTECTION, U 6.7

Index-5 september 1978

Responses (continued) System Files (continued)

LOAD DEVICE THEN PRESS RETURN, U 2.9 "INDEX

LOGICAL UNIT IN USE, U 2.7 | Description, M 1.1 |

LOGICAL UNIT NEEDS (N) MORE SPACE, U 6.7 Read File Information subroutine, M 7.4

LOGICAL UNIT NOT ACTIVE, U 2.7 LIBR, M 8.1

LOGICAL UNIT NOT REMOVABLE, U 2.7 LOGONSMG

LU NOT ACTIVE, M. 8.3 Cost, M 2.12

NO "FIX DIRECTORIES" DISCSUBS, M 8.3 Creating and changing, M 2.11, 2.12
NO "!" OR WRONG ACCOUNT, U 6.7 Messages, M 2.11

NOT ALL USERS LOGGED OFF, M 8.3 OPENING, M 2.12

OUT OF DISC SPACE, M 8.3 ‘ MESSAGES, M App 2

PORT # IS IN USE, M 8.3 REX, M1.1, 1.2

SAME LU, M 8.3 | USERID, M 7.3, 2.3.22

TYPES DON°T MATCH, U 6.7 System Generation, M 2.3 .

SCOPE (System Command Processor), U 1.6 Replacing System processors, M 4.

SGN (BASIC function), U 8.3 System Installation and Configuration

SIN (BASIC function), U 8.1 Generally, M 2.0
Sign (Algebraic), U 8.3 Data channel priority, M 2.2.2
Software Definition tape, INFO table, M 1.8 Interrupt priority, M 2.2.3
Sveed of terminal, U 1.2 Minimum Requirements, M 2.2
SQR (BASIC function), U 8.2 | Modification of System, M 2.4, 4.
Square root (BASIC function), U 8.2 Site preparation, M 2.1
Swap-out, M 9.5 Typical configuration, M 2.4.3
Switch front panel, (BASIC function), U 8.8 System Interrupts, real-time , M 8.6
Symbol table (ASSEMBLE), U 4.2 System processors

System Configuration, M 2.4 Generally, M 4.

System crashes ASSEMBLE, M 8.7

Generally, M 5.1 BASIC

See also System start up Generally, M 8.7

63077 halt, M 8.4, 8.5 See also BASIC

63377 halt, M 6.3 Loading and linking, M 2.3.23

67077 halt, M 5.1, 6.3, 8.4, 8.5 Replacing, M 4.1, 4.7

67377 halt, M 6.3 BYE

73077 halt, M 6.3, 8.5 Generally, M 1.1

73377 halt, M 6.3 Opening LOGONSMG, M 2.12
77077 halt, M 6.3, 8.4, 8.5 Replacing, M 4.6
77377 halt, M 6.3 BZUP

Other halts, M 6.3 Generally, M 3.1
Stalls (Run light on), M 6.3 Commands, M 3.1

Stops (Run light off), M 6.3 of Disc drivers, M Fig. 11.7, 11.9
System devices | Replacing, M 4.2

Drivers CHANGE, M 8.7

Attributes table, M App 6 CLEANUP, password, M 4.9
Sample, M Fig. 11.2 DBUG
Writing, M 11.3 Generally, M1.1, 3.2

Multiplexer, drivers, writing, M 11.5 Commands , M 3.2
System drivers, nature, task queuing, M 11.6 Early versions, M 3.2
System files Error correction, M 3.2

ACCOUNTS . IPL, use in, M 1.2

Generally, M 1.1, 7. Replacing, M 4.4
BASIC, access from, M 7.1 SHUTDOWN, M 8.4

BZUP DDCOPY, M 8.8

Description, M 1.1 DSP
IPL, use in, M 1.2 Generally, M1.1, 3.3

LBZUP, M 1.2 | BYE, M 2.3.14
CATALOGUE, M 1.4 Commands, M 3.3
CONFIG, M 1.1 CONFIG, modifying, M 2.4

Contents, M 2.4 DBUG, replacing, M 4.4

Disc Driver Table, M 2.6 Device codes, M 3.3
DISCSUBS, M 2.9 DISCSUBS, replacing, M 4.3

INFO table, M 2.9 FAST INSTALL, Me

Modifying system parameters : INSTALL, M 2.3.17, 8.Particion size, “uro.3 1 M204 Passwords, M 2.3.12, 3.3, 4.9
DISCSUBS Patches to system, M 4.10

Generally, M 1.1, 10., 10.2, App 1 PLOAD, replacing, M 4.5

Replacing, M 4.3 Replacing, M 4.6
DMAP, M 1.1, Fig. 1.2 Debugging, DSP, M 3.3

FMAP, M 1.4, 1.5, 1.7 EXECUTE, DSP, similariy to, M 3.3

INFO (System Information Table), M 1.3,1.8

September 1978 Index-6

System processors (continued)

INSTALL, M 8.8, 2.3.17, 2.3.18; U 2.6

KILL, password, M 4.9

LIBR, see entry Commands, System, M 8.2

MESSAGE, M App 2

Replacing, M 4.6

Passwords, M 2.3.12

PLOAD

Generally, M 4.1

Description, M 1.1

Replacing, M 4.5

PORT

Password, M 4.9

REMOVE, M 1.1

Replacing

Generally, M 4., 4.8

Patches, M 4.10

REX |

Generally, M 9.3

Replacing, M 4.5

RUN

Loading and linking, M 2.3.23

Replacing, M 4.1, 4.7

RUNMAT

Generally, M 4.7

Loading and linking, M 2.3.23

Replacing, M 4.1

SCOPE

Generally, M 1.1, 8.7

Replacing, M 4.6

SHUTDOWN

Generally, M1.1, 8.5, 2.3.16

Password, M 4.9

Stand-alone mode, M 8.4
SIR.

Generally, M1.1, 11.8

DBUG, destroying, M 3.2

Disc driver table, M 2.6

Drivers, M 1l.1

Multiplexer driver, M 11.5
Replacing, M 4.5

UTILITY, M 7.3

Writing

Core locations and entry points, M 9.1
Data file access, M 9.7

Debugging, M 8.10 :
Form; core location, M Fig 9.1

Input and output, M 9.7

Sequence of events, M 9.2

System subroutines, M 9.7
System Shutdown, M 5.3

System stand-alone mode, M 8.4

System start up

Generally, M 5.1

Index~7

=

System start up (continued)

IPL

Bootstraps, M 5.2

BZUP, M 5.1

DBUG, M 5.1

Sequence, M 5.l

SIR, M 5.1

System Subroutines

Generally, M 9.6, App l

See also DISCSUBS

Disc resident, M 10.

Sample, M 11.4

Writing, M 11.4

System tables

DFT (Data File Table)

Description, M 1.8

LUT (Logical Unit Table)

Description, M 1.8

LUFIX, M 11.8

LUVAR, M 11.8

PCB (Port Control Block)

Description, M 1.8

FLW, M 1.9

System tasks, M 8.14

System Updates

Generally, M 4.

see also various system processors
System time

Setting, M 8.9

TAN (BASIC function), U 8.1

Tape, see Peripheral devices

Temperature, see System Installation
Text files, see entry under Files
Time

See also Accounts

Allocation by manager, U 1.8
BASIC functions, U 8.8

Connect time, U 1.8

Compute-bound prioity, M 2.5.10

CPU time, U 1.8

Overtime indication, U 1.8

system Time setting, M 8.9
Time sharing

See also Ports

Algorithm, M 2.5

Processor operation, M 9.2
Swap-in procedure, M 9.4
Swap-out procedure, M 9.5

Trigonometric functions, U 8.1

Variables, types and formats of numbers,M i. 5
Verifying (copy, use for), U 2.9
Welcome Message, M 2.3.15
Write protect, see Protection
Zero bytes, ASCII zero, and NUL, U 3.

September 1978

POINT 4 DATA CORPORATION
2969 McCabe Way ! Irvine, California 92714 | (714) 754-4114

