
IRIS

USER

REFERENCE MANUAL

Educational Data Systems

INTERACTIVE REAL-TIME

INFORMATION SYSTEM

(IRIS)

USER

REFERENCE MANUAL

This manual is intended for all users of an IRIS system. Included are

procedures for logging on and off a terminal, using the available lang-

uages and processors, entering, saving, and modifying programs, and

using data files and other system facilities.

Operating procedures for BASIC and other languages on the system are

included, but the reader should refer to a specific programming manual

for information about how to write and debug a program. The Business

BASIC Programming Manual (EDS 1016) provides detailed descriptions

of all statements, functions, and commands in the BASIC language, in-

cluding all extensions and special features in EDS Business BASIC.

Disclaimer: Every attempt has been made to make this manual complete,

accurate, and up todate. However, there is no warranty, express or

implied, as to the accuracy of the information contained herein. This

revision reflects the IRIS system as released in March, 1974.

Copyright (C) 1974

Educational Data Systems EDS 1017-4

TABLE OF CONTENTS

1. HOW TO LOG ON

1.1 Unusual Log On Responses

1.2 How to Change BAUD Rate

2. HOW TO USE BUSINESS BASIC

How to Enter a BASIC Program

How to RUN a BASIC Program

How to LIST a Program or Punch a Program Tape

How to Modify or RENUMBER a Program

How to SAVE a Program

How to Use a Saved Program

How to Modify a Saved Program

How to KILL a Saved Program

How to Use Calculator Mode

.10 How to Load a BASIC Program from Gaeds Tipe

.11 How to Load a BASIC Program from Depe cu.y—NM Ww MHS Ww NW DW HW WH HK LK fl= @® @ @ @ @ @ @ © MOON DOO RW DN
3. HOW TO LOG OFF

4. GENERAL DESCRIPTION OF SYSTEM USE

4.1 Modes of Operation

4,2 Error Correction

4.3 About Your Account

5. MORE SYSTEM COMMANDS

.1 How to Use LIBRary

How to CHANGE File Characteristics

How to QUERY File Characteristics

How to QUERY Account Status

How to MAIL a Message

How to INSTALL a Logical Unit

How to REMOVE a Logical Unit

How to Change a Disc Cartridge

How to Use COPYmoma Ino f& W Nh
6. DATA FILES

Types of Data

Data File Structures

How to FORMAT a Data File

How to KILL a Data File

Contiguous Data FilesDODO MN OP WH
Copyright (C) 1974

Educational Data Systems i

H

9

9

9

9,

9

9

9

9 Onno kh WN

Om - W DN eR
EXT FILES

How to Load a Text File

How to EDIT a Text File

How to Merge Text Files

How to KILL a Text File

How to Punch a Tape of a Text File

EMBLY LANGUAGE

How to Manipulate Source Files

How to ASSEMBLE a Program

How to EXECUTE a Program

How to Punch a Tape of a Program

How to KILL a Program File

OW TO USE TUTOR

Naming a TUTOR Program

Writing a TUTOR Program

Operational Features of TUTOR

Testing the Program

Random Access Mode

summary

CRAM

CRAM Editing Functions

10. HOW TO USE FORTRAN-to-BASIC (F2B)

11. HOW TO USE GPM

11.

11.

11.

11.

11.

11.

11.

11.

11.

1

COON DO fh W ND
Appendix

Appendix

Appendix 3: Active Characters

Appendix 4: Hollerith and Dratsab Codes

Appendix 5: EDS BASIC Card Programmer

Appendix 6: ASCII Codes

Introduction to GPM

Macro Calls

Evaluation

String Quotes

Primitive Macros

Errors

Local Definitions

Programming Examples

Using GPM

1: BASIC Error Numbers

2: Glossary :

Copyright (C) 1974

Educational Data Systems it

HOW TO LOG ON

To log on to the IRIS system, turn the terminal's power switch to the

LINE position, and press the ESC (or ALT MODE) key. On aCRT or

other terminal with no ESC key, try CRTL[or CTRL SHIFT K. The

computer may print a welcome message. In any case it should ask

ACCOUNT ID? Type your assigned account ID, and press the RETURN

key. To maintain the secrecy of your account ID, it will not be echoed

(printed) as it is typed; nevertheless, the computer is receiving every-

thing typed and will log on the port if a valid account ID is entered. An

invalid account ID will be rejected, and your account ID will again be

requested. See the system manager if an account ID has not been assigned.

If all of the account's allotted CPU time or connect time has been used,

the log-on will be rejected with an appropriate message. Otherwise, the

port will be logged on, and the port number, account number (group and

user), and the date and time will be printed. The account's status

(remaining CPU time and connect time allotments and disc block usage

and assignment) will also be printed. The account status may be followed

by log-on messages from the system manager. The account status print

out may be terminated by pressing the ESC key, but the log-on messages

cannot be suppressed. The computer will then print a # symbol, indicat-

ing that the port is in control mode and ready for use.

Unusual Log On Responses

If the computer rings the bell instead of asking for your account ID, it is

because it did not recognize the ESC. Try pressing the ESC key again.

If the bell rings again it is probably due to incorrect parity from the ter-

minal's keyboard. Press CTRL P (hold down the CTRL key and press

the P key) to tell the computer not to check parity (a % symbol will be

printed), and then press the ESC key again.

If the computer responds in some manner other than as described above,

it is likely that another user left the terminal without logging off. In this

case it is best to log off the terminal (see ''How to Log Off" in this manual)

and then log on with the proper account, since files created on another

user's account cannot be protected against access by the user to whom

that account is assigned. Also, such files may not be accessible later

from the user's own account, or may even be on a disc cartridge that has

been removed from the system.

If the computer does not respond at all when the ESC key is pressed, or

if the terminal chatters when turned on line, the time-sharing system

may have been shut down for use in stand-alone mode or for maintenance,

or your terminal may not have a proper connection to the computer. If

the terminal has a speed select switch, it may be set wrong. Most CRT

terminals have such a switch, usually labeled BAUD RATE. Try pressing

ESC, or CTRL P and then ESC, with the switch at each setting.

Copyright (C) 1974

Educational Data Systems 1-1

1.2 How to Change BAUD Rate

Once logged on, the speed of a CRT of other terminal with switch-

able baud rate may be changed by the following procedure:

a) The terminal must be in system command mode as indicated by

a # symbol printed by the computer. If not in system command

mode, press CTRL C (hold down the CTRL key and press the

C key) and wait for the # symbol.

b) Type the system command

BAUD b

where b is some standard baud rate (110, 150, 300, 600, 1200,
2400, 4800, or 9600).

c) If the computer prints NO SUCH PROCESSOR it is because the

system does not have a speed-selectable multiplexer, and you

cannot change speed; otherwise...

d) Change the speed select switch on the terminal to the same baud

rate specified in the BAUD command.

e) Press the ESC key. A # symbol should be printed to indicate a

successful speed change.

Me a 2 2 2 2 af 2K 2 aK aK 2 2 IC 2K ic a KC a 2K aK 2K 3

* x

* CAUTION *
2 x

HK Re a KC fe OC 2 KC 246 2k aC KC IC 2K a 2g 2K aK IC IC OK 2K

Do not change the port's baud rate to a speed at which your terminal

will not operate. It may be necessary for the system manager to

reset the speed to a usable rate; meanwhile your account will be

charged for connect time.

Copyright (C) 1974
-

Educational Data Systems 1-2 ape

2. HOW TO USE BUSINESS BASIC

This section gives instructions on how to enter, run, list, modify, save

and delete a BASIC language program, and to use the desk calculator

mode for quick calculations. A prior knowledge of the BASIC language

is assumed. If you are not already familiar with programming and pro-

gram debugging techniques, you should refer to manuals and books on

the BASIC language itself. For detailed information on the various

statements, functions, and commands in the BASIC language, including

all extensions and special features in EDS Business BASIC, refer to the

Business BASIC Programming Manual (EDS 1016).

2.1 How to Enter a BASIC Program

To enter a BASIC program you must first log on to the system (see

Section 1 of this manual) and then select BASIC as the language to be

used. To select any language or to perform any other system com-

mand, your terminal must be in control mode as indicated by a #

symbol printed by the computer. If not already in control mode,

press CTRL C (hold down the key labeled CTRL and press the C key)

and wait for the # to be printed. In some cases it may be necessary

to press CTRL C a second time. Now type the command

BASIC

and press the RETURN key. This selects Business BASIC as your

programming language. It will not be necessary to do so again unless

you leave BASIC with a CTRL C to save or delete a program. If itis

desired to clear out a program and begin entering a new program,

type the command

NEW

and press the RETURN key. This will completely eliminate the current

program so that the new one can be entered without conflict.

To enter your BASIC program,type each statement, starting with a line

number and ending with the RETURN key. If the program statements

are not entered in order of increasing line numbers, they will auto-

matically be sorted into that order as they are entered. If an error is

detected in one of your statements, an error message such as

ERROR #6

will be printed. To determine the type of error, refer to the BASIC

Error Numbers in Appendix 1 of this manual, or type the word

HELP

and press the RETURN key to request a message to be printed

describing the type of error.

Copyright (C) 1974

Educational Data Systems 2-1

2.2 How to RUN a BASIC Program

After entering your program, type the command

RUN

and press the RETURN key. Your program will be executed starting

with the smallest line number. All variables are initially assumed

to be zero, all user functions are assumed undefined, and all arrays

and strings assumed dimensionless until a statement is encountered

to provide the necessary information. A run may be aborted at any

time by pressing the ESC key.

If an error is detected in your program, an error message such as

ERROR #25 AT 320

will be printed. This example indicates an error in statement 320.

To determine the type of error, refer to the BASIC Error Numbers

in Appendix 1, or type the word HELP and press RETURN to get a

type-out of the meaning of the latest error. A command of the form

HELP 30

may be given to get a message on an earlier error (in this case,

error #30).

Some types of errors are serious enough that the program is stopped

when the error is detected, and the word READY is printed following

the error message. Other types of errors allow the program to con-

tinue with the next statement in sequence, thus allowing several errors

to be detected in a single run.

A run may also be started at any desired statement in the program by

giving a command such as |

450 RUN

which will start executing the program at the line number specified.

In this case, the variables, user-defined functions, arrays, and strings

remain as they were at the time the last run was stopped. This form

of the RUN command is illegal after entering a new program until at

least one run has been started with RUN (without a line number) to

initialize all variables, etc. It is also illegal after modifying a pro-

gram if it was stopped within a subroutine or a FOR-NEXT loop.

Copyright (C) 1974

Educational Data Systems 2-2

2.3 How to LIST a Program or Punch a Program Tape

To obtain a listing of your current program as it stands, give the

command

LIST

and press RETURN. Your entire program will be listed in standard

form. Statements within a FOR-NEXT loop are indented for easy

identification of loops and nesting. The listing may also be started

at any point in the program by giving a command such as

180 LIST

to start listing, in this example, at line 180 of the program. If

there is no statement with the given line number then the listing

will start with the next higher numbered line. A segment ofa

program may be listed by giving a command such as

270 LIST 600

which, in this example, will cause lines 270 through 600, inclusive,

to be listed. Also, the ESC key may be pressed at any time to

terminate listing. A BASIC program may also be listed on the line

printer by giving the command

DUMP $LPT

Line numbers may be similarly used with the TAPE and DUMP

commands (see below) for output of a selected part of the program.

If a terminating line number is used with the DUMP command, it

must be given after the Filename; e. g.

300 DUMP $LPT 1750

To punch a tape of your program, type the command

TAPE

but do not press the RETURN key until after pressing the ON button

on your tape punch. About six inches of blank tape will be punched,

and the complete program will then be listed and punched, followed

by blank tape for trailer.

If there is a high speed paper tape punch on the system, it may be
used to punch a list tape of a program. Todoso, type the command

DUMP $PTP

and press the RETURN key. The tape, which will be punched with

leader and trailer, may be loaded later as described in Section 2.10.

Copyright (C) 1974

Educational Data Systems 2-3

2.4 How to Modify or RENUMBER a Program

Any statement in a program may be modified by typing the statement

in the new form desired, using the same line number. Any statement

entered will replace a previously entered statement with the same

line number.

To insert a statement between two statements in the program, use

any line number that is between the line numbers of those statements.

To delete a statement from a program, type only the line number, and

press the RETURN key.

A program may be renumbered by giving the command RENUMBER

which will cause the line numbers of the program to be changed to 10,

20, 30,...,and will cause all references in the program (such as in

GOTO and GOSUB statements) to be adjusted so that they still point

to the same statements as before. A more general form of the ©

renumber command is

x RENUMBER y

where x and y are decimal numbers. This will cause the program

to be renumbered using line numbers starting with x and increasing

in steps equal to y. If y is omitted, a value of ten is assumed. If x

is omitted, a value equalto y is assumed. If a statement references

a line number that does not exist then it will be changed to reference

the next higher line number or to zero if there is no higher linenumber,

and an error message will be printed giving the old line number of the

statement where the error occurred.

2.95 How to SAVE a Program

Once a program has been entered it may be desirable to save a copy

of it in a passive file. Such a copy may be recalled at a later time to

be used and/or modified (see ''How to Use a Saved Program"). Other

users may be allowed to use, copy, and modify the saved program, or

it may be selectively protected against access by others. Also, if

desired, other users may be charged for using your program.

To save a program, your terminal must be in control mode as indicated

by a # printed by the computer. If it is not in control mode, press

CTRL C and wait for the # symbol. Now enter the command

SAVE Filename

where Filename is any legal file identifier (see Filename in the Glossary).

Copyright (C) 1974
~

Educational Data Systems 2-4

In most cases, the computer will print SAVED!! indicating that your program

has been saved under the Filename given. However, several types of errors

are possible as follows:

EMPTY FILE

COPY PROTECTED

ILLEGAL FILENAME

NO "!" OR

WRONG ACCOUNT

TYPES DON'T MATCH

FILE BEING CHANGED

LOGICAL UNIT NEEDS

n MORE BLOCKS

ACCOUNT NEEDS n

MORE BLOCKS

You don't have a program to save.

You are using someone else's program and he

has prohibited copying it.

The identifier given is not a valid Filename as

defined in the Glossary.

The Filename given is already in use to identify

a file of the same type, on the same Logical

Unit, and on the same user account (the system

will not allow the existing file to be inadvert-

antly replaced, but it may be intentionally

replaced as described in Section 2.7) or the

Filename is in use to identify another user's

file on the same Logical Unit. Another

user's file may not be replaced by the SAVE

command.

The Filename given is already in use on the

same Logical Unit to identify a different type

of file on your account. Only files of the same

type may be replaced by the SAVE command.

The Filename given is already in use to identify

a file which is currently being built, replaced,

or modified by another user. Sucha file can

not be replaced.

The Logical Unit is full or nearly full and needs

n more blocks to save your program. The

system manager should be notified of this

condition. See note below.

Your account does not have enough blocks

allotted to save this program as well as others

you have saved. You may be able to save this one

by first deleting others you have previously saved.

see note below.

Note: It is necessary to have enough blocks available to build the new copy of

your program even if you are replacing an old file by the same Filename. If

your new version cannot be saved due to a shortage of disc blocks, you may be

able to overcome this problem by first deleting the old file with a KILL command.

Copyright (C) 1974

Educational Data Systems 2-9

If any error message is printed, then your program has not been

saved. However, SAVE does not affect your active file, so another

attempt to save your program may be made. When a program is

successfully saved, your account is charged for the number of

blocks required to save it.

The simple form of the SAVE command given above allows only a

user on your account or a higher privilege user to run, modify, or

copy your program, but no charge will be made if such a user does

access your program. The general form of the SAVE command

SAVE <pp> $ddd.cc lu/Filename

allows you to grant access to your program by other users at your

privilege level and lower, to charge all others for its use, and/or

to specify a Logical Unit other than the one assigned to your account.

In this case pp represents a two digit number specifying the desired

protection. The first digit gives protection against users at lower

privilege levels, and the second digit gives protection against users

on other accounts at your own privilege level. It is not possible to

protect against higher privilege users. A file may be protected

against other users of your own account only by use of a password

(see Filename in the glossary). Each digit indicates protection as

follows:

p protection

None

1 Copy protect. Prohibits others from listing your

program, punching a tape of it, or saving it under a

different Filename or on a different Logical Unit.

2 Write protect. Prohibits others from deleting the

saved copy of your program or changing its attri-

butes.

4 Read protect. Prohibits others from using your

program.

The types of protection may be combined by adding the values given

for each desired type (see example below). If the program was pre-

viously saved then the current protection will remain in effect unless

it is respecified at this time.

Copyright (C) 1974

Educational Data Systems 2-6

The dollar sign indicates that the amount ddd.cc (dollars and cents)

is to be charged to the account of any other user who gains access to

your program. The cost given will be truncated to the nearest ten

cents. If the program was previously saved, then the cost specified

at that time will remain in effect unless respecified. Both the pro-

tection and the cost are optional in the SAVE command. Additional

error messages are possible if protection or cost is specified:

INVALID PROTECTION The protection given does not adhere

to the form shown in the example.

ILLEGAL COST Characters other than digits and one

period were given following the dollar

sign, or a cost greater than $999. 90

was specified.

The following example shows a typical SAVE command:

SAVE <72> $2.58 4/CASHFLOW3

This command saves your program under the Filename CASHF LOW3

on Logical Unit number four and protects it against any accéss by

lower privilege users. Other users at your own privilege level will

be allowed to use it, list it, or save their own copy of it, but only

you or other users on your account will be able to delete it or to

modify and resave it under the same name. Any user accessing it

(other than on your own account) will be charged $2.50 for the use of

your program, anda record of charges made will be accumulated in

your program's file header so that the charges can be forwarded to

you,

A program can also be saved in source form in a data file formatted

as a single 75-character string by entering the BASIC command

DUMF Filename

where Filename is any legal file identifier.

Copyright (C) 1974 |

Educational Data Systems | | 2-7

2.6 How to Use a Saved Program

To issue a command to use a saved program, your terminal must.

in the control mode as indicated by a # symbol printed by the computer.

If not already in control mode, press CTRL C first. A BASIC pro-

gram may then be accessed by entering the command

BASIC Filename

where Filename is the identifier given to the program when it was saved,

including the Logical Unit number if different from that assigned to your

account. The program file will be copied into your active file, and may

be listed, modified, or run as desired. However, if Filename is another

user's program, it may be read protected or copy protected, and there

may be a charge for the use of the program.

If the program is read protected, the command above will be rejected

with an appropriate error message. If it is copy protected, you will

not be able to list, modify, or resave the program. Section 5.1 of

this manual tells how to get a library listing of available programs

and the charges, if any, for their use.

A saved program may also be run directly from control mode by giving

the command

RUN Filename

or simply

Filename

which will bring a copy of the program Filename into your active file

(if it is not read protected) and immediately begin running the program.

If the program was saved as a data file, it may be accessed by giving

the command

LOAD Filename

where Filename is the name assigned when the program was saved by

use of a DUMP command.

Copyright (C) 1974

Educational Data Systems 2-8

2.7 How to Modify a Saved Program

A saved program may be modified by obtaining a copy of the program

(see Section 2.6), modifying the program in your active file (see

Section 2.4), and then resaving it. It may be resaved under the same

Filename by giving the simple command

SAVE

and the system will print the Filename. In this case, the modified

version will replace the originally saved version.

If a new program is written and it is desired to replace an old program

by the same name, enter the command in the form

SAVE Filename!

The exclamation mark following the Filename indicates that the user

is aware that he may already have a file by the same name and he

wishes it to be replaced. Only a file on the same account may be

replaced, however, even with this command. The protection and

cost may also be specified as discussed in Section 2.5. The modified

version may also be saved under a new Filename as explained in

Section 2.5. However, it will not be possible to modify or resave

another user's program if it is copy protected or to resave it under

the same Filename on the same Logical Unit.

2.8 How to KILL a Saved Program

A saved program may be deleted by giving the system command

KILL Filename

where Filename is the identifier of the saved program. Your terminal

must be in control mode as indicated by a # symbol printed bythe com-

puter. It may be necessary to first press CTRL C to return to control

mode.

If Filename is your own program, it will be deleted, the disc blocks

will be returned to the general pool, and your account will be credited

for the reduced disc block usage. However, if Filename is another

user's program, it will be deleted only if it is not write protected.

When another user's program is deleted, that user's account is credited

for the reduced disc block usage.

Copyright (C) 1974
Educational Data Systems | 2-9

Several files may be deleted with a single command. For example,

KILL TIMER, D$36, 4/MAX, BJ22,1/JJ, $PTP

will attempt to delete all six files listed, and the response ALL DELETED

will be printed if all are successfully deleted. However, in this example,

D$36 is illegal as a Filename. Also, let us assume that there are no such

files as TIMER or JJ, and that BJ22 is write protected. In this case, the

messages

? NOT FOUND: 1 5

? ILLEGAL NAME: 2

? WRITE PROTECTED: 4

? SYSTEM FILE: 6

will be printed. The numbers refer to the sequence in which the Filenames

were given; i.e., 1 refers to TIMER, 2 to D$36, etc. In this example, only

the third file (MAX on Logical Unit number four) has been deleted. Ifa

Logical Unit number is not specified then the user's assigned Logical Unit is

assumed. It may be that TIMER or JJ exist on a different Logical Unit.

2.9. How to Use Calculator Mode

Most BASIC statements may be executed immediately upon entry by typing the

statement without a line number. The exceptions are the data file statements

and any transfer of control statement such as GOTO, GOSUB, RETURN, NEXT,

or ON.

The most useful statement in calculator mode is PRINT. For this reason, the

semi-colon is accepted as an abbreviation for the word PRINT at the beginning

of a statement. To evaluate any expression, type the word PRINT (or a semi-

colon) followed by the expression, then press RETURN. The computer will

evaluate the expression and print an equal sign followed by the calculated value.

Values may also be assigned to variables and these values used in other calcu-

lations. For example, try statements such as

PRINT 2/3

LET A=5

PRINT A, A*?2,3*A

SQ R(A+1)

-LOG(A/2+3% 4*1. 42)-INT(A/3. 2)

B=A+7%*3

Note in the last example that the word LET is not requtred in an assignment

statement. It is also possible to dimension arrays, enter, print, and manip-

ulate matrices, etc., without writing a program.

A READ statement may be executed from the keyboard if one or more DATA

statements have been entered with line numbers. However, a RESTOR

statement must first be executed to set the pointer to the first data element.

Copyright (C) 1974
| “

Educational Data Systems 2-10

2.10 How to Load a BASIC Program from Tape

A BASIC program may be available on paper tape, either punched

as a list tape (see Section 2.3) or punched off-line (Teletype on

LOCAL). If punched off-line there must be a LINE FEED after

(not before) each RETURN code on the tape or the first character

of each line may be lost. To load sucha program tape, follow

these steps:

1. Select BASIC language (see Section 2.1).

2. Type NEW and press the RETURN key to delete any old program

(unless it is desired to merge the tape with the existing program).

3. Load the tape into the Teletype reader as follows:

a. Set the tape reader switch to FREE.

b. Open the plastic tape gate by pressing the knob at the right

side of the gate to the right.

c. Load the tape with the leader toward the front and the program

tape hanging behind the reader.

d. Position the tape feed holes (small holes) to the left side so

that they mesh with the feed wheel, and close the tape gate.

4. Momentarily press the tape reader switch toSTART, then release

it.

The tape will read in and stop at the end of each statement while the

computer checks for errors. If an error is detected, an error message

is printed, and then the remainder of the tape will be read. After the

entire tape has been loaded, the user should correct and type in any

statements in which an error was detected.

If there is a high speed paper tape reader in the system, it may be used

to load a tape as follows:

1. Select BASIC language (see Section 2.1).

2. Type NEW and press the RETURN key (unless it is desired to

merge the tape with the existing program).

3. Load the tape in the high speed reader.

4. Type the command LOAD $PTR and press the RETURN key.

The tape will be loaded, and an error message will be printed for each

line in which an error is detected.

Copyright (C) 1974

Educational Data Systems 2-11

2.11 How to Load a BASIC Program From Cards

If there is a card reader in the system, it may be used to loada

BASIC program that has been punched on cards with a standard key-

punch or otherwise using standard Hollerith codes (see Appendix 5).

On some keypunches it is necessary to use multiple punching to

obtain some of these codes.

If the card reader is an optical mark sense type then the cards may

also be hand marked by use of an EDS BASIC Card Programmer

(see Appendix 6). EDS BASIC Cards (form EDS 202) are recom-

mended for this purpose. The first card must have a "BASIC Cards"
code (see below) in column one for proper translation of the card

codes.

Holletith cards and "BASIC Card Code" cards may be intermixed as
long as the first card of each group has the proper ''Hollerith Cards"
or "BASIC Cards" code in column one. Each card may have one of

these codes in column one if desired.

Once the card deck has been prepared, the BASIC program may be

loaded as follows:

1. Select BASIC language (see Section 2.1).

2. Type NEW and press the RETURN key (unless it is desired to

merge the cards with the existing program).

3. Turn on the card reader and put the deck in the hopper. Be sure

the deck is properly oriented. If the reader has aSTART or

READY button it must be pressed to make the reader accessable

to the system.

4. Type the command LOAD $CRD and press the RETURN key. The

cards will be loaded, and an error message will be printed for each

line in which an error is detected.

Special Card Codes - In addition to standard Hollerith codes and the

codes on the Educational Data Systems' BASIC Card Programmer, the

following card codes are recognized by the system:

RETURN 9-8

CTRL E 9-8-

Hollerith Cards 9-8-

BASIC Cards 9-8-

Must follow any command or statement.

5

4| These special codes will be recognized

3J only in column one of a card.

Hollerith cards are assumed unless a ''BASIC Cards" code is encount-
ered. Any undefined code will be entered as a reverse slash character.

Copyright (C) 1974

Educational Data Systems 2-12

3. HOW TO LOG OFF

It is necessary to log off before leaving the terminal to avoid being

charged for additional connect time and to prevent others from

using your account. To log off, the terminal must first be in the

control mode as indicated by a # symbol printed by the computer.

If not already in control mode, press CTRL C (hold down the CTRL

key and press the C key) and wait for the # to be printed. Then

type the command

BYE

and press the RETURN key. The terminal will be logged off, and

the account's status will be printed. The account status consists of:

1. Account number (group and user),

2. Net file use charges (accrued charges for use of other user's

programs or data files, less charges for use of this account's

files by other users*),

3. CPU time and connect time used while logged on,

4. CPU time and connect time allotments remaining (or amount
overtime), and

5. Disc block usage (number of blocks in use and the total num-

ber allotted) and assigned Logical Unit number.

An overtime indication for CPU or connect time indicates that more

time has been used than had been allotted to the account, and the

user will not be allowed to log on to this account again. The system

manager should be notified of this condition, and he may allot more

time to the account.

Once the terminal is logged off, it enters an idle state and will

respond only to the ESC key to allow a user to log on.

*Note: unless a file is deleted, the file's account is not credited

for charges to other users until an accounting program is run by the

system manager. Therefore, the net charges due may actually be

less (or more negative) than the amount shown here. A negative

amount indicates a net income.

Copyright (C) 1974

Educational Data Systems 3-1

4. GENERAL DESCRIPTION OF SYSTEM USE

All system commands are executed by a processor, and each inter-

active port always has one processor selected for current use on that

port. When in control mode, as indicated by a # symbol printed by

the computer, the selected processor is SCOPE (System Command

Processor). Any line entered at this time is analyzed by SCOPE by

looking for a processor with the Filename given first in the line. The

processor's Filename, therefore, becomes the system command itself;

for this reason, most processors have a verb for a Filename. In the

case of a language processor, SCOPE will automatically select the

proper processor if the first Filename encountered is a program file.

4.1 Modes of Operation

A user's terminal on the IRIS system may be in one of three basic

states as follows:

1) Idle state. Before logging on, and after logging off, the terminal

is in an idle state. Characters typed by the user will not be echoed.

The computer will respond only to the ESC key, whereupon it will

request that the user supply his account ID to log on.

2) Control mode. After logging on, the user's terminal is in control

mode as indicated by a # symbol printed by the computer. Only in

this mode will system commands such as BASIC, SAVE, KILL,

LIBR, or BYE be accepted. The LIBR*S command will give a

listing of all available system commands. The user may return to

control mode at any time by pressing CTRL C (hold down the CTRL

key and press the C key). In most cases, a program Filename will

be accepted as a system command, and the appropriate processor

will be automatically selected by the system; i.e., RUN fora

BASIC program, TUTOR for an instructional program, etc.

3) Processor mode. Each system command and user language is pro-

vided by a machine code program called a processor. Some

processors, such as SAVE and KILL, perform their entire task and

return the user to control mode. Others, such as BASIC, process

each line entered by the user and then perform a carriage return to

signal the user that input is enabled for the next type-in. The

EXECUTE processor prints an up-arrow symbol and EDIT prints an

asterisk as prompt characters for their own control modes (as

opposed to the system control mode).

Copyright (C) 1974

Educational Data Systems 4-]

4,2 Error Correction

Characters typed by the user are not examined by the processor until

the RETURN key is pressed. Therefore, typing errors may be cor-

rected before being detected by the processor, thereby saving time

and preventing error messages. ‘Two control keys are recognized by

the system for error correction. They are:

CTRL H The CTRL H acts as a backspace, deleting the previous

character typed. This backspace function may be used

repeatedly to delete several characters. Thecharacter

being deleted is printed when the CTRL H key is pressed.

On most systems, the CTRL A also acts as a backspace.

CTRL X Use of the CTRL X cancels the entire line just typed in.

A backslash symbol is printed to indicate that the line

has been deleted, and a carriage return is performed.

In some cases a typed character may not be accepted by the computer.

Such cases are:

Input not enabled

Transmission error

Input buffer full

If input is not enabled the character (other than ESC) will simply be

ignored, except that the last character typed will be retained until

input is enabled, at which time it will be echoed and entered into the

1/O buffer. To terminate an operation in progress and return to the

processor's input mode, the ESC key may be pressed at any time. In

the case of a transmission error or buffer full the terminal's bell will

ring. Try typing the same character again. In the case of a trans-

mission error it may be accepted the second time; if not, press CTRL

P to suppress parity checking (a % symbol will be printed) and try

again. If the input buffer is full, a CTRL H, CTRL X, or ESC must

be used before further input will be accepted.

Copyright (C) 1974

Educational Data Systems 4-2

4.3 About Your Account

Each user is assigned to an account by the system manager. Several

users may be assigned to the Same account and may use the system

simultaneously from different terminals. Each account contains the

following information:

Account ID

Assigned Logical Unit number

Privilege level

Account number (group and user)

Allotted connect time (minutes)

Allotted CPU time (seconds)

Allotted disc blocks

Number of disc blocks now in use

Peak number of disc blocks used

Net file use charges

The assigned account is located by the Account ID entered when the user

logs on, whereupon the assigned Logical Unit number, privilege level,

and account number are brought into core to identify the user.

Any Filenames supplied by the user are assumed to beon his assigned

Logical Unit unless a Logical Unit number is given along with the File-

name. Exception: system command processors are assumed to be on

the system disc (Logical Unit zero). See Glossary for a discussion of

Logical Units.

The user's privilege level may be zero, one, or two, indicating

"general", "privileged", or manager" privileges, respectively. Only

the system manager account can access the ACCOUNTS file, but all

level two accounts are accorded the other privileges of a manager.

The account number is used to identify files created by a user. The

division of the account number into group and user numbers is for the

convenience of the system manager; there is no special significance

to either the group number or the user number within the system except

as described for the LIBR @g command (see Section 5.1).

Each user account may be allotted up to 32767 minutes of connect

time and up to 32767 seconds of CPU time. Either or both times may

also be specified as ''no limit" by the system manager. A user's

account is charged for connect time from the time he logs on until

the time he logs off regardless of how much the system is used during

that time. The account is charged for CPU time only when the compu-

ter is actually performing a task for the user. Either or both allotted

times may go negative while a user is logged on; he will be informed

Copyright (C) 1974

Educational Data Systems | 4-3

of this overtime condition when he logs off, and no one will be allowed

to log on to that account until more time is allotted by the system man-

ager.

Each account is allotted some number of disc blocks for saving pro-

grams and building data files. The disc block allotment is a constant

set by the system manager. The number of disc blocks in use will

initially be zero and is updated by the system each time the user

builds, deletes, or adds blocks to any file on his account, but the user

will never be allowed to exceed his allotted number of blocks. The

peak disc block usage is updated each time a user logs off.

Each time a user opens a file belonging to another account, the cost

of that file is added to net charges in the user's own account. Ifa

file is deleted, then any income accrued by that file is deducted from

the owner's account. Each account is also credited for income earned

by its files when the accounting program is run by the system manager.

Each user must have an account on Logical Unit zero to be allowed to

log on to the system, but he may or may not be allotted disc space on

unit zero. Each user must also have an account on each Logical Unit

on which he is to be allowed to build files. Each such account entry

other than on unit zero is used only for disc block allottment and usage

on that Logical Unit. Typically, each account would be allotted space

on only one Logical Unit, and the account would be assigned to that

unit so that it is not necessary to supply a Logical Unit number each

time a Filename is given. Access to existing files on any Logical

Unit is determined only by the protection of the files being accessed

regardless of whether or not the user has an account on that Logical

Unit.

Copyright (C) 1974

Educational Data Systems 4-4

D. MORE SYSTEM COMMANDS

This section describes various utility commands which may be used

to obtain a catalog listing of programs available to the user, to

change a file's attributes or to cause its attributes to be printed, to

send a message to a user on another port, etc.

5.1 How to Use LIBRary

To obtain a library listing, your terminal must first be in control
mode as indicated by a # symbol printed by the computer. If not

already in control mode, press CTRL C and wait for the # symbol.

Now type the command

LIBR

and press RETURN. A complete listing of all files belonging to the

user's account and on the user's assigned Logical Unit will be

printed. The listing is preceded by a heading identifying each col-

umn as follows:

* File type or language. One letter will be printed in this

column to identify the file type. See page 5-3 for a com-

plete list of file type letters.

NAME The file's complete Filename will be printed, except in the

case of a private file on the user's own account or any other

account at the same or lower privilege level, in which case

the password portion is not printed. A colon is printed to

represent a CTRL E offsetting a password.

PRIV The privilege level of the file. This is the same as that of

the user who created the file.

COST If the file's owner is charging for access to the file, this col-

umn indicates the amount charged for each use of the file.

SIZE This is the number of disc blocks used to store the file.

PR This is the protection status of the file as specified when the _

file was saved. See ''How to SAVE a Program" in this man-

ual for an explanation of these two digits.

After the complete listing, the number of disc blocks available for

creating or expanding files on the selected Logical Unit will be printed.

Copyright (C) 1974

Educational Data Systems o-1

Several more specific forms of the LIBR command are available for use when

it is desired to list only a certain subset of accessible files in the library:

LIBR @ Lists all accessible files on all accounts.

LIBR @g Lists only those files belonging to any account in group g.

LIBR @g,u Lists only those files belonging to the account group g, user u.

LIBR *B Lists only files of type specified (BASIC programs in this ex-

ample). See the table of type letters on the next page. A

maximum of five types may be specified to be listed.

LIBR NAME Lists only files whose Filename begins with the characters given
("NAME'' in this example). The command shown would list such

Filenames as NAME, NAME3, NAMEXYZ, NAMEEPASS, etc.

LIBR EKEY Lists only files whose Filenames include the complete password

— given (""KEY" in this example). If there is more than one user to

an account, it is suggested that each user select a single pass-

word for all his files, so that this library listing will list only

his files.

LIBR . f Will cause all selected entries to be alphabetized before being

listed. Without the up-arrow, the files are listed in order of

occurrence in the INDEX. An alphabetized listing may be

somewhat slower than an order-of-occurrence listing.

LIBR >h | Will cause only files which have not been accessed for more
than h hours to be listed.

The command forms listed above will list only such files on the user's assigned
Logical Unit. To obtain a catalog of files on some other unit, enter the Logical

Unit number and a slash (/) ahead of the selection characters. For example:

LIBR 3/

will list all files on the user's account on Logical Unit three.

Commands may be combined in any manner except that if a Logical Unit is

specified it must be given first. For example:

LIBR 2/TRE *B *T *D @6 EJKLE ¢ >50_

will give an alphabetical listing of each accessible file on Logical Unit number

two if and only if:

a) the Filename begins with the letters ''TRE" and includes the password
"JKL", and -

b) it is either a BASIC program, a text file, or a formatted data file, and

c) it belongs to any user account in group six, and

d) it has been more than fifty hours since the file was last accessed.

Copyright (C) 1974

Educational Data Systems 9-2

See

The following table lists all file types and their designating letters

as currently assigned:

Oooh WN Fe ©
~]

11

12

13

14

19

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

Letter

S2ZQxM PONY

sm rH &

QAAN

Copyright (C) 1974

Educational Data Systems

File Type

Permanent system file

System processor or file

BASIC processor or program

Stand-Alone processor or program

EXECUTE processor or program

GPM program

MUMPS processor or program

COURSE WRITER processor or program

Stand-alone compiler

Stand-alone relocating assembler

Stand-alone relocating loader

Relocatable binary object tape image

Indexed relocatable binary library

Temporary file

Text file (ASCII)

Formatted data file

Contiguous data file

Peripheral device driver

o-3

5.2 How to CHANGE File Characteristics

Certain characteristics of a file may be changed by the user who

created the file. Other users who have been granted full access

toa file (i.e., users against whom the file is neither read pro-

tected nor write protected) may also make such changes. Although

intended primarily for data files, other files (such as BASIC pro-

grams) may also be changed. The characteristics which may be

changed are (1) the Filename, (2) the cost, and (3) the protection.

To change a file's characteristics, the terminal must be in control

mode as indicated by a # symbol printed by the computer. Enter

the system command

CHANGE Filename

where Filename is the name of the file to be changed, and press

RETURN. If for any reason the file cannot be changed, an appro-

priate error message will be printed; otherwise, instructions will

be printed, and the user will be asked to enter the new name.

Type a new Filename if desired and press RETURN, or press

only the RETURN key to leave the name unchanged.

The current cost (charge to others for access to the file) will be

printed, and the user will be asked to enter a new cost. Type in

the new cost, or press RETURN if no change is desired.

The current protection digits will be printed next. These digits

are explained under 'How toSAVE a Program". Type a two-digit
number to replace the current protection, or press RETURN to

leave the protection unchanged.

A user ona privilege 2 account can also change the processor

control bits. See ‘More on CHANGE and SCOPE" in the IRIS

Manager Reference Manual for more information.

Copyright (C) 1974

Educational Data Systems 9-4

5.3 How to QUERY File Characteristics

The characteristics of any file may be determined by use of. the

QUERY command. The terminal must first be in control mode as

indicated by a # symbol printed by the computer. Then enter the

system command

QUERY Filename

where Filename is the name of the file to be queried, and press

RETURN. If the file is not on your assigned Logical Unit then the

name must be entered in the form lu/Filename. The command will

be rejected if the file is not found or if it is read or copy protected;

otherwise, the file's type, privilege level, protection, size, age,

cost, and earnings will be printed. Additional information is given

for certain types of files; e.g., the record length and format of a

data file or the starting address of a machine code (stand-alone or

executable) file. For the system manager, the file's header block

address and L and I control bits will also be printed.

Several files may be queried at the same time by entering the com-

mand in the form |

QUERY filel, file2, file3,

in which case all pertinent information about each file will be given

in succession.

Before giving any information about a file, QUERY checks for any

irregularities. If the file's header does not agree with the INDEX

entry, or if the number of disc addresses in the header does not

agree with the size, an appropriate error message will be printed.

The system manager should be notified at once if such an irregu-

larity occurs. Do not use or delete the file until the system manager

has checked it out.

5.4 How to QUERY Account Status

An alternative form of the QUERY command, namely

QUERY @ or QUERY @n/

will print the current total number of disc blocks available (same as

given at the end of a LIBR listing), the number of disc blocks allotted

to your account, the current and peak disc usage of your account, the

net charges for use of other user's files, and your account number and

privilege level. The first form gives this information with regard to

your assigned Logical Unit, while the second form gives the informa-

tion for any active Logical Unit specified by n.

Copyright (C) 1974

Educational Data Systems 9-5

5.5 How to MAIL a Message

A one line message may be mailed from any port to any other port.

To send a message, your terminal must be in system command mode

as indicated by a # symbol printed by the computer. Then type the

command

MAIL p any message

where p is a number from zero through the highest numbered port to

indicate the destination of the message. For example, a user on port

seven might type

MAIL 0 MANAGER -- PLEASE INSTALL UNIT 3

which would cause

PORT 7: MANAGER -- PLEASE INSTALL UNIT 3

to be printed on port zero. Note that the first part of the printed

message identifies the sender's port so that a reply may be sent.

For example, the user at port zero might reply

MAIL 7 SORRY, THE SYSTEM MANAGER IS NOT HERE.

The message will not be printed at the destination port until that

terminal is in an input mode and at the left margin (nothing yet

typed in by the user). Thus, the message will not be printed during

another print out or in the middle of an input. Although the sender

presses the RETURN key at the end of his message, his terminal's

carriage will not be returned until the message begins printing at

the destination port. The ESC key may be pressed to abort a message

that is never accepted by the destination port.

There is one exception to the "input mode, left margin" rule: two

ports may simultaneously send messages to each other. Both will

be printed after both users have pressed the RETURN key.

Copyright (C) 1974

Educational Data Systems 9-6

O. 6 How to INSTALL a Logical Unit

Only Logical Unit #0 (the system disc) is accessible after an IPL.

Other units are inaccessible until they have been "installed". Any

user may install a Logical Unit, providing it and the Physical Unit

are not locked against the user, by typing the system command

INSTALL d.p

where d is the number of the disc or magnetic tape drive where the

unit is to be installed, and p is the partition number. For example,

to install a cartridge of a dual drive which has been designated as

drive number 2, the command would be

INSTALL 2.1

since partition zero usually would be the fixed disc. Most drives are

partitioned into two or more Logical Units. For instance, each disc

of a dual disc drive must be treated as a separate Logical Unit, anda

high stack disc which is too large to be treated as a single unit is parti-

tioned into several Logical Units. Also, the system manager may

partition a disc or cartridge into multiple units for assignment to various

users or groups. The drive numbers are assigned to physical drives in

the CONFIG file. Only the system manager, however, may install a

new disc cartridge which has never been formatted as an IRIS Logical

Unit; also, it is absolutely essential that the disc diagnostic tests be run

on such a cartridge first.

INSTALL will read from the Physical Unit at location d. p to determine

whether it is already formatted; if so, INSTALL will print its Logical

Unit number and ask whether it should be installed. A positive response

by the user will cause the unit to be put on line. If the user wishes to

change the Logical Unit number, he may respond negatively, and a new

unit number will be requested; it should be noted, however, that this

command will be rejected if the Logical Unit is locked against change

by the user.

Copyright (C) 1974

Educational Data Systems 5-7

If the Physical Unit is not formatted, and the user is the system

manager, he will be asked for a Logical Unit number, and the

unit will be formatted and installed using the number entered.

However, the number will be rejected if there is already another

Logical Unit installed with the same number.

The INSTALL command will also be rejected if there is already

a unit installed at location d.p, if there is already another unit

installed with the same Logical Unit number, or if the Physical

Unit is protected against installation by the user.

5.7 How to REMOVE a Logical Unit

It is necessary to inform the system of the intent to remove a

Logical Unit before the unit is actually shut down for removal.

The terminal must be in system command mode as indicated by

a # symbol printed by the computer. Then enter any of the

following commands:

1) REMOVE n/

2) REMOVE DRIVE d

3) REMOVE DRIVE d.p

where n is a Logical Unit number, dis a drive number, and p

is a drive partition number. Note that the unit to be removed

may be identified either by its Logical Unit number or by its

physical location. Command 2 above will attempt to remove

all Logical Units on the specified drive. It is necessary to re-

move all Logical Units on a given drive before shutting it down

to change any cartridge on the drive (see Section 5.8). Possi-

ble errors include:

NO SUCH LOGICAL UNIT. The specified Logical Unit

is not installed on the system.

LOGICAL UNIT IS PROTECTED. The user's account is

not privileged to remove the specified unit. Only certain

users as specified by the system manager are allowed to

remove a Logical Unit.

Copyright (C) 1974

Educational Data Systems 9-8

FILE OPEN ON PORT #x. The user on the indicated port

has one or more files open on the specified unit. There

must be no files open on a unit when it is removed.

After checking for the above errors, the entry in the Logical Unit

Table is cleared, thus making the unit inaccessable. REMOVE

then indicates that the Physical Unit may be removed unless there

is another partition on the Physical Unit that is still installed. The

unit may be installed again at a later time without loss of data.

BK OK FG 2K 2 FC aK IC OC 2 2K OK 2K ik 3K aK 2K ak ai 2

2 x

XK CAUTION XK

sk x

Be Re ee a ae a RR A Oe 2 Oe 2 Ke eC aK OK

To remove or change the system disc (Logical Unit zero) it is

necessary to shut down the system completely, change the cartridge,

and do an IPL (see "Startup and Shutdown Procedure” in the IRIS

Manger Reference Manual). An attempt to restart without an IPL

may result in the loss of all data on the cartridge.

Copyright (C) 1974

Educational Data Systems 5-9

5.8 How to Change a Disc Cartridge

Before changing a disc cartridge it is not only necessary to REMOVE

all Logical Units on the cartridge to be removed, but all other |

Logical Units on the same physical drive must be removed as well.

This includes, for example, the fixed disc on a Diablo 44, an

Iomec 2002 or 2012, or a Caelus CD24, 303, or 306. Therefore,

if Logical Unit zero is on the fixed disc, it is necessary to shut

down the system, change the cartridge, and do an IPL to resume

system operation (see ''Startup Procedures" in the IRIS Manager Reference

Manual). Physically independent drives, such as with a Diablo 33,
do not require removing the fixed disc or shuting down the system

in order to change the removable cartridge. After all Logical

Units on the same physical drive have been removed, stop the

drive, change the cartridge, and start the drive. When the drive

is ready, the Logical Units may be INSTALLed.

5.9 How to Use COPY

COPY is a general purpose command for moving data of any type from

any source to any destination. Also, data from several sources may

be merged into or appended to a single destination. Each source and

each destination may be any disc file or any peripheral device, the only

restriction being that all sources must supply a data form that is com-

patible with the destination. The general form of the copy command is

COPY Dest = Sourcel,Source2,...

where "Dest" is the Filename under which the destination file is to be

built and ''Sourcel", "Source2",... are Filenames of source files.

Each Filename may be in the form lu/Filename or may specify a

peripheral device such as $LPT. If the destination file is to replace

an existing file then ''Dest'' must be given in the form Filename!. To

specify the file type of the destination file, give ''Dest" in the form

Filename*t

where t is a file type letter as used by LIBR. If the file type is not

specified in this manner, then the type of the first source file will be

assumed. If the destination is a peripheral device, an attempt will

be made to write to the device; the peripheral driver will generate

an "item types don't match" error if it cannot accept the type of

data offered. |

Copyright (C) 1974 |

Educational Data Systems 9-10

The above command form will build a destination file an
d load the

s of the specified source files into it. However, if the file
content

oe

the command must be given inbeing copied is a formatted data file,

the form

COPY Dest © Source

where the "«'' operator signifies that the destination is to be a file image

of the source rather than copying only the contents. Thus, the format map

or other attributes will also be copied to the destination.

In the case of multiple sources, the data from sources 2 through n are

appended to the image of source 1, merging the sources as appropriate

for the file type. Multiple source files are illegal if copying a BASIC

program or if the sources are formatted differently. Data can also be

appended to an existing file by giving the command in the form

COPY Filename + Sourcel, Sourced2d,....

which causes the destination file to be opened instead of building a new

file, and the sources are appended as if it were the first source.

Multiple sources are allowed only in cases where it makes sense to

concatenate or merge the data; specifically, the following groupings

are allowed:

1) ASCII sources (text files and byte oriented peripherals such as

paper tape, cassette tape, or cards).

2) Binary sources (machine code files, including processors, binary

format paper tape, binary image magnetic tape, etc.).

Other types of files may be copied on a one-for-one basis. This is

useful for copying a data file or a BASIC program from one Logical

Unit to another, or to copy it to or from a binary oriented peripheral,

e.g. to dump an image of a data file as a binary paper tape.

In some cases, operator intervention is required before a source can

be used. An up arrow symbol (¢) ahead of the source name will cause

the message LOAD DEVICE THEN PRESS RETURN to be printed. One

example of the use of this feature is in loading several paper tapes into

the same file by giving the command

COPY XYZS1 = $PTR, #+$PTR,?$PTR

which will merge three source tapes into one text file and will wait for

the operator to reload the paper tape reader with the second and third

tapes.

Copyright (C) 1974

Educational Data Systems 5-11

The COPY command may also be used to compare or verify data from

one file or device against the data from one or more other sources by

typing a question mark ahead of the destination Filename; i.e.

COPY ? Dest = Sourcel,Source2,...

will compare the contents of the "destination" against the source or

sources specified, and any discrepency will cause a print out of both

the destination and the source where the mismatch occurs. The command

form

COPY ? Dest = Sourcel, Source2,...

is the same except that the format map and other attributes are also

compared.

Following are typical examples of the use of the COPY command:

1) COPY CAT1*M = $§PTR

This will read paper tape and build a file named CAT1 to store the

data. CAT1 will be a machine code file, and an error will result

if the tape is not binary.

2) COPY 1/CLOCK = 0/CLOCK

This will copy the BASIC program CLOCK from Logical Unit zero

to Logical Unit one. 0/CLOCK may now be deleted if desired. It
is not necessary to use the same name for the destination file.

3) COPY ENTERS = ENTERS1, ENTERS2, ENTERS3

This will merge the three source files listed into one destination

file. It is useful to merge text files in this manner when necessary

to ASSEMBLE more than seven source files.

If copying to or from magnetic tape, only one of two special command

forms may be used. They are:

COPY Filename + $MTA@n

where n is the tape file number to be read into the specified disc file, and

COPY $MTA + Filename

which will write the specified disc file on tape and print out the tape file

number where it was written. Each file written on tape is automatically

written immediately following the last file on the tape.

Copyright (C) 1974

Educational Data Systems 5-12

6. DATA FILES

All information stored in disc memory is organized into files. These

include system files, processor files, program files, and data files.

An example of a system file is the Real-time Executive (REX); an

example of a processor file is the BASIC interpreter. Neither system

nor processor files may be modified by the user. An example of a

program file is a BASIC program. A processor or a program may

write data into or read data from a data file.

6.1 Types of Data

Files may include data of several types, including binary, floating

binary, packed decimal, and ASCII. BASIC programs are ordinarily

stored in a compressed binary form for immediate interpretation

and minimum storage space. However, the data produced by any

language or any processor may be stored as strings of ASCII characters.

This provides a common ground for transfer of data between one

language or processor and another. For example, EDIT may be

used to edit any ASCII text file.

6.2 Data File Structures

Each data file is made up of one or more blocks: a file header block

and zero or more data blocks. The header block contains the following

information: Filename, file type, privilege level, protection, record

length, number of records, cost, and number of blocks. A formatted

data file's header also contains a record format map and, unless there

are more than 128 data blocks in the file, the disc address of each data

block in the file. If data are written beyond the 128th data block then

the file is automatically extended by the system. In an extended file,

the disc addresses in the header point to header extender blocks, each

of which may contain up to 256 disc addresses of data blocks. Thus,

the maximum number of data blocks per file is 32768.

No data block is allocated until data are actually written into the block.

Likewise, no header extender block is allocated until it is required to

contain the disc address of at least one data block. Each data block is

256 words long and is divided into records.

Within a formatted file, each record is of the same length and format.

The record length may be from one to 256 words, and each record may

contain from one to 64 items. Each item may be an ASCII string, a

binary floating-point number, a decimal number (one-, two-, three-,

or four-word decimal format), or one or more binary words.

Copyright (C) 1974

Educational Data Systems 6-1

The contiguous file, which is discussed further in Section 6.5, has

neither a format map nor a list of data block disc addresses.

The entire file must be allocated in physically sequential disc blocks

at the time the file is created. The size of a contiguous file is limited

only by the size of the Logical Unit; thus, given a suitable Physical

Unit, a contiguous file may exceed 65000 data blocks.

6.3 How to FORMAT a Data File

A new data file can be created and formatted by use of the system

command FORMAT. To execute any system command, the terminal

must be in control mode as indicated by a # symbol printed by the

computer. If not already in control mode, press CTRL C and wait

for the # symbol. Now type the command

FORMAT Filename

where Filename is any legal file identifier (see Glossary in the back

of this manual). If the Filename given is already in use on the spec-

ified Logical Unit, then this command will be rejected, and another

Filename must be tried. Or, if the user is replacing his own data

file, he may enter the command in the form

FORMAT Filename!

The exclamation mark allows an existing file to be replaced.

Once the Filename has been accepted by the system, the computer

will print

ITEM #0:

and allow the user to begin formatting the file. A shorthand notation

is used to specify each type of item in a record. The abbreviations

used are:

S String of ASCII characters. The letter S must be followed

by anumber specifying the dimension (maximum number of

characters) of the string. If an odd number is given then

the dimension will be the next higher even number.

F Floating point binary number. This number form is not

used by Business BASIC but may be used by other processors.

D Decimal number. This is a binary-coded decimal number

of the form used by EDS Business BASIC. D or D1 specifies

a one-word decimal integer in the range +7999. D2, D3,
and D4 specify two-, three-, and four-word floating-point

decimal numbers, respectively.

Copyright (C) 1974

Educational Data Systems 6-2

B Binary data. The letter B must be followed by a number specifying

the dimension (number of words) of the item. Only one-word binary

items are used by BASIC, but binary groups may be used by other

processors.

These item identifiers must be separated by commas as they are entered

by the user. A group of several items of the same type and dimension may

be specified by entering the number of identical items ahead of the letter.

For example, 3516 would specify that the next three items are to be strings

of up to 16 characters each. The RETURN key may be pressed after

entering any item identifier, and the computer will ask for the next item

by number. When all items have been specified, simply press RETURN

again to close the file.

There are three ways to correct a typing error:

1. Use CTRL H to backspace and correct the error,

2. Use CTRL X to delete the line being typed, and retype the line, or

3. Press the ESC key. _ This aborts the formatting procedure, deletes

the file, and returns the terminal to control mode, If an existing

file was being replaced then it is restored to normal status.

The file created by FORMAT consists of only a header block. Data blocks will

be automatically added by the system as data are written into the file. The file

will be given maximum protection (protection digits 77 as described in "How to
SAVE a Program") and zero cost, but these may be changed as desired by the
use of the CHANGE command (see Section 5.2). The protection and cost may

also be specified at this time by giving the command in the form

FORMAT <pp> $ddd.cc Filename

where pp is the desired protection and $ddd.cc is the desired charge for access
to the file.

The following example shows how a typical data file might be formatted:

FORMAT <20> PAYROLL

ITEM #0: S20, 4D2

ITEM #5: 2814, 2D3, S3, Dl

ITEM #11:

RECORD LENGTH = 41 WORDS

Copyright (C) 1974

Educational Data Systems 6-3

6.4

Portions printed by the computer are underlined. This example will create

a data file named PAYROLL. Each record of the file will be 41 words long.

Since each block of a file is 256 words, there will be six records per block

with ten words unused at the end of each block. Each record will contain

a string of up to 20 bytes, four two-word decimal floating-point numbers,

two strings of up to fourteen bytes each, two three-word decimal floating-

point numbers, a string of up to four bytes (string lengths are rounded up

to an even number of bytes), and a one-word decimal integer. When item

#11 was requested, the user pressed RETURN to indicate that all items had

been specified. The protection 20 specified will allow full access to the file

except that lower privilege users will not be allowed to write into or delete

the file.

A data file may also be created and formatted by use of a BUILD statement

ina BASIC program. Refer to the Business BASIC Programming Manual

for more information.

How to KILL a Data File

The procedure for deleting any type data file is the same as for deleting

a saved BASIC program or any other file. Type the system command

KILL Filename

where Filename identifies the file to be deleted. See ''How to KILL a

Saved Program" in this manual for more information on deleting files.

Contiguous Data Files

The contiguous file structure was conceived to accommodate mixed rec-

ord formats in a data file whose size is limited only by the size of a

Logical Unit, yet permit random access to any record or item in the file

with an absolute minimum number of disc transfers. No more than one

disc transfer is required to access any block in a contiguous file, where-

as up to three disc transfers may be required to locate and access a block

in a formatted file (one to read the header, a second to read the proper

header extender if the file is extended, and finally the data block may be

read into core). To accomplish this, all necessary information is brought

into core when the file is opened.

The information kept in core for an open contiguous file consists of the

header block disc address, the number of records, and the record length

(number of words). For the system to calculate the disc address of a

randomly selected record from this information, it is necessary that the

file occupy only physically sequential disc blocks. Since it is unlikely that

more blocks will be available in sequential locations at a later time, it is

Copyright (C) 1974

Educational Data Systems 6-4

necessary that the file be initially built with the maximum number of

blocks expected to re required. Only by means of a subsequent ''garbage

collection" can a contiguous file be expanded (see ''Garbage Collection

Procedures" in the IRIS Manager Reference Manual). Of course, a

larger contiguous file might be built and the data copied into it, but this

would be impossible if the file was half as large as the Logical Unit.

A contiguous file may be built by entering a system command of the

form

FORMAT §$ddd.cc <pp> [r:w]) Filename

where $ddd.cc and <pp> are the cost (if any) and the protection (if other

than 77). The Filename may, of course, include a Logical Unit num-

ber and may be followed by a "!" to permit replacing an old contiguous

file by the same name. The only thing new about this command is the

field set off by square brackets; the brackets themselves indicate that

a contiguous file is to be built. The value r before the colon indicates

the number of records the file is to contain, and the value w indicates

the number of 16-bit words per record. Any decimal values are allowed

for r and w as long as 1+r*w/256 sequential disc blocks can be located

on the specified Logical Unit. One additional block is required if r*w/256

has a fractional part. It is strongly recommended, however, that w be

256 or a smaller power of two so that some number of records will ex-

actly fit in each block; otherwise, some records will span two or more

blocks, thus requiring more than one disc transfer to access a single

record and perhaps even to access a single item. The following is an

example of a command to build a contifuous file:

FORMAT <33> [3000:128] 2/INDATA

This command will build a contiguous file named INDATA with protection

33 on Logical Unit number two. It will contain three thousand records of

128 words each, thus occupying 1501 disc blocks.

Access to a contiguous data file is similar to a formatted file except that

a beginning byte number must be supplied instead of an item number.

Since there is no format map, the system cannot check for matching item

types; therefore, it is left to the user to avoid writing a string and reading

it back into a numeric variable or vice versa. The user must also be

careful not to supply a byte number which is in the middle of a previously

written numeric item. Such errors will usually not be detected by the

system and will not affect system operation, but the data retrieved from

the file will be unrecognizable. Refer to the Business BASIC Programming

Manual for more information.

Copyright (C) 1974
Educational Data Systems 6-5

7. TEXT FILES

A text file is an unformatted data file which contains a single text string

of from zero to 16, 777, 215 characters or until a Logical Unit is filled,

whichever occurs sooner. The text is tightly packed with lines of text

separated only by RETURN codes and pages separated by FORM codes.

All characters are stored as seven-bit ASCII codes with the eighth bit

unconditionally set to one. Each block of a text file can hold 512 characters

and all blocks except the last block in the file will be filled. The string

is terminated by one or more zero bytes (octal 000, not an ASCII zero

which is 260 octal).

J

7.1 How to Load a Text File

A text file may be created from any terminal by use of the EDIT command

(see "How to EDIT a Text File" in this manual) which allows the text to

be either typed in or, if available on paper tape in ASCII code, to be loaded

through the terminal's tape reader.

If a high-speed paper tape reader is included in the system it may also

be used to load an ASCII tape, such as an assembly language source tape.

To load a tape in this manner, place the tape to be loaded in the high-

speed reader, and then type the system command

COPY Filename=$PTR

where Filename is the name under which it is desired to load the tape.

If the Filename is acceptable, a text file by that name will be built, and

the tape will be loaded into the file. If the master terminal is not in use

then its tape reader may also be used as a peripheral device to load the

tape by giving the system command

COPY Filename = $PTM

which will load the tape as described above. This command may not be
given from the master terminal itself.

COPY checks for even parity on all characters read from tape. Any

character in which a parity error is detected will be replaced by a back-

slash code. All null codes (blank tape), rubout codes, and line feed codes

will be ignored.

However, if the second frame after the leader is a null (blank frame),

COPY checks that each 50th character thereafter is also followed by a

null. An error is indicated if the nulls are not found as expected. See

Section 7.5 in this manual.

Copyright (C) 1974

Educational Data Systems 7-1

7.2 How to EDIT a Text File

The EDIT processor may be used to edit or examine an existing

text file or to create a new text file. To edit an existing file, type

the system command

EDIT _ sfile, dfile

where sfile is the Filename of the text file to be edited (the source

file) and dfile is the Filename under which the edited text is to be

stored (the destination file). This command will be rejected if sfile

does not exist, is not a text file, or is read protected or copy protected.

The command will also be rejected if the Filename dfile is in use to

identify another user's file or any file other than a text file. Note that

a new source file may be selected at any time by use of the F command.

If it is desired to examine a text file without editing it or creating a

new file, the destination Filename may be omitted. In this case, the

system command

EDIT Filename

would select the text file identified by Filename to be examined. Any
attempt to edit or reproduce the file will result in an error since

no destination file has been provided.

A new text file may be created by typing the system command

EDIT , Filename

which will create a text file under the Filename given and will allow text

to be entered through the terminal's keyboard or tape reader. To load

text from a tape, first use the H command to change the string delimiter

to any character known not to be on the tape, type the letter I to set insert

mode, and start the tape reader. After reading the entire tape, shut off

the reader, type the delimiter character, and press RETURN to terminate
the insertion.

Copyright (C) 1974

Educational Data Systems 7-2

-nT Type from beginning of nth line back from current line through end

of current line. Does not move the pointer.

Print number of lines in current page.

Print line number of line where pointer is positioned within current page.

Print page number of current page of source file. If pages have been

appended, this gives the number of the last page appended.

XEND Exit from editor after duplicating remainder of source file (also

see CTRL C below).

XKIL Exit from editor and abort the destination file. If another text

IQ

2

file by the same Filename was being replaced then only the destination

file is deleted, and the old file is restored to normal status.

Print number of bytes remaining in the edit buffer (space available

for more additions or insertions in the current page).

Move pointer to end of current page.

Note: in commands marked by an asterisk, n may be negative.

Represents the symbol currently being used as the delimiter character

(string terminator). The slash is recognized as the delimiter until

changed by an H command. A RETURN also acts as a string terminator

except in insert mode.

A CTRL C will cause an exit from the editor after writing the current

page and closing the destination file.

A CTRL Z entered as part of a string is ente red into the string asa
RETURN code.

The RETURN key acts as a command activator except when in insert mode,

in which case the RETURN code is inserted as part of the string.

All commands operate only within the current page unless otherwise specified.

Copyright (C) 1974

Educational Data Systems 7-5

T. 3

Special cases for n=0:

0C Illegal

OD Illegal

OG Insert a copy of the current page of the source file.

OJ Same as J

OK Delete from current pointer position back to beginning of line.

OL Same as L

ON Illegal

OP Replace current page with its original form from the source file.

0Q Illegal

OR _ Tllegal

0S Illegal

OT Same as T

Any pointer move command (J, L, or M) merely stops with no error

indication if the beginning or end of the current page is reached. All

other commands cause an error typeout if the command cannot be carried

out for any reason.

Any search command (C, N, Q or S) searches forward starting at the

current pointer position. A successful search leaves the pointer positioned

after the string. The C, E, and S commands search only to the end of the

current page; if unsuccessful, an error message Is printed, and the pointer

is not moved.

If an A or G command is not completed because the buffer is filled, an

error message is printed. However, part of the appended or inserted

page will be retained.

How to Merge Text Files

Several text files may be combined into a single large file by typing

the system command

COPY Filename=filel,file2, ..

where the Filename given identifies the new combined text file, and

filel, file2,... identify the text files to be combined. This command

will be rejected if the Filename given is already in use to identify

another user's file or any file other than a text file. It will also be

rejected if any of the files filel, file2,... is not a text file. This form

of the COPY command is particularly useful for merging assembly

language source files when it necessary to include more than seven

source files in an assembly.

Copyright (C) 1974

Educational Data Systems 7-6

The source files filel, file2,etc., are not disturbed by use of the

COPY command. However, since all of the text has been reproduced

in the combined file, the original source files may now be deleted if

desired.

7.4 How to KILL a Text File

The procedure for deleting a text file is the same as for deleting a

saved BASIC program or any other file. Type the system command

KILL Filename

where Filename identifies the file to be deleted. See ‘How to KILL

a Saved Program” in this manual for more information on deleting

files.

7.5 How to Punch a Tape of a Text File

An ASCII tape of a text file may be punched at any terminal by using

the EDIT processor to type the entire file with the terminal's tape

punch on. However, if a high-speed paper tape punch is included

in the system, the user may type the system command

COPY $PTP=Filename

where Filename identifies the file to be punched. The entire file

will be punched with even parity. Leader and trailer will also be

punched, and a null (blank frame) will be punched after the first

byte and after every 50th byte thereafter. COPY uses these nulls

to check for characters being picked up or dropped by the paper

tape equipment (see Section 7.1 in this manual). If the master

terminal is not in use then its tape punch may also be used as a

peripheral device by giving the system command

COPY $PTM = Filename

which will punch a tape in the same form as described for $PTP.

This command may not be given from the master terminal.

Copyright (C) 1974

Educational Data Systems 7-7

8. ASSEMBLY LANGUAGE

Assembly language is a symbolic representation of machine code,

the only language understood by the computer itself. For information

on programming in assembly language, refer to the Data General

publications How to Use the Nova Computers and Introduction to

Programming the Nova Computers or to the Digital Computer Controls

publication D-116 Programmer's Manual. A program called an

assembler is used to translate from assembly language to machine code.

Assembly language is then used to write other programs such as the

BASIC processor, which interprets the BASIC language and selects

the proper machine code subroutines to perform the operations specified

by the user's BASIC program.

The IRIS system provides extensive facilities for writing and debugging

programs in assembly language; in fact the IRIS system may itself be

extended by using these facilities to create new subroutines and proces-

sors to be added to the system. The IRIS System Reference Manual

provides the information required to write programs in the proper form

to become part of the system. The IRIS Manager Reference Manual

tells how to load such extensions as new system components.

8.1 How to Manipulate Source Files

An assembly language source file is simply a text file containing a

program written in assembly language. All of the techniques described

under ''Text Files'' (Section 7 of this manual) may be used to manipulate

assembler source files. Up to seven source files can be handled in a

single assembly; COPY must be used to combine source files if a

a program to be assembled is segmented into more than seven files.

8.2 How to ASSEMBLE a Program

ASSEMBLE is a disc-to-disc machine language assembler which is

fully compatible with the stand-alone Nova absolute assembler. One

restriction, however, is placed on programs to be assembled: the

first word of object code generated must be the lowest address in

the object file.

To begin an assembly, type the system command

ASSEMBLE Filename, sourcel, source2,..., source?

where Filename is the name under which the object file is to be generated,

and sourcel, source2,...are names of existing text files containing

assembler source code. Up to seven source files may be specified. Refer

to ‘How to Merge Text Files" in this manual if the number of source files
exceeds seven.

Copyright (C) 197 |

Educational Data Systems 8-1

SOK a FC IC Ra aR KK RGR RE IC OK I 9K CE aR aR IC aK i 2K 2K IC 9 C2 2K 2 24 2k a 9 9 9 a 2 a 2 2K

* Note: on some systems the ASSEMBLE processor is *

* loaded under the name ASM. In this case, substitute *

* ASM for ASSEMBLE in all commands described in X*

* this section. *

shee CIC I RSI CC IOI IE ICR aC ICR COKE 2K 2 RE aK IC CE a IC CICK a aK aK i 9k i CA 2 2 2 2 aK aK aK i 2K i ee ie

The terminal's carriage will not be returned immediately after entering

the command. During this pause, ASSEMBLE is locating the source files

and building the object file. A carriage return will then be executed to

indicate successful completion of these initial tasks, and each . EOT and

.END pseudo-operator will be printed during pass one of the assembly.

Any errors detected during pass one will also be printed.

Before starting the listing on pass 2, ASSEMBLE will print "PRESS

RETURN". Roll the paper up at this time to the desired starting point,

then press the RETURN key. This will position the listing properly on

each page.

The listing may also be sent to a data file ora peripheral device by entering

the command in the form

ASSEMBLE Filename, @dest, sourcel, source2, ... source6

where dest is the name of a peripheral device such as $LPT (line printer)

or a Filename under which a data file is to be built to store the listing.

Note that only six source files may be specified in this case, and the user
will not be asked to press return before the listing is started.

If an object file only is desired (no listing), type a minus sign ahead of the

object Filename; i.e., enter the command in the form

ASSEMBLE -Filename, sourcel, sourece2, ... source7

This ''no list'' assembly may also be specified on individual source files

by typing a minus just ahead of each source file name which is not to be

listed. A typical command might be

ASSEMBLE PAYROLL, @$LPT, -DEFS, PRSi, PRS2

indicating that the object file is to be named PAYROLL, the source file

DEFS is not to be listed, and source files PRS1 and PRS2 are to be listed

on the line printer.

If a listing only is desired (no object file), merely omit the object Filename,

and enter the command in the form

ASSEMBLE ,sourcel, source2, ... source’

or

ASSEMBLE ,@dest, sourcel, source2, ... source6

Copyright (C) 1974

Educational Data Systems 8-2

In some cases it may be desirable todo a preliminary assembly,

producing neither a listing nor an object file, for diagnostic purposes

only. In this way, all errors which can be detected by the assembler will

be printed, and the source files can be re-edited before final assembly

and debugging. Todo this, substitute a minus for the object Filename;

i.e., enter the command in the form

ASSEMBLE -, sourcel,source2,. . . source7

Another form of diagnostic assembly is possible which will print the

symbol table without the listing. This is done by typing a minus ahead

of each source Filename but not ahead of the object Filename; i.e.

ASSEMBLE Filename, -sourcel, -source2,.,. -source7

or

ASSEMBLE , -sourcel, -source2,. . . -source7

will print the symbol table after doing a no-list assembly. The first

form will generate an object file, the second will not.

An assembly may be caused to pause at any time by pressing the terminal's

space bar. Press the RETURN key to resume the assembly. This pause

feature may be used if it is necessary to reposition the paper or to load

fresh paper or anew ribbon, etc. The assembly may be aborted at any

time by pressing the ESC key; however, the object file being generated will

be lost unless pass 2 has been completed and the symbol table is being

printed.

Besides all of the standard assembler errors, one additional error may

be indicated by ASSEMBLE. It is:

Z Out of disc space

in which case, no more object code will be generated. Also, an Lerror
will occur if object code is generated at any address less than the first

word of code generated, and that object code will be lost.

The port's active file is used for the assembler's symbol table. Should

symbol table overflow occur, only the first such error indication is printed

during pass one. However, all errors are printed during pass two.

Copyright (C) 1974

Educational Data Systems _ 8-3

8.3 How to EXECUTE a Program

The EXECUTE processor may be used to run or debug a Stand-

alone machine code program. Programs which may be executed

include:

1. Stand-alone programs already on the disc, such as GPM.

2. New machine code files created by use of ASSEMBLE.

3. Machine code programs available as a binary object tape.

The system Manager can use PLOAD to load such a tape as

a disc file.

Programs which have not been debugged may be executed since

EXECUTE is an interpreter; it has special facilities such as break-

points and a trace mode for debugging a new program.

EXECUTE can be used only on the master terminal, which must first

be in control mode as indicated by a # symbol printed by the computer.

To select a program to be run, type the system command

EXECUTE Filename k

where Filename is the name of a stand-alone or executable file, and k is

the amount of virtual core to be used (1k=1024 words). Such files are

indicated by the letter M or X, respectively, ina library listing. An

up arrow is printed as a prompt character to indicate that EXECUTE

is in the command mode.

A single letter is used for each command. Most commands also require

an address which must be given as an octal number. However, some

commands consist of the letter only, and others require more than one

octal parameter. In the following list of commands, all such parameters

are represented by lower case letters. Provided EXECUTE is in the

command mode as indicated by a? symbol printed by the computer, you

may enter any command by typing it in the form shown, then pressing

the RETURN key.

Copyright (C) 1974

Educational Data Systems 8-4

Bx

Dx

Ex

Change contents of an accumulator (selected by n=0, 1, 2, or 3),

the carry flip-flop (selected by n=4), ION (the "interrupt on"

switch, selected by n=5), or the interrupt mask (selected by n=6)

to the value x. When a program is stopped for any reason, the

current contents of all registers are saved. Restarting the program

causes all registers to be restored to the saved values, which may

be changed by the A command or interrogated by the Q command.

Insert breakpoint at location x in the program. If the breakpointed

location is encountered as an instruction while running the program,

execution will be terminated, and the current status (similar to

@ command) will be printed. If x is zero or omitted, the break-

point will be removed.

Dump (print) the program or its data in octal starting at location

x. Press ESC to terminate the print out.

Allow entry of octal numbers or symbolic instructions starting

at location x. The colon command (see below) may be used to

enter into a single location. Symbolic instructions similar to

assembly language may be entered, but labels are not allowed.

Kither relative or absolute addresses may be given. Press ESC

to terminate entry mode.

Ix: string Input ASCII text string starting at location x. Any letter, digit,

JX

Kx, y, Z

Lx

or symbol and many control characters may be used, but char-

acters recognized by the system (see Appendix 3) may not be

entered. Type a CTRL Z to enter a RETURN code as part of

a string.

Jump into the program and begin executing at location x. If the

program was previously run, all registers will be restored to

their contents at the time execution was stopped.

same as Jx except that execution resumes at the point it was

last stopped. If the program was not previously run, execution

will begin at the starting address given in the file's header.

Store the constant z in locations x through y, inclusive.

List the program as symbolic instructions starting at location x.

Press ESC to terminate listing.

Copyright (C) 1974

Educational Data Systems | 8-5

Mx, y, z

Nx, y, Z

or

Move the contents of locations x through y, inclusive, to the

area Starting at location z. The source and destination areas

may overlap without loss of data.

These commands are the same as the respective 8S commands

except that a not-equal comparison causes the contents of a cell

Nx, y, Z, mto be listed.

Ox

Px, y

Px

Sx, y, Z

ox, y,Z,m

Output the ASCII string starting at location x.

Punch locations x through y, inclusive, on the high speed paper

tape punch in binary loader format. Note: leader and trailer

may be punched by use of the Y command. ©

Punch an end block on the high speed speed punch with a starting

address x.

Punch an end block on the high speed punch with no starting address.

Query status. Prints the contents of all registers as they were

saved when execution was stopped.

Read binary format paper tape on the high speed reader.

Same as R except that all addresses on the tape are displaced

the same amount so that the first word on the tape goes into

address x.

Search locations x through y, inclusive, for the value z. Prints

the location and its contents if the value is found.

Same as Sx, y, z except that the contents of each location are ANDed

with the mask m before being compared with the value z. May be

used to search for a certain type of instruction. For example, the

command

5600, 1120, 25, 101777

will search locations 600 through 1120 for any instruction that

references location 25.

Copyright (C) 1974

Educational Data Systems 8-6

Tx Trace the program starting at location x. For each instruction

executed, the location is printed, and the instruction is printed

in symbolic form. Also, the contents of any register that

changed as a result of the instruction will be printed. If interrupts

are enabled or disabled, an E or D will be printed.

T Resume running in the trace mode. Similar to J command except

the program is traced.

x Exit and clear the active file. The X command should be used

to leave EXECUTE to restore the active file to its normal size.

CTRL C may be used to leave EXECUTE temporarily for the

purpose of saving a copy of the active file, but the user should

re-enter EXECUTE and exit with an X command when finished.

YX Causes x blank frames to be punched on the high speed paper

tape punch. If xis zero or is omitted, approximately three

feet of blank tape will be punched. May be used to punch leader

and trailer before and after use of P commands.

ZX Search for relative reference. The 256 words centered on

location x are searched for any storage reference instruction

that references location x using relative addressing. Any such -

instruction is listed in symbolic form. :

a:x Store the value x at location a. Similar to the E command except

that only a single location is entered.

If a HALT instruction or an illegal I/O instruction is encountered,

EXECUTE will print an appropriate message and return to command

mode. The user may request a return to command mode at any time

by pressing CTRL V. AJ or T command may later be used to resume

running the program at the point where it was stopped.

While EXECUTE is running a program, the special system control

characters (such as ESC, CTRL C, RETURN, and CTRL A) are

ignored by the system and passed through to the program being run.

A CTRL V must be used to return to command mode before these

active characters will be recognized by the system.

Copyright (C) 1974

Educational Data Systems 8-7

8.4 How to Punch a Tape of a Program

To obtain a binary object tape of a machine code program file,

the high-speed paper tape punch must be included in the system.

To punch such a tape, type the system command

COPY $PTP=Filename

where Filename is the name of the object program file. The

program will be punched in standard binary format with leader

and trailer on the tape. Locations containing a standard HALT

command (octal 63077) will not be punched.

8.5 How to KILL a Program File

Object program files may be deleted in the same manner as

described for BASIC programs in ''How to KILL a Saved Program"
in this manual unless the file is a processor. Todeletea

processor, type the system command

KILL EkeyE Filename

where "key" is the password to KILL, as set by the system

manager, and Filename is the name of the processor to be

deleted.

Copyright (C) 1974

Educational Data Systems 8-8

9,

ol

2

HOW TO USE TUTOR

This chapter provides the course author with the information

he needs to write a course using the TUTOR language. A quick

Summary is given at the end of the chapter.

Naming a TUTOR Program

First, a name must be chosen for the course, It must not exceed

ten valid alphabetic or numeric symbols and must start with a

letter. Mnemonic conventions may be used in selecting course

names, e.g. the first three characters might indicate the subject.

Examples: ALGSIM is a course in the area of algebra dealing

with simultaneous linear equations.

CHEMOL is a course in the area of chemistry dealing

with molecular weights.

BIOPHO is a course in biochemistry on phospholipids.

These names are normally listed in the catalogue of available courses

and are the words the students type to begin taking a course. Use

QUERY to determine whether the desired Filename is already in use.

You can now use the program CRAM to generate your course. CRAM

is described in Sections 9.7 through 9.9.

Writing a TUTOR Program

The operations that the computer performs are controlled by a simple

code language. The course author uses two letter operation codes to

identify questions, correct answers, and incorrect answers to TUTOR.

Supplemental instructions, hints, and anticipated responses are all

under control of the course author through the use of appropriate codes.

The course author also controls the instructional flow by anticipating

the student's performance. Thus, branching and concealment of

unnecessary drill for better students is allowed, and return to the main

flow of instruction is easily performed.

There are seventeen operation codes each consisting of two characters.

They are:

Copyright (C) 1974

Educational Data Systems 9-1]

LA This code followed by a text of not more than 6 characters

is placed at a point in the course to which the author may wish to

branch. It is called LABEL code, and its text is called the label.

Examples: LAI

LAOPEN

BR A branch code followed by a label causes a branch (transfer)

to the point in the course so labeled. The matching label may be

placed anywhere in the course, and control is taken up at that point.

The label after BR cannot exceed 6 characters. Several BR State-

ments may refer to a single LA code.

Example: BRHELLO Corresponding LA code would be --

LAHELLO

RD This code is used to display a text frame. (With a CRT

terminal, the screen is cleared). The course may be started with
this code if no reference to it is required by the program after it

has once been displayed. It should be preceded by an LA code if

reference will be made. To goon to the next instruction, the

student must press the RETURN key.

This is the blank (space) code. It is used to introduce

continuation lines when the text accompanying a QU, RD, TY,

ER, or UN code will not fit on one line.

Example:. | RDTHIS IS A SAMPLE OF A MESSAGE THAT IS
TOO LONG TO FIT ON ONE LINE.

NOTE THAT EACH OF THESE LINES BELOW

THE FIRST ONE USES BLANK CODE.

QU This code displays the text frame following it (a question)

and reads the student's response to the question. A course may

- also begin with a QU code if no future reference will be made to this

question. After displaying the text of the QU and any following blank

codes, the computer matches the student's reply starting with the

next code (which must be a CA, CB, CM, or CS code) to determine

whether the reply is correct, wrong, or unrecognizable.

CA This code precedes the correct answer. If its text matches

the student's answer character for character, control moves past any

CB, CS, CM, or blank codes immediately following the CA to the TY

Copyright (C) 1974

Educational Data Systems 9-2

or BR immediately following them if such exists. If no TY or

BR comes next, the computer types an automatic ''Correct,

press RETU RN" message, and control moves to the next QU or

RD in the sequence when the student presses the CR or return

key. A chaining capability allows several anticipated answers

which are to be treated alike to be placed after any CA, CB, CM,

WA, WB, CS, or MS statement. These eqivalent answers should

* be separated by semicolons, and there should beno spaces any-

where except where the student is expected to insert a space.

CAanswer 1

CAanswer 2

Examples: |

| QUtext 1 While the student is viewing text 1, he

CAanswer 1 writes in an answer. If it matches
TYtext 2 answer 1, text 2 is written under his

QUtext 3 answer. When he presses the RETURN

key, text 3 is displayed on the screen.

QUtext 1 This time if the student gives answer 1

CAanswer 1; answer 2 or answer 2 (using the semicolon chaining)
BRA the computer branches to label A and

LAB erases text 1, replacing it with text 3.

RDtext 2 Note that this bypasses text 2 which may

LAA have contained remedial material, and

QUtext 3 may be branched to somewhere else in

the program by a BRB line.

QUtext 1 If you are lazy, the procedure at the left

is for you. It would type an automatic

Correct, press RETURN" if the student

TYtext 2 gave correct answer 1 before going in to

show text 3. If he gave answer 2, he

would see text 2 before going on.

CB This code may be used to provide a sequence of alternative
correct answers that the author wishes to treat as equivalent. The

string of CBs should follow the last CA (if there is any). If the com-

puter finds a student's answer matching one of the CB tests, it will

bypass the others and any following CS or CM and execute the TY

and/or BR following the last CB if there are any, otherwise, the

automatic message is printed and control moves to the next QU or.

RD or to the 99 code. |

Copyright (C) 1974

Educational Data Systems 9-3

Example:

QUtext 1 If answer 1 is given, text 2 is displayed

CAanswer 1 under it. When the RETURN key is
TYtext 2 pressed, text 4 will replace what is on

CBanswer 2; 3 the screen. If either answer 2 or answer

TYtext 3 3 is given, text 3 will follow on the screen.

QUtext 4 Text 4 will replace that when the RETURN

key ts pressed. Any other answer will

cause automatic appearance of text 4

without telling the student he missed the

question.

NOTE: The semicolon chaining capability has pretty well done away

with the use of the CB code. In the example the two CB codes would

be replaced by CAanswer 2; answer 3. In other respects itis asa

CB code.

CS This code (Correct String) is to be used if the answer(s)

following the code will be accepted if found anywhere in the student's

response. It may be used to find a certain word, character, or

portion of a word in the student's response.

CM This code is to be used if you are expecting all of the strings

which are separated by semicolons to be somewhere in the student's

answer to count him correct. In other respects it is as a CB code.

WA This code is for an anticipated wrong answer. It should

follow the last CA or CB and their related TY and/or BR codes. It

is treated similarly to the CA except that the student's answer is

marked wrong and he is expected to give another response, which

will be reprocessed through the CA-CB-WA sequence. If no TY

follows it an automatic ''Wrong, try again" message will appear

before the student is expected to give another answer.

WB This code (alternative Wrong Answer) is similar to a CB

‘/code except that the answer is marked wrong and the student is

expected to give another response if no BR follows. WB is used to

provide a sequence of anticipated wrong answers which will be

treated similarly. The need for WB is not great since the semi-

colon chaining capability can be used with WA.

WSs This code (Wrong String) is used for wrong answers in the
same way CS is used for correct answers. If any of the answers

following it (separated by semicolon) are found anywhere in the

statement's answer, he is counted wrong and procedure is as for

WB after that.

Copyright (C) 1974

Educational Data Systems 9-4

Example:

QUtext 1

CA134

CM1;3;4

TYtext 2

WS82;5

TYtext 3

Wsl

TYtext 4

WS3;4

TYtext 5

E Rinclude combination

of 1,2,3,4, and 5

Example:

QUtext 1

CAanswer 1

BRA

WAanswer 2

BRB

WAanswer 3

TYtext 2

WAanswer 4

RDtext 3

LAA

Example:

QUtext 1

CAanswer 1

WAanswer 2

WBanswer 3

WBanswer 4

BRB

RDtext 2

LAB

RDtext 3

Copyright (C) 1974

Educational Data Systems

The CA was included so that a HELP

given by the student would print out

134", but the CM allows answering

in any order; e.g. the student would

be correct if he typed ''The answer is

1,4, and 3"'. He would then see text 2.

If CA and CM didn't stop the search

for a match, the first WS line is

searched. If either a 2 or 5 is found

somewhere in the student's answer, he

is shown text 3 and expected to try again.

Furthermore, if 1 occurred in the answer

other than with a 3 and 4, text 4 would be

shown. If either 3 or 4 occurred ina

combination without the 1, text 5 would be

Shown. If none of the above was in the

answer the ER message would appear, the

student not counted wrong but expected to

try again. (See ER description).

If the student gives answer 1, he is

branched to label A often seeing the auto-

matic "Correct, press RETURN" message.

If he gives wrong answer 2, heis counted

wrong and branched to B without comment.

If he gives answer 3 he is marked wrong,

text 2 is written under his answer, and he

is expected to give another answer. If he

gives answer 4, he will be counted wrong

and be expected to give another answer

(which he will have been told to do by the

automatic ‘Wrong, try again'' message). If

his answer is none of the above, text 3 will

be displayed next. (An ER or UN would

have prevented that).

If answer 1 is given, the student sees text

2 after an automatic ''Correct, press

RETURN" message. If 2, 3, or answer 4

is given, the student will be counted wrong

and see text 3 next comment on his answer.

9-5

Note that the WA, WB statements could have been replaced by a

WAanswer 2; answer 3; answer 4 statement.

MA This code is used to check for missing strings. It checks

to see if the text following it is not found anywhere in the student's

response. If the text is not found, the action is identical toa WA

code. A TY cod3 must always follow it to inform the student of

his error.

Example:

QUtext 1 Text 1 is displayed. If student types in

CA Y=MxX; Y=XM Y=MX or Y=XM, he is counted correct.

TY Correct If no equal sign is included in his re-

MS= Sponse, he is counted wrong is told

TY- Write an equation ''Write an equation", and is expected to

MS M; X; Y give another response. If any of M, X,

TY Your equation

should include

variables named

M, Y, and X

UN Read the question

more carefully and

or Y does not appear in his answer, he

is counted wrong, gets another message,

and is expected to give another response.

If M, Y, and X are in the answer and also

an equal sign, but the answer is still not

as expected, the UN message is typed,

and he is counted wrong (see UN descrip-

tion).

try again

UN This code is used to comment on unanticipated answers.

When UN is not used after a question, an unanticipated response

will be ignored and the next QU or RD text will appear. When the

UN code is used, the text following the code is displayed and the

computer waits for the student to answer the question again. Often,

the course author can anticipate wrong spelling in a student's re-

sponse. He can use the UN to ask for a repeat of the answer.

The question may require a true of false answer, and the student

may respond with ''Perhaps'. The computer would skip to a UN,

which could print: ''Type either a TRUE or FALSE".

Several UN codes can be used for any given question. They will be

executed one at a time as different unanticipated wrong answers

are given. This allows for several hints or warnings to be given

one at a time to help the student reach the right answer.

The last UN message will be repeated until an anticipated answer

is given unless that last UN is followed by a BR statement which

branches away from that UN. If the UN statements do not make it

Copyright (C) 1974

Educational Data Systems 9-6

clear how the student is to respond to a question which is neither

true-false nor multiple choice, the last UN statement should be

followed by a BR.

Example:

QUtext 1 If TRUE or T is typed as an answer,

CA TRUE; T text 3 appears after the automatic

WA FALSE; F "Correct, press RETURN" message.

TYtext 2 If FALSE is typed as an answer, text

UN TYPE EITHER 2 is displayed and the student is ex-

TRUE OR FALSE pected totry again. (His answer is

QUtext 3 counted wrong though). If neither of

these answers is given, he is counted

wrong and the UN message appears

under each SsuccesSive answer until

finally the student decides to write

either TRUE or FALSE.

Example:

AUtext 1 The reaction to anticipated answers is

CAA the Same as in the previous example.

WAB; C However, the ER will be given for the

TYtext 2 first unanticipated answer with the

ER TYPE A,B, or C computer waiting for another try (student

UN 1 CAN'T PUT UP not counted wrong). The second time,

WITH THIS. YOU'RE the student receives a different response

THROUGH! if he persists in giving unanticipated

BR OUT answers and is counted wrong. The last

RDtext 3 message is printed, and he is branched

to the label OUT, which might be at the

end of the course.

ER Exactly as UN without counting student wrong. Useas a

first comment if it is not too clear what method of response the

student is to give, and coaching is desired.

TY The TY code is a message to be typed out by the computer

without erasing the QU text or the answer given. It is used to

comment on an answer given by the student. It should immediately

follow a CA, CS, WA, or MS or the last CB or WB in a sequence of

CB's or WB's. See the previous examples on its usage.

Copyright (C) 1974

Educational Data Systems 9-7

99 This code without any accompanying text indicates to

the TUTOR program termination of the course. The student

will see a summary of his performance and be asked if he wishes

further courses immediately after this code is processed. CRAM

automatically inserts,the 99 code so the author need not be con-

cerned about its entry.

9.3 Operation Features of TUTOR

Operational features of TUTOR courses available to the student

Or author are:

a) after any question, he can type HELP, and the first

anticipated response following the question will be

shown to him. (Hopefully this is a CA, CB, CS, or CM).

If it was CA, CB, or CS, only the text up to the first semt-

colon will be shown; if CM, then all of the text will be

shown. He is marked wrong and is asked to type in the

correct answer.

b) after being shown any frame he can type GOTO followed
by any of the following:

1) anumber identifying the frame to go to.

2) aplus sign followed by a number indicating the num-
ber of frames to go forward starting at the present

frame.

3) a minus sign followed by a number indicating the

number of frames to go back starting at the present

frame.

4) a label identifying an LA statement followed by the

frame to goto. (This is primarily for use by authors.)

c) at any time he may press the ESC key and get a termination

message before exiting from TUTOR. This does not work

in DIAG mode (to be discussed in Section 9. 4).

d) after being shown any frame he may press CTRL and C

simultaneously instead of giving an answer, and he will be

exited from TUTOR without any message.

Copyright (C) 1974

Educational Data Systems 9-8

9.4 Testing the Program

After an author has written a TUTOR course or course segment

he can immediately run it as any student might do. If he is signed

on with at least a level 1 account, he has one advantage over the

student. However; if he types DIAG at the time a response is

appropriate, he will be transferred to a diagnostic mode. He may

then continue as a Student might or he can type DUMP to get a

listing of the course as entered, starting at the beginning of the

frame he is currently on. He can press the ESC key to stop the

listing. Conditions will then be restored as they were before

-_DUMP was requested; i.e. the program will expect an answer

or RETURN. Typing DIAG again will cause a return to student

mode.

9.5 Random Access Mode

Any course can be placed in a random accessing mode. This

allows the instructor to show students a random sampling of

questions for a quiz-type of review or actually to give a quiz,

recording scores for later printout. To use a course in this

mode, the instructor should contact the computer installation

manager and tell him how many random frames he desires the

student to see when he takes the quiz.

9.6 Summary

1. Begin the course with an LA, RD, or QU code.

2. CA, CM, CS, or CB always follows a QU code.

3. The sequence after QU is: (CA, CS, string of CB's, CM), MS,

(WA, string of WB's), ER, UN. The TY code is recommended

after each of these (except ER and UN) and BR is acceptable to

use if the normal sequence of operations is to be changed. All

of these are optional except the first CA, CB, CS, or CM.

4. A BRocode text must have matching LA text but LA's do not

need a corresponding BR. |

o. UN or ER codes are executed one after another as unanticipated

answers are given until the last UN is encountered. If no BR

follows, the last UN or ER is repeated.

Copyright (C) 1974

Educational Data Systems 9-9

6. The course must end with 99 as the last code followed by
no text (inserted by CRAM).

9,7 CRAM

CRAM is the file creation and editing program for TUTOR. In

using CRAM, you need to provide only one Filename--the name

of the file you are going to edit or the name you wish a new file

to have. There are six major steps to editing a TUTOR file:

1. You: From system control mode, type CRAM and press RETURN.

Computer: What is the source file ?

You: Enter the name of the file you wish to edit or create.

2. Computer: Leave line limit at 72 characters ?

You: If you want 72, enter 'Y"' or just press RETURN; or if

you want some other number, enter ''N", after which

the computer will ask: What length? And you must

enter the line limit that you want.

3. Computer: The file is being indexed

Computer: *** Records will be searched

Computer: O01.... ***

Computer:

Computer: Check for invalid lines:

You: If "Y' is entered (an unpredictable number of entries

will be printed here). Computer: End of list.

You: If "N'' is entered. Computer: File is ready. Last

line iS xxx.

Computer: Edit code?

Explanation: The program is locating each line so it can find

one quickly when asked to find a particular line.

Then each line is examined for validity of length

and TUTOR operation code. Each invalid line

found is indicated by the printing of its number

and a brief reason for its invalidity. Finally

you are told how many lines are in the file.

4. All editing functions may now be used. See list Section 9. 8.

Do. You: x

Computer: File is being saved--

Computer: O01... **

Computer:

Computer: #

Copyright (C) 1974

Educational Data Systems 9-10.

Explanation: Temporary files were deleted.

9.8 CRAM Editing Functions

P-- Print the line specified (the line number is represented

here by dashes). The line number will be repeated for

clarity. Additional lines can be printed by pressing the

RETURN key in response to the question 'More?' which

is printed after each line.

.C-- Change the contents of the line specified. The line is

repeated and you must confirm that it is the correct line

to change, then you will be asked to enter the replace-

ment line. After one line is changed you will be returned

to the edit code selection point.

[-- Insert a line with the specified line number. The pre-

ceeding line will be printed for reference of location. You

will be asked if the line should go after the displayed line.

If you say ''N"'. you will be returned to the code selection

point and no changes will be made. If you say "Y", you

will be asked if you want more inserted. If you answer

''y'' the number for the next line will print and you must

make another entry. If you answer 'N", you will be returned

to the code selection point.

D-- Delete the specified line. The line will be printed for your

inspection and you will be asked to confirm that it is the

proper line. If you say ''N", you will be returned to the

code selection point. If you say 'Y", the line will be deleted.

If you say ''Y'', the delete cycle will start over, otherwise

you will be returned to the code selection point. Deletions

near the beginning of a long file may take 5 or 10 seconds to

complete.

E-- Examine all lines related to the first question or text block

following the line number given. The number of the line

starting that group of lines will be printed, then all the rest

of the lines will be printed as a group, showing actual

Spacing as it is arranged. The last line number of the group

will be printed unless the last line in the group is also the

last line in the file.

Copyright (C) 1974

Educational Data Systems 9-11

S-- Scan all lines for validity or for a specific TUTOR code.

You will be asked if you want a validity check. If you

say 'Y", aprint out as in step 3 in editing will be made.

If you say ''N", you will be asked which TUTOR coae you

want. After you answer, the scan will start. You will be

asked if you only want to see line number where code

occurs or see the entire line. At each code display you

may go back to editing if you desire by answering ''N" to

the question whether or not to see more. At the end you

will be asked if you want another scan. If you answer

"N'', you will be returned to the code selection point. If

you answer “'Y", the cycle will start over.

L-- Print the length of the specified line (how many characters

are in the line and how many are allowed).

X-- Exit. Means you are finished and want your modified or

created file saved in its present state. This exit may take

several minutes for long files. You can now go to another

port to try out the program if you desire and then can come

back to make any changes observed without having to re-index.

IMPORTANT: The file is not changed or saved until you

exit from the program!!!

KILL Means you wish to exit from CRAM removing temporary

files that were used in the editing process. Make sure you

have not made any editing changes since executing the last

X command.

9.9 Comments on CRAM

You must tell CRAM when you are finished with each entry by pressing

the RETURN key once.

Changing a line takes less time than deleting the old line and then

inserting the new line.

Since deletions and insertions near the beginning of long files take a

significant number of seconds, reviews of the file should be done every

50 lines or so as it is being created so that most corrections will be

near the end.

Copyright (C) 1974

Educational Data Systems — 9-12

If you make a mistake, you may ''backspace", deleting characters

one at a time starting at the last one entered and working back

using the CTRL key simultaneously with the H key for a backspace

if your terminal does not have a backspace key.

The TUTOR code for each line must be valid. If it is not, the

program will not accept the line, and it will be necessary to

re-enter the line.

If ESCAPE is accidently pressed, type 100 RUN and press the

RETURN key. If CTRL C is accidently pressed. or if an error

occurs such as disc filled, type RUN and press the RETURN key.

Copyright (C) 1974

Educational Data Systems 9-13

10. HOW TO USE FORTRAN-TO-BASIC (F2B)

The F2B Translator is a BASIC program which translates from

FORTRAN to BASIC. Its purpose is to extend to the user, particu-

larly to students of FORTRAN, a FORTRAN capability from a

BASIC language system.

To use F2B, one writes a FORTRAN program according to the

FORTRAN specifications given in the appendix to this section. The

FORTRAN program is loaded into a data file and then translated.

The translator makes several passes to complete the translation of

the source program into BASIC. In addition to the source file,

three other data files are used to store intermediate results. Thus,

four data files are required, and these must be formatted by the

user prior to translation.

In summary, the steps required to perform a translation are as

follows:

1. Format four data files for the source program and inter-

mediate data. |

2. Identify the Filenames of the four data files to the F2B

translator.

3. Load the source (FORTRAN) program.

4. Edit the program if necessary.

5. Translate the program. The translator will produce a

punched tape of the object (BASIC) program.

6. Load the object program and run it in BASIC.

Copyright (C) 1974

Educational Data Systems 10-1

10.

10.

1

2

Following is a detailed account of these steps.

FORMATTING THE FOUR DATA FILES

Format four data files for storage of source and intermediate data as

follows, pressing RETURN after each line typed:

#FORMAT ROOTNAME!1
ITEM #0: $75

ITEM #1:

#FORMAT ROOTNAME2

ITEM #0: S75

ITEM #1:

#FORMAT ROOTNAMES3

ITEM #0: 3F

ITEM #3:

#FORMAT ROOTNAME4

ITEM #0: S255

ITEM #1:

In the procedure, the four FILENAMES in the FORMAT commands

consist of a ROOTNAME which is private to the user, followed by the

digits 1,2,3, and 4. For instance, the user might use NED1, NED2,

NED3 and NED4. Later, when the FORTRAN program is to be loaded,

the translator will ask for the Data File ROOTNAME. In the present

example, the user would type: NED.

LOADING THE FORTRAN PROGRAM

The translator consists of an editor, F2Bl, and six additional programs:

F2B2 through F2B7, which constitute the translator proper. F2B1 is

used to load and make any necessary modifications to the FORTRAN pro-

gram. When this has been done, the translation may be initiated. At

any point the user may re-enter the editor to make additional changes to

the FORTRAN program.

The steps to load a program are:

1. Press CTRL C; type RUN F2B1; press RETURN.

2. F2B will print: NUMBER OF STATEMENTS.

If the program has not yet been entered, type 0. Otherwise, type the

number of statements previously entered.

3. F2B will then ask for the ROOTNAME of the Data Files. Enter it

and press RETURN.

Copyright (C) 1974

Educational Data Systems 10-2

4, F2B will print ENTER YOUR PROGRAM followed by a question

mark. Enter your FORTRAN program by means of the paper

tape reader or the keyboard. Terminate each line with a RETURN.

The last line must be a null line; i.e., simply press RETURN.

10.3. EDITING THE FORTRAN PROGRAM

Once the program has been loaded, F2B will print: EDIT COMMAND ?

The user may now modify, list or run the program by entering any of

the following editing commands:

ADD n

DELETE n

CHANGE n

LIST

RUN

TAPE

Where n is a line number of a FORTRAN statement. The line numbers,

which are assigned when the program is loaded, are printed when the

program is listed. They are not part of the FORTRAN language and

should not be confused with FORTRAN labels. Their only function is to

facilitate editing.

1. ADD n

This statement is used to add a line just before line n. After this

command has been entered (All editing commands are terminated

with RETURN) F2B will print a question mark. Type in the state-

ment to be added, followed by RETURN. The statement will be

assigned line number n, and all line numbers above will be incre-

mented by one.

2. DELETE n

This command deletes line n and closes the gap by decrementing

all line numbers above n.

3. CHANGE n

After entering the command, respond to the question mark printed

by entering the new line, which will replace the present line n.

4. LIST

This command causes the program to be listed in line number

order with each line preceded by its line number.

Copyright (C) 1974

Educational Data Systems 10-3

o. TAPE

This command causes the source program to be listed without

line numbers. Type TAPE, press RETURN, then immediate:

turn on the punch. The program will be listed, followed bya

pause to permit the punch to be turned off.

6. RUN

After performing each editing command the editor will print:

EDIT COMMAND ? and wait for the next editing command to be

entered. When the editing is completed and the program is

ready to be translated, type RUN, turn on the punch, and press

RETURN. The translator will run, producing a punched tape

and listing of the object program in BASIC.

10.4 RUNNING THE TRANSLATED PROGRAM

When the translator types READY, enter the translated program on

tape through the reader. (IMPORTANT: Do not type NEW or any

other command that would destroy the active file). To run the pro-

gram, type RUN. To runa program ata later time, load F2B7 (by

typing CTRL C F2B7 RETURN); then load the object program as

described above.

If running the BASIC program indicates that further editing is required,

return to step 10.2.1 above. When the program has been completely

debugged and no further editing is required, the four data files should

be killed so that they will not occupy space on the disc. This is

accomplished as follows:

Press: CTRL C

Type: KILL ROOTNAME1, ROOTNAME2,

ROOTNAME3, ROOTNAME4

Press: RETURN

10.5 ERRORS

Errors in the FORTRAN program may be detected by the translator,

or they may be detected by the BASIC interpreter which interprets the

translator. In the latter case, typical BASIC error messages will be

printed. If either type of error is detected, check your FORTRAN

program to make sure it conforms to the FORTRAN specifications in

the appendix.

If you still have trouble, ask your lab assistant for help. If the errors

persist, send a listing of the FORTRAN program and a brief descrip-

tion of the problem to Educational Data Systems.

Copyright (C) 1974 |

Educational Data Systems 10-4

APPENDIX TO SECTION 10

FORTRAN TO BASIC

FORTRAN SPECIFICATIONS

1. Program form

1.1 The characters used are -

ABCDEFGHIJKLMNOPQ

RSTUVWXYZ 01234567

-+-%*/(),. anda blank.

1.2 A line is a string of 72 characters in the following format:

Column (s) Purpose

1-5 label

6 ignored

7-72 statement

1.2.1 LABEL - Any integer from 1 to 99999 inclusive. No label

may be repeated within an executable program

(a main program and zero or more subprograms).

1.2.2 STATEMENT - Statement formats are given in Section 4,

below.

1.2.3 The one exception to the above line format is:

The COMMENT statement which has a C in column

one and any characters in columns two through

seventy-two.

1.3 Every program and subprogram must end with an END

statement.

2. Data Types (Variables)

2.1 VARIABLE NAMES - A variable name consists of one to five

alphanumeric characters, the first of which must be

alphabetic. Variable names must not begin with a

statement name; e.g., GOTOX is illegal.

Copyright (C) 1974

Educational Data Systems 10-5

2.2 VARIABLE TYPES - There are two types of variables:

Integer and Real. The variable type is deter-

mined by the first character of the name or by

the INTEGER or REAL statements.

2.2.1 INTEGER VARIABLES - If the variable name starts with

one of the letters [I through N and is not declared

by an REAL statement or if it is declared by an

INTEGER statement, itis of the integer type and

may assume only integer values (positive, nega-

tive, or zero).

2.2.2 REAL VARIABLES - If the variable name starts with any

letter other than I through N and is not declared

by an INTEGER statement or if it is declared by

a REAL statement, itis of the reat type and

may assume any real value.

2.3 ARRAYS - An array variable is of the integer or real type,

followed by one or two subscripts in parentheses.

2.3.1 SUBSCRIPT EXPRESSIONS - The subscript may be any

Integer expression which does not contain func-

tions or subscripted variables.

2.4 FUNCTIONS - Function references are of the form

F(a, »Ao,+++-a,)

where f is the symbolic name (one to five alpha-

numeric characters, the first of which must be

alphabetic), and the a's, called actual arguments,

may be an expression of the same type as the

corresponding dummy argument (See paragraph

2.4.1).

Functions are of three types: statement functions,

intrinsic functions, and external functions. All

functions are referenced by using the function ref-

erence in an arithmetic expression. In the case of

user defined functions (i.e., statement or external

functions), the actual apguments may not refer

directly or indirectly to a user defined function.

Copyright (C) 1974

Educational Data Systems | 10-6

2.4.1 STATEMENT FUNCTIONS - A statement function is defined

internally to the program unit in which it is refer-

enced. It is defined by a single statement of the form:

fa, sage a) =e

where f is the function name, e is an arithmetic ex-

pression, and the a's, called dummy arguments, are

variable names (no arrays). Aside from the dummy

arguments, the expression e may contain constants,

variables, and references to intrinsic functions, ex-

ternal functions, and previously defined statement

functions.

When a statement function is referenced, the actual

arguments from the function reference replace the

dummy arguments in the expression, e; the expres-

gion is evaluated; and the value of the function, f, is

returned to the calling reference.

2.4.2 INTRINSIC FUNCTIONS - The symbolic names of the intrinsic

functions (See Table 1) are predefined to the F2B pro-

gram and have special meaning and type as specified

in Table 1.

An intrinsic function is referenced by using it in an

arithmetic expression. Execution of an intrinsic func-

tion reference results in the actions specified in Table

1 based on the actual arguments from the function

reference. The resultant value is then made available

to the expression that contained the function reference.

Intrinsic Functions

Table 1

Name Type Definition

EXP(x)* Real Exponential function (e *)

ALOG(x) Real Natural logarithm of x

SQRT (x) Real Square root of x

ABS (x) Real Absolute value of x

[ABS (x) Integer Absolute value of x

SIGN (x) Real Sign of x(-1,0,1 for neg, zero, pos. numbers)

ISIGN (x) Integer Sign of x(-1,0,1 for neg, zero, pos. numbers)

SIN (x) Real Sine (x), x in radians

COS(x) Real Cosine (x), x in radians

TAN (x) Real Tangent (x), x in radians

ATAN (x) Real _Arctangent (x) in radians

* x may be any expression, corresponding in type to the type of the function.

Copyright (C) 1974

Educational Data Systems 10-7

9.4.3 EXTERNAL FUNCTIONS - An external function is defined
externally to the program unit that references it.

It is defined by a function subprogram headed by a

FUNCTION statement. See Section 5.

3. EXPRESSIONS

3.1 OPERATORS - The arithmetic operators are:

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

1K Exponentiation

3.2 Expressions are built up from numbers, variables, functions,

arithmetic operators, and parentheses according to

the usual rules of algebra.

3.2.1 Every constant and variable in an expression must be of the

same type, integer or real. |

3.2.2 Integer values are achieved in the BASIC (object) program by

applying the INT function to the result of each opera-

tion in the expression being evaluated.

4. STATEMENTS

4.1 ASSIGNMENT STATEMENT - The assignment statement is of

the form:

v=ae

where v is a variable and e is an arithmetic expression.

Execution of this statement assigns the value of the ex-

pression to the variable, v.

4.1.1 The expression is evaluated according to type and is then con-

verted to the type at the variable to the left of the equals

sign.

Copyright (C) 1974

Educational Data Systems 10-8

4.2 GOTO STATEMENTS

4.2.1 UNCONDITIONAL GOTO - The unconditional GOTO state-
ment is of the form:

GOTO k

where kis a statement label. Execution causes the

statement labeled k to be executed next.

4.2.2 COMPUTED GOTO - The computed GOTO is of the form:

GOTO(k, , ko, oe Kk)n

where the k's are statement labels, and i is an inte-

ger where l14néi. Execution causes the statement

named by the nth label listed to be executed. n

must be an integer variable.

4.3 IF STATEMENT - The IF statement is of the form:

IF(e) k,, ky, ky

where e is an integer or real expression and the k's

are statement lables. Execution causes the evaluation

of e followed by branching to kj, kg, kg if the value

of e is less than, equal to, greater than 0, respectively.

4.4 CALL STATEMENT - A CALL statement is of the form:

Copyright (C) 1974

CALL s(aj, a9,, a

OR

n?

CALL s

where s is the subroutine name (one to five alphanum-

eric characters, the first of which must be alphabetic),

and the a's are actual arguments. An actual argument

in a subroutine reference may be a constant, a variable

Or an array element name. The actual arguments must

correspond in order, number, and type with the corres-

ponding dummy arguments in the defining program.

9

Educational Data Systems _ | 10-9

Execution of the CALL statement passes the actual

arguments and transfers control to the referenced

subroutine. When the subroutine is complete, con-

trol is returned to the statement following the CALL

statement, and the a's assume the final values

determined by the subroutine.

4.95 RETURN - A RETURN statement is of the form:

RETURN

Every subprogram (subroutine or function subpro-

gram) must include a RETURN statement. When

this statement is reached, control returns to the

calling program.

4.6 STOP - the STOP statement is of the form:

STOP

Execution of the statement causes execution of the

program to stop.

4.7 DO STATEMENT - The DO statement is of the form:

DO k i=m,, TMMy5, mz

OR

DO k i=-m,, Mp,

where k.is the termination point (a label), and the m's

are parameters.

4.7.1 TERMINATION POINT - The label k marks the end of the DO

loop. The labeled statement must follow the DO state-

ment and cannot be of the following types: IF, STOP,

DO or either form of GOTO.

4.7.2 CONTROL VARIABLE - Any integer variable name.

Copyright (C) 1974

Educational Data Systems 10-10

4.7.3 PARAMETERS - The processor assigns the value of my,

to the control variable when it initially comes to the

DO statement. Upon reaching the terminating state-

ment, it increments the control variable by m3 (by

one if mg is absent) and then runs through the same

statements again, incrementing the control variable

each time through the loop until the control variable

is greater than my . The processor then continues

with the statement after the termination statement.

The parameters must be integer variables or con-

stants.

4.7.4 NESTED DO LOOPS - DO loops may not overlap. They may
be completely separate, or one may be completely

enclosed (nested) within another.

4.8 CONTINUE - Is used to mark the end of a DO loop; however,

it is not required.

4.9 READ STATEMENT - The READ statement is of the form:

READ (u, f) Kk,» Ko... kK,

where u is ignored, fis the FORMAT label, and the

k's specify variables.

4.9.1 FORMAT LABEL - Identifies the label of the statement which

contains FORMAT specifications for this statement.

4.9.2 VARIABLES - The variables may be given in two ways: by

naming the variables or by a DO-implied loop, which

is of the form:

(v(i), i = mM, > Mo. m,)

OR

((v(i, j), i =m), Mp, Me), j=n,, No» Ng)

where i and j are subscripts as defined for the DO loop:

DO ki=m,, m9, m3, in Section 4.7 above. Execu-
tion of this part of the READ statement results in

reading in certain values of v as specified by the DO

implied loops. When two loops are used, i is incre-

mented until it reaches its termination point, at which

time the j loop is incremented and i starts over again,

etc. This goes on until j has reached its termination

point. Then the next statement is performed.

Copyright (C) 1974

Educational Data Systems 10-11

4.10 WRITE STATEMENT - The WRITE statement is of the form:

WRITE (u, f) kK, , Ky, 1 eK,

OR

WRITE (u, f)

where u,f, and the k's are defined as in 4.9, except

that the variables are printed out, instead of being

read in. Where there is no list of variables, only

text is printed out, as defined by the FORMAT state-

ment.

4.11 DIMENSION STATEMENT - The DIMENSION statement is of

the form:

DIMENSION Vy (i 1): V5 (ig)peeey v fi n)

where v(i) is an array declarator, v being the array

name and i an integer constant.

4.11.1 ARRAY DECLARATOR - The array declarator sets aside, in

memory, space for a variable v with dimensions i. i

may be an integer between 1 and 999 (dimension one)

or a pair of integers whose product is between 1 and

999 (dimension 2).

4.12 COMMON STATEMENT - A COMMON statement is of the form:

Copyright (C) 1974

aCOMMON a_,4a.,...,
1 2 n

where each ais a variable or array name. In any given

COMMON statement, the entities occurring in the list

of variable names are declared to be in common. All

subunits (main program and subprograms) within an ex-

ecutable program store their common variables and

arrays in the same area, thus providing a means by

which the subunits can communicate with each other.

Variables and arrays from a given subunit, which are

declared to be in common, are stored in the sequence in

which they are declared, starting at the beginning of

common. Elements of an array are sequenced accord-

ing to the SUCCESSOR FUNCTION (See paragraph 4.12.1).

Educational Data Systems 10-12

4.12.1 SUCCESSOR FUNCTION - Array elements are stored sequen-

tially in memory; the position of each element in the

sequence is determined by the SUCCESSOR FUNCTION:

Subscript . SUCCESSOR FUNCTION

Dimensionality Declarator Subscript (Position in Sequence)

1 (A) (a) a

2 (A, B) (a, b) a+A- (b-1)

4.13 EQUIVALENCE STATEMENT - The EQUIVALENCE statement

is of the form:

EQUIVALENCE (k 1)» (ko)reeee (k,)

where each k is a list of the form:

gr rtte a

where a,is a variable name or the name of a single ele-

ment in an array. Array names are given a single sub-

script whose value is an integer (the value of the

SUCCESSOR FUNCTION - See paragraph 4.12.1). The

EQUIVALENCE statement permits the sharing of space

by two or more variables. Where arrays are equiva-

lenced, they are stored in the same space in such a way

that the elements named in one EQUIVALENCE statement

variable list (a,, a,,....,a.) are stored in the same

location, and other elements of the arrays are lined up

accordingly.

4.13.1 COMMON, EQUIVALENCE RELATIONSHIP - After an element

is placed in common, it cannot be equivalenced.

4.14 FORMAT STATEMENT - The FORMAT statement is of the form:

FORMAT (a, t, Z,toZ..t Zag)

where (a, t, 2, to Zo --- t, 2n 29) is the format specifica-

tion, and:

1) tis a field descriptor
2) zis a field separator

3) ais a series of slashes or is empty.

Copyright (C) 1974

Educational Data Systems 10-13

4,14,1 FIELD DESCRIPTORS - Fiéld Descriptors are of the form:

rFw.d

rl w

nHh,; hghg ...h

nxX
n

where:

1) ris the repeat count

2) wandn are the field widths

3) dis the number of places to the right of the decimal.

4) F, I, H, and X, called specifications, indicate the

type of input/output required.

4.14.2 I or F SPECIFICATIONS - In the READ statement, a check is

made to determine if there is a corresponding element

in the Input list. If there is, w characters, including

decimal point (if F-specification) and sign (if no sign,

positive is implied) with d places to the right of the

decimal place (if F-specification) is read in and assigned

to the corresponding element. In the WRITE statement,

if there is a corresponding element in the Output list, it

is written out in similar fashion.

4.14.3 X-SPECIFICATIONS - In READ, the next n characters are

ignored; in WRITE, n spaces are printed.

' 4,14,4 H-SPECIFICATIONS - In READ, n characters are read directly

into the FORMAT statement, in place of the next n char-

acters after the H. In WRITE, the next n characters

after the H are printed. The processor starts at the n+l

character after the H when analyzing the rest of the

FORMAT. |

4.14.5 / (SLASH) - This signals the start of anew record. A new line

is started with WRITE and a new input is started with

READ. |

4,14.6 There is a second way of repeating the specifications which is

Copyright (C) 1974

of the form:

m(a ;t; Z4 .eeety Zap)

where the field discriptors and field separators in the

parentheses are repeated m times.

Educational Data Systems 10-14

D. SUBPROGRAMS

An executable program consists of a main program and zero or more

subprograms. The subprograms can be of two types: subroutines
and function subprograms.

The main program or any subroutine may transfer control to a sub-

routine (other than itself) by means of a CALL statement. The CALL

statement may also pass parameters to the subroutine. When the

subroutine is complete, it returns control to the calling routine bya

RETURN statement. Parameter values may also be returned to the

calling routine.

A program unit (main program or subprogram) calls a function sub-

program by using the name of the function in an expression. This

transfers control to the function subprogram and passes the actual

arguments of the function as parameter values. The function sub-

program evaluates the function and returns the value of the function.

5.1 SUBROUTINE - The first statement of a subroutine must be

a SUBROUTINE statement. It has the form:

SUBROUTINE s(a, » Ag, ++ A,)

OR

SUBROUTINE s5

where s is the symbolic name of the subroutine (one :

to five alphanumeric characters, the first of which

must be alphabetic) to be defined, and the a's, called

dummy arguments, are variable names (no arrays).

The subroutine name may not be used except in CALL

and SUBROUTINE statements. After completion of

the subroutine, the parameters that were passed to the

subroutine are passed back, with new values if the

variables were affected by the subroutine. A subrou-

tine may not call itself.

Copyright (C) 1974

Educational Data Systems 10-15

9.2 FUNCTION subprogram. The first stateme.' “fa

FUNCTION subprogram must be a FUNCTION

statement. It has the form:

FUNCTION f(a.,a_,...,a)
| 1 2 n

where F (one to five alphanumeric characters, the

first of which must be alphabetic) is the symbolic

name of the function to be defined, and the a's,

called dummy arguments, are variable names (no

arrays). The value of f at the time of execution of

the RETURN statement is passed to the calling rou-

tine. A function subprogram may not call itself.

Copyright (C) 1974

Educational Data Systems — 10-16

11. HOW TO USE GPM

GPM is an acronym for General Purpose Macrogenerator, a symbol

string processor conceived by C. Strachey at Massachusetts Institute

of Technology. Educational Data Systems' implementation of GPM is

based on the original article on GPM which appeared in Computer

Journal (published in England) in October, 1965, except that the BIN,

DEC, and BAR primitives have been omitted, and two Read string

primitives have been added. Also, the name of the UPDATE primi-

tive has been changed to the more definitive REDEF, and some active

symbols have been changed to use only standard ASCII characters.

11.1 Introduction to GPM

A macrogenerator is often included as part of a machine language

assembler, and the result is known as a macro-assembler. The

purpose of the macrogenerator is to allow the use of macro-instruc-

tions which it replaces with an appropriate sequence of machine

instructions after substituting the actual parameters provided in the

macro call for the formal parameters in the macro's definition. GPM

can, in fact, be used in sucha manner. However, since GPM is not

directly associated with an assembler, the macros may be defined to

produce assembly language code for any computer, and the resulting

output from GPM can then be assembled on that computer's assembler

to produce machine code. GPM can also be used for other purposes

such as translating from one assembly language to another (for a

similar computer), typing form letters with names and addresses

filled in, and other tasks of a similar nature.

GPM is a symbol stream processor which takes as its input a stream

of characters and produces as its output another stream of characters.

The output is produced from the input stream by direct copying except

in the case of ''macro-calls" in the input stream, which are "evaluated"

as described below before they are put into the output stream.

11, 2 Macro Calls

A macro-call consists of a macro name and a list of actual parameters,

separated by commas and enclosed in brackets, e.g.,

{ DEF, RQ, B9A+]

In this example, DEF is the name of a macro which uses two para-

meters. RQ and B9A+ are the actual parameters supplied in this call.

An error will occur if not enough parameters are supplied, but extra

parameters not required by the macro will be ignored. The parameters

are numbered one through nine, thus allowing a maximum of nine para-

meters ina macro call. The name of the macro may be referred to

.aS parameter number zero in the call.

Copyright (C) 1974

Educational Data Systems 11-1

The result of a macro call is a: value which replaces the macro call

itself in the symbol stream. This value may itself contain macro

calls. In some cases the macro call has a null value; i.e., it gen-

erates nothing in the output symbol stream. The DEF primitive

(see 11.5.1) is one example of such a macro; however, it has the

side effect of creating a new macro.

11.3 Evaluation

Before a macro call can be evaluated, the macro must have been

defined by associating its name with a symbol string. This string

may contain the formal parameter symbols #1, #2, etc., which

will be replaced by the first, second, etc., actual parameters

supplied by the call. The symbol #0 stands for the name of the

macro itself. When the macro is evaluated, each of these symbols

is replaced by a direct copy of the respective parameter supplied

by the call. Thus, if the macro name ARB has been associated with

the string RB#1C#2VV, then the macro call

(ARB, 3X, $14.]

will produce the string RB3XC$14. VV as the output string, or

'value'' of the macro call.

The system is completely general, and it is possible to use a macro

call in place of or in conjunction with any symbol string. In partic-

ular, macro calls may be nested; i.e., macro calls are allowed in

the actual parameters of other macro calls (including the name) and

also in the defining string. To illustrate this point, suppose we have

defined the following macros:

name associated string

A A#1A

B B [A, X#1x]B
APA P#1#1P

we would then get the following results:

macro call result of evaluation

(A,c] ACA

[A, ACA] AACAA

(A,[A,CcII AACAA

[A , XDX J AXDXA

CB,DI BAXDXAB

[A,P]J APA

fAPA, Y J PYYP

CfA, Pl], YI PYYP

Copyright (C) 1974

Educational Data Systems 11-2

11.4 String Quotes

The "less than'' and ''greater than’ symbols are used as string quotes
for two reasons: it is necessary to be able to differentiate between

opening and closing quotes, and the standard quotation marks are more

often used in text than the < and > symbols. Enclosing any string in

the string quotes prevents evaluation of any macro calls inside the

quotes; instead, one set (the outside pair) of string quotes is removed.

The following examples use the macros defined above:

input string output string

Q<CA, CJ>R QLA, CJR

(A,<CLA, XJ>J ALA, XJA

[B,<CA, XJ>J BAX LA, X] XAB

Q<[>R<]> QLERIJ
@<<[A, C]}>?R Q<LA, C]>R

The use of string quotes makes it possible to include any symbol in

the input stream except an unmatched opening or closing string quote.

11.5 Primitive Macros

A primitive macro is any macro already defined as a part of GPM.

The primitive macros are: DEF, REDEF, VAL, RD, and RS, The

only difference between a primitive macro and a user-defined macro

is that the primitives cannot be deleted or redefined by the user.

Use of the primitive macros will be explained in the following para-

graphs.

11.5.1 Defining a Macro

A macro is defined by use of the primitive macro DEF which requires
two parameters. The first parameter becomes the name of the new

macro, and the second parameter becomes the associated symbol string

or ''value'' of the new macro. For example, the macros A, B, and APA

used above would be defined by the following macro calls:

(DEF, A,<A#1A7J]

[DEF, B,<B(A, X#1x]B>]
(DEF, APA, < P#1#1P>]

Copyright (C) 1974

Educational Data Systems 11-3

11.5.2 Redefining a Macro

A macro may be redefined by use of the REDEF primitive. Use of

REDEF is identical to DEF, with the following restrictions:

1) The macro must have been previously defined, and

2) The new definition must not have more characters than the

original definition.

For example, considering the above definitions, the following redef-

inition would be legal:

[REDEF, A, <BC#3>]

but the following would be illegal:

[REDEF, A, < BC#3D>]

11.5.3 The Value of a Macro

A macro's definition may be obtained without evaluating the macro by

use of the VAL primitive. For example, considering the definition

of macro B above:

[VAL, BJ

would produce the output string:

BLA, X#1X] B

11.5.4 String Input

In some cases it is desirable to accept input from the keyboard or

tape reader to be used as a parameter in a macro call rather than

to be a complete macro call. The RD and RS primitives have been

added by Educational Data Systems to facilitate this requirement.

The form of the "read" macro call is:

[RD, n, t |

where nis a number representing the maximum number of charac-

ters to be accepted as input, and tis the input terminating character.

A typical call for input might be:

(RD,8,.]

Copyright (C) 1974

Educational Data Systems 11-4

This call will accept eight characters as input unless a period is

encountered first. The character string accepted as input becomes

the value of the macro call, and this value goes into the output

symbol string. The terminating character is not taken as part of

the input. The input string is not scanned as it is entered; there-

fore, active characters may be entered as part of the string.

The RS primitive is similar to RD except that the input string is

scanned. Any macro calls contained in the input string will be

evaluated as the string is entered. Active characters such as

commas or # symobls will cause an error if not contained in a

macro call.

11.6 Errors

When an error is detected in the input stream it is indicated by a

typeout such as:

ERROR #x

where x is a letter indicating the type of error as follows:

Unmatched end of macro call (right bracket)

Unquoted # symbol (outside of <> quotes)
Illegal character or value as an argument number

Not enough arguments supplied in call

Terminator in tmpossible place, probably missing

right bracket

Stack overflow (symbol stream too long)
Macro not defined

Unmatched closing string quote

REDEF argument longer than original definition

Not used

Miscellaneous error other than those listed above

HOO eS

Awe od 4
After an error, all macro definitions that were completed before the
error was detected will still be in effect. However, any partially
scanned call will be lost.

Copyright (C) 1974

Educational Data Systems 11-5

11.7 Local Definitions

A macro that is defined within another macro call is a temporary

or "local'' definition, and it will exist only until the macro con-

taining its definition has been fully evaluated. A local definition

is useful for evaluations of the form:

fC...) wheref(x)=....

An elegant example of its use is the successor function defined by

(DEF, SF<L1, 2,3, 4, 5,6,7, 8,9,10,L DEF, 1<#> #1JJ>J

The effect of a call such as [SF, 3] is to make a temporary defi-

nition of a macro whose name is 1 and whose value string is #3,

and then immediately to call it with arguments 2,3,...10. The

third argument, 4, is the result and in fact [SF, nJ = ntl for

n=0,1,...,9 so that SF produces the successor of any digit.

The temporary macro has the name 1 so that (SF, 0] will give

the correct result. The definition

(DEF, SF2,<[#2, [DEF, #2,41<, [sF,> #2<}][per, 9,4sF,> #1<], o> J]>1

uses the SF macro to give the successor toa two digit number. Thus,

[SF2,a,b,] first defines b as the string a,(SF,b] and defines 9 as

the string [SF,a],0 then evaluates [b] . If b #9 the result is a, b+1

but if b = 9 the result is atl, 0.

11.8 Programming Examples

A simple example which demonstrates the use of formal parameters is

[DEF, GO,< THE #1 WENT INTO THE #2.>]

followed by calls such as

(GO, DOG, HOUSE]

[GO, CAR, DITCH]

[GO, MAN AND HIS SON, HARDWARE STORE]

RETURNS, LINE FEEDS, spaces, etc. may be included in a definition

at any point to make the print out more readable.

Copyright (C) 1974 |

Educational Data Systems 11-6

A "program can be implemented in GPM by defining a primary

macro which calls other (secondary) macros and simplifies their

use by itself providing some of the input stream for the second-

ary macros. For example:

[DEF, SUCCESSOR,<(SF2,[RD, 1, /],[RD, 1, /TISUCCESSOR] >]

defines a SUCCESSOR macro which, when called by

(SUCCESSOR]

will allow type in of a two digit number, will call the SF2 macro and

provide the comma separator required between the two digits, thus

causing the successor of the number entered to be printed. SUCCESSOR

then calls itself to allow another number to be entered. Note the space

in the definition just before SUCCESSOR calls itself. Since this space

is part of the definition, it will be printed after SF2 is called, thus

separating the typeouts for easier reading.

11.9 Using GPM

GPM is a stand-alone program which, therefore, may be used only

under control of EXECUTE (see "How to EXECUTE a Program’ in

this manual) or in stand-alone mode (see ''How to Use System in Stand -

Alone Mode" in the IRIS Manager's Reference Manual).

GPM's initial starting address is location 2, and it may be restarted

at this location at any time to clear all definitions and completely

initialize the stack. GPM may also be restarted at location 3 which

will initialize operation and clear any partial calls or evaluations but

will leave completed definitions intact.

The ESC key will cause a carriage return without entering any char-

acters into the input symbol stream. Also, CTRL A may be used to

abort a partially entered macro callin case of a typing error. A

single character backspace is not available since all input characters

are immediately scanned and the result is put into the output stream.

Use of CTRL A is identical to restarting at location 3.

Copyright (C) 1974

Educational Data Systems 11-7

In summary the active keys are:

L Begin macro call

J End macro call

< Begin string quote

? End string quote

Argument separator

Parameter number

ESC Carriage return

CTRL A_ Delete incomplete call

The RUBOUT and NULL characters are ignored. Any other char-

acter may be used as part of a string.

Copyright (C) 1974

Educational Data Systems 11 \ CoO

on omaonnPt W NHN Fe

COW WW WW WW WwW WwW DD DD PO MW KD HD WD ND FH FH B&B FB eB eB eS ee CONDO BRWNrF OWANMDOPWNHRrFODOAARDUTUKHPWBNH ODO ¢—
Note:

APPENDIX 1: BASIC Error Numbers

Syntax error

Illegal string operation

Storage overflow

Format error

Illegal character

No such line number

Renumber aborted by ESC, program was lost

Too many variable names (limit is 93)

Unrecognizable word

Line number "RUN" is illegal before an initial RUN

Incorrect parentheses closure

Program is list /copy protected

Number too large (9. 9999999999999E+62 is maximum)

Out of data |

Arithmetic overflow (see note)

GOSUBs nested too deep

RETURN without GOSUB

FOR - NEXT loops nested too deep

FOR without matching NEXT

NEXT without matching FOR

Expression too complex (too much function nesting)

Not your file, can't replace

Array size exceeds initial dimensions

Only one dimension allowed for a string

String not dimensioned

Syntax error in user-defined function

Subscript, channel number, or signal parameter out of range

Illegal function usage

User function not defined

User functions nested too deep

Matrices have different dimensions

Argument is not a matrix

Dimensions are not compatible

Matrix is not ''square'

CALLed subroutine not in storage

Expression in argument for CALL

Error detected by CALLed subroutine

Formatted output exceeded buffer size

Arithmetic overflow includes division by zero, square root of a nega-

tive value, log of zero or a negative value, storing a value greater

than *7999 in an integer variable, etc.

Copyright (C) 1974

Educational Data Systems: Al1-1

we ote

ete ——_

APPENDIX 1: BASIC Error Numbers (continued)

40 Channel already open

41 Bad Filename

42 No such file

43 File being deleted, replaced, or built

44 Not a data file, can't be opened or replaced

45 File is read protected

46 File is write protected

47 Disc is full, can't build a file or add records

48 User's disc block allotment used up

49 Channel not open

90 File not formatted

ol Illegal record number

O2 Record not written

O3 Illegal item number

a4 Item types don't match

99 Statement is illegal from keyboard

96 Can't dump an empty program

o7 Strings cannot be redimensioned

58 Error in format string

og RUNMAT processor not in system

60 Too many numbers entered for INPUT

61 Matrices have different number types

62 Signal buffer is full

63 Commands are illegal in LOAD mode

64 Line number missing in LOAD mode

98 Illegal entry for INPUT These errors can occur only

99 User pressed ESC or CTRL C | } if error branching is in effect.

Copyright (C) 1974

Educational Data Systems Al1-2

APPENDIX 2 : GLOSSARY

IRIS - Interactive Real-time Information System. This is the name of
the system as a whole, including TEX, the accounting and security

system, andthe system command processors.

REX - Time-sharing EXecutive. TEX consists primarily of software which

resides in approximately the first 4000 core locations. Page zero

contains system flags and counters, many widely used constants,

and pointers to subroutines in TEX that may be used by processors.

The INDEX, DISCSUBS, and ACCOUNTS files, which may be consi-

dered as parts of TEX, reside on the disc. |

PROCESSOR - A machine language routine which operates under control of

TEX and which may be called for execution directly from any

interactive terminal. Examples of processors are: BASIC, SAVE,

KILL, LIBR, CHANGE, and QUERY.

STAND-ALONE PROGRAM - A machine language routine which takes over

full control of the system and does not operate under TEX. Stand-

alone programs are loaded into core by use of the SHUTDOWN

command. Examples of stand-alone programs are GPM and the

computer diagnostic routines.

PROGRAM - A higher-level language routine which is executed by being

either interpreted or compiled by a processor. For example,

any routine written in BASIC is called a program. Since a program

is not in machine code it is treated by TEX as a data file to be

operated on by a processor.

ASCII - American Standard Code for Information Interchange. A seven-

bit code used for data transfers in and out of the computer, usually

with even parity, i.e., the eighth bit is set to a ''one" or "zero''

such that the number of "one" bits in the byte is even. When ASCII

is used internally to the IRIS system, the eighth bit is unconditionally

set toa "one''. See Appendix 6 for a table of all 128 ASCII codes.

PORT - An interactive input/output channel on the IRIS system. For in-

house operation, each port is usually hard-wired to one terminal.

For remote operation, each port is connected to a data set, thereby

allowing several terminals to use the same port (one at a time).

There is an input/output buffer, a data file table, and an active file

associated with each port.

Copyright (C) 1974

Educational Data Systems A2-1

BIT -

BYTE -

One binary digit. May contain a one or a zero.

Eight bits. One byte may contain an ASCII code or a special

internal code.

ACCOUNT ID - A word or group of words and symbols up to 12 characters

WORD -

STRING -

FILE -

total which must be typed in by a user to activate his terminal

and log him on to the system. There are over 4 x 1021 possible
account IDs.

Sixteen bits. The computer transfers information cne word at

a time. One word may contain one machine instruction or two

bytes. Two or more words are required to store a floating point

number.

A record consisting of ASCII codes stored one code per byte. A

string is usually terminated by a zero byte.

A storage area on the disc or magnetic tape which may be accessed

from a processor or, via a processor, by a program. A file consists

of a file header block, from zero to 128 header extender blocks,

and from zero to 65534 data blocks,

FILE HEADER - The first block of a file. The header does not contain any

user's data. What the header does contain is the Filename, related

information such as file type and protection, and the disc address of

each data block in the file (data block disc addresses are not listed

in the header of a contiguous file). A data file header may also contain

a data record format map.

FILENAME - The word Filename is used to represent the name (and
optional password) assigned to a file by a user at the time he

creates the file. If a password is used, it is separated from the

name by a CTRL E character (written E). The name and

password may be any combination of letters, digits, and periods,

except that the first character of the name must be a letter.

Acceptable Filenames include:

NAMEEPASSWORD

XY14Q99

TE543382XB .5

The password is not echoed (not printed) during type-in. This is

to prevent other users on your account from learning your passwords

and gaining access to files you wish to keep private. The E must

be typed again after the password to resume normal echo operation.
Up to fourteen characters total are allowed including the E code,

making a total of over 6 x 102!possible Filenames. 7

Copyright (C) 1974

Educational Data Systems A2-2

PRIVATE

The same Filename may be used on different Logical Units;

therefore, any Filename given by a user is assumed to be on

that user's assigned Logical Unit unless specified by entering

the Filename in the form

lu/ Filename

where lu is the number of the Logical Unit where Filename is to be

found or built. The same Filename may be used to identify one file

on each Logical Unit. Any time anew file is being built, the File-

name may be given in the form

$ddd.cc <pp> lu/Filename!

where ddd.cc is the amount to be charged to the account of any other

user who accesses the file, and pp is the desired protection (see Sec-

tion 2.5). The cost and protection may be given in either order and

both are optional, but the Filename must be given last. If not speci-

fied, the cost will be zero and the protection will be 77. An exclama-

tion mark following the Filename allows this file to replace another

file of the same type and on the user's own account, in chich case the

old file's cost and protection will be used if not specified here.

For a peripheral driver file there is a special form of Filename con-

sisting of a dollar sign and the device's mnemonic; for example: $PTR

is the paper tape reader, and $LPT is the line printer. Dollar sign

Filenames are also used for system Subroutine replacements. The

first character after the dollar sign in such a Filename must be a letter.

FILE - A file which has a password included in the Filename so

as to prevent access to the file by other users on the same account

and on lower privilege accounts.

PUBLIC FILE - A file with no password (no CTRL E) included in the Filename.

ACTIVE FILE - There is an active file associated with each interactive

port. All programs and data entered through the port are

placed in its active file. The active file does not have a Filename

unless it has been saved. The active file is active in the sense

that it is used for Swapping; i.e., it is used to store a user's

program and local data between time slices.

PASSIVE FILE - All user files stored on the disc under a Filename are

Copyright

passive files. A passive file may be copied into a port's active

file for processing without disturbing the passive file. The

SAVE command updates a passive file or creates a new passive

file by copying the active file into the passive file.

(C) 1974

Educational Data Systems A 2 - 3

DISC ADDRESS - A disc address is a means of identifying a particular

disc block on a given Logical Unit. A disc address may be in

any of three forms as follows:

LOGICAL ADDRESS - In this form the Logical Cylinder, Logical

Track, and Logical Sector are carried as binary integers in

separate words (see definitions of these terms elsewhere in the

Glossary). This form is generally used only in the system's

allocate and deallocate routines. -

REAL ADDRESS - The form carried within the system in

file headers, etc. In this form the address is packed into

one binary word according to the formula :

LC x LRC + LT x LRT + LS

where LC Logical Cylinder

LT Logical Track

LS = Logical Sector

LRC Logical-to- Real Cylinder Conversion Factor

LRT Logical-to-Real Track Conversion Factor

It is not necessary to define a logical-to-real sector conversion

factor since it would always equal one.

PHYSICAL ADDRESS - The address used by the disc controller.

The disc driver subroutine converts the Logical Unit number and the

Real Address into a Physical Address and outputs it to the disc

controller. For some controllers, the Physical Address is

identical to the Real Address; otherwise, the Physical Address

is never stored within the system.

PHYSICAL UNIT - A secondary data storage unit such as a disc cartridge

or a reel of magnetic tape. Data are transferred to and from

the Physical Unit in blocks of 256 words.

LOGICAL UNIT - A Physical Unit (or one partition of a Physical Unit) which
has been formatted for use by IRIS. Usually an entire Physical

Unit is treated as one Logical Unit, but provision is made for

partitioning a Physical Unit into two or more units; this may

be necessary in the case of a very large disc pack where the

Real Address would otherwise require more than one word. A

Logical Unit may not include more than one Physical Unit; e.g.,

the fixed disc and the removable cartridge on a dual drive must

be treated as two (or more) Logical Units. Each Logical Unit

has a copy of BZUP in Real Address zero, an INDEX whose

header is in Real Address one, an ACCOUNTS file whose header is

at Real Address three, and a disc map (DMAP) whose header is at

Logical Cylinder zero, Logical Track one, Logical Sector zero

(Real Address LRT).

Copyright (C) 1974

Educational Data Systems A2- 4

CYLINDER - A set of tracks on one disc drive that can be accessed without

moving the heads. The term is derived from the high stack disc

packs where the set of tracks is a set of equal sized circles

around the same axis, one on each disc surface. Such circles

are all on the surface of the same geometric cylinder. Note: A

head-per-track disc is considered as having one cylinder (number

zero), whereas the cylinder number specifies the head position

dn a moving arm disc.

TRACK - The path traced on a disc Surface by one head in one position.

SECTOR - A fraction of one revolution of adisc. May be thought of as

a pie shaped section of the disc. Within this amount of rotation,

one block of data may be recorded in each track.

BLOCK - The intersection of one track with one sector. Each block will

store 256 16-bit words of data. Formatted files on magnetic

tape are also written in blocks of 256 words.

LOGICAL CYLINDER - An integer ranging from zero to one less than the

number of cylinders in a Logical Unit. The Logical Cylinder is

equal to the real cylinder unless the Physical Unit is partitioned

into two or more Logical Units, in which case the physical cylinder

number is derived by adding the Logical Cylinder to the number

of the first real cylinder.

LOGICAL TRACK - An integer ranging from zero to one less than the number

of heads on a disc drive. The Logical Track number selects

one head (track) for reading or writing.

LOGICAL SECTOR - An integer ranging from zero to one less than the

number of sectors on adisc. The Logical Sector selects the

sector time during which a transfer will take place, thereby

selecting one block within the track specified by the Logical

Cylinder and Logical Track.

IPL - The first phase of the IRIS startup procedure is the Initial Program

Load which brings a fresh copy of REX into core from the system

disc.

SYSGEN - A System Generation is the process of writing the operating system

and all other system files on the system disc (Logical Unit zero).

All files currently on the system disc will be lost if a SYSGEN is

performed, but user files.may be saved by first copying them to

another Logical Unit or to paper tape.

Copyright (C) 1974

Educational Data Systems A2-5

APPENDIX 3: ACTIVE CHARACTERS

Several keys on the terminal keyboard have significance to the operating
system. Most of these require that the control key (CTRL on keyboard)
be pressed simultaneously with another key. For example, CTRL A

requires pressing the CTRL key and the A key at the same time. For
easier writing, CTRL A is sometimes abbreviated A. Most of these

codes are intercepted by TEX and will never reach a processor or the

user's program.

Key

CTRL A

CTRL B

CTRL C

CTRL E

CTRL G

CTRL H

CTRL J

CTRL M

CTRL O

Meaning Ope ration

Same as CTRL H on most systems.

Signal Causes signal to be sent to the user's own
port. Both signal values will be zero. May be used to notify

a user's program that the user wishes input to be enabled if

the program is checking for signals,

System Escape The computer prints a # symbol and enters

control model. A system command (SAVE, LIBR, etc.) may
be given or a processor name may be entered. If terminal

was not in type-in mode, the first C acts as an ordinary

ESC, and a second C is necessary to perform the system escape.

Echo Toggle Characters typed in following the E will not be

echoed (printed), Pressing E a second time restores echo. Echo
is suppressed for type-in of passwords and may be used at other

times as desired. The first E is printed as a colon.

Bell May be included in a printed String to ring the

terminal's bell.

Backspace Delete the last character entered. May be
used repeatedly to delete several characters. Causes the

character being deleted to be printed.

Same as LINE FEED

Same as RETURN

Kill Output Causes termination of any type-out currently in

progress but allows next type-out to be started. May be used to

save time by suppressing type-out of known mesSages.

Copyright (C) 197

Eduvational Data Systems A3-1

CTRL P

CTRL Q

CTRL S

CTRL X

CTRL Z

ESC

ALT MODE

RETURN

LINE FEED

RUBOUT

BREAK

HERE IS

Parity Toggle Causes suppression of parity checking on char-

acters received by the computer from your terminal. Should only

be used if your terminal does not generate even parity or if you

wish to load a tape produced on another system without even parity.

A second P restores parity checking. You can test whether parity

is being checked by pressing the CTRL and LINE FEED keys

Simultaneously, thus sending a line feed code with bad parity. If

the bell rings, parity is being checked. P causes a % symbol to

be printed.

XON A CTRL Q typed by the user will be ignored. An

XON code is sent by the system to start the terminal's tape reader

each time input is enabled.

XOFF A CTRL 5 typed by the user will be ignored. An

XOFF code is sent by the system to stop the terminal's tape reader

when input is terminated by a RETURN.

Cancel Input Deletes the entire line typed in preceding the X.
A\ is printed, and a carriage return is performed. Type-in

remains enabled. |

The system simply passes CTRL Z codes on to the processors.

However, some processors (including BASIC and DSP) recognize

a CTRL Z as an indication that a RETURN code should be inser-

ted in the string being entered.

Escape Terminates any current type-out and/or compu-

tation and restores terminal to type-in mode. Used to ''escape'

from an undesired or unknown situation. ESC is also used to

activate a terminal when Signing on.

Same as ESC.

End Input Each type-in must be terminated by a carriage

return, An XOFF code is echoed to stop the tape reader.

Ignored.

Ignored.

Same as CTRL B.

Null On most terminals, the HERE IS key will

transmit twenty null codes (all zero bytes). Nulls are ignored

by IRIS but are echoed. May be used to punch leader on the

terminal's paper tape punch. If the HERE IS key on your ter-

minal does not generate nulls, you may use the CTRL, SHIFT,

REPT and P keys simultaneously to punch leader. The REPT

(repeat) and P keys must be released first to avoid generating

garbage codes.

Copyright (C) 1974

Educational Data Systems A3-2

APPENDIX 4: HOLLERITH AND DRATSAB CODES

The table on the next page gives the Hollerith card codes and the equivalent
Dratsab codes for the standard set of 64 ASCII symbols. Most of these

Hollerith codes can be produced on a Standard keypunch with a single key

stroke. The Dratsab code (sometimes called compressed Hollerith) is
derived from the Hollerith card code as follows:

1) The top five bits of the Dratsab byte are taken from rows 8, 9, 12,11,

and O of the card column in that order. A punch on the card becomes

a one in the corresponding bit of the Dratsab code. Any combination

of the punches in'these five rows is permissable for conversion to

Dratsab.

2) The octal value of the punch in rows one through seven becomes the

lower three bits of the Dratsab code. Only one of these seven rows

may be punched. The lower three bits will be zero if there is no

punch in rows one through seven.

Pictorially, each Dratsab byte is made up from the corresponding card

.row as shown here: |

Any card reader which is to communicate with a standard IRIS driver over

an RS-232C interface must compress the Hollerith codes in this manner.

A special driver can be written, however, if necessary for a different card

reader.

Copyright (C) 1974

Educational Data Systems A4-1

Hollerith and Dratsab Card Codes GT?CVGGIGLGGLYS
OTTOTZLTO9TOGTOyTO

ETOGLO

OcTOccAY

9¢0GéO

yc0£60GGOTc0OTTOVELvO9470S¥0vv0&v06vOTPOvO?(12300)qesjeiqg S-0-8at el
it

rot IANN e

aa oo
co

NOH i Ore © OO
'

oo oo 0200 0

Om wo oO
moet

retort et et

aaa eq

G-TTy-TTE-Tlo-ITT-TT6-<cl8-clL-GlI9-<cl

S-<ly-<dt

E-<GlIG-cTT-¢ély-8Sayound pueoYy4aT[OH coco ©

LEE9EESEEVEEESEGEETeeO&ELOE9CEGCEVCESSE

GGETeeOdELYEOTESTEVTEEleCIETTEOTELOE90€SOEvOE

EOECOETOEOO€(T@}00)IOSV
@OMMNVANHUMDMHNMIASZOAGHMHAHD PEK ANU IMS 4joquidég LIZ9T¢90¢VVGS96GOSO0T002L00900

S00700£00

600TOOOTOTTOEve020E1ZS0F0VCCGGGShcSOG99vieESS£02LO?GGG000(T2300)qesyeig
N

CANO NOOMQNO |T-O€-cI-8TT€-0-8Gly-TT-8S-TI-8S-<cI-8G-89-2T-8y-0-8€-TT-8€-8L-8c-IT-82u0Uusayound puesU4 eTIOH
LLG9L?SGL?DL?

CLSCLGTL?OLSLOS

992G9Cv9

€9¢G9GT9¢09¢LSG9G¢GS2

vSeES?GSGTS2?0S2LYC

9F2Svcvv
SVSCVGTvOve

(T@}00)WOSV
Ao-~ Vil-TM“ TO MWNMO HTM OM © ODwm He oD-%o$#|ia0edsjoqusg

Copyright (C) 1974

Educational Data Systems A4-2

APPENDIX 5: EDS BASIC CARD PROGRAMMER

A card reader on an IRIS system may be used to load a BASIC program

by following the procedure in Section 2.10. The cards may be punched

in standard Hollerith card codes (see Appendix 5) or in EDS BASIC card

codes by use of the EDS BASIC Card Programmer on page A6-4. The

Card Programmer is used in the following manner:

1) Write the statement to be coded along the top edge of the card.

2) Mark the line number in columns 1-4.

3) Mark one statement type box in column 5 or 6.

4) Insert the card into the Card Programmer so that column 7 is

just exposed at the edge of the Programmer.

5) Locate the symbol to be coded, and mark the box directly to its

left on the card. Also mark the top three rows of the card as

shown directly above the symbol.

6) Slide the card out one column at a time and mark each column

as in step 5.

7) Mark rows 8 and 9 in the first unused column of the card. This

is equivalent to a RETURN code.

If the statement is too long for one card, omit the 8-9 mark. Mark the

CONTINUE box in column one of a second card, and continue the state-

ment starting in column 7 of that card. The statement may not exceed

two cards.

Spell out any words not shown on the Card Programmer. If the statement

type desired is not shown, leave columns five and six blank, and spell out

the statement type starting in column seven. Mark firmly, using a medium

soft (number 2) pencil.

Copyright (C) 1974

Educational Data Systems A5-1

aN

EDS BASIC Mark/Sense Card Format

Symbol Rows Symbol Rows Symbol Rows

O-) ? 0,1 Space None

1 1 + 12,11,1 LOG 12

2 2 ~ 12,11,2 EXP 11

3 3 * 12,11,3 SIN 12,11

4 4 / 12,11,4 | COS 12, 0

5 5 4 12,11,5 TAN 11,0

6 6 (12,11,6 ATN 12,11,0

7 7) 12,11,7 SQR 12,11,0 1

8 8 [12,11,8 INT 12,11,0 2

9 9 j 12,11,9 SGN 12,11,0 3

A 12,1 = 12,0,1 RND 12,110 4

B 12,2 < 12,0,2 ABS 12,11,0 5

C 12,3 > 12,0,3 TAB 12,11,0 6

D 12,4 $ 12,0, 4 TO 12,11,0 7

E 12,5 > 12,0,5 STEP 12,11,0 8

F 12,6 @ 12,0,6 GOTO 12,11,0 9

G 12,7 $ 12,0,7

H 12,8 # 12,0,8 11,0,5

I 12,9 % 12,0,9 " 11,0,6

J 11,1 11,0,1 ! 11,0,7

K 11,2 ; 11,0,2 - 11,0,8

L 11,3 11,0,3 & 11,0,9

M 11,4 ; 11,0,4

N 11,5

O 11,6 For any symbol or word in this chart, mark the rows

P 11,7 shown in the table. The top row of the card is row 12;

Q 11,8 the second row, 11; the third, 0; the fourth, 1, etc.

R 11,9 Words not in the chart (FN, INV, etc.) may be spelled

S 0,2 out using one column for each letter. After completing

T 0,3 the statement, mark both rows 8 and 9 in the next

U 0,4 column to indicate end of statement.

V 0,5

Ww 0,6 Use GOTO in place of THEN in IF statements. Ifa

Xx 0,7 statement is too long for one card, mark the CONTINUE

Y 0,8 box on the next card and continue the statement. Mark

Z 0,9 the end of statement (rows 8 and 9) only on the second

card. A statement may not use more than two cards.

Copyright (C) 1974

Educational Data Systems A5-2

EDS BASIC Card Codes 0&2$90O9oT092O1TOTZLTO9T0STO

10ETOZTOozt022

LZ0920SZO

720€Z0220ZOOrtOvZLO

940SHO

v0v020
10

950(T2390) 8-0-ITG-ITI-ZT6-T1T-211X9} 99S8-TI-2lbot

©

NO Yim oOMm © O

1

Od

'

Sart et edt et an

arent st WHO OOOO oO oO

co oO)
I

i) ©
oot

y-TTE-TTG-ITT-TT6-<Gl8-<clL-ct9-clG-<cly-<clS-<cTG~ olT-<éT

9-O-cTSyYICI presqesyeiq OIsvd Sada
LEE

9EEGEEVEESEEGEETEESO€ELGE9SGCcE

VCEESECGETeeOcELTEOTECTE
PIEETEoleTTEOTELOE90€GOEvOEEOE

GOETOEOO0€(T2390)OSV
OtdMVANHOMHARMYNESZONGHMHNHDSBE MANUS 4joqwAg TTOESOTSOGSOvEO€&0OOT00¢L00

900S00y00£00G00TOO

OTO¥90TEOG90GEOT90

£90L90990SEO

OETOSTLSO0G29€0LEO000(T2300)
AN OHO Om WD HoH es0

y-Tt-clT-O-TTG~TTt-clG-O-TTT-TI-¢l€-Tt-clL-TI-ctl9-TI-clG-O0-TT6-O-TT6-O-<cTL-O-<T8-O-cT9-0-TTL-O-TTd9U0OUSYISIN puesqesyeiq oOIsvd SdH LLGGLCGLCDL?ELSGLGTL?”OL?L9Z%99¢G9V9C9S

GIGT92092LG?9S¢GSCVG?

ESCGGGTS?OSZLUG

9VGSVCvvG

SVGGGveOVE(TB390)IIOSV
- Yi AO:-~ O AN M TW OO & ®O OCHe CB BS oo - ~~ KH +iii

ao0edsjoquidg
(continued on next page)

Copyright (C) 1974

A5-3Educational Data Systems

EDS BASIC Card Codes (Continued)

Internal EDS BASIC Dratsab

Symbol (octal) Card Marks (octal)

<= 356 12-0-4 054

>= 354 12-0-5 055

LOG 145 12 040

EXP 146 11 020

SIN 147 12-11 060

COS 150 12-0 050

TAN 152 11-0 030

ATN 151 12-11-0 070

SQR 144 12-11-0-1 071

INT 140 12-11-0-2 O72

SGN 142 12-11-0-83 073

RND 143 12-11-0-4 074

ABS 141 12-11-0-5 075

TAB 345 12-11-0-6 076

TO 344 12-11-0-7 O77

STEP 346 12-11-0-8 270

GOTO 100 12-11-0-9 170

BASIC Mark/Sense Card Programmer

9 Mark only in top three rows

$1O | z|2|2141 for these functions.

a) g rs n & < E (No marks for space)
a[ololalalola
olelolalolale Educational Data Systems

N . , Californiolololalolalala ewport Beach California

J,1T ALJ]? |} +)= SQR

21/BilK|S|—|<|, | INT

3} C}) LIT] * |> SGN For any symbol or word in this chart, mark

4}/D/|M|U]/]<];|RND the row in which it appears, and mark the

top three rows as shown directly above

5 EINIV|*|2 ABS the symbol or word. Words not in the
6|F}@|W; (|@)| "| TAB chart (FN, INV, etc.) may be spelled out

71GIPIX!|)I|$|!{To using one column for each letter. After

completing the statement, mark both rows

8 | H/ Q| ¥| (| # | <| STEP 8 and 9 in the next column to indicate
9/I1{/R| Z|)]|%|&| GOTO end of statement.

Copyright (C) 1974
Educational Data Systems A5 ! ps

code name

000

201

202

003

204

005

006

207

210

011

012

213

014

215

216

017

220

021

022

223

024

229

226

027

030

231

232

033

234

035

036

237

NUL

SOM

EOA

EOM

EOT

WRU

RU

BELL

BS

TAB

LF

VT

FORM

RET

SO

SI

DLE

XON

TAPE

XOFF

PAPE

ERR

SYN

LEM

CAN

EM

SUB

ESC

FS

GS

RS

US

Notes:

APPENDIX 6: ASCII CODES

keys | code name keys | code name keys | code name

csP 240 space 300 @ sP 140

cA 041 ! sl 101 A 341 a

cB 042 " s2 102 B 342 b

cC 243 # s3 303 C 143 Cc

cD 044 § s4 104 D 344 d

cE 245 % s5 305 E 145 e

cF 246 & s6 306 F 146 f

cG 047 '! s7 107 G 347 g

cH 050 (s8 110 H 350 h

cl 251 =») s9 311 I 151 i

cJ 252 * S: 312 J 152 j

cK 053 + S; 113 K 353 «k

cL 254 , 314 L 154 1

cM 055 - 115 M 355 m

cN 056. 116 N 356 on

cO 257 | 317 O 157 o

cP 060 0 120 P 360 p

cQ 261 1 321 Q 161 q

cR 262 2 322 R 162 r

cs 063 3 123 S 363 Ss

cT 264 4 324 T 164 ¢t

cU 065 5 125 U 365 ou

cV 066 6 126 V 365 Vv

cW 267 7 327 W 167 w

cX 270 «8 330 xX 170 x

cY 071 9 | 131 Y 371 Oy

cZ O72 : 132 Z 372 Zz

csK 273 —C; 333) «6E£ sK 173.

csL O74 ¢« Ss, 134 \ sL 374 |

csM {275 = S- 335 j sM 175}

csM 276 > Ss. 336 + sN 176 TM~

csO O77 ? s / 137 = sO 377 =DEL

sP means that shift P will generate an octal 300 code (@),

csP means that control shift P will generate an octal 200

code (NUL), and cP means that control P will generate an

octal 220 code (DLE), etc.

The LF, RET, and ESC codes are duplicated by special keys.

DEL is generated by the RUBOUT key on most terminals.

All codes are shown in octal with even parity as they are used

for transmission and as they appear ona list tape. Internal to

the system, all ASCII codes carry a one in the top bit instead

of parity; e.g., the internal code for A is 301 octal. Add 200

to any code whose first digit is zero or one to get the internal code.

Copyright (C) 1974

Educational Data Systems A6-1

p

4

he

