
Educational Data Systems 2415 Windward Lane, Newport Beach, California 92660

BUSINESS BASIC

PROGRAMMING MANUAL

This manual covers the EDS Business BASIC as it is used under the

IRIS operating system. Operation on an ALICE system is identical

except that certain features described herein are not available under

ALICE. Each statement and function of the Business BASIC language

is described in detail.

For operating procedure on an EDS system, refer to the [RIS or

ALICE User Reference Manual.

Disclaimer: Every attempt has been made to make this manual com-

plete, accurate, and up to date. However, there iS no warranty, express

or implied, as to the accuracy of the information contained herein. This

manual reflects the IRIS system as released in December, 1973.

Copyright (C) 1973

Educational Data Systems | | EDS 1016-2

TABLE OF CONTENTS

. INTRODUCTION

ELEMENTS OF BUSINESS BASIC

2.1 The BASIC Statement

2.2 Numbers and Precision

2.3 Simple Variables

2.4 Arithmetic Operations

2.9 Expressions

2.6 Relations

2.7 Arrays and Array Variables

2.86 Strings and String Variables

. FUNCTIONS

3.1 Trigonometric Functions

3.2 Transcendental Functions

3.3 Mathematical Functions

3.4 Logical Functions

3.5 Number Manipulation Functions

3.6 Special Functions

3.7 User Defined Functions ©

3.8 Dummy Functions

. THE FUNDAMENTAL STATEMENTS OF BASIC

4-1 END and STOP

4-2 LET

4-3 INPUT

4-4 READ and DATA

4-5 RESTOR

4-6 PRINT

4-8 PRINT USING

4-11 GOTO

4-12 GOSUB and RETURN

4-13 ON

4-14 DIM

4-16 IF

4-17 REM

4-18 FOR and NEXT

4-22 DEF

4-23 RANDOM

4-24 SIGNAL 1. (Send Signal)

4-25 SIGNAL 2 (Receive Signal)

4-26 SIGNAL 3 (Pause)

4-26 KILL

4-27 CALL

4-28 CHAIN

Copyright (C) 1973

Educational Data Systems

qn

i i
Re kt ke ke CO COU UU DOP wD DDH WO bo

| | |oonanonaninan ooo !
ao ON1 4

re ©

I

i

DO

S

6

6

6

6.

6

6

6

6

MATRIX ALGEBRA

MAT...ZER

MAT...IDN

MAT...CON

MAT Assignment

MAT PRINT

MAT INPUT

MAT READ

MAT...TRN

MAT Add

MAT Subtract

MAT Scalar Multiply

MAT Multiply

MAT Invert

DET Function

TRING PROCESSING

String Expressions

Use of Subscripts

The DIM Statement

The LET Statement

The IF Statement

The INPUT Statement

The PRINT Statement

The LEN Function

q. DATA FILE ACCESS

”~ -—

SJIyaI TNs nv ny sv «- | ee ef on be FP Co wOND®D HP W LOmem ©

The MRN Function

Notes on Locked Records

Notes on Open Files

BUILD #

OPEN #

CLOSE #

WRITE #

READ #

PRINT #, PRINT # USING

MAT WRITE #

MAT READ #

Contiguous Data Files

Access to a Contiguous Data File

APPENDIX I: PROGRAM EXAMPLES

APPENDIX II: TRIG FUNCTION IDENTITIES

Copyright (C) 1973

Educational Data Systems

1. INTRODUCTION

BASIC was developed at Dartmouth College in the early 60's as an easy

to learn yet powerful programming language well suited to interactive

use on a time sharing computer. The success of the language is

indicated by the fact that over 90% of all time sharing computers in the

U.S. offer BASIC. This popularity results from a number of charac-

teristics:

A simple grammar based on a small number of English directives.

Facilities for handling strings and matrices as well as arithmetic

expressions,

Built-in editing features that facilitate debugging and program

modification.

Kase of translation by an interpreter. Use of an interpreter makes

it possible to write and debug problems interactively. For example,

a section of a program can be written and run; lines can be added,

deieted, or modified; immediately, the revised program can be

rerun without waiting for a compilation,

BUSINESS BASIC, the version of the language described here, is

designed to preserve the characteristics which have made BASIC prac-

‘ically the universal time sharing language, particularly for instruc-

tional uses and scientific programming. It adds further capabilities

which enhance its utility, especially for business applications. The

principal extensions of Business BASIC are: extended precision decimal

arithmetic, PRINT USING, data files, signalling, chaining, many

special functions, and provision for large strings and arrays.

Extended precision decimal arithmetic overcomes two problems in most

BASIC systems: limited precision and conversion errors. Most BASIC
Systems represent numbers internally in floating point binary form,

typically to an accuracy of 23 or 24 bits. This results in six decimal

digits of precision in which the sixth is somewhat Suspect because of

errors introduced through the conversion from decimal to binary and

back. Business BASIC provides four precision options: 1 word integers

(in the range + 7999) and two, three and four word floating point numbers
which give respectively, six, ten, and fourteen decimal digits of
accuracy. Furthermore, all numbers are carried in decimal form,
and the arithmetic is entirely decimal so that conversion and conversion
errors are eliminated.

Copyright (C) 1973

Educational Data Systems 1-1

The second major extension is PRINT USING, which simplifies report

generation by providing COBOL -like picture formats. These are used to

position column headings, line up decimal points, float dollar signs, insert

commas, and provide the other controls required for technical and financial

reporting.

Data files provide random access data storage on the disc. Formatted

files will store up to 65536 bytes of information each (over 16 million bytes

in an extended IRIS file), allow random addressing of items, and perform

data type checking. Contiguous files (on IRIS only) can store even more data

and provide faster access but without the item type checking. A text file

holds a single string of up to 65535 ASCII characters (over 16 million

characters in an extended IRIS file).

Chaining allows very large programs to be segmented for execution ina

system with a relatively small amount of core. Small segments also

permit faster swapping for more efficient system operation. Signalling

allows programs on different ports, as well as program segments, to

communicate with each other. And the extended function set includes

facilities for taking floating point numbers apart and putting them back

together.

Business BASIC provides these facilities along with such more common

features as direct execution (desk calculator mode), string processing,

matrix algebra, and the CALL statement. Theusefulness of the string

and matrix operations is increased by the provision for large strings and

arrays, limited only by the program storage available, as well as by such

features as substrings, string comparisons, MAT INPUT, and matrix

inversion in place.

Business BASIC is upward compatible with Dartmouth BASIC as described

in Kemeny and Kurtz BASIC Programming, First Edition. Programs

written in that version of BASIC will run without modification under the

present system. *

* The only restriction is that all statements must be executed. The

original Dartmouth translator is a compiler which permits the inclusion

of certain statements which are never reached in the normal execution

of the program; e.g. the DIM statement in the following:

| 10 GOTO 30

20 DIM A(30)

30 PRINT A(15)

40 END

This must be modified in any interpretive system, such as Business

BASIC, e.g. by eliminating line 10.

Copyright (C) 1973

Educational Data Systems 1-2

This manual covers all of standard BASIC as well as the extensions of

Business BASIC; however, it asSumes that the reader has had some previous

programming experience ina higher level language. Readers without this

background may find it useful to refer to any of a number of BASIC primers,

for instance, BASIC Programming by Kemeny and Kurtz. Appendix I

includes several examples of programs written in Business BASIC, which

illustrate many of the features of the language.

Business BASIC is extremely easy to use. A small number of system

commands and control characters provide all necessary control, ‘Phe

programmer, at any terminal, uses these to communicate to the system

that a program is to be run or listed, that a character or a line just

entered is to be deleted, or that some other function is to be performed.

f user on an [RIS system should refer to the IRIS User Reference Manual

for information on logging on to the system, using Business BASIC, saving

programs, dlagnosing and correcting errors, and use of other system

facilities. Likewise, a user on an ALICE system should refer to the ALICE

User Re erence Manual for this information.

Copyright (C) 1973

Educational Data Systems 1-3

2. ELEMENTS OF BUSINESS BASIC

The statements of Business BASIC are constructed from a small

number of elements which include: numbers, variables, arrays,

arithmetic operations, functions, expressions, relations, and strings.

In this chapter, each of these elements is explained to provide a basis

For the description of statements in later chapters.

2.1 The BASIC Statement

A statement consists of a line number (any integer in the range 1 to

9999) followed by an English word, which is usually a directive,

followed by other elements which depend upon the statement in question.

Some examples are:

10 INPUT A,B

20 LET C=A+B

30 PRINT C_

40 GOTO 10

50 END

A sequence of such lines, for instance the sequence shown, constitutes

a program.

ine ime numbers serve two purposes: First, except for branching and

looping, the system executes the statements in a program in the order

oi their line numbers. Line numbers also provide a label by whicha

statement may be referenced. For instance, in the example above,

line 40 transfers control to line 10 so that the program is repeated over

and over.

Spaces may be inserted:or omitted anywhere in a statement without

any effect on the execution of the program, except as shown in PRINT

statements and strings (see Chapters 4 and 6).

2.2 Numbers and Precision

Numbers may be represented in any of four forms: 1l-word integers,

2-word, 3-word, and 4-word floating point numbers. The precision

with which a number is carried in the computer is determined by DIM

and DATA statements as described in Chapter 4.

Copyright (C) 1973

Educational Data Systems 2-1

Following are the precision, number of decimal digits of accuracy, and

range of the four types of number:

number type precision #digits range

1-word integer] 4 7999
2-word floating 2 6 +. 999999 x 10% 63
3-word floating 3 10 + 9999999999 X 10763
4-word floating 4 14 + .99999999999999 xX 10763

The decimal point is optional. Negative numbers have a ''-'' preceding them.

Positive numbers may have a ''+"' preceding them, but as it is not necessary,

it is usually omitted. The following are examples of numbers acceptable in

Business BASIC:

+4

-3

3.456789

123456, 78901234

-12345678901234

.00000000001 2345678901234

A number may also be typed using the 'E-format'', where E represents

"times 10 to the power’. For example,

1,526 E+6 is read ''1.526 times 10 to the sixth power" and equals
1,526, 000

8-5 is read ''8 times 10 to the negative fifth power" and equals

. 00008

All floating point numbers must be within the limits of 10763 and 108%,
However, the computer stores floating point numbers with a maximum of

six, ten or fourteen digits, depending upon the precision selected. Two

additional digits store the sign and exponent of a floating point number.

If anumber is entered having more than the number of significant digits

specified for it, the computer will truncate the number to the selected

precision and, if necessary for correct representation, express it in E

form. For example, if a number which is specified to have 2-word (6

digit) precision is entered as 123, 456,789, the computer will change it

to 1. 23456E+8.

Copyright (C) 1973

Educational Data Systems 2-2

2.3 Simple Variables

BASIC statements generally use variables to represent numeric or

alphabetic data. A simple numeric variable holds one number, and

consists of either a single letter (A through Z), or a letter followed by

one digit. A, Al, Z, Z9 are examples.

Variables with one or two subscripts may also be expressed in Business

BASIC. These consist of a letter or a letter and a digit followed by one |

or two subscripts enclosed in parentheses. For example, the subscripted

variables normally written A,, Blo: C95 g are represented in Business

BASIC as: A(1), B1(10), and C9(2,3). The subscripts may in general be
any expressions (see section 2.5 for a description of expressions).

Array (matrix) variables, which can store arrays of numbers, and

String variables, which can store sequences of alphabetic and numeric

symbols, are other kinds of variables which are described in sections

2.7% and 2. 8.

4.4 Arithmetic Operations

Arithmetic operations in BASIC are symbolized as follows:

OPERATION SYMBOL, EXAMPLE

add + 6+7=13

Subtract -- 10-2=8

multiply 6 9*6=30

divide / 20/4=5

exponentiate ; 2% 3=8

The order in which operations are performed is determined by the

normal rules of algebra:

1. All operations within parentheses are performed before any oper-

ations outside.

bo Operations within the same sets of parentheses are performed

according to the precedence of the operators. From highest to

lowest precedence, the operators are:

1. f Exponentiation

2. * / Multiplication or division

3. + - Addition or subtraction

Copyright (C) 1973

Educational Data Systems 2 a ow

3. Operations within the same sets of parentheses and of the same

precedence are performed from left to right.

Itisa good practice to enclose expressions in parentheses if one is unsure
of the order in which they will be evaluated.

2.9 Expressions

An expression is any number, numeric variable, function, or combin-

ation of these combined by arithmetic operations and parentheses and

nested according to the normal rules of algebra. All arithmetic oper-

ations must be included explicitely.

For example:

(24+4)/3

100*P

A+B $ 3

5

2% (A*SIN(R/3.14159)-LOG(Q))

Note that expressions may include functions (see Section 3).

2.6 Relations

Relations between two expressions are symbolized as follows:

RELATION SYMBOL ARITHMETIC EXAMPLE

equals = 2=2

does not equal <> 4<>6
greater than ? 9 > 3

less than < 3 .< 9

greater than or equal to >= 5 >= 4

less than or equal to <= 8<=8

Copyright (C) 1973

Educational Data Systems 2-4

2.7 Arrays and Array Variables

Arrays provide convenient ways to organize numerical data in lists and

tables. There are two forms as follows:

One Dimensional Arrays (Vectors)

A one-dimensional array, or vector, is a sequence of N numbers. The

I-th number in the sequence is referred to as A(I), where A is the name

of the array. The general format for referring to an element in a one-

dimensional array is:

variable name (expression)

where variable name is any letter or letter followed by a digit and

expression iS any expression which when evaluated identifies an

element of the vector.

Two Dimensional Arrays (Matrices)

A two-dimensional array, or matrix, organizes data in rows and

columns, The general format for referring to an element in a matrix

LS:

variable name (expression, expression)

where the first expression identifies a row and the second expression

identifies a column of the array.

An example will help clarify. Consider the following table of data, or

matrix:

Quantity

Item Cost Sold

1 $5.50 11

2 1.75 20

3 7.89 9

4 6.49 11

Copyright (C) 1973

Educational Data Systems 2-5

Assume that the matrix has been given the name R. R has 4 rows and

3 columns. Below are some elements in R, and their values.

R(1,1) = 1 R(4,1) = 4
R(1, 2) = 5.50 R(4, 2) = 6.49

RG,3) = 11 R(4, 3) = 11

Arrays are further explained in Chapter 5.

2.8 Strings and String Variables

A string is a Sequence of one or more symbols. In Business BASIC, all

printing characters on the user's terminal and all non-printing char-

acters except those used as control functions may be used as string

elements. In the computer, these are stored as ASCII codes with a

one itu the top bit instead of an even parity bit. An Appendix in the User

Reference Manual lists the ASCII codes in order of increasing value.

Two of these codes or "bytes" are stored in each memory word,

whereas one to four words are required to store the value of a numeric

variable. A special string terminator symbol is used internally to

mark the end of a string so that a string of N elements occupies

(N+1)/2 words if N is odd,and {N+2)/2 words if N is even.

A literal string is simply a string enclosed in quotation marks; for

example:

"ONE, TWO, THREE, TESTING"

Literal strings are used primarily in PRINT statements as described

in Section 4. Strings may also be represented as the value of a

string expression.

A string variable consists of a letter followed by a dollar sign ora

letter digit combination followed by a dollar sign. For example:

A$, Z$, B9$, C0$

One or two subscripts may be used with a string variable to select a

substring; each subscript may be a number or, in general, any numeric

expression. For example:

A$(5), B1$(3, 10), C9$(I, J+1)

Copyright (C) 1973

Educational Data Systems 2-6

A variable with one subscript identifies the substring beginning at the

element identified by the integer value of the subscript and ending with the

last element of the string. A variable with two subscripts identifies the

substring beginning at the element identified bythe integer value of the first

subscript and ending with the element identified by the integer value of the

second. For example:

If A$ = "ONE, TWO, THREE, TESTING"

Then A$(15) = "TESTING"

A$(5,13) = 'TWO, THREE"

And if I = 8 and J(I) = I+1

Then A$(I+1, J(I)+4) = "THREE"

Strings may be constructed from smaller strings by concatenating literal

strings and string variables, separated by commas. For example:

"ONE, "', A$(5,13), ',", A$(15)

is equivalent to A$. A string expression is any literal string, or string

variable, or concatenation of literal strings and string variables.

The statements for manipulating strings aredescribed in Chapter 6.

4

Copyright (C) 1973

Educational Data Systems 2-7

1

FUNCTIONS

Business BASIC provides many pre-defined functions for the program-

mer's use. These include four tngonometric functions, six additional

mathematical functions, RND which produces pseudo-random numbers,

DET (see MAT Invert) which gives the determinant value of a square

matrix and LEN (see section 6.8) which provides the length of a string.

A function call has the general form

function (expression)

where function is a three-letter function name such as SIN, I.OG, or

SQR, and expression is any numeric expression. In Business BASIC,

the parentheses are not required if the argument is a single variable or

a positive number.

In addition to the pre-defined functions described in this chapter, the

user may define his own functions. The method for creating and using

such user-defined functions is described in the section on the DEF

statement in Chapter 4.

Trigonometric Functions

Three trigonometric functions and one inverse trigonometric function

are provided in Business BASIC. Their function names and meanings

are:

SIN sine

COS cosine

TAN tangent.

ATN arctangent

The argument for the sine, cosine, or tangent function is an angle

expressed in radians. Although any angle will be accepted as a valid

argument, some accuracy will be lost if the angle is outside the range

ft 2wsince the function routine must first reduce the angle to the first

quadrant before evaluating the function. If the angle is known in

degrees, it must be converted to radians before it is used as the func-

tion argument. This may be done as the function is called; for example:

100 LET S=SIN (A*3. 1415926535898/180)

110 LET B=B+TAN (A/57. 295779513084)

Copyright (C) 1973

Educational Data Systems 3-1

The argument of the arctangent function may be any real number (the

tangent of any angle). The result will be an angle in the range f >
radians.

Refer to APPENDIXII for identities which may be used to calculate the

other trigonometric functions in terms of the above four functions.

3.2 Transcendental Functions

Three transcendental functions are provided in Business BASIC. The

names of these functions and their meanings are:

SQR Square Root

LOG Natural log (logarithm to base e)

EXP Exponential (the constant e raised to the power of the

argument value)

To compute the common log (log to base ten) of a number, use the

identity:

logy 9% = log. X/log,10

which may be expressed in a BASIC statement as follows:

240 LET W = IOG(X)/2. 3025850929940

Obviously, the base 10 counterpart of EXP(X) is 10#X, but IXR(X) may

be used if X is an integer (see Section 3.5).

Random numbers are provided by the RND function. In some systems,

the argument of the RND function is ignored, and only numbers in the

range zero to one are generated. In Business BASIC, however, the

argument may be used to specify the range over which numbers are to

be generated.

An argument value of zero indicates the standard range:

O0€ RND(0)< 1

Any other argument value x indicates the range of the result to be:

0 @RND(x)< x for x#0

Copyright (C) 1973

Educational Data Systems 3-2

The argument value may also be negative, in wnich case the range is

between O and the negative argument, i.e., the random number will be

negative.

The "random" numbers actually come from a sequence of pseudo-

random numbers generated by the computer. Over 65,000 numbers will

be generated before the sequence repeats.

To instruct the computerto "pick'' a random number between 1 and N,

inclusive, the following is generally used:

INT (RND(N))+1

For example, INT (RND(6))+1 will be a random integer from 1 to 6,

inclusive, and may be used to simulate the throwing of one die, or used

twice to Simulate throwing a pair of dice.

3.3 Mathematical Functions

Five mathematical functions are provided in Business BASIC. The

function names and their meanings are:

ABS Absolute value

SGN Algebraic sign

INP Integer value

FRA Fractional portion

RND Random number

ABS(x) will yield the absolute value of x (any expression); i.e., if x is

negative it will be changed to the Same positive value.

SGN(x) will yield zero if the argument is zero, +1 if the argument is

greater than zero, or -1 if the argument is negative. Some-

times called the signum function to distinguish it From the sine

function.

INT(x) will yield the most positive integer that does not exceed the

argument. For example: |

INT (0.5) = 0

INT (3.999) = 3

INT (-4.6) = -5

Copyright (C) 1973

Educational Data Systems 3-3

3.

3.

4

oO

FRA(x) will yield the fractional part of the value of the argument. For

example:

FRA(2. 3065) = 0.3065

FRA(5) = 0

FRA(-8.149) = -0.149

For positive values of x (any expression) FRA(x) yields the same value

as x-INT(x). Note, however, that this is not true if x is negative.

Logical Functions

One logical function is currently provided in Business BASIC. It is:

NOT Logical inversion

NOT (x) will yield one if the argument is zero,or zero if the argument is

non-zero.

Number Manipulation Functions

Three functions are provided in Business BASIC for taking floating

point numbers apart and putting them back together. They are:

MAN Mantissa portion

CHR Characteristic portion

IXR Integer exponent of radix

A floating point number, x, may be represented as:

x = Mr&

where M is the mantissa, a signed number between zero and one, ris

the radix (r = 10 in EDS Business BASIC), and c is the characteristic,

a signed integer which is the exponent of r. Referring to the above

equation:

MAN (x) = M
CHR(x) = c, and

IXR(c) = rf

The number x may be represented in terms of these three functions as

follows: |

x = MAN(x)*IXR(CHR(x))

Copyright (C) 1973 |

Educational Data Systems 3-4 .

Following are more precise definitions of the three functions:

IXR(x) yields a value equal to rINT(x) where ris the radix used for
internal computation. In Business BASIC the radix ris ten. In

most other systems r is two.

CHR (x) extracts the characteristic portion of a floating point number.

CHR(x) yields an integer N such that

No le x< PN

where ris the radix used for internal computation (see explanation

of r under IXR function).

MAN(x) extracts the mantissa portion of a floating point number.

MAN(x) yields a signed fraction such that

MAN(x) * IXR (CHR(x)) = x

opecial transcendental functions may be implemented in a DEF statement

by use of these special functions.

3.6 Special Functions

The SPC function is used to obtain certain types of special information

such as time, port number, etc. The argument of the SPC function

indicates what information is desired as follows:

function value

SPC (0) CPU time used since log on (in tenth-seconds)
SPC (1) Connect time used since log on (in minutes)
SPC (2) Hours since January 1, 1973%* — eee

SPC (3) Part of hour (in tenth-seconds) REAL, TIME
SPC (4) System creation date (hours after 1-1-73)*

SPC (5) Your account number

SPC (6) Port number of your terminal

SPC (7) Front panel switch setting

SPC (8) Last BASIC error number

*Note: the “hours since January 1, 1973" value assumes that all months

have 31 days.

Copyright (C) 1973

Educational Data Systems 3-5

3.7 User Defined Functions

3. 8

The user may define special functions for his own use. Up to 26 such

functions may be defined, and the definitions may be changed in the

course of a program run. Refer to the DEF statement in Section 4 for

the procedures to define and use defined functions.

Dummy Functions

There are three dummy functions available in Business BASIC for use in
defining special functions. They are:

DFV Dummy function, variable

DFA Dummy function, ampersand

DFP Dummy function, percent

A dummy function is used when a certain expression appears repeatedly

within the function. Use of a dummy function temporarily assigns a

value to a dummy variable. The simple user-defined function (refer to

Section 3.7) has one dummy variable which is assigned a value by the

function call. For example: |

120 LET A = B+ FNS(C+3)

assigns the value of C+3 to the dummy variable and then calls the func-
tion FNS to evaluate some user-defined function of this value. If FNS

had been defined by the statement:

10 DEF FNS(G) = (G#2 + 3/G)%2 - (G42 + 3/G)

the dummy variable G would receive the value of C+3. Notice that the

expression Gf2 + 3/G appears twice in this definition. Therefore, this

definition may be shortened by use of a dummy function. The statement

10 DEF FNS(G) = DFV(G#2 + 3/G), Gt2-G

is equivalent to the previous definition. The DFV (Dummy Function,

Variable) causes the expression Gf2 + 3/G to be evaluated, and this

value is then assigned to the dummy variable (G in the example). Eval-

uation of Gf#2 - G then generates the value which is returned by the

function. Two additional dummy functions, DFA (Dummy Function,

Ampersand) and DFP (Dummy Function, Percent), may be used in a

similar manner to assign values to the dummy variables & and %,

respectively.

Copyright (C) 1973

Educational Data Systems 3-6

In a statement of the form

DEF FNu(v) =... DFV(expression),.

where u and v are any letters and v is the dummy variable, the portion

of the statement

DFV(expression),

is equivalent to including the statement

LET v = expression

within the DEF statement, where v is the same dummy variable.

Similarly,

DF A(expression)

is equivalent to

LET & = expression

and an analogous relationship holds between DFP and the % dummy

variable. The ampersand and percent sign may then be used as

variables later in the same statement, definition, or nested functions,

but the values of these dummy variables are not retained from one

statement to the next. DEV, DFA, and DFP are the only available

dummy functions. DF followed by any other letter will cause an error.

Copyright (C) 1973

Educational Data Systems 3-7

4. THE FUNDAMENTAL STATEMENTS OF BASIC

This chapter gives a detailed discussion of each statement in the

elementary’ and "advanced" BASIC language (see Kemeny and Kurtz

BASIC PROGRAMMING) including many extensions to these statements.

Other features and extensions such as matrix algebra, string processing,

the CALL statement, by which a BASIC program may call a machine

language subroutine, are described in Chapters 5, 6, and 7.

Statements: END and STOP

Form: any line number STOP

or

any line number END

or

highest line number in program END

Examples: 150 STOP

100 END

9999 END

Purpose: The END and the STOP statements terminate the execu-

tion of a program.

Remarks: The END and STOP statements have similar effects, and

may be used in any portion of the program to terminate

execution of the program.

Usually, the END statement is used to stop execution as

the final step of a program. Most often, the STOP state-

ment is used to terminate execution in the midst of the

program. °

It is not mandatory that the last statement in a program be

an END statement.

The END statement will cause the simple message

"READY" to be printed, while a STOP statement causes

STOP AT line number of STOP statement

to be printed.

Copyright (C) 1973

Educational Data Systems 4-}

Statement:

Form:

— Examples:

Purpose:

Remarks:

LET

line number LET variable = expression

or

line number LET variable (expression) = expression

or

line number LET variable (expression, expression)=expression

10 LET P=6

20 LET R2=Q+(T/5)

30 LET A(2)=C+5

40 LET B=B+tl

50 D=P+5*Q-SQR(A(Z))

This statement assigns an arithmetic value to a variable. The

arithmetic value normally represents the result of calculations

performed by the computer.

In a LET statement, the symbol '="' should be read as ''takes the

value of", not as ‘equals’. For example,

LET P=6

should be read ''Let P take the value of 6''. Therefore it is

possible to have

10 LET B=B+1

which means to let the new value of B take the existing value of

B with one added to it.

The word LET is not required when entering an assignment

statement (see example 50 above). LET will be assumed as the

statement type if no type word is entered, and the word LET will

be printed when the program is listed.

Copyright (C) 1973

Educational Data Systems 4-2

statement:

Form:

Examples:

Purpose:

Remarks:

INPUT

line number INPUT variable, variable...

110 INPUT .A, B

120 INPUT C, D4, E

130 INPUT B(2)

140 INPUT "WHAT IS YOUR NAME?” "N$

150 INPUT '"'' "J

This statement informs the system that data are to be entered

from the keyboard. The system will temporarily suspend the

program, type a question mark, and await data to be typed in by

the programmer.

The program: 1l10INPUT A,B

20 PRINT "THE SUM IS"; A+B

30 GOTO 10

will input two numbers from the keyboard, add them, print the

sum, and ask for two more numbers.

To enter more than one number in response to an INPUT state-

ment, such as in example 120, separate the numbers by commas

or press the RETURN key after each number entered. When the

RETURN key is pressed after entering data, the system will not

return the terminal's carriage but will remain on the same line.

To terminate a program or Subroutine using the INPUT statement

two methods may be applied:

>

1. Use ESC key - See Chapter 2.

Insert after the INPUT statement an IF statement sc that if a

given value is inserted, the program or subroutine is termin-

ated. For example, in the second program shown above,

insert

15 IF A=0 STOP

The standard question mark prompt character may be replaced by

any prompt message given in quotes at the beginning of the state-

ment as in example 140. If there is nothing between the quotes,

as in example 150, then input will be enabled with no prompt at

all.

Copyright (C) 1973

Educational Data Systems 4-3

Statements:

Form:

Example

Program:

Purpose:

Remarks:

READ and DA’IA

line number READ variable, variable...

line number DATA constant, constant...

Or

line number DATA n%, constant, constant...

10 FOR J =1TO4

20 READ Y

30 PRINT ''THE SQUARE ROOT OF"; Y; "IS"; SQR(Y)

40 NEXT J

50 DATA 3%, 2, 3.7, 94.61, .0024

60 LET E=C+Z

70 PRINT E

80 DATA 12, -32.4, 9999, 4E-16

The READ statement instructs the system to read a number from

a DATA statement, and to assign the value to the specified vari-

able.

The DATA statement is used for supplying data in a program and

for specifying the precision of that data.

As described in The DIM statement, the precision of each variable in a

program is determined by the setting of a four-position "switch"

when the variable is encountered in the program for the first

time. This switch is initially set to two but may be changed to

a new value of 1,2,3 or 4 by the occurrence of n% (n=1, 2,3, 4) in

a DIM statement. n% (n=1,2,3, or 4) may also occur immediately

after the word DATA in a DATA statement, in which case the

numbers in that DATA statement are read with precision n. Thus,

in line 50 above, 2, 3.7, 94.61, and .0024 are read and assigned

to variable Y as three-word precision numbers.

Only one % symbol may be used in each DATA statement, and it

must immediately follow the word DATA. All numbers in a given

DATA statement are of the same precision. The % Symbol ina

DATA statement does not affect the position of the ''switch".
Therefore, variable E, which is first encountered in line 60, will

Copyright (C) 1973

Educational Data Systems 4-4

in this case be a two-word variable. If a DATA statement does
not contain n%, then its data are stored with precision deter-

mined by the current setting of the "switch".

The data are read in sequence from the first to the last DATA

statement and from left to right within each DATA statement.

The system initially sets a pointer to the first item of data. As

the READ statements request each data item, the pointer is

moved to the next data item. The RESTOR statement may be

used to reset the pointer.

DATA statements are not executed and may be placed anywhere

iu the program, though they are usually placed near the end of

the program.

Items in a DATA statement must be separated by commas, but

no comma should follow the last item of data.

Statement: RES'TOR

Form: line number RESTOR

Program 10 FORI=1 TO 4

Example: 20 READ X, Y

30 INPUT Z

40 PRINT (X+Z)/Y

50 RESTOR

60 NEXT I

70 DATA 1.2, 3.14159

Purpose: The RESTOR statement resets the data pointer to the first item

of data making it possible for the data to be re-read.

Remarks: Line 50 in the example program resets the data pointer so that

the same values are read for X and Y each time through the loop.

Copyright (C) 1973

Educational Data Systems 4-5

Statement:

Form:

Examples:

Purpose:

Remarks:

PRINT

line number PRINT list of expressions and/or literal strings

10 PRINT A

140 PRINT 6*A, B, SQR(B)+C,

300 FRINT 'THE ANSWER IS";R

440 PRINT 'THE SUM OF";X;"AND":Y;"IS";X+Y

610 PRINT

770 PRINT E;TAB(20);''x''

990 PRINT EXP (D+SQR(X))

To print text, numbers, and computation results on the user's

terminal. (See also PRINT # in Section 7.)

Example 10 above will print the current value of variable A and

then cause a carriage return and line feed.

There are 75 columns or print spaces numbered zero through 74

across each line. The line is divided into five fields of 15 spaces

each, starting at columns 0, 15, 30, 45 and 60. A comma ina

FRINT statement causes a column tab; i.e., it causes spacing to

the beginning of the next field. Therefore, statement 140 above

will print the value of 6*Astarting at column zero, the value of B “ai,

starting at column 15, and the value of SQR(B)+C starting at

column 30. The comma at the end of the statement then causes

Spacing to column 45 where printing will cease without a carriage

return,

After printing in the fifth field, another comma would cause a

carriage return, so that the sixth field will be directly under the

first field, etc.

In any case, when a PRINT statement contains more than one

expression, the expressions must be separated by commas or

semicolons. A semi-colon causes close packing (no column tabs).

Each number is printed with either a leading minus Sign or space,

the value, and one trailing space. Therefore, the use of semi-

colons will print numbers in the closest readable form.

A verbatim message may be printed by enclosing it in quotation

marks as shown in example 300. Such a "literal string" is

usually separated by semi-colons to prevent column tabs.

Copyright (C) 1973

Educational Data Systems 4-6

A quotation mark may be included in a literal string by use of a

double apostrophe, and a carriage return may be included by use

of a CTRL Z where the RETURN is desired.

Statement 440 above is a good example of the use of literal st rings.

If X=7 and Y=9, then statement 440 will cause the following

printout:

THE SUM OF 7 AND 9QIS 16

Each printout is followed by a carriage return and line feed unless

this iS Suppressed by either a comma or a semi-colon at the end

of PRINT statement. Therefore, an empty PRINT statement, as

in example 610, will cause only a carriage return and line feed.

The TAB function may be used for further control of a printout.

An expression of the form

TAB (expression);

will cause spacing to the column number specified by the integer

value of the expression. For instance, statement 770 above will

print the value of E, space to column 20, and print an asterisk.

If printing has already occurred past the specified column, no

further spacing will take place. The print line is considered to

be circular; i.e., columns 75, 150, 225, etc., are considered

to be the Same as column zero. A neyative value for the tab

expression will, however, cause an error.

The TAB function may be used only ina PRINT or PRINT

USING statement. Any statement such as

100 TAB(30); "NAME"

or

| 200 LET A = TAB(5)

will cause an error.

The result from PRINT that goes into the I/O buffer is not out-
putted each time but is buffered up until the buffer is filled, the
user iS Swapped out, or another BASIC statement wants to use
the I/O buffer for something other than PRINT (such as INPUT).
The user can always force printing with a SIGNAL 3,0 state-
ment (see Section 4).

Copyright (C) 1973
Educational Data Systems 4-7

Statement:

Form:

Examples:

Purpose:

Remarks:

PRINT USING

line number PRINT USING string variable; expression list

10 DIM A$(10), B$(30)

20 LET A$="###. ##"'

30 PRINT USING A$; "ANSWER=": 1. 50*4

40 PRINT USING A$; 8, 300; TAB(40);X

50 LET B$= "+++## $$$. ### -$#, ###. BH!

60 PRINT USING B$: 7.6, 5.4, -8500

70 PRINT USING B$(15);X;Y:Z

80 PRINT USING B$;X; "' TIMES "; yy; "="; Z

90 LET B$= "#.### Pakek ye | FH

100 PRINT USING B$; 15360000; 23.469

110 PRINT USING ''####. ##"; X

To print text, numbers, and computational results ina

format specified by a string.

String variable is a string variable (one subscript allowed) or

a literal string whose value, the format string, specifies the

format in which the expression list is to be printed. The for-

mat string may contain one or more format fields which control

the form of printout of the numeric expressions in the expres-

sion list. It may also contain blanks (#) and any other char-

acters other than format control characters. The expression

list may include numeric expressions, string expressions,

commas, semicolons, and TAB functions.

Printing is accomplished by starting a scan of the expression

list; any string expressions are printed and tabulations are ex-

ecuted in response to commas, semicolons, and TAB functions

until the first numeric expression is reached. Then, a scan of

the format string is begun and all characters other than format

control characters in the format string are printed until the

first format field is reached. The value of the numeric expres-

sion is then printed in the format specified by the format field.

Next are printed all non-format characters in the format string

if there are no more format fields. The scan is then resumed

in the expression list, printing until the next numeric expression

is reached. In this way, scans of the expression list, and of the

format string alternate until the expression list is exhausted.

If the end of the format string is reached before the expression

list is exhausted, the scan of the format string is repeated as
eramminenmne

often as required.

Copyright (C) 1973 | ~

Educational Data Systems 4-8 a

PA

Thus, lines 20 and 30 above will produce:

ANSWER = 6.00

While lines 20 and 40 will produce (if X=20. 5):

8.00 300. 00 20. 50

The format string may contain any of the following types of

format fields:

tH HH

For each # in the format field, a digit (0-9) or blank (i) is

substituted. Integers are right justified with leading blanks.

Signs and other non-digits are ignored. Only integers are repre-

sented; the decimal point and any fraction after it are ignored.

If the datum is too large, all asterisks are printed.

Hit. Hi

A decimal point is printed where indicated. Digit positions (#)

following the decimal point are filled; no blanks are left in these

positions. If the fractional portion is too long, it is truncated to

fit the format. Leading zeroes in the integer portion are replaced

by blanks except for a single leading zero preceding a decimal _

potnt.

Signs (+, -,++, --)

A fixed sign (+ or -) may appear as the first symbol of a format

field.

Interpretation: + Outputs ''+"' if value is positive, ''-"' if negative.

- Outputs '$" if value is positive, ''-" if negative.

A floating sign (++*+- or --+++) appears as the first two or more

symbols in the format field. Positions occupied by the second

and any additional signs can be used for numeric positions in the

datum and the sign is printed immediately preceding the datum.

Copyright (C) 1973

Educational Data Systems 4-9

Fixed and Floating ($)

A fixed $ appears as the first or second character in the format

field, causing a $ to be printed in that character position. The

$ may appear as the second character if it is preceded by a fixed

sign.

A floating dollar sign ($$.--) consists of at least two characters

beginning at either the first or second character position in the

string and causing a $ to be placed in the character position

immediately preceding the first digit. If the floating $ begins

in the second character position, it is preceded by a fixed sign.

Only one floating character (sign or $) is permitted in a given

field.

Separator (,)

The separator (,) places a comma in the position indicated except

where leading zeroes (blanks) occur.

Exponent Indicator (?*)

Four consecutive arrows (f¢#f) indicate an exponent field and will

be filled by Etnn where each n is a digit. |

Asterisk (*)

The asterisk (*) specifies asterisk protection of all leading

positions within the output result which would otherwise print

as blanks.

In the examples above, lines 50,60, 70 and 80 produce the

following printouts (assuming X=1000, Y=9.999, and Z=9999):

+ 7 €5~ 400 - $8 5500-00

$1.2000-00 §; 999 $9 9999200

+1000 TIMES 59-999 = $93999400

Lines 90 and 100 produce:

1,.536E+07 $%***23, 46

Appendix I includes business application programs which further

illustrate PRINT USING.

Copyright (C) 1973

Educational Data Systems 4-10

Statement:

Form:

Examples:

Purpose:

Remarks:

GOTO

line number GOTO line number

30 GOTO 10

50 GOTO 90

This statement transfers the control to the specified

line.

GOTO must be followed by a line number to which the

control is to be transferred; there must be a statement

in the program with that line number, or an error will

occur,

The statement is useful for "jumping" to another part

of the program or for repeating a task indefinitely.

A GOTO should not be used to jump into the interior of a

FOR-NEXT loop because a "NEXT without matching FOR"

error will occur when the NEXT statement is encountered.

Copyright (C) 1973

Educational Data Systems 4-11

Statements: GOSUB and RETURN

Form: line number GOSUB line number starting subroutine

line number RETURN

Examples: 10 GOSUB 200

20 GOSUB 430

*

250 RETURN
450 RETURN

Purpose: The GOSUB statement transfers control to the specified

line number.

The RETURN statement transfers control to the statement

following the GOSUB statement which originally transferred

the control.)

Remarks: ‘The GOSUB and RETURN statements eliminate the need

to repeat frequently used groups of statements in a program.

Such a group of statements is called a gubroutine.

The portion of the program to which the control is

transferred must be terminated with a RETURN statement.

A RETURN statement may be used at any desired exit

point in a Subroutine, and there may be as.-many RETURN

statements as needed in each Subroutine.

A subroutine that has been entered with a GOSUB can itself

contain a GOSUB statement. This nesting process can be

carried out to 5levels. Each RETURN is to the previous

level.

A RETURN statement cannot be executed without the

previous execution of a GOSUB statement.

Copyright (C) 1973

Educational Data Systems 4-12

fs,

Statement: ON

Form: line number ON expression GOTO sequence of line numbers

or

line number ON expression GOSUB sequence of line numbers

Examples: 60 ON J/2-5 GOTO 150, 300, 100, 300, 40

10 ON LOG(R)+1 GOTO 95, 407

20 ON J GOSUB 130, 140, 200, 210

30 ON. P+1 GOSUB 190, 500, 650

40 ON A GOSUB 400, 400, 350, 410, 430

Purpose: This statement transfers control to the line number indicated

by the integer value of the expression following ON,

Remarks: The expression following ON is evaluated, and the value is

integerized, but not rounded. The integer is then used to select

the first, second, third, etc., line number. If the value of the

expression iS not positive, or if it is greater than the number

of line numbers listed, the GOTO or GOSUB will not be executed;

control will be transferred to the next statement following the

ON statement.

The subroutine given control by an ON...GOSUB statement

Should be exited only with a RETURN statement.

The line numbers following GOTO or GOSUB must be separated

by commas.

There may be any number of line numbers listed.

To illustrate the concept, statement 20 above will transfer

control to line 130, 140, 200 or 210 if the integer value of J is

1, 2, 3 or 4, respectively.

ON...GOTO is equivalent to the statement GOTO...OF imple-

mented on some systems.

Copyright (C) 1973

Educational Data Systems 4-13

Statement: DIM

Form: line number DIM variable list.

Examples: 10 DIM A(15) ,

20 DIM B2(7, 8), C4(40), D$(50)

30 INPUT B

40 DIM D(2,3), 4%, G(15), H, B$(100), 3%, R

90 LET C=B+M

60 READ X, Y, Z

70 DATA 17, 344. 6699802, 2

Purpose: The DIM statement instructs the system to reserve the correct

amount of storage space for a number, an array, ora string by

specifying an upper limit on the amount of space that will be

required.

Remarks: Numbers and array elements may be stored in four different

formats (precisions), requiring from one to four words, as

described in Section 2.2. One of the purposes of DIM is to

provide a means for specifying these formats. The precision of

a variable is determined by the state of a four-position 'switch''

at the time the variable is first encountered during each run of a

program; the variable remains at that precision throughout the run.

The "switch" is automatically set to position two at the beginning of a

run; it can be changed to any position n(n=1,2,3, or 4) by |

encountering n% in a DIM statement. All variables that are

first encountered while the switch in in position 3, for example,

will become three-word variables capable of carrying ten signi-

ficant digits.

DIM is also used to specify the maximum number of elements

that may be stored in a one- or two-dimensional array or ina

string. This is accomplished by including in the DIM statement

a variable name followed by one or two expressions enclosed in

parentheses. See lines 10 and 20 above for example.

For a two-dimensional array, the first expression specifies the

highest row number and the second expression specifies the

highest column number to be used. Since an array always

includes a row zero and a column zero, an array dimensioned

A(3,5) contains four rows and six columns for a total of 24

elements.

Copyright (C) 1973

Educational Data Systems 4-14

A one-dimensional array is treated as a column vector; i.e., it has only one

column (column 0), and the expression specifies the highest row number

Thus, A, in line 10, can store up to 16 elements. If the value of an expres-

sion is not integral, the integer portion of the value is used. Negative

dimensions are not allowed.

A one-dimensional array which is not mentioned in a DIM statement is

automatically dimensioned 10 by 0. A two-dimensional array which is not

mentioned in a DIM statement is automatically dimensioned 10 by 10.

The actual working size of an array may be smaller than the size to which

it is dimensioned in the DIM statement. For example, in an array dimen-

sioned 0x5, it is acceptable to use fewer than 36 elements.

The dimension of a string variable specifies the maximum number of bytes

that the string can store. String variables are not automatically dimen-

stoned so that all must appear in a DIM statement.

A DIM statement may be placed anywhere in a program. The example

program above illustrates how the DIM statement determines precision. In

this program, B will be a two-word variable since it is encountered before

the "switch" is changed from its initial position. Likewise, array D will be

composed of two-word numbers. The 4% moves the switch so that vector G

and variable H will be of four-word precision. B$ is dimensioned as a 100

character string (the use of % symbols has no effect on strings). The switch

LS again repositioned and Ris created as a three-word variable. In line 50,
C and M are also created as three-word variables since the DIM statement

leaves the switch at position three, but B remains as a two-word variable.

In line 60, the variables X, Y and Z will be three words cach and will receive

the values 17, 344.6699802 and 2, respectively.

The number of words required to hold data and variables in Busine ss BASIC

may be calculated from the following formulae:

type number of words

Simple variable 2+ precision

array 4 + (number of elements)*(precision)

string 4+ INT (dimension/2)

DATA statement 3 + (number of elements)*(precision)

The number of elements in an array dimensioned (R, C) is (R+1)*(C+1)

including row zero and column zero.

Copyright (C) 1973

Educational Data Systems 4-15

Statement: IF

Form: line number IF expression relation expression statement

or

line number IF expression statement

Examples: 240 IF A+B=C*5 THEN 660

360 IF D¥E GOTO 510

510 IF W(2, 3)=R2+8 GOSUB 1140

405 IF B=7 LET N=N¥2+Q

100 IF D3> 4 IF D3< M PRINT D3

Purpose: An IF...GOTO statement (the standard and most

commonly used form of the IF statement) provides

conditional branching capabilities; control will be

transferred to the specified line number if the given

condition is met. Extended forms of the IF statement

allow branching to a subroutine or executing a given

statement only if the condition is met. Any statement

of Business BASIC may replace statement above.

Remarks: The words THEN and GOTO are synonymous in an

IF statement. Either will be accepted but it will

always be listed as GOTO.

Example 240 above will transfer control to line 660

if and only if the value of the expression A+B is equal

to the value of the expression C¥*5. Otherwise, control

will pass to the next statement in sequence following 240.

In the short form IF statement (single expression, no

relation), the ''condition"” is met if the value of the

expression is non-zero. Thus, example 360 above

is identical to the statement

360 IF D*¥E<>0 GOTO 510

and will branch to line 510 if the value of D¥*E is non-

zero, This is a particularly useful form since control

will continue to the next statement in sequence if |

either D or E is zero.

Example 510 shows how a subroutine may be conditionally

executed. Example 405 shows how an assignment may

be made only if a condition is true. Since any statement

including another IF statement may follow the |

condition expression, many tests can be performed

Copyright (C) 1973

Educational Data Systems 4-16

Statement:

Form:

Examples:

Purpose:

Remarks:

Simultaneously as in line 100 above. This example will print the

value of D3 only if it lies in the range

4<D3<M.

Any number of IF conditions may be concatenated in this manner.

It is sometimes desirable to test two values for approximate

equality since one or both may not be exact due to divisions or

use of transcendental functions. In such a case, the statement

may be written in the form

900 IF A-B<. 01...

so that a small difference between the values of A and B will be

accepted as equality.

REM

line number REM any series of characters

10 REM: THIS PROGRAM ADDS NUMBERS—

20 REM [1/1 /*/]

The REM statement allows the insertion of a comment or remark

intO a program.

REM lines are saved as part of the program. They appear when

the program is listed, but they are ignored when the program is

executed.

Copyright (C) 1973

Educational Data Systems 4-17

Statements: FOR and NEXT

Forms:

Examples:

Purpose:

Remarks:

line number FOR variable = expression TO expression

or

line number FOR variable = expression TO expression STEP expression

line number NEXT variable

10 FORA =1TO5

20 FOR B38 = 6 TO -4 STEP -2

30 FOR M=J TO Kt+4 STEP B-D

150 NEXT M

300 NEXT B3

600 NEXT A

To create a program loop and cause it to be repeated a predeter-

mined (or calculated) number of times. The variable, sometimes

called the ‘index variable", must be the same in the FOR state-

ment and its mating NEXT statement.

The FOR statement assigns an initial value (the value of the first

expression) to the index variable, and saves the value of the

second expression as a limiting value. If the initial value does

not already exceed the final value, control then passes to the

statement following the FOR statement.

When a NEXT statement is encountered, the step value (assumed

to be +1 unless specified by the word STEP in the FOR statement)

is added to the index variable. If the result does not exceed the

limit value, control is transferred to the statement following the

FOR statement. If the result does exceed the limit value, control

passes to the next statement in sequence following the NEXT

statement.

The value of the index variable is deemed to exceed the limit

value if it is more positive (for a positive step value) or more

negative (for a negative step value). If the initial value in the

FOR statement exceeds the limit value, a search is made for the

matching NEXT statement, and control is immediately transferred

to the statement following the NEXT statement without executing

the statements within the loop.

Copyright (C) 1973

Educational Data Systems 4-18

Looping can be accomplished with the FOR and NEXT statements. For

instance, the following two programs perform similar functions:

10 FOR A=B TOC STEP D 10 LET A=B

20... 15 IF A>C GOTO 110

20

100 NEXT A 100 LET A=A+D

110 ... 105 IF A «=C GOTO 20

110

There is one important difference, however, between these two programs:

changing the values of C and D within the FOR-NEXT loop will have no effect

on the limit or step values since they are evaluated only once when the FOR

statement is executed; changing C and D within the other program will affect

lines 100 and 100.

Nesting FOR-NEXT Loops

FOR-NEXT loops may be nested up to five levels deep as shown in the

iollowing examples:

legal nesting legal nesting

FORA... 10 FORA...

FOR B... 20 FORB...

NEXT B

NEXT A L109 NEXT C
p—110 FORC

illegal nesting

oe | ——170 NEXT C

y-10 FOR A... ——~ 180 NEXT B
20 FORB... 190 FOR B

60 NEXT A | 300 NEXT B
1 7 () NEXT B ; Lee SIO NEXT A

Copyright (C) 1973

Educational Data Systems 4-19

Note that for legal nesting, the mating FOR and NEXT

statements can be connected without crossing lines. In

the case of the illegal nesting shown, when the NEXT

A statement is encountered, the system checks whether

the last FOR statement encountered was a FOR A. It

was not, so the index variable B loop is dropped and the

FOR A statement is found. The FOR A...NEXT A loop

is processed to completion, and an error will occur when

the NEXT B statement is encountered. In certain cases,

this situation may be desirable, in which case it is an

acceptable programming practice as long as the

circumstances which create the condition also prevent

the NEXT B statement from being executed.

Another type of illegal nesting involves use of the same

index variable in nested loops. For example:

rp 10 FORA...

20 FORA...

80 NEXT A

—— 90 NEXT A

In this case the inner loop will be executed properly, but

the outer loop will be lost. When a FOR statement is

executed, the system checks whether an existing loop

uses the same index variable, and if so, that loop and

all loops nested within it are dropped. This allows

programs such as the following to be properly executed:

——- 10 FORA...

60 GOTO 240

‘- 90 NEXT A.

-~ - 240 FORA...

Copyright (C) 1973 |

Educational Data Systems 4-20

special case for integer index variable:

If the index variable (D in the example below) is an integer, then the step and

limit values will also be evaluated as integers. Thus, all arithmetic which

must be performed by the system each time the NEXT statement is encountered

will be done with integers, and it will take only one-third as long to cxecute

the looping function. This feature should be used wherever a short FOR-

NEXT loop is used and maximum speed is desired. For example:

10 DIM 1%,D,3%

20 FOR D=1 TO 10 STEP 2.9

30 LET X=5/D

40 PRINT D;X

50 NEXT D

will cause the following to be printed:

1 95

3 1.666666666

o 1

TY , 4142857142

9 ,9999959555

Note that the use of an integer (one-word precision) index variable causes the

integer value of the step to be used. This is not the same as if the INT

rometion were used, however, since the fractional part is simply ignored; a

step value of -3 would be used if a step of -3.6 were specified.

Copyright (C) 1973

Educational Data Systems 4-21

Statement:

Form:

Examples:

Purpose:

Remarks:

DEF

line number DEF FN letter (variable name) = expression

10 DEF FNR(B)=2*B-C/3

20 DEF FNC(D4)=2*D4-C/3

30 DEF FNN(L.)=FNC(L)+FNR(L)-1

This statement allows the programmer to define his own

BASIC functions.

Up to 26 functions, FNA through FNZ, may be defined in

each program.

Defined functions may be nested, as in example 30, by

utilizing other defined functions within the definition. Up to

8 levels of nesting are allowed in this manner.

The DEF statement must be executed for the definition to

become effective. The definition may be changed at any

time by executing another DEF statement for the same

function.

A defined function is used primarily when the same expression

appears several places in a program. A function is defined

equal to that expression, and then the function is used in the

program in place of the expression. For instance, given the

definition in example 20 above, the following two statements

are identical in operation:

100 LET G=Bt4*(2*Y*Z-C/3)-M

100 LET G=Bt4*FNR(Y*Z)-M

The argument (Y*Z in the above example)of the function call

(FNR) may be any expression. The expression is evaluated,

and the dummy variable in the definition (D4 in example 20)

is assigned that value.

The variable name in the function definition is called a dummy

variable because its name is independent of all other program

variables. In the above example, there might have been a

variable named D4 elsewhere in the program; it would neither

be affected by the above example, nor would it enter into

the evaluation. Also, the dummy variable is assigned the value

of the argument in the function call only for the duration of the

furrction evaluation.

Copyright (C) 1973

Educational Data Systems 4-22

statement:

Form:

Examples:

Purpose:

Remarks:

RANDOM

line number RANDOM expression

10 RANDOM 2

9 RANDOM 0

The RANDOM statement allows the user to exercise control |

over the random number sequence generated by the RND function.

There are two problems common to most programs using random

numbers:

1, The program may be difficult to debug since each run

produces different results.

2. Successive runs of a debugged program may not behave

independently if the ''random"' numbers are from a Single

pseudo-random sequence.

Both these problems can be resolved by use of the RANDOM

statement.

The RANDOM statement is usually the first statement in a program

which uses the RND function. The use of a non-zero expression,

as in the first example above, will cause a certain sequence of

pseudo-random numbers to be generated. Different non-zero

expressions will initiate different sequences, but each RANDOM

Statement with the same non-zero value will initiate the same

sequence.

Execution of a RANDOM statement with a zero value expression,

as in the second example, causes the system clock to be used to

initiate the random number sequence. Since the system clock

changes each tenth second, the random number sequence which

will follow a RANDOM 0 statement is unpredictable.

For best results when using the RND function, the following

procedure is recommended:

1, Include a RANDOM statement with a non-zero expression at

the beginning of the program while debugging.

2, Once the program is checked out, change the expression in

the RANDOM statement to zero.

Copyright (C) 1973.

Educational Data Systems 4-23

Statement:

Form:

Examples:

Purpose:

Remarks:

SIGNAL 1 (Send Signal)

line number SIGNAL 1,p, x1, x2

250 SIGNAL, 1, B, 61, 2140

365 SIGNAL 1, D, R+1, 2*1-Q

Sends a ''signal'', which consists of the integer values of

expressions xl and x2, to the port number given by the value of

expression p. The signal will be received by the addressee only

if the program running on that port executes a SIGNAL 2 (receive

signal) statement.

The expressions xl and x2 must evaluate to positive numbers not

exceeding 32767. Their integer values are then placed in a signal

list along with the integer value of variable p which specifies the

destination port number. In the first example above, the values

61 and 2140 are sent as a signal to port number given in B. In

the second example, the values of R+1 and 2*I1-Q are sent the port

specified by the value of D.

The signal merely resides in the signal list until a program at

the destination port executes a SIGNAL 2 statement. However, ee,

a signal will be ignored by the system if there is no user logged

on at the destination port. An error will occur if the signal list is full

at the time a SIGNAL 1 statement is executed, and the signal will be lost.

To reduce the probability of the list being filled, any signal is auto-

matically deleted from the list when it is about one to two hours old.

Also, any signal will be deleted if the user at the destination port

logs off.

Copyright (C) 1973

Educational Data Systems 4-24

Statement:

Form:

Examples:

Purpose:

Remarks:

SIGNAL 2 (Receive Signal)

line number SIGNAL 2,p, vl, v2

or

line number SIGNAL 2,p, vl, v2,x

420 SIGNAL 2,P,A,B

610 SIGNAL 2,5, M(2, 3), Y, 30

Receives any "'signal'’ which has been sent to the port on which

this statement is executed (see SIGNAL 1). The variable p will

be set to the number of the port from which the signal was sent,

and variables vl and v2 will be set to the signal values (the values

of xl and x2 from the SIGNAL 1 statement). If there is no signal

to be received, p will be set to minus one, and vl and v2 will be

unchanged.

It is sometimes desirable to pause and wait for a signal. In this

case a time-out expression, x, may be included. The value of

x specifies a delay in tenth-seconds. Ifa Signal is received _

before the delay runs out, the program is immediately reactivated,

and the variables p, vl and v2 are set to the Signal values. If

the delay runs out first, the program is reactivated, p is set to

minus one, and vl and v2 will be unchanged.

The variables p, vl and v2 must be simple variables or sub- |

scripted variables; expressions are not allowed. However, x

may be given as an expression. The maximum value for x is

65534 which gives a delay of nearly two hours.

In the second example above, the program will pause for three

seconds (30 tenths of a second) or until a signal is received. The

port number of the sender (or -1 if no signal received) will be

put into variable $8, and the two values of the signal will be put

into M(2,3) and Y.

A user may send a Signal to his own program by pressing the

BREAK key on his keyboard (use CTRL B.if the BREAK key is

disabled). When a SIGNAL 2 statement is executed, p will be

set to the user's own port number, and vl and v2 will both be |

set to zero. The SPC(6) function may be used by the program to

determine its own port number.
ne eet chee a eth Mote de

ER a SRI ek ae a at wae foes eee se aml nar necapenanannentmina nes tet. ae

Copyright (C) 1973

Educational Data Systems 4-25

Fo ome pete ee hs age MNS eli emt

Statement:

Form:

Examples:

Purpose:

Remarks:

Statement:

Form:

Examples:

Purpose:

Remarks:

SIGNAL 3 (Pause)

line number SIGNAL 3,x

660 SIGNAL 3, 100

400 SIGNAL 3, At+42

Allows a program to pause (defer further execution) for a time

specified by expression x in tenth-seconds. At the same time,

anything buffered up in the users I/O buffer will be outputted to

the channel assigned to the buffer.

In the first example above, further program execution will be

delayed for ten seconds. All inputs (except ESCAPE) and all

signals will be ignored during this time. An output in progress

at the time the SIGNAL 3 statement is executed will be allowed

to finish. The maximum value for x is 65534, which gives a

delay of nearly two hours. If X is 0, an immediate return is

made to the next BASIC statement.

This statement may be used whenever it is desired to pause

before executing the next statement in the program. One example

of this is a program which is to loop periodically. It also will

force the output of the users I/O buffer ondemand.

KILL

line number KILL list of string variables or literal strings

540 KILL "FILE23"

200 KILL M$, "XPRL" , D$

To delete disc files.

Each literal string or string variable must contain the Filename

of a disc file. The effect is the same as if the KILL command

were given in the system command mode, The user's account

on which the file was created will be credited for the disc blocks.

An error will occur if any of the strings given is not a legal

Filename identifying a disc file that is not write protected.

If a command is given to kill a file that is open at the time ona

data channel, the Filename will be removed from the INDEX

immediately, but the file will remain open on the channel. The

file will be deleted later when channel is closed by a CLOSE

statement or cleared by program termination.

Copyright (C) 1973

Educational Data Systems 4-26

statement

Form:

Examples:

Purpose:

Remarks:

\

CALL

line number CALL x, vl,v2,v3,...

220 CALL 3, A,B

625 CALL 14, F2, R(2), D$

The CALL statement provides a means for extending the BASIC

language by adding machine language subroutines.

The integer value of expression x selects a specific machine

language subroutine. This subroutine number is assigned by the

System operator in the range one to 255 when he loads the

Subroutine into the system.

The variables vl, v2,v3,... are used to pass argument values to

and from the subroutine. Up to twelve such parameters may be

used. Simple variables and string variables may be used either

with or without subscripts, but no expressions are allowed

except to select the Subroutine,

For information on how to use a particular subroutine, refer to

the documentation which must be provided by the user who writes

the routine.

Copyright (C) 1973

I;ducational Data Systems 4-27

Statement:

Form:

Examples:

Purpose:

Remarks:

Copyright (C) 1973

CHAIN

line number CHAIN literal string or string variable

400 CHAIN ''RUN PART2"

310 CHAIN "BYE"

840 CHAIN M$

990 CHAIN " *

The primary use of the CHAIN statement is to link together the

segments of a BASIC program which is too large to be run in

one piece. However, any system command can be given ina

CHAIN statement.

The CHAIN statement terminates running of the program in which

it is executed and transfers control to the system, which processes

the system command given in the statement. The effect is the

same as if the user were to use CTRL C and then type the system

command given in the CHAIN statement, but with one important

exception: the user's data file channels are not closed! This

allows one program segment to open a set of data files, and

Succeeding program segments to access the same files without

requiring the Filenames. All local variables are cleared,

however, and all data to be passed from one program segment

to the next must be stored in data files. am

Statement 400 above terminates running the current program and

initiates execution of the BASIC program named PART2. If

PART2 does not exist or is not a BASIC program, an error

message will be printed, and the terminal will go to control mode.

Any data file channels that were opened by the current program

will remain open and can be referenced by PART2 without

reopening them. Otherwise, the effect is the same as if there

were a STOP statement in place of the CHAIN statement, and the

user then pressed CTRL C and entered the command RUN PART2.

The other examples show additional uses for the CHAIN statement.

The port may be automatically logged off after all calculations

are finished (and the results stored in data files) by giving a BYE

command as in statement 310 above. In statement 840, the string

variable M$ must contain a system command. Statement 990

shows the use of an empty string in the CHAIN statement to exit

to the system, similar in effect to pressing CTRL C. All

channels will be cleared if the program chains to BYE or to

system control mode as in examples 310 and 990 above.

Educational Data Systems 4-28

0. MATRIX ALGEBRA

Business BASIC includes a set of MAT statements to facilitate fast and

efficient manipulation of matrices. A matrix is defined here as an array

(see Section 2.7) exclusive of row zero and column zero. Both dimensions

of the array must be non-zero.

In addition to the MAT statements, Business BASIC provides for the

calculation of the determinant value of a matrix which may be obtained by

use of the DET function after the matrix has been inverted. For example:

200 MAT A = INV(B)

210 PRINT DET (xX)

will print the determinant value of matrix B (see MAT...INV statement).

The DET function of a matrix may be used as an operand at any place in

an expression and at any time after inverting the matrix but before

inverting another matrix. The argument of the DET function is ignored

by the system, but some argument must be supplied to prevent a syntax

error.

A matrix is created by the first reference to its name in a DIM or MAT

statement. For example, any of these statements:

100 MAT INPUT D(3, 4)

110 MAT READ D(3, 4)

120 MAT D=ZER(3, 4)

will create a matrix D dimensioned three rows by four columns (plus the

zero row and column which are not used by the MAT statements). If the

matrix already exists due to a previous MAT statement or a DIM statement,

it may be given a new working size by using its name with new subscripts

in a DIM or MAT statement as long as the final number of elements does

not exceed the original number of elements. For example, line 130 below

redimensions matrix D (defined above to be 3x4) to be 2x5:

130 MAT D=ZER(2, 5)

An entire array may also be read from or written to a data file with the
MAT READ# and MAT WRITE# statements. See Section 7 for details.

Copyright (C) 1973

Educational Data Systems o-1

Statement: MAT. os ZER

ItForm: line number MAT matrix variable = ZER

or

iline number MAT matrix variable = ZER (expression)

or

line number MAT matrix variable = ZER (expression,
expression)

Examples: 100 MAT A= ZER

200 MAT B = ZER (15)

300 MAT Z = ZER (9,14)

400 MAT L = ZER (£, F)

Purpose: This statement sets all the elements of the specified matrix

equal to zero. The matrix may be given a new working size

(as in lines 200, 300, and 400 above).

Remarks: This statement, as with other MAT statements, performs

a procedure that would otherwise take several steps. For lt,

example, the statement

50 MAT B = ZER (R,C)

is equivalent to the following:

40 DIM B(R, C)

50 FORI=1TOR

60 FORK=1TOC

70 LET B (I, K) = 0

80 NEXT K

90 NEXT I

Copyright (C) 1973

Educational Data Systems 0-2

Statement:

Form:

Examples:

Furpose:

Remarks:

MAT...IDN

line number MAT matrix variable = IDN

or

line number MAT matrix variable = IDN (expression, expression)|

210 MAT F = IDN

220 MAT G = IDNG, 4)

230 MAT H = IDN(5, 5)

240 MAT I = IDN(B4, B4)

i

This statement establishes an identity matrix. The elements

comprising the main diagonal have the value 1, and all other

elements equal 0. A new working size may be specified.

The IDN matrix must be two-dimensional and should be "square".

In line 220 above, the matrix G has been assigned:

Ooo Oo KF oo fF O or OO O&O He CO OC ©
If the matrix is uct square’, then the "main diagonal" is

assumed to start at the lower right corner. For example, the

statemeiut

40 MAT B = IDN(3, 4)

will assign matrix B the value

Ooo © Or © Co ©}
)

0

0 —

Copyright (C) 1973

Educational Data Systems o-3

Statement:

Form:

Examples:

Purpose:

Remarks:

Statement:

Form:

Examples:

Purpose:

Remarks:

MAT...CON

line number MAT matrix variable = CON

or

line number MAT matrix variable = CON (expression)

or

line number MAT matrix variable = CON (expression, expression)

150 MAT D = CON

155 MAT E = CON (8)

160 MAT Z = CON (X, Y)

This statement sets all of the elements of the specified matrix

equal to one. The matrix may be given a new working size (as

inlines155 and 160 above).

Otherwise it 1s Similar to the MAT...ZER statement.

MAT Assignment

line number MAT matrix variable = matrix variable

225 MAT C=Y

320 MAT M2=Q6

To set all of the elements of the specified matrix equal to the

corresponding elements of a given matrix.

The assigned matrix (C in example 225) is automatically dimensioned

the same as the given matrix; row zero and column zero are not

changed except for possible rearrangement due to rediminsioning.

Copyright (C) 1973

Educational Data Systems 5-4

statement:

Form:

Examryles:

Purpose:

Remarks:

MAT PRINT

line number MAT PRINT matrix variable, matrix variable,...

or |

line number MAT PRINT matrix variable; matrix variable;...

90 MAT FRINT C

60 MAT PRINT C;

70 MAT PRINT A,B

This statement causes the system to print out one or more entire

matrices, row by row.

A matrix may be printed in a packed’ form, where up to 12

elements may be printed on a line, by placing a semi-colon after

the matrix variable; as in line 60 above. Otherwise, the matrix

will be printed with five elements per row.

If the matrix variable is followed by a comma or semi-colon, an

extra line feed is generated after printing the matrix to provide

double spacing between matrices. More than one matrix may be

printed in one statement by separating the matrix variable names

by a comma or semi-colon as shown in statement 70.

Caution: If the semi-colon is used for close packing, the col-

umns will not line up properly if any element must be

printed in floating point format.

Copyright (C) 1973

Educational Data Systems 9-5

Statement: MAT INPUT

Form: line number MAT INPUT matrix variable, matrix variable,...

or

line number MAT INPUT matrix variable (expression), . ws
or

line number MAT INPUT matrix variable (expression, expression), ...

Examples: 170 MAT INPUT F

180 MAT INPUT R(5)

190 MAT INPUT C(E, J), F

Purpose: This statement allows the input of an entire matrix from the

terminal. The matrix may be dimensioned in the INPUT state-

ment or given a new working size (as in lines 180 and 190 above).

Remarks: The elements of each row being entered must be separated by

commas.

A complete row of data must be entered before pressing RETURN.

For example, while inputing the data necessary for the execution

of

190 MAT INPUT A(3, 4)

four data items must be typed in before pressing RETURN.

not enough data items are entered, the system will print a

reverse slash mark and await the entire new line of data.

The matrix is filled in the following order:

1,1; 1,2; 1,3; etc. across one row ata time.

Copyright (C) 1973

Educational Data Systems 9-6

If

statement:

Form:

Examples:

Purpose:

Remarks:

MAT READ

line number MAT READ matrix variable, matrix variable,...

or

line number MAT READ matrix variable (expression),...

or

line number MAT READ matrix variable (expression, expression)
4 @ @ @

400 MAT READ A

405 MAT READ B,C

410 MAT READ E(L,N),A

415 MAT READ F(7)

This statement allows the computer to read an entire matrix from

DATA statements. The matrix may be dimensioned in the READ

statement or given a new working size (as in lines 410 and 415

above).

The matrix is filled in the following order:

1,1; 1,2; 1,3; etc.

i.e€., a row at atime, from left to right.

Copyright (C) 1973

Educational Data Systems o-7

Statement:

Form:

Examples:

Purpose:

Remarks:

MAT... TRN

|

line number MAT matrix variable = TRN (matrix variable)

450 MAT Q = TRN(R)

460 MAT L = TRN(A)

This statement establishes a matrix as thetranspose ofa

specified matrix, i.e., the rows and columns are exchanged.

A sample transposition, as commanded in line 450 above,

produces the following results.

R (original matrix) Q(transposed matrix)

123 147

49596 29 6

78 9 369

If the original matrix has the dimensions (M,N), the transposed

matrix is dimensioned (N,M). In other words, the dimensions

of the resulting matrix are opposite those of the original.

It is not necessary for the new matrix to have been previously

dimensioned.

A statement of the form

120 MAT S = TRN(S)

is illegal. It may be executed, but the result will not be as

expected.

Copyright (C) 1973

Educational Data Systems o-8

Statement: MAT Add

Form:

Examples:

Purpose:

Remarks:

Statement:

Form:

Examples:

Purpose:

Remarks:

line number MAT matrix variable = matrix variable +

matrix variable

350 MAT A = B+C

360 MAT J = K+Q

370 MAT Y = Y+W

This statement establishes a matrix equal to the sum of

two matrices. The matrices must all be of the same

dimensions.

The same matrix variable may be used on both sides of

the equal sign, as in line 370 above.

The addition is done element by element.

The sum matrix (matrix A in example 350) may be created

by execution of this statement.

MAT Subtract

line number MAT matrix variable = matrix variable -

matrix variable

06 MAT P

66 MAT D

T-W

F-D

This statement establishes a matrix equal to the difference

of two matrices. The matrices must all be of the same

dimensions.

The same matrix variable may be used on both sides of

the equal sign, as in line 66 above.

The subtraction is done element by element.

The difference matrix (matrix P in example 56) may be

created by execution of this statement.

Copyright (C) 1973

Educational Data Systems an i <e)

Statement:

Form:

Examples:

Purpose:

Remarks:

MAT Scalar Multiply

line number MAT matrix variable = (expression)*matrix

variable

200 MAT D = (4)*C

210 MAT E = (F)*Q

220 MAT R = (G#B2)*K

230 MAT M = (3)*M

I

This statement establishes a matrix equal to the product

of a numerical expression (i.e., a scalar) and a matrix.

The same matrix variable may be used on both sides of

the equal sign, as in line 230 above.

The expression by which the matrix variable is multiplied

must be enclosed in parentheses.

* ee

Copyright (C) 1973

Educational Data Systems 3-10

Statement:

Form:

Examples:

Purpose:

Remarks:

MAT Muliply

line number MAT matrix variable = matrix variable*matrix variable

250 MAT L

260 MAT P

M*N

GQ * R

This statement establishes a matrix equal to the matrix product

of two matrices.

If the dimensions of matrix F are (A, B) and the dimensions of

matrix G are (B,C), then the dimensions of the matrix produced

when F is multiplied by G will be (A, C), and the resulting matrix

will automatically be dimensioned accordingly.

Note that the number of columns in the first matrix must equal

the number of rows in the second matrix. For example,. state-

ment 290 above is legal only if the number of columns in M

equals the number of rows inN.

The matrix being assigned must not appear to the right of the

equal sign. For example

30 MAT F = B*¥F

can not be executed.

Copyright (C) 1973

Educational Data Systems oO I 11

Statement:

Form:

Examples:

Purpose:

Remarks:

MAT Invert and DET function

line number MAT matrix variable = INV (matrix variable)

250 MAT A

260 MAT F

INV(C)

INV(F)it

This statement establishes a matrix equal to the inverse of the

specified Square matrix.

A matrix may take on the value of the inverse of its former self,

as in line 260 above.

Only square, two-dimensional arrays may be used in this state-

ment; t.e., the dimensions must be equal and non-zero.

After inverting a matrix, the DET function may be used to get

its determinant value, which is evaluated as a side effect of the

inversion. This determinant value is available until another

matrix is inverted or a new run is initiated by the RUN command.

Copyright (C) 1973

Educational Data Systems 9-12

6. STRING PROCESSING

All printing characters on the user's terminal and most control function

codes can be manipulated by the string processing extension in Business

BASIC,

They are stored in the computer as ASCII codes with a one in the top

bit instead of an even parity. Appendix 3 of the User Reference Manual

lists the ASCII codes in order of increasing value.

Two of these codes or "bytes are stored in each memory word, whereas

one to four words are required to store the value of a numeric variable.

A "string' consists of one or more bytes, and each string must be given

a string variable name consisting of a letter and a dollar sign or a letter,

digit and a dollar sign. For example, A$ and X4$ are valid string

names. The LET, PRINT, DIM, INPUT and IF statements may be used

with string variables and string expressions.

6.1 String Expressions

A string expression is defined as any combination of literal strings

(symbols enclosed in quotation marks) and string variables. A string

variable is defined as a letter or a letter and digit followed by a dollar

Sign. It may have zero, one, or two subscripts, each of which may be

any numeric expression,

6.2 Use of Subscripts

A portion of a string may be manipulated by use of subscripts on the

string variable. Any numeric expression may be used in subscripts;

the expression is evaluated, and its integer value is used. The first

subscript points to the first character to be used; the second subscript

points to the last. If the second subscript is omitted or if its value is

zero, then the end of the string will be the last character used.

6.3 The DIM statement

There is no automatic dimensioning of string variables. Each string

variable must be dimensioned once and only once by a DIM statement

before the string name is used in other statement types. Only one

dimension, the maximum number of bytes in the string, is required.

Strings and numeric arrays may be dimensioned in the same DIM

statement. For example:

10 DIM R$(25)

20 DIM D(8), A$(20), M(2, 3)

30 DIM B$(10), C$(A5+D(3))

Copyright (C) 1973

Educational Data Systems 6-1

In statement 10, R$ is defined to be a string of not more than 25 1

characters. A string may be any length up to its specified dimen-

sion. Internally, all strings are given odd dimensions (by adding

one of necessary). Thus, B$ in statement 30 will receive a dim-

ension of ll.

6.4 The LET Statement

Strings may be manipulated by use of a LET statement. For example,

after executing the program:

10 DIM A$(10), B$(15), C$Q0), D$(14)

20 LET A$="ABCDE, 3. 56"

30 LET B$=A$(4), "X¥Y+Z", A$(2, 2)

40 LET C$=B$(2.5), "' 'M! 1x"!

50 LET D$-B$, C$

60 LET E$=B$, "PDQ"

70 LET A$(6, 9)="FG"

The string variables will have the following values:

A$ ABC DEFG6

BS DE, 3. 56XY+ZB
C$ 33, nie

D$ DE, 3. 56XY+ZBE,

E$ (does not exist)

The double appostrophes within the literal string in line 40 are con-

verted to quotation marks when actually put into C$. Likewise, a

control Z within a literal string is converted to a RETURN code.

Statement 50 cannot be fully executed since the concatenation of B$

and C$ would exceed the dimension of D$. However, D$ will receive

as much of the string as it can hold. Statement 60 will cause an error

print out because E$ is not dimensioned. In statement 70, characters

six through nine inclusive, are designated to be replaced. However,

the source string 'FG" is insufficient to fill the space allotted, so the

remainder of A$ (from character 10 on) is shifted back to close the

gap, thus leaving the string two characters shorter than before. Note

that commas (except within quotes) are used only to separate fields of

a string and do not cause spaces or other insertions in the resulting

string.

Copyright (C) 1973

Educational Data Systems 6-2

Strings may also be converted directly into variables with the LET

statement. For example, alter executing the program:

10 DIM A$(20)

20 LET A$='"'123ABC4. 567E+20AZ'"

30 LET A-A$

40 LET B=-A$(7)

50 LET C=''123, 456"

The variables A, B, and C would have the values 123, 4. 567EH+20,

and 123.456 respectively. The statement will convert the string

characters starting at the beginning of the string (or first string

subscript, and stop at either the end of the string, the second

string subscript, a zero byte, or an illegal character that was

non-numeric or nota plus sign, minus sign, or decimal point.

Note that in statement 40, the conversion stopped at the A in AZ,

not the E. This is because E is a legal character in a number

which has an exponent. Statement 50 shows that either string

variables or literal strings may be used.

Alternatively, variables may be converted into strings with the

LET statement. For example:

10 LET A$=12.34+C

20 LET B§$(3)=(SIN3)+2. 768

30 LET C$(1, 14)=INT(A+. 5)

90 LET A$(1, 20)=12.34+C

In each statement above the expression to the right of the "=" sign

is evaluated, converted to string characters, and then put into the

destination string. Ifa second subscript is not given on the string

dimension, then a zero-byte terminator will be stored at the end of

the characters put into the string. This is the case for statements

10 and 20. In statement 30 the expression INT(A+. 5) will be eval-

uated and then put into C$ starting at C$(2). If the result is larger

than two characters, the rest will be truncated. A zero byte will

not be stored because of the presence of the second subscript.

The same above statements may take the form:

line number LET string expression = expression USING string expression

Copyright (C) 1973

Educational Data Systems 6-3

This is like PRINT USING except that the variable is formatted into

the string (instead of the user's I/O buffer) with the use of a format

string. For example:

10 LET A$=12.345 USING '$$###. ## "'

20 LET C$(1, 4)=A+B USING "####"'

30 LET B$=SIN 3 USING D$(1, 12)

Note that in the above examples the format string may be either

literal strings or string variables. The results of the above state-

ment would be exactly the same as ina ''PRINT USING" statement.

See Section 4-8 on how to use the format string characters.

6.5 The IF Statement

All of the six standard relations are allowed in an IF statement

used to compare strings. Both sides of the IF relationship must

be string expressions. The strings are compared byte by byte

until a difference is encountered. The branch is then determined by

the values of the ASCII codes where the difference first occurs. If

the end of one string is reached and the other still contains valid

codes, then the longer string is considered to be the greater of the

two. To be equal, the two strings must be the same length.

Examples:

200 IF A$="YES''GOTO 350

210 IF C$, "TIME" < R$ GOTO 400

220 IF X$(N,N)>"A" LET X$(N41, N4+1)="."'

230 IF P$ PRINT A$;P$

Statement 230 will cause A$ and P$ to be printed if P$ is not an
empty string.

6.6 The INPUT Statement

Strings may be entered during a run by use of an INPUT statement.

For example:

100 INPUT A$(N,N)

110 INPUT X$, G$(5)

In statement 100, only a single character is to be accepted at char-

acter position N in A$, The rest of A$ is not affected. In statement

110, X$ may be filled up to the limit specified earlier in a DIM

statement, and G$ is filled starting at character position five. Each

input is terminated by a RETURN. After filling the space allotted

by the program, succeeding characters up to the RETURN are

ignored. If too few characters are entered, the remainder of the

string is shifted back to close the gap.

Copyright (C) 1973

Educational Data Systems 6-4

6.

The PRINT Statement

String expressions may be freely intermixed with numeric expres-

sions in any combination in a PRINT statement. This allows con-

siderable flexibility in formatting and labeling output data. Strings

may also be used in PRINT USING. See Section 4.

The LEN Function

It is sometimes necessary to determine the length of a string. The

function LEN (A$) generates a numeric value equal to the number

of codes in A$. This is especially useful for extending a string when

the present length of the string is unknown. For example:

300 LET R=LEN(A$)

400 LET A$(LEN(A$)+1)=B$(R)

410 IF LEN(A$)<20 GOTO 550

420 LET D$(LEN(D$)+1), LEN(D$)+4)=E$

430 LET Q=LEN(A$(1, 4))

The argument of the LEN function must be a single string variable

with or without subscripts: |

String Arrays

Although Business BASIC does not provide for string arrays per se, the

same effect can be achieved by using equal sized segments of a string as

if they were elements of an array. For example, Suppose an array of

15 strings of up to 48 characters each is desired. The string should

be dimensioned (48+2)*15=750 characters total. (The +2 is to allow

room for an endsof-string character at the end of each substring), A

given element of the ‘array’ named A$ may then be addressed as A$(N*50)

where N is the number of the desired substring. Each element may be

individually read and/or modified in this manner without affecting the

other elements as long as care is taken not to write a substring longer

than its alloted size (48 characters in the above example).

A two dimensional string array can be achieved in a similar manner.

For example, if an array is to contain R rows and C columns of strings,

where each string is to hold up to D characters the string should be

dimensioned (D+2)*R*C characters total. A given element at row r,

column c of A$ may then be addressed as A$((r*C+c)*(D+2)). An

example program will help clarify the procedure:

Copyright (C) 1973

Educational Data Systems 6-5

ce A aN re nm

LOO INPUT “DEMENSTOR, "FatSs #OCULUNNS ? "S550

110 DIM O80 ¢D+2)*"RECT, 55 06+10)

120 PRIN

PBO TAPUT Sobbkbee dy oth PN eat eee 2 ON

140 INFUb ' how, COLE TY 2 Sikhs lot

150 GF }i<k ER C1<C Gil. be

160 PETTY " NO SUCH Rhian!

1760 GOT! £0

130 FRING

190 [TF x= WIV 2eO

COO PRINT ASC CRPCHUM CD42)]

C10 CO tf bad

eed INFUT Pe

e380 Tk Lie

©2C4Q0 LET ASL ¢

POO GUTS 1:0

ae C rS)>b) Prin yf T43 Lo Jats

RisC+01)2¢CD+ 2))=P$0 15.0)

Lines 100 and 110 create a string (A$) of the proper size, and a secondary

string (B$) for temporary storage. Lines 120 and 130 request whether

the user wishes to examine or enter an array element, and line 140

requests the elements coordinates, Lines 150 through 170 are to test

for legal coordinates, If entering an element, line 190 branches to the

enter routine: otherwise line 200 prints the selected element. Line 220

accepts a new element, and line 230 tests whether its length is legal.

Line 240 places the first D characters of B$ into the proper position

in the array.

To write such a string array into a data file it is necessary to write each

substring into a separate item of the file. This may be done by use of

nested FOR-NEXT loops to supply the row and column numbers. The

Same row and column numbers can also be used as the record and item
numbers in the file. For example:

1000 DPR #1, "ARRAYS

rOLe Fei FisOo 79 f-1

fOen bd R C1e0 T) CH!

1036 WhETE #to bls Cds ACE CRIECHO HD ECi4 OD]

1Oo4tr | NEXT C1

pes0 NEXT Fl

This program assumes R,C, and D are defined as in the first example.

Copyright (C) 1973

Educational Data Systems 6-6

7. DATA FILE ACCESS

This chapter describes the IRIS system data file structure and

access to data files from a BASIC program.

Random addressing within a formatted data file to a specific item is

an important feature of EDS Business BASIC. Besides simplifying

data file access, random addressing improves the efficiency of a

program. For example, suppose one item in a file is to be written.

In most systems the procedure would be:

(1) Read the entire record containing the item to be written,

(2) Change the value of the item, and

(3) Write the entire record back into the file.

Using Business BASIC, the procedure is:

(1) Write the item to be written.

Other efficiency improving features of the IRIS formatted data file

structure include dynamic allocation of disc space as the file expands,

and variable record size. A disc block is added to the file only if

needed to hold a record being written by the user; there is never an

empty data block. And the variable record size allows optimal use

of the blocks that are needed. The user need not force his data to fit

a fixed record length such as 64 words. The record length for any

given formatted file may be from one to 256 words as required for the

data items specified by the user. See ''How to FORMAT a Data File’

in the IRIS User Reference Manual for more information.

Tol The MRN Function

The following pages give a detailed description of each statement

used for data file access in the IRIS system. In addition, the MRN

function (Maximum Record Number) allows the user to determine the

current size of a file. The function call MRN(X) may be used at any

point in a numeric expression. The integer value of expression X is

used as a channel number, and the function call yields an integer one

greater than the record number of the highest numbered record into

which at least one item has been written in the data file which is open

on that channel. An error will occur is X is not a legal channel num-

ber or if no data file is open on channel X. If the file open on the

selected channel is a device file (such as $PTP) then zero will be re-

turned as the result.

Copyright (C) 1973

Educational Data Systems 7-1

7.2 Notes on Locked Records

If a record is locked, then only the user who locked it can read or write

data in that record or unlock the record. This is a necessary safeguard

to prevent lost data if two or more users attempt to update a file at the

same time. Suppose two users, call then Sam and Joe, decide at about

the same time to modify the same item X which now has a value of

twenty. Since this is a time-sharing system, the following sequence of

events could occur:

1. Sam reads item X from the file and adds five to the value; he is

about to write his result (25) back into X when his time slice runs

out, and his program is Swapped out of core.

2. Joe reads the same value of X from the file, Subtracts 13, and

writes his result (7) back into X.

3. Sam's program is Swapped back in, and writes his result into X.

The 13 subtracted by Joe has been lost.

If Sam had locked the record when he first read X, Joe would have had
to wait until Sam was finished, and the correct final value for X (12)

would have resulted.

To lock a record, merely omit the semi-colon at the end of the READ#

or WRITE# statement. Only the user who locked the record can read

or write data in that record until he unlocks it. The record will be

unlocked if he:

1. Reads or writes data in the same record using a READ# or WRITE#

with a semi-colon at the end of the statement,

2. Reads or writes data in any other record on the same channel,

either with or without a final semi-colon on the statement,

3. Closes the channel with a CLOSE# statement, or

4. Clears all channels by terminating the RUN. The RUN may be

terminated by an END or STOP statement, by an abortive error,

or by pressing the ESC key.

Each user can lock only one record on each of his channels. If

he desires to lock more than one record in a Single file, then he may

open the same file on two or more channels and lock a different record

on each channel.

Copyright (C) 1973

Educational Data Systems 7-2

If a user tries to read or write data in a record that is locked by

another user, his program will be swapped out, and another attempt

will automatically be made during his next time slice. Since execution

of a program can be delayed indefinitely in this manner, it is good

practice to lock a record only if an update is intended and only for as

long as necessary to perform the update.

7.3 Notes on Open Files

A data file may be opened by any number of users at the same time.

The record locking features of the system make this possible without

conflicts or loss of data, as explained in 'Notes on Locked Records".

Another type of problem that can occur is the deletion of a file by one

user while another user has it open. This problem is handled auto-

matically by the system in the following manner:

1. A user issues a legal KILL command to delete a file. The

Filename is immediately removed from the INDEX so that no one

can open the file after the delete command was issued.

2. If no other user already has the file open, it is immediately

deleted, and the disc blocks are deallocated.

3. If another user does have the file open, he may continue to use it,

but a delete flag is set in the file's header block.

4. When the last user who has the file open closes it, the delete

flag is checked; the file is then deleted, and the disc blocks are

deallocated.

Copyright (C) 1973 | |

Educational Data Systems 7-3

STATEMENT: BUILD #

Form: line number BUILD #x, Filename expression, .

Example: 120 BUILD #2, "NEWFILE", #H3, N$

Purpose: Alternative way of building and formatting a data file. Creates

a new file or replaces an old file, identified by the Filename

expression, on the channel specified by expression x. Several

files may be created by one statement, and Filenames not

preceded by a channel expression are created on successive

channels.

Remarks: In the example above, a data file with the name NEWFILE

will be built on channel two, and a data file with the name

given in N$ will be built on the channel number given by

variable H3.

The new files will be automatically formatted by data written

sequentially in record zero. Any WRITE other than to

sequential items in record zero will fix the format to that

already determined.

The new files will be automatically deleted by an exit froma

user program or by an abortive error unless the user preserves

them first by closing them with a CLOSE statement.

The item types and sizes created by a WRITE statement ina

file being built will be as follows:

A string size will be INT((DIM of string)/2+1)"2 bytes if a
string variable is written. A string size will be equal to the

length of a substring or literal string (e.g., six bytes for

A$(3, 8) or "UVWXYZ") or the next higher even number if

an odd number of bytes is written.

A binary floating point number will be two words.

A decimal item will be the number size of the variable if a

variable is written, of the constant if a constant is written,

or four words if an expression is written.

Copyright (C) 1973

Educational Data Systems 7-4

Sey hens 04

If it is desired to build a contiguous data file instead of a formatted

data file, then the Filename expression must have the number of

records and the record length (separated by a "':") in brackets ahead

of the actual Filename. For example:

120 BUILD # 3, "[£ 200:250J FILE"

will build a contiguous data file called "FILE" with 200 records of

290 words each and open it on channel #3. The space required on

the disc to hold the 200 records will be allocated all at once and

will have sequential disc block addresses.

Copyright (C) 1973

Educational Data Systems 7-5

Statement:

Form:

Examples:

Purpose:

Remarks:

Statement:

Form:

Examples:

Purpose:

Remarks:

OFEN #

line number OPEN #x,Filename expression,...

20 OPEN #0, "PRIME", B$

45 OPEN #A, D$(6,M-1),#4, "JOE ", G$

Opens an existing data file, identified by a Filename expression, on

each channel identified by a channel number expression x.

Additional Filenames not preceded by a channel number are

opened on successive channels.

In the first example above, the file PRIME will be opened on

channel zero, and the file identified by the string in B$ will

be opened on channel one. In the second example, the file

identified by characters 6 through M-1 of D§$ will be opened

on the channel specified by the value of A, JOE5 will be

opened on channel four, and the file identified by G$ will be

opened on channel five.

A data file must be opened on one of the available channels,

numbered zero through the maximum channel number, before

it can be accessed by a READ# or a WRITE# statement. The

channel must be closed by a CLOSE# statement before another

file can be opened on the Same channel. All channels are

automatically cleared by a CTRL C system escape.

CLOSE #

line number CLOSE #x1,#x2,...

60 CLOSE #1

145 CLOSE #A-1,#4,#R

Closes the file on the specified channel or channels.

In the first example above, the file on channel one is closed.

In the second example, channels A-1, four and Rare closed,

where A-1 and Rare expressions whose values each identify

a channel number, zero through the maximum channel number.

An open channel must be closed before another file can be

opened or built on the same channel. If a file is being built,

closing it makes it accessible to other users for the first time.

A file being build will be deleted if BASIC is exited by a CTRL C

before closing the file.

Copyright (C) 1973

Educational. Data Systems 7-6

Statement:

Form:

Examples:

Purpose:

Copyright (C) 1973

WRITE #

line number WRITE #c,r,i; xl, x2, x3...;

or

line number WRITE #c, vr; xl, x2, x3...;

where c is a channel number expression,

ris a record number expression,

i iS an item number expression, and

xl, x2, x3... are numeric or string expressions.

Note: the final semi-colon is optional (see below).

195 WRITE #4, 19;F, Y1+3, "JUNK", D-E

600 WRITE #C-2, 2*R, 8; 0, 2tTA, M$ (4, Q);

Writes the values of the expressions x1,x2,... into a data file.

The file to be accessed must have been previously opened _

on the channel specified by the channel number expression.

The record number into which the dataare tobe written must

also be specified. A starting item number may be given if

desired; otherwise, item zero will be assumed.

The expressions following the semi-colon will be evaluated,

and the values will be written into the specified record of the

specified file, starting with the item number specified or

starting with item zero if none is Specified. Items not

addressed in the file will not be affected.

In the first example above, item zero of record 19 of the

file open on channel four will be set to the value of F, item

one of the same record will be set to the value of the expression

Y1+3, item two (which must be formatted as a string) will

be set to the string value JUNK, and item three will be set

to the value of D-E.

In the second example, the channel number and record

number are given by expressions. The item number could

also be given as an expression if desired. In this example,

item eight of the specified record will be set to zero, item

nine will be set to 2A, and item ten will receive characters
four through the value of Q of string M$.

Only sequential items of a single record may be written into

by each WRITE # statement. An error will result if a

variable type does not match the item type in the file.

A semi-colon should end the statement as in the second

example unless it is desired to temporarily lock other users

out of this record. Refer to 'Notes on Locked Records" for

comments on locking, unlocking, and updating records.

Educational Data Systems 7-7

Statement: READ #

Form: line number READ #c, r, i; vl, v2, v3...;

or

line number READ #c, r;vl, v2, v3...;

where c iS a channel number expression,

ris a record number expression,

i is an item number expression, and

vl, v2, v3... are numeric or string variables.

Note: the final semi-colon is optional (see below).

Examples: 240 READ #2,6;D, W$, K(7, A-2)

415 READ #C(4)4+1, R8,5;F$(4), J, J;

Purpose: Reads item values from a data file into the variables listed.

The file to be accessed must have been previously opened on

the channel specified by the channel number expression. The

record number from which the data is to be read must also be

specified. A starting item number may be given if desired;

otherwise, item zero will be assumed.

The variables following the semi-colon will be set to the values

contained in the specified record of the specified file, starting

with the item number specified or starting with item zero if

no item number is given. The data in the file are not affected.

In the first example above, item zero of record six of the file

open on channel two is read into variable D, item one (which

must be a string) is read into string variable W$, and item two

is read into the element of array K at row seven, column A-d2.

In the second example, the channel number and record number

are given by expressions. The string variable F$ will be loaded

from item five of that record starting at character position four

in F$; characters one through three of F$ are not affected.

Variable J will be set to the value in item six, but this value will

be replaced immediately by the value of item seven. This

technique may be used if the value of item six is of no interest.

Only sequential items of a single record may be read by each

READ # statement. An error will result if a variable type does

not match the item type in the file.

A semi-colon should be included at the end of the statement as

in the second example unless it is desired to temporarily lock

other users out of this record. Refer to ''Notes on Locked

Records" for comments on locking, unlocking, and updating

records.

Note that numeric expressions are allowed in the file address

(channel, record, and item numbers) and in subscripts, but an

item value from the file can not be "read into’ an expression.

Copyright (C) 19%

statement:

Form:

Examples:

Furpose:

Remarks:

PRINT #

line number PRINT #c, r, i;x1, x2,x3...;

or

line number PRINT #c, v;xl1,x2,x3...;

or

line number PRINT #c, r,i;USING v$;x1,x2...;

or

line number PRINT #c, r;USING v$;x1,x2...;

i0 PRINT #3, 21, 6;254.6, D+E, F/6;

20 PRINT #C,R,1;X(i), Y(3, 6), Z+W

30 PRINT #C2+1, R-1;USING B$(15);P;J;M$;

To ''print' text, numbers, and computational results, with or

without use of a format string, to a data file or to a peripheral

device.

This statement form combines the features of the PRINT or

PRINT USING statement with the facilities of the WRITE#

statement. All output will be in the form of an ASCII string

identical to the string that would be printed on the user's

terminal if an ordinary PRINT or PRINT USING statement were

used, but the string goes instead to whatever file or device is

open on the specified channel. If nothing is open on the channel

or if an illegal channel number is given (such as -1) then the

output will default to the user's terminal. This allows the

destination for all output to be selected at run time.

If printing to a formatted data file, the selected item must

be an ASCII string. If printing to a peripheral device, the

device must be capable of accepting an ASCII string; such

devices include line printers and paper tape punches.

Note: the PRINT # statement is available only on an IRIS

system.

Copyright (C) 1973

Educational Data Systems 7-9

Statement: MAT WRITE #

Form: line number MAT WRITE #c, r;v

or

line number MAT WRITE #c, rv, i:v

where c is a channel number expression,

ris a record number expression,

i is an item number expression, and

v is the name of an array or string variable

Examples: 190 MAT WRITE #1, 20;A

200 MAT WRITE #C, 2*R, 8;B

210 MAT WRITE #3, 10, A$

220 MAT WRITE #L, R, 3;B$

Purpose: This statement writes data from a numeric array or from a

string variable into a data file.

Remarks: The MAT WRITE # statement functions exactly as the WRITE #

statement (see Page 7-7) except that an entire array or

string will be written to a data file. No matrix or string sub-

scripts are allowed. The data file address (record and item

numbers) specifies only a starting position for the data transfer,

and the entire array or string will be written into the file start-

ing at that position without regard to number types, record

boundaries or file format. It is the responsibility of the user's

program to ensure that the data will later be read back into the

same type of variable.

Copyright (C) 1973

Educational Data Systems 7-10

Statement: MAT READ #

Form: line number MAT READ #c, r3v

or

line number MAT READ 4c, r, i;v

where c is a channel number expression,

ris a record number expression,

tL iS an item number expression, and

v is the name of an array or string variable

Examples: 190 MAT READ #1, 20; A

200 MAT READ #K, R+2, 8; B

210 MAT READ #3,10; A$

220 MAT READ #41, R*2, 3; B$

Purpose: This statement reads data from a data file into a

numeric array or into a string variable.

Remarks: The MAT READ # statement functions exactly as the

READ # statement (see Page 7-8) except that an

entire array or string will be read in one statement.

No matrix or string subscripts are allowed. The

data file address (record and item numbers) specifies

only a starting position for the data transfer, and the

entire array or string will be filled by copying directly

from the file without regard to number types, record

boundaries, or file format. It is the responsibility of

the user's program to ensure that the data are read

into the type of variable that matches the data form.

Copyright (C) 1973

Educational Data Systems 7-11

7.4 Contiguous Data Files

IRIS provides a second data file type, contiguous data files, which

offer the experienced BASIC programmer the fastest file access

possible. Any randomly selected item may be read or written in

a single disc transfer. In addition, records may be of any length

and any format. The format can differ from record to record as

long as all records within a given file are of the same length. In

return for this increased speed and flexibility, the programmer

must take increased responsibility for the record formats and be

careful to read data into variables of proper type.

All forms of the READ#, WRITE#, PRINT#, MAT READ#, and

MAT WRITE # statements described above are valid for use with

contiguous data files, but with the following differences:

1) The contiguous file is not formatted except that a record

length is specified. There is, therefore, no checking by

the system for a valid data type. Data are copied directly

to and from the file with no number type conversion.

2) The third field in the file address is a byte displacement
from the beginning of the record rather than an item number.

3) The file address specifies only a starting position for the

data transfer. The transfer may continue from that position

as far as desired (up to the end of the file) without regard

to record boundaries.

There is also a form of the BUILD# statement for creating a con-

tiguous file. Because there is no formatting or data type checking,

it is up to the user's program to ensure that the data are read back

into the same variable types as those from which they were written.

Failure to take this precaution will result in unusable data. For

example, if a string is written into a contiguous file and read back

into a numeric variable, the numeric variable will contain char-

acters other than digits (e.g., colons, semi-colons, etc.) The

same thing will occur if, for example, three-word variables are

written into the file and read back into two-word variables. Con-

versely, if numeric data are read into a string, incorrect characters

will result, some of which cannot be printed or manipulated normally.

Copyright (C) 1973

Educational Data Systems 7-12

The contiguous file form has four important advantages over the

formatted file:

1) There is no list of data block addresses in the file header

and no header extender blocks. The disc address of any

randomly specified record in the file is calculated auto-

matically by the system from core-resident information,

thus saving up to two disc transfers per data access.

2) There is practically no limit on the record size or on the

amount of data that may be transferred in one statement.

3) Records may have different formats, determined only by

the statements doing the data transfers. Records may be

grouped together or linked by the program to effect variable

record size.

4) The contiguous file form lends itself readily to an indexed

file structure (refer to the description of the SEARCH#

statement).

Refer to ''How to FORMAT a Contiguous File" in the IRIS User

Reference Manual for additional information.

7.9 Accessing a Contiguous File >

Accessing a contiguous file is similar to accessing a formatted

data file except that in a contiguous file, record numbers are used

only as reference points. There is nothing to prevent a user from

transferring two or more records in one command. Consider a

file, FILE, which has a record length of 128 words. The pro-

gram |

10 BUILD #0," [100:128 3 FILE"

20 DIM A$(512)

30 REM STATEMENT 40 FILLS A$ WITH A'S

40 A$="A"" AS

50 WRITE #0, 0;A$

60 CLOSE #0

will write ''A'''s into records 0 and 1 of FILE and will write one '"'A"'

and an end-of-string code into the first two character positions of

record 2. It is important to note that as in formatted file, individ-

ual records may be locked; however, in the example above, only

record number 0 would be locked. Records one and two would be

vulnerable to simultaneous updating by another user.

Copyright (C) 1973

Educational Data Systems 7-13

Contiguous files have not items per se; however, the user

may specify in the item field a byte displacement into a

record. For example, if line 50 in the above program were

changed to

50 WRITE #0, 0, 256;A$

it would be equivalent to

90 WRITE #0, 1;A$

except that in the first case record 0 would be locked and in

the second case, record one would be locked.

Copyright (C) 1973

Educational Data Systems 7-14

APPENDIX I: PROGRAM EXAMPLES

Program 1 - Bill of Materials

LI

10

20

30

40

45

50

60

70

80

90

95

10

11

oT

DIM A$C30],BSC£12]

PRINT "HOW MANY ITEM

INPUT N

FOR I=1 TON

PRINT

INPUT QCI1,PC1]

NEXT I

PRINT

PRINT "ITEM"'s"QUANTITY's "PRICE'S "AMOUNT"

PRINT

LET AS="' ## HHH SHHHO HH SH HHH HH"

O FOR I=1 TON

O PRINT USING AS3I,0CIJsPCII,00II*PCII

st

120 LET T=T+QCIIJ*PCII

130 NEXT I

140 PRINT

150 LET BS=""S#5 ###.##"

160 PRINT USING BS3"" TOTALSs55T

170 END

RUN ©

H@W MANY ITEMS

? 5

2? 23 750

? 255323-50

? 1085-35

? 1455.08

? 7592235 .

ITEM QUAN TITY PRICE

1 e $750+ 00

2 25 $ 23-50

3 10 $ 85-35

4 145 $ 0-08

5 75 $ 2.35

TOTAL

KEADY

Copyright (C) 1973

Educational Data Systems Al-1

AMOUNT

$15500.00

$ 587-50

$ 6853+50

$ 11.60

$ 176625

$35 128-85

CRASS OS ALTGr SpE ee yee oe oe eee

Program 2 - Payroll

LIST

2 OIw S$todd,Toslood
"y pep ae ee ER TE tp a me re es Tce oy yt ympoy res
3 LET I b=] bs { LAN ee BD me yD if ts } Lad AS L JAN,
t cmeege Cts ne Oy te os a yy at aM ts was pote yo y os)

4 LEP Sst eels ee rey Sy DE ah yay yey

S PRINT UUONTER Nilesat Ge esr ly ss oN PAYTR:

10 IWeUT -P

15 PRINT

29 LeiT Q=1

32 PRIWT

35 PRINT rR ACE Meir ve oe Neg Dk ob ad.

37 PRINT

4O ([NPUP tia vot l

SO Left

60 Leb Deueb 2 Tt

65 Ley Detme-e- dey Ciba sc dtets)

fO ligt WG

7> ePrbvy fs

$0 PATANT ISENG Sag peas

JO rep olsa !

LOO eT 8) =o) +9

L110 Lesh NLPoNL +N

20 Leap ose

130 tr 3eeP of i AO

140 PRINT |

DSO Peebwe Jabs. Patch tot a yl

1S6O iN)

RUN
= ye . , wey eon tot on : ay toe : a i. * we : }

ieNy iN Py. d MeN if Poo ab bay boty -? a . _

Pn we ‘Ne

(aed ie

“a

’

? BOs deta] ? more hd, oye) 4 Sa by yp ete

2 PazaPel aly wea

e vv

ToT GausSossbeboe sd) Tor Of uerr oss Cb foe

READY

Copyright (C) 1973

Educational Data Systems A1-2

5

eres
-

Hi

I
wed’ cw -

r

Vee we
j

ean ~/ a 6 ke eet ay
\ Lem c>wa ae

DGa9efs lJ 8erPhLepan 8 Sosa e Ue ICE

S366 «9S

Shate 79

9933655

Program 3 - Invoice

LIST

10 DIM FPSCSOIsR: CAI0OITSZSLE7IsXSLCIOJ,KO5),6£05),105I],UCA5]5 F057]

OO LET PSH 4+ +€ + +f Ft Ft Ft FF FE FF Ft Ft Ft FF HF HF HF FF FE eH eH e +

30 DIM NSLe2OQOISZAS£CCOTst $C 201, DS0 601] ,US0C 60], YS010)

AQ LET Y¢=="SSEER.SE"

SO PRINT "NAMES

60 INFUT NS

70 PRINT "MATLING ADDRESS TS

&O INFUT AS

90 PRINT "CITY AXP STATENS

100 INPUT S®&

110 PERINT UZTPCH! JEN S$
120 INPUT ZS

130 PEKINT "INVGICE IMEBR ENS

140 INPUT 1

150 PFINT "“INVGICE PATE "S

160 INPUT AS

170 FRINT "CUSTOMPRE NEMEERRKNS

160 INFUT Rs

190 FRINT “'NUMEFI. Gr INVGICE ITEMS

COO INFUT N

210 FG) I=1 TON

COO PRINT "DESCEI]: TIGN fF TYre sas

230 INPUT DS ¢t-1)*«15)

40 PRINT "'NUMERE Of “"sDSCCI-1)1513" SOLD"

eod INPUT PCT

260 PRINT "3 prec: Yat

C70 INPUT ©CD 7.

cya PRINT "UNTY Cieitts

rIO INPUT UCL]

300 PEINT "UND? Coun d's

310 INPOY [1S0¢€T-1)*6)

320 LET TEQV=AUCTI*KETI

330 LET rleid=TElT)*«ellis100

340 LET tistTiti1€td-re 7)

S50 NEYT I

B60 PRINT PMs PSs Esse 3s Tem C458 KS

S70 PEREINT ASs YAR C45) 8 'INSVOTICE # "3s T1-

SEO PRIN q SEs Ms Zes Thi ¢ £4) SUCUS oid NS 16%
390 PRIN? ' OUAN. TTEM % LLote UNe COST AMUUN T"

400 FG@h Y=1 TSG N

410 PRINT KOIJD$S iA C4 3US0CT-19%613 TAR €12)3D50C1-19*15]3

420 PRINT TAP C30 .3@G01T73 TAR C#loyslif lis TAB Cay)s

430 PRINY USIMG Yes TCII-FCI]

440 NEXT 1

450 PRINT ees sO AY THIS AMGUNYT > >>> >> >>> >>> >> r>> > >>> "3

460 PRINT SING YSs JAR C49) 3 bis 3 PS

470 Bi a ye EN CMB AG TEE STINGS IN THE AROVE FROGKAM HAVE
460 KEM CONTROL “49'S 1M THEM 1 FORCE CARRIAGE -KETURNS >

Copyright (C) 1973

Educational Data Systems Al -3

ea

Program 3 (cont'd.) - Invoice

NAME? A&A AUTO SUPPLY

MAILING ADDRESS? 44318 GLENKAVEN KOAD

CITY AND STATE? ANYTOWNs CALIF.

ZIPC@ODE? 91234

INVGICE NUMBER? 3

INV@ICE DATE? 10/20/72

CUSTOMER NUMBER? 67-1234

NUMBER OF INVOICE ITEMS? 3

DESCRIPTION OF ITEM 1 ? CLUTCH PLATES

NUMBER OF CLIITCH PLATES SOLD? 12

% DISCOUNT? 5

UNIT COST? 12.34

UNIT COUNT? FA.

DESCRIPTION OF ITEM 2 ? S

NUMBER @F SPKe. PLUG SETS S

% DISCOUNT? 5

UNIT CAST? 10-15

UNIT COUNT? DZ.

DESCRIPTION OF ITEM 3 ? MOTOR @IL

NUMBER OF MOTOR BIL SOLD? 24

2 DISCOUNT? 5

UNIT COST? 12.25

UNIT CGUNT? BX.

Lb? 24

PK. PLUG SEIS

3

et ee RR ER tH HE HE HE HF HK HF FF tt Ht HH HF HF HF FF +t + +

A&A AUTO SUPPLY

44318 GLENRAVEN RGAD

ANYT@WN»s CALIF. 91234

. Educational Data Systems

LOS 20S Te.

INVGTCE # 3

CUSTOMER # 67-1234

~ QUAN « ITEM 2 DISC. UN. COST AMUN 1

12 EA. CLUTCH PLAIFS 5 12634 $140.67

24 DZ. SPK. PLUG SETS c, 10615 $231.42

24 BX. M@TOR GIL 5 12.25 $2796 30

PLEASE PAY THIS AMGUNT >>>>>>>>>>>>>>>>>>>> $6516 39
+e ee ee eee te tet ete ete tte te tee eee tt

READY

< Copyright (C) 1973 Al-4

tke eh ee

} TS
as bk

16

PO

30

Program 4 - SIN/COS Plot

‘|

DIM

PRIN 1

BS by A=C

GEC 45)

TE Ee “: OPER

"oe

v4
i

e ©.

20

50

60

70

0)

90

100

110

120

130 N

be LIN

FRADY

LET Ys

Row J=0O 7

LFA
Tk

t
f

IF

NEXT J

GHC

T=71

l=Y1

PRINT CS:
a

XT Xx

v

O

ma

T=Y?

INT C€¢

INT C€¢

mB fh

Tqy=''

LET

Lit

a

Lb y

vs

{=

(,

wu

: 4
ei Liv

oH AG

Qed a

Se Tj=". u%

GOCLIya"s"

CECTI=PC"

~

. CG

Copyright (C) 1973

Educational Data Systems-

S#AVIS EE -

StLIS oR ae

rar

rt le 5)

etled)

r

~~,

‘

t:@

fe

ghee

PRs,
eRe

Program 5 - Time of Day

Roa ktaM PO Pee tne OATE & TIME -OrR-pay

NIS MStL38 7 isAD03)

[MES" JANE SMARAP? “OY SIN IL YOUSSEPOCTNSOYVDEC"

PrP A= SPC wv

bP O= INT €X 7°24)

ET S4= ENF OX -P 4&1)

Pom= IN: €)7313

AEP Deo 3) ky

YG Ys INT OCmw/ste)

Po owmeMe-Terky

PRINT TAs PQs" PONY TS seal MAB +1 M4343 73041 8S" 3Y 41972
ep AS= Aw

Le? P+ SPO 3975690000

TF Tobe Le p As

Te P>=13 tery f=}?

PRINT SENG YSs'' 3 TAB L9sS"THE TIME OF DAY IS “sTs3ag

CHAIN 'T"

ath pitt

-12

PIDAY [5 DEC 19 » 197%

PH oT EMER OF GAY TS 10.47 7M

Copyright (C) 1973

Educational Data Systems A1-6

APPENDIXII: Trig Function Identities

The following identities may be used to compute trigonometric functions

other than sine, cosine, tangent, and arctangent:

Function Identity

contangent ctn(a) = 1

tan(a)

secant sec(a) =]

cos(a)

cosecant esce(a) = 1

sin(a)

Xx

arc sine sin7!(x)= tan7} |
1 - x?

arc cosine cos71(x)= tan7! Vi - x2
x

~-1lyy. -1
arc cotangent ctn> “(x)= tan 1

x

| -1 _ -1 2 |
arc secant sec” +(x)= tan x~-1

1

arc cosecant esc7! (x)= tan-1
x2 - jl

For faster evaluation, calculate. x? as x*x. For example, a user-
defined function for sin71(x) could be written:

10 DEF FNS (X) = ATN(X/SQR(1-X* X))

Copyright (C) 1973

Educational Data Systems A2-1

