Educational Data Systems 2415 Windward Lane, Newport Beach, California 92660

BUSINESS BASIC

PROGRAMMING MANUAL

This manual covers the EDS Business BASIC as it is used under the
IRIS operating system. Operation on an ALICE system is identical
except that certain features described herein are not available under
ALICE. Each statement and function of the Business BASIC language
is described in detail.

For operating procedure on an EDS system, refer to the IRIS or
ALICE User Reference Manual.

Disclaimer: Every attempt has been made to make this manual com-
plete, accurate, and up to date. However, there is no warranty, express
or implied, as to the accuracy of the information contained herein. This
manual reflects the IRIS system as released in December, 1973.

Copyright (C) 1973
Educational Data Systems EDS 1016-2

TABLE OF CONTENTS

1. INTRODUCTION

2. ELEMENTS OF BUSINESS BASIC
2.1 The BASIC Statement
2.2 Numbers and Precision
2.3 Simple Variables
2.4 Arithmetic Operations
2.5 Expressions
2.6 Relations
2.7 Arrays and Array Variables
2.8 Strings and String Variables
3. FUNCTIONS
3.1 Trigonometric Functions
3.2 Transcendental Functions
3.3 Mathematical Functions
3.4 Logical Functions
3.5 Number Manipulation Functions
3.6 Special Functions
3.7 User Defined Functions
3.8 Dummy Functions
4. THE FUNDAMENTAL STATEMENTS OF BASIC
4-1 END and STOP
4-2 LET
4-3 INPUT
4-4 READ and DATA
4-5 RESTOR
4-6 PRINT
4-8 PRINT USING
4-11 GOTO
4-12 GOSUB and RETURN
4-13 ON
4-14 DIM
4-16 IF
4-17 REM
4-18 FOR and NEXT
4-22 DEF

4-23 RANDOM

4-24 SIGNAL 1 (Send Signal)
4-25 SIGNAL 2 (Receive Signal)
4-26 SIGNAL 3 (Pause)

4-26 KILL

4-27 CALL

4-28 CHAIN

Copyright (C) 1973
Educational Data Systems

MATRIX ALGEBRA
-2 MAT...ZER

-3 MAT...IDN

-4 MAT...CON

-4 MAT Assignment
-5 MAT PRINT

-6 MAT INPUT
-1

-8

-9

-1

-1

()]

MAT READ
MAT...TRN
MAT Add
0 MAT Subtract
1 MAT Scalar Multiply
5-12 MAT Multiply
5-13 MAT Invert
5-14 DET Function

[S2BNG) IS NG BG) IS B G RN) BN) BN B)]

6. STRING PROCESSING
6.1 String Expressions
6.2 Use of Subscripts
6.3 The DIM Statement
6.4 The LET Statement
6.5 The IF Statement
6.6 The INPUT Statement
6.7 The PRINT Statement
6.8 The LEN Function

7 DA

TA FILE ACCESS

| The MRN Function

Notes on Locked Records
Notes on Open Files
BUILD #

OPEN #

CLOSE #

WRITE #

READ #

PRINT #, PRINT # USING
MAT WRITE #

MAT READ #

Contiguous Data Files
Access to a Contiguous Data File

3 =3 =3 7 =3 ~3 =] =3 ~7 -7 =3 ~3 =3

. ,

R - = 0100 WK =
= O

AFPPENDIX I:. PROGRAM EXAMPLES
APPENDIX II: TRIG FUNCTION IDENTITIES

Copyright (C) 1973
Educational Data Systems

P

g,

1. INTRODUCTION

BASIC was developed at Dartmouth College in the early 60's as an easy
to learn yet powerful programming language well suited to interactive
use on a time sharing computer. The success of the language is
indicated by the fact that over 90% of all time sharing computers in the
U.S. offer BASIC. This popularity results from a number of charac-
teristics:

A simple grammar based on a small number of English directives.

Facilities for handling strings and matrices as well as arithmetic
expressions,

Built-in editing features that facilitate debugging and program
modification.

Ease of translation by an interpreter. Use of an inte rpreter makes
it possible to write and debug problems interactively. For example,
a section of a program can be written and run; lines can be added,
deleted, or modified; immediately, the revised program can be
rerun without waiting for a compilation.

RUSINESS BASIC, the version of the language described here, is
designed to preserve the characteristics which have made BASIC prac-
tically the universal time sharing language, particularly for instruc-
tional uses and scientific programming. It adds further capabilities
which enhance its utility, especially for business applications. The
principal extensions of Business BASIC are: extended precision decimal
arithmetic, PRINT USING, data files, signalling, chaining, many
special functions, and provision for large strings and arrays.

Extended precision decimal arithmetic overcomes two problems in most
BASIC systems: limited precision and conversion errors. Most BASIC
systems represent numbers internally in floating point binary form,
typically to an accuracy of 23 or 24 bits. This results in six decimal
digits of precision in which the sixth is somewhat suspect because of
errors introduced through the conversion from decimal to binary and
back. Business BASIC provides four precision options: 1 word integers
(in the range T 7999) and two, three and four word floating point numbers
which give resrectively, six, ten, and fourteen decimal digits of
accuracy. Furthermore, all numbers are carried in decimal form,

and the arithmetic is entirely decimal so that conversion and conversion
errors are eliminated.

Copyright (C) 1973
Educational Data Systems 1-1

The sccond major extension is PRINT USING, which simplifies report
generation by providing COBOIL.-like picture formats. These are used to
position column headings, line up decimal points, float dollar signs, insert
commas, and provide the other controls required for technical and financial
reporting.

Data files provide random access data storage on the disc. Formatted

files will store up to 65536 bytes of information each (over 16 million bytes
in an extended IRIS file), allow random addressing of items, and perform
data type checking. Contiguous files (on IRIS only) can store even more data
and provide faster access but without the item type checking. A text file
holds a single string of up to 65535 ASCII characters (over 16 million
characters in an extended IRIS file).

Chaining allows very large programs to be segmented for execution in a
system with a relatively small amount of core. Small segments also
permit faster swapping for more efficient system operation. Signalling
allows programs on different ports, as well as program segments, to
communicate with each other. And the extended function set includes
facilities for taking floating point numbers apart and pulting them back
together.

Business BASIC provides these facilities along with such more common
features as direct execution (desk calculator mode), string processing,
matrix algebra, and the CALL statement. Theusefulness of the string
and matrix operations is increased by the provision for large strings and
arrays, limited only by the program storage available, as well as by such
features as substrings, string comparisons, MAT INPUT, and matrix
inversion in place.

Business BASIC is upward compatible with Dartmouth BASIC as described
in Kemeny and Kurtz BASIC Programming, First Edition. Programs
written in that version of BASIC will run without modification under the
present system. *

* The only restriction is that all statements must be executed. The
original Dartmouth translator is a compiler which pe rmits the inclusion
of certain statements which are never reached in the normal execution
of the program; e.g. the DIM statement in the following:

10 GOTO 30

20 DIM A(30)

30 PRINT A(15)

40 END
This must be modified in any interpretive system, such as Business
BASIC, c¢.g. by eliminating line 10.

Copyright (C) 1973
Educational Data Systems 1-2

Q)

This manual covers all of standard BASIC as well as the extensions of
Business BASIC; however, it assumes that the reader has had some previous
programming experience in a higher level language. Readers without this
background may find it useful to refer to any of a number of BASIC primers,
for instance, BASIC Programming by Kemeny and Kurtz. Appendix I
includes several examples of programs written in Business BASIC, which
illustrate many of the features of the language.

Business BASIC is extremely easy to use. A small number of system
commoands and control characters provide all necessary control. The
progremmer, at any terminal, uses these to communicate to the system
that a program is to be run or listed, that a character or a line just
entered is to be deleted, or that some other function is to he performed.

A user on an IRIS system should refer to the IRIS User Reference Manual
for information on logging on to the system, using Business BASIC, saving
programs, diagnosing and correcting errors, and use of other system
facilities. Likewise, a user on an ALICE system should refer to the ALICE

User }H@fm*@ﬁce Manual for this information.

Copyright (C) 1973
Educational Data Systems 1-3

2.

.1

ELEMENTS OF BUSINESS BASIC

The statements of Business BASIC are constructed from a small
number of elements which include: numbers, variables, arrays,
arithmetic operations, functions, expressions, relations, and strings.
In this chapter, each of these elements is explained to provide a basis
for the description of statements in later chapiers.

The BASIC Statement

A statement consists of a line number (any integer in the range 1 to
9999) followed by an English word, which is usually a directive,
followed by other elements which depend upon the statement in question.
Some examples are:

10 INPUT A, B
20 LET C=A+B
30 PRINT C
40 GOTO 10

50 END

A sequence of such lines, for instance the sequence shown, constitutes
a program.

The line nunbers serve two purposes: First, except for branching and
leoping, the system executes the statements in a program in the order
of their line numbers. Line numbers also provide a label by which a
statement may be referenced. For instance, in the example above,
line 40 transfers control to line 10 so that the program is repeated over
and over.

Spaces may be inserted -or omitted anywhere in a statement without
any effect on the execution of the program, except as shown in PRINT
statements and strings (sece Chapters 4 and 6).

Numbers and Precision

Numbers may be represented in any of four forms: 1-word integers,
2-word, 3-word, and 4-word floating point numbers. The precision
with which a number is carried in the computer is determined by DIM
and DATA statements as described in Chapter 4.

Copyright (C) 1973
Educational Data Systems 2-1

Following are the precision, number of decimal digits of accuracy, and
range of the four types of number:

number type precision #digits range

l1-word integer 1 4 t17999 ‘

2-word floating 2 6 T 999999 X 10% 63

3-word floating 3 10 +.9999999999 X 10163
4-word floating 4 14 +.99999999999999 X 10763

The decimal point is optional. Negative numbers have a ''-"

preceding them.
Positive numbers may have a ''+'" preceding them, but as it is not necessary,
it is usually omitted. The following are examples of numbers acceptable in

Business BASIC:

+4
-3

3.456789

123456.78901234
-12345678901234
.000000000012345678901234

A number may also be typed using the "E-format', where E represents
"times 10 to the power'. For example,
1.526 E+6 is read "1.526 times 10 to the sixth power' and equals
1,526,000

812-5 is read ''8 times 10 to the negative fifth power' and equals
.00008

All floating point numbers must be within the limits of 10763 and 1063,
However, the computer stores floating point numbers with a maximum of
six, ten or fourteen digits, depending upon the precision selected. Two
additional digits store the sign and exponent of a floating point number.

If a number is entered having more than the number of significant digits
specified for it, the computer will truncate the number to the selected
precision and, if necessary for correct representation, express it in E
form. For example, if a number which is specified to have 2-word (6
digit) precision is entered as 123, 456, 789, the computer will change it
to 1.23456E+8.

Copyright (C) 1973
Educational Data Systems 2-2

-

2.3 Simple Variables

BASIC statements generally use variables to represent numeric or
alphabetic data. A simple numeric variable holds one number, and
consists of either a single letter (A through Z), or a letter followed by
one digit. A, Al, Z, Z9 are examples.

Variables with one or two subscripts may also be expressed in Business
BASIC. These consist of a letter or a letter and a digit followed by one
or two subscripts enclosed in parentheses. For example, the subscripted

variables normally written Al’ Bllo, C92 g are represented in Business

BASIC as: A(l), B1(10), and C9(2,3). The subscripts may in general be
any expressions (see section 2.5 for a description of expressions).

Array (matrix) variables, which can store arrays of numbers, and
string variables, which can store sequences of alphabetic and numeric

symbols, are other kinds of variables which are described in sections
2.7 and 2. 8.

2.4 Arithmetic Operations

Arithmetic operations in BASIC are symbolized as follows:

OPERATION SYMBOL, EXAMPLE
add + 6+7=13
subtract - 10-2=8
multiply x 5%6=30
divide / 20/4=5
exponentiate t 2¢3=8

The order in which operations are performed is determined by the
normal rules of algebra:

1. All operations within parentheses are performed before any oper-
ations outside.

Do

Operations within the same sets of parentheses are performed
according to the precedence of the operators. From highest to
lowest precedence, the operators are:

1. t Exponentiation
2. * [Multiplication or division
3. + - Addition or subtraction

Copyright (C) 1973
Educational Data Systems 2-3

3. Operations within the same sets of parentheses and of the same
precedence are performed from left to right.

It is a good practice to enclose expressions in parentheses if one is unsure
of the order in which they will be evaluated.

2.5 Expressions

An expression is any number, numeric variable, function, or combin-
ation of these combined by arithmetic operations and parentheses and
nested according to the normal rules of algebra. All arithmetic oper-
ations must be included explicitely.

For example:
(2+4)/3
100*P
A+Bt3

5
2%(A*SIN(R/3.14159)-1.OG(Q))

Note that expressions may include functions (see Section 3).
2.6 Relations

Relations between two expressions are symbolized as follows:

RELATION SYMBOL ARITHMETIC EXAMPLE
equals = 2 =2
does not equal <> 4<>6
greater than > 9 >3
less than < 3 <9
greater than or equal to >= 5>=4
less than or equal to <= 8«<=8

Copyright (C) 1973
Educational Data Systems 2-4

2.7 Arrays and Array Variables

Arrays provide convenient ways to organize numerical data in lists and
tables. There are two forms as follows:

One Dimensional Arrays (Vectors)

A one-dimensional array, or vector, is a sequence of N numbers. The
I-th number in the sequence is referred to as A(I), where A is the name
of the array. The general format for referring to an element in a one-

dimensional array is:

variable name (expression)

where variable name is any letter or letter followed by a digit and
expression is any expression which when evaluated identifies an
element of the vector.

Two Dimensional Arrays (Matrices)
A two-dimensional array, or matrix, organizes data in rows and
columns. The general format for referring to an element in a matrix

is:

variable name (expression, expression)

where the first expression identilies a row and the second expression
identifies a column of the array.

An example will help clarify. Consider the following table of data, or

matrix:
Quantity
Ttem Cost Sold
1 $5.50 11
2 1.75 20
3 7.89 9
4 6.49 11

Copyright (C) 1973
Educational Data Systems 2-5

Assume that the matrix has been given the name R. R has 4 rows and
3 columns. Below are some elements in R, and their values.

R(1,1) =1 R(4,1) = 4
R(1,2) = 5.50 R(4,2) = 6.49
R(1,3) = 11 R(4,3) = 11

Arrays are further explained in Chapter 5.
2.8 Strings and String Variables

A siring is a sequence of one or more symbols. In Business BASIC, all
printing characters on the user's terminal and all non-printing char-
acters except those used as control functions may be used as string
elements. In the computer, these are stored as ASCII codes with a

one iu the top bit instead of an even parity bit. An Appendix in the User
Reference Manual lists the ASCII codes in order of increasing value.

Two of these codes or ''bytes'' are stored in each memory word,
whereas one to four words are required to store the value of a numeric
variable. A special string terminator symbol is used internally to
mark the end of a string so that a string of N elements occupies
(N+1)/2 words if N is odd,and {N+2)/2 words if N is even.

A literal string is simply a string enclosed in quotation marks; for
example:

"ONE, TWO, THREE, TESTING"

Literal strings are used primarily in PRINT statements as described
in Section 4. Strings may also be represented as the value of a
string expression.

A string variable consists of a letter followed by a dollar sign or a
letter digit combination followed by a dollar sign. For example:

A%, Z$, BI$, CO0$

One or two subscripts may be used with a string variable to select a
substring; each subscript may be a number or, in gencral, any numeric
expression. For example:

A$(5), B1$(3,10), C9$@, J+1)

Copyright (C) 1973
Educational Data Systems 2-6

A variable with one subscript identifies the substring beginning at the
element identified by the integer value of the subscript and ending with the
last element of the string. A variable with two subscripts identifies the
substring beginning at the element identified by the integer value of the first
subscript and ending with the element identified by the integer value of the
second. For example:

If A$ = "ONE, TWO, THREE, TESTING"
Then A$(15) = "TESTING"
A$(5,13) = "TWO, THREE"
And if I = 8 and J(I) = I+1
Then A$(I+1, J(1)+4) = "THREE"

Strings may be constructed from smaller strings by concatenating literal
strings and string variables, separated by commas. For example:

"ONE,'", A$(5,13), ",", A$(15)

is equivalent to A$. A string expression is any literal string, or string
variable, or concatenation of literal strings and string variables.

The statements for manipulating strings are described in Chapler 6.

»

Copyright (C) 1973
Educational Data Systems 2-1

gy

3. FUNCTIONS

Business BASIC provides many pre-defined functions for the program-
mer's use. These include four trigonometric functions, six additional
mathematical functions, RND which produces pseudo-random numbers,
DET (see MAT Invert) which gives the determinant value of a square

matrix and LEN (see section 6.8) which provides the length of a string.

A function call has the general form

function (expression)

where function is a three-letter function name such as SIN, 1.0G, or
SQR, and expression is any numeric expression. In BBusiness BASIC,
the par‘ent-heses are not required if the argument is a single variable or
a positive number.

In addition to the pre-defined functions described in this c¢hapler, the
user may define his own functions. The method for creating and using
such user-defined functions is described in the section on the DEF
statement in Chapter 4.

3.1 Trigonometric Functions

Three trigonometric functions and one inverse trigonometric function
are provided in Business BASIC. Their function names and meanings
are:

SIN sine

CcOS cosine
TAN tangent
ATN arctangent

The argument for the sine, cosine, or tangent function is an angle
expressed in radians. Although any angle will be accepted as a valid
argument, some accuracy will be lost if the angle is outside the range
T 2ersince the function routine must first reduce the angle to the first
quadrant before evaluating the function. If the angle is known in
degrees, it must be converted to radians before it is used as the func-
tion argument. This may be done as the function is called; for example:

100 LET S=SIN (A*3,1415926535898/180)
110 LET B=B+TAN (A/57.295779513084)

Copyright (C) 1973
Educational Data Systems 3-1

The argument of the arctangent function may be any real number (the
tangent of any angle). The result will be an angle in the range T —Z—
radians.

Refer to APPENDIXII for identities which may be used to calculate the
other trigonometric functions in terms of the above four functions.

3.2 Transcendental Functions

Three transcendental functions are provided in Business BASIC. The
names of these functions and their meanings are:

SQR Square Root
L.OG Natural log (logarithm to base e)
EXP Exponential (the constant e raised to the power of the

argument value)

To compute the common log (log to base ten) of a number, use the
identity:

log,oX = log.X/log,10

which may be expressed in a BASIC statement as follows:

o

240 LET W = 1.LOG(X)/2.3025850929940

Obviously, the base 10 counterpart of EXP(X) is 104X, but IXR(X) may
be used if X is an integer (see Section 3.5).

Random numbers are provided by the RND function. In some systems,
the argument of the RND function is ignored, and only numbers in the
range zero to one are generated. In Business BASIC, however, the
argument may be used to specify the range over which numbers are to
be generated.
An argument value of zero indicates the standard range:

0£ RND(0)« 1

Any other argument value x indicates the range of the result to be:

0 £ RND(x)< x for x#0

Copyright (C) 1973
Educational Data Systems 3-2

The argument value may also be negative, in which case the range is
between 0 and the negative argument, i.e., the random number will be
negative.

The "random' numbers actually come from a sequence of pseudo-
random numbers generated by the computer. Over 65, 000 numbers will
be generated before the sequence repeats.

To instruct the computerto "pick' a random number between 1 and N,
inclusive, the following is generally used:

INT (RND(N))+1

For example, INT (RND(6))+1 will be a random integer from 1 to 6,
inclusive, and may be used to simulate the throwing of one die, or used
twice to simulate throwing a pair of dice.

3.3 Mathematical Functions

Five mathematical functions are provided in Business BASIC. The
function names and their meanings are:

ABS Absolute value
SGN Algebraic sign
INT Integer value
FRA Fractional portion
RND Random number

ABS(x) will yield the absolute value of x (any expression); i.e., if x is
negative it will be changed to the same positive valuc.

SGN(x) will yield zero if the argument is zero, +1 if the argument is
greater than zero, or -1 if the argument is negative. Some-
times called the signum function to distinguish it from the sine
function.

INT(x) will yield the most positive integer that does not exceed the
argument. For example:

INT (0.5) = 0
INT (3.999) = 3
INT (-4.6) = -5

Copyright (C) 1973
Educational Data Systems 3-3

3.

3.

4

5

FRA(x) will yield the fractional part of the value of the argument. For

example:
FRA(2.3065) = 0.3065
FRA(5) = 0
FRA(-8.149) = -0.149

For positive values of x (any expression) FRA(x) yields the same value
as x-INT(x). Note, however, that this is not true if x is negative.

Logical Functions
One logical function is currently provided in Business BASIC. It is:
NOT Logical inversion

NOT(x) will yield one if the argument is zero,or zero if the argument is
non-zero.

Number Manipulation Functions

Three functions are provided in Business BASIC for taking floating
point numbers apart and putting them back together. They are:

MAN Mantissa portion
CHR Characteristic portion
IXR Integer exponent of radix

A floating point number, x, may be represented as:
x = MrC€
where M is the mantissa, a signed number between zero and one, r is

the radix (r = 10 in EDS Business BASIC), and c is the characteristic,
a signed integer which is the exponent of r. Referring to the above

equation:
MAN(x) = M
CHR(x) = ¢, and
IXR(c) = rC

The number x may be represented in terms of these three functions as
follows:

x = MAN (x)*IXR(CHR(x))

Copyright (C) 1973
Educational Data Systems 3-4

Following are more precise definitions of the three functions:

IXR(x) yields a value equal to PINT(X) where ¢ is the radix used for
internal computation. In Business BASIC the radix r is ten. In
most other systems r is two.

CHR (x) extracts the characteristic portion of a floating point number.
CHR(x) yields an integer N such that

rN "1 X< rN

where r is the radix used for internal computation (see explanation
of r under IXR function).

MAN(x) extracts the mantissa portion of a floating point number.
MAN(x) yields a signed fraction such that

MAN(x) * IXR (CHR(x)) = x

Special transcendental functions may be implemented in a DEF statement
by use of these special functions.

3.6 Special Functions

The SPC function is used to obtain certain types of special information
such as time, port number, etc. The argument of the SPC function
indicates what information is desired as follows:

function value

SPC(0) CPU time used since log on (in tenth-seconds)
SPC(1) Connect time used since log on (in minutes)
SPC(2) Hours since January 1, 1973% . N
SPC(3) Part of hour (in tenth-seconds) REAL TIME
SPC(4) System creation date (hours after 1-1-73)%

SPC(5) Your account number

SPC(6) Port number of your terminal

SPC(7) Front panel switch setting

SPC(8) Last BASIC error number

*Note: the "hours since January 1, 1973" value assumes that all months
have 31 days.

Copyright (C) 1973

Educational Data Systems 3-5

3.7 User Defined Functions

3.

8

The user may define special functions for his own use. Up to 26 such
functions may be defined, and the definitions may be changed in the
course of a program run. Refer to the DEF statement in Section 4 for
the procedures to define and use defined functions.

Dummy Functions

There are three dummy functions available in Business BASIC for use in
defining special functions. They are:

DFV Dummy function, variable
DFA Dummy function, ampersand
DFP Dummy function, percent

A dummy function is used when a certain expression appears repeatedly
within the function. Use of a dummy function temporarily assigns a
value to a dummy variable. The simple user-defined function (refer to
Section 3.7) has one dummy variable which is assigned a value by the
function call. For example:

120 LET A = B + FNS(C+3)

assigns the value of C+3 to the dummy variable and then calls the func-
tion FNS to evaluate some user-defined function of this value. If FNS
had been defined by the statement:

10 DEF FNS(G) = (G$#2 +3/G)#2 - (G42 + 3/G)

the dummy variable G would receive the value of C+3. Notice that the
expression Gt2 + 3/G appears twice in this definition. Therefore, this
definition may be shortened by use of a dummy function. The statement

10 DEF FNS(G) = DFV(G#2 + 3/G), G*2 - G

is equivalent to the previous definition. The DFV (Dummy Function,
Variable) causes the expression G*2 + 3/G to be evaluated, and this
value is then assigned to the dummy variable (G in the example). Eval-
uation of G$2 - G then generates the value which is returned by the
function. Two additional dummy functions, DFA (Dummy Function,
Ampersand) and DFP (Dummy Function, Percent), may be used in a
similar manner to assign values to the dummy variables & and %,
respectively.

Copyright (C) 1973

Educational Data Systems 3-6

In a statement of the form
DEF FNu(v) =. . . DFV(expression), .

where u and v are any letters and v is the dummy variable, the portion
of the statement

DFV(expression),
is equivalent to including the statement
LLET v = expression

within the DEF statement, where v is the same dummy variable.
Similarly,

DFA(expression)
is equivalent to
LET & = expression |

and an analogous relationship holds between DFP and the % dummy
variable. The ampersand and percent sign may then be used as
variables later in the same statement, definition, or nested functions,
but the values of these dummy variables are not retained from onc
statement to the next. DFV, DFA, and DFP arc the only available
dummy functions. DF followed by any other letter will cause an crror.

Copyright (C) 1973
Educational Data Sysiems 3-7

)

THE FUNDAMENTAL STATEMENTS OF BASIC

This chapter gives a detailed discussion of each statement in the
"elementary' and "advanced' BASIC language (see Kemeny and Kurtz
BASIC PROGRAMMING) including many extensions to these statements.

Other features and extensions such as matrix algebra, string processing,
the CALL statement, by which a BASIC program may call a machine
language subroutine, are described in Chapters 5, 6, and 7.

Statements:

Form:

Examples:

Furpose:

Remarks:

Copyright (C) 1973

END and STOP

any line number STOP
or
any line number END
or
highest line number in program END

150 STOP
100 END
9999 END

The END and the STOP statements terminate the execu-
tion of a program.

The END and STOP statements have similar effects, and
may be used in any portion of the program to terminate
execution of the program.

Usually, the END statement is used to stop execution as
the final step of a program. Most often, the STOP state-
ment is used to terminate execution in the midst of the
program. N

It is not mandatory that the last statement in a program be
an END statement.

The END statement will cause the simple message
"READY" to be printed, while a STOP statement causes

STOP AT line number of STOP statement

to be printed.

Educational Data Systems 4-1

Statement:

Form:

Examples:

Purpose:

Remarks:

LET

line number LLET variable = expression
or
line number LET variable (expression) = expression
or
line number LET variable (expression, expression)=expression

10 LET P=6

20 LET R2=Q+(T/5)

30 LET A(2)=C+5

40 LET B=B+1

50 D=P+5*%Q-SQR(A(Z))

This statement assigns an arithmetic value to a variable. The
arithmetic value normally represents the result of calculations
performed by the computer.

In a LET statement, the symbol "=" should be read as ''takes the
value of'", not as ""equals''. For example,
LET P=6

should be read "Let P take the value of 6''. Therefore it is
possible to have

10 LET B=B+1

which means to let the new value of B take the existing value of
B with one added to it.

The word LET is not required when entering an assignment
statement (see example 50 above). LET will be assumed as the
statement type if no type word is entered, and the word LET will
be printed when the program is listed.

Copyright (C) 1973
Educational Data Systems 4-2

Statement:

Form:

Examples:

Purpose:

Remarks:

INPUT

line number INPUT variable, variable.. .

110 INPUT A, B

120 INPUT C, D4, E

130 INPUT B(2)

140 INPUT "WHAT IS YOUR NAME ? "N$
150 INPUT " ''J

This statement informs the system that data are to be entered
from the keyboard. The system will temporarily suspend the
program, type a question mark, and await data to be typed in by
the programmer.

The program: 10 INPUT A,B
20 PRINT "THE SUM IS"; A+13
30 GOTO 10

will input two numbers from the keyboard, add them, print the
sum, and ask for two more numbers.

To enter more than one number in response to an INPUT state -

ment, such as in example 120, separate the numbers by commas
or press the RETURN key after each number entercd. When the
RETURN key is pressed after entering data, the system will not
return the terminal's carriage but will remain on the same line.

To terminate a program or subroutine using the INPUT statement
two methods may be applied:

L

1. Use ESC key - See Chapter 2.
Insert after the INPUT statement an IF statement sc that if a
given value is inserted, the program or subroutine is termin-
ated. For example, in the second program shown above,
insert

15 IF A=0 STOP

The standard question mark prompt character may be replaced by
any prompt message given in quotes at the beginning of the state-
ment as in example 140. If there is nothing between the quotes,
as in example 150, then input will be enabled with no prompt at
all.

Copyright (C) 1973
Educational Data Systems 4-3

Statements:

Form:

Example
Program:

Purpose:

Remarks:

READ and DATA

line number READ variable, variable ...

line number DATA constant, constant ...

or

line number DATA n%, constant, constant ...

10 FORJ =1 TO 4
20 READ Y

30 PRINT "THE SQUARE ROOT OF'"; Y; "IS"; SQR(Y)
40 NEXT J

50 DATA 3%, 2, 3.7, 94.61, .0024

60 LET E=C+Z

70 PRINT E
80 DATA 12,-32.4,9999,4E-16

The READ statement instructs the system to read a number from
a DATA statement, and to assign the value to the specified vari-
able.

The DATA statement is used for supplying data in a program and
for specifying the precision of that data.

As described in The DIM statement,the precision of each variable in a

program is determined by the setting of a four-position "switch"
when the variable is encountered in the program for the first
time. This switch is initially set to two but may be changed to

a new value of 1,2,3 or 4 by the occurrence of n% (n=1,2,3,4) in

a DIM statement. n% (n=1,2,3, or 4) may also occur immediately
after the word DATA in a DATA statement, in which case the
numbers in that DATA statement are read with precision n. Thus,
in line 50 above, 2, 3.7, 94.61, and .0024 are read and assigned
to variable Y as three-word precision numbers.

Only one % symbol may be used in each DATA statement, and it
must immediately follow the word DATA. All numbers in a given
DATA statement are of the same precision. The % symbol in a
DATA statement does not affect the position of the "switch''.
Therefore, variable E, which is first encountered in line 60, will

Copyright (C) 1973

Educational Data Systems 4-4

-

in this case be a two-word variable. If a DATA statemcut does
not contain n%, then its data are stored with precision deter-
mined by the current setting of the "switch'.

The data are read in sequence from the first to the last DATA
statement and from left to right within each DATA statement.
The system initially sets a pointer to the first item of data. As
the READ statements request each data item, the pointer is
moved to the next data item. The RESTOR statement may be
used to reset the pointer.

DATA statements are not executed and may be placed anywhere
in the program, though they are usually placed near the end of
the program.

I[tems in a DATA statement must be separated by commas. but
no comma should follow the last item of data.

Statement: RESTOR
Form: line number RESTOR

Frogram 10 FOR 1=1 TO 4
Example: 20 READ X, Y

30 INPUT Z

40 PRINT (X+Z2)/Y

50 RESTOR

60 NEXT I

70 DATA 1.2, 3.14159

Furpose: The RESTOR statement resets the data pointer to the first item
of data making it possible for the data to be re-read.

Remarks: Line 50 in the example program resets the data pointer so that
the same values are read for X and Y each time through the loop.

Copyright (C) 1973
Educational Data Systems 4-5

~Statement:

Form:

Examples:

Purpose:

Remarks:

PRINT

line number PRINT list of expressions and/or literal strings

10 PRINT A

140 PRINT 6*A, B, SQR(B)+C,

300 PRINT "THE ANSWER IS'";R

440 PRINT "THE SUM OF'";X;"AND'";Y;"IS";X+Y
610 PRINT

770 PRINT E;TAB(20);"%"

990 PRINT EXP (D+SQR (X))

To print text, numbers, and computation results on the user's
terminal. (See also PRINT # in Section 7.)

Example 10 above will print the current value of variable A and
then cause a carriage return and line feed.

There are 75 columns or print spaces numbered zero through 74

across each line. The line is divided into five fields of 15 spaces

each, starting at columns 0, 15, 30, 45 and 60. A comma in a

PRINT statement causes a column tab; i.e., it causes spacing to

the beginning of the next field. Therefore, statement 140 above

will print the value of 6*Astarting at column zero, the value of B i,
starting at column 15, and the value of SQR(B)+C starting at

column 30. The comma at the end of the statement then causes

spacing to column 45 where printing will cease without a carriage

return.

After printing in the fifth field, another comma would cause a
carriage return, so that the sixth field will be directly under the
first field, etc.

In any case, when a PRINT statement contains more than one
expression, the expressions must be separated by commas or
semicolons. A semi-colon causes close packing (no column tabs).
Each number is printed with either a leading minus sign or space,
the value, and one trailing space. Therefore, the use of semi-
colons will print numbers in the closest readable form.

A verbatim message may be printed by enclosing it in quotation
marks as shown in example 300. Such a "'literal string' is
usually separated by semi-colons to prevent column tabs.

Copyright (C) 1973
Educational Data Systems 4-6

A quotation mark may be included in a literal string by usc of a
double apostrophe, and a carriage return may be included by usc
of a CTRL Z where the RETURN is desired.

Statement 440 above is a good example of the use of literal strings.
If X=7 and Y=9, then statement 440 will cause the following
printout:

THE SUM OF 7 AND 9 IS 16

Each printout is followed by a carriage return and line feed unless
this is suppressed by either a comma or a semi-colon at the end
of PRINT statement. Therefore, an empty PRINT statement, as
in example 610, will cause only a carriage return and line feed.

The TAB function may be used for further control of a printout.
An expression of the form

TAB (exB ression);

will cause spacing to the column number specified by the integer
value of the expression. For instance, statement 770 above will
print the value of E, space to column 20, and print an asterisk.
If printing has already occurred past the specified column, no
further spacing will take place. The print line is considered to
be circular; i.e., columns 75, 150, 225, etc., are considered
to be the same as column zero. A negative value for the tab
expression will, however, cause an error.

The TAB function may be used only in a PRINT or PRINT
USING statement. Any statement such as

100 TAB(30);"NAME"
or

200 LET A = TAB(5)

will cause an error.

The result from PRINT that goes into the I/O buffer is not out-
putted each time but is buffered up until the buffer is filled, the
user is swapped out, or another BASIC statement wants to use
the I/O buffer for something other than PRINT (such as INPUT).

The user can always force printing with a SIGNAL 3,0 state-
ment (see Section 4).

Copyright (C) 1973
Educational Data Systems 4-7

Statement:

Form:

Examples:

Purpose:

Remarks:

PRINT USING

line number PRINT USING string variable; expression list

10 DIM A$(10), B$(30)

20 LET A$=""###.##"

30 PRINT USING A$; "ANSWER-=""; 1. 50%4
40 PRINT USING A$; 8, 300; TAB(40);X

50 LET B$= "+++## S8, ### -S#, ###. ##"
60 PRINT USING B$; 7.6, 5.4, -8500

70 PRINT USING B$(15);X;Y;Z

80 PRINT USING B$;X; " TIMES '"; Y; "='"; Z
90 LET B$= "#. ### Sttt "

100 PRINT USING B$; 15360000; 23. 469
110 PRINT USING "####.##'"; X

To print text, numbers, and computational results in a
format specified by a string.

String variable is a string variable (one subscript allowed) or

a literal string whose value, the format string, specifies the
format in which the expression list is to be printed. The for-
mat string may contain one or more format fields which control
the form of printout of the numeric expressions in the expres-
sion list. It may also contain blanks () and any other char-
acters other than format control characters. The expression
list may include numeric expressions, string expressions,
commas, semicolons, and TAB functions.

Printing is accomplished by starting a scan of the expression
list; any string expressions are printed and tabulations are ex-
ecuted in response to commas, semicolons, and TAB functions
until the first numeric expression is reached. Then, a scan of
the format string is begun and all characters other than format
control characters in the format string are printed until the
first format field is reached. The value of the numeric expres-
sion is then printed in the format specified by the format field.
Next are printed all non-format characters in the format string
if there are no more format fields. The scan is then resumed
in the expression list, printing until the next numeric expression
is reached. In this way, scans of the expression list, and of the
format string alternate until the expression list is exhausted.

If the end of the format string is reached before the expression
list is exhausted, the scan of the format string is repeated as
often as required.

Copyright (C) 1973 S
Educational Data Systems 4-8

Thus, lines 20 and 30 above will produce:
ANSWER = 6. 00

While lines 20 and 40 will produce (if X=20. 5):
8.00 300. 00 20.50

The format string may contain any of the following types of
format fields:

#H#

For each # in the format field, a digit (0-9) or blank (i) is
substituted. Integers are right justified with leading blanks.
Signs and other non-digits are ignored. Only integers are repre-
sented; the decimal point and any fraction after it are ignored.

If the datum is too large, all asterisks are printed.

#HH.

A decimal point is printed where indicated. Digit positions (#)
following the decimal point are filled; no blanks are left in these
positions. If the fractional portion is too long, it is truncated to
fit the format. ILeading zeroes in the integer portion are replaced
by blanks except for a single leading zero preceding a decimal '
point.

Signs (+, -, ++, --)

A fixed sign (+ or -) may appear as the first symbol of a format
field.

Interpretation: + Outputs '"+'" if value is positive, ''-"
- Outputs '"B'" if value is positive,

if negative.
"-'""if negative.
A floating sign (+++-- or ----.) appears as the first two or more
symbols in the format field. Positions occupied by the second
and any additional signs can be used for numeric positions in the
datum and the sign is printed immediately preceding the datum.

Copyright (C) 1973
Educational Data Systems 4-9

Fixed and Floating ($)

A fixed $ appears as the first or second character in the format
field, causing a $ to be printed in that character position. The
$ may appear as the second character if it is preceded by a fixed
sign.

A floating dollar sign (3--.) consists of at least two characters
beginning at either the first or second character position in the
string and causing a $ to be placed in the character position
immediately preceding the first digit. If the floating $ begins

in the second character position, it is preceded by a fixed sign.
Only one floating character (sign or $) is permitted in a given
field.

Separator (,)

The separator (,) places a comma in the position indicated except
where leading zeroes (blanks) occur.

Exponent Indicator (1)

Four consecutive arrows (f¢#f) indicate an exponent field and will
be filled by Einn where each n is a digit.

Asterisk (%)

The asterisk (*) specifies asterisk protection of all leading
positions within the output result which would otherwise print
as blanks.

In the examples above, lines 50, 60,70 and 80 produce the
following printouts (assuming X=1000, Y=9. 999, and Z=9999):

+ 7 $5. 400 -$8,500.00

$1,000.00 & 9.99 $£9,799.00
+1000 TIMES $9.999 = $9,999.00

Lines 90 and 100 produce:
1.536E+07 $**%23, 46

Appendix T includes business application programs which further
illustrate PRINT USING.

Copyright (C) 1973
Educational Data Systems 4-10

Statement:

Form:

Examples:

Purpose:

Remarks:

GOTO

line number GOTO line number

30 GOTO 10
50 GOTO 90

This statement transfers the control to the specified
line.

GOTO must be followed by a line number to which the
control is to be transferred; there must be a statement
in the program with that line number, or an error will
occur,

The statement is useful for ""jumping' to another part
of the program or for repeating a task indefinitely.

A GOTO should not be used to jump into the interior of a
FOR-NEXT loop because a "NEXT without matching FOR'"
error will occur when the NEXT statement is encountered.

Copyright (C) 1973
Educational Data Systems 4-11

Statements: GOSUB and RETURN

Form: line number GOSUB line number starting subroutine

line number RETURN

Examples: 10 GOSUB 200
20 GQSUB 430
250 RETURN
450 RETURN

Purpose: The GOSUB statement transfers control to the specified
line number.

The RETURN statement transfers control to the statement
following the GOSUB statement which originally transferred
the control.

Remarks: The GOSUB and RETURN statements eliminate the need
to repeat frequently used groups of statements in a program.
Such a group of statements is called a subroutine.

The portion of the program to which the control is
transferred must be terminated with a RETURN statement.

A RETURN statement may be used at any desired exit
point in a subroutine, and there may be as-many RETURN
statements as needed in each subroutine.

A subroutine that has been entered with a GOSUB can itself
contain a GOSUB statement. This nesting process can be
carried out to 5 levels. Each RETURN is to the previous
level.

A RETURN statement cannot be executed without the
previous execution of a GOSUB statement.

Copyright (C) 1973
Educational Data Systems 4-12

Statement:

Form:

Examples:

Purpose:

Remarks:

ON

line number ON expression GOTO sequence of line numbers
or
line number ON expression GOSUB sequence of line numbers

60 ON J/2-5 GOTO 150, 300, 100, 300, 40
10 ON LOG(R)+1 GOTO 95, 407

20 ON J GOSUB 130, 140, 200, 210

30 ON P+1 GOSUB 190, 500, 650

40 ON A GOSUB 400, 400, 350, 410, 430

This statement transfers control to the line number indicated
by the integer value of the expression following ON.

The expression following ON is evaluated, and the value is
integerized, but not rounded. The integer is then used to select
the first, second, third, etc., line number. If the value of the
expression is not positive, or if it is greater than the number

of line numbers listed, the GOTO or GOSUB will not be executed;
control will be transferred to the next statement following the
ON statement.

The subroutine given control by an ON..,.GOSUB statement
should be exited only with a RETURN statement.

The line numbers following GOTO or GOSUB must be separated
by commas.

There may be any number of line numbers listed.
To illustrate the concept, statement 20 above will transfer
control to line 130, 140, 200 or 210 if the integer value of J is

1, 2, 3 or 4, respectively.

ON...GOTO is equivalent to the statement GOTO...OF imple-
mented on some systems.

Copyright (C) 1973
Educational Data Systems 4-13

Statement:

Form:

Examples:

Purpose:

Remarks:

DIM

line number DIM variable list‘ -

10 DIM A(15) .

20 DIM B2(7, 8), C4(40), D$(50) .
30 INPUT B ‘
40 DIM D(2, 3), 4%, G(15), H, B$(100), 3%, R

50 LET C=B+M

60 READ X,Y, Z

70 DATA 17, 344.6699802, 2

The DIM statement instructs the system to reserve the correct
amount of storage space for a number, an array, or a string by
specifying an upper limit on the amount of space that will be
required.

Numbers and array elements may be stored in four different
formats (precisions), requiring from one to four words, as
described in Section 2.2. One of the purposes of DIM is to

provide a means for specifying these formats. The precision of

a variable is determined by the state of a four-position "switch"

at the time the variable is first encountered during each run of a
program; the variable remains at that precision throughout the run. -,
The "switch' is automatically set to position two at the beginning of a
run; it can be changed to any position n(n=1,2,3, or 4) by
encountering n% in a DIM statement. All variables that are

first encountered while the switch in in position 3, for example,

will become three-word variables capable of carrying ten signi-
ficant digits.

DIM is also used to specify the maximum number of elements
that may be stored in a one- or two-dimensional array or in a
string. This is accomplished by including in the DIM statement
a variable name followed by one or two expressions enclosed in
parentheses. See lines 10 and 20 above for example.

For a two-dimensional array, the first expression specifies the
highest row number and the second expression specifies the
highest column number to be used. Since an array always
includes a row zero and a column zero, an array dimensioned
A(3,5) contains four rows and six columns for a total of 24
elements.

Copyright (C) 1973
Educational Data Systems 4-14

A one-dimensional array is treated as a column vector; i.e., it has only onc
column (column 0), and the expression specifies the highest row number
Thus, A, in line 10, can store up to 16 elements. 1If the value of an expres-
sion is not integral, the integer portion of the value is used. Negative
dimensions are not allowed.

A one-dimensional array which is not mentiona in a DIM statement is
automatically dimensioned 10 by 0. A two-dimensional array which is not
mentioned in a DIM statement is automatically dimensioned 10 by 10.

The actual working size of an array may be smaller than the size to which
it is dimensioned in the DIM statement. For example, in an array dimen-
sioned 5x5, it is acceptable to use fewer than 36 elements.

The dimension of a string variable specifies the maximum number of bytes
that the string can store. String variables are not automatically dimen-
sioned so that all must appear in a DIM statement.

A DIM Statement may be placed anywhere in a program. The example
program above illustrates how the DIM statement determines precision. In
this program, B will be a two-word variable since it is encountered before
the "switch' is changed from its initial position. l.ikewisc, array D will be
composed of two-word numbers. The 4% moves the switch so that vector G
and variable H will be of four-word precision. B$ is dimensioned as a 100

character string (the use of % symbols has no effect on strings). The switch
1s again reposmoned and R is created as a three-word variable. In line 50,
C and M are also created as three-word variables since the DIM statement
leaves the switch at position three, but B remains as a two-word variable.
In line 60, the variables X, Y and Z will be three words cach and will receive
the values 17, 344.6699602 and 2, respectiwely.

The number of words required to hold data and variables in Bumru ss BASIC
may be calculated from the following formulae:

type number of words

simple variable 2 + precision

array 4 + (number of elements)*(precision)
string 4 + INT (dimension/2)

DATA statement 3 + (number of elements)*(precision)

The number of elements in an array dimensioned (R, C) is (R+1)*(C+1)
including row zero and column zero.

Copyright (C) 1973
Educational Data Systems 4-15

Statement: IF

Form:

Examples:

Purpose:

Remarks:

Copyright (C) 1973

line number IF expression relation expression statement
or
line number IF expression statement

240 IF A+B=C*5 THEN 660

360 IF D*E GOTO 510

510 IF W(2, 3)=R2+8 GOSUB 1140
405 IF B=7 LET N=N*2+Q

100 IF D3> 4 IF D3< M PRINT D3

An IF...GOTO statement (the standard and most
commonly used form of the IF statement) provides
conditional branching capabilities; control will be
transferred to the specified line number if the given
condition is met. Extended forms of the IF statement
allow branching to a subroutine or executing a given
statement only if the condition is met. Any statement
of Business BASIC may replace statement above.

The words THEN and GOTO are synonymous in an
IF statement. Either will be accepted but it will
always be listed as GOTO.

Example 240 above will transfer control to line 660

if and only if the value of the expression A+B is equal

to the value of the expression C*5. Otherwise, control
will pass to the next statement in sequence following 240.

In the short form IF statement (single expression, no
relation), the '""condition' is met if the value of the
expression is non-zero. Thus, example 360 above

is identical to the statement

360 IF D¥E<L>0 GOTO 510

and will branch to line 510 if the value of D¥E is non-
zero. This is a particularly useful form since control
will continue to the next statement in sequence if
either D or E is zero.

Example 510 shows how a subroutine may be conditionally
executed. Example 405 shows how an assignment may
be made only if a condition is true. Since any statement
including another IF statement may follow the '
condition expression, many tests can be performed

Educational Data Systems 4-16

Statement:

Form:

Examples:

Purpose:

Remarks:

simultaneously as in line 100 above. 7This example will print the
value of D3 only if it lies in the range

4<D3<M.
Any number of IF conditions may be concatenated in this manner,
It is sometimes desirable to test two values for approximate
equality since one or both may not be exact due to divisions or

use of transcendental functions. In such a case, the statement
may be written in the form

900 IF A-B<.01...

so that a small difference between the values of A and B will be
accepted as equality.

REM

line number REM any series of characters

10 REM: THIS PROGRAM ADDS NUMBERS
20 REM 1111

The REM statement allows the insertion of a comment or remark
into a program.

REM lines are saved as part of the program. They appear when
the program is listed, but they are ignored when the program is
executed.

Copyright (C) 1973
Educational Data Systems 4-117

Statements: FOR and NEXT

Forms:

Examples:

Purpose:

Remarks:

line number FOR variable = expression TO expression
or
line number FOR variable = expression TO expression STEP expression

line number NEXT variable

10 FORA =1TO5

20 FOR B3 = 6 TO -4 STEP -2
30 FQR M =J TO K+4 STEP 13-D
150 NEXT M

300 NEXT B3

600 NEXT A

To create a program loop and cause it to be repeated a predeter-
mined (or calculated) number of times. The variable, sometimes
called the "index variable', must be the same in the FOR state-
ment and its mating NEXT statement.

The FOR statement assigns an initial value (the value of the first
expression) to the index variable, and saves the value of the
second expression as a limiting value. If the initial value does
not already exceed the final value, control then passes to the
statement following the FOR statement.

When a NEXT statement is encountered, the step value (assumed
to be +1 unless specified by the word STEP in the FOR statement)
is added to the index variable. If the result does not exceed the
limit value, control is transferred to the statement following the
FOR statement. If the result does exceed the limit value, control
passes to the next statement in sequence following the NEXT
statement.

The value of the index variable is deemed to exceed the limit
value if it is more positive (for a positive step value) or more
negative (for a negative step value). If the initial value in the
FOR statement exceeds the limit value, a search is made for the
matching NEXT statement, and control is immediately transferred
to the statement following the NEXT statement without executing
the statements within the loop.

Copyright (C) 1973
Educational Data Systems 4-18

Looping can be accomplished with the FOR and NEXT statements. I'or
instance, the following two programs perform similar functions:

10 FOR A=B TO C STEP D 10 LET A=B

20 ... 15 IF A>C GOTO 110
20

100 NEXT A 100 LET A=A+D

110 ... 105 IF A «<=C GOTO 20
110

There is one important difference, however, between these two programs:
changing the values of C and D within the FOR-NEXT loop will have no effect
on the limit or step values since they are evaluated only once when the FOR
statement is executed; changing C and D within the other program will affect
lines 100 and 105.

Nesting FOR-NEXT Loops

FOR-NEXT loops may be nested up to five levels deep as shown in the
following examples:

legal nesting legal nesting
— 10 FOR A... —— 10 FOR A...
0 FOR B... 20 FOR B...

— 30 FOR C...

60 NEXT B .
— 70 NEXT A ——100 NEXT C
—110 FOR C

illegal nesting

» ——170 NEXT C
10 FOR A. .. L 180 NEXT B

20 FOR B... 190 FOR B
0 N.EXT A < 300 NEXT B
70 NEXT B ' b——-310 NEXT A

Copyright (C) 1973
Educational Data Systems 4-19

Note that for legal nesting, the mating FOR and NEXT
statements .capn be connected without crossing lines. In
the case of the illegal nesting shown, when the NEXT

A statement is encountered, the system checks whether
the last FOR statement encountered was a FOR A. It
was not, so the index variable B loop is dropped and the
FOR A statement is found. The FOR A...NEXT A loop
is processed to completion, and an error will occur when
the NEXT B statement is encountered. In certain cases,
this situation may be desirable, in which case it is an
acceptable programming practice as long as the
circumstances which create the condition also prevent
the NEXT B statement from being executed.

Another type of illegal nesting involves use of the same
index variable in nested loops. For example:

— 10 FOR A. ..
20 FOR A...

80 NEXT A
—— 90 NEXT A

In this case the inner loop will be executed properly, but
the outer loop will be lost. When a FOR statement is
executed, the system checks whether an existing loop
uses the same index variable, and if so, that loop and
all Toops nested within it are dropped. This allows
programs such as the following to be properly executed:

——— 10 FOR A...

60 GOTO 240

.~ 90 NEXT A_

- 240 FOR A. ..

Copyright (C) 1973
Educational Data Systems 4-20

Special case for integer index variable:

If the index variable (D in the example below) is an integer, then the step and
limit values will also be evaluated as integers. Thus, all arithmetic which
must be performed by the system each time the NEXT statement is encountered
will be done with integers, and it will take only one-third as long to cxecute

the looping function. This feature should be used wherever a short FOR-
NEXT loop is used and maximum speed is desired. For example:

10 DIM 1%, D, 3%

20 FOR D=1 TO 10 STEP 2.9
30 LET X=5/D

40 PRINT D;X

50 NEXT D

will cause the following to be printed:

1 5
3 1.666666666
5 1
T .7142857142
9 .5555555555

Note that the use of an integer (one-word precision) index variable causes the
integer value of the step to be used. This is not the same as if the INT
function were used, however, since the fractional part is simply ignored; a
step value of -3 would be used if a step of -3.6 were specified.

Copyright (C) 1973
Educational Data Systems 4-21

Statement:

Form:

Examples:

Purpose:

Remarks:

DEF

line number DEF FN letter (variable name) = expression

10 DEF FNR(B)=2*B-C/3
20 DEF FNC(D4)=2*%D4-C/3
30 DEF FNN(L.)=FNC(L)+FNR(L)-1

This statement allows the programmer to define his own
BASIC functions.

Up to 26 functions, FNA through FNZ, may be defined in
each program.

Defined functions may be nested, as in example 30, by
utilizing other defined functions within the definition. Up to
8 levels of nesting are allowed in this manner.

The DEF statement must be executed for the definition to
become effective. The definition may be changed at any
time by executing another DEF statement for the same
function.

A defined function is used primarily when the same expression
appears several places in a program. A function is defined
equal to that expression, and then the function is used in the
program in place of the expression. For instance, given the
definition in example 20 above, the following two statements
are identical in operation:

100 LET G=B+4*%(2%Y*Z-C/3)-M
100 LET G=B+4*FNR(Y*Z)-M

The argument (Y*Z in the above example)of the function call
(FNR) may be any expression. The expression is evaluated,
and the dummy variable in the definition (D4 in example 20)
is assigned that value.

The variable name in the function definition is called a dummy
variable because its name is independent of all other program
variables. In the above example, there might have been a
variable named D4 elsewhere in the program; it would neither
be affected by the above example, nor would it enter into

the evaluation. Also, the dummy variable is assigned the value
of the argument in the function call only for the duration of the

furiction evaluation.

Copyright (C) 1973
Educational Data Systems 4-22

Statement:

Form:

Examples:

Purpose:

Remarks:

RANDOM
line number RANDOM expression

10 RANDOM 2
5 RANDOM 0

The RANDOM statement allows the user to exercise control '
over the random number sequence generated by the RND function.

There are two problems common to most programs using random
numbers:

1. The program may be difficult to debug since each run
produces different results.

2. Successive runs of a debugged program may not behe.we
independently if the "random'' numbers are from a single
pseudo-random sequence.

Both these problems can be resolved by use of the RANDOM
statement.

The RANDOM statement is usually the first statement in a program
which uses the RND function. The use of a non-zero expression,
as in the first example above, will cause a certain sequence of
pseudo-random numbers to be generated. Different non-zero
expressions will initiate different sequences, but each RANDOM

statement with the same non-zero value will initiate the same
sequence,

Execution of a RANDOM statement with a zero value expression,
as in the second example, causes the system clock to be used to
initiate the random number sequence. Since the system clock
changes each tenth second, the random number sequence which
will follow a RANDOM 0 statement is unpredictable.

For best results when using the RND function, the following
procedure is recommended:

1. Include a RANDOM statement with a non-zero expression at
the beginning of the program while debugging.

2. Once the program is checked out, change the expression in
the RANDOM statement to zero.

Copyright (C) 1973
Educational Data Systems 4-23

Statement: SIGNAL 1 (Send Signal)

Form: line number SIGNAL 1, p, x1, x2

Examples: 250 SIGNAIL 1,1,61,2140
365 SIGNAL 1, D, R+1, 2*[-Q

Purpose: Sends a ''signal'’, which consists of the integer values of
expressions x1 and x2, to the port number given by the value of
expression p. The signal will be received by the addressee only
if the program running on that port executes a SIGNAL 2 (receive
signal) statement.

Remarks: The expressions x1 and x2 must evaluate to positive numbers not
exceeding 32767, Their integer values are then placed in a signal
list along with the integer value of variable p which specifies the
destination port number. In the first example above, the values
61 and 2140 are sent as a signal to port number given in B. In
the second example, the values of R+1 and 2*[-Q are sent the port
specified by the value of D.

The signal merely resides in the signal list until a program at
the destination port executes a SIGNAL 2 statement. However, o,
a signal will be ignored by the system if there is no user logged

on at the destination port. An error will occur if the signal list is full
at the time a SIGNAL 1 statement is executed,and the signal will be lost.
To reduce the probability of the list being filled, any signal is auto-
matically deleted from the list when it is about one to two hours old.
Also, any signal will be deleted if the user at the destination port

logs off.

Copyright (C) 1973
Educational Data Systems 4-24

Statement:

Form:

Examples:

Purpose:

Remarks:

SIGNAL 2 (Receive Signal)

line number SIGNAL 2, p, vl, v2
or
line number SIGNAL 2,p, vl, v2,x

420 SIGNAL 2,P,A,B
610 SIGNAL 2, S, M(2, 3), Y, 30

Receives any ''signal'’ which has been sent to the port on which
this statement is executed (see SIGNAL 1). The variable p will
be set to the number of the port from which the signal was sent,
and variables vl and v2 will be set to the signal values (the values
of x1 and x2 from the SIGNAL 1 statement). If there is no signal
to be received, p will be set to minus one, and vl and v2 will be
unchanged.

It is sometimes desirable to pause and wait for a signal. In this
case a time-out expression, x, may be included. The value of

x specifies a delay in tenth-seconds. If a signal is received
before the delay runs out, the program is immediately reactivated,
and the variables p, vl and v2 are set to the signal values. If

the delay runs out first, the program is reactivated, p is set to
minus one, and vl and v2 will be unchanged.

The variables p, vl and v2 must be simple variables or sub-
scripted variables; expressions are not allowed. However, x
may be given as an expression. The maximum value for x is
65534 which gives a delay of nearly two hours.

In the second example above, the program will pause for three
seconds (30 tenths of a second) or until a signal is received. The
port number of the sender (or -1 if no signal received) will be
put into variable S, and the two values of the signal will be put
into M(2, 3) and Y.

A user may send a signal to his own program by pressing the
BREAK key on his keyboard (use CTRL B if the BREAK key is
disabled). When a SIGNAL 2 statement is executed, p will be
set to the user's own port number, and vl and v2 will both be
set to zero. The SPC(6) function may be used by the program to
determine its own port number.

Copyright (C) 1973
Educational Data Systems 4-25

Statement:

Form:

Examples:

Purpose:

Remarks:

Statement:

Form:

Examples:

Purpose:

Remarks:

SIGNAL 3 (Pause)

line number SIGNAL 3,x

660 SIGNAL 3, 100
400 SIGNAL 3, A+42

Allows a program to pause (defer further execution) for a time
specified by expression x in tenth-seconds. At the same time,
anything buffered up in the users I/O buffer will be outputted to
the channel assigned to the buffer.

In the first example above, further program execution will be
delayed for ten seconds. All inputs (except ESCAPE) and all
signals will be ignored during this time. An output in progress
at the time the SIGNAL 3 statement is executed will be allowed
to finish. The maximum value for x is 65534, which gives a
delay of nearly two hours. If X is 0, an immediate return is
made to the next BASIC statement.

This statement may be used whenever it is desired to pause
before executing the next statement in the program. One example
of this is a program which is to loop periodically. It also will
force the output of the users I/O buffer ondemand.

KILL

line number KILL list of string variables or literal strings

540 KILL ""FILE23"
200 KILL M$, "XPRL'" , D$

To delete disc files.

Each literal string or string variable must contain the Filename
of a disc file. The effect is the same as if the KILL command
were given in the system command mode. The user's account
on which the file was created will be credited for the disc blocks.

An error will occur if any of the strings given is not a legal
Filename identifying a disc file that is not write protected.

If a command is given to kill a file that is open at the time on a
data channel, the Filename will be removed from the INDEX
immediately, but the file will remain open on the channel. The
file will be deleted later when channel is closed by a CLOSE
statement or cleared by program termination.

Copyright (C) 1973
Educational Data Systems 4-26

Statement:

Form:

Examples:

Purpose:

Remarks:

CALL

!
line number CALL x,vl,v2,v3,...

220 CALL 3,A,B

625 CALL 14, F2, R(2), D$

The CAIL statement provides a means for extending the BASIC
language by adding machine language subroutines,

The integer value of expression x selects a specific machine
language subroutine. This subroutine number is assigned by the

system operator in the range one to 255 when he loads the
subroutine into the system.

The variables vl,v2,v3,... are used to pass argument values to
and from the subroutine. Up to twelve such parameters may be
used. Simple variables and string variables may be used either
with or without subscripts, but no expressions are allowed
except to select the subroutine,

For information on how to use a particular subroutine, refer to
the documentation which must be provided by the user who writes
the routine.

Copyright (C) 1973
Educational Data Systems 4-27

Statement:

Form:

Examples:

Purpose:

Remarks:

Copyright (C) 1973

CHAIN

g,

line number CHAIN literal string or string variable

400 CHAIN "RUN PART2"
310 CHAIN "BYE"

840 CHAIN M$

990 CHAIN " "

The primary use of the CHAIN statement is to link together the
segments of a BASIC program which is too large to be run in
one piece. However, any system command can be given in a
CHAIN statement.

The CHAIN statement terminates running of the program in which
it is executed and transfers control to the system, which processes
the system command given in the statement. The effect is the
same as if the user were to use CTRL C and then type the system
command given in the CHAIN statement, but with one important
exception: the user's data file channels are not closed! This
allows one program segment to open a set of data files, and
succeeding program segments to access the same files without
requiring the Filenames. All local variables are cleared,
however, and all data to be passed from one program segment

to the next must be stored in data files. .

Statement 400 above terminates running the current program and
initiates execution of the BASIC program named PART2. If
PART2 does not exist or is not a BASIC program, an error
message will be printed, and the terminal will go to control mode.
Any data file channels that were opened by the current program
will remain open and can be referenced by PARTZ2 without
reopening them. Otherwise, the effect is the same as if there
were a STOP statement in place of the CHAIN statement, and the
user then pressed CTRL C and entered the command RUN PART2.

The other examples show additional uses for the CHAIN statement.
The port may be automatically logged off after all calculations

are finished (and the results stored in data files) by giving a BYE
command as in statement 310 above. In statement 840, the string
variable M$ must contain a system command. Statement 990
shows the use of an empty string in the CHAIN statement to exit
to the system, similar in effect to pressing CTRL C. All
channels will be cleared if the program chains to BYE or to
system control mode as in examples 310 and 990 above.

Educational Data Systems 4-28

5. MATRIX ALGEBRA

Business BASIC includes a set ‘of MAT statements to facilitate fast and
efficient manipulation of matrices. A matrix is defined here as an array
(see Section 2.7) exclusive of row zero and column zero. Both dimensions
of the array must be non-zero.

In addition to the MAT statements, Business BASIC provides for the
calculation of the determinant value of a matrix which may be obtained by
use of the DET function after the matrix has been inverted. For example:

200 MAT A = INV(B)
210 PRINT DET(X)

will print the determinant value of matrix B (see MAT...INV statement).
The DET function of a matrix may be used as an operand at any place in
an expression and at any time after inverting the matrix but before
inverting another matrix. The argument of the DET function is ignored
by the system, but some argument must be supplied to prevent a syntax
error.

A matrix is created by the first reference to its name in a DIM or MAT
statement. For example, any of these statements:

100 MAT INPUT D(3, 4)
110 MAT READ D(3, 4)
120 MAT D=ZER(3, 4)

will create a matrix D dimensioned three rows by four columns (plus the
zero row and column which are not used by the MAT statements). If the
matrix already exists due to a previous MAT statement or a DIM statement
it may be given a new working size by using its name with new subscripts
in a DIM or MAT statement as long as the final number of elements does
not exceed the original number of elements. For example, line 130 below
redimensions matrix D (defined above to be 3x4) to be 2x5:

E

130 MAT D=ZER(2, 5)

An entire array may also be read from or written to a data file with the
MAT READ# and MAT WRITE# statements. See Section 7 for details.

Copyright (C) 1973
Educational Data Systems 5-1

Statement: MAT...ZER

Form: line number MAT matrix variable = ZER

or

il

line number MAT matrix variable = ZER (expression)

or

1

line number MAT matrix variable

ZER (expression,
expression)

Examples: 100 MAT A = ZER

200 MAT B = ZER (15)
300 MAT Z = ZER (9, 14)
400 MAT L = ZER (E, F)
Purpose: This statement sets all the elements of the specified matrix

equal to zero. The matrix may be given a new working size
(as in lines 200, 300, and 400 above).

Remarks: This statement, as with other MAT statements, performs
a procedure that would otherwise take several steps. For
example, the statement

50 MAT B = ZER (R, C)
is equivalent to the following:

40 DIM B(R, C)

50 FORI=1TO R
60 FORK=1TO C
70 LET B (I,K) = 0
80 NEXT K

90 NEXT I

Copyright (C) 1973
Educational Data Systems 5-2

Statement: MAT...IDN

Form: line number MAT maltrix variable = IDN
or
line number MAT matrix variable = IDN (expression, expression)

Examples: 210 MAT F = IDN
220 MAT G = IDN(4, 4)
230 MAT H = IDN(5, 5)
240 MAT I = IDN(B4, B4)

Furpose: This statement establishes an identity matrix. The elements
comprising the main diagonal have the value 1, and all other
elements equal 0. A new working size may be specified.

Remarks: The IDN matrix must be two-dimensional and should be "square''.

In line 220 above, the matrix G has been assigned:

1000
0100
0010
0001

If the matrix is uot "square', then the ""main diagonal" is
assumed to start at the lower right corner. For example, the
stateme:it

40 MAT B = IDN(3, 4)

will assigin matrix B the value

o O O
o = O
- O

1
0
0

Copyright (C) 1973
Educational Data Systems 5-3

Statement:

Form:

Examples:

Purpose:

Remarks:

Statement:
Form:

Examples:

Purpose:

Remarks:

MAT...CON

line number MAT matrix variable = CON
or
line number MAT matrix variable = CON (expression)
or
line number MAT matrix variable = CON (expression, expression)

150 MAT D = CON
155 MAT E = CON (8)
160 MAT Z = CON (X, Y)

This statement sets all of the elements of the specified matrix
equal to one. The matrix may be given a new working size (as
inlines155 and 160 above).

Otherwise it is similar to the MAT...ZER statement.

MAT Assignment

line number MAT matrix variable = matrix variable

225 MAT C=Y
320 MAT M2=Q6

To set all of the elements of the specified matrix equal to the
corresponding elements of a given matrix.

The assigned matrix (C in example 225) is automatically dimensioned
the same as the given matrix; row zero and column zero are not
changed except for possible rearrangement due to rediminsioning.

Copyright (C) 1973
Educational Data Systems 5-4

Statement:

Form:

Examtgles:

Purpose:

Remarks:

MAT PRINT

line number MAT PRINT matrix variable, platrix variable, . ..

or

line number MAT PRINT matrix variable; matrix variable;. ..

50 MAT FRINT C
60 MAT PRINT C;
70 MAT PRINT A,B

This statement causes the system to print out one or more entire
matrices, row by row.

A matrix may be printed in a "packed" form, where up to 12
elements may be printed on a line, by placing a semi-colon after
the matrix variable; as in line 60 above. Otherwise, the matrix
will be printed with five elements per row.

If the matrix variable is followed by a comma or semi-colon, an
extra line feed is generated after printing the matrix to provide
double spacing between matrices. More than one matrix may be
printed in one statement by separating the matrix variable names
by a comma or semi-colon as shown in statement 70.

Caution: If the semi-colon is used for close packing, the col-
umns will not line up properly if any element must be
printed in floating point format.

Copyright (C) 1973
Educational Data Systems 5-5

Statement: MAT INPUT

Form: line number MAT INPUT matrix variable, matrix variable, ...
or
line number MAT INPUT matrix variable (expression),...
or

line number MAT INPUT matrix variable (expression, expression), ...

Examples: 170 MAT INPUT F
180 MAT INPUT R(5)
190 MAT INPUT C(E,J), F

Purpose: This statement allows the input of an entire matrix from the

terminal. The matrix may be dimensioned in the INPUT state-
ment or given a new working size (as in lines 180 and 190 above).

Remarks: The elements of each row being entered must be separated by
commas.

A complete row of data must be entered before pressing RETURN.
For example, while inputing the data necessary for the execution
of

190 MAT INPUT A(3,4)

four data items must be typed in before pressing RETURN. If
not enough data items are entered, the system will print a
reverse slash mark and await the entire new line of data.

The matrix is filled in the following order:

1,1; 1,2; 1, 3; etc. across one row at a time.

Copyright (C) 1973
Educational Data Systems 5-6

Statement: MAT READ

Form: line number MAT READ matrix variable, matrix variable, ...
or
line number MAT READ matrix variable (expression), ...
or
line number MAT READ matrix variable (expression, expression)

S v g

Examples: 400 MAT READ A
405 MAT READ B, C
410 MAT READ E(L,N), A
415 MAT READ F(7)

Purpose: This statement allows the computer to read an entire matrix from
DATA statements. The matrix may be dimensioned in the READ
statement or given a new working size (as in lines 410 and 415
above).

Remarks: The matrix is filled in the following order:

1,1;1,2; 1, 3; etc.

i.e., a row at a time, from left to right.

Copyright (C) 1973
Educational Data Systems 5-7

Statement:

Form:

Examples:

Purpose:

Remarks:

MAT... TRN
|

line number MAT matrix variable = TRN (matrix variable)

450 MAT Q = TRN(R)
460 MAT L = TRN(A)

This statement establishes a matrix as thetranspose of a
specified matrix, i.e., the rows and columns are exchanged.

A sample transposition, as commanded in line 450 above,
produces the following results.

R (original matrix) Q(transposed matrix)
123 147
456 258
789 369

If the original matrix has the dimensions (M, N), the transposed
matrix is dimensioned (N, M). In other words, the dimensions
of the resulting matrix are opposite those of the original.

It is not necessary for the new matrix to have been previously
dimensioned.

A statement of the form
120 MAT S = TRN(S)

is illegal. It may be executed, but the result will not be as
expected.

Copyright (C) 1973
Educational Data Systems 5-8

Statement: MAT Add

Form:

Examples:

Purpose:

Remarks:

Statement:

Form:

Examples:

Purpose:

Remarks:

line number MAT matrix variable = matrix variable +

matrix variable

350 MAT A = B+C
360 MAT J = K+Q
370 MAT Y = Y+W

1

This statement establishes a matrix equal to the sum of
two matrices. The matrices must all be of the same
dimensions.

The same matrix variable may be used on both sides of
the equal sign, as in line 370 above.

The addition is done element by element.

The sum matrix (matrix A in example 350) may be created
by execution of this statement.

MAT Subtract

line number MAT matrix variable = matrix variable -
matrix variable

56 MAT P
66 MAT D

T-W
F-D

This statement establishes a matrix equal to the difference
of two matrices. The matrices must all be of the same
dimensions.

The same matrix variable may be used on both sides of
the equal sign, as in line 66 above.

The subtraction is done element by element.

The difference matrix (matrix P in example 56) may be
created by execution of this statement.

Copyright (C) 1973

Educational Data Systems

[$3}
1
©

Statement:

Form:

Examples:

Purpose:

Remarks:

MAT Scalar Multiply

line number MAT matrix variable = (expression)¥*matrix
variable

200 MAT D = (4)*C
210 MAT E = (F)*Q
220 MAT R = (G/B2)*K
230 MAT M = (3)*M

This statement establishes a matrix equal to the product
of a numerical expression (i.e., a scalar) and a matrix.

The same matrix variable may be used on both sides of
the equal sign, as in line 230 above.

The expression by which the matrix variable is multiplied
must be enclosed in parentheses.

Copyright (C) 1973
Educational Data Systems 5-10

J

Statement:

Form:

Examples:

Purpose:

Remarks:

MAT Muliply

line number MAT matrix variable = matrix variable*matrix variable

250 MAT L
260 MAT P

M*N
Q*R

1

This statement establishes a matrix equal to the matrix product
of two matrices.

If the dimensions of matrix F are (A, B) and the dimensions of
matrix G are (B, C), then the dimensions of the matrix produced
when F is multiplied by G will be (A, C), and the resulting matrix
will automatically be dimensioned accordingly.

Note that the number of columns in the first matrix must equal
the number of rows in the second matrix. For example, state-
ment 250 above is legal only if the number of columns in M

equals the number of rows in N.

The matrix being assigned must not appear to the right of the
equal sign. For example

30 MAT F = B*F

can not be executed.

Copyright (C) 1973

Educational Data Systems 3

11

Statement:

Form:

Examples:

Purpose:

Remarks:

MAT Invert and DET function

line number MAT matrix variable = INV (matrix variable)

250 MAT A
260 MAT F

INV(C)
INV(F)

1

"

This statement establishes a matrix equal to the inverse of the
specified square matrix,

A matrix may take on the value of the inverse of its former self,
as in line 260 above.

Only square, two-dimensional arrays may be used in this state-
ment; i.e., the dimensions must be equal and non-zero.

After inverting a matrix, the DET function may be used to get

its determinant value, which is evaluated as a side effect of the
inversion., This determinant value is available until another
matrix is inverted or a new run is initiated by the RUN command.

Copyright (C) 1973
Educational Data Systems 5-12

6.

6.

STRING PROCESSING

All printing characters on the user's terminal and most control function
codes can be manipulated by the string processing extension in Business
BASIC.

They are stored in the computer as ASCII codes with a one in the top
bit instead of an even parity. Appendix 3 of the User Reference Manual
lists the ASCII codes in order of increasing value.

Two of these codes or 'bytes' are stored in each memory word, whereas
one to four words are required to store the value of a numeric variable.
A "string'' consists of one or more bytes, and each string must be given
a string variable name consisting of a letter and a dollar sign or a letter,
digit and a dollar sign. For example, A$ and X4$ are valid string
names. The LET, PRINT, DIM, INPUT and IF statements may be used
with string variables and string expressions.

.1 String Expre_ssions

A string expression is defined as any combination of literal strings
(symbols enclosed in quotation marks) and string variables. A string
variable is defined as a letter or a letter and digit followed by a dollar
sign. It may have zero, one, or two subscripts, each of which may be
any numeric expression.

2 Use of Subscripts

A portion of a string may be manipulated by use of subscripts on the
string variable. Any numeric expression may be used in subscripts;
the expression is evaluated, and its integer value is used. The first
subscript points to the first character to be used; the second subscript
points to the last. If the second subscript is omitted or if its value is
zero, then the end of the string will be the last character used.

3 The DIM Statement

There is no automatic dimensioning of string variables. Each string
variable must be dimensioned once and only once by a DIM statement
before the string name is used in other statement types. Only one
dimension, the maximum number of bytes in the string, is required.
Strings and numeric arrays may be dimensioned in the same DIM
statement. For example:

10 DIM R$(25)
20 DIM D(8), A$(20), M(2,3)
30 DIM B$(10), C$(A5+D(3))

Copyright (C) 1973
Educational Data Systems 6-1

In statement 10, R$ is defined to be a string of not more than 25 bt
characters. A string may be any length up to its specified dimen-

sion. Internally, all strings are given odd dimensions (by adding

one of necessary). Thus, B$ in statement 30 will receive a dim-

ension of 11.

6.4 The LET Statement

Strings may be manipulated by use of a LET statement. For example,
after executing the program:

10 DIM A$(10), B$(15), C$(10), D$(14)
20 LET A$="ABCDE, 3. 56"

30 LET B$=A$(4), "XY+Z", A$(2,2)
40 LET C$=B$(2.5), " ' 'Mm' 'X"

50 LET D$=B$,C$

60 LET E$=B$, "PDQ"

70 LET A$(6, 9)="FG"

The string variables will have the following values:

A$ ABCDEFG6

B$ DE, 3. 56XY+ZB
C$ E,3."M"X

D$ DE, 3. 56XY+ZBE,
E$ (does not exist)

The double appostrophes within the literal string in line 40 are con-
verted to quotation marks when actually put into C$. Likewise, a
control Z within a literal string is converted to a RETURN code.

Statement 50 cannot be fully executed since the concatenation of B$
and C$ would exceed the dimension of D$. However, D$ will receive
as much of the string as it can hold. Statement 60 will cause an error
print out because E$ is not dimensioned. In statement 70, characters
six through nine inclusive, are designated to be replaced. However,
the source string "FG' is insufficient to fill the space allotted, so the
remainder of A$ (from character 10 on) is shifted back to close the
gap, thus leaving the string two characters shorter than before. Note
that commas (except within quotes) are used only to separate fields of
a string and do not cause spaces or other insertions in the resulting
string.

Copyright (C) 1973
Educational Data Systems 6-2

Strings may also be converted directly into variables with the LET
statement. For example, alter executing the program:

10 DIM A$(20)

20 LET A$="123ABC4.567TE+20AZ"
30 LET A=A$

40 LET B=A$(7)

50 LET C="123. 456"

The variables A, B, and C would have the values 123, 4.567E+20,
and 123.456 respectively. The statement will convert the string
characters starting at the beginning of the string (or first string
subscript, and stop at either the end of the string, the second
string subscript, a zero byte, or an illegal character that was
non-numeric or not a plus sign, minus sign, or decimal point.
Note that in statement 40, the conversion stopped at the A in AZ,
not the E. This is because E is a legal character in a number
which has an exponent. Statement 50 shows that either string
variables or literal strings may be used.

Alternatively, variables may be converted into strings with the
LET statement. For example:

10 LET A$=12.34+C

20 LET B$(3)=(SIN3)+2,768

30 LET C&(1, 14)=INT(A+.5)

50 LET A3$(1,20)=12.34+C
In each statement above the expression to the right of the "=" sign
is evaluated, converted to string characters, and then put into the
destination string. If a second subscript is not given on the string
dimension, then a zero-byte terminator will be stored at the end of
the characters put into the string. This is the case for statements
10 and 20. In statement 30 the expression INT(A+. 5) will be eval-
uated and then put into C$ starting at C$(2). If the result is larger
than two characters, the rest will be truncated. A zero byte will
not be stored because of the presence of the second subscript.

The same above statements may take the form:

line number LET string expression = expression USING string expression

Copyright (C) 1973
Educational Data Systems 6-3

This is like PRINT USING except that the variable is formatted into
the string (instead of the user's I/O buffer) with the use of a format
string. For example:’

10 LET A$=12.345 USING "$S###.## "
20 LET C$(1, 4)=A+B USING "####"
30 LET B$=SIN 3 USING D$(1,12)

Note that in the above examples the format string may be either
literal strings or string variables. The results of the above state-
ment would be exactly the same as in a ""PRINT USING'' statement.
Sce Section 4-8 on how to use the format string characters.

6.5 The IF Statement

All of the six standard relations are allowed in an IF statement

used to compare strings. Both sides of the IF relationship must

be string expressions. The strings are compared byte by byte

until a difference is encountered. The branch is then determined by
the values of the ASCII codes where the difference first occurs. If
the end of one string is reached and the other still contains valid
codes, then the longer string is considered to be the greater of the
two. To be equal, the two strings must be the same length.

Examples:

200 IF A$="YES"GOTO 350

210 IF C$,"TIME'" < R$ GOTO 400

220 IF X$(N,N)>"A" LET X$(N+1, N+1)="_"
230 IF P$ PRINT A$;P$

Statement 230 will cause A$ and P$ to be printed if P$ is not an
empty string.

6.6 The INPUT Statement

Strings may be entered during a run by use of an INPUT statement.
For example:

100 INPUT A$(N,N)
110 INPUT X$, G$(5)

In statement 100, only a single character is to be accepted at char-
acter position N in A$, The rest of A$ is not affected. In statement
110, X$ may be filled up to the limit specified earlier in a DIM
statement, and G$ is filled starting at character position five. Each
input is terminated by a RETURN. After filling the space allotted
by the program, succeeding characters up to the RETURN are
ignored. If too few characters are entered, the remainder of the
string is shifted back to close the gap.

Copyright (C) 1973
Educational Data Systems 6-4

6.8

The PRINT Statement

String expressions may be freely intermixed with numeric expres-
sions in any combination in a PRINT statement. This allows con-

siderable flexibility in formatting and labeling output data. Strings
may also be used in PRINT USING. See Section 4.

The LEN Function

It is sometimes necessary to determine the length of a string. The
function LEN (A$) generates a numeric value equal to the number

of codes in A$. This is especially useful for extending a string when
the present length of the string is unknown. For example:

300 LET R=LEN(A$)

400 LET A$(LEN(A$)+1)=B$([R)

410 IF LEN(A$)<20 GOTO 550

420 LET D$(LEN(D$)+1),LEN(D$)+4)=E$
430 LET Q=LEN(A$(1, 4))

The argument of the LEN function must be a single string variable
with or without subscripts.

String Arrays

Although Business BASIC does not provide for string arrays per se, the
same effect can be achieved by using equal sized segments of a string as
if they were elements of an array. For example, suppose an array of
15 strings of up to 48 characters each is desired. The string should

be dimensioned (48+2)*15=750 characters total. (The +2 is to allow
room for an endsof-string character at the end of each substring). A
given element of the "array' named A$ may then be addressed as A$(N*<50)
where N is the number of the desired substring. Each element may be
individually read and/or modified in this manner without affecting the
other elements as long as care is taken not to write a substring longer
than its alloted size (48 characters in the above example).

A two dimensional string array can be achieved in a similar manner,
For example, if an array is to contain R rows and C columns of strings,
where each string is to hold up to D characters the string should be
dimensioned (D+2)*R*C characters total. A given element at row r,
column ¢ of A$ may then be addressed as A$((r*C+c)*(D+2)). An
example program will help clarify the procedure:

Copyright (C) 1973
Educational Data Systems 6-5

100 INPHT "BIMENSION, 71 iy #OC3LUNMNS 2 M1, 0
110 DIV ASUED+E2Y%FRCT, P CE+10)

120 PRUAT

130 JTAFPUT o3 ERCY L A ies v
140 INPFUT " Fdw, COLUMY 2 YiREs 0

150 [F bi<k [} ©1<C GIi1. 160

160 lpodT v o) SUCH mLiakNTY

170 G» T 140

130 FRINT

190 IF X=1 507006 220

200 PRINT ASLCCRERCHC DY =R+ 2)]

10 G319 140

220 INFUT B

230 IF PN (PS)y>b PRINT ™0 LING"s
240 LET ASTCRI=CHO1) S+ 2)1=R&0 1,01

250 GUTH 120

Lines 100 and 110 create a string (A$) of the proper size, and a secondary
string (B$§) for temporary storage. Lines 120 and 130 request whether

the user wishes to examine or enter an array element, and line 140
requests the elements coordinates, Lines 150 through 170 are to test

for legal coordinates. If entering an element, line 190 branches to the
enter routine: otherwise line 200 prints the selected element. Line 220
accepts a new element, and line 230 tests whether its length is legal.

Line 240 places the first D characters of B$ into the proper position
in the array.

To write such a string array into a data file it is necessary to write each
substring into a separate item of the file. This may be done by use of
nested FOR-NEXT loops to supply the row and column numbers. The
same row and column numbers can also be used as the record and item

numbers in the file. For example:

LOOG J Pt 21 ARRAY Y

1010 Fribe R1=0 19 1-1

1020 ik Gl=0 T G-

1030 WhI TE #I,Fly(il;ﬁf[(iﬁlkC+Cl)1%!%+?)]
1 040 NEXT O

1o NEXT k1

This program assumes R, C, and D are defined as in the first example.

Copyright (C) 1973
Educational Data Systems 6-6

7. DATA FILE ACCESS

This chapter describes the IRIS system data file structure and
access to data files from a BASIC program.

Random addressing within a formatted data file to a specific item is
an important feature of EDS Business BASIC. Besides simplifying
data file access, random addressing improves the efficiency of a
program. For example, suppose one item in a file is to be written.
In most systems the procedure would be:

(1) Read the entire record containing the item to be written,
(2) Change the value of the item, and
(3) Write the entire record back into the file.
Using Business BASIC, the procedure is:
(1) Write the item to be written.

Other efficiency improving features of the IRIS formatted data file
structure include dynamic allocation of disc space as the file expands,
and variable record size. A disc block is added to the file only if
needed to hold a record being written by the user; there is never an
empty data block. And the variable record size allows optimal use

of the blocks that are needed. The user need not force his data to fit
a fixed record length such as 64 words. The record length for any
given formatted file may be from one to 256 words as required for the
data items specified by the user. See "How to FORMAT a Data File"
in the IRIS User Reference Manual for more information.

7.1 The MRN Function

The following pages give a detailed description of each statement
used for data file access in the IRIS system. In addition, the MRN
function (Maximum Record Number) allows the user to determine the
current size of a file. The function call MRN(X) may be used at any
point in a numeric expression. The integer value of expression X is
used as a channel number, and the function call yields an integer one
greater than the record number of the highest numbered record into
which at least one item has been written in the data file which is open
on that channel. An error will occur is X is not a legal channel num-
ber or if no data file is open on channel X. If the file open on the
selected channel is a device file (such as $PTP) then zero will be re-
turned as the result.

Copyright (C) 1973
Educational Data Systems 7-1

7.2 Notes on Locked Records

If a record is locked, then only the user who locked it can read or write
data in that record or unlock the record. This is a necessary safeguard
to prevent lost data if two or more users attempt to update a file at the
same time. Suppose two users, call then Sam and Joe, decide at about
the same time to modify the same item X which now has a value of
twenty. Since this is a time-sharing system, the following sequence of
events could occur:

1. Sam reads item X from the file and adds five to the value; he is
about to write his result (25) back into X when his time slice runs
out, and his program is swapped out of core.

2. Joe reads the same value of X from the file, subtracts 13, and
writes his result (7) back into X.

3. Sam's program is swapped back in, and writes his result into X.
The 13 subtracted by Joe has been lost.

If Sam had locked the record when he first read X, Joe would have had
to wait until Sam was finished, and the correct final value for X (12)
would have resulted.

To lock a record, merely omit the semi-colon at the end of the READ#
or WRITE# statement. Only the user who locked the record can read
or write data in that record until he unlocks it. The record will be
unlocked if he:

1. Reads or writes data in the same record using a READ# or WRITE#
with a semi-colon at the end of the statement,

2. Reads or writes data in any other record on the same channel,
either with or without a final semi-colon on the statement,

3. Closes the channel with a CLOSE# statement, or

4. Clears all channels by terminating the RUN. The RUN may be
terminated by an END or STOP statement, by an abortive error,
or by pressing the ESC key.

Each user can lock only one record on each of his channels. If

he desires to lock more than one record in a single file, then he may
open the same file on two or more channels and lock a different record
on each channel.

Copyright (C) 1973
Educational Data Systems 7-2

If a user tries to read or write data in a record that is locked by
another user, his program will be swapped out, and another attempt
will automatically be made during his next time slice. Since execution
of a program can be delayed indefinitely in this manner, it is good
practice to lock a record only if an update is intended and only for as
long as necessary to perform the update.

7.3 Notes on Open Files

A data file may be opened by any number of users at the same time.
The record locking features of the system make this possible without
conflicts or loss of data, as explained in ''Notes on Locked Records'.
Another type of problem that can occur is the deletion of a file by one
user while another user has it open. This problem is handled auto-
matically by the system in the following manner:

1. A user issues a legal KILL command to delete a file. The
Filename is immediately removed from the INDEX so that no one
can open the file after the delete command was issued.

2. If no other user already has the file open, it is immediately
deleted, and the disc blocks are deallocated.

3. If another user does have the file open, he may continue to use it,
but a delete flag is set in the file's header block.

4. When the last user who has the file open closes it, the delete
flag is checked; the file is then deleted, and the disc blocks are
deallocated.

Copyright (C) 1973
Educational Data Systems 7-3

STATEMENT: BUILD #

Form: line number BUILD #x, Filename expression, . ..
Example: 120 BUILD #2, "NEWFILE", #H3, N$
Purpose: Alternative way of building and formatting a data file. Creates

a new file or replaces an old file, identified by the Filename
expression, on the channel specified by expression x. Several
files may be created by one statement, and Filenames not
preceded by a channel expression are created on successive
channels.

Remarks: In the example above, a data file with the name NEWFILE
will be built on channel two, and a data file with the name
given in N$ will be built on the channel number given by
variable H3.

The new files will be automatically formatted by data written
sequentially in record zero. Any WRITE other than to
sequential items in record zero will fix the format to that
already determined.

The new files will be automatically deleted by an exit from a
user program or by an abortive error unless the user preserves
them first by closing them with a CLOSE statement.

gy

The item types and sizes created by a WRITE statement in a
file being built will be as follows:

A string size will be INT((DIM of string)/2+1)*2 bytes if a
string variable is written. A string size will be equal to the
length of a substring or literal string (e. g., six bytes for
A$(3,8) or "UVWXYZ'") or the next higher even number if
an odd number of bytes is written.

A binary floating point number will be two words.
A decimal item will be the number size of the variable if a

variable is written, of the constant if a constant is written,
or four words if an expression is written.

Copyright (C) 1973
Educational Data Systems 7-4

If it is desired to build a contiguous data file instead of a formatted
data file, then the Filename expression must have the number of
records and the record length (separated by a '":") in brackets ahead
of the actual Filename. For example:

120 BUILD # 3, "L 200:2503 FILE"

will build a contiguous data file called "FILE" with 200 records of
250 words each and open it on channel #3. The space required on
the disc to hold the 200 records will be allocated all at once and
will have sequential disc block addresses.

Copyright (C) 1973
Educational Data Systems 7-5

Statement: OFEN #

Form: line number OPEN #x,Filename expression, . ..

Examples: 20 OPEN #0, "PRIME'", B$
45 OPEN #A, D$(6,M-1),#4, "JOE ",G$

Purpose: Opens an existing data file, identified by a Filename expression, on
each channel identified by a channel number expression x.
Additional Filenames not preceded by a channel number are
opened on successive channels.

Remarks: In the first example above, the file PRIME will be opened on
channel zero, and the file identified by the string in B$ will
be opened on channel one. In the second example, the file
identified by characters 6 through M-1 of D$ will be opened
on the channel specified by the value of A, JOE5 will be
opened on channel four, and the file identified by G$ will be
opened on channel five.

A data file must be opened on one of the available channels,
numbered zero through the maximum channel number, before
it can be accessed by a READ# or a WRITE# statement. The
channel must be closed by a CLLOSE# statement before another
file can be opened on the same channel. All channels are
automatically cleared by a CTRL C system escape.

Statement: CLOSE #
Form: line number CLOSE #x1, #x2, ...
Examples: 60 CILOSE #1
145 CLLOSE #A-1,#4,#R
Purpose: Closes the file on the specified channel or channels.
Remarks: In the first example above, the file on channel one is closed.

In the second example, channels A-1, four and R are closed,
where A-1 and R are expressions whose values each identify

a channel number, zero through the maximum channel number.
An open channel must be closed before another file can be
opened or built on the same channel. 1If a file is being built,
closing it makes it accessible to other users for the first time.
A file being build will be deleted if BASIC is exited by a CTRL C

before closing the file.

Copyright (C) 1973
Educational Data Systems 7-6

Qg

Statement:

Form:

Examples:

Purpose:

Copyright (C) 1973

WRITE #

line number WRITE #c, r, i; x1, x2, x3...;
or
line number WRITE #c, r; x1, x2, x3...;

where c is a channel number expression,

r is a record number expression,

i is an item number expression, and

x1l, x2, x3 ... are numeric or string expressions.
Note: the final semi-colon is optional (see below).

195 WRITE #4, 19;F, Y1+3, "JUNK', D-E
600 WRITE #C-2, 2*R, 8; 0, 2tA, M$ (4,Q);

Writes the values of the expressions x1,x2,... into a data file.
The file to be accessed must have been previously opened
on the channel specified by the channel number expression.
The record number into which the data are tobe written must
also be specified. A starting item number may be given if
desired; otherwise, item zero will be assumed.

The expressions following the semi-colon will be evaluated,
and the values will be written into the specified record of the
specified file, starting with the item number specified or
starting with item zero if none is specified. Items not
addressed in the file will not be affected.

In the first example above, item zero of record 19 of the

file open on channel four will be set to the value of F, item

one of the same record will be set to the value of the expression
Y1+3, item two (which must be formatted as a string) will

be set to the string value JUNK, and item three will be set

to the value of D-E.

In the second example, the channel number and record
number are given by expressions. The item number could
also be given as an expression if desired. In this example,
item eight of the specified record will be set to zero, item
nine will be set to ZA, and item ten will receive characters
four through the value of Q of string M$.

Only sequential items of a single record may be written into
by each WRITE # statement. An error will result if a
variable type does not match the item type in the file.

A semi-colon should end the statement as in the second
example unless it is desired to temporarily lock other users

out of this record. Refer to '"Notes on Locked Records' for
comments on locking, unlocking, and updating records.

Educational Data Systems 7-7

Statement: READ #

Form: line number READ #c, r, i; vl, v2, v3...;
or
line number READ # ¢, r ; vl, v2, v3...;

where ¢ is a channel number expression,

r is a record number expression,

i is an item number expression, and

vl, v2, v3... are numeric or string variables.
Note: the final semi-colon is optional (see below).

Examples: 240 READ #2,6;D, W$, K(7, A-2)
415 READ #C(4)+1, R8,5;F$(4),J, J;

Purpose: Reads item values from a data file into the variables listed.
The file to be accessed must have been previously opened on
the channel specified by the channel number expression. The
record number from which the data is to be read must also be
specified. A starting item number may be given if desired;
otherwise, item zero will be assumed.

The variables following the semi-colon will be set to the values
contained in the specified record of the specified file, starting
with the item number specified or starting with item zero if

no item number is given. The data in the file are not affected.

In the first example abowe, item zero of record six of the file
open on channel two is read into variable D, item one (which
must be a string) is read into string variable W$, and item two
is read into the element of array K at row seven, column A-2.

In the second example, the channel number and record number
are given by expressions. The string variable F$ will be loaded
from item five of that record starting at character position four
in F$; characters one through three of F$ are not affected.
Variable J will be set to the value in item six, but this value will
be replaced immediately by the value of item seven. This
technique may be used if the value of item six is of no interest.

Only sequential items of a single record may be read by each
READ # statement. An error will result if a variable type does
not match the item type in the file,

A semi-colon should be included at the end of the statement as
in the second example unless it is desired to temporarily lock
other users out of this record. Refer to '"'Notes on Leocked
Records' for comments on locking, unlocking and updating
records.

Note that numeric expressions are allowed in the file address
(channel, record, and item numbers) and in subscripts, but an
item value from the file can not be '"read into' an expression.

Copyright (C) 1973

Statement:

Form:

Examples:

Furpose:

Remarks:

PRINT #

line number PRINT #c, v, i;x1,x2,x3...;

or

line number PRINT #c, r;x1,x2,x3...;
or

line number PRINT #c, r, i;USING v$;x1,x2...;
or

line number PRINT #c, r;USING v$;x1,x2...;

10 PRINT #3,21,6;254.6, D+E, F/6;
20 PRINT #C, R, I;X(1),Y(3,6), Z+W
30 PRINT #C2+1, R-1;USING B$(15);P;J;M$;

To "print' text, numbers, and computational results, with or
without use of a format string, to a data file or to a peripheral
device.

This statement form combines the features of the PRINT or
PRINT USING statement with the facilities of the WRITE#
statement. All output will be in the form of an ASCII string
identical to the string that would be printed on the user's
terminal if an ordinary PRINT or PRINT USING statement were
used, but the string goes instead to whatever file or device is
open on the specified channel. If nothing is open on the channel
or if an illegal channel number is given (such as -1) then the
output will default to the user's terminal. This allows the
destination for all outpuf to be selected at run time.

If printing to a formatted data file, the selected item must
be an ASCII string. If printing to a peripheral device, the
device must be capable of accepting an ASCII string; such
devices include line printers and paper tape punches.

Note: the PRINT # statement is available only on an IRIS
system.

Copyright (C) 1973
Educational Data Systems 7-9

Statement:

MAT WRITE #

Form: line number MAT WRITE #c, r;v

or

line number MAT WRITE #c, r, i;v

where ¢ is a channel number expression,

Examples:

Purpose:

Remarks:

Copyright

r is a record number expression,
i is an item number expression, and
v is the name of an array or string variable

190 MAT WRITE #1, 20;A

200 MAT WRITE #C, 2*R, 8;B
210 MAT WRITE #3,10, A$
220 MAT WRITE #1,R, 3;B$

This statement writes data from a numeric array or from a
string variable into a data file.

The MAT WRITE # statement functions exactly as the WRITE #
statement (see Page 7-7) except that an entire array or

string will be written to a data file. No matrix or string sub-
scripts are allowed. The data file address (record and item
numbers) specifies only a starting position for the data transfer,
and the entire array or string will be written into the file start-
ing at that position without regard to number types, record
boundaries or file format. It is the responsibility of the user's
program to ensure that the data will later be read back into the
same type of variable.

(C) 1973

Educational Data Systems 7-10

Statement: MAT READ #

Form: line number MAT READ f#c, r;v

or

line number MAT READ #c, r, i;v

where ¢ is a channel number expression,
r is a record number expression,
i is an item number expression, and
v is the name of an array or string variable

Examples: 190 MAT READ #1, 20; A
200 MAT READ #K,R+2, 8; B
210 MAT READ #3,10; A$
220 MAT READ #1,R%2, 3; B$

Purpose: This statement reads data from a data file into a
numeric array or into a string variable.

Remarks: The MAT READ # statement functions exactly as the
READ # statement (see Page 7-8) except that an
entire array or string will be read in one statement.
No matrix or string subscripts are allowed. The
data file address (record and item numbers) specifies
only a starting position for the data transfer, and the
entire array or string will be filled by copying directly
from the file without regard to number types, record
boundaries, or file format. It is the responsibility of
the user's program to ensure that the data are read
into the type of variable that matches the data form.

Copyright (C) 1973
Educational Data Systems 7-11

7.4 Contiguous Data Files

IRIS provides a second data file type, contiguous data files, which
offer the experienced BASIC programmer the fastest file access
possible. Any randomly selected item may be read or written in
a single disc transfer. In addition, records may be of any length
and any format. The format can differ from record to record as
long as all records within a given file are of the same length. In
return for this increased speed and flexibility, the programmer
must take increased responsibility for the record formats and be
careful to read data into variables of proper type.

All forms of the READ#, WRITE#, PRINT#, MAT READ#, and
MAT WRITE # statements described above are valid for use with
contiguous data files, but with the following differences:

1) The contiguous file is not formatted except that a record
length is specified. There is, therefore, no checking by
the system for a valid data type. Data are copied directly
to and from the file with no number type conversion.

2) The third field in the file address is a byte displacement
from the beginning of the record rather than an item number.

3) The file address specifies only a starting position for the
data transfer. The transfer may continue from that position
as far as desired (up to the end of the file) without regard
to record boundaries.

There is also a form of the BUILD# statement for creating a con-
tiguous file. Because there is no formatting or data type checking,

it is up to the user's program to ensure that the data are read back
into the same variable types as those from which they were written.
Failure to take this precaution will result in unusable data. For
example, if a string is written into a contiguous file and read back
into a numeric variable, the numeric variable will contain char-
acters other than digits (e.g., colons, semi-colons, etc.) The
same thing will occur if, for example, three-word variables are
written into the file and read back into two-word variables. Con-
versely, if numeric data are read into a string, incorrect characters
will result, some of which cannot be printed or manipulated normally.

Copyright (C) 1973
Educational Data Systems 7-12

The contiguous file form has four important advantages over the
formatted file:

1) There is no list of data block addresses in the file header
and no header extender blocks. The disc address of any
randomly specified record in the file is calculated auto-
matically by the system from core-resident information,
thus saving up to two disc transfers per data access.

2) There is practically no limit on the record size or on the
amount of data that may be transferred in one statement.

3) Records may have different formats, determined only by
the statements doing the data transfers. Records may be
grouped together or linked by the program to effect variable
record size.

4) The contiguous file form lends itself readily to an indexed
file structure (refer to the description of the SEARCH#
statement).

Refer to "How to FORMAT a Contiguous File'' in the IRIS User
Reference Manual for additional information.

7.5 Accessing a Contiguous File

Accessing a contiguous file is similar to accessing a formatted
data file except that in a contiguous file, record numbers are used
only as reference points. There is nothing to prevent a user from
transferring two or more records in one command. Consider a
file, FILE, which has a record length of 128 words. The pro-
gram

10 BUILD #0, " [100:128 1 FILE"

20 DIM A$(512)

30 REM STATEMENT 40 FILLS A$ WITH A'S
40 A$="A",A$

50 WRITE #0, 0;A$

60 CLOSE #0

will write "A'"'s into records 0 and 1 of FILE and will write one "A"
and an end-of-string code into the first two character positions of
record 2. It is important to note that as in formatted file, individ-
ual records may be locked; however, in the example above, only
record number 0 would be locked. Records one and two would be
vulnerable to simultaneous updating by another user.

Copyright (C) 1973
Educational Data Systems 7-13

Contiguous files have not items per se; however, the user
may specify in the item field a byte displacement into a
record. For example, if line 50 in the above program were
changed to

50 WRITE #0, 0, 256;A$
it would be equivalent to
50 WRITE #0, 1;A$

except that in the first case record 0 would be locked and in
the second case, record one would be locked.

Copyright (C) 1973
Educational Data Systems 7-14

APPENDIX I: PROGRAM EXAMPLES

Program 1 - Bill of Materials

LI
10
20
30
40
45
50
60
70
80
90
95
10
11
12
13
14
15
16
17

ST

DIM AS$C301,Bs$(12]

PRINT ''H@W MANY ITEMS"

INPUT N

F@R I=1 T@ N

PRINT

INPUT QCI1,P(I1]

NEXT I

PRINT

PRINT "ITEM","QUANTITY","PRICE","AMBUNT"
PRINT

LET AS$="' ## HARBH DSHHERCHE SHIHHHHEY
0O FBR I=1 T@ N

O PRINT USING A$3I1,00I1,PLI),QLII*PLI]

O LET T=T+QLI1*PLI]
0O NEXT I

0 PRINT

O LET BS=""S#, ###. ##"

O PRINT USING B$3" TOTAL'"s55T
0 END

RUN

HOW MANY ITEMS

? 5

? 2,750

? 25,23.50

? 10,85.35

? 145,.08

? 7552.35

ITEM QUANTITY PRICE
1 2 $750. 00
2 25 $ 23.50
3 10 $ 85.35
4 145 $ 0.08
5 75 $ 2.35
TATAL

READY

AMOUNT

$1,500.00
$ 587.50
$ 853.50
$ 11.60
$ 176425
$3,128485

Copyright (C) 1973

Ed

ucational Data Systems Al-1

O

Program 2 - Payroll

LIST

2 DIw SHLo0ILTSLE0]
3OLET TS="TulT GROS =09
4 LT S5=" ;

5 PRLENT ANTER Sidsised
10 InNPYT P

15 PRINT

20 LT @ =1

32 PRINT

35
37
40
S0
50
65
70
75

PRINT

[aRiIT 3T
LT G=der
Lol D=l o =201y
LisT D=li=2a 1030
Lol N=G-0

T L

30 PRINT
0 ol Ul =01 v
100 LT D1=D1+D
110 Lol N1 =N1+N
120 LT =0+l
130 (i = !
140 PRINT
150 xiwy
180 oo
RUN
ENT iR

IETIEE

For A GH

DR DU SR

DR N SR

? S0 nelsl
?2 T9s2e1 510
? 9055« 151 7
TuT

READY

Copyright (C) 1973
Educational Data Systems

RELEES

PRLNT e A0 e

g

PR L ST GRS U TR OV IR D

DNl DR SRS

GRUs S =Rl he s T Uy

55 et T

P e

TEPLOY o

Vil ety)

S ING Soas s

M I

[N N
Dot

L | 2

DUUUTT s =

A1l1-2

LUST L L NS = 35
SN ENICTIONS =5

NPAYR s

T R P
YIS

>t et DUCT L

’/’).§i I“

.- PR e i e e
RERESICIEN i T =9330% 537
- . P
p > e -l -~ DY Y)g;i'

Program 3 - Invoice

LIST

10 DIV PSIBOI-RL101,Z8071sXSL107,10515,G6GE53,1051,UL2515FL5]
ON LET PS="+ 4+ + 4+ + + + + 4+ + + + + + + + + + + + + + + + + + + & + + + +"
30 DIM N$SL201,A%L201,FL201,DSL60GI1,EL601,YSL10]

40 LET Yg="sgras,. 08"

50 PRINT "NAME®':

60 INFUT N&

70 PRINT "MATLING ADDRESS'S

&0 INFUT A%

90 PRINT "CITY AND STATE":

100 INPUT 5=

110 PRINT "ZIPCEDY";

120 INPUT Z%

130 PEINT "INVLICE NiUMBREE'S

140 INFUT i1

150 PEINT "INVGICE DATE':

160 INPUT X8

170 PRINT "CUSTEMEE NIMEER'S

180 INFUT Rs

190 FPREINT "NUSEFDL OF INVOICE ITEMS':

200 INPUT N

210 Vb I=1 T N

220 PRINT "LDESCHIFTION OF I'hew sl

230 INPUT DSLCT-12%15]

40 PEINT "NUMBED SF "sDSOCI-1):#1533" SoLD's

250 INPUT FLIY

“60 PINT "7 oI SCatnTs

270 INPUT 0LI3

90 PEINT "UONIT Cos0ts

290 INPUT U1l

300 PRINT "“UNIT CoUNT"™s

310 INPUT &L CI=-1)%6]

320 LET TLId=1T1kREI]

3306 LET ¢FL11=T011%¢L 117100

340 LET T1=T1+%CT1-rL1]

350 NEYT I

360 PEINT "MMspPosMUedos 1A (45)3K¢

370 PEINT AF3 TAR (£5):"TWVOICE # "s311

380 PRINT 5$3' "3Z9: Thp ey 3"Clsiomen 4 Y3108

390 PRINT " OUAN. TTEM 7o LISCe UNWCOST AMUBUNT"
400 FoR 1=1 TO N

410 PRINT ROITs 0AL (O3USTCI=-10%61s TAE 12)Y3DSLCI-1)0%15]33;
420 PRINT TAE (33)3500115 TAE 21310113 TAB (ay)s

430 PRINT USING YO3TLIZ-FLID

440 NEXT 1

450 PRINT "PLEASY 2AY THILS AMOUNT S>55>>35>5553>5>55>5>3>>5>>> '}
460 PRINT HSING YS3 1AL (49)3113"'"3P8

470 RiEM SUME SR ML CHARACTER ST INGS IN THE AFOVE FROGRAM HAVE
430 HEM CONT=OAL 7“7 '8 T THEM 1 FOLCEF CARRKIAGE-hReTURNS.

RUN

Copyright (C) 1973
Educational Data Systems Al-3

Program 3 (cont'd.) - Invoice

NAME? A&A AUTG SUPPLY

MAILING ADDRESS? 44318 GLENKAVEN K@AD
CITY AND STATE? ANYT@WN, CALIF.
ZIPCODE? 91234

INVBICE NUMBER? 3

INVBICE DATE? 10/20/72

CUSTOMER NUMBER? 67-1234

NUMBER OF INVQICE ITEMS? 3
DESCRIPTION 9F ITEM 1 ? CLUTCH PLATES
NMUMBER @F CLUTCH PLATES SOLD? 1¢

2 DISCAUNT? 5

UNIT C@ST? 12.34

UNIT CAUNT? EA.

DESCRIPTION 0OF ITEM 2 2 SPK. PLUG SETS
NUMBER @F SPK. PLUG SETS SULD? 24

% DISCAUNT? 5

UNIT COST? 10.15

UNIT CQUNT? DZ.

DESCRIPTION OF ITEM 3 ? MOTOR OIL
NUMBER OF MBTOGR 0IL S@LD? 24

2 DISCOUNT? 5

UNIT COST? 12.25

UNIT COUNT? BX.

4 4+ + 4+ F + + + 4+ + + + + + + 4+ o+ o+ o+
A&A AUTG SUPFPLY

44318 GLFNRAVEN ROAD

ANYTAWN, CALIF. 91234

.. Educational Data Systems

+ o+ + 4+ + o+ o+ o+ + o+ o+
1072077«
INVOAICE # 3
CUSTEMEK # 67-1234

 QUAN. ITEM % DISCe UNWCBST AMBUN1

12 EA. CLUTCH PLATFS 5 12+ 34 $140. 67
.24 DZ. SPKe PLUG SETS S 10.15 $231.42
. 24 BX. MBTOR @IL 5 12.25 $279. 30
};?LEASE PAY THIS AMOUNT 5>>5>5>53555>5>3>5>5>>>>>> $651. 39
P T T T T U U T R T T S B
READY
& Copyright (C) 1973 Al-4

Program 4 - SIN/COS Plot

LTS

10 DIM CGEL45]

20 PRINT

30 FObk X=0 T €e4 STEP oF
40 LET Y= INT CC SIN X+1)/75F=-0+165)
SO LET YO= INT C (38 “+1)/0E-e+1e5)
-0 ok I=0 T3 4b

76 LFT G&CIZ=" v

&0 IF I=21 LET ¢&0I1="e"

9C IF I=Y1 LiET G&LIid="um

100 IF 1=Y2 LET SLI3=7C"

110 NEXT T

120 PRINT (&3X

130 NFXT X

FUN

. { o
. 3 C . 4
. . C o 0
. { .
. { . 1

. (S {o

{ . S 1ot
8 . iﬁ: ¢
~
[. N e C
(“
. P e &
p L] f AR B

(@]
[#2]
.
.
-

~ ¢ . lie 4
S C o lie €
& . (e b

S . G o

b . . ve v
3 * ¢ Lie &
S . § RERE
S ° . IR
. C ‘
. G (e
' . ¢ .

FRADY

Copyright (C) 1973
Educational Data Systems e
Al-5

i,

P

Program 5 - Time of Day

LIST

10 REM PRO2AM T9 PNt DATE % TIME=-0F-DAY

20 DIM Y$LH]

B30 LET v et eus

40 01 “MBSL374,A3031]

50 LET MT=""JANFESMARAP 2 ZAY JUN L YASSERPACTNAYDREC

60 LET x= SPC 2
10 LET DT LN (X /724)
B LET M= [N[(X=R4k0)
9O LT = TNT (D3

5

CT D=0 =31 Rk

Foy= INT Cw/Z12)

120 LD wi=M=-12 kY ’

130 PRINIT TA 223577 208Y 1S "5 aBIMEk3+1 5 ME3+3135D+1 3", 3Y+1972
140 LET As="" Ap"

150 LET T=H+C 3P 3) /740000

160 IF T>=12 L1 As= P

1/ 1IF T>=13 L&i I[=T-12

180 PRINT 5LWNG YS3™ s TAB 193 THE TIME F DAY IS ""3T3AS
190 CHALN '

FIDAY I5 DEC 19 5 1973

Pl TIMe 2 a8y 15 10642 M

Copyright (C) 1973
Educational Data Systems Al-6

APPENDIXII: Trig Function Identities

The following identities may be used to compute trigonometric functions
other than sine, cosine, tangent, and arctangent:

Function Identity
contangent ctn(a) = 1
tan(a)
secant sec(a) = 1
cos(a)
cosecant csc(a) = 1
sin(a)

X
arc sine sin~1(x)= tan~1 (A)
\Jl - x2

arc cosine cos1(x)= tan~1 Vl - x2
x
arc cotangent ctn(x)= tan”? 1 -
x
arc secant sec™1(x)= tan_l(x2-1)
1
arc cosecant csc™l(x)= tan-1
x2 - 1
2

For faster evaluation, calculate x“ as x*x. For example, a user-
defined function for sin-1(x) could be written:

10 DEF FNS (X) = ATN(X/SQR(1-X* X))

Copyright (C) 1973
Educational Data Systems A2-1

