¢y Data General

Customer Documentation

Programmer’s Reference for the
DG/UX™ System (Volume 3)

AV ii O N°

PRODUCT LINE

Programmer’s Reference for the
DG/UX™ System (Volume 3)

093-701102-00

For the latest enhancements, cautions, documentation changes, and
other information on this product, please see the Release Notice
(085-series) supplied with the software.

Ordering No. 093-701102

Copyright © Data General Corporation, 1990, 1991

Unpublished—all rights reserved under the copyright laws of the United States
Printed in the United States of America

Revision 00, June 1991

Licensed material—property of copyright holder(s)

' NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE
INFORMATION CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT HOLDER(S);
AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN
PART NOR USED OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holder(s) reserves the right to make changes in specifications and other information
contained in this document without prior notice, and the reader should in all cases determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND
CONDITIONS GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST
SOLELY OF THOSE SET FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT
INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED
HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE
RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION
CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW, OR SHOULD HAVE KNOWN
OF THE POSSIBILITY OF SUCH DAMAGES.

All software is made available solely pursuant to the terms and conditions of the applicable license
agreement which governs its use.

Restricted Rights Legend: Use, duplications, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at [FAR] 52.227-7013 (May 1987).

DATA GENERAL CORPORATION
4400 Computer Drive
Westboro, MA 01580

AViiON, CEO, DASHER, DATAPREP, ECLIPSE, ECLIPSE MV/4000, ECLIPSE MV/6000,

ECLIPSE MV/8000, PRESENT, and TRENDVIEW are U.S. registered trademarks of Data General
Corporation. CEO Connection, CEO Comnection/LAN, DASHER/One, DASHER/286, DASHER/386,
DASHER/LN, DATA GENERAL/One, DG/UX, ECLIPSE MV/1000, ECLIPSE MV/1400, ~

ECLIPSE MV/2000, ECLIPSE MV/2500, ECLIPSE MV/7800, ECLIPSE MV/10000,

ECLIPSE MV/15000, ECLIPSE MV/18000, ECLIPSE MV/20000, ECLIPSE MV/40000, microECLIPSE,
microMV, MV/UX, PC Liaison, RASS, SPARE MAIL, TEO, TEO/3D, TEO/Electronics, TURBO/4,
UNITE, and XODIAC are trademarks of Data General Corporation.

IBM is a U.S. registered trademark of International Business Machines Corporation.
UNIX is a U.S. registered trademark of American Telephone & Telegraph Company.
NFS is a trademark of Sun Microsystems, Inc.

Portions of this text are reprinted from IEEE Std 1003.1-1988, Portable Operating System Interface for
Computer Environments, copyright © 1988 by the Institute of Electrical and Electronics Engineers, Inc.,
with the permission of the IEEE Standards Department. To purchase IEEE Standards, call 800/678-IEEE.

Portions of this material have been previously copyrighted by: American Telephone & Telegraph
Company, 1989, 1990; Regents of the University of California, 1980, 1983, 1986.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages. The functionality of
the two remains the same; oply the name has changed. The name Yellow Pages is a registered trademark
in the United Kingdom of British Telecommunications plc and may not be used without permission.

LEGAL NOTICE TO USERS: Yellow Pages is a registered trademark in the United Kingdon of British
Telecommunications plc, and may also be a trademark of various telephone companies around the world.
Sun will be revising future versions of software and documentation to remove references to Yellow Pages.

Programmer’s Reference for the DG/UX System (Volume 3)
093-701102-00

Revision History: Effective with:
Original Release — June 1991 DG/UX 5.4

The chapters in Volume 3 were previously part of Volume 2 (093-701056).

Preface

This is Volume 3 of the Programmer’s Reference for the DG/UX™ System. The Programmer’s
Reference describes the programming features of the DG/UX system. It contains individual
manual pages that describe commands, system calls, subroutines, file formats, and other
useful topics, such as the ASCII table shown on ascii(5).

This manual is part of a five-volume reference set. The other manuals are the System
Manager’s Reference for the DG/UX System and the User’s Reference for the DG/UX System.
These manuals contain in printed (typeset) form the online entries released with the DG/UX
System in /usr/catman for access by the man command.

The Programmer’s Reference provides neither a general overview of the DG/UX system nor
details of the implementation of the system. For more details about some of the most often
used programming tools, see Programmer’s Guide: ANSI C and Programming Support Tools,
Programmer’s Guide: System Services and Application Packaging Tools, and the Data General
supplements to these two manuals. Other related manuals are listed under “Related
Manuals” at the end of this manual.

Man Pages

For historical reasons, each entry is called a “manual page” or “man page,” though an entry
may occupy more than one physical page and may contain more than one entry. If the man
page contains more than one entry, it is alphabetized under its “primary” name; for example,
the utmp manual page describes the utmp and wtmp files.

Manual pages are assigned to classes ranging from 0 through 8 for easy cross-reference. The
class number appears in parentheses following the name; for example, in accept(1M) the “1”
indicates that accept is 2 command, and the “M” indicates that the man page is in the System
Manager’s Reference.

A command followed by a (1) or (1G) usually means that it is described in the User’s
Reference. (Class 1 commands appropriate for use by programmers are located in the
Programmer’s Reference.) A man page name with a (1M), (4M), (7), or (8) following it means
that the entry is in the System Manager’s Reference. Names with (2) or (3x), (4), (5) [except
editread(5)), or (6F) are in the Programmer’s Reference. Occasionally, DG/UX man pages
refer to other products’ man pages, which are not part of the DG/UX documentation; these

are so noted.

093-701102 Licensed material—property of copyright holder(s)

Preface

Manual Organization

Volume 1 contains two chapters:

Chapter 1: Commands (1)
This chapter describes commands that support C and other programming languages.

Chapter 2: System Calls (2) This chapter describes the access to services provided by the
DG/UX kernel, including the C language interface and a description of returned error codes.

Volume 2 contains one chapter:

Chapter 3: Subroutines and Libraries (3) This chapter describes the available subroutines
and subroutine libraries. Their binary versions reside in various system libraries in the
directories /lib and /usr/lib. See intro(3) for descriptions of these libraries and the files in
which they are stored. Although these man pages are alphabetized together, each has a letter
associated with the number 3 indicating the pertinent library:

3C C Programming Language Libraries

3E ELF Library Routines

3G General Library Routines

3M Mathematical Library Routines

3N Networking Support Utilities

3S Standard I/O Library Routines

3X Specialized Libraries

Volume 3 contains three -hapters and one appendix:

Chapter 4: File Formats (4) This chapter documents the structure of particular kinds of files;
for example, the format of the output of the link editor is given in a.out(4). Excluded are
files used by only one command (for example, the assembler’s intermediate files). In general,
the C language structures corresponding to these formats can be found in the directories
/usr/include and /usr/include/sys.

Chapter 5: Miscellaneous Features (5) This chapter contains a variety of facilities. Included
are descriptions of character sets, macro packages, and other things.

Chapter 6: Communications Protocols (6) This chapter contains a description of the
- unix_ipc communications facility.

Appendix A: Contents and Permuted Index Man Pages
These manual pages contain information extracted from the DG/UX man pages in all five

reference volumes.

v Licensed material—property of copyright holdes(s) 093-701102

Preface

Man Page Format

Each man page has at least some of the following sections:

NAME gives the primary name (and secondary names, as the case may be) and
briefly states its purpose.

SYNOPSIS summarizes the usage of the program being described.

DESCRIPTION discusses how to use these commands.

EXAMPLES gives examples of usage, where appropriate.

FILES contains the file names that are referenced by the program.

EXIT CODES discusses values set when the command terminates. The value set is
available in the shell environment variable “?” (see sh(1)).

DIAGNOSTICS discusses the error messages that may be produced. Messages that are
intended to be self-explanatory are not listed.

SEE ALSO offers pointers to related information.

NOTES gives information that may be helpful under the particular circumstances
described.

Some man pages may contain other heads such as ENVIRONMENT and CAVEATS.

Man Page Notation Conventions

This manual uses certain symbols and styles of type to indicate different meanings in man
pages. Those symbol and typeface conventions are defined in the following list. You should
familiarize yourself with these conventions before reading the manual.

The description of convention meanings uses the terms ‘“‘command line,” “format line,” and
“syntax line.” A command line is an example of a command string that you should type
verbatim; it is preceded by a system prompt. A format line shows how to structure a
command; it shows the variables that must be supplied and the available options. A syntax
line is a fragment of program code that shows how to ase a particular routine; some syntax
lines contain variables.

093-701102 Licensed materiat—property of copyright holder(s) \'J

Preface

Convention Meaning

boldface This font is used for section heads and subsection heads. It is
also used to distinguish input from output in examples where the
two are intermixed.

constant In command formats and code syntax: This typeface indicates text
width/ (including punctuation) that you type verbatim from your
monospace keyboard.

In text: This typeface is used for examples, code samples,
pathnames, and the names of commands, files, directories, and

~ manual pages.
In all contexts: The following characters, which have special
meanings explained below, do not have special meaning but simply
represent themselves when they appear in constant-width font: <
> [1 {1} |. Inconstant-width font they are are I/O
redirection operators, brackets, braces, and the pipe symbol.

italic In format lines: This font represents variables for which you
supply values; for example, the names of your directories and
files, your username and password, and possible arguments to
commands.

[optional] In format lines: Regular-font brackets surround an optional
argument. Don’t type the brackets; they only set off what is
optional. These brackets should not be confused with constant-
width brackets.

choicel|choice2 In format lines: The vertical bar indicates a choice between
choicel and choice2.

In format lines and syntax lines: You can repeat the preceding
argument as many times as desired.

{ } In format lines: These regular-font braces surround either two or
more choices or syntax elements that are repeatable as a group.

<> In command lines and other examples: Angle brackets distinguish
a command sequence or a keystroke (such as <Ctrl-D>, <Esc>,
and <3dw>) from surrounding text. Note that these angle
brackets are in regular type and that you do not type them; there
are, however, constant-width versions of these symbols that yo.

do type.

$, %, # In command lines and other examples: These symbols represent
the system command prompt symbols used for the Bourne and
Korn shells, the C shell, and the superuser, respectively. Note
that your system might use different symbols for the command
prompts.

Vi Licensed material—property of copyright holder(s) 093-701102

Preface

Contacting Data General

Data General wants to assist you in any way it can to help you use its products. Please feel
free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form (United States
only) or contact your local Data General sales representative. A list of related documents
appears at the end of this manual with the TIPS order form.

For a complete list of AViiON® and DG/UX™ manuals, see the Guide to AViiON® and
DG/UX™ System Documentation (069-701085). The on-line version of this manual found in
/usr/release/doc_guide contains the most current list.

Telephone Assistance

If you are unable to solve a problem using any manual you received with your system, free
telephone assistance is available with your hardware warranty and with most Data General
software service options. If you are within the United States or Canada, contact the Data
General Service Center by calling 1-800-DG-HELPS. Lines are open from 8:00 2.m. to 5:00
p.m., your time, Monday through Friday. The center will put you in touch with a member of
Data General’s telephone assistance staff who can answer your questions.

For telephone assistance outside the United States or Canada, ask your Data General sales
representative for the appropriate telephone number.

Joining Our Users Group

Please consider joining the largest independent organization of Data General users, the North
American Data General Users Group (NADGUG). In addition to making valuable contacts,
members receive FOCUS monthly magazine, a conference discount, access to the Software
Library and Electronic Bulletin Board, an annual Member Directory, Regional and Special
Interest Groups, and much more. For more information about membership in the North
American Data General Users Group, call 1-800-877-4787 or 1-512-345-5316.

End of Preface

093-701102 Licensed material—property of copyright holder(s) vii

Contents

Chapter 4 — File Formats

INTO(4) ceceeerrmnnniiiiieneerennuniiereennietestoseeeeiereressssiesesansesssssssssssssssrstssetestssssssssssssaranasee 42
B.0UL(4) ceeveeereerirecnsrnnnreeeeeneseettercssssssssssseeseesseestaesrsnasmassatssstttesisisststestessisssessssssene 43
ACCE(4) .eeeeeerrreeiisrunriessnnnnnnenneeiissteesesisrateessassssssssssessssssssssssnresessascssssnssnteessssssnnsns 49
BT(4) veveerererererescsesessesesesssasastasasaste st et e s s R bRttt R e s nenes 411
ChECKIISt(4) .evvvenreeniersseressesssnsisnnennereneississsssssesssssnssnnesessssssssssestessssssesssneessssosssssss 414
COMPVET(4) weeerererersrnreresssssssnrnesssssnesessssssseesasssssssssensesssssessssssstesssssssesesssssasssasanses 4-15
COPYTIZRL(A) eevveerremrrerirnseserennaesrrnnenntetieesasssssssssssssssssssessessssessssatcossssssnssnnsnsessesasss 4-16
COTE(4) curernrececcssesosseossssssssssnneeserenasssssesesesssessassnnssssssssssssssssasnsssstesasssstssssssesssesnenns 4-17
CPIO(4) ceeeeereeeeenccssessnnseeseenseresoseesareeensssssssassssssnsssssssasssssasasassssasesasssssssssssssasssesens 418
A_PaSSWA(4) ceveeererrinreeenuniieenreenmenssiierecieressansssessesessssesssssssssasasssstsssssssssessssscessassnne 419
dePend(d) .ceeiiemiiiiiininiiireniirtttietieeetttteiteseneeeranttnanesttesttennsrsssosssssttsisesttenssessnes 4-20
QHATUPS(4) ceverricrrreninnnunniiiiinetiiiisiiieeeettitetntttaeterrannseaesasisssstssasttttttttistrssssesestannnnnse 422
QETERL(4) ceeererreerrrnieerorercreciseserenuccrenscreessessrecssssonsssannsssssssansssasssssassnsnssssssssssssssnsses 423
QUINPLAD(8) ceverveverererereereseeseseesesesesesssssssesesessasesesssssssenesesassestssssssesssssssestsnssesssnen 424
FIENAT(4) cevveceneeermennnsetiesisemencssrarssescessesssssecsssssorsssssssssssssssssrsssnsmnsnssssssssssssssssssses 4-25
ES(4) ceeeeneiereriienriicniienetnteereerentenaseretsssssteenasestsnnsrnsssestasesnssesasetaseasestssssrsssssssttane 4-26
ESPEC(4) cevveenrreoimmnnenneerieremusseneesnresnnesosasesssesrssssesesanssssssesansssssssnsssnnsssssssssassnssssens 4-32
211 o (- U POOPPPPPPI PPN 4-33
ZTOUP(4) erieirrnnniinenenierueneeenreeseasseessesssisssresssssessessssssessssssssssssssasmesassansssssssssssssasess 4-36
BEMI(4) ceenriiiirmmniiiiiiiietintcietienteineeeetteneeterereaeeecsesasnsseessatensssaeesaseesasssasenasssssssssaes 4-38
BOUAAYS(4) .eevererermmuniiiernniiriniiiieieeeciennmeeieceiseeceerssesssassessssssasnsessassssasasssssssssssessasees 4-40
(o | [UL UPPPEIRPP R PITS 441
121 111 o1 (- LU UUU PSP PPPPPPPOTR: coreennneines 4-59
INOAE(4) ceuieerimreremmnceoncrerionesscrescsrseserseecsesssassssesssssssssnssesssasssassssssnssssassssssasssssses 4-62
ISSUE(4) ceveereeceencennrsntonnceecssncseasaeecssssssssessessessssssnssssssssssssrassnsssssssasanaes cresenvessacennnes 4-67
IAFED(4) ceveveemmnerennrimnieeneeiieneneecosesserssreseresessscessssssaseesassssesassessssssssssssssstsssssssssasses 4-68
BIGES(4) ..ceeerenceeeenreenceecsorrsenssssonscesssesssssssesssssnsssss sessssossnssssssssssssasasssssssssssssescsses 4-70
HOENUM(4) .eueeimiiiniiniiereititeenieensieceeteecrsesessesasses. - eessanasessnsanssssssssessessssssssanssssons 4-72
IASTET(4) .ceererecirnreremnnirnorecesmecessecssssecorssscssssssssssnsssassenssssasssssssssssssssstsssssssnsanass 4-73
INFS(4) eeeeiemneninniieenetneeiiereeiitieieeeeresssessesssrsressensnnsnsastennssssssessssssssassssssssstsasanses 4-76
INOLEAD(4) .eeieeennnnnrererenncecrroneenemeosseeesssessssssssssssesssassassnsssssssssssssssssosesssssssssssssoneane 4-78
NELCONTIZ(4) cevurrerrmrmmmmnnierreniiiineieeenaeeeiseiesenesessssentamssnessesassssssssssssssssssssssssssansasass 4-80
PASSWA(4) eeveermnnnrirennnntiierteeeiettiieeenenittettttanaseeeseetareetaanassssssosssssssssssessasasisssssanaans 4-83
PEZINFO(4) .eovimmnniiirenrrrenniienneiieriieennennentensoseeteenssneieneeonssssascsssssssssssssessanassssssssnsanass 4-85
PKZMAP(4) .eoeerereiiiiiiminnnireunnriiieieereennessesssseessnnensesnssnsasesssssssssenes cresesenseseernsesesesens 4-88
1) (03 51 1 (- U PP 4-91
PTOLOLYPE(4) .ocreeceirrrrrunnnenssessissnenereseeeeesasssssasssossasssssssssssssssssssssssssssssssssssssnsnsannns 492
rcsfile(4) ceersesersseseesserssnasessaserensssssans teeersaensssestasnaenene ceresssssesessnseseesssnssnnsnsnnane 495
TEIOC(4) weeerirmmenniiirecinreenerereeeseseseseasenseresnssncsasrensssanne eeeecsessessesessanes ceesestesesnnnenes 4-98
SCOSTILE(4) wevvrrrcieriiiieiierierennnnniuiiisesieresssssseseeseenteseeaseennsssssssssssesssssssssssnsessasasasannes 4-99
SCT_AUIMP(4) ceeeeiiiiiiirrnnreniieniissenssreaeeeessssssassasosssssssssssssssnsesssasesssssssssnsssensannannes 4-102
SAE-CHOOSEI(4) ...uoierireerrenerrreunnrucisernseeeeeseressensassnnestreesessesessansssssssssssssnssssessescsccee 4-103
SACLAD(4) ...ciiieeeniiaeeraereneoeeeenesesssoereersressssssensasssssasarssessesssnssssssssssssssssssssasessssnans 4-104
SPACE(4) cevrrreennirrnnnuiiiieneieneeiietetttsisensnssoetannssrasssstsessctanssesasessesttaterssasasssasssanssaas 4-105

083-701102 Licensed materiai—property of copyright hoiders) ix

Contents

!

Index

Related Documents

093-701102 Uicensed material—property of copyright holder(s) Xi

Chapter 4
File Formats

This chapter contains in printed form all the online manual entries for file formats. The
entries are in alphabetical order except for intro(4), which is first.

For other file format manual pages (4M), see the System Manager’s Reference for the DG/UX
System.

083-701102 Licansed material—property of copyright holder(s) 4-1

intro(4) DG/UX 5.4 intro(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C structure declarations for

the file formats are given where applicable. Usually, the header files containing these
structure declarations can be found in the directories /usr/include or
/usr/include/sys. For inclusion in C language programs, however, the syntax
#include <filename.h> or #include <sys/filename.h> should be used.

SEE ALSO
intro(4M).

4-2 Uicensed materisi—property of copyright holder(s) 083701102

a.out(4) DG/UX 5.4 a.out(4)
NAME

a.out — assembler and link editor output
SYNOPSIS

#include <elf.h> /* for ELF executables®*/

#include <a.out.h>/* for COFF executables */

DESCRIPTION

ELF

093-701102

The filename a.out is the default output filename from the link editor 1d(1). The
link editor will make a.out executable if there were no errors in linking. The output
file of the assembler, as(1), also follows the common object file format of the
a.out file although the default filename is different.

(Executable and Linking Format) Files

Progra.ms that manipulate ELF files may use the library that el£(3E) describes. An
overview of the file format follows. For more complete information, see the refer-
ences given below.

Linking View Execution View
ELF header ELF header
Program header table Program header table

optional
Secftxoo.n L Segment 1
Secfn.o.n L Segment 2
Section header table Section header table
optional

An ELF header resides at the beginning and holds a “road map” describing the file’s
organization. Sections hold the bulk of object file information for the linking view:
instructions, data, symbol table, relocation information, and so on. Segments hold
the object file information for the program execution view. As shown, a segment
may contain one or more sections.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program header
table; relocatable files do not need one. A section header table contains information
describing the file’s sections. Every section has an entry in the table; each entry gives
information such as the section name, the section size, etc. Files used during linking
must have a section header table; other object files may or may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header has a
fixed position in the file.

When an a.out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitialized,
the latter actually being initialized to all 0’s), and a stack. The text segment is not
writable by the program; if other processes are executing the same a.out file, the
processes will share a single text segment.

The data segment starts at the next maximal page bonnda.ry past the last text address.
(If the system supports more than one page size, the “maximal page” is the largest

Licansed material—property of copyright holder(s) 4-3

a.out(4) DG/UX 5.4 a.out(4)

supported size.) When the process image is created, the part of the file holding the
end of text and the beginning of data may appear twice. The duplicated chunk of text
that appears at the beginning of data is never executed; it is duplicated so that the
operating system may bring in pieces of the file in multiples of the actual page size
without having to realign the beginning of the data section to a page boundary.
Therefore, the first data address is the sum of the next maximal page boundary past
the end of text plus the remainder of the last text address divided by the maximal
page size. If the last text address is a multiple of the maximal page size, no duplica-
tion is necessary. The stack is automatically extended as required. The data segment
is extended as requested by the brk(2) system call.

COFF (Common Object File Format) Files
A common object file consists of a file header, a UNIX system header (if the file is
link editor output), a table of section headers, relocation information, (optional) line
numbers, a symbol table, and a string table. The order is given below:

File header.
UNIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

.S.;ction n line numbers.
Symbol table.
String table.

The last three parts of an object file (line numbers, symbol table and string table) may
be missing if the program was linked with the —s option of 1d(1) or if they were
removed by strip(1l). Also note that the relocation information will be absent after
linking unless the -r option of 1d(1) was used. The string table exists only if the
symbol table contains symbols with names longer than eight characters.

The sizes of each section (contained in the header, discussed below) are in bytes.

When an a.out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitialized,
the latter actually being initialized to all 0’s), and a stack. On the M8SK computer the
text segment typically starts at location 0x00010000 plus the byte offset in the a.out file
of the text section data.

The first 16 bits of a.out files is the magic number. For non-executable a.out files
and executables linked in the m88kbcs SDE, the magic number is 0555.For execut-
ables linked in the dgux SDE, the magic number is 0541. See sde(1). The optional
header of an a.out file produced by 1d(1) also has a magic number whose value is
0413. The headers (file header, optional header, and section headers) appear at the
beginning of a.out files and determine the address of the text segment when it is
loaded into memory. The first text address will equal 0x00010000 plus the size of the
headers, and will vary depending upon the number of section headers in the a.out

4"4 Licensed material—property of copyright holder(s) 083-701102

a.out(4) DG/UX 54 a.out(4)

file. In an a.out file with three sections (.text, .data, and .bss), the first text
address is at 0x000100B8 on the M88K computer.The text segment is not writable by
the program; if other processes are executing the same a. out file, the processes will
share a single text segment.

On the M88K computer the stack begins at location 0xFO00000 and grows toward
lower addresses. The stack is automatically extended as required. The data segment
is extended only as requested by the brk(2) system call.

For relocatable files the value of a word in the text or data portions that is not a
reference to an undefined external symbol is exactly the value that will appear in
memory when the file is executed. If a word in text or data involves a reference to an
undefined external symbol, there will be a relocation entry for the word, the storage
class of the symbol-table entry for the symbol will be marked as an “external sym-
bol”, and the value and section number of the symbol-table entry will be undefined.
When the file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the word in the file.

The format of the filehdr header is
struct filehdr

{
unsigned short f_magic; /* magic number x*/
unsigned short f_nsecns; /* number of sections #*/
long f_timdat; /* time and date stamp */
long f symptr; /% file ptr to symtab */
long f_nsyms; /* & symtab entries x/

unsigned short f_opthdr; /* sizeof(opt hdr) =/
unsigned short f _flags; /* flags x/
};
The format of the optional header is
typedef struct aouthdr

{
short magic; /* magic number =/
short vstanp; /* version stamp x/
long tsize; /* text size in bytes, padded x/
long dsize; /* initialized data (.data) »*/
long bsize; /* uninitialized data (.bss) =*/
long entry; /* entry point x/
long text_start; /x base of text used for this file s/
long data_start; /* base of data used for this file s/
} AOUTHDR;

093-701102 ULicensed material—property of copyright holder(s) 4-5

a.out(4)

DG/UX 5.4

The format of the section header is

struct scnhdr
{
char
long
long
long
long
long
long
unsigned long
unsigned long
long
}:

s_name[8];
s_paddr;
s_vaddr;
s_size;
s_scnptr;
s_relptr;
s_lnnoptr;
s_nreloc;
s_nlnno;
s_flags;

/*
/*
/%
/*
/*
/*
/*
/*
/*
/*

a.out(4)

section name x/

physical address x/
virtual address x/

section size x/

file ptr to raw data */
file ptr to relocation #/
file ptr to line numbers x/
reloc entries =/

line number entries =/
flags x/

Object files have one relocation entry for each relocatable reference in the text or
data. If relocation information is present, it will be in the following format:

struct reloc
{
long
long
unsigned short
unsigned short

};

r_vaddr;
r_symndx;
r_type;
r_offset;

/*
/*
/*
/*

(virtual) address of reference :
index into symbol table #/
relocation type */

high 16 bits of expression */

The start of the relocation information is s_relptr from the section header. If there is
no relocation information, s_relptr is 0.

The format of each symbol in the symbol table is

$define SYMNMLEN
#define FILNMLEN
#define DIMNUM

struct syment

{
union
{
char
struct
{
long
long
} _n_n;
char
} _n;
long
short
unsigned short
char
char
char
char

}i

8
14
4

/*

all ways to get a symbol name

_n_name [SYMNMLEN]; /* name of symbol s/

_n_zeroes;
_n_offset;

*+_n_nptr[2];

n_value;
: _scnum;
1 _type:
n_sclass;
n_numaux;
n_padl;
n_pad2;

/*
VA

== OL if in string table %/
location in string table %/

/* allows overlaying =/

/* value of symbol #*/

/* section number =/

/* type and derived type =/
/* storage class */

/* number of aux entries x/
/* pad to 4 byte multiple s/
/% pad to 4 byte multiple =/

4-6 Licensed materiai—property of copyright hoider(s) 083701102

C tents

SITFHIE(4) +evverrereereessersessesenasassesseseesessssesssssessessesessesssassssassassesassssstostossasssssasnsanas 4106
SYIIS(+1) wevevvruenrenrereeneenerenrmeresnsstssasssiosssssssstiesetsonssstsesassstaatanssnssstttstiessessssstseseses 4-107
SYSTEII 4) .evvvrereeeenennersrnneeeneienesssuoresosissettositiissatissattatetattetaaaassase st tsesitts s tanees 4-110
LEIIINE . (8) vevverereenesessensasessnsesetessssaseseesostssseassssssssssssasssesassessssessansssssassssestsss 4111
HINEZ. DEI4) ceeeeererrrreriersierossrnenessssaratnaenaeessssssssassnsasesssonssoneeneesaesassssssssssanaasssssssans 4-158
UDP(4) cvererreneeserosscsnsacssescssssssseserasssnssessnasessessassasssncecs reeerreeereeraeenreteneesaaeses 4161

IDMTO(5) oo -+ ceccecssessscsseessnssessasnessessasssasuessesasansntosestissssssssatsssssssssnsssessssnsastasaaseane 52
LYY 1) JR ST PO OPIIPPITO TP PRIV RR R PR PP 53
A MKNOA(: .eeeeeerernenreecsernsietisittiiittieiittteestanestts s aanaaa et e te e eae st ne s s a s et st et e 54
iRV) U TIPS PP RS YR 56
LT 1)) OO P e 59
ENVITON(S) reeueeee esseseeeesseseecssensasassssnsesasosasonnsssssssnosssatestossssssssssnssasssnesssssssstoes 511
EUCIOCHI(S) ceveerees ieeeereeessssnisssaeeecesssneneeessnncaneressssssssssssesssssssssnsessssnsnanassnanessnas 5-17
302101 (<) J U OOV T 5-19
BIEE(5) cvvovrerrcess seeessssssesssssssenssssssnssasecusecusensinseretsaes et be R ne R r s E e eees 5-20
IANEINTO(S) crerves cesvessscssemecssssensencnsssssersissssesssss st s sa s be s s bR a R st e 524
0 (=) et 5-26
11 T:14 11 (=) 1 00T SXIRRTREEE 5-27
MISAHGN(5) -vvvveeereerrremmrernrannenissnteeeeasissssnsnscestortiecossstsesssesssessesssssanansaaasassssnsassssssss 5-28
DLLYPES(5) eeevereercsrerras sererersrecssaneienssssneeeessssssneanesesssssssssessssssssssanssssssanasssnansssssas 531
PHDLCAP(5) cecvneeerssrsnes oreesressentessnneassansecssssnressanssasassssessssssaseesssnstsssansesnnassssnens 532
PTOL(5) weeerrersrnerrenenceasns ssrnressenesassaeasasessesssssasassensosssasssssstssttissssssnstssssanessssssseses 5-34
TEEEXP(5) ceverrersrrneneanes vor seressanescssssnnesssssssssttssssssassssssasenssssetttttessssnsasassssanessssssetes 535
SAC(5) weeeererrremnmmnnnreioes + eesesssessseeeseeneceseesennssssssteeseessensssssstisttsttttttattatatasasessasens 5-39
SIGINFO(5) evrevernerrennnenss cvereecssssseeecsssscesteaseissansssssesesssstettttttesssstatnessantasssssanes 541
SIZNAL(5) ceeeerssnrccssirsires eecsssteceseecessnseessssaneenueesansssassssssssantteesstasessasasnantasanes 543
SEAL(S5) wecereerressnrrreneasasses se. sssesessssetseeessssenattasesssstesssssssresstttttttesessssranesssntesesasanas 544
STALES(S) weveeveerasorsorrerrrnnnerurnsniroeeeteneneeseeseneessessssassttessssassnssssssssstetteststttattasasaseassaes 546
SEABTE(5) cecorererenrrrrrnenenssersssne. mteesssssssressessssssnsaesssasesssssssssssessssssssssssssasasasaasssassens 548
syslog.conf(5)cecceeeeeemannnnee. '+ esecsssscesseseecssstanesetsarssesssesaesssseserrsssarssannssasasrrssases 5-50
BAT(5) cereeeeecrecescsenssnreneneeieies tor sesseesssssstesesessssssstessaasasaseasssessssssssttttssssssasessnssnanas 552
LEIMCAP(S) eecorererrensreeseenranass: eesessssssansassssssssassessssassssssssssssesesssssessasssassssssnsassssesss 5-54
EYPES(5) cevvereecrrsrsrnrnessrsnnranesans saneee sacasssnsssssssessssassssstastnacessssssanesssnasasasasssssnttessone 5-68
UCODLEXL(S) eeeeeeercererrrrnerensressssssssssssesssssssssssssssssssssnsssssssssssssssssssssssssssssssnsannanananes 569
USEAL(5) cvevererereereseressessesessessasss ssssssssssssssesssssssessessseasascassssossessssessesssssssassassassasess 5-70
VAIUES(5) ceeeenrenmncecccsseeneesennesreenes oor ceseesasessssnsssssaesssssassessssssssstesssartsansaantasasasasasss 5N
VATATES(S) coeereecerrsrrrsrsrnennunnessnnessscsss ssscesssssssssssssssssssssssnssssassasasassssnnnasssssassssesases 572
WSLAL(S) eeeeecereecossscssssssnasesreesssssassssass iesssssssssssasssasesseseesessesssssestesesssssasnasasansassssses 5-74

Chapter 6 — Communications : :tocols
UDIX_IPC(EF) cevveveeervrsseesunesnesnsnnssssaasss sor sassssesassnsnsassasssssesssnesaesnesssesnsnsesnanssssascasss 62

Appendix A — Contents and Permuted Index Man Pages

CONLENES(0) coeeeeveeuennrerreemsmnecrsnnessssseenasass sotesisssesstsssnssssssssssssnssnssasssssnasasessassessesss A2
INAEX(0) -eveeeecnceersnrrerssnssansssesasssneassasessssmessstansssrssetsssssssassssnntssssanessansesestessatssees A2

X Licensed matsrial—property or copyright holder(s) 093-701102

a.out(4) DG/UX 54

#$define n_name _n._n_name
#define n_zeroces _n._n_n._n_zeroes
g$define n_offset _n._n_n._n offset
#define n_nptr _n._n_nptr[l]

a.out(4)

Some symbols require more information than a single entry; they are followed by aux-
iliary entries that are the same size as a symbol entry. The format follows:

union auxent {
struct {
long x_tagndx;
union {
struct {

unsigned longx_lnno;
unsigned longx_size;

} x 1lnsz;
long x_£size;
} x_misc;
union {
struct {
long x_lnnoptr;
long x_endndx;
} x_fen;
struct {

unsigned shortx dimen[4];

} x_ary;
struct {

unsigned long

} x aryl;

} x_fcnary;

unsigned short x_tvndx;
char x_padl;

char x_pad2;

} x_sym;

struct {
unsigned long x_dimen2(5];

} x_ary2;

union {
char x_fname[FILNMLEN];
struct {
long _x_zeroes;
long _x offset;
} _x x;
char
} x file;
} x_file;

*_x xptr[2];

struct {

long x_scnlen;

093-701102 Licensed material—property of copyright holder(s)

x_dimenl[2];

/% 0 if name is in string tables/
/+ offset into string table =/

/% allows for overlaying s/

4-7

a.out(4) DG/UX 54 a.out(4)

unsigned short x_nreloc;
unsigned short x nlinno;

} x_scn;

struct {
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran([2];

} x_tv;

)i
Indexes of symbol table entries begin at zero. The start of the symbol table is
f_symptr (from the file header) bytes from the beginning of the file. If the symbol
table is stripped, f_symptr is 0. The string table (if one exists) begins at f_symptr +
(fnsyms » SYMESZ) bytes from the beginning of the file.

SEE ALSO
as(l), att_dump(l), cc(l), 1d(1), 1d-coff(1l), brk(2), el£(3E), filehdr(4),
ldfcn(4), linenum(4), reloc(4), syms(4).
The “Object Files” chapter in the Programmer’s Guide: ANSI C and Programming
Support Tools.

4-8 Licensed materiai—property of copyright holder(s) 083-701102

acct(4)

DG/UX 5.4 acct(4)

NAME

acct - per-process accounting file format

SYNOPSIS

#include <sys/acct.h>

DESCRIPTION

093-701102

Files produced as a result of calling acct(2) have records in the form defined by
<sys/acct.h>, whose contents are:

typedef ushort comp_t; /* "floating point” x/
/% 13-bit fraction, 3-bit exponent =/

struct acct
{

char ac_flag; /* Accounting flag x/

char ac_stat; /* Exit status x/

ushort ac_uid; /* Accounting user ID x/

ushort ac_gid; /* Accounting group ID x/

dev_t ac_tty; /* control typewriter =/

time_t ac_btime; /* Beginning time x/

comp_t ac_utime; /* acctng user time in clock ticks x/
comp_t ac_stime; /* acctng system time in clock ticks #/
comp_t ac_etime; /* acctng elapsed time in clock ticks =/
comp_t ac_mem; /* memory usage in kbytes s/

comp_t ac_io; /* chars trnsfrd by read/write :/
comp_t ac_rw; /* number of block reads/writes =/
char ac_comm[8]; /* command name #*/

}:
Also defined are the following symbolic names:

AFORK /*+ has executed fork, but no exec *x/ ASU /* used super-
user privileges */ ACCTF /* record type: 00 = acct =/

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by an
exec(2). The ac_comm field is inherited from the parent process and is reset by any
exec. Each time the system charges the process with a clock tick, it also adds to
ac_mem the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem / (ac_stime + ac_utime) can be viewed as an approximation to
the mean process size, as modified by text-sharing.

Licensed material—property of copyright holder(s) 4-9

acct(4) DG/UX 5.4 acct(4)

The structure tacct.h, which resides with the source files of the accounting com-
mands, represents the total accounting format used by the various accounting com-

mands:
/*
+ total accounting (for acct period), also for day
+/
struct tacct {
uid_t ta_uid; /* userid x/
char ta_name(8]; /* login name %/
float ta_cpul2]; /* cum. cpu time, p/np (mins) %/
float ta_kcore[2]; /* cum kcore-minutes, p/np */
float ta_con[2]; /% cum. connect time, p/np, mins x/
float ta_du; /% cum. disk usage %/
long ta_pc; /* count of processes */
unsigned short ta_sc; /* count of login sessions %/
unsigned short ta_dc; /* count of disk samples x/
unsigned short ta_fee; /* fee for special services x/
}i
SEE ALSO

acct(2), exec(2), fork(2).
acct(1M) in the System Manager’s Reference for the DG/UX System.
acctcon(l) in the User’s Reference for the DG/UX System.

NOTES
The ac_mem value for a short-lived command gives little information about the actual
size of the command because ac_mem may be incremented while a different com-
mand (like the shell) is being executed by the process.

4’10 Licensed material—property of copyright holder(s) 093-701102

ar(4) DG/UX 54 ar(4)
NAME

ar — DG/UX common archive file format
DESCRIPTION

093-701102

The archive command ar is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor 1d.

Each archive begins with the archive magic string.

#define ARMAG "1<arch>\n" /* magic string %/
#define SARMAG 8 /* length of magic string x/

Following the archive magic string are the archive file members. Each file member is
preceded by a file member header which is of the following format:

$define ARFMAG "“\n" /* header trailer string %/

struct ar_hdr /% file member header x/

{
char ar_name[16]; /x '/’ terminated file member name x/
char ar_date[12]; /* file member date x/
char ar_uid[6]; /* file member user identification %/

char .ar_gid[6]; /* file member group identification x/
char ar_mode[8]; /% file member mode (octal) x/

char ar_size[10]; /+ file member size =/

char ar_fmag[2]; /* header trailer string x/

}:

All information in the file member headers is in printable ASCII. The numeric infor-
mation contained in the headers is stored as decimal numbers (except for ar_mode
which is in octal). Thus, if the archive contains printable files, the archive itself is
printable.

If the file member name fits, the ar_name field contains the name directly, and is ter-
minated by a slash (/) and padded with blanks on the right. If the member’s name
does not fit, ar_name eontains a slash (/) followed by a decimal representation of the
name’s offset in the archive string table described below.

The ar_date field is the modification date of the file at the time of its insertion into
the archive. Common format archives can be moved from system to system as long
as the portable archive command ar is used.

Each archive file member begins on an even byte boundary; a newline is inserted
between files if necessary. Nevertheless, the size given reflects the actual size of the
file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

Each archive that contains object files [see a.out(4)] includes an archive symbol
table. This symbol table is used by the link editor 1d to determine which archive
members must be loaded during the link edit process. The archive symbol table (if it
exists) is always the first file in the archive (but is never listed) and is automatically
created and/or updated by ar.

The archive symbol table has a zero length name (i.e., ar_name[0] is '/’),
ar_name[l]==' ’, etc.). All “words” in this symbol table have four bytes, using
the machine-independent encoding shown below. (All machines use the encoding

Licensed material—property of copyright holder(s) 4-11

ar(4)

4-12

DG/UX 5.4 ar(4)

described here for the symbol table, even if the machine’s “natural’ byte order is dif-
ferent.)

il J B
0x01020304 01 02 03 04

The contents of this “file” are as follows:

1. The number of symbols. Length: 4 bytes.

2. The array of offsets into the archive file. Length: 4 bytes * “the number of sym-
bols”.

3. The name string table. Length: ar_size — 4 bytes * (“the number of symbols” +
1).

As an example, the following symbol table defines 4 symbols. The archive member at
file offset 114 defines name and object. The archive member at file offset 426
defines function and a second version of name.

Offset +0 +1 +2 +3

0 4 4 offset entries
_ 4 114 name - .

8 114 object

12 426 function

16 426 name

20 n a m e

24 \0 | o b 3

28 e c t | \O

32 £ u n c

36 t i o n

40 \0 | n a m

44 e | \O

The number of symbols and the array of offsets are managed with sgetl and
sputl. The string table contains exactly as many null terminated strings as there are
elements in the offsets array. Each offset from the array is associated with the
corresponding name from the string table (in order). The names in the string table
are all the defined global symbols found in the common object files in the archive.
Each offset is the location of the archive header for the associated symbol.

If some archive member’s name is more than 15 bytes long, a special archive member
contains a table of file names, each followed by a slash and a new-line. This string
tabie member, if present, will precede all “normal” archive members. The special
archive symbol table is not a “normal” member, and must be first if it exists. The
ar_name entry of the string table’s member header holds a zero length name
ar_pame[0]=='/’, followed by one trailing slash (ar_name[1]==’/"), followed by
blanks (ar_name[2]==' /, etc.). Offsets into the string table begin at zero. Exam-
ple ar_name values for short and long file names appear below.

Licensed materiai—property of copyright holder(s) 093-701102

DG/UX 54 ar(4)

ar(4)
Offset 40 41 _ +2 43 44 _+5 46 4T 48 49
0 f i 1 e n a m e
10 s a m P 1 e / \n 1l o
20 n q e r £ i .1 e n a
30 m e X a P 1 e / \n
Member Name ar_name Note
short-name short-name/ Not in string table
file_name_sample /0 Offset 0 in string table
longerfilenamexample /18 Offset 18 in string table
SEE ALSO
ar(1), 1d(1), strip(1), sputl(3X), a.out(4).
~ NOTES

strip will remove all archive symbol entries from the header. The archive symbol
entries must be restored via the —ts options of the ar command before the archive

can be used with the link editor 1d.

4-13

093-701102 Licensed materiai—property of copyright holder(s)

checkiist(4) DG/UX 54 checklist(4)

NAME
checklist - list of file systems processed by fsck and ncheck

DESCRIPTION
Checklist may reside in directory /etc and contain a list of special file names.

Each special file name is contained on a separate line and corresponds to a file sys-
tem. Each file system will then be automatically processed by the fsck(1M) and
ncheck(1M) commands. You have to create the checklist file yourself; the sys-
tem does not create it for you.

If you have your special files in fstab, you do not need to create 2 checklist file
to get fsck to process them.

SEE ALSO
£sck(IM) and ncheck(1M) in the System Manager’s Reference for the DG/UX Sys-

tem.
fstab(4).

4-14 Licensed material—property of copyright holder(s) 083701102

compver(4) DG/UX 5.4 compver(4)

NAME
compver - compatible versions file

DESCRIPTION :
compver is an ASCII file used to specify previous versions of the associated package
which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with which
the current version is backward compatible.

Since some packages may require installation of a specific version of another software
package, compatibility information is extremely crucial. Consider, for example, a
package called "A" which requires version "1.0" of application "B" as a prerequisite
for installation. If the customer installing "A" has a newer version of "B" (version
1.3), the compver file for "B" must indicate that "1.3" is compatible with version
*1.0" in order for the customer to install package "A".

NOTES
The comparison of the version string disregards white space and tabs. It is performed
on a word-by-word basis. Thus "Version 1.3" and "Version 1.3" would be con-
sidered the same. ’

EXAMPLE

A sample compver file is shown below.

Version 1.3
Version 1.0

SEE ALSO
pkginfo(4).

093-701102 Licensed material—property of copyright holder(s) 4‘15

copyright(4) DG/UX 54 copyright(4)

NAME
copyright — copyright information file

DESCRIPTION
copyright is an ASCII file used to provide a copyright notice for a package. The
text may be in any format. The full file contents (including comment lines) is
displayed on the terminal at the time of package installation.

SEE ALSO
pkginfo(4).

4-16 . Licensed material—property of copyright holder(s) 083-701102

core(4)

NAME

DG/UX 54 core(4)

.

core - format of core image file

DESCRIPTION

The system writes out a core image of a terminated process when any of several
errors occur. See signal(2) for the list of reasons; the most common are memory
violations, illegal instructions, and user-generated quit signals. The core image is
called core and is written in the process’s working directory (if possible; normal
access controls apply). A process with an effective user id different from the real
user id will not produce a core image.

The first section of the core image is a copy of the system’s per-user data for the pro-
cess, including the registers as they were at the time of the fault. The remainder
represents the actual contents of the user’s core area when the core image was writ-
ten. The text segment is not dumped.

The format of the information in the first section is described by the user structure of
the system, defined in /usr/include/sys/user.h.

SEE ALSO

093-701102

sdb(1), dbx(1l), setuid(2), signal(2).
crash(1M) in the System Manager’s Reference for the DG/UX System.

Licensed material—property of copyright holder(s) 4-17

cpio(4) DG/UX 54 cpio(4)

NAME
cpio - format of cpio archive
DESCRIPTION
The header structure, when the ~c option of cpio(1) is not used, is:

struct {
short h_magic,
h_dev;
ushort b_ino,
h_mode,
h_uid,
h_gid;
short h_nlink,
b_xrdev,
bh_mtime([2],
b_namesize,
h_filesize[2];
char h_name[h_namesize rounded to woxrd]:;
} Hdr;

When the —c option is used, the header information is described by:

sscanf(Chdr,"%60%60% 60 %60 %60 %60 %60%60%1110%60%1110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.b_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respec-
tively. The contents of each file are recorded in an element of the array of varying
length structures, archive, with other item' describing the file. Every instance of
h_magic contains the constant 070707 (oct..). The items h_dev through h_mtime
have meanings explained in stat(2). The length of the null-terminated path name
h_name, including the null byte, is given by k_namesize.

The last record of the archive always contains the name TRAILER!!!. Special files,
directories, and the trailer are recorded with &_filesize equal to zero.

SEE ALSO
stat(2).
cpio(1l), £ind(1) in the User’s Reference for the DG/UX System.

4-18 Licensed matsriai—property of copyright holder(s) 083-701102

d_passwd(4) DG/UX 54 d_passwd(4)

NAME

d_passwd - log-in programs and passwords for dial-up devices
SYNOPSIS

/etc/d_passwd
DESCRIPTION

This file contains an entry for programs (such as shells) that login(1) can invoke for
users logging into the system via dial-up devices. Each entry includes the pathname
of the shell program for which a dialup password is required and the encrypted pass-
word that the user must provide in order to invoke the program. You have to create
a d_passwad file yourself; the system does not create one for you.

A dial-up device is any device that has an entry in the /etc/dialups file. See
dialups(4). You have to create a dialups file yourself; the system does not create
one for you.

When a user logs into a dial-up device, login searches the d_passwd file to see if it
contains an entry for the shell program specified in the user’s passwd entry. If such
an entry is found, login requires that the user provide a second ("dial-up") password
in addition to their personal password. The program name in the user’s passwd
entry and the program name in the d_passwd file must match exactly. E.g.,
/bin/csh and /usr/bin/csh will not be matched even though they reference the
same file.

The program /usr/bin/sh is treated as a special case. If d_passwd contains an
entry for /usr/bin/sh, the password for that entry will be used as the default dial-
up password for all users whose passwd shell program doesn’t match any of the
other d_passwd entries. In the case where no matching entry is found for a user
and no /usr/bin/sh entry exists, the user is not prompted for a dial-up password.

Here is a sample d_passwd entry:
/bin/csh: ooxxx:

where xoooxx is the encrypted password.

SEE ALSO
login(1l), dialups(4).

083-701102 Licensed materiai—property of copyright holder(s) 4-19

depend(4) DG/UX 5.4 depend(4)

NAME

depend - software dependencies files

DESCRIPTION

depend is an ASCII file used to specify information concerning software dependen-
cies for a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of
the package is described after the entry line by giving the package architecture and/or
version. The format of each entry and subsequent instance definition is:

type pkg name
(arch)version
(arch)version
The fields are:
~ type Defines the dependency type. Must be one of the following charac-
ters:

P Indicates a prerequisite for installation, for example, the refer-
enced package or versions must be installed.

1 Implies that the existence of the indicated package or version
is incompatible.

R Indicates a reverse dependency. Instead of defining the
package’s own dependencies, this designates that another
package depends on this one. This type should be used only
when an old package does not have a depend file but it relies
on the newer package nonetheless. Therefore, the present
package should not be removed if the designated old package
is still on the system since, if it is removed, the old package

will no longer work.
pkg Indicates the package abbreviation.
name Specifies the full package name.

(arch)version Specifies a particular instance of the software. A version name can-
not begin with a left parenthesis. The instance specifications, both
arch and version, are completely optional but must each begin on a
new line that begins with white space. A null version set equates to
any version of the indicated package.

EXAMPLE

4-20

Here is a sample depend file:

msvr 3B2 Messaging Server
ctc Cartridge Tape Utilities
dfm Directory and File Management Utilities
ed Editing Utilities
ipc Inter—Process Communication Utilities
lp Line Printer Spooling Utilities
shell Shell Programming Utilities
sys System Header Files

Release 3.0 A
sysadm System Administration Utilities
term Terminal Filters Utilities

ooy YY Y H

LB

Licensed material—property of copyright hoider(s) 093-701102

depend(4) DG/UX 5.4 depend(4)

terminfo Terminal Information Utilities
usrenv User Environment Utilities
uucp Basic Networking Utilities
x25 X.25 Network Interface
Issue 1 Version 1
Issue 1 Version 2
P windowing AT&T Windowing Utilities
(3B2)Version 1
R cms 3B2 Call Management System

'y 'd 'y

SEE ALSO
pkginfo(4).

093701102 Licensed material—proparty of copyright holder(s) 4-21

dialups(4) DG/UX 54 dialups(4)

NAME

dialups - devices requiring a dial-up password.
SYNOPSIS

/etc/dialups
DESCRIPTION

This file contains the pathnames of devices that require an additional password,
called a dial-up password, from users who attempt to log into it. An example entry
might be /dev/ttyl6. For such devices, the login(l) command prompts the user
for the dial-up password after the user has provided a valid log-in name and personal

password.
Dial-up passwords must appear in the /etc/d_passwd file along with the programs
(such as a shell) that login will execute after a succesful log-in at the given device.

You have to create the dialups and d_passwd files yourself; the system does not
create them for you.

SEE ALSO
login(1l), d_passwd(4).

4-22 Licensed material—property of copyright holder(s) 093-701102

dirent(4)

DG/UX 54 dirent(4)

NAME

dirent - file system independent directory entry

SYNOPSIS

#include <sys/dirent.h>
#include <sys/types.h>

DESCRIPTION

FILES

Different file system types may have different directory entries. The dirent struc-
ture defines a file system independent directory entry, which contains information
common to directory entries in different file system types. A set of these structures
is returned by the getdents(2) system call.

The dirent structure is defined below.
struct dirent {

long d_ino;
off_t d_off;
unsigned short d_reclen;
char d_name[1l];

Y;
The d_ino is a number which is unique for each file in the file system. The field
d_off is the offset of that entry in the file system directory. The field d_name is the
beginning of the character array giving the name of the directory entry. This name is
null terminated and may have at most MAXNAMLEN characters. This results in file
system independent directory entries being variable length entities. The value of
d_reclen is the record length of this entry. This length is defined to be the number of
bytes between the current entry and the next one, so that it will always result in the
next entry being on a long boundary.

/usr/include/sys/dirent.h

SEE ALSO

getdents(2).

083-701102 Licensed materiai—property of copyright holder(s) 4-23

dumptab(4) DG/UX 5.4 dumptab(4)

NAME

dumptab - tape table file for dump2

DESCRIPTION

/etc/dumptab is an ASCII file containing an entry describing media characteristics
for each medium made available to qump2.

This table file contains lines in one of three formats:
a. comment lines (must start with a "#")
b. lines specifying the capacity of the medium:

medium-name buffer-size <capacity>
c. lines giving the density, tape length, and IRG for the medium:

medium-name buffer-size density tape-length <IRG>
Fields are separated by white space. The fields are desribed below:

medium—name
descriptive label for the medium.

buffer—-size
size (in 1024-byte blocks) of the buffers written to the medium.
capacity
formatted capacity of the medium (in bytes). The capacity can also be
specified as a number followed by a upper or lowercase b, k, m, or g to
indicate bytes, kilobytes, megabytes, or gigabytes, respectively.

density density at which data is written to the device (in bpi).

tape-length
length of the tape (in feet).

IRG inter-record gap size used by the device (in tenths per inch).

SEE ALSO

4-24

dump2(1M).

Uicensed material—property of copyright hoider(s) 093-701102

filehdr(4) DG/UX 5.4 filehdr(4)

NAME
filehdr - file header for common object files
SYNOPSIS
#include <filehdr.h>
DESCRIPTION .
Every common object file begins with a 20-byte header. The following C struct
declaration is used:
struct filehdr {
unsigned short f£_magic ; /* magic number */
unsigned short £_nscns ; /* number of sections x/
long f timdat ; /+ time & date stamp #/
long f_symptr ; /x file ptr to symtab =/
long f nsyms ; /* # symtab entries x/

unsigned short £f_opthdr ; /% sizeof(opt hdr) x/
unsigned short £_flags ; /* flags x/
Y
F_symptr is the byte offset into the file at which the symbol table can be found. Its
value can be used as the offset in fseek(3S) to position an I/O stream to the symbol
table. The UNIX system optional header is 28-bytes. The magic number for the
M88000 is:
#define MC88SMAGIC 0540 :

The value in f_timdat is obtained from the time(2) system call. Flag bits currently
defined are:

#define F_RELFLG 0000001 /* relocation entries stripped x/
g#¢define F_EXEC 0000002 /+ file is executable %/

#define F_LNNO 0000004 /* line numbers stripped =/
#define F_LSYMS 0000010 /* local symbols stripped x/
#define F_AR32W 0001000 /+ non-DEC host =/

#define F_BM32B 0020000 /+ file contains WE 32100 code =/
#define F_BM32MAU 0040000 /* file reqs MAU to execute =/

SEE ALSO
time(2), fseek(3S), a.out(4).

093-701102 Licensed material—property of copyright hoider(s) 4-25

fs(4) DG/UX 5.4 ts(4)

NAME
£s - file system format

SYNOPSIS
#include <ufs/disk_format.h>

DESCRIPTION
There is a at most one filesystem for each logical disk. The basic components of a

the file system are the File Manager Information Areas (FMIA’s), Disk Allocation
Regions (DAR’s), and a table of entries containing information about each DAR
called the DAR Information Area.

The FMIA
Two copies of the FMIA are maintained to reduce its vulnerability to corruption.

The copies are placed in the first and last blocks of the file system. The FMIA in the
first block (the Primary FMIA) is contained in the first DAR, but the FMIA con-
tained in the last block of the logical disk (the Secondary FMIA) is not contained in
the last DAR.

The following is the definition of a FMIA. This contains the per-filesystem informa-
tion. When a filesystem is mounted, this structure is used to generate memory data-
bases for the newly mounted entry.

typedef struct

{

df_self_id_type self_id;
df_fsid_type fsid;

uint32e_type minor_device_number;
uint32e_type dar_size;

uint32e_type

booleanlée_type

uintl6e_type
byte8e_type
byte8e_type
uint8e_type
uint8e_type
uint8e_type
uint8e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type
uint32e_type

file nodes_per_dar;
fsck_required;

revision;

fname [DF_FS_LABEL SIZE];
fpack [DF_FS_LABEL_SIZE];
default_des_exponent;
default_ies_exponent;
default_dir_des_exponent;
default_dir_ies_exponent;
first_anniversary:
second_anniversary;
fs_size;

space_used;
number_of_used_file_nodes;
first_log_lda;
second_log_lda;
log_size;

boolean_field_type

boolean_field_type

skip_type

byte8e_type

} df_fmia_ block_type ;
self_id is the self-identification information. The block kind is DF_FMIA_BLOCK.
The block number is:

shrink_operation_in_progress;
grow_operation_in_progress;

reserved:14;

pad_to_block [DF_PADDING_PER_FMIA_BLOCK];

#define DF_PRIMARY FMIA ADDRESS 0

4-26 Licensed materiai—proparty of copyright holder(s) 083-701102

fs(4) DG/UX 54 1s(4)

The file node number is:
$define DF_NODE_NUMBER_FOR_NON_FILES 012345670123
The following fields are assumed to be correct by £sck(1M).
fsid is the filesystem identifier unique among mounted file systems on a single host.
It is kept on disk so that it will stay the same if possible from mount to mount. If it
doesn’t, NFS accesses using filehandles based on a previous mount will fail.
minor_device_number is the assigned extended minor device number. It is kept on
disk so that it will stay the same if possible from mount to mount. If the value in this
field on disk is not in the valid range for extended minor device numbers, it is file
manager’s responsibility to correct the problem at mount time.
dar_size is the size of a DAR in blocks. The minimum value for this field is:
g§define DF_MIN_DAR_SIZE 4032
and the maximum value is:
#define DF_MAX DAR_SIZE(fs_size)
mk£s(1M) defines the default for this field; for efficiency, it should be a multiple of:
#define DF_BITS_PER_BITMAP BLOCK 4032
whenever possible; 4 to 12 MB (two to six bitmap blocks’ worth) per DAR seems a
reasonable default DAR size given current disk sizes. As disks grow by orders of
magnitude in size, DAR sizes should likely grow linearly with the square root of the
disk sizes.

file_nodes_per_dar is the number of file nodes for each DAR. This value must be a
multiple of:

#¢define DF_FILE NODE MULTIPLE REQUIREMENT 64
The minimum value for this field is

g§define DF_MIN FILE NODES_PER_DAR 64
and the maximum value is:

$define DF_MAX FILE_NODES_PER_DAR(dar_size)

mk£s(1M) defines this field’s default, which is to have about one file node for each
four user data blocks, similar to 4.2 BSD.

fsck_required indicates that £sck(1M) needs to be run. If this field is not zero
(FALSE), the filesystem needs to be checked before it can be mounted.

revision is the revision number of the FMIA. Used to determine the type of filesys-
tem that the FMIA resides on.

083-701102 Licensed material—proparty of copyright holderls) 4-27

fs(4)

DG/UX 64 ts(4)

" £sck(IM) will attempt to correct the following fields if they are invalid:

4-28

fname is used by statfs(2), fstatfs(2), labelit(1M), volcopy(1M),
frec(1M), Initialized to zeros, when usec it is considered an ASCII string not neces-

sarily terminated by a NULL byte.

fpack is used by statfs(2), fstatfs(2), labelit(1M), volcopy(1M),
frec(1M), Initialized to zeros, when used i: is considered an ASCII string not neces-
sarily terminated by a NULL byte.

The following exponent fields pertain to the size of elements used to access user data
blocks. Data elements are equal sized sets of contiguous blocks of a file. These data
elements are either pointed to directly from the ‘ile node or indirectly through an
index structure. Index elements are arrays of bi ck numbers. The index structure is
hierarchical; an index block number may point t. arother index element or, if the
bottom is reached, point to a data element. The direct or indexed access of data ele-
ments depends on the size of the file and the block being accessed; blocks at the
beginning of the file can be accessed through the direct access to provide faster
access for smaller files since they are generally more common. The following fields
control the sizes of these elements, allowing the use tc choose values more suitable
for the types of files that will typically fill the file system: For more information
about data access from the inode, see inode(4).

default_des_exponent specifies the default data element -ize for non-directory files.
The default data element size in blocks is 2 raised to the default_des_exponent power.
The default value for this field is:

g§define DF_DEFAULT_ DEFAULT_DES_EXPONENT 4
The maximum value is:

g¢define DF_MAX_DES_EXPONENT 31

although it is also limited to the base 2 logarithm of the largest po-ver of two that is
less than or equal to:

#define DF_USER_BLOCKS_PER_DAR(dar_size, file_nodes _per_dar)
default_ies_exponent specifies the default index element size for non-directory files.
The default index element size in blocks is 2 raised to the def:ult_ies_exponent
power. The default value for this field is:

g§define DF_DEFAULT_DEFAULT_IES_EXPONENT 0
The maximum value is:

g§define DF_MAX_IES_EXPONENT 15

although it is also limited to the base 2 logarithm of the largest power of two that is
less than or equal to:

8define DF_USER_BLOCKS_PER_DAR(dar_size, file_nodes_per_dar)

Licensed material—property of copyright holder(s) 093-701102

1s(4) DG/UX 54 1s(4)

‘default.dir_des_axponent specifies the default data element size for directories and
CPDs. The default data element size in blocks is 2 raised to the
default_dir_des_exponent power. The default value for this field is:

g#define DF_DEFAULT_DEFAULT_DES_EXPONENT 4

The maximum value is:

$define DF_MAX_ DES_EXPONENT 31

although it is also limited to the base 2 logarithm of the largest power of two that is
less than or equal to :

#define DF_USER_BLOCKS_PER_DAR(dar_size, file_nodes_per_dar)
default_dir_ies_exponent specifies the default index element size for directories and
CPDs. The default index element size in blocks is 2 raised to the
default_dir_jes_exponent power. The default value for this field is:

$define DF_DEFAULT_DEFAULT_IES_EXPONENT 0
The maximum value is:

g§define DF_MAX_ IES_EXPONENT 15

although it is also limited to the base 2 logarithm of the largest power of two that is
less than or equal to:

#define DF_USER_BLOCKS_PER_DAR(dar_size, file_nodes_per_dar).

fs_size is the number of blocks in the filesystem. £sck(1M) will check this against
the disk size as reported by the device driver.

space_used is the total (user and system) space used on this filesystem, including any
space wasted at the end due to an incomplete DAR.

number_of_used_file_nodes is the number of file nodes used in the file system, not
including the wasted file nodes with node numbers 0 and 1.

first_anniversary is the first anniversary of each file in blocks. When a file first con-
sumes this much space, the filesystem should change the DAR from which it gets
space for the file. The minimum value of this field is 2 raised to the
default_des_exponent power; the default value is:

#$define DF_DEFAULT_FIRST_ANNIVERSARY(dar_size)
second_anniversary the second anniversary of each file in blocks. A file should
change the DAR from which the filesystem gets space each time its space utilization
crosses a multiple of the second anniversary. The second anniversary must be greater
than or equal to the first anniversary. The default value of this field is:

g#define DF_DEFAULT_SECOND_ANNIVERSARY(dar_size)

093-701102 Licensed materiai—property of copyright holder(s) 4-29

1s(4) DG/UX 5.4 fs(4)

first_log_lda and second_log_lda give the logical disk address of the two halves of the
fast recovery log. They will be zero if the file system was not mounted for fast
recovery when the filesystem was last mounted or if /f4fsck/fP has been run over the
file system. ,

log_size is the size in 512-byte blocks of each half of the fast recovery log.
shrink_operation_in_progress is set if the filesystem is in the process of being shrunk.

grow_operation_in_progress is set if the filesystem is in the process of being grown.

The Disk Allocation Region (DAR)
The DAR is similar to the BSD cylinder group; however, the DAR is not necessarily
associated with a physical disk cylinder as it is in BSD. The purpose of the DAR is
to spread files throughout the filesystem while maintaining a locality between inodes
and the data blocks associated with them.

The DAR consists of three parts: a bitmap, a file node tat :, and the data blocks
allocated to files as they are needed.

The bitmap records the space allocation in the DAR. A bit in the bitmap represents
a block in the DAR (this includes the blocks allocated for the bitmap and the file
node table). If the bitmap value is 1, it is used; otherwise, it is free. The size of the
bitmap is a function of the size of the DAR and is provided (in blocks) by:

#define DF_DAR_BITMAP_ SIZE(dar_size)

The file node table contains entries for each file in the DAR. A file node entry
(called an inode) contains information about the file. The first block of the table is
after the bitmap. The number of file nodes in the DAR is a field in the FMIA. The
number of blocks allocated to the table (in blocks) is:

g#¢define DF_DAR_FILE_NODE_TABLE_SIZE(file_nodes_per_dar)
The Zie node table element (the inode) is discussed in inode(4).
The data blocks take up the remaining blocks of the DAR.

With the exception of the blocks of the DAR Information Area and the Secondary
FMIA, all blocks in the file system are contained in DAR’s. The number of DAR’s
in a file system is a function of the size of the file system, the size of each DAR, and
the file nodes contained in each DAR. This is provided by:

#$define DF_NUMBER_OF_DARS(fs_size, dar_size, nodes_per_dar)

The last DAR of the file system may be the smaller than the other DAR’s. If the
space before the DAR Information Area and the Secondary FMIA is large enough to
contain the DAR’s bitmap and file node table, then the DAR will be created; other-
wise, the space between the end of the last DAR and the beginning of the DAR
Information Area is wasted. Since the bitmap in the last DAR is the same size as the
other DAR’s, if the last DAR is smaller the bitmap will have bits indicating the allo-
cation of data blocks that do not exist (in fact it i legal for no data blocks to exist in
the last DAR). In this case, the non-existent blocks are marked as allocated. The
following macros provide values associated with the space before the DAR Informa-
tion Area: ' :

#define DF_LAST_ DAR SIZE(fs_size, dar_size, nodes_per_dar)

4-30 Licensed materiai—property of copyright hoider(s) 093-701102

fs(4) DG/UX 54 1s(4)

#¢define DF_FS_WASTED_SPACE(fs_size, dar_size, nodes_per_dar)

The DAR Information Area
At the end of the file system, a table of entries exist for each DAR in the file system.
It is located such that its last block of entries is before the last block of the file sys-
tem containing the Secondary FMIA. This location is provided by:

g¢define DF_DARE_TABLE_ADDRESS(fs_size,dar_size,file_ nodes_per_dar)
A definition for a DAR entry is:

typedef struct
{

uint32e_type file_nodes_used;

uint32e_type space_used;

uint32e_type directories_used;

df_file node_number_type free file node_ number;

byte8e_type reserved [DF_RESERVED_BYTES_PER_ DAR] ;

} df_dar_entry_type;
file_nodes_used Number of file_nodes in use from the DAR the entry represents.

space_used is the number of data blocks in use from the DAR. This explicitly
excludes DAR Information Area blocks, the block containing the Secondary FMIA,
and blocks marked as allocated in the last DAR but do not exist. This field includes
the following system blocks: the Primary FMIA for the first DAR only, the DAR’s
bitmap blocks and the DAR’s file node blocks.

directories_used is the number of directories in the DAR.
free_file_node_number is the file node number of next free file node in the DAR.

This functions as the head of the DAR’s free file node list.

SEE ALSO
fstatfs(2), mount(2), statfs(2), inode(4). frec(lM), fsck(IM),
labelit(1M), mkfs(1M), volcopy(1M) in the System Manager's Reference for the
DG/UX System.

093701102 Licansed material—property of copyright holder(s) 4-31

fspec(4) DG/UX 54 fspec(4)

"

NAME
fspec - format specification in text files

DESCRIPTION
You many want to maintain text files on the DG/UX system with tabs that are not set
at every eighth column. You must usually convert such files to a standard format, fre-
quently by replacing all tabs with the appropriate number of spaces, before they can
be processed by DG/UX system commands. A format specification in the first line of
a text file specifies how tabs are to be expanded in the rest of the file.

A format specification consists of a sequence of parameters separated by blanks and
surrounded by the brackets <: and :>. Each parameter consists of a keyletter, pos-
sibly followed immediately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of rabs
must be one of the following: :

1. A list of column numbers separated by commas, indicating tabs set
at the specified columns;

2. A - followed immediately by an integer n, indicating tabs at inter-
vals of n columns;

3. A - followed by the name of a canned tab specification.

Standard tabs are specified by t-8, or equivalently, t1,9,17,25,etc.
The canned tabs are defined by the tabs(1) command.

ssize The s parameter specifies a maximum line size. The value of size must
be an integer. Size is checked after tabs have been expanded, but before
the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to each
line. The value of margin must be an integer.

d The 4 parameter takes no value. It indicates that the line containing the
format specification is to be deleted from the converted file.
e The e parameter takes no value. It indicates that the current format is to

prevail only until another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and mo. If
the s parameter is not specified, no size checking is performed. If the first line of a
file does not contain a format specification, the above defaults are assumed for the
entire file. The following is an example of a line containing a format specification:

* <:15,10,15 s72:> =

For programming language source files, if you can disguise a format specification as a
comment, you don’t need to code the d parameter.

SEE ALSO
ed(1), newform(l), tabs(1) in the User’s Reference for the DG/UX System.

4-32 Licensed material—property of copyright holderts) 093-701102

fstab(4)

DG/UX 5.4 fstab(4)

NAME

fstab - static information about file systems

SYNOPSIS

#include <mntent.h>

DESCRIPTION

093-701102

The file /etc/fstab describes the file systems and swapping areas used by the local
machine. The system administrator can modify it with a text editor or by invoking the
sysadm(1M) system administration utility. It is read by commands that mount,
dump, restore, and check the consistency of file systems, as well as by the system in
providing swap space. The file consists of a number of lines like this:

fsname dir type opts freq passno

for example:
/dev/dsk/usr usr dg/ux rw 1 1

would indicate a mount for a local file system, and
titan:/usr/titan /usr/titan nfs rw,hard 0 0

would indicate an NFS file system mount.

A High Sierra CDROM would be indicated using the following line:
/dev/pdsk/4 /cdrom cdrom ro 0 O

A DOS floppy would be indicated using the following line:
/dev/pdsk/3 /pdd/floppy dos rw 0 0

A swap area could be indicated using the following line:
/dev/dsk/swapl swapl_area swap sw 0 0

The fstab format was changed in order to support NFS file systems as well as local
file systems. The old-style fstab entries are supported, but not recommended.

The entries from this file are accessed using the routines in getmntent(3C), which
returns a structure of the following form:

struct mntent {
char *mnt_fsname; /* file system name */
char *mnt_dir; /* file system path prefix */
char *mnt_type; /* dg/ux, nfs, swap, cdrom, or ignore */
char *mnt_opts; /* rw, ro, hard, soft, bg, fg */
int mnt _freq; /* highest dump level */
int mnt_passno; /* pass number on parallel fsck */
b
Fields are separated by white space; a #, as the first non-white character, indicates a
comment. The mnt_type field determines how the mns_fsname and mnt_opts fields
will be interpreted. The following is a list of the file system types currently sup-
ported, and the way each of them interprets these fields:

Ucensed material—property of copyright holder(s) 4-33

fstab(4)

4-34

DG/UX 54 fstab(4)

Type Field Interpretation

dg/ux mnt_fsname Must be a block special device

unless this is a ramdisk, in which
case, it is a symbolic link to the
mounted memory file system.

mnt_opts Valid options are ro, rw, bg, and fg.
If this has the ramdisk option, other
options include use_wired_memory,
max_file_space and max_file_count.

cdrom mnt_fsname Must be a block special device.
mnt_opts Valid options are ro, bg, fg.

dos mnt_fsname Must be a block special device.
mnt_opts Common options are ro, rw, bg, fg.

nfs mnt_fsname The hostname of the server and the
pathname on the server of the direc-
tory to be served. A colon separates

the pathname and hostname.
mnt_opts Valid options are ro, rw, hard, soft,
bg, fg.
swap mnt_fsname Must be a block special device swap
section.

mnt_opts Ignored.

If the mnz_type is specified as ignore, the entry is ignored. This is useful to show
disks not currently used.

Entries identified as swap are made available as swap space by the swapon(IM) com-
mand at the end of the system reboot procedure.

When the mnt_fsname field is interpreted as a block special device, programs that
require the corresponding character special device must construct the name by chang-
ing dsk to rdsk in the pathname.

If the mnt_opts field is a comma-separated list of options that includes rw or ro, the
file system is mounted read-write or read-only. If this includes hard or soft, the
NFS file system is mounted hard or soft. If the list includes bg or fg, and failed
attempt to mount will cause mount to retry in the background or in the foreground.
For more details on these options, see mount(1M).

The field mnt_freq indicates how often each file system should be dumped by the
dump2(1M) command (and triggers that command’s w option, which determines what
file systems should be dumped). Most systems set the mnt_freq field to 1, indicating
that file systems are dumped each day. Some programs, like sysadm, may use a dif-
ferent set of entries here.

The final field mnz_passno is used by the consistency checking program fsck(1M) to
allow overlapped checking of file systems during a reboot. All file systems with a
mint_passno of 1 are checked first simultaneously, then all file systems with
mnt_passno of 2 are checked, and so on. A value of 0 indicates that the file system
will not be checked. The <mnt_passno> of the root file system should be 0, as the

Licensed material—property of copyright holder(s) 093-701102

“fstab(4) DG/UX 54 fstab(4)

" root cannot be checked since it is already mounted.

Programs read the /etc/fstab file but never write to it. It is the duty of the system
administrator to maintain this file. The order of records in /etc/fstab is impor-
tant because fsck and mount process the file sequentially; file systems must appear
after file systems they are mounted within. For example, if you have an entry for
/usr/spool, it must appear after the entry for /usr.

FILES
/etc/fstab

SEE ALSO
dump2(1M), f£sck(IM), mount(1M), swapon(1M), sysadm(IM), getfsent(3X),

getmntent(3C).

083-701102 Licensed materiai—property of copyright holder(s) 4-35

group(4) DG/UX 5.4 group(4)

NAME

group - group file
SYNOPSIS

/etc/group-

DESCRIPTION
Group contains for each group the following information:

® group name

® encrypted password

® numerical group id

® a comma-separated list of all users allowed in the group

This is an ASCIHI file. The fields are separated by colons; each group is separated
from the next by a newline. If the password field is null, no password is demanded.

This file resides in the /etc directory. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map numeri-
cal group IDs to names.

A group file can have a line beginning with a plus sign (+), which means to incor-
porate entries from the Yellow Pages (YP).

NOTE: You must be using the DG/UX Open Network Computing/Network File Sys-
tem (ONC/NFS) to use this feature.

There are two styles of + entries: By itself, + means to insert the entire contents of
the YP group file at that point; +name means to insert the entry (if any) for name
from the YP at that point. If a + entry has a non-null password or group member
field, the contents of that field will override what is contained in the YP. The numer-
ical group ID field cannot be overridden.

Entries beginning with a minus (-) are also allowed, and have the format -name, which
means to consider name to not be in the group file, regardless of subsequent entries
to the contrary. Minus entries can be used to exclude specific groups that are present
in the YP group database.
Grpck can be used to verify entries in the group file. See pwck(1M) in the System
Manager’s Reference for the DG/UX System.

EXAMPLE
+myproject:::bill, steve
+:
If these entries appear at the end of a group file, then the group will have members

bill and steve and the password and group ID of the YP entry for the group myproject.
All the groups listed in the Yellow Pages will be pulled in and placed after the entry

for myproject.

FILES
/etc/group

SEE ALSO
setgroups(2), crypt(3C), passwd(4), groups(l), newgrp(l), passwd(l),
pwek(1M).

NOTES
The passwd(1l) command won’t change group passwords.

4-36 Licensed materiai—property of copyright holder(s) 083-701102

group(4) DG/UX 5.4

Normally, group-ids less than 100 are reserved for system-level use (DG/UX
software).

093-701102 Licensed material—property of copyright hoider(s)

group(4)

hfm(4) DG/UX 5.4 htm(4)
NAME

hfm — high sierra file manager
DESCRIPTION

The DG/UX kernel provides configurable support for High Sierra and ISO 9660 for-
matted Compact Discs (CDs). The high sierra file manager lets the system adminis-
trator mount a CD into the UNIX file system hierarchy. A mounted CD will appear
as a readonly UNIX file system. The mode of all files from the CD will be readonly

and executable for user, group and other.

Filenames in High Sierra or ISO 9660 format are uppercase, but for convenience,
they are translated to lowercase by the high sierra file manager. All input filenames
are similarly translated to uppercase. High Sierra and ISO 9660 mounted file systems
can be NFS exported in the same way as any normal DG/UX file system. The mount
point must be added to /etc/exports and the exportfs(8) command must be
executed after the file system is mounted. This will be automatic if the mount of the
CD is in your /etc/fstab file. Since most current CDs available in high sierra or
ISO 9660 format are for PC’s, the high sierra file manager will be most useful when
used with a DOS emulator.

In order to use the high sierra file manager, you must configure the hfm() pseudo dev-
1ce into your kemnel.

sd(imsc(),*)

sz(insc(),*)

iran()

loop(;

pmt()

pri()

met: r()

hfm.) # this is the line that must be added.

Once the kernel is built and running, you may use the mount(1M) command to add
the hizh sierra or ISO 9660 file system to the UNIX file system hierarchy.

mount -t cdrom /dev/pdsk/4 /pdd/cdrom

The special device mentioned in the mount command is the block special representa-
tion of the CD device in /dev/pdsk. The type "cdrom” must be used with mount to
route ti:e mount request to the correct file manager.

You may add a line to the /etc/fstab file to have the mount occur when the system is
brought up to init level 3.

/dev/pdsk/4 /pc ./cdrom cdrom ro x 0

The umcunt(1M) ccmmand may be used to unmount the CD from the file system

hierarchy

’ umount /; !d/cdrom

To export the file system on the CD, in lieu of adding it to /etc/exports:
exportfs -iv /pdd/cdrom

When the mount(1M) command is issued, the CD device will lock the CD platter

into the unit until a successful umount(1M) is issued.

The high sierra file manager does not support the path table or the extended attribute
record from files on the CD, as these are unnecessary to the UNIX file system imple-

mentation.

Uicensed material—property of copyright hoider(s) 093-701102

hfm(4) DG/UX 5.4 htm(4)

SEE ALSO
config(1M), mount(1M), umount(IM), fstab(4), export£fs(8).

093-701102 Ucensed materiai—property of copyright holder(s) 4-39

holidays(4) DG/UX 6.4 holidays(4)

NAME

holidays — accounting information used to distinguish prime and non-prime days
SYNOPSIS

s/usr/lib/acct/holidays
DESCRIPTION

The holidays file distinguishes between prime and non-prime time for the account-
ing system. It divides weekdays into two pieces, and it divides the year into prime
and non-prime days. Weekends are always non-prime. Additional company holidays
can be specified as non-prime.

Comment lines are denoted by an asterisk in column one.

The first non-comment line contains three fields, separated by white space. The first
field is the four-digit current year. The second field is the start of prime time, speci-
fied as four digits in the form hhmm (for hour and minute). The third field is the
start of non-prime time, specified in the same way. The hours must be between 0 and
23, inclusive, and the minutes must be between 0 and 59, inclusive.

Subsequent lines define up to 20 non-prime days. The first field is the day of year,
where January 1 has the value 1. The second field is the calendar date. The third

field is the holiday name.
EXAMPLE

* Prime/Nonprime Table for UNIX Accounting System
x

* Curr Prime Non-Prime
* Year Start Start
®

1989 0830 1700

*

* Day of Calendar Company

* Year Date Holiday

*

2 Jan 2 New Year’s Day Observed
149 May 29 Memorial Day
184 Jul 3 Day Before Independence Day
185 Jul 4 Independence Day
247 Sep 4 Labor Day
327 Nov 23 Thanksgiving
328 Nov 24 Day After Thanksgiving
359 Dec 25 Christmas Day
SEE ALSO '

acctcon(1M), acctprc(1M).

4-40 Licensed material—property of copyright hoider(s) 093-701102

idi(4)

DG/UX 54 idi(4)

mnemonic
A one-character abbreviation for the menu’s name.

name A one or two word name for the menu.
title A string, such as "Main Menu" which is used as the title for the menu.

visible A boolean indication of whether this menu will be displayed. If the value
is ${NO}, the menu will not be shown by idi(1).

operation Class

093-701102

Instances of the operation class are the basic actions which can be performed by the
user. Operations may contain queries which must be answered before performing the
action. Operations are added to menus with the add statement.

The following attributes are allowed for the operation class:

operation Attribute Set
%
access-groups | name-list | ™
access-names | name-list | "*"
action command | ™
confirm value ™
description value "No description”
entry-action command | ™
exit-action command | ™
help value "No help for this operation.”
mnemonic value ™ _
name value "Unnamed”
repeat value ™
visible boolean "${YES}"

The attributes have the following meanings:

access—groups
A whitespace-separated list of group names which are allowed access to
this operation. A star ("*") means that all groups are allowed access.

access-names
A whitespace-separated list of user names which are allowed access to this
operation. A star ("*") means that all users are allowed access.

action A shell command line to execute when this operation is selected (after any
queries for the operation are answered and confirmed). This command is
not executed if the operation is canceled.

confirm A string to use as a confirmation prompt which must be answered before
the operation is executed. If the value of this attribute is the empty string,
no confirmation is performed.

description
A one-line description of the operation.

entry—action
A shell command line to execute as soon as the operation is selected,
before any screens or queries are presented. If the value of the repeat
attribute is not empty, the entry—-action is performed once for each
iteration of the operation.

Licensed material—property of copyright holder(s) 4‘43

idi(4) DG/UX 5.4 idi(4)
exit—-action
A shell command line to execute after all processing of the operation has
completed. This command is executed after the action command, and is
executed even if the operation is canceled. If the value of the repeat
attribute is not empty, the exit—action is performed after all iterations
of the operation.
help A message to display if the user requests help on the operation.
mnemonic
A one-character abbreviation for the operation’s name.
name A one or two word name for the operation.
repeat A string to present before repeating the operation. If the value of this
attribute is the empty string, the operation is performed only once. Other-
wise, the string is presented, and the user is given the opportunity to
repeat or cancel the operation.
visible A boolean indication of whether the operation will be made available. If
the value is ${NO}, the operation will appear in the parent menu but will
not be available.
text Class
Instances of the fext class are simple text holders. Text objects may be added to
querygroups with the add statement.
The following attributes are allowed for the text class:
text Attribute Set
Name e Default
value | value ™
visible | boolean | "${YES}"
The attributes have the following meanings:
. value A text string to display.
visible A boolean indication of whether the text will be displayed.
screen Class

Instances of the screen class are holders for querygroups. All of the querygroups of a
certain screen are guaranteed to be evaluated at the same time and before the
querygroups of any later screens. The interface driver may also display screens as
separate windows. Screens may be added to operations with the add statement.

The following attributes are allowed for the screen class:

Licensed material—property of copyright holder(s) 083-701102

idi(4)

DG/UX 54 idi(4)

screen Attribute Set
Name ;g Default
entry-action | command | ™
exit-action command | ™
title value "Untitled"
visible boolean "${YES}"

The attributes have the following meanings:

entry-action

A shell command line to execute when entering the screen.

exit—-action

title

visible

A shell command line to execute when leaving the screen. This is exe-
cuted after all queries for the screen are validated, and is executed even if
the user terminates the screen.

A string such as "Add a User” which is used as a title for the screen.

A boolean indication of whether the screen (and any querygroups below it)
will be displayed. This attribute is evaluated after an operation is chosen,
at the same time as all other screens for the operation, and before the
visible attributes of the querygroups are evaluated.

querygroup Class
Instances of the querygroup class are used to group similar queries. The interface
driver may use querygroup information to display related queries in a more attractive
manner. Querygroups may be added to screens with the add statement.

The following attributes are allowed for the querygroup class:

querygroup Attribute Set
Default
orientation "${HORIZONTAL}"
title value ™
visible boolean | "${YES}"

The attributes have the following meanings:

orientation

title

visible

Queries

The preferred layout of queries within the querygroup. The value may be
either $VERTICAL or $HORIZONTAL. The default is $VERTICAL. This
attribute may be ignored by the display driver.]
A string describing the queries within the querygroup. This attribute may
be ignored by the display driver.

A boolean indication of whether the querygroup (and any queries below it)
will be displayed. This attribute is evaluated after a screen is entered, and
is evaluated at the same time as the visible attributes of all other query-
groups for the screen.

The following attributes are allowed for all query types: texrquery, boolquery,
selectquery, and rangequery:

093-701102

Licensed material—property of copyright holder(s)

idi(4) DG/UX 5.4 idi(4)

ery Attribute Set

confirm value .

confirm-value | value ”

default value ™

help value “No help available."
preserve boolean | "${NO}"

prompt value ™

variable value ™

The attributes have the following meanings:

confirm The string to use as a confirmation prompt which must be answered by the
user before execution continues. Confirmation is performed if the value
entered for the query matches the confirm-value.

confirm-value
An ed(1)-style regular expression. If the value entered for a query
matches confirm-value, confirmation of the value is sought (using the con-
firm string as the prompt).

default The default value of the variable.

help The text string to display if the user requests help on the query.

preserve
An indication of whether the value of variable should be saved in a global

variable. If the value of this attribute is ${YES], the variable’s value
(after being validated and confirmed) is saved in a global idl variable
named variable. If the value of this attribute is ${NO}, the variable is des-
troyed when the operation is complete.

prompt The text string to be displayed when the query is presented.

variable
The name of an idl variable that is set by the query. variables may be
referenced in other attribute strings by using the $variable notation.
textquery Class
Instances of the textquery class describe how to retrieve an arbitrary text entry from
the user. Textqueries may be added to querygroups or to screens with the add state-

ment.
The following attributes are allowed for the rextquery class:

4-46 Licensed material—property of copyright holder(s) 083701102

idi(4)

093-701102

DG/UX 54 idi(4)

textquery Attribute Set
[Name | Type | Default

confirm value ~
confirm-value value ™
default value "~
help value “No help available.”
max-columns number "40"
max-lines number 1"
preserve boolean "${NO}"
prompt value "Enter text”
semantics command | ™
semantics-message | value "
show-columns number -
show-lines number ™
syntax command | ™
syntax-message value ™
variable value *Text"

The confirm, confirm-value, default, help, preserve, prompt, and
variable attributes are generic Query Attributes. The other attributes have the fol-
lowing meanings:
max-columns
The maximum number of columns of text accepted for the query.
max-lines
The maximum number of lines of text accepted for the query.
semantics
A command string to execute on the administered host to determine if the
value entered for the query is semantically correct. The command must
return zero if the value is correct, and return non-zero if the string is not
correct. The command may be a builtin command.

semantics—message
The custom error message to display if the semantics check fails. If the
value of this attribute is empty, the error message is generated by idi
from the prompt and the entered value.

show-columns
The maximum number of columns to display at one time. The default
value for this attribute is the value of max-columns. This attribute may be
ignored by the display driver.

show-lines
The maximum number of lines to display at one time. The default value
for this attribute is the value of max-lines. This attribute may be ignored
by the display driver.

syntax A command string to execute on the administering host to determine if the
value entered for the query is syntactically correct. The command must
return zero if the value is correct, and return non-zero if the string is not
correct. The command may be a builtin command. .

syntax-message
The custom error message to display if the syntax check fails. If the value

Licensed material—property of copyright holder(s) 4-47

idi(4) DG/UX 5.4 idi(4)

of this attribute is empty, the error message is generated by idi from the
prompt and the entered value.

boolquery Class
Instances of the boolquery class describe how to retrieve a positive or negative

response from the user. Boolqueries may be added to querygroups with the add
statement.

The following attributes are allowed for the boolquery class:

boolquery Attribute Set
Name e Default
confirm value "
confirm-value | value ™
default boolean | "${YES}"
help value "No help available.”
preserve boolean | "${NO}"
prompt value "Enter yes or no"
variable value "Bool"

The confirm, confirm—value, default, help, preserve, prompt, and
variable attributes are generic Query Attributes.

selectquery Class
Instances of the selectquery class describe how to retrieve one or more choices from a

list of choices. Selectqueries may be added to querygroups with the add statement.
The following attributes are allowed for the selectquery class:

selectquery Attribute Set
Name e Default
abort-message | value "No possible values.”
assign-values value-list | ™
confirm value ™
confirm-value | value -
default value -
exclusive boolean | "${YES}"
help value "No help available.”
number boolean | "${YES}"
packed boolean | "${YES}"
possible-values | value-list | ™
preserve boolean | "${NO}"
prompt value "Enter selection”
variable value "Selection”

The confirm, confirm-value, default, help, preserve, prompt, and
variable attributes are generic Query Attributes. The other attributes have the fol-

lowing meanings:

abort-message
The message to display if an operation must be aborted because the value

of possible-values for this query is empty.

4-48 Licensed material—property of copyright holdes(s) 093701102

idi(4) DG/UX 54 idi(4)

assign-values
A newline-separated list of values which may be assigned to the variable
when the user selects one of the possible-values. This value of this attri-
bute may be a backquoted string which is executed to dynamically produce
the list described.

exclusive
If the value of this attribute is $ {YES), only one of the possible-values for
the query may be selected. If the value of this attribute is ${NO}, more
than one of the values may be selected.

number If the value of this attribute is $ {YES}, the possible-values of the query
may be automatically numbered by the interface driver. If the value of this
attribute is $ {NO}, the possible-values will not be numbered. This attri-
bute should be set to ${NO} when the possible-values are numbers so that
there is no confusion between the possible-values and the automatically-
generated numbers.

packed If the value of this attribute is $ {YES]), the interface driver may conserve
screen space when presenting the query. If the value is ${NO}, screen
space may not be conserved.

possible—-values
A newline-separated list of choices for the query. The value of this attri-
bute may be a backquoted string which is executed to produce the list of
values.

rangequery Class

Instances of the rangequery class describe how to retrieve a number within a given

range from the user. Rangequeries may be added to querygroups with the add state-

ment.

The following attributes are allowed for the rangequery class:

093-701102 Licensed materiai—property of copyright holder(s) 4-49

idi(4)

DG/UX 5.4 idi(4)

rangequery Attribute Set
Name | Type | Default
confirm value -
confirm-value value -
default value 0"
help value "No help available"
preserve boolean "${NO}"
prompt value "Enter value”
range number-list | "01"
semantics command | ™
semantics-message | value ™
syntax command | ™
syntax-message value -
variable value "Range”

The confirm, confirm-value, default, help, preserve, prompt, and
variable attributes are generic Query Attributes. The other attributes have the fol-

lowing meanings:

range

A whitespace-separated list of two numbers which are the minimum and
maximum values for the query. The value of this attribute may be a
backquoted string which is executed to produce the list of numbers.

semantics

A command string to execute on the administered host to determine if the
value entered for the query is semantically correct. The command must

. return zero if the value is correct, and return non-zero if the string is not

correct. The command may be a builtin command.

semantics—message

syntax

The custom error message to display if the semantics check fails. If the
value of this attribute is empty, the error message is generated by idi
from the prompt and the entered value.

A command string to execute on the administering host to determine if the
value entered for the query is syntactically correct. The command must
return zero if the value is correct, and return non-zero if the string is not
correct. The command may be a builtin command.

syntax—message

The custom error message to display if the syntax check fails. If the value
of this attribute is empty, the error message is generated by idi from the
prompt and the entered value.

set Statement
The set statement causes the idl varia:ie named name to take on the value value.

The value is available globally for the duration of program.

add Statement
The add statement causes the database object named namel to be added as a sub-

object of the database object named name2.

4-50

The following rules apply:

a. Both names must be defined previously.

Licensed material—property of copyright holder(s)

083-701102

idi(4) DG/UX 5.4 idi(4)

Any number of menus or operations may be added to a menu.
Any number of screens may be added to an operation.
Any number of querygroups may be added to a screen.

Any number of queries (textquery, boolquery, selectquery, or rangequery) may
be added to a querygroup.

An number of texts may be added to a querygroup.
g. At most one textquery may be added to a selectquery.

‘e a0 g

]

export Statement
The export statement exports the idl variable named name (along with the

variable’s value) into the environment of all sub-shells. This is a function similar to
the export command of the shell (sh(1)).
Compiler Directives ,
The following compiler directives can be used to alter the behavior of the compiler or
interpreter.
&dir name
Interpret subsequent $include lines relative to name. Such a line over-
rides any previous $dir directive.
g$include name
Read the contents of the file name as if the contents were present in the
current file.
tprint [object]
If object is given, print debugging information about object. Otherwise,
print information about all objects.
Variable Substitution
The action, assign-values, confirm, default, help, possible-values,

preserve, prompt, range, semantics, and syntax attributes are processed so
that idl variables may be used inside of the values for these attributes.

Variable expansion may be indicated by any of these forms:

$var or ${var}
If var is set, substitute the value of var. Otherwise, substitute an empty
string.

S#var or ${#var} 4
Substitute the number of words found in the value of var. Words are

separated by whitespace.

$ {var:-val}
If var is set and non-null, substitute the value of var. Otherwise, substitute
val.

$ {var:+val}
If var is set and non-null, substitute val. Otherwise, substitute an empty
string.

$ {var: ?vall:val2}
If var is set and non-null, substitute vall. Otherwise, substitute val2.

$ {var: <prefix}
If var is set and non-null, substitute its value previxed by prefix.

093-701102 Licensed material—property of copyright holder(s) 4'51

idi(4)

DG/UX 5.4 idi(4)

Otherwise, substitute an empty string.

$ {var:=text] :valuel ; text2 :value2 ; textn : valuen }
Compare the value of var with each of the texts, and substitute the value
associated with the matching fexs. As many text and value pairs as are
required may be included. An empty fext may be specified to indicate a
default case. If var matches none of the fexts, substitute an empty string.

If the colon (:) is omitted from the above expressions, idi only checks whether var
is set or not.

In all cases, var must be a sequence of alphanumeric characters and underscores,
optionally followed by an index specification of the form

name [index]

where the index is used to select only some of the words or lines from the value of
name. If the index begins with =, the index-th line is substituted; otherwise, the
index-th word is substituted. Words are separated by one or more whitespace charac-
ters. The index is subjected to variable substitution and may consist of a single
number or two numbers separated by a —. The first word or line of a variable’s value
is numbered 1. If the first number of a range is omitted, it defaults to 1. If the last
member of a range is omitted, it defaults to $#name. The index * selects all words
or lines.

If a val or prefix contains any of colon (:), semi-colon (;), or right brace (}), the
character must be preceeded by a backslash (\) to escape its special meaning.

Any variables found within double quotes (") are expanded. All characters between
back quotes (‘) are expanded and passed to the shell (sh(1)) for execution, and the
result of the shell execution is inserted in place of the back-quoted string. A
backslash (\) preceding either $ or ¢ causes the character to lose its special meaning.

The value or text part of any of the above expressions may contain other variable
references.

Pre-defined Variables

4-52

The following variables are used internally by idi(1) and should not be changed.
These variables should be used in place of the strings they represent (for example,
always use "${YES}" instead of "yes").

YES This is defined to be the affirmative string, yes.
NO This is defined to be the negative string, no.
HORIZONTAL

This is defined to be horizontal. This may be used as the value for the
orientation attribute of querygroups.

VERTICAL
This is defined to be vertical. This may be used as the value for the
orientation attribute of querygroups.

NO_DEFAULT
This is defined to be [No default]. This may be used as the value

for the default attribute of selectqueries. When this is used, the inter-
face driver will leave the default for the selectquery empty if possible.

SKILL_LEVELS
This is defined to be the list of possible skill levels: Novice

Licensed material—property of copyright holder(s) 083-701102

idi(4) DG/UX 54 idi(4)

Intermediate Expert. Note that this variable’s value varies based on
the current locale.

The following global variables are set by idi at run-time:

InterfaceName
The name of the chosen interface. This will be either ascii or motif.
This is the only means for changing the behavior of the program based on the
chosen interface.

OperationName
The value of the name attribute of the current operation. This may be used

to generalize query prompts:

prompt = "Host Name to ${OperationName}"

SkillLevel
The chosen level of expertise. This will be one of the values from the
${SKILL_LEVELS} variable. This variable may be set in an idl file to con-
trol the behavior of the interface driver.

Builtin Commands
Several builtin commands are provided for use in values for the action, seman-
tics, and syntax attributes. The builtin commands are the following:

:Confirm confirmation-string
Present the confirmation-string to the user using the appropriate interface
driver. Return zero if the string is confirmed; return non-zero if it is not
confirmed.

: DoOp operation-name | confirmation-string |
Perform the operation-name operation. If the confirmation-string is used,
ask for confirmation before the operation is performed. If the confirma-
tion fails, exit with status 0; otherwise, exit with the exit status of the
operation.

: Echo message
Echo the message to the display.

: Error message
Display the error message in a way appropriate for the interface driver.

:Help help-message
Present a help-message to the user.

: Log message
Append the message to the log file. The message is written regardless of
the verbosity level chosen by the user.

:Match regexp string
Return zero if the string matches the given egrep(1)-style regular expres-
sion, regexp; otherwise, return non-zero. This command is useful in the
syntax attribute of queries.

:Numeric lower-bound upper-bound value
Return zero if the integer value given is within the range specified by
lower-bound and upper-bound. This command is useful in the syntax
attribute of queries.

093701102 Licensed materisi—property of copyright holder(s) 4-53

idi(4) DG/UX 6.4 idi(4)

:Quit exit-code
Terminate the program with exir-code as the status code.

:Restart
Restart the interface driver. This takes into account new or changed
description files.

:Run command
Execute an interactive command on the host system. The standard input,
output, and error file descriptors are set appropriately.

: Set variable value
Set the global variable to value. The variable is then available for use by
other queries. The variable is created if it does not exist, or modified if it
does exist.

:Show Dump the values of all variables to stdout. This is useful for debugging.

: Unimp message
Display a message indicating that some feature is unimplemented. message
should describe the feature not implemented.

: Unset variable
Remove the global variable and its value. This command should only be
used for variables which are set using the :Set builtin command.

:Warning message
Display the warning message in a way appropriate for the interface driver.

EXAMPLES
Below is a sample idl file which creates a single menu with several operations which
could be used to manage the /etc/ethers database file.

BREBEEHBBEELLLCRBURRBEIBEIUELILBE0ERR IR BLEBR RN
#

Some patterns used here

$
$EE4BELEBRERRERDRREIIEIERILLLEBIIRIRERRRRRERRRBEI I

set STD_HOST_NAME_PATTERN = "“[a-zA-Z] [-.a-2A-20-9]*\$"

set STD_HOST_NAME_HELP =

"Enter an Internet host name. A host name may contain the characters:
a-z A-Z 0-9 . -

It should begin with a letter (a-z or A-2) and be no more

than 32 characters in length. It should not contain a . or -

as the last character."” '

set STD_ETHER_ADDRESS_PATTERN =
"~[0-9a—fA-F]+: [0~9a~fA-F]+: [0-9a-fA-F]+: [0-9a—fA-F]+: [0-9a~fA-F]+: [0-9a-fA-F]

set STD_ETHER_ADDRESS_HELP =

"Enter an Ethernet address. An Ethernet address has the form:
aa:bb:cc:dd:ee: £ff

where a, b, ¢, 4, e, £ are two-digit hexadecimal numbers 00 and ff.

The numbers are separated by colons. You must enter all 17 characters."

4-54 Licensed materiai—property of copyright holderts) 093-701102

idi(4) DG/UX 5.4 idi(4)

set dg_EthersFile = "/etc/ethers”

$EBERELERESEEERLREEEEUEERRSRREEESLERELEBBIREEHARAREBRR BB RLE
§
Main menu

#
FEGSHELELBHELELELRHREBLIEERHEBLERIRBRBRBRIREBRB MBI R RIS

menu main
name = "Main"
title = "Main Menu"
description = "Top level menu”
help =
*7his is the first level menu. It contains a sub-menu for
manipulating the ethers database."
end

BHESRBLERELEEBLLSREEERSEBRBEREEBEAALBGBAREBHHR LRI BR BB
$
4 Ether menu

#
SHUSHESELERBELBLBLERELHIEIBAIALISESRRRBRBRIHI IR

menu dg_Ether

name = "Ether”

mnemonic = E

title = "Ethers Menu"

description = "Manipulate the ethers databases”

help =
"This menu provides access to the ethers databases. There are
operations for adding, deleting, modifying, and listing entries
from the database.”
end

SHEGLESESRESLEREPRILERREEIIIIERLLSRRERREMRRIIRIRIRRNERRNIRTINS
#

Operations

#
$RELEERESLHLELRSRREERLERINIETSLERERRRRRRBIMIRB IR RR RIS

operation dg_Etheradd
name = Add
mnemonic = A
action = "admether -o add -a ${NetaAddress}
description = "Add an entry to the ethers database”
help =
"The Add operation takes a host name and an Ethernet address and adds
an entry to the ethers database.”
exit-action = ":Unset DefaultString”
end

operation dg_EtherDelete
name = Delete

093-701102 Licensed matsrisi—property of copyright holder(s) 4-55

idi(4)

4-56

DG/UX 54 idi(4)

mnemonic = D
action = "admether -odelete
description = "Delete entry from the ethers database”
confirm = "Delete ${HostName) from the ethers database?"
help =

"The Delete operation takes one or more host names and

. deletes the corresponding entry or entries from the

ethers database.”
end

operation dg_EtherModify
name = Modify
mnemonic = M
action =

"admether -—o modify —n $[NewHostName} -a ${NetAddress}
description = "Modify an entry in the ethers database”
help =

"The Modify operation takes a host name and allows the user to modify

the corresponding entry in the ethers file.

The user may modify the host name and the Ethernet address.”
exit-action = ":Unset DefaultString”

end

operation dg_EtherlList
name = List
mnemonic = L
action = "admether -o list"
description = "List entries from the ethers database”
help = '
"The List operation displays the contents of the ethers database
for one or more hosts.”
end

SHERELEERRDRBLERPRBEILSSHIIIIEEIIRRISREIR OB LRI IR RIS
.
Screens, querygroups, and queries

§

$E4ELEEE0RR 0B RREHEIIIIIRRIRRISIERRERRRRRR RN

screen dg_AddEtherScreen
title = "Add an Ethers Entry"
entry-action = ":Set DefaultString 00:00:00:00:00:00 NewName"

end

#

This querygroup and its queries are used for entering a

new ether entry. The defaults ~re stored in the DefaultString
variable, and should be set by .he screen.

#

querygroup dg_NewEtherEntryQG
end

Licensed material—property of copyright hoider(s) 093-701102

idi(4) DG/UX 54 idi(4)

textquery dg_HostNameText
prompt = "Host Name"
variable = HostName
syntax = ":Match ${ STD_HOST_NAME_PATTERN]} ${HostName) "
help = "${STD_HOST_NAME_HELP)

This is the name of the host as it should appear in the
ethers database."”

#

Do different checks based on whether we’re adding or
#¢ 1listing.

$

semantics = "${OperationName=Add:test -z ‘~grep ${HostName} ${dg_EthersFile}™’;\
:test -n ’“grep $[HostName) ${dg_EthersFile}~’}"
default = "${DefaultString[2]}"
end

textquery dg_EthernetText
prompt = "Ethernet address”
variable = NetAddress
syntax = ":Match ${STD_ETHER_ADDRESS_PATTERN]} ${Netaddress}"
help = "${STD_ETHER_ADDRESS_HELP)

This is the Ethernet address of the host as it should appear
in the ethers database."

default = "${DefaultString[1]}"
end

#

This screen, querygroup, and query are shared between Delete
and List, because both operations need to choose one or more
existing host names.

#

screen dg_HostNameListScreen
title = "${OperationName} Ethers Entry(ies)”
end

querygroup dg_HostNamelListQG
end .

selectquery dg_HostName
prompt = "Host Name(s)"
possible-values = "all
~admether -o list -q | cut -f2 -4’ ’~"
exclusive = "$NO"
variable = HostName
default = "$[NO_DEFAULT)"
help = "
This is the name of the host(s) to ${OperationName}."
end

#

083-701102 Licensed material—property of copyright holder(s) 4-57

idi(4) DG/UX 5.4 idi(4)

§ This screen and its queries are used for getting a single
existing entry which will be modified.
#

screen dg_ModifyEtherScreenl
title = "Modify an Ethers Entry”
end

querygroup dg_ModifyEtherQG1l
end

screen dg_ModifyEtherScreen2
title = "Modify an Ethers Entry"
entry-action = ":Set DefaultString ~admether -o list -q ${HostName} ™'

end

selectquery dg_OldHostName
prompt = "0ld Host Name"
possible-values = "“admether -o list -q | cut -f2 -d’

r~»

exclusive = "$YES"
variable = HostName
help = "

This is the name of the host whose database entry is to
be modified."
end

add dg_Ether to main
add dg_Etheradd to dg_Ether
add dg_AddEtherScreen to dg_Etheradd
add dg_NewEtherEntryQG to dg_AddEtherScreen
add dg_HostNameText to dg_NewEtherEntryQG
add dg_EthernetText to dg_NewEtherEntryQG

add dg_EtherDelete to dg_kEther
add dg_HostNameListScreen to dg_EtherDelete
add dg_HostNameListQG to dg_HostNameListScreen
add dg_HostName to dg_HostNameListQG

add dg_EtherModify to dg_Ether
add dg_ModifyEtherScreenl to dg_EtherModify
add dg_ModifyEtherQGl to dg_ModifyEtherScreenl
add dg_OldHostName to dg_ModifyEtherQGl

add dg_ModifyEtherScreen2 to dg_EtherModify
add dg_NewEtherEntryQG to dg_ModifyEtherScreen2

add dg_EtherList to dg_Ether
add dg_HostNameListScreen to dg_EtherList

SEE ALSO
ed(1), egrep(l), idi(1), ide(1), sh(1).

4-58 Licensed materiai—property of copyright holderis) 083701102

inittab(4)

NAME

DESCRIPTION

093-701102

DG/UX 5.4 inittab(4)

inittab - script for init

The file /etc/inittab controls process dispatching by init. The processes most
typically dispatched by init are servers.

The inittab file is composed of entries that are position dependent and have the
following format:

id :rstate: action : process

Each entry is delimited by a newline, however, a backslash (\) preceding a newline
indicates a continuation of the entry. Up to 512 characters per entry are permitted.
Comments may be inserted in the process field using the convention for comments
described in sh(1). There are no limits (other than maximum entry size) imposed on
the number of entries in the inittab file. The entry fields are:

id
rstate

action

This is one or two characters used to uniquely identify an entry.

This defines the run level in which this entry is to be processed. Run-levels
effectively correspond to a configuration of processes in the system. That
is, each process spawned by init is assigned a run level or run levels in
which it is allowed to exist. The run levels are represented by a number
ranging from 0 through 6. As an example, if the system is in run level 1,
only those entries having a 1 in the rstate field are processed. When init
is requested to change run levels, all processes that do not have an entry in
the rstate field for the target run level are sent the warning signal SIGTERM
and allowed a 5-second grace period before being forcibly terminated by the
kill signal SIGKILL. The rstate field can define multiple run levels for a
process by selecting more than one run level in any combination from 0
through 6. If no run level is specified, then the process is assumed to be
valid at all run levels 0 through 6. There are three other values, a, b and
c, which can appear in the rszate field, even though they are not true run
levels. Entries which have these characters in the rstare field are processed
only when an init or telinit process requests them to be run (regard-
less of the current run level of the system). See init(1M). They differ
from run levels in that init can never enter run level a, bor c. Also, a
request for the execution of any of these processes does not change the
current run level. Furthermore, a process started by an a, b or c com-
mand is not killed when init changes levels. They are killed only if their
line in inittab is marked off in the action field, their line is deleted
entirely from inittab, or init goes into single-user state.

Key words in this field tell init how to treat the process specified in the
process field. The actions recognized by init are as follows:

respawn If the process does not exist, then start the process; do not
wait for its termination (continue scanning the inittab
file), and when the process dies, restart the process. If the
process currently exists, do nothing and continue scanning
the inittab file.

wait When init enters the run level that matches the entry’s
rstate, start the process and wait for its termination. All
subsequent reads of the inittab file while init is in the
same run level cause init to ignore this entry.

Licensed materiai—property of copyright holder(s) 4-59

inittab(4)

once

boot

bootwait

powerfail
powerwait

off

ondemand

initdefault

sysinit

DG/UX 5.4 inittab(4)

When init enters a run level that matches the entry’s
rstate, start the process, do not wait for its termination.
When it dies, do not restart the process. If init enters a
new run level and the process is still running from a previ-
ous run level change, the program is not restarted.

The entry is to be processed only at init’s boot-time read
of the inittab file. init is to start the process, not wait
for its termination; and when it dies, not restart the pro-
cess. In order for this instruction to be meaningful, the
rstate should be the default or it must match init’s run
level at boot time. This action is useful for an initialization
function following a hardware reboot of the system.

The entry is to be processed the first time init goes from
single-user to multi-user state after the system is booted.
(If initdefault is set to 2, the process runs right after
the boot.) init starts the process, waits for its termina-
tion and, when it dies, does not restart the process.

Execute the process associated with this entry only when
init receives a power fail signal, SIGPWR [see sig-
nal(2)].

Execute the process associated with this entry only when
init receives a power fail signal, SIGPWR, and wait until it
terminates before continuing any processing of inittab.

If the process associated with this entry is currently run-
ning, send the warning signal SIGTERM and wait 5 seconds
before forcibly terminating the process with the kill signal
SIGKILL. If the process is nonexistent, ignore the entry.

This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is given
a different keyword in order to divorce its association with
run levels. This instruction is used only with the a, b or
c values described in the rsrare field.

An entry with this action is scanned only when init is ini-
tially invoked. init uses this entry, if it exists, to deter-
mine which run level to enter initially. It does this by tak-
ing the highest run level specified in the rsrate field and
using that as its initjal state. If the rstate field is empty, this
is interpreted as 0123456 and init therefore enters run
level 6. This will cause the system to loop, that is, it will
go to firmware and reboot continuously. Additionally, if
init does not find an initdefault entry in inittab, it
requests an initial run level from the user at reboot time.

Entries of this type are executed before init tries to
access the console (i.e., before the Console Login:
prompt). It is expected that this entry will be only used to
initialize devices on which init might try to ask the run
level question. These entries are executed and waited for
before continuing.

Licensed materiai—property of copyright holder(s) 093-701102

inittab(4) DG/UX 54 inittab(4)

process This is a command to be executed. The entire process field is prefixed
with exec and passed to a forked sh as sh —c ‘exec command’. For
this reason, any legal sh syntax can appear in the process field.

SEE ALSO
init(1M), ttymon(1M), exec(2), open(2), signal(2)
sh(1), who(1) in the User’s Reference Manual

093-701102 Licensed materiai—property of copyright hoider(s) 4-61

inode(4) DG/UX 54 inode(4)

NAME
inode - file node structure

SYNOPSIS
#include <ufs/disk_format.h?

DESCRIPTION
The inode table for a file system is distributed across the disk: a table exists in each

disk allocation region (DAR). For more information about the file system layout,
refer to £s(4).

The file node’s purpose is to provide access to data blocks associated with the file.
The data blocks are allocated in chunks of contiguous physical blocks called data ele-
ments. In the case that the file is less than the data element size, the file is frag-
mented. In this case, the file has only one data element and its size is determined by
the fragment exponent field. If the file grows, the fragmented data element is copied
to a full sized element, and the allocation to the file will always be in data element
sized chunks, causing the actual size of the file to be less than or equal to the blocks
allocated to it.

Data elements are accessed directly or indirectly depending on the size of the file.
The file node has an array of direct data elements, pointing to the first block of the
data element. If the size of the file is greater than the number of direct data element
pointers, then indirect access is used.

Indirect data element access is provided through indexing. An index structure con-
sists of index blocks containing pointers to data elements. Depending on the depth of
the index structure, index entries point to data elements or other index blocks. There
are three index structures rooted in the file node; each of the three differs in the lev-
els of indexing. If the file node represents a directory, only the first index level is
used.

In the case of the first index structure, the pointer in the file node points to the first
block containing the index entries (an index may span blocks); the entries at this level
point to data elements. The second index structure points to the first block contain-
ing index entries. Each index entry at this level points to the first block of an index
containing the same number of entries as the previous level. These index entries con-
tain pointers to data elements. The third index structure is similar to the previous
two but has another level of indexing before the index containing the data element
pointers.

This expansion of index levels produces a tree, where the leaves of the tree are data
elements. The number at each level multiplies itself by the number of index entries.

To access a data block, it must be determined if it is accessible directly or through
indexing. If direct access is possibi, the data element needs to be determined along
witn the particular block within the data element. If the block is deep enough in the
file to require indexing, the level of indexing must be determined by finding what
range of blocks each index covers. After the index structure is determined, the path
of entries through the index structure is required.

The inode table in the DAR is made up of entries of the following structure:

4-62 _icensed material—property of copyright holder(s) 083-701102

inode(4) DG/UX 5.4 inode(4)

typedef struct
{

boolean_field_type is_allocated : 1;
boolean_field_type is_fragmented : 1;
field type fragment_size_exponent ¥
field_type des_exponent : 5;
field_type ies_exponent : 4;
field_type pad_to_double_word : 9;
field_type partial_block_byte_ count : 9;
uint32e_type whole_block_count;

uint32e_type generation_number;

uint32e_type dar_index;

df_file node_number_type space_parent;

uint32e_type
uint32e_type
uint32e_type

maximum space_usage;
current_space_usage;
maximum_file_node_usage;

uint32e_type current_file_node_usage;
df_file mode_type mode;
uintl6e_type user_id;
uintl6e_type group_id;
intlé6e_type link_count;
df_time_type time_ last_accessed;
df_time_ type time last_modified;
df_time type time_attributes_last_changed;
union ‘
{
struct
{
uint32e_type data [DF_DIRECT_ELEMENT_COUNT];
union
{
struct
{
uint32e_type index_array[DF_MAX DIR_INDEX_ LEVEL];
df_din_type din;
} directory:;
struct
{
uint32_type index_array[DF_MAX INDEX LEVEL];
} regular;
} index;
} element_addresses;
struct
{

uintl6ée_type major_device_number;
uintl6e_type minor_device_number;
byte8e_type pad_to_union_size[48];
} represented_device;

} contents;
byteSe_type reserved[DF_RESERVED_BYTES_PER FILE NODE];

} df_£file_node_type;

is_allocated indicates whether this is a free file node or not. If FALSE it is a free file

093-701102 Ucensed matsrial—proparty of copyright hoider(s) 4-63

inode(4) DG/UX 54 inode(4)

node; if TRUE, then this is a valid file node.
is_fragmented is TRUE when the first (and only) element of the file is reduced in size
from the data element size to the fragment size specified by fragment_size_exponent;

otherwise, all data elements (if any) are the full data element size and
fragment_size_exponent is invalid.

fragment_size_exponent specifies, when valid, the size of the fragmented data element
which contains the file’s data. The size in blocks of the fragment is 2 raised to the
fragment_size_exponent power. It must be large enough to fit the total size of the file

in the fragment. Because all fragments must fit into a single file system buffer, the
maximum fragment size is:

#define DF_MAX_FRAGMENT_SIZE 16

blocks, although the fragment_size_exponent field is large enough to support fragment
sizes up to 128 (2 * 7) blocks.

des_exponent specifies the data element size. The data element size in blocks is 2
raised to the des_exponent power. The maximum data element size is therefore 2 “ 31
blocks. The maximum value for this field is:

gdefine DF_MAX_DES_EXPONENT 31

although it is also limited to the base 2 logarithm of the largest power of 2 that is less
than or equal to:

#define DF_USER_BLOCKS_PER_DAR(dar_size, file_nodes_per_dar)
ies_exponent specifies the index element size. The index element size in blocks is 2
raised to the ies_exponent power. The maximum index element size is therefore 2 *
15 blocks. The maximum value for this field is:

#define DF_MAX_IES_EXPONENT 15

although it is also limited to the base 2 logarithm of the largest power of 2 that is less
than or equal to:

#¢define DF_USER_BLOCKS_PER DAR(dar_size, file nodes_per_ dar)

partial_block_byte_count is the count of the number of bytes to the end of file follow-
ing the last whole block. All possible values, i.e., 0 to 511, are legal.

whole_block_count is the number of 512 byte blocks logically in the file before EOF.
The file size as reported by stat(2) is:

((whole_block_count * 512) + partial_block_byte_count).
generation_number is incremented each time an inode is freed and is kept valid on
free nodes so that subsequent uses of the same file node number are guaranteed to
have different UFID values.

dar_index is the current allocation hint (index of a DAR to use for data and file node

4-64 Licensed material—property of copyright holder(s) 093-701102

inode(4)

DG/UX 5.4 inode(4)

allocation). DAR indexes are zero based.

093-701102

space_parent is the parent file node number. In the file node for the root of the
filesystem, the value of space_parent is:

$define DF_ROOT_FILE_NODE_NUMBER 2
therefore, the filesystem root is its own space parent.

maximum_space_usage is the maximum usage limit in blocks for the file plus all its
space descendants. It must be set to UINT32_MAX for non-CPD directories and
other non-directory files, as well as for CPD’s which have no allocation limit. On the
root of each filesystem, this limit is not applied to the superuser.

current_space_usage is the current usage in blocks for the file plus all its space des-
cendants, if any. If not a CPD, then it is the number of blocks actually used to store
the file’s contents on disk, including both index and data elements. For a CPD, it is
that plus the current_space_allocation fields of all files which name this CPD as their
space parent.

maximum_file_node_usage is the maximum file node usage limit for the file plus all its
space descendants. Must be UINT32_MAX for non-CPD directories and other non-
directory files, as well as for CPDs with no file node allocation limit. On the root of
each filesystem, this limit is not applied to the superuser. On all other CPD’s it is
applied equally to all users.

current_file_node_usage is the current file node usage count for the file plus all its
space descendants. It must be 1 for non-CPD directories and other non-directory
files. For a CPD, it is 1 plus the current_file_node_usage fields of all files which
name this CPD as their space parent.

mode is the file’s mode. See stat(2).
user_id is user id of the file.
group_id is the group id of the file.

link_count is the number of links (directory entries) to the file. Must be greater than
zero.

time_last_accessed is the time the file’s contents were last accessed (i.e., read or exe-
cuted).

time_last_modified is the time the file’s contents were last modified (i.e., written or
truncated).

time_attributes_last_changed is the time one of the file’s attributes (mode, user_id,
group_id, link_count, child_count, etc.) was last changed.

contents is a union containing represented_device for block-special or character-
special files, and containing element_addresses for all other file types.

represented_device is the device numbers of the device represented by a character or

Licensed material—property of copyright holder(s) 4-65

inode(4)

DG/UX 5.4 inode(4)

block special file. The padding bytes (pad_to_union_size) must be set to zero.

element_addresses are the disk addresses of the data elements and index elements of
the file. The "data" field contains the addresses of the first:

#¢define DF_DIRECT ELEMENT_ COUNT 10

data elements in the file. The "index" field contains the addresses of the first index
element of each level for regular files. For directory files, we only have 1 level of
indexing, with the other two index fields being used to store the directory manager
information.

Since all the file nodes in a DAR are not necessarily allocated, a list of free file
nodes must be maintained. The head of the list is contained in each DAR entry.
The DAR entry contains the file node number of a file node in the DAR, that file
node should be unallocated and the following structure contains the fields for a free
file node:

typedef struct
{

boolean_field_type is_allocated : 1;
df_file node_number_type next_free file node_number;
uint32e_type generation_number;

byte8e_type pad_to_file_node_size [DF_FREE_FILE_NODE_PADDING];
} df_free_file node_type;

is_allocated is TRUE when this is a valid file_node. If FALSE, then this is a free
file_node.

generation_number is kept valid on free nodes so that subsequent uses of the same file
node number are guaranteed to have different UFID values.

next_free_file_node_number is the file node number of ne..: free file_node on the
DAR free file_node list.

SEE ALSO

4-66

stat(2), dg_stat(2), £s(4); £sck(IM), mkfs(1M) in the System Manager’s Refer-
ence for the DG/UX System.

Licensed material—property of copyright holder(s) 083-701102

issue(4) DG/UX 54 issue(4)

NAME
issue - issue identification file

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as part
of the login prompt. This is an ASCII file containing any text you choose and is read
by program getty and then written to any terminal spawned or respawned from the
inittab(4) file.

FILES
/etc/issue

SEE ALSO
gettydefs(4)
login(l) in the User’s Reference for the DG/UX System.

093701102 Licensed materiai—property of copyright holder(s) 4-67

idfen(4) DG/UX 54 idfen(4)

NAME

1dfcn — COFF executable file access routines
SYNOPSIS

#include <stdio.h>

#include <sys/types.h>

$include <filehdr.h>

#include <ldfcn.h>

DESCRIPTION
The executable file access routines are a collection of functions for reading a COFF
executable file that is in DG/UX executable file format. Although the calling program
must know the detailed structure of the parts of the executable file that it processes,
the routines effectively insulate the calling program from knowledge of the overall
structure of the executable file.

The interface between the calling program and the executable file access routines is
based on LDFILE defined as struct 1ldfile, declared in the header file 1dfen.h.
This structure provides uniform access to simple executable files and to executable
files that are members of an archive file.

The function ldopen(3X) allocates «nd initializes the LDFILE structure and returns
a pointer to the structure to the calling program. The fields of the LDFILE structure
may be accessed individually through macros defined in 1dfcn.h and contain the
following information:

LDFILE +1dptr;

TYPE(1ldptr) The file magic number, used to distinguish between archive
members and simple executable files.

I0PTR(1dptr) The file pointer returned 5y fopen(3S) and used by the standard
input/output functions.

OFFSET(1dptr) The file address of the beginning of the executable file; the offset is
non-zero if the executable file is a member of an archive file.

HEADER (1dptr) The file header structure of the executable file.
The executable file access functions may be divided into four categories:

(1) Functions that open or close an executable file

ldopen(3X) and ldaopen(3X) open an executable file
ldclose(3X) and ldaclose(3X) close an executable file

(2) Functions that read header or symbol table information.

ldahread(3X) reads the archive header of 2 member of an archive file
1dfhread(3X) reads the file header of an executzble file
1dshread(3X) reads a section header of an executable file
1dsyshread(3X) reads the system header of an executable file
1dtbread(3X) reads a symbol table entry of an executable file
ldgetname(3X) retrieves a symbol name from a symbol table entry.

(3) Functions that position an executable file at (seek to) the start of a particular sec-
tion.

Ldohseek(3X) seeks to the system header of an executable file
1dsseek(3X) seeks to a section of an executable file
1dtbseek(3X) seeks to the symbol table of an executable file

4-68 Licensed material—property of copyright holder(s) 093-701102

idfen(4) DG/UX 5.4 idfen(4)

‘ (4) The function ldtbindex(3X) returns the index of a particular executable file
symbol table entry.

These functions are described in detail on their respective manual pages.

All the functions except ldaopen(3X), ldgetname(3X), ldopen(3X), and
1dtbindex(3X) return either SUCCESS or FAILURE, both constants defined in
ldfen.h. Ldaopen(3X) and ldopen(3X) both return pointers to an LDFILE struc-
ture.

Additional access to an executable file is provided through a set of macros defined in
1dfcn.h. These macros parallel the standard input/output file reading and manipu-
lating functions, translating a reference of the LDFILE structure into a reference to
its file descriptor field.

The following macros are provided:

GETC(1ldptr)

FGETC(ldptr)

GETW(1dptr)

UNGETC(c, ldptr)

FGETS(s, n, ldptr)

FREAD(ptr, sizeof (xptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(1ldptr)

REWIND(1ldptr)

FEOF (1dptr)

FERROR (1dptr)

FILENO(ldptr)

SETBUF (1ldptr, buf)

See the manual entries for the corresponding standard input/output library functions
for details on these macros.

The program must be loaded with the executable file access routine library 1ibld.a.

SEE ALSO
fseek(3S), ldahread(3X), ldclose(3X), ldfhread(3X), ldgetname(3X),
ldohseek(3X), ldopen(3X), ldshread(3X), ldsseek(3X), ldtbindex(3X),
ldtbread(3X), ldtbseek(3X), intro(5).

NOTES
The executable file format is used only for executable files (load modules), not for
object files.

limits — header file for implementation-specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION
The header file limits.h is a list of minimal magnitude limitations imposed by a

specific implementation of the operating system.

ARG_MAX 5120 /* max length of arguments to exec */
CHAR_BIT 8 /* max § of bits in a "char" s/
CHAR_MAX 255 /* max value of a "char” s/

093701102 Licensed matarial—property of copyright hoider(s) 4-69

limits(4) DG/UX 6.4 limits(4)

CHAR_MIN 0 /* min value of a "char” s/

CHILD_MAX 25 /s max § of processes per user id s/
EDMC??

CLK_TCK _sysconf(3) /% clock ticks per second s/

DBL_DIG 15 /+ digits of precision of a "double” #/

DBL_MAX 1.79769313486223179E+308/+ max decimal value of a "double"s/
DBL_MIN 2.2250738585071991E-308 /+ min decimal value of a "double"s/

FCHR_MAX 2147483647 /+ max size of a file in bytes 3/

FLT_DIG 6 /+ digits of precision of a "float" s/

FLT_MAX 3.40282347E+38F /% max decimal value of a "float" */

FLT_MIN 1.17549435E-38F /+ min decimal value of a "float” s/

HUGE_VAL 7.237005145973118E-75 /% error value returned by Math 1lib s/

INT_MAX 2147483647 /* max value of an "int" s/

INT_MIN (-2147483647-1) /+ min value of an "int" s/

LINK_MAX 1000 /% max $ of links to a single file s/

LOGNAME_MAXS /% max # of characters in a login name #/

LONG_BIT 32 /% % of bits in a "long" s/

LONG_MAX 2147483647 /+ max value of a "long int" s/

LONG_MIN (—2147483647-1) /+ min value of a "long int" s/

MAX CANON 255 /* max bytes in a line for canonical
processing =/

MAX_ INPUT 512 /% max size of a char input buffer s/

MB_LEN_MAX 5 /* max $§ of bytes in a multibyte
character s/

NAME_MAX 14 /* max §# of characters in a file name s/

NGROUPS_MAX16 /* max §# of groups for a user #*/

NL_ARGMAX 9 /% max value of "digit" in calls to the
NLS printf() and scanf() =/

NL_LANGMAX 14 /* max §# of bytes in a LANG name %/

NL_MSGMAX 32767 /% max message number =/

" NL_NMAX 1 /* max §# of bytes in N-to-1 mapping
characters s/

NL_SETMAX 255 /% max set number s/

NL_TEXTMAX 255 /% max $# of bytes in a message string s/

NZERO 20 /+ default process priority s/

OPEN_MAX 64 /% max § of files a process can have
open #/

PASS_MAX 8 /* max $# of characters in a password */

PATH_MAX 1023 /* max § of characters in a path name s/

PID_MAX 30000 /* max value for a process ID s/

PIPE_BUF 8192 /* max § bytes atomic in write to a pipe s/

PIPE_MAX 8192 /% max § bytes written to a pipe

) in a write s/

SCHAR_MAX 127 /+ max value of a "signed char"” s/

SCHAR_MIN (-128) /+ min value of a "signed char” s/

SHRT_MAX 32767 /% max value of a "short int"” s/

SHRT_MIN (-32768) /+ min value of a "short int" s/

STD_BLK 512 /% 3 bytes in a physical I/O block s/

SYS_NMLN 256 /% 4.0 size of utsname elements s/

4-70 Licensed material—property of copyright holder(s) 093701102

limits(4) DG/UX 5.4 limits(4)

/% also defined in sys/utsname.h s/

SYSPID_MAX 1 /+ max pid of system processes s/
TMP_MAX 17576 /+ max §# of unique names generated

by tmpnam %/
UCHAR_MAX 255 /+ max value of an "unsigned char” s/
UID_MAX 60000 /% max value for a user or group ID #/
UINT_MAX 4294967295 /+ max value of an "unsigned int" s/
ULONG_MAX 4294967295 /+ max value of an "unsigned long int" s/
USHRT_MAX 65535 /% max value of an "unsigned short int" s/
USI_MAX 4294967295 /+ max decimal value of an "unsigned” #/
WORD_BIT 32 /s % of bits in a "word” or "int" s/

The following POSIX definitions are the most restrictive values to be used by a POSIX
conformant application. Conforming implementations shall provide values at least this

large.
_POSIX_ARG_MAX 4096 /* max length of arguments to exec */
_POSIX_CHILD_MAX 6 /+ max $ of processes per user ID %/
_POSIX_LINK_MAX 8 /+ max # of links to a single file s/
_POSIX_MAX_ CANON 255 /+ max § of bytes in a line of input =/
_POSIX_MAX_INPUT 255 /% max $# of bytes in terminal

input queue */
_POSIX_NAME MAX 14 /% # of bytes in a filename 3/
_POSIX_NGROUPS_MAX 0 /* max # of groups in a process s/
_POSIX_OPEN_MAX 16 /¢ max # of files a process can have open #/
_POSIX_PATH_MAX 255 /+* max $ of characters in a pathname #/
_POSIX_PIPE_BUF 512 /+ max $# of bytes atomic in write

to a pipe s/

SEE ALSO

passwd(4).

093-701102 Licensed material—property of copyright holder(s) 4'71

linenum(4) DG/UX 5.4 linenum(4)

NAME

linenunm - line number entries in a common object file

SYNOPSIS

#¢include <linenum.h>

DESCRIPTION

When invoked with the —g option, the cc command generates an entry in the object
file for each C source line on which a breakpoint is possible. debuggers such as
sdb(1) and dbx(1) can then reference line numbers in the source. The structure of

the line number entries appears below.

struct lineno
{ :
union
{
long Lsymndx;
long Lpaddr;
} Laddr ;
union
{
struct
{
unsigned short _I_Inno;
unsigned short _1_pad;
} 1
long _Llnno;
} s
}s

Numbering starts with 1 for each function. The initial line number entry for a func-
tion has I_Inno equal to zero, and the symbol table index of the function’s entry is in
Lsymndx. Otherwise, L_Inno is non-zero, and L_paddr is the physical address of the
code for the referenced line. Thus the overall structure is the following:

Ladadr [_Inno
function symtab index 0
physical address line
physical address line
function symtab index 0
physical address line
physical address line

SEE ALSO

4-72

cc(1), sdb(l), dbx(1), a.out(4).

Licensed material—property of copyright holder(s) 093-701102

master(4) DG/UX 5.4 master(4)

NAME

master — format of a master file

DESCRIPTION

Information about configurable kernel components is contained in a set of master files
that are kept in the master file directory (by default, /usr/etc/master.d). This
information is used by the config(1M) program to configure a kernel image. There
are four types of configurable kernel components: device drivers, socket protocols,
STREAMS modules, and tunable parameters.

Each layered kernel product available on the system has its own master file in the
master file directory. For example, the TCP/IP product includes the master file
/usr/etc/master.d/tcpip. The base DG/UX System itself uses
/usr/etc/master.d/dgux as its master file. If you create your own device drivers
or other configurable kernel compenents, you will need to create a new master file to
supply information about the new components. Remember that every file found in
the master file directory is examined when config(1M) is run, so backup or dupli-
cate copies of master files should not be stored there, since they will cause errors
when components are defined in more than one place. If you are not adding a2 new
configurable component, you will probably only use the master files as reference
when setting up your system file (see system(4)).

A master file can contain entries describing device drivers, socket protocols,
STREAMS modules, tunable parameters, and aliases. Different types of information
are grouped into their own sections with their own entry format. Each section is pre-
faced by a line containing a section name, whose first character is the dollar sign ($).
A master file may have any number (including zero) of each type of section, and they
may appear in any order. Six different types of sections are supported:

$device Describes drivers for hardware devices and pseudo-devices.

$protocol Describes protocols that can be supported by the socket(2) sys-
tem call.

$stream Describes STREAMS modules.

$keyword Describes user-tunable system parameters.

$alias ‘ Defines aliases for the keywords defined in any of the above types
of sections. These aliases can them be used in a system file in
place of the master file keywords.

$local_alias Defines constants for use only within the master file.

Each entry in a section consists of a single line broken into a number of fields
separated by blanks and/or tabs. Comments are preceded by a pound sign (#) and
can begin at any position on a line. Blank lines and comments are ignored.

Device Entries

083-701102

Entries in a $device section have three fields:

Field 1: Device name as specified in the system file. The kernel uses this name as
a prefix to names for device driver routines in conf.c.

Field 2: Restriction flags on this device. Flags are:
o Only one device of this type is allowed.

r This device is required and will be automatically be configured into
any kernels configured against this master file.

Licansed matariai~property of copyright hoider(s) 4-73

master(4)

Field 3:

DG/UX 5.4 master(4)

s This device is a DG/UX-style STREAMS device.
S This device is a System V-style STREAMS device.

N This STREAMS device uses the new (System V.4) style
open/close interface.

z This device may be configured either explicitly or implicitly as part
of a nested declaration of another device. For example,
"st(insc(),4)" declares the device "insc()" implicitly.

n No restrictions.

STREAMS Concurrency Set. The concurrency set name specifies the
STREAMS set to which a given STREAMS module or STREAMS device
driver belongs. STREAMS concurrency only occurs within each set:
modules or drivers belonging to the same set are guaranteed never to run
concurrently. A set may contain drivers, modules, or both. Two excep-
tional cases allow for more concurrency: the pseudo-set named module
means that each instance of such a STREAMS device or module will have
its own private set; and the pseudo-set named stream means that locking
is granular to the individual STREAMS themselves. All other set name
values specify a named set. The concurrency set name has no meaning for
non-STREAMS devices, which by convention are assigned to the set
named default.

Protocol Entries
Entries in a $protocol section have six fields:

Field 1: Name to be used in the system file to reference this protocol.
Field 2: The protocol’s protocol number as defined in the /etc/protocols file.
Field 3: The protocol’s domain number as defined in the <sys/socket.h>
header file.
Field 4: The protocol’s type as defined in the <sys/socket.h> header file.
Field 5: The infix name. The kernel will use this name to generate names for the
protocol’s control routines. You may use any name you want and then
match this name with the names of your protocol control routines.
Field 6: Restriction flags on this protocol. Flags are:
r This protocol is required and will be automatically be configured
into any kernels configured against this master file.
d This protocol will be the default protocol used for socket(2) calls
of the listed Domain and Type.
u This protocol is a UNIX domain protocol.
n No restrictions.
STREAMS Module Entries
Entries in a $stream section have four fields:
Field 1: Name of the stream control module as given in the system file.
Field 2: The infix name. The kernel will use this name to generate names for the

4-74

stream’s control module routines. You may use any name you want and
then match this name with the names of your stream control module rou-

tines.

Licensed material—property of copyright holder(s) 093-701102

master(4) DG/UX 5.4 master(4)

Field 3: Restriction flags on this module. Flags are:

N This STREAMS module uses the new (System V.4) style
open/close interface.

n No restrictions.

Field 4: STREAMS Concurrency Set. The concurrency set name specifies the
STREAMS set to which a given STREAMS module or STREAMS device
driver belongs. STREAMS concurrency only occurs within each set:
modules or drivers belonging to the same set are guaranteed never to run
concurrently. A set may contain drivers, modules, or both. Two excep-
tional cases allow for more concurrency: the pseudo-set named module
means that each instance of such a STREAMS device or module will have
jts own private set; and the pseudo-set named stream means that locking
is granular to the individual STREAMS themselves. All other set name
values specify a named set.

Tunable Parameter Entries
Entries in 2 $keyword section have four fields, the last of which is optional:

Field 1: Name of kernel variable to be set.

Field 2: The default value that the variable will have, unless it is overridden in the
system file.

Field 3: The kernel variable’s data type. This must not be a type that requires use
of any header file besides /usr/src/uts/aviion/ext/c_generics. h.

Field 4: The implied value for a variable that is listed in the system file without a
value. This is useful for things like function pointers, whose value is
represented by a string that would otherwise be inconvenient to type.

Alias Entries

Entries in an $alias section have two fields:

Field 1: Alias name.

Field 2: Name of master file entry being referenced.

Local Alias Entries
Entries in 2 $1ocal_alias section have two fields:

Field 1: Alias name.

Field 2: The value which this alias name will have. This can be either a numeric or
character string value.

SEE ALSO
system(4).
config(1M), sysdef(1M) in the System Manager’s Reference for the DG/UX System
Installing the DG/UX System. Customizing the DG/UX System. Managing the
DG/UX System.

093-701102 Licensed material—property of copyright holder(s) 4’75

mts(4) DG/UX 5.4 mts(4)
NAME

mfs — memory file system
DESCRIPTION

4-76

The DG/UX kernel provides support for memory file systems. These are file systems
that live entirely in memory without any backing store on disk. Files in memory file
systems do not persist between system instantiations. Memory file systems are faster
than normal file systems and are ideal for temporary files and for putting common
executables in them to avoid any disk I/O on execution. A memory file system has
the same semantics as a normal DG/UX file system. Memory file systems can be
NFS-exported just like regular DG/UX file systems.

A memory file system can be instantiated via the mount(1M) command:

mount —-o ramdisk /dev/ml /pdd/memory

The "ramdisk" option instructs the DG/UX file system to create a memory file system
instead of trying to mount the device "/dev/m1" on the directory. The "/dev/m1"
pseudo device must not exist at the time of the mount command. The pseudo device
node will be created during the mount to reference the mounted on directory. Any
naming convention can be used for this memory device with the exception that the
name must reference a path in /dev. The example name "/pdd/memory” is the
directory in the DG/UX file system hierarchy where the memory file system will be
created. This may be any directory.

There are several options:
mount —o ramdisk,use_wired_memory /dev/ml /pdd/memory

"use_wired_memory" is a boolean option that will instruct the file manager to use
wired memory to hold data for the memory file system instead of unwired memory
(the default is to use unwired memory). This is useful if you have lots of expansion
memory for the file system, since data in the file system will always reside in memory
and never be swapped out. (But see the CAUTIONS section below.)

mount —o ramdisk,max_file_space=20000 /dev/ml /pdd/memory

"max_file_space=n" gives the number of blocks that can be allocated to the memory
file system to hold data. No space is ever allocated up front, so using a high value
will not lead to trouble. The amount of actual space that can be given to a memory
file system is the minimum of the value assigned by this attribute and the total amount
of the resource (wired or unwired memory) available on the system. If space is not
available to allocate blocks to a memory file system, then the operation that requests
space will return an ENOSPC result. The default amount of space allocated to a
memory file system is 2048 blocks.

mount —o ramdisk,max_file count=50000 /dev/ml /pdd/memory

"max_file_count=n" gives the number file nodes that can be allocated in the memory
file system. This is counted separately from the "max_file_space"” attribute. The
default number is 16384.

Memory file systems can be unmounted via the umount(1M) command:

umount /pdd/memory

The umount will not work until all the files have been removed from the file system.
This is to protect against unintended data loss.

There is no limit to the number of memory file systems that may be created on a
given system. Memory limitations, both wired and unwired, will ultimately govern
how large they may grow.

Licensed material—property of copyright holder(s) 093-701102

mis(4) DG/UX 54 mfs(4)

SEE ALSO
mount(1M), umount(1M), fstab(4), exportfs(8).

CAUTIONS
Do not over-commit the swap space available to the system. Because of the way
DG/UX allocates memory, if you establish a large memory file system, start some
very large application, then fill the memory file system, you might exhaust the swap
space on the system. This will cause the system to thrash and to kill random
processes in order to recover the swap space.

Do not mount a memory file system on /tmp, since the recovery mechanism of
ex(1) and vi(1) depends on the persistence of temporary files in the /tmp directory.

Do not use the use_wired_memory option unless your system has enough expansion
(physical) memory.

Use of the use_wired_memory option is also strongly discouraged on diskless worksta-
tions.

083-701102 Licensed materiai—property of copyright holder(s) 4-77

mnttab(4) DG/UX 54 mnttab(4)

NAME

mnttab — mounted file system table
SYNOPSIS

#include <mntent.h>
DESCRIPTION

mnttab resides in the directory /etc and consists of a list of currently mounted file
systems. The file contains a number of lines like this:

fsname dir type opts freq passno

for example:
/dev/dsk/usr fusr dg/ux w 1 1

would indicate a mount for a local filesystem, and
titan:/usr/titan /usr/titan nfs rw,hard 0 0

would indicate an NFS filesystem mount. The entries from this file are accessed
using the routines in getmntent(3), which returns a structure of the following form:

struct mntent {

char *mnt_fsname; /* filesystem name */

char *mnt_dir; /* filesystem path prefix =/

char *mnt_type; /* dg/ux, nfs, swap, cdrom, or ignore */
char *mnt_opts; /* rw, ro, hard, soft, fg, bg, memory */
int mnt_freq; /* highest dump level */

int mnt_passno; /* pass number on parallel fsck */

};

Fields are separated by white space; a #, as the first non-white character, indicates a
comment. The mnt_type field determines how the mnz_fsname and mnt_opts fields
will be interpreted. The following is a list of the filesystem types currently supported,
and the way each of them interprets these fields: '

4-78 Licensed material—property of copyright holder(s) 083-701102

mnttab(4) DG/UX 5.4 mnttab(4)

Type Field Interpretation

dg/ux mnt_fsname Must be a block special device.
mnt_opts Valid options are ro, rw, bg,
and fg. If this has the ramdisk
option, other options include
use_wired_memory,
max_file_space and
max_file_count.

cdrom mnt_fsname Must be a block special device.

nfs mnt_fsname The hostname of the server and
the pathname on the server of
the directory to be served. A
colon separates the pathname
and hostname.
mnt_opts Valid options are ro, rw, hard,
soft.

swap mnt_fsname Must be a block special device
swap section.

mnt_opts Ignored.

If the mnt_type is specified as ignore then the entry is ignored. This is useful to
show disks not currently used.

Entries identified as swap are made available as swap space by the swapon(1M)
command at the end of the system reboot procedure.

When the mnt_fsname field is interpreted as a block special device, programs that
require the corresponding character special device must construct the name by chang-
ing dsk to rdsk in the pathname.

If the mnt_opts field is a comma-separated list of options that includes ro or rw,
then the filesystem is mounted read-write or read-only. If this includes hard or
soft, then the NFS filesystem is mounted hard or soft.

The field mns_freq indicates how often each filesystem should be dumped by the
dump(1M) command (and triggers that command’s w option, which determines what
filesystems should be dumped). Most systems set the mnt_freq field to 1, indicating
that filesystems are dumped each day.

The final field mnt_passno is used by the consistency checking program fsck(1M) to
allow overlapped checking of filesystems during a reboot. All filesystems with a
mnt_passno of 1 are checked first simultaneously, then all filesystems with mn:_passno
of 2 are checked, and so on. The <mnt_passno> of the root filesystem should be 0,
as the root cannot be checked since it is already mounted.

The maximum number of entries in mnttab is based on the system parameter
NMOUNT located in /usr/src/uts/mv/cf/config.h, which defines the number of

allowable mounted special files.

SEE ALSO

093-701102

mount(1M), setmnt(1M) in the System Manager’s Reference for the DG/UX System.

Licensed material—property of copyright hoider(s) 4"'79

netcontig(4) DG/UX 5.4 netconfig(4)

NAME

netconfig - network configuration database

SYNOPSIS

#$include <netconfig.h>

DESCRIPTION

4-80

The network configuration database, /etc/netconfig, is a system file used to store
information about networks connected to the system and available for use. The
netconfig database and the routines that access it [see getnetconfig(3N)] are
part of the UNIX System V Network Selection component. The Network Selection
component also includes the environment variable NETPATH and a group of routines
that access the netconfig database using NETPATH components as links to the
netconfig entries. NETPATH is described in sh(1); the NETPATH access routines
are discussed in getnetpath(3N).

netconfig contains an entry for each network available on the system. Entries are
separated by newlines. Fields are separated by whitespace and occur in the order in
which they are described below. Whitespace can be embedded as “\blank” or
“\tab”. Backslashes may be embedded as ‘“\\”. Each field corresponds to an ele-
ment in the struct netconfig structure. struct netconfig and the identifiers
described on this manual page are defined in /usr/include/netconfig.h.

network ID
A string used to uniquely identify a network. network ID consists of non-null
characters, and has a length of at least 1. No maximum length is specified.
This namespace is locally significant and the local system administrator is the
naming authority. All network IDs on a system must be unique.

semantics
The semantics field is a string identifing the “semantics” of the network, i.e.,
the set of services it supports, by identifying the service interface it provides.
The semantics field is mandatory. The following semantics are recognized.

tpi_clts Transport Provider Interface, connectionless
tpi_cots Transport Provider Interface, connection oriented
tpi_cots_ord
Transport Provider Interface, connection oriented, supports
orderly release.

flag The flag field records certain two-valued (“true” and “false”) attributes of net-
works. flag is a string composed of a combination of characters, each of which
indicates the value of the corresponding attribute. If the character is present,
the attribute is “true.” If the character is absent, the attribute is “false.” “-”
indicates that none of the attributes is present. Only one character is currently

recognized:
v Visible (“‘default’”) network. Used when the environment
variable NETPATH is unset.
protocol family
The protocol family and protocol name fields are provided for protocol-specific
applications.

The protocol family field contains a string that identifies a protocol family.

The protocol family identifier follows the same rules as those for nerwork IDs,
that is, the string consists of non-null characters; it has a length of at least 1;
and there is no maximum length specified. A “-” in the prorocol family field

Licensed material—property of copyright holder(s) 093-701102

netconfig(4) DG/UX 5.4 ' netconfig(4)

indicates that no protocol family identifier applies, that is, the network is
experimental. The following are examples:

loopback Loopback (local to host).

inet Internetwork: UDP, TCP, etc.

implink ARPANET imp addresses

pup PUP protocols: e.g. BSP

chaos MIT CHAOS protocols

ns XEROX NS protocols

nbs NBS protocols

ecma European Computer Manufacturers Association

datakit DATAKIT protocols
ccitt CCITT protocols, X.25, etc.

sna IBM SNA

decnet DECNET

dli Direct data link interface
lat LAT

hylink NSC Hyperchannel
appletalk Apple Talk

nit Network Interface Tap

ieee802 IEEE 802.2; also ISO 8802

osi Umbrella for all families used by OSI (e.g., protosw lookup)
x25 CCITT X.25 in particular

osinet AFI=47,IDI=4

gosip U.S. Government OSI

protocol name
The protocol name field contains a string that identifies a protocol. The proto-
col name identifier follows the same rules as those for network IDs, that is, the
string consists of non-NULL characters; it has a length of at least 1; and there
is no maximum length specified. The following protocol names are recognized.
A “-” indicates that none of the names listed applies.

tep Transmission Control Protocol
udp User Datagram Protocol
icmp Internet Control Message Protocol

network device
The network device is the full pathname of the device used to connect to the

transport provider. Typically, this device will be in the /dev directory. The
network device must be specified.

directory lookup libraries
The directory lookup libraries support a “directory service” (a name-to-address
mapping service) for the network. This service is implemented by the UNIX
System V Name-to-Address Mapping feature. If a network is not provided
with such a library, the netdir feature will not work. A “-” in this field indi-
cates the absence of any lookup libraries, in which case name-to-address map-
ping for the network is non-functional. The directory lookup Library field con-
sists of a comma-separated list of full pathnames to dynamically linked
libraries. Commas may be embedded as “\,”; backslashs as “\\”.

Lines in /etc/netconfig that begin with a sharp sign (#) in column 1 are treated as
comments.

093-701102 Licensed material—property of copyright holder(s) 4‘81

netconfig(4)

FILES

DG/UX 64 netconfig(4)

The struct netconfig structure includes the following members corresponding to
the fields in in the netconfig database entries:

char * nc_netid

unsigned long nc_semantics
unsigned long nc_flag
char * nc_protofmly

char * nc_proto

char * nc_device

unsigned long nc_nlookups

char ** nc_lookups

unsigned long nc_unused[9]

Network ID, including NULL terminator
Semantics

Flags

Protocol family

Protocol name

Full pathname of the network device

Number of directory lookup libraries

Full pathnames of the directory lookup libraries

" themselves

Reserved for future expansion (not advertised to
user level)

The nc_semantics field takes the following values, corresponding to the semantics

identified above:

NC_TPI_CLTS
NC_TPI_COTS
NC_TPI_COTS_ORD

The nc_£flag field is a bitfield. The following bit, corresponding to the attribute
identified above, is currently recognized. NC_NOFLAG indicates the absence of any

attributes.
NC_VISIBLE

/etc/netconfig
s/usr/include/netconfig.h

SEE ALSO
netdir_getbyname(3N), getnetconfig(3N), getnetpath(3N), netconfig(4)

Nerwork Programmer’s Guide
System Administrator’s Guide

Licensed material—property of copyright hoider(s) 093-701102

passwd(4) DG/UX 54 passwd(4)

NAME
' passwd — password file
SYNOPSIS

/etc/passwd
DESCRIPTION

093-701102

The passwd file contains for each user the following information:

name User’s login name. Contains no uppercase characters and must not be
greater than USR_NAME (see limits(4)) characters long.

password encrypted password.

numerical user id
This is the user’s id in the system and it must be unique. Otherwise, users
with the same uid will be able to access each other’s files.

numerical group id
This is the number of the group that the user belongs to.

user’s real name
Some system administrators use this field to contain the user’s office,
extension, home phone, and so on. For historical reasons this field is
called the GCOS field.

initial working directory
The directory that the user is positioned in when they log in — this is also
known as the home directory.

shell program to use as shell when the user logs in.

The user’s real name field may contain ‘&‘, meaning to insert the login name.

The password file is an ASCII file. Each field within each user’s entry is separated
from the next by a colon. Each user is separated from the next by a new-line. If the
password field is null, no password is demanded; if the shell field is null, /bin/sh is
used.

This file resides in directory /etc. Because of the encrypted passwords, it has gen-
eral read permission. It can be used, for example to map numerical user IDs to
names.

The encrypted password consists of 13 characters chosen from a 64-character alpha-
bet(.,/,09, A-Z, az), except when the password is null. In that case, the
encrypted password is also null. Password aging is affected for a particular user if the
user’s encrypted password in the password file is followed by a comma and a non-null
string of characters from the above alphabet (such a string must first be introduced by
the superuser).

The first character of the age denotes the maximum number of weeks for which a
password is valid. If you try to login after your password has expired, you must sup-
ply a new one. The next character denotes the minimum period in weeks that must
elapse before the password may be changed. The remaining characters define the
week (counted from the beginning of 1970) when the password was last changed (a
null string is equivalent to zero). The first and second characters have numerical
values in the range 0-63 that correspond to the 64-character alphabet shown above
(i.e., / = 1 week; z = 63 weeks). If both characters are equal to zero (derived from
the string "." or ".."), you must change your password the next time you login. The
age will disappear from your entry in the password file. If the second character is

Licensed material—property of copyright hoider(s) 4‘83

passwd(4) DG/UX 5.4 passwd(4)

greater than the first (signified, e.g., by the string "./), then only the superuser will be
able to change the password.

The passwd file can also have lines beginning with a plus (+), which means to incor-
porate entries from the Yellow Pages.

NOTE: You must be using the DG/UX Open Network Computing/Network File Sys-
tem (ONC/NFS) to use this feature. If you use DG/UX ONC/NFS, see

passwd(5).

There are three styles of + entries: all by itself, + means to insert the entire contents
of the Yellow Pages password file at that point; +name means to insert the entry (if
any) for name from the Yellow Pages at that point; + @name means to insert the
entries for all members of the network group name at that point. If a + entry has a
non-null password, directory, user’s real name, or shell field, they will override what
is contained in the Yellow Pages. The numerical user ID and group ID fields cannot
be overridden.

Entries beginning with a minus sign (-) are also allowed. They have two formats:
-name and -@name. The meaning of these formats is the same as for +name and
+ @name, respectively, except that the action is reversed; all members matched are
considered to be excluded from the password file, regardless of subsequent entries.
Minus entries can be used to exclude specific entries from the Yellow Pages.

EXAMPLE

FILES

Here is a sample /etc/passwd file:

root:q.mJzTnu8icF.:0:10:God:/:/bin/csh
tut:6k/7KCFRPNVXg:508:10:Bill Tuthill:/usr/tut:/bin/csh
+john:

—@documentation:no—-login:

+:::Guest

john::605:20:John Smith:/usr/john:

In this example, there are specific entries for users root and tut, in case the Yel-
low Pages are not running. (See Managing ONC/NFS and Its Facilities on the DG/UX
System.) The user john will have his password entry in the Yellow Pages incor-
porated without change; anyone in the netgroup documentation will have their
password field disabled, and anyone else will be able to login with their usual pass-
word, shell, and home directory, but with a GCOS field of Guest.

The second entry for john in this example will not be used if the Yellow Pag<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>