
@» Data General

Customer Documentation

Porting Applications to the

DG/UX”" System

Porting Applications to the

DG/UXTM System

093-701047-00

For the latest enhancements, cautions, documentation changes, and

other information on this product, please see the Release Notice

(085-series) supplied with the software.

Ordering No. 093-701047

Copyright © Data General Corporation, 1989

Unpublished—all rights reserved under the copyright laws of the United States

Printed in the United States of America

Revision 00, April 1989

Licensed material—property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR

USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION

CONTAINED HEREIN IS THE PROPERTY OF DGC, AND THE CONTENTS OF THIS

MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED

OTHER THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in

this document without prior notice, and the reader should in all cases consult DGC to

determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE

PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF

THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS

CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT

CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO

STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE, OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN

SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE

RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement

which governs its use.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,

ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA, PRESENT,

PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of Data General

Corporation.

AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, AViiON, BusiGEN, BusiPEN,

BusiTEXT, CEO Connection, CEO Drawing Board, CEO DXA, CEO Light, CEO MAILIT,

CEO MAILI, CEO PXA, CEO Wordview, CEOwrite, COBOL/SMART, COMPUCALC,

CSMAGIC, DASHER/One, DASHER/286, DASHER/386, DASHER/LN,

DATA GENERAL/One, DESKTOP/UX, DG/500, DG/AROSE, DGConnect, DG/DBUS,

DG/Fontstyles, DG/GATE, DG/GEO, DG/L, DG/LIBRARY, DG/UX, DG/XAP,

ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSEMV/2500, ECLIPSE MV/7800,

ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/20000, ECLIPSE MV/40000,

FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400, microECLIPSE, microMV, MV/UX,

PC Liaison, RASS, REV-UP, SLATE, SPARE MAIL, TEO, TEO/3D, TEO/Electronics,

TURBO/4, UNITE, and XODIAC are trademarks of Data General Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company. AIX is

a trademark of IBM Corporation. DEC and Ultrix are trademarks of Digital Equipment

Corporation. NFS and SunOS are trademarks of Sun Microsystems, Inc. The X Window

System is a trademark of the Massachusetts Institute of Technology.

Porting Applications to the DG/UXTM System

093-701047

Revision History: Effective with:

Original Release — April 1989 DG/UX Release 4.10

Preface

This manual describes how to port UNIX® application programs to the

DG/UXTM System.

This manual is directed primarily to experienced C programmers. This means

that we assume the reader is fluent in C, but may not be skilled in some of the more

esoteric aspects of the language. The manual is for programmers who are porting

their software for the first time, as well as for programmer’s who are experienced in

porting issues.

If you need introductory information about the DG/UX system, please read

Using the DG/UXTM System. For a list of DG/UX manuals, see "Related Manuals” at

the end of this book.

How This Manual Is Organized

This manual is organized as follows:

Chapters 1-2 An overview of the porting process and porting issues. Programmers

not experienced in porting issues should read these chapters before

beginning to port.

Chapters 3-11 Specific technical information about the major porting issues. These

chapters can be read individually.

Appendixes Examples and tips about the porting process.

Notation Conventions

We use the following notation conventions in syntax:

Element Meaning

Bold string A literal to be typed just as it appears

Italic string A place holder representing a literal or other value that you supply

[| Delimiters for an optional argument (not to be confused with the

meaning of brackets used in examples)

Optional repetition of the preceding argument

093-701047 Licensed material—property of Data General Corporation ili

Notation Conventions

We use the following notation conventions in examples:

Element Meaning

Bold string’ A literal to be typed just as it appears

Roman string A system response that you will see on your screen

[] Literal brackets to be typed exactly as they appear

<NL> The New Line or Return key to be pressed on your keyboard

Contacting Data General

If you have comments on this manual, please use the prepaid Remarks Form that

appears after the Index.

If you need additional manuals, please use the enclosed TIPS order form (USA

only) or contact your local Data General sales representative.

Service assistance on Data General software or hardware is available via

telephone in the United States and Canada. Ask your Data General representative

for the number. Outside North America contact your local Data General office.

End of Preface

1V Licensed material—property of Data General Corporation 093-701047

Contents

Chapter 1 — Introduction: Porting and UNIX®
Standards

Overview of Porting and Standardscccccc cece cece eee eee cence eee nee eeeeeee ee eneenees 1-2

Standards Organizationsccccecese sce e ee ee eee ee nee e nese neces nee eee ee eeteeeeeneen eset eg es 1-3

Binary Standards and the BCS 2.0... ccc eee eee eee nent e ence eee e ence eee eeee sees eeeeenenees 1-4

Operating System Standards 2.0.0... cece cece cece eee e ence erence eee teen een treet eee: 1-5

User Interface Standardsccececece cece cence erence neon eben ee ee eee e eee ee eee ene sees eeeeeeee 1-7

Language Standards 2.0... ccc cece cee enn ener E EERE EE EEE EEE EEE EE EES 1-7

Communication Standardsccccceecec cece ence eee e eens nena e neces ee eee eases eneeeeneeeeeees 1-8

Other Standardscccc cece cc ece eee e nee ne ee ne ence nsec nee eeeeeee nee se eens ene eeeneee see eeenneas 1-9

SUMIMALY oo... ceeeece cee ee eee n teen eee e een e nent eee ee ee eee ens ee eee e eee eases ene eaeeeeeeenententeeeaeneees 1-10

Chapter 2 — Getting Started: Outlining the Porting
Process

A Porting Checklist 2.0.0.0... ccc cece eee ce nce ec ec ne eee e ene ee ene e eens ene en ene enten eee en ene enennens 2-1

Understanding User Interface Issues ccc cece eee e eee eee eeneeeeneeneeeeneneenees 2-2

Understanding Compiler Issuescccccecececcnceeneeceeeeeceseensesnenseenenseensnenes 2-2

Understanding Architecture Issuescccccccccecc eee eeeeceeeeeee senses eeeneneeaeneneees 2-3

Tips and Techniques for Creating Portable Codecc cece cece cence eens neneneeeees 2-3

Chapter 3 — Using Data Formats and Transfer Media

Loading Source Code and Datacc cece cece ec eeeeneeeeeneneneeeeeeteeeeeeneneenenenes 3-1

Loading from Tapecccccecece sce ece ec ee eee et ee eeeneeeenent eases eset ee eeeneeeeeenenees 3-1

Loading from Networkccccc ccc ecese eee eeeeee eee eeneeeeneneessneeeensnsesenentenenens 3-3

Understanding How Bytes Are Stored 2.0... ccc ee cc ee eee scene ee eeeeeeeeeeenseseneees 3-3

Chapter 4 — Setting Up the Environment

Using the Bourne and C Shells ccc ccc cece eee ee neces seca eneee eee eeeneeeeneen snes 4-2

Using sh and csh—the Differences ccc cece eee nee eee eee eeeeeeeneeneeeeen 4-2

Switching Between sh and CSh ccc cece cece cece eee e eee eeeeeeeeeeneeeeeeeeeenens 4-3

Writing Shell Scripts 2.0... ccc ccc cece cece eee ee eee eee e eee ee essen ees eneeeeeeeeseneeeees 4-3

Using Editread 22.0.0... ccc ccc cce eee e ee eee eee e eee ene e eee ee snes eee eee eee eee ene eee eee eee en 4-3

Manipulating the Line Discipline cc cece cece cence cent ene eee eee ene ee eee eaeneee ene 4-5

Switching Between the System V and BSD Line Disciplines0......... 4-5

Switching Between 7-bit and 8-bit Line Disciplines cece eee e eee 4-6

Handling File System Issuesccccce cece cence eee e eee ee eee ne ee ene eens ene eeseeeeeneenen es 4-7

Recognizing Differences Between the DG/UX and the System V File Systems 4-7

Working with the DG/UX /dev Directory 00.0... ccc cece cecececeee een eeeenee ees 4-8

Chapter 5 — Working with Terminals and Keyboards

093-701047 Licensed material—property of Data General Corporation V

Contents

Using Terminal Interfaces 2.0.0... ccc ccc cece cence cence reece ence eee nena ee eee eee ee en ee ee eee 5-1

Working with curses Routinescccccccccees esse ee eeeeeneeeesenseeeneneeseeneneeseaes 5-1

Working with terminfo Routinescccc ccc cece ec eee cence nee ene eens ee eneeneneenenes 5-2

Working with termcap Routinesccccce cece cece cece cence eeeee sees en eneneneneeeeeees 5-2

Working with Supported Terminalsccccccccecsecceecececeeeeeeeceeeeeeneeeeeneenenes 5-3

Using Data General Terminals in Emulation Modesccececeeeeeeeeeeees 5-3

Using DEC Emulation modeccc ccc ec ceceecec eee eceeeeeeeneeeeeeeneeeeees 5-3

Using Tektronix Emulation Modeccccccccccc eee eecee eee enenseeeeenenenees 5-3

Using ANSI Mode 1.0.0... ccc cece cece eee ee eee eeeeneeeeeeneneecesneeeeseeeeeeeetenes 5-4

Using xterm Emulation Modesccccceceeceee eee eeceeeeceeenseeenseeeaensens 5-4

Using a Graphics Console on a Workstationccccccececeeeeeeeneneneeeeeneees 5-4

Using Data General Terminal Featuresccccecececececee ee eenceenenenenenenees 5-5

Working with Character Setsccccccccccccececec essences eeeee ence eee eee ee ee ence ee eeeeeeeen es 5-5

Using International Keyboardsccccecececc ec eeceecneeeeeeneneeeneeeeeeeeteneneneeees 5-6

Chapter 6 — Using Software Development Tools

Checking C Syntax (lint) 2.0.00... cece ce ccc eeeececeeeeeeeeseneeseeenenseeeseeseeeseeeeeeeeeeeneees 6-2

What is Lint? 2.0... . cece ccc cce nce ee eee eee n eee ne ence eneene ene ene sees eseensenseeeeeeeeeseseesenss 6-2

Using Tmt cece cece cece ence ence eee e nee eent eens eens eee ee ences ene ee ene ee en een eee ees 6-2

Understanding Differences Between cc and lintc cece cece eee cece ee eeeees 6-2

Interpreting lint Messagescccccccesece ec ee ee eeneeeeeeneeeeneneee eee neeeen eee enenees 6-3

Building Complex Programs (Make)cccescecssceceeeceeceeeeceeneeeeseeneeeeeeeeeeees 6-5

What is make?ccccccc ccc ec ese ec cece nee ee ences eens ee eee ences eee eases ensenseeseeee sees 6-5

Using make 2.0... cece cece eee ee eee e ence ence een ee eee nee eee teen eens ee eee nent EE ee Ee EEE Ee eS 6-5

Using System V or BSD make: the Differencesccececececec ec ee eens eeeees 6-6

Controlling Source Code oo... cece ec ec ee ee sees ee eee ee eeeeee nena eens ease ee ee en eneeeeeenen ones 6-7

Using the Revision Control System (RCS)cccccecccceeeccesenee eee eeneeneenenes 6-7

Using the Source Code Control System (SCCS)ccccceceececeeceeceeeeeeeeeneees 6-9

Debugging Application Programsccccceeeeee ene ne rene ee ne ne ee en eee eneneneneeeenen eens 6-11

Preparing for a Debugging Sessionccccececeneeeeeeeeeenee ee eneneneneenenenenes 6-11

Getting Started With Sdb ccc cece cece eee reece cece eee ee eee teense e eens eens eee: 6-11

Using Preprocessor FUNCTIONScccecece eee ec eee eee e ence ence eee e seen seen seen ene en es 6-13

What Is a Preprocessor?ccece ee ece cece eee e nee e nee e nee e eee ne eens nent eee eee es 6-13

Using Preprocessor Directivescc ccc ececene cence ene ee ee nena een eeeeeeeeneneneeenes 6-13

Editing Source Filescccceccceccccecececee ee ee ee ee nen e ee ee eens nena eee eens nese enen nen eneens 6-15

USING Vi oo. e ccc e cece cece ence ence eee n ee eee nee e eee eee eee ee eee eee ene EE Eee EE EE EE eee t ent eee eeee® 6-15

USING Cd ooo. cece cece eee ee cence eee n cence ence eee e teens eE ee eRe EERE EEE RHEE EERE REESE EERE EE EE EGS 6-15

USing S€d oo... eeece cece cece cence cence eee een e eee e eee e nent ee eee ne eee Rent EEE EERE ED EEE EE EE EE EES 6-16

Chapter 7 — Compiling and Linking Programs

Compiling C Programscccccececseeeec ee ee ee ee eee een e nee e ence ences a eens nee e eee ree ee eE 7-1

Compiling FORTRAN Programsccccec ec ec ee ne eee ee ee eee e eee e nee ee eens nee en en eee es 7-3

Compiling Pascal Programscccccceeecee ee ee eee e enn e eee e ence teen eee e ence teen EEE EEE 7-4

Assembling and Linking Programscccccecec ec ec eee e ence eee e ence ene eens nen eeeees 7-4

Chapter 8 — Using Libraries And System Calls

Comparing BSD and AT&T Librariescccececececnecee ee eeneneeneeneneaenenneaeeeees 8-1

V1 Licensed material—property of Data General Corporation 093-701047

Contents

Handling Signalsccc ccc cece cee ce cece eee eee ne ence enna ene e ne eee eee ene nee eeeeee eae eaes 8-1

Using the I/O Control Systemc cee eee ee cence eee een e ee ee eee neneneeaeeeneneeeeaes 8-3

Using DG/UX-specific Routines 20.0... cece cece ee ee cere rene neta sees nent nena eee e es 8-4

Handling Common Porting Problemsccc ccc cece cece ee ee ee eeeeeneeeeneeeeeseenaeas 8-5

Missing Library FUn ction ccc cece eee ce cence cece nsec eeeneeeeeseeeeenseeeneneneeeees 8-5

Misuse of Library Implementation Internals cece cee ee eee eee ee eeee 8-5

The flock Library FUMCtiOnN 20.0.0... ccc cece ccc e eee e nee nee e enact eeee esas eeaeeneeeeees 8-6

Reserved Subroutine Name Error ccc eee ce eee ee eee se ence eee eeeseeseee ens eneeaees 8-7

Variable to Subroutine Naming Error 20.0.0... 0. cece cece eee ee eee e ee ene ene eneenees 8-7

The sigpause System Call 2.0.0... ccc cece cence ence ence eee e ee ee ne ee sees ene ne ee ee es 8-8

Chapter 9 — Understanding Hardware Architectural

Issues

Handling Alignment and Storage Layout Issuesc cic cee ce cece ee ee nena eee es 9-]

Using the NULL Pointerccc ccc cece eee e cece eee e eee eneeneee ene eeeeeeneen ene en es 9-2

Meeting Structure and Union Alignment Requirementsccceeeeeee. 9-3

Meeting Integer Alignment Requirementscccccecc cece eee ee eee eeeeeeaenenees 9-3

Using Signed/Unsigned Characters or Integerscccccececeeeeeeeee eens seen ees 9-3

Passing Structures and UNionscccccce cece cece eee ee nescence eneeeeeeeeeneneeeeneeees 9-4

Using Floating-point Formatcccce ccc cce cece cence ence eens eects eeeeneeneeneeeeeeeeeees 9-5

Handling Memory Layout ISsueScc ccc cece eee ee eee eee e ee ene ene eneeneeeeeeeneenees 9-5

Reserving and Using Dynamic Storage cece ccc ee cece eee ne teens eeeeeeneeees 9-7

Retrieving Arguments from the Stack cece cece eee e eee eeneeeeeeeeeneeaees 9-9

Programming In A Multi-Processor Environmentccccceceeceee eee ee eee eeee ene 9-10

Chapter 10 — Porting Graphical Applications

Controlling the Graphical Software Environmentccc cece ce cece eee eee eens 10-3

Controlling the Graphical Hardware Environmentccc cece eee e ee eee ee eeeeeee es 10-3

Controlling the Build and Run Environmentccccc cece sce ec esse ceases ee eeeeees 10-4

Porting to the X Window System cece cece cece eee e eee ee ee eeeeneeeeaeneseeee ene 10-4

Using Software Development Toolscccc cece cece eee eee ee eee eeeeeeeeneeennes 10-4

Handling X Terminal Issues cece ccc ec eee eee eee nc eee eneeneese reese enseneeaees 10-4

Graphical Issues for All Applications 00.0.0... ccc cc cccce eee ce eee ne ne eeeeeeneenene eee neeees 10-5

Determining the Current Environment 0... e cece cece cece econ eee ences eeeeeneeenaes 10-5

Chapter 11 — Building and Running BCS Applications

Appendix A — DG/UX System Calls and Commands

7S) os 0 Or) | A-1

User and Programmer Commands cc ececeeeececeee eens ee ences eneeeeeeneeeeeeneneenes A-8

Administrative Commands.ccceeec eee eeceeeeeeee scene ene eeeeeeeeeeeeaeeeseneenseeeenes A-15

Appendix B — Comparison of C Compilers

093-701047 Licensed material—property of Data General Corporation Vil

Table

5-1

5-2

6-1

6-2

6-3

A-1

A-2

B-1

Vill

Tables

Workstation Monochrome Monitor Features cece cece sees eee ee eee ees 5-5

Features of D216, D412, and D462 Terminals 0... c cece cece e eee ees 5-5

Commonly Used sdb Commandscecececeeeeceeeneececeeeneeeeeeneneees 6-12

Summary of Basic vi Commands cc cccece sees ee ee ence eee eneeaeeeeeeeneees 6-15

Summary of Basic ed Commands cece ce eee cece cee ee ene eee eee enseeeeeas 6-15

Summary of System Calls cece cece eee ec eeeee eens enceeeeeeeeseeeeneeees A-1

Summary of User and Programmer Commandssceeeeeeeeeeees A-8

Summary of Administrative Commandseceeeeeeeeeeceseee eee eeees A-15

Comparison of C Compiler Options 2.0.0.0... cece ee ece eee ee eens eeeeeeecnseneneeees B-1

Licensed material—property of Data General Corporation 093-701047

Figure

9-1

9-2

10-1

Figures

Program Layout in Memory:seeseeeeeeeee nese eee een eee nec eee anee nese eee eeseeees 9-6

Shared and Unshared Memory Segments In The General Storage Area ... 9-8

Conceptualized Environment Architecturecseceeeeeeeneee nee nee eens 10-2

093-701047 Licensed material—property of Data General Corporation 1X

Chapter 1

Introduction: Porting and UNIX®

Standards

Data General’s DG/UXTM product family provides a robust UNIX® environment

that complies with many of the existing UNIX standards; nonetheless, your source

code may require some changes to run optimally in this environment. This chapter

discusses the applicable standards and discusses why porting is necessary. The

chapter identifies the major standards activities and organizations and describes how

Data General’s DG/UX product family relates these standards.

The chapter contains the following sections:

@ Overview of Porting and Standards

e Standards Organizations

e Binary Standards and the BCS

@ Operating System Standards

e User Interface Standards

@ Language Standards

® Communications Standards

® Other Standards

e Summary

093-701047 Licensed material—property of Data General Corporation 1-1

Overview of Porting and Standards

Overview of Porting and Standards

To "port” software means to transport it to a new operating environment; that is,

to get software currently running on one machine to run on another. This manual

outlines the areas of your code and your assumptions about the operating

environment that you should examine for compatibility. The conventions described in

this manual work on most other UNIX systems.

The DG/UX system fully supports the Binary Compatibility Standard (BCS) for

the Motorola 88000 architecture. That means that any program you build within a

BCS environment will run on Data General’s DG/UX system. Additionally, the

DG/UX system provides several extensions beyond the basic BCS functionality.

Refer to Chapter 11, "Building and Running BCS Applications,” for more information

on BCS compatibility.

The UNIX® operating system forms the basis of a highly portable software

environment. Data General’s DG/UX operating system complies with many of the

official and de facto standards for UNIX systems.

When you say UNIX-compatible, you must say what compatibility standard you

are using. There are several UNIX compatibility standards, and programs built toward

one standard may not run on systems built toward another. For example, one

standard may not include all the commands or systems calls specified in the other

standard.

The existence of multiple standards complicates the goal of portability. Multiple

standards exist because the UNIX system has followed an evolutionary path rather

than a planned development cycle. The power of the UNIX operating system stems

from its flexibility: the UNIX system was designed to encourage enhancements.

Programmers modified the operating system to run on various hardware platforms.

Users and vendors enhanced the operating system to meet the needs of their

environment, adding features and interfaces as needed.

A major goal of standardizing the UNIX system is to achieve application

portability. There have been several approaches to standardizing, as represented by

the types of organizations that define and collect UNIX-related standards. Adherence

to one or more standards achieves varying levels of functionality. As it has

traditionally been implemented, UNIX is standard only in concept; each

implementation includes differences that require application code to be customized

before it will run on a particular UNIX platform.

1-2 Licensed material—property of Data General Corporation 093-701047

Standards Organizations

Standards Organizations

This section discusses 88Open, OSF, ANSI, IEEE, NIST, and FIPS.

88Open Consortium

The 88Open Consortium is a cooperative group of vendors who are building

systems based on Motorola’s 88000 chip set, and who are working together to create a

compatible family of UNIX systems. Although the hardware and software offered by

each vendor may differ, application software that conforms to the BCS standard

should run on all platforms. Data General is a member of the 88Open Consortium.

OSF

The Open Systems Foundation is continuing to define a standard operating

environment, including the operating system and user interfaces. Data General is a

member of this consortium.

ANSI

The American National Standards Institute defines many kinds of standards.

ANSI committees that are relevant to the UNIX environment include language

standards committees, and communication standards committees.

IEEE

IEEE is a trademark of the Institute of Electrical and Electronic Engineers, Inc.

IEEE is defining the standard for Portable Operating System for Computer

Environments (POSIX).

NIST and FIPS

The National Institute of Standards and Technology (formerly called National

Bureau of Standards) is producing a Federal Information Processing Standard (FIPS)

based on IEEE 1003.1. Work is currently underway to bring the FIPS specification

and the adopted POSIX specification into agreement.

093-701047 Licensed material—property of Data General Corporation 1-3

Binary Standards and the BCS

Binary Standards and the BCS

Conceptually, there are three levels of application portability standards: source,

object, and binary (executables). A source level standard is the most flexible of all

standards, but it requires that the application code be recompiled and linked for all

target systems. An object level standard would allow software vendors to ship their

software in compiled, but unlinked form. This would allow the system administrator

or end-user to link the code with the appropriate libraries for the target environment.

No object level standards currently exist; however, Data General is closely tracking

the definition being proposed by the 88Open Consortium. A binary level standard

presents a "load and go” environment to applications in which the binary program can

be copied from the distribution medium and executed without compiling or linking.

Data General adheres to the BCS that has been defined by the 88Open Consortium.

The Binary Compatibility Standard (BCS) that has been defined for Motorola’s

88000 architecture enables programmers to create software that can run on all BCS-

compliant systems without recompiling and relinking the software. To be portable,

the code must be developed on a system that follows the BCS specification, and must

not use any extensions provided by that environment. The DG/UX operating system

is a BCS-compliant operating system.

The BCS definition includes provisions for referencing non-standard functions

and system calls from within a conforming application. To achieve this functionality,

a program needs to test its operating environment, and provide an alternate (non-

standard) code path if (and only if) that option is available in the host environment.

The BCS standard does not currently define the networking or the graphics

environment; therefore, applications that require these extensions cannot fully

conform to the BCS standard. Compliant programs can access system-specific

extensions through the "syslocal” interface. Any application that is BCS compliant

can run on the DG/UX system.

The BCS coexists with the Application Binary Interface (ABI) defined for the

System V environment. AT&T has endorsed the 88K BCS as a compatible

implementation of the ABI.

1-4 Licensed material—property of Data General Corporation 093-701047

Operating System Standards

Operating System Standards

Operating system standards define the features of the development and runtime

environment. There are many UNIX operating system “standards” that are in use

today: some of these standards conflict, but in many cases they can coexist. Data

General has always been committed to standards, and the DG/UX operating system

follows the following source-level operating system specifications as closely as

possible.

System V as defined by the System V Interface Definition (SVID) and validated with

the System V Verification Suite SVVS. The DG/UX system is based on

AT&T’s release V.3.

BSD Berkeley Software Distribution.

POSIX the Portable Operating System Interface definition produced by IEEE

1003.1

FIPS the Federal Information Processing System specification of POSIX.

OSF the Open Software Foundation does not currently define an operating

system standard; however DG is tracking the efforts of this organization.

System V, SVID, and SVVS

AT&T created and licenses this version of UNIX System V. There have been

several releases of the System V version of UNIX: these are generally referred to as

System V.1, System V.2, System V.3, and System V.4. This version of the software

is used as the basis for many UNIX derivatives, including the DG/UX, XenixTM, and

AIXTM systems. AT&T has also created the System V Interface Definition (SVID)

and System V Verification Suite (SVVS). Before it can be called SVID-compliant, a

System V UNIX derivative must pass the SVVS. The suite contains several sections;

not all are required for compliance. The DG/UX system passes the verification suite.

Berkeley Software Distribution (BSD)

The BSD version of UNIX offers different functionality than the AT&T System

V version, although BSD was originally derived from AT&T System III.

The current version of the DG/UX System provides most of the system calls,

commands and features defined in the BSD 4.2 UNIX system, including the Network

File System (NFSTM), networking and sockets, r-commands, job control, and the C

shell (esh).

The SunOSTM and UltrixTM operating systems are based on the BSD UNIX

system.

093-701047 Licensed material—property of Data General Corporation 1-5

Operating System Standards

POSIX

The standard for Portable Operating System for Computer Environments

(POSIX) is being defined by IEEE committees. In some cases, this standard conflicts

with the SVVS. Several related IEEE projects each describe a component of POSIX:

1003.1 is an interface specification for a portable operating system based on the

UNIX operating system; 1003.2 describes the command shell and tools; 1003.3

outlines verification test procedures for a POSIX operating system; 1003.4 describes

realtime extensions for such a system; 1003.5 describes an Ada Binding for POSIX;

1003.6 is outlining security issues for POSIX. POSIX is no longer a trademark.

FIPS

The National Institute of Standards and Technology (NIST) is producing a

Federal Information Processing Standard (FIPS) based on TEEE 1003.1 (POSIX).

Although FIPS POSIX and the final IEEE POSIX have some differences, work is

currently underway to bring the standards into agreement.

OSF

OSF is incorporated as a non-profit research and development organization that

will define specifications and promote an open, portable application environment.

The foundation will provide a system that is based on IBM’s AIX core technology,

and includes features to support current System V- and Berkeley-based applications.

Specifications supported by OSF will be publicly available, and a set of verification

tests for all appropriate facilities will be identified or created.

User Interface Standards

User Interface Standards

This section discusses the X/Open organization and the X Window SystemTM.

@ X/Open

X/Open was founded in 1984 as an international non-profit organization

whose goal is to facilitate the consolidation of standards into a single

comprehensive and coherent set. The consortium adopts existing official or

de facto standards and collects them to define the Common Applications

Environment (CAE). The CAE currently addresses operating system

services, programming languages, and data management. Data General is

tracking these standards.

e X Windows

The X Windows graphics standard is defined by the distribution tape of X

software from MIT. The DG/UX system provides a full implementation of

the X Window environment, and provides many of the clients. Data General

is currently tracking user interface standards, and expects to support the

MOTIF standard in a future release.

Language Standards

This section discusses the C language and other languages.

@e C Language

Almost all UNIX systems include the C programming language, since most

implementations of the OS are written in C. The three primary C language

standards are the definition by Kernighan and Ritchie in their book, The C

Programming Language, the evolving ANSI standard for the C Language

(ANSI Technical Committee X3J11) and the de facto pcc standard. These

standards define various compiler defaults, options, and features. Data

General supports several C compilers that support these standards and meet

a wide variety of needs. Separate sections of this manual describe the classic

portability issues of the C language, and compare several of the C compilers

available on the DG/UX system.

® Other Languages

Data General supports other languages, including Green Hills FORTRAN

and Pascal. The LPI languages, including COBOL, BASIC, Pascal,

FORTRAN, PL/I, and the CodeWatch debugger, will be available in the

future. These languages and their standards are discussed in separate

documentation. Recognized standards include ANSI FORTRAN-77, ISO

Pascal, ANSI COBOL-74, ANSI COBOL-80.

093-701047 Licensed material—property of Data General Corporation 1-7

Communication Standards

1-8

Communication Standards

This section discusses ONC/NFS, RFS, TCP/IP, and IBM communications.

@ ONC/NFS - Open Network Computing/Network File System

The DG/UX system implements the NFS file sharing system licensed by

SUN. This product allows different operating systems on a variety of

machines in a single network to share file systems by remote access,

promoting an efficient distributed environment. The current release includes

support for RPC, XDR, netdisk and services. Data General systems can

participate fully in an inter-vendor NFS network.

RFS

RFS is the AT&T implementation of file sharing. This standard is less

widely used than NFS and cannot inter-operate with NFS. Data General

does not support RFS on the DG/UX system.

TCP/IP

The TCP/IP (Transmission Control Protocol / Internet Protocol) standards

situation is far from straightforward. The set of protocols to which TCP/IP

refers were originally implemented under Department of Defense funding to

standardize the way resources are shared across a network.

For a complete description of Data General’s implementation of TCP/IP, see

the TCP/IP manuals listed under "Related Manuals” after this manual’s

index. Data General’s version of TCP/IP is derived from the UC Berkeley

implementation, with modifications to support the Military Standard.

Since the original standards were actually implemented by researchers on the

ARPAnet, one of many subnets of the huge Internet network, these

protocols are widely known as the Internet protocols. Today there are many

different implementations of the TCP/IP protocol set, with the following set

of specifications forming the core for development.

e Official Internet Protocol Documents: Published by SRI

International, this three-volume set contains collections of

documents outlining implementation specifications for the TCP/IP

set of protocols. The documents are revised often. Each

specification is referred to as an RFC (Request for Comments).

® Military Standard: Also referred to as the TCP/IP Mil_Spec, this

set of 5 DoD documents are a more formalized rewrite of the

Official Internet Protocol Documents. There are some

inconsistencies between these documents and the SRI publication.

® UC Berkeley TCP/IP: Under DARPA (Defense Advanced

Research Projects Agency) funding, Berkeley adapted the TCP/IP

networking software to run on the UNIX system, within the

framework of the Berkeley socket systems calls. The networking

Licensed material—property of Data General Corporation 093-701047

Communication Standards

software was released with the BSD 4.2 (Berkeley Software

Distribution) version of UNIX for use in local area networks. This

implementation has now become a de facto standard and is in

widespread use.

@ Streams TCP/IP: Several companies have recently modified TCP/IP

to use the streams I/O interfaces provided by AT&T’s UNIX

System V.3.

IBM Communications

SNA is a de facto communication standard in commercial environments.

The DG/UX system supports SNA communications with the DG/UX

SNA/3270 package. Refer to separate documentation for a full description

of Data General’s implementation of SNA.

Other Standards

Following are some other computer standards:

093-701047

Object file format

The object file format used by the DG/UX system is defined by the BCS

model. This format extends the standard COFF (the Common Object File

Format) definition.

International Support

The international character set requires 8-bit support from both the operating

system and from application software. The DG/UX system preserves 8-bit

support in the kernel and most commands, consistent with AT&T V.3.

ABI

The Application Binary Interface, as defined by AT&T, recognizes the BCS

as a compatible implementation.

SAA

IBM’s Systems Application Architecture (SAA) provides users with a

Common Programmer Interface (CPI) layer for required services. This

concept allows functions to be performed similarly in a number of

specifically targeted software/hardware environments. IBM has not currently

targeted AIX, its implementation of UNIX, as an SAA platform.

Licensed material—property of Data General Corporation 1-9

Summary

Summary

Standards simplify the porting process, but do not solve all porting issues.

Programmers can help ensure the portability of software by following recognized

coding standards and practices. Programmers cannot control the compatibility of

operating systems, and instead should design code that isolates any operating system

or machine dependencies as much as possible.

Standards-based computer platforms promote compatibility, which eases the task

of moving software between systems. Many programs are compatible at the source

code level. That means that by compiling and linking the software on the target

machine, you can create executable code on the target machine that is equivalent (but

not identical) to the executable code on the source machine. This process is generally

called “porting.” The complexity of the task varies with the complexity of the code

and with the compatibility of the source and target systems. This manual outlines the

major components of porting, at both an overview and a technical reference level.

Application software that conforms to the BCS standard fully can be run on the

DG/UX system with no changes, although software vendors may want to use the BCS

extension features to allow the software to take advantage of DG _ features.

Application software that conforms fully to operating system and language standards

can generally be ported to the DG/UX system with a simple recompilation and relink

process.

End of Chapter

1-10 Licensed material—property of Data General Corporation 093-701047

Chapter 2

Getting Started: Outlining the

Porting Process

Porting issues generally divide into three categories: operating system and user

interface issues, compiler issues, and architecture issues. Moving software to a new

machine often requires a careful review of both the code and the environment. This

chapter outlines the porting process. Chapters 3 through 11 of this manual looks at

the specific issues of porting in detail.

A Porting Checklist

The following checklist of activities will help ensure that your porting process

proceeds smoothly. Vendors who have not ported their software before will want to

review each step in this list carefully. Those vendors who have ported their software

to many systems may want to refer directly to Chapters 3-11 of this manual.

1)

2)

3)

4)

093-701047

Load files and verify the file format. (See Chapter 3 if you have any issues

with this step.)

Determine the language that you will use. The DG/UX system supports a

broad range of compilers.

Review the environment requirements. The DG/UX system supports both

the System V and the BSD environments. Some commands may have

different implementations in each of these environments. Refer to the man

pages for details on each command. Your shell scripts should be written to

specify the shell. The DG/UX system supports a full range of terminals, and

uses both the termcap and curses/terminfo interfaces. Refer to Chapter 5 of

this manual for more details.

Review the code.

Look for dependencies on header files, redefinition of system functions, or

dependencies on machine architecture. If your code makes assumptions

about the filing system or directory format, or tries to access inodes directly,

you will want to review Chapters 5, 8, and 9 in this manual. If your code is

derived from a BSD system, refer to Chapter 8 to determine if the system

files and libraries are in the “standard” location. If your code uses

malloc(3C) routines, review Chapter 9 in this manual.

Licensed material—property of Data General Corporation 2-1

A Porting Checklist

5) Run the lint utility program on the files. Use the make script, if it contains a

lint entry point. Chapter 6 highlights the classic porting issues and

compatibility problems that are flagged by the lint utility. Missing definitions

may be related to how your program references libraries.

6) Try to compile and run your program(s). This step should go smoothly if all

lint errors have been resolved, and the correct libraries are accessible. Refer

to Chapters 7 & 8 for discussions of library and compiler issues.

7) Use a debugger to help isolate and resolve problems. The system supports

the sdb debugger. Refer to Chapter 6 for an overview of debugger options.

Understanding User Interface Issues

The DG/UX system supports both the System V and the BSD environments.

That means that you have your choice of shells when running on this system. The

different shells may cause commands and user interaction to behave slightly

differently than expected. You should ensure that all shell scripts indicate the shell in

which they should run. Refer to Chapter 4 for a discussion of the general

environment options.

If you have dependencies on terminal features, refer to Chapter 5.

The program’s make file will typically define the development environment needs.

The AT&T make utility provides a way to define dependencies and relationships

between programs and system utilities. Specifically, make files should define the

compiler arguments and options, and the libraries that are linked into your program.

The DG/UX make utility conforms to the standard make and dependency rules.

Chapter 4 of this document provides additional suggestions on using the make utility

in the porting process. The DG/UX tools manual provides a full description of all

make options.

Understanding Compiler Issues

Most coding issues can be resolved by rigid adherence to the C standards as

described by Kernighan and Ritchie, and by the emerging ANSI standards. Most

potential problems can be identified and resolved easily; some of the more common

issues are noted below.

e Differences between ANSI features and pcc features can generally be

resolved by selecting the appropriate compiler switches.

e Structure alignment requirements may introduce padding, which may result

in unintended data formats.

e Explicit type casting of function pointers and return values is recommended

to ensure that appropriate values are passed between routines.

2-2 Licensed material—property of Data General Corporation 093-701047

Understanding Compiler Issues

Calling conventions should conform to the varargs semantics.

Character and integers may be signed or unsigned. Explicitly specify your

preference with the appropriate compiler switches to avoid unexpected

definitions and runtime results.

Understanding Architecture Issues

The DG/UX system is based on Motorola’s 88K architecture. You will need to

review your code to ensure that it meets the following architectural requirements:

Floating point calculations will use the IEEE-754 format.

Stack growth is generally downward (from higher addresses to lower

addresses), but this may vary based on build options. Directly manipulating

the stack is not recommended.

The DG/UX system handles signals based on the BCS model.

The DG/UX system expects "big-endian” byte ordering of the data.

The DG/UX system uses 4K page size calculations.

Tips and Techniques for Creating Portable

Code

The general tips for creating portable software are:

093-701047

Use specified interfaces.

Standards define user interfaces and the functionality of an operation;

however, implementation specifics may differ among vendors. Code that

conforms to the described user interface rather than the implementation

behavior is generally portable to other host UNIX systems, even if their

implementation differs. For example, Data General’s DG/UX system uses a

proprietary file system structure, but still supports all standard filing system

interfaces.

Use curses and terminal libraries.

The DG/UX system includes robust definitions of Data General terminals.

Use lint.

The lint program will help identify potential problems with your code. Code

that runs through lint cleanly should not raise porting problems.

Use type casting with pointers.

Although many systems will allow you to use mis-matched pointers, this

Licensed material—property of Data General Corporation 2-3

Tips and Techniques for Creating Portable Code

coding practice may introduce bugs that are difficult to identify as you port

your code across various architectures.

Use care when defining and passing structures.

The semantics for passing structures do not follow a set standard. If your

code passes structures rather than pointers to structures, you should review

the appropriate language reference manual, and ensure that your code

conforms to the language requirements. Also, many compilers will introduce

padding into structures as required by the machine architecture. These

alignment requirements may produce unexpected results at runtime if your

code uses implicit unions (references an entity differently than it is declared).

Use rigor in processing signals.

Review code that handles signals to ensure that appropriate signals are

trapped and processed. The numbering scheme for signals is changing to

allow merging BSD and System V support. The system header files define

the signal names and numbers that are recognized by the DG/UX system.

Use IFDEFS to identify code changes.

This technique will allow you to maintain a common code source that can be

compiled and run on many different environments.

Isolate modules that interact with hardware.

Code may need to depend on its operating environment. When this is

necessary, the code is easier to identify if it is contained in an independent

code module.

End of Chapter

Licensed material—property of Data General Corporation 093-701047

Chapter 3

Using Data Formats and

Transfer Media

This chapter explains how to transfer your program to the DG/UX system using

various media and data formats.

Loading Source Code and Data

The first step in porting a program is to get your program source loaded onto the

system. Usually, you will load either from tape or from network.

Loading from Tape

The QIC 150 MB QIC cartridge tape drive is a fully supported SCSI device on

the DG/UX system. You may also read and write QIC 120 MB cartridge tapes; QIC

40 MB and 60 MB cartridge tapes may be read only. The different tape densities are

selected by entering the appropriate device name in the read/write command line.

In addition to the QIC cartridge tape, the 1600 BPI 1/2 inch reel to reel SCSI

tape drive is supported by the DG/UX system. It is possible to connect other SCSI

tape drives, however, the device must be compatible with the DG/UX SCSI device

drivers. The DG/UX SCSI device drivers require two optional commands described

in the ANSI SCSI-1 specification: inquiry and space. The optional commands

supported but not required are ready, mode sense/select, and erase.

The DG/UX system supports the standard epio(1), tar(1), and dd(1) utilities used

by most UNIX systems to write to a tape. To write tapes, use the appropriate utility

along with the device name to specify the tape drive/density.

Note: Because they depend on the structure of the file system, finc, frec, and volcopy

should not be used when porting applications; using these functions will make your

code LESS portable to other systems.

You can use three commands to load from a tape:

cpio The format of cpio tapes depends on the architecture of the system on which

they were written. The cpio compatibility option (—c) lets you read the

headers of a tape from any system, and is compatible with the POSIX

093-701047 Licensed material—property of Data General Corporation 3-1

Loading Source Code and Data

tar

dd

3-2

extended cpio format. The tape must have been written using —c and must

be read using —c. While —c lets you read the header, it does not help you

read the body of the tape. In particular, the byte order of information in the

body of the tape may be swapped compared to the DG/UX system. If the

bytes on your tape are swapped, use the cpio -s option to swap the bytes

back as they are read in. The default byte order for cpio on DG/UX is

"Big-Endian”, where the most significant byte is stored in the lowest address.

The default blocking factor is 512 bytes. You can use the —B option to

select a blocking factor of 5120 bytes, and the —C option to specify the size

of the blocking factor in bytes.

The following command line will usually work for reading cpio tapes:

cpio -icdvB < device_name

The following command line will copy files to a tape:

Is *.c | cpio -oB >/dev/rmt/0n

All files in the working directory with the .c extension would be copied to

the tape on /dev/rmt/0n. The —B option blocks the tape at 5120

bytes/record, and writing the file to /dev/rmt/On leaves the tape positioned at

end-of-file (instead of rewinding it). Using the no-rewind tape feature, lets

you make multivolume tapes. If you want the tape to rewind, specify

/dev/rmt/0 in place of /dev/rmt/On.

We recommend that you use the following tar command line for reading tar

tapes:

tar -xvf device_name

The —x option extracts the named files from the tape and lets tar read the

tape in the same blocking factor used to write the tape. tar is compatible

with the POSIX extended tar format. Note: The POSIX implementation of

tar will not be available in the early software release.

dd lets you read and write tapes with no effect on file format. It is possible

to do conversions, such as ASCII to EBCDIC or blocked to unblocked; and

the files=n option allows concatenation of multiple input files for tape.

Cases when dd would be used, include:

@ Reading non-standard formats or tapes from non-UNIX systems.

@ Reading ANSI tapes.

@ Writing system-boot tapes.

Licensed material—property of Data General Corporation 093-701047

Loading Source Code and Data

Loading from Network

The DG/UX system supports the TCP/IP communication network and the

Network File System (NFS) network file sharing system.

The File Transfer Program (ftp) can be used to transfer files from one host to

another using TCP/IP. On a diskless workstation, you will be mounted on disk(s)

with the Network File System. Use a remote tape device to load your tape onto a

disk mounted on your system.

Another mechanism for transferring files from one UNIX system to another is

the rep program. rep can copy directory trees as well as files.

The DG/UX system also supports uucp with the Honey-DanBer enhancements

for UNIX to UNIX copies. Refer to the User’s Reference for the DG/UX System

manual for more information on uucp.

When porting from non-UNIX environments, you may also use the DG/UX

system serial port to load your sources. An asynchronous communications protocol

package such as kermit, would be required.

See the Installing and Managing DG TCP/IP (DG/UX) for details on TCP/IP

setup; and see Managing NFS and Its Facilities on the DG/UX System for details on

NFS setup.

Understanding How Bytes Are Stored

Byte ordering refers to the order in which bytes are stored in a computer’s

memory. The computer’s hardware architecture determines the byte ordering.

Consider a 32-bit word made up of four bytes: bO b1 b2 b3, where b0 is most

significant and b3 is least significant. In "Big-Endian” systems, the bytes are stored

with bO in the lowest address position: bO b1 b2 b3. In "Little-Endian” systems, the

bytes are stored in reverse order: b3 b2 b1 bO.

The AViiON system, based on the MC 88000 architecture, stores data with the

most significant value at the lowest address, i.e. Big-Endian byte ordering. Other

Big-Endian systems include Data General’s MV/Family, MC 68000, SPARC, and the

IBM 370 architectures. Little-Endian systems include Digital’s VAX and Intel’s 8086,

80286, and 80386 architectures.

As you can see, byte ordering varies with the different hardware architectures.

Portable programs do not depend on a specific architecture or byte order.

End of Chapter

093-701047 Licensed material—property of Data General Corporation 3-3

Chapter 4

Setting Up the Environment

This chapter describes how to set up the programming environment. Major

topics are as follows:

@ Using the Bourne and C shells

@ Manipulating the line discipline

e Handling file system issues

093-701047 Licensed material—property of Data General Corporation 4-1

Using the Bourne and C Shells

Using the Bourne and C Shells

The DG/UX system supports two shells: the Bourne shell (sh) and the C shell

(csh). The Bourne shell is part of AT&T UNIX System V. The C shell is part of the

Berkeley UNIX System.

This section describes the following topics:

e Differences between sh and csh

e Switching between sh and csh

@ Shell scripts in sh and csh

e Using Editread

For more information on shells, shell scripts, and editread see Using the DG/UX

system.

Using sh and csh—the Differences

Both the Bourne shell and the C shell perform basically the same functions, but

there are a few differences:

@ The C shell has a history facility and an aliasing facility; the Bourne shell

does not. However, DG/UX does provide editread, a history and line

editing facility that can be used in both shells.

@ The C shell has more features for job control. In csh you can run a job in

background mode and bring it into foreground mode. In sh, you can also

run a job in background mode, but you cannot bring it into foreground

mode. In csh, if a job running in the background tries to do terminal I/O

the job will be stopped. The job may be restarted by bringing it into the

foreground. In sh, if a job running in the background attempts to do terminal

I/O it will not be stopped. This can cause problems because the foreground

job may also be doing terminal I/O.

@ There are some differences in shell programming language and syntax.

@ The Bourne shell uses the System V line discipline and the C shell uses the

BSD line discipline.

Switching Between sh and csh

Regardless of your login shell, you can change shells during a work session by

issuing the appropriate command.

4-2 Licensed material—property of Data General Corporation 093-701047

Using the Bourne and C Shells

To change to the Bourne shell:

% sh <NL)>

To change to the C shell:

S csh <NL>

To terminate the current shell and return to the shell that invoked it, use this

command:

<Ctr1-D>

NOTE: In the C shell only, if you set the ignoreeof variable, using <Ctrl-D> will

not terminate the shell. You will have to use the logout or exit command

instead.

Writing Shell Scripts

Before you write a shell script, you will have to decide which shell to use. It will

determine some of the commands, options, and programming constructs used.

You can execute a script written in the Bourne shell language in the C shell by

inserting this command in the first column of the first line:

#!/bin/sh

Similarly, you can execute a script written in the C shell language in the Bourne shell

by inserting this command in the first column of the first line:

#! /bin/esh

It is recommended that you put one of the previous commands at the beginning of

your shell script to ensure that it is executed in the proper shell.

Using Editread

The editread facility is a unique DG/UX system interface that you can optionally

invoke for editing command lines that you enter at either shell. Additionally,

editread offers a history facility that saves your previously typed commands for later

recall and execution. The history facility provides the same basic function as the C

shell history with some differences. For both shells, editread offers a broad range of

cursor control and line editing keys. The editread facility can also be used with other

DG/UX programs such as mxdb and crash.

Editread is initially off. To enable it and accept the default settings, follow these

procedures:

093-701047 Licensed material—property of Data General Corporation 4-3

Using the Bourne and C Shells

1) In your home directory, create an empty file and name it .editreadrc.

2) Log out and log back in.

3) To read a quick summary of the current editread default values, type this

command from the shell: <Ctrl-R>

The editread facility uses the TERM variable setting to determine some of the

characteristics of your terminal so it is important that this is set correctly. By default,

the process control keys defined in the editread facility are copied from your terminal

line discipline. As an alternative you may choose to redefine some keys in your

-profile file (or .login file for C shell users) and those key definitions will be exported

to editread. If you redefine a function in the editread facility, you should make a

corresponding change to your line discipline. Editread and your line discipline should

be in agreement.

NOTE: Editread may be slow over heavily loaded networks.

4-4 Licensed material—property of Data General Corporation 093-701047

Manipulating the Line Discipline

Manipulating the Line Discipline

The line discipline facility acts as the kernel’s interface to the terminal. The line

discipline intercepts data coming from the terminal, buffers it, and does some initial

processing of special keys. For example, if your program has requested a line of data

from the terminal, the line discipline will buffer this data as the data comes in,

interpret certain special keys, and when complete, pass the buffer back to the kernel

and thus to your program. On input or output to the terminal, the line discipline can

also be set to map certain functions to a particular control sequence.

In general, the line discipline’s operations are transparent to your program.

However, if terminal-control issues do arise, there are several areas related to the line

discipline that you may need to check. The following paragraphs are provided in case

you encounter terminal-control problems.

The DG/UX system supports both the System V and BSD terminal line

disciplines. Although these two line disciplines are largely the same, your program

may use some of the unique features of its source system’s line discipline. Therefore,

you may need to select the line discipline you need. You can use the ioctl(2) system

call or the stty(1) command to set which line discipline is active for your terminal (see

the ioctl(2) manual page in the Programmer’s Reference for the DG/UX System

(Volume 1) or the stty(1) manual page in the DG/UX System User’s Reference

Manual). Also notice that if you log in directly to the Bourne shell (sh), the System

V line discipline will be active. If you log in directly to the C shell (esh), the BSD

line discipline will be active. Whenever csh is executed on the DG/UX system, it

activates the BSD line discipline and restores the previous line discipline on exit.

Executing sh after initial login does not affect the line discipline.

If you are using a terminal interface library, your program must include a header

file that defines all line discipline characteristics so your program can refer to them by

name. termio.h defines the System V line discipline characteristics. sgtty.h defines

the BSD line discipline characteristics. For programs using BSD and System V line

disciplines, you use berk_sgtty.h in addition to termio.h. These include files are

described in termio(7), tty(7), ioctl(2), and modemap(7) (for more information on

termio(7), tty(7), and modemap(7) see the System Manager’s Reference for the

DG/UX System).

Switching Between the System V and BSD Line

Disciplines

Regardless of your initial login shell and line discipline, you can change from one

line discipline to the other by issuing the appropriate command at the shell prompt:

To change from the System V to the BSD line discipline: stty line 1

To change from the BSD to the System V line discipline: stty old

093-701047 Licensed material—property of Data General Corporation 4-5

Manipulating the Line Discipline

Switching Between 7-bit and 8-bit Line Disciplines

From either line discipline you can switch between 7-bit and 8-bit mode by using

the appropriate command at the shell prompt.

Under the System V line discipline -

To enable 7-bit mode: stty cs7 parenb parmrk

To enable 8-bit mode: stty cs8 -parenb -parmrk

Under the BSD line discipline -

To enable 7-bit mode: stty -pass8

To enable 8-bit mode: stty even odd pass8

4-6 : Licensed material—property of Data General Corporation 093-701047

Handling File System Issues

Handling File System Issues

The DG/UX system uses a file system structure that is, in most ways, compatible

with both System V and BSD. You will find the following System V features in the

DG/UX file system:

@ First-in-first-out (FIFO) special files (also called named pipes).

@ Newly created files receive the process’s effective group ID. On BSD, newly

created files get the group ID of the parent directory.

You will find the following BSD features on the DG/UX file system:

@ Symbolic links

@ Sockets as defined for the UNIX domain under TCP/IP

e Long filenames and pathnames

Recognizing Differences Between the DG/UX and the

System V File Systems

In general, as long as you follow standard language practices, the file system

structure will be transparent to your program. However, the following System V file

system features might cause problems:

@e <A 14-character maximum filename size and 100-character maximum

pathname size

® No direct access to System V-specific structure of directory entries

e The use of streams

The next three paragraphs will address these potential problems.

As on BSD, filenames on the DG/UX system can be up to 256 characters long,

and pathnames may be up to 1024 characters long. The structure of directory entries

reflects this additional length. Programs that presume a limited-length filename or

pathname or that presume a particular directory structure may run into trouble. For

example, a program based on System V file systems might allocate a fixed-length, 14-

character variable for a filename. Because DG/UX filenames can be much longer,

they may overflow this fixed-length variable. Similarly, a program may attempt to

read a directory expecting the fixed, 14-character filename entries.

Another common problem that may arise in System V programs relates to how

some system calls access the contents of a directory file. Specifically, some programs

expect to be able to read a directory using the open(2), read(2), and close(2) system

calls. These calls rely on implementation-specific information and may not work

093-701047 Licensed material—property of Data General Corporation 4-7

Handling File System Issues

across different UNIX systems or even across different releases of the same system.

Programs that use these calls should be changed to use the opendir(3), readdir(3),

and closedir(3) library routines, which make the current directory structure

transparent to programs.

The DG/UX system does support the System V streams system calls but it does

not provide the Transport Layer Interface (TLI) library. If this will cause problems

then socket(2) may be substituted for stream functionality.

Working with the DG/UX /dev Directory

The /dev directory on the DG/UX system has three major differences from other

UNIX systems:

@ Many device names are unique to the DG/UX system.

® No regular files may be created in this directory, only nodes and links.

e@ Files created in this directory may not be present after a reboot. In order to

have needed files created in /dev at boot time, the init scripts should be

edited.

End of Chapter

4-8 Licensed material—property of Data General Corporation 093-701047

Chapter 5

Working with Terminals and

Keyboards

This chapter discusses issues involving terminals and keyboards. Major topics

are as follows:

@ Using Terminal Interfaces

® Working with Supported Terminals

@ Working with Character Sets

e Using International Keyboards

e Using a Graphics Console on a Workstation

Using Terminal Interfaces

Terminal interfaces available on DG/UX are curses, terminfo, and termcap.

The following sections discuss what header files are required in your programs and

how to compile using the specified interface. We would like to stress that the curses

library can emulate the termcap library. And, because terminfo is intended to

replace termcap, we recommend that you link your programs with the curses library

rather than the termcap library.

Working with curses Routines

Curses is a library of routines that you may use to write screen management

programs on the DG/UX system. curses routines write to a screen, read from a

screen, contro] character attributes, and build windows. They also have advanced

features that draw line graphics and provide soft labels for function keys. curses on

DG/UX accesses information about the terminal from the terminfo database.

Terminfo definitions are located in /usr/src/lib/libcurses/terminfo/*.ti. The compiled

files are located in /usr/lib/terminfo/?/*. The curses routines are located in

/\lib/libcurses.a. To direct the link editor to search this library, you must use the -l

option with the cc command. The command line for compiling a curses program is:

cc file.c -lcurses

093-701047 Licensed material—property of Data General Corporation 5-1

Using Terminal Interfaces

The source program must include the header file, curses.h. You must also set the

TERM variable, a shell environment variable that specifies a name for the terminal

you are using. If you are using the Bourne shell, remember to export TERM.

Working with terminfo Routines

Some programs must use lower-level routines than those that curses provides.

The terminfo routines are lower-level routines that do not manage your terminal

screen, but rather give you access to strings and capabilities which you can use to

manipulate the terminal.

The commands for compiling and running a program with terminfo routines are

the same as those for compiling and running a curses program. The curses.h and

term.h header files are required because they contain definitions of the strings,

numbers, and flags that the terminfo routines use. References to these header files

must be included in your source program.

Working with termcap Routines

The termcap terminal database is stored in an ASCII file; all the information it

contains is readable, unlike terminfo, which is compiled. Terminal definitions are

located in /etc/termcap. The termcap routines are located in /lib/libtermcap.a. To

direct the link editor to search this library, you must use the -] option with the cc

command. The command line for compiling a termcap program is:

cc file.c -ltermcap

You must also set the TERM variable, a shell environment variable that specifies a

name for the terminal you are using. If you are using the Bourne shell, remember to

export TERM.

NOTE:

If you are having problems with terminal control, check to make sure that

the TERM variable is set correctly for your terminal.

5-2 Licensed material—property of Data General Corporation 093-701047

Working with Supported Terminals

Working with Supported Terminals

Data General supports a wide range of terminals. For a complete list of

supported terminals, refer to the terminfo and termcap databases. For a partial list

that includes all Data General terminals, you can also consult the term(5) man page.

The following section discusses Data General terminals in emulation modes.

Using Data General Terminals in Emulation Modes

To ensure that your application software runs properly from a particular terminal:

1) Configure your terminal by invoking the terminal configuration menu. Refer

to the manual that comes with your terminal for instructions on how to

configure your terminal to the emulation mode specified for it below.

2) Configure the line discipline. The line discipline acts as the kernel’s

interface to the terminal. The line discipline intercepts data coming from the

terminal, buffers it, and does some initial processing of special keys. Refer

to Chapter 4, "Setting Up the Environment,” for instructions on how to

configure the line discipline.

3) Set the TERM variable for your particular terminal, as specified below.

Using DEC Emulation mode

Data General’s new terminal product line—the D216, D412, and D462

terminals—have DEC emulation modes. The emulation modes are covered by vt100

and vt220 terminfo/termcap entries (e.g. DEC vtl00 emulation mode would use

TERM=vt100). D216 terminal emulates the VT100; however, D412 and D462

terminals emulate the VT220. VWY220 emulation contains VT100 functions, plus

additional functions that improve the terminals’ speed and appearance. Your terminal

is configured by invoking the Port Menu with SHIFT-N/C.

Using Tektronix Emulation Mode

Data General’s D462 terminal emulates the Tektronix 4010 graphics terminal.

Tektronix emulation mode is covered by the tek4010 terminfo/termcap entry (i.e.

Tektronix emulation mode would use TERM=tek4010). Your terminal is configured

by invoking the Port Menu with SHIFT-N/C.

093-701047 Licensed material—property of Data General Corporation 5-3

Working with Supported Terminals

Using ANSI Mode

Data General’s older terminals are supported in ANSI mode only. Users porting

software using Data General’s older terminals should note that DG mode is

unsupported. Thus, terminal definitions for Data General terminals in DG mode are

no longer actively supported, although a few still remain in our terminfo and termcap

databases. Entries for the following Data General terminals in ANSI mode exist:

D210

D211

D214

D215

D220

D410

D411

D460

D461

D470

D577

D578

Your terminal is configured by invoking the Terminal Configuration Menu with N/C,

or by setting DIP switches at the back of the terminal.

Using xterm Emulation Modes

Because X windows is supported, the xterm terminal type is supported as well.

The standard I/O goes through an emulation of DEC vtl02 or Tektronix 4014

terminals. The TERM variable is automatically set to xterm when a window is

opened (if an xterm entry is found in terminfo/termcap databases) If the xterm entry

is not found, terminfo/termcap database are searched for vt102, then vt100, and then

tek4014 entries. If you use terminfo/curses and termcap, you should have no

problems, however, the application must be able to handle the window being resized.

See the graphics chapter for window resizing implications and the X manuals for

general xterm issues.

Using a Graphics Console on a Workstation

The workstation can be booted from the graphics console. The TERM variable is

automatically set to xterm when a window is opened (if an xterm entry is found in

terminfo/termcap databases) If the xterm entry is not found, terminfo/termcap

database are searched for vt102, then vt100, and then tek4014 definitions.

Table 5-1 lists features of the workstation monochrome monitor.

5-4 Licensed material—property of Data General Corporation 093-701047

Working with Supported Terminals

Table 5-1 Workstation Monochrome Monitor Features

Feature Description

Graphics Processors Monochrome -- NEC uPD72120

Pixel Aspect Ratio 1:1

Refresh Rate 70 Hz, flicker-free

Controls Brightness, contrast

Monitor Format 20" landscape

Displayable Resolution 1280x1024

Addressable Resolution 1280x1638

Using Data General Terminal Features

Table 5-2 provides a summary of major features in the D216, D412, and D462

terminals:

Table 5-2 Features of D216, D412, and D462 Terminals

Feature D216 D412 D462

Windowing X X

Dual Port x x x

80 Columns x x X

132 Columns x x

Graphics x

Working with Character Sets

The following character sets are available on the D216, D412, and D462

terminals:

Keyboard Language

U.S. ASCII

U.K. National

French National

German National

Swedish/Finish National

Spanish National

Danish/Norwegian National

Swiss National

Kana GO Set

D.G. International

Kana G1 Set

Word Processing, Greek, Math

Forms-ruling (Line drawing) set

D.G Special Graphics (PC characters)

VT220 Multinational

VT220 Line Drawing

093-701047 Licensed material—property of Data General Corporation 5-5

Working with Character Sets

Curses and terminfo support the Forms-ruling set to draw line graphics, and the

international character set to support European languages in eight-bit communication

modes. Refer to your terminal programmer’s manual to determine what character

sets are available on your particular terminal and how to select them. A complete list

of terminal programmer’s manuals is provided in the Related Manuals section after

the Index.

Using International Keyboards

The D216, D412, and D462 terminals support 15 keyboard nationalities:

Arabic

Canadian/French

Canadian/English

Danish/Norwegian

French

German

Hebrew

Italian

Katakana

Spanish

Swedish/Finnish

Swiss/French

Swiss/German

United Kingdom

U.S.

Refer to your terminal programmer’s manual to determine what nationalities your

particular terminal supports. A complete list of terminal programmer’s manuals is

provided in the Related Manuals section located after the Index..

End of Chapter

56 Licensed material—property of Data General Corporation 093-701047

Chapter 6

Using Software Development

Tools

This chapter discusses software development tools for performing the following

tasks:

093-701047

Checking C syntax (lint)

Building complex programs (make)

Controlling source code (RCS and SCCS)

Debugging programs (mxdb, sdb, and dbx)

Using preprocessor functions (IFDEF)

Editing source files (vi, ed, and sed)

Licensed material—property of Data General Corporation 6-1

Checking C Syntax (lint)

Checking C Syntax (lint)

This section describes what lint is, discusses how it is useful in the porting

process, and gives examples of messages lint generates.

What is lint?

Once you have loaded your program, you are ready to check the code and then

compile and link it. The DG/UX system provides a compile time tool, lint, that can

help catch and correct many porting problems before you run the program. lint is a

major tool for measuring your program’s portability. lint is a C program checker for

C language programs. It attempts to detect features of C program files that are likely

to be bugs, non-portable, or wasteful. It also checks type usage more strictly than the

compiler. lint detects unreachable statements, loops not entered at the top,

automatic variables declared and not used, and logical expressions whose value is

constant. It also checks for functions that return values in some places and not in

others, functions called with varying number of arguments, and functions for which

the values are not used or are used but not returned.

Using lint

The lint command has the following form:

lint [options] file.c ...

where options are optional flags to control lint checking and messages, and file.c is

the name of the file to be checked. Using DG/UX Programming Tools contains a

complete list of options and gives details on their usage. lint provides options that are

common with those of the compiler command cc, e.g., -I, -D, and -U. ~-I specifies

the include directory. -D and —U respectively predefine and undefine preprocessor

symbols. If you compile using these options, you must also use these options when

you use lint.

By default, lint checks programs against the standard C library (lint version of the

standard C library). However, when the —p option is used, the portable C library is

checked. It contains the standard library routines which are expected to be portable

across various machines. You can also include a lint version of the math library and

the curses library by inserting —Im on the command line to include the math library

and inserting —Icurses to include the curses library.

Understanding Differences Between cc and lint

Although ce and lint both check C syntax, the programs are different.

® cc is a command that invokes the compiler, which generates error messages

and object code.

6-2 Licensed material—property of Data General Corporation 093-701047

Checking C Syntax (lint)

lint is a syntax and program checker that generates error messages and no

object code.

ce compiles each source file as a separate entity. lint can handle all

constituent files at once. It can therefore cross-reference function and

variable usage throughout the whole program.

Interpreting lint Messages

While catching many portability errors, lint cannot catch every error. The

following section describes the types of messages lint will output. Please note that

this is not an exhaustive list. See "Using Libraries and System Calls” and

"Understanding Hardware Architectural Issues” chapters for additional information

On areas

093-701047

lint can isolate.

value type declared inconsistently

When you pass an argument, you must make sure that the type of expression

you pass matches the type that the function expects. For example, the qsort

function expects the pointer to the array start to be a pointer to a character.

You must explicitly cast the array you pass as a character pointer. In

addition, you must call the function compare with two character pointers.

When a function’s return type is not defined, the default return type is

integer. All library functions that are used in the program must also have

their return type explicitly declared, or the returned value will be treated as

an integer.

name used before set

lint attempts to detect where a variable is used before it is initialized. lint

detects local variables (automatic and register storage classes) whose first use

appears earlier than the first assignment.

nonportable character comparison

The following code produces a “nonportable character comparison” message

on the line comparing getc’s return against EOF. EOF has the value -1,

which will fit in a char on some systems, but not others.

#include <stdio.h>

copyfile (fin, fout)

FILE *fin, *fout;

{

char c;

while ((c = getc(fin)) != EOF)

putc(c,fout);

Licensed material—property of Data General Corporation 6-3

Checking C Syntax (lint)

if ((c = getchar ()) « O)....

@ illegal combination of pointer and integer

This means you tried to assign a pointer to an integer variable or vice ve
rsa.

The following code sample produces the "illegal combination” message:

void f()

int a; char *b; int *c;

a-=c; b= a; *b = a;

Be sure to assign pointers only to pointer variables.

s that are not fatal, i.e. your program can

variable is defined but not used, lint

" Although this does not

The lint program also generates message

execute successfully. For example, when a

generates the message "variable_name defined but not used.

produce a fatal error, it is not a good programming practice.

6-4 Licensed material—property of Data General Corporation 093-701047

Building Complex Programs (make)

Building Complex Programs (make)

This section discusses what make is, why it is useful in the porting process, and

the differences in System V and Berkeley functionality.

What is make?

The make program is a useful tool throughout the entire porting process because

recompiling and relinking will occur repeatedly during the process. make provides a

simple mechanism to maintain up-to-date versions of programs that result from many

operations on a number of files. It 1s possible to tell make the sequence of

commands that create certain files, and the list of files that require other files to be

current before the operations can be done. Whenever a change is made in any part of

the program, make will create the proper files simply, correctly, and with minimum

effort.

Using make

The make command has the following form:

make [options| [macro-definitions]| [targets]

where target can be a makefile or a particular target name. make executes commands

in the makefile to update one or more target names. make provides a macro

mechanism for substituting in dependency lines and command strings. Macros are

defined by command arguments or description file lines with embedded equal signs.

A macro is invoked by preceding the name of the macro by a dollar sign. Using

DG/UX Programming Tools contains a complete list of available options and also

gives more detailed information on using make.

A makefile contains a sequence of entries that specify dependencies. The first

line of an entry is a blank-separated, non-null list of targets, then a ":", then a

(possibly null) list of prerequisite files or dependencies. Text following a ";” and all

following lines that begin with a tab are shell commands to be executed to update the

target. Note that shell commands must be preceded by a tab character at the

beginning of the line. A # in column 1 denotes a comment line. The first line that

does not begin with a tab or # begins with a new dependency or macro definition.

Shell commands may be continued across lines with the <backslash><new-line>

sequence.

Example

The following example illustrates the use of macro definitions, e.g. $(SRC),

$(OBJ), $(LIBS), and the inclusion of lint :

093-701047 Licensed material—property of Data Gencral Corporation 6-5

Building Complex Programs (make)

#

Makefile for example

#

SRC =

OBJS

LIBS

LINT=

DEFS=

BIN =

pgm:

lint:

clean:

Zip.c zap.c

Zip.o zap.o

—lcurses

lint

—-DHELP

f/bin

$ (OBIS)

$(CC) $(DEFS) -—o pgm $(OBJS) $(LIBS)

$(LINT) $(DEFS) $(SRC) $(LIBS) > pgm.lint

-rm -f $(OBJS) pgm core

install: pgm

cp pgm $(BIN)
chmod 755 $(BIN)/pgm

echo pgm install in $(BIN)

Using System V or BSD make: the Differences

The make command is an example of a command for which the functionality

differs between BSD and System V. DG/UX make has System V functionality. For

users porting software from BSD systems, please note the following differences:

e circular dependencies

6-6

The BSD implementation allows circular dependencies, and the DG/UX

implementation does not. Circular dependency means that during a build, a

makefile may specify that program "A” be made before program "B” and also

specify that "B” be made before "A”. BSD makes an arbitrary decision about

which program to make first. Such circular dependencies must be removed

to run a makefile under the DG/UX system. If you have a BSD program,

you also should check make(1) for differences in default values.

include name

DG/UX make uses the string “include” to indicate include files. If you have

a filename that begins with the string "include’, such as include.o:include.c,

the DG/UX make will try to open a file specified by the remaining characters

on the line. If you have files beginning with the string “include,” you must

rename your file. Refer to the make(1) man page for details on the DG/UX

system implementation and default inference rules.

Licensed material—property of Data General Corporation 693-701047

Controlling Source Code

Controlling Source Code

This section discusses controlling source code revisions.

When moving software from one operating system to another, there are certain

times when code changes must be made in order for the software to run on the new

operating system. In order to maintain your original source and also track all changes

that you make to the code, you will need to use a source code control system. The

DG/UX system provides two source code control systems, Revision Control System

(RCS) and Source Code Control System (SCCS).

RCS is a system that uses a BSD-defined, free form ASCII file. RCS retains

only the changes for previous revisions and stores the entire file for the latest

revision. Thus it can quickly rebuild the latest revision.

SCCS is an AT&T System V defined ASCII file control system. SCCS stores

the file changes with the original file, and therefore, must rebuild the specified

version by applying deltas, in order, to the initial version until the desired version is

obtained.

Both source control systems let you rebuild any revision stored within the source

code control file. If you are currently using SCCS and would like to use RCS, use

the seccstores command to build an RCS file from an SCCS file.

Using the Revision Control System (RCS)

The Revision Control System (RCS) contains multiple revisions of text, an access

list, a change log, descriptive text, and contro] attributes. Rcs manages the storing,

retrieval, logging, identification, and merging of revisions. Rcs is useful for keeping a

logged account of text that is frequently changed, such as programs and

documentation.

The user interface for res is simple for the novice user. The only commands that

are essential to know are ci and co. ci stands for “checkin” and saves the contents of

the file into an archived RCS file. co stands for "checkout” and retrieves the

specified revision from the RCS file.

How to Get Started

Here are the steps to take:

1) Create and initialize a new RCS file. (RCS files end in ’,v’. All other files

are considered working files.) The following command line creates a new

RCS file named foo.c,v and locks it for editing:

res -1i -l foo.c

093-701047 Licensed material—property of Data General Corporation 6-7

Controlling Source Code

6-8

2)

3)

4)

The res program will ask for you to enter a description of this file. When you

have entered the description, press return and then enter ’Ctrl-D’. res tries

to place the file first in it’s default directory ./RCS and then into the current

directory. You can also specify the directory by providing a path prefix for

foo.c. :

Make changes to your file using your favorite editor. For a list of provided

editors, refer to "Editing Source Files” later in this chapter.

Store the working file contents into the corresponding RCS file. The
following examples check in the file foo.c and assign a new revision,

provided the file was checked out with the —1 option:

ci f00.c,Vv

ci foo.c

ci RCS/foo.c,v

If the file resides in a directory other than ./RCS or the current directory,

you must specify the path prefix. ci can be used instead of the res command

to create the initial res revision.

Check out the file for further changes. The following example checks out

foo.c for reading and writing, locking the file:

co -l foo.c,v

Useful Tips for Using RCS

The RCS caller must have read and write permission for the directory

containing the RCS file and read permission for the RCS file.

For res to work, the caller’s login name must be on the access list, except if

the access list is empty, the caller is the owner of the file, or the caller is

superuser.

Often there are numerous source files that compose a software package.

Many times is may be easier to automate the check in and check out of files

through shell scripts and make files. When using the automated method, two

command line options will help the process run smoothly, -mmsg and -q. The

command line option for ci, -mmsg, uses the string msg as the log message

for all revisions checked in. The command line option for ci and co, -q,

suppresses diagnostic messages.

Using the -k option with ci allows you to check in the file, reserving the

current revision number, creation date, author, and status. This option is

extremely useful with software distribution.

Licensed material—property of Data General Corporation 093-701047

Controlling Source Code

Refer to the following related manual pages in the User’s Reference for

the DG/UX Systems and Programmer’s Reference for the DG/UX System

(Volume 1) for additional information on res: berk_diff(1) and berk_diff3(1),

ci(1), co(1), res(1), resdiff(1), resfile(1), resintro(1), resmerge(1), and

rlog(1).

Using the Source Code Control System (SCCS)

The Source Code Control System (SCCS) is a maintenance and tracking tool for

changes made to a specified file. SCCS is given control of the file and as changes are

made to the file, they are stored with the original file. SCCS stores history data about

each file it assumes control over. The history data includes when and why changes

were made and who made the changes.

How to Get Started

Here are the steps:

1)

2)

3)

4)

093-701047

Create your SCCS file with the SCCS admin command. The following

example creates a SCCS file and initializes it with the contents of foo.c:

admin -ifoo.c s.foo.c

All SCCS files must have names that begin with .s, hence s.foo.c. You may

receive the message ’No id keywords (cm7). In this case, disregard this

message.

Remove the foo.c file. It is no longer needed, since SCCS had control of

the file.

Retrieve your file foo.c in read-only mode by using the following command:

get s.foo.c

This command will ouput the revision you have requested, along with total

number of lines in the file and will create foo.c.

Retrieve your file foo.c in edit mode:

get -e s.foo.c

When you retrieve a SCCS file in edit mode, you set up a new SCCS

IDentification (SID) number for the new delta you will create. This

command creates p.foo.c, which is used by the delta command.

Licensed material—property of Data General Corporation 6-9

Controlling Source Code

6-10

5) Make changes to your new file foo.c and save the changes in the original

s.foo.c file using the command:

delta s.foo.c

Delta prompts you for an explanation on why the changes were made. If you

are changing a number of files for the same reason, then create a text file

that contains the explanation of your changes, say change, and issue the

following command:

delta s.foo.c < change

This automatically inserts your text into the SCCS file and will not prompt

you for the explanation.

Useful Tips for Using SCCS

e If an error occurs with a SCCS command, a code is listed at the end of the

error message in the format (cox), where x is the error code number. Use

the help command to print a more complete description of this error.

help cox

e If processing terminates abnormally, you can retrieve your unsaved changes

by copying x.filename to s.filename.

@ Use the unget command to cancel a delta reservation set up for your file.

This is useful when you have retrieved your file for editing in error.

@ Do not create links to SCCS files. When processing, SCCS removes old

files and creates new files, thus destroying your links.

@ Use the -i option on the get command to force the changes of one or more

deltas to be applied to the specified SCCS file.

@ Use the -l option on the get command to create a |.filename that lists the

deltas used in creating a particular version of the SCCS file.

Refer to the following SCCS commands in the Programmer’s Reference for

the DG/UX System (Volume 1): get(1), unget(1), delta(1), admin(1), prs(1),

sact(1), help(1), rmdel(1), cde(1), what(1), scesdiff(1), comb(1), val(1), and

ve(1). Also refer to the "Support Tools” chapter in Using DG/UX

Programming Tools.

Licensed material—property of Data General Corporation 093-701047

Debugging Application Programs

Debugging Application Programs

The DG/UX system currently supports the Symbolic Debugger (sdb) for

debugging C and FORTRAN 77 programs. In addition to sdb, The DG/UX system

will provide the Multi-eXtensible DeBugger (mxdb) and the dbx debugger in a future

release. sdb is useful for monitoring and controlling the execution environment as

well as examining core images of aborted programs. Running your program under the

control of sdb allows you to view the progress of your program up until the time of

the abort. It also allows you the option of stepping around the failure point and

continuing with execution. Using sdb to examine the program core image allows you

to view the status at the point of failure and to determine the cause of the error.

Preparing for a Debugging Session

The sdb debugger handles programs written in C and FORTRAN 77. Compile

your program from the DG/UX shell, using the appropriate C and FORTRAN

commands. In order to use sdb , you should compile with the -g and -ga option. The

-g option puts line numbers and other symbolic information into the executable file.

The -ga option generates a frame pointer for stack traces. Without the -ga option, the

compiler optimizes the program to the point that stack traces become impossible. All

modules (functions, procedures, libraries) that are a part of your program should be

compiled with the -g and -ga options in order to use the debugger to it’s fullest

potential. If all modules are not compiled with these options, sdb will output an

error message, but will continue to debug the other modules compiled with the

options. It is also important not to strip the symbol table from the object file.

Getting Started with sdb

The command line for sdb is as follows:

sdb [objfil [corfil [directory-list]]]

objfil is an executable program file; the default is a.out. corfil is the core image file

produced by the executing objfil; the default is core. directory-list is a list of

directories separated by colons containing the source of the program; the default is
the current directory.

After executing the sdb command, you will be prompted with an asterisk (*),

which shows that sdb is waiting for a command. Table 6-1 gives a subset of sdb

commands that you an enter at this prompt:

093-701047 Licensed material—property of Data General Corporation 6-11

Debugging Application Programs

NOTE:

6-12

Table 6-1 Commonly Used sdb Commands

Command Description

r args Run program with given arguments

t Print a stack trace

variable/ Display the value of the variable

p Print the current line

<Ctrl-D> Scroll 10 lines

proc:12b Set breakpoint in on line 12 of funtion proc

q Exit from sdb

If your application uses a private shared library, the possibility arises that a

program bug may be located in a file that resides in the shared library.

Shared library data is not dumped to core files, and sdb does not read

shared libraries’ symbol tables.

For further information as well as an example of an sdb session, refer to

"Using sdb (Symbolic Debugger)”, in the Using DG/UX Programming Tools.

Also refer to the sdb manual page in the Programmer’s Reference for the

DG/UX System (Volume 1).

Licensed material—property of Data General Corporation 093-701047

Using Preprocessor Functions

Using Preprocessor Functions

This section discusses what a preprocessor is and how preprocessor directives are

used in the porting process.

What Is a Preprocessor?

A preprocessor is a generic program that prepares an input file for another

program. The C preprocessor is part of the C compilation process. Statements in C

source code which start with a # are instructions to the preprocessor. The

preprocessor’s main function is to include files and to perform macro substitutions.

The C preprocessor is called only during the first stage of compilation. It

normally only handles text manipulation such as file merging.

The DG/UX system provides cpp, which is the standard preprocessor supplied

with the AT&T System V C compiler.

In addition, the DG/UX system provides C preprocessors which are built into the

DG/UX C compilers. Each compiler may have different default definitions. The cpp

command may produce different results than if you use the preprocessor built into the

compiler you are using.

The —E option can be used with the cc command to help debug preprocessor

macros. This option tells the compiler not to compile the program, but instead, put

the output of the preprocessor in the standard output file.

Using Preprocessor Directives

The main use for the preprocessor during the porting process is through the use

of the #ifdef and #define directives. These directives allow parts of the C source

code to be compiled only in certain cases. For example, given the following code

segment,

#ifdef DGUX

{execute this section of code only if DGUX is defined as true,

i.e., only if running on a DGUX system}

#endif

#ifdef BERKELEY

{execute this section of code only if BERKELEY is defined as true,

i.e., only if running on a BERKELEY system}

|
|
|

093-701047 Licensed material-—property of Data General Corporation 6-13

Using Preprocessor Functions

#endif

you could compile your program with this line:

ce -DDGUX progname

which defines DGUX and will cause the "ifdef DGUX" code segment to be executed.

In the above example, code that is machine-specific will only be executed if that

particular machine is defined using the -D switch at compile time.

The "#define” preprocessor directive is helpful in debugging code that you are

porting. The following section of code will print the value of x if DEBUG is defined.

#define DEBUG

#ifdef DEBUG

printf("value of x” %d,x);

#endif

The above code lets the programmer check the value of x during the debugging

process. When not debugging, he can simply make the #define statement into a

comment. Note that the #define directive can be used in place of the -D option in

the cc command. In the above example, the #define DEBUG could have been left

out. In that case, you would compile the program with:

cc -DDEBUG

to define DEBUG.

Another preprocessor directive is "#include”, which is used for file inclusion.

The #include command can have one of two formats:

#Hinclude “filename”

or

#include <filename>

Either of these lines will cause that line to be replaced by the contents of the file

named filename. The quotes around the file name indicate that the search for the file

should begin in the same directory as the source file. The angle brackets around the

filename indicate that the search for the filename should follow the default path.

For more information about preprocessing, see Chapter 7, “Compiling and

Linking Programs.”

6-14 Licensed material—property of Data General Corporation 093-701047

Editing Source Files

Editing Source Files

This section discusses the vi, ed, and sed text editors. When porting your

application, you will need to use an editor if you have to make changes to your code.

The DG/UX System provides several editors, including vi, ed, and sed. In addition,

other editors such as gnu emacs are available. This section lists some of the common

commands for the available editors. Use the editor with which you are most familiar.

Using vi

Vi is an interactive full-screen editor.

Table 6-2 summarizes the basic vi commands.

Table 6-2 Summary of Basic vi Commands

Command __ Description

vi filename Invoke vi

:wqor ZZ ~—s Save file and quit vi session

:q Quit vi session without saving

For more information about vi, type ":!man 1 vi" from vi, “man 1 vi" from the

shell, or refer to Using the DG/UX System: The Editors.

Using ed

The ed program is a line editor. Table 6-3 summarizes the basic ed commands.

Table 6-3 Summary of Basic ed Commands

Command Description

ed filename Invoke ed

H Turn on Help Message mode so you receive help

messages when ed detects an error

Prints help message text for the most recent error

Save to filename you named when invoking ed

Quit ed and return to shell (must save first)

Quit ed and return to shell (does not check for save)O22 4
For more information about ed, type "man 1 ed” or refer to Using the DG/UX

System: The Editors.

093-701047 Licensed material—property of Data Genera! Corporation 6-15

Editing Source Files

Using sed

Sed is a non-interactive editor used for editing a copy of the text from a file or

standard input. The edited version goes to the screen by default or you may redirect

it to a file. Sed provides a convenient way to edit text located in an input file using a

sed command you type on the command line.

For more information about Sed, type "man 1 sed” or refer to Using the DG/UX

System: The Editors.

End of Chapter

6-16 Licensed material—property of Data General Corporation 093-701047

Chapter 7

Compiling and Linking Programs

This chapter explains how to compile and link programs written in C,

FORTRAN, Pascal, and assembler.

Compiling C Programs

Data General offers both GNU C and Green Hills C for use with the DG/UX

system on AViiON workstations and servers. The GNU C compiler is included in

the standard release of DG/UX 4.10. Green Hills C is an optional compiler that may

be purchased from Data General. For detailed information on these compilers,

please refer to the user’s guides.

While both GNU C and Green Hills C conform to the ANSI C language

definition, each provides language features that are not found in ANSI standard C.

In addition, the compilers differ in their approach to implementation-defined

behavior. Differences between these compilers are outlined in Appendix B,

"Comparison of C Compilers.”

The following list identifies issues that you should be aware of in porting to either

compiler:

e@ The standard ce command invokes the GNU C compiler. GNU C may also

be invoked using the gee command. Facilities unique to gee may not be

accessible from the cc command; instead you must use gee directly. The

ghee command, included with the Green Hills release media, accesses Green

Hills C. GNU C, when invoked by the ce command, supports PCC features.

When invoked by gec, GNU C defaults to support most ANSI features and

GNU C extensions. Green Hills C defaults to support PCC features. Both

gce and ghee support options to enable varying levels of ANSI support.

Appendix B, "Comparison of C Compilers,” lists options you can use when

invoking the compilers.

® Both GNU C and Green Hills C include C preprocessors that provide 4

superset of the features of ANSI Standard C. The compilers preprocess

your program automatically before compiling them. Programmers that use

cpp to debug preprocessor macros should be aware that cpp may provide

inaccurate results when used with Green Hills C or GNU C because of

differences in predefined preprocessor macros. If you want to preprocess

093-701047 Licensed material—property of Data General Corporation 7-4

Compiling C Programs

your program before the actual compilation phase, use the —E option when

compiling.

@ The asm statement (for inline assembly code) is supported by both

compilers. If you are using the Green Hills compiler, you must compile with

the —Z309 option to enable support for this feature. Green Hills C allows

asm to appear in your code anywhere a statement can be used. GNU C

supports asm by default; however, asm is not supported by GNU C if you

are compiling your code with -ansi.

@ Programs that expect unsigned chars and/or integers may exhibit problems

since both GNU C and Green Hills C default variables of type char and int

to be signed. This problem may be resolved by recompiling with options to

make variables unsigned.

@® Both GNU C and Green Hills allow automatic structures, unions and arrays

to be initialized. Green Hills requires the use of the —ansi option in order to

compile programs that initialize automatic structures, unions or arrays but

does not require the —ansi option if these are globally defined. GNU C does

not require any special compiler options.

® Problems may be seen in code that expects structures to be aligned at

specific offsets. Both GNU C and Green Hills C align each struct, union, or

array to the maximum alignment requirement of any of its components. For

example, shorts are aligned on boundaries divisible by 2, longs are are

aligned on boundaries divisible by 4. Members of a given structure may have

different offsets on AViiON systems than on other systems, and the

structures may have different sizes. Differences in structure alignment may

be seen in the following example:

GNU C and Green Hills C MV/Family DG C

struct {

short a; aligned at offset 0 aligned at offset 0

short b; aligned at offset 2 aligned at offset 2

short oc; aligned at offset 4 aligned at offset 4

long d}; aligned at offset 8 aligned at offset 6

e sdb level debugging support is available with both compilers; however, GNU

C provides debugging capabilities not seen in Green Hills. The Green Hills

C compiler does not allow you to debug optimized code whereas GNU C

does.

While many compilers have implemented some portion of the ANSI standard,

there exists a large body of code that has been written for the Portable C Compiler

(PCC) standard. The following list provides an overview of some of the major

differences between PCC compilers and ANSI standard compilers. You may find

that code that does not compile using the default PCC features compiles using ANSI

options.

7-2 Licensed material—property of Data General Corporation 093-701047

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

The

Compiling C Programs

The ANSI standard more clearly defines preprocessing than the PCC

standard. New control lines include #elif and #pragma. New operators

have been defined for concatenation of tokens (##) and creation of strings

(#).

Minimum significance of identifiers has been lengthened to 31 characters.

The keywords ’void,’ ’const,’ ’volatile,’ ’signed,’ and ’enum’ have been

introduced in the ANSI standard.

Characters may carry the sign bit or not, depending on declaration; 1.e.:

signed char, and unsigned char.

Declaration of ’void *’ as a generic pointer type has been included in the

ANSI standard.

Explicit ranges on mathematical types are defined. Headers <limits.h> and

<float.h> contain these ranges.

Assignments of the form ’=+’ are no longer supported.

Structures may now be assigned, passed to functions, and returned from

functions.

The sizeof operator now returns a type of size_t, as defined in <stddef.h>.

A pointer may be created to point beyond a given array, and arithmetic

operations may be done on it.

Function prototypes (as in C++) are available. These declarations include

the types of the parameters in function declaration.

Compiling FORTRAN Programs

Green Hills FORTRAN 77 compiler is available for Data General AViiON

systems running DG/UX. Green Hills implements the ANSI FORTRAN Standard,

ANSI X3.9-1978, MIL-STD-1753. It is also compatible with the Berkeley 4.3BSD f77

compiler and the VAX/VMS FORTRAN V4.6 compiler. Green Hills allows

FORTRAN subroutines to be called from C programs. You can also call C functions

from FORTRAN programs. Refer to the Green Hills FORTRAN-8&8000 User’s Manual

for more information.

093-701047 Licensed material—property of Data Generai Corporation 7-3

Compiling Pascal Programs

Compiling Pascal Programs

The Green Hills Pascal compiler is also offered for Data General AViiON

systems. Green Hills Pascal implements the ANSI/IEEE standard and the BSI/ISO

Level 0. Many of the extensions present in the Berkeley 4.2BSD pe compiler have

also been implemented. Additional features include support for arge and argv, set

implementation, and separate compilation. Green Hills allows Pascal external

variables, procedures and functions to be accessed from C functions linked with the

Pascal program and vice-versa. Refer to the Green Hills Software User’s Manual:

Pascal-88000 for more information.

Assembling and Linking Programs

Assembly language files may be assembled using the as command. By default,

results are placed in a file ending with a .o suffix. Programs that use m4 macros

should be assembled with -—m on the as command line in order to run the m4 macro

processor on the input to the assembler. Refer to the online manual pages for more

information on as and m4.

The Id command combines object files into one file, performs relocation,

resolves external symbols, and places the output into a file named a.out. If no errors

occurred, the file a.out is executable. Refer to the online manual page for more

information on ld.

End of Chapter

7-4 Licensed material—property of Data General Corporation 093-701047

Chapter 8

Using Libraries And System

Calls

This chapter discusses the standard subroutine libraries and system calls

supported by the DG/UX system. It describes porting issues that result from

differences in library routine and system call function and implementation.

Comparing BSD and AT&T Libraries

The DG/UX system supports both System V and BSD library routines and

system calls. For a list of system calls, refer to Appendix A, "DG/UX System Calls

and Commands.”

In general, when there is a conflict between a system call found in both BSD and

System V, the DG/UX system resolves the conflict in favor of System V. Usually

these conflicts are minor. For example, when a file is created under System V and

the DG/UX system, the group ID is taken from the creating process. Under BSD,

the group ID is taken from the containing directory.

The areas of greatest difference between System V and BSD are the handling of

signals and the input/output (I/O) control system (ioctl(2)) system call.

Handling Signals

The DG/UX system supports a hybrid of System V and BSD signal functionality.

Details on DG/UX signaling are given in relevant manual pages, such as signal(2),

sigsys(2), and sigset(3) in the Programmer’s Reference for the DG/UX System (Volume

1 and Volume 2). This section will cover a few of the major differences in signaling.

The DG/UX system supports all System V and most BSD signals. You may need

to modify some System V programs to anticipate and perhaps handle the extra BSD

signals.

By default, the DG/UX system follows the System V signal-handler protocol. In

particular, a signal handler is always disabled while it is processing a signal. It

remains disabled until the program specifically re-enables it. If your handler has not

been re-enabled by the time a new signal arrives, the default action for that particular

signal will be taken. BSD programs may presume that their signal handlers are

093-701047 Licensed material—property of Data General Corporation &-1

Comparing BSD and AT&T Libraries

automatically re-enabled when the signal handler returns. If the program you are

porting makes this assumption, the system default handler might be invoked at times

when the program’s signal handler should be invoked. This problem may manifest

itself as an early program termination. Fix this signal-disabling problem by using the

sigvec(2) system call to reset your program’s signal handler.

The DG/UX system differs from BSD signal handling in that the program 1s

aborted when a signal indicating a severe error occurs. This is true even if a user-

defined signal-handler function is provided. When a user-defined signal handler is

provided, the program is aborted when the signal handler finishes processing the

error. Because the abort happens on the normal return from your signal handler, the

only way to prevent such an abort is to have your signal handler exit with a non-local

jump. The setjmp(3C) and longjmp(3C) library routines are examples of non-local

jump routines. These routines will cause your signal handler to exit and program

execution to resume at the point the jmp routine was called.

With BSD signal handling, if a system call is interrupted by a signal, the system

call is automatically restarted after the handler returns. Under the DG/UX system,

the interrupted system call returns an error (errno=EINTR). If your program

presumes the BSD method, you may get some unexpected failures.

You can easily remedy these differences between standard DG/UX system signal

handling and BSD signal handling by using the berk_signal.h include file instead of

signal.h. berk_signal.h provides you with all the expected BSD signal-handling

features. Alternatively, you can replace every call to signal(2) to berk_signal(2).

On BSD, signals are blocked while the handler is active and are unblocked when

the handler returns. On BSD, because calls to longjmp(3C) do not return,

longjmp(3C) automatically unblocks signals when called from a signal handler. On

the DG/UX system, longjmp(3C) does not automatically unblock signals. If you use

longjmp(3C) in a signal handler under berk_signal(2), you will need to unblock

signals with a call to sigsetmask(2).

Another aspect of BSD signal support on DG/UX concerns signal numbering. In

compliance with the 880pen Binary Compatibility Standard, DG/UX no longer limits

the number, which can be assigned to a signal, to values less than 32. In particular,

the following BSD based signals have numbers greater than 32 on the DG/UX system:

e SIGURG

e SIGIO

e@ SIGXCPU

e SIGXFSZ

e SIGVTALARM

e SIGPROF

8-2 Licensed material—property of Data General Corporation 093-701047

Comparing BSD and AT&T Libraries

e SIGLOST

This change to higher signal numbers can lead to problems with code which uses

these signals. The particular problem you may encounter if you use these signals is

that the signal masks passed between user programs and the kernel via the

sigblock(2), sigpause(2), sigsetmask(2), and sigvec(2) system calls are only 32 bits in

size. Thus, the mask bits for those signals cannot be directly represented via those

system calls. If you must represent those signals explicitly in signal masks, you will

need to change your source code to use the POSIX functions which can manipulate 64

bit signal masks. You will need to change any occurrence of local variables used to

manipulate signal masks so that they will handle a 64-bit mask.

Using the I/O Control System

The DG/UX system supports both the AT&T and BSD terminal drivers. In

some cases, the AT&T modes and ioctls can not be accurately reflected in the BSD

mode set. For strategies in using the appropriate system calls to select the line

discipline for your program, refer to "Manipulating the Line Discipline” in Chapter 4,

"Setting Up the Environment.”

093-701047 Licensed material—property of Data General Corporation 8-3

Using DG/UX-specific Routines

Using DG/UX-specific Routines

DG/UX provides support for several library routines and system calls that are not

derived from either AT&T or BSD. Some of these routines provide enhanced

functionality in areas where AT&T and BSD based systems are incomplete. In other

cases, they provide the functionality of a routine you may use on another system while

taking advantage of special resources in the DG/UX operating system or AViiON

hardware. The following is a list of some DG/UX specific routines you may wish to

use in your application. Refer to Chapter 2 in the Programmer’s Reference for the

DG/UX System (Volume 1) for additional information on these routines.

dg_ext_errno(2)

Returns extended errno for the current process. The low order word contains

the specific error.

dg_file_info(2)

Returns structures containing data that specifies the format of the

information, the object referred to, and the file usage information for a

specified process.

dg_ipc_info(2)

Returns static and configured state information on IPC components; shared

memory, Message queues, and semaphores.

dg_mount(2)

Mounts all "nfs” and "dgux” file system types. Attaches a file system to a

directory, after which all references to that directory will refer to the root

directory on the newly mounted file system.

dg_mstat(2)

Returns current attributes of a specified file. Dg_mstat also returns file status

on the target of a symbolic link and returns status information for a mounted

directory.

dg_process_info(2)

Searches for valid active processes and based on the select condition

supplied by a parameter, returns information about that process. Only one

search through the process table is made.

dg_sys_info(2)

Returns system information gathered from kernel databases.

dg_xtrace(2)

Lets a process control the execution of another process. It’s primary use ts

to implement breakpoint debugging.

Licensed material—-property of Data General Corporation ()93-701047

Handling Common Porting Problems

Handling Common Porting Problems

This section gives examples of some possible porting problems associated with

library routines and system calls.

Missing Library Function

Symptom: Link errors such as Undefined symbol.

Cause: Missing library functions.

Solution: Replace calls with System V or user-supplied routines

that operate similarly.

Lint will catch this problem.

If you get an Undefined symbol error during linking, your program may contain a

call to a library function that is not found on the DG/UX system. If this is the case,

you will have to replace the call to the missing routine with a call to a DG/UX system

routine that functions similarly or with a call to your own routine. This error can be

the result of leaving an object or library off of the Id (link) command line or putting

libraries in the wrong order.

To ensure that all the necessary libraries are being linked, use ce -v [options] to

see the libraries that are being linked. If the library function 1s not available on the

DG/UX system but a similar one exists, a macro definition can be used in the source

file to replace the original function call with a call to the provided function as well as

any re-ordering of the arguments.

Misuse of Library Implementation Internals

Symptom: Compile-time error such as Undefined fields of structure;

Link-time error such as Undefined symbol;

runtime error such as unexpected value.

Cause: Program makes assumptions about implementation of

a library routine.

Solution: Change code as needed for each case.

Lint will catch the compile- and link-time problems.

The DG/UX system follows System V compatibility at the user interface level.

However, compatibility standards do not specify the internal implementation of

command and library routines. Consequently, internal implementations may differ

among vendors. You may have to revise programs based on implementation

specifics.

The following list outlines three examples of the misuse of implementation

specifics:

093-701047 Licensed matérial—property of Data General Corpcration 8-5

Handling Common Porting Problems

Different internal routines — System V uses an internal routine called

_doprnt to implement the printf family of commands (printf, fprintf and

sprintf). Many programs directly invoke _doprnt because it allows easy use

of a variable number of arguments. The DG/UX system does not have a

_doprnt routine. Programs that use _doprnt must be revised to use a uSer-

level routine. For example, though they do not behave identically, you can

usually replace _doprnt with vfprintf or vsprintf, because they also handle a

variable number of arguments.

Different data layout — The standard input/output (I/O) library as given in

the file stdio.h defines the FILE structure. The DG/UX system uses

information in the FILE structure to access I/O streams (reading and writing

to disks, terminals, pipes, etc.). Some programs may attempt to access

information in the FILE structure directly and, in doing so, presume a

particular layout of this information.

Programs should not access the fields of the FILE structure except through

the standard library routines.

Different resource allocation — Your program may make assumptions about

how a library routine operates internally. For example, it might presume that

malloc allocates memory from a specific location. Many programs presume

that a pointer allocated by malloc must be a pointer to the sbrk area (see

"Memory Layout Issues” in Chapter 3). They may use this assumption to

identify a pointer to the heap. This assumption is not valid on the DG/UX

system.

You may be able to avoid rewriting the code by using the alternative version

of malloc found in libmalloc.a. As with System V, the DG/UX system has

two sets of memory allocation routines. The default routines are tuned for

the DG/UX system. The internals of the alternate set of routines are more

like the alternate set available under System V.

However, the best solution to this type of problem is to rewrite the code.

Invocations of malloc should be made only on the basis of how malloc is

defined at the user interface level, not on special knowledge of internal

workings that may change.

The flock Library Function

Symptom: Runtime error involving flock(3C).

Cause: Difference in functionality of BSD flock(3C)

and DG/UX system flock(3C).

Solution: Check functionality for flock(3C).

Lint does not catch this problem.

The DG/UX system supports a version of flock(3C) based on System V’s fentl(2)

Licensed. material—property of Data General Corporation 093-701047

Handling Common Porting Problems

locking options. The DG/UX flock(3C) has slightly different functionality than BSD

flock. This system call is likely to be used in database applications or other programs

involved in multi-user file access. If your program follows BSD standards, check the

DG/UX flock(3C) manual page in the Programmer’s Reference for the DG/UX System

(Volume 2) for details on the differences in functionality.

Reserved Subroutine Name Error

Symptom: Segmentation violation error at runtime;

Program accesses wrong subroutine.

Cause: Using reserved subroutine names (as found

in the C Language Reference) .

Solution: Don't use standard names for user-supplied

subroutines.

Lint will catch this problem.

Programmers sometimes give their own local subroutines the same name as a

library subroutine. For example, a storage management routine may have an internal

subroutine called malloc or free. As a result of this name duplication, either the

standard library routine or the local routine may be invoked at runtime. This can

cause unpredictable results in your program’s operation, because it expects one

routine and may get another.

The problems that arise from this error are very difficult to diagnose. If your

program uses reserved names throughout its code, we recommend that you use the

preprocessor to fix this problem as shown below:

#define malloc my_malloc

#define free my free

By placing statements like the ones above at the top of each module that uses the user

or local routine, the references to the local subroutine are automatically renamed

throughout the code.

Variable to Subroutine Naming Error

Sympton: Overwrite error at link time;

Cause: Variable using system subroutine name.

Solution: Rename the variable.

Lint will catch this problem.

A variation on the naming-error problem occurs when the program has a global

variable with the same name as a system routine. In this case, instead of accessing a

different routine, the naming error will look like a memory allocation problem. You

get an overwrite error. The solution to this problem 1s to rename your variable.

093-701047 Licensed material—property of Data General Corporation 8-7

Handling Common Porting Problems

The sigpause System Call

Symptom: Runtime error involving sigpause(2).

Cause: Difference in functionality of BSD sigpause(2)

and DG/UX system sigpause(2).

Solution: Check functionality for sigpause(2).

Lint does not catch this problem.

The DG/UX system provides both BSD’s and System V’s versions of the system

call named sigpause. In order to eliminate a name conflict, the name sigpause is

used to refer to the System V call, and the name berk_sigpause is used to refer to the

BSD call.

The implementation-specific signal SIGEMT (specific to PDP® systems) is not

present in the DG/UX system; this may be significant for user programs that have

used this signal as a user-defined signal, since it would be otherwise guaranteed to be

unused on a non-PDP implementation such as the DG/UX system.

There is an issue with the statuses EWOULDBLOCK (BSD) and EAGAIN

(present in both BSD and System V). The DG/UX system returns EAGAIN for

SVID conformance. EAGAIN and EWOULDBLOCK will return an identical value.

End of Chapter

8-8 Licensed material—property of Data General Corporation 093-701047

Chapter 9

Understanding Hardware

Architectural Issues

This chapter discusses porting issues that result from differences in hardware

architecture. Such issues result from assumptions commonly made by programmers

about the hardware. We also discuss system memory alignment and layout issues.

This chapter also highlights some C language issues resulting from architectural

differences. The types of language issues covered here result in runtime errors rather

than compile-time errors. You may wish to check Chapter 7 for additional C

language issues.

Handling Alignment and Storage Layout

Issues

Between machines, the required alignment, storage layout, sizes, and bit patterns

often differ. Problems arise when programs are designed to presume _ such

architectural specifics. For example, on some machines the byte order of integers is

the opposite of what one might expect. The AViiON system memory architecture is

byte addressable with 32-bit addresses. Memory is allocated in blocks of 4096 bytes.

Memory is laid out in the Big-Endian byte order format with the most significant byte

of a multiple byte word in the lowest address. This is equivalent to the MV,

IBM/370, SPARC, and Motorola 68000. This is opposite from the VAX and Intel

80x86.

Similarly, a program might make size or allocation calculations based on the

storage layout (packing) rules of the original system. In both of the cases described,

the program works correctly on the original system but cannot be moved to another

system without major changes.

Given below are examples of some of the more common issues resulting from

storage and addressing assumptions.

093-701047 Licensed material—property of Data General Corporation 9-1

Handling Alignment and Storage Layout Issues

Using the NULL Pointer

Symptom: Memory fault error at runtime.

Cause: Indirecting NULL pointer.

Solution: Remove all use of the NULL pointer to access

a zero word.

Lint will not catch this problem.

The NULL pointer is a special C language feature that allows you to test for an

uninitialized pointer or to pass an error condition through a pointer. The NULL

pointer is particularly prone to misuse. For example, on some machines, the NULL

pointer points to a zero integer or a zero character stored in memory. Consequently

some programs rely on de-referencing the NULL pointer to obtain a zero character or

a value of zero. This practice is called indirecting zero. On AViiON systems, the

NULL pointer does not point to zero.

Programs that expect the NULL pointer to point to a specific value may misuse it

in several different ways. For example, your program is making assumptions about

the NULL pointer if it uses:

if(*p)

as a shorthand for:

if(p && *p)

In this example, the program de-references a pointer without knowing whether it is

the NULL pointer. De-referencing the NULL pointer would work only on machines

for which the NULL pointer points to a zero character or integer. As with most

UNIX systems, the AViiON system generates an addressing exception for this use of

the NULL pointer.

Similarly, it is incorrect to pass the NULL pointer as a pointer to zero, as

follows:

f (NULL)

or

£(0)

The proper way to pass a null character string is:

£¢"")

The proper way to pass a pointer to zero is:

{ int i=0, £(&1); }

9-2 Licensed material—property of Data General Corporation 093-701047

Handling Alignment and Storage Layout Issues

Meeting Structure and Union Alignment Requirements

Symptom: Your structure or union data is not laid out

as expected.

Cause: Unexpected padding or alignment of structure/union.

Solution: Rewrite programs to avoid padding and

alignment assumptions.

Lint will not catch this problen.

AViiON systems running DG/UX conform to the structure and union alignment

requirements of the 88Open Object Compatibility Standard.

Meeting Integer Alignment Requirements

Symptom: Integer fetch is off by one byte; for example,

read fetches a wrong value from memory or

store writes over wrong byte in memory.

Cause: Misalignment of integer.

Solution: Rewrite code to use pointers that meet all

alignment requirements.

Lint will not catch this problem.

AViiON systems running DG/UX conform to the integer alignment requirements

of the 88Open Object Compatibility Standard.

Using Signed/Unsigned Characters or Integers

Symptom: Program loops continuously; literal comparisons fail.

Cause: Program presumes unsigned integers and/or characters.

Solution: Use the unsigned character compiler option or rewrite

code to avoid these assumptions.

lint will catch some instances of this problem.

A common data format problem concerns signed versus unsigned characters or

integers. The AViiON family architecture presumes signed characters. In particular,

when a character is compared to an integer, the character’s sign bit is extended. This

means that a negative one (—1) stored in a character variable will match a negative

one (—1) integer.

You can specifically request that all characters in a program be unsigned with a

command line compiler option. See ec(1). Use the keyword signed in the character

declaration to identify specific characters that are to be signed. You can also rewrite

the offending code to use integer variables instead of character variables.

093-701047 Licensed material—property of Data General Corporation 9-3

Handling Alignment and Storage Layout Issues

Passing Structures and Unions

Symptom: Memory fault error at runtime; unrealistic

or unexpected values found in arguments.

Cause: Passing a structure or union variable to a routine that

expects a true integer or pointer variable, or vice versa.

Solution: Pass a temporary variable of the appropriate type

as the argument to the routine.

Lint will catch this problem.

If a routine is expecting a structure or union as an argument and is passed an

integer or pointer, it will get a memory fault. Conversely, if a routine is expecting an

integer or pointer argument and receives a structure or union argument, a random

integer value will be received.

The solution to these mismatches is to pass a temporary variable as the argument.

Thus, if the routine is expecting an integer, store the desired structure field into a

temporary integer variable and pass the temporary variable as the argument.

Remember, structures and unions may hold pointer or integer values, but this

does not mean that they themselves are integer- or pointer-type variables.

9-4 Licensed material—property of Data General Corporation 093-701047

Using Floating-point Format

Using Floating-point Format

The AViiON family floating-point format follows the TEEE-754 standard. Other

systems, including the Data General ECLIPSE® system, use the IBM standard. If

you find unexpected floating-point values when transferring data from another system,

floating-point format may be the problem. The target system may handle floating-

point numbers differently from the source system.

One way to handle the problem is to convert your floating-point values into some

form that will not be altered in transportation, to transport them, and then to convert

them to floating-point on the target machine; this will invoke the floating-point format

on the destination machine. For example, convert the number into a character string,

move the character string to the destination machine, and translate back from a

character string to floating-point format. Converting IBM floating-point format to

IEEE format results in a loss of precision but an increase in range.

NOTE: The range and precision of different floating-point formats varies; this

might cause unavoidable loss of precision. Floating point is implemented

using IEEE format. It is supported by an integrated on chip floating-point

unit which greatly enhances floating-point performance.

Handling Memory Layout Issues

When you run a program, the kernel allocates an address space for the program

and any data storage it may require. Within this address space, areas are reserved for

various uses, as follows:

@® Data Area — This area holds statically allocated variables.

@ Text Area — This area holds the actual program code.

@ Unallocated Space — This space is reserved for data storage that is allocated

dynamically during runtime. There are three areas needed within the

unallocated space:

@ Stack — The system uses the stack to hold automatic variables, the

state of each function call, and arguments being passed to routines.

On the DG/UX system, the stack is managed by system runtime

routines and not your program. On AViiON systems the default

stack starts at address O0xFO0O00000 and grows downward.

@ Heap — The heap is used for dynamic storage requests that your

program makes during runtime. Calls to the malloc(3C) runtime

routine return space taken from the heap. On the DG/UX system,

the heap is managed by system runtime routines and not your

program. On AViiON systems the default heap starts at the first

four megabyte offset from the end of the text and data sections and

grows upward. For most programs, this location is address

093-701047 Licensed material—property of Data General Corporation 9-5

Handling Memory Layout Issues

0x400000.

@ General Storage Area — This area is reserved for any shared or

unshared dynamic allocation requests that your program may need

to make. The default location for this area is in the middle between

the stack and heap. Unlike the other unallocated space areas, your

program directly controls this storage area through system calls.

You can create two different types of areas within this general

storage area. These are:

@ Unshared Memory (sbrk/brk) — Your program uses the

sbrk(2) and brk(2) system calls to allocate/deallocate space

in this area.

e@ Shared Memory — Your program uses the shmat(2) and

shmdt(2) system calls to attach and detach space in this

area.

The size of the stack and the heap change during runtime as information is

added or space is allocated or deallocated.

Different machines may arrange these areas differently in memory. Figure 9-1

shows the default memory configuration used on the DG/UX system.

+ + Oxffff fFff

| Reserved Area |

High + + Oxf000 0000

Addresses | Stack |

| | |
| Vv |
+----- +

| General Storage |

+ +

| ~ |
| | |
| Heap |

| Data Area | (or next

+—-—------- + 0x0040 0000 available

Low | Text Area | 4mb offset)

Addresses + + 0x0002 0000

Figure 9-1 Program Layout in Memory

There are two main porting issues that may arise in regard to memory use:

® Differences in the way the unallocated area is managed and allocated — If

your program does not have the required amount of heap, stack, or general

9-6 Licensed material—property of Data General Corporation 093-701047

Handling Memory Layout Issues

storage area, it may generate a fatal memory fault during execution.

Database management programs that perform sophisticated memory

operations may be particularly prone to this problem. On different systems,

the way you reserve address space for each area will differ. The "Reserving

and Using Dynamic Storage” section below discusses this problem in more

detail.

@ Making assumptions about how the stack is implemented — On AViiON

family systems the stack grows downward (from higher addresses to lower

addresses). On MV/Family machines, the stack grows upward (lower to

higher). Many programs use assumptions about which way the stack grows

for various purposes. For example, a program may try to determine whether

a function call has been made by trying to check for arguments pushed on

the stack.

Assumptions about the order in which arguments are pushed onto the stack

or about the direction of stack growth may not be valid on DG/UX systems.

Reserving and Using Dynamic Storage

Symptom: A runtime initialization error returned from a

runtime library routine, a negative one (-1) returned

from sbrk call, or a NULL returned from a malloc

or calloc call.

Cause: Insufficient memory reserved for either stack,

heap, or unshared memory area.

Solution: Increase reserved memory area through compiler

and linker options. Alternatively, in the case of

sbrk, you may need to change the location of

your shared memory segment.

lint will not catch this problen.

If your program does not have enough space reserved for the heap or stack, the

runtime library routines that handle initialization may return a runtime initialization

error before ever giving control to your program. To correct the problem, you must

increase the amount of space reserved for these structures at link time. Use a

combination of runtime library definitions and linker options to control the allocation

of the stack, heap and general storage area. See the Programmer’s Reference for the

DG/UX System for details on how to use these definitions.

Another problem with dynamic storage may occur if you make an unshared

memory request (sbrk) that overlaps into a shared memory area. The kernel allocates

shared memory at higher addresses than unshared memory in the general storage

area. The lowest attached shared memory segment forms an upper boundary for the

growth of unshared memory requests. Figure 9-2 illustrates this situation.

093-701047 Licensed material—property of Data General Corporation 9-7

Handling Memory Layout Issues

High + -+ Oxf000 0000

Addresses | Stack |

| | |
Vv
I \
Shared

| |
| ~ | / Storage

| | | /
| Unshared | /

| --------- ---- |
| ~ |
| | |

Low | Heap | (or next

Addresses +~— : —---+ Qx0040 0000 available

4mb offset)

Figure 9-2 Shared and Unshared Memory Segments In The General Storage

Area

If one of your sbrk calls (unshared memory request) returns a negative one (-1)

(which indicates insufficient memory), it is quite possible that your unshared memory

has grown into the space reserved for shared memory. The best way to handle this

situation is to make sure that your shared memory area is as close as possible to the

text area. This will reduce any waste space and provide more room for unshared

memory within your general storage area. The easiest way to reserve space for

unshared memory in general storage is to call sbrk before attaching (shmat) your first

shared memory segment. The call to sbrk should cover an area large enough for all

your program’s unshared memory needs. Then attach the shared memory segment

and call sbrk again to release the space that was reserved by the first sbrk call. By

initially reserving unshared memory directly above the heap, you force the shared

memory to be attached at an address closer to the text area. Because you have

anticipated all your future unshared memory needs, you should not have to worry

about overlapping the shared storage area.

9-8 Licensed material—property of Data General Corporation 093-701047

Handling Memory Layout Issues

Retrieving Arguments from the Stack

Symptom: Invalid argument values found.

Cause: Program that presumes a particular layout

of arguments on the stack or one that presumes

that the stack grows toward increasing addresses.

Solution: Rewrite code using standard C functions.

Lint may not catch this problem.

Programs that attempt to retrieve arguments pushed on the stack during a

subroutine call should be rewritten to use standard language facilities without stack

traversal. An example of improper argument retrieval code is as follows:

void f(a) int a;{

int *ap = &a, 1;

while(i=*apt+){

}

}

In this example, f is a function that can be invoked with a variable number of

integer arguments. The code shown above tries to locate the address of the first

argument and then increase that address by one in order to find the address of the

next argument. Thus, the code is written to expect a certain layout of arguments on

the stack. This logic will not work on the DG/UX system.

You can use the varargs C facility for a variable length argument list. The

yprintf(3S) and vseanf(3S) families of functions are also useful for dealing with

variable numbers of arguments during input and output operations. See the

Programmer’s Reference for the DG/UX System (Volume 2) for details on these

facilities.

093-701047 Licensed material—property of Data General Corporation 9-9

Programming In A Multi-Processor Environment

Programming In A Multi-Processor

Environment

The AViiON computer family includes several platforms which support multiple

88000 processors. The DG/UX operating system includes several extensions to

effectively support these multi-processor system architectures in a fully symmetric

fashion. The user’s view is of a single system, independent of the number of

processors actually running. Because of this support, most user applications can run

unmodified across the product line and benefit from the added performance of the

multi-processor systems.

Some applications which may encounter problems when running on true multi-

processor architectures are those which run as several processes which share data via

either shared memory or shared data files. Database applications are likely to use

these techniques. For these applications the ability to effectively run on a multi-

processor system is greatly dependent on the program’s design for handling resource

contention and avoiding deadlock. Designs which include fixed sleep times to wait

for an unavailable resource or retain locks for unnecessarily long periods of time may

have problems. In some cases, this can cause applications to actually take longer to

execute on a multi-processor system than a uni-processor system. This situation

arises when resource contention causes the processes of an application to

unnecessarily wait for resources to free.

If you have an application that experiences delay problems on a multi-processor

system then you will need to examine your resource sharing algorithms and alleviate

unnecessary waits.

End of Chapter

9-10 Licensed material—property of Data General Corporation 093-701047

Chapter 10

Porting Graphical Applications

This chapter discusses the DG/UX 4.10 graphics hardware and software. After

reading this chapter the reader should understand the graphics hardware and software

supported, and associated porting issues. Familiarity with the X Window System,

hereafter called X, is assumed. Please consult the X manuals available from Data

General for a complete discussion of the architecture, usage, and programming of the

X system.

This chapter covers six topics, and includes: a set of questions, reference section,

and a glossary. The topics are: a description of the graphics environment, hardware

issues, build and run environments, X issues and environment, xterminal issues, and

issues that all applications must deal with that pertain to graphics.

Data General’s graphical environment consists of the X Window System X11R3

from MIT, along with supporting hardware. Data General has committed to support

the OSF Motif user interface. Due to the support of major standards, most

applications (that use the standards) will have few problems in the port to the

AViiON platforms.

The porting question remains: Given an application working on another host

system, what needs to be done to get it running on AVON hardware? The questions

at the end of this chapter pertain to the graphical environment your application

expects, they do not touch on general porting issues. A non-graphical application

need only answer the last question.

ALL GENERAL OPERATING SYSTEM AND LANGUAGE PORTING

ISSUES STILL APPLY TO GRAPHICAL APPLICATIONS!

The style guide that Motif specifies has been committed to by Data General.

This specification is still in the draft stage. The Athena widget set may be used in the

interim; however there will be changes required of applications when Motif becomes

available.

Another standard that is still in draft form is the "Proposed Interclient

Communication Conventions” appendix of the X/ib Programming Manual. This is

aimed at enabling X clients to be ported between different window managers.

The color version of the AViiON workstation is not available at the present. The

issues involved with this are a different depth of the bitplane, a different X server

implementation, and a different graphics controller chip.

093-701047 Licensed material—property of Data General Corporation 10-1

Porting Graphical Applications

$—--------------- - +--+ ---------------- - +

|Workstation Application |

| |
| (through language bindings) |

| |
+—— —-—+ |

[UIMS + + | |

| | window manager | | |

| 4 + | |
| | UI clients | | |

| +---------------- + | +-- + |

| | other clients | |- - | extensions | |

| +------ - + | + + |

‘ mete P| |
| x libraries + | | |

‘ — a | |
| Xtoolkit + + | | | |

| | intrinsics | | | | |

: ‘ |---------- +)
| | widget set | | | |

| + + | | |
+ —4+-~---------- + | |

| xlib version 11 + —— + | | |

| | graphics functions | |--+ |

| ‘ - + | |
| | transport layer | | |

|
| X11 network protocol

|

| | |
|xserver + + | t--- + |

| | transport layer | | ----- | extensions |

| + + | fom + |

| | server kernel | | |

| +----------------- + | +------- + |

| | device support | |--| fonts | |

| +--- + | +------- + |

$-——----~-~—--- + + + + + = +

| OS device driver |

‘ wanna nanan -|
| hardware |

+ ~ — ~ ——- ~+

Figure 10-1 Conceptualized Environment Architecture

10-2 Licensed material—property of Data General Corporation 093-701047

Controlling the Graphical Software Environment

Controlling the Graphical Software

Environment

Data General’s graphical software environment consists of language and operating

system bindings, the X Window System from MIT, and a commitment to the Motif

style guide.

Currently "C” and DG/UX are the only language and operating system bindings

available for X applications on AViiON systems. See the other chapters of this

manual for assistance in these areas of porting.

A complete X Window System is provided, including the server, library, toolkit

intrinsics, Athena widget set, and nine of the most useful clients (uwm, xbiff, xclock,

xload, xwd, xwud, xpr, xstart, and xterm). The contributed software sources that are

supplied on the X release tapes from MIT will be passed on by Data General, with no

implied support or warranty. See the X Environment and Issues section for more

information on these areas.

Controlling the Graphical Hardware

Environment

Applications written to the controlling chip level are highly unportable. It is

strongly suggested that applications not use this level. The preferred method is to

convert the application to make requests of the X server. This will greatly enhance

the application’s portability. See the AViON hardware documentation for a

description of the graphical controller chip for both the monochrome and color

configurations. See Data General and vendor documentation for specifics on the

controller chip in the x-terminal.

The porting issues concerning cpu, standard devices, and networking are covered

in other sections of this document. Issues involving graphical hardware, either

workstation or x-terminal, consist of the characteristics of the controlling chip, the

supported devices (screen, keyboard, mouse), and, supporting new devices. There

are two distinct X server implementations, one for mono and one for color. The X-

terminal also implements the X server internally.

An application that uses only the supported devices through X should have few,

if any, hardware porting issues; on either the workstation or the x-terminal. See

Table 5.1 in Chapter 5 for characteristics of the supported graphics devices and x-

terminal characteristics. See the appropriate sections of the X manuals for directions

on adding support for new devices. See Writing a Device Driver for the DG/UX

System for information on how to add device support to the operating system. The

AViiON workstation also provides an async port, SCSI port, and printer port. These

do not impact graphical applications.

093-701047 Licensed material—property of Data General Corporation 10-3

Controlling the Build and Run Environment

Controlling the Build and Run Environment

There are few issues specific to graphics in the build and run environment. If

dealing with an X application, the placement of the graphical libraries and includes

should be the only major issues. Data General provides the X libraries and includes

from MIT, in the standard places, refer to the X manuals for contents and placement.

See also the X release notes from Data General. See the X documentation for build

procedures for the X system applications. See chapters 6 through 8 and chapter 4 for

general build and run issues.

You should be aware that the majority of software sources that are provided in

the /contrib portion of the X release from MIT consist of programs that Data General

HAS NOT VERIFIED. There is no guarantee that the sources or makefile will build

or run correctly. Many of these applications were developed on platforms which

differ greatly from the AViiON architecture and environment.

If you are porting from another graphical package, consult the X documentation

for porting hints.

Porting to the X Window System

Data General’s graphical environment consists of the X Window System from

MIT and a separate library of primitive functions, along with supporting hardware.

No change in functionality from that described in the X documentation should exist.

See the X manuals for porting and internationalization issues. Note that if you have

used a toolkit other than the MIT release, your port will require rewriting some of

your code. If you use a User Interface Management System that is X based, you

should be able to port your UIMS with a simple recompile.

Using Software Development Tools

The standard DG/UX development tools are available, see chapter 6 for more

information on them.

Handling X Terminal Issues

Since an X terminal provides display hardware and the X server software, the

issues identified above in the X environment section pertain. Xlib and the X client

application will still reside and run on the host AViiON system. A working X

application should run with no changes on an X terminal. The size of the screen is

the only allowable difference between the X terminal and the AV1iON workstation

that an application may discern. See the X-terminal Installation and Operation

Manual for more details on functionality and characteristics. Typically x-terminals

have a smaller amount of memory in them than would be present on a workstation.

This may lead to applications hanging and/or crashing if the memory resource is

10-4 Licensed material—property of Data General Corporation 093-701047

Porting to the X Window System

expended. X terminals (and diskless workstations) will also result in greatly increased

network traffic.

Graphical Issues for All Applications

The only difference in environment that a non-graphical application must

accommodate is being spawned by an xterm. The only issues stemming from this

difference are: standard I/O goes through an emulation of Digital vt102 or Tektronix

4014 terminals, and the application must be able to handle the window being resized.

A window resize event is handed to the application by the SIGWINCH signal. See

the X manuals for window resizing implications. Font sizes also interact with the

window size, and must be considered. See chapters 4 and 5 for more details on setup

and terminal issues. This assumes that your application does not by-pass the —

termcap/terminfo interface.

Determining the Current Environment

The following checklist may be used to determine the extent of the porting effort

needed to convert your application to the Data General environment. The effort is

proportional to the amount of differences between the environments. Note that this

set of questions address graphical issues only. The questions below apply to all

applications that may be executed in an xterm window, whether or not they are

explicitly graphical. The item in square brackets is the Data General offering.

a) What environment(s) do you expect?

@® Windowing environment [| X Window System |

b) What hardware do you expect?

@ Graphics monitor or workstation characteristics [display, keyboard,

mouse |

e Any non-monitor devices [none |

® Do you have any cpu or network dependencies [TCP/IP, NFS]

c) What are your build and run environments?

e Libraries & include files [standard UNIX, C, and X |

d) Do you use the X environment, and if so;

@ Hardware dependencies assumed [display, keyboard, mouse]

@ What environment is expected .

Library calls [C and X]

093-701047 Licensed material—property of Data General Corporation 10-5

Determining the Current Environment

Client / Server functions [standard X |]

Window Manager expected [uwm |

Toolkit calls [| standard Xt intrinsics, and Athena widget set]

Style guide [| Motif - committed to |]

@ What development tools are expected

@ Do you use any extensions to X [none are currently approved by

MIT]

e) Does the non-graphical portion of your application?

@ Use termcap or terminfo/curses [DGC provides both |]

@ Handle the SIGWINCH signal

End of Chapter

10-6 Licensed material—property of Data General Corporation 093-701047

Chapter 11

Building and Running BCS

Applications

This chapter describes how to build and run BCS-compliant programs. The

material in this chapter is not yet final.

End of Chapter

093-701047 Licensed material—property of Data General Corporation 11-1

Appendix A

DG/UX System Calls and

Commands

This appendix lists the system calls and commands supported by the DG/UX

system.

System Calls

Table A-1 summarizes the system calls available in the DG/UX system and other

UNIX systems. The table uses the following notation conventions:

4.1 New in DG/UX Release 4.10

X Included in the system named by the column head

- Not included in the system named by the column head

L Implemented as a library routine

BA_OS Part of SVID Base OS function

KE_OS. Part of SVID Kernel Extension OS function

88C Performed completely by calling a BCS gate

88L Performed by a library routine that calls one or more BCS gates but

provides additional logic to complete the function

88X Performed by invoking exec(2) on a user-level program

88? Only partially supportable via BCS

Table A-1 Summary of System Calls

System Call DG/UX 386/ix AT&T BSD/Sun BCS'- POSIX SVID

4.0,4.1 1.06 V.3 4.3/4.0 10 2

accept Xx - - x - - -

access X x x x 88C x BA_OS

acct x x x x 88X — - KE_OS

adjtime - - - x - - -

alarm x x Xx - 88L x BA_OS

async_daemon X - - S - - -

audit - - - S - - -

auditon - - - S - - -

auditsvc - ~ - S - - -

berk_sigpause x - - X 88L et; -

bind x - - x - - -

093-701047 Licensed material—property of Data General Corporation A-1

System Calls

System Call

brk

cfgetispeed

cigetospeed

cfsetispeed

cfsetospeed

chdir

chmod

chown

chroot

close

closedir

connect

creat

ctermid

cuserid

dg_ext_errno

dg_file_info

dg_fstat

dg_ipc_info

dg_mknod

dg_mount

dg_mstat

dg_process_info

dg_stat

dg_sys_info

dg_xtrace(2)*

dup

dup2

execl

execle

execlp

eXeCV

execve

execvp

_exit

exit

exportfs

fchmod

fchown

fcntl

fdopen

fileno

flock

fork

fpathconf

{stat

{statfs

DG/UX

4.0,4.1

em «MM eM

eo pb
_epao ped

pi

[MMM REM RM RRS Re KR ay

OS oy

Licensed material—property of Data General Corporation

386/ix

1.06

1 Ke mM KO OO OK
' ' a 1 |
be

AT&T

V.3

1 MK PO OO OOO!
~~

to <n

BSD/Sun

4.3/4.0

X

oo
' pa ope I

1 of bt bet ot

de
I pa ope !
Se

POSIX

oo gs oo

oo
t op op i |
ms Pm

093-701047

System Call

fsync

ftruncate

getauid

getcwd

getdents

getdirentries

getdomainname

getdtablesize

getegid

getenv

geteuid

getergid

getgrnam

getfh

getgid

getgroups

gethostid

gethostname

getitimer

getlogin

getmsg

getpagesize

getpeername

getpgrp
getperp2

getpid

getppid

getpriority

getpsr

getpwnam

getpwuid

getrlimit

getrusage

getsockname

getsockopt

gettimeofday

getuid

ioctl

isatty

kill

killpg

link

listen

lockf

Iseek

Istat

memctl

093-701047

DG/UX

4.0,4.1

ee

I el oo os el so sg
Se OO OO OO OO!
Licensed material—property of Data General Corporation

386/ix

1.06

|

1 bd § bd ot bt bet
' pe pe

AT&T

V.3

| » ! pa ! |

gn So oo

BSD/Sun

4.3/4.0

ot ke NNN' Wm TM

[te OK lO OK OG! OK KO
og Eo go go oo

BCS

10

88C

88L

88C

88L

88C

88C

System Calls

POSIX

oo oO oo
~

| 4 ope t pa ' {
I ' > pa 1

1 bd § be Dd oF be
pd

A-3

System Calls

System Call

mincore

mkdir

mkfifo

mknod

mmap

mount

msgctl

msgeget

MSgrcv

msgsnd

msync

munmap

nfsmount

nfssvc

nice

open

opendir

pathconf

pause

pipe

plock

poll

profil

ptrace

putmsg

quota

quotactl

read

readdir

readlink

readv

reboot

recv

recvfrom

recvmsg

rename

rewinddir

rmdir

sbrk

select

semctl

semget

semop

send

sendmsg

sendto

setaudit

A-4

DG/UX

4.0,4.1

a ll oe
b=

—_

ayee pam

se OOOO OOO OK OO!
Licensed material—property of Data General Corporation

386/ix

1.06

(OO!
1 bt bt

oo

AT&T

V.3

ee
1 bd bt

oo

oO

BSD/Sun

4.3/4.0

S

X

'"N'NANNARKX PM !
t t 4
ms

NK KK ONNDNM MM) MMM KK mM Nm KD!

POSIX

i md ope l

093-701047

System Call

setauid

setdomainname

setgid

setgroups

sethostid

sethostname

setitimer

setlocale

setpgid

setperp

setpgrp2

setpriority

setpsr

setquota

setregid

setreuid

setrlimit

setsid

setsockopt

settimeofday

setuid

setuseraudit

shmat

shmctl

shmdt

shmget

shutdown

sigaction

sigaddset

sigblock

sigdelset

sigemptyset

sigfillset

sighold

sigignore

sigismember

signal

siglongjmp

Sigpause

sigpending

sigprocmask

sigrelse

sigret

sigreturn

sigset

sigsetjmp

sigsetmask

093-701047

DG/UX

4.0,4.1

a
BR poasad

i ool oe og os oo ol gg
SM PHM eM Kt
mM op!
Licensed material—property of Data General Corporation

386/ix

1.06

a

1 bd t bt bd tot

AT&T

V.3

ee

| bd 1 be 1 bt be

BSD/Sun

4.3/4.0

ee OK WI AHDP
1 «eM «eM Y !

OE NNAD BM M1 mm mM Lg

BCS

10

System Calls

POSIX

i og So Oo
| b¢ bt 1 be ot bet

System Calls

System Call

sigsetops

sigstack

sigsuspend

sigvec

sleep

socket

socketpair

Stat

statfs

stime

swapon

symlink

sync

sys_local

syscall

sysconf

sysfs

tcdrain

tcflow

tcflush

tcgetattr

tcgetpgrp

tcsendbreak

tcsetattr

tcsetperp

tell

time

times

truncate

ttyname

{zset

uadmin

ulimit

umask

umount

uname

unlink

unmount

ustat

utime

utimes

vadvise

vfork

vhangup

wait

wait3

wait4

A-6

DG/UX

4.0,4.1

ee
pam

| pe pd pe

oo oo
a ee
Licensed material—property of Data General Corporation

386/ix

1.06

1 pd pd pe

| pa ope {

oo oo

AT&T

V.3

(op op om

| pa op ' '

eo oo oo

BSD/Sun

4.3/4.0

opt tb OG oe oe

' DRséHM DM -

Ne em eM «KM YM !

POSIX

1 dd 1 bd 1 be
1 >

ee
i

093-701047

System Calls

System Call DG/UX 386/ix AT&T BSD/Sun BCS'~ POSIX SVID

4.0,4.1 1.06 V.3 4.3/4.0 10 2

waitpid 4.1 - - - 88C x -

write x x x x 88C x BA_OS

writev x - - x - - -

* Formerly known as xtrace(2).

093-701047 Licensed material—property of Data General Corporation A-7

User and Programmer Commands

User and Programmer Commands

Table A-2 summarizes the user and programmer commands available in the

DG/UX, 386/ix, AT&T V.3, and BSD 4.2 operating systems and whether they

comply with SVID. There is no column for BCS, since it does not specify

conformance for commands. Since the POSIX standard for commands has not yet

been approved, no column is given for POSIX.

The table uses the following notation conventions:

xX

4.0

4.1

BU_CMD

AU_CMD

AS_CMD

SD_CMD

TI.CMD

NS_CMD

Command

300

4014

450

acctcom

admin

addrem

ar

as

as386.sed

asa

assist

astgen

at

att_dump

att_stty

awk

banner

basename

batch

bec

bdiff

berk_diff

berk_diff3

A-8

Included in the system named by the column head

Not included in the system named by the column head

Included in DG/UX 4.0 but not in 4.10

Included in DG/UX 4.10 but not in 4.0

Part of SVID Basic Utilities Extension

Part of SVID Advanced Utilities Extension

Part of SVID Administered Systems Extension

Part of SVID Software Development Extension

Part of SVID Terminal Interface Extension

Part of SVID Network Services Extension

Table A-2 Summary of User and Programmer Commands

DG/UX 386/ix AT&T BSD SVID

4.0,4.1 1.06 V.3 4.2 2

Xx X - -
- xX x -

- x x - _

x Xx x - -

x X X x SD_CMD
- xX - - -

X x X X BU_CMD

x X X X SD_CMD
- xX - ~ -

x - x - -

x - x - -

x -

x X X x AU_CMD
x -

x

x x X x BU_CMD

x X X - BU_CMD

X x X x BU_CMD

X X X - AU_CMD

x x x X -

X x x - -

x - -

x - - - -

Licensed material—property of Data General Corporation 093-701047

Command

berk_stty

bfs

cal

calendar

cancel

cat

cb

cc

ccoff

cd

cdc

cflow

cherp

chmod

chown

Cl

clear

cmp

co

col

comb

comm

conv

convert

cp

cpio

Cpp

cprs

crontab

crypt

csh

csplit

ct

ctags

ctrace

cu

cut

cxref

date

dbx

dc

dd

deblock

delta

deroff

dghost

diff

093-701047

DG/UX

e 9 ei S dom joa

poenh

juea a ll eel a gD oo Dl poassd

mm PO OP OO OO OO OO OOO OOOO OS!
Licensed material—property of Data General Corporation

386/ix

1.06

[7 PO OO OO OO OO OS!

mem! PO RO OOO OO OO OO OOO OO OO OO

AT&T

V.3

1 7 OOK OO OO OO!

mt oO tO OO OO OO OO OO OOO OO OOK!

BSD

4.2

i oo Oo
' pa oe '

1 bt bt St tl ltl ld tlt tt
1 ood 1 bet

| pd pe pe me

User and Programmer Commands

SVID

2

BU_CMD

BU_CMD

AU_CMD

BU_CMD

SD_CMD

BU_CMD

SD_CMD

AU_CMD

BU_CMD

AU_CMD

BU_CMD

BU_CMD

BU_CMD

BU_CMD

BU_CMD

SD_CMD

AU_CMD

AU_CMD

AU_CMD

BU_CMD

SD_CMD

BU_CMD

AU_CMD

SD_CMD

BU_CMD

User and Programmer Commands

Command

diff3

dircmp

dirname

dis

disable

dossette

du

e

echo

ed

edit

egrep

enable

env

erase

ex

expr

factor

false

ffil

fgrep

file

find

fold

fsplit

gdev

ged

get

getopt

getoptcvt

getopts

ghost

glossary

graphics

greek

grep

gutil

hardcopy

hashcheck

hashmake

head

help

history

hp
hpd

hpio

i286emul

A-10

DG/UX 386/ix AT&T BSD SVID

4.0,4.1 1.06 V.3 4.2 2

(«eM ' «MM eK OR OM

[3 PO OO OK Ot OK OOOO
ee

1 oo Oe OX NnuoCQ<o

mA bo!i"O=0
!

a
QT !
voOQ=o1 OO OO OOK OOO OKO OOO OK OOK OO OO a > | -OSsSo .1 6 OO OO OK OOK OK OOO

1 PO OM |

ot op mM!
I |

oe 'mM PP OK OO OO OO OOOO OO! 1 >d
t (

Licensed material—property of Data General Corporation 093-701047

Command

id

ident

infocmp

insdriver

inskern

ipcrm

Ipcs

IsmMpx

join

jterm

jwin

kconfig

kill

last

layers

Id

lex

lfd

line

list

lint

In

locate

login

logname

lorder

Ip
Ipstat

Is

m4

m68k

machid

mail

mailx

make

man

mcs

merge

mesg,

mkdir

mkshlib

mkstr

more

mv

mxdb

newfile

newform

093-701047

User and Programmer Commands

DG/UX 386/ix AT&T BSD SVID

4.0,4.1 1.06 V.3 4.2 2

1 pe pe

i 1 Sd ot bt bet ot | pe 1 ' > ! >!c Peoe O< <oO Ooao oo oo os ms

'

1 6M mM FO OK OM!
es ! .QO<o

| pa ' pa ' a pa '
!

1 bd bt PDUOQ=01 7 OP OOO OKO OO OO OO OOK OK!ee | pa pt!

| pe pd tbe nuZoOi i ee |

am oe! ! pan rf root

Licensed material—property of Data General Corporation A-11

User and Programmer Commands

Command

newerp

news

nice

nl

nm

nohup

od

pack

page

passwd

paste

pcat

pdp11

pe

pg

pr

printenv

prof

prs

prity
ps

pwd

ratfor

rcs

rcsdiff

rcsintro

rcsmerge

readfile

red

regcmp

reset

rev

revision

rlog

rlogin

rm

rmail

rmdel

rmdir

rmhist

rpl

rsh

sact

sadp

sag

sccsdiff

sccstorcs

A-12

DG/UX 386/ix AT&T BSD SVID

4.0,4.1 42 2po>A

rs >inOCSsOo

Mo DYoOQ<0

me ll KO OO 1 obé be ot
jad

1 pd pd (pd pe op to MS-2<oO

1 pe pe oe! w-)S0BPH HM MK KR RR KKK Rm mK OM OMfd pe pd ek
' pd pt op lt
' 1 Sd be t

[Ke RM KR MK MK mR {

1 pe ot pe pt Xo.C)<0

> oo oo oo go og oo
we)

'

eo eo eo 1 be 4 ' t

Licensed material—property of Data General Corporation 093-701047

Command

sdb

sdiff

sed

setup

sh

shl

showrem

size

sleep

sno

sort

spell

spellin

spline

split

stat

starter

strings

strip

stty

su

sum

tabs

tail

tar

tconvert

td

tdigest

tee

tekset

test

time

timex

toc

touch

tplot

tput

tr

true

tsort

tty
u3b

u3b5

ul

umask

uname

unget

093-701047

DG/UX

9 e> i) & ="

(MM MM lO OK OO
1 Mm OO

ame ee eR OK! aed pe

Licensed material—property of Data General Corporation

386/ix

1.06

1 4 PO OO OO OO OO OO OO OO OO OO OO OO OO OK OO OKO
xm mM eM!

AT&T

PMP tO OR OP OP OO OO OO Om OO OO OO OO OO OOO OOK OO OO <
i

BSD

4.2

em Ft UTC!
i

(6M mM FO mF tt mR OR KO
ms

[oom mM me
a

User and Programmer Commands

SVID

SD_CMD

BU_CMD

BU_CMD

AU_CMD

SD_CMD

BU_CMD

BU_CMD

BU_CMD

BU_CMD

SD_CMD

AU_CMD

AU_CMD

BU_CMD

AU_CMD

BU_CMD

AU_CMD

BU_CMD

BU_CMD

SD_CMD

AS_CMD

BU_CMD

TLCMD

BU_CMD

BU_CMD

SD_CMD

AU_CMD

BU_CMD

BU_CMD

SD_CMD

User and Programmer Commands

Command

unig

units

unpack

usage

uucp

uudecode

uuencode

uulog

uuname

uupick

uustat

uuto

uux

val

vax

vc

vedit

versions

Vi

view

vpix

wait

WC

what

whereis

who

write

Xargs

xstr

yacc

A-14

DG/UX

4.0,4.1

Po PK OO OO OO OOO
aed

Licensed material—property of Data General Corporation

386/ix

~>H

et a

A oo go Bo go Dn oD nD

AT&T

mt PP Ot KO Oe
ta

pa |

oo A oo

SVID

BU_CMD

BU_CMD

AU_CMD

AU_CMD

AU_CMD

AU_CMD

AU_CMD

AU_CMD

AU_CMD

SD_CMD

AU_CMD

BU_CMD

BU_CMD

SD_CMD

AU_CMD

AU_CMD

SD_CMD

SD_CMD

093-701047

Administrative Commands

Administrative Commands

Table A-3 summarizes the administrative commands available in the DG/UX,

386/ix, AT&T V.3, and BSD 4.2 operating systems and whether they comply with

SVID. There is no column for BCS, since it does not specify conformance for

commands. Since the POSIX standard for commands has not yet been approved, no

column is given for POSIX.

The table uses the following notation conventions:

Xx

4.0

4.1

BU_CMD

AU_CMD

AS_CMD

SD_CMD

TILCMD

NS_CMD

Command

accept

acct

acctcms

acctcon

acctconl

acctcon2

acctdisk

acctdusg

acctmerg

accton

acctprc

acctprcl

acctprc2

acctsh

acctwtmp

bcheckrc

bdblk

bre

captoinfo

chargefee

chroot

ckbupscd

ckpacct

093-701047

Included in the system named by the column head

Not included in the system named by the column head

Included in DG/UX 4.0 but not in 4.10

Included in DG/UX 4.10 but not in 4.0

Part of SVID Basic Utilities Extension

Part of SVID Advanced Utilities Extension

Part of SVID Administered Systems Extension

Part of SVID Software Development Extension

Part of SVID Terminal Interface Extension

Part of SVID Network Services Extension

Table A-3 Summary of Administrative Commands

DG/UX

4.0,4.1

me Rm OO OK OO KO OM
Licensed material—property of Data General Corporation

386/ix

1.06

[Pm OOK OO OO OOM
oO oo oo

AT&T BSD

V.3 4.2

x -

x -

X -

X -

x -

x -

x -

X -

X -

- Xx

x -

x -

xX -

Xx -

x -

xX -

xX -

xX -

x -

x -

SVID

2

AS_CMD

AS_CMD

AS_CMD

AS_CMD

AS_CMD

AS_CMD

AS_CMD

AS_CMD

AS_CMD

AS_CMD

AS_CMD

SD_CMD

AS_CMD

A-15

Administrative Commands

Command

clri

config

crash

cron

dcopy

devnm

df

diskadd

diskman

diskusg

dmesg

dname

dodisk

dump

dumpdir

dumpfs

ermes_editor

errdemon

errpt

errstop

fdisk

ff

filesave

finc

format

frec

fsck

fsdb

fsirand

fsstat

fstyp

ftpd

fumount

fusage

fuser

fwtmp

gencc

getty
erpck

halt

helpadm

1552pump

iacload

ib

idload

ifconfig

init

A-16

DG/UX

9>oS > =

~~ «eM FO OK OO
x mM eM!

I oo oo oo nS ng oo a gs
»

Licensed material—property of Data General Corporation

386/ix

1.06

|
| pe pd

og oo oo

me! lO FO OK OO OO OM

AT&T

ee
ta

1 KK Ot OK OK OC!
1 pé §' pé pe tt Op OSU!

AS_CMD

093-701047

Command

install

intro

killall

labelit

lastlogin

lib_merge

link

Ipadmin

Ipmove

Ipsched

Ipshut

makekey

mkfs

mklost+found

mknod

mkpart

mkunix

monacct

mount

mountall

mtjcpio

mvdir

ncheck

nlsadmin

nsquery

nulladm

ping
portmap

prctmp

prdaily

pridc

priid

prfpr

prisnap

pristat

profiler

prtacct

pwck

rc

rcO

rc2

rdump

reject

renice

restore

rexecd

rfadmin

093-701047

DG/UX

§ eo>S ia oy

1 OO OK OO OKO OO

1 4 PP OP OO OOO OOO OKO OK
i i i eo

Licensed material—property of Data General Corporation

386/ix

1.06

ee

(se we! «Kl RK KO OOO OK OS!
i i

AT&T

No oo os os
|
ms

1 9 PO OO OO OK OO!
a ee

Administrative Commands

A-17

Administrative Commands

Command

rfpasswd

rfstart

rfstop

rfuadmin

rfudaemon

rlogind x

rmntstat

rmount

rmountall

rmt

route

routed

rpcinfo

rrestore

rshd

runacct

rwhod

sal

sa2

sadc

savecore

sendmail

setmnt

shutacct

shutdown

startup

strace

strclean

Strerr

swap

swapon

sync

sysadm

sysdef

tapesave

telinit

telnetd

tftpd

tic

tpfix

tunefs

turnacct

uadmin

umount

unadv

unlink

update

A-18

DG/UX 386/ix AT&T BSD SVID

4.0,4.1 1.06 V.3 4.2 2

mr OO OO OOS!
~m mM Pe PO OO!
' bo be!
ms

xX - - -

x - _

xX - = ~

xX - - -

x _

- x -

x - - -

x - - _

x - _

x - X -

_ - X -

- x -

- - xX -

x - x -

X x - AS_CMD

- - X -

X x - AS_CMD

x X - AS_CMD

X X - AS_CMD

- - xX -

Xx - x -

X x - AS_CMD

x x - AS_CMD

X x X -

X x - AS_CMD
xX = - -

xX - - -

xX ~- ~ -

x - - -

- - xX -

x x X AS_CMD

x x - -

x x - AS_CMD

- xX - ~

-~ xX ~- -

x - X TM

x - x -

x x - TILCMD
>< - ~- ~

- - >< -

- X - AS_CMD
xX ~ - ~-

x X X AS_CMD
x - - -

X Xx - AS_CMD
- - xX -

Licensed material—property of Data General Corporation 093-701047

Command

uucheck

uUCICO

uuclean

uucleanup

uugetty

uusched

uutry

uuxqt

vipw

vix

volcopy

wall

whodo

wtinit

wtmpfix

xtd

xts

xIt

093-701047

Administrative Commands

DG/UX = 386/ix AT&T BSD SVID

4.0,4.1 1.06 V.3 4.2 2

bd

ee

xX - - -

x - -

X X X -

xX - - ~

x - -

x - - _

xX - - -

x - -

- - x -

x - - -

Xx Xx - AS_CMD

x X X AU_CMD

X X - AS_CMD

xX - - -

X x - AS_CMD

xX - - -

xX - - -

xX - ~ -

End of Appendix

Licensed material—property of Data General Corporation A-19

Appendix B

Comparison of C Compilers

Table B-1 compares the GNU and Green Hills C compilers.

Table B-1 Comparison of C Compiler Options

Description of Command Line Option GNU C

Produce only object files -C

Do not discard comments in preprocessor output -C

Define ’name’ to preprocessor with value 1

Define ’name’ to preprocessor with value ’string’

Run preprocessor and output to standard output -E

Generate debug information -g

Generate a frame pointer for stack traces

Add ’name’ to searchlist for #include -Iname

Generate minimum profiling information -p

Generate maximum profiling information -pzg

Place executable in file name’ -O name

Optimize -O

Optimize assuming memory locations don’t change

Optimize for speed even if more memory is used

Put all data in the text section

Produce only assembly files as output -S

Undefine a preprocessor symbol -Uname

Print out program name and arguments as they run -V

Suppress warning diagnostics -w

Allocate enum types as smallest type to represent values

Disable local optimizer

Do not produce output

Allocate only local register variables to register

Map all identifiers to uppercase

Display filenames as they are opened

Emit a warning when dead code is eliminated

Don’t move frequent use procedures & addresses to registers

Set default to signed for int, short, and char

Don’t underscore before global variables and procedures

Target system is UNIX System V

Turn off branch tail merging optimization

Allow extrn variables to be initialized

Generate error messages for C anachronisms

Generate .bss for zero initialized statics

Pack structures with no space between members

Allow redefinition of #define synbols to preprocessor

Target is BSD 4.2

Target is BSD 4.1

Enable ANSI extensions

Don’t stop for code generator abort or internal compiler error

Only evaluate float operands as float, else use double

Don’t move invariant floating point expressions out of loops

Don’t create a static base register

Suppress output from #ident

Use Fortran mixed mode expression evaluation rules

093-701047 Licensed material—property of Data General Corporation

Green Hills C

-C

-C

-Dname

-Dname=string

“g
“Za

-Iname

“p

“pg
-O name

-O

-OM

-OL

-R

-S

-Uname

-V

-W

-X6

-X9

-X13

-X18

Comparison of C Compilers

Description of Command Line Option

Don’t put ”.” before assembler directives

Don’t generate inline code for external calls with optimization

Suppress elimination of Jumps to jumps

Suppress common subexpression elimin. and value propagation

Functions that return float return single precision, not double

Apply associative rules in common subexpression elimination

Print description of enabled X switches

Don’t remove useless sign and zero extend functions

Suppress register database phase of peephole

Repeat peephole phase iteratively til code is unchanged

Don’t delete redundant register alignments

Don’t merge and remove excess move instructions

Suppress relvar code in database phase

Don’t merge index calculation into load instruction

Suppress block merge phase

Truncate names to eight characters on input

Don’t recognize the C "asm” inline directive

Don’t reorder instructions

Perform tail recursion optimization

Don’t make multiple copies of blocks during block merge

Don’t recognize ?: operators as absolute value and min/max

Enable all ANSI extensions appropriate to UNIX

Generate "stabd” psuedo-ops for line numbers

Allocate unused variables if symbolic debugging enabled

Substitute multiply for floating point divides where possible

Don’t pass front end information to peephole optimizer

Use ANSI rules for operator assignment

Suppress adrconst optimizations

In ANSI, allow /**/ to be macro concatenation operator

Don’t extend float arguments to double to pass to functions

Perform common subexpression analysis twice

Put line numbers in the assembly file

Don’t associate over parentheses

Support ANSI trigraphs

Create dependency information for make files

Create user header dependency information for make files

Make debugging dumps at specified phases

Specify target machine

Don’t use standard libraries and files

Don’s store float variables in registers

Don’t recognize asm, inline, or typeof

Pop arguments to function call on return

Optimize with loop strength reduction

Force memory operands into registers before arithmetic

Force memory address constants into registers before arithmetic

Drop frame pointer for register unless required

Integrate all simple functions into their callers

Always create separate runtime callable function

Store string constants in the writable data segment

Don’t put function addresses in registers

Treat all memory references through pointers as volatile

Let type char be unsigned

Let type char be signed

Treat register reg as fixed

Treat reg as allocatable and clobbered by function calls

Treat reg as allocatable and saved by function calls

Warn on implicit instructions

Warn on when function return defaults to int

Warn when a local variable is unused

Warn when a comment start is inside a comment

Warn on copying a nonconstant to a constant char

Issue extra warnings

End of Appendix

GNU C

-T

-M

-MM

-dphase

-mspecification

-nostdlib

-ffloat-store

-fno-asm

-fno-defer-pop

-fstrength-reduce

-fforce-mem

-fforce-addr

-fomit-frame-pointer

-finline-functions

-fkeep-inline-functions

-fwritable-strings

-fno-function-cse

-fvolatile

-funsigned-char

-fsigned-char

-ffixed-reg

-fcall-used-reg

-fcall-saved-reg

-Wimplicit

-Wreturn-type

-Wunused

-Wcomment

-Wwrite-strings

-W

Licensed material—property of Data General Corporation

Green Hills C

-X202

-X211

-X219

-X230

-X233

-X237

-X255

-X264

-X265

-X266

-X268

-X271

-X272

-X278

-X285

093-701047

Index

Note: Boldfaced page numbers (e.g., 1-5)

indicate definitions of terms or other key

information.

.editreadrc 4-4

login file 4-4

-profile file 4-4

/dev directory 4-8

_doprnt(3) 8-6

88Open Consortium 1-3

A

ABI 1-4, 1-9

AIX system 1-6

ANSI 1-3

Architecture 2-3, 9-1

Argument mismatching 9-4

as(1) 7-4

ASCII 3-2

AT&T, see System V

BASIC language 1-7

BCS 1-2, 1-4, 1-10

porting to 11-1

signal handling 2-3

berk_signal.h 8-2

Big-endian byte order, see Byte, storage of

Binary Compatibility Standard, see BCS

Bourne shell 4-2

brk(2) 9-6

BSD standard 1-5

Byte

alignment of 9-1

storage of 2-3, 3-3

Cc

C compiler B-1

C language 1-7, 7-1

checking syntax 6-2

signed char 9-3

C shell 4-2

093-701047 Licensed material—property of Data General Corporation

CAE 1-7

cc(1) 7-1

Character conversion 9-3

Character set 5-5

close(2) 4-7

closedir(3) 4-8

COBOL language 1-7

CodeWatch debugger 1-7

COFF 1-9

Compiler 2-2

Compiling 7-1

CPI 1-9

cpio(1) 3-1

cpp(1) 6-13, 7-1

crash(1M) 4-4

csh(1) 1-5, 4-2

curses(3X) 2-1, 2-3, 6-2

curses.h 5-2

D

DARPA 1-8

Database 9-10

Database applications 8-7

dbx(1) 6-11

dd(1) 3-2

Debugging 6-11

EBCDIC 3-2

ed text editor 6-15

Editread 4-2, 4-3

Error

continuous looping 9-3

flock problems 8-6

memory corruption 9-7, 9-9

memory fault 9-2, 9-4

runtime initialization 9-7

sbrk -1 9-7

segmentation violation 8-7

undefined fields of structure 8-5

undefined routines 8-5

undefined symbol 8-5

unexpected vahics 8-5, 9-4, 9-9

Index-1i

exit command 4-3

F

f77(1) 7-3

FIFO file 4-7

FILE structure 8-6

File transfer

via network 3-3

via tape 3-1

Filename length 4-7

finc(1M) 3-1

FIPS 1-3, 1-6

FIPS standard 1-5

Floating-point format 9-5

flock(3C) 8-6

FORTRAN language 1-7, 7-3

frec(1M) 3-1

free(3) 8-7

ftp(iC) 3-3

G

gcc(1) 7-1

ghec(1) 7-1

Graphics 10-1

Graphics console 5-4

H

Hardware 9-1

Heap 8-6, 9-5

I/O, streams 8-6

IEEE 1-3

IFDEFS statement 2-4

Implementation specifics 8-5

Indirecting zero 9-2

Indirection 9-2

Integer

alignment of 9-3

Internal specifics 8-5

ioctl(2) 4-5, 8-1, 8-3

K

kermit 3-3

Kernighan, Brian 1-7

Keyboard 5-1

international 5-6

L

Id(1) 7-4

libmalloc.a 8-6

Library 8-1

AT&T 81

BSD 81

Line discipline 4-5

Linking 7-4

lint(1) 2-2, 2-3, 6-2

Little-endian byte order, see Byte, storage of

logout command 4-3

longjmp(3C) 8-2

M

m4 7-4

Magnetic tape, see Tape

make(1) 2-2, 6-5

malloc(3C) 2-1, 8-6, 8-7

Memory

allocating 9-1, 9-6

allocation of 8-6

data area in 9-6

diagram of 9-6, 9-8

layout of 9-1, 9-3, 9-5

page size 2-3

reserving 9-6

shared 9-6

text area in 9-6

unshared 9-6

Mismatching arguments 9-4

modemap(7) 4-5

Motif 10-1

Motorola 1-2, 9-1

Multi-processor support 9-10

mxdb(1) 4-4, 6-11

Named pipe, see FIFO file

Names

subroutine 8-7

NBS, see NIST

Network File System, see NFS

NFS 1-5, 1-8, 3-3

NIST 1-3, 1-6

NULL pointer 9-2

Index-2 Licensed material—property of Data General Corporation 093-701047

O

Object file format 1-9

ONC 1-8

open(2) 4-7

opendir(3) 4-8

OSF 1-3, 1-5, 1-6

p

Padding, see Structure type; Union type

Page size 2-3

Pascal language 1-7, 7-4

Pathname length 4-7

pce(1) 7-4

PCC 7-1

PL/I language 1-7

Pointer

alignment of 9-3

NULL 9-2

POSIX 1-6

POSIX standard 1-5

Preprocessor 6-13

Q

QIC cartridge tape 3-1

R

rep(1C) 3-3

RCS 6-7

read(2) 4-7

readdir(3) 4-8

Reserved names 8-7

RFS 1-8

Ritchie, Dennis 1-7

Routine

DG/UX-specific 8-4

S

SAA 1-9

sbrk(2) 9-6, 9-7

SCCS 6-9

sccstorcs(1) 6-7

SCSI tape drive 3-1

sdb debugger 2-2

sed editor 6-16

setimp(3C) 8-2

sh(1) 42

Shared library 6-12

Shared memory, see Memory, shared

shmat(2) 9-6

shmdt(2) 9-6

signal(2) 8-1, 8-2

signal.h 8-2

Signaling 8-1

Signed character 9-3

sigpause(2) 8-8

sigset(3) 8-1

sigsys(2) 8-1

sigvec(2) 8-2

SNA 1-9

Socket 4-7

socket(2) 4-8

Source code control 6-7

RCS 6-7

SCCS 6-9

SPARC 3-3, 9-1

Stack 9-5

Stack issues 9-6

Standards 1-1

binary 1-4; see also BCS

communication 1-8

language 1-7

miscellaneous 1-9

operating system 1-5

organizations 1-3

user interface 1-7

Stdio.h 8-6

Streams 4-7

Structure type 2-4, 9-3, 9-4

Subroutine names 8-7

SunOS system 1-5

SVID 1-5

SVVS 1-5

System calls A-1

using 8-1

System V 1-5

T

Tape

cartridge 3-1

copying files to 3-2

loading from 3-1

tar(1) 3-2

TCP/IP 1-8, 3-3

TERM variable 5-2, 5-3, 5-4

term(5) 5-3

termcap(5) 5-2

Terminal 5-1

terminfo(4) 5-2

termio(7) 4-5

093-701047 Licensed material—property of Data General Corporation Index-3

termio.h file 4-5

Tool, see lint(1); make(1)

tty(7) 4-5

Type casting 2-3

U

Ultrix system 1-5

Union type 9-3, 9-4

Unshared memory, see Memory, unshared

User interface 2-2

uucp(1) 3-3

V

vfprintf{(3S) 8-6

vi text editor 6-15

volcopy(1M) 3-1

vprintf(3S) 9-9

vscanf(3S) 9-9

vsprintf(3S) 8-6

X

X Windows 1-7

X/Open 1-7

xtrace(2) A-7

Index-4 Licensed material—property of Data General Corporation 093-701047

Related Manuals

Following is a list of related software and hardware manuals:

Software Manuals

This section lists manuals by category: DG/UX system, DG/UX communications,

SNA DG/UX, languages, and graphics.

DG/UX System

General Finding Your Way Around the DG/UX Documentation (069-701013).

Learning the UNIX Operating System (069-701042).

Using Using the DG/UX System: The Shells and Commands (069-701035).

Using the DG/UX System: The Editors (069-701036).

User’s Reference for the DG/UX System (093-701054).

Administering Installing and Managing the DG/UX System (093-701052).

System Manager’s Reference for the DG/UX System (093-701050).

Programming Using DG/UX Programming Tools (093-701048). This manual

describes tools such as interprocess communication, curses,

terminfo, SCCS, awk, make, lint, lex, yacc, Id, sdb, and as.

Programmer’s Reference for the DG/UX System (Volumes 1 and 2)

(093-701055 and 093-701056). Volume 1 describes commands and

system calls. Volume 2 describes subroutines and libraries, file

formats, miscellaneous features, and communications protocols.

Porting Applications to the DG/UX System (093-701047).

Writing a Device Driver for the DG/UX System (093-701053).

STREAMS Primer for the DG/UX System (069-701033).

STREAMS Programmer’s Guide for the DG/UX System (069-701034).

DG/UX Communications (NFS and TCP/IP)

Managing NFS and Its Facilities on the DG/UX System (093-701049).

093-701047 Licensed material—property of Data General Corporation Manuals-1

Software Manuals

DG TCP/IP (DG/UX) User’s Manual (093-701023).

Installing and Managing DG TCP/IP (DG/UX) (093-701051).

Programming with DG TCP/IP (DG/UX)

SNA DG/UX Communications

Using DG/UX SNA/3270 (069-701030).

Managing DG/UX SNA/3270 (069-701044).

Using DG/UX SNA/RJE (069-701031).

Managing DG/UX SNA/RJE (093-701046).

DG/UX SNA/3270 API Programmer’s Reference (093-701045).

Languages

C: A Reference Manual by Samuel Harbison and Guy Steele (069-100226).

Green Hills Software User’s Manual: C-88000 (069-100230).

Green Hills Software User’s Manual: FORTRAN-88000 (069-100231).

Green Hills Software User’s Manual: Pascal-88000 (069-100232).

The C Preprocessor (Stallman, Free Software Foundation).

Using and Porting GNU CC (Stallman, Free Software Foundation).

Graphics

NCD16 Network Display Station Installation and Operation Manual (93-00001-A).

Network Computing Devices Inc., 350 N. Bernardo Ave., Mountain View, CA 94043.

OSF Motif Window Manager External Specifications (Open Software Foundation).

OSF Motif Toolkit External Specifications (Open Software Foundation).

X Window System User’s Guide (069-100229).

Xlib Reference Manual for Version 11 (O’Reilly & Associates, Inc.).

Xlib Programming Manual for Version 11 (O’Reilly & Associates, Inc.).

Manuals-2 Licensed material—property of Data General Corporation 093-701047

Hardware Manuals

Hardware Manuals

This section lists manuals by category: processors, peripherals, and controllers.

Processors

Programming Your AV 400 Series Workstation (014-001800).

Setting Up and Starting AViiON 300 Series Stations (014-001801).

Using the AViiON Station Control Monitor (SCM) (014-001802).

Setting Up and Starting AViiON 5000 Series Systems (014-001806).

Starting AViiON 6000 Series Systems (014-001807).

MC88100 User’s Manual by Motorola (MC88100UMAD/AD).

MC88200 User’s Manual by Motorola (MC88200UMAD/AD).

uPD72120 Advanced Graphics Display Controller User’s Manual (NEC).

Terminals

D216/D216E and D412/D462 Display Terminals User’s Manual (014-001396).

The D216/D216E and D412/D462 Display Terminals Technical Reference Manual

(014-001397).

DASHER D210/D211 Display Terminal Programmer’s Reference Card (014-000763).

DASHER D210/D211 Display Terminal User’s Manual (014-000746).

DASHER D214/D215 Display Terminal Programmer’s Reference Manual (014-001164).

DASHER D214/D215 Display Terminal User’s Manual (014-001163).

DASHER D220 Color Display Terminal Programmer’s Reference Card (014-000965).

DASHER D220 Color Display Terminal User’s Manual (014-000950).

DASHER D410/D460 Display Terminal Programmer’s Reference Card (014-000760).

DASHER D410/D460 Display Terminal User’s Manual (014-000761).

DASHER D410/D460 Programmer’s Reference Card (014-001123).

DASHER D410/D460 Programmer’s Reference Manual (014-001114).

DASHER D410/D460 User’s Manual (014-001124).

DASHER D411/461 Owner’s Manual (014-001161).

DASHER D411/461 Programmer’s Reference (014-001162).

DASHER D470C Color Graphics Terminal Programmer’s Reference Card (014-000787).

DASHER D470C Color Graphics Terminal User’s Manual (014-000788).

093-701047 Licensed material—property of Data General Corporation Manuals-3

Hardware Manuals

DASHER D470C Programmer’s Reference (014-001015).

Disk and Tape Hardware

Installing Your Half-Height Winchester Disk Drive (014-001722).

Installing Your Half-Height Streaming Cartridge Tape Drive (014-001699).

Installing Your Model 6491 Series Disk Drive (014-001460).

Model 6586/6587 Magnetic Tape Drive Installation Guide (014-001692).

Model 6536 Operation and Maintenance (014-001699).

Disk Drive Model 6491 Series General Specifications (014-001460).

Controllers

Installing and Operating the Model 6544 VMEbus SCSI Host Adapter with Floppy Port

(014-001756).

Installing and Operating the Model 6544 ESDI Drive Controller (014-001757).

Installing and Operating the Model 6545 VMEbus SMD Disk Controller (014-001758).

End of Related Manuals

Manuals-4 Licensed material—property of Data General Corporation 093-701047

134-755-02

moisten & seal

a

CUSTOMER DOCUMENTATION COMMENT FORM

Your Name Your Title

Company Phone

Street

City State Zip ——___

We wrote this book for you, and we made certain assumptions about who you are and how you would

use it. Your comments will help us correct our assumptions and improve the manual. Please take a

few minutes to respond. Thank you.

Manual Title Manual No.

Who are you? OCUEDP/MIS Manager OlAnalyst/Programmer ([JOther

O)Senior Systems Analyst OC) Operator

LJ Engineer CiEnd User

How do you use this manual? (List in order: 1 = Primary Use)

—— Introduction to the product —— Tutorial Text —— Other

— Reference ——. Operating Guide

About the manual: Is it easy to read?

Is it easy to understand?

Are the topics logically organized?

Is the technical information accurate?

Can you easily find what you want?

Does it teil you everything you need to know?

Do the illustrations help you? Ooooo0oooSs Oooooooo2
If you wish to order manuals, use the enclosed TIPS Order Form (USA only) or contact your

sales representative or dealer.

Comments:

SALVLS GALINA

JHL NI

GS IVvVW Jl

AYVSS3AOAN

ADVLSOd ON

O686-18STO VIN ‘O10q}se/,

OOP XO”d “Od
SALIG IsjnduUloy OOPF

Ilt-d SN

uOT}OJUSUINDOG IeUIO}sNyD

[exouscere(|4p
4aSSAYGOV AG dIVd 38 TIM SADVLSOd

L8SlLO0 VW OHOELSAM 92 °ON LINHAd SSV10 LSHI4

TIVIN Alda SSANISNG

134-755-02

| |
| |

: Porting |

. Applications |
: to the :

| DG/UXTM System |
| |

| - 093-701047-00
| |
| |

me ee mm re me me we el ee ee ee ee ee eee ee ee ee ee |

Cut here and insert in binder spine pocket

(»DataGeneral SOU UT
493-7461047-84

Data General Corporation, Westboro, Massachusetts 01580

