¢vData General

Customer Documentation

Porting Applications to the
DG/UX" System

Porting Applications to the
DG/UX™ System

093-701047-00

For the latest enhancements, cautions, documentation changes, and
other information on this product, please see the Release Notice
(085-series) supplied with the software.

Ordering No. 093-701047

Copyright © Data General Corporation, 1989

Unpublished—all rights reserved under the copyright laws of the United States
Printed in the United States of America

Revision 00, April 1989

Licensed material—property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR
USE BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION
CONTAINED HEREIN IS THE PROPERTY OF DGC, AND THE CONTENTS OF THIS
MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED
OTHER THAN AS ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in
this document without prior notice, and the reader should in all cases consult DGC to
determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF
THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS
CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT
CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE, OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE
RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement
which governs its use.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000,
ECLIPSE MV/6000, ECLIPSE MV/8000, GENAP, INFOS, microNOVA, NOVA, PRESENT,
PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of Data General
Corporation.

AOSMAGIC, AOS/VSMAGIC, AROSE/PC, ArrayPlus, AViiON, BusiGEN, BusiPEN,
BusiTEXT, CEO Connection, CEO Drawing Board, CEO DXA, CEO Light, CEO MAILI,
CEO MAILIL, CEO PXA, CEO Wordview, CEOwrite, COBOL/SMART, COMPUCALC,
CSMAGIC, DASHER/One, DASHER/286, DASHER/386, DASHER/LN,

DATA GENERAL/One, DESKTOP/UX, DG/500, DG/AROSE, DGConnect, DG/DBUS,
DG/Fontstyles, DG/GATE, DG/GEO, DG/L, DG/LIBRARY, DG/UX, DG/XAP,
ECLIPSE MV/1400, ECLIPSE MV/2000, ECLIPSEMY/2500, ECLIPSE MV/7800,
ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MV/20000, ECLIPSE MV/40000,
FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400, microECLIPSE, microMV, MV/UX,
PC Liaison, RASS, REV-UP, SLATE, SPARE MAIL, TEO, TEO/3D, TEO/Electronics,
TURBO/4, UNITE, and XODIAC are trademarks of Data General Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company. AIX is
a trademark of IBM Corporation. DEC and Ultrix are trademarks of Digital Equipment
Corporation. NFS and SunOS are trademarks of Sun Microsystems, Inc. The X Window
System is a trademark of the Massachusetts Institute of Technology.

Porting Applications to the DG/UX™ System
093-701047

Revision History: Effective with:
Original Release — April 1989 DG/UX Release 4.10

Preface

This manual describes how to port UNIX® application programs to the
DG/UX™ System.

This manual is directed primarily to experienced C programmers. This means
that we assume the reader is fluent in C, but may not be skilled in some of the more
esoteric aspects of the language. The manual is for programmers who are porting
their software for the first time, as well as for programmer’s who are experienced in
porting issues.

If you need introductory information about the DG/UX system, please read

Using the DG/UX™ System. For a list of DG/UX manuals, see "Related Manuals” at
the end of this book.

How This Manual Is Organized

This manual is organized as follows:
Chapters 1-2 An overview of the porting process and porting issues. Programmers
not experienced in porting issues should read these chapters before

beginning to port.

Chapters 3-11 Specific technical information about the major porting issues. These
chapters can be read individually.

Appendixes Examples and tips about the porting process.

Notation Conventions

We use the following notation conventions in syntax:

Element Meaning

Bold string A literal to be typed just as it appears

Italic string A place holder representing a literal or other value that you supply
[] Delimiters for an optional argument (not to be confused with the

meaning of brackets used in examples)

Optional repetition of the preceding argument

093-701047 Licensed material—property of Data General Corporation iii

Notation Conventions

We use the following notation conventions in examples:
Element Meaning
Bold string A literal to be typed just as it appears
Roman string A system response that you will see on your screen
[] Literal brackets to be typed exactly as they appear

<NL> The New Line or Return key to be pressed on your keyboard

Contacting Data General

If you have comments on this manual, please use the prepaid Remarks Form that
appears after the Index.

If you need additional manuals, please use the enclosed TIPS order form (USA
only) or contact your local Data General sales representative.

Service assistance on Data General software or hardware is available via
telephone in the United States and Canada. Ask your Data General representative
for the number. Outside North America contact your local Data General office.

End of Preface

iv Licensed material—property of Data General Corporation 093-701047

Contents

Chapter 1 — Introduction: Porting and UNIX®

Standards
Overview of Porting and Standardscccooieviiiiii 1-2
Standards Organizationsc.covieiviniiiiiiiiiii e 1-3
Binary Standards and the BCS ... 1-4
Operating System Standardscooiiiiiiiiiiiiiii 1-5
User Interface Standardsc..coooiiiiiiiiiiiiii 1-7
Language Standardscooieiiiiiiii 1-7
Communication Standardsc..ccoocoiiiiiiiiiiii 1-8
Other Standardsccooveiiiiiiiiiii 1-9
11111 11 o Ot 1-10

Chapter 2 — Getting Started: Outlining the Porting

Process
A Porting Checklistocoiiiiiiiiiiiiii 2-1
Understanding User Interface Issuesccoocoviiiiiiinini 2-2
Understanding Compiler ISSUEScoccoiiviiiiiiiiniiiiiniiiiicic e 2-2
Understanding Architecture ISSUEscoooiiiiiiiiiiiiiiii 23
Tips and Techniques for Creating Portable Codeco.oooiiiiii, 23

Chapter 3 — Using Data Formats and Transfer Media

Loading Source Code and Datac..coooiiiiiiiiiiiiiin i 31
Loading from Tapecoooiiiiiiiiiiiiiiniii i 31
Loading from Networkcoocoiiiiiiiiiiii 33

Understanding How Bytes Are Storedcoooiiiiiiiiiiiin 33

Chapter 4 — Setting Up the Environment

Using the Bourne and C Shells ..., 4-2
Using sh and csh—the Differencescccooiiiiiiiiiii 4-2
Switching Between sh and csh ... 4-3
Writing Shell SCriptsoooiiiiiiiiiii 4-3
Using Editreadc.ooooiiiiiiiiiiiiii 4-3

Manipulating the Line Disciplineccoccooiiiiiiiii 4-5
Switching Between the System V and BSD Line Disciplines 4-5
Switching Between 7-bit and 8-bit Line Disciplinesccoooviiniiiiniinn., 4-6

Handling File System ISSU€Scooviiiiiiiiiiiiii 4-7
Recognizing Differences Between the DG/UX and the System V File Systems 4-7
Working with the DG/UX /dev Directorycccooeiiiiiiiiiiiiiiiniiiinniinn, 4-8

Chapter 5 — Working with Terminals and Keyboards

093-701047 Licensed material—property of Data General Corporation v

Contents

Using Terminal Interfacescc.oooiiiiiiiiiiiiiiii e 5-1
Working with curses Routinescccoeiiiiiiiiiiiiniiiiii i 5-1
Working with terminfo Routinescooiiiiiiiiii 52
Working with termcap Routinescooooviiiiiiiiiiiiniiiiini s 5-2

Working with Supported Terminalscoooiiiiiiiiiiiiii 53
Using Data General Terminals in Emulation Modesll, 53

Using DEC Emulation modecccooiviiiiiiiiiiiinii s 53

Using Tektronix Emulation Modecccooiiiiiiiiiiiiiie, 53

Using ANSIMoOde ..cc.ooniiiiiiiiiiiiiiiiii e 5-4

Using xterm Emulation Modescoocoviiiiiiiiiiiiiiniiiiinen 5-4

Using a Graphics Console on a Workstationccoooiiiiiiiiiininn., 54
Using Data General Terminal Featurescoooiiiiiiii 5-5
Working with Character Setsoociiiiiiiiiiiiiiiiii e 5-5
Using International Keyboardscoooiiiiiiiiiiiiiiiiiiiii e, 5-6

Chapter 6 — Using Software Development Tools

Checking C Syntax (LINt)cccouuiiiiiiiiiiiiiiiiiiinieiii e 6-2
What is HIt? oo 6-2
UsINg I .ooviiiiiiiiiii e 6-2
Understanding Differences Between cc and lint ..., 6-2
Interpreting lint MeSSAZesoceviuiiiniiiiiiiiiiiiiiiie e 6-3

Building Complex Programs (mMake)coeeeuuiiiiiiiiiiiiiniiiiniiiiieiiieeeiie e 6-5
What i MAKE? ...oeuniiiniiiiiiiiiii it 6-5
USING MAKE ...oivniiiiiiiiiii e e 6-5
Using System V or BSD make: the Differencescoooi 6-6

Controlling Source Codeccooiiiiiiiiiiiiiiiiiiii e 6-7
Using the Revision Control System (RCS)cooeeiiiiiiiiiiiiini 6-7
Using the Source Code Control System (SCCS)ccooooiiiiiiiiiiiiiiiinnnnnn. 6-9

Debugging Application Programsceeiiieiiiiiiiniiiiniin e 6-11
Preparing for a Debugging Sessionoooiiiiiiiiiiiiiiii 6-11
Getting Started with sdbcoooiiiiiiiiiiiiiii 6-11

Using Preprocessor FUNCHIONSccouviiiiiiiiiiiiiiiii e, 6-13
What Is @ Preprocessor?cvviuviiniiuiiiiiiiiiiiiieiie e 6-13
Using Preprocessor DIreCtivesooiuviiieiiiiiiiiniiiniiiiniiiei e 6-13

Editing Source Filesccooiiiiiiiiiiiiiiii 6-15
L83 T 6-15
USING €d .oeniniiniiiii e 6-15
USINE SEA euniiiiiniiniiiiiii e aa e 6-16

Chapter 7 — Compiling and Linking Programs

Compiling C Programscooiiuiiiiiiiiiiiiiii et 7-1
Compiling FORTRAN Programsccceueiiiiiiiiniiiiiiieeiiiiin it 7-3
Compiling Pascal Programscoooiiiiiiiiiiiiiiiinii e 7-4
Assembling and Linking Programsc..coooiiiiiiiiniiinii i 7-4

Chapter 8 — Using Libraries And System Calls
Comparing BSD and AT&T Librariesccooouiviiiiiiiiiiiiiii 81

vi Licensed material—property of Data General Corporation 093-701047

Contents

Handling Signalsc..coooviiiiiiiiiiiiiii 81
Using the I/O Control Systemccooooiviiiiiiiiiiiiiiii 83
Using DG/UX-specific ROUINEScocoviuviiiiiiiiiiiiiii 8-4
Handling Common Porting Problemsooi 8-5
Missing Library FUNCtioncoocooiiiiiiiiiiiii e 85
Misuse of Library Implementation Internalscooovi 8-5
The flock Library FUNCHONcooviiiiiiiiii e 86
Reserved Subroutine Name EIrorcoooovvviiiiiiiiiiiini 87
Variable to Subroutine Naming Errorcocooiiiiiiiin, 8-7
The sigpause System Callcooooiiiiiiiii 8-8

Chapter 9 — Understanding Hardware Architectural

Issues
Handling Alignment and Storage Layout Issuesocoiiiiiii. 9-1
Using the NULL Pointerc.ccoviiiiiiiiiiiiiini i 9-2
Meeting Structure and Union Alignment Requirementsoo. 9-3
Meeting Integer Alignment Requirementsc..coooiiiiiiiiiiiiiinn., 9-3
Using Signed/Unsigned Characters or Integerscoooiiiiiiiiiiniiinniin.., 9-3
Passing Structures and Unionscccoviiiiiiiiiiiii 9-4
Using Floating-point Formatccoooviiiiiiiniiniii 9-5
Handling Memory Layout ISSUEScccoviiiiiiiiiiiiiiiiiiiii e 9-5
Reserving and Using Dynamic Storageccoocoviiiiiiiininiiiiniinn, 9-7
Retrieving Arguments from the Stacko 9-9
Programming In A Multi-Processor Environmentcoooiviiiiiinn, 9-10

Chapter 10 — Porting Graphical Applications

Controlling the Graphical Software Environmentocovvviiiininn, 10-3
Controlling the Graphical Hardware Environmentccocoooviiiiiinin 10-3
Controlling the Build and Run Environmentccoooiiiii, 10-4
Porting to the X Window Systemcoccoiiviiiiiniiiiii 10-4

Using Software Development Toolscccooiiiiiiiiiiiiiii 10-4

Handling X Terminal ISSUESccooviiiiiiniiiiiiiiii 10-4
Graphical Issues for All Applicationsocovviviiiiiiiiniiiiiiii 10-5
Determining the Current Environmentoooiiiiiiiiiiiiii, 10-5

Chapter 11 — Building and Running BCS Applications

Appendix A — DG/UX System Calls and Commands

System Calls ..c...oeuuiiiniiiiiiiiiiii e A-1
User and Programmer Commandscoovviiviiiiiiiniinii A-8
Administrative Commandscooviiiiiiiiiniiiiii A-15

Appendix B — Comparison of C Compilers

093-701047 Licensed material—property of Data General Corporation vii

Table

viii

Tables

Workstation Monochrome Monitor Featuresc.coocoviiiin, 5-5
Features of D216, D412, and D462 Terminalscccevvvveiiiniiiinieninninn. 5-5
Commonly Used sdb Commandsc....ocooiiiiiiiiiiiiiiiiinnnnn, 6-12
Summary of Basic vi Commandscoociiiiiiiiiiiiiiin, 6-15
Summary of Basic ed Commandsccocoiviiiiiiiiii 6-15
Summary of System Callscoooiiiiii A-1
Summary of User and Programmer Commandscc.ccoeeeviiiinninn. A-8
Summary of Administrative Commandscc.coeevviiiiiiiinnnnnnn, A-15
Comparison of C Compiler Optionsc..cccuveurenieiiiniiiiieniiniiiianann.n. B-1

Licensed material—property of Data General Corporation 093-701047

Figures
Figure

9-1 Program Layout in MEIMOTYvvreeeriiiiiiiininninniiiiiiiii e 9-6
9-2 Shared and Unshared Memory Segments In The General Storage Area ... 9-8

10-1 Conceptualized Environment Architecture ... 10-2

093-701047 Licensed material—property of Data General Corporation ix

Chapter 1

Introduction: Porting and UNIX®

Standards

Data General’s DG/UX™ product family provides a robust UNIX® environment
that complies with many of the existing UNIX standards; nonetheless, your source
code may require some changes to run optimally in this environment. This chapter
discusses the applicable standards and discusses why porting is necessary. The
chapter identifies the major standards activities and organizations and describes how
Data General’s DG/UX product family relates these standards.

The chapter contains the following sections:

093-701047

Overview of Porting and Standards
Standards Organizations

Binary Standards and the BCS
Operating System Standards

User Interface Standards
Language Standards
Communications Standards

Other Standards

Summary

Licensed material—property of Data General Corporation

1-1

Overview of Porting and Standards

Overview of Porting and Standards

To "port” software means to transport it to a new operating environment; that is,
to get software currently running on one machine to run on another. This manual
outlines the areas of your code and your assumptions about the operating
environment that you should examine for compatibility. The conventions described in
this manual work on most other UNIX systems.

The DG/UX system fully supports the Binary Compatibility Standard (BCS) for
the Motorola 88000 architecture. That means that any program you build within a
BCS environment will run on Data General’s DG/UX system. Additionally, the
DG/UX system provides several extensions beyond the basic BCS functionality.
Refer to Chapter 11, "Building and Running BCS Applications,” for more information
on BCS compatibility.

The UNIX® operating system forms the basis of a highly portable software
environment. Data General’s DG/UX operating system complies with many of the
official and de facto standards for UNIX systems.

When you say UNIX-compatible, you must say what compatibility standard you
are using. There are several UNIX compatibility standards, and programs built toward
one standard may not run on systems built toward another. For example, one
standard may not include all the commands or systems calls specified in the other
standard.

The existence of multiple standards complicates the goal of portability. Multiple
standards exist because the UNIX system has followed an evolutionary path rather
than a planned development cycle. The power of the UNIX operating system stems
from its flexibility: the UNIX system was designed to encourage enhancements.
Programmers modified the operating system to run on various hardware platforms.
Users and vendors enhanced the operating system to meet the needs of their
environment, adding features and interfaces as needed.

A major goal of standardizing the UNIX system is to achieve application
portability. There have been several approaches to standardizing, as represented by
the types of organizations that define and collect UNIX-related standards. Adherence
to one or more standards achieves varying levels of functionality. As it has
traditionally been implemented, UNIX is standard only in concept; each
implementation includes differences that require application code to be customized
before it will run on a particular UNIX platform.

1-2 Licensed material—property of Data General Corporation 093-701047

Standards Organizations

Standards Organizations
This section discusses 880pen, OSF, ANSI, IEEE, NIST, and FIPS.

880pen Consortium

The 880pen Consortium is a cooperative group of vendors who are building
systems based on Motorola’s 88000 chip set, and who are working together to create a
compatible family of UNIX systems. Although the hardware and software offered by
each vendor may differ, application software that conforms to the BCS standard
should run on all platforms. Data General is a member of the 880pen Consortium.

OSF

The Open Systems Foundation is continuing to define a standard operating
environment, including the operating system and user interfaces. Data General is a
member of this consortium.

ANSI

The American National Standards Institute defines many kinds of standards.
ANSI committees that are relevant to the UNIX environment include language
standards committees, and communication standards committees.

IEEE

IEEE is a trademark of the Institute of Electrical and Electronic Engineers, Inc.
IEEE is defining the standard for Portable Operating System for Computer
Environments (POSIX).

NIST and FIPS

The National Institute of Standards and Technology (formerly called National
Bureau of Standards) is producing a Federal Information Processing Standard (FIPS)
based on IEEE 1003.1. Work is currently underway to bring the FIPS specification
and the adopted POSIX specification into agreement.

093-701047 Licensed material—property of Data General Corporation 1-3

Binary Standards and the BCS

Binary Standards and the BCS

Conceptually, there are three levels of application portability standards: source,
object, and binary (executables). A source level standard is the most flexible of all
standards, but it requires that the application code be recompiled and linked for all
target systems. An object level standard would allow software vendors to ship their
software in compiled, but unlinked form. This would allow the system administrator
or end-user to link the code with the appropriate libraries for the target environment.
No object level standards currently exist; however, Data General is closely tracking
the definition being proposed by the 880pen Consortium. A binary level standard
presents a "load and go”" environment to applications in which the binary program can
be copied from the distribution medium and executed without compiling or linking.
Data General adheres to the BCS that has been defined by the 880Open Consortium.

The Binary Compatibility Standard (BCS) that has been defined for Motorola’s
88000 architecture enables programmers to create software that can run on all BCS-
compliant systems without recompiling and relinking the software. To be portable,
the code must be developed on a system that follows the BCS specification, and must
not use any extensions provided by that environment. The DG/UX operating system
is a BCS-compliant operating system.

The BCS definition includes provisions for referencing non-standard functions
and system calls from within a conforming application. To achieve this functionality,
a program needs to test its operating environment, and provide an alternate (non-
standard) code path if (and only if) that option is available in the host environment.
The BCS standard does not currently define the networking or the graphics
environment; therefore, applications that require these extensions cannot fully
conform to the BCS standard. Compliant programs can access system-specific
extensions through the "syslocal” interface. Any application that is BCS compliant
can run on the DG/UX system.

The BCS coexists with the Application Binary Interface (ABI) defined for the
System V environment. AT&T has endorsed the 88K BCS as a compatible
implementation of the ABI.

1-4 Licensed material—property of Data General Corporation 093-701047

Operating System Standards

Operating System Standards

Operating system standards define the features of the development and runtime
environment. There are many UNIX operating system “standards” that are in use
today: some of these standards conflict, but in many cases they can coexist. Data
General has always been committed to standards, and the DG/UX operating system
follows the following source-level operating system specifications as closely as
possible.

System V as defined by the System V Interface Definition (SVID) and validated with
the System V Verification Suite SVVS. The DG/UX system is based on
AT&T’s release V.3.

BSD Berkeley Software Distribution.

POSIX the Portable Operating System Interface definition produced by IEEE

1003.1
FIPS the Federal Information Processing System specification of POSIX.
OSF the Open Software Foundation does not currently define an operating

system standard; however DG is tracking the efforts of this organization.

System V, SVID, and SVVS

ATA&T created and licenses this version of UNIX System V. There have been
several releascs of the System V version of UNIX: these are generally referred to as
System V.1, System V.2, System V.3, and System V.4. This version of the software
is used as the basis for many UNIX derivatives, including the DG/UX, Xenix™, and
AIX™ systems. AT&T has also created the System V Interface Definition (SVID)
and System V Verification Suite (SVVS). Before it can be called SVID-compliant, a
System V UNIX derivative must pass the SVVS. The suite contains several sections;
not all are required for compliance. The DG/UX system passes the verification suite.

Berkeley Software Distribution (BSD)

The BSD version of UNIX offers different functionality than the AT&T System
V version, although BSD was originally derived from AT&T System III.

The current version of the DG/UX System provides most of the system calls,
commands and features defined in the BSD 4.2 UNIX system, including the Network
File System (NFS™), networking and sockets, r-commands, job control, and the C
shell (csh).

The SunOS™ and Ultrix™ operating systems are based on the BSD UNIX
system.

093-701047 Licensed material—property of Data General Corporation 1-5

Operating System Standards

POSIX

The standard for Portable Operating System for Computer Environments
(POSIX) is being defined by IEEE committees. In some cases, this standard conflicts
with the SVVS. Several related IEEE projects each describe a component of POSIX:
1003.1 is an interface specification for a portable operating system based on the
UNIX operating system; 1003.2 describes the command shell and tools; 1003.3
outlines verification test procedures for a POSIX operating system; 1003.4 describes
realtime extensions for such a system; 1003.5 describes an Ada Binding for POSIX;
1003.6 is outlining security issues for POSIX. POSIX is no longer a trademark.

FIPS

The National Institute of Standards and Technology (NIST) is producing a
Federal Information Processing Standard (FIPS) based on IEEE 1003.1 (POSIX).
Although FIPS POSIX and the final IEEE POSIX have some differences, work is
currently underway to bring the standards into agreement.

OSF

OSF is incorporated as a non-profit research and development organization that
will define specifications and promote an open, portable application environment.
The foundation will provide a system that is based on IBM’s AIX core technology,
and includes features to support current System V- and Berkeley-based applications.
Specifications supported by OSF will be publicly available, and a set of verification
tests for all appropriate facilities will be identified or created.

User Interface Standards

User Interface Standards

This section discusses the X/Open organization and the X Window System™.

e X/Open

X/Open was founded in 1984 as an international non-profit organization
whose goal is to facilitate the consolidation of standards into a single
comprehensive and coherent set. The consortium adopts existing official or
de facto standards and collects them to define the Common Applications
Environment (CAE). The CAE currently addresses operating system
services, programming languages, and data management. Data General is
tracking these standards.

e X Windows
The X Windows graphics standard is defined by the distribution tape of X
software from MIT. The DG/UX system provides a full implementation of
the X Window environment, and provides many of the clients. Data General
is currently tracking user interface standards, and expects to support the
MOTIF standard in a future release.

Language Standards

This section discusses the C language and other languages.

¢ C Language

Almost all UNIX systems include the C programming language, since most
implementations of the OS are written in C. The three primary C language
standards are the definition by Kernighan and Ritchie in their book, The C
Programming Language, the evolving ANSI standard for the C Language
(ANSI Technical Committee X3J11) and the de facto pcc standard. These
standards define various compiler defaults, options, and features. Data
General supports several C compilers that support these standards and meet
a wide variety of needs. Separate sections of this manual describe the classic
portability issues of the C language, and compare several of the C compilers
available on the DG/UX system.

® Other Languages
Data General supports other languages, including Green Hills FORTRAN
and Pascal. The LPI languages, including COBOL, BASIC, Pascal,
FORTRAN, PL/I, and the CodeWatch debugger, will be available in the
future. These languages and their standards are discussed in separate
documentation. Recognized standards include ANSI FORTRAN-77, ISO
Pascal, ANSI COBOL-74, ANSI COBOL-80.

093-701047 Licensed material—property of Data General Corporation 1-7

Communication Standards

1-8

Communication Standards

This section discusses ONC/NFS, RFS, TCP/IP, and IBM communications.

® ONC/NFS - Open Network Computing/Network File System

The DG/UX system implements the NFS file sharing system licensed by
SUN. This product allows different operating systems on a variety of
machines in a single network to share file systems by remote access,
promoting an efficient distributed environment. The current release includes
support for RPC, XDR, netdisk and services. Data General systems can
participate fully in an inter-vendor NFS network.

RFS

RFS is the AT&T implementation of file sharing. This standard is less
widely used than NFS and cannot inter-operate with NFS. Data General
does not support RFS on the DG/UX system.

TCP/IP

The TCP/IP (Transmission Control Protocol / Internet Protocol) standards
situation is far from straightforward. The set of protocols to which TCP/IP
refers were originally implemented under Department of Defense funding to
standardize the way resources are shared across a network.

For a complete description of Data General’s implementation of TCP/IP, see
the TCP/IP manuals listed under "Related Manuals” after this manual’s
index. Data General’s version of TCP/IP is derived from the UC Berkeley
implementation, with modifications to support the Military Standard.

Since the original standards were actually implemented by researchers on the
ARPAnet, one of many subnets of the huge Internet network, these
protocols are widely known as the Internet protocols. Today there are many
different implementations of the TCP/IP protocol set, with the following set
of specifications forming the core for development.

e Official Internet Protocol Documents: Published by SRI
International, this three-volume set contains collections of
documents outlining implementation specifications for the TCP/IP
set of protocols. The documents are revised often. Each
specification is referred to as an RFC (Request for Comments).

e Military Standard: Also referred to as the TCP/IP Mil_Spec, this
set of 5 DoD documents are a more formalized rewrite of the
Official Internet Protocol Documents. There are some
inconsistencies between these documents and the SRI publication.

e UC Berkeley TCP/IP: Under DARPA (Defense Advanced
Research Projects Agency) funding, Berkeley adapted the TCP/IP
networking software to run on the UNIX system, within the
framework of the Berkeley socket systems calls. The networking

Licensed material—property of Data General Corporation 093-701047

Communication Standards

software was released with the BSD 4.2 (Berkeley Software
Distribution) version of UNIX for use in local area networks. This
implementation has now become a de facto standard and is in
widespread use.

e Streams TCP/IP: Several companies have recently modified TCP/IP
to use the streams I/O interfaces provided by AT&T’s UNIX
System V.3.

IBM Communications

SNA is a de facto communication standard in commercial environments.
The DG/UX system supports SNA communications with the DG/UX
SNA/3270 package. Refer to separate documentation for a full description
of Data General’s implementation of SNA.

Other Standards

Following are some other computer standards:

093-701047

Object file format

The object file format used by the DG/UX system is defined by the BCS
model. This format extends the standard COFF (the Common Object File
Format) definition.

International Support

The international character set requires 8-bit support from both the operating
system and from application software. The DG/UX system preserves 8-bit
support in the kernel and most commands, consistent with AT&T V.3.

ABI
The Application Binary Interface, as defined by AT&T, recognizes the BCS
as a compatible implementation.

SAA

IBM’s Systems Application Architecture (SAA) provides users with a
Common Programmer Interface (CPI) layer for required services. This
concept allows functions to be performed similarly in a number of
specifically targeted software/hardware environments. IBM has not currently
targeted AIX, its implementation of UNIX, as an SAA platform.

Licensed material—property of Data General Corporation 1-9

Summary

Summary

Standards simplify the porting process, but do not solve all porting issues.
Programmers can help ensure the portability of software by following recognized
coding standards and practices. Programmers cannot control the compatibility of
operating systems, and instead should design code that isolates any operating system
or machine dependencies as much as possible.

Standards-based computer platforms promote compatibility, which eases the task
of moving software between systems. Many programs are compatible at the source
code level. That means that by compiling and linking the software on the target
machine, you can create executable code on the target machine that is equivalent (but
not identical) to the executable code on the source machine. This process is generally
called "porting.” The complexity of the task varies with the complexity of the code
and with the compatibility of the source and target systems. This manual outlines the
major components of porting, at both an overview and a technical reference level.

Application software that conforms to the BCS standard fully can be run on the
DG/UX system with no changes, although software vendors may want to use the BCS
extension features to allow the software to take advantage of DG features.
Application software that conforms fully to operating system and language standards
can generally be ported to the DG/UX system with a simple recompilation and relink
process.

End of Chapter

1-10 Licensed material—property of Data General Corporation 093-701047

Chapter 2
Getting Started: Outlining the
Porting Process

Porting issues generally divide into three categories: operating system and user
interface issues, compiler issues, and architecture issues. Moving software to a new
machine often requires a careful review of both the code and the environment. This
chapter outlines the porting process. Chapters 3 through 11 of this manual looks at
the specific issues of porting in detail.

A Porting Checklist

The following checklist of activities will help ensure that your porting process
proceeds smoothly. Vendors who have not ported their software before will want to
review each step in this list carefully. Those vendors who have ported their software
to many systems may want to refer directly to Chapters 3-11 of this manual.

1) Load files and verify the file format. (See Chapter 3 if you have any issues
with this step.)

2) Determine the language that you will use. The DG/UX system supports a
broad range of compilers.

3) Review the environment requirements. The DG/UX system supports both
the System V and the BSD environments. Some commands may have
different implementations in each of these environments. Refer to the man
pages for details on each command. Your shell scripts should be written to
specify the shell. The DG/UX system supports a full range of terminals, and
uses both the termcap and curses/terminfo interfaces. Refer to Chapter 5 of
this manual for more details.

4) Review the code.

Look for dependencies on header files, redefinition of system functions, or
dependencies on machine architecture. If your code makes assumptions
about the filing system or directory format, or tries to access inodes directly,
you will want to review Chapters 5, 8, and 9 in this manual. If your code is
derived from a BSD system, refer to Chapter 8 to determine if the system
files and libraries are in the “standard” location. If your code uses
malloc(3C) routines, review Chapter 9 in this manual.

093-701047 Licensed material—property of Data General Corporation 2-1

A Porting Checklist

5) Run the lint utility program on the files. Use the make script, if it contains a
lint entry point. Chapter 6 highlights the classic porting issues and
compatibility problems that are flagged by the lint utility. Missing definitions
may be related to how your program references libraries.

6) Try to compile and run your program(s). This step should go smoothly if all
lint errors have been resolved, and the correct libraries are accessible. Refer
to Chapters 7 & 8 for discussions of library and compiler issues.

7) Use a debugger to help isolate and resolve problems. The system supports
the sdb debugger. Refer to Chapter 6 for an overview of debugger options.

Understanding User Interface Issues

The DG/UX system supports both the System V and the BSD environments.
That means that you have your choice of shells when running on this system. The
different shells may cause commands and user interaction to behave slightly
differently than expected. You should ensure that all shell scripts indicate the shell in
which they should run. Refer to Chapter 4 for a discussion of the general
environment options.

If you have dependencies on terminal features, refer to Chapter 5.

The program’s make file will typically define the development environment needs.
The AT&T make utility provides a way to define dependencies and relationships
between programs and system utilities. Specifically, make files should define the
compiler arguments and options, and the libraries that are linked into your program.
The DG/UX make utility conforms to the standard make and dependency rules.
Chapter 4 of this document provides additional suggestions on using the make utility
in the porting process. The DG/UX tools manual provides a full description of all
make options.

Understanding Compiler Issues

Most coding issues can be resolved by rigid adherence to the C standards as
described by Kernighan and Ritchie, and by the emerging ANSI standards. Most
potential problems can be identified and resolved easily; some of the more common
issues are noted below.

e Differences between ANSI features and pcc features can generally be
resolved by selecting the appropriate compiler switches.

e Structure alignment requirements may introduce padding, which may result
in unintended data formats.

e Explicit type casting of function pointers and return values is recommended
to ensure that appropriate values are passed between routines.

2-2 Licensed material—property of Data General Corporation 093-701047

Understanding Compiler Issues

Calling conventions should conform to the varargs semantics.
Character and integers may be signed or unsigned. Explicitly specify your

preference with the appropriate compiler switches to avoid unexpected
definitions and runtime results.

Understanding Architecture Issues

The DG/UX system is based on Motorola’s 88K architecture. You will need to
review your code to ensure that it meets the following architectural requirements:

Floating point calculations will use the IEEE-754 format.

Stack growth is generally downward (from higher addresses to lower
addresses), but this may vary based on build options. Directly manipulating
the stack is not recommended.

The DG/UX system handles signals based on the BCS model.

The DG/UX system expects "big-endian” byte ordering of the data.

The DG/UX system uses 4K page size calculations.

Tips and Techniques for Creating Portable

Code

The general tips for creating portable software are:

093-701047

Use specified interfaces.

Standards define user interfaces and the functionality of an operation;
however, implementation specifics may differ among vendors. Code that
conforms to the described user interface rather than the implementation
behavior is generally portable to other host UNIX systems, even if their
implementation differs. For example, Data General’s DG/UX system uses a
proprietary file system structure, but still supports all standard filing system
interfaces.

Use curses and terminal libraries.
The DG/UX system includes robust definitions of Data General terminals.

Use lint.
The lint program will help identify potential problems with your code. Code
that runs through lint cleanly should not raise porting problems.

Use type casting with pointers.
Although many systems will allow you to use mis-matched pointers, this

Licensed material—property of Data General Corporation 2-3

Tips and Techniques for Creating Portable Code

2-4

coding practice may introduce bugs that are difficult to identify as you port
your code across various architectures.

Use care when defining and passing structures.

The semantics for passing structures do not follow a set standard. If your
code passes structures rather than pointers to structures, you should review
the appropriate language reference manual, and ensure that your code
conforms to the language requirements. Also, many compilers will introduce
padding into structures as required by the machine architecture. These
alignment requirements may produce unexpected results at runtime if your
code uses implicit unions (references an entity differently than it is declared).

Use rigor in processing signals.

Review code that handles signals to ensure that appropriate signals are
trapped and processed. The numbering scheme for signals is changing to
allow merging BSD and System V support. The system header files define
the signal names and numbers that are recognized by the DG/UX system.

Use IFDEFS to identify code changes.
This technique will allow you to maintain a common code source that can be
compiled and run on many different environments.

Isolate modules that interact with hardware.
Code may need to depend on its operating environment. When this is

necessary, the code is easier to identify if it is contained in an independent
code module.

End of Chapter

Licensed material—property of Data General Corporation 093-701047

Chapter 3
Using Data Formats and
Transfer Media

This chapter explains how to transfer your program to the DG/UX system using
various media and data formats.

Loading Source Code and Data

The first step in porting a program is to get your program source loaded onto the
system. Usually, you will load either from tape or from network.

Loading from Tape

The QIC 150 MB QIC cartridge tape drive is a fully supported SCSI device on
the DG/UX system. You may also read and write QIC 120 MB cartridge tapes; QIC
40 MB and 60 MB cartridge tapes may be read only. The different tape densities are
selected by entering the appropriate device name in the read/write command line.

In addition to the QIC cartridge tape, the 1600 BPI 1/2 inch reel to reel SCSI
tape drive is supported by the DG/UX system. It is possible to connect other SCSI
tape drives, however, the device must be compatible with the DG/UX SCSI device
drivers. The DG/UX SCSI device drivers require two optional commands described
in the ANSI SCSI-1 specification: inquiry and space. The optional commands
supported but not required are ready, mode sense/select, and erase.

The DG/UX system supports the standard cpio(1), tar(1), and dd(1) utilities used
by most UNIX systems to write to a tape. To write tapes, use the appropriate utility
along with the device name to specify the tape drive/density.

Note: Because they depend on the structure of the file system, finc, frec, and volcopy
should not be used when porting applications; using these functions will make your
code LESS portable to other systems.

You can use three commands to load from a tape:

cpio The format of cpio tapes depends on the architecture of the system on which

they were written. The cpio compatibility option (=c) lets you read the
headers of a tape from any system, and is compatible with the POSIX

093-701047 Licensed material—property of Data General Corporation 3-1

Loading Source Code and Data

tar

dd

3-2

extended cpio format. The tape must have been written using —c and must
be read using —c. While —c lets you read the header, it does not help you
read the body of the tape. In particular, the byte order of information in the
body of the tape may be swapped compared to the DG/UX system. If the
bytes on your tape are swapped, use the cpio -s option to swap the bytes
back as they are read in. The default byte order for epio on DG/UX is
"Big-Endian”, where the most significant byte is stored in the lowest address.
The default blocking factor is 512 bytes. You can use the —B option to
select a blocking factor of 5120 bytes, and the —C option to specify the size
of the blocking factor in bytes.

The following command line will usually work for reading cpio tapes:

cpio -icdvB < device_name

The following command line will copy files to a tape:

Is *.c | cpio -oB >/dev/rmt/0On

All files in the working directory with the .c extension would be copied to
the tape on /dev/rmt/On. The —B option blocks the tape at 5120
bytes/record, and writing the file to /dev/rmt/On leaves the tape positioned at
end-of-file (instead of rewinding it). Using the no-rewind tape feature, lets
you make multivolume tapes. If you want the tape to rewind, specify
/dev/rmt/0 in place of /dev/rmt/0n.

We recommend that you use the following tar command line for reading tar
tapes:

tar -xvf device_name
The —x option extracts the named files from the tape and lets tar read the
tape in the same blocking factor used to write the tape. tar is compatible
with the POSIX extended tar format. Note: The POSIX implementation of
tar will not be available in the early software release.
dd lets you read and write tapes with no effect on file format. It is possible
to do conversions, such as ASCII to EBCDIC or blocked to unblocked; and
the files=n option allows concatenation of multiple input files for tape.
Cases when dd would be used, include:

® Reading non-standard formats or tapes from non-UNIX systems.

® Reading ANSI tapes.

® Writing system-boot tapes.

Licensed material—property of Data General Corporation 093-701047

Loading Source Code and Data

Loading from Network

The DG/UX system supports the TCP/IP communication network and the
Network File System (NFS) network file sharing system.

The File Transfer Program (ftp) can be used to transfer files from one host to
another using TCP/IP. On a diskless workstation, you will be mounted on disk(s)
with the Network File System. Use a remote tape device to load your tape onto a
disk mounted on your system.

Another mechanism for transferring files from one UNIX system to another is
the rep program. rep can copy directory trees as well as files.

The DG/UX system also supports uucp with the Honey-DanBer enhancements
for UNIX to UNIX copies. Refer to the User’s Reference for the DG/UX System
manual for more information on uucp.

When porting from non-UNIX environments, you may also use the DG/UX
system serial port to load your sources. An asynchronous communications protocol
package such as kermit, would be required.

See the Installing and Managing DG TCP/IP (DG/UX) for details on TCP/IP
setup; and see Managing NFS and Its Facilities on the DG/UX System for details on
NEFS setup.

Understanding How Bytes Are Stored

Byte ordering refers to the order in which bytes are stored in a computer’s
memory. The computer’s hardware architecture determines the byte ordering.

Consider a 32-bit word made up of four bytes: b0 bl b2 b3, where b0 is most
significant and b3 is least significant. In "Big-Endian” systems, the bytes are stored
with b0 in the lowest address position: b0 bl b2 b3. In "Little-Endian” systems, the
bytes are stored in reverse order: b3 b2 bl b0.

The AViiON system, based on the MC 88000 architecture, stores data with the
most significant value at the lowest address, i.e. Big-Endian byte ordering. Other
Big-Endian systems include Data General’s MV/Family, MC 68000, SPARC, and the
IBM 370 architectures. Little-Endian systems include Digital’s VAX and Intel’s 8086,
80286, and 80386 architectures.

As you can see, byte ordering varies with the different hardware architectures.
Portable programs do not depend on a specific architecture or byte order.

End of Chapter

093-701047 Licensed material—property of Data General Corporation 33

Chapter 4
Setting Up the Environment

This chapter describes how to set up the programming environment. Major
topics are as follows:

e Using the Bourne and C shells
® Manipulating the line discipline

e Handling file system issues

093-701047 Licensed material—property of Data General Corporation 4-1

Using the Bourne and C Shells

Using the Bourne and C Shells

The DG/UX system supports two shells: the Bourne shell (sh) and the C shell
(csh). The Bourne shell is part of AT&T UNIX System V. The C shell is part of the
Berkeley UNIX System.

This section describes the following topics:
e Differences between sh and csh
e Switching between sh and csh
® Shell scripts in sh and csh
e Using Editread

For more information on shells, shell scripts, and editread see Using the DG/UX
system.

Using sh and csh—the Differences

Both the Bourne shell and the C shell perform basically the same functions, but
there are a few differences:

® The C shell has a history facility and an aliasing facility; the Bourne shell
does not. However, DG/UX does provide editread, a history and line
editing facility that can be used in both shells.

® The C shell has more features for job control. In csh you can run a job in
background mode and bring it into foreground mode. In sh, you can also
run a job in background mode, but you cannot bring it into foreground
mode. In csh, if a job running in the background tries to do terminal I/0
the job will be stopped. The job may be restarted by bringing it into the
foreground. In sh, if a job running in the background attempts to do terminal
I/0 it will not be stopped. This can cause problems because the foreground
job may also be doing terminal 1/0.

® There are some differences in shell programming language and syntax.

® The Bourne shell uses the System V line discipline and the C shell uses the
BSD line discipline.

Switching Between sh and csh

Regardless of your login shell, you can change shells during a work session by
issuing the appropriate command.

4-2 Licensed material—property of Data General Corporation 093-701047

Using the Bourne and C Shells

To change to the Bourne shell:

% sh <NL>

To change to the C shell:

$ csh <NL>

To terminate the current shell and return to the shell that invoked it, use this
command:

{Ctrl-D>

NOTE: 1In the C shell only, if you set the ignoreeof variable, using <Ctrl-D> will
not terminate the shell. You will have to use the logout or exit command
instead.

Writing Shell Scripts

Before you write a shell script, you will have to decide which shell to use. It will
determine some of the commands, options, and programming constructs used.

You can execute a script written in the Bourne shell language in the C shell by
inserting this command in the first column of the first line:

#!/bin/sh

Similarly, you can execute a script written in the C shell language in the Bourne shell
by inserting this command in the first column of the first line:

#!/bin/csh

It is recommended that you put one of the previous commands at the beginning of
your shell script to ensure that it is executed in the proper shell.

Using Editread

The editread facility is a unique DG/UX system interface that you can optionally
invoke for editing command lines that you enter at either shell. Additionally,
editread offers a history facility that saves your previously typed commands for later
recall and execution. The history facility provides the same basic function as the C
shell history with some differences. For both shells, editread offers a broad range of
cursor control and line editing keys. The editread facility can also be used with other
DG/UX programs such as mxdb and crash.

Editread is initially off. To enable it and accept the default settings, follow these
procedures:

093-701047 Licensed material—property of Data General Corporation 43

Using the Bourne and C Shells

1) In your home directory, create an empty file and name it .editreadrc.
2) Log out and log back in.

3) To read a quick summary of the current editread default values, type this
command from the shell: <Ctrl-R>

The editread facility uses the TERM variable setting to determine some of the
characteristics of your terminal so it is important that this is set correctly. By default,
the process control keys defined in the editread facility are copied from your terminal
line discipline. As an alternative you may choose to redefine some keys in your
.profile file (or .login file for C shell users) and those key definitions will be exported
to editread. If you redefine a function in the editread facility, you should make a
corresponding change to your line discipline. Editread and your line discipline should
be in agreement.

NOTE: Editread may be slow over heavily loaded networks.

4-4 Licensed material—property of Data General Corporation 093-701047

Manipulating the Line Discipline

Manipulating the Line Discipline

The line discipline facility acts as the kernel’s interface to the terminal. The line
discipline intercepts data coming from the terminal, buffers it, and does some initial
processing of special keys. For example, if your program has requested a line of data
from the terminal, the line discipline will buffer this data as the data comes in,
interpret certain special keys, and when complete, pass the buffer back to the kernel
and thus to your program. On input or output to the terminal, the line discipline can
also be set to map certain functions to a particular control sequence.

In general, the line discipline’s operations are transparent to your program.
However, if terminal-control issues do arise, there are several areas related to the line
discipline that you may need to check. The following paragraphs are provided in case
you encounter terminal-control problems.

The DG/UX system supports both the System V and BSD terminal line
disciplines. Although these two line disciplines are largely the same, your program
may use some of the unique features of its source system’s line discipline. Therefore,
you may need to select the line discipline you need. You can use the ioctl(2) system
call or the stty(1) command to set which line discipline is active for your terminal (see
the ioctl(2) manual page in the Programmer’s Reference for the DG/UX System
(Volume 1) or the stty(1) manual page in the DG/UX System User’s Reference
Manual). Also notice that if you log in directly to the Bourne shell (sh), the System
V line discipline will be active. If you log in directly to the C shell (csh), the BSD
line discipline will be active. Whenever csh is executed on the DG/UX system, it
activates the BSD line discipline and restores the previous line discipline on exit.
Executing sh after initial login does not affect the line discipline.

If you are using a terminal interface library, your program must include a header
file that defines all line discipline characteristics so your program can refer to them by
name. termio.h defines the System V line discipline characteristics. sgtty.h defines
the BSD line discipline characteristics. For programs using BSD and System V line
disciplines, you use berk_sgtty.h in addition to termio.h. These include files are
described in termio(7), tty(7), ioctl(2), and modemap(7) (for more information on
termio(7), tty(7), and modemap(7) see the System Manager’s Reference for the
DG/UX System).

Switching Between the System V and BSD Line
Disciplines

Regardless of your initial login shell and line discipline, you can change from one
line discipline to the other by issuing the appropriate command at the shell prompt:

To change from the System V to the BSD line discipline: stty line 1

To change from the BSD to the System V line discipline: stty old

093-701047 Licensed material—property of Data General Corporation 4-5

Manipulating the Line Discipline

Switching Between 7-bit and 8-bit Line Disciplines

From either line discipline you can switch between 7-bit and 8-bit mode by using
the appropriate command at the shell prompt.

Under the System V line discipline -
To enable 7-bit mode: stty cs7 parenb parmrk
To enable 8-bit mode: stty cs8 -parenb -parmrk
Under the BSD line discipline -
To enable 7-bit mode: stty -pass8

To enable 8-bit mode: stty even odd pass8

4-6 Licensed material—property of Data General Corporation 093-701047

Handling File System Issues

Handling File System Issues

The DG/UX system uses a file system structure that is, in most ways, compatible
with both System V and BSD. You will find the following System V features in the
DG/UX file system:

e First-in-first-out (FIFO) special files (also called named pipes).

® Newly created files receive the process’s effective group ID. On BSD, newly
created files get the group ID of the parent directory.

You will find the following BSD features on the DG/UX file system:
e Symbolic links
® Sockets as defined for the UNIX domain under TCP/IP

® Long filenames and pathnames

Recognizing Differences Between the DG/UX and the
System V File Systems

In general, as long as you follow standard language practices, the file system
structure will be transparent to your program. However, the following System V file
system features might cause problems:

® A 1l4-character maximum filename size and 100-character maximum
pathname size

® No direct access to System V-specific structure of directory entries
® The use of streams

The next three paragraphs will address these potential problems.

As on BSD, filenames on the DG/UX system can be up to 256 characters long,
and pathnames may be up to 1024 characters long. The structure of directory entries
reflects this additional length. Programs that presume a limited-length filename or
pathname or that presume a particular directory structure may run into trouble. For
example, a program based on System V file systems might allocate a fixed-length, 14-
character variable for a filename. Because DG/UX filenames can be much longer,
they may overflow this fixed-length variable. Similarly, a program may attempt to
read a directory expecting the fixed, 14-character filename entries.

Another common problem that may arise in System V programs relates to how
some system calls access the contents of a directory file. Specifically, some programs
expect to be able to read a directory using the open(2), read(2), and close(2) system
calls. These calls rely on implementation-specific information and may not work

093-701047 Licensed material—property of Data General Corporation 4-7

Handling File System Issues

across different UNIX systems or even across different releases of the same system.
Programs that use these calls should be changed to use the opendir(3), readdir(3),
and closedir(3) library routines, which make the current directory structure
transparent to programs.

The DG/UX system does support the System V streams system calls but it does

not provide the Transport Layer Interface (TLI) library. If this will cause problems
then socket(2) may be substituted for stream functionality.

Working with the DG/UX /dev Directory

The /dev directory on the DG/UX system has three major differences from other
UNIX systems:

® Many device names are unique to the DG/UX system.
® No regular files may be created in this directory, only nodes and links.
e Files created in this directory may not be present after a reboot. In order to

have needed files created in /dev at boot time, the init scripts should be
edited.

End of Chapter

4-8 Licensed material—property of Data General Corporation 093-701047

Chapter 5
Working with Terminals and
Keyboards

This chapter discusses issues involving terminals and keyboards. Major topics
are as follows:

® Using Terminal Interfaces

® Working with Supported Terminals
e Working with Character Sets

e Using International Keyboards

e Using a Graphics Console on a Workstation

Using Terminal Interfaces

Terminal interfaces available on DG/UX are curses, terminfo, and termcap.
The following sections discuss what header files are required in your programs and
how to compile using the specified interface. We would like to stress that the curses
library can emulate the termcap library. And, because terminfo is intended to
replace termcap, we recommend that you link your programs with the curses library
rather than the termcap library.

Working with curses Routines

Curses is a library of routines that you may use to write screen management
programs on the DG/UX system. curses routines write to a screen, read from a
screen, control character attributes, and build windows. They also have advanced
features that draw line graphics and provide soft labels for function keys. curses on
DG/UX accesses information about the terminal from the terminfo database.
Terminfo definitions are located in /usr/src/lib/libcurses/terminfo/*.ti. The compiled
files are located in /usr/lib/terminfo/?/*. The curses routines are located in
/lib/libcurses.a. To direct the link editor to search this library, you must use the -1
option with the cc command. The command line for compiling a curses program is:

cc file.c -lcurses

093-701047 Licensed material—property of Data General Corporation 51

Using Terminal Interfaces

The source program must include the header file, curses.h. You must also set the
TERM variable, a shell environment variable that specifies a name for the terminal
you are using. If you are using the Bourne shell, remember to export TERM.

Working with terminfo Routines

Some programs must use lower-level routines than those that curses provides.
The terminfo routines are lower-level routines that do not manage your terminal
screen, but rather give you access to strings and capabilities which you can use to
manipulate the terminal.

The commands for compiling and running a program with terminfo routines are
the same as those for compiling and running a curses program. The curses.h and
term.h header files are required because they contain definitions of the strings,
numbers, and flags that the terminfo routines use. References to these header files
must be included in your source program.

Working with termcap Routines

The termcap terminal database is stored in an ASCII file; all the information it
contains is readable, unlike terminfo, which is compiled. Terminal definitions are
located in /etc/termcap. The termcap routines are located in /lib/libtermcap.a. To
direct the link editor to search this library, you must use the -1 option with the cc
command. The command line for compiling a termcap program is:

cc file.c -ltermcap
You must also set the TERM variable, a shell environment variable that specifies a
name for the terminal you are using. If you are using the Bourne shell, remember to
export TERM.
NOTE:

If you are having problems with terminal control, check to make sure that
the TERM variable is set correctly for your terminal.

52 Licensed material—property of Data General Corporation 093-701047

Working with Supported Terminals

Working with Supported Terminals

Data General supports a wide range of terminals. For a complete list of
supported terminals, refer to the terminfo and termcap databases. For a partial list
that includes all Data General terminals, you can also consult the term(5) man page.
The following section discusses Data General terminals in emulation modes.

Using Data General Terminals in Emulation Modes

To ensure that your application software runs properly from a particular terminal:

1) Configure your terminal by invoking the terminal configuration menu. Refer
to the manual that comes with your terminal for instructions on how to
configure your terminal to the emulation mode specified for it below.

2) Configure the line discipline. The line discipline acts as the kernel’s
interface to the terminal. The line discipline intercepts data coming from the
terminal, buffers it, and does some initial processing of special keys. Refer
to Chapter 4, "Setting Up the Environment,” for instructions on how to
configure the line discipline.

3) Set the TERM variable for your particular terminal, as specified below.

Using DEC Emulation mode

Data General’s new terminal product line—the D216, D412, and D462
terminals—have DEC emulation modes. The emulation modes are covered by vt100
and vt220 terminfo/termcap entries (e.g. DEC vt100 emulation mode would use
TERM=vt100). D216 terminal emulates the VT100; however, D412 and D462
terminals emulate the VT220. VT220 emulation contains VT100 functions, plus
additional functions that improve the terminals’ speed and appearance. Your terminal
is configured by invoking the Port Menu with SHIFT-N/C.

Using Tektronix Emulation Mode

Data General’s D462 terminal emulates the Tektronix 4010 graphics terminal.
Tektronix emulation mode is covered by the tek4010 terminfo/termcap entry (i.e.
Tektronix emulation mode would use TERM=tek4010). Your terminal is configured
by invoking the Port Menu with SHIFT-N/C.

093-701047 Licensed material—property of Data General Corporation 53

Working with Supported Terminals

Using ANSI Mode

Data General’s older terminals are supported in ANSI mode only. Users porting
software using Data General’s older terminals should note that DG mode is
unsupported. Thus, terminal definitions for Data General terminals in DG mode are
no longer actively supported, although a few still remain in our terminfo and termcap
databases. Entries for the following Data General terminals in ANSI mode exist:

D210
D211
D214
D215
D220
D410
D411
D460
D461
D470
D577
D578

Your terminal is configured by invoking the Terminal Configuration Menu with N/C,
or by setting DIP switches at the back of the terminal.

Using xterm Emulation Modes

Because X windows is supported, the xterm terminal type is supported as well.
The standard I/O goes through an emulation of DEC vt102 or Tektronix 4014
terminals. The TERM variable is automatically set to xterm when a window is
opened (if an xterm entry is found in terminfo/termcap databases) If the xterm entry
is not found, terminfo/termcap database are searched for vt102, then vt100, and then
tek4014 entries. If you use terminfo/curses and termcap, you should have no
problems, however, the application must be able to handle the window being resized.
See the graphics chapter for window resizing implications and the X manuals for
general xterm issues.

Using a Graphics Console on a Workstation

The workstation can be booted from the graphics console. The TERM variable is
automatically set to xterm when a window is opened (if an xterm entry is found in
terminfo/termcap databases) If the xterm entry is not found, terminfo/termcap
database are searched for vt102, then vt100, and then tek4014 definitions.

Table 5-1 lists features of the workstation monochrome monitor.

54 Licensed material—property of Data General Corporation 093-701047

Working with Supported Terminals

Table 5-1 Workstation Monochrome Monitor Features

Feature Description

Graphics Processors Monochrome -- NEC uPD72120
Pixel Aspect Ratio 1:1

Refresh Rate 70 Hz, flicker-free

Controls Brightness, contrast

Monitor Format 20" landscape

Displayable Resolution ~ 1280x1024

Addressable Resolution 1280x1638

Using Data General Terminal Features

Table 5-2 provides a summary of major features in the D216, D412, and D462
terminals:

Table 5-2 Features of D216, D412, and D462 Terminals

Feature D216 D412 D462
Windowing X X
Dual Port X X X
80 Columns X X X
132 Columns X b¢
Graphics X

Working with Character Sets

The following character sets are available on the D216, D412, and D462
terminals:
Keyboard Language
U.S. ASCII
U.K. National
French National
German National
Swedish/Finish National
Spanish National
Danish/Norwegian National
Swiss National
Kana GO Set
D.G. International
Kana G1 Set
Word Processing, Greek, Math
Forms-ruling (Line drawing) set
D.G Special Graphics (PC characters)
VT220 Multinational
VT220 Line Drawing

093-701047 Licensed material—property of Data General Corporation 5-5

Working with Character Sets

Curses and terminfo support the Forms-ruling set to draw line graphics, and the
international character set to support European languages in eight-bit communication
modes. Refer to your terminal programmer’s manual to determine what character
sets are available on your particular terminal and how to select them. A complete list
of terminal programmer’s manuals is provided in the Related Manuals section after
the Index.

Using International Keyboards

The D216, D412, and D462 terminals support 15 keyboard nationalities:
Arabic
Canadian/French
Canadian/English
Danish/Norwegian
French
German
Hebrew
Italian
Katakana
Spanish
Swedish/Finnish
Swiss/French
Swiss/German
United Kingdom
u.S.

Refer to your terminal programmer’s manual to determine what nationalities your
particular terminal supports. A complete list of terminal programmer’s manuals is
provided in the Related Manuals section located after the Index..

End of Chapter

56 Licensed material—property of Data General Corporation 093-701047

Chapter 6

Using Software Development

Tools

This chapter discusses software development tools for performing the following

tasks:

093-701047

Checking C syntax (lint)

Building complex programs (make)
Controlling source code (RCS and SCCS)
Debugging programs (mxdb, sdb, and dbx)
Using preprocessor functions (IFDEF)

Editing source files (vi, ed, and sed)

Licensed material-—property of Data General Cerporation 6-1

Checking C Syntax (lint)

Checking C Syntax (lint)

This section describes what lint is, discusses how it is useful in the porting
process, and gives examples of messages lint generates.

What is lint?

Once you have loaded your program, you are ready to check the code and then
compile and link it. The DG/UX system provides a compile time tool, lint, that can
help catch and correct many porting problems before you run the program. lint is a
major tool for measuring your program’s portability. lint is a C program checker for
C language programs. It attempts to detect features of C program files that are likely
to be bugs, non-portable, or wasteful. It also checks type usage more strictly than the
compiler. lint detects unreachable statements, loops not entered at the top,
automatic variables declared and not used, and logical expressions whose value is
constant. It also checks for functions that return values in some places and not in
others, functions called with varying number of arguments, and functions for which
the values are not used or are used but not returned.

Using lint
The lint command has the following form:
lint [options] file.c ...

where oprions are optional flags to control lint checking and messages, and file.c is
the name of the file to be checked. Using DG/UX Programming Tools contains a
complete list of options and gives details on their usage. lint provides options that are
common with those of the compiler command cc, e.g., -1, -D, and -U. -I specifies
the include directory. —-D and -U respectively predefine and undefine preprocessor
symbols. If you compile using these options, you must also use these options when
you use lint.

By default, lint checks programs against the standard C library (lint version of the
standard C library). However, when the —p option is used, the portable C library is
checked. It contains the standard library routines which are expected to be portable
across various machines. You can also include a lint version of the math library and
the curses library by inserting —Im on the command line to include the math library
and inserting —lcurses to include the curses library.

Understanding Differences Between cc and lint

Although cc and lint both check C syntax, the programs are different.

® cc is a command that invokes the compiler, which generates error messages
and object code.

6-2 Licensed material—property of Data General Corporation 093-701047

Checking C Syntax (lint)

e lint is a syntax and program checker that generates error messages and no
object code.

® cc compiles each source file as a separate entity. lint can handle all
constituent files at once. It can therefore cross-reference function and
variable usage throughout the whole program.

Interpreting lint Messages

While catching many portability errors, lint cannot catch every error. The
following section describes the types of messages lint will output. Please note that
this is not an exhaustive list. See "Using Libraries and System Calls" and
"Understanding Hardware Architectural Issues” chapters for additional information
on areas lint can isolate.

® value type declared inconsistently

When you pass an argument, you must make sure that the type of expression
you pass matches the type that the function expects. For example, the gsort
function expects the pointer to the array start to be a pointer to a character.
You must explicitly cast the array you pass as a character pointer. In
addition, you must call the function compare with two character pointers.

When a function’s return type is not defined, the default return type is
integer. All library functions that are used in the program must also have
their return type explicitly declared, or the returned value will be treated as
an integer.

® name used before set

lint attempts to detect where a variable is used before it is initialized. lint
detects local variables (automatic and register storage classes) whose first use
appears earlier than the first assignment.

® nonportable character comparison

The following code produces a "nonportable character comparison” message
on the line comparing getc’s return against EOF. EOF has the value -1,
which will fit in a char on some systems, but not others.

#include <stdio.h>

copyfile (fin, fout)
FILE *fin, *fout;
{

char c;

while ((c = getc(fin)) != EOF)
putc(c,fout);

093-701047 Licensed material—property of Data General Corporation 63

Checking C Syntax (lint)

if ((c = getchar ()) < 0)....
e illegal combination of pointer and integer

This means you tried to assign a pointer to an integer variable or vice versa.
The following code sample produces the "illegal combination” message:

void f()

int a; char *b; int *c;
a=c; b=a; *b = a;

Be sure to assign pointers only to pointer variables.

The lint program also generates messages that are not fatal, i.e. your program can
For example, when a variable is defined but not used, lint

execute successfully. ed but nos
" Although this does not

generates the message "variable_name defined but not used.
produce a fatal error, it is not a good programming practice.

093-701047

6-4 Licensed material—property of Data General Corporation

Building Complex Programs (make)

Building Complex Programs (make)

This section discusses what make is, why it is useful in the porting process, and
the differences in System V and Berkeley functionality.

What is make?

The make program is a useful tool throughout the entire porting process because
recompiling and relinking will occur repeatedly during the process. make provides a
simple mechanism to maintain up-to-date versions of programs that result from many
operations on a number of files. It is possible to tell make the sequence of
commands that create certain files, and the list of files that require other files to be
current before the operations can be done. Whenever a change is made in any part of
the program, make will create the proper files simply, correctly, and with minimum
effort.

Using make

The make command has the following form:
make [options] [macro-definitions) [targets]

where rarget can be a makefile or a particular target name. make executes commands
in the makefile to update one or more target names. make provides a macro
mechanism for substituting in dependency lines and command strings. Macros are
defined by command arguments or description file lines with embedded equal signs.
A macro is invoked by preceding the name of the macro by a dollar sign. Using
DG/UX Programming Tools contains a complete list of available options and also
gives more detailed information on using make.

A makefile contains a sequence of entries that specify dependencies. The first
line of an entry is a blank-separated, non-null list of targets, then a ":", then a
(possibly null) list of prerequisite files or dependencies. Text following a ";" and all
following lines that begin with a tab are shell commands to be executed to update the
target. Note that shell commands must be preceded by a tab character at the
beginning of the line. A # in column 1 denotes a comment line. The first line that
does not begin with a tab or # begins with a new dependency or macro definition.
Shell commands may be continued across lines with the <backslash><new-line>

sequence.

Example

The following example illustrates the use of macro definitions, e.g. $(SRC),
$(OBJ), $(LIBS), and the inclusion of lint :

093-701047 Licensed material—property of Data Gencral Corporation 65

Building Complex Programs (make)

#

Makefile for example

#

SRC =
OBJS

LIBS

LINT=
DEFS=
BIN =

pam:

lint:

clean:

zip.c zap.c
zip.o zap.o
—-lcurses
lint

—DHELP
/bin

$ (OBJS)
$(CC) $(DEFS) -o pgm $(OBJS) $(LIBS)

$(LINT) $(DEFS) $(SRC) $(LIBS) > pgm.lint

-rm —-f $(OBJS) pgm core

install: pgm

cp pgm $(BIN)
chmod 755 $(BIN)/pgm
echo pgm install in $(BIN)

Using System V or BSD make: the Differences

The make command is an example of a command for which the functionality
differs between BSD and System V. DG/UX make has System V functionality. For
users porting software from BSD systems, please note the following differences:

e circular dependencies

The BSD implementation allows circular dependencies, and the DG/UX
implementation does not. Circular dependency means that during a build, a
makefile may specify that program "A” be made before program "B” and also
specify that "B” be made before "A”. BSD makes an arbitrary decision about
which program to make first. Such circular dependencies must be removed
to run a makefile under the DG/UX system. If you have a BSD program,
you also should check make(1) for differences in default values.

include name

DG/UX make uses the string "include” to indicate include files. If you have
a filename that begins with the string "include”, such as include.o:include.c,
the DG/UX make will try to open a file specified by the remaining characters
on the line. If you have files beginning with the string "include,” you must
rename your file. Refer to the make(1) man page for details on the DG/UX
system implementation and default inference rules.

Licensed material—property of Data General Corporation 093-701047

Controlling Source Code

Controlling Source Code

This section discusses controlling source code revisions.

When moving software from one operating system to another, there are certain
times when code changes must be made in order for the software to run on the new
operating system. In order to maintain your original source and also track all changes
that you make to the code, you will need to use a source code control system. The
DG/UX system provides two source code control systems, Revision Control System
(RCS) and Source Code Control System (SCCS).

RCS is a system that uses a BSD-defined, free form ASCII file. RCS retains
only the changes for previous revisions and stores the entire file for the latest
revision. Thus it can quickly rebuild the latest revision.

SCCS is an AT&T System V defined ASCII file control system. SCCS stores
the file changes with the original file, and therefore, must rebuild the specified
version by applying deltas, in order, to the initial version until the desired version is
obtained.

Both source control systems let you rebuild any revision stored within the source
code control file. If you are currently using SCCS and would like to use RCS, use
the scestores command to build an RCS file from an SCCS file.

Using the Revision Control System (RCS)

The Revision Control System (RCS) contains multiple revisions of text, an access
list, a change log, descriptive text, and control attributes. Rcs manages the storing,
retrieval, logging, identification, and merging of revisions. Rcs is useful for keeping a
logged account of text that is frequently changed, such as programs and
documentation.

The user interface for res is simple for the novice user. The only commands that
are essential to know are ci and co. ci stands for "checkin” and saves the contents of

the file into an archived RCS file. co stands for "checkout” and retrieves the
specified revision from the RCS file.

How to Get Started

Here are the steps to take:
1) Create and initialize a new RCS file. (RCS files end in °,v’. All other files
are considered working files.) The following command line creates a new

RCS file named foo.c,v and locks it for editing:

rcs —-i -1 foo.c

093-701047 Licensed material—property of Data General Corporation 6-7

Controlling Source Code

6-8

2)

3)

4)

The res program will ask for you to enter a description of this file. When you
have entered the description, press return and then enter ’Ctrl-D’. res tries
to place the file first in it’s default directory ./RCS and then into the current
directory. You can also specify the directory by providing a path prefix for
foo.c. '

Make changes to your file using your favorite editor. For a list of provided
editors, refer to "Editing Source Files” later in this chapter.

Store the working file contents into the corresponding RCS file. The
following examples check in the file foo.c and assign a new revision,
provided the file was checked out with the -1 option:

ci foo.c,v
ci foo.c
ci RCS/foo.c,v

If the file resides in a directory other than ./RCS or the current directory,
you must specify the path prefix. ci can be used instead of the res command

to create the initial res revision.

Check out the file for further changes. The following example checks out
foo.c for reading and writing, locking the file:

co -1 foo.c,v

Useful Tips for Using RCS

The RCS caller must have read and write permission for the directory
containing the RCS file and read permission for the RCS file.

For res to work, the caller’s login name must be on the access list, except if
the access list is empty, the caller is the owner of the file, or the caller is
superuser.

Often there are numerous source files that compose a software package.
Many times is may be easier to automate the check in and check out of files
through shell scripts and make files. When using the automated method, two
command line options will help the process run smoothly, -mmsg and -q. The
command line option for ci, -mmsg, uses the string msg as the log message
for all revisions checked in. The command line option for ci and co, -q,
suppresses diagnostic messages.

Using the -k option with ci allows you to check in the file, reserving the

current revision number, creation date, author, and status. This option is
extremely useful with software distribution.

Licensed material—property of Data General Corporation 093-701047

Controlling Source Code

Refer to the following related manual pages in the User’s Reference for
the DG/UX Systems and Programmer’s Reference for the DG/UX System
(Volume 1) for additional information on res: berk_diff(1) and berk_diff3(1),
ci(1), co(1), res(1), resdiff(1), resfile(1), resintro(l), rcsmerge(l), and
rlog(1).

Using the Source Code Control System (SCCS)

The Source Code Control System (SCCS) is a maintenance and tracking tool for
changes made to a specified file. SCCS is given control of the file and as changes are
made to the file, they are stored with the original file. SCCS stores history data about
each file it assumes control over. The history data includes when and why changes
were made and who made the changes.

How to Get Started

Here are the steps:

1

2)

3)

4)

093-701047

Create your SCCS file with the SCCS admin command. The following
example creates a SCCS file and initializes it with the contents of foo.c:

admin -ifoo.c s.foo.c
All SCCS files must have names that begin with .s, hence s.foo.c. You may

receive the message 'No id keywords (cm7). In this case, disregard this
message.

Remove the foo.c file. It is no longer needed, since SCCS had control of

the file.

Retrieve your file foo.c in read-only mode by using the following command:
get s.foo.c

This command will ouput the revision you have requested, along with total
number of lines in the file and will create foo.c.

Retrieve your file foo.c in edit mode:
get —e s.foo.c
When you retrieve a SCCS file in edit mode, you set up a new SCCS

IDentification (SID) number for the new delta you will create. This
command creates p.foo.c, which is used by the delta command.

Licensed material—property of Data General Corporation 6-9

Controlling Source Code

6-10

5) Make changes to your new file foo.c and save the changes in the original
s.foo.c file using the command:

delta s.foo.c

Delta prompts you for an explanation on why the changes were made. If you
are changing a number of files for the same reason, then create a text file
that contains the explanation of your changes, say change, and issue the
following command:

delta s.foo.c < change

This automatically inserts your text into the SCCS file and will not prompt
you for the explanation.

Useful Tips for Using SCCS

e If an error occurs with a SCCS command, a code is listed at the end of the
error message in the format (cox), where x is the error code number. Use
the help command to print a more complete description of this error.

help cox

e If processing terminates abnormally, you can retrieve your unsaved changes
by copying x.filename to s.filename.

e Use the unget command to cancel a delta reservation set up for your file.
This is useful when you have retrieved your file for editing in error.

e Do not create links to SCCS files. When processing, SCCS removes old
files and creates new files, thus destroying your links.

® Use the -i option on the get command to force the changes of one or more
deltas to be applied to the specified SCCS file.

e Use the -1 option on the get command to create a l.filename that lists the
deltas used in creating a particular version of the SCCS file.

Refer to the following SCCS commands in the Programmer’s Reference for
the DG/UX System (Volume 1): get(1), unget(1), delta(1), admin(1), prs(1),
sact(1), help(1), rmdel(1), cdc(1), what(1), scesdiff(1), comb(1), val(1), and
ve(l). Also refer to the "Support Tools” chapter in Using DG/UX
Programming Tools.

Licensed material—property of Data General Corporation 093-701047

Debugging Application Programs

Debugging Application Programs

The DG/UX system currently supports the Symbolic Debugger (sdb) for
debugging C and FORTRAN 77 programs. In addition to sdb, The DG/UX system
will provide the Multi-eXtensible DeBugger (mxdb) and the dbx debugger in a future
release. sdb is useful for monitoring and controlling the execution environment as
well as examining core images of aborted programs. Running your program under the
control of sdb allows you to view the progress of your program up until the time of
the abort. It also allows you the option of stepping around the failure point and
continuing with execution. Using sdb to examine the program core image allows you
to view the status at the point of failure and to determine the cause of the error.

Preparing for a Debugging Session

The sdb debugger handles programs written in C and FORTRAN 77. Compile
your program from the DG/UX shell, using the appropriate C and FORTRAN
commands. In order to use sdb , you should compile with the -g and -ga option. The
-g option puts line numbers and other symbolic information into the executable file.
The -ga option generates a frame pointer for stack traces. Without the -ga option, the
compiler optimizes the program to the point that stack traces become impossible. All
modules (functions, procedures, libraries) that are a part of your program should be
compiled with the -g and -ga options in order to use the debugger to it’s fullest
potential. If all modules are not compiled with these options, sdb will output an
error message, but will continue to debug the other modules compiled with the
options. It is also important not to strip the symbol table from the object file.

Getting Started with sdb

The command line for sdb is as follows:
sdb [objfil [corfil [directory-list]]]

objfil is an executable program file; the default is a.out. corfil is the core image file
produced by the executing objfil; the default is core. directory-list is a list of
directories separated by colons containing the source of the program; the default is
the current directory.

After executing the sdb command, you will be prompted with an asterisk (*),

which shows that sdb is waiting for a command. Table 6-1 gives a subset of sdb
commands that you an enter at this prompt:

093-701047 Licensed material—property of Data General Corporation 6-11

Debugging Application Programs

NOTE:

6-12

Table 6-1 Commonly Used sdb Commands

Command Description

T args Run program with given arguments

t Print a stack trace

variable/ Display the value of the variable

p Print the current line

<Ctrl-D> Scroll 10 lines

proc:12b Set breakpoint in on line 12 of funtion proc
q Exit from sdb

If your application uses a private shared library, the possibility arises that a
program bug may be located in a file that resides in the shared library.
Shared library data is not dumped to core files, and sdb does not read
shared libraries’ symbol tables.

For further information as well as an example of an sdb session, refer to
"Using sdb (Symbolic Debugger)”, in the Using DG/UX Programming Tools.
Also refer to the sdb manual page in the Programmer’s Reference for the
DG/UX System (Volume 1).

Licensed material—property of Data General Corporation 093-701047

Using Preprocessor Functions

Using Preprocessor Functions

This section discusses what a preprocessor is and how preprocessor directives are
used in the porting process.

What Is a Preprocessor?

A preprocessor is a generic program that prepares an input file for another
program. The C preprocessor is part of the C compilation process. Statements in C
source code which start with a # are instructions to the preprocessor. The
preprocessor’s main function is to include files and to perform macro substitutions.

The C preprocessor is called only during the first stage of compilation. It
normally only handles text manipulation such as file merging.

The DG/UX <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>