
dy DataGeneral

Customer Documentation —

Programming with |

Transport Layer Interface

(TLI) for AViiON® Systems

PRODUCT LINE

Programming with

Transport Layer Interface (TLI)

for AViiON® Systems

069-—-000482-01

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 069—000482-01

Copyright © Novell Corporation, 1990

Copyright © Data General Corporation, 1990, 1991

All Rights Reserved

Unpublished — all rights reserved under the copyrights laws of the United States.

Printed in the United States of America

Rev. 01, May 1991

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED AND/OR HAS DISTRIBUTED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, PROSPECTIVE CUSTOMERS, AND

CUSTOMERS.THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF THE COPYRIGHT

HOLDER(S); AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED IN WHOLE OR

IN PART NOR USED OTHER THAN AS ALLOWED IN THE APPLICABLE LICENSE AGREEMENT.

The copyright holders reserve the right to make changes in specifications and other information contained in

this document without prior notice, and the reader should in all cases determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE

LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN

CONTRACTS BETWEEN DGC AND ITS CUSTOMERS, AND THE TERMS AND CONDITIONS

GOVERNING THE LICENSING OF THIRD PARTY SOFTWARE CONSIST SOLELY OF THOSE SET

FORTH IN THE APPLICABLE LICENSE AGREEMENT. NO REPRESENTATION OR OTHER

AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO

STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE

OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY

BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT,

a en IF DGC ne BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF

UCH DAMAGES.

All software is made available solely pursuant to the terms and conditions of the applicable license agreement

which governs its use.

Novell, Incorporated and Data General Corporation convey to the industry a royalty-free, non—exclusive,

worldwide right and license to make copies of, reproduce and distribute this copyrighted document

provided the Novell, Inc. and Data General Corporation copyright notices are applied to all copies.

However, Data General Corporation and Novell Inc. do not convey any right or license to make a

derivative work unless otherwise agreed to by Novell Inc. and Data General Corporation.

Restricted Rights Legend: Use, duplication, or disclosure by the U.S. Government is subject to

restriction as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer

Software clause at [FAR] 52.227—7013 (May 1987).

DATA GENERAL CORPORATION 4400

Computer Drive

Westboro, MA 01580

AViiON is a U.S. registered trademark of Data General Corporation; and DG/UX is a trademark of

Data General Corporation.

NetWare is a U.S. registered trademark of Novell Corporation.

UNIX is a U.S. registered trademark of American Telephone and Telegraph Company.

StarGROUP is a trademark of American Telephone & Telegraph Company.

Certain portions of this document were prepared by Data General Corporation and the remaining portions
were prepared by Novell Corporation.

Programming with Transport Layer (TLI) Interfaces for AViiON® Systems

069-—000482-01

Revision History: Effective with:

Original Release — May 1990 DG/NETBEUI for AViiON® Systems, Rev. 1.00

First Revision — May 1991 DG/UX for AViiON® Systems, Rev. 4.32

NetWare® for AViiON® Systems, Rev. 1.00

OSI/Platform for AViiON® Systems, Rev. 1.00

A vertical bar in the margin of a page indicates substantive technical change from the

previous revision. Chapters 2 through 8 of the Programming with Transport

Interfaces for AViiON® Systems (069-000482—00) were moved to form a new

manual, Programming the NETBIOS Interface for AViiON® Systems

(069-000565-00).

Preface

This manual explains the specifics of the Transport Layer Interface (TLI) Library for

the different Distributed Applications Architecture OPEN LAN communication

protocols available on the DG/UXTM system. The manual assumes that you are

familiar with the TLI interface and the DG/UXTM system programming environment.

The TLI Library is part of the DG/UXTM system.

Organization

This manual contains five chapters. The following list gives an overview of what you

will find in these chapters:

Chapter 1 Provides an overview of the TLI.

Chapter 2 Describes TLI/NetBIOS Interface.

Chapter 3 Describes the Internet Packet Exchange (IPX) Interface.

Chapter 4 Describes the Sequence Packet Exchange (SPX) Interface.

Chapter 5 Describes the OSI/Platform for AViiON® Systems Interface.

Related Documents

Within this manual, we refer to the following manuals:

Programmer’s Reference for the DG /|UXTM system, Volumes I and II (0938-701041 and

093—701042)

This manual contains the printed versions of the on—line manual pages for the

commands and calls relating to programming on the DG/UXTM system.

Programming with TCP/IP on the DG /UXTM System (093—701024)

This manual contains a chapter that provides an overview of communications

programming and introduces the TLI for a TCP/IP network.

Setting up and Managing the OSI /Platform for AViiON Systems (093—000738)

This manual explains how to install, configure, manage, and troubleshoot the

OSI/Platform for AViiON System.

Additional Manuals

Other documents that may be of interest to you include:

e AT&T UNIX System V Documentation Set

e IBM NetBIOS Application Development Guide (IBM # 68X2270)

This manual describes the NetBIOS interface in the DOS environment.

069-000482 Licensed Material — Property of the Copyright Holders il

Preface

e UNIX® System V/386 Network Programmer’s Guide, AT&T, 1988

° UNIX® System V/386 Programmer’s Reference Manual, AT&T, 1988

e StarGROUPTM Software Application Programmer’s Reference Manual,

AT&T, 1989

To order AT&T manual(s), contact

AT&T Customer Information Center

Customer Service Representative

P.O. Box 19901

Indianapolis, Indiana 46219

Reader, Please Note:

Data General manuals use certain symbols and styles of type to indicate different

meanings. The Data General symbol and typeface conventions used in this manual

are defined in the following list. You should familiarize yourself with these

conventions before reading the manual.

This manual also presumes the following meanings for the terms command line,

syntax line, and format line. A command line is an example of a command string

that you should type verbatim; it is preceded by a system prompt and is followed by a

delimiter such as the curved arrow symbol for the New Line key. A syntax line is a

fragment of program code that shows how to use a particular routine. A format line

shows how to structure a command line or syntax line; it shows the variables that

must be supplied and the available options.

Convention Meaning

boldface In command lines and format lines: Indicates text (including

punctuation) that you type verbatim from your keyboard.

All DG/UXTM commands, pathnames, and names of files,

directories, and manual pages also use this typeface.

monospace Represents a system response on your screen. Syntax lines also

use this font.

italic In format lines: Represents variables for which you supply

values; for example, the names of your directories and files, your

username and password, and possible arguments to commands.

In text: Indicates a term that is defined in the text.

[optional] In format lines: These brackets surround an optional argument.

Don’t type the brackets; they only set off what is optional. The

brackets are in regular type and should not be confused with the

boldface brackets shown below.

IV Licensed Material — Property of the Copyright Holders 069-000482

[]

$ and %

#

<>

<,>,>>

Preface

In format lines: Indicates literal brackets that you should type.

These brackets are in boldface type and should not be confused

with the regular brackets shown above.

In format lines and syntax lines: Means you can repeat the

preceding argument as many times as desired.

In command lines and other examples: Represent the system

command prompt symbols used for the Bourne and C shells,

respectively. Note that your system might use different symbols

for the command prompts.

In command lines and other examples: Represents the system

command Superuser prompt symbol.

In command lines and other examples: Represents the New Line

key, which is the name of the key used to generate a new line.

(Note that on some keyboards this key might be called Enter or

Return instead of New Line.) Throughout this manual, a space

precedes the New Line symbol; this space is used only to improve

readability; you can ignore it.

In command lines and other examples: Angle brackets

distinguish a command sequence or a keystroke (such as

<Ctrl-D> and <Esc>) from surrounding text. For example,

when you see the <Ctrl-C> symbol, hold the Control key down

and press the C key on your terminal keyboard.

Note that these angle brackets are in regular type and that you

do not type them; there are, however, boldface versions of these

symbols (described below) that you do type.

In text, command lines, and other examples: These boldface

symbols are redirection operators, used for redirecting input and

output. When they appear in boldface type, they are literal

characters that you should type.

In command lines and other examples: The box represents the

cursor, which indicates your current typing position on the

screen.

Contacting Data General

Data General wants to assist you in any way it can to help you use its products.

Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please use the enclosed TIPS order form

(United States only) or contact your local Data General sales representative.

069-000482 Licensed Material — Property of the Copyright Holders V

Preface

Telephone Assistance

If you are unable to solve a problem using any manual you received with your

system, free telephone assistance is available with your hardware warranty and with

most Data General software service options. If you are within the United States or

Canada, contact the Data General Service Center by calling 1-800~-DG—HELPS.

Lines are open from 8:00 a.m. to 5:00 p.m., your time, Monday through Friday. The

center will put you in touch with a member of Data General’s telephone assistance

staff who can answer your questions.

If you are unable to solve a problem using any manual you received with your

system, and you are within the United States or Canada, contact the Data General

Service Center by calling 1-800-DG—HELPS for toll—free telephone support. The

center will put you in touch with a member of Data General’s telephone assistance

staff who can answer your questions.

For telephone assistance outside the United States or Canada, ask your

Data General sales representative for the appropriate telephone number.

Joining Our Users Group

Please consider joining the largest independent organization of Data General users,

the North American Data General Users Group (NADGUG). In addition to making

valuable contacts, members receive FOCUS monthly magazine, a conference

discount, access to the Software Library and Electronic Bulletin Board, an annual

Member Directory, Regional and Special Interest Groups, and much more. For more

information about membership in the North American Data General Users Group,

call 1-800-877-4787 or 1-512-345-5316.

End of Preface

Vi Licensed Material — Property of the Copyright Holders 069-000482

Contents

Chapter 1 — Introduction

Using the TLI on the DG/UX System0. 0.00000. ee eee

Compiling Your Program 0... ccc cece eee eee eee ee eee

Error Handling 0.0... 0. cc ccc cece eee eect ee eeees

Using the TLI with Different Protocols0 0.0.0.0... 0... eee

Using the TLI Calls ... 2... 0... cc cece cee cece eee eees

Chapter 2 — TLI/NetBIOS Interface

Overview of the TLI/NetBIOS Interface cece cccccccccccccccee.

Data Structures 0... ccc ccc ce ce ee ec ce keene eee eee e eee

Option Management Structure 0.0.0... cee ee eee nee

TLI/NetBIOS Interface Descriptions 2.0... eee

Local Management Functions 0... 0c cece cee ee eee ee eens

Connection Establishment Functions 0.0000 ce eeeeee

Chapter 3 — SPX Transport Layer Interface

ProcedureS 0... ccc cece cee ee eee ee eee eee eeneeeeeeeuns

SPX Calls cee ce ee cece ee nee ee eee ee eeseenns

t_accept() .. 0... ce ee ee cee eee eee eens eee eee eeeeauus

1 0) 0 0X6 | Q cc

t_closeQ) 0... ce ce eee ee eee eee e ence eee eeeeeeeees

t_connect() ... 0... ee ee ee ee ee eee e eee eee eee eeeeenae

t_listen() 2.0... ee ec ec ec eee cece ete ee eee eeeeeeeeens

topen() ce ee ec ec ee ee eee e te een eee eeeeeeeeeees

toptmgmt() ccc ce ee ec eee eee eee e eee ee eeneaas

t_YCV() Loc cece cee eee eee eee ee eee eee e eee e ee eeeeeeeeneuas

t_rcvdis() .. 0... cc cece eee eee een eee e eee bene eneeues

tsnd() ce ec ee eee ee eect een teen eneneneenenns

t_snddis() 0... ce ee cee ee ee cece eee eeeeeeeveeneaus

t_unbind() 0... ce ec eee cece eee eee en eeeeeeenanes

Unsupported Transport Interface calls 20.00.0000. ccc cece eee eee

069-—000482 Licensed Material — Property of the Copyright Holders

1-2

1-2

1-2

1-3

1-5

Vii

Contents

Chapter 4 — IPX Network Layer Interface

IPX ConsiderationS 0.0... cece ee ee ee ee eee ee eee eee eeeee

IPX Calls... 2 ce ee ee eee eee ence ee nee eeeneees

0) 01) 8 | ©

t_bind() 0... cc ce ee eee eee eee ee eee ee eee eee eee

tloptmgmt() ee ccc eee eee eee eee ee eens

~ tisndudata() .. 0... ee eee eee eee e eee eeeas

t_rcvudataQ(.) ... 0... cc ec ee eee ee eee eet e eee te eees

t_unbind() 0... ec ee ec ee ec eee ee eee een ene neeneees

t_close() .. 0... ce eee eee eee eee eee e eet eee ueneees

Chapter 5 — OSI/Platform Interface

Locating TLI—Related Documentation 0.0 e eee eee eeee

Compiling Your Program 0... ccc ccc eee eee eee eens

OSI/Platform Calls .. 1... 0... ccc eee eee e et eee e nes

getnsapbyname() cee ce cette ete eect eee eeee

getnamebynsap() cc ce eee cnet eee e ete eees

t_connect() .. 0... ce ee ee ee ee eee ee eee ee ee eee ee enas

t_getinfo(:) ... 6... ce eee eee eee ee eee eet e ee eeee

t_listenQ ... 0... ce ce ee ee eee eee eee e ence eeees

topen() 2... ccc ce ec eee ee eee eee eee e ee eee eee nes

Unsupported Transport Interface Calls 0.0... 0 0. eens

Troubleshooting 0. cece ee cece ee eee ee eee eee eeenes

Vill Licensed Material — Property of the Copyright Holders 069-000482

Table

1-1

1-2

1-3

1-4

1-5

2-1

2-2

2—4

2-5

2-6

2-7

3-1

Figure

1-1

2-1

3—1

o—1

5-2

069--000482

Tables

TLI Include Header Files 0.0.0... ccc cece eee eee ee eee 1-3

Summarizing TLI Device Names 02. cece cece eeeees 18

Summarizing Protocol-Dependent Network Addressing 1-4

Routines for Byte-Swapping a Network Address4 1-4

TLI Calls 2.0.0... ccc cee cece e eee n cece nee naees 1-5

TLI/NetBIOS Calls Listed Alphabetically re 2-3

TLI/NetBIOS Local Management Functions 2-5

NetBIOS Device Drivers 0... ccc ccc cece eect eee eee enes 2-6

TLI/NetBIOS Connection Establishment Functions................. 2-18

TLI/NetBIOS Connection—Oriented Data Transfer Functions......... 2-23

TLI/NetBIOS Connection Release Functions 2-26

TLI/NetBIOS Datagram Service Functions...................-005. 2-31

Unsupported SPX TLI Calls... 0.00... ccc ccc ee ec ceeeceeeueeees 3-30

IPX Calls Listed Alphabetically0 00.0.0... ccc eee ee eee 4-3

OSI//Platform Calls 00... cece eee eee nens 5-3

Unsupported OSI/Platform TLI Calls04. 5-11

Network—level Programming Environment..................0-0000- 1-1

Overall TLI/NetBIOS Network-—level Programming Environment 2-1

TLI/SPX Programming Interface 0.0.00 ccc cece eee cece 3-1

TLI/IPX Programming Interface 00. cece eee ee eeee 4—]

OSI/Platform Programming Interface 0.0 cece eeues 5-1

OSI/Platform NSAP Address Format 00.0. cee eeeeee 5-6

Licensed Material — Property of the Copyright Holders iX

Chapter 1

Introduction

The Transport Layer Interface (TLD is a user application library developed by AT&T

that uses STREAMS mechanisms to access transport-level services in the kernel.

The interface provides you, an application programmer, with an easy access to the

transport services. The DG/UXTM system provides these optional services for several

communication protocols. Figure 1-1 identifies these communication protocols and

shows a sample list of their functions.

NOTE: Although this manual describes the Transport Layer Interface for

several communication protocols, your release tape contains support for

only one of these protocols.

Novell

NetWare NetBIOS DG/NETBEUI OSI/P Internet

TM“

NetWare OpenLAN LM/AV, VT, FTAM, telnet,

Loadable | SDK, etc. NBVT, etc. ftp, rsh, Application,
Modules OpenLAN sendmail, Presentation,
(NLMs) SDK, etc. etc. > and Session

Layers

DG/UX 2
user Transport Layerspace = _ ne NInterface (TLI)

DG/UX = per st -——_——— 7
kernel SPX NetBIOS «<— Transport Layer| space Chapter 3) [woes 2 NetBEUI TP(O, 4) <4

Po (Chapter 2) | (Chapter 5) [7 7 7
IPX <«— Network Layer

| (Chapter 4) ___ |

Supporting St Streams Modules
pe — —— —| «— Data Link Layer

| 802.2/LLC X.25

Communications | | Communications Synchronous >
DG/UX Device Device Communications

kernel 802.3 Driver 802.5 Driver Device . Physical Layer

space

Physical y . . y v
Devices Physical Devices: VLC, VSC, VTRC, etc S

Figure 1-1 NetworkHlevel Programming Environment

Many widely—used network architectures conform in some way to the model

developed by the International Organization for Standardization (ISO). This model

is called the Reference Model for Open Systems Interconnection (OSI). The OSI

model consists of seven layers. As shown in Figure 1-1, the transport layer interface

(AT&T TLD is the interface to services equivalent to those define by the transport

and network layers of the OSI Model. Using this layered network approach and the

transport level interface, your application that may run over the TCP/IP protocol can

run with minor modifications over another network protocol (SPX, NetBIOS, etc.).

069-000482 Licensed Material — Property of the Copyright Holders 1 =-1

Introduction

As previously stated in the Preface, this manual assumes that you are familiar with

the TLI interface and the DG/UXTM system programming environment. For a

complete description of the TLI calls, please refer to the Programmer’s Reference for

the DG/UX system, Volumes I and II or to the on—line DG/UXTM system man pages.

If you plan to write an application with the TLI that runs over TCP/IP, please refer

to the Programming with TCP/IP on the DG/UX System manual. It provides an

informative explanation of using the TLI. The manual compares the TLI structures

and usage with the sockets interface to TCP/IP. If you require additional information

on the transport level interface, you may want to obtain a copy of the AT&T UNIX

System V Documentation Set. See the Preface for additional information on these

and other related documentation.

The remainder of this manual explains the DG/UXTM system-—specific and

protocol—dependent TLI programming information.

Using the TLI on the DG/UX System

Compiling Your Program

For your program to access the transport layer interface at run—time, you must

provide a link to the TLI library when you compile your program. For example, use

% cc user.c -Insl_s)

The command compiles your program (user.c) and includes the TLI Library (nsl_s).

Error Handling

The TLI Library returns to your application two types of error codes. The TLI

Library returns a TLI error code in the t_errno variable. The Programmer’s

Reference for the DG /UX system, Volumes I and II describes the codes. The

DG/UXTM system returns system error codes in the errno variable. The

/‘usr/include/sys/errno.h file lists all of the possible system error codes.

NOTE: You must clear the errno and t_errno variables after detecting an

error and before executing the next TLI call.

The next two paragraphs explain two global error—handling issues. The first issue

involves interrupt handling. The second issue involves a TLOOK error on a

t_accept() call.

In addition, all of the TLI calls are interruptable. You will need to write error

handling code that tests for this condition. When the system interrupts a TLI call,

the system sets t_errno to TSYERR and errno to EINTR.

Finally, a TLOOK error on a t_accept() call may mean a connect or disconnect is

outstanding. That connect or disconnect must be completed before the t_accept()

will be successful. You must issue either a t_look() call or set the qlen parameter in

a t_bind() call to 1. With the qlen parameter set to 1, only 1 outstanding connection

is possible. Then when a TLOOK error occurs, it is the result of a disconnect.

1 -2 Licensed Material — Property of the Copyright Holders 069-000482

Introduction

Using the TLI with Different Protocols

Most of the communications protocols require that you include more than one header

file. For example Table 1—1 shows all of the TLI-supported communications

protocols and the include files that they require.

Table 1-1 TLI Include Header Files

Protocol Standard Additional

Name Header File Header Files

Novell NetBIOS tiuser.h nb_app.h

DG/NETBEUI tiuser.h nb_app.h

OSI/P tiuser.h sys/osip/osip.h

Internet tiuser.h

SPX tiuser.h Ipx_app.h

spx_app.h

IPX tiuser.h ipx_app.h

In addition, each of the protocols use protocol—-dependent device names and network

addresses. For example in the t_open() call, the path variable contains the

pathname to a streams transport device driver (protocol—dependent device name).

Table 1—2 lists the protocols and the TLI—supported devices.

Table 1-2 Summarizing TLI Device Names

Protocol Connection-oriented Connectionless
Name Transport Service (COTS) Network Service (CLNS)

Novell NetBIOS /dev/nbio /dev/nbdg

DG/NETBEUI /dev/ntpc | /dev/ntpd

OSI/P /dev/cots N/A

TCP/IP /dev/tcp /dev/udp

SPX dev/nspx N/A

IPX N/A /dev/ipx

NOTE: N/A in the table indicates that the protocol does not support

069-000482

the device type.

Licensed Material — Property of the Copyright Holders 1 -3

Introduction

The addr variable in the t_bind structure of the t_bind() call contains a

protocol—dependent network address. Table 1-3 summaries the protocol—-dependent

network address formats.

Table 1-3 Summarizing Protocol-Dependent Network Addressing

Protocol Name Network Address Format

TLI/NetBIOS #define NB_NAME SIZE 16

struct nb_addr {

unsigned char name[NB_NAME SIZE];

OSI/P The network address format contains two variable

fields. See Chapter 5.

TCP/IP See the Programming with TCP/IP on the DG /UXTM

System manual.

SPX & IPX typedef struct ipxAddr s {

unsigned char net[4];

unsigned char node[6];

unsigned char sock[2];

jipxAddr t;

The DG/UX system expects addresses to be supplied in a hi—>low byte order. Some

machines, however, reverse this order. Thus, your program may need to byte-swap a

network address. The DG/UX system supplies routines to handle byte—-swapping of

network addresses and values. The header file /usr/include/netinet/in.h defines

these routines. Table 1-4 summarizes the routines that handle byte-swapping of

network addresses and values.

Table 1—4 Routines for Byte-Swapping a Network Address

What it DoesRoutine Meaning

htonl(val) host to network

long

htons(val) host to network

short

ntohl(val) network to host

long

ntohs(val) network to host

short

Convert 32~—bit value from host

to network byte order.

Convert 16-bit value from host

to network byte order.

Convert 32-bit value from

network to host byte order.

Convert 16-bit value from

network to host byte order.

For more information on these routines, see Programming with TCP/IP on the

DG/UXTM System manual and the byteorder on—line man page.

1 =4 Licensed Material — Property of the Copyright Holders 069000482

Introduction

Using the TLI Calls

Table 1—5 lists all of the TLI calls. As you can see in the table, protocols (such as

TCP/IP) support all of the TLI calls in accordance with the TLI standard; while other

protocols require some special considerations.

Table 1-5 TLI Calls

Novell NetBIOS Internet

TLI Call & DG/NETBEUI OSI/P (TCP/IP) SPX IPX

t_accept ves vee bee nee N

t_alloc ves bee bes vee

t_bind A bee bee A

t_close

t_connect

t_error

t_free

t_getinfo

t_getstate

t_listen

t_look

t_open

t_optmgmt

t_rcv

t_revconnect

t_revdis

t_rcevrel

t_revudata

t_rcvuderr

t_snd

t_snddis

t_sndrel

t_sndudata

t_sync

t_unbind

A Z2AZ2Zb>: b>:

Zz: Z2e>b

PAAA: PAAZAYNmND:ZZ: ZZ:
>:

NOTES:

The protocol supports the standard TLI call.

N_ The protocol does not support the TLI call.

A The protocol supports the TLI call with changes.

The remaining chapters in this manual explain the protocol-dependent TLI

programming information that require some special considerations.

End of Chapter

069000482 Licensed Material — Property of the Copyright Holders 1 «5

Chapter 2

TLI/NetBIOS Interface

The Transport Layer Interface for NetBIOS (TLI/NetBIOS) is a user application

library. This interface makes no assumptions about the underlying NetBIOS

implementation. The TLI/NetBIOS interface is closely compatible with AT&T’s

StarGROUPTM NetBIOS Interface.

This chapter explains the TLI/NetBIOS interface which is shared by two

communications protocols, Novell NetBIOS and DG/NETBEUI. Each protocol uses

its own transport provider stack. Figure 2—1 shows the TLI/NetBIOS interface and

the two transport provider stacks. The Internet Packet Exchange (IPX) supports a

datagram service.

User Application

meee ee «0 NU ABIOS Interface

NetBIOS Interface

Le eee eee Ce TLI/NetBIOS Interface

user space

DG/UX

kernel

Space STREAMS System Call Interface (TIMOD/TIRDWR)

rs as i

Novell
NetBIOS DG/NETBEUI and

DG/NETBEUI Novell NetBIOS

transport provider

fe stacks

IPX

(Chapter 4)

a

Supporting Streams Modules

802.2/LLC

Communications Communications

Device Driver Device Driver

DG/UX (802.3) (802.5)
kernel

space | |

Physical
Devices VLC VTRC

Figure 2-1 Overall TLI/NetBIOS Network-level Programming Environment

069--000482 Licensed Material — Property of the Copyright Holders 2-1

TLI/NetBIOS Interface

Overview of the TLI/NetBIOS Interface

To support access to a NetBIOS service, the TLI/NetBIOS interface requires a

deviation from the TLI specification. The TLI specification for t_bind specifies that

if the requested name is not available, the transport provider binds the fd to another

name generated by the provider. In the TLI/NetBIOS interface, if a name is not

available, the transport provider returns an error code.

Refer to the AT&T System V Network Programmer’s Guide for the errors that may

occur with these calls.

Data Structures

This section does not define a format for the network address or option control

structures. The TLI/NetBIOS interface uses the following constants and structures to

define addresses and options. These structures are defined in the file nb_app.h.

Name Structure

#define NB_NAME SIZE 16 /* maximum size of NetBIOS names */

struct nb_addr {

unsigned char name[NB_NAME SIZE]; /* Actual Netbios name */

}

In the TLI/NetBIOS interface a name is specified in a TLI t_bind structure, described

later in this chapter. The t_bind structure contains a netbuf structure in which the

buf pointer points to a NetBIOS name. The netbuf structure also contains a length

field. If the length field is 0, a “permanent name” is assigned by the provider. Names

less than 16 bytes long are padded on the right with zeros.

Option Management Structure

The following constants and structures are used for option management.

#define U_GOS_OPTION 0x01 /* Option not used yet */

#define U_TSDU_OPTION 0x02 /* Option not used yet */

#define U_GROUP_OPTION 0x04 /* Bind to the specified group name */

#define U_LBCAST_OPTION 0x08 /* Receive Broadcast Datagrams */

#define U_TK_ OPTION 0x10 /* Communication options */

struct TKOPTIONS {

unsigned int chksum; /* enable/disable checksum */

unsigned int expedited; /* enable/disable expedited data */

unsigned int extended; /* enable/disable extended features */

unsigned int class; /* transport classification*/

unsigned int acktime; /* acknowledge fail time in seconds */

unsigned int credit; /* shding window size */

unsigned int tpdusize; /* 24n bytes/packet */

2-2 Licensed Material — Property of the Copyright Holders 069-000482

TLI/NetBIOS Interface

struct sl_t_opts {

unsigned long options; /* option from above */

long gos_option; /* not used yet */

long tsdu_options /* not used yet */

unsigned char group_option[16]; /* group name string */

unsigned long bcast_option; /* broadcast enable/disable flag */

struct TKOPTIONS tk_opts; /* see below */

}

typedef struct sl]_t_opts U_LOPTIONS;

This structure is defined in the nb_app.h header file.

The options field is set to one of the defined U_xxx_OPTIONS. If the option

U_GROUP_OPTION is requested, the provider will attempt to bind the name in

group_option as a group name to the specified end—point. If U_LBCAST_OPTION is

requested, a value of 0 in the bcast_option field will turn off receipt of Broadcast

Datagrams and a 1 will turn it on. Legal values for the tk_opts structure vary

between interfaces, but both should respond correctly to the appropriate

T_DEFAULT, T_CHECK and T_NEGOTIATE requests, so check the response of

every call. These definitions may be found in the AT&T-supplied header files

slanuser.h or tiuser.h.

TLI/NetBIOS Interface Descriptions

This section describes the TLI calls. The descriptions include a format of the call,

any default parameter information, and predefined values. The calls are functionally

grouped and presented in several subsections. Table 2—1 lists the calls alphabetically

' and the page where the call description begins.

Table 2-1 TLI/NetBIOS Calls Listed Alphabetically

Function Page Description

t_accept() 2-21 Accepts incoming connections.

t_allocQ) 2-10 Returns a pointer to the memory allocated.

t_bind() 2-7 Associates a protocol address with a transport end point.

t_close() 2-9 Closes a transport end point.

t_connect() 2-19 Attempts to initiate a connection with a remote user.

t_error() 2-12 Prints a message on the standard error output which

describes the last transport error encountered.

t_free() 2-11 Frees memory previously allocated by t_alloc().

(Continues)

069-000482 Licensed Material — Property of the Copyright Holders 2-3

TLI/NetBIOS Interface

Table 2-1 TLI/NetBIOS Calls Listed Alphabetically

Function Page Description

t_getinfo() 2-13 Returns the current characteristics of the underlying

transport protocol associated with file descriptor.

t_getstate() 2-14 Returns the current state of the provider associated

| with the transport end point.

t_listen() 2-20 Listens for incoming connect indications.

t_lookQ) 2-15 Returns a value indicating what event has occurred.

t_open() 2-6 Returns transport end point file descriptor (fd) to be

used in future TLI function calls.

t_optmgmt() 2-17 Manages options for a transport end point.

t_revQ) 2-24 Receives connection—oriented data on a transport end

point.

t_revconnect() 2-22 Determines the status of a t_connect() function that

was previously issued in asynchronous mode.

t_revdis() 2-28 Acknowledges rejection or failure of a connection.

t_revrel() 2-30 Acknowledges an orderly release request from the

remote end point of an established session.

t_rcvudata() 2-33 Receives both directed datagrams and broadcast

datagrams.

t_revuderr() 2-34 Returns information on datagrams which could not be

transmit to the remote end point.

t_snd() 2-25 Sends connection—oriented data on a transport end

point.

t_snddis() 2-27 Initiates a disconnect on an established connection or

rejects a connection request.

t_sndrel() 2-29 Requests an orderly release of an established session.

t_sndudata() 2-32 Sends NetBIOS datagrams.

t_sync() 2-16 Synchronizes the data structures managed by the

transport library with information from the

underlying transport provider.

t_unbind() 2-8 Disables a transport end point.

(Concluded)

2-4 Licensed Material — Property of the Copyright Holders 069-000482

TLI/NetBIOS Interface

Local Management Functions

Table 2—2 shows the local management functions. The functions are presented in the

order that you use them.

Table 2—2 TLI/NetBIOS Local Management Functions

Function Page Description

t_open() 2-6 Returns transport end point file descriptor (fd) to be used

in future TLI function calls.

t_bind() 2-7 Associates a protocol address with a transport end point.

t_unbind() 2-8 Disables a transport end point.

t_close() 2-9 Closes a transport end point.

t_alloc() 2-10 Returns a pointer to the memory allocated.

t_free() 2-11 Frees memory previously allocated by t_alloc().

t_error() 2-12 Prints a message on the standard error output which

describes the last transport error encountered.

t_getinfo() 2-13 Returns the current characteristics of the underlying

transport protocol associated with file descriptor.

t_getstate() 2-14 Returns the current state of the provider associated with

the transport end point.

t_lookQ) 2-15 Returns a value indicating what event has occurred.

t_sync() 2-16 Synchronizes the data structures managed by the

transport library with information from the underlying

transport provider.

t_optmgmt() 2-17 Manages options for a transport end point.

069-000482 Licensed Material — Property of the Copyright Holders 2-5

TLI/NetBIOS Interface

t_open() Establish a Transport End Point.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_open(path, oflag, info) /* returns transport end point file

descriptor (fd) to be used in future TLI function calls. */

char *path; /* path of the multiplexer device, e.g. “/dev/nbio” */

int oflag; /* open flags, the same as in the open system call.*/

struct t_info*info /* structure where information about the end point

is stored.*/

Description

The t_open() function creates a transport end point (e.g., a file descriptor) for use in

subsequent network interface operations. The path variable is the name of the

streams transport device driver. There are two device drivers used for NetBIOS

operations, one for connection—oriented service and one for connectionless service.

See Table 2-3 for a list of the device drivers.

Table 2—3 NetBIOS Device Drivers

Protocol Connection—oriented Connectionless

Name Transport Service (COTS) Network Service (CLNS)

Novell NetBIOS /dev/nbio /dev/nbdg
DG/NETBEUI /dev/ntpc /dev/ntpd

2-6 Licensed Material — Property of the Copyright Holders 069-—-000482

TLI/NetBIOS Interface

t_bind() Bind an Address to a Transport End Point.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_bind(fd, req, ret) /* returns binary error code indicating either

success (0) or failure (—1). */

int fd /* The transport end point fd.*/

struct t_bind *req; /* The requested address. */

struct t_bind *rets /* The actual address bound. */

Description

The t_bind() function activates a TLI/NetBIOS transport end point by associating a

NetBIOS name with it. If the name is not defined (req — addr.len = 0 or

req = NULL), the provider will assign a name. A name can start with any character

except an asterisk (052s or 2Ai6) or a NULL (0). Names starting with company

initials such as IBM, AT&T, and DGC are discouraged.

NOTES: Connection requests are received on a session end—point if the qlen is

greater than zero. Each unique name may have only one stream bound

with qlen greater than zero, but group names may have many streams

with qlen greater than zero. The glen is ignored on datagram devices.

All names are added as unique names. To bind to a group name, you must first bind

to a unique name and then make a t_optmgmt() call with flags set to

T_NEGOTIATE, options set to U_GROUP_OPTION. The group_option must contain

the NetBIOS group name to be added.

Similarly, to bind to a name to receive broadcast datagrams, first bind to a unique
name. Then make a t_optmgmt() call with flags set to T NEGOTIATE, options set to

U_GROUP_OPTION, and bcast_option set to 1.

You can add unique names if they are not currently used at a remote end—point or as

a group name locally or remotely. You can add group names if they are not already

used as a unique name.

069-000482 Licensed Material — Property of the Copyright Holders 2-/

TLI/NetBiOS Interface

t_unbind() Disable a Transport End Point.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_unbind(fd); /* returns a binary error code indicating

success (0) or failure (non-zero). */

int fd; /* The fd of the end_point. */

Description

The t_unbind() function disables the transport end point that the fd parameter

specifies. If this transport end—point is the last end point bound to the name on this

node, t_unbind() also deletes the name from the NetBIOS name table.

2-8 Licensed Material — Property of the Copyright Holders 069-000482

TLI/NetBIOS Interface

t_close() Close a Transport End Point.

Usage

#include <tiuser.h>

#include <nb_app.h>

t_close(fd) | /* returns a binary error code indicating success (0) or

failure (non—zero). */

int fd; /* fd to be closed. */

Description

The t_close() function closes the transport end point that the fd parameter specifies.

-The transport end point is deleted and any resources associated within the transport

provider or the TLI library are released. If this transport end point is the last end

point bound to the name on this node, t_close() also deletes the name from the

NetBIOS name table.

069-000482 Licensed Material — Property of the Copyright Holders 2-9

TLI/NetBIOS Interface

t_alloc() Allocate a Library Structure.

Usage

#include <tiuser.h>

#include <nb_app.h>

char *t_alloc(fd, struct_type, fields) /*Returns a pointer to the

memory allocated. */

int fd; /* The file descriptor of the transport end—point

the memory is to be used for. */

int struct_type; /* The type of structure to be allocated */

int fields; /* Additional fields to be allocated */

Description

The t_alloc() function dynamically allocates memory other TLI calls will use. The fd

parameter specifies the transport end point for the memory. The struct_type field

indicates the type of structure to be allocated. Fields indicates which buffers to

allocate. This function returns a pointer to the allocated memory or NULL if an error

occurs.

2-10 Licensed Material — Property of the Copyright Holders 069-000482

TLi/NetBIOS Interface

t_free() Free a Library Structure.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_free(ptr, struct_type) /* returns a binary error code indicating

success (0) or failure (non—zero). */

char *otr; /* pointer to memory block to be freed. */

int struct_type; /* type of structure to be freed */

Description

The t_free() function frees memory allocated with the t_alloc() function. The ptr

parameter points to the memory block to be freed and struct_type specifies the type

of the structure. This function returns either success or failure.

069-000482 Licensed Material — Property of the Copyright Holders 2-1 1

TLI/NetBIOS Interface

t_error() Produce an Error Message.

Usage

#include <tiuser.h>

#include <nb_app.h>

void t_error(errmsg)

char *errmsg3 /* user error message to be printed. */

Description

The t_error() function prints a message on the standard error output which

describes the last transport error encountered. The string pointed to by errmsg is

printed, followed by the text for the error message that t_errno specifies.

2-1 2 Licensed Material — Property of the Copyright Holders 069-000482

TLI/NetBlOS Interface

t_getinfo() Get Protocol—specific Service Information.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_getinfo(fd,info) /* returns a binary error code

indicating success (0) or failure (non-zero). */

int fd; /* The fd for the end point. */

struct t_info *info3 — /* returned information block. */

NOTE: Refer to the section on the t_info structure for information on the values

that the t_getinfo() call returns.

Description

The t_getinfo() function returns the current characteristics of the TLI/NetBIOS

transport end point. The fd parameter specifies the transport end point and the info

structure contains the returned information. This routine returns 0 for success or —1

for failure.

069-000482 Licensed Material — Property of the Copyright Holders 2-1 3

TLI/NetBIOS Interface

t_getstate() Get the Current State.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_getstate(fd); /* returns the current state of the

end point or —1 if an error occurs. */

int fd; /* The fd for the end point. */

Description

The t_getstate() function returns the current state of the end point that the fd

parameter specifies.

2-1 4 Licensed Material — Property of the Copyright Holders 069-000482

TLI/NetBIOS Interface

t_look() Look at the current event on a transport

end point.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_look(fd) /* Returns a value indicating what event

has occurred, 0 if no event has occurred, or —1 if error */

int fd; /* The fd for the end point. */

Description

The t_look() function returns the current event on the transport end point that the

fd parameter specifies. If no event has occurred it returns 0 and if an error occurs it

returns —1.

069-000482 Licensed Material — Property of the Copyright Holders 2-15

TLI/NetBIOS Interface

t_sync() Synchronize Transport Library.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_sync(fd) /* returns the state of the transport provider on

successful completion or —1 */

int fd; /* fd to be synchronized. */

Description

The t_sync() function synchronizes the data structures in the transport library with

those in the transport provider. In doing so, it can convert a raw file descriptor

(obtained via open(), dup(), or as a result of a fork() and exec() system call) to an

initialized transport end point. The fd parameter indicates the file descriptor to be

synchronized. This function returns the state of the transport end point or —1 if an

error occurs.

For example, if a process forks a new process and issues an exec(), the new process

must issue a t_sync() to build the private library data structure associated with a

transport end point and to synchronize the data structure with the relevant provider

information.

2-1 6 Licensed Material — Property of the Copyright Holders 069-000482

TLI/NetBIOS Interface

t_optmgmt() Manage Options for a Transport End Point.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_optmgmt(fd, req, ret) /* returns a binary error code

indicating success (0) or (—1) failure). */

int fd; /* fd of the end point */

struct t_optmgmt*req; /* requested options */

struct t_optmgmt*ret; /* returned options */

Description

The t_optmgmt() function retrieves, verifies, or negotiates protocol options for the

transport end point. The structures pointed to by req and ret contain a netbuf

structure containing the sl_t_opts structure. The req structure, if present, contains

the requested TLI/NetBIOS options. On a nonerror return, the ret structure, if

present, will contain the actual options.

NOTE: The sl_t_opts structure contains the tk_opts structure. All fields of the

structure are unused except the “acktime” field. Use this field to specify

the send time—out period for a connection in seconds. In other words,

the field will contain the amount of time that the transport system

should wait for an acknowledgment from a remote node after sending

data. If the time—out period expires without an acknowledgment, the

connection is terminated abnormally. A value of 0 in this field specifies

no time—out value, and the transport system should keep trying to send

data indefinitely, until an acknowledgment does arrive.

069-000482 Licensed Material — Property of the Copyright Holders 2-1 T

TLI/NetBIOS Interface

Connection Establishment Functions

Table 2—4 shows the connection establishment functions. The functions are

presented in the order that you use them.

Table 2—4 TLI/NetBIOS Connection Establishment Functions

Function Page Description

t_connect() 2-19

t_listenQ) 2-20

t_accept() 2-21

t_revconnect() 2-22

Attempts to initiate a connection with a remote user.

Listens for incoming connect indications.

Accepts incoming connections.

Determines the status of a t_connect() function that

was previously issued in asynchronous mode.

2-18 Licensed Material — Property of the Copyright Holders 069-—000482

TLI/NetBIOS Interface

t_connect() Establish a Connection with Another

Transport User.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_connect(fd, sndcall, rcvcall) /* returns a binary argument

indicating success (0) or failure (—1).*/

int fd; /* The file descriptor. */

struct t_call *sndcall; /* The callers address. */

struct t_call *rcucall; /* The responding address */

Description

The t_connect() function attempts to initiate a connection with a remote user. The

fd parameter is the file descriptor for a transport end point that is bound to a name.

The sndcall address structure contains the NetBIOS name to be called.

NOTE: If the t_connect() function is called in synchronous mode, the

application will pend until the connection is accepted by the remote

application or the connect request times out. Thus, when the function

returns successfully, the rcvcall — addr structure contains the name of

the remote user with which a connection was established.

If the t_connect() function is called in asynchronous mode, the transport provider

initiates a connection request with the remote user. The user must poll the file

descriptor with the t_look() function until a T CONNECT indicator is received and

then must do a t_revconnect() function call to complete connection set—up. If the

T_DISCONNECT indicator is received, the user must do a t_revdis to abort the

session. |

069—-000482 Licensed Material — Property of the Copyright Holders 2-1 9

TLI/NetBIOS Interface

t_listen() Listen for a Connect Request.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_listen(fd, call) /* returns a binary argument

indicating success or failure (—1). */

int fd; /* fd for the end point. */

struct t_call *call; /* caller’s addressing information. */

Description

The t_listen() function listens for incoming connect indications. The fd parameter

must be the file descriptor for a transport end point that is bound to a name that has

been bound to receive incoming connection requests (i.e. qlen > 0) or the request may

pend forever. On return the call — addr.buf field points to the NetBIOS name of the

caller. The call > opt and call — udata fields will be 0 on return.

2-20 Licensed Material — Property of the Copyright Holders 069-—-000482

TLI/NetBIOS Interface

t_accept() Accept a Connect Request.

Usage

#include <tiuser.h>

#include <nb_app.h>

t_accept(fd, resfd, call) /* used to indicate which

int fd; fd the incoming connection request came in on. */

int resfd; /* fd used to accept the connection. */

struct t_call *calls /* callers address. */

Description

The t_accept() function accepts incoming connections. The fd parameter is the file

descriptor for a transport end point on which a listen was returned. The resfd

parameter is the file descriptor for the transport end point on which the connection is

to be accepted. The t_call structure contains the address and sequence number

returned by the t_listen() call.

069-000482 Licensed Material — Property of the Copyright Holders 2-21

TLI/NetBIOS Interface

t_rcvconnect() Receive the Confirmation from

a Connect Request.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_revconnect(fd, call) /* returns a binary error code

indicating success (0) or failure (non-zero). */

int fd; /* The fd of the end point. */

struct t_call *call /* netbuf structure containing the name of the

remote NetBIOS end point*/

Description

The t_revconnect() function determines the status of a t_connect() function that

was previously issued in asynchronous mode. The connection is established on

successful completion of this function. The fd parameter specifies the local transport

end point for the connection and the call structure is used to return the remote

address information. The addr field in the call structure specifies the NetBIOS name

of the responding application. The remainder of the fields in the call structure - opt,

udata, and sequence - are unused for this call.

2-22 Licensed Material — Property of the Copyright Holders 069—-000482

TLI/NetBIOS Interface

Connection—Oriented Data Transfer Functions

Table 2-5 shows the connection—oriented data transfer functions. The functions are

presented in the order that you use them.

Table 2-5 TLI/NetBIOS Connection-Oriented Data Transfer Functions

Function Page Description

t_rev() 2-24 Receives connection—-oriented data on a transport end

point.

t_snd() 2-25 Sends connection—oriented data on a transport end point.

069-—000482 Licensed Material — Property of the Copyright Holders 2-23

TLI/NetBIOS Interface

t_rcv() Receive Data or Expedited Data Sent

Over a Connection.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_rev(fd, buf, nbytes, flags) /* returns the number of bytes receive

or —1. */

int fd; /* the fd to receive data on. */

char *bufs /* pointer to the data buffer. */

unsigned nbytes; /* length of the buf in bytes */

int *flags; /* returned flags.*/

Description

The t_rev() function receives connection—oriented data on a transport end point. The

fd parameter is the transport end point, buf is a pointer to the buffer to receive the

data, nbytes is the size of the buffer, and flags will contain the returned flags. The

t_rev() function will receive a complete message unless the buffer is not large enough

to receive the entire message or the connection terminates in the middle of the

message.

2-24 Licensed Material —~ Property of the Copyright Holders 069-000482

TLI/NetBIOS Interface

t_snd() Send Data or Expedited Data Over a Connection.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_snd(fd, buf, nbytes, flags) /* returns the number of bytes

| sent or —1. */

int fd; /* the fd to send data on. */

char *bufs /* pointer to the data buffer. */

unsigned nbytes; /* length of the buf in bytes */

int flags; /* flags. */

Description

The t_snd() function sends connection—oriented data on a transport end point. The fd

parameter is the transport end point over which the data is sent. The buf parameter

points to the data to be sent. The nbytes parameter is the number of bytes to send

(maximum of 65535 bytes). The flags parameter contains the send flags. The

t_snd() call will not support data sends with a 0 byte length.

069-—000482 Licensed Material — Pronertv of the Coovriaht Holders 2-95

TLI/NetBIOS Interface

Connection Release Functions

Table 2—6 shows the connection release functions. The functions are presented in the

order that you use them.

Table 2-6 TLI/NetBIOS Connection Release Functions

Function Page Description

t_snddis() 2-27 Initiates a disconnect on an established connection or

rejects a connection request.

t_revdis() 2-28 Acknowledges rejection or failure of a connection.

t_sndrel() 2-29 Requests an orderly release of an established session.

t_revrel() 2-30 Acknowledges an orderly release request from the remote

end point of an established session.

2-26 Licensed Material — Property of the Copyright Holders 069-000482

TLI/NetBIOS Interface

t_snddis() Send User-initiated Disconnect Request.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_snddis(fd, call) /* returns a binary error code

indicating success (0) or failure (non-zero). */

int fd; /* The fd for the end point.*/

struct t_call *call; /* call structure containing disconnect

data and sequence number */

Description

The t_snddis() function initiates a release on an established connection or rejects a

connection request. The fd parameter is the file descriptor of the transport end point.

If an already established connection is being released, the call pointer should be

NULL. If the t_snddis() function is rejecting an incoming connect request the

sequence field in the call structure must contain the sequence number of the

connection to be rejected, as returned from the t_listen() call.

NOTE: Since the t_snddis() function clears all queue buffers, it is possible that

data that has not yet been sent or received may be lost when the call is

made. There is no way of knowing if this happens.

069-000482 Licensed Material — Property of the Copyright Holders 2-27

TLI/NetBIOS Interface

t_rcvdis() Retrieve Information from Disconnect.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_revdis(fd, discon) /* Returns a binary error code

indicating success (0) or failure (non-zero). */

int fd; /* The fd for the end point. */

struct t_discon “*discon; /* The disconnect structure. */

NOTE: The udata field in the discon structure is 0.

Description

The t_revdis() function acknowledges rejection or failure of a connection. The fd

parameter is the file descriptor of the transport end point. When t_revdis() returns,

the discon structure contains a reason code. Additionally, if a release occurs on a

connection on which a t_listen() has been returned but which has not yet been

accepted by t_accept, then the discon sequence field contains the sequence number

(which was returned in the t_listen()) of the connection.

Since the t_snddis() function clears all queue buffers, it is possible that data which

has not yet been sent or received may be lost when the call is made. There is no way

of knowing if this happens.

2-28 Licensed Material — Property of the Copyright Holders 069000482

TLI/NetBIOS Interface

t_sndrel() Initiate an Orderly Release.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_sndrel(fd) /* Returns a binary error code indicates

success (0) or failure (non—zero). */

int fd; /* The fd for the end point. */

Description

The t_sndrel() function is supported only on devices of type T_COTS_ORD (see

t_getinfo() or t_open()). Use t_sndrel() to request an orderly release of an

established session. The fd parameter specifies the end point. The connection is

terminated after successful completion of a subsequent t_revrel(), t_revdis(), or

t_snddis(Q) function.

069000482 Licensed Material — Property of the Copyright Holders 2-29

TLI/NetBIOS Interface

t_revrel() Acknowledge Receipt of an Orderly

Release Indication.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_revrel(fd) /* Returns a binary error code indicating

: success (0) or failure (non—zero). */

int fd; /* The fd for the end point. */

Description

The t_revrel() function acknowledges an orderly release request from the remote

end point of an established session. If a t_revrel() completes successfully and a

t_sndrel() has already been done on the end point, the session is closed. Otherwise,

the session will not be closed until a t_sndrel() or t_snddis() is called.

2-30 Licensed Material — Property of the Copyright Holders 069-000482

TLI/NetBIOS Interface

Datagram Service Functions

Table 2-7 shows the datagram service functions. The functions are presented in the
order that you use them.

Table 2-7 TLI/NetBIOS Datagram Service Functions

Function Page Description

t_ sndudataQ) 2-32

t revudataQ) 2-33

t_revuderr() 2-34

Sends NetBIOS datagrams.

Receives both directed datagrams and broadcast

datagrams.

Returns information on datagrams which could not be

transmit to the remote end point.

069-000482 Licensed Material — Property of the Copyright Holders 2-31

TLI/NetBIOS Interface

t_sndudata() Send a Data Unit.

Usage

#include <tiuser.h>

#include <nb_app.h>

t_sndudata(fd, unitdata) /* returns bytes transmitted. */

int fd; /* fd of the transport end point */

struct t_unitdata *uniidata; /* structure containing address,

options and data to be sent. */

Description

The t_sndudata() function sends NetBIOS datagrams. The fd parameter specifies

the transport end point to be used to send the datagram. In the unitdata structure,

the addr value specifies the NetBIOS name of the destination, udata specifies the

datagram to be sent, and opt should be 0. To send a broadcast datagram, the first

character of the NetBIOS name should be an asterisk (*).

2-32 Licensed Material — Property of the Copyright Holders 069-000482

TLI/NetBIOS Interface

t_rcvudata() Receive a Data Unit.

Usage

#include <tiuser.h>

#include <nb_app.h>

t_revudata(fd, unitdata, flags) /* returns the size of the datagram received. */

int fd; /* fd of the transport end point*/

struct t_unitdata *unitdata; /* structure containing additional

options and data to be sent. */

int *flags; /* flags returned. */

Description

The t_revudata() function receives both directed datagrams and broadcast

datagrams. The fd parameter specifies the transport end point where datagrams will

be received. The unitdata structure has pointers to where the remote address,

options, and datagram should be stored. The udata.maxlen field should be set to the

size of the receive buffer. On return, the T.MORE bit may be set in the flags word to

indicate that the buffer was not large enough for the received datagram.

NOTE: Broadcast Datagrams are received only on those datagram streams that

have requested broadcasts through the use of the option management

call.

nRa_nnnasago | incancad Matarial ~ Pronertyv of the Convriaht Holders 2-33

TLI/NetBIOS Interface

t_rcvuderr() Receive a Unit Data Error Indication.

Usage

#include <tiuser.h>

#include <nb_app.h>

int t_revuderr‘(fd, uderr) /* Returns a binary error code

indicating success (0) or failure (non-zero). */

int fd; /* The fd for the end point. */

struct t_uderr ‘*uderr; /* Failed destination information */

Description

The t_revuderr() function returns information on datagrams that could not be

transmitted to the remote end point. A provider—dependent error code is returned in

the error field of the t_uderr structure.

End of Chapter

2-34 Licensed Material — Property of the Copyright Holders 069-—000482

Chapter 3

SPX Transport Layer Interface

The Sequence Packet Exchange (SPX) is a connection—based, reliable,

sequenced-transport protocol. In the DG/UX environment, SPX is accessed through

the DG/UX Transport Layer Interface (TLI). SPX under the TLI reliably delivers a

series of data units in sequence. Figure 3—1 shows the TLI interface and associated

transport provider stack.

User Application

ee SECT LI/SPX Interface

Transport Layer Interface (TLI)

user

space. | _———_—-]|_-____- __
DG/UX

kernel

Space STREAMS System Call Interface (TIMOD/TIRDWR)

Seimei DN

SPX

NetWare transport

provider stack

IPX

a

Supporting Streams Modules

802.2/LLC

Communications

Device Driver

DG/UX (802.3)

kernel

space

Physical | |
Devices VLC

Figure 3-1 TLI/SPX Programming Interface

Because it is a connection—based service, SPX will notify the user if any errors occur

during data transmission. Upon encountering a data transmission error, SPX will

retry a given number of times before closing the connection and notifying the

connection user. SPX will also notify the user if a disconnection indication is received

from the remote connection end point.

SPX functions in both synchronous and asynchronous modes. The choice of modes is

strictly up to the application developer.

069-000482 Licensed Material — Property of the Copyright Holders 3-1

SPX Transport Layer Interface

The user interface for SPX is the AT&T Transport Interface Library. Refer to the

AT&T UNIX V Documentation Set for a description of the order and use of the SPX

calls. This chapter provides the details of the peculiarities of the SPX calls. Any TLI

calls not mentioned in this chapter functions with the SPX driver as specified in the

AT&T UNIX System V Network Programmer’s Guide.

Procedures

The procedure for synchronizing a SPX Server program is

1. Open /dev/nspx using t_open() getting file descriptor fd.

2. Bind using t_bind() to a well-known socket number on which connection requests

will arrive.

Open /dev/nspx using t_open() again getting fd2.

Bind fd2 to a dynamic socket number using t_bind().

Post a listen using t_listen().

Upon receipt of a connection request, create a child process.

(parent) close fd2; then go to the third step.

(child) Issue a t_accept() to accept the connection request (t_accept(fd, fd2, res)).ono k &
9. (child) Use t_snd() or t_rev() to send or receive data on fd2.

10.(child) Listen for or send a disconnection indication using t_revdis() or

t_snddis().

11.(child on exiting) t_unbind() fd2.

12.(child on exiting) t_close() fd2.

13.(parent on exiting) t_unbind() fd.

14.(parent on exiting) t_close() fd.

The procedure for synchronizing a SPX Client program is

1. Open /dev/nspx using t_open() fd.

2. Obtain the address of the server you wish to connect to. The method for obtaining

the address is up to the SPX user. The most common method is the use of a

“yellow pages” file of the server names and addresses.

Bind using t_bind() to a specific or dynamic socket.

Send a t_connect() request to the desired server.

Use t_snd() or t_rev() to send or receive data on fd.

Listen for or send a disconnection indication using t_revdis() or t_snddis().

Use t_unbind() to unbind the original file descriptor (step 1).ene oR & Use t_close() to close the original file descriptor (step 1).

SPX Calls

This section describes the SPX calls in alphabetical order.

3-2 Licensed Material — Property of the Copyright Holders 069—000482

SPX Transport Layer Interface

t_accept() Accept a Connect Request.

This call is issued by the passive user to accept a particular connect request after a

connect indication has been received.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_accept(/d, resfd, call)

int fd;

int resfd;

struct t_call *call;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

For server applications (applications that wait for incoming connection requests), we

recommend that the server application programmer use one file descriptor and socket

to listen for incoming connection requests, and another separate file descriptor and

socket to accept connections. Usually a listen file descriptor is used to open the SPX

driver and bind to a well-known socket (fd). Upon receiving a connection request, the

SPX user opens another file descriptor (resfd), binds to a dynamic socket, and issues

a t_accept().

A connection request can be accepted on the same fd as the listen fd (fd=resfd), but

we don’t recommend it as it involves further multiplexing and more complicated state

transition handling for the SPX user. Only a single connection request can be

accepted if file descriptors are equal; any further connection requests to the local

transport end point will be dropped by the SPX driver.

The DG/UX SPX application must not delay more than the time—out of the client

between a t_listen() and a t_accept(). If the connection request is originating from a

DOS client, the client may time out before the DG/UX SPX application does a

t_accept() to acknowledge the connection request.

If for some reason the t_accept() call fails, the SPX driver will mark as free the

outstanding connection request to which the t_accept() was replying. The SPX user

cannot retry the t_accept() using the same sequence number as the t_accept() that

failed.

After issuing a t_accept(), the SPX driver will “ping” the connection. The SPX driver

will calculate the round trip time to the remote transport end point to facilitate the

transmission retries of t_snd(). a

069-000482 Licensed Material — Property of the Copyright Holders 3-3

SPX Transport Layer Interface

Errors

The possible errors returned from t_accept() are

t_errno errno

TOUTSTATE: The local transport end point or the accepting stream

(specified by the accepting fd) is not in the appropriate

state for a t_accept().

TSYSERR: ENXIO: The socket associated with this connection was not

found in the SPX/IPX socket table. This is an SPX

driver error.

ENODEV: The queue specified to accept the connection (via the

accept fd) was not found in the SPX driver’s internal

structures.

EBADMSG: The TPI primitive header (T_CONN_RES) was too

small.

TBADSEQ: The connection request specified by the sequence

number has already been answered.

State

The state after a successful connection establishment is T DATAXFER for both the

client and server. An unsuccessful t_accept() will leave the state T BND.

Example

int spxFd2;

1pxAddr_t addressToBind;

struct t_bind spxBindInfo;

struct t_info spxiInfo;

if ((spxFd2=t_open(spxDevice, O_RDWR, &spxInfo))<0O) {

t_error(” t_open failed “);

}

/* we want to bind to a dynamic socket */

addressToBind.sock[0] 0;

addressToBind.sock[1] 0;

/* this end point will not receive connection requests*/

spxBindinfo.glen = 0;

spxBindInfo.maxlen = sizeof (ipxAddr_t);

spxBindInfo.len = sizeof (ipxAddr_t);

spxBindinfo.buf = (char *) &addressToBind;

3-4 Licensed Material — Property of the Copyright Holders . 069-000482

SPX Transport Layer Interface

if (t_bind(spxFd2, &spxBindInfo, &spxBindInfo)<0) {

t_error(” t_bind failed “");

}

/* spxFd is the file descriptor representing the stream that the

connection request arrived on. The call structure 1s also the same

call structure that was returned from the t_listen when the

connection request arrived */

if (t_accept(spxFd, spxFd2, &call)<0O) {

t_error(” t_accept failed ”);

069-000482 Licensed Material — Property of the Copyright Holders 3-5

SPX Transport Layer Interface

t_bind() Bind an Address to a Transport End Point.

This call associates a protocol address with a given transport end point, thereby

activating the end point. It also directs the transport provider to begin accepting

incoming packets.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_bind((d, req, ret)

int fd;

struct t_bind *req;

struct t_bind *ret;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide except for the following:

The t_bind() call allows an application to bind to an socket number, which is either

dynamic or specific. SPX keeps track of which socket number (dynamic or specific) is

bound to which transport end point.

A dynamic socket number is an unused (not bound to any other transport end point)
socket number returned by the SPX driver. The dynamic socket is guaranteed to be a

unique unused number on the local DG/UX host. A dynamic socket is a random value

between 0x4000 and 0x5000, inclusive.

A specific socket number is the socket number requested in the req t_bind()

structure. If it is unused, it is granted and returned in the ret t_bind() structure in

the range of 1 to FFFFh.

The t_bind() call requires that a pointer to an ipxAddr_t type structure be passed in

the req — addr.buf field. The net and node numbers don’t need to be filled in the

ipxAddr_t structure, but the socket number (in hi—low order) must be in the socket

field. The SPX driver will look at the socket field in the ipxAddr_t structure for the

SPX user’s desired socket number. If the socket number (desired or allocated) is not

currently being used by another SPX user, the SPX driver will return the socket

number in the socket field of the ipxAddr_t structure of the ret —> addr.buf field. The

SPX driver will also return the local net and local node along with the socket

number, all in hi—low order in the ret > addr.buf field.

3-6 Licensed Material — Property of the Copyright Holders 069-000482

SPX Transport Layer Interface

typedef struct ipxAddr _s {

unsigned char net[4];

unsigned char node[6];

unsigned char sock[2];

} ipxAddr 1;

If an SPX user passes zeros in the ipxAddr_t socket field the SPX driver will attempt

to allocate a dynamic socket number.

The SPX user can pass NULL instead of req and ret. The SPX driver will assume

that the SPX user has requested a dynamic socket number, and the SPX driver will

try to allocate and return a dynamic socket number.

Only one process can bind to a given socket number at a time. If the user tries to bind

to a socket that has already been bound to, an error will result and the bind will fail.

The req — qlen field in the t_bind() structure indicates to SPX the total number of

outstanding connection requests allowed on this transport end point. An outstanding

connection request is a connection request that has arrived and has been delivered to

the UNIX application, but the application has not yet responded with a connection

request acknowledge (t_accept()) or connection request reject (t_snddis()).

SPX will allow up to SPX_MAX_LISTENS_PER_SOCKET outstanding connection

requests per transport end point. This parameter is currently set to 10. If the UNIX

application requests more than 10 only 10 will be given.

If a value greater than 1 is specified in the qlen field during a t_bind(), a connection

request can arrive from a remote transport end point, making the t_listen() unblock.

If another connection request arrives between the time the t_listen() unblocks and

the t_accept() is issued, the t_accept() will fail, saying an event has occurred. You

will not be able to accept the connection requests until all pending connection

requests have been retrieved off the stream head using t_listen(). A t_bind() with

qlen=1 should be issued to avoid this problem.

Services written to run over SPX generally have well-known socket numbers

associated with them. By using well-known socket numbers, SPX users can be sure

that their server and client application types match. Another method to coordinate

servers and clients is to use SAPs (Service Advertising Protocol). Contact Novell for

more information on well—known socket numbers and SAPs.

Errors

The possible errors returned from t_bind() are:

t_errno errno

TSYSERR: ENOSR: No message buffers were available to acknowledge the

bind request.

TOUTSTATE: This transport end point is in a state that invalidates

a t_bind() request.

069-000482 Licensed Material — Property of the Copyright Holders 3-7

SPX Transport Layer Interface

TNOADDR: No unused dynamic socket numbers exist. The SPX

user should try again later.

TBADADDR: The address passed down was not the same size of an

ipxAddr_t, or the size of the address was not zero

(NULL bind pointer).

TACCES: The socket number requested was in use.

State

After a successful bind the state is T.IDLE. After an unsuccessful bind, the state is

T_BND.

Example

#define SOCKET TO BIND HIGH 0x45

#define SOCKET _TO_ BIND LOW 0x00

struct t_bind spxBindinfo;

ipxAddr_t addressToBind;

/* we want to bind to the specific socket 0x4500. The Spx Driver

will fill in the other fields in the addressToBind structure with

the local net and node */

addressToBind.sock[0]

addressToBind.sock{[1]

SOCKET_TO_BIND_HIGH;

SOCKET _TO_BIND_LOW;

/* we want one connection request at a time */

spxBindInfo.glen = 1;

spxBindinfo.maxlen = sizeof (ipxAddr_t);

-SpxBindiInfo.len = sizeof (ipxAddr_t) ;

spxBindInfo.buf = (char *)&addressToBind;

/* passing the address of spxBindInfo in both the request and

return fields will cause the local information to be read and

written to the addressToBind structure */

if (t_bind(spxFd, &spxBindInfo, &spxBindInfo)<0) {

t_error(” t_bind failed ”);

3-8 Licensed Material — Property of the Copyright Holders 069--000482

SPX Transport Layer Interface

t_close() Close a Transport End Point.

This call informs the transport provider that the user is finished with the transport

end point, and frees any local resources associated with that end point.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_close(fd)

int fd;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

A t_close() call will terminate and release a connection. The t_close() function

should be called only after the connection has been broken. The SPX driver supports

only a disorderly release using t_snddis() or t_revdis(). The t_close() call will not

cause a terminate connection packet to be sent.

The t_close() call will dismantle the stream and release all buffers and messages

associated with the transport end point. Upon t_close() execution, any data arriving

or any data queued for transmission or reception will be dropped.

A transport end point opened with t_open() should be closed with t_close() to

facilitate TLI/SPX functions. Although t_close() calls t_unbind(), be sure to issue a

t_unbind() before issuing a t_close().

Errors

There are no errors returned from the SPX driver.

State

State is not applicable after a t_close().

Example

t_close (fd);

069-000482 Licensed Material — Property of the Copyright Holders 3-9

SPX Transport Layer Interface

t_connect() Establish a Connection With Another

Transport User.

This call requests a connection to the transport user at a specified destination and

waits for the remote user’s response. This call may be executed in either synchronous

or asynchronous mode. In synchronous mode, the call waits for the remote user’s

response before returning control to the local user. In asynchronous mode, the call

initiates connection establishment but returns control to the local user before a

response arrives.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_connect(fd, sndcall, rcvcall)

int fd;

struct t_call *sndcall;

struct t_call *rcucall;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

The t_connect() call sends an SPX connection request to the SPX address specified

in sndcall ~ addr. The sndcall > addr should point to an ipxAddr _t structure. The

network, node, and socket fields must be filled in with the remote transport end

points address in high-low order. The method of obtaining the remote transport end

points address is an implementation decision of the SPX user. All information passed

in the ipxAddr _t structure must be in high—low byte order; on 80x86 machines byte

Swapping also needs to be done. The netbuf structure elements opt, udata, and

sequence are not used and are ignored by the SPX driver.

If the revcall structure is passed to t_connect(), the remote transport end points

address will be returned in the revcall > addr structure as an ipxAddr_t type

structure. The remote transport end point’s connection ID and window size

(allocationNumber) will be passed back as two short integers (2 bytes = short integer)

structure in the revcall — opt field. If a revcall structure is passed, the maxlen, len,

and buf variables must be set appropriately to receive these structures.

typedef struct SPX_OPTS_s {

unsigned char connectionlId[2];

unsigned char allocationNumber [2];

} SPX_OPTS;

3-1 0 Licensed Material — Property of the Copyright Holders 069--000482

SPX Transport Layer Interface

Errors

The SPX driver will try a given number of times to connect with the remote transport i

end point. After trying a given number of times without receiving an

acknowledgment, the SPX driver will generate a disconnect indication with reason

set to TLI_LSPX_CONNECTION_FAILED (refer to t_revdis()). If this error occurs,

the state of the stream will be set to T_IDLE. Other errors are as documented in the

AT&T UNIX System V Network Programmers Guide.

State_

The state after a successful connection establishment is T DATAXFER for both the

client and server. The state after an unsuccessful connection establishment is

T_BND.

Example

struct t_call connectionRequest;

SPX_OPTS remoteServersOptions;

unsigned char remoteServerName [MAX _REMOTE NAME LENGTH];

ipxAddr_t remoteServerAddress;

int spxFd;

struct t_info spxInfo;

struct t_bind spxBindInfo;

ipxAddr_t addressToBind;

char *spxDevice = “/dev/nspx"; a

This routine will find which remote server the user wants to

connect to and place the name in remoteServerName. */

if (GetServerName (remoteServerName)<0) {

printf(” could not get remote host name \n”);

}

/* This next routine will take the server name and look ina file

to find the ipx address associated with that server. GetIpxAddress

will fill in remoteServerAddress with the remote servers address

in high-low byte order. */

if (GetIpxAddress (remoteServerName, &remoteServerAddress) <0) {

printf(” could not get remote server address \n”);

}

if ((spxFd=t_open(spxDevice, O_RDWR, &spxInfo))<0) {

t_error(” t_open failed ");

069-000482 Licensed Material — Property of the Copyright Holders 3-1 1

SPX Transport Layer Interface

/* we want to bind to a dynamic socket */

addressToBind.sock[0] QO;

addressToBind.sock[1] QO;

/* this end point will not receive connection requests*/

spxBindiInfo.glen = 0;

spxBindinfo.maxlen = sizeof(ipxAddr_t);

spxBindInfo.len = sizeof(ipxAddr_t);

spxBindInfo.buf = (char *) &addressToBind;

1f (t_bind(spxFd, &spxBindInfo, &spxBindInfo)<0) {

t_error(” t bind failed ");

}

connectionRequest.addr.maxlen = sizeof (ipxAddr_t);

connectionRequest.addr.len = sizeof (ipxAddr_t);

connectionRequest.addr.buf = (char *)&remoteServerAddress;

/* Upon successful return remoteServerOptions will have the

connection identification number and allocation number of the

server. */

connectionRequest.opt.maxlen = sizeof (SPX_OPTS) ;

connectionRequest.opt.len = sizeof (SPX_OPTS);

connectionRequest.opt.buf = (char *)&remoteServerOptions;

connectionRequest.udata.maxlen = 0;

connectionRequest.udata.len = 0;

connectionRequest.udata.buf = (char *)NULL;

/* We pass the address of connectionRequest for both the request

and return fields so that the connectionRequest.opt

(remoteServerOptions) field will be filled in with the servers

information. */

if (t_connect(spxFd, &connectionRequest,

&connectionRequest) <0) f{

t_error(” t_connect failed “”);

}

/* A connection has been established with the server.*/

3-1 2 Licensed Material — Property of the Copyright Holders 069-000482

SPX Transport Layer Interface

t_listen() Listen for a Connect Request.

This call enables the passive transport user to receive indications of connect requests

from other transport users.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_listen(fd, call)

int fd;

struct t_call *call;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

The t_listen() will retrieve any connection requests residing on the stream head. The

t_listen() call can function synchronously or asynchronously. When the call

functions synchronously, it blocks until a connection request comes in. When the call

functions asynchronously, it checks for a connection request and returns failure if

there is not one.

SPX will insure that each connection indication is unique by dropping any duplicate

connection requests. A duplicate request is a request that came from the same

network, node, socket, and connectionId as a previous request.

Once t_listen() returns, the SPX user can accept the connection request by using

t_accept(), or the user can refuse a connection request by issuing a t_snddis(). The

sequence number in the call structure used for the t_snddis() and in the t_listen()

call structure must be the same.

Since SPX doesn’t have a “connection—request—nak” packet the SPX driver will not

send a packet to deny the connection request. (This differs from the DOS TLI/SPX

library in that DOS will send a terminate connection indication if the application

issues a t_snddis() after a t_listen() return.) The client machine issuing the

connection request will time out after trying a period of time.

If t_listenQ) returns successfully, call — addr will point to an ipxAddr_t structure

that contains the net, node, and socket of the remote transport end point requesting

the connection. The net, node, and socket will be in high—low byte order. The

call — opt will point to an SPX_OPTS structure that contains the remote transport

069-000482 Licensed Material — Property of the Copyright Holders 3-13

SPX Transport Layer Interface

end point’s connectionId and allocation number. (The remote transport end points

connection id and allocation number were separated from the ipxAddr_t structure to

maintain compatibility between DOS and OS/2.) The call — udata will not contain

anything.

Take special note of the qlen field in a t_bind() request.

Errors

The errors are specified in the AT&T UNIX System V Network Programmers Guide.

State

This call can be issued only from the T_BND state.

Example

struct t_call call;

SPX_OPTS spxOptions;

1pxAddr remoteAddress;

/* set up call structure for t_listen call */

call.addr.maxlen = sizeof (ipxAddr_t);

call.addr.len = sizeof(ipxAddr_t);

call.addr.buf = (char *)&remoteAddress;

call.opt.maxlen = sizeof(SPX_OPTS) ;

call.opt.len = sizeof(SPX_OPTS) ;

call.opt.buf = (char *)&spxOptions;

call.udata.maxlen = 0;

call.udata.len = 0;

call.udata.buf = (char *)NULL;

/* Since we are synchronous this call will block until a

connection request comes in. Upon returning the call.addr and

call.opt fields will contain the remote address, and connection

and allocation number of the remote end point.

If we were in asynchronous mode the t_listen call will return fail

if no connection requests have arrived, or success if one has

arrived. */

1£ (t_listen(spxfd, &call)<0) {

t_error(” t_listen failed ”);

3-1 4 Licensed Material — Property of the Copyright Holders 069-000482

SPX Transport Layer Interface

t_open() Establish a Transport End Point.

This call creates a transport end point and returns protocol—specific information

associated with that end point. It also returns a file descriptor that serves as the local

identifier of the end point.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_open(path, oflag, info)

char *path;

int oflag;

struct t_info *in/o;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide. SPX may be used either synchronously or asynchronously.

The t_open() call returns a file descriptor and an information structure (of type

t_info()) upon the successful return of an open. This information structure contains

pertinent information about the SPX driver. The following is a brief summary of the

data returned in the t_infoQ structure:

1. The maximum transport service data unit (TSDU) is 534 bytes.

2. No expedited TSDU is supported.

3. There is no limit to the amount of data sent during a session.

4. Nodatais transmitted with a disconnect request.

5. The address size is 12 bytes:

Node is 4 bytes

Network is 6 bytes

Socket is 2 bytes

6. 4 bytes of options data are allowed.

7. The maximum transport interface data unit is 534 bytes.

8. The service type is always T_COTS. SPX is a connection—oriented service with a

disorderly release.

The path and name of the cloneable SPX device is /dev/nspx.

069-000482 Licensed Material — Property of the Copyright Holders 3-1 5

SPX Transport Layer Interface

Errors

DG/UX Streams necessitates that a daemon run in the background to build the

protocol stack before SPX can be used. This daemon links IPX to the Ethernet driver

and then links SPX to IPX. If this daemon has not been run, all attempts to open

SPX will fail. Make sure your daemon is running by executing “startnwd” or by

bringing up NetWare® for AViiON systems using “SCONSOLE.”

If no more minor device numbers are available, the open will fail. If that number has

been reached, any attempt to open SPX will fail.

If there are no STREAMS resources available, the open will also fail.

Since none of the above three errors return the same values to t_open() there is no

way to distinguish which was the true cause of the error. Usually the problem is that

the daemon hasn’t been run.

State

t_open() will change the state of the service connection to T UNBND (unbound).

Example

char *spxDevice = “/dev/nspx";

struct t_info spxInfo;

int spxFd;

1f ((spxFd=t_open(spxDevice, O_RDWR, &spxiInfo))<0) {

t_error(” t_open failed “”);

3-1 6 Licensed Material — Property of the Copyright Holders 069-000482

SPX Transport Layer Interface

t_optmgmit() Option Management.

This call enables the user to get or negotiate protocol options with the transport

provider.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_optmgmt(fd, req, ret)

int fd;

struct t_optmgmt *regq, *ret;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

This call enables the SPX user to set the maximum number of retries when the SPX

driver tries to reliably deliver data to the opposite transport end point. req > opt.buf

and ret — opt.buf point to the following structure:

struct spxOptMgmt_s {

unsigned char spxo_max_retries;

unsigned char spxo_watchdog_flag;

unsigned int spxo_min_retry_delay;

} spxOptMgmt ;

The spxo_watchdog_flag is not supported in the DG/UX SPX driver. This flag was

intended to decrease network traffic generated by the watchdog in the DOS and OS/2

SPX drivers. But the DG/UX SPX driver’s version of Watchdog (WatchEmu) is used

to monitor data connections without generating excessive traffic; WatchEmu only

sends when it has detected a period of inactivity.

The spxo_min_retry_delay is not supported.

The value in spxo_max_retries will become the new maximum number of retries

unless its value exceeds the maximum retry value of 5.

The flags T.NEGOTIATE, T_CHECK, and T_DEFAULT are all supported.

069-000482 Licensed Material — Property of the Copyright Holders 3-1 7

SPX Transport Layer Interface

Errors

The possible t_errno errors returned from t_bind() are:

TOUTSTATE: This request was issued in some state other than
T_IDLE.

TBADOPT: The size of the structure spxOptMgmt was less than

sizeof(spxOptMgmt) bytes, or there has been an

internal TLI/SPX error.

TBADFLAG: The flag specified is invalid.

State

Not applicable.

Example

/* this will set the maximum retry count for a connect request and

a data unit delivery. */

#define SPX _MIN_RETRIES 10

SPX_OPTMGMT spxOptionSet;

struct t_optmgmt optmgmt;

spxOptionSet.spxo_retry_count = SPX _MIN RETRIES;

optmgmt.opt.maxlen = sizeof (SPX_OPTMGMT) ;

optmgmt.opt.len = sizeof (SPX_OPTMGMT) ;

optmgmt.opt.buf = (char *)&spxOptionSet;

/* Spx also supports the T_CHECK and T_DEFAULT flags

for t_optmgmt */

optmgmt.flags = T_NEGOTIATE;

1f (t_optmgmt (spxFd, &optmgmt, &optmgmt)<0) {

t_error(” t_optmgmt failed ”);

3-1 S| Licensed Material — Property of the Copyright Holders 069-000482

SPX Transport Layer Interface

t_rcv() Receive Data Over a Connection.

This call enables transport users to receive either normal or expedited data on a

transport connection. |

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_rev(fd, buf, nbytes, flags)

int fd;

char “buf;

unsigned nbytes;

int *flags;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide, except that the TEEXPEDITED flag will never be set.

Errors

It is possible that the remote transport end point could go away and the local

transport end point will block while waiting for the incoming packet. This would

cause the local transport end point to block forever. WatchEmu solves this problem

_ by periodically checking all active connections. If WatchEmu determines that the

remote transport end point is no longer participating in this connection, it will

generate a disconnect indication to the stream head (please refer to t_revdis() and

WatchEmu).

The errors are specified in the AT&T UNIX System V Network Programmers Guide.

State

The t_rev() call is allowed only in the T DATAXFER state.

Example

/* the maximum amount of data we could receive per packet */

#define MAX DATA BYTES 534

int flags;

int bytesReceived;

unsigned char spxData[MAX_DATA BYTES];

069—000482 Licensed Material — Property of the Copyright Holders 3-1 9

SPX Transport Layer Interface

flags |= TMORE;

while (flags & TMORE) {

/* we indicate we can receive MAX_DATA_BYTES, bytesReceived

will have the actual number of bytes we received */

if ((bytesRecelved=

t_rev(spxFd2, spxData, MAX _DATA_BYTES,&flags))<0) {

t_error(” t rcv failed ");

}

/* if TMORE flag is off this is end of this transmission */

if (flags & TMORE) {

}

} /* end while */

2.9Nn Licensed Material — Provertv of the Copvriaht Holders 069-000482

SPX Transport Layer Interface

t_rcevdis() Receive a Disconnection Notice.

This call identifies the reason for the abortive release of a connection, where the

connection is released by the transport provider or another transport user. This cal]

follows AT&T’s definition of a disorderly release.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_revdis(/d, discon)

int fd;

struct t_discon *discon;

struct t_discon {

struct netbuf udata;

int reason;

int sequence;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide except for the following.

SPX does not support the transmission of any user data with a disconnect request.

Upon receiving a disconnect request, SPX will set the stream to a T_IDLE state.

If the program is expecting the remote transport end point to send an SPX terminate

connection packet, the program should “spin,” waiting until a disconnection

indication such as the following arrives:

Upon receipt of an SPX disconnect indication the SPX driver assumes worst case and

generates a disorderly release indication. If the DG/UX server application is

expecting to receive a disconnection indication the application should spin, issuing a

t_revdis() call. (This tends to use up CPU resources since t_revdis() is nonblocking;

for a better way see t_snddis().) Eventually the application will receive the

disconnection indication, or WatchEmu will time out the connection.

Since a transmission error or a disconnect indication can arrive at any moment from

the remote transport end point, the SPX user needs to be conscious of the

asynchronicity of the disconnect indication arrival. The SPX user should check for a

disconnect indication after every t_snd(); if one is received the reason code should

also be checked. By checking the reason code it can be determined whether the error

was generated by the SPX driver (i.e., transmission failure) or if a disconnect

indication was received by the opposite transport end point.

069—000482 Licensed Material — Property of the Copyright Holders 3-21

SPX Transport Layer Interface

The reason for issuing a t_revdis() after every t_snd() is that t_snd() doesn’t check

the read side of the local transport end point’s stream for disconnect indications. If

the remote end point fails to acknowledge an SPX data transmission, the SPX driver

will generate a disconnect indication to the stream head and set the state of the local

transport end point to T_IDLE. In the T_IDLE state SPX will drop all outbound data

per AT&T’s specification.

Errors

If any of the following conditions occur, a disconnect indication will be generated and

passed to the stream head. The reason integer of the t_discon() structure will be set

accordingly in the following situations:

The possible errors returned from t_revdis() are:

t_errno errno

TLI_SPX_ The remote transport end point fails to acknowledge

CONNECTION_ any transmission. This is generated by WatchEmu

FAILED: after efforts to contact the remote transport end point.

or

The SPX driver could not reliably deliver the data or

connection request. The remote transport end point

doesn’t acknowledge transmissions.

ENOSTR: The SPX driver has tried the maximum number of

times to send the received data to the stream head

unsuccessfully. This is usually caused by a very slow

or deadlocked local process. The tunable for this

number of retries can be incremented.

TLI_SPX_

CONNECTION_ No error. An SPX terminate connection packet

TERMINATED: was received from the remote transport end point.

State

The state after this call is T IDLE.

Example

struct t_discon disconnectInfo;

/* IT£ you know for sure that a disconnect indication has arrived t
hen you can issue one t_recvdis. */

1f (t_rcvdis(spxFd, &disconnectInfo)<0) {

t_error(” t_revdis failed “”);

3-22 Licensed Material — Property of the Copyright Holders 069—-000482

SPX Transport Layer Interface

Switch (disconnectInfo.reason) {

case TLI_SPX_ CONNECTION. FAILED:

printf(” connection failed \n”);

break;

case TLI_SPX_CONNECTION_TERMINATED:

printf (“connection terminated by remote end point "”);

break;

default:

printf(” t_rcevdis returned Ox%X \n’”,

disconnectiIinfo.reason) ;

break;

}

/* If you want to wait until a disconnect indication arrives you

will need to loop waiting for one to come in. You are guaranteed

to not loop forever. If the remote end point goes away without

sending a disconnect, WatchEmu will generate a disconnect

indication. */

while ((t_rcevdis(spxFd, &disconnectInfo) <0)

&& (t_errno == TNODIS));

/* or

while ((t_look(spxFd)==0) && (t_errno != T_DISCONNECT));

1f (t_revdis(spxFd, &disconnectInfo)<0) {

t_error(” t_revdis failed “");

}

* /

Switch (disconnectiInfo.reason) {

case TLI_SPX_CONNECTION_FATLED:

printf(” remote end point went away \n”);

break;

case TLI_ SPX _CONNECTION_TERMINATED:

printf(” connection failed “);

break;

default:

printf(” t_rcvdis returned 0x%X \n”,

disconnectinfo. reason);

break;

069-000482 Licensed Material — Provertv of the Copvriaht Holders 3-23

SPX Transport Layer Interface

t_snd() Send Data Over a Connection.

This call enables transport users to send either normal or expedited data over a

transport connection.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_snd(fd, buf, nbytes, flags)

int fd;

char *buf;

unsigned nbytes;

int flags;

Description

This call works as specified in the AT&T UNIX System V Network Programmers
Guide. |

All data including EXPEDITED data is sent on a first-come basis. The application

must take care not to close the connection before all the data is sent since the t_snd()

call could and does return before the data has actually been transmitted.

If data is transmitted in the T_IDLE state, the transport provider will drop the data.

If the stream is in any state other than T.DATAXFER and the user program issues a

data request, the stream will freeze with errno set to EPROTO and without t_errno

set to TSYSERR.

The T_MORE flag is supported by SPX. If the DG/UX application sets the TIMORE

flag when doing a t_snd(), the not—EOF bit is set in the SPX packet header. If the

receiving client is a DG/UX machine the T_MORE flag will be set in the t_rev() call.

If the receiving client is a DOS/OS2 application the not—EOF bit will be set in the

SPX packet header.

TLI will break down any buffer larger than 534 bytes into message requests 534

bytes long (the last message request will be the buffer size of mod 534), and will send

these requests to SPX. If the buffer size is some multiple of 534, then the throughput

of data will be maximized, since the only message size smaller than 534 bytes will be

the last message. Since SPX cannot control the size of incoming packets, it will be

receiving more than 512—byte packets.

Since most sector sizes are 512 and multiples thereof, it is best to use 512 as a send

buffer size to maximize the throughput of data from the UNIX application to the

network.

The SPX driver will not send an empty SPX packet. If nbytes is zero, no data or

packet will be sent.

3-24 Licensed Material — Property of the Copyright Holders 069—000482

SPX Transport Layer Interface

Errors

A known problem with TLI is its inability to notify the user within reasonable time

that the t_snd() has failed. The t_snd() call doesn’t check for disconnect indications

before and after doing the t_snd(). The best way to notify t_snd() of an error is for

the SPX driver to generate an M_ERROR message, but since this is not part of the

TLI specification, another method must be used.

If the remote transport end point has gone away or failed to acknowledge the

transmitted data, the SPX driver will generate a disconnect indication and change

the state of the local transport end point to T_IDLE. Following the TLI specification,

any t_snd() issued in the T_IDLE state is dropped by the SPX driver. From the SPX

user’s point of view, this indication will not be noticed unless the SPX user issues

some call other than t_snd(). The SPX user should check the return code in the

disconnect indication to make sure it is TLI_SPX_CONNECTION_ TERMINATED.

The following errors can occur during the send request. These errors will lock the

stream and disable the local transport end point. Only errno will be set to the

following values; t_errno will not be affected.

If any of the following errors occur, close the connection with t_close().

EPROTO: The data request was issued from a state other than

T_DATA_XFER. This transport end point is no longer

valid and must be closed.

or

The size of the data request header or data portion of

the message received by SPX was invalid (too small or

too large).

If the data cannot be reliably delivered to the remote transport end point the SPX

driver will generate a disconnect indication (refer to t_revdis()) with reason set to

the appropriate number reflecting the reason for failure. an

State

t_snd() is only allowed in the T.DDATAXFER state. If any errors occur, the state

moves to T_IDLE. |

Example

/* to optimize reads and use of streams buffers we use 512 */

#define TRANS BUFFER_SIZE 512

int flags;

int bytesRead; |

unsigned char readBuffer[TRANS BUFFER_SIZE];

char *someFileString = “someFileName’”;

FILE *f£p;

struct t_discon disconnectinfo;

069-000482 Licensed Material — Property of the Copyright Holders 3-25

SPX Transport Layer Interface

/* open the file to send */

if ((fp=fopen(someFileString, “r+b”)) == NULL) {

perror(” open failed “");

}

/* while there is data in the file tell the remote end point that

there is still data for this transmission */

flags = TMORE;

while (!feof(fp)) {

bytesRead=fread(readBuffer, 1, TRANS_BUFFER_SIZE, fp);

if (t_snd(spxFd2, readBuffer, bytesRead, flags)<0O) {

t_error(” t_snd failed “);

}

/* Check and make sure we haven’t been cut off by remote end.

NOTICE that the return code is greater than zero if we received a

disconnect indication. */

if (t_revdis(spxFd2, &disconnectiInfo)>0) {

printf(” remote end point aborted connection \n”);

3

/* send one byte with the TMORE flag turned off */

flags = QO;

if (t_snd(spxFd2, readBuffer, 1, flags)<0O) {

t_error(” t_snd failed “);

3-26 Licensed Material — Property of the Copyright Holders 069-000482

SPX Transport Layer Interface

t_snddis() Send User Initiated Disconnect Request.

This call initiates the abortive release of a transport connection, and can be issued by

either transport user. It may also be used to reject a connect request during the

connection establishment phase.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_snddis(/d, call)

int fd;

struct t_call *call;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

Due to the original specification, SPX doesn’t support the TLI concept of an orderly

release. The correct procedure for aborting or terminating a connection is to use the

t_snddis()/t_revdis() combination.

A t_snddis() call will send a connection termination request. This call is used when

the application must abort or break a connection. A t_snddis(Q) will generate an SPX

terminate connection request and will release all outstanding data messages on both

the local and remote transport end point. The terminate request is not reliably

delivered; only one terminate request will be sent. If an acknowledge is not received,

the terminate request will not be retried. After an application issues a t_snddis(),

the application can do a t_unbind() and t_close() immediately without waiting.

SPX doesn’t support the function of sending user data along with a disconnect

request.

The correct procedure for terminating an SPX connection is for both transport end

points to correlate the moment that the connection is no longer needed; both end

points should then terminate the connection.

Errors

The possible errors returned from s_snddis() are:

t_errno errno

TSYSERR: ENXIO: The socket number for this transport end point was

not found in the internal SPX table. This is an SPX

driver error.

069-000482 Licensed Material — Property of the Copyright Holders 3-2/

SPX Transport Layer Interface

State

Regardless of the success of the call, the state will be TUNBND.

Example

struct t_call disconnectIndication;

/* If you wish to terminate the current connection (the state is

T_DATAXFER) it 1S not necessary to send a pointer to the t_call

structure. */

1f (t_snddis(spxFd, (struct t_call *) NULL)<0O) {

t_error(” t_snddis failed “”);

/* If you wish to deny a connection request you must supply the

sequence number returned in the t_call returned from the t_listen

that received the connection request. The remoteAddress structure

is from the t_listen example. */

disconnectIndication.sequence = remoteAddress.sequence;

if (t_snddis(spxFd, &disconnectIndication)<0) {

t_error(” t_snddis failed “”);

3-28 Licensed Material — Property of the Copyright Holders 069-000482

SPX Transport Layer Interface

t_unbind() Disable a Transport End Point.

This call disables a transport end point so that no further requests destined for the

given end point will be accepted by the transport provider.

Usage

#include <tiuser.h>

#include <ipx_app.h>

#include <spx_app.h>

int t_unbind(/d)

int fd;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

This call releases the socket number used by this transport end point for future use.

This allows the process to bind to a new socket number.

Errors

The possible errors returned from t_unbind() are:

t_errno errno

TSYSERR: ENXIO: The socket number for this connection was not found

in the socket table. Notify Novell. This is an SPX

driver error.

TOUTSTATE: This transport end point is not in the T_BND state so |

t_unbind() doesn’t apply.

State

This call places the transport end point in the T.UNBND state.

Example

if (t_unbind(spxFd)<0) {

t_error(” t_unbind failed “);

069-000482 Licensed Material — Property of the Copyright Holders 3-29

SPX Transport Layer Interface

Unsupported Transport Interface calls

Table 3—1 lists the TLI calls not supported by SPX for AViiON Systems. [If any of

these calls are issued, errno will be set to TNOTSUPPORT.

Table 3-1 Unsupported SPX TLI Calis

Function Description

t_rcevrel() Receive an orderly disconnect

t_sndrel() Send an orderly disconnect

t_sndudata() Send a data unit (connectionless)

t_revudata() Receive data unit (connectionless)

t_rcevuderr() Receive a unit data error indication (connectionless)

The t_sndudata(), t_rcevudata(), and t_revuderr() calls are not supported by SPX

because SPX is a connection—based service; these calls are used for connection—less

service only.

The t_sndrel() and t_revrel() calls are not supported by SPX because SPX is a

T_COTS service; these calls are used only for T.-COTS_ORD service.

End of Chapter

3-30 Licensed Material — Property of the Copyright Hoiders 069-000482

Chapter 4.

IPX Network Layer Interface

This chapter defines the use of the Internet Packet Exchange (IPX) under the DG/UX

Transport Layer Interface (TLI). The DG/UX IPX driver supports all calls for a

datagram service. Figure 4—1 shows the TLI interface and associated IPX transport

provider stack.

User Application

Eee eee eel TLI/IPX

Interface

Transport Layer Interface (TLI)

user space

DG/UX

kernel

space STREAMS System Call Interface (TIMOD/TIRDWR)

IPX network provider stack

Supporting Streams Modules
eee ee

802.2/LLC

Communications Communications

Device Driver Device Driver

DG/UX (802.3) (802.5)
kernel

space |

Physical
Devices VLC VTRC

Figure 4-1 TLI/IPX Programming Interface

The Internet Packet Exchange (IPX) is a datagram service under the Transport

Layer Interface (TLI). IPX is connectionless, and does not support a connection or

guarantee delivery. However when delivery is made, IPX guarantees the accuracy of

the data sent.

IPX allows a user process to send and receive individual packets. Use it when you

do not require a guaranteed service, such as on a very reliable network, or in cases

where an occasional lost packet is not critical, as in service advertising. (You can

build guaranteed services such as the Sequence Packet Exchange (SPX) on top of

IPX.) Use IPX for processes that need datagram messages.

A DG/UX process follows these steps in order to use IPX:

1. t_open(/d);

2. t_bind(fd, bind, bind);

3. t_optmgmt(fd, req, ret); (optional)

n69o—NnNNARD Licensed Material — Pronertv of the Conovriaht Holders 4.1

IPX Transport Layer Interface

4. t_sndudata(/d, ud, flags);

or

t_revudata(/d, ud, &flags);

5. t_unbind(/d);

6. t_close(fd);

The standard use of these calls is described in the AT&T UNIX System V

Documentation Set. This chapter provides the details of the peculiarities of the IPX

calls.

IPX Considerations

Consider the following issues before you use IPX:

e The IPX driver must be installed to enable the use of IPX. If the driver is not

installed, the t_open() call will fail.

e The IPX device name for DG/UX is /dev/ipx.

e The IPX controlling device name is /dev/ipx0.

e IPX follows the state diagram in the AT&T System V Network Programmers

Guide for a connectionless service.

?
e Since STREAMS allocates message blocks for IPX that are sized in powers of two

outgoing data requests are best done with a buffer-size of 512 bytes. Since IPX

cannot control the data size of incoming packets, the driver will support packet

data sizes of 0 through 546 bytes.

e Ifa signal is sent to the IPX application during a t_rcevudata(), t_revudata()

will fail with errno set to EINTR.

4-2 Licensed Material — Property of the Copyright Holders 069-000482

IPX Transport Layer Interface

IPX Calls

This section describes the IPX calls. The descriptions include the format of the call, a

description, possible errors, states, and an example. The calls are presented in the

order that you use them. Table 4—1 lists the calls alphabetically and the page where

the call description begins. |

Table 4—1 IPX Calls Listed Alphabetically

Function Page Description

t_bindQ) 4-6 Returns binary error code indicating either success (0) or

failure (—1).

t_close() 4-16 Returns a binary error code indicating success (0) or

failure (non-zero).

t_open() 4-4 Returns transport end point file descriptor (fd) to be used

in future TLI function calls.

t_optmgmt() 4-8 Returns a binary error code indicating success (0) or (—1)

failure).

t_revudata() 4-13 Receives both directed datagrams and broadcast

datagrams.

t_sndudata() 4-10 Sends NetBIOS datagrams.

t_unbind() 4-15 Returns a binary error code indicating success (0) or

failure (non-zero).

069-000482 Licensed Material — Property of the Copyright Holders 4-3

IPX Transport Layer Interface

t_open() Establish a Transport End Point.

This call creates a transport end point and returns protocol—specific information

associated with that end point. It also returns a file descriptor that serves as the local

identifier of the end point.

Usage

#include <tiuser.h>

#include <ipx_app.h>

int t_open(path, oflag, info)

char “path;

int oflag;

struct t_info *info;

Description

This call is supported as documented in the AT&T System V Network Programmers

Guide. You may use IPX either synchronously or asynchronously.

The UNIX streams architecture requires that a process be run to build and hold a

stream. When you install the Ethernet driver, link it to the IPX driver. If this driver

is not installed, all attempts to open IPX will fail.

t_open() returns a file descriptor and an information structure (of type t_info) upon

the successful return of an open. This information structure contains pertinent

‘information about IPX. The data format is as follows:

1. The maximum transport service data unit (TSDU) is 546 bytes.

2. No expedited TSDU is supported.

3. No data is transmitted with a disconnect request.

4. The address size is 12 bytes, of which network is 4 bytes, node is 6 bytes, and

socket is 2 bytes. |

5. The service type is always T_CLTS.

Errors

Refer to the AT&T System V Network Programmer’s Guide for the errors that may

occur with this call.

If the IPX driver cannot allocate memory it will generate an error. This error will set

t_errno to TSYSERR and errno to EN OSR.

4.4 Licensed Material — Property of the Copyright Holders 069-000482

IPX Transport Layer Interface

State

The state will always follow the state diagram in the AT&T System V Network

Programmer’s Guide.

Example

char *ipxPath = ”“/dev/ipx";

struct t_info ipxInfo;

int ipxFd;

1f ((ipxFd=t_open(ipxPath,O_RDWR,&ipxInfo))<0O) {

t_error(” t_open failed “”);

069-000482 Licensed Material — Property of the Copyright Holders 4-5

IPX Transport Layer Interface

t_bind() Bind an Address to a Transport End Point.

This call associates a protocol address with a given transport end point, thereby

activating the end point. It also directs the transport provider to begin accepting

incoming packets.

Usage

#include <tiuser.h>

#include <ipx_app.h>

int t_bind(/d, req, ret)

int fd;

struct t_bind *req;

struct t_bind *ret;

Description

This call is supported as documented in the AT&T System V Network Programmers

Guide, with the following additions:.

The t_bind() call allows an application to bind to a socket number, which can be

either dynamic or specific. IPX keeps track of which socket number (dynamic or

specific) is bound to which transport end point.

A dynamic socket number is an unused socket number returned by the IPX driver,

and is guaranteed to be a unique unused number on the local DG/UX system. A

dynamic socket is a random value between 0x4000 and 0x5000, inclusive.

A specific socket number is the socket number requested in the req t_bind()

structure. If it is unused, it is granted and returned in the ret t_bind() structure in

the range of 1 to FFFFh.

The t_bind() call requires that a pointer to an ipxAddr_t type structure be passed in

the req—>addr.buf field. This ipxAddr_t structure is as follows:

typedef struct ipxAddr {

unsigned char net[4];

unsigned char node[6];

unsigned char socket[2];

} ipxAddr t;

The IPX driver will look at the socket field in the ipxAddr_t structure for the IPX

user’s desired socket number. The socket number must be passed in high—low byte

order. If the socket number desired is not currently being used by another IPX user,

the IPX driver will return the local net, local node, and the allocated or requested

socket number in the corresponding fields of the ipxAddr_t structure of the

ret—>addr.buf field.

If an IPX user passes zero in the ipxAddr_t socket field, the IPX driver will attempt

to allocate a dynamic socket number.

4-6 Licensed Material — Property of the Copyright Holders 069-000482

IPX Transport Layer Interface

The IPX user can pass NULL instead of req and ret. The IPX driver will assume that

the IPX user has requested a dynamic socket number and the IPX driver will try to

allocate and return a dynamic socket number.

Only one process can bind to a given socket number at a time. If you try to bind to a

socket that is already bound, an error results and the second bind fails. The first

bind is unaffected.

Services written to run over IPX generally have well—known socket numbers

associated with them. By having well—known socket numbers, IPX users can be sure

that their server and client application types match. Another method to coordinate

servers and clients is to use Service Advertising Protocols (SAPs). Contact Novell for

more information on well—known socket numbers and SAPs.

Errors

If the IPX driver cannot allocate memory it will generate an error. This error will set

t_errno to TSYSERR and errno to ENOSR.

The possible errors returned from t_bind(Q are

t_errno errno

TSYSERR: ENOSR: There were no message buffers available to

acknowledge the bind request.

TOUTSTATE: This connection is in a state that invalidates a

t_bind() request.

TNOADDR: There are no unused dynamic socket numbers. The

IPX user should try again.

TBADADDR: The socket number requested is in use.

State

The state will always follow the state diagram in the AT&T System V Network

Programmer’s Guide.

Example

#define SOCKET_TO_BIND_HIGH 0x45 /*high order byte */

#define SOCKET_TO_BIND_LOW 0x00 /*low order byte */

struct t_bind bind;

ipxAddr_t localAddress;

localAddress.sock[0] = SOCKET_TO_BIND_HIGH;

localAddress.sock[1] = SOCKET_TO_BIND_LOw;

bind.addr.len = sizeof(ipxAddr_t);

bind.addr.maxlen = sizeof (ipxAddr_t);

bind.addr.buf = (char *)&localAddress;

bind.glen = 0;

if (t_bind(ipxFd, &bind, &bind)<0) {

t_error(” t_bind failed ”);

069-000482 Licensed Material — Property of the Copyright Holders 4-7

IPX Transport Layer Interface

t_optmgmt() Option Management Request (Get Local Info).

This call lets the user process get or negotiate protocol options with the transport

provider.

Usage

#include <tiuser.h>

#include <ipx_app.h>

int t_optmgmt(/d, req, ret)

int fd;

struct t_optmgmt *req, *ret;

Description

This call is supported as documented in the AT&T System V Network Programmers

Guide, except that it returns the local address instead of negotiating options.

This option management call will return all the local information about this

transport end point. It will return the source net, source node, and source socket

pertaining to this local end point. |

The req.buf and ret.buf must point to a structure large enough to hold an ipxAddr_t

(12 bytes). Upon successful completion, *ret.buf will contain the source information.

The first 4 bytes will be the local net, the next 6 the node, and the last 2 the local

socket number. The local socket number will be valid only if this local end point has

already bound. All this information will be in high-low byte order.

Errors

Refer to the AT&T System V Network Programmer’s Guide for the errors that may

occur with this call.

If the IPX driver cannot allocate memory, it will generate an error. This error will set

t_errno to TSYSERR and errno to ENOSR.

State

The state will always follow the state diagram in the AT&T System V Network

Programmer’s Guide.

A.R Licensed Material — Property of the Copvriaht Holders 069-000482

IPX Transport Layer Interface

Example

struct t_optmgmt optionsRequest;

1pxAddr_t locallpxAddress;

optionsRequest.opt.maxlen = sizeof (ipxAddr_t);

optionsRequest.opt.len = sizeof(ipxAddr_t);

optionsRequest.opt.buf = (char *) &localIpxAddress;

/* flags are not used with the IPX options request */

optionsRequest.flags = 0;

/* ipxFd is the file descriptor of an opened IPX device* /

1£(t_optmgmt (ipxFd, &localIpxAddress, &locallIpxAddress)<0) {

t_error(” t_optmgmt failed “”);

069-000482 Licensed Material ~ Property of the Copyright Holders 4-9

IPX Transport Layer Interface

t_sndudata() Send Unit Data.

This call enables transport users to send a self—contained data unit to the user at the

specified protocol address.

Usage

#include <tiuser.h>

#include <ipx_app.h>

int t_sndudata(fd, ud)

int fd;

struct t_unitdata *ud;

Description

This call is supported as documented in the AT&T System V Network Programmers

Guide, except that IPX doesn’t support option data.

The address (addr) must point to an ipxAddr_t type. This is a full IPX address

structure. The destination net, node, and socket must be filled (high—low byte order)

in this IPX address structure by the user program. The IPX user can set the packet

type of the outgoing IPX packet by passing one byte specifying the packet type in the

options (opt) field. The checksum, length, transport control, source net address,

source node address, and source socket address in the outgoing packet will be filled in

by the IPX driver.

If the destination net is not found in the router table the packet will be dropped.

The fact that the t_sndudata() call has returned successfully doesn’t guarantee that

the data has been sent. It does guarantee that the data has been queued up to be

sent. If a t_close() is issued all queued data is lost. |

@ All data, including EXPEDITED data, is sent on a first-come basis.

Since the largest number of bytes that can be sent with any t_sndudata() is 546,

any attempt to send more than 546 bytes will result in an error.

Errors

If the IPX driver cannot allocate memory, it will generate an error. This error will set

t_errno to TSYSERR and errno to ENOSR.

The following errors can also occur. errno will be set to one of the following values.

t_errno will not be affected.

EPROTO: 1. The data request was issued from a state other than

T_IDLE. This transport end point is no longer valid

and must be closed.

A.1Nh | inanecad Matarial — Pronarty of the Convriaht Holders 069--000482

IPX Transport Layer Interface

2. The size of the data request header or data portion of

the message received by IPX was invalid (too large).

ENOLINK: The link to IPX has been broken. Probably the ipx

daemon was killed. The IPX driver will no longer

function.

State

The state will always follow the state diagram in the AT&T System V Network

Programmer’s Guide.

Example

unsigned char remoteServerName [MAX REMOTE NAME LENGTH];

1pxAddr_t remoteServerAddress;

unsigned char ipxPacketType;

unsigned char ipxData[IPX_MAX DATA SIZE];

/* There are different approaches to obtaining the address of

the end point you wish to send to. One can query a netware

bindery for a server of the type you wish. Or one can create a

“yellow pages” file that maps a server name to an address. This

example will show the “yellow pages” scenario.

This routine will find which remote server the user wants to

send to and place the name in remoteServerName. */

if (GetServerName (remoteServerName)<0) {

printf(” could not get remote host name \n”);

}

/* This next routine will take the server name and look ina

file to find the ipx address associated with that server.

GetiIpxAddress will fill in remoteServerAddress with the remote

servers address in high-low byte order. */

069-000482 Licensed Material — Property of the Copyright Holders 4-1 1

IPX Transport Layer Interface

if (GetIpxAddress (remoteServerName, &remoteServerAddress)<0) {

printf(” could not get remote server address \n”);

ud.opt.len = 1;

ud.opt.maxlen = 1;

ud.opt.buf = (char *)&ipxPacketType;

ud.addr.len = sizeof(ipxAddr_t);

ud.addr.maxlen = sizeof (ipxAddr_t);

ud.addr.buf = (char *)&remoteServerAddress;

ud.udata.maxlen = IPX_MAX DATA SIZE;

/* actual number of data bytes sent */

ud.udata.len = IPX MAX DATA SIZE ;

ud.data.buf = (char *)&ipxData[0];

/* flags are not applicable to IPX datagrams */

flags = 0;

if (t_sndudata(ipxFd, &ud, &flags)<0) {

t_error(” t_sndudata failed \n”);

4-12 Licensed Material — Property of the Copyright Holders 069-000482

IPX Transport Layer Interface

t_rcvudata() Receive Unit Data.

This call enables transport users to receive data units from other users.

Usage

#include <tiuser.h>

#include <ipx_app.h>

int t_rcevudata(/d, ud, flags)

int fd;

struct t_unitdata *ud;

int *flags;

Description

This call is supported as documented in the AT&T System V Network Programmers

Guide, except that IPX doesn’t support option data.

This call functions exactly opposite of t_sndudata(). The address of the sender is

returned to the ud—>addr field. The packet type is in the ud.opt field, and the packet

data is in the ud—>udata field. There is no flow control on incoming data since IPX is

a datagram service. If the IPX application cannot service the incoming data as fast as

the sender generates it, the IPX driver will drop the excess incoming packets. The len

field of opt, udata, and addr will be set according to the incoming packet. The amount

of data received in the IPX packet will be in udata.len.

Errors

- Refer to the AT&T System V Network Programmer’s Guide for the errors that may
occur with this call.

If the IPX driver cannot allocate memory it will generate an error. This error will set

t_errno to TSYSERR and errno to ENOSR.

State

The state will always follow the state diagram in the AT&T System V Network

Programmer’s Guide.

Example

#define IPX MAX DATA 546

struct t_unitdata ud;

unsigned char ipxPacketType;

unsigned char ipxDataBuf [IPX_MAX DATA];

ipxAddr_t sourceAddress;

int flags; |

069-000482 Licensed Material — Property of the Copyright Holders 4-1 3

IPX Transport Layer Interface

/* When the t_revudata unblocks ipxPacketType will have the

packet type from the IPX packet */

ud.opt.len = 1;

ud.opt.maxlen = 1;

ud.opt.buf = (char *)&ipxPacketType;

/* When the t_rcevudata unblocks sourceAddress will have the IPX

address of the datagram sender */

ud.addr.len = sizeof (ipxAddr_t);

ud.addr.maxlen = sizeof (ipxAddr_t);

ud.addr.buf = (char *) &SourceAddress;

/* When the t_rcvudata unblocks ipxDataBuf will contain the

data in the IPX packet */

ud.udata.len = IPX_MAX DATA;

ud.udata.maxlen = IPX_MAX DATA;

ud.data.buf = (char *) &ipxDataBuf[0];

1f (t_revudata(ipxFd, &ud, &flags)<0) {

t_error(” t_rcevudata failed ”);

4-14 Licensed Material — Property of the Copyright Holders 069-000482

IPX Transport Layer Interface

t_unbind() Disable a Transport End Point.

This call disables a transport end point so that no further requests destined for the

given end point will be accepted by the transport provider.

Usage

#include <tiuser.h>

#include <ipx_app.h>

int t_unbind (fd)

int fd;

Description

This call is supported as documented in the AT&T System V Network Programmers

Guide, with the following additions:

This call releases the socket number that this transport end point used. This call

also places the transport end point in a TUNBND state, allowing the process to bind

to a new socket number. The t_close() routine calls the t_unbind() routine.

Error

If the IPX driver cannot allocate memory, it will generate an error. This error will set

t_errno to TSYSERR and errno to ENOSTR. a

The following errors can also occur:

t_errno errno

TSYSERR: ENOSTR: This is an IPX driver error. No streams buffers were

available. The unbind was still successful.

TOUTSTATE: This transport end point is not in the T_IDLE state,

so t_unbind() doesn’t apply.

State

The state will always follow the state diagram in the AT&T System V Network

Programmer’s Guide.

Example

int ipxFd;

1f£ (t_unbind(ipxFd)<0) {

tlerror(” t_unbind failed “");

069-—-000482 Licensed Material — Property of the Copyright Holders 4-1 5

IPX Transport Layer Interface

t_close() Close a Transport End Point.

This call informs the transport provider that the user is finished with the transport

end point, and frees any local resources associated with that end point.

Usage

#include <tiuser.h>

#include <ipx_app.h>

int t_close(/d)

int fd;

Description

This call is supported as documented in the AT&T System V Network Programmers

Guide, with the following additions:

A transport end point opened with t_open() should be closed with t_close() to

facilitate IPX/TLI functioning. t_close() will call t_unbind(), but it is bad behavior

for the application to issue a t_close() before issuing a t_unbind().

Errors

Refer to the AT&T System V Network Programmer’s Guide for the errors that may

occur with this call.

- If the IPX driver cannot allocate memory it will generate an error. This error will set

t_errno to TSYSERR and errno to ENOSR.

State

The state will always follow the state diagram in the AT&T System V Network

Programmer’s Guide.

Example

t_close(ipxFd) ;

End of Chapter

4-1 6 Licensed Material — Property of the Copyright Holders 069-000482

Chapter 5

OSI/Platform Interface

The Open System Interconnect/ Platform for AViiON® Systems (OSI/Platform)

provides a TLI interface to the OSI transport layer services. The OSI/Platform

provides connection—based, reliable, sequenced—transport protocol services.

Figure 5—1 shows the TLI interface and the associated OSI/Platform transport

provider stack.

User Application |

pe 0] TLI/OSIP Interface

Transport Layer Interface (TLI)

user space

DG/UX

kernel

space STREAMS System Call Interface (TIMOD/TIRDWR)

TPA OPI/Platform
pe

TPO transport

CLNP provider stack

802.2/LLC1 X.25

Communications Device Drivers

DG/UX

kernel

space

Physical v
Devices Physical Devices: VLC, VSC, etc.

Figure 5-1 OSI/Platform Programming Interface

The TLI user interface for OSI/Platform conforms to the AT&T Transport Interface

Library. Refer to the AT&T UNIX V Documentation Set for a description of the order

and use of the calls. This chapter provides the details of the peculiarities of the

OSI/Platform calls. Any TLI calls not mentioned in this chapter function with the

OSI/Platform driver as specified in the AT&T UNIX System V Network Programmer’s

Guide.

069-000482 Licensed Material — Property of the Copyright Holders 5-1

OSI/Platform for AViiION Systems

Locating TLi—Related Documentation

As previously stated in the Preface, this manual assumes that you are familiar with

the TLI interface and the DG/UXTM system programming environment. The following

reading list is more specific to programming with the TLI on the OSI/Platform.

®@ On-line DG/UXTM system man pages

For a complete description of the TLI calls, please refer to the on—line

DG/UXTM system man pages or to the Programmer’s Reference for the DG /UX

system, Volumes I and II. (The on—line DG/UXTM system man pages may contain

more up—to—date information.)

Also for additional OSI/Platform information, refer to the OSIP(Q), libnsap(),

getnamebynsap(), and getnsapbyname() on-line man pages.

® OSI/Platform Release Notice

Refer to the Release Notice of the current revision of the OSI/Platform for AViiON

Systems. The Release Notice lists additional error handling and troubleshooting

information.

® Setting up and Managing the OSI/Platform for AViiON Systems

This manual explains how to install, configure, manage, and troubleshoot the

OSI/Platform for AViiON System.

@ AT&T UNIX System V Network Programmer’s Guide

If you require additional information on the transport level interface, you may

want to obtain a copy of the AT&T UNIX System V Network Programmer’s Guide.

@ Programming with Transport Level (TLL) Interfaces for AViitON® Systems

(this manual)

This manual explains the DG/UX system and TLI protocol—specific programming

information.

See the Preface for additional information on these and other related documentation.

Compiling Your Program |

For your program to access the transport layer interface at run-time, you must build

your program with the TLI and OSI/Platform libraries. For example, use

% ce user.c -Insl_s -Insap 2?

The command first compiles your program (user.c) and then links the TLI Library

(nsl_s) and the OSI/Platform Library (nsap) and your program.

5-2 Licensed Material — Property of the Copyright Holders 069000482

OSI/Platform for AViiON Systems

OSI/Platform Calls

Table 5—1 lists the OSI/Platform TLI calls that require special consideration. The

table also lists the getnsapbyname() and getnamebynsap() OSI/Platform calls.

The chapter presents the calls in alphabetical order.

Table 5-1 OSI/Platform Calls

Function Description

t_connect()

t_getinfo()

t_listen()

t_open()

getnsapbyname() Returns an OSI/P NSAP-to—name translation.

getnamebynsap() Returns an OSI/P name-to—NSAP translation.

Attempts to initiate a connection with a remote user.

Returns the current characteristics of the OSI/Platform

transport protocol for the file descriptor, fd.

Listens for incoming connect indications.

Kstablish a Transport End Point.

069-000482 Licensed Material - Property of the Copyright Holders 5.3

OSI/Platform for AViiION Systems

getnsapbyname() Returns an OSI/P NSAP-to—name

translation.

This call maps between a network name and a network address. The call extracts

the information from the OSI/P NSAP network database and returns a pointer to the

network address.

Usage

#include <tiuser.h>

#include <sys/osip/osip.h>

char *getnsapbyname (name, nsaplen)

char *name;

int *nsaplen;

Description

The getnsapbyname() call translates a null-terminated string pointed to by *name

and returns a pointer in *name to a statically allocated area of memory containing

the NSAP address (configured with the name or NSAP tag equivalent). On return

from the call, the *nsaplen integer contains the length (bytes) of the NSAP address.

Errors

The call returns a NULL if the NSAP-to—name translation fails for any reason.

5.4 Licensed Material ~ Property of the Copyright Holders 069--000482

OSI/Platform for AViiON Systems

getnamebynsap() Returns an OSI/P name—-to—NSAP

translation.

This call maps between a network address and a network name. The call extracts

the information from the OSI/P NSAP network database and returns a pointer to the

network name.

Usage

#include <tiuser.h>

#include <sys/osip/osip.h>

char *setnamebynsap (nsap, nsaplen)

char *nsap}

int *nsaplen;

Description

The getnamebynsap() call translates the NSAP address pointed to by *name. The

*nsaplen integer contains the length (bytes) of the NSAP address.

The call returns a pointer in *name to a statically allocated area of memory

containing the null—terminated name or its NSAP tag equivalent configured for the

NSAP address.

Errors

The call returns a NULL if the NSAP-to—name translation fails for any reason.

069—000482 Licensed Material — Property of the Copyright Holders 5-5

OSI/Platform for AViiION Systems

t_connect() Establish a Connection With Another

Transport User.

This call attempts to initiate a connection with a remote user.

Usage

#include <tiuser.h>

#include <sys/osip/osip.h>

int t_connect(fd, sndcall, rcucall)

int fd;

struct t_call *sndcall;

struct t_call *rcucall;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide. |

In the t_call structures, the addr buffer contains the OSI/Platform address — a

maximum length of 54 bytes. Figure 5—2 shows the format of the address.

CC CC
22 >)

NSAP TSEL

length NSAP (S 20 bytes) length TSEL (S 32 bytes)

MSB a? LSB MSB a? LSB

- where

NSAP length is a 1-byte field that specifies the number of bytes in the network
Service access point (NSAP) field.

NSAP is the network service access point address of the remote host.

NOTE: When binding a file descriptor for the t_listen() call, the
length of the NSAP field should be 0.

TSEL length is a 1-byte field that specifies the number of bytes in the TSEL

field.

TSEL is the transport selector of a remote or local transport user. TSEL

contains the transport selector of a remote transport user when

connecting to a transport user on a remote host. TSEL contains the

transport selector of a local transport user when binding to an

address on the local host.

When you set TSEL to 0, the system generates a unique random

value for TSEL.

Figure 5-2 OSI/Platform NSAP Address Format

5-6 Licensed Material — Property of the Copyright Holders 069-000482

OSI/Platform for AViiON Systems

The sysadm osipaddrs interface maintains an internal data base of NSAP tags or

names. To translate one of these names to or from its NSAP address, use the

getnsapbyname() or getnamebynsap() function. Refer to the man pages for

descriptions of these functions. |

In the t_call structures, the opt buffer passes the TLI options. The osip.h header file
defines the option values. The options parameter is treated as follows:

option length = 0: connection is established with the transport class designated by

the first NSAP-to—SNPA for NSAP mapping defined in

OSI/Platform configuration.

option length = 1: the following values apply.

TPO_CONS Transport Class 0 over X.25 connection is

established, if possible.

TP4_CLNS Transport Class 4 over CLNS connection is

established, if possible.

option length > 1: connection is rejected with error code TBADOPT.

Make sure that the correct NSAP-to-SNPA mapping exists in the OSI/Platform

configuration before you use any options with the t_connect() call. Thus if the

option TPO_CONS is specified, an NSAP-to—SNPA mapping configured for the

TPO/X.25 stack must exist in the OSI/Platform configuration.

069-000482 Licensed Material — Property of the Copyright Holders 5-/

OSI/Platform for AViiON Systems

t_getinfo() Get Protocol—Specific Service Information.

This function returns the current characteristics of the underlying transport protocol

associated with file descriptor fd. The info structure is used to return the same

information returned by the t_open() call. This function enables a transport user to

access this information during any phase of communication.

Usage

#include <tiuser.h>

#include <sys/osip/osip.h>

int t_getinfo(fd, info)

int fd;

struct t_info *info3

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

The maximum length of expedited data supported, as returned in the etsdu

parameter in the t_info structure, is 16 bytes. Expedited data is only used with

Transport Class 4, and it must be negotiated by the peer transport services.

On a successful return, the servtype parameter in the t_info structure is always set

to T COTS.

5.8 Licensed Material — Property of the Copyright Holders 069-000482

OSI/Platform for AViiON Systems

t_listen() Listen for a Connect Request.

This call enables the passive transport user to receive indications of connect requests

from other transport users.

Usage

#include <tiuser.h>

#include <sys/osip/osip.h>

int t_listen(fd, call)

int fd;

struct t_call *call;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

In the t_call structure, the addr buffer contains the OSI/Platform address — a

maximum length of 54 bytes. Figure 5-2 shown on Page 5-6 shows the format of

the address.

In the t_call structure, the opt buffer receives the TLI options. The osip.h header

file defines the option values.

069-000482 Licensed Material — Property of the Copyright Holders 5.9

OSI/Platform for AViiON Systems

t_open() Establish a Transport End Point.

This call creates a transport end point and returns protocol—specific information

associated with that end point. It also returns a file descriptor that serves as the local

identifier of the end point.

Usage

#include <tiuser.h>

#include <sys/osip/osip.h>

int t_open(path, oflag, info)

char *nath;

int oflag;

struct t_info*info;

Description

This call works as specified in the AT&T UNIX System V Network Programmers

Guide.

The t_open() function creates a transport end point (e.g., a file descriptor) for use in

subsequent network interface operations. The path variable is the name of the ©

streams transport device driver (/dev/cots). |

The maximum length of expedited data supported, as returned in the etsdu

parameter in the t_info structure, is 16 bytes. Expedited data is only used with

Transport Class 4, and it must be negotiated by both transport users.

On a successful return, the servtype parameter in the t_info structure is always set

to T_COTS.

You cannot send user data during a connection establishment.

5-1 0 Licensed Material — Property of the Copyright Holders 069-000482

OSI/Platform for AViiON Systems

Unsupported Transport Interface Calls

Table 5—2 lists the TLI calls not supported by OSI/Platform for AViiON® Systems. If

any of these calls are issued, errno will be set to TNOTSUPPORT.

Table 5-2 Unsupported OSI/Platform TLI Calls

Function Description

t_rcevrel() Receive an orderly disconnect

t_sndrel() Send an orderly disconnect

t_sndudata() Send a data unit (connectionless)

t_rcvudata() Receive a data unit (connectionless)

t_revuderr() Receive a unit data error indication (connectionless)

The t_sndudata(), t_rcevudata(), and t_revuderr() calls are not supported by

OSI/Platform because OSI/Platform is a connection—based service; these calls are

used for connectionless service only.

The t_sndrel() and t_revrel() calls are not supported by the OSI/Platform because it

is a T_COTS service; these calls are used only for T.COTS_ORD service.

Troubleshooting

The OSI/Platform for AViiON Systems supports troubleshooting facilities for its

transport and network services. The system allows you to log transport and network

service errors using the standard DG/UX STREAMS streer(1m) error logging

mechanism. For further troubleshooting information, refer to the Setting up and

Managing the OSI /Platform for AViiON Systems manual.

The system also returns to your application system error codes. The osip.h header

file defines each of the following error codes.

Mnemonic Value Description

EDRRNS 0 DR TPDU received, reason not specified. Get further

diagnostics from the error log or trace.

EDRCAT 1 DR TPDU received, congestion at TSAP. This reflects a

temporary resource shortage at the remote system.

EDRSENA 2 DR TPDU received, session entity not attached to TSAP. The

remote application is not running or configured.

EDRAU 3 DR TPDU received, address unknown. Verify the proper

configuration of addressing information on the local and

remote systems.

069-000482 Licensed Material — Property of the Copyright Holders 5-11

OSI/Platform for AViiON Systems

ECFNCNA

ECFNENC

EDRND

EDRRTEC

EDRCNR

EDRDSRD

EDRMMR

EDRPR

EDRRO

EDRCRR

EDRHLI

ETPNRA

ETRAVF

9-12

128

129

130

131

132

133

135

136

138

3827

3829

Network characteristic not available at the remote TSAP.

Verify the proper configuration of addressing information on

the local and remote systems.

Insufficient network connections available to support the

connection requested. This reflects a resource shortage on

the local system.

DR TPDU received, normal disconnect from application. The

remote application has either terminated or issued a normal

transport disconnect request.

DR TPDU received, remote transport entity congestion at

connect request time. This reflects a temporary resource

shortage on the remote system.

DR TPDU received, connection negotiation rejected. Verify

that the configuration of transport parameters matches on

the local and remote systems.

DR TPDU received, duplicate source references detected. Get

further diagnostics from the error log or trace.

DR TPDU received, mismatched references detected. Get

further diagnostics from the error log or trace.

DR TPDU received, protocol error detected. Get further

diagnostics from the error log or trace.

DR TPDU received, reference overflow. The maximum

number of connections supported at the remote system may

be insufficient.

DR TPDU received, connection request refused on this

network connection. Verify the proper configuration of

addressing information on the remote system.

DR TPDU received, header or parameter length invalid. This

indicates a protocol error in either the local or remote

transport provider.

No resource available. This is due to an application using

Transport Class 4 attempting to reconnect before the frozen

reference timer has expired. Either reconfigure the frozen

reference timer value or retry the connect request later.

Address verification failure. The local transport provider

could not verify the remote address on either a T—Connect

Request or an N—Connect Indication. Verify the proper

configuration of addressing information on the local system.

Licensed Material — Property of the Copyright Holders 069-—000482

EDCAC

EDCTUE

EDCCTE

EDCRTE

EDCITE

EDCNCF

EDCNRR

ETRUTA

ECFUTA

ESYSBS

069-000482

8212

8213

8214

8215

8216

8221

8222

8227

8228

20480

OSI/Platform for AViION Systems

Disconnection, abnormal condition. Get further diagnostics

from the error log or trace.

Disconnection, transport services user error. Get further

diagnostics from the error log or trace.

Disconnection, connection timer expired. Verify that the the

remote transport 1s ready to receive connections.

Disconnection, retry timer expired. A network message has

been retransmitted for the maximum amount of time and

number of retries without acknowledgment. Most likely the

remote system is not receiving network messages, or perhaps

network messages are taking longer to reach the remote

system than is allowed by the current setting of the

maximum number of retransmissions allowed.

Disconnection, inactivity timer expired. No network message

has been received for the period of the inactivity timer.

Verify that the local transport’s inactivity timer is set longer

than the remote transport’s window timer.

Disconnection, network connection failure. The network

connection being used for this transport connected has been

terminated.

Disconnection, network connection reset. The network

connection being used for this transport connected has been

reset.

The called transport address is not configured. Verify the

proper configuration of addressing information on the local

system.

The calling transport address is not configured. This is likely

to be due to an internal problem in the transport provider.

Disconnection, severe buffer shortage. This reflects a

temporary (though severe) resource shortage on the local

system.

End of Chapter

Licensed Material — Property of the Copyright Holders 5.1 3

Glossary

The following are terms and definitions used throughout this document.

DLL

Data Link Layer. It resides between the Network layer and the Physical layer. It

consists of a Logical Link Control sublayer and the MAC sublayer.

downstream

The direction from the Stream Head to driver.

driver

The end of the Stream closest to an external interface. The principal functions of

the driver are handling any associated device, and transforming data and

information between the external interface and the Stream.

LLC

Logical Link Control. The upper portion of the Data Link layer that supports

media—independent data link functions, and uses the services of the MAC

sublayer to provide services to the Network layer.

-LLC provider

The Data Link layer protocol that provides the services of the Data Link Provider

Interface.

Local Transport End Point

This is the local user application that is using the Internet Packet Exchange

(IPX) or Sequence Packet Exchange (SPX) driver. A UNIX SPX application can

have more than one local transport end point associated with it (i.e. a

multiple—connection server).

MAC

Medium Access Control. The lower portion of the Data Link layer responsible for

controlling transmission and reception of data packets over the wire.

message

One or more linked blocks of data or information, with associated STREAMS

control structures containing a message type. Messages are the only means of

transferring data and communicating with a Stream.

069-000482 Licensed Material — Property of the Copyright Holders G lossa ry-1

Glossary

module

Software that performs functions on messages as they flow between Stream head

and driver. A module is a STREAMS counterpart to the commands in a shell

pipeline except that a module contains a pair of functions which allow

independent bidirectional (downstream and upstream) data flow and processing.

multiplexor

A mechanism for connecting multiple Streams to a multiplexing driver. The

mechanism supports the processing of the interleaved data Streams and the

processing of internet working protocols. The multiplexing driver routes

messages among the connected Streams. The other end of a Stream connected to

a multiplexing driver is typically connected to a device driver.

NetBEUI

NetBIOS Extended User Interface. Typically refers to the transport layer

protocol that is compatible with the IBM LAN Support Program.

NetBIOS

Network Basic Input Output System. Refers to the transport layer programming

interface.

NTP

NetBEUI Transport Provider. The kernel—level protocol that accesses the

services of the data link layer

OSI

Open System Interconnect. The term used by ISO, the International
Organization for Standardization Organization, to refer to its seven—layer

communication model.

Remote Transport End Point

This is the remote user application that is connected to the local transport end

point.

source routing

Method by which stations are addressed across multiple rings.

SPX driver

This is the DG/UX SPX transport provider that services the SPX transport end

points. |

G lossa ry-2 Licensed Material — Property of the Copyright Holders 069-000482

Glossary

SPX user

This is the UNIX user application or UNIX application developer.

Stream

The kernel aggregate created by connecting STREAMS components, resulting

from an application of the STREAMS mechanism. The primary components are a

Stream head, a driver, and zero or more pushable modules between the Stream

head and driver. A Stream forms a full duplex processing and data transfer path

in the kernel, between a user process and a driver. A Stream is analogous to a

Shell pipeline except that data flow and processing are bidirectional.

Stream head

The end of the Stream closest to the user process. The Stream head provides the

interface between the Stream and the user process. The principal functions of the

Stream head are processing STREAMS-related system calls, and bidirectional

transfer of data and information between a user process and messages in

STREAMS’s kernel space.

STREAMS

A kernel mechanism that supports development of network services and data

communication drivers. It defines interface standards for character input/output

within the kernel, and between the kernel and user level. The STREAMS

mechanism comprises integral functions, utility routines, kernel facilities and a

set of structures.

upstream

The direction from driver to Stream head.

End of Glossary

069-000482 Licensed Material — Property of the Copyright Holders G lossa ry-3

Index

Within the index, a bold page number indicates a primary reference. A range of page

numbers indicates the reference spans those pages.

A

Aborting a connection, 3-27

Accessing OSI/P NSAP database, 5-4,

5-5

Activating an endpoint, 3-6

Asynchronous mode, SPX, 3-1

bcast_option, 2-7

Binding to a dynamic socket, 3-3

Byte swapping, network addesses, 1-4

C

Calls, summary, 1-5

CLNS device name

/dev/Apx for IPX, 1-3

/dev/nbdg for NetWare, 1-3, 2-6

/dev/ntpd for DG/NETBEUI, 1-3, 2-6

/dev/udp for TCP/IP, 1-3

Compiling your program, 1-2, 5-2

COTS device name

/dev/cots for OSI/P, 1-3

/dev/nbio for NetWare, 1-3, 2-6

/dev/nspx for SPX, 1-3

/dev/ntpc for DG/NETBEUI, 1-3, 2-6

/dev/tcp for TCP/IP, 1-3

IPX, maximum TSDU, 4-4

SPX, maximum TSDU, 3-15

contacting Data General, v

D

Daemon, linking to IPX, 3-16, 4-11

Data structures

IPX, ipxAddr, 4-6

SPX, ipxAddr, 3-7

069-000482 Licensed Material — Property of the Copyright Holders

tk_opts, 2-3, 2-17

TLI/NetBIOS. See TLI/NetBIOS, data

structures.

Device names

DG/NETBEUI, 1-3, 2-6

IPX, 1-3, 4-2

Novell NetBIOS, 1-3, 2-6

OSI/P, 1-3

SPX, 1-3, 3-2, 3-15

summary, 1-3

TCP/IP, 1-3

Document sets, ili

dup() system call, 2-16

Data General, contacting, v

E

Error

codes, 1-2, 2-2

handling, 1-2, 5-11

return code, EINTR, 4-2

exec() system call, 2-16

F

File descriptor, resfd, 3-3

fork() system call, 2-16

fort_bind, 2-2

G

getnamebynsap() call, 5-5

getnsapbyname() call, 5-4

group_option, 2-7

H

Header files

ipx_app.h. See Chapters 3 and 4.

nb_app.h for TLI/NetBIOS, 2-2—2-3

osip.h for OSI/P, 5-7, 5-9, 5-11

slanuser.h for TLI/NetBIOS, 2-3

spx_app.h. See Chapter 3.

summary, 1-3

tiuser.h for TLI/NetBIOS, 2-3

Index-1

Internet packet exchange. See IPX.

IPX

calls, 4-3

daemon, 4-11

driver and device name, 4-2—4-16

L

Linking

OSI/P library (nsap), 5-2

TLI library (nsl_s), 1-2, 5-2

Local transport end point, Glossary-1

Mapping OSI/P network name and

address, 5-4, 5-5

N

nb_app.h header file, TLI/NetBIOS,

2-2—2-3 |

NetBIOS, transport provider, 2-2

Network addesses, summary and byte

swapping, 1-4

nipx device name, 1-3, 4-2

Notation convention, iv

Novell NetBIOS, device names, 1-3, 2-6

nspx device name, 1-3, 3-2, 3-15

O

open() system call, 2-16

Option data

t_connect, 5-7

t_rcevudata, 4-13

t_sndudata, 4-10

OSI/P

device name, 1-3

network address format, 5-6

related documentation, 5-2

unsupported calls, 5-11

Index-2 Licensed Material — Property of the Copyright Holders

osip.h

error values, 5-11

header file, 5-7, 5-9, 5-11

option values, 5-7, 5-9

R

Related manuals, 111

Remote transprot end point, Glossary-2

resfd, file descriptor, 3-3

S

Sequence packet exchange. See SPX.

Service Advertising Protocols (SAPs),

4-7

slanuser.h header file, TLI/NetBIOS,

2-3

SPX

asynchronous mode, 3-1

connection, terminating an, 3-27

daemon, 3-16

driver, Glossary-2

synchronous mode, 3-1

user, Glossary-3

WatchEmu, 3-17, 3-19, 3-21—3-22

watchdog flag. See WatchEmu.

spx_tune.h file, 3-17

Structures

IPX, ipxAddr, 4-6

SPX, ipxAddr, 3-7

tk_opts, 2-3, 2-17 |

TLI/NetBIOS. See TLI/NetBIOS, data

structures.

Synchronous mode, SPX, 3-1

System error codes, 1-2

T

t_accept() call

TLI/NetBIOS, 2-21

TLY/SPX, 3-2, 3-3, 3-7, 3-13

t_alloc() call, TLI/NetBIOS, 2-10

t_bind(call

TLI/IPX, 4-1, 4-6—4-16

TLI/NetBIOS, 2-7

TLI/SPX, 3-2, 3-6, 3-7, 3-14

T_BND state, 3-4, 3-8, 3-11, 3-14

069-000482

t_close() call

TLI/IPX, 4-2, 4-15, 4-16

TLI/NetBIOS, 2-9

TLI/SPX, 3-2, 3-9, 3-27

T_CLTS service type, 4-4

t_connect() call

OSI/P, 5-6

TLIU/NetBIOS, 2-19, 2-22

TLI/SPX, 3-2, 3-10

T_COTS service type, 3-15, 3-30, 5-11

T_COTS_ORD device type, 2-29, 3-30,

5-11

TCP/IP, device names, 1-3

T_DATAXFER state, 3-4, 3-11, 3-19,

3-24, 3-25

t_discon() call, TLI/SPX, 3-22

T_DISCONNECT indicator, 2-19

Terminating SPX connection, 3-27

t_errno() flag, 3-24, 3-25

t_error() call, TLI/NetBIOS, 2-12

t_free() call, TLI/NetBIOS, 2-11

t_getinfo() call

OSI/P, 5-8

TLI/NetBIOS, 2-13, 2-29

t_getstate() call, TLI/NetBIOS, 2-14

T_IDLE state, 3-8, 3-11, 3-18, 3-21,

3-22, 3-24, 3-25, 4-10, 4-15

t_info structure, TLI/IPX, 4-4

t_info() call, TLI/SPX, 3-15

tiuser.h header file, TLI/NetBIOS, 2-3

tk_opts values, 2-3, 2-17

TLI calls, summary, 1-5

TLI/IPX, data structures, ipxAddr, 4-6

TLI/SPX, data structures, ipxAddr, 3-7

TLI/NetBIOS

data structures

nb_addr, 2-2

netbuf, 2-2

sl_t_opts, 2-3

t_bind, 2-2

TKOPTIONS, 2-2

tk_opts, 2-3, 2-17

interface, 2-2

069-000482 Licensed Material — Property of the Copyright Holders

interface functions, 2-3

managing local functions, 2-5—2-34

nb_app.h header file, 2-2—2-3

option management structure, 2-2

slanuser.h header file, 2-3

tiuser.h header file, 2-3

TLI OSI/Platform, osip.h header file,

5-7, 5-9, 5-11

t_listen() call

OSI/P, 5-9

TLI/NetBIOS, 2-20, 2-21, 2-27, 2-28

TLI/SPX, 3-2, 3-3, 3-7, 3-13

t_look(call, TLI/NetBIOS, 2-15, 2-19

T_NEGOTIATE flag, 2-7

t_open() call

OSI/P, 5-10

TLI/IPX, 4-1, 4-4—4-16

TLI/NetBIOS, 2-6, 2-29

TLI/SPX, 3-2, 3-9, 3-15

t_optmgmt() call

TLI/IPX, 4-1, 4-8—4-16

TLI/NetBIOS, 2-7, 2-17

TLI/SPX, 3-17

Transport

layer interface. See TLI.

service data unit (TSDU), 3-15, 4-4

service provider (TPI). See NetBIOS,

service provider.

t_rcv() call

TLI/NetBIOS, 2-24

TLI/SPX, 3-2, 3-19

t_rcvconnect() call, TLI/NetBIOS, 2-19,

2-22

t_rcvdis() call

TLI/NetBIOS, 2-19, 2-28, 2-29

TLI/SPX, 3-2, 3-9, 3-11, 3-19, 3-21

3-27

t_revrel() call, TLI/NetBIOS, 2-29, 2-30

t_rcvudata() call

OSI/P, 5-11

TLI/IPX, 4-2, 4-13—4-16

TLI/NetBIOS, 2-33

TLI/SPX, 3-30

t_revuderr() call, TLI/NetBIOS, 2-34

t_revrel() call

OSI/P, 5-11

TLI/SPX, 3-30

Index-3

TSDU, (transport service data unit),

3-15, 4-4

t_snd() call

TLI/NetBIOS, 2-25

TLI/SPX, 3-2, 3-3, 3-21, 3-24

t_snddis() call

TLI/NetBIOS, 2-27, 2-28, 2-29

TLI/SPX, 3-2, 3-7, 3-9, 3-13, 3-21,

3-27

t_sndrel() call

OSI/P, 5-11

TLI/NetBIOS, 2-29, 2-30

TLI/SPX, 3-30

t_sndudata() call

OSI/P, 5-11

TLI/IPX, 4-2, 4-10—4-16

TLI/NetBIOS, 2-32

TLI/SPX, 3-30

index-4 Licensed Material — Property of the Copyright Holders

t_sync() call, TLI/NetBIOS, 2-16

t_unbind() call

TLI/IPX, 4-2, 4-15—4-16

TLI/NetBIOS, 2-8

TLI/SPX, 3-2, 3-9, 3-27, 3-29

T_UNBND state, 3-16, 3-28, 3-29, 4-15

Typesetting convention, iv

U

U_GROUP_OPTION, 2-7

W

WatchEmu

defined, 3-17

t_rev() call, 3-19

t_revdis() call, 3-21—3-22

069-000482

TO ORDER

1. An order can be placed with the TIPS group in two ways:

A. MAIL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space

provided on the order form.

B. Send your order form with payment to: Data General Corporation

ATTN: Educational Services/TIPS G155

4400 Computer Drive

Westboro, MA 01581-9973

C. TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for

by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT

2. As acustomer, you have several payment options:

A. Purchase Order — Minimum of $50. If ordering by mail, a hard copy of the purchase order must

accompany order.

B. Check or Money Order — Make payable to Data General Corporation. Credit Card -A minimum order of

$20 is required for MasterCard or Visa orders.

SHIPPING

3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order

and refer to the following chart:

- Total Quantity Shipping & Handling Charge

1—4 Items $5.00

5—10 Items $8.00

11—40 Items $10.00

41-200 Items $30.00

Over 200 Items $100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A

separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS

4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount

$0-$149.99 0%

$150-$499.99 10%

Over $500 20%

TERMS AND CONDITIONS

dD. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be

adhered to at all times. |

DELIVERY

6. Allow at least two weeks for delivery.

RETURNS

7. Items ordered through the TIPS catalog may not be returned for credit.

8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator

at (508) 870-1600 to notify the TIPS department of any problems.

INTERNATIONAL ORDERS

9. Customers outside of the United States must obtain documentation from their local Data General

Subsidiary or Representative. Any TIPS orders received by Data General U.S. Headquarters will be

forwarded to the appropriate DG Subsidiary or Representative for processing.

TIPS ORDER FORM

COMPANY NAME COMPANY NAME
ATTN: ATTN:

ADDRESS ADDRESS (NO PO BOXES)

CITY CITY

STATE ZIP STATE ZIP

Priority Code (See label on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) Ext.

(Agrees to terms & conditions on reverse side)

____SHIPPING & HANDLING _VOLt COUN ORDER TOTAL

ao UPS at Order Amount Save Less Discount _
1—4 Items $5.00 $0-$149.99 0% See B

5-10 Items $8.00 $150-$499.99 10% | lax Exempt # SUB TOTAL
11-40 Items $10.00 Over $500.00 20% | oF Sales Tax
41-200 Items $30.00 (if applicable) Your local" +
7 sales tax

200+ Items $100.00 Shipping and +

__Check for faster delivery __handling— See A

Seater and ited ic yourol TOTAL — See CG
() UPS Blue Label (2 day shipping)

G Red Label (overnight sppng)

AYMENT fh a THANK YOU FOR YOUR ORDER

Purchase e Order Attached ($50 minimum)
P.O.numberis —_.. (Include hardcopy P.O.) PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

[J Check or Money Order Enclosed PLEASE ALLOW 2 WEEKS FOR DELIVERY.
0 Visa (0 MasterCard ($20 minimum on credit cards) NO REFUNDS NO RETURNS.

Account Number Expiration Date * Data General is required by law to collect applicable sales or use tax on all
purchases shipped to states where DG maintains a place of business, which

| | | | | | i | | | covers all 50 states. Please include your local taxes when determining the total
value of your order. If you are uncertain about the correct tax amount, please call
508-870-1600.

Authorized Signature

(Credit card orders without signature and expiration date cannot be processed.)

Form 702

Rev. 8/87

DATA GENERAL CORPORATION

TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS
Data General Corporation (“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance with the following

terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form. These terms and conditions

apply to all orders, telephone, telex, or mail. By accepting these products the Customer accepts and agrees to be bound by these terms and

conditions.

1. CUSTOMER CERTIFICATION

Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub—licensee of the software which is the

subject matter of the publication(s) ordered hereunder.

2. TAXES

Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under this Agreement,

exclusive of taxes based on DGC’s net income, unless Customer provides written proof of exemption.

3. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such

markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details and

other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and

conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into

this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

4. LIMITED MEDIA WARRANTY

DGC warrants the CLI Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a period of ninety

(90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided it is returned postage prepaid to

DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and DGC’s sole obligation and liability for defective media.

This limited media warranty does not apply if the media has been damaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY

EXCEPT FOR THE LIMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF

THE PUBLICATIONS, CLI MACROS OR MATERIALS SUPPLIED HEREUNDER.

6. LIMITATION OF LIABILITY

A. CUSTOMER AGREES THAT DGC’S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO LIABILITY ARISING

OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT EXCEED THE CHARGES PAID BY

CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED. THIS LIMITATION OF LIABILITY SHALL NOT APPLY

TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY DGC’S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED

HEREIN, IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES

WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR LOST

DATA, OR DELIVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY

THEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

B. ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION ACCRUES.

7. GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC’s acceptance of the referenced Educational Services Order

Form. Such contract is governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of law rules. Such contract is not

assignable. These terms and conditions constitute the entire agreement between the parties with respect to the subject matter hereof and

supersedes all prior oral or written communications, agreements and understandings. These terms and conditions shall prevail notwithstanding

any different, conflicting or additional terms and conditions which may appear on any order submitted by Customer. DGC hereby rejects all

such different, conflicting, or additional terms.

8. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)

Customer understands that information and material presented in the AOS/VS Internals Series documents may be specific to a particular

revision of the product. Consequently user programs or systems based on this information and material may be revision—locked and may not

function properly with prior or future revisions of the product. Therefore, Data General makes no representations as to the utility of this

information and material beyond the current revision level which is the subject of the manual. Any use thereof by you or your company is at

your own risk. Data General disclaims any liability arising from any such use and | and my company (Customer) hold Data General completely

harmless therefrom.

Programming

with Transport

|

|

|

.
Layer Interface |
(TLI) for AViiON®)

|
|

|

Systems

069—000482-01

Cut here and insert in binder spine pocket

q, DataGeneral
Data Manaval Carnarationn Wacthnarn Maceachieatte N1528N

