
=e
JPO sf JP7 |

In This Issue:

8-Way Symmetric Multiprocessor

Systems

Contents

Multiprocessor Myths...................00. 2

Multiprocessor Concepts 3

Performance Case Studies.............. 8

2X, 4X, & 8X Performance

GINS .0.. oe cceccesscssseeceeecceeeeeees 9

Performance Gains Greater

Than 2X, 4X, & 8X wo... 9

Large Compilation..........0.0......008. 12

Multiuser Benchmark 14

Multiprocessor AViiON® systems provide users with

a unique and powerful way of increasing their data

processing throughput. However, we’re concerned

that there are misconceptions about how AViiON

multiprocessing systems work and misconceptions

about how to take advantage of a multiprocessing

system’s power.

Two questions that we hear often are “Am I really

going to see a performance increase if I go from a

single processor to a multiprocessor configuration?”

and “What kinds of multiprocessor performance

increases can I expect?” We want to answer these

kinds of questions, so we'll devote this technical brief to discussing Data

General’s approach to the implementation of Symmetric Multiprocessor

Systems (SMPs) in the AViiON series of computers. We’ll explain how the

AViiON SMPs work and how they provide a performance advantage.

We'll try to clear up the common misconceptions about AViiON

multiprocessor systems. Finally, we’ll give you some hard facts that show

the kinds of performance advantage that can be obtained when you use

two-, four-, and eight-processor AViiON computer systems.

Please Note—This Technical Brief contains updated test results of the new AViiON

AV6280 system, running with one, two, four, and eight processors. This Technical Brief

replaces the July 31, 1991 Technical Brief (012-003886), which contained information for

single-, dual-, and quad-processor systems.

AViiON is a registered trademark of Data General Corporation.

DG/UxX is a trademark of Data General Corporation.

FrameMaker is a registered trademark of Frame Technology Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

©1991, 1992 Data General Corporation.

Produced on a Data General

AViiON AV4000 with FrameMaker® 3.1X.

012-004246-00

Page2 @,

Multiprocessor Myths

Let's start by dispelling some common misconceptions about

multiprocessing. We’ll talk more about these issues in the rest of this brief.

Myth: Multiprocessing systems don’t provide a significant performance

advantage.

Not true—multiprocessor systems provide real-world performance

advantages; they are not just a theoretically interesting experiment. In

fact, multiprocessor AViiON systems have been in customers’ hands

since April 1989.

Myth: Ineed to change my application code to take advantage of a multiprocessor

system.

Not true—you don’t need to change your application software to run

it on an AViiON multiprocessor system. You can run the exact same

applications on single-processor systems and multiprocessor systems.

Myth: Parallel processing and multiprocessing are the same thing.

Also not true—parallel processing systems may use special compilers

or special system calls to produce parallelized programs. These

special, non-standard system calls can affect application portability. In

contrast, AViiON SMP systems support UNDX® standards such as

System V, BSD, and POSIX.

Myth: I can achieve significant performance gains just by adding another processor

to my system.

Not necessarily true—you will see significant performance gains if

you add a processor to a system that is CPU bound. However, adding

a processor to a system that is memory bound or I/O bound will not

improve performance significantly. You must scale up the system’s

I/O or memory subsystems to eliminate any bottlenecks before you

can take advantage of another processor.

Myth: A single-processor DG/UX system, which uses the DG/UX multiprocessor

kernel, does not perform as well as a single processor system that uses a

traditional kernel.

Not true—the DG/UX kernel was designed from the start to work

with both single and multiprocessor systems. The DG/UX kernel

database locking mechanisms are as efficient as the traditional “no

pre-emption” locking strategy.

8-Way Symmetric Multiprocessor Systems DG/UX Technical Brief

012-004246-00 January 28, 1993

@, Page3

AViiON Multiprocessor Concepts

An AViiON multiprocessor system is a Symmetric Multiprocessing (SMP)

system. The key word here is symmetric, which means that the CPUs, the

Job Processors, in an AViiON SMP system are seen by user programs and

the DG/UX operating system as equivalent (Figure 1).

Main

Memory DiskO |°°""| Disk “D”

[
I/O Bus

Common
Bus

Job Job
Processor 0 ~ “ "“ "1 Processor “J”

Figure 1 The AViON Symmetric Multiprocessing System

In a multiprocessing AViiON system:

CO

Q

The resources of the system’s configuration, such as memory and

peripheral devices, are shared by all operating system and user

processes.

A user process, or any part of a user process, can run on any Job

Processor. In other words, a user process that is temporarily suspended

can run on a different Job Processor when it starts to run again.

similarly, a kernel process can run on any Job Processor.

Processes executing kernel code can run concurrently on multiple Job

Processors.

Any I/O operation can run on any Job Processor, and Job Processors can

execute I/O operations concurrently.

The kernel’s integrity is managed by internal locking mechanisms.

The SMP design, which uses each Job Processor equally, contrasts to other

multiprocessor designs, such as master/slave or master/slave hybrids. In a

master/slave configuration, the operating system runs only on a “master”

DG/UX Technical Brief

January 28, 1993

8-Way Symmetric Multiprocessor Systems

012-004246-00

Page4 @

processor, which controls the other processors. As the number of slave

processors increases, the master processor can become a bottleneck because

it cannot share its load with the other processors in the system.

In a hybrid master/slave configuration, one processor may be responsible

for controlling all of the system’s peripheral devices. This I/O processor

becomes a potential bottleneck. In a hybrid configuration, the kernel may

be able to run on different processors, but it cannot run on multiple

processors concurrently.

Bottlenecks

_ Since we’ve mentioned bottlenecks in master/slave configurations, we'll

make it clear that SMP configurations can also have bottlenecks. Typically,

the bottlenecks occur when there is too little memory or too few disk

resources to service the multiple Job Processors. In this case, a processor

may be idle while processes that it could run are waiting to access memory

or a disk. This resource imbalance is the issue of “scale” that we mentioned

earlier.

When you configure an SMP system, you should be sure that the system

provides enough disk throughput and memory capacity to ensure that

processes aren’t contending for external resources. In Technical Brief

012-004054 (The DG/UX 5.4 File System) we provide tips for tuning a file

system.

Processes, Virtual Processors, and Job Processors

Processes are programs in execution. On an AViiON system, processes run

on Virtual Processors (VPs). VPs are software abstractions of the

computer’s real, physical Job Processors (JPs). Because they are software

abstractions, VPs hide the implementation details of the underlying

On an SMP hardware from the processes. For example, processes don’t even know if

system, a they’re running on a machine that has a single JP or multiple JPs.

process can

run on any Job Figure 2 shows conceptually how processes, VPs, and JPs are arranged. In

Processor. this hierarchy, there are typically more processes than VPs and more VPs

than JPs. Therefore, processes compete for the services of the VPs and VPs

compete for the services of the JPs.

8-Way Symmetric Multiprocessor Systems DG/UX Technical Brief

012-004246-00 January 28, 1993

@, Pages

Binds processes to VPs.

Accepts bound VPs from

Dispatch the MTS. Puts VPs into the
Scheduler prioritized VP Eligible List.

Dispatches the highest pri-

ority VPs to available JPs.
a

a)ee)Pa et rt >
atetetererateratetatetalale
Le

VP

Eligible

List

prone
ARM ea OS

aperan ome aes

Job
Processor 0 Processor “J”

Figure 2 Scheduling Processes, Virtual Processors, and Job Processors

As shown in Figure 2, there are two levels of scheduling, which the

DG/UxX kernel manages. The kernel has a Medium Term Scheduler that it

uses to assign processes to VPs and a lower-level dispatcher that it uses to

schedule VPs onto JPs. The Medium Term Scheduler (MTS) establishes and

implements timesharing scheduling policies. The MTS runs as a kernel

process on its own dedicated VP. The dispatcher assigns VPs to JPs, based

on the VPs’ priorities. The code for the dispatch scheduler runs on each JP.

When a process is assigned to a VP, we say that it’s “bound” to the VP.

Only one process at a time can be bound to a VP. A VP that has a process

bound to it can run on any available JP, because of the symmetry of the

AViiON system’s multiprocessor design.

A VP (with its process) can be removed from a JP when any of several

events occur. Because the DG/UX operating system is a time-sharing

system, a VP may have simply used up its allocated time slice and needs to

be taken off of a JP to allow another VP to run. Other events include page

faults, which occur when a process tries to access data that isn’t already in

memory.

DG/UX Technical Brief 8-Way Symmetric Multiprocessor Systems

January 28, 1993 012-004246-00

Page6 q,

When a VP can no longer run, the JP that was running the VP is available

to run a different VP. Whenever a JP is free, its dispatch code says “I’m

available to run a VP” and the dispatcher looks at the system-wide VP

Eligible List to determine which VP to run next.

The VP Eligible List contains the status of all the system’s VPs, including

information about whether a VP can be run, as well as the VP’s priority

relative to the other VPs. A JP’s dispatcher looks at this queue and loads

the highest priority VP that is ready to run.

About Kernel Locks and Integrity

Designing and implementing a multiprocessor system requires an

operating system that ensures that the kernel’s internal data is protected.

Consider the case where a process, running in kernel space, updates data

in two kernel databases. If another process tries to access one of these

databases, the kernel process could read or write invalid data. The same

problem could occur if you are asking for your checking account balance

from a teller machine while someone else in your family is making a

deposit at another teller machine. Your account is temporarily “owned” by

the first transaction and is released when the account’s database is

updated.

In most single-processor UNIX systems, the kernel’s integrity is

maintained primarily by a policy of no pre-emption. While a process runs in

kernel mode (supervisor mode), the process cannot be pre-empted by

another process—the kernel mode part of the process must run to

completion. A process runs in kernel mode when its program makes a

system call, or when the process takes a page fault.

This traditional, no pre-emption approach is not effective in a

multiprocessor system. It makes no sense to have one Job Processor wait

while another one completes an entire kernel-mode operation as occurs in

master/slave configurations. Processes would be waiting needlessly when

they could be doing work.

To solve the problem of under-utilized processors, the DG/UX operating

system uses kernel database locking mechanisms. The operating system

applies locks to critical kernel databases so that only one process at a time

The DG/UX can access them. If a process tries to access a locked database, the process

kernel’s locking “waits on the lock” and can access the database after the first process has

mechanisms completed its read or write operations. That means that a process can enter
ensure kernel kernel mode and perform any operation up to the point that it requires
integrity. access to a locked database. The DG/UX kernel’s locking mechanisms

provide finer control of the kernel’s shared resources than the no pre-

emption strategy (which is really equivalent to a single, or global, lock on

the kernel).

8-Way Symmetric Multiprocessor Systems DG/UX Technical Brief

012-004246-00 January 28, 1993

q, Page7

This DG/UX locking technique allows the operating system to perform

operations on behalf of processes on more than one Job Processor—without

corrupting system data. Consider, for example, two kernel processes: One

is creating a file; the other wants to delete the same file. The kernel’s

locking mechanisms ensure that the operations are synchronized so that

they cannot corrupt system databases.

Finally, we’ll point out that this kernel database locking strategy costs little

in terms of performance when used on a single-processor system. (The

DG/UxX operating system uses the same kernel on both single-processor

and multiprocessor configurations.) Some people have wondered if there is

too much overhead managing locks as compared to the traditional no pre-

emption strategy. No—the DG/UX kernel’s design is efficient because the

kernel was designed from the start to work with both multiprocessor and

single-processor systems. The DG/UX kernel provides a variety of locking

mechanisms with different performance characteristics and functionality.

This enabled the kernel designers to use the most efficient locks for the

kernel’s different databases.

OMP and Parallel Processing—Apples and Oranges

On AVIION

systems, the

same program

will run on

single-

processor and

multiprocessor

systems.

An area that deserves some attention is the difference between SMP

systems and parallel processing systems. It’s important to emphasize that

the AViiON series of multiprocessor systems are not parallel processing

systems.

A parallel processing system often depends on special programming

techniques or special compilers. A parallel processing compiler

automatically locates parallel paths in programs and generates code that

will run concurrently on the multiple processors in a parallel system. A

parallel system usually provides special-purpose, but non-standard,

extensions and system calls. You can’t make these special extensions

invisible to the program.

The important issue here is program portability. The software portability

inherent in SMP systems is not available in parallel processing systems.

When you port a parallelized program to a different parallel programming

system, you'll probably have to modify or rewrite the code to use the target

system’s extensions. No standards are in place for writing portable code for

different parallel systems.

In contrast, programs that adhere to the System V, BSD, or POSIX

standards will run on any AViiON system. If a source program complies

with one of these standards, the program will run, with minimal changes,

on a single-processor AViiON system, on a multiprocessor AViiON system,

or on other machines that adhere to the System V, BSD, or POSIX

standards. Also, if an executable program adheres to the 880pen Binary

Compatibility Standard (BCS), the program will run, without changes, on

any AViiON system.

DG/UX Technical Brief 8-Way Symmetric Multiprocessor Systems

January 28, 1993 012-004246-00

Page8 @,

Multiprocessor Performance Case Studies

We'll conclude this technical brief by looking at four examples of how

multiprocessor systems provide a performance advantage over a single-

processor system. In the tests, we used a new AViiON eight-processor

system, and ran the same programs on one, two, four, and eight of the

system’s processors. We chose the examples to highlight the fact that

multiprocessor performance gains are dependent on the kinds of

applications that a system is running. We’ll show you that compute-bound

applications realize the most performance gains.

Test 1 demonstrates how a two-processor system, a four-processor system,

and an eight-processor system perform at their theoretical limits of two

times (2X), four times (4X), and eight times (8X) better than a one-processor

system.

Test 2 shows you how two processors can actually perform over two times

better than one processor, four processors over four times better, and how

eight processors can perform over eight times better.

The third and fourth tests are based on practical, real world applications.

In test 3, we compiled and linked a large program (the DG/UX 5.4.2

kernel). The results show the performance gains that can be achieved when

you are running compute-intensive programs. In test 4, we ran a

benchmark program that tests a system’s performance in a multiuser,

mixed job scenario.

In all of the tests, we used the same 25Mhz AViiON AV6280 series

computer, running the DG/UX 5.4.2 operating system.

For the first three tests, the system was configured with 348 Mbytes of

main memory and one 1 Gbyte SCSI disk. We configured the system to run

with a single Job Processor (JP), then with two JPs, then with four JPs, and

finally, with eight JPs. The operating system was configured with the

default settings and we did no run-to-run tuning. Therefore, the machine

and operating system configurations will not provide the optimum

performance for a particular application or for this range of test

applications.

8-Way Symmetric Multiprocessor Systems DG/UX Technical Brief

012-004246-00 January 28, 1993

@, Page9

Test 1—2X, 4X, and 8X Performance Gains

In this test, we ran a totally compute-bound application—an application

that requires no I/O—on one, two, four, and eight processors. Although

this isn’t a “real” application, the test demonstrates that the 2X, 4X, and 8X

scaling when running a compute-bound application.

This test application starts four processes and each process immediately

forks another child process (for a total of eight processes). Each of the eight

processes then counts to 100,000,000.

Figure 3 shows the time that it took to run the test on four different

processor configurations. The right-hand column in the figure shows the

speed-improvement ratios of the two, four, and eight processors versus one

processor.

Performance Gains

(Eight, Four, & Two vs. One) y

8X

Number fees
107

of Seconds ax
Processors

(JPs) 2X

426

Seconds

[jf {| f{ | Jf fj [| J |

0 40 80 120 160 200 240 280 320 360 400 440

Total Run Time (seconds)

—<q— Better

Figure 3. Compute-Bound Process Performance

Test 2—Performance Gains Greater Than 2X, 4X, and 8X

The second test shows that some applications can perform more than 2X

better on two processors than on one processor, more than 4X faster on

four processors, and more than 8X faster on eight processors.

Our test program passes data back and forth between two processes, using

two pipes. The two programs are synchronized; that is, the second

program processes the data from the first program exactly as fast as the

data is received.

DG/UX Technical Brief 8-Way Symmetric Multiprocessor Systems

January 28, 1993 012-004246-00

Page 10 q,

We first ran one copy of the application (two cooperating processes) on

one, two, four, and eight processors. Then, on the same mix of processors,

we ran two and four copies of the application (Figure 4).

One Copy of Two Copies of
Test Application Test Application

(One Pair of Processes) (Two Pairs of Processes)

Process _ Process Process <_ Process Process _. Process

Four Copies of

Test Application

(Four Pairs of Processes)

Process | > Process Process —— > Process
0 |q— 2 |q—/| 31

Process —> Process Process —> Process
4 <q<—- 5 6 [e—!I 7

Figure 4 Cooperating Processes

When two copies of the application are running, there are four processes

(two independent pairs of cooperating processes). When four copies of the

application are running, there are eight processes (four pairs of

independent processes).

Figure 5 shows the total number of operations/second when one, two, and

four copies of the application were running on one, two, four, and eight

processors. By total number of operations, we mean the number of data

transfers between all of the process-pairs in a test. The performance gains

shown in the right-hand column are calculated by dividing multiprocessor

throughput by the throughput of a single processor.

When running one copy of the application (the bottom set of bars in the

chart), two processors ran 2.52X more operations than one processor. Note

that running one copy of the test program on a four- or eight-processor

system provides little performance improvement over a two- processor

system. That’s because there are only two processes, so two processors (in

a four processor system) are essentially idle.

8-Way Symmetric Multiprocessor Systems DG/UX Technical Brief

012-004246-00 January 28, 1993

q, Page 11

Performance Gains
Four Copies of Application (Four Pairs of Processes) (vs. One Processor)

— }
| 16.269 8.15X

SEES S/SeC.Number = —

of sc CC 4.53XProcessors es ees .

(JPs) 4,844 2.25X
ee Ops/sec

1,996
_ Ops/sec.

on 20 4.15X

Number psisee.
of 9,610

‘ 4.10XProcessors Ops/sec.
(J P s) LIRR ETAT E SAREE LSI III 3 752

Ops/sec 1.60X

2,342
—_ Ops/sec.

One Copy of Application (One Pair of Processes)

5,131
Ops/sec. 2.48X

Number

5,227of Ops/sec. 2.53X
Processors

(JPs) 5,214 2.52X
Ops/sec.

2,065
—_ Ops/sec.

| | { | { [| | [[| [

0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000 16500 17000

Total Operations Per Second

Better ———-b>

Figure 5 Exceeding Theoretical Multiprocessor Performance

In the one-copy test, a two-processor system completes 2.52X more

operations than a one-processor system. Note that the four-processor

system completes 6.49X more operations than one processor. The eight-

processor system completes 8.15X more operations than a one-processor

system. In this case, any of the eight processors can run any one of the
eight processes.

DG/UX Technical Brief 8-Way Symmetric Multiprocessor Systems
January 28, 1993 012-004246-00

Page 12 q,

How can a multiprocessor system have performance gains that are greater

than the number of processors? Because of process scheduling. When you

run this kind of synchronized application on one processor, the processor

has to switch back and forth between the two programs as one program

finishes its work and passes data to the other program. Therefore, the total

time to run the application includes the time to process the data plus the

time to schedule the processes that run the two programs.

When a single copy of the application runs on a two-processor system, the

first program runs on JPO and the second program runs on JP1. The

programs can proceed in parallel—without the overhead of process

scheduling. With no process scheduling, the effective net performance gain

is more than 2.5X when the application is run on a two-processor system.

Similar performance gains are seen when two copies of the application run

on a four-processor system. When four copies of the application run on an

eight-processor system, the net performance gain is more than 8X.

Process-scheduling overhead is the reason that there are fewer

operations/second for two copies of the application on two processors

(3,752) versus when two copies of the application runs on one processor

(5,214). When two copies of the application run on two processors, there

are four processes competing for the services of the two processors.

Even though this is a theoretical test, it has real-world implications when

an application uses pipes between programs or when an application uses

lots of operating system resources.

An example of pipelined programs taking advantage of multiprocessors is

when you format text with the troff text processing program. You may first

run the tbl program on the source text and pipe the output of tbl to troff

and then to a post-processor (such as, tbl | troff | pspost). These pipelined

processes will run faster on two processors, four processors, and faster yet

on eight processors—not only because the processes can run in parallel, but

because fewer process switches are needed.

A program that is making many operating system calls can run faster on a

Symmetric Multiprocessor System. On a true SMP, such as AViiON systems,

the operating system functions can run on any available processor while

the application’s code continues to run on another processor (or

processors).

Test 3—Multiprocessors’ Effects on a Large Compilation

In the third test, we compiled the more than 1,400 source-code files of the

DG/UX kernel. The kernel-build compilations require significant I/O and

computational resources. There are approximately 37 minutes of serial

setup, then the independent compilation of the individual source-code files

can proceed. On symmetric multiprocessor systems, the compilations can

be performed in parallel.

8-Way Symmetric Multiprocessor Systems DG/UX Technical Brief

012-004246-00 January 28, 1993

q, Page 13

We compiled the source-code files with one processor, two processors, four

processors, and eight processors. Figure 6 shows the time that it took to

run the kernel-build compilations on the four configurations.

37 Minutes Performance Gains
serial Setup | (vs. One Processor) |

4.25X

Number Minutes 3.08X
of ES aEREESSeeEEESSmEE

Processors 283 1.86X
(JPs) Minutes

527

Minutes

| | |

0 100 200 300 400 500 600

Total Build Time (minutes)

~<aji————- Better

Figure 6 Kernel Build Times

There are two things to consider when you look at the performance gains

of Figure 6.

4 Only a small performance advantage is provided by multiple processors

during the 37 minutes of serial setup. During the setup operations, only

one process runs at a time. The shortest time in which this test can run is

limited by this serial component; regardless of how many processors are

in the system. This issue is discussed in more detail in the Taking

Advantage of Symmetric Multiprocessor Systems technical brief (012-004177).

Comparing the times of just the parallel parts of the test (without the

serial setup time) show performance gains of 1.99X, 3.65X, and 5.63X

for two, four, and eight processors.

O This is a real-world application that is not compute bound; it requires

I/O operations to read the individual source-code files from disk. Our

single-disk test system was not tuned to provide the optimum

combination of disk resources for this test. The potential for I/O

bottlenecks caused by using a single disk for this kind of application

becomes more pronounced as the number of processors increases. As

more processors are added to a system, more attention must be paid to

balancing the system’s I/O throughput with its processing capabilities.

DG/UX Technical Brief 8-Way Symmetric Multiprocessor Systems

January 28, 1993 012-004246-00

Page 14 @,

Test 4—Multiprocessors’ Effects on a Multiuser Benchmark

For the last test, we ran a standard multiuser benchmark that simulates

multiple users, with each user running a mix of basic kernel activities. For

this test, we increased the maximum number of processes to 1,024 from the

default of 256. We added four SCSI disks, which were used as temporary

(tmp) space.

Figure 7 shows the results of the benchmark tests, with the number of

users plotted against the number of seconds to run the benchmark.

Number

Performance Gains

Eight (Multiprocessor vs.

Processors Single Processor)

Four Two | Four | Eight
Processors

Two 1.06X| 1.0X} 1.0x
Processors

One

Processor

1.95X| 3.75X] 6.61X

1.95X |] 3.77X | 6.85X

1.95X} 3.75X | 6.74X

1.95X| 3.75X] 6.80X

1.95X | 3.75X | 6.75X

| | | | | |

0 1000 2000 3000

Running Time (seconds)

<—q——— Beiter

Figure 7 Multiuser Benchmark on One, Two, Four, and Eight Processors

As you can see, the two-processor configuration provides an average

performance increase of 1.95X as soon as more than one user uses the

system. With four processors, the increase jumps to an average of 3.75X.

8-Way Symmetric Multiprocessor Systems

012-004246-00

DG/UX Technical Brief

January 28, 1993

@, Page 15

With eight processors, the increase shows an average of 6.7X. The

maximum multiplier for the two-processor system is 1.95X; for the four-

processor system the maximum multiplier is 3.77X, and for the eight-

processor system the maximum multiplier is 6.85X.

The better performance of the four and eight processors against two

processors for a single user shows an example of operating system

processes running on any available processor.

For More Information

Among the articles that discuss multiprocessor systems in more detail are:

DG/UX" Technical Brief: Taking Advantage of Symmetric Multiprocessor

Systems (012-004177), June 17, 1992, Data General Corporation

Multiprocessor Aspects of the DG/UX Kernel

USENIX Conference Proceedings—Winter 1989

Michael H. Kelley, Data General Corporation

Design of Tightly-Coupled Multiprocessing Programming

IBM Systems Journal—Vol. 13 No.1 (1974)

J.S. Arnold, D.P. Casey, and R.H. McKinstry

Multiprocessor Unix Operating Systems

AT&T Bell Laboratories Technical Journal—Vol. 63 No. 8 (October 1984)

M.J. Bach, 5.J. Buroff

An Experimental Symmetric Multiprocessor Ultrix Kernel

USENIX Conference Proceedings—Winter 1988

Hamilton, Graham, and Daniel S. Conde

DG/UX Technical Brief 8-Way Symmetric Multiprocessor Systems

January 28, 1993 012-004246-00

