
Information About AViiON® Systems

from Data General’s UNIX® Development Group

Operator Initiated Failover in the

DG/UXTM 5.4.2 Operating System

In This Issue:

Contents

TOrMminOlogy:ccccsscecessseeessssecssneeeeees 2

Dual-Initiator Configuration Disk

SUDSYSIOMS:ccecscssereseeesessseeeeeees 3

Hardware/Software Requirements.......... 4

Operator Initiated Failover 5

Remote Mounted File Systems............... 9

Failover Databases..............ccsssssseeesseeees 10

Physical Disk SwitchOver................00 11

Failover Examplesccsssceessseceeees 13

Machine Initiated Failover Daemons:

EXAMple...........cccscsscsececeessssssssssceeeeees 19

FYl—Device Numbering for Dual-initiator

Configuration SCSI Devices............. 26

following topics are discussed:

Data General’s introduction of dual-initiator

configuration disk subsystems such as the

CLARiiONTM Disk Array Storage System has been

well received by customers. Customers need and

appreciate the ability to transfer physical disks to a

secondary system when a primary system fails.

Customers with dual-initiator configurations have

asked:

0 How do I transfer physical disks and applications

CQ)

Cy

from a failed host to a secondary host as quickly

and efficiently as possible?

How do I design applications to use the physical

disk failover functionality?

What safeguards does the physical disk failover

software provide?

To help customers better use the dual-initiator

configuration disk subsystem features, Data General has developed “Operator

Initiated Failover” software (OIF). This brief describes how the OIF software

helps users get the most from their dual-initiator configuration investment. The

Q An overview of the dual-initiator configuration and its advantages

Q The software designed to help customers manage these complex systems

Q The hardware and software requirements necessary to ensure a consistent and

reliable physical disk failover

Q Examples of Operator Initiated Failovers

QO How to write your own “watch-dog” processes to automate the failover

process

AViiON is a registered trademark of Data General Corporation.

DG/UxX is a trademark of Data General Corporation.

CLARiiON is a trademark of Data General Corporation.

FrameMaker is a registered trademark of Frame Technology Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

©1992, 1993 Data General Corporation.

Produced on a Data General

AViiON AV4000 with FrameMaker® 3.1X.

Mein nnAdor fia

Page2 @

Terminology

Here are some terms that are used in this technical brief.

Array

A collection of one or more of disk modules and one or more SCSI busses that

participate in a Redundant Array of Inexpensive Disks (RAID) redundancy

scheme.

Disk module (or spindle)

A self contained disk-drive unit—as opposed to the generic term “disk,” which

could refer to a logical disk or a physical disk.

Dual-initiator configuration

A configuration in which a physical disk is connected to a SCSI bus that can

have two initiators.

Failover

The transfer of one or more dual-initiator configuration disk modules and zero

or more applications from one machine to another machine sharing the dual-

initiator configuration disk module.

Initiator

A SCSI device that has the capability to initiate operations with a SCSI target,

such as a host bus adapter.

Logical disk

A software abstraction that enables the DG/UX operating system to manage

files the same way, regardless of how the files are stored physically. Logical

disks are built on physical disks and a logical disk can use pieces from as many

as 32 physical disks.

Physical disk

What the operating system recognizes as a single disk. A physical disk can be

a single disk module or a group of disk modules in a CLARiiON Disk Array

Storage System.

RAID

Redundant Array of Inexpensive Disks. RAID technology provides redundant

disk resources. RAID level 5 (RAID 5) distributes user and parity data among

all of the disk modules in an array.

Target

A SCSI device, typically a disk or tape drive, which can be selected as the

target of a given SCSI bus operation.

SwitchOver

The use of the Operator Initiated Failover software to transfer a physical disk

while both systems are running.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief
012-004186-01 January 27, 1993

q@, Page3

Dual-Initiator Configuration Disk Subsystems

Dual-initiator

configuration

physical disks

support the fast

exchange of

physical disks

between systems.

The CLARiiON Disk Array Storage System (CLARiiON disk array) is a

dual-initiator configuration disk subsystem that provides SCSI-2 interfaces.

This means that you can connect a disk array to two different AViiON

computer systems. The systems to which you can connect a CLARiiON

disk array must be capable of supporting the CLARiiON disk array I/O

processor and they must be server machines (Figure 1).

The CLARiiON disk array is housed in its own cabinet and can support up

to 20 disk modules. This configuration of two servers and a CLARiiON

disk array provides enormous flexibility as far as distributing disks

between the two servers.

Up to 20 disk modules

SCSI-2 Busses

AViiON AVIiON

Server Server

Figure 1 CLARiiON Disk Array Configuration

When a physical disk is part of a dual-initiator configuration, only one host

is said to “own” the physical disk. The machine that has the physical disk

open is the owner of the physical disk. Disk devices are opened when the

physical disk module is registered, usually through diskman(1M). Only the

owner of the physical disk can access the contents of the physical disk,

reading or writing directly to the logical disks, or mounting file systems on

the logical disks.

Dual-initiator configuration physical disks enable the system administrator

to transfer the physical disk from one system to another. This configuration

gives the administrator a useful tool to reduce the time that data is

inaccessible when one system “crashes,” is in need of maintenance, or is

upgraded. When a problem arises on one system, the administrator can

simply transfer the physical disk to the other system and restart the

applications that were running on the failed disk.

DG/UX Technical Brief Operaior Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-01

Page4 @,

Hardware/Software Requirements

The OIF software was released for general distribution in DG/UX 5.4.2.

Here are the requirements for using the OIF software:

OQ DG/UX 5.4.2 or later revisions

OQ A TCP/IP communications link between each host in the dual-initiator

configuration

Q Dual-initiator configuration CLARION disk array (Figure 2)

VME Array of Disk Modules

Disk Controller Cards

3g
=
Q.

5
CO <—P-

5 Processor
=

< SCSI-2 Busses

(A-E)

g
—

Q.

5 <>» lo 2 . } ob S
: Processor Disk Group 1 DiskGroup2 Disk Group4
O (Disks 1-5) (Disks 6-10) (Disks 16-20)
=

<x

Figure 2. A High Availability Disk Dual-Initiator Configuration

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-01 January 27, 1993

@y Pages

Operator Initiated Failover

The OIF software

automates the

transfer of owner-

ship of physical

disks and ensures

that transfers are

complete.

The OIF software is designed not only to automate the transfer of

ownership of physical disks from one host to another, but to ensure that a

transfer is complete. When a system fails, the operator would be displeased

to discover that a physical disk that had been transferred contained a

logical disk piece on a disk not transferred. This would result in an

important file system or application being unable to restart on the

secondary system because all of the logical disk pieces were not present. It

is this kind of check, among others, that the OIF software performs.

The OIF software consists of several administrative commands, a failover

database, a daemon process for controlling remote operations, and a

sysadm interface for ease of use. The software uses many existing DG/UX

features such as listen(1M), admfilesystem(1M), fsck(1M), fuser(1M), and

others. However, all of these are managed by the OIF software. The

administrator need only know how to use the OIF software to successfully

perform physical disk failover.

OIF Commands

The OIF commands are:

O admfailoverapplication—used to edit and maintain the failover

application database

QO admfailoverdisk—used to maintain the failover databases, synchronize

failover databases, perform consistency checks, and perform physical

disk transfers to and from other hosts

Q admfailovergiveaway—used to edit and maintain the failover giveaway

database

(1) admfailoverhosts —used to edit and maintain the failover hosts

database

Q admfailovertakeaway —used to edit and maintain the failover takeaway

database

OIF Operation

The OIF software uses a simple give-and-take scheme. The system that

currently owns the physical disk, and has set up the failover databases can

give the physical disk away to the other host. The other host in the dual-

initiated configuration can (once synchronized) take the physical disks it

does not own, but is set up to manage.

To set up the physical disks to be failed over, the operator performs the add

operation of the admfailoverdisk command on the system that currently

owns the physical disk(s).

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-01

Page6 @,

The add operation can be performed through sysadm (Device->Disk-

>Failover->Add) or by using the command line interface. The add

operation requires the operator to enter the following information:

Q The physical disk specification of the disk to set up, as it appears on this

host. This specification is used internally to ensure that the disk is

registered, to read its contents, and to help identify failover database

entries.

Q The physical disk specification of the disk to set up, as it appears on the

other (secondary) host in the dual-initiator configuration. This

specification is required to properly identify and access the disk on the

other host. Depending on how the systems are set up, the remote

specification may or may not be the same as the local specification. If for

example, the CLARiiON disk array I/O processors are jumpered

differently on each machine (jumpered as id 0 on hostA and id 1 on

hostB, a physical disk that is referred to as “sd(dgsc(0),0,0)” on hostA

would be referred to as “sd(dgsc(0),1,0))” on hostB. This information is

also used to identify entries in the failover databases. All failover

database entries are tagged with this specification so that when a system

fails, the information can be read from the failover databases and not

read from the physical disk(s).

Q The name of the other host. This information will be used to establish

communications, identify failover database entries, and identify this

host’s failover partner.

Q Optionally, a flag specification indicating that a sync operation should be

performed upon successful completion of the add operation. The sync

operation is how the giveaway entries in the current host’s failover

database become takeaway entries in the other host’s failover database.

The sync operation also transports failover application database entries

from the current host to the other host for addition to its failover

application database.

Q Optionally, a pathname to an application start-up script that will be

executed when the physical disk is failed over. The script should be

written so that it does not fail or return a status to be used elsewhere.

This script is executed by the OIF software and any return status is

ignored.

Once this information is specified, the OIF software will perform the tasks

shown in Figure 3.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-01 January 27, 1993

Task 1

Execute the add operation

V
Record host name in the failover

hosts database

OW
Read internal tables of specified

disk to determine its contents

OH
Look for data dependencies on

other physical disks

O
Get file system information for

this physical disk

al
Get export information for this

physical disk

OW
Format information and write it

into failover giveaway database

“Write start-up scriot into fai 44244

ite start-up script into fai over 7

application database (optional)

-
7
é
7
a

COPTPIIPIELPEDTEDOLDPDPDPDEDPDPDPADDDADALSacaanad
“er hranign tailaver datahacaa %

Synchronize failover databases ;

of both hosts (optional) 2

GSPOLDODIPEOLEEDODOPEOLOPLODPMPOEEADAS

2
é
7

Figure 3 Tasks Performed by the OIF Software

q, Page7

These tasks, performed by the add operation, are designed to automate and

ensure consistency in the failover process. Looking more closely at these

tasks shows how this is achieved.

DG/UX Technical Brief

January 27, 1993

Operator Initiated Failover in the DG/UX 5.4.2 Operating System

012-004186-01

Page8 @,

Task 1

The first task is to make an entry into the failover host’s database. This

database contains information about the other hosts in the dual-initiator

configuration. This information is used to set up communications to the

host and to indicate the current synchronization status. If the host has not

been entered into the failover hosts database, an entry will be made with a

synchronization status indicating that a sync operation needs to be

performed before failover of a physical disk can be performed. If the

failover host’s entry already exists (either from a previous add operation, or

because it was added with the admfailoverhosts command) the

synchronization status will be set to indicate a sync operation is needed.

The two hosts communicate via TCP/IP. The communications are

monitored and controlled by the listen(1M) portmonitor. When the

“failover” service is requested by a client, a process called failoverd is

created on the specified host to service the client requests. The TCP/IP set

up for the failover portmonitor and portservice is performed automatically

during the DG/UX 5.4.2 upgrade.

Tasks 2-6

These tasks ensure that the operator is setting up a complete failover

configuration. By reading the contents of the physical disks, the OIF

software can find all the logical disks on the physical disk. This is very

important in answering the following questions:

QO Is this the only piece of the logical disk?

QO If not, what piece number(s) is (are) missing, and are they present on this

physical disk?

Q Is this logical disk a member of a DG/UX software mirror?

Q If so, what is the mirror name, how many pieces does it have, are any of

these pieces on this physical disk?

Inconsistencies occur when a multi-piece logical disk (or mirror) has a

piece on a physical disk that has not yet been added to the failover

databases. If there are inconsistencies, warnings are displayed from the add

operation informing the operator to add the physical disks that contain the

necessary pieces.

With the information gathered from the physical disk tables, the file system

tables are then searched. The file system tables (fstab and exports files) are

searched to gather any file system information related to the logical disks

found on this physical disk. This information is used to format complete

description records for each logical disk that are written to the failover

giveaway database. This information is sufficient to issue fuser, fsck, or

admfilesystem commands to clear processes from logical disks, and to

check, add, mount, and export file systems. Use of this information is

further discussed in the “Failover Examples” section.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-07 January 27, 1993

q, Page9

Entries for logical disks that do not contain file systems or do not export

their file systems have the token NONE in fields pertaining to file system

information. Entries for logical disks that contain file systems have all of

the file system information assigned to the piece 1 logical disk entry.

Task 7

If an application start-up script pathname is specified, it is added to the

failover application database. The application scripts listed in the failover

application database are executed when the physical disk is failed over.

Task 8

If the synchronize flag is specified, then upon successful completion of the

add operation, a sync operation is performed. The failover databases are

checked for consistency and if consistent, are synchronized with the

specified host.

Once the failover databases of the two hosts are synchronized, physical

disk failover can be performed. Both systems are prepared to transfer the

physical disk with either the give operation (for the host that currently

owns the disk) or the take operation (for the system that does not own the

disk).

Note — The failover databases contain information about the physical disks

at the time they are added to the failover databases. If you change the

layout of the physical disk, or information about file systems on these

physical disks, you must update the failover databases. These

configuration changes are not automatically detected and updated.

Remote-Mounted File Systems

To reduce restart

time and errors,

pre-mount

remote file

systems on both

hosts in the

The OIF software and failover databases are used to manage information

about file systems residing on the disks in the dual-initiator configuration.

Should the application require or use file systems that are remote mounted

from other hosts (i.e., NFS mounted from hosts not in the dual-initiator

configuration) those file systems should be pre-mounted on both hosts in

the dual-initiator configuration. Doing so reduces the time to restart the

application and reduces the risk of error. The application may not be able

Na inate to restart if the host exporting the file system has not granted the backup
connguranon. host permission to mount the file system. A problem such as this would be

discovered and corrected before system failure and subsequent physical

disk failover occurred.

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-07

Page 10 |

You should avoid cross mounting file systems between the two hosts in a

dual-initiator configuration. This means that a file system that is mounted

local on hostA should not be NFS mounted on hostB if the disk it resides

on can be failed over to hostB. The admfailoverdisk command will attempt

to unmount the NFS file system and make it a local file system, but the

results are not guaranteed. A user accessing a file in the NFS hierarchy may

cause the local mount to fail.

If this occurs, the administrator will have to determine which process is

preventing the mount from succeeding, and terminate it. The file system

will then have to be mounted by the administrator.

Failover Databases

The failover databases are in a new directory called /etc/failover. This

directory contains four files.

application containing entries for application start-up scripts to be

executed when a physical disk is brought on line

giveaway containing entries describing physical disks this system can

give away to another host

hosts containing entries describing hosts in dual-initiator

configurations with this host

takeaway containing entries describing physical disks this system can

take away from another host

Application

The failover application database stores the pathname to start-up scripts

that are executed when a physical disk is failed over. There may be any

number of scripts to execute when a physical disk is failed over.

Additional failover application database entries can be made by using the

admfailoverapplication command. After all of the physical disks are
brought on line (registered, file systems checked and mounted) the

application database is searched to see if there are any applications to start.

The scripts are executed one after another in the order they are found in

the database. If there are dependencies on application start-up scripts, they

should be coded into one script that controls the dependencies.

Note — When a physical disk is failed over to a secondary system, the

secondary system will have a different CPU ID than the primary system.

Applications that validate against the CPU ID, such as some applications

that use license managers, may not start up on the secondary system. You

should discuss this issue with your software distributor, who may be able

to provide a “backup” CPU ID or a floating license.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief
012-004186-01 January 27, 1993

q, Page 17

Giveaway

The failover giveaway database contains descriptive information about the

physical disks that this host can give away (or have taken by another host).

The entries in this file correspond to any and all file system information

that was gathered at the time the disk was added. This information

includes the name of the logical disk that is used by fuser to ensure no

process is accessing the logical disk (directly or via file system). The

information also includes the name of the file system to unexport,

unmount, and delete during a give operation, or add, mount, and export

during a fake operation.

Hosts

The failover host’s database contains information about the other hosts in

the dual-initiator configuration. This information includes the name of the

host, the communication path to that host (currently “network” is the only

supported path), and the current synchronization status. The

synchronization status is important because it determines whether a give or

take operation can be performed.

Takeaway

The failover takeaway database entries have the same record formats and

level of description as the giveaway database. The difference is that the

takeaway database describes physical disks that are owned by the other

host in the dual-initiator configuration. These entries are created and

maintained by the admfailoverdisk sync operation. When a sync is

performed, giveaway database entries are copied from the host that owns

the physical disk, to the takeaway database of the other specified host in

the dual-initiator configuration. The hostname field is replaced with the
name of the host that initiated the sync operation, and the diskname fields

are reversed before writing the entries to the takeaway database of the

other host.

Physical Disk SwitchOver

The OIF software is designed to be useful in non-system failure situations.
The most obvious use of OIF software is if one system crashes, panics, or

“hangs.” The secondary system can then take control of the physical disks
and restart the applications, minimizing application downtime. However,

there are other situations in which the OIF software can be used to

SwitchOver the disks to another system, such as:

QO load balancing

CL} system repair

O system upgrades

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System
January 27, 1993 012-004186-01

Page 12 @,

Load Balancing

Should applications be identified as causing system performance to

degrade to an intolerable level, the OIF software can be used to transfer the

physical disks and applications to a secondary system. The OIF software

can transfer physical disks with both systems up and running in

production mode.

System Repair

It is possible that a problem in the root file system could prevent the

system from being booted. With the OIF software, the system disk

(provided it is on a dual-initiator configuration disk subsystem) can be

mounted on the secondary system as a non-root file system, so that it can

be examined and repaired. This usage does require careful planning and

naming of logical disks when the systems are built. In order to access the

root and usr logical disks, they should be named something like rootA and

usrA for hostA, and rootB and usrB for hostB. This enables the logical

disks to be accessible when the disk is registered on the secondary host.

The file system information in the takeaway database of the remote host

needs to be modified (using the admfailovertakeaway command) so that

when the disk is taken the root and usr file systems can be mounted. The

mount points should be something other than / and /usr.

When the file systems are repaired, the disk can be released using the -S

switch on the admfailoverdisk give operation.

System Upgrades

The OIF software can be used to transfer physical disks and applications to

a secondary system to keep the application processing while the primary

system is upgraded with new software. When used in conjunction with a

CLARiiON disk array, users can maintain multiple environments. This

enables transfer of applications and disks while older or newer operating

system releases are booted.

All of these scenarios require careful planning on the part of system

administrators. Applications and users should be balanced across physical

disks so that transferring one application and 10 users does not force the

transfer of all applications and all users. Additionally, accessing system

logical disks and file systems requires unique logical disk names for root,

usr, and swap for each host.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-07 January 27, 1993

qy Page 13

Failover Examples

The following examples illustrate the set up and usage of Operator

Initiated Failover. The first example illustrates its usage in the event of a

system crash. The second is a follow-up example showing the transfer of

disks back after the failed primary host is rebooted.

For these examples, assume the following configuration information:

C) Two AViiON AV6225 (rack-mount dual processor) servers named hostA

and hostB

Both servers are running DG/UX 5.4.2

There is a local area network to which both servers are connected

Each server has a CLARiiON disk array I/O processor in the first

position

There is one CLARiiON disk array connected to the two servers

The CLARiON disk array has two RAID-5 disk arrays that will contain

the application and are to be failed over

HostA currently owns the RAID-5 arrays

The first array “sd(dgsc(0,7),1,0)” will be used by the “Acme” Database

Manager performing raw I/O on a logical disk spanning the entire array

The Acme Database Manager is started with a script called acmeup that

is in /usr/bin

The second array “sd(dgsc(0,7),2,0)” will contain three file systems, all of

which are set up as fast recovery file systems, one will not be exported,

the other two will be exported without restrictions

DG/UX Technical Brief

January 27, 1993

Operator Initiated Failover in the DG/UX 5.4.2 Operating System

012-004186-01

Page 14 @,

Example 1—System Crash

Preparation

Set up the arrays on hostA (i.e., use gridman to bind disk modules into

arrays and use sysadm to create logical disks and file systems).

Failover Set Up

1) Select the Sysadm->Device->Disk->Failover->Add option on hostA.

This operation guides you through the required and optional

information for the add operation of the admfailoverdisk command.

2) Set up the “sd(dgsc(0,7),1,0)” disk. After filling in all of the queries, the

following admfailoverdisk command is issued:

admfailoverdisk -o add -h hostB -r “sd(dgsc(0),1,0)” -a

/usr/bin/acmeup “sd(dgsc(0,7),1,0)”

The admfailoverdisk command performs the following:

a. confirms that hostB is a valid host (by using the admhost(1M)

command to check for its existence in either the local or NIS (YP)

host’s database).

b. confirms that “sd(dgsc(0,7),1,0)” is registered on this host. If the

hostname does not exist or the disk is not registered, an error is

returned. Because the CLARiiON disk array IOPs are in the same

position on each host, the physical disk specifications of the disks

we are using are the same on both hosts.

c. looks for an entry for hostB in the failover host’s database on

hostA. There isn’t one, so it adds one with a synchronization

status indicating that a sync operation is needed before a give or

take operation can be performed.

d. gathers information from the internal tables on the physical disk.

The physical disk “sd(dgsc(0,7),1,0)” has one logical disk, and no

file system information (fstab and exports) is found. An entry is

formatted and written to the failover giveaway database.

e. performs consistency checks and no inconsistencies are found.

f. processes the -a switch. A failover application database entry is

formed indicating that the script “/usr/bin/acmeup” is to be

executed when “sd(dgsc(0,7),1,0)” is failed over. This entry is then

written to the failover application database.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-01 January 27, 1993

q, Page 15

3) Select the Sysadm->Device->Disk->Failover->Add option on hostA

again, to add “sd(dgsc(0,7),2,0).” Since this is the last disk to add, select

the -s synchronize database option. The resulting command line is:

admfailoverdisk -o add -h hostB -r “sd(dgsc(0),2,0)” -s

“sd (dgsc(0,7),2,0)”

(See the inset below for information about the “-s” synchronize

database option.)

This command performs the same sequence of events as the command

in Step 2; it confirms that the hostname and local disk specification are

valid, checks the failover host’s database, reads the disk, and gathers

file system information. This time, file system information is found, so

it is formatted and written to the failover giveaway database.

About The “-s” Synchronize

Database Option

For the operation in Step 3, we selected the

synchronize database option to the

admfailoverdisk command. The equivalent

command line for this option is:

admfailoverdisk -o sync hostB

Several things happen in synchronizing

failover databases. The admfailoverdisk

command becomes a client of a failoverd

process on hostB by requesting and

connecting to the “failover” service on

hostB. A handshake message is then sent to

the failoverd daemon on hostB to verify that

communications are possible. The failoverd

process receives the message, sends a

response back to the client (admfailoverdisk

command on hostA) and waits for further

instructions from the client.

The admfailoverdisk client then sends a

message indicating that a sync operation is

to be performed. The failoverd process

acknowledges the request and prepares to

receive the necessary files. The

admfailoverdisk client then begins reading

and sending records from the failoverd

giveaway database on hostA to the

failover on hostB. The records are

received by the failoverd process and

written to a temporary file. When the

admfailoverdisk client is done sending

failover giveaway database entries, a

message indicating this is sent to the

failoverd process on hostB. The failoverd

process then prepares to receive the

failover application database from hostA.

These records are written to another

temporary file.

When both files have been transported to

hostB, the admfailoverdisk client on

hostA informs the failoverd process on

hostB that it can perform its part of the

synchronization. The server portion of

the synchronization is to gather the

records from the temporary files that

pertain to hostB, and add them to the

appropriate files. Application entries go

into the application database, and

giveaway entries go into the takeaway

database. When this is done, the

temporary files are deleted, and the

failover host’s database entry on hostB

for hostA is modified so that its

synchronization status indicates that the

databases are “in sync.”

DG/UX Technical Brief

January 27, 1993

Operator Initiated Failover in the DG/UX 5.4.2 Operating System

012-004186-01

Page 16 @,

4) Update the failover host’s database entry for hostB on hostA to indicate

that the databases are “in sync.”

Starting the Application

1) Start the application on hostA.

HostA panics. The users get no response on their terminals and inform

the system administrator.

2) As system administrator, select the Sysadm->Device->Disk->Failover-

>Take option from hostB.

This option queries for the name of the host from which to take

physical disks. Based on this name, select from a list of possible disks to

take. This list is built by reading the failover takeaway database and

displaying entries that apply to the selected host.

Because hostA has panicked, you must select the use trespass option.

The trespass option causes the failover software to unconditionally take

control of the specified physical disks. This option should be used only

when you are sure the other system is unreachable.

3) Depending on whether you selected the disks individually from the

list, or selected the “all” option, one of the following commands is

executed: |

admfailoverdisk -o take -h hostA -T “sd(dgsc(0),1,0)”

“sd(dgsc(0),2,0)”

or

admfailoverdisk -o take -h hostA -T all

The admfailoverdisk command performs the following:

a. confirms the hostname by verifying that it is listed in the local or

NIS (YP) hosts databases, and that it exists in the failover hosts

database with a synchronization status that indicates the take

operation is to be permitted.

b. builds a list of disks to search for in its failover takeaway

database. For each disk found, the DSKIOC_TRESPASS ioctl

system call is issued before attempting to register the physical

disk. While in a panic state, hostA’s IOP continues to own the

physical disks. The DSKIOC_TRESPASS ioctl enables hostB to

unconditionally take control of the physical disks.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-01 January 27, 1993

qd, Page 17

c. examines the failover takeaway entries for file system information

(once all of the physical disks are registered).

For “sd(dgsc(0),1,0)” there are no file systems. For

“sd(dgsc(0),2,0)” there are file systems to bring on line. The first

file system operation is to run fsck(1M) on the file system. The

fsck utility is invoked with the -l (fast recovery), -x (examine

before checking), and -y (automatically fix inconsistencies)

options. Since the file systems were set up as fast recovery file

systems, the fsck is done in about 5 seconds. Had the file systems

not been fast recovery, the fsck time would have been

considerably longer.

d. uses the failover takeaway entry information to format an

admfilesystem(1M) command that adds an entry to the /etc/fstab

and /etc/exports (if required) files, mounts the file system, and

exports the file system (if required).

e. moves the entries in the failover takeaway database for the disks

that were just brought on line into the failover giveaway database.

since hostB now owns the physical disks it can now give them

away.

f. executes the application scripts. The failover application database

is searched for application scripts that apply to hostA and the two

physical disks just brought on line. In this example there is only

one script to execute. This is the /usr/bin/acmeup script to bring

up the Acme Database Manager.

4) Reboot hostA. Note that the rc.failover script executes, causing the

failover database on hostA to be cleaned up. This involves listing the

disks currently registered on hostA, and then looking through the

giveaway database on hostA for entries corresponding to disks not in

this list. These disks are the ones that were failed over, and their

associated entries are moved to the failover takeaway database on

hostA.

The physical disks are not automatically moved back to hostA when

hostA is brought back on line. If you want the physical disks

transferred back to hostA then you must do so with the load balancing

scenario described in the next example.

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-01

Page 18 @,

Example 2—Load Balancing (SwitchOver)

Preparation

No additional set up or intervention is needed to perform this example

right after a system crash. The physical disks are on hostB and the failover

databases on hostA were cleaned up when hostA was rebooted. The

system informs you that the disks must be moved back to hostA now.

Load Balancing

1) Broadcast a log off message to users.

The shutdown procedures for the Acme Database Manager should also

be executed to eliminate the need for extensive database recovery time.

2) Initiate the load balance scenario from either hostA by selecting the

Sysadm->Device->Disk->Failover->Take option, or from hostB by

selecting the Sysadm->Device->Disk->Failover->Give option.

Depending on which option is chosen and assuming you selected “all”

physical disks, one of the following command lines is executed:

admfailoverdisk -o take —-h hostB all

Or...

admfailoverdisk -o give —-h hostA all

Both commands achieve the same result of moving the physical disk

from hostB to hostA. Since the take operation has already been

described, the give operation is described here.

a. The admfailoverdisk command validates the hostname and

confirms that the specified physical disks are registered. The

synchronization status of the failover hosts database are checked

to ensure that both hosts are “in sync.”

b. The admfailoverdisk command then becomes a client of the

failoverd process on hostA. A handshake is performed and the

admfailoverdisk client sends a message to hostA asking it to

verify that it is “in sync” with hostB. The giveaway entries on

hostB are then examined and checked. This is to ensure that there

are giveaway entries for all logical disk pieces.

c. The local physical disks are now ready to be “taken down.” All of

the giveaway entries for the physical disks to be moved are

gathered. To ensure that the physical disk can be deregistered, all

processes accessing any of the logical disks need to be terminated.

For each giveaway entry with a logical disk piece number of one,

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-01 January 27, 1993

q, Page 19

the admfailoverdisk command runs fuser(1M). The -k switch is

specified to terminate any process found accessing the logical

disk. This ensures that the file systems can be unmounted and the

physical disks can be deregistered.

d. After the logical disks are cleared, the file systems are unexported,

unmounted, and deleted. The fstab and exports entries are

deleted to avoid errors if attempts to mount non-existent file

systems are made (e.g., mount -a or run level changes).

e. The physical disks are deregistered from hostB.

f. The admfailoverdisk client on hostB sends a message to the

failoverd on hostA informing it to perform its part of the load

balancing. This involves “bringing up” the physical disks on

hostA. The failoverd server executes the appropriate

admfailoverdisk command on hostA to bring the disks and

applications on line.

g. The admfailoverdisk command on hostA registers the physical

disks. The DSKIOC_TRESPASS ioctl is not required because the

physical disks were deregistered by hostB. Once the physical

disks are registered, the file system operations are performed. The

-x switch causes fsck to check the superblock, which will indicate

that no check is necessary (since the file system was shut down in

an orderly fashion on hostB) and exit.

h. The admfilesystem command lines are constructed to add, mount,

and export (if required) the file systems according to the

specifications in the failover takeaway database.

i. The takeaway entries on hostA are moved to the giveaway

database and the admfailoverdisk command exits. The failoverd

process gets the exit status and returns it to the admfailoverdisk

command on hostB. The admfailoverdisk command on hostB sees

that the operation on hostA was successful, and it moves its

giveaway entries to its takeaway database and exits.

j. The applications are executed, restarting the Acme Database

Manager with the /usr/bin/acmeup script.

Machine-Initiated Failover Daemons—An Example

Operator Initiated Failover works very well for environments that are

monitored frequently. When a failure occurs, the operator can quickly

perform the failover and get the application back up and running. But

what about those applications that crash at 4am when a system is

unattended? What about those failures when the operator has gone to

lunch?

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-01

Page 20 q,

Data General is

developing a

Machine Initiated

Failover (MIF)

enhancement to

the OIF software.

Data General is developing a follow-on to Operator Initiated Failover that

further automates the failover process by providing monitors to detect

when a system failure occurs and perform the necessary actions. This

functionality is called machine initiated failover (MIF) and will be available

in a future release of DG/UX.

Until MIF support is available, this section is provided to help

administrators develop their own simple monitoring processes that can be

used to detect system failure and use the functionality provided by the OIF

software.

There are many ways to implement monitoring processes. You could use

shell scripts that ping(1M) the primary system every so often, or you could

use programs that send messages via TCP/IP back and forth. The direction

of the message is a design choice. Should the primary system send

“heartbeat” messages at a certain rate (without waiting for a reply) with

the secondary system taking action when the heart beat is lost? Or, should

the secondary system send messages and wait for a reply (more like a

conversation)?

This example uses two programs, are_you_there.c and i_am_here.c, both

written in C. The programs use UDP to access a remote service. These

programs are documented on pages 5-6 through 5-11 in the “Programming

with TCP/IP on the DG/UX System” manual.

The server program i_am_here.c, is written to be put in the background.

After you invoke it, the server accepts a message from any client sending

one to its port and running in the Internet domain. When the server

receives a message, it sends a message to the client process indicating that

it is alive.

The client program are_you_there.c, binds to any address, sends a message

to the server program i_am_here.c, and waits for a reply. When it receives

a reply, the client program prints a message to the screen indicating that

the server is running.

Both the client and server program use the gethostbyname routine to

return a hostent structure for mapping the hostname supplied on the

command line to the host address. If your system is running NFS, this

entry may be in a YP database. If your system is running the domain name

system, the entry may come from a name server.

Both the client and server programs also use getservbyname to request the

service specification indicated in /etc/services. If your system is running

NFS, this entry may be in a YP database.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-01 January 27, 1993

@, Page 21

These two programs can be used in conjunction with the watch_dog.sh

shell program. This program takes three arguments:

the name of the host to monitor

1 the interval (in seconds) to wait between sending messages to the server

Q the number of times to retry communications before taking action.

The action in this case is the admfailoverdisk -o take command with the -T

(trespass) option.

Once you have compiled and linked the C programs, invoke the server

program i_am_here on the system that has the disks registered (and is set

up to give them away). Then on the secondary system (the one set up to

take them away) invoke the watch_dog.sh script with the proper

arguments. It will use the are_you_there program to monitor the primary

host.

When communications are lost, the shell script executes the

admfailoverdisk command to take the disks. This is a simple monitoring

process that introduces some of the aspects of machine initiated failover.

The script and programs could be changed to attempt to communicate on

another LAN or TCP/IP medium should the configuration have multiple

LAN connections. The C programs and shell script are listed here.

The are_you_there.c Program

This is a client program that sends a message to a server program to see

whether that server is running. If this program receives a response, it

prints a message to the terminal indicating the server is running, and exits

with a status code of 0.

#include

#include

#include

#include

#include

#include

<sys/types.h>

<sys/socket.h>

<netdb.h>

<netinet/in.h>

<stdio.h>

<signal.h>

extern int errno;

void alarmed();

main(argce, argv)

int argc;

char xargv[];

{
int s, ns, i, cc, flags, fromlen;

char c, *ep, buf{1024}], msg[17];

char xname = “test port”;

struct sockaddr inaddr_ base;

struct sockaddr in *addr = &addr_base;

struct sockaddr in from;

struct sockaddr in to;

struct servent *sp;

struct hostent *xhp;

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-01

Page 22@,

strcepy (&émsg[0], “Hello!”);

if (argc != 2) {

fprintf(stderr, “Usage: are you_there <hostname>\n”) ;

exit (1);

}

hp = gethostbyname (argv[1], NULL);

if (hp == NULL)

printf (“no host named %s\n”, argv[1]);

exit (1);

}

/*

* Service must be in /etc/services.

*/
sp = getservbyname (name, NULL);

if (hp == NULL) {

printf(“no service named %s\n”, name);

exit (1);

}

/*

* We are a client, so we ask to be bound to any port

* (addr _base.sin port = 0). We don’t care what port we are on,

* only what port the server is on. Bind will assign us a port.

*/

memset ((void *)addr, 0, sizeof(struct sockaddr_in));

addr _base.sin family = hp->h_addrtype;

s = socket (AF INET, SOCK_DGRAM, 0);

if (s == -1) {

perror (“socket”) ;

exit (1);

}

if (bind(s, addr, sizeof(struct sockaddr_in)) == -1) {

perror (“bind”) ;

exit (1);

—_—t

+

Next we want to send a message to the server. The theory is that

he will send a message back and we’1l know that he is alive.

In preparation for this, we’ll zero out the ‘to’ struct. This

makes sure there is no garbage to interfere with our call. We

set up the “to” struct with the correct family (AF INET) and

the port number and address of the server. We got the port

number from the service name (see call to getservbyname()).

Both of these parameters came from the command line.0 0 0 OO OOO~
flags = 0;

memset ((void *)&to, 0, sizeof(to));

to.sin_ family = AF INET;

to.sin port = sp->s_port;

to.sin_addr.s addr = *({int *)hp->h_addr;

cc = sendto(s, msg, sizeof(msg), flags, &to, sizeof(to));

if (cc == -1)

perror (“sendto”) ;

exit (1);

}

/*

* Finally, we’ll wait for the server to return our call.
*

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-01 January 27, 1993

q, Page 23

* Once again we start by zeroing out the “from” structure and

* setting “fromlen” to the length of that struct. The we let

* recvfrom() do the rest.

*/

printf (“waiting for response from %s\n", hp->h_name) ;

signal (SIGALRM, alarmed);

alarm({5);

memset ((void *)é&from, 0, sizeof (from));

fromlen = sizeof (from);

cc = recvfrom(s, buf, sizeof(buf), flags, &from, &fromlen);

1f (cc == -1) {

perror (“recvfrom”) ;

exit (1);

}

printf(“%s is alive and kicking\n”, hp->h_name);

exit (0);

void

alarmed ()

{
printf (“Whoops - no answer!\n"”);

exit (1);

The t_am_here.c Program

This is a server program that receives messages from a remote client

process and sends a message to that process, informing the client that it is

up and running.

#include <sys/types.h>

#include <netinet/in.h>

#include <netdb.h>

#include <sys/socket.h>

#include <stdio.h>

extern int errno;

main(argc, argv)

int argc;

char xargv([];3

{
int s, ns, buflen, i, cc, flags, *fromlen, tolen;

char c, *cp, buf[1024], *msg;

char *name = “test port”;

char hostname [14];

struct sockaddr_in addr_base;

struct sockaddr in *addr;

struct sockaddr in *from;

struct sockaddr in *to;

struct servent *sp;

struct hostent *hp;

struct sockaddr in from_container;

int Fromlen_ container;

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-01

Page 24@,

if (argc != 1) {

fprintf(stderr, “Usage: \ti_am_here\n”);

exit (1);

}

if (gethostname (hostname, sizeof(hostname)) == -1) {

printf (“Can’t gethostname(), %s\n”, strerror(errno));

exit (1);

}

hp = gethostbyname (hostname, NULL);

if (hp == NULL) {

printf (“Can’t find host %s\n”, hostname);

exit (1);

}

/*

* Service name must be in /etc/services.

*/

sp = getservbyname (name, NULL);

if (hp == NULL) {

printf (“no service named %s\n”, name);

exit (1);

}

addr base.sin_port = sp->s_port;

addr _base.sin_family = AF_INET;

addr base.sin_addr.s_addr= INADDR_ANY;

s = socket (AF_INET, SOCK _DGRAM, 0);

if (s == -1) {

perror (“socket”);

exit (1);

}

addr = é&addr base;

if (bind(s, addr, sizeof(struct sockaddr_in)) == -1)

perror (“bind”) ;

exit (1);

}

from = &from_container;

fromlen container = sizeof (from_container);

fromlen = &fromlen_container;

buflen = sizeof (buf);

For (77) {

cc = recvfrom(s, buf, buflen, flags, from, fromlen);

if (cc == -1) {

perror (“recvfrom”) ;

exit (1);

}

cc = sendto(s, buf, buflen, flags, from, *fromlen);

if (cc == -1) {

perror (“sendto”);

exit (1);

Operator Initiated Failover in the DG/UX 5.4.2 Operating System

012-004186-01

DG/UX Technical Brief

January 27, 1993

@, Page 25

The watch_dog.sh Shell Script

This shell script is used to monitor a specified host and upon loss of

communications, invoke the admfailoverdisk command to take control of

the disks from that host.

#!/bin/sh

#

To use this Machine Initiated Failover Example:

#

1) on the primary host, invoke the i_am_here program and

put it in the background.

#

2) invoke this script, it requires 3 arguments, they are:

#

hostname, the name of the primary system

#

interval, in seconds to sleep between sending

heartbeat messages

#

retries, the number of times to retry the message

before performing the failover action

#

HOSTNAME=S$1

INTERVAL=$2

RETRIES=$3

COMMAND="/usr/bin/admfailoverdisk -o take”

retries=0

heartbeat _gone=0

while (true)

do

./are you there $HOSTNAME

LE [“S?2"” -eg WU"]

then

if [“Sretries” -egq “SRETRIES”]

then

if [“Sheartbeat_ gone” -eq “1”]

then

else

heartbeat gone=1

echo “\texecuting failover command”

echo “\tSCOMMAND —-h SHOSTNAME -T”

SCOMMAND -h SHOSTNAME -T
Fi

else

echo “Failure detected retrying”

retries=‘expr Sretries + 1*

Fi

else

if [“Sheartbeat_gone” -eq “1”]

then

echo “heart beat is back”

heartbeat _gone=0

retries=0

Fi

sleep SINTERVAL

Fi

done

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-01

Page 26 @,

FYi—Device Numbering for

Dual-Initiator Configuration SCSI Devices

Since dual-initiator configuration SCSI-2 disk drives such as the CLARiiON

disk array all reside on the same SCSI bus, the system administrator must

be careful when assigning SCSI ID’s to devices. The assignment of SCSI

ID’s for dual-initiator configuration devices is left up to the system

administrator to establish. This section contains suggestions that may help

in planning dual-initiator configurations.

When planning and setting up a SCSI-2 dual-initiator configuration, the

SCSI ID numbers for each device to be connected to the SCSI bus should be

assigned before booting and building the kernels. The system

administrator must ensure that no two entities on the bus, be they disk,

tape, or host bus adapter, attempt to use the same SCSI ID value.

The format for a SCSI device specification is as follows:

device(adapter-type@device-code(adapter-address, adapter-SCSI-

ID),device-SCSI-ID,LUN)

Here is an example of a SCSI device specification:

sd(dgsc@7(FFFB0000,7),0,0)

Here is a description of the example specification:

device : sd Indicates a SCSI disk

adapter-type : dgsc Data General SCSI adapter

device-code 77

adapter-address : FFFBO000

adapter-SCSI-ID :7 SCSI-ID of adapter

device-SCSI-ID 0 SCSI-ID of device

LUN 70 Logical Unit Number

There can be up to eight SCSI-ID’s assigned to a SCSI bus. The adapter

requires one SCSI-ID, and each device requires a SCSI-ID.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-01 January 27, 1993

q, Page 27

When a dual-initiator configuration of two AV4600’s is set up for Operator

Initiated Failover, it is recommended that the SCSI-ID’s on each bus be

assigned or reserved as follows:

SCSI-ID Device Description

7 adapter hostA dgsc adapter

6 adapter hostB dgsc adapter

9 tape hostB tape drive

4 tape hostA tape drive

3 disk Failover Disk

2 disk Failover Disk

1 disk hostB system disk

0 disk hostA system disk

To change the adapter SCSI-ID’s, edit the system.<name> file that is

invoked when building a new kernel in Sysadm->System->Kernel->Build.

To set the disk and tape SCSI-ID’s, adjust the “jumpers” on the disk and

tape devices accordingly.

Here is an example for setting up two AV4600 systems that have a physical

disk set up for Operator Initiated Failover.

Assumptions

Q Each AV4600 has one disk drive for system usage

Each AV4600 has one tape drive

Q Each AV4600 has an dgsc adapter in the first position

QO Each AV4600 has DG/UX 5.4.2 pre-installed

Q The physical disk to failover is in its own peripheral housing unit (PHU)

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-01

Page 28 @

Steps

1) Take the first AV4600 out of the box and boot it.

2)

3)

4)

Follow the installation steps to build and boot a custom kernel.

Using Sysadm->System->Kernel->Build, change the disk and tape

specifications in the system file. These specifications initially are as

follows:

sd(dgsc(0),0)## SCSI disk 0 on Data General SCSI adapter 0

st(dgsc(0),4)## SCSI tape 4 on Data General SCSI adapter 0

Change the specifications to the following, then rebuild and reboot the

system:

sd(dgsc(0,7),0)## SCSI disk 0 on Data General SCSI adapter 0

st(dgsc(0,7),4)## SCSI tape 4 on Data General SCSI adapter 0

This change configures the SCSI adapter at SCSI ID 7. Although this is

the default value for the adapter SCSI-ID, specifically configuring this

is a good idea to ensure things are configured to be the way you want

them.

Take the second AV4600 out of the box and change the “jumpers” on

the disk and tape drive so that the disk drive has SCSI-ID 1 and the

tape drive has SCSI-ID 5.

Boot the second machine.

Follow the installation steps to build and boot a custom kernel.

Using Sysadm->System->Kernel->Build, change the disk and tape

specifications in the system file. These specifications initially are as

follows:

sd(dgsc(0),1)## SCSI disk 1 on Data General SCSI adapter 0

st(dgsc(0),5)## SCSI tape 5 on Data General SCSI adapter 0

Change the specifications to the following, then rebuild and reboot the

system:

sd(dgsc(0,6),1)## SCSI disk 1 on Data General SCSI adapter 0

st(dgsc(0,6),5)## SCSI tape 5 on Data General SCSI adapter 0

This change configures the SCSI adapter for SCSI ID 6. Remember that

SCSI-ID 7 (the default for adapter-SCSI-ID’s) is used by the adapter on

the other host. This change must be done to ensure that all devices on

the SCSI bus have a unique SCSI-ID when the two hosts are connected.

Operator Initiated Failover in the DG/UX 5.4.2 Operating System DG/UX Technical Brief

012-004186-01 January 27, 1993

@y Page 29

5) Change the “jumpers” on the disk drive in the PHU so that it has a

SCSI-ID of 2. With both systems powered down, connect the disk in the

PHU to both AV4600’s. Now power on the PHU and both hosts.

6) The physical disk can now be registered on either host as:

hostA:sd(dgsc(0,7),2)

hostB:sd(dgsc(0,6),2)

By taking these steps, all disk and tape drives on hostA are assigned the

system adapter-SCSI-ID of 7. All disk and tape drives on hostB are

assigned the system adapter-SCSI-ID of 6. These specifications are very

important when setting this configuration up for failover.

There is only one SCSI-ID that remains unused on this bus—SCSI-ID 3.

This SCSI-ID could be used if another physical disk or CD-ROM device

were added to the SCSI bus. Because tape drives in this configuration are

“shared,” not owned, a third physical disk could be added to the bus by

removing one of the tape drives and adding another disk (jumpered to the

SCSI-ID of the tape that was removed). Both hosts will be able to access the

remaining tape drive on a first come, first served basis.

Additional disks could be added by adding another SCSI bus adapter, with

a physically separate SCSI bus connecting both systems. The devices

would then have specifications of the form:

sd(dgsc(1,7),0)## SCSI disk 0 on Data General SCSI adapter 1

st(dgsc(1,7),4)## SCSI tape 4 on Data General SCSI adapter 1

Figure 4 shows a dual-initiator SCSI-2 configuration with device

specifications.

DG/UX Technical Brief Operator Initiated Failover in the DG/UX 5.4.2 Operating System

January 27, 1993 012-004186-01

Page 30 q,

WE
AViiON

sd(dgsc(0,7),0)

st(dgsc(0,7),A)

sd(dgsc(0,6),1)

st(dgsc(0,6),5)

\ .
sd(dgsc(0,7),2) sd(dgsc(0,6),2)

L
Data General

_

a

Figure 4 Dual-Initiator Configuration AV4600

AViiON

Operator Initiated Failover in the DG/UX 5.4.2 Operating System

012-004186-01

DG/UX Technical Brief

January 27, 1993

