
Ordering No. 093-000093

INTRODUCTION
TO THE

REAL TIME
OPERATING

SYSTEM

093-000093-02

© Data General Corporation, 1973, 1974, 1975
All Rights Reserved.
Printed in the United States of America
Rev. 02, March 1975

Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical,
arithmetic, or listing errors.

Original Release - October 1973
First ReviSIon - May 1974
Second Revision - March 1975

This revision of the Introduction to the Real Time
Operating System is a major revision. A vertical
bar on the outside margin of a page indicates sub­
stantially new, changed or deleted information.

PREFACE

The Real Time Operating System (RTOS) for the Data General family of computers
and peripherals consists of a small, core resident, general purpose multitask
monitor designed to control a wide variety of real time environments.

By using RTOS, user programs are relieved from the details of critical input/
output device timings, data buffering, priority handling, and task scheduling. In
addition, tasks are provided with a parallel processing capability plus intertask
communication and synchronization facilities. Since RTOS is highly modular and
reentrant, additional device handlers can be easily added to an RTOS system.

Communication with the RTOS executive takes place through a set of system and
task control commands. Calling sequences, mnemonics, and operation of RTOS
are identical to those in Data General's Real Time Disc Operating System (RDOS).
This allows software development and debugging to be carried out on an RDOS
system for lateruse in a core-only RTOS system.

i

TABLE OF CONTENTS

*How to Use This Manual .•..••.
*Data General Operating Systems •
*Real Time Systems.
*RTOS Program Development .••.••..••••.•...• 0 0 • 0 0 • 0 • 0 •

Organization and Core Configuration 0 0 0 0 0 0 • 0 0 0 0 0 ••• 0 • 0 ••• 0 •

System Generation and Loading 0 0 0 0 •••• 0 •••• 0 0 • 0 •••• 0 0 • 0

*Program Execution Flow
System Calls.
*Multitasking Systems
Task States and Priorities 0 0 •• 0 0 0 • 0 •• 0 • 0 • 0 0 0 0 0 •• 0 •••••• 0

Task Environments
Task Calls
*Real Time FORTRAN IV Programming .•••.•• 0 0 • 0 0 • 0 0 0,0 0 •• 0

*Task Execution Control
Intertask Communication/Synchronization, . 0 0 0 • • 0 • • 0 0 0 0 • • • • 0 •

Task Timing Control
*Input/Output Control ..•..............................
Input/Output Command Modes 0 0 • 0 •• 0 0 0 • • • 0 • • • 0 0 0 • 0 • • • •••

System Library .
Buffer Control Package .
Disc File Input/Output Control. 0 •• 0 0 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 0 •••••

Cassette/Magnetic Tape I/O Control, 0 0 •• 0 0 ••••••• 0 ••••• 0 • 0

Interrupt Servicing
*User Interrupt Processing •. 0 •••••• 0 •••• 0 • 0 0 0 0 • 0 • 0 •• 0 • 0

*Multiple Devices and Units 0 0 • 0 0 • 0 0 • • , • • 0 • 0 • 0 • 0 • 0 0 0 • 0 0 0 0

*Multiple Processor Systems 0 • 0 • 0 • 0 • 0 •• 0 0 • 0 • 0 •• 0 ••••••••

*Support Literature .
Glossary of Terms

* Topics starred here and throughout the manual
can be read for a broad overview of RTOS o

Unstarred topics contain information in greater
detail about RTOS o

ii

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
39

39
41
43
45
47
49
53

LIST OF FIGURES

Operating System Compatibility
R TOS Highlights. . . . • . . • . . .
R TOS Program Deve lopment Steps.
RTOS Core Configuration
Sample RTOSGEN Dialogue ..••.
Program Execution Flow .
System Call Summary ..
Single Task Environment ..
Multitask Environment
Task States ...•.....
Task Control Block Layout ..
Task Call Summary .•....
FORTRAN Task Call Summary ..
Task State Transitions
Intertask Communication.
Task Synchronization
Group Task Control
Task Timing Control
Throughput Comparisons. . . . •.
Input/Output Command Modes
RTOS System Libraries
Disc File and Tape I/O Control
Flow of Control During Interrupt Servicing .•
User Interrupt Control Flow
RTOS Hardware Configuration
Multiprocessor Systems.

iii

• • 2
4

. ••••• 6
• • 8

10
12
14
16
16
18
20

· 22
24

· 26
• • 28

28

• 28
.30
.32

• • 34
36
38

• 40
• • 42
• • 44
· .46

* HOW TO USE THIS MANUAL

This manual uses modular instruction techniques to present a complex subject,
the Real Time Operating System, in a simple, step-by-step fashion. Each
topic is presented on a single page and is accompanied by a single-page
illustration. There is a loose logical progression in the presentation of topics,
yet each topic is truly self-contained. Thus there is no need to digest all the
material in a single sitting; you may indeed read the chapters selectively
according to your particular interests. If you would like a broad overview of
the operating system, note that you may read only those chapters whose titles
are starred.

No manual of this kind can present any topic in depth, and so after you have
finished this primer you should consult one or more of the publications listed
in the back of this manual following the glossary of terms. This list of
publications gives you the titles and numbers of all DGC manuals describing
RTOS and related utilities. Additionally, this list gives a precis describing
what you may expect to find in each of these publications.

1

DISC BASED
OPERATING
SYSTEMS

NON-DISC
BASED
OPERATING

SYSTEMS

SOS

Disc-Based Progr"am Development
and Real Time Applications

RDOS

RTOS

Tape-based Program
Development Applications

Core -based Real
Time Applications

OPERATING SYSTEM COMPATIBILITY

2

*DAT A GENERAL OPERATING SYSTEMS

The Data General family of computers is supported by a wide range of software
designed to provide the user with a system that will meet his most demanding re­
quirements. The first and possibly most important software package is the operating
system, which interfaces user programs with the computer hardware.

Data General provides the user with three operating systems to help meet his
application's needs in an economical and efficient manner. Thus, the user can
concentrate efforts on problem solving -- application programs -- rather than on
the intricacies of the hardware.

At the top of the operating system hierarchy is the Real Time Disk Operating System
(RDOS), a powerful real-time multitasking disc based operating system that pro­
vides users with a system for interactive or batch program development and run­
time support for demanding real-time environments. RDOS fully supports single
processor configurations running in a single program, a partitioned memory
foreground/background, or a fully protected dual programmed environment.
Multiple processor configurations with shared discs or linked via a multiprocessor
communications adapter provide the reliability necessary for critical real time
applications.

For non-disc based applications or applications utilizing disc as a high speed bulk
storage device, Data General provides the Real Time Operating System (RTOS).
RTOS provides the user with a small and fast core resident, general purpose
multitask executive that is a compatible subset of RDOS. Calling sequences,
mnemonics, and operation are identical to those of RDOS so program development
and testing can be done under RDOS for later use with RTOS. This compatibility
also allows a user to develop programs for a non-disc system that can be easily
expanded with the later addition of a disc.

For non-real-time applications, the Stand Alone Operating System (SOS) provides
a program development and execution system that is also a compatible subset of
RDOS. SOS provides the non-disc based user with a system of editors, assemblers,
and loaders utilizing paper tape, cassette tapes, or magnetic tapes to speed user
program development.

3

* RTOS

* RTOS

* RTOS

* RTOS

* RTOS

* RTOS

* RTOS

* RTOS

* RTOS

* RTOS

* RTOS

* RTOS

RTOS HIGHLIGHTS

is a small, general purpose multi task real time operating
system.

is a compatible subset of RDOS allowing program development
and debugging to be performed using a disc operating system.

handles task scheduling and task priority.

provides parallel task processing capability.

provides for intertask communication and synchronization.

allows the execution of tasks to be monitored and controlled on
either a priority or a task 1. D. basis.

allows user tasks to communicate with the executive through a
set of system and task commands.

controls and executes all input/output operations.

provides simple calling sequences to communicate with character,
word, and block oriented devices.

has handlers written for the console Teletype@*, real time clock,
paper tape readers and punches, line printers, card readers,
plotters, cassettes and magnetic tape units, fixed and moving
head disks, multiple teletypes, and communication and process
I/O equipment.

provides all necessary entry points so user specified device
handlers can be easily added to the system.

is a highly modular and reentrant software system provided as a
relocatable package.

*Teletype is a registered trademark of Teletype Corporation, Skokie, Illinois.

4

* REAL TIME SYSTEMS

A real time system is a hardware/software package that allows processing of
information in a rapid and responsive manner. This response is swift enough to
ensure that the results of the processing are available in time to influence the
process or environment which is being monitored and controlled.

RTOS is an executive system designed to interface with user programs that have
real time requirements. The standard input/output communications sub-system,
together with the efficient scheduling and interrupt processing features of the
executive system, provides an ~nvironment satisfactory for any real time program.

RTOS is an event-driven operating system. This means that the user does not have
to execute special system calls to cause rescheduling to occur. RTOS maintains
the highest priority (user-defined) task in execution which is capable of being in
execution. This task, the highest priority ready task, will continue in execution
until one of several events occurs:

• the task terminates its own operation,

• the task becomes suspended while it awaits the
occurrence of an event, e. g., the completion of an
I/O operation,

• a higher priority task becomes capable of going
into execution.

RTOS allows the user to implement his application on the computer quickly by
providing the following aids:

•

•

•

standard device input/output handlers,

a standard interrupt servicing program,

all necessary executive functions to schedule the
usage of the computer and peripherals effeciently.

5

PROCE
I/o RDOS

1. Speed program development by using an RDOS system.

+
RTOS --.. ~
~ Libraries

2. Reload the . developed program with RTOS' libraries.

~PBOO~

E:2 8
s

MCABOOT

@n~~e;J

3. Bootstrap the RTOS program.

RTOS PROGRAM DEVELOPMENT STEPS

6

RTOS PROGRAM DEVELOPMENT

The compatibility which exists between Data General's RDOS and RTOS
operating systems can be extremely important to users engaged in program
development. The speed and convenience of working under RDOS can be brought
to bear on programs which will eventually be run without the benefit of a disc
operating system. Moreover, even though RTOS is a strictly core-resident
operating system, it does support the disc for bulk storage and uses a file structure
which is compatible with that used by RDOS.

By utilizing those features of RDOS which will be available under RTOS, a user may
perform all program development under RDOS. All stages of program development,
from the initial creation and editing of source files through the execution and de­
bugging of save files, will thus be expedited by using RDOS. Users wishing to use
a high level language as a program development tool can use the real time FORTRAN
IV calls which are available to both RTOS and RDOS.

After testing and debugging a program under RDOS which is to be run under RTOS,
the program is merely reloaded with the RTOS libraries instead of those containing
the RDOS modules. This will produce an RTOS program which is identical in
operation to its RDOS counterpart. The RTOS program, however, will be entirely
core-resident and can be run on systems with or without a disc.

After a program has been reloaded with the RTOS libraries, it must be bootstrapped
into execution. The method of bootstrapping the program depends upon the device
configuration of the system under which it will be running. There are four distinct
kinds of systems, and thus four different methods of bootstrapping the systems:

•
•
•
•

Disc systems
Magnetic Tape or Cassette systems
Multiprocessor systems
Paper Tape systems.

If the RTOS system contains a disc unit, the RDOS disc bootstrap program, HIPBOOT,
can be used to activate the RTOS program. HIPBOOT runs independently of RDOS
and provides the most convenient means of executing an RTOS program. Systems
with either a magnetic tape or cassette unit can use a tape bootstrap program
(TBOOT or CBOOT, as appropriate) to load and execute an RTOS program. If one
CPU running under RDOS and one or more idle CPUs are linked by a multiprocessor
communications adapter (MCA), an RTOS program can be transmitted from the
RDOS system to one or more of the idle CPUs. This transmission would be accom­
plished by means of the MCA bootstrap program, MCABOOT. Finally, paper
tape systems use the bootstrap and binary loaders to load and execute an RTOS
program.

7

BINARY OR CORE IMAGE LOADER

AVAILABLE MEMORY

USER TASKS
AND

DEVICE HANDLERS

••• }RTOSAREA2

USER PAGE
ZERO

............. ; :; .:. .: : :;:: \ } RTOS AREA 1

RTOS CORE CONFIGURATION

8

ORGANIZATION AND CORE CONFIGURATION

The RTOS executive, composed of system and task control modules, constitutes
the main framework of the operating system. It provides routines to process
interrupts and dispatch them to device interrupt servicing modules, to process
system calls that initiate I/O functions, to define new interrupt processing routines
or get/change the time of day or date, and to process task calls that control the
flow of execution through user written tasks.

RTOS occupies three areas in memory. The lowest 208 memory locations are
used as a communications area for both interrupts and tasks wanting to access the
other two areas.

The second area begins at location 4008. It contains a User Status Table (UST)
that provides information describing the total program such as its size, starting
address, starting address of task queues, and whether the debugger is present.
Above the UST is the task status area followed by device and I/O channel control
tables.

User task and device drivers are loaded above the second RTOS area. Immedi­
ately above the user task area is the RTOS system and task control modules
followed by RTOS device handlers. These last modules are extracted from the
RTOS libraries to satisfy unresolved references made by user tasks. This area
contains only those task and device modules necessary to control the user program
environment.

9

RTOS SYSTEM GENERATION
CORE STORAGE (IN K WORDS) 12

RTC FREQ (0=NONE,1=lOHZ, 2=100HZ, 3=1000HZ,4=LINE)4
LINE FREQ (0=50HZ, 1=60HZ) 1

TASKS(1-255) ? 10
. CHANNELS(1-63) ? 8

RESPOND WITH NUMBER OF UNITS

DISK(0-1) ? 1
DISK STORAGE (IN K WORDS) 128

DISK FILE STRUCTURE
1ST BLOCK? 6

END BLOCK ? 200
NAME? A
NAME? FILEA

1ST BLOCK ? 201
END BLOCK ? 506

NAME? FILEB
1ST BLOCK ? 507

END BLOCK ? 511
NAME? FILEC

DKP(0-4) ? 0
MTA(0-8)? 0
BUFFERED I/O (1=YES, O=NO) 1
CAS(0-8) ? 0
PTR(0-2) ? 1
PTP(0-2) ? 1
LPT(0-2) ? 1

COLUMN SIZE (80,132) 80
CDR(0-2) ? 0
PLT(0-2) ? 0
QTY(0-64)? 0
TTYS(0-3)? 1
MCA(0-15)? 2

TIMEOUT RETRIES (0-65535) ? 200

RESPOND WITH 0 FOR NO, 1 FOR YE S

AUTO RESTART ? 1

HIGH PRIORITY INTERRUPTS? 0

USER SUPPLIED DRIVERS ? 0
COMPUTER: NOVA (0) OR ECLIPSE (1)? 0

SUMMARY OF RTOS SYSGEN

CODE OCT NAME NAME
06 MCTOC
07 MCROC
10 TTIDC $TTI
11 TTODC $TTO
12 PTROC $PTR
13 PTPDC $PTP
14 RTCOC
17 LPTDC $LPT
20 DSKDC

SYSGEN OKAY? 1
OUTPlIT FILE ? SYS1

SAMPLE RTOSGEN DIALOGUE

10

SYSTEM GENERATION AND LOADING

In real time environments, individual user requirements vary from installation to
installation either due to hardware differences or to differing requirements in each
application. These differences may be diverse combinations of standard Data General­
supplied' hardware, special user-constructed interfaces, different core memory
sizes, or system throughput and environment considerations.

Thus to promote efficient utilization of core memory in each installation, each RTOS
system must be tailored to the specific requirements of the installation. This
tailoring process is called system generation. A utility program, RTOSGEN, is
provided to perform system generation. RTOSGEN can be executed as a stand­
alone program or it can be executed under RDOS. This utility provides the first
step in the tailoring process by asking a series of questions on the teletype console
to which the user must respond. At the end of each q:uestion series, RTOSGEN
outputs a relocatable binary module on paper tape, magnetic tape or cassette, or a
disc.

The relocatable binary module must be loaded with the application software relocat­
able binaries and with the RTOS libraries. This process, system loading, is the
second and final step performed to produce an executable RTOS program. Relocat­
able loading can be performed either under a stand-alone loader, under SOS, or
under the RDOS relocatable loader. The RDOS loader, like all RDOS utilities, is
the most convenient to use. If loading is done under RDOS, a single command
line like the following could be input to the system via the teletype console:

RLDR/C RTOS USERl USER2 RTOSI. LB RTOS2~ LB)

The R TOS system generation module is named R TOS in this illustration; the user
application programs are named USERl and USER2. When relocatable loading is
finished, the RTOS program is fully executable. Several different system loads with
different RTOS modules could be performed to produce numerous RTOS programs
tailored to individual application requirements.

11

SYSTEM
CALLS

INTERRUPTS

PROGRAM EXECUTION FLOW

12

* PROGRAM EXECUTION FLOW

RTOS directs all activity in a real time application. RTOS receives requests from
the user program and initiates suitable actions to satisfy these requests. RTOS
also receives control when an interrupt occurs and passes control to the identified
device handler while it holds the real time application in suspension.

There are two principal ways a user program can signal RTOS to perform desired
actions for the program. These are system and task calls, and they are issued
as program instructions. They activate program logic within either the system or
task modules.

System calls generally request R TOS to perform I/O operations; to return to the
user the value of system data such as the time of day, date, or the current
clock frequency; or to define user interrupt servicing routines.

Task calls perform user task management functions such as task initiation, sus­
pension, activation, and termination on an individual or group basis using task
priorities or other identifiers.

Provision is made in RTOS for a user device handler to send a message to a task in
the user application program. This facility permits external events to influence
the multitasking environment even though it is being held in suspension while
interrupt servicing occurs.

13

. DELAY

. GHRZ
• GDAY
. GTOD
. SDAY
. STOD

· DUCLK
· IDEF
. IRMV
. RUCLK

. GCHAR
· PCHAR
· WCHAR

.GMCA

.INIT

. RLSE

· APPEl\1])
· CLOSE
. GCHN
.MTDIO

· MTOPD
. OPEN
.RDB
.RDL
.RDS
· RESET

. WRB

. WRL

.WRS

. MEM

. MEMI

. L.TN

. RTN

n
-
n -
n
-
n -
n
n
n
n
-
n
-

n
n
n

SYSTEM CALL SUMMARY

Suspend a task for a specific time interval.
Get the real time clock frequency .
Get the current date •
Get the time of day .
Set the current date .
Set the time of day .

Define a user clock routine.
Identify a user interrupt device.
Remove a user interrupt device .
Remove a user clock .

Get a character from the keyboard .
Output a character to the teletypewriter.
Wait for a specific character to be input.

Get the current CPU's MCA number.
Initialize a magnetic tape or cassette unit.
Release a magnetic tape or cassette unit .

A ppend to a device.
Close a file or device.
Get a free channel number .
Perform free format I/O on a magnetic tape or cassette

unit.
Open a magnetic tape or cassette unit for free format.
Open a device or file on a channel I/O number .
Read one or more disc blocks.
Read a line of ASCII characters.
Read data in image format.
Close all opened devices and files.

Wri te one or more disc blocks .
Write a line of ASCII characters .
Write data in image format.

Determine the amount of available memory .
Change the top of available memory .

Idle the system abnormally .
Idle the system normally .

14

SYSTEM CALLS

Users can communicate with R TOS by making system calls to R TOS subroutines
to perform such functions as input/output, obtaining or changing system information
like the time and date, and initializing devices. When an R TOS subroutine is
entered, control passes to the task monitor, which saves the task environment
before passing control to RTOS. Upon return from either a task or system call, the
user's AC3 is set to either the User Stack Pointer, USP, (in NOVA@* systems), or to
the frame pointer, (FP), in ECLIPSE™ * systems. In all systems, the contents of USP
are restored upon return from system and task calls.

System calls are made in either of two forms:

.SYSTM
command
exceptional return
normal return

.SYSTM
command n
exceptional return
normal return

The mnemonic. SYSTM, which must precede each command word, is recognized
by both extended and ROOS assemblers as a subroutine call. The specific system
command is assembled as the word following this mnemonic. In the first call
format above, the command appears alone as the second word in the calling sequence.
If the command requires arguments, they are passed in the accumulators ACO, ACl,
and/or AC2. In the second call format, ~ is a positive integer or mnemonic equated
to a positive integer representing an I/O channel number. (The channel number is a
logical link to an opened file or device.) Additional arguments, if any, are passed
in ACO, ACl, and/or AC2.

Any system command requiring a channel number need not specify it in the command
itself. If an octal 77 (or the mnemonic CPU) is specified as the channel number with
the command, the system uses the channel number passed in AC2. This facility
provides a flexible runtime device selection method. In addition, passing arguments
through the accumulators, instead of inline, makes it possible to write routines
that can be shared by many tasks.

*NOVA is a registered trademark, and ECLIPSE is a trademark" of Data General
Corporation, Southboro, Massachusetts.

15

(START)~_-,

END

SINGLE TASK ENVIRONMENT

TASK 1 TASK 2 TASK 3

D
---I

I I

2J u
~

I

~
I Task

Scheduler

MULTITASK ENVIRONMENT

16

* MULTITASKING SYSTEMS

A task is a logically complete execution path through a user program demanding
the use of system resources such as CPU and I/O device control. Single task
environments are already familiar to users of non-real time operating systems.
System utility programs such as assemblers, compilers, or relocatable loaders
are all examples of programs executing in a single task environment. In summary,
a single task environment is a program with a single unified path connecting all
its program logic, no matter how complex the logic branches.

In a single task environment, the processor idles when the program initiates an
I/O operation. The program is activated when the operation is complete. During
the time the I/O operation is being performed, no useful user processing occurs.
It was the problem of efficiently performing seemingly unrelated functions in a
nonsequential manner to utilize the processor and I/O devices more fully that
led to the notion of multitask real time operating systems.

A single real time program can have from one to a virtually unlimited number of
logically distinct tasks. Each task performs a specified funtion asynchronously
and in real time. CPU control is allocated by the RTOS Task Scheduler to the
highest priority task that is ready to perform or continue performing its function.

Examples of multitask environments are process control operations; communi­
cations systems involving line control, message reception, queuing and switching;
and multiterminal data base systems. The individual tasks within a process
control system, for example, might be data collection, data alarming, control
operations, periodic and demand data logging, operator console control, and
control of line to supervisory computer.

17

EXECUTING

READY

SUSPENDED

DORMANT

The task has control of the central
processor unit (CPU).

The task is ready and available for
execution but cannot gain control of
the CPU until all higher priority
tasks existing in the READY or
EXECUTING state are completed
or go into a SUSPENDED state.

The task is awaiting the occurrence
or completion of some system call
or other real time operation.

The task has not been initiated
(made known to RTOS) or its
execution was completed and it
is now idle.

TASK STATES

18

TASK STATES AND PRIORITIES

User multitask programs run under RTOS have one task initiated for them by
the initialization phase of RTOS. To create a multitask system, the first task
initiates the second and subsequent tasks by issuing the appropriate task monitor
calls.

When a multitask environment is established, the Task Scheduler must decide
which task should be executing. To enable the scheduler to function, each task
is assigned a priority at the time of initiation. RTOS permits 256 levels of task
priority in the range 0 through 255, with priority 0 being the highest. Several
tasks can exist at the same priority level.

The default task is initiated at the highest priority and since it is the only task
in the system, it receives control. When this task initiates the second and
subsequent tasks, the Task Scheduler is called upon to put the highest priority
task into execution. other tasks that have been initiated but are of lower
priority are said to be ready to run.

The executing task becomes suspended when it makes a call to the operating
system to perform some function such as an I/O transfer or get time of day.
The task remains suspended until the operation is completed, at which time it
becomes readied.

Thus we have seen that tasks under the RTOS system can exist in either of four
states:

•

•

•

•

Tasks are in control of the CPU and are
EXECUTING their assigned instruction paths.
Tasks are READY and are waiting to become
the highest priority task available for execution.
Tasks are SUSPENDED waiting to be readied
in response to a system or I/O call being
completed.
Tasks are not known to the system and are in
a DORMANT state.

19

Word 0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

TCP

TACO

TACI

TAC2

TAC3

TPRST

TSYS

TLNK

TUSP

TELN

TID

TTMP

TKLAD

TSP

TFP

TSL

TSO

Task's Program Counter & Carry Bit

Task's ACO

Task's ACI

Task's AC2

Task's AC3

Task Priority and Status bits

System Temporary

Link to next TCB in chain

User or FORTRAN Stack Pointer

Link to Extended Save Area

Task I. D. (1-255) or 0

Used to process task. ABORT calls

Used to process task . KILAD calls

Stack pointer (ECLIPSE computer only)

Frame pointer (ECLIPSE computer only)

Stack limit (ECLIPSE computer only)

Overflow address (ECLIPSE computer only)

TASK CONTROL BLOCK LAYOUT

20

TASK ENVIRONMENTS

As discussed in the previous section, a task within an RTOS system can be either
in an idle or active state. If the task is in the DORMANT state, the system has
no knowledge that it exists even though the code remains part of the program.
When a task is active (in the EXECUTING, READY, or SUSPENDED state),
certain status information must be maintained about each task to enable the
operating system to manage the environment and for the Task Scheduler to keep
the highest priority ready task in the EXECUTING state.

This status information about each active task is contained within an information
structure called a Task Control Block (TCB). There is one TCB for each task
in the active state (no TCB for an idle task). TCB's are used to store active
registers and other priority and status information when the task exists in either
the READY or SUSPENDED state. The TCB of the executing task is allocated to
the task but the TCB remains unused by the system until the task relinquishes
control of the CPU. If the task becomes readied or suspended, its TCB is then
used to store its status information. If, on the other hand, the rescheduling
resulted from the task terminating its own execution, its TCB is placed into a pool
of available TCBs.

The TCBs of ready and suspended tasks are linked together in chains. These
chains are organized in order of decreasing task priority. This means that the
Task Scheduler need only look at the top of the active chain to select the highest
priority task. Each TCB in the active chain is connected by its link word to the
next TCB in the chain. Among equal priority tasks, a round-robin scheduling of
system resources is performed. Whenever a task has its TCB entered in the
active chain, the task is assigned automatically the lowest priority within a
priority level. The last TCB in the chain has a link of -1.

Unused TCBs in the system are linked together to form an inactive chain of avail­
able TCBs. Except for the link words, these TCBs are empty until a task is
initiated; then, a free TCB is removed from this chain, filled with information
about the task, and placed on the active chain.

21

· ABORT
· AKILL
.DQTSK
. KILAD
. KILL
. QTSK
. TASK

. ARDY
· ASUSP
· PRI
· SUSP

. IXMT
• REC
• XMT
• XMTW

· lOST
· TIDK
· TIDP
· TIDR
· TIDS

.SMSK
• UCEX
• UIEX

• UPEX

T ASK CALL SUMMARY

Abort a task's operation.
Terminate all tasks of a specified priority.
Dequeue a queued task.
Define a kill-processing address .
Terminate the calling task .
Queue a task for periodic execution .
Initiate a task •

Ready all tasks of a specified priority •
Suspend all tasks of a specified priority.
Change the calling task's priority.
Suspend the calling task.

Transmit a message from an interrupt routine .
Receive a message •
Transmit a message .
Transmit a message and wait for it to be received •

Obtain task's status by 1. D.
Terminate a task by 1. D.
Change a task's priority by 1. D.
Ready a task by 1. D.
Suspend a task by 1. D.

Set an interrupt mask.
Exit from a user clock routine .
Exit from a user interrupt routine.

Exit from a user power-fail routine.

22

TASK CALLS

Unlike system calls, task calls consist of single word instructions; all arguments
for task calls are passed in the accumulators. Not all task calls have error returns,
and those that do not have error returns do not reserve error return locations.

The general form of a task call in a program is:

ACO, ACI, AC2 contain required input arguments.

TASK CALL MNEMONICS
error return
normal return

ACO, ACI, AC2 contain output values after call
processing; AC2 is set to the error code, if any.

AC3 contains the User Stack Pointer (USP).

Each task call has an associated modular package of relocatable binary code in
the R TOS library needed to perform the call processing. This feature -
modularity - enhances core utilization since only those modules selected by the
user occupy program space at load time.

Upon returning from processing a task call, R TOS gives program control to the
Task Scheduler so that it can maintain the highest priority READY task in the
EXECUTING state.

An example of part of a program that uses task calls follows.

LDA 0 TPRI
LDA I TADDR
• TASK
JSR ERROR

LDA 0 MESAD
LDA I MESS
.XMTW
JSR ERROR

LOAD TASK I. D. /PRIORITY
PICKUP TASK ADDRESS

PROCESS ERROR

PICKUP MESSAGE ADDRESS
GET MESSAGE
TRANSMIT IT TO CALLER
PROCESS ERROR

.23

AKILL
FQTASK
IT ASK, FT ASK

*KILL, EXIT
* START
*TRNON

ARDY
ASUSP
PRI
SUSP

*WAIT, FDELY

REC
XMT
XMTW

* ABORT
*CHNGE
* HOLD
* RELSE
*STTSK

FORTRAN TASK CALL SUMMARY

Terminate a class of tasks in an orderly fashion.
Initiate a task for periodic execution.
Initiate a task.
Terminate a task in an orderly fashion.
Start a task after a time delay.
Execute a task at a specified time.

Ready a class of tasks.
Suspend the operation of a class of tasks.
Change the priority of a task.
Suspend the operation of a task.
Suspend a task for a specific time interval.

Receive a task message.
Transmit a message to a task.
Transmit a message to a task and await its receipt.

Terminate a task's, oper~tion abruptly.
Change the priority of a task.
Suspend a task.
Ready a suspended task.
Obtain the status of a task.

*Call conforms to recommendations of the Purdue Workshop.

24

* REAL TIME FORTRAN IV PROGRAMMING

The benefits of programming in a high level language are many, and in essence
they can all be reduced to one advantage: dollar savings. Programs written in
high level languages reduce software production cost and total system production
time, and they avoid expensive training costs. Because of their inherent improved
readability, high level languages improve the uniformity of program coding and
make program logic more visible ... features which decrease program maintenance
costs.

Economies obtained from the use of high level languages in applications programs
typically reduce needed manpower by 45%, even though high level languages increase
core requirements by 20% and sometimes increase program execution time by up to
45%. Reduced hardware costs have inspired new interest in FORTRAN as a popular
development tool in real time programming, and Data General provides several
ANSI FORTRAN software packages for this use. As you might expect, Data
General's FORTRAN packages run compatibly. FORTRAN program development
can be accomplished with ease on an RDOS system for use on a system which will
run under RTOS. Both versions of FORTRAN contain features required in real time
applications:

• ANSI FORTRAN compatibility,
• reentrancy at run time,
• full multitasking support,
• Global/named common areas,
• in -line assembler coding capability,
• I/O access capability to bulk storage devices,
• subroutine library for analog and digital process I/O,
• bit/string manipulations,
• expanded debugging aids.

The Instrument Society of America (ISA) has participated actively in the proposed
design of real time FORTRAN extensions. Standards proposed by the ISA were
discussed at the eighth workshop on the standardization of industrial computer Ian-
gua_ge, commonly called the "Purdue Workshop". The ISA recommends' FORTRAN
language extensions in recognition of the fact that it is a popular high leve 1 language
which could simplify real time applications programming. Starred FORTRAN call
names listed on the preceding page are those calls available in DGC FORTRAN
which conform to the recommendations of the Purdue Workshop.

25

RTOS

• ABORT
• KILL
.AKILL
.TIDK

ALL
SYSTEM

and TASK
CALLS

TASK
SCHEDULER

TIME
EVENT OR

.TIDK

.AKILL

TASK STA TE TRANSITIONS

~6

SYSTEM CALLS
.XMTW/.REC
. SUSP/. ASUSP

. TIDS

*TASK EXECUTION CON1ROL

When an R TOS program is initiated, it gives control to a single user task after
initializing the R TOS status tables. It could be viewed as taking the first task
from the DORMANT state directly to the EXECUTING state. This task must
initiate other tasks to set up the desired multitask environment. Additional tasks
as they are initiated are put into the READY state.

To insure that the highest priority READY task is always the task in the EXECU­
TING state, task calls cause the issuing task to move from the EXECUTING
state to the READY state. READY tasks await their turn in a READY queue
organized by priority. The Task Scheduler takes the first task in this queue (the
highest printing task, by definition) and puts it in the EXECUTING state.

SUSPENDED tasks are those that were once in the READY or EXECUTING state.
A task may become suspended for one of the following reasons:

• It issued a suspend call, • SUSP, • ASUSP, or • TIDS.
• It suspended itself for a specified time delay, • DELAY.
• It is waiting a message from another task, • REC.
• It has issued a transmit-and-wait call, .XMTW.
• It is waiting the completion of a • SYSTM call.

Just as a number of different events may suspend a task, several events and task
calls can cause a SUSPENDED task to be put into the READY state.

• The completion of a • SYSTM call (such as a request for
I/O or the expiration of a time delay).

• The posting of a message for a task awaiting its receipt,
• XMT, • XMTW or • IXMT.

• The request for a message previously sent and being
waited for, • REC.

• The readying of a task by task calls, • ARDY or • TIDR.

Tasks enter the DORMANT state by any of the following:

• The calling task terminated itself, • KILL.
• A task with a given I. D. was terminated, • TIDK.
• All tasks of a given priority level were terminated, • AKILL.

If all tasks are terminated either individually or on a group basis, the entire
system is placed into an idle state, essentially halting the activity of the system
although the system remains capable of responding to device interrupts.

27

Task A Task B
.XMT --____________ -Ss~----------.. ~.REC

Task A sends message and goes into the READY state. Task B is SUSPENDED
until the message is received.

INTERT ASK COMMUNICATION

Task C Task D
• XMTW _________ <IIII::S~-------I.~. REC

Neither proceeds until the message is passed from Task C to Task D.

TASK SYNCHRONIZATION

I~,,~------------------TASK E

PROCESS

LOCKING A PROCESS

-28-

INTER TASK COMMUNICA TION/SYNCHRONIZA TION

Even though tasks operate asynchronously, it is often desirable for one task to be
capable of "talking" to another task. Tasks communicate with one another under
RTOS by sending and receiving one-word messages in agreed-upon core locations
(message address). One-word messages can, of course, be pointers to larger
messages if the tasks agree beforehand on the use of such a technique.

A transmitting task can simply deposit the message in an agreed-upon location
(. XMT), or the caller can deposit the message and wait until it is received
(. XMTW). To receive such a message, another task issues a . REC task call. If the
transmitting task has not yet sent the message when the. REC call is issued, the
receiving task is SUSPENDED until the message is sent. If the message has
already been sent, the receiving task accepts the message and is put into the
READY state.

If the message was sent via the. XMTW task call, both the receiving and trans­
mitting tasks are put into the READY state.

It is also possible to transmit a message directly from an interrupt servicing
routine to a user task via the. IXMT call. This call is very useful for activating
tasks based on the occurrence of external events indicated by interrupts.

The . REC and • XMT commands can be used to lock and lUllock a process or data
base which is shared by several tasks, preventing more than one task at a time
from accessing the data base or the process path. In essence, the procedure is
to define a synchronization word, the message location, which all tasks will
attempt to receive. The task in control of the locked resource then issues an
. XMT to the synchronization word when the resource is to be made available to
the other waiting tasks. The highest priority task waiting to receive (. REC) the
synchronization word is then readied and gains lUlique control of the resource. This
task, in turn captures the use of the resource until it unlocks the resource by
issuing an • XMT to the synchronization word, etc.

This technique requires that the locking facility be initialized before any tasks use
it. Initialization can be performed either by setting the synchronization word
initially to a non -zero value, or by having an initialization task issue an . XMT to
the synchronization word.

29

PEND:

TOD:

,
.SYSTM
• DELAY

.SYSTM
• GTOD

I
I
I ,

R TC Interrupt
Servicing

I

; Suspend calling task for a specified
; time interval •

; Obtain time of day for use
; in task scheduling •

USCLK:

JSRtSCLK~ -- User-defined clock
routine receiving
control at user-defined
intervals

I

I

I

•
.UCEX

TASK TIMING CONTROL

30

TASK TIMING CON1ROL

R IDS offers several facilities for user tasks to perform time-related functions.
For example, users can implement their own time-slicing or round-robin alloca­
tion of CPU control. By issuing the system call. DE LAY, a task can suspend
itself for a specified time period that is a multiple of the real time clock fre­
quency. (The frequency of the real time clock can be determined by the system
call • GHRZ.)

R IDS also maintains a system clock and calendar for tasks that should be
scheduled on a time-of-day basis. Tasks can obtain or set the date orthe correct
time in seconds, minutes, and hours. By periodically monitoring the time-of­
day clock, tasks can be scheduled for such funtions as performing hourly scans
or printing shift reports.

Finally, R IDS provides a pair of system commands permitting the definition and
removal of a user clock, driven by the system clock. This user clock receives
control at user-defined intervals. Thus, the user program can execute a short
routine at the real time clock interrupt level. The routine can perform time-out
control for other device drivers or allow task control based on milliseconds
instead of seconds.

31

Task #1

Task #2

Task #3

Task #1

Task #2

Task #3

Single Task Operating System

TTO PRINT

... 4t------- ELAPSED TIME -.------------l.~

NOTE: One task at a time executes.
CPU stays idle when tasks wait for I/O.

Multitask Operating System

DKP

I TTO PRINT I
...... t------ ELAPSED TIME

NOTE: One task at a time executes.
CPU time is given to lower priority task when
task waits for I/O. Same !hroughput as shown above,
yet shorter elapsed time!

THROUGHPUT COMPARISONS

32

* INPUT/OUTPUT CONTROL

An important function of any real time operating system is the efficient handling
of input/output operations. Optimum usage of machine devices and central pro­
cessor time in the accomplishment of tasks is the real reason for designing and
implementing a multitask system.

Since I/O devices are slow compared to the internal speed of the computer, they
must be programmed to overlap their operations with computations, when possible,
in order to:

• Increase usable CPU time
• Greatly increase efficiency of I/O operations
• Provide more throughput of data

The responsibility of R TOS I/O control routines is to react during normal program
execution to the structuring of I/O requests, making assignments of requests to
machine devices when they are idle, and queuing requests for devices that are busy.
Through the queuing facility, RTOS achieves maximum and continuous overlap of
multitasks without direct intervention by the tasks themselves.

Alllnput and output of data via R TOS-supported devices must be through system
I/O commands. Although the system does not reject any user I/O command, the
issuance of such commands by a user would be both risky and unnecessary since
a full complement of system I/O commands is provided within RTOS.

System I/O commands require a channel number to be given in the second field of
the command word. This channel number is associated with a particular device
or file when the device or file is first opened by the system command. OPEN.
Once this association is made, all subsequent I/O commands pertaining to the file
or device require only the channel number.

33

TYPE

INPUT /0 UT PUT COMMAND MODES

CALL

· GCHAR/. PCHAR
• WCHAR

• RDL/. WRL

.RDS/. WRS

.RDB/. WRB

• MTDIO

NIOS, NIOC, NIOP
DIA, DIB, DIC
DOA, DaB, DOC

34

DATA QUANTITY

Ascn SINGLE CHARACTER

Ascn FIELD TERMINATED
BY CARRIAGE RETURN,
FORM FE ED, NULL, OR
132 CHARACTERS

BINARY FIELD SIZE CON­
TROLLED BY BYTE
COUNT

BINARY MULTIPLE 256-WORD
DATA BLOCKS

BINARY WORD COUNT (2-4096)

ASCII DEVICE INDEPENDENT
or

BINARY

INPUT/OUTPUT COMMAND MODES

R TOS provides six basic modes for reading and writing data: character, line,
sequential, direct block, free format, and user-written driverI/O.

In Character mode, a single character· is transferred between the console
teletype and ACO. The character received is stored right adjusted in ACO with
bits 0-8 cleared. The send character call transfers a character in ACO, bits 9-15,
to the console. The third character call, . WCHAR, allows a task to be suspended
until it receives a Single, specific character from a teletype keyboard.

In Line mode, data read or written is assumed to consist of ASCII character
strings. terminated by a carriage return. form feed. or null. Reading or writing
continues until one of these three characters is detected. R TOS handles all device­
dependent editing at the device driver level. For example. line feeds are ignored
on character input devices and are supplied after carriage returns on all character
output devices unless checking is suppressed. Furthermore, neither reading nor
writing requires a byte count. since reading continues until a terminator is detected
and writing proceeds until a terminator is written.

Sequential mode provides unedited data transfers. In this mode, no assumption
is made by the system as to the nature of the information. Thus this mode is always
used for processing binary data and can also be used for processing ASCII data
(provided no editing of this data is required). Sequential mode transfers require
specific byte counts to satisfy read or write requests. All character-oriented
devices can be used in sequential data transfers.

In Direct Block mode, binary data is transferred directly betwen a disc file
and a user core buffer. This mode allows single or mUltiple block transfers to or
from contiguous files on fixed or moving head discs. This transfer takes advan­
tage of the multiple block read/write capability of the hardware to process data
transfers qUickly.

In the Free Format mode, the operation of magnetic tape and cassette units
can be controlled directly from the user program. This mode permits reading or
writing of data in 2- to 4096- word records. spacing of the unit forward or backward
1 to 4095 data records or to an end'i)f-file. writing of an end-of-file • initiating of
a rewind operation, or reading of the unit status. Free format mode allows tapes
to be formated easily for IBM, CDC, UNIVAC. or other computer systems.

The User-Written Driver mode permits assembly language I/O instructions to
be issued from device driver routines written by the user. These routines could be
written to support either high priority interrupt devices or other devices which
would receive ordinary interrupt service by the system.

35

I E S
S L M M

C E
0 0

D D
T

0

0 R U U

R I L L
I V E
V 1

E

0 T T

E T A A

B C S S

U
T B K K

G
M M
I M M

G
N 0 0

E 0
R U

L

RTOS SYSTEM LIBRARIES

36

SYSTEM LIBRARY

The system libraries R TOSI. LB and R TOS2. LB are a collection of program modules
that support user programs run under R TOS. These modules can be likened to
volumes on a library shelf. Each user program needing one or more of these
modules selects them from the library, leaving behind those of no current use.
Because system modules are placed in the library, user program core require­
ments are greatly reduced.

The Relocatable Loader acts as the system "librarian, " extracting modules from
the library. The Loader removes only those modules named in external pseudo­
ops in the relocatable binary file created at system generation or in user-written
tasks. This procedure ensures that, except for the Task Scheduler, only those
task modules required for program operation are loaded and results in a net
savings in total core used. All modules taken from the library are loaded after
user-written tasks; thus, loading proceeds from low to high core.

The RTOS system library contains the multitask and single task schedulers; com­
mand processing modules for each task and system call type; the buffered I/O
package, BFPKG, which performs buffered asynchronous line and sequential data
transfers; and drivers for each device supported by RTOS .

..
The .system library also contains a symbolic program debugger utility. lOEB disables
interrupts making it suitable for debugging real time program environments where it
may be necessary to freeze program control.

37

Data
Stream

BFPKG

Buffer 1
Line

Buffer 2 Printer
Buffer 3

User Tasks

Main

Memory

BUFFER CONTROL PACKAGE, BFPKG

DISC FILE AND TAPE I/O CONTROL

38

BUFFER CON1ROL PACKAGE

The R TOS system library provides a module which permits buffered line and
sequential I/O transfers. The Buffer Control Package utilizes tasking concepts
in addition to standard system I/O calls to fill or empty two or more buffers asyn­
chronously (overlapped buffering) and, therefore, provide a constaht supply of input
or output data.

DISC FILE INPUT/OUTPUT CONTROL

R TOS supports contiguously organized disc file s that are completely compatible
with those available under RDOS. ROOS compatibility allows an R TOS system
to collect data for later processing under a disc operating system. Names and
sizes of these fUes are specified at system generation time.

CASSETTE/MAGNETIC TAPE I/O CON1ROL

A method of free format input/output permits the reading or writing of data on a
word-by-word basis to a cassette or magnetic tape unit. This mode provides
users with the means of accessing data in variable size records (from 2 to 4096
words in length) within tape files.

Free format I/O commands also permit a tape reel to be spaced forward or
backward 1 to 4096 records or to the start a new data file, and allow the reading
of the transport status word.

39

User Program

user
servic

HINT

INTD

ITBL

-- -- - - - ~I------t

DISMS

INTS:

IMP DISMIS

FLOW OF CONTROL DURING INTERRUPT SERVICING

40

DCT

seven word

state save
area

INTERRUPT SERVICING

When an interrupt is detected by the CPU, the currently executing program is sus­
pended and control goes to the interrupt servicing portion of RTOS. RTOS considers
interrupts as originating from three distinct kinds of devices: standard or system
devices, user devices, and high priority devices. Thus when an interrupt is detect­
ed, RTOS first determines the category of the interrupt before proceding to service
it.

Standard devices are those devices like the disc and line printer for which RTOS
provides interrupt service. Standard device support is extended by RTOS when
the system is generated. RTOS also permits user devices to be announced at
system generation time, and will treat interrupts received from such devices as
though they were standard devices.

RTOS also proiVides a convenient method of providing interrupt service to non­
standard devices at run time. These non-standard or user devices are not announced
at the time the RTOS system is generated.

High priority interruots, as the name implies, are interrupts generated by devices
requiring the speediest interrupt service possible. Typical high priority devices
are the power fail/auto restart option and the real time clock. RTOS permits
users to specify other devices as being of high priority also. Such devices would
require special interrupt service routines written by the user, and the names
(and device codes) of these devices would be specified by the user at system
generation time. The high priority interrupt routine, HINT, receives control when
any interrupt occurs. This program determines whether or not the interrupt device
is a high priority device. If it is, control branches to this device's service routine.
High priority service routines are short and quickly executed so that service can be
provided swiftly and control may be returned to the user program promptly.

If the interrupting device is not recognized by HINT, control is passed to the interrupt
dispatch routine, INTD. This routine directs control to the appropriate service '
routine for all standard and user devices (i. e., all devices not listed in HINT). INTD
directs control to the proper routine by using the device code of the interrupting
device as an index into an interrupt branch table (ITBL). The entry in this table is
the address of a device control table (DCT) associ.1ted with the servicing routine.
Each standard device and user device has a DCT. The firSt three entries of each
DCT are as follows:

Words

o
1
2

Mnemonic

DCTSV
DCTMS
DCTIS

41

Contents'

Address of 7-word·state save area.

Interrupt service mask.
Device interrupt service routine address.

Task Environment

.SYSTM

.IDEF

user task ~

ITBL

__ User"'p~i~ ___ --..c=J } device code
DCT Address t=j

User Device Interrupt Service

1
. IXMT
//'

USER INTERRUPT CONTROL FLOW

42

*USER INTERRUPT PROCESSING

In addition to providing interrupt servicing for standard devices, RTOS provides a
simple software interface for non -standard devices. This interface is provided
through an abbreviated DCT (the first three entries of a standard DCT) which
supplies the address of a 7-word state save area, the hardware interrupt mask to
be set while servicing the user interrupt, and the address of the user interrupt
servicing routine. The system stores the program counter, accumulators, carry,
current hardware mask, etc. in the state save area before transferring control to
the interrupt service routine. The interrupt service routine is written by the user,
and it contains all program code necessary to process the interrupt.

A system call, . IDE F, is used to insert a pointer to a user DCT into the interrupt
vector table (. ITBL), identifying the device to the system. To remove this entry
from the table, the system call ,IRMV is issued with the device code passed as a
parameter.

The user interrupt service routine is considered to reside outside the task environ­
ment, since the task environment is held in suspension when any interrupt is detect­
ed by the system. Thus user drivers cannot issue either system or task calls, with
the exception of three calls which have the format of task calls but are not routed
through the task scheduler: .IXMT, . SMSK, and. UIEX. Call. SMSK permits the
current interrupt mask to be modified, and. UIEX is issued to exit from the user
routine and to return to the task environment. Call. IXMT provides the user routine
with the facility of activating user tasks and transmitting messages to them. This is
done by transferring a nonzero message from the user service routine to a user task
via. IXMT. If the task has not issued a . REC for the message, the. IXMT call
simply posts the message so that it can be retrieved when the task does issue the
. REC call. If the user task is suspended and is awaiting the message, the. IXMT
call will cause that task to be readied when control is returned from the service
routine to the task environment.

43

CJQ
o NOVADISC DISC CARTRIDGE

fixed head disc

PLOTTERS

TELETYPES
OR

CRT'S

OR PACK SYSTEM

DATA GENERAL
COMPUTER

REAL TIME CLOCK

- POWER FAIL/AUTO
RESTART

PROCESS I/O
EQUIPMENT

RTOS HARDWARE CONFIGURATION

44

SYNCHRONOUS COMMUNICATION
LINES

ASYNCHRONOUS COMMUNICATION

IBM CHANNEL
INTERFACE

LINES

* MULTIPLE DEVICES AND UNITS

The Real Time Operating System (RTOS) is capable of supporting multiple-character
and block-oriented devices. Some of the standard peripherals.and controllers cur­
:r:ently supported by RTOS on a single system are:

NOVADISC®* Discs

Moving Head Discs

Magnetic Tapes

Cassettes

Synchronous Lines

Asynchronous Lines

Process I/O

Teletypes

Paper Tape Readers

Paper Tape Punches

Card Readers

Line Printers

Plotters

up to two million words

up to four units: Diablo c~rtridge
or Century 111 or 114 disc packs

up to eight units on a single control­
ler

up to eight units on a single control­
ler

either single (4074 or 4015) or
multiple synchronous communication
lines (4073)

either a single line (4029 asynchro -
nous line adapter), up to 64 lines
(4060 multiplexor) or up to 1024
lines (4100 multiline asynchronous
controller).

analog to digital converters
digital to analog converters
digital input/output

up to three

up to two

up to two

up to two

up to two

up to two (80 or 132 column)

Multiprocessor Communications Adapter

Power Fail/Automatic Restart

*NOVADISC is a registered trader.nark of Data General Corporation, Southboro,
Massachusetts.

45

MCA Communications

Controller

Data Acquisition and Analysis

RTOS

Host/Slave Process Control

Dual Host Processors for Redundant Operations

MULTIPROCESSOR SYSTEMS

46

RTOS

I ,
J

~ ,
;

~.-Q

* MULTIPROCESSOR SYSTEMS

There is more to building a multiprocessor system than stringing several processors
together. Unless both the hardware and the software have been designed for use in
a multiprocessor system, the system cannot operate with efficiency. Data General's
philosophy of maintaining compatibility between operating systems, high level
languages, utilities and bootstrap programs, and disc file structures lays the ground­
work for building multiple processor systems with efficiency and economy.

Although endless varieties of multiprocessor configurations can be designed, in
general each system will balance total system cost with system reliability. Proc­
esses which can tolerate occasional interruption due to power failure can be resumed
by means of the power fail-auto restart option under both RTOS and RDOS. Processes
where continuity of operation is critical can be continued with minimal delay in
systems with redundant processors operating under RDOS. ''Watch-dog'' timer
hardware permits one RDOS processor to check the operation of another RDOS
processor every second. Failure by either processor to service its real time
clock within a second's time causes an interrupt to be generated which alerts the
working processor to the alarm condition. The working processor can then take
control of peripheral equipment via an I/O bus switch and can examine a common
disc data base to determine how the process should be continued.

Common multiprocessor systems will incorporate processors running under both
RTOS and RDOS. A simple multiprocessor configuration might include one proc­
essor to act as a data concentrator: this data would then be passed on, via an MCA
line, to a second processor which would reduce and analyze the data and print
summary reports at periodic intervals. The processor performing the data
concentration function could run under R TOS, and the other processor could run
under RDOS.

A larger multiprocessor system could contain five processors: one host running
under RDOS, and four satellite processors running under RTOS. Each satellite
processor would perform a process control function, could display current control
parameters on a CRT, and would send periodic data to the host via an MCA line.

A yet larger multiprocessor system might include two processors running redun­
dantly under RDOS to insure continuity of operation, and up to 15 satellite process­
ors communicating with the host pair via synchronous or asynchronous communica­
tions lines. In each of the illustrated systems, the RDOS processors could be run
in a foreground/background mode to provide a means of on-line computational power
or continuing software development while the host process was executed without
interruption. Software development could be performed in either assembly language
or in real time FDRTRAN on either processor.

47

* Support Literature

17-000001, Synchronous Communications Package. This application note
describes in depth a general purpose software package that can be used to control
the Synchronous Line Adapter, type 4074.

17-000003, Buffered I/O Package in RDOS/RTOS. This applica.tion note
describes BFPKG, a module in RTOSl. LB that provides asynchronous data buffering
in main memory for user programs. BFPKG can be used by both RTOS and RDOS.

17-000004, Remote Synchronous Terminal Control Program. This application
note describes how the Remote Synchronous Terminal Control Program, RSTCP,
allows a Data General computer with peripherals to be operated as a remote intel-·
ligent data: terminal. RSTCP is supported by both RTOS and RDOS.

17 -000005, Multiline Asynchronous Controller Software Package. This appli­
cation note describes a general purpose subroutine package used to control the
operation of a multiline asynchronous multiplexor. This multiplexor can be used
with one or more Nova computers to control multiple asynchronous lines. The
subroutine package can be run under RTOS or RDOS.

17-000006, User Device Driver Implementation in RTOS. This application
note describes in depth the techniques required to add a device driver to RTOS on
a user level or system level.

17-000008, IBM 360/370 Channel Controller Software Package.

17-000009, Dual Processor/Shared Disk Configurations.

17-000010, Workshop on Standardization of Industrial Computer Languages.

17-000011, Implementation of an On-line System in Real Time FORTRAN.

17-000012, FORTRAN IV Assembly Language Interface.

17-000013, Synchronous Controller Software Package. This application note
describes a general purpose subroutine package used to control the operation of the
multiline synchronous controller, type 4073.

17-000014, Asynchronous Multiplexor Software Package. This application note
describes a general purpose subroutine package used to control the operation of the
multiline asynchronous multiplexor, type 4060.

49

* Support Literature (Continued)

93-000018, Symbolic Text Editor Manual. This manual describes the use and
operation of the symbolic text string editor under RDOS. This editor is needed to
produce and correct source files for assembly, compilation, etc.

93-000040, Extended Assembler Manual. This user manual describes the use
and operation of the Extended Relocatable Assembler under RDOS.

93-000044, Debug III User's Manual. This document explains the use of the
symbolic debugger with RTOS; this debugger disables interrupts allowing the user
to look at a dynamic real-time environment.

93-000053, FORTRAN IV User's Manual. This document describes DGC
FORTRAN IV, including an exposition of its real time extensions.

93-000056, Real Time Operating System User's Manual. This manual is the
primary document to be consulted by users of RTOS.

93-000068, FORTRAN IV Run Time Library User's Manual. This document
describes the FORTRAN IV run time library routines in detail as well as methods
for interfacing these routines to assembler language programs.

93-000074, Library File Editor Manual.

93-000075, Real Time Disk Operating System User's Manual. This is the
primary document to be consulted by users of the Real Time Disc Operating
System. It describes relationships between RDOS and RTOS.

93-000080, Extended Relocatable Loaders Manual.

93-000081, Macro Assembler Manual. This manual describes the RDOS
Macro Assembler. This assembler's functions are a compatible superset of those
provided by the Extended Relocatable Assembler.

93-000083, Introduction to the Real Time Disk Operating System.

93-000084, Octal Editor Manual. This manual describes an RDOS utility used
to examine or modify RDOS disc file space.

93-000085, FORTRAN 5 User's Manual.

50

*Support Literature (Continued)

93-000092, Stand-alone Disk Editor Manual. This manual describes the use of
a disc editor that can be used to examine or modify all disc space. A large portion
of this manual is devoted to a discussion of directory structures of RDOS.

93-000096, FORTRAN 5 Run Time Library User's Manual. This manual
describes the FORTRAN 5 run time library routines as well as methods for inter-
facing these routines to assembler language programs. .

Data General provides a single document which lists all software publications and
briefly summarizes their contents. This document, Software Summary and
Bibliography (093-000110), should be consulted by all users desiring a complete
and comprehensive list of all available software documentation.

51

Bootstrap

Device

Device independence

Dormant

Executing

File

Multitasking

Program

Ready

Suspended

System Generation

Glossary of Terms

A technique for loading the first few instructions of a
routine into storage, then using these instructions to
bring in the re st of the routine.

A hardware component of the system with unique opera­
tional characteristics.

The ability of a task to communicate with a device inde­
pendent of the device's uniqueness.

The state of a task that has not been initiated (made known
to RTqS) or whose execution was terminated or complet­
ed.

The state of a task which has the highest priority of all
tasks and is in control of the central processor unit.

A collection of related data (such as a disc or magnetic
tape file) treated as a unit and addressable by an alpha­
numeric identifier.

The ability to support more than one active task within an
address space.

The contents of a complete address space.

The state of a task that is ready and available for execu­
tion but which is awaiting the execution of one or more
higher priority tasks before it can gain control of the CPU.

The state of a task which is awaiting the occurrence or
completion of a system or task call or some other real­
time event.

A procedure used to customize an operating system to the
available hardware and to the expected user application.
RTOSGEN is the RTOS system generation program.

53

Glossary of Terms (Continued)

Task

Task calls

Task Monitor

Task state

A unique execution path within an address space.

Requests to the Task Monitor to effect task state changes.
This also causes the Task Monitor to pass control to the
highest priority ready task.

A collection of subroutine modules that schedule and
manage calls from user tasks. Task Monitor is equiva­
lent to Task Scheduler.

The status of a task in the R TOS environment. A task can
exist in one of four states: dormant, ready, suspended, or
executing.

TCB (Task Control Block) A block of memory containing the task's state variable and
control information.

USP (User Stack Pointer) A page zero location that is always preserved when control
is passed from one task to another. USP is one of the
system state variables (like the program counter and the
accumulators) and makes re-entrant coding possible.

UST (User Status Table) A table, starting at location 400, that records all infor­
mation pertinent to the execution of the entire R TOS
program.

54

OataGeneral
Document Title

PROGRAMMING DOCUMENTATION
REMARKS FORM

icumentNO. ITape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.
Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:
Name I Date

Company Name

Address (No. & Street) City State Zip Code

Form No. 10-24-004

FOLD DOWN FIRST FOLD DOWN
--

BUSINESS REPLY MAIL
No Postage Necessary If Mailed In The United States

Postage will be paid by:

Data General Corporation
Southboro, Massachusetts 01772

ATTENTION: Programming Documentation

FIRST
CLASS
PERMIT
No. 26

Southboro
Mass. 01772

---.----------------------------
FOLD UP SECOND FOLD UP

STAPLE

