INFOS®

System User’s Manual

(RDOS)

093-000114-01

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Ordering No. 093-000114

©Data General Corporation, 1975, 1978

All Rights Reserved

Printed in the United States of America

Revision 01, April 1978

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

INFOS®
System User’s Manual
(RDOS)
093-000114

Revision History:
093-000114

Original Release - July 1975
First Revision - April 1978

The RDOS/INFOS System User’s Manual (093-000114-01) replaces:

the INFOS System Programmer’s Manual (093-000114-00)
the INFOS System Planning Manual (093-000115-01)
the INFOS Language Interface Manual (093-000127-02)

This document has been extensively revised from revision 00; therefore,
change indicators have not been used.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks
CONTOURI INFOS NOVALITE DASHER
DATAPREP NOVA SUPERNOVA microNOVA

ECLIPSE NOVADISC

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Preface

Welcome to the INFOS® System User’s Manual This
manual will tell you everything you need to know to
plan and program your application of the INFOS
system. Here you’ll find how the system works, what
features you can use, what types of things the system
will do, and how you can fine tune the system for
maximum performance efficiency.

Before you get into all that, however, let’s take a
minute to look at the INFOS system as a whole -- rather
than as individual pieces. First, what is the INFOS
system?

This is not an easy question to answer simply; after all,
that’s what this whole manual is about. Think of the
system as a forest which you are viewing from an

airplane. From this altitude, all you can see is a bunch
of trees. But, in the INFOS forest, these trees represent
your processing options. By choosing the appropriate
trees, your programs can work their way through the
INFOS forest, drawing on its abundant resources to
create, access, and maintain simple or complex data
files. As you move closer to the forest, you’ll notice
numerous saplings scattered throughout. These
represent parts of our Real-Time Disk Operating
System, or RDOS. That is, the INFOS system is a
grown-up RDOS. Finally, you’ll find that the roots of
the RDOS/INFOS forest grow only on a Data General

commercial uter.

Figure 1. INFOS Forest

093-000114-01

Preface

DataGeneral

SOFTWARE DOCUMENTATION

As you near the INFOS system forest, you’ll notice
many ways to approach it. You can take the paths
marked COBOL, RPG II, FORTRAN IV or 5, Business
BASIC, or Macroassembler. You will also pass through
parts of the INFOS forest if you follow the path of
DG’s IDEA system.

Finally, you can also get into the forest on the trail
marked INFOS Ultilities. These allow you to create,
sort, delete, copy, rename, and inquire about your
files, as well as initialize magnetic tapes, and retrieve
your file specifications at runtime.

‘This manual is your guidebook through the INFOS
forest. It will help you choose between the options
which the system allows you. To make this manual as
useful as possible, we have organized it into a
modular-type format.

Licensed Material - Property of Data General Corporation

Part One is the heart of this manual. It explains, in plain
English, all the features and functions available in the
INFOS system. Furthermore, Chapter 1 of Part One is
the most important chapter in this manual because it
presents the basic, general information you need to
know before you begin planning or programming your
INFOS application. Read this chapter carefully; it can
save you a lot of grief later on.

Following Chapter 1, you can either read all of the
remaining chapters in Part One, or choose the chapters
which seem most applicable to your needs. For
example, if you already know which access methods
will best suit your situation, you can go directly to those
chapters. Later, if you wish, you can read the chapters
you skipped to learn about other INFOS capabilities. If,
however, you are unfamiliar with the details of the
options available in the INFOS system, you should read

093-000114-01

Licensed Material - Property of Data General Corporation

Chapters 2 through 5 to help you decide on the best
method for solving your problems. And, no matter
which access method you choose, you should read
Chapter 6 in Part One. It describes the things you need
to know about the RDOS interface with the INFOS
system, as well as miscellaneous planning
considerations.

So, whether you’re a Programmer, a Systems Analyst,
or just curious, you should read the appropriate
chapters in Part One to learn about the nature of the
flora and fauna in the INFOS forest. Then, if it’s
applicable, you can read the corresponding chapters in
Part Two to find out how to make those features and
functions available to your programs. (Remember,
however, to read Chapter 1 in Part Two to learn about
general INFOS system programming considerations
and Chapter 6 if you need to know about the contents
of packets and how to use our Macroassembler.)

DataGeneral

SOFTWARE DOCUMENTATION

Part Three contains the appendixes for this manual.
Appendixes A and B contain detailed information
about labeled magnetic tapes and things you should
consider when you're using the Data Base Access
Method -- in other words, further details for your
planning considerations. Appendixes C, D, and E
describe programming details: the interface between
the INFOS system and FORTRAN, explanations of the
system’s error messages, and a chart of characteristics
of the various peripheral devices. We’ll refer you to
these back-of-the-book sections for additional details,
but do not mistake them for ‘‘excess’’ information.

There are many beautiful sights within the INFOS
forest, but every trail has its pitfalls. Read this
guidebook carefully to find out where they are and how
to avoid them.

End of Preface

093-000114-01

Preface

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Contents

Part One: Planning Your RDOS/INFOS System

Chapter 1 - General Information

Access Methodsand File Formats I-1-1
Sequential Access Method I-1-1
Random AccessMethod I-1-1
Indexed Sequential AccessMethod I-1-1
Data Base AccessMethod I-1-2

Concurrent Tasking e e I-1-2

General Considerations e I-1-2
Processing Modes I-1-2

Create UpdateMode, I-1-2
Update Mode. e I-1-2
InputMode e I-1-2
OutputMode e I-1-3
Record Formats e I-1-3
Fixed Length Record Format I-1-3
Variable Length Record Format I-1-3
Undefined Length Record Format I-1-4

Data Sensitive Record Format I-1-4
DataTransfers e I-1-4
Record Packing I-1-5
Transferring Fixed LengthRecords I-1-5
Transferring Variable Length Records I-1-5
Transferring Undefined LengthRecords I-1-5
Transferring Data Sensitive Records. I-1-5
Buffer Management. I-1-5
Footnotesto Data Transfers. I-1-6

A Word About Volumes e e I-1-6
Multivolume Files e 1-1-6
HowtoProcessINFOSFiles I-1-7
HowtoCreateaNew File I-1-7

Line Printers and Terminalsas INFOS Files I-1-7

File Naming, Briefly I-1-7

How to Process an Existing Tape File I-1-7

How to Process an Existing Disk File I-1-7
SUMMATY -« - o o e e e e e e e e e e e e e e e I-1-7

093-000114-01 vii Contents

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Chapter 2 - Sequential Access Method (SAM) Files

SAMDisk Files e [-2-1
How to Create SAM Disk Files e e [-2-2
How to Open an Existing SAM Disk File I-2-4
SAM Labeled Tape Files 1-2-4
Initialization I-2-4
How to Create SAM Labeled Tape Files I-2-4
How to Open an Existing SAM Labeled Tape File. 1-2-7
How to Use Peripheral DevicesasSAMPFiles 1-2-7
What to Do with Unlabeled SAM Tape Files 1-2-7
SAM Summary e e e e 1-2-7
HowtoProcessSAMFiles 1-2-12
Readingan Existing File [-2-12
WritingaNewSAMPFile [-2-12
Appending Records e I-2-12
Rewriting Existing Records 1-2-12
Overwriting ExistingRecords 1-2-12
Additional Features (Point, SETX,and RELX) 1-2-12
Summary . .. e [-2-13
Chapter 3 - Random Access Method (RAM) Files
HowtoCreateaRAMF File e I-3-1
How to Open an ExistingRAMPFile I-3-3
Processing Your RAMFile. I-3-3
Read......... e [-3-3
W . . . e e e e e 1-3-4
Pre-read e e I-3-4
Write Immediate e e I-3-5
Read Inhibit I-3-5
Lockand SETX e I1-3-5
Hold I-3-6
FEOV . . e I-3-6
Chapter 4 - Indexed Sequential Access Method (ISAM) Files
General Concepts v v v it e e I-4-1
The Database e 1-4-2
TheIndex File e 1-4-2
ConcurreNt ACCESS v vt v e e e e e e e 1-4-2
Space Management 1-4-3
HowtoCreatean ISAMFile e 1-4-3
CreatingthelIndex File. 1-4-3
Defining Volumes of YourIndex File. 1-4-5
Defining Your Database File 1-4-6
Defining Volumes of Your Database File. I-4-6
How to Open an Existing ISAMFile 1-4-7
Opening Your Index File. OO 1-4-7
Opening Your Existing Database File 1-4-7
Processing Your ISAM File (Background) I-4-8
Processing Your ISAM File (Operations) 1-4-9

viii

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

Chapter 4 - Indexed Sequential Access Method (ISAM) Files

(continued)

Processing Functions e 1-4-9
Read o I-4-9
WIHE . . . e e e e 1-4-9
REWTIIte . . . o o o e e e 1-4-9
Delete . . . o e 1-4-9
Reinstate e 1-4-10
Delete Subindex - - - - -+« -« o o e e e e e e I-4-10

Utility Functions e 1-4-10
Retrieve Status. o . o v e e e 1-4-10
Retrieve Key oo e 1-4-10
Retrieve HighKey. 1-4-10

Auxiliary Features 1-4-10
Lock/UNlocK . - - o o o o e e [-4-10
Suppress Database. 1-4-10

Chapter 5 - Data Base Access Method (DBAM) Files

General Concepts e I-5-1
Subindexing e e I-5-1
Partial Records e I-5-3
Multiple Indexes and File Inversions 1-5-4
Linked Subindexes e I-5-4
Automatic Key Compression I-5-5
Optimized Distribution I-5-5
Temporary Indexes e I-5-5

How to Create an INFOSDBAMPFile I-5-6
Defining YourIndex File I-5-6
Defining Each Volume ofanIndex File I-5-8
Defining Your Database File I-5-9
Defining Each Volume of Your Database Fite I-5-9

How to Open an Existing DBAMFile. I-5-10

Processing Your DBAMFile I-5-11
DBAM Access Methods - Keyed, Relative, and Combined 1-5-11
Combining Relativeand Keyed Access I-5-13

DBAM Processing Operations e I-5-15

DBAM Processing Functions I-5-15
Read e e e 1-5-15
Wt . . o o e e e e e e 1-5-15
Rewrite e e e e e 1-5-16
Delete e 1-5-16
Reinstate e e e e I-5-16
Define Subindex 1-5-16
Link Subindex e 1-5-16
Delete Subindex e I-5-16

DBAM Utility Functions 1-5-16
Retrieve Status. o o e e e e e 1-5-16
Retrieve Key o o o e 1-5-17
Retrieve HighKey. 1-5-17
Retrieve Subindex Definition 1-5-17

DBAM Auxiliary Features e 1-5-17
Lock/Unlock and Suppress Database 1-5-17
NonspecificSearch Keys o 1-5-17
Suppress Partial Record 1-5-17

093-000114-01 ix

SOFTWARE DOCUMENTATION

Contents

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Chapter 6 - The RDOS/INFOS Interface

Considerations When You’re Generating an INFOS System I-6-1
Memory Space e 1-6-2
The System Area e 1-6-2
Resident INFOS/RDOSCode [-6-2
System Buffers I-6-2
Windows e 1-6-3
INFOS System File Control Area 1-6-3
TheUser Area e e e e e e 1-6-5
Summary I-6-5
I[/OBufferSpace 1-6-6
170 Buffer Management 1-6-8
File Naming e 1-6-10
Disk Space Allocation 1-6-10
Using Peripheral Devicesas INFOS Files I-6-11
How to Deal with Unlabeled MagneticTapes I-6-11
Part Two: Programming Your RDOS/INFOS System
Chapter 1 - General Information
Packets e 11-1-1
Packet TYDPES . . . o o o o e II-1-1
File Definition Packets 0 I1-1-1
Volume Definition Packets I1-1-2
General Processing Packets 11-1-2
Extended Processing Packets L 11-1-2
Key Definition Packets. 11-1-2
Subindex Definition Packets o o o 11-1-2
Point Processing Packets e I1-1-2
Link Subindex Processing Packets I1-1-2
Volume Initialization Packets 11-1-2
Tables o e e 1I-1-2
HowtoOpenanINFOSFile I1-1-3
System Calls 1I-1-3
The Permanent File Specification o 11-1-4
Chapter 2 - Sequential Access Method (SAM) Files
HowtoOpen SAMFiles II-2-1
Processing SAMPFiles I1-2-4
Read Processing Request I1-2-5
Write Processing Request o 1I-2-5
Rewrite Processing Request II-2-5
Close and Force End of Volume Requests 11-2-6
Magnetic Tape Control Request 11-2-7
POt REQUESE . . . o o o e 11-2-7

x 093-000114-01

Licensed Material - Property of Data General Corporation

Chapter 3 - Random Access Method (RAM) Files

How to Open a RAM File
Steps in Opening a RAM File
Processing Your RAM File
Read Request
Write Request

Force End-of-Volume Request

CIoseRequest
SetExclusiveUseRequest.................:::.:::::
Preread Request.

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 4 - Indexed Sequential Access Method (ISAM) Files

HowtoOpenISAMFiles.
Steps for Opening in the Create Update Mode

Steps for Opening in the Update Mode without a Database Runtime FDP

Steps for Opening in the Update Mode with a Database Runtime FDP. . . .
Processing ISAM Files
Keyed Access o
Relative AcCess o o e
Read Processing Request
Write Processing Request
Rewrite Processing Request.
Delete Processing Request
Delete Subindex Processing Request
Reinstate Processing Request
Retrieve Status Processing Request
Retrieve Key and Retrieve High Key Processing Requests

Chapter 5 - Data Base Access Method (DBAM) Files

Opening DBAMFiles.,
Steps for Opening in the Create UpdateMode

Steps for Opening in the Update Mode without a Database Runtime FDP

Steps for Opening in the Update Mode with a Database Runtime FDP . . .

Steps for Creating a New DBAM Index without a Database Runtime FDP
Steps for Creating a New DBAM Index with a Database Runtime FDP

093-000114-01 xi

Processing DBAMFiles
Keyed AcCess o
Relative AcCess
Combined Keyed and Relative Access
Read Processing Request,
Write Processing Request e e
Rewrite Processing Request
Define Subindex ProcessingRequest
Link Subindex Processing Request
Delete Processing Request
Delete Subindex Processing Request
Reinstate Processing Request
Retrieve Key and Retrieve High Key Processing Requests
Retrieve Subindex Definition Processing Request
Retrieve Status ProcessingRequest

WWRNONN = —O

NN === OOV OO IA N WUnNnunnN

Contents

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Chapter 6 - Packet Formats

General Packet Information and Conventions 11-6-1
File Definition Packet (FDP) e 11-6-1
INFOS FDP Parameters by Access Method/Device/and Processing Mode . . . 11-6-9
Volume Definition Packets (VDP) 11-6-12
INFOS VDP Parameters by Acccess Method/Device/and Processing Mode. . . II-6-15
Volume Tables e e 11-6-17
General Processing Packet (SAM and RAMfilesonly) I1-6-18
Extended Processing Packet (ISAM and DBAMfilesonly) 11-6-20
Key Definition Packet. 11-6-24
KeyTables 11-6-25
Subindex Definition Packet 11-6-26
Point Processing Packet. 11-6-27
Link Subindex Processing Packet, 11-6-28
Volume Initialization Packet - - - - - - - -« « -« o oo oo I1-6-31
Magnetic Tape Control Processing Packet- - - - - -« -+« v v v v v oo oo e I1-6-33

Chapter 7 - How to Use the Macroassembler with the INFOS

System

Keyword Parameters e 11-7-1
General e e e e I1-7-1
Access Method e e e e 11-7-2
Formatting Records I1-7-2
I/O Mode e e e e e e e e e e e 1I-7-2
Label TYPES . . o o o o e e e e e I1-7-2
Translation Specifiers e I1-7-2

Macro FUNCLIONS o o o e e e e e e e e e 11-7-2
BLDED P e e e e e e e e e e e e II-7-2
BLD VDD P e e e e e e e 11-7-6
BLD PP e I1-7-8
BLD PNT o e I1-7-10
BLDMTC . . e I1-7-10
BLDK D P o e I1-7-11
BLDSDP o e 11-7-12
BLDLSP o e e 11-7-13
BLD VIR e e e e e e 11-7-14
BLDULT . . . o e e e e e e e I1-7-15

The Assembly Language Interface o II-7-15

Part Three: Appendixes
Appendix A - Labeled Magnetic Tapes

General CONCEPLS o o v i e e e e e e e e e e II1-A-1

Label Typesand Levels i II1-A-1

User Labels e e e e I11-A-6

Volume Initializationand Release [1I-A-6
How to Initialize and Release Tapes Through System Calls II1-A-6
Runtime Initialization and Release (General) HI-A-7
Runtime Initialization e HI-A-7
Runtime Release o o i e e e 11I-A-8

Processing Labeled MagneticTapes I1I-A-9
Positioning When Writingo I1-A-9

Graphic ATts SECHION. e I11-A-10

xii 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Appendix B - Subindex and Database File Properties

Introduction. e HI-B-1
Subindexes II-B-1
Selector Subindexes I1I-B-7
Database Files I11-B-8

Appendix C - The INFOS/FORTRAN Interface

General Information. I1I-C-1
Packet Building Routines, II-C-1
Table Building Routine 1I-C-1
Pure Processing Routines I1I-C-2
Building/Processing Routines. 1I-C-2

ATEUMENTS . . . e I11-C-2

Using DEFAULT (or DEF) i I1-C-2

Using NIL . . . I111-C-2

Error Conditions e 1I-C-3

Using FINFOS.ER e HI-C-3

Loading Your Program and the Interface Routines I1-C-3

Call Formats e II1-C-3

Packet Building Routines I11-C-4
INFEDP e 111-C-4
INFIFDP . . . II-C-5
INFVDP I11-C-6
INFVIP e I11-C-6
INFKEY . . . II-C-7
INFLSP I1I-C-8

Table Building Routine HI-C-8
INFULT e e I1I-C-8

Pure Processing Routines I11-C-9
INFPREP . . . e 11-C-9
INFOPEN I11-C-9
INFINIT e I11-C-10

Building/Processing Routines HI1-C-10
INFOS | e HI-C-10
INFOX e Ii-C-11

Appendix D - INFOS System Error Messages
Note to Al FORTRAN Programmers IT1-D-1

Appendix E - Device Characteristics

093-000114-01 xiii Contents

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Hlustrations

Figure Caption

1
2 How to Read thisManual i

+

DBAM Two-Level Index

ettt Pt bt e el et ettt ettt et et
O\O\O\G\O\O\mmmt{lmmm-h-hwww—.—-

P
0 [

Pt
'

el
1

P
] 1

[l
]

Do
1)
~ 1= O\O\O\O\O\O\O\G\?\O\O\mmmmmm.h.b.phw

Dot
1

—t
]

V
AN UNPBEWN—- = =00~ UNHAEWND—OWUNHEWN—RAWN——

—

ot
]

P et el o ot | o b e pd el d o o ol e | o o o

Pt et

xiv

Disk File Data Transfer
Transferring Fixed Length Records
RAM Readand Write Sequence
Sequence of Events fora Pre-read Request
Sequence of Events for a Read Inhibit Request, ...
INFOSISAMFile
ISAMIndex File
Three-Level DBAM Index
Single Database With TwoIndexes.
A Linked Subindex
Single and Multilevel Keysin DBAM
Relative Movement withinaDBAMPFile
Segment of a Multilevel Index Structure
Componentsof the System Area
Partitioned User Area e
User Area Partitioned for a 65K Byte Foreground.
Buffer Space Requirements Per FileOpening
Least-Recently-Used Technique forInput
DBAM Index with Sixteen HPNs

mm@mmommw%mmma.&www—-_

I-3-1 FDPand Volume Table Relationship
I-4-1 OpenISAM Filein Create UpdateMode
I-4-2 Open ISAM File in Update Mode without Database Runtime FDF

I-4-3 Open ISAM File in Update Mode with Database Runtime FDP

[-4-4 KeyTable.
1-5-1 Open DBAM File in the Create Update Mode

Open ISAM File in Update Mode without Database Runtime FDP
Open DBAM File in Update Mode with Database Runtime FDP
Create a New DBAM Index without a Database Runtime FDP
Create a New DBAM Index with a Database Runtime FDP
DBAM Index Structure o i i e
File Definition Packet e
Volume Definition Packet
General Processing Packet. L
Extended Processing Packet. L
Key Definition Packet
Sample Key Table
Subindex Definition Packet
Point Processing Packet
Link Subindex Processing Packet
0 Volume Initialization Packet
1 Magnetic Tape Control Processing Packet - - - - - - -« - - o oo v e e
Index File Definition Packet e
Database File Definition Packet
Index File Volume Definition Packet
Database Volume Definition Packet.
Extended Processing Packet
Point Processing Packet

Pt et et bt et b e e e
\1\1\1\1\)\10\?\0\0\0\0\0\0\

1] 1
NoR- R RV RV N JCUR IR N VI S WSSO N N NV N

1
O 1RO Lo -

c\c\oxmmmu\t'z\m-h-h-h-hw
L} [}] 1 1 [1 [} [[1 ')] L} 1 t 1]
W — 00 1O\ b O©O0oN W N

v
— O 1 1B WWR NN NN DN =R — —

1
<o

093-000114-01

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Figure Caption

II-7-7 Key Definition Packet 11-7-11
II-7-8 Subindex Definition Packet. 11-7-12
II-7-9 Link Subindex Processing Packet II-7-13
II-7-10 Volume Initialization Packet II-7-14
A-1 Sequence of Events for Runtime Initialization and Release ITI-A-8
A-2 Level 1 ANSI Labels Supported by the INFOS System 111-A-10
A-3 Level 2 ANSI Labels Supported by the INFOS System II-A-11
A-4 Level 3 ANSI Labels Supported by the INFOS System I1-A-12
A-S Level 1 IBM Labels Supported by the INFOS System II-A-13
A-6 Level 2 IBM Labels Supported by the INFOSSystem I11-A-14
B-1 Subindex with Four Tree Levels 111-B-1
B-2 Four-Level Subindex withNodes I1I-B-4
B-3 Three-Level Subindex with Nodes II1-B-5
B-4 A Database Accessed by Two UniquelIndexes I11-B-7
B-5 Single Index Structure with a Selector Subindex I11-B-7
Tables
Table Title
I-1-1 Processing Modes I-1-3
I-1-2 Record Formats and Access Methods. I-1-4
I-2-1 StepsinCreatingaSAMDisk File I-2-3
1-2-2 Stepsin CreatingaSAM Labeled Tape File I-2-6
I-2-3 File Definition Options When You OpenaNewSAMPFile 1-2-8
I-2-4 File Definition Options When You OpenaNewSAMFile 1-2-9
I-2-5 Volume Definition Options When You Opena New SAMFile 1-2-10
[-2-6 Volume Definition Options When You Open an Existing SAM File I-2-11
1-2-7 SAM File Processing Summary e 1-2-13
[-3-1 StepsinCreatingaRAMPFile, I-3-2
I-3-2 Stepsin Opening an Existing RAMFile I-3-3
I-4-1 Stepsin Defining Your ISAMIndexFile., ... 1-4-4
I-4-2 Steps in Defining Each Volume of Your ISAM Index File 1-4-5
I-4-3 Stepsin Defining Your ISAM Database File 1-4-6
I-4-4 Steps in Defining Each Volume of an ISAM Database File 1-4-6
I-4-5 Stepsin Opening an Existing ISAM IndexFile 1-4-7
I-5-1 Stepsin Creatinga DBAM IndexFile 1-5-7
I-5-2 Stepsin Defining Each Volume of a DBAM Index File 1-5-8
I-5-3 Stepsin Defininga DBAM Database File 1-5-9
I-5-4 Steps in Defining Each Volume of a DBAM Database File I-5-9
I-5-5 Stepsin Opening an Existing DBAM IndexFile 1-5-10
I-5-6 Stepsin Opening an Existing DBAM Database File I-5-10
I-5-7 DBAM Processing Operation. I-5-15
1I-1-1 FDP Parameters that Become Unchangeable Entries in the File’sPFS. I1I-1-5
[I-1-2 FDP Parameters that Become Runtime Entriesin the File’sPFS II-1-5
II-2-1 SAM Processing Functions L 11-2-4
[I-4-1 ISAM Index FDP for Create Update Mode 11-4-3
1I-4-2 ISAM Database FDP for Create Update Mode 11-4-4
11-4-3 VDPs for ISAM Index and Database Files Opened in the Create Update Mode. . . [1-4-4
11-4-4 ISAM Index FDP for Update Mode without Database Runtime FDP [1-4-6

093-000114-01 XV Tables

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table Title

I1-4-5 VDP for ISAM Index Opened in the Update Mode 1I-4-6
11-4-6 ISAM Index FDP for Update Mode with Database Runtime FDP. 11-4-8
1I-4-7 ISAM Database Runtime FDP for Update Mode 11-4-8
11-4-8 VDPs for ISAM Index and Database Opened in the Update Mode 11-4-8
1I-5-1 DBAM Index FDP for Create Update Mode II-5-3
II-5-2 DBAM Database FDP for Create Update Mode I11-5-4
11-5-3 VDPs for Index and Database Files Opened in the Create Update Mode 11-5-4
I1-5-4 DBAM Index FDP for Update Mode without Database Runtime FDP. I1I-5-6
[I-5-5 VDP for DBAM Index Opened in the Update Mode 11-5-6
II-5-6 DBAM Index FDP for Update Mode with Database Runtime FDP I1-5-8
[I-5-7 DBAM Database Runtime FDP for Update Mode 11-5-8
II-5-8 VDPs for DBAM Index and Database Opened in the Update Mode. I1-5-8
II-5-9 FDP for New DBAM Index without Database Runtime FDP 11-5-10
I1-5-10 VDPfor New DBAM Index I1-5-11
[I-5-11 FDP for New DBAM Index with Database Runtime FDP I1-5-13
[I-5-12 VDPfor New DBAMIndex 11-5-14
[I-5-13 DBAM Database Runtime FDPfor NewlIndex. 11-5-14
1I-5-14 VDP for DBAM Database Opened in the Update Mode I1-5-14
[I-6-1 File Definition Packet (FDP) 11-6-3
[I-6-2 Volume Definition Packet (VDP) 11-6-13
1I-6-3 General Processing Packet I1-6-18
I1-6-4 Extended Processing Packet 11-6-21
[1-6-5 Key Definition Packet 11-6-24
1I-6-7 Subindex Definition Packet. e 11-6-26
[1-6-8 Point Processing Packet 11-6-27
11-6-9 Link Subindex Processing Packet 11-6-29
11-6-10 Volume Initialization Packet 11-6-31
11-6-11 Magnetic Tape Control Processing Packet 11-6-34
A-1 Level1ANSILabels I11-A-2
A-2 Level 2 ANSILabels I1-A-2
A-3 Level3ANSILabels oo o I11-A-3
A-4 Level lIBMLabels 11-A-4
A-5 Level2IBMLabels 111-A-5
A-6 ANSIStandard Volume Label Format I11-A-15
A-7 ANSIStandard User Volume Labels II-A-15
A-8 ANSI Standard HDR 1, EOVI, EOF 1 Labels IT1I-A-16
A-9 ANSIStandard HDR 2, EOV2,EOF2Labels I1-A-17
A-10 IBM Standard Volume Label Format II-A-17
A-11 IBM Standard HDR 1,EOV1,EOF1Labels I11-A-18
A-12 IBM Standard HDR 2, EOV 2, EOF2Labels 111-A-19

xvi 093-000114-01

Part One:
Planning Your
RDOS/INFOS System

Gereral Information

Sequential Access Method (SAM) Files

Random Access Method (RAM) Files

Indexed Sequential Access Method
(ISAM) Files

Data Base Access Method (DBAM) Files _

The RDOS/INFOS Interface

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 1
General Information

Access Methods and File Formats

The first thing you have to do in designing your
INFOS® application is choose an access method. Why?
Because in the INFOS system the file access methods
implicitly define the file formats. Obviously you want
an access method that will allow you to process your
data as efficiently as possible, so the INFOS system
offers you four options:

® Sequential Access Method

® Random Access Method

® Indexed Sequential Access Method
® Data Base Access Method

The following paragraphs briefly describe each of these
methods. Chapters two, three, four, and five give you
more detailed information about how to apply each
method to your situation.

Sequential Access Method

The Sequential Access Method (SAM) is useful when
you want to retrieve data in the same sequence as you
recorded it. If most of the information you enter into
the computer is recorded on sequential access devices
(e.g., magnetic tape), use SAM to create and process
your files. Also if you will usually output the data
generated in processing your file to a sequential device
such as a line printer, a magnetic tape, or an interactive
terminal, you should choose SAM. You can output to
all of these devices with the INFOS system, or you can
store your SAM file on a disk.

Random Access Method

The Random Access Method (RAM) supports a
different set of applications than SAM. With RAM, you
can directly access any record in your file without
having to read any of the other records. This is known
as random (or direct) access. The sequence in which
the INFOS system stores records in a RAM file has no

093-000114-01

bearing on the sequence in which you retrieve them
when you want to process them. RAM can do this
because the records are written and read according to
logical record numbers which you supply.

For example, you could arrange an inventory file by
part numbers, which would become the record
numbers. If you subsequently enter a new part record
and want to retrieve it later, it won’t matter where that
record is stored in the file; you would simply code the
equivalent of ‘‘Read part (record) number 7792.”° With
RAM, you don’t have to rewrite an entire file to keep
the records in order; you just enter your data as you
have it and retrieve it in order any time you want.

RAM files must reside on disk, since only disks are
capable of performing random access.

Indexed Sequential Access Method

The Indexed Sequential Access Method (ISAM) gives
you a simple and efficient way to access your data both
sequentially and randomly. For example, suppose you
want to update customer records in a receivables file
randomly during a billing period, and process the file
sequentially at the end of that period to prepare the bills
for mailing. To do this, you would store the records
sequentially according to customer number. Then you
would update the records as necessary (randomly)
during the billing period, and access them in order of
customer number (sequentially) to prepare your bills.
ISAM lets you do this through a feature called keyed
access.

When you set up an ISAM file, you associate a key
(word or number) with each record. You then use
these keys during retrieval to either locate records
randomly, or determine the order in which you want to
process them sequentially. In the example above, the
customer number is the key.

Access Methods and File Formats

DataGeneral

SOFTWARE DOCUMENTATION

Your keys can be made up of either numbers or letters,
and can vary in length to give you more efficiency in
storing your data. The INFOS system also uses an
automatic technique to maintain the key/data
association. Therefore, you can gain very fast access to
your data with no restrictions on the growth or
shrinkage of your file. And you can even associate
different data records with the same key value. For
instance, if you wanted to access the records of
customers within a given geographical area, ISAM
could give you a listing by zip codes.

Like RAM files, ISAM files must reside on disk.

Data Base Access Method

Sometimes you’ll find that ISAM is inadequate for
sophisticated applications. That’s why the Data Base
Access Method (DBAM) exists. It gives you all the
features of ISAM, but extends them in three useful
ways:

® First, you may tie your data records to more than
one key.

® Second, you can index sets of data records according
to different sets of keys.

® Third, you can get to your data records by means of
a ‘“‘compound’’ key.

For example, suppose you assign unique customer
numbers on a nationwide basis, but you service the
customers through regional offices. At some point, you
may want to process the accounts serviced by each
regional office individually as well as consider all the
accounts in each region. To do this, you would simply
create an additional key/data-record association and
use the key: ‘‘region name, customer number.”” Then
you could process the records of that region
sequentially by customer number, or you could
randomly locate a specific account number.
Furthermore, if an account is serviced by more than
one region, you could access its records through more
than one regional index. In other words, each region’s
records would be organized like a little ISAM file,
except that they would all be part of the same database.

Remember that if you use the Data Base Access
Method, you only need to store each data record once.
Thus you can avoid both storage use overhead and the
unnecessary pain of maintaining duplicate copies of
identical data records. DBAM’s flexibility lets you
access a record by customer name, account number,
location, or any other key you want.

Naturally, to do all this, DBAM files have 1o reside on
disk.

1-1-2

Licensed Material - Property of Data General Corporation

Concurrent Tasking

The INFOS system gives you both foreground and
background processing capabilities. In addition, it
provides multitasking capabilities in both grounds. You
can use the same file in both grounds at the same time,
and you can open that file more than once in either
ground -- or in both. In other words, you can run tasks
concurrently within a ground and between grounds.
The INFOS system automatically interleaves
concurrent inquiries and processes them very
efficiently. So you can access a RAM, ISAM, or DBAM
file through several terminals simultaneously. Also you
can have the system perform several tasks
independently, yet concurrently, on the same file,
using either the foreground or background, or both.

General Considerations

The following INFOS concepts and features will apply
regardless of which access method (s) you choose. Keep
them in mind as you plan your system.

Processing Modes

Now that you’ve begun to think about how you want to
organize and access your file, let’s look at the ways you
can process the data in that file. Each time you want to
manipulate the data in your file, you must choose one
of the INFOS system’s four processing modes. Your
choice will depend on three factors:

® the direction in which you want to transfer data
® whether or not the file exists
® the type of device on which the file resides

Create Update Mode

You can use this mode with any access method, but the
file must not exist. So you will use Create Update when
you want to create new files. However, you may read
from your file, as well as write to it, in this mode.

If you select Create Update for a SAM file, the file
must reside on disk.

Update Mode

You can select the Update processing mode for any
existing file that resides on disk. This mode allows you
to both read from and write to your file.

Input Mode

You can only choose the Input Mode if you are
processing an existing SAM file that resides on disk,
tape, or an interactive terminal, or if you are processing
an existing RAM file. In the Input Mode, you can only
read data from the file - you cannot write data to it.

093-000114-01

Licensed Material - Property of Data General Corporation
Output Mode

You use the Output Mode to create SAM and RAM
files, so you can only use it for a SAM or RAM file that
doesn’t exist. In this mode you can only write data to
the file; you cannot read from the file.

For your reference, the chart in Table I-1-1
summarizes the relationships among access methods,
device types, processing modes, and the direction of
data transfer.

Record Formats

The INFOS system supports four different record
formats -- Fixed, Variable, and Undefined lengths, and
Data Sensitive. ISAM and DBAM files use Variable
length records for maximum flexibility and processing
efficiency. For the same reason, you may only use
Fixed length reco'ds in RAM files. SAM files,
however, can use any of the formats, allowing you to
process magnetic tapes generated on other systems and
make the most efficient use of your storage space.

Fixed Length Record Format

Each record in a SAM or RAM file with a Fixed Length
record format is exactly as long as every other record.
RAM uses this format exclusively because it provides
the fastest access to your data. The system doesn’t have
to read all your records to find the one you want, nor
does it have to do any special computation to find that
record.

DataGeneral

SOFTWARE DOCUMENTATION

For example, say that you are setting up an inventory
file and each record will contain the same amount of
data about each part on file: the part number, a brief
verbal description, the price, and the quantity you have
in stock. Each time you buy or sell those parts, you’re
going to want to update your file. Since the records are
all the same length and you want to access them
randomly to update the data, a file with fixed length
records (i.e., SAM or RAM) would be ideal. It will
allow you to maintain the file easily and retrieve specific
information as quickly as you need it because the
computer can get directly to your data via the part
number.

Variable Length Record Format

When you create a SAM or ISAM/DBAM file with
Variable Length records, the system will ask you to
specify a maximum length for the records in that file.
After that, no two records need to be the same length,
but none can exceed your specified maximum. (The
INFOS system keeps track of both the maximum
record length for the file, and the exact length of each
record in the file.)

You can use only this format for ISAM and DBAM
files because each record occupies exactly the space
necessary to hold it. So you get maximum flexibility in
building and maintaining your files, as well as optimum
use of your disk space.

Table I-1-1. Processing Modes

FILE FILE DOES
EXISTS NOT EXIST
INPUT | UPDATE] OUTPUT | CREATE
UPDATE
READ READ & | WRITE READ &
ONLY WRITE | ONLY WRITE
DISK YES YES YES YES
TAPE YES NO YES NO
SAM LINE NO NO (See note)] NO
PRINTER
INTERACTIVE| YES NO (See note)] NO
TERMINAL
RAM - DISK ONLY YES YES YES YES
ISAM - DISK ONLY NO YES NO YES
DBAM - DISK ONLY NO YES NO [YES

NOTE: You may only open existing peripheral files for output.

093-000114-01

1-1-3

General Considerations

DataGeneral

SOFTWARE DOCUMENTATION

You can use this format very effectively in setting up a
customer record file. Since you have more information
about long-time customers than you do about new
ones, the records in the file will be of varying lengths.
A Fixed Length record format would waste space every
time you put a new customer record in a space designed
to hold a long-time customer record; and it wouldn’t
allow you to expand your record size as you acquired
more information about your customers. The Variable
Length format, however, will allow you to pack as
many records as will fit into the available disk space,
with very little wasted space. The system automatically
allocates the ‘‘right-sized’’ space when you want to
enter a new record (or add information to, or delete it
from, an existing one), and then places the record in
that space.

Undefined Length Record Format

This format allows you to treat your file as a sequence
of bytes, rather than specific-length records. Therefore
you can append new data onto the end of the file, or
read any section within the file, regardless of the size of
the individual records. Obviously, this gives you more
flexibility in reading records.

For instance, you may want to read a file whose record
format you don’t know. If this happens, simply define
the file as a SAM Input file with Undefined Length
records and specify an expected maximum record size.

Note that you should use this format sparingly because
of the way the computer transfers Undefined Length
records. (We’ll give this more detail in the ‘‘Record
Packing”’ section of this chapter.)

Data Sensitive Record Format

The length of each record in this format is determined
by the occurrence of a delimiter table. The INFOS
system will automatically terminate a record when it
encounters either a carriage return (), a line feed (), or
a null character (0). However, you may also use the
delimiter table to specify another ASCII character as a
record length delimiter for your application. (See the
CTR instruction description in the Programmer’s
Reference Manual, ECLIPSE-Line Computers for details
on how the system uses translation tables.)

The Data Sensitive record format can be particularly
useful when you want to read or write a SAM file on an
interactive terminal, and/or when you want to output
data from a SAM file to a line printer. For example, if
you wanted to enter data into your file from an
interactive terminal, you would first define the file as a
SAM Input file with Data Sensitive records. Then you
would specify the maximum length of your records as n
characters. Unless you specify some other character for
use as a record terminator, the INFOS system will
automatically transfer a record to your program each
time you depress the carriage return on your terminal.

1-1-4

Licensed Material - Property of Data General Corporation

Table I-1-2 summarizes the relationship between
record formats and access methods.

Table 1-1-2. Record Formats and Access Methods

Access | Available Record Format(s)

Method

SAM Fixed, Variable, Undefined, Data Sensitive
RAM Fixed only

ISAM Variable only

DBAM | Variable only

Data Transfers

When you create an INFOS file, you must specify the
length of the data you want transferred between the file
and the computer’s main memory. This is called the
block size. Also each time you open an INFOS file to
process it, you can specify the number of buffers to be
used for the processing run. For a tape file, each buffer
you allocate is exactly the same length as the block size
you specified when you opened the file. For a disk file,
you must allocate buffers which are integer multiples of
512 characters long, because that is the size of the
physical sector of the disk where the data is stored. In
other words, when you are using disk files, you will
specify your block size, then the INFOS system will
transfer the data from the smallest number of sectors
which contain an equal or greater number of characters
than your block specification.

Main Memory

Block Size =
1000 Characters

BUFFER

Disk File

512 Characters

SD-00555

Figure I-1-1. Disk File Data Transfer

093-000114-01

Licensed Material - Property of Data General Corporation

For example, if you specify a block size of 1,000
characters for a disk file, the sysrem will transfer the
data from two 512-character sectors of the disk to the
computer’s main memory. In other words, it will use
one buffer of 1024 characters to hold the information
you wish to process, even though your data may not
completely fill that buffer.

Note that buffer space is not taken from your program
area. The INFOS system allocates the buffers in the
computer’s free space, i.e., that memory area not
occupied by application programs, operating system
code, or INFOS system code. See Chapter 6 for further
information about the allocation of buffer space.

Record Packing

In general, the number of records you can pack into a
block depends on the length of the records and the size
of the block. You will know both the maximum record
length and the block size, since you specify the record
format (which helps determine the record length) and
the block size when you create/open the file.

As we just mentioned, you can only transfer data from
disks in blocks which are integral multiples of 512
characters, but you can transfer data from nondisk
devices in fixed or variable length blocks. Let’s briefly
look at how the INFOS system transfers your data as
blocks.

Transferring Fixed Length Records

The INFOS system always transfers Fixed length
records in Fixed length blocks. Furthermore, Fixed
length records require exactly as many bytes in a file as
in main memory.

Main Memory

BUFFER

512
Characters

SD-00556

L___ Figure I-1-2. Transferring Fixed Length Records —J

093-000114-01

I-1-5

DataGeneral

SOFTWARE DOCUMENTATION
Transferring Variable Length Records

If you want to transfer Variable length records from a
nondisk device to a disk, the system will place as many
of those records as it can into the space you specify as
the block size. The block size of a disk file is always an
integral number of disk sectors. Therefore, the INFOS
system transfers Variable length records in much the
same way as it transfers Fixed length records, except
that it allows four (4) bytes more per file block for
Variable length records than for Fixed because of
system overhead.

Transferring Undefined Length Records

If you specify that a SAM Input file has Undefined
length records, the INFOS system considers them to be
unblocked. This means that the system considers each
block to be one record, and it will transfer only one
record at a time. Therefore, you should use this format
sparingly.

Undefined length records give you great flexibility
because they allow you to process files (especially tape
files) created on another operating system and to
transfer data between character-oriented devices and
the INFOS system. However, this method of
transferring blocks of data can be wasteful or
inefficient.

Transferring Data Sensitive Records

Data in Data Sensitive record files is always transferred
in fixed-length blocks, but, unlike Fixed length
records, Data Sensitive records can span blocks. That
is, the system sees Data Sensitive records simply as
strings of characters terminated by a delimiter
character. Therefore, it will fill blocks of Data Sensitive
records much more compactly than other blocks. This
format is very useful when you want to print your data
directly from your file. You just insert a delimiter
character every 80 or 132 characters (for a line printer),
regardless of the record bounds, and the system will
transfer the data in the correct size for the device.

Buffer Management

Because the INFOS system lets you request any
number of buffers, it uses a buffer management
technique called the Least Recently Used (LRU)
method for SAM and RAM processing. For ISAM and
DBAM processing, the system uses a variation of the
LRU method called hierarchical modulation (see
Chapter 4 for further details).

When you specify more than one buffer for a
processing run, the LRU method keeps track of how
long ago each buffer was used. If all the buffers are in
use when you issue a read or write request, the system
writes the contents of the buffer you accessed least
recently to the file, then places the current data in it.

General Considerations

DataGeneral

SOFTWARE DOCUMENTATION

The INFOS system also uses a ‘‘read ahead/write
behind’’ technique for greater efficiency in processing
SAM files. This means that as you are processing a
sequential file, the system anticipates the data you will
want next and brings it into main memory before you
call for it. It then holds this data in extra buffers until
you want it. The “‘write behind’’ process proceeds in
just the opposite way. The system realizes that you
don’t have any further use for a sequential record
which you have finished processing, so it removes
processed records from main memory, allowing you to
proceed uninterrupted with other records and leaving
space for them to occupy.

Footnotes to Data Transfers

1. The INFOS system will not necessarily initiate a
data transfer every time you issue a read or write
request. This is due partly to the number of records
in a block, and partly to the way that the system
manages the buffers. For example, if you want to
read record 8501, the system will retrieve the block
containing that record and transfer it to its first
buffer. Then you may want to read record 8503. If
that record is in the block which contains record
8501, the system does not need to transfer the data
to main memory because it has already done so.
Record 8503 is currently in the first buffer.

2. When you begin to design your program, don’t
forget to designate a Data Area to and from which
the INFOS system can transfer each record you
want to process. In this area, the data meets your
program; on input, the system moves single
records from a buffer to your Data Area, and, on
output, it moves them from the Data Area to a
buffer. Naturally, your Data Area should be large
enough to hold the largest record you expect to
process.

3. No matter what access method or peripheral
devices you use, you can change the
system-assigned values for timeout intervals to suit
your needs. These system-assigned values vary for
different devices, but, in each case, the system will
close your file if it cannot complete a data transfer
after twelve (12) of these intervals. We’ll discuss
timeout intervals in more detail in Chapter 6.

A Word About Volumes

Throughout this manual, we will use the word
““volume’’. The INFOS system contains two types of
volumes: physical volumes and logical volumes.
Physical volumes are the recording media on which you
store your file, e.g., disk packs or tape reels. Logical
volumes are subsets of your file. For example, this
entire manual consists of three files within one physical

1-1-6

Licensed Material - Property of Data General Corporation

volume. That is, we have a Planning file (i.e., Part
One), a Programming file (Part Two), and an
Appendix file (Part Three). Furthermore, within each
file (Part) there are a number of chapters. These
chapters are the logical volumes; each is a subset of the
entire file (Part). Once you open a Part (file) you can
access any of the chapters (logical volumes) within that
Part. In other words, every INFOS file consists of at
least one (and usually several) logical volumes.

This concept becomes more complicated when you
realize that your entire file can reside on many physical
volumes. An encyclopedia can illustrate this well. Each
book (physical volume) in the encyclopedia set (the
whole file) contains many chapters (logical volumes),
but it is only a part of the entire set. Therefore, the
complete encyclopedia (i.e., the whole file) consists of
many, many chapters (logical volumes) and is
contained within many books (physical volumes).

To keep things as simple as possible, whenever we use
the word ‘‘volume” in this manual, we will mean
logical volume unless we specifically say physical
volume.

Multivolume Files

You can design your INFOS file to occupy as much or
as little space as you need. If your files will be on disk,
you can let:

® | disk contain 1 file, or

® many disks contain 1 file, or

® | disk contain many files, or

® many disks contain many files.

If you want to work with labeled tapes, you can let:

® | reel of tape contain 1 file, or
® | reel of tape contain many files, or
® many reels of tape contain 1 file.

NOTE: You cannot create or process a tape set which
contains many files on many reels.

Unlabeled tape files and files on interactive terminals
or a printer are normally considered to be single
volume files.

Multivolume files are useful because they remove the
restrictions on file size which would normally constrain
you under RDOS. That is, RDOS files can only exist on
one disk (comprising at most 64K (65,535) sectors), or
on one reel of tape. Your INFOS file, however, can
reside on up to 255 separate devices, increasing the
number of disk sectors you can use for file storage from
64K to over 16 million. Looking at it another way, this
increases your maximum disk file size to about eight
billion characters.

093-000114-01

Licensed Material - Property of Data General Corporation
How to Process INFOS Files

How you process your INFOS file depends on whether
you want to create a new file or access records from an
existing file.

How to Create a New File
When you want to create a new INFOS file, you must:

1. Define its characteristics, that is, specify the access
method and record format you want, as well as the
physical characteristics of each volume. (When you
want to create ISAM or DBAM files, the index - as
well as the database - is also a file. This means that
you must define the features of the index and all its
volumes along with the database and all its
volumes.)

2. Select the INFOS options you want; for example,
code translation and data verification.

3. Choose the file attributes you need, such as block
size and number of buffers.

4. Open the file.

When you have completed these four steps
successfully, you will have a fully-defined INFOS file to
which you can begin writing data.

You can also create a new INFOS disk file with the
ICREATE utility.

Line Printers and Terminals as INFOS Files

Files on line printers and interactive terminals are
characteristically single volume files. If you want to use
such a file, follow steps, 1, 2, and 3 above, but choose a
processing mode based on the direction in which you
want to transfer data. If you want to transfer data from
a source fo a line printer or an interactive terminal,
open the file in the Qutput processing mode; if you want
to enter data from an interactive terminal, open the file
in the /nput processing mode.

File Naming, Briefly

The name you give to the first (or only) volume of a
SAM or RAM file you have created becomes the whole
file’s name. ISAM and DBAM files take their symbolic
names from the name you give to the first (or only)
volume of their indexes. You can find more information
on file naming in Chapter 6.

How to Process an Existing Tape File

You open an existing tape file in essentially the same
way that you create one. That is, follow steps one
through three above, then open the file in the [Input
processing mode so that you can read its records.

DataGeneral

SOFTWARE DOCUMENTATION

NOTE: When you are defining the volumes, remember
that unlabeled tapes are normally single volume

and that labeled tapes are most often
multivolume. Don’t forget to define all the
volumes.

How to Process an Existing Disk File

When you create a disk file, the INFOS system
automatically produces a permanent file specification
which contains the permanent attributes you define at
file creation - block size and number of buffers, for
example. The system also records the definitions for
each volume of the file. While processing an existing
disk file, you can temporarily override some of the
attributes of the file and select INFOS options for use
in the current processing run, but you cannot change
any of the file’s permanent characteristics, nor any of
the volume definitions. For example, you can specify a
different number of buffers for use in the current
processing run, but you cannot change the access
method, record format, or block size that you specified
when you created the file. You will find further
discussion of the things which you can and cannot
change in Chapters 2, 3, 4, and 5.

Since the system already has the file specifications, all
you need to do to open a disk file is:

® For SAM and RAM files:

1. Specify the file’s access method and record
format;

2. Give the file’s name - that is, the name you gave
to the first volume;

3. Open the file in the Input or Update processing
modes.

e For ISAM and DBAM files:

1. Specify the file’s access method and record
format;

2. Give the file’s name - that is, the name you gave
to the first volume of the file’s index;

‘3. Open the file in the Update processing mode.
Summary

This chapter has presented all the introductory
considerations you need to know before you begin to
plan your particular application of the INFOS system.
The rest of this manual will give you the details of the
points raised here.

End of Chapter

093-000114-01

1-1-7

Summary

A

Licensed Material - Property of Data General Corporation

DataGeneral

SOF.TWARE DOCUMENTATION

Chapter 2
Sequential Access Method (SAM) Files

Sequential access files are just what they sound like: the
system writes your records one after the other and
reads them back according to their physical sequence.
Furthermore, INFOS SAM files give you five
additional features which make them stronger than the
average SAM:

1. Choice of file format - You can set up your records
in any of the four INFOS formats -- Fixed,
Variable, Undefined, or Data Sensitive -- to
accommodate your particular application.

2. Use of most peripheral devices - You can create or
store your files on any Data General disk device,
magnetic tape, interactive terminal, or line printer.
So you don’t have to worry about processing your
files once you’ve selected a device.

3. Reduction of 170 wait time (Multibuffering) - You
can process your INFOS SAM files very efficiently
because when you specify more than one buffer the
system automatically overlaps the 1/0 operation of
your program with its data processing functions.
That is, the system anticipates your data
requirements and brings the next block of data on
your access device into a second buffer while it is
processing the information in the first buffer.
(Remember that the system allocates space for all
buffers in the extended memory area, not in your
program space.) Also, depending on the type of
device on which you’re storing your data and the
direction in which your program is transferring that
data, you can choose the INFOS processing mode
which will be most effective for you.

4. Variety of processing options - All SAM processing
functions don’t apply to all devices (e.g., you can’t
read from a line printer) but, where appropriate,
they do let you read, write, and rewrite data,

093-000114-01

1-2-1

append new records to the end of a file, and
overwrite a file. The INFOS SAM also has a
‘“‘Read-After-Write’’ option which you can use to
verify the accuracy of each record written to a SAM
tape or disk file.

5. Code translation - INFOS SAM files allow code
translation on both input and output. That is, the
INFOS system can automatically convert any
character set you have into any other character set.
The INFOS system can do this for an entire record
or for certain fields within that record.

The INFOS SAM is not the SAMe old thing. The
INFOS system significantly increases the number of
functions which you normally have under RDOS. It
also removes artificial limits on your file’s size; your
file can exist on up to 255 separate volumes. But these
are just the general features of an INFOS SAM file. If
you put your SAM file on a disk, you get even more.

SAM Disk Files

To give your SAM file maximum flexibility, put it on a
disk. Using a disk will allow you to do input and output
when you create or use the file. It will also allow you to
use the SAM Rewrite Option (as described later in this
chapter). When you open an existing SAM file, you
need only minimum specifications; the INFOS system
automatically uses the information in the permanent
file specification. Also, if your file is on a disk, many
users can share access to it, using single- or multitask
programs, because the INFOS system automatically
resolves conflicting requests for data. You may,
however, request exclusive use of your disk file
whenever you open it. The system will then prevent
other programs from accessing your file until you
release it or close it.

SAM Disk Files

DataGeneral

SOFTWARE DOCUMENTATION

How to Create SAM Disk Files

To create a SAM disk file, you can use either the
Output or Create Update processing mode. (If you also
want the ability to read and rewrite records, choose the
Create Update mode and specify the Rewrite option.)
You can then choose any of the four INFOS record
formats. If you choose Fixed Length records, you must
specify their exact size; if you choose Variable Length,
give the expected size of the longest record in the file.
Data Sensitive records allow you to specify your own
record terminator, but if you default this choice, the
system will automatically terminate a record when it
encounters either a carriage return ()), null (0), or line
feed.

Next, you can either indicate a specific block size or let
the system automatically set the size at 512 characters.
You can also, if appropriate, indicate that your records
are unblocked, in which case the system will put just
one record in each block.

SAM disk files allow you to specify any number of
buffers, and each one will be as long as your block size.
However, if you specify two or more buffers, you will
greatly reduce your I/0O wait time because the system
will automatically keep them active. (If you don’t
specify a number of buffers, the system will only give
you one.) Also, if you want to offset your data records
from the beginning of a buffer, you can simply specify
initial data offset. '

1-2-2

Licensed Material - Property of Data General Corporation

Your SAM disk file can consist of as many volumes as
you need, but you have to define each volume when
you create the file. Part of this definition involves
naming each volume, and the name you give to the
first volume becomes your file’s symbolic name.
Another part of the definition allows you to choose an
ASCII pad character for each volume. If you don’t care
what character is used, simply default this choice and
the INFOS system will automatically use the null
character (0).

You also have to choose whether you want to allocate
the file’s space in each disk volume contiguously or
randomly, and whether you want to initialize the file
space. (Initialization reserves disk space and sets all
bytes in that space to zero.) We recommend that you
specify Disable File Initialization, since initialization of
a 64K block volume takes approximately twenty
minutes. If you choose contiguous allocation, you must
specify the number of physical blocks you want to
allocate. If you choose random allocation, you can
specify a volume size or you can let the system allocate
space as it is available - up to a maximum of 65,535 disk
blocks. (Note, however, that if you run out of disk
space before a logical volume is full, the system will not
send the overflow to the next volume. Refer to
Chapter 6 for a more detailed explanation of disk space
allocation and volume size.)

Finally, unless you specify a different interval, the
INFOS system automatically assigns timeout intervals
of three seconds for fixed-head disks, five seconds for
moving-head disks, and 15 seconds for magnetic tapes.

Those are the choices and/or specifications you have to
make when you want to create a SAM disk file. The
chart in Table I-2-1 summarizes these steps and
indicates whether they are mandatory or optional.

093-000114-01

Licensed Material - Property of Data General Corporation

Table 1-2-1. Steps in Creating a SAM Disk File

093-000114-01

DataGeneral

SOFTWARE DOCUMENTATION

You Must Do These:

You May Do These:

Choose a processing mode
e Create Update or Output
Choose a record format

e Fixed, Variable, Undefined, Data
Sensitive

e Specify exact length of Fixed Records

e Specify expected maximum length of
Variable length records

Specify block size

Choose a number of buffers
Define each volume
o Name, characteristics, etc.

Specify Random or Contiguous space
allocation

Specify number of physical blocks for
Contiguous allocation

(Specify Rewrite option)

(Specify delimiter(s) for Data Sensitive
records)

(default = 512 characters/block)
(Indicate records are unblocked)

(default = 1 buffer allocated)

(Override default pad character)

(Specify volume size for Random
allocation; default = 65,535 blocks)

(Specify initialization or no initialization)

(Specify value for timeout intervals)

(Specify initial data offset)

1-2-3

SAM Disk Files

DataGeneral

SOFTWARE DOCUMENTATION

How to Open an Existing SAM Disk File

You’ll follow the same basic steps when you open an
existing SAM disk file as you did when you created it.
That is, you must:

® Choose a processing mode; either Inbut or Update.

® Specify the same record format you used when you
created the file. (If you want to, you can specify the
Undefined Length record format, but remember
that records in this format are only transferred one
at a time into the buffers.)

® State the name of the first, or only, volume.

You may specify a different number of buffers for this
processing run than you did at creation. However, if
you want to use the number you originally specified,
don’t do anything. The system will automatically
allocate the number recorded in your file’s permanent
specification.

There are also three other features you may use when
you open your file, but you must specify them each
time you want them:

® code translation (ASCII to EBCDIC, or vice versa,
or either one to your own code).

® data verification (you have to open in the Update
processing mode to use this).

o exclusive file use (as described in the last section of
this chapter).

Finally, note that you cannot change any of your file’s
volume characteristics when you open it.

That’s all there is to opening an existing SAM disk file.
Before we explain how to process SAM files, however,
let’s look at how to create and open SAM files on other
devices.

1-2-4

Licensed Material - Property of Data General Corporation

SAM Labeled Tape Files

The INFOS system will let you use magnetic tape labels
which conform to ANSI standard levels 1, 2, and 3, and
IBM standard levels 1 and 2. Using these labels, you
can create and process labeled tape files in the following
forms:

® single file/single volume
® single file/multivolume
® multifile/single volume

NOTE: You cannot create or
multifile/multivolume tape set.

process a

This section of Chapter 2 describes the general
principles involved in initializing, creating, and opening
labeled tape files. If you want further details on any of
these points, refer to Appendix A at the back of this
manual.

Initialization

Before you can create a labeled tape file or open an
existing one, you have to initialize your tape reels. The
Labeled Magnetic Tape Initialization Utility (call:
LBINIT), described in the INFOS Utilities Users’
Manual, is the easiest and most efficient way to
initialize at runtime. However, you can also initialize
(and release) tapes through your programs with INFOS
system requests.

How to Create SAM Labeled Tape Files

Creating a SAM labeled tape file is not unlike creating a
SAM disk file, except that you’ll use only the Qutput
processing mode. After you select Output mode, you
need to specify the record format you want to use -
Fixed, Variable, or Undefined. As with SAM disk files,
you have to give the exact record length if you use
Fixed length records. If you want to use Variable length
records, you can either specify the length of the largest
record, or let the system assume that the largest record
is four characters less than your block size. However, if
you do specify a maximum size, it also cannot be any
longer than four characters less than your block size.

093-000114-01

Licensed Material - Property of Data General Corporation

And speaking of block size, that’s the next choice you
have. You can either specify a size, or you can default
the choice - in which case the system will give you
blocks which are 80 characters long. At this point you
can also specify that you want unblocked records - that
is, just one record per block. As usual, the system
automatically gives you unblocked records if you
choose the Undefined record format.

After your block choice, you’ll have to choose the
number of buffers you’ll need. Again, if you don’t give
the system a specific number, it will give you only one.
And if your data records don’t start at the beginning of
a buffer, you can specify the number of characters by
which you want the system to offset them.

Next, you must specify the type and level of the labels
you want to write (i.e., ANSI 1,2, or 3; or IBM 1 or 2).
Then you have the option of specifying the following:

o file set identifier

® file expiration date

o file sequence and generation numbers
® accessibility (data security) code

You also have the same option for selecting recording
code translation as you have with a SAM disk file. That
is, you can convert your data from any recording code
you have into any other code.

093-000114-01

1-2-5

DataGeneral

SOFTWARE DOCUMENTATION

Your next step is to define each volume (i.e., each
physical reel of tape). In other words, if your data file
will exist on three reels of tape, you must define all
three reels. The first part of this volume definition will
be the volume name, consisting of a volume identifier
followed by a colon, then a file identifier followed by a
null character - for example, MTO: PAYROLLO. The
next part of the volume definition includes a volume
label, header labels, trailer labels, and, depending on
which label type and level you are using, user labels.
You can also specify that the system rewind each
volume on opening, and you can enable runtime
initialization and release for each volume.

Finally, while you’re at it, there are four other options
you can use for each volume. First, you can specify
fixed or variable length blocks. Second, you can choose
a pad character other than the system-supplied null (0).
Third, you can specify a volume accessibility character.
And, fourth, you can choose a different timeout
interval than the system-assigned interval of 15
seconds.

That may seem like a lot to do just to create a labeled
tape file, but it’s not really. It’s simply that the INFOS
system gives you quite a few options to allow you to use
a labeled tape file as effectively as possible. For your
reference, the chart in Table 1-2-2 shows the
mandatory steps and the optional ones.

SAM Labeled Tape Files

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table 1-2-2. Steps in Creating a SAM Labeled Tape File

You Must Do These

You May Do These

Specify Output processing mode
Choose a record format

e Fixed, Variable, Undefined, or Data
Sensitive

Specify exact length of Fixed records

Choose a block size

Choose desired number of buffers

Specify label type and level

e ANSI1,2,30rIBM1,2
(See Appendix A)

Define each volume

e Name, volume label, header labels,
trailer labels

(Specify length of longest Variable
record)

(Default = 80 character block;
maximum = 8192 bytes)

(Specify unblocked records)
(Default = 1 buffer)

(Specify, number of characters for initial
data offset)

(Specify file set identifier)
(Specify file expiration date)
(Specify file sequence)

(Specify generation numbers, accessibility
code)

(Specify code translation)

(Specify rewind tape on open)

(Enable runtime initialization and release
for each volume)

(Choose Fixed or Variable length blocks
for each volume)

(Select pad character - default = 0)

(Specify timeout interval)

1-2-6

093-000114-01

Licensed Material - Property of Data General Corporation

How to Open an Existing SAM Labeled
Tape File

There are two differences between the opening
procedures for an existing SAM labeled tape file and
the creation procedures we just explained. First, you
must use either the Input or Update processing mode.
(Choose Update when you want to append new records
to the end of your file.) Second, you must do the
following:

® Initialize the tape units;
® Define the file’s characteristics;

® Indicate the attributes and INFOS options you want,
and

® Define each volume in the file.

Other than this, the procedures are exactly the same.
We’ll tell you about your processing options for this
type of file in the last part of this chapter.

How to Use Peripheral Devices as
SAM Files

Here’s a handy feature for you. The INFOS system
allows you to define a line printer or an interactive
terminal as a SAM file. This means that you can use the
read and write functions of the INFOS system to
transfer data between your program and these
peripheral devices. Or, to put it another way, you can
transmit data between your program and the terminal,
or send data generated by your program to a line
printer.

You can also use a single terminal for both input and
output. Normally, SAM limits your data transfers to a
single direction per file. But you can use the single
terminal for both input and output by defining two files
like this:

1. Define and open one file as a SAM Output file.
When you specify the volume definition, use the
system device name $TTO ($TTOl in the
foreground). This will allow you to transmit data
from your program to the terminal.

2. Define and open the other file as a SAM Input file

and use the system device name $TTI(1). This will
allow you to enter data from the same terminal.

093-000114-01

1-2-7

DataGeneral

SOFTWARE DOCUMENTATION

If you want to write data to a line printer, simply define
and open a SAM output file using the name $LPT.

You have essentially the same INFOS option for
peripheral files as you do for other SAM files. For
example, your program can read a SAM file with IBM
level two labels and select portions of the data records
for output to a $TTO file. Or the system can
automatically translate records from EBCDIC to ASCII
during transmission to the terminal.

You’ll find more information on physical files and their
characteristics in Chapter 6.

What to Do with Unlabeled SAM
Tape Files

The INFOS system also allows you to create and
process unlabeled SAM tape files. This can be helpful if
you want to process a tape file generated under RDOS
or on an external system. If you have a tape and you
don’t know what’s on it, merely define and open it as a
SAM Input file with Undefined records and specify a
relatively large block size (say, 2,500 characters). If you
mount the tape on tape unit zero, name the file MTO0:0.
Then, after you open the file and issue your first read
request, the INFOS system will transfer whatever is on
the tape until it comes to the first interrecord gap, or
until the end of the file, whichever comes first. Again,
Chapter 6 has more details on this topic.

SAM Summary

The charts in Tables 1-2-3 to 1-2-6 summarize the
options you have when you open a SAM file. Charts A
and B (Tables I-2-3 and I-2-4) show the SAM file
definition options, and charts C and D (Tables I-2-5
and 1-2-6) show the SAM volume definition options.
After these charts, you’ll find the section on how to
process SAM files.

SAM Summary

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table 1-2-3. File Definition Options When You Open a New SAM File

Create
Update Mode Output Mode
ChartA Labeled* Unlabeled
. . abele niabele
Disk Disk Tape Tape $TTO $LPT
Record Format Choose one of the four Record Choose from: Choose one of Data Sensitive (with

® Fixed Formats. If you use Data Fixed the four record system-supplied terminators) is
® Variable Sensitive, the system will Variable formats. the usual format for these devices,
® Undefined terminate your records by 0,), or or but you may also used Fixed and
® Data {, unless vou specify other Undefined Undefined.
Sensitive delimiters. only

Specify any size block up to 8K Specify any block size you want. If you don’t specify a size, the system will
Block Size bytes. The system will transfer use 80 characters. (80 characters is normal for $TTO; 80 or 132 characters is

your data in multiples of 512. normal for $LPT.)
Blocked or Specify unblocked records if you want only one record per block. If you want more than one record per block, you need
Unblocked make no specification. (Note that Data Sensitive records can span blocks and Undefined records are always
Records unblocked.)

Choose any number of buffers. If you specify more than one, the system automatically keeps them filled, greatly
Number of reducing your I/0 wait time. If you do not specify any buffers, the system will give you only one. For nondisk files,
Buffers buffer size = block size. For disk files, buffer size equals the next highest multiple of 512 which equals or exceeds

block size.

Data Offset

If your records do not start at the beginning of a block, specify the number of characters by which you want the system
to offset the first record.

Record Length

If your file has Fixed Length records, you must specify the record length. If it has Variable Length records, specify the
expected length of the longest record. This length cannot exceed four characters less than the block size. If you do not
specify a maximum length, the system assumes that the longest is four characters less than your block size.

Overwrite or
Append Option

This allows you
to write at some
point other than

Rewrite Option

end of file;
however, you
will lose
whatever existed
beyond that
point.

Allows you o
update in place
using

read/rewrite and
read/release
command
sequences.

Exclusive Use

If you specify exclusive use, no
one else can access the file while
you have it open.

Code Translation

The system can automatically translate your data from ASCII to EBCDIC, or vice versa, or to your own code during
transfers between your program and the buffers.

Read-After- You can verify each block
Write transferred to your file for
Verification recording accuracy. . :
Number of Specifv the number of volumes if your file will reside on more than one volume. If you _do not specify a number, the
Volumes system assumes that it is a single volume file and will only process the first volume definition.
NOTES:

*Y ou must also specify the label type and level (i.e., ANSI 1, 2, or 3 or IBM 1, or 2) when you are working with a labeled tape fil'c in the O‘ut.p.ut
mode. In addition, you may specify the File Set Identifier, the Expiration Date, the Sequence and/or Generation Number, a File Accessibility
Code. Runtime Initialization, and/or Runtime Release.

1-2-8 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table 1-2-4. File Definition Options When You Open a New SAM File

ChartB

Update Mode

Input Mode

Disk

$TTI

Record Format

® Fixed

® Variable

® Undefined

® Data
Sensitive

Choose the same format you used to
create the file. The system will then verify
this by comparing it with the permanent
file specifications. If it doesn’t match, an
error will return.

Data Sensitive (with system-supplied terminators) is usual format
but you can also use Fixed or Undefined.

Block Size

Do not specify a block size; the system
uses the permanent file specification.

Specify the same block size you used to create the file. If you don’t
specify a size, the system uses 80 characters. (Normal block size
for $TTI is 80 characters. for tape files with Undefined Length
records, specify a large block size.)

Blocked or
Unblocked Records

If you specified unblocked records (i.e.,

Otherwise, the system will transfer as many records as can fit into a block. (NOTE: Data Sensitive records can span

blocks.)

one record per block), when you created the file, do the same here.

Number of Buffers

Specify any number of buffers. If you
don’t specify any, the system will give
you the number recorded in the
permanent file specification.

Specify any number of buffers. If you don’t specify any, you will
get only one. If you specify more than one, the system
automatically keeps them filled.

Data Offset

Do not specify an offset. The system will
use the offset recorded in the permanent
file specification, if any is there.

Specify the same offset as you did at creation, otherwise you’ll
probably get unrecognizable data transferred to yous program.

Record Length

Do not specify a record size. The system
will use the permanent file specification.

Specify the record size you used when you created your file.

Overwrite or
Append Option

Specify overwrite if you want to use it on
this opening (see Create Update Chart A
for cautions).

Rewrite Option

Specify Rewrite if you want to use it on
this opening. Operates same as under
Create Update.

Exclusive Use

Specify Exclusive use if you want it for
this opening. (This is not kept in
permanent file specifications.)

Code Translation

Same as when opening a new SAM file.

Read-After-Write
Verification

Specify this if you want it. (Not part of the
permanent file specification.)

Number of Volumes

Do not specify any number of volumes.
The system will use the permanent file
specifications.

Specify the same number as you did when you created the file.

093-000114-01

1-2-9 SAM Summary

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table 1-2-5. Volume Definition Options When You Open a New SAM File

Chart C

Create
Update Mode Output Mode
R . Labeled Unlabeled
Disk Disk Tape* Tape $TTO SLPT

Volume Name

Y ou must specify a name for each volume when you create a file. The name you give to the file’s first (or only) volume
becomes the file’s symbolic name.

Allocation
Technique

® Random

® Contiguous

Specify Random or Contiguous
allocation for each volume in the
fite. Then specify the number of
512 character blocks which you
want the system to allocate. If you
do not choose a technique and a
number, the system will randomly
allocate up to 65,535 blocks per
volume.

Timeout Interval

The system assigns each device a timeout interval, but you may assign any interval you want on a per volume basis. If
the system cannot complete an I/O transfer after 15 intervals, it will give you an end-of-file condition.

Block Format

Parity

Volume Label

Pad Character

Disk files always have Fixed
Length blocks. (Refer to Chapter
6 for further details.)

Specify Fixed or Variable length blocks.

The INFOS system normally
generates odd parity. You must
specify even parity if you want it.

Specify that this
is a volume of an
unlabeled file.

Specify the character you want INFOS to use to fill the unused portion of a block. If you don’t specify a character, the
system will use the nonprintable ASCI null (0) character.

NOTES:

*Y ou may also specify the following for each volume of a labeled tape file which you are processing in the Output mode:

Volume Accessibility

Volume Owner Identifier i

1-9 UVL, UHL, UTL labels (depending on your file’s label type and level)
Runtime Initialization/Release

Rewind on open

1-2-10 093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Table 1-2-6. Volume Definition Options When You Open an Existing SAM File

ChartD

Update Mode

Input Mode

Disk Disk

Labeled Unlabeled
Tape* Tape

$TTI

Volume Name

Specify only the name of the first (or
only) volume.

Allocation Do not specify an allocation technique.
Technique The system will use the permanent file
® Random specification.

Since $TTI and Unlabeled tapes are generally single volume files,
and Labeled tapes are multivolume files, you must name and
define each volume each time you openiit.

® Contiguous

Do specify a timeout interval. The system
will use the permanent file specification.

The system assigns each device a timeout interval, but you may
assign a different one on a per volume basis. If the system cannot
complete an I/0 transfer after 15 intervals, it will give you an
end-of-file condition.

Timeout Interval

Specify the same block format you specified when you created the
file. If you don’t know the format, specify variable blocks.

Do not specify a block format. The
system will use the permanent file
specification.

Block Format

If you specified even parity when you

Parity created the file, specify it for this opening.

_ Specify that this is a
Volume Label , volume of an
' unlabeled file.

Do not specify a pad character. The
Pad - v fil
system will use the permanent file
Character specification.
NOTES:

*For each volume of a labeled tape file which you are processing in the Input mode, you may also specify Runtime Initialization/Release and/or
Rewind on Open. The system will automatically return the Volume Accessibility and Volume Owner Identification to your program if the
volume contains them. And if the volume has any user labels, you can also designate the areas in your program which will receive their contents.

093-000114-01 1-2-11 SAM Summary

DataGeneral

SOFTWARE DOCUMENTATION

How to Process SAM Files

The INFOS system gives you five basic processing
options for a SAM file. You can:

Read an existing file

Write a new file

Append records to the end of an existing file
Rewrite existing records

Overwrite a file

Reading an Existing File

When you want to read an existing SAM file, open it in
the Input Mode. Your file can reside on any device -
disk, interactive terminal, labeled or unlabeled tape -
and you can read all of it or only a part. The system will
return the length of each record you read, and, after
you read the last record, will send you an end-of-file
message.

Writing a New SAM File

This function is as simple as reading a file. Simply open
the file in the Output mode and specify the length of
each record as you write it. As in reading, you can use
all devices to write a file - disks, labeled or unlabeled
tapes, interactive terminals, or line printers.

Appending Records

If you want to append new records to a file on tape or
disk, open the file in the Update mode and issue a write
request. This will position you to the end of the file and
you can write as many records as the device will hold. If
you are working with a labeled tape, the system will
automatically place the existing labels from the
end-of-file section and the end-of-file label groups in
their appropriate places when you close the file.

Rewriting Existing Records

Sometimes you’ll want to examine your records and
change some of them. To do this, open your disk file in
the Update mode, specify the rewrite option, and issue
your first read request. After you read each record, you
can either leave it unchanged or rewrite it. If you do not
want to modify the record, issue a release request; if
you want to change, update, or replace the record, issue
a rewrite request, then rewrite the record. If your file
has Variable length records, make sure that each
rewritten record is exactly as long as the one it’s
replacing. You can also lock the record you are
rewriting, preventing other users from accessing the
record while you’re examining or rewriting it. To use
this feature, indicate that you want the record locked
each time you issue a read request. jThe system will
then keep the record locked until you issue the next
rewrite or release request.

1-2-12

Licensed Material - Property of Data General Corporation

Overwriting Existing Records

The INFOS system also allows you to read records up
to any point in your disk file, then write new records
over those which exist after the last record you read. To
do this, open the file in the Update or Create Update
mode and select the overwriting option. You can then
read to your desired point in the file and issue a write
request. The end of the last record you write then
becomes the new end-of-file and you will, therefore,
lose any records which previously existed beyond it.

For example, if you open your file and issue several
read requests before you issue your first write request,
the system will preserve the records you read and the
record you write will become the new end-of-file. From
this point in the file on, all your subsequent write
requests will append new records to this new end-of-file
and you will lose any records that were in that part of
the file.

Additional Features

When you want to process a SAM file, you’ll use one of
the five functions described above. In conjunction with
these, however, the INFOS system gives you two
additional features - Point and SETX - which make the
five basic procedures more useful.

Point

You’ll use the Point function when you want to change
your position in a disk file that you are processing.
Here’s how it works:

The INFOS system automatically keeps track of your
current position within an open file. The system always
sets this position just after the last record transferred
and gives you feedback about the record’s position in
the file - i.e., the block number which contains the
record and the record’s location within that block. You
can use the Point function to move from your current
position to any other record in the file, as long as you
know that record’s position. To change positions, issue
a Point request which gives your desired relocation
position. Be careful when you use Point, however. If
you issue a Point request in conjunction with an
Overwrite, any record you write at your new location
will become the new end-of-file and you will lose
everything beyond that point.

You can use Point in any processing mode, but you’ll
probably find it most useful in Update and Create
Update when you want to return to a record which you
have read and/or rewritten earlier.

093-000114-01

Licensed Material - Property of Data General Corporation

SETX and RELX

This INFOS SAM feature lets you have exclusive use
of your file and prevents other users from opening it
until you release it. You can gain exclusive access in
two ways: either request exclusive use when you open
the file or use the Set Exclusive Use (SETX) function
request. If no one else has opened the file when you
issue the SETX request, the system will give you
exclusive access. If the file is already open, you’ll get
the error message ‘‘FILE IN USE’’. When you don’t
need to restrict access any further, issue a Release
Exclusive Use (RELX) function request to return the
file to general use. If you don’t issue RELX, the system
will not return the file to general use until you close it.

Summary

The INFOS system gives you a lot of flexibility when
you’re processing a SAM file. Depending on the device
your file resides on and the processing mode you
choose, you can do just about anything to your data.
Furthermore, as you are processing data, the system
will also let you know of any exceptional status (such as
reaching the physical end of a volume or an unusual
transfer length). In addition, if you selected
Read-After-Write data verification, it will tell you when
the data you have written to your file doesn’t exactly
match the contents of its originating buffer.

DataGeneral

SOFTWARE DOCUMENTATION

The chart in Table I-2-7 summarizes the available
mode(s) and device(s) for each INFOS SAM file
processing function.

Table 1-2-7. SAM File Processing Summary

Function Mode and Devices Available
Read Create Update (D)

Update (D)

Input (D, L, U, T(D)
Write Create Update (D)

Output (D, L, U, T(O), P)
Update (D, L, U)

Read/Rewrite Create Update (D)

Read/Release Update (D)
Point Create Update (D)
SETX/RELX Output (D)
Update (D)
Input (D)

Devices: D = Disk
L = Labeled Tape
U = Unlabeled Tape

T(O) = Interactive
Terminal (Output)
T(I) = Interactive
Terminal (Input)
P = Line Printer

End of Chapter

093-000114-01

1-2-13

Summary

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 3
Random Access Method (RAM) Files

The INFOS system’s Random Access Method (RAM)
lets you directly access any data record in your file
without going through all the records before it. That is,
unlike SAM files, you don’t need to read a lot of
records to get to the one(s) you want; you just jump in,
read or write the record(s) you want, and jump out.
RAM is simple, quick, and easy to use. And a single
R AM file can reside on as many as 255 disks.

When you build a RAM file, chances are that your
records will all be of the same type - for example,
invoice, personnel, or inventory records - and each of
these records will have some natural record number
associated with it, such as invoice or part numbers.
These natural numbers are the keys to RAM because
the INFOS system stores and retrieves records by these
numbers. So when you want to read or write a RAM
record, you just give the record number to the system
and it will go directly to the record. But be sure to give
your records small numbers (i.e., 1, 2, 3, etc.) because
the system assigns records to the physical space
corresponding to the record number. For example, the
system will put record number 100 into space number
100 on your disk; if this is your lowest numbered
record, you will waste spaces 0 through 99. All in all,
however, RAM is still the quickest and easiest access
method.

To make things even easier, you can create a RAM file
with the ICREATE utility and load it with the ICOPY
utility, both of which are described in the INFOS
Utilities User’s Manual. And if you’re initially loading
your RAM file from a source file that is already
arranged by record number, you’ll have a very
efficiently constructed RAM file.

Finally, to give you maximum efficiency, INFOS RAM

offers several processing modifiers which can reduce
your 170 wait time practically to zero.

093-000114-01

How to Create a RAM File

To create a RAM file, first choose a processing mode.
You can use either the Output or the Create Update
mode, depending on the direction in which you want to
transfer data. The Output mode only lets you write to
the file, while the Create Update mode lets you both
read and write. Both modes give you the same file and
volume definition options. Also, no matter which
mode you choose, you can only have Fixed Length
records and you must specify their length.

Next, you should specify a block size in terms of a
number of characters. You can use any size you want,
but remember that the system always transfers data in
blocks which are multiples of 512 characters. For
example, if your records are 125 characters long and
you want four records per block, you can specify a block
size of 500 characters. But the system will transfer your
records in a 512 character block; 500 of these will
contain data and 12 will be unused. You can also default
the choice of a block size and the system will
automatically use a 512 character block. But be careful
when you specify a block size; your choice of size can
have a significant effect on the efficiency both of your
data transfers and of your disk use. You can find
further details on record packing in Chapter 6.

After you choose a block size, determine the number
of buffers you’ll need for I/0 transfers. As with block
size, you can specify any number of buffers, and if you
use two or more you can also use RAM’s Pre-read
feature (described later in this chapter) to retrieve one
record while you are processing another. If you don’t
specify a number of buffers, the system will give you
only one. This could reduce your data transfer
efficiency. (In general, buffers are like heads - two are
better than one.)

How to Create a RAM File

DataGeneral

SOFTWARE DOCUMENTATION

When you are creating a RAM file, you must also
specify the number of volumes in your file and name
each one. The name you give to the first volume
becomes the file’s symbolic name. If you don’t specify
a number of volumes, the INFOS system will assume
that the file has only one volume.

You can (and often should) also specify contiguous
allocation for the first volume of a multivolume file.
This will increase your processing speed for the original
file. Then, for the second and subsequent volumes,
you should default this choice and let the system
allocate space on the disk randomly. When you choose
contiguous allocation, you must also tell the system
how many 512-character blocks to allocate. The system
will then automatically erase all previous information
from the blocks you specified, unless you tell it not to.
When you specify random allocation, the system will
allocate up to 65,535 blocks (of 512 characters) on an
‘“as needed’’ basis unless you specify a maximum
number of blocks for allocation.

In addition, you can specify a timeout interval for each
volume you define, or you can let the system use its
own - three seconds for fixed-head disks and five

Licensed Material - Property of Data General Corporation

seconds for moving-head disks. (See Chapter 6 for
further details on timeout intervals.)

Finally, you have four other options to choose from
when you are creating your RAM file. You can:

® use the SETX and RELX functions (described in the
“Processing’ section of this chapter) to gain
exclusive use of your file either on opening or while
processing,

® have the system automatically translate any
recording code you have into any other recording
code;

® request that the system verify each block of data
written to your file for recording accuracy;

® specify a pad character for each volume, or by
defaulting, let the system use the null (0) character.

This is all you must choose from and/or specify when
you want to create a RAM file. In Table 1-3-1 we’ve
summarized these things in terms of mandatory ones
and optional ones.

Table 1-3-1. Steps in Creating a RAM File

You Must Do These:

You May Do These:

Choose a processing mode

e Create Update or Output
Specify Fixed Length records
Specify exact length of records
Specify block size

Specify a number of buffers
Specify number of volumes in file
o Name each volume

e Specify Contiguous or Random
allocation

allocation

e Specify number of blocks for Contiguous

(default = 512 characters)

(default = 1 buffer)

(Specify maximum number of blocks for
Random allocation)

(Specify length of timeout interval)
(Request SETX function)
(Request code translation)

(Request data verification)

1-3-2

093-000114-01

Licensed Material - Property of Data General Corporation

How to Open an Existing RAM File

The process for opening an existing RAM file is very
much like the one for creating it. However, opening an
existing file is simpler because the system-generated
Permanent File Specification contains such things as
the length of the file’s records, the number of buffers
you originally wanted, all volume specifications, the
allocation technique, the length of the timeout
intervals, and the pad character.

As aresult, you only have to:

® Choose either the Update or Input processing mode.
Update allows you to read and write; Input only lets
you read your file.

® Specify that you are opening a RAM file with fixed
length records and give the file’s symbolic name.

® Choose a number of buffers for use in this
processing run. If you want to use the same number
you used at creation, default this choice.

® If you want them, specify code translation, data
verification, and exclusive use of the file.

That’s all there is to it. The system gets the rest of the
information it needs from the Permanent File
Specification. Table I-3-2 summarizes these steps.

DataGeneral

SOFTWARE DOCUMENTATION

Processing Your RAM File

Once you’ve created and opened your RAM file,
you’re ready to process the data in it. In addition to the
basic read and write functions, INFOS RAM gives you
several processing request modifiers which you can use
to improve the efficiency of the basic functions. But,
before we get to the modifiers, let’s examine what the
INFOS system does with a RAM file during the normal
read and write sequences.

Read

When you want to read a record, you’ll code the
equivalent of ‘‘Read record number xxx. >’ The system
will then go through the following steps:

It determines whether the block containing record xxx
isin a buffer.

® [fit js, the system will:
Move it from the buffer into your data area.
o [fit is not, the system will:

Find a buffer for the block (it may have to write the
contents of a buffer to disk to do this).

Transfer the block containing the record from disk
to the buffer.

Transfer record xxx from the buffer to your data
area.

Table 1-3-2. Steps in Opening an Existing RAM File

You Must Do These:

You May Do These:

Choose a processing mode

o Update or Input

Length records

Give the file’s symbolic name

Specify that this is a RAM file with Fixed

(Specify a number of buffers)
(Request SETX function)
(Request code translation)

(Request data verification)

093-000114-01

1-3-3

Processing Your RAM File

DataGeneral

SOFTWARE DOCUMENTATION

Write

When you want to write a record, you will first place the
record in your data area, then code the equivalent of
“Write record number xxx.”” When you enter this
command, the system will:

Determine whether the block that contains the record
(or will contain it if it’s a new record) is already in a
buffer

® Ifit /s, the system will:

Move the record from your data area onto the
buffer.

o Ifitis not, the system will:
Find a buffer to hold the appropriate block.
Transfer the block to the buffer.
Move the record from your data area to the buffer.
Write the contents of the buffer to the file either
when it needs to use the buffer for a subsequent

request or as soon as possible, if you have specified
Write Immediate.

Licensed Material - Property of Data General Corporation

This basic read and write sequence is illustrated in
Figure I-3-1.

That’s what the system does with your RAM file when
you want to read or write. Note that the first three steps
are the same whether you’re reading or writing.

Now, all that waiting time for block transfers and buffer
emptying can mount up if you’ve got a lot of data to
process. Therefore, in order to reduce your 1/0 wait
time as much as possible, INFOS RAM offers the
following processing request modifiers.

Pre-read

If you ask for two or more buffers when processing
your file, the RAM Pre-read function lets you specify
the number of the record you will want when you have
finished processing your current record. The system
will then attempt to find a buffer for that next record. If
one is empty, the system will bring the block containing
the record into the buffer. If all the buffers are full, the
system will empty the one whose contents you used the
longest time ago. Then it will bring the appropriate
block into that buffer. Thus, you won’t have to wait for
the system to empty a buffer or transfer the block if
you use Pre-read.

You code:
‘Read (write) record xxx.'

Is the block
in a buffer?

2 r— — — —
The system finds a buffer __H I
to hold the block. If a buffer is not

| available the system
l empties the buffer
whose contents were

3 | accessed the longest i
The system transfers the __| timeago.
block to a buffer. - |

[

Y Y

On aread:

On a write:

The system moves the record
from the buffer to your data area

The system moves the record
from your data area to the buffer

SD-00557

Figure 1-3-1. RAM Read and Write Sequence

1-3-4

093-000114-01

Licensed Material - Property of Data General Corporation

You issue a
pre-read request

The system empties the buffer
whose contents you accessed
the longest time ago

\

You issue aread
or write request

Is a buffer

YES available?

The system transfers
the record’s block
to the buffer

Y

You issue a read
or write request

\ 4

The system transfers the
record’s block to the butfer

Yy

Onaread:

The system moves the record
from the buffer to your data area

On a write

The system transfers the record from
your data area to the buffer

SD-00558

- Figure I-3-2. Sequence of Events for a Pre-read Request =

For example, say that you want to update records
numbered 9, 36, 105, 202, and 203 in your RAM file,
and you want to use two buffers. You can initially issue
two Pre-read requests, using the record numbers 9 and
36, and the system will bring the blocks containing
those records into the first and second buffers. Then,
before you begin processing record number 36, you can
request Pre-read for record number 105. The system
will write the contents of the first buffer to the file in
order to empty the buffer and read in record 105. In
other words, every time you request Pre-read, the
system empties a buffer while you are working on your
current record and reads the next specified block into
that buffer. This can greatly reduce your 1/0 wait time
because you won’t have to wait while the system clears
a buffer for the next record.

Write Immediate

You can also modify a write command with a Write
Immediate request. As you just saw, the system does
not normally transfer the contents of a buffer to your
file until it needs that buffer for a later processing
request. However, if you request Write Immediate, the
system writes the contents of the buffer to the file
immediately. This is especially valuable when you use it
in conjunction with Pre-read because it immediately
clears a buffer for the system to use for the next record.
Write Immediate thus gives you some control over the
transfer process and can be useful in situations where
you want to add or change a record as quickly as
possible. It can also be useful if you’re sharing a file
with other users.

093-000114-01

1-3-5

DataGeneral

SOFTWARE DOCUMENTATION
Read Inhibit

Read Inhibit can save you time when you are writing
records into a block which you know is empty (for
example, when you initially load your file). This
request tells the system to assign a buffer for that
empty block, but not to transfer the block to the buffer
when you issue your write command. So instead of
moving the block back and forth, the system will just
move the newly-written record from your data area to
the buffer. Then, when it needs the buffer, it will write
the whole block to the file. In other words, Read Inhibit
clears a buffer for the record, not for its block. This
saves you more I/O wait time because the system
doesn’t have to find the proper block and bring it back
into the buffer, then take it back to the file. Be careful
with this modifier, however; if you use it to write a
record to a block which already contains data, you will

erase everything in that block except your
newly-written record.
You issue a read
inhibit request.
The system empties
Is a'buh‘er the buffer whose
available? contents you accessed
the longest time ago.
You issue a -— |
write request.
The system transfers
the record from
your data area
to the buffer.
SD-00756
\— Figure I-3-3. Sequence of Events for a Read Inhibit —
Request

Lock and SETX

Lock and SETX are variations on the theme of
exclusive use. The Lock modifier gives you exclusive
access to the block containing the record you’re
processing. However, you must be careful to unlock
each record you lock because no one can use the record
until you close the file. The SETX command operates
similarly, but gives you exclusive use of your file. And,
as with Lock, no other user can open your file until you
issue a Release Exclusive Use (RELX) request, or until
you close the file. You can use both Lock and SETX
with all read and write requests.

Processing Your RAM File

DataGeneral

SOFTWARE DOCUMENTATION

Hold

If you’re working in a multiuser environment, you may
want to use the Hold feature in conjunction with your
read and write requests. If a record you want to access is
in use or locked by someone else, you can issue a Hold
request. Then the system will hold your processing
request in a queue and give you the record when it
becomes available.

Licensed Material - Property of Data General Corporation

FEOV

A Force End of Volume (FEOV) request allows you to
close a volume of a multivolume file. This request tells
the system to write all the records you’'ve modified to
the file, then close it. It can be useful if, for some
reason, you cannot or don’t want to close your entire
file and you need to move a single volume of a
multivolume file to another disk drive or processing
unit. The system will automatically reopen a volume
closed with FEOV if you want to access it again.

End of Chapter

1-3-6

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 4
Indexed Sequential Access Method
(ISAM) Files

General Concepts

Back in the dawn of real time, simple sequential and
random access methods worked very well. They were,
and still are, very useful for particular applications.
However, as real-time marched on, people found that
they needed on-line, remote-access databases and
more complex data organizations. They also wanted to
randomly access their data by something other than its
relative record number. (A clutch plate is a clutch plate,
not a 16216.) Unfortunately, neither sequential nor
random file organizations could solve these problems.
Thus ISAM, and the notion of keyed access, was born.

Now you can access a record by a key, rather than by its
physical or logical position. A key is a shorthand way of
telling the system which record you want. It can be any
piece of data within a record, or it can be an element
external to the record. For example, you can use
employees’ names or Social Security numbers as keys

to a file of personnel records, or you can use data which
isn’t part of the records (e.g., telephone extension,
department name, shoe size).

In the INFOS system, the keys are in a separate file
from the data records. That is, an INFOS ISAM file is
really two files: one for the keys (called the index), and
one for the data records (called the database).

These two files can reside on the same disk or each can
have its own disk, or each can reside on many disks. In
any case, it’s not necessary that each disk you use have
the same physical characteristics as every other. For
example, you may want the index on a fast, fixed-head
disk and the database on a slower, moving-head disk.
Naturally, the number of disks you use depends on
how much storage space you need for the index and
database.

Let’s look more closely at each part of an ISAM file.

Index File

Database File

SD-00757

093-000114-01

Figure I-4-1. INFOS ISAM File

1-4-1

General Concepts

DataGeneral

SOFTWARE DOCUMENTATION

The Database

The database section of an ISAM file is a simple,
random-access file. You can write records to the file in
any order and process them as you need them.
Furthermore, in the INFOS system’s ISAM, you can
use variable length records, which make record
construction easier for you and more efficient in terms
of disk storage space. Your data records can be as long
as 6136 characters, or as short as one character, and you
can enlarge or reduce your records at any time with a
simple rewrite operation. Moreover, after you specify
the type of disk you want to store the records on, you
never need to worry about where each one is located.
The system automatically keeps track of each record
and puts new records into whatever space is available
on the appropriate disk. Nevertheless, the database part
of an ISAM file is simply a random collection of up to
four and a quarter billion data records.

The Index File

Likewise, the index file is quite simple: it is merely an
ordered file of keys to the database records. As you
write each database record, you supply a key to that
record. The system automatically puts the keys in order
in the index file and keeps track of the location of that
key’s data record. The most important thing about
keys, however, is that you supply them so you know
what they mean. Your keys need have no meaning to
the system; the system merely stores them in your
index file and uses them to access your data. To
retrieve a record, you just supply the key and the
system gives you the record. Thus, you can process
your data records randomly by supplying individual
keys, or you can process them sequentially according to
the order of the keys in the index.

To make your keys even more useful, you can make
them up from any combination of ASCII characters --
letters, numbers, special characters such as @, #, $, or
binary strings -- and each key can be up to 255
characters long. Furthermore, each key can be exactly
as long as you require, and no two need to be the same
length. Of course, if you have a file of, say, personnel
records which are keyed by Social Security numbers, all
the keys can (and will) be the same length.

You can also construct keys which have no
corresponding database records. For example, suppose
you have a data-gathering application which will extend
over several weeks. You can build an ISAM file with a
key for each piece of data you expect to collect, even

1-4-2

Licensed Material - Property of Data General Corporation

though some of them won’t be available until later in
the project. You simply write the key to the file without
a data record, and, later, access that key and perform a
rewrite to add that record to the file. This is known as
database record suppression, and we’ll discuss it
further in the processing section of this chapter.

In another application, you may want to use one key to
access a group of data records. This concept is called

duplicate keys and it can come in very handy. For
instance, if you maintain a nationwide mailing list, you
may want to key records by city name. Your list may
contain hundreds of names and addresses for the city of
Boston, and you may want to key them all by that word.
You would simply specify that you are using duplcate
keys when you are writing your index file.
Consequently, the system will automatically assign the
first BOSTON key an occurrence number of zero. Then
it will give the first duplcate key an occurrence number
of one (i.e., BOSTON 1). The second duplicate will
become Boston 2, and so forth.

The system will continue to assign incremental
occurrence numbers each time you write a key called
BOSTON. Then, when you want to do a mailing,
simply request a read for the duplicate key BOSTON 0.
After that, you can read all the Boston records
sequentially. However, note that if you use a keyed
access without indicating an occurrence number, you’ll
only get the first occurrence of that key. That is, if you
want to read BOSTON 26, you must code the
equivalent of “READ BOSTON 26, If you just say
“READ BOSTON”’, you'll only get BOSTON 0.

This is the bottom line for index files: no matter how
many keys you have in your index, you can access any
of them very rapidly. This gives you the benefits of
random access, in addition to the sequential processing
capabilities provided by the logical order of the keys in
the index.

Concurrent Access

The INFOS system allows many users to open an ISAM
data file simultaneously (either through multitasking
or use of the foreground/background, or both),
because the system automatically interleaves
operations aimed at the same file. Furthermore, to
prevent conflicts when you’re rewriting and/or deleting
records, the INFOS system provides Lock and Unlock
capabilities so that you may reserve and free records
and their associated keys while you’re processing them.

093-000114-01

Licensed Material - Property of Data General Corporation
Space Management

You can specify the Space Management feature for
either the index or the database file (or both),
regardless of whether they are on the same or different
devices. Space Management tells the system to reuse
the space a deleted record used to occupy. Thus your
files can grow or shrink according to your needs. For
example, suppose you have an inventory file with a
relatively stable number of data records which grow
and/or shrink because of daily transactions. If you
choose Space Management, the system will
automatically reuse the spaces originally occupied by
database records which it has relocated because of a
change in their size. Thus, you’ll never have to dump,
sort, reallocate, or reload your file to recover lost or
unused space.

In summary, the INFOS system’s ISAM lets you
organize your data randomly, but access it either
randomly or sequentially. And since both your data
records and your keys are of variable lengths, your
entire file becomes more convenient and efficient,
especially if you use Space Management.

Now that you’re familiar with the general set-up of the
INFOS system’s ISAM, let’s look at how you can
create, open, and process your ISAM file.

How to Create an ISAM File

There are two ways to create an ISAM file: you can use
the ICREATE interactive utility (as described in the
INFOS Utilities User’s Manual), or you can write a
program to create the file. Regardless of which method
you use, however, remember that you’'re actually
setting up a pair of files: one for your keys (i.e., the
index), and one for your database. Therefore, you
must define each file separately and, in addition, define
each volume for each file separately.

093-000114-01

1-4-3

DataGeneral

SOFTWARE DOCUMENTATION
Creating the Index File

To create an Index file, you must first specify that you
are defining an Index file with Variable Length records.
Then you must request the Create Update processing
mode and specify that you are using one index level.
Next, you have to include a Volume Table Pointer.
This tells the system the starting point in the
computer’s memory of the Volume Definition Table.
Finally, you must specify the initial node size. To
explain what this means, we must digress slightly.

In Chapter One, we said that the system transfers data
in blocks and that, for disk files, these blocks are 512
characters long. In an ISAM file, the system transfers
data in pages, which can be up to twelve blocks long
(i.e., 6144 characters).

In an Index file, pages are made up of nodes, which, in
turn, are made up of at least enough file space to hold
three keys. The system automatically uses these nodes
to build your Index file. Or, from another angle, each
node contains at least enough space to hold three keys
and each page may contain from one to 255 nodes.
Naturally, the number of nodes in any given page
depends on the size of that page, and the size of the
nod)es (determined by the number of characters in each
key).

Now, you will specify the initial node size in bytes.
However, the larger you make your nodes, the more
efficient your index processing will be because of the
way that the system accesses ISAM files. The only
maximum restriction on initial node size is that it
cannot be greater than your page size minus six bytes.
Further information on nodes and how the system uses
them is in Appendix B.

How to Create a ISAM File

DataGeneral

SOFTWARE DOCUMENTATION

Once you have specified all the above information, the
system will save it as part of the Permanent File
Specification. Then, in addition to this Permanent File
information, you can also specify any or all of the
following options:

® Page size. You can choose any size page you want (up
to the size you specified at system generation) or
you can default this choice and the system will give
you pages which are 512 characters long.

® Number of Buffers. This tells the system how many
buffers to use for your 1/0 processing. If you default
this choice, the system will give you two buffers.

® Space Management. (See the section on Space
Management earlier in this chapter.)

® Number of Volume Table FEntries. When you're
working with a multi-volume index file, you must
indicate how many volumes the file contains. If you
default this choice, the system will assume that there
is only one.

® Maximum Key Length. Your Keys can range in length
from one to 255 characters, and no two keys need be
the same length. However, tell the system the

Licensed Material - Property of Data General Corporation

defaulting this choice will give you keys of a size
such that three will fit in a node. This may be
inconsistent with your desired key size, and the
system will tell you so in an error message.

Database File Definition Pointer. If you’re building a
new index file for an existing database, you can
modify the number of buffers recorded in the
Permanent File Specification for that database. If
you do this, however, you must tell the system
where, in the computer’s memory, the new
specifications start.

Disable Hierarchical Replacement. 1f you are
processing your ISAM file randomly with many
buffers (i.e., more than three or four), use this
option. If you are using very few buffers, you should
use the Hierarchical Replacement feature. It will
save you time and make your 1/0 transfers more
efficient because it alters some of the internal steps
which the system performs to buffer the index
pages.

Read-After-Write Verification. This will tell the system
to automatically verify each block of data it writes to
your file.

expected length of your longest key because it
requires that your nodes hold at least three keys, and

Table 1-4-1 summarizes all the steps for defining an

Index file.

Table 1-4-1. Steps in Defining Your ISAM Index File

You Must Specify These:

You May Specify These:

records :
Create Update processing mode

One index level

Initial Node Size

Page Size

Number of Buffers

Number of Volume Table entries

Maximum Key Length

This is an index file with Variable Length

Starting address of Volume Table Pointer

(Space Management)

(Read-After-Write Verification)

(default = 512 characters)
(default = 2 buffers)
(default = 1 volume)

(default = size which allows 3
keys/node)

(Database file definition pointer)

(Disable Hierarchical Replacement)

1-4-4

093-000114-01

Licensed Material - Property of Data General Corporation

Defining Volumes of Your Index File

In addition to defining your entire index file, you also
have to define each volume which contains a part of the
index. This is considerably easier than defining the file
because you only have to give the memory address of
the volume name and specify an ASCII character for
the system to use as padding for partially filled pages. In
addition to these two mandatory spcifications you also
have the following options:

® Contiguous Allocation. If you want the system to
allocate space on this volume in one contiguous
piece (rather than over many random ones), specify
this option and the volume size. Note, furthermore,
that you can increase your processing speed by
allocating your first volume contiguously to hold
your present keys. Then you can use Random
Allocation for the remaining (or future) volumes to
handle file expansion.

® Volume Size. If you choose Contiguous Allocation,
you must indicate the number of blocks on this
volume that you want the system to immediately
allocate for keys. If you choose Random Allocation,
you can either specify a maximum volume size or let
the system assign a size of 65,535 blocks of 512
characters each. It will then use those blocks as it
needs them.

DataGeneral

SOFTWARE DOCUMENTATICN

Note that it is your responsibility to ensure that you
have sufficient disk space for each volume. If you
select Random Allocation, we recommend that you
specify a volume size if you want any file overflow to
go to another volume. If you select Contiguous
Allocation, we recommend that you also select
Disable File Initialization because initialization is not
required and takes about twenty minutes for a
maximum-size volume.

® Disable File Initialization. For a contiguously allocated
file, this option tells the system not to automatically
erase all previous information in your allocated
blocks.

® Timeout Interval. This options allows you to establish
your own timeout intervals if you wish. Normally,
the system-assigned intervals are three seconds for
fixed-head disks and five seconds for moving-head
disks. The system will return an error if it cannot
complete a data transfer within these intervals.

That’s all there is to defining each volume of your
index file. Table I-4-2 summarizes these steps.

Table 1-4-2. Steps in Defining Each Volume of Your ISAM Index File

You Must Do These:

You May Do These:

Specify address of the Volume Name
Specify a pad character

Choose Random or Contiguous Allocation

Specify Volume size

(default = Random)

(If contiguous, specify Disable File
Initialization)

(default = 65,535 blocks)

(Specify a timeout interval)

093-000114-01 1-4-5 How to Create a ISAM File

DataGeneral

SOFTWARE DOCUMENTATION

Defining Your Database File

Half of your ISAM file now exists. However, defining
the database file and its volume(s) is very similar to
defining the index. You only need to know a few new
things. First you must tell the system that this is a
randomly accessed file with variable length records.
And, second, you cannot use these index-related
options:

® Disable Hierarchical Replacement
® Maximum Key Length

® Initial Node Size

® Database File Definition Pointer.

Other than this, you’ll follow the same steps you follow
when you create an Index file. See Table 1-4-3 for a
summary.

Licensed Material - Property of Data General Corporation

Defining Volumes of Your Database File

As usual, you also have to define each volume of your
database file. However, these steps are exactly the
same as those for the index file, so we’ll just
summarize them in Table 1-4-4.

Table 1-4-3. Steps in Defining Your ISAM Database File

You Must Specify These:

You May Specify These:

records
Create Update processing mode

Starting address of the Volume Table
pointer

Number of Volume Table entries
Block size

Numbers of Buffers

This is a RAM file with Variable Length

(Space Management)

(Read-After-Write Verification)

(default = 1 volume)
(default = 512 characters)

(default = 1 buffer)

Table 1-4-4. Steps in Defining Each Volume of an ISAM Database File

You Must Specify These:

You May Specify These:

The address of the Volume Name
Pad character

Contiguous or Random Allocation

Volume size

(default = Random)
(If Contiguous, Disable File Initialization)
(default = 65,535 blocks)

(Timeout interval)

1-4-6 093-000114-01

Licensed Material - Property of Data General Corporation

How to Open an Existing ISAM File

You’ve probably already figured out that opening an
existing ISAM file is another two-part process (Index
and Database), but opening is easier than creating and
opening.

Opening Your Index File

There’s nothing new here. You follow exactly the same
procedures to open your index as you did to create it,
except that you don’t have to specify an initial node size
or a maximum key length. (Those values are already in
the Permanent File Specification.) Table 1-4-5 should
look familiar by now.

DataGeneral

SOFTWARE DOCUMENTATION
Opening Your Existing Database File

If you do not specify a starting address for the database
file definition when you open your index, the system
will automatically use all the information in the
Permanent File Specification to open the file.

If, however, you do specify the database file definition
address, then you will have to specify:

® that the file has Variable length records;

® that you will be using the Update processing mode;
® the memory address of your Volume Table;

® the name of your first volume; and

® that this is a randomly accessed file.

You also have the option of specifying a different
number of buffers than you recorded in the Permanent
File Specification.

Table I-4-5. Steps in Opening an Existing ISAM Index File

You Must Specify These:

You May Specify These:

You’re opening an Index file with
Variable Length records

Update processing mode
One index level

Starting address of the Volume Table
pointer

Name of the first volume

Number of Buffers

(Read-After-Write Verification)

(default = 1level)

(default = number specified in PFS)
(Disable Hierarchical Replacement)
(Database file definition present)

(Database file definition pointer)

093-000114-01 1-4-7

How to Open an Existing ISAM File

DataGeneral

SOFTWARE DOCUMENTATION

Processing Your ISAM File
(Background)

Before we tell you about all the different things you can
do to your ISAM files, it’s important that you
understand the two methods of accessing these files.
We’ve already mentioned keyed access in the earlier
part of this chapter, so now let’s look at relative access
(also called relative position processing).

Whenever you open an INFOS ISAM file, the system
automatically sets a current position. Current position is
like a “‘home base’’, on which the system stands as it
reaches out to access your file. Initially the system sets
this position just above the first key, as shown in Figure
1-4-2.

Each time you access a key (and its associated database
record), you can set a new current position at that key.
Thus, by resetting your current position with each
processing operation, you can read your file
sequentially using relative motion. Since all positioning
in your file thereafter will be relative to your current
position, we call this relative access (relative position
processing). You can move in any of six directions
from your current position:

® Down, which moves you from the initial current
position to a position just in front of the first key,
and which sends you a warning that you haven’t
actually accessed a key;

® Down and forward, which gives you access to the
first key from the initial current position;

® Forward, which lets you access the next key in the
file;
® Backward, which lets you access the key before the

current one;

® Upward, which returns you to the system-set initial
current position, and, like down, sends you a
warning; or

Licensed Material - Property of Data General Corporation

® Static, which lets you access the same key without
changing position.

Relative access depends upon your setting or resetting
a current position. All motion within your file (except
static) will be away from the current position you have
set, in whatever direction you indicate. In other words,
you need only specify a direction of motion when you
are using relative access; you don’t need to specify a
key.

For example, say that you want to rewrite several
records, then access your entire file sequentially. Using
relative access, you would do the following:

1. Request a read operation with down and forward
relative motion. This will give you access to the first
key and its data record. You should also set current
position when you request the read, so that you will
have a ‘““home base’ on the key you accessed
rather than on the initial current position. This will
let you use STATIC motion for your rewrite, rather
than another positioning movement.

2. Request a rewrite operation with static relative motion.
This is the fastest way to rewrite your file, since the
system doesn’t have any positioning to do before it
processes your request.

3. Request forward reads with set current position and
static rewrites for each record you want to update
until you reach the end of the index.

4. Request Upward motion, when you have finished
rewriting the individual records you wanted, to
reposition yourself to the initial current position.

5. Request a read operation with down and forward
relative motion to reaccess the first record, then
process your entire file sequentially by requesting
reads with forward motion; remember also to set a
new current position.

SD-00758

1-4-8

Figure I-4-2. ISAM Index File

Lp
A
Back Forward
\
* Initial Current Position Down
—
Key | Key | Key | Key | Key | Key | Key | Key | Key | Key | Key | Key | Key | Key
A | B C D E F G H ! J K L M N
)
14

093-000114-01

Licensed Material - Property of Data General Corporation

It’s as easy to process a file randomly with keyed access
as it is to process one sequentially with relative access.
You simply give the system the key for the record you
want and you’ve got it. Furthermore, the concept of
current position also applies to keyed access processing
and can save you a lot of time when you’re rewriting.
By setting a current position on the record you want to
rewrite, you can read the record before you rewrite it,
then use static relative motion to rewrite. This speeds
things up because static motion is always faster than the
other movements.

For instance, you could use keyed access to perform
the read function in our last example. In this case, you
would simply issue a read request using the key for
each record you want, and set current position at that
record. Then you would rewrite with static relative
motion as before.

As this example illustrates, you can use keyed or
relative access at any time in an ISAM file. However,
you cannot combine them in a single operation; that is,
you cannot request forward motion to key x. You can
request a processing operation for key x, or you can
request an operation with forward motion, but you
can’t combine the two.

Now that you’ve got the necessary background
information, let’s see what you can do with your ISAM
file.

Processing Your ISAM File
(Operations)
For clarity, we’ll break down the ISAM processing
operations into three categories:

® Processing Functions - read, write, rewrite, delete,
and reinstate;

e Utility Functions - retrieve status, retrieve key, and
retrieve high key;

® Auxiliary Features - lock/unlock and suppress
database.

The processing functions can modify either the file’s
structure or its content, but the Utility Functions never
modify structure or content. The Auxiliary Features
are just that - extra goodies.

093-000114-01

1-4-9

DataGeneral

SOFTWARE DOCUMENTATION

Processing Functions

Read

The ISAM read function is the one you’ll use to
retrieve data from your file via either keyed or relative
access. You can do a relative read in any of the six
directions described above; the system’s motion is
relative to your last established current position. For a
keyed read, the system gives you the record you
request. If you request a keyed read for a duplcate key,
you must specify the occurrence number or you will get
only the first occurrence of the key.

Write

Unlike read, you can write to an ISAM file only by
keyed access. That is, with each write request, you
must supply a key which will become a new index entry.
If you try to write a key which already exists, the
system will send you an error message unless you
requested duplicate keys. When you’re writing
duplicate keys, the system will automatically assign
each one an occurrence number; thus all the keys in
your index will remain unique.

Rewrite

This function lets you update or change any existing
database record (but not its key). It works with both
keyed and relative access. Rewriting will not change the
structure of the index, but you can change the length of
a database record.

Your positioning options under rewrite are the same as
those for read, it’s just that the data flows in the
opposite direction (i.e., to the file, not from it).

Delete

This function gives you the ability to delete records
from your Index and Database files and comes in two
flavors: physical and logical deletion. Physical deletion
uses keyed access to erase the record and/or its key
from your file. When you use physical deletion in
conjunction with the Space Management feature, you
eliminate the need to reorganize your file. The system
will automatically reallocate the space left by your
deleted records.

Processing Your ISAM File (Meat)

DataGeneral

SOFTWARE DOCUMENTATION

When you use logical deletion, records and their index
entries are not erased, but merely marked as logically
deleted. When you access a logically deleted record, the
system will let you know that the record has been so
marked, but will still give you access to it. If you mark
the Index entry, it is called /ocal logical deletion; if you
mark the database record, it’s a global logical deletion.
You may mark both local and global logical deletion for
any record.

For example, if you had a personnel file, you might
want to logically delete the records of those employees
who were on a leave-of-absence; you’re not paying
them, but they may return to work. On the other hand,
you would physically delete the records of all
employees when they resign, are fired, or die.
Naturally, if you try to access an element which has
been physically deleted, you’ll get an error message.

Reinstate

This function lets you remove the marks from the
records which you have previously logically deleted; in
other words, it reinstates those records to your files.
You can reinstate an index entry or a database record,
or both, and you can do it via keyed or relative access.

Delete Subindex

This function allows you to physically delete all entries
from your Index and database records. You may find
this function useful when you no longer need an ISAM
file, but you want to retain the file space allocated for it.

Utility Functions

Retrieve Status

The Retrieve Status function lets you determine,
through keyed or relative access, the following
information:

® the length of a database record and whether or not it
has been logically deleted; and

® the length of that record’s key, whether it is a
duplicate, and whether or not it has been logically
deleted.

Licensed Material - Property of Data General Corporation
Retrieve Key

You can use this function to retrieve any key and its
length through keyed or relative access. Normally, the
system will just give you the data record you request,
but you can use this command to find out what the key
for a record is. This can be useful when you are
processing your file via relative access, moving from
record to record, and you want to know the key (or the
key’s length) for a particular record.

Retrieve High Key

Use of this command will tell you what the ending key
in your index is. You can Retrieve High Key through
keyed or relative access.

Auxiliary Features

Lock/Unlock

Sometimes you may want to have exclusive access to a
key or a database record. For these times, INFOS
ISAM offers you an optional protective feature: you
can locally lock any key, or you can globally lock the
database record. Once you lock an element, no one can
access it unless they unlock it. For example, if you are
rewriting a data record, you can request a read which
will set current position on that record and lock it.
Then, you can rewrite it with a static motion and unlock
it at the same time.

If you’re working in a multiuser environment and you
access an element which someone else has locked,
you’ll get the error message DATA RECORD
LOCKED. If you really need that record, you can
reaccess it by explicitly stating in your operation request
that you want it unlocked. Then the system will remove
the lock and perform your operation. You can use the
lock/unlock feature with any of the ISAM processing
functions described above except REINSTATE.

Suppress Database

In every processing operation, you have the option of
not retrieving the data record associated with the key
you access. For example, if you only want to establish a
current position in the index, just issue a processing
request that suppresses the retrieval of the database
and sets current position. Or, if you want to create an
index entry with no corresponding data record (for,
say, each week of a long-term data gathering survey),
you can merely issue a write command with database
suppression for the key you want to write.

End of Chapter

1-4-10

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 5
Data Base Access Method (DBAM) Files

Preliminary Note: Because DBAM is an extension of
ISAM, read Chapter 4 to make sure you understand
ISAM before you start this chapter.

General Concepts

The INFOS system’s Data Base Access Method
(DBAM) is to its ISAM as Superman is to Clark Kent:
you get all the features you had in ISAM, but DBAM
extends and strengthens those features to make your
data processing easier, more versatile, and more
efficient. These extended features include:

Subindexing within a single index file
Partial records

Multiple indexes for a single database file
Linked subindexes

Temporary indexes

Automatic key compression

Optimized data distribution
Approximate and generic search keys

Despite all these feature extensions, however, the
basic structure of a DBAM file is still the same as that
of an ISAM file. That is, you will still build two files:
one for your index and one (and only one) for your

093-000114-01

1-5-1

database. Each of these files can reside on one or more
disks, or both can reside on the same disk. Your
DBAM data records need have no relationship to one
another, yet the file structure lets you build your file so
that you can access it easily and logically.

DBAM is designed to be convenient. For example, you
can access a single data record through many sets of
keys in one index, and through many sets of keys in an
entirely different index. To understand fully why
DBAM is so useful and versatile, let’s examine each of
its unique features.

Subindexing

You can access a data record through many different
paths because the INFOS system lets you build
subindexes within your index structure. Often you may
want to divide a large collection of information into
smaller, more manageable units. For instance, recall
the mailing list example we used in the last chapter. In
an ISAM file, the keys for all the data records are in a
single, or main, index. In our example, we used city
names as keys. But, if you wanted to do a mailing to the
northeast region of the country, you had to know the
names of all the cities in that region. DBAM’s
subindexes help you avoid this problem.

General Concepts

DataGeneral

SOFTWARE DOCUMENTATION

In DBAM, the main index does not usually contain
keys to data records; rather, it contains keys to other
keys. In our example, the main DBAM index will
contain one index entry for each region of the country.
Each of these keys will then point to a subindex as
shown in Figure I-5-1.

If you divided the country into nine regions, then the
main index will contain nine entries. Each of these will
have a subindex defined under it. In other words, level
one in the illustration contains nine subindexes.

There are two things to remember about a DBAM
index structure. First, each unique division of the index
is called a subindex. The general corollary to this is that

Licensed Material - Property of Data General Corporation

you can define one subindex for each entry in any other
subindex and the maximum number of subindexes in
an index is limited only by the amount of available
physical storage space, not by the system. Second,
counting the topmost (i.e., the main) index, you can
define a maximum of 256 index levels.

Index levels are numbered consecutively from 0 at the
top to 255 at the bottom. Level 0 is the main index and
it has the same properties as an ISAM index, except
that you can define subindexes under it. So, you have
the main index at level 0, each of whose entries points
to a subindexsat level one.

MID-

MID-
MAIN INDEX CENTRAL

ATLANTIC

NORTHEAST

SOUTHEAST | SOUTHWEST

LEVEL 1
SUBINDEXES

SD-00759

Figure I-5-1. DBAM Two-Level Index

1-5-2

093-000114-01

Licensed Material - Property of Data General Corporation

For an example, let’s say that you want a highly
selective mailing list. Instead of using city names as
keys in the level one subindexes, let’s use metropolitan
regions. This will give you an even finer division of the
data records. For instance, in the subindex for the
Midatlantic region, you will have index entries such as
New York Metro, Rochester Metro, Philadelphia
Metro, and Baltimore Metro, as shown in Figure I-5-2.

Each of these keys then points to a subindex at level
two. The keys at level two could be city names, which
you could then subindex by zip code, and so forth. As
you can see, you can construct as many levels of
subindexes as you need for your application.

Partial Records

Now let’s suppose that your mailing list is part of a
larger application which maintains customer records for
a large mail order catalog business. For the mailing list

DataGeneral

SOFTWARE DOCUMENTATION

portion of this application, INFOS DBAM will allow
you to carry the customer names and addresses in the
partial record section of the index entries. That is, each
entry you create in a subindex can contain a fixed
length partial record whose length you can choose, up
to 255 characters. All the partial records in one
subindex are fixed-length (i.e., they occupy the same
amount of space), but you can select this feature for
only specific subindexes, and thus avoid wasting too
much space. So, if you set up partial records to hold
frequently accessed data, you can save a lot of I/0 time
because you won’t ever have to access your database
file to get that data. However, note that you can access
the data in the partial records only through their
associated keys. Also, if the data in your partial records
duplicates any database record information, you are
responsible for updating both the partial record and the
database - the system will not do it for you.

MAIN
INDEX

LEVEL 1
SUBINDEXES

LEVEL 2
SUBINDEXES

SD-00760

093-000114-01

Figure I-5-2. Three-Level DBAM Index

1-5-3

General Concepts

DataGeneral

SOFTWARE DOCUMENTATION

Multiple Indexes and File Inversions

To maintain the customer records for the catalog order
business we just mentioned, you can create a whole
new index structure (with or without subindexes) for
your existing database. That is, you won’t have to
duplicate any existing data records; a new index
structure will give you a different set of paths to get to
those records.

The technique for creating a new index is called File
Inversion. To invert a file, you must first access a
database record via an already established key or set of
keys. Then you do a write inverted operation to your
new index and the system will automatically create a
new index entry there. Thus, you will have linked two
unique index entries - one in each index - to the same
database record.

Figure I-5-3 illustrates a single database with two
unique indexes.

Licensed Material - Property of Data General Corporation

Linked Subindexes

You can also link subindexes in any INFOS DBAM
index to provide local data sharing. Just as inverting
allows you to create a new index without duplicating
your database, linked subindexes let you share data
without reproducing a subindex structure. For
example, you can build a single DBAM file for use by
both your Personnel and Payroll departments. When
the Personnel department wants to access a record, it
will probably use the employee’s name or social
security number. Likewise, the Payroll department will
most likely use a social security number or an employee
number. To save storage space, you can use the Link
Subindex feature to create just one social security
number subindex which both departments can share,
as illustrated in Figure 1-5-4.

MAILING LIST
INDEX

LEVEL 1
SUBINDEXES

LEVEL 2
SUBINDEXES

LEVEL 3
SUBINDEXES

esescssscssoce

CUSTOMER ACCOUNT
INDEX

”PAYROLL

LEVEL 1 SUBINDEX

SUBINDEXES

sesscse

LEVEL 2
SUBINDEXES

EMP.NO.
SUBINDEX

DATABASE f

John Smith
10 Eim Street

303-28-1967

Boston, Ma. 01740

2 Figure 1-5-3 S/gle tabe With Two Indexes

1-5-4

S$.8.No.

SUBINDEX N

: ur [-5-4. Lned ubina'ex

 PERSONNEL

SUBINDEX

NAMES
SUBINDEX

093-000114-01

Licensed Material - Property of Data General Corporation
Automatic Key Compression

This DBAM feature can save you a lot of room in your
index if you have several keys with identical leading
characters. That is, if you have several keys whose first
three or more characters are the same, you can have
the system automatically store only the unique parts of
those keys, along with one entry of the initial, identical
part. For example, let’s say that you have an inventory
of parts whose numbers look like this: A101-PP-0710,
where A101 is a department number, PP means
product part, and 0710 is the actual part number. With
the dashes, this is a twelve-character key. If department
A101 is responsible for, say, 6500 product parts, you’re
going to have 6500 keys, each containing the same
eight leading characters, A101-PP-. Why waste over a
half million bytes (1000 sectors) of your index space
with all that duplication?

When you define the subindex to contain the part
number keys for department A101, simply specify
automatic key compression. This is what will happen:
when you create the first index entry, the system will
use the entire key - say, A101-PP-0001. But when you
create the second entry and you specify the key
A101-PP-0067, only the unique part of the key (67)
becomes part of that index entry. Thus, in this
instance, you will save eight characters per key, and, in
a subindex with 6500 keys, you’ll save almost 52,000
character positions in the index.

There are three points to remember about key
compression:

® Specify the entire key for each index entry you
create; the system performs the compression
automatically.

e Specify the entire key when you subsequently access
that index. For example, code the equivalent of
“Read the record whose key is A101-PP-2122"’,
rather than ‘Read the record whose key is 2122"’.

® Key compression will not alter your processing speed
or efficiency.

Optimized Distribution

This is a handy time-saver for your index or database
files, or both. Optimized distribution lets you store the
database records or the nodes within your subindexes
which you use most frequently on a disk (or disks) with
the fastest access time. This technique is especially
useful for the root nodes. (A root node of a subindex is
like the door to that subindex; it’s the first point of
contact between a subindex and its next highest index
level. Don’t worry about this right now. You can find
further details on root nodes in Appendix B if you want
them.)

093-000114-01

1-5-5

DataGeneral

SOFTWARE DOCUMENTATION

For instance, in our mailing list application, you could
tell the system to store the subindex containing the
customer name and address partial records on a fast,
moving-head disk. Thus, in addition to not having to
access the database records to produce a mailing list,
you would reduce the time it takes to access the
subindex itself. Also, if you service some of your
customers more frequently than others, you can store
their database records on a fast-access disk.

Note, however, that you don’t have to keep your
original distribution of data across the various speed
disks. If you find that you don’t access certain records
as frequently as you used to, you can simply rewrite
their records to a slower disk. Or, if small customers
become big customers, you can rewrite their records
onto a faster disk. In other words, you can use this
feature to save time in accessing your most frequently
used records.

Temporary Indexes

Occasionally you may want to create and use one or
more indexes only for the duration of a processing run.
These are called temporary indexes. For example, if you
were preparing a special report, you might want to
access each entry in our mailing list file, looking for
customers who have spent, say, $100, $200, and $300
in the past month. You could create three temporary
indexes (one for each category) to store the
information you find. There are actually two ways to do
this: you could either create three new subindexes for
your present main index, or your could create three
new index files to contain your special report data.
Generally, it’s easier to create a subindex for your
existing index file than to define an entirely new index
file.

Whichever method you choose, however, the
procedure will be the same after you have created the
(sub)index. When you find a customer who satisfies
the criterion for your report (i.e., one who has spent
$100, $200, or $300), you will write an index entry in
the appropriate (sub)index. Then, after you have
accessed all of your existing entries and finished
making your temporary (sub)indexes, you can
sequentially access those (sub)indexes to produce your
special report.

There’s just one other important point to keep in mind
when you’re using temporary indexes: deleting a
temporary index does not delete any database records
whose only access is through that index. However, you
will not be able to access those database records unless
you tie them to a permanent index entry. That is, if you
do not tie a new data record to a permanent index
entry, you won't be able to access it after you delete its

General Concepts

DataGeneral

SOFTWARE DOCUMENTATION

temporary (sub)index, but it will continue to occupy
space in your file. Therefore, be careful with temporary
indexes; don’t waste valuable file space by creating
inaccessible data records.

Those are most of the extended features that make
DBAM unique. There are more, but we’ll cover them
when we get to the ‘‘Processing’’ section of this
chapter. First, however, let’s see how you create and
open a DBAM file.

How to Create an INFOS DBAM File

Since the structure of a DBAM file is so similar to that
of an ISAM file, the steps for creating one are similar
too. As with ISAM, you’ll build two files - one for the
index and one for the database. The only difference
between ISAM and DBAM at creation is in the number
of steps involved. Therefore, in the creation steps that
follow, we will explain only those features which differ
from their ISAM counterparts, or which are unique to
DBAM. If you are unsure of an unexplained point,
refer back to the ‘‘Creation’’ section of Chapter Four.

Defining Your Index File

To begin, you have to specify that you are creating an
index file with Variable Length records, and that you
are using the Create Update processing mode.
Following this, the other required specifications are:

® Number of index levels: At runtime, you must indicate
the number of subindex levels you expect your
index to have. If you aren’t sure how many subindex
levels you’ll want, just specify a relatively large
number (5 or 6 will probably do). This won’t waste
any space in the index, and, if you find that this
‘number is insufficient, you can change it on a
subsequent opening.

NOTE:If you specify only one index level at
runtime, you will not be able to use any
subindexes.

Volume Definition Table Pointer

Minimum Node Size

Database File Definition Pointer

Number of Volume Table Entries

1-5-6

Licensed Material - Property of Data General Corporation

® Number of Buffers: The default value here is two
buffers, but you can choose more if you wish.

® Page Size: This is the same as block size in SAM and
RAM, except that, because of the way that the
system transfers data, you’re limited to 12 disk
sectors, not 512 characters. The minimum
restriction here is that a page must be at least six
characters larger than your largest expected node. If
you default this choice, your pages will only be 512
characters long.

After you specify all of the above, you get to choose
from these eleven index file definition options:

® Read-After-Write Verification

® Space Management

® Enable Hierarchical Replacement

® Maximum Key Length

® Optimized Record Distribution

e Key Compression

® Partial Record Length: All partial records in your
index will be the same length, but you can choose
that length, up to 255 character, to suit your needs.

® No Subindexes: If you don’t want to use
subindexes, you can specify so here and you’ll save
four bytes of disk space per key in your index.

® Temporary Index: If you want to use them, say so.

® Permanent Data Records: If you’re creating a data
record through a temporary index and you want to
keep it after you delete the temporary index, specify
it here.

® High Priority Node: If you’re working with a
complex index structure with many subindexes, you
can use this option to keep in memory the root node

of an important index or subindex. (See Appendix B
for further explanation.)

093-000114-01

Licensed Material - Property of Data General Corporation

093-000114-01

DataGeneral

SOFTWARE DOCUMENTATION

Table 1-5-1. Steps in Creating a DBAM Index File

You Must Specify These:

You May Specify These:

This is an index file with Variable length
records

Create Update processing mode
Number of index levels

Volume Definition Table pointer
Number of Volume Table entries
Minimum node size

Database file definition pointer
Page size

Number of buffers

(Space management)

(Read-After-Write verification)

(default = 1 level)

(default = 1 volume)

(default = 6 bytes less than block size)

(default = 512 characters)
(default = 2 buffers)

(No subindexes)

(Disable hierarchical replacement)
(Maximum key length)
(Optimized record distribution)
(Key compression)

(Partial record length)
(Temporary indexes)

(Permanent data records)

(High priority node)

1-5-7

How to Create an INFOS DBAM File

DataGeneral

SOFTWARE DOCUMENTATION

Defining Each Volume of an Index File

As in ISAM, you must define each volume which is
part of your file. There are only two required
specifications here: the volume name pointer and the
pad character. Then there are five options:

® Volume Size

® Contiguous or Random Allocation

® Device Timeout Interval

Licensed Material - Property of Data General Corporation

® Volume Merit Factor: This is related to Optimized
Record Distribution. If you selected that option for
your file, you must assign a merit factor to each
volume in the file. Simply put, this means that you
must tell the system the merit factor of the highest
priority volume first; the other volumes must follow
in order of decreasing merit factors. Also, when you
write a record, you must specify a merit factor,
thereby choosing which data volume will hold the
record.

® Disable File Initialization

Table 1-5-2. Steps in Defining Each Volume of a DBAM Index File

You Must Specify These:

You May Specify These:

Volume name pointer

Pad character

(Contiguous allocation; default = random)
(Volume size; default = 65,535 blocks)
(Timeout interval)

(Volume merit factor)

(Disable file initialization)

1-5-8 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
Defining Your Database File
There’s nothing new here. See Table 1-5-3 for a summary of your options.

Table I-5-3. Steps in Defining a DBAM Database File

You Must Specify These: You May Specify These:

Random access method
Variable length records (Space management)
Create Update processing mode (Read-After-Write verification)

Volume table pointer

Number of volumes (default = 1 volume)
Page size (default = 512 characters)
Number of Buffers (default = 1 buffer)

(Optimized Record Distribution)

Defining Each Volume of Your Database File
Again, there are no new concepts here. See Table 1-5-4 for a summary.

Table 1-5-4. Steps in Defining Each Volume of a DBAM Database File

You Must Specify These: You May Specify These:

Volume name pointer
Pad character
Volume size (default = 65,535 blocks)
Contiguous or random allocation (default = random)
(Timeout interval)
(Volume merit factor)

(Disable file initialization)

093-000114-01 1-5-9 How to Create an INFOS DBAM File

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

How to Open an Existing DBAM File

There are very few differences between opening a DBAM file and opening an
ISAM file, as the charts in Table I-5-5 and 1-5-6 illustrate.

Table I-5-5. Steps in Opening an Existing DBAM Index File

You Must Specify These: You May Specify These:

This is an index file with Variable length

records

Update mode (Read-After-Write verification)
Number of index levels (default = permanent file specification)

Address of volume table pointer
Number of buffers (default = permanent file specification)
(Disable hierarchical replacement)
(Database file definition present)

(Database file definition pointer)

Table 1-5-6. Steps in Opening an Existing DBAM Database File

You Must Specify These: You May Specify These:

This is a RAM file with Variable length
records

Update mode
Volume table address
Name of first volume

(Different number of buffers from the
permanent file specification)

1-5-10 093-000114-01

Licensed Material - Property of Data General Corporation

Processing Your DBAM File

DBAM Access Methods - Keyed, Relative,
and Combined

Like ISAM, DBAM lets you get to your data through
keyed or relative access; unlike ISAM, however, you
can also combine these two access techniques. When
you use keyed access in DBAM, the system applies the
key or keys you specify from the top of the index
structure. That is, it applies the first key to the main
index, the second key to the first appropriate subindex,
the third key to the next subindex, etc. When you use
relative access, your motion will be relative to your last
established current position. (Current position in
DBAM means the same as it did in ISAM.) When you
combine keyed and relative access in a single operation,
the system always performs the relative motion first;
then it applies the key (s) from there.

That’s the general idea, but let’s examine each access
technique a little more closely.

Keyed access in DBAM means that you give the
INFOS system a key or a set of keys which will lead you
to a subindex entry, which, in turn, may or may not

DataGeneral

SOFTWARE DOCUMENTATION

lead you to a database record. (If you’re using partial
records, for example, you may not want to see the
entire data record.) Furthermore, you can access a
single data record through more than one key or set of
keys. Figure I-5-5 illustrates a few possible DBAM
keyed access paths.

If you wanted to retrieve the ‘‘Product List”’, you
would simply code the equivalent of “READ
PRODUCTS”. This is called a single level key because
you’re only using one index level to get to your desired
data. To retrieve the “‘Parts List’” record, however, you
would have to code: ““READ UNITS, PARTS". This is
a multilevel key; you use it to go from the main index (on
one level) to a subindex (on another level), and then to
the record. Finally, note that you can retrieve the data
record “EXTENDER A01”’ by coding the equivalent
of either “READ COST, EXTENDER” or “READ
UNITS, COMPONENTS, A01”’. Thus you can see that
keyed access in DBAM is different from that in ISAM
because, in DBAM, your keys can move you through
multiple subindexes before you get to the record you
want. In ISAM, remember, you went directly to the
data record using only one key.

EXTENDER |

SD-00761

093-000114-01

-c - I —RODUC I .I '

| EXTENDER [

Figure I-5-5. Single and Multilevel Keys in DBAM

1-5-11

Processing Your DBAM File

DataGeneral

SOFTWARE DOCUMENTATION

Relative access in DBAM is also somewhat different
from that in ISAM. In DBAM, you’re still moving in a
direction relative to your last established current
position, but you can move in eight different directions
instead of just six. We’ll use Figure I-5-6 to help
illustrate these directions.

Up

Backward @ Forward

Down

(Mainllfv‘t;eelx? IAIB IC ID IE]

. L.Lﬂvi'e's [ci]cafcafcal

Cer [ez [es [ee] 5]

Level 2
Subindexes

SD-00591

EBHER e13[era |E1s|E16] E17 [ers]ers]

— Figure I-5-6. Relative Movement withina DBAM File =

Forward relative motion gives you the next entry in the
subindex containing your last established current
position. For example, if your current position is on
entry C1, forward motion will give you C2. If you also
request set current position, the system will set it on C2;
otherwise, it will stay on C1. If your current position is
on C4 and you request forward motion, you’ll get the
error message “‘END OF SUBINDEX™’ because there
is no entry in the subindex beyond C4, and you cannot
cross subindex boundaries using only forward motion.

Backward relative motion gives you the previous entry
in your current subindex. For instance, if your current
position in on entry C4 and you request backward
motion, you’ll get C3. Setting current position with that
request will move it to C3; otherwise the system will
return you to C4 when you’re through with C3. If
you’re on C1 and you request backward motion, you’ll
get the error message “‘ILLEGAL REL MOTION”
because there is no other entry in the subindex before
Cl.

Upward relative motion gives you the index entry on
the next highest level to which your current subindex is
linked. In other words, if you are on entry C4 and you
request upward motion, you'll get entry C. Again, you
have to set current position on C when you request
movement if you don’t want the system to return to
C4. Naturally, if you are on C and you request upward
motion, you'll get a ““TOP LEVEL ERROR’’ message
since there is no higher subindex.

1-5-12

Licensed Material - Property of Data General Corporation

Up and forward motion moves you up to the next
highest level and forward to the next entry in that level.
For instance, if your current position is on E14 and you
request up and forward motion, you will access entry
E2. (Don’t forget to set current position again.) Now, if
your current position is on E2 and you request up and
forward, you’ll get the message ‘“END OF
SUBINDEX’’ because, even though the system can
move you up a level to E, it cannot go forward; there is
no entry on that level beyond E. Naturally, if you are
on E, you cannot move up and forward - there’s no
place to go.

Up and backward motion moves you up to the next
highest level and backward to the entry just before your
current subindex’s source. For example, if you are on
C3 and you request up and backward motion, you’ll get
B. (Set current position, if you want to.) Similar to up
and forward, if you are on E14 and you request up and
backward, you’ll get an error message because the
system can move up to El, but it cannot move
backwards from there.

Downward motion will move you to just in front of the
first entry on the next subindex level. In other words, if
you are on E, downward motion will put you just in
front of El. However, this command does not
automatically set a new current position; you have to
specify that if you want it. Downward motion is handy
when you want to sequentially access each entry in a
subindex; you just move down, set current position
there, and read forward.

NOTE: You can only use this command for entries that
have subindexes. You cannot, for example,
move down from E3 because it has no
subindexes. If you try to, you’ll get the error
message ’SUBINDEX NOT DEFINED™.

Down and forward relative motion moves you down to
the next subindex and forward into the first entry in
that subindex. For instance, if you are on entry C and
you request down and forward motion, you’ll get C1. If
you are in the system-set, initial current position (i.e.,
just above the main index), down and forward motion
will give you entry A.

Static motion accesses information stored in the index
entry where you set your last current position. This
information can be data and/or partial records. The
only times you cannot use static motion is when you
are in the initial current position or when you are just in
front of the first entry in a subindex.

093-000114-01

Licensed Material - Property of Data General Corporation

These are the only relative motion commands you can
make; you’ll get an error message if you try anything
else. Therefore, if you are on D and you want to access
El, you have to code the equivalent of: “READ
FORWARD, SET CURRENT POSITION” and then “READ
DOWN AND FORWARD, SET CURRENT POSITION.”
This seems like a pain, and it is. That’s why DBAM lets
you combine relative and keyed access.

Combining Relative and Keyed Access

When you combine keyed and relative access in a single
operation in DBAM, you effectively reduce your total
access time because neither you nor the system have to
do as much to access the index entry you want. That is,
when you combine relative and keyed access, the
relative motion takes you to the subindex that will be
the starting point for the keyed access. Therefore the
system doesn’t have to start at the top of the index and
apply the keys you supply, one at a time, until it gets to
the entry you want.

Since you are using the relative motion part of a
combined request just to establish a starting point for
the keyed access, you’ll only need three directions of
relative motion: up, down, and static. In any single
request, you can only explicitly specify one of these
directions; the system always applies keyed access
downward from the starting subindex. Static motion
tells the system that the starting subindex is the one in
which you last set current position. For example, in
Figure I-5-7, a static motion request for entry C5 from
a current position on C1 would tell the system to look
for CS in the subindex containing C1.

DataGeneral

SOFTWARE DOCUMENTATION

We'll use Figure I-5-7 to help illustrate combined
keyed and relative access.

Upward motion tells the system to move up a level
before starting keyed access. That is, if you were
positioned on entry A4l and you coded the equivalent
of “READ UP, A2, SET CURRENT POSITION", the
system would move from subindex level 6 to subindex
level 5, then search for entry A2. When it found A2, it
would set a new current position on it. If you didn’t
want to set current position on A2, you would just code
“READ UP, A2”; the system would return you to A4l
when it finished accessing A2.

Downward motion, obviously, will start keyed access at
the next lower subindex level. So, if you were on entry
ES, you could code the equivalent of “READ DOWN,
E25” and, if you wanted to, “SET CURRENT
POSITION”. This would move you from entry E5 to
entry E25 and, if you specified it, set a new current
position.

The fun comes in combining keyed and relative access
to randomly retrieve any entry in a subindex. For
example, in Figure I-5-7, how would you get from a
current position on El to entry C3? Well, you would
code the equivalent of “READ UP, C, C3, SET CURRENT
POSITION”. This positions you on entry C3. (If you just
said “READ UP, C, C3” the system would return you to
E1 after you accessed C3.)

)

FROM SUBINDEX
LEVEL 3

Y
[alefclo]e]

093-000114-01

Subindex

Level 4 /’_;_—// \

Subindex At | A2 | A3 | a4 c1]celcalcalcs E1 | E2 [€3 | €4 | E5
Level 5 /_/ /

Subindex aa1] Aaz |Aa3 E21 |E22 | E23 | E24 | E25 [E26
Level 6

SD-00592

Figure I-5-7. Segment of a Multilevel Index Structure

1-5-13

Processing Your DBAM File

DataGeneral

SOFTWARE DOCUMENTATION

Now let’s say that your current position is on El and
you want to access entry A4l. You could code the
equivalent of any of the following:

READ UP, A, A4, A41 (This will return you
to El after you access
Adl)

READ UP, A, A4, A41
SET CURRENT POSITION

(This will get you to
A41 and reset current
position there)

READ UP, A, A4, SET CURRENT (This will set your new
POSITION READ A41 current position at A4
after you access A41)

READ UP, A, SET CURRENT
POSITION READ A4, A41

(This will return you
to A after you access
A41)

As you can see, you can reset your current position
anywhere along your route from one subindex entry to
another.

Now let’s look at an example of relative motion in two
steps. If you wanted to go from entry E23 to entry D,
you would code the equivalent of:

READ UP, SET CURRENT POSITION (if desired),
READ UP, D, SET CURRENT POSITION (if desired).

1-5-14

Licensed Material - Property of Data General Corporation

Notice that you can’t go directly from E21 to D in one
read motion; you can only specify one motion in each
single request.

To summarize, you can use all three accessing
techniques - relative, keyed, or combination - in a
single program that accesses a DBAM file. Sometimes
you’ll only want to use one way, i.e., relative motion to
sequentially access each entry in an index level, but
often you’ll find that the combination of relative and
keyed will save you access and frustration time.

Remember these four things when you’re accessing
your DBAM file:

1. Keep track of your current position and, generally,
reset it each time you move.

2. Specify only one relative motion direction at a time.
3. Specify complete keyed access paths.

4. Unless you specify otherwise, the system will apply
keys downward from the top level of the index.

As long as you keep these points in mind, you should

have no trouble getting to the index entries or data
records you want.

093-000114-01

Licensed Material - Property of Data General Corporation
DBAM Processing Operations

All the ISAM Processing Functions, Utility Functions
and Auxiliary Features are available in DBAM. (See
Table 1-5-7.) However, all these features and functions
are enhanced because of the differences between the
ISAM and DBAM internal structures and access
methods. DBAM also gives you three more Processing
Functions, one more Utility Function, and two
additional Auxiliary Features. The next sections tell
you how DBAM'’s operations differ from ISAM’s.

DBAM Processing Functions

Read

You can read a DBAM file through keyed, relative, or
combined access, which allows you to retrieve data
from your file easily and quickly. On any read, you can
set current position, suppress the retrieval of a partial
and/or a database record, and lock or unlock an index
entry or a database record. If you access an index entry
which has no database record associated with it, you’ll
get an error message. However, you can avoid this by

DataGeneral

SOFTWARE DOCUMENTATION

requesting suppress database. If you want to read only
the database record but not its partial record, you can
request suppress partial record. If you (locally) lock an
index entry for a database record which has other
access paths, other users can get to that record via those
other paths. If you (globally) lock a data record, no one
else can access it through any access paths unless they
or you explicitly unlock it.

Write

Each write operation creates a new index entry in a
subindex. Therefore, with each write request, you
must supply the key that you want to become part of
the new entry. As in ISAM, you can only write to a
DBAM file through keyed access. If you supply a
multilevel key for a write operation, the system will
begin writing at the last level of that key. And, unless
you specify invert or suppress database, the system will
write a new database record to go along with the new
key you write. If you specify suppress database, the
system will only write the index entry; if you specify
invert, the system will write just the index entry and
link it to an existing database record. You can also use
write in conjunction with optimized record distribution
to write a record on the most efficient type of disk.

Table I-5-7. DBAM Processing Operations

ISAM Features Available in DBAM

Additional DBAM Features

e Processing Functions
Read
Write
Rewrite
Delete
Reinstate
e Utility Functions
Retrieve Status
Retrieve Key
Retrieve High Key
o Auxiliary Features
Lock/Unlock

Suppress Database

o Processing Functions
Define Subindex
Link Subindex

Delete Subindex

e Utility Functions

Retrieve Subindex Definition

o Auxiliary Features
Nonspecific Search Keys

Suppress Partial Record

093-000114-01

1-5-15

DBAM Processing Functions

DataGeneral

SOFTWARE DOCUMENTATION

If you are writing new entries in a subindex which
contains partial records, the system will expect you to
write partial records in your new entries unless you
specify suppress partial record for each new entry.
Remember also that you must specify duplicate keys if
you want to write them; otherwise you’ll get an error
message. Finally, you cannot write over an existing
database record with this command - you must use
rewrite.

NOTE.: If the system cannot find enough space on a
volume to write a new database record, but it
can write the index entry, it will write the
index entry and send you an error message.
However, it will make no attempt to correct
the fact that the index entry is not connected
to a database record. Therefore, you may get
an error message if you attempt to access the
key without specifying Suppress Database. To
correct this situation, issue a Delete request
for the key in question.

Rewrite

This function lets you update an existing partial or
database record. As in ISAM, your options for
rewriting are the same as for reading; the flow of data
just goes in the opposite direction. Rewrite will not
create a new index entry; a key must already exist for
the record you want to rewrite. To rewrite a partial
record only, you specify suppress database.

You can also use rewrite to relocate a record to a
different speed disk. And a rewrite inverted will link an
existing index entry which is not currently associated
with a data record to a record which does have at least
one access path.

You can rewrite through keyed, relative, or combined
access.

Delete

DBAM delete is the same as ISAM delete: you can
physically or logically delete an index entry by local
deletion, or a database record by global deletion.
However, you cannot physically delete a database
record which is accessible through more than one index
entry. If you try to do this, you’ll only delete the index
entry you used to get to the record. You can use any
access method for a logical deletion, but you can use
only keyed access to physically delete a record or an
index entry.

Reinstate

There are no differences between ISAM reinstate and
DBAM reinstate; both allow you to remove logical
deletion flags from keys or data records.

1-5-16

Licensed Material - Property of Data General Corporation

Define Subindex

When you create a DBAM file, you define your index
structure and its main level. However, if you want to
use subindexes, you have to define each one
individually in your program. This involves specifying
the following for each subindex:

® Minimum node size

® Maximum key length

® Partial record length

® Key compression (if you want it)

® No subindexes (if you don’t want any subindexes
under this one)

® Merit factor for the subindex root (similar to the
volume merit factor described above in ‘‘Defining
Your DBAM Index File’” and applicable only if you
previously chose optimized record distribution).

Link Subindex

Earlier in this chapter we described your ability to link a
subindex to other entries within its index file. This
processing request will carry out that link through
keyed, relative, or combined access.

Delete Subindex

This function lets you physically or logically delete a
subindex from an index entry. You can use all three
types of access to get to the index entry whose
subindex you want to delete. Once you get to the
desired subindex, the system determines whether or
not it’s linked to any other entry in the index (including
its own subindexes). If it is, the INFOS system will
unlink the desired subindex but leave it intact. If the
subindex you want to delete is not linked to any others,
the system will delete it.

DBAM Utility Functions

Retrieve Status

Similar to the ISAM feature of the same name,
Retrieve Status lets you determine the status and
length of any record through all forms of access. That
is, this request operates exactly like a read request,
except that you’ll get a record’s status instead of the
record itself. Specifically, the system tells you the
following:

® The length of the database record

® The length of the record’s key

093-000114-01

Licensed Material - Property of Data General Corporation

® The partial record length
® Whether the record’s key is a duplicate
® Whether the record is locked

® Whether the record or its key have been locally or
globally deleted

Retrieve Key

Using keyed or relative access, or both, you can use
this function to find the key for any given record and its
occurrence number. If you use relative positioning with
this request, the system will tell you the key after it
finishes positioning. As in ISAM, this function is handy
when you’re sequentially processing a file with relative
access and you want to know the key for a particular
record. If you want to physically delete a record which
doesn’t contain its own key, this function is necessary
because you have to specify a key in order to physically
delete arecord.

Retrieve High Key

You can find the final key in any subindex in a
multi-indexed file with this request. (The final key is
that which has the highest binary value in the index.)
You can also position to any key in the subindex with
this request, and you can use any of the forms of
access.

Retrieve Subindex Definition

This request will tell you the parameters which were
used to define a particular subindex. After the system
locates an index entry through one of the access
techniques, it will tell you the parameter for that
entry’s subindex. This is frequently useful in helping
produce a backup file for a database. In order to
reconstruct a database, a program has to be able to
determine the parameters of each subindex it
encounters.

DBAM Auxiliary Features

Lock/Unlock and Suppress Database

You can use Lock/Unlock and Suppress Database with
a DBAM file just as you can with ISAM. If you don’t
remember what these do, refer to the Auxiliary
Features section of Chapter 4.

DataGeneral

SOFTWARE DOCUMENTATION
Nonspecific Search Keys \

Nonspecific search keys allow you to access a subindex
even if you don’t know the exact key you're looking
for. They come in two kinds: Generic and Approximate
search keys. A Generic key will give you the first record
whose key matches the one you supply, up to the
length of the generic key. For example, if you have an
invoice file keyed by date, the keys could look like this:
760601, 760602, 760603, etc. (i.e., year, month, day). If
you wanted all the invoices sent out in June, 1976, you
would give the generic key 7606, and the system would
give you the first record whose key began 7606. Then
you would sequentially process your file from that point
to get the rest. If there were no invoices for June, you
would get an error message, “‘DATA BASE RECORD
NOT PRESENT”. If there were invoices for June,
you’d get the record of the first one, whether it was
760601 or 760624. In other words, generic keyed access
seeks only keys which begin with exactly the same key
characters.

Approximate keys, however, retrieve the first record
with an equal or greater key value. For example, if you
wanted the first invoice sent after July first (760701),
you would specify the approximate key 760700 and the
system would find the first invoice written on or after
July 00, even if it wasn’t in July. That is, if the first
invoice wasn’t written until August eighth (760808),
the system would return it to you because there were
no keys between 760700 and 760808. However, if you
had tried a generic keyed access using 760700, you
would have gotten only an error message because the
system would not have found any keys which matched
760700.

Suppress Partial Record

This feature allows you to suppress retrieval of the
partial record associated with the key and/or data
record you’re processing. For example, assume you
have a Personnel file whose partial records contain
salary information. If you want to rewrite an
employee’s data record to include some new
information such as a change in marital status, you can
specify Suppress Partial Record to avoid having to
rewrite the partial record. This feature is also useful
when you want to read an entire database record, not
just that part stored in the partial record. (Note,
however, that if your partial records contain data which
is also in the data record, you are responsible for
updating both the partial and the database record.)

End of Chapter

093-000114-01

1-5-17

DBAM Auxiliary Features

Licensed Material - Property of Data General Corporation

DataGeneral

SOF'TWARE DOCUMENTATION

Chapter 6
The RDOS/INFOS Interface

Yes, folks, this is the infamous Chapter 6. As you’ve
read through this manual, you’ve come across hints
about information that ‘‘will be explained in greater
detail in Chapter 6”’. Well, we’re finally going to reveal
those details, including:

® Considerations when you’re generating an INFOS
system

o Buffer space and buffer management

¢ File naming

® Disk space allocation

® Using peripheral devices as INFOS files

® How to deal with unlabeled magnetic tapes

We call this chapter the RDOS/INFOS interface
because, as we mentioned in the Preface to this
manual, the INFOS system uses the RDOS system’s
file handling abilities as a base for all its operations.
Therefore, you have to be aware of certain RDOS
system facilities and limitations when you’re designing
and programming your INFOS application. In other
words, this chapter is a compendium of all the
system-related information which wasn’t particularly
pertinent to our earlier discussions.

093-000114-01

1-6-1

Considerations When You're
Generating an INFOS System

As you know, the INFOS system is a logical extension
of the file handling facilities of RDOS. It requires a
mapped ECLIPSE computer with a minimum of 128K
bytes of main memory. (Don’t worry too much about
this -- many ECLIPSEs give you up to 512K bytes.) In
general, however, the overall effectiveness of your
INFOS system depends on how you balance your
peripheral equipment and main memory, as well as
your typical job mix.

The ‘‘other guys’ ”’ systems frequently limit you to a
single system configuration to satisfy a variety of job
mixes. Not so with INFOS; it lets you configure a
number of different variations to satisfy the variety of
your job mix requirements, and it lets you store all your
configurations on a single ‘system disk’. Then, once
you become familiar with the CLI, you can release one
variation and boot another into operation in just a few
minutes.

To generate your INFOS systems, use the procedures
in our How to Load and Generate Your RDOS System,
(manual number 093-188). System generation
(sysgen) is a straightforward, simple operation in which
you supply numeric value responses to sysgen
questions. The values you enter determine the size and
performance of each INFOS system you generate.
Now, to make the most of sysgen, let’s examine how
you can use the computer’s memory.

Considerations When You’re Generating
an INFOS System

DataGeneral

SOFTWARE DOCUMENTATION
Memory Space

Think of the computer’s memory as having two distinct
logical parts: the System Area, which contains the
system software and data areas, and the User Area,
which contains your application programs. How you set
up each of these areas determines how efficiently your
system will perform.

The System Area

Your system area will never need more than 64K bytes
of memory, and the more you shrink the system
memory requirements, the more memory you’ll have
for your User Area. You control the total size of the
System Area through the sysgen dialog. During this
dialog, you’ll have to specify how much memory you
want to allocate to each part of the System Area, i.e.,
for ‘windows’, INFOS file control space, system
buffers, and resident INFOS/RDOS code. Your
specifications here will significantly affect system size
and performance, so we’ll examine each factor. Figure
I-6-1 will help you visualize the components of the
System Area.

RESIDENT |

USER AREA

Fwinoows (8

SD-00576

—— Figure I-6-1. Components of the System Area

Resident INFOS/RDOS Code

The resident code portion of the INFOS system
occupies about 4.5K bytes of memory. In the How to
Load and Generate... manual, there’s a list of the
various RDOS component sizes which you can use to
calculate how much memory the resident RDOS code
will take. Notice that you can cut down the size of
resident RDOS code if you exclude drivers for
peripheral devices which your programs will never
reference.

The resident code area also includes space for stacks
and cells. Stacks keep track of the progress of each of
your programs and make it possible for your programs’
tasks to execute concurrent system calls. The system
also uses them for spooling and INFOS disk I/0. You
can specify a maximum of ten stacks, but you must
allow one stack for the system and one stack for each

Licensed Material - Property of Data General Corporation

‘ground’ in your User Area. That is, if you’re using
background and foreground, you must specify (at
least) three stacks -- one for the foreground, one for
the background, and one for the system; if you’re just
using background, you need only two. Beyond these
mandatory specifications, however, you have two
options: you can specify one stack for spooling (if
appropriate), and/or you can allocate one stack for each
task in either ground which will execute system calls
concurrently with other tasks.

Each stack requires 530 bytes of memory, and each
time you boot the system in, it will give you the
number of stacks you specified when you generated the
system. During processing, the system uses the stacks
as they are needed; that is, a stack must be available to
execute a requested function each time that a task (or
the INFOS system). issues a system call. If a stack isn’t
available, the system can’t execute the call until
another call finishes and releases its stack. Generally
speaking, the more stacks you specify for a multitask
program, the faster your programs will run. However,
be careful: allocation of too many stacks may restrict
you when you try to set up your User Area.

Cells are 32-byte pieces of memory which help the
system keep track of all your requests. You’'ll
automatically get three cells for each stack you allocate.
Beyond this, the INFOS system needs four extra cells
of its own and, if you want to spool your output, you'll
need two more cells. You can specify up to 64 extra
cells at sysgen, and, within limits, the more you
specify, the better the system will perform.

System Buffers

System buffers are 542 bytes long. The INFOS system
uses them for RDOS data file buffering, to hold the
map directory for randomly allocated volumes, and to
hold RDOS/INFOS system overlays. In general, the
number of system buffers determines how many
system overlays will be in memory and how long they’ll
be there.

The system automatically allocates at least six buffers
for RDOS functions; two for each stack you specify.
However, at sysgen, you can specify up to 63 extra
buffers. As a rule of thumb, you should specify a
sufficient number of extra system buffers to hold the
overlays that the system needs to carry out an average
function. (Note, however, that the number of buffers
needed is a dynamic variable that depends on your
processing functions.) In general, an optimum number
of buffers for SAM processing is seven; for RAM, the
optimum is six; and for ISAM/DBAM, approximately
eighteen should be adequate. If you’re using Space
Management, increase each of these totals by two for
each volume you are processing.

093-000114-01

Licensed Material - Property of Data General Corporation

Windows

During the sysgen dialog, the system will ask you to
specify a maximum ISAM/DBAM page size in
increments of 2K, 4K, or 6K bytes so that it can allocate
enough space for ‘windows’. The INFOS system uses
two windows to look at the User Area, and two to look
at the System Area. Each User window is 2K bytes
long, but you can choose a System window length of
2K, 4K, or 6K bytes. Therefore, the total space the
system needs for windows will be either 8K, 12K, or
16K bytes, according to this formula:

(2*ps)+4 = Window space in K bytes

where 2 is the number of system windows, ps is the
maximum page size (2K, 4K, or 6K bytes), and 4 is the
number of K bytes which the system needs for user
windows. Thus, the page size you specify at sysgen
becomes the maximum physical transfer length for
ISAM and DBAM files.

Our experience has shown that an ISAM/DBAM index
page size of 1024 bytes is quite efficient for most
applications. This means that you’ll frequently be able
to construct a system using the 2K page size
specification. (If you are using big pages, you should
also consider specifying Key Compression.) Appendix
B of this manual will give you the formulas for
calculating ISAM and DBAM page and node sizes, or
you can use the INDEXCALC utility (described in the
INFOS Utilities Users’ Manual) to find the optimum
page and node size for various ISAM and DBAM index
files.

INFOS System File Control Area

The area in which the INFOS system builds a set of
control blocks for a file is known as the File Control
Area. If the system doesn’t have enough room in this
area to construct these blocks, you won’t be able to
open your file. At sysgen, you will specify the size of
the File Control Area in increments of 1K bytes to a
maximum of 16K bytes. Let’s see how to figure out this
S1Ze.

The INFOS system uses three types of control blocks:
File Control Blocks (FCBs), Volume Control Blocks
(VCBs), and Buffer Control Blocks (BCBs). You have
to use various combinations of these blocks to open
each SAM, RAM, index, and database file. For SAM,
RAM, and database files, you need:

e |1 FCB;
® | VCB for each volume in the file; and

® | BCB for each I/0 buffer you have allocated in your
User Area.

093-000114-01

DataGeneral

SOFTWARE DOCUMENTATION

In addition, if you want to use code translation in a
SAM or RAM file opening task, you must allow space
for the system to build an appropriate translation table
in the File Control Area. Make sure that you’ve
accounted for a full set of control blocks for each task
that opens a SAM or RAM file. Each type of control
block in a SAM or RAM file uses the following number
of bytes:

SAM and RAM Files

® FCBs 304 bytes

® VCBs Numberofvolumes* 182

® BCBs Number of buffers * (70+ (block size+511)/128)
® Trans- 256 bytes per table

lation

Tables

1-6-3

For example, to open a single volume SAM file with
one buffer and an 80-character block size, you’ll need
561 bytes. Here’s how we figure it:

One FCB = 304 bytes

One VCB = 182 bytes (1*182)

One BCB = T75bytes (1*(70+ (80+511)/128)=1*(70+5))
Total = 561 bytes

Each type of control block in an ISAM or DBAM

database file needs the following number of bytes:
ISAM/DBAM Database Files

® FCBs 256bytes

® VCBs Numberof volumes * 182

e BCBs Numberofbuffers*(70+ (page size+511)/128)

The set of control blocks for an index file consists of’

® Two FCBs (one for the task and one for the INFOS
system);

® One VCB for each volume of the file; and

® One BCB for each I/0 buffer you’re using.

Memory Space

DataGeneral

SOFTWARE DOCUMENTATION

The system builds a complete set of control blocks for
the database file and the index file when your first task
opens an ISAM or a DBAM file. Each subsequent task
in an open ISAM or DBAM file needs only its own
index FCB because it shares the original set of control
blocks with the other tasks for that file. You can use
these formulas to figure out how much control space
you’ll need for your ISAM indexes:

ISAM Index Files

® System FCBs 256 bytes

® Task FCBs Number of index users*324
® VCBs Number of volumes*182
® BCBs Number of buffers*(70+ (page size +511)/128)

So, an ISAM file which has a one-volume index with a
page size of 512 bytes and two buffers, and a
two-volume database with a page size of 512 bytes and
one buffer needs.1616 bytes:

ISAM Index

One system FCB = 256 bytes
First task FCB = 324 bytes (1*324)
VCBs = 182bytes (1*182)
BCBs = 156 bytes

(2*(70+ (512+511/128) =2*(70+8))
Subtotal = 918 bytes

ISAM Database File
FCBs = 256 bytes
VCBs = 364 bytes (2*182)
BCBs = 78 bytes

(1*(70+(512+511)/128) =1*(70+ 8))
Subtotal = 698 bytes
Grand Total = 1616 bytes (9184 698)

NOTE: The next task to use this open file will only
need 256 bytes (i.e., one task FCB) because it
shares all the other previously allocated control
blocks.

Now, when you’re dealing with a multiple-indexed
DBAM file, the system will allocate one full set of
control blocks for each index that you open, but only
one set of control blocks for the database. That is, your
first DBAM opening task will need a full set of index

and database blocks, but if you open the same database
with another index name, you only need to account for
a set of index control blocks; subsequent opening tasks
will share the database blocks allocated at the first
task’s opening.

1-6-4

Licensed Material - Property of Data General Corporation

Each DBAM index you open uses the following control
space:

DBAM Index Files

® System FCBs 256 bytes

® Task FCBs (Number of index users*304) +
(Number of index levels*20)
® VCBs Number of volumes*182
® BCBs Number of buffers*(70+ (page size+511)/128)

For example, let’s say that you’re opening a
multiple-indexed DBAM file which has a two-volume
index with five levels, a page size of 1024 bytes, and
four buffers; also, its database has six volumes, six
buffers, and a page size of 2048 bytes. The first task
that opens the file will need 3240 bytes:

DBAM Index

System FCBs = 256 bytes
Task FCBs = 404 bytes ((1*304) + (5*20))
VCBs = 364 bytes (2*182)
BCBs = 328 bytes

(4*(70+(1024+511)/128) =4*(70+12))
Subtotal = 1352 bytes

DBAM Database

FCBs = 256 bytes
VCBs = 1092 bytes (6*182)
BCBs = 540 bytes

(6*(70+ (2048+511)/128) =6*(70+20))
Subtotal = 1888 bytes
Total = 3240 bytes

Note here, also, that your next task to open this file
under the same index will only need its own task FCB,
i.e., 404 bytes. However, if you wanted to open the
same database under a different index, you would have
to account for space for that index’s blocks.

For instance, let’s open the database in the above
example through a three-volume index with four index
levels, a page size of 1024 bytes, and two buffers. In
this case, the system will need an additional 1350 bytes
of memory:

DBAM Index
System FCBs = 256 bytes
Task FCBs = 384 bytes((1*304) + (4*20))
VCBs = 546 bytes (3*182)
BCBs = 164 bytes
(2*(70+ (1024 +511)/128)=2*(70+12))
Total = 1350 bytes

093-000114-01

Licensed Material - Property of Data General Corporation

Finally, a note on what happens when you close a file.
When a task closes a SAM or RAM file, the system
releases the file’s control space for use by other tasks.
In multiple-opened ISAM and DBAM files, however,
the system does not release the space occupied by the
control blocks until the last task using the file closes it.
That is, if a task closes a multiple-opened ISAM or
DBAM file while other tasks are still using the file, the
system only releases the space for the closing task’s
FCB.

The User Area

Once you’ve figured out how much memory space
you’ll need for the System Area, subtract your answer
from the total amount of memory and you’ll know how
much you have left for your program and your 1/0
buffers. Of course, the amount of memory you need in
the User Area depends on your job mix. For example,
if your job mix requires only one application program,
you can use a simple background configuration; if it
requires two programs, you’ll probably want to
partition the User Area into a background/foreground
configuration, as shown in Figure 1-6-2.

BACKGROUND

| | USERAREA |

FOREGROUND

SYSTEM AREA

SD-00577

Figure [-6-2. Partitioned User Area

Even though both ‘grounds’ are the same size in
Figure 1-6-2, they don’t need to be, and, in fact, you
will specify the size of each ground at runtime with the
CLI’s SMEM command. In general, the size of your
programs plus their buffer requirements will tell you
where to set the partition. For instance, suppose that
your largest foreground program is a single-task, 60K
byte DBAM program which uses four 1024-byte index

093-000114-01

1-6-5

DataGeneral

SOFTWARE DOCUMENTATION

buffers and two 512 byte database buffers. You'll need
5120 total bytes for your buffers, which means that the
total memory requirement for the foreground is 65K
bytes, as illustrated in Figure 1-6-3.

96K
B Partition L ; 65K

H 60K

USER AREA

SYSTEM AREA

SD-00578

FOREGROUND]
PROGRAM'S T
ADDRESS |

SPACE |

| Figure 1-6-3. User Area Partitioned for a 65K Byte
Foreground

The buffer space (in either ‘ground’) which your
application needs will basically depend on how many
INFOS files your program will have open at any one
time. The next section of this chapter will show you
how to calculate buffer space.

The difference between your program size and the size
of its ‘ground’ is the INFOS [/O buffer area or the
ground’s Virtual Memory. When you open a file, in
fact, you may get the error message “‘OUT OF
VIRTUAL MEMORY™’, which means that there isn’t
enough room in the ground’s virtual memory to build
the buffers for the file you’re trying to open. Most of
the time, however, you can solve this problem simply
be resetting the partition with a CLI SMEM command.

Summary

Figuring how much memory the system will need and
how much you’ll have left involves a series of
trade-offs. Fortunately, the INFOS system lets you
vary your parameters rather widely to get the most
efficient system configuration. Play with your values
before you start to generate a system; very often you’ll
find that what you want to do fits easily into your User
Area. But, if it gets tight, just remember all the options
you have considering page size, window size, number
of stacks and cells, and system buffers. By properly
manipulating all of these variables, you can mold your
system to fit your application like a glove.

Memory Space

DataGeneral

SOFTWARE DOCUMENTATION

170 Buffer Space

In the previous section, we mentioned that the system
allocates I/0 buffers in a ground’s virtual memory.
Any task in either ground can open any INFOS file, but
the amount of virtual memory that the system needs
for a program in either ground depends on the
following:

1. The number of unique files you want to open, and
the number of concurrent openings of any of these.

2. The block or page size of each unique file you’re
going to open.

3. The number of buffers for each unique file.

4. Whether or not you requested Read-After-Write
verification.

Items 2, 3, and 4 are self-explanatory, but let’s look at
number one. For a task to open any SAM or RAM file,
there must be room in virtual memory to allocate the
number of buffers requested by the task. In other
words, each task uses its own buffers, it does not share
them with other tasks. Therefore, if there is no room in
virtual memory for the number of buffers a task
requests, the system cannot perform that task.

In ISAM and DBAM, however, this is not the case.
The first task that opens an ISAM/DBAM file will get
its requested number of buffers, and each subsequent
opening for that file will use those same buffers, but no
more than those, no matter how many the subsequent
opening requests. Therefore, if you’re working in SAM
or RAM, make sure you’ve got enough virtual
memory space to hold all the buffers for all the tasks
you're going to want to perform. If you’re working in
ISAM or DBAM, make sure that the number of
buffers you request in your first task is sufficient for
your later tasks.

1-6-6

Licensed Material - Property of Data General Corporation

Also, with regard to number four above, your opening
task in ISAM and DBAM must request
Read-After-Write verification if you want to use it in
any subsequent tasks. If the first task does not specify
Read-After-Write, you will not be able to use it later for
that file, even though you ask for it. The system will
simply ignore your subsequent request.

Finally, similar to what happens in the System Area,
the INFOS system will release the buffer space for a
SAM or RAM file when your last task closes the file.
However, it will not release ISAM/DBAM buffer space
until the last task using the file closes it.

Figure 1-6-4 shows you how to compute buffer space
requirements (in bytes) for the opening of each type of
file, both with and without Read-After-Write
verification.

For example, referring to Figure 1-6-4, suppose you
want to open a SAM file which has three buffers and
blocks that are 512 characters long, and you want to use
Read-After-Write. You’ll need 3072 bytes worth of
virtual memory for the opening task: 2*3 buffers*512
bytes per block. (But don’t forget to make allowances
for later tasks which will open that file -- they will need
their own buffer space, t00.)

Now if you’re opening a database file without
Read-After-Write, but with four buffers and a page size
of 1024 bytes, how many bytes are those buffers going
to need? The answer is 4096 bytes (4*1024). However,
if you choose this configuration, you won’t be able to
use Read-After-Write for later tasks in this file, nor can
you use more than these four buffers. So plan ahead
and you won’t unnecessarily limit your processing
capabilities.

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

For each task that
issues an open file
request.

SAM and RAM What type
of file

isit?

Did you request
Read-After-Write
verification?

NO

Bytes = 2+*(Number of buffers)»

(Block size) INDEX

y

ISAM and DBAM

Is the
file already
open ?

Index or
Data base?

Use the existing buffers
regardiess of how may this task
wants. If the original task did
not ask for Read-After-Write and
this task does, the system uses
the existing buffers but does

not perform Read-After-Write
verification.

YES

DATA BASE

Did you request
Read-After-Write
verification?

Bytes =2*(Number of buffers) *
(Index page size)

Bytes = 2*(Number of buffers)*
(Data base page size)

Bytes = (Number of buffers) *
(Block size)
Did you request
Read-After-Write
verification?
Bytes = (Number of buffers) ¥
(Index page size)
SD-00579

093-000114-01

Figure 1-6-4. Buffer Space Requirements Per File Opening

1-6-7

Bytes = (Number of buffers) »
(Data base page size)

1/0 Buffer Space

DataGeneral

SOFTWARE DOCUMENTATION

170 Buffer Management

In general, the INFOS system regulates buffers
according to the Least-Recently-Used technique
(LRU). Under this technique, the system keeps track
of the buffer whose contents it accessed the longest
time ago. This, of course, is the least recently used
buffer. Figure 1-6-5 illustrates the LRU technique for
input; the technique for output is the same, except that
the data movement between your data area and the
buffers goes in the opposite direction.

Your i/0
request.

The INFOS system searches
the buffers for the block
containing the data you
requested.

Y

Did the INFOS
system find
the data?

The INFOS system:
he Y The INFOS system:

1. Moves the data
from the buffer to 1. Finds the buffer whose
your data area. current contents were

accessed the longest

2. Moves the buffer's time ago.
clock ahead.

2. Flushes the buffer, if
necessary.

3. Enques a system |/0
request to transfer the
block to the buffer.

4 Resets the buffer's clock
to zero.

\ 5. Moves the data to your
data area when the
transfer is complete.

Back to you 3
6. Starts the buffer’s clock.
SD-00580

- Figure I-6-5. Least-Recently-Used Technique for Input -

Due to the nature of SAM file processing in the Input
mode, the INFOS system automatically prereads the
next block you’re going to want while you’re
processing your current one (as long as you allocate
more than one buffer). Thus, SAM file buffers are
always kept full. On Write requests in the OQutput
mode, the system will automatically write the contents
of a buffer to your file as soon as that buffer is full.
(Note, therefore, that you will speed up your
processing considerably by allocating more than one
buffer.) For SAM file processing in the Update mode
and all RAM file processing, the system uses the basic
LRU technique.

1-6-8

Licensed Material - Property of Data General Corporation

ISAM and DBAM index file buffers, however, can be a
slightly different story. Normally, the system manages
these buffers according to a hierarchically modulated
LRU, but you can disable the modulation at runtime.
When you’re designing your file, you can specify
certain root nodes as High Priority Nodes (HPNs), and,
when your first task opens your DBAM file, you can
request that the system not hierarchically modulate the
LRU. (Root nodes, remember, are the ‘doors’ into
each subindex level, we’ll explain hierarchical
modulation in a minute.)

In certain DBAM applications, you’re going to want to
access your file as quickly as possible. One way to get
maximum access speed is to keep your root nodes in
memory as long as possible because they are the
subindex contact points you need most frequently to
locate index entries. So, when you design your DBAM
file, you can specify that the root nodes of certain
critical subindexes are HPNs. Then, when you first
access these nodes, the INFOS system will keep them
in buffers as long as possible. In other words, HPNs
modify the more general LRU technique. Therefore,
because of the way that the system handles HPNs, your
first task should ask for a relatively large number of /0
buffers.

We use the term ‘relatively large’ because the number
of buffers for HPNs depends on your application and
how you set up your index levels. Sometimes you’ll
want to use one buffer per HPN (if you’ve got enough
virtual memory), at other times, you’ll only want
enough buffers to hold the HPNs in the portion of the
index structure which your program is processing.
Note, however, that you need your HPN buffers in
addition to those which you normally need to access
your DBAM index structure. Figure I-6-6 illustrates an
index structure with sixteen HPNs.

If you have enough virtual memory and sufficient
room in the system’s File Control Area for the buffer
control blocks, your first task could open the file in
Figure I-6-6 with 25 1/0 buffers; sixteen for the HPNs
and the rest for normal index access. If this isn’t
practial, and if your program only uses one section of
the index (i.e., the left-, center-, or right-most branch
in Figure 1-6-6), then you could specify about fifteen
I/0 buffers when your first task opens the file. This
would insure that the system would keep the HPNs for
the section you’re using in memory, and still have
enough buffers left over for your normal index
processing.

093-000114-01

Licensed Material - Property of Data General Corporation

and the rest for normal index access. If this isn’t
practial, and if your program only uses one section of
the index (i.e., the left-, center-, or right-most branch
in Figure 1-6-6), then you could specify about fifteen
1/0 buffers when your first task opens the file. This
would insure that the system would keep the HPNs for
the section you’re using in memory, and still have
enough buffers left over for your normal index
processing.

Alternatively, if you’re short on buffers but you still
want top speed, use the system default of hierarchical
modulation for the LRU when you open the file, and
don’t designate any HPNs when you create it. Thus you
won’t fill all your buffers with root nodes, but rather
the system will automatically use the buffers for the
most applicable nodes in each subindex level. In other

DataGeneral

SOFTWARE DOCUMENTATION

words, the system will use the same buffers over and
over (according to LRU) on various index levels,
essentially giving you the root nodes. However, since
you don’t have to specify HPNs, the system doesn’t tie
up buffers with some root nodes which you may or may
not want to use as frequently as some others.

In general, your buffering decisions are going 10 come
down 1o a tradeoff between speed and space. For many
applications, the basic LRU technique is perfectly
adequate and efficient. However, if you want to
squeeze all the speed out of your system that you can,
you can always modify the LRU in a DBAM file with
High Priority Nodes, or hierarchical modulation, or,
occasionally, both. You can even combine these with
key compression and relative processing to give you top
speed.

SUBINDEX
(HPN)

SUBINDEX SUBINDEX SUBINDEX

(HPN) (HPN) (HPN) (HPN)
SD-00581

093-000114-01 1-6-9

MAIN INDEX
(HPN)

SUBINDEX
(HPN)

N !

SUBINDEX SUBINDEX SUBINDEX
(HPN)

EENEEE

Figure 1-6-6. DBAM Index with Sixteen HPNs

SUBINDEX
(HPN)

SUBINDEX SUBINDEX SUBINDEX

(HPN) (HPN) (HPN) (HPN)

SUBINDEX SUBINDEX SUBINDEX
(HPN) (HPN) (HPN)

170 Buffer Management

DataGeneral

SOFTWARE DOCUMENTATION

File Naming

To access all devices and disk files, you have to give the
system their full filename; to access cassettes and
magnetic tapes, you need their full file number. A
filename can consist of upper or lowercase letters,
numbers, and/or the $ character; for example, you
could name your file Payroll, or MTO, or $SLPT. Your
filename can contain any number of these characters,
although the system will only look at the first ren.

You can also append an extension to a filename. An
extension is another set of alphanumeric characters,
including $; again, however, the system only looks at
the first rwo characters in an extension. In addition, you
must put a period (.) between the filename and the
extension; for example, PAYROLL.PS. Your only
limitation here is that you shouldn’t name a source file
““(filename).SV™’, because of the confusion it would
cause with a system-named save file.

The system itself also appends extensions to filenames
to indicate the type of information they contain and to
distinguish them from other files connected to the
same source file. For instance, if you named your
source file A.SR, the system might produce files from
this source called:

A.RB Relocatable Binary file

A.SV Core Image (Save file)

A.LS Listing file

A.OL Overlay file

X.VL Permanent File Specification for volume A

X.IX Permanent File Specification for ail the indexes
for the database file X created by A.

Finally, after you give an index file a name at creation,
you must always refer to that index and its database by
the full creation name. For example, if you name an
index file DP0:1, you must always call it DPO:1; you
can’t merely call it “‘1”’, even though you may be
working within that directory.

1-6-10

Licensed Material - Property of Data General Corporation

Disk Space Allocation

If your INFOS file resides on a disk, you can allocate
the space on that disk randomly or contiguously. When
you choose random allocation, the system allocates
disk sectors as they are needed, regardless of their
physical location on the disk. Hence, the system keeps
sector addresses on the disk in sector address maps.
Therefore, the system may require many disk accesses
to retrieve a given record: one (or more) to retrieve the
record address from the map, and one to retrieve the
actual record. These potential multiple accesses can
seriously affect performance for a large file, but
random allocation does have two major advantages:

® You can use your disk space much more efficiently
because the system doesn’t allocate sectors until it
actually needs them.

® There’s a better chance of finding room for a full
volume of randomly allocated data than for
contiguous data because the largest contiguous block
of free disk sectors will almost always be smaller
than the total number of free disk sectors.

With contiguous allocation the system allocates
adjacent blocks of disk sectors when you create your
file. This gives contiguous allocation four advantages:

® The system doesn’t need sector disk maps because it
can directly compute sector addresses.

® You can often use multiple sector transfers because
the sectors are physically adjacent. Hence a
moving-head disk doesn’t have to move very much
at all and your access time improves considerably.

® Your writing operations are more efficient because
the system makes room for your entire body of data
when you create your file; therefore it doesn’t have
to find room for new data during the processing
operation.

® You know at the start that there is enough room for
your whole file or whatever section you want to put
there.

If you’re having trouble choosing an allocation
technique for your file, remember that different
volumes of your file can have different allocation
specifications. For example, if you have a database file
on two volumes, you can allocate the first one
contiguously with a size adequate to accommodate the
amount of data you expect to have. Then you can
choose random allocation for the second volume to
handle any unexpected growth.

093-000114-01

Licensed Material - Property of Data General Corporation

Using Peripheral Devices as
INFOS Files

When you want to use peripheral devices (e.g., line
printers, paper tape readers, teletypes) as INFOS files,
you’re going to find that your block size is controlled by
the physical limitations of the device. That is, you
cannot use a block size larger than the number of
characters in a line of the device, except in certain
circumstances. For example, you cannot use a block
size larger than 80 or 132 characters if you’re using a
line printer because the printer will just print any
characters beyond that length on top of each other and
you’ll get a blob at the end of each incomplete line.

However, as we said, there is a way to avoid this. You
can use any size block you want with an 80-character
line printer as long as you include a carriage return or a
line feed delimiter at least every 80 characters. A simple
analogy here would be a typewriter. Every 80 characters
or so, you have to hit the carriage return so that your
words stay on the page. And so it is when you’re using a
line printer (or a similarly limited device) as an output
file. Simply insert a carriage return (or a line feed) at
least every 80 characters and you can use any size block
you want.

Something else to consider when you want to use a
peripheral device as an INFOS file is that you can adjust
the timeout intervals to suit your application. That is,
the system has different timeout intervals built into it
for each type of peripheral device. When the system
cannot do output or get input after one of these
intervals, it sends a message to your console. If it then
can’t complete your processing function after twelve
intervals, the system closes that file. For example,
suppose you’re writing to a line printer as a SAM
output file and the printer jams. The system will try to
write, but won’t be able to. So, after fifteen seconds, it
will send you the message ‘“‘DEVICE TIMEOUT ON
FILE (filename)’’, and, at the same time, will try to
write again. If the system goes through this cycle twelve
times and still cannot complete the write request, it will
close the file. However, if you’ve got a job that you
want to process in a hurry, you may not want to wait
fifteen seconds to find out that there’s something
wrong, in this case, you can change the timeout
interval to two or three seconds so that you know
immediately when there’s a problem.

DataGeneral

SOFTWARE DOCUMENTATION
For the record, here are the timeout intervals for
several types of peripheral devices:

Device Interval

Teletype (input) Indefinite (The system
will wait forever for you
to input data)

Teletype (output) 30 seconds
Paper tape printer/reader 30 seconds
Punched card reader 10 seconds
Line printer 15 seconds
CRT 10 minutes
Magnetic tape 15 seconds
Cassettes 10 minutes
Fixed-head disks 3 seconds

Moving-head disks 5 seconds

NOTE: See Appendix E for a full chart showing device
characteristics.

How to Deal with Unlabeled
Magnetic Tapes

When you want to read data from an unlabeled
magnetic tape, simply specify the name of the drive on
which you mounted it, and then a sequence number for
the section of the tape you want. For example, if you
have an unlabeled tape and you mount it on tape drive
number one, its name becomes MT1. Then, if you
want to read the data which lies between the beginning
of the tape and the first tape mark, you’d code the
equivalent of “READ MT1:0”. (Data segments on a tape
are numbered consecutively starting with zero.) If you
wanted to read the second section of the tape, you’d
code the equivalent of “READ MT1:1”. That’s all there
is to it. The system will start reading wherever you tell
it to, and will keep reading until it comes to a tape
mark, even if that mark is at the other end of the tape.

By the way, you can also use the above procedure to
read the header labels on a labeled magnetic tape. Just
pretend it’s an unlabeled tape (the system won’t know
if you don’t tell it) and consider the header labels as the
first section on the tape.

End of Chapter

093-000114-01

1-6-11

How to Deal with Unlabeled Magnetic
Tapes

General Information

Sequential Access Method (SAM) Files

Random Access Method (RAM) Files

Part Two:

Programming Your Indexed Sequential Access Method
RDOS/INFOS System (ISAM) Files -

Data Base Access Method (DBAM) Files -

Packet Formats -

How to Use the Macroassembler with
the INFOS System -

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Prefatory Note

We have designed the Programming section of this
manual for use by experienced Programmers. You
cannot learn how to program here, just what to program.
Furthermore, our discussion is geared primarily toward
Assembly Programmers, although those of you who
will be using FORTRAN will also find the information
pertinent. (Appendix C, The FORTRAN-INFOS
Interface will fill any gaps left by the main text.)

If you’re going to use COBOL or RPG II, you will find
that the details in this section are not directly applicable,
but they will give you a general idea of what you need
to include in your programs, as well as insight into the
way that the COBOL and RPG II runtime routines
communicate with the INFOS system. For further
details on Data General’s COBOL and RPG II and their
applications, we recommend that you also read our
COBOL Reference Manual (number 093-180) or our
RPG Il Programmer’s Reference Manual (093-117).

End of Preface

093-000114-01

Prefatory Note

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 1
General Information

Packets

Your program and the INFOS system communicate
with each other through Packets and Tables. A packet
is a group of logically related control parameters, from
which you specify those features (both required and
optional) which you want to use in a particular system
call. For example, to do a read operation, your program
must supply a Processing Packet to tell the system how
to find and where to place a record in memory. You can
also specify various options in that packet, for example,
record lock or space management. When you make the
system call to do the read, you indicate the address of
the Processing Packet. And, after the system completes
the read operation, it places the length of the record it
read (along with other pertinent information about the
record’s status) in the Processing Packet before it
returns to your program.

Each type of packet has a specific format. That is, each
packet is a certain number of words long, and each
parameter has a specific location within each packet.
Some parameters only occupy a single bit location in a
given word, while some occupy as many as three words.
Furthermore, most packets contain at least one
two-word field which is used as a pointer field. There
are two types of pointers:

& Word pointers, which point to the first word of such
system elements as other packets or Volume or Key
Tables; and

® Byte pointers, which point to the first byte of
elements Byte pointers, which point to the first byte
of elements which you supply, such as names or user
tables.

Note also that if a packet contains a pointer field and

the particular operation you are performing does not
require that address (or if you want to use a system

093-000114-01

1-1-1

default value for a particular parameter), you must
enter -1 in the first word of the field. If you don’t, the
INFOS system will consider the contents of that field to
be a valid address, and it may attempt to use that
address in processing the call.

Packet Types

The INFOS system uses a different type of packet for
each of the following functions:

File definition

Volume definition

General processing (SAM and RAM)
Extended processing (ISAM and DBAM)
Key definition

Subindex definition

Point processing

Link subindex processing

Volume initialization

Since this manual will refer to each of these packet
types, we will briefly describe each one now. For
further details on the format and contents of each one,
however, refer to Chapter 6 in this part of this manual.
For descriptions of the calls you use to build each
packet type, see Chapter 7 in this part (for assembly
language) or Appendix C (for FORTRAN).

File Definition Packets

You must build a File Definition Packet (FDP) for
each INFOS file which your program opens. The FDP
contains a description of the file. If the file does not
exist, but will reside on a disk, the system will use most
of this information to build the file’s Permanent File
Specification. Then, on subsequent openings of that
file, the system will refer to the Specification for this
information. If your file is not disk-resident, however,
you will have to respecify the file on each opening,
since the system does not maintain a Permanent File
Specification for this type of file.

Packet Types

DataGeneral

SOFTWARE DOCUMENTATION

Volume Definition Packets

A Volume Definition Packet (VDP) describes the
physical characteristics of a file. When you open any
INFOS file in the Output or Create Update mode, you
have to build a VDP for each volume of the file, then
put all the VDPs for the file into a Volume Table. Once
you’ve created the file and defined the volumes, you
only have to give the system the address of the VDP
for the first volume in the file when you want to reopen
the file for updating. The INFOS system automatically
records the volume definitions and uses them when
your program needs them.

When you open a tape file, however, you must build a
Volume Table consisting of one VDP for each reel of
tape. Unlike disk files, the system does not
permanently record tape file VDPs.

Similarly, you must build a VDP for each TTY and
printer file which you open for processing, since these
are single-volume files by definition.

General Processing Packets

This type of packet contains the information which the
system needs to perform a SAM or RAM file
processing request. It also provides the means for the
system to return general status information to you.
Therefore, whenever you issue a call, you must include
the address of the appropriate General Processing
Packet.

Extended Processing Packets

When you issue an ISAM or DBAM function request,
you must supply the address of the Extended
Processing Packet containing the information which
the INFOS system needs to successfully process the
call. Since this type of packet is just an extension of a
General Processing Packet, it will also return general
status information to you.

Key Definition Packets

Each Key Definition Packet describes a single key. You
must build one packet for each key, then place all the
packets in a contiguous Key Table. The INFOS system
will use each key in the table for processing at the
subindex level indicated by the packet’s relative

n-1-2

Licensed Material - Property of Data General Corporation

position in the table. That is, for a keyed access, the
system will apply the first key in the table at subindex
level 0, the second at subindex level 1, and so forth.
Thus, whenever you use keyed access for an ISAM or
DBAM processing request, you will set one field of the
Extended Processing Packet to point to the first word of
your key table.

Subindex Definition Packets

You will only use this type of packet when you issue a
Define Subindex function request. As you might think,
the contents of this packet describe the subindex you
wish to define. You point to this packet through the
Extended Processing Packet which you use to initiate
the request.

Point Processing Packets

This packet describes the existing point within a SAM
disk file where you want the system to position your
program. You can only use this packet with a Point
function request when you’re processing a SAM disk
file.

Link Subindex Processing Packets

This packet tells the system the key and the subindex
you wish to link. The only time you’ll use this packet is
when you want to issue a Link Subindex function
request.

Volume Initialization Packets

This packet tells the system how you want to initialize a
given labeled tape file. You must build one of these
packets for each labeled tape volume you wish to
initialize. Full details on labeled tape initialization
procedures are in Appendix A.

Tables

The INFOS system uses two types of tables. One type is
simply a contiguous collection of logically similar
information -- for example, a User Header Label Table,
which contains one or more user-supplied header
labels. The other type consists of a contiguous
sequence of packets. An example of this is a Volume
Table, which is made up of one or more Volume
Definition Packets.

093-000114-01

Licensed Material - Property of Data General Corporation

How to Open an INFOS File

You can use the following set of steps to open any
INFOS file in any processing mode:

1. Construct the packets and tables required by the
access method, the processing mode, and the device
type you are going to use, as explained in the other
chapters in this section.

2. Issue a Pre-open system call as described in the
following section. The INFOS system will examine
the contents of the FDP and resolve all the defaulted
parameters before it returns to your program.

3. When the system returns, issue an Open system call
as described below. The system will then construct
the required control blocks and tables in its file
control space, allocate the I/0 buffers in virtual
memory, assign a pseudo channel number to the
file, and return that number in AC1. You should
make sure this number is in AC1 whenever you
issue subsequent system processing calls for this file.

If the INFOS system encounters an error while
processing a Pre-open or Open request, it may return
one of the following error codes to AC2.

NOTE: You may also receive an RDOS File System
error on Pre-open or Open; see the RDOS
Reference Manualfor a list of those.

Common Pre-open Error Messages

Description

212 SYSTEM FILE PROCESSING ERROR
213 UNRESOLVED RESOURCE CONFLICT
221 SYSTEM FILE OPEN ERROR

241 PRE-OPEN CLOSE ERROR

405 VERSION CONFLICT ERROR

Common Open Error Messages

Code Description

206 FILEIN USE

207 FILE LOCKED

212 SYSTEM FILE PROCESSING ERROR
213 UNRESOLVED RESOURCE CONFLICT
215 DUPLICATE SYSTEM FILE

216 SYSTEM FILE READ ERROR

217 SYSTEM FILE WRITE ERROR

220 ILLEGAL FILE NAME

221 SYSTEM FILE OPEN ERROR

223 INSUFFICIENT FREE SPACE FOR OPEN
226 NOSUCH VOLUME

237 ILLEGAL TRANSFER REQUEST

241 PRE-OPEN CLOSE ERROR

242 FILE CLOSE ERROR

244 VOLUME ALREADY EXISTS

251 NAMETOO LONG

254 DEVICE NOT SUPPORTED

093-000114-01

1-1-3

DataGeneral

SOFTWARE DOCUMENTATION

System Calls

You make INFOS system calls in the same way that you
make RDOS system calls, except that you must first
load AC2 with a pointer to the first word of the packet
associated with that call. The system calls and their
associated packets are as follows:

® To Pre-Open afile:
AC2 = Pointer to File Definition Packet

.SYSTM
.PINFOS
error return
normal return

® To Open afile:
AC2 = Pointer to File Definition Packet

.SYSTM
.OINFOS
error return
normal return

NOTE: When the INFOS system successfully
completes an .OINFOS call, it will return a
pseudo channel number for the file to AC1.

® To initialize volumes of a labeled tape file:
AC2 = Pointer to Volume Initialization Packet

.SYSTM
JINFOS

error return
normal return

® To process a file:

A) Pointer to either General Processing Packet

AC2 = (for SAM/RAM) or Extended Processing
Packet (for ISAM/DBAM). Also, when
you use the following call, you must place
the file’s pseudo channel number in AC1.

.SYSTM

.INFOS argument
error return
normal return

System Calls

DataGeneral

SOFTWARE DOCUMENTATION

The arguments for the .INFOS call are:

Octal | Argument Function

Value

00 POINT Move your position to a new point
in a SAM disk file.

01 Reserved for sysem use.

02 .FEOV Force End-Of-Volume.

03 ICLOSE INFOS Close.

04 SETX Set Exclusive Use.

05 RELX Release Exclusive Use.

06 .TRUNC Truncate a block.

07 IREAD INFOS Read.

10 IWRITE INFOS Write.

11 .DEFSI Define Subindex.

12 .LNKSI Link Subindex.

13 .DELRC Delete a record.

14 .DELSI Delete a Subindex.

15 .RETST Return data record status.

16 .RETHK Return high key in subindex.

17 .RETKY Return key.

20 .REINS Reinstate a logically deleted record
or index entry.

21 Reserved for system use.

22 Reserved for system use.

23 Reserved for system use.

24 Reserved for system use.

25 .REWRT Rewrite.

26 .RETDF Return subindex definition.

27 .PRERD Pre-Read.

B) Alternatively, you may use the following

processing call:

AC2 = Address of the Processing Packet
ACO = Octal value of your desired
argument

.SYSTM
INFOS 77
error return
normal return

i-1-4

Licensed Material - Property of Data General Corporation

Finally, whenever the INFOS system takes the error
return to any system call, it returns an error code to
AC2. (Appendix D contains explanations of all INFOS
error codes.)

The Permanent File Specification

When you create an INFOS disk file by opening it in
the Output or Create Update mode, the system builds a
Permanent File Specificaion (PFS) from the
information you supply in the File Definition Packet
(FDP) used in the Pre-open system call. Each FDP
contains two types of parameters: those which are
unchangeable, and those which apply only to this
opening of the file. The unchangeable parameters
define the file’s logical and physical characteristics; for
example, volume size and record format. Table II-1-1
shows these unchangeable FDP parameters and their
default values (if any).

The second type of parameters, shown in Table 1I-1-2,
become part of the PFS, but you can override their PFS
value for any opening. Thus, when you close the file,
the system remembers the values you specified for
these parameters, but lets you alter them on
subsequent openings. Thus you can choose some of the
features for one opening, and others for another. An
example of this type of parameter is the number of 1/0
buffers. The number of buffers you specify at file
creation becomes part of the PFS, but you can specify
any other number at any subsequent opening of the
file. You can also default the number of buffers for any
opening after file creation, and the system will allocate
the number recorded in the PFS.

093-000114-01

Licensed Material - Property of Data General Corporation

Table 11-1-1. FDP Parameters that Become
Unchangeable Entries in the File’s PFS

DataGeneral

SOFTWARE DOCUMENTATION

Table 11-1-2. FDP Parameters that Become Runtime

Entries in the File’s PFS

093-000114-01

1-1-5

Feature Parameter System Feature Parameter System
Default Value Default Value
Unblocked Records F1UBR Blocked Read-After-Write FIRAW No
Records Verification Verification
Access Method F1AM1 None Overwrite F1OVR Write At
F1AM2 End-Of-File
Record Format FI1FT1 None Exclusive File F1EXF Nonex-
F1FT2 clusive Use
Space Management F2SPM No Space Rewrite Mode F1RER No
Management Rewriting
Optimized Distribution F20RD No Disable Hierarchical F2DHR Not
Optimized Replacement Disabled
Distribution
Volume Table Pointer FDVTP None
Block or Page Size FDBLK 512 Bytes
User Input Translation FDUIT No
Record Length FDLEN Block Size Table Pointer Translation
on Input
Number of Index Levels FDNIL One
User Output Translation FDUOT No
Number of Volume Table| FDNVD One Table Pointer Translation
Entries on Output
Initial Node Size FDINS Page Size Selective Field TCSFT No
Minus 6 Translation Selective
Bytes Field
Translation
Maximum Key Length FDMKL None
Data Sensitive Delimiter FDDSD Null,
Partial Record Length FDPRL Zero Table Pointer Carriage
Return,
Root Node Merit Factor FDRMF Zero Form Feed
Key Compression IXPKC No Key Selective Field FDSFT No
Compression Translation Table Pointer Selective
Field
No Subindexes IXNSI Subindexing Translation
Allowed
Number of Buffers FDBUF 2 for
High Priority Node IXHPN No High Indexes
Priority 1 for others
Node
Processing Mode F1IPM1 None
F1PM2
End of Chapter

The Permanent File Specification

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 2
Sequential Access Method (SAM) Files

This chapter contains procedure-oriented descriptions
of how to open a SAM file under various conditions,
and how to use the SAM processing functions. Please
refer to Chapter 2 of Section One or to Appendix A if
you have any questions about the options discussed
here.

How to Open SAM Files
You can open your SAM file in the following ways:
Disk files:
® In the Create Update mode (for all functions)
® In the Output mode (for writing only)
® In the Update mode (for all functions)
o In the Input mode (for reading only)
Labeled Magnetic Tape files:

® In the Output mode (for writing)
® In the Input mode (for reading)

The procedure for opening any of these files is the
same; just follow these steps:

093-000114-01

11-2-1

1. Set up the following:

e File Definition Packet (FDP) (Figure II-6-1)
(Use macro call BLDFDP; see Chapter II-7)

® Volume name for the first file volume (FDVTP
of the FDP)

® One Volume Definition Packet (VDP) for each
volume (Use macro call BLDVDP; see Chapter
I1-7 and Figure 11-6-2)
® Volume Table (i.e., concatenate the VDPs)
2. Put the address of the FDP in AC2.
3> Issue a Pre-open (.PINFOS) system call.
4. When INFOS returns:

® Make sure that the address of the FDP is in
AC2.

® Issue an Open ((OINFOS) system call.

5. When INFOS returns, move the file’s pseudo
channel number from AC1 to your program area.

The difference between the opening procedures for the
various modes lies in the contents of the FDPs and the
VDPs. So, when opening your SAM file, follow the
above procedures, and set up the FDPs and VDPs
according to the appropriate charts following.

How to Open SAM Files

DataGeneral

SOFTWARE DOCUMENTATION

1.

5.

1.
2.

Pr—————

FDP for Disk Files Opened in the Create Update or Output Modes ‘

(See Table 11-6-1)

You must specify the following:

Either Create Update mode (for all functions), or Output (for writing only)

(F1CRU or F1I0UT of FDFL1)
SAM access method (F1ISAM of FDFL1)

A record format; either Fixed, Variable, Undefined, or Data Sensitive (in FDFL1)

A) Exact length of Fixed length records (if used) (FDLEN)

B) Expected maximum length of Variable length records (if used) (FDLEN)

C) Pointer to delimiter table for Data Sensitive records (if used) (FDDSD)

Address of the Volume Table (FDVTP)

You may specify the following:

Block size (FDBLK)

Number of buffers for this opening
(FDBUF)

Rewrite option (Create Update
mode only)
(FIRER of FDFL1)

Read-After-Write verification
(FIRAW of FDFL1)

Exclusive file use (F1EXF of
FDFL1)

System default values for these options:

512 bytes

One buffer, recorded as a changeable
part of the file’s PFS

You may not modify records at this
open

No verification for this opening

Others may use this file while you do

1.

VDP for Disk Files Opened in the Create Update or Output Modes

(See Table 11-6-2)

You may specify the following:

Volume size (VDVSZ)

Contiguous allocation
(ICCTG of VDIVC)

Disable file initialization
(ICDFI of VDIVC)

Pad character (VDPAD)

Device timeout intervals (VDDTO)

You must specify the address of each volume’s name (VDVNP)

System default values for these options:
65,535 blocks (Make sure that you have
at least this much available disk space if
you choose the default.)

Random allocation

If contiguous allocation, each block is
null filled

Null (binary 0)

3 seconds for fixed-head disks;
S seconds for moving head disks

11-2-2

Licensed Material - Property of Data General Corporation

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

FDP for SAM Disk Files Opened in the Input or Update Modes
(See Table 11-6-1)

You must specify the following:

1. Input mode (for reading only) or Update mode (for all functions)
(F1INP or F1UPD of FDFL1)

2. SAM access method (FISAM of FDFL1)
3. Same record format which you used at file creation (FDFL1)

4. Address of the Volume Table (FDVTP)

You may specify the following: System default values for these options:

1. Number of buffers for this opening Number recorded in the file’s PFS
(FDBUF)

2. Read-After-Write verification No verification for this opening
(Update mode only)
(FIRAW of FDFLI)

3. Exclusive file use (F1IEXF of Others may use this file while you do
FDFL1)

VDP for SAM Disk Files Opened in the Input or Update Modes
(See Table 11-6-2)

You must specify the address of the name of the first file volume (in VDVNP). The
system will then use the contents of the PFS.

FDP for All Labeled Magnetic Tape Files
(See Table 11-6-1)

You must specify the following:
1. SAM access method (FISAM of FDFL1)
2. Arecord format: either Fixed, Variable, or Undefined (See FDFL1)

Output mode (for writing), or Input mode (for reading) (See FDFL1)

w

4. Address of the Volume Table (FDVTP)
5. Label type and level (See FDTCF)

You may specify the following: System default values for these options:
1. Block size (FDBLK) 80 bytes
2. Number of buffers (FDBUF) One buffer
3. Record length (FDLEN) Records will equal block size
4. HDRI1 Label contents (FDFSI) Volume identifier for the first volume
of the file

093-000114-01 1-2-3 How to Open SAM Files

DataGeneral

SOFTWARE DOCUMENTATION

You must specify the following:

2. Pad character (VDPAD)

You may specify the following:

2. Address of User Label Tables
(VDVLT, VDHLT, VDTLT)

VDP for All Labeled Magnetic Tape Files
(See Table 11-6-2)

1. The address of the name of the first volume of the file (VDVNP)

3. Enable runtime initialization and release (if applicable) (VDIVC)
System default values for these options:
1. Device timeout interval (VDDTO) 15 seconds

No use of user labels

Licensed Material - Property of Data General Corporation

Table 11-2-1. SAM Processing Functions

Sequential Direct
Access Access
Devices Devices
Input Output || Input | Output | Update | Create
Mode Mode Mode | Mode Mode Update
Mode
READ X X X
WRITE X X X X
REWRITE* X X
RELEASE* X X

*Only valid if you specified Rewrite in the FDP

Processing SAM Files

You can issue processing requests as soon as you open
your SAM file, but the functions available depend on
the device on which the file resides and the processing
mode you’re using. If your file resides on a sequential
access device, you can only read from the file in the
Input mode or write to it in the Output mode.
However, if your file resides on a direct access device,
you can read, write, rewrite, or release your file, as
illustrated in Table 1I-2-1. Note that you must provide a
General Processing Packet for each processing request
you make. You will find the packet format in Table
I1I-6-3 and instructions for building one under BLDPP
in Chapter 11-7.

You can use either the .INFOS argument system call or
the .INFOS 77 «call to process your SAM file.
Furthermore, no matter which processing function you
use, the system will tell you if it encounters any of the
following exception conditions:

i1-2-4

If you have reached the physical end-of-file,

e If a record being written is too large to fit into your
specified block size,

® If the Read-After-Write cycle failed on a previous
write or rewrite request,

e If the physical length of data transfer is less than
your specified block size,

o If the length of the data you’re transferring is longer
than a particular sequential device can handle.

NOTE: A condition causing an exceptional status
return may have occurred prior to the
processing request in which the system returns
the status.

093-000114-01

Licensed Material - Property of Data General Corporation

In addition, for read and write operations, the system
will always return the length of the data it transfers to
your program area (in bytes), the block address of the
record read, and the number of bytes by which the
record is offset from the beginning of the block.

The following section lists everything you have to
know about and do for each type of SAM processing
request and the error messages which the system will
return to you if required. (For further explanation of all
INFOS error messages, see Appendix D.)

SAM Read Processing Request

1. Specify the address of your data area in PRDAT of
the General Processing Packet (Table 11-6-3).

2. Specify Lock (in PFLOC of PRSTA in the General
Processing Packet) if you want to prevent other
users from accessing the record you’re reading.
Note, however, that if you want to use Lock, you
must also specify Rewrite in FDFL1 of the FDP
when you open the file, and your file must reside
on a direct access device.

Common READ Request Error Messages

Code Description

200 ILLEGAL FUNCTION

201 VARIABLE LENGTH TRANSFER ILLEGAL ON
THIS DEVICE

206 EXCLUSIVEFILE

207 FILE LOCKED

210 FILE NOT OPEN

211 PERIPHERAL CONFLICT

213 UNRESOLVED RESOURCE CONFLICT

226 NOSUCH VOLUME

232 ILLEGAL CLOSE

243 RDOS OPEN ERROR

244 VOLUME ALREADY EXISTS

254 DEVICE NOT SUPPORTED

256 INPUT END VOLUME ERROR

415 ILLEGAL LABEL

416 ILLEGAL LABEL SPEC

417 VOL ID DOESNT MATCH

424 BLOCK COUNT INCORRECT

425 RECORD FORMAT CONFLICT

426 FILE SEQ NUMBER

DataGeneral

SOFTWARE DOCUMENTATION

SAM Write Processing Request

1. Specify the address of your data area in PRDAT of
the General Processing Packet (Table 11-6-3).

2. Specify (in PRLEN) the length of any Data
Sensitive, Undefined, or Variable length records
which you are writing.

Common WRITE Request Error Messages e,

Code Description

200 ILLEGAL FUNCTION

201 VARIABLE LENGTH TRANSFER ILLEGAL ON
THIS DEVICE

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT

226 NOSUCH VOLUME

232 ILLEGAL CLOSE

233 PHYSICAL I/O ERROR

255 OUTPUT END VOLUME ERROR

415 ILLEGAL LABEL

416 ILLEGAL LABEL SPEC

417 VOL ID DOESNT MATCH

423 EXP DATE NOT EXPIRED

424 BLOCK COUNT INCORRECT

425 RECORD FORMAT CONFLICT

426 FILE SEQ NUMBER

093-000114-01

11-2-5

SAM Rewrite Processing Request

NOTE: You may request Rewrite only if you specified
it in FDFL1 of the FDP when you opened this
file and if your file resides on a direct access
device.

1. Specify the address of your data area in PRDAT of
the General Processing Packet (Table 11-6-3).

2. Specify (in PRLEN) the length of the record you
are modifying. Note that you cannot change the
length of a record with this request; the modified
record must be exactly the same length as the
record read.

Common REWRITE Request Error Messages ammmm—eey

Code Description

200 ILLEGAL FUNCTION

201 VARIABLE LENGTH TRANSFER ILLEGAL ON
THIS DEVICE

203 ILLEGAL FUNCTION FOR DEV

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT

226 NOSUCH VOLUME

234 RESIDUAL DISK ERROR

Processing SAM Files

DataGeneral

SOFTWARE DOCUMENTATION

SAM Close and Force End of Volume
Requests

There are no required specifications for these requests.
However, if your file resides on magnetic tape, you
may leave the tape positioned behind the file by
specifying -1 in PRDSP of the General Processing
Packet. If you do not specify it, the system will
automatically rewind the tape.

Common CLOSE Request Error Messages

Code Description

201 VARIABLE LENGTH TRANSFER ILLEGAL ON
THIS DEVICE

210 FILE NOT OPEN

212 VL FILE PROCESSING ERROR

217 VIRTUAL MEMORY EXHAUSTED

221 VL FILE OPEN ERR

222 VL FILE CLOSE ERR

232 ILLEGAL CLOSE

234 RESIDUAL DISK ERROR

242 FILE CLOSE ERROR

255 OUTPUT END VOLUME ERROR

415 ILLEGAL LABEL

416 ILLEGAL LABEL SPEC

417 VOL ID DOESNT MATCH

424 BLOCK COUNT INCORRECT

425 RECORD FORMAT CONFLICT

426 FILE SEQ NUMBER

Licensed Material - Property of Data General Corporation

Code
201

210
212
213
217
221
222
224
226
232
242
255
256
415
416
417
424
425
426

rCommon FORCE END-OF-VOLUME Request Error Messages -

Description

VARIABLE LENGTH TRANSFER ILLEGAL ON
THIS DEVICE

FILE NOT OPEN

VL FILE PROCESSING ERROR
UNRESOLVED RESOURCE CONFLICT
VIRTUAL MEMORY EXHAUSTED

VL FILE OPEN ERR

VL FILE CLOSE ERR

LOGICAL END OF FILE

NO SUCH VOLUME

ILLEGAL CLOSE

FILE CLOSE ERROR

OUTPUT END VOLUME ERROR
INPUT END VOLUME ERROR
ILLEGAL LABEL

ILLEGAL LABEL SPEC

VOL ID DOESNT MATCH

BLOCK COUNT INCORRECT

RECORD FORMAT CONFLICT

FILE SEQ NUMBER

11-2-6

093-000114-01

Licensed Material - Property of Data General Corporation
Magnetic Tape Control Request

NOTE: Do not mix these requests with other SAM
processing requests for the same file. That is,
to process a magnetic tape, you must either
use all magnetic tape control requests, or all
standard requests, Mixing the two may have

undesireable effects on your file.

1. Build a Magnetic Tape Control Processing Packet
(see Table I1-6-11 and BLDMTC in Chapter 11-7).

2. Specify in PRCFC what you want the system to do
with your tape. Your options are:

Parameter Function

MCSFF Space forward to next tape mark and

position behind it.
MCSBF Space backward over two tape marks,
then forward over one; position there.
MCRD Read a record, starting at the present
position. (Specify the record length in
PRNWD))
MCWRT Write a record, starting at the present
position. (Specify the record length in
PRNWD.)
MCWEF Write an end-of-file mark at the present
position, then position directly behind
it.
MCREW Rewind the tape to the load point, then
return to you.
MCSFR Space forward n records (specified in
PRNWD) or until encountering an
end-of-file or end-of-tape mark.
MCSBR Space backward n records (specified in
PRNWD) until encountering a tape
mark or the beginning of the tape.

Erase a two and one-half inch strip of
tape, beginning at the current position.

MCERS

DataGeneral

SOFTWARE DOCUMENTATION

3. If you are transferring records, specify the address
of your data area in PRDAT.

4. If the system encounters an I/O error while
processing your tape, it will set PFMTR in PRSTA.
(Leave PRSTA blank when initiating your
request.) It will also return the contents of the mag
tape status registers in PRCFC; these flags are
described in the Programmer’s Reference Manual -
Peripherals (number 015-021).

For an error during a Read or Write, the system will
return the actual transfer length in PRNWD; for a
Space Forward or Backward error, PRNWD will
contain the number of records spaced over.

Common MAGNETIC TAPE CONTROL Request Error
Messages

Code Description

213 UNRESOLVED RESOURCE CONFLICT
253 MAG-TAPEI/O ERROR

Point Request

NOTE: You may only issue this request when your
file resides on a direct-access device.

1. Specify the Point mode in PRMOD of the Point
Processing Packet (see Table II-6-8).

2. Specify the desired record’s block record in
PRHLB.

3. Specify how far the desired record is offset from the
beginning of its block (in PRBOF).

Common POINT Request Error Messages

Code Description

200 ILLEGAL FUNCTION

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT
224 LOGICAL END OF FILE

232 ILLEGAL CLOSE

255 OUTPUT END VOLUME ERROR

256 INPUT END VOLUME ERROR

End of Chapter

093-000114-01

1-2-7

Processing SAM Files

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 3
Random Access Method (RAM) Files

This chapter provides procedure-oriented descriptions
of how to open and process a RAM file. Refer to
Chapter 3 in Section One of this manual for further
elaboration on the points discussed here.

How to Open a RAM File

You can open a RAM file in four different ways:
® In the Output mode (only writing allowed)

® In the Create Update mode (all processing functions
allowed)

® In the Input mode (only reading allowed)

e In the Update mode (all processing functions
allowed)

Depending on what you want to do with your file after
you open it, you can specify either the Output or the
Create Update mode when you create the file. To open
an existing file, you can specify either the Input or
Update mode. However, the procedure you follow to
open the file will be the same regardless of the mode
which you choose. Only the contents of the FDP and
the VDPs will vary according to the mode. The steps
for opening a file and the contents of the FDP and
VDPs for each processing mode follow.

Steps in Opening a RAM File

1. Setup the following:
® FDP (see Table II-6-1 and BLDFDP in Chapter
11-7)
® Volume names for each file volume (in FDVTP
of the FDP)
® One VDP for each file volume (see Table 11-6-2

and BLDVDP in Chapter II-7)
® A Volume Table (i.e., concatenate the VDPs)

2. Put the address of the FDP in AC2.
3. Issue a Pre-open (.PINFOS) system call.
4. When INFOS returns:

® Make sure that the address of the FDP is in
AC2.

® Issue an Open (.OINFOS) system call.

5. When INFOS returns, move the file’s pseudo
channel number from ACI1 to your program area.

Figure II-3-1 shows how the FDP and the Volume
Table relate.

FDP

Volume Table

SD-00762

093-000114-01

Volume 1 Name Pointer

Figure 11-3-1. FDP and Volume Table Relationship

filename. V1

1-3-1 Steps in Opening a RAM File

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

FDP for RAM Files Opened in the Output or Create Update Mode
(See Table 11-6-1)

You must specify the following:
1. RAM access method (in FDFL1)
2. Fixed length records (in FDFL1)

3. Either Output mode (for writing only) or Create Update mode (for all processing
functions) (in FDFL1)

4. The starting address of the Volume Table (FDVTP)
You may specify the following: System default values for these options:

1. Number of file volumes (FDNVD) One volume

2. Code translation (in FDTCF) No translation done
3. Block size (FDBLK) 512 bytes
4, Record length (FDLEN) Records are same length as block size
5. Number of buffers (FDBUF) One buffer
6. Read-After-Write verification No verification for this opening
(in FDFL1)
7. Set Exclusive Use (in FDFL1) Others may access this file while you do

VDP for RAM Files Opened in the Output or Create Update Mode
(See Table 11-6-2)

You must specify the following:
1. The address of the name of the first file volume (VDVNP)
2. A pad character (VDPAD)

You may specify the following: System default values for these options:
1. Volume size (VDVSZ) 65,535 blocks (Make sure that you have
at least this much available disk space if
you choose the default.)

2. Contiguous allocation (in VDIVC) Random allocation

3. Device timeout interval (VDDTO) 5 seconds for moving-head disks;
3 seconds for fixed-head disks

11-3-2 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

——————— FDP for RAM Files Opened in the Input or Update Mode
(See Table 11-6-1)

You must specify the following:
1. RAM access method (in FDFL1)
2. Fixed length records (in FDFL1)

3. Either the Input mode (for reading only) or the Update mode (for all processing
functions) (in FDFL1)

4. The address of the Volume Table (FDVTP)

You may specify the following: System default values for these
options:
1. Number of buffers (FDBUF) Number recorded in the PFS
2. Read-After-Write verification No verification for this opening
(Update mode only)
(in FDFL1)
3. Set Exclusive Use (in FDFL1) Others may use this file while you do
4. Number of file volumes (FDNVD) Only one file volume recognized

VDP for RAM Files Opened in the Input or Update Mode

You must specify the address of the name of the first volume in the file in VDVNP. The
system will use the contents of the PFS for the remaining information.

093-000114-01 1-3-3 Steps in Opening a RAM File

DataGeneral

SOFTWARE DOCUMENTATION

Processing Your RAM File

You can issue any one of the following processing
requests as soon as you open your RAM file:

® Read

o Write

® Close

® Force end-of-volume
® Set Exclusive Use

® Preread

For read and write requests, the system will always
return the length (in bytes) of the record transferred or
written, the block address of the record, and the
number of bytes by which the record is offset from the
beginning of the block. In addition, the system will
return the following exceptional status information for
all processing requests:

e If it encounters a physical end-of-file while
processing,

® If the read-after-write verification cycle failed twice
on a previous request.

NOTE: You will receive exceptional status returns after
the fact. That is, the condition for which you get
the return will have occurred in a previous
request.

The following section lists the procedures for each type
of RAM processing request and the error messages the
system may return to you. (For further explanation of
all INFOS error messages, see Appendix D.)

To build a General Processing Packet, see BLDPP in
Chapter II-7.

RAM Read Request

1. Specify the address of your data area in PRDAT of
the General Processing Packet (Table 11-6-3).

2. Specify the number of the record desired in
PRREC.

3. A. Specify Lock if you want to prevent access by
other users while you are reading the record by
setting PFLOC in PRSTA.

B. If the record you specify is already locked by
another user, you may set PFHLD in PRSTA
to specify that your request be held in a queue
until the record becomes available.

1-3-4

Licensed Material - Property of Data General Corporation

Common READ Request Error Messages

Code Description

200 ILLEGAL FUNCTION

206 EXCLUSIVEFILE

207 FILE LOCKED

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT
226 NOSUCH VOLUME

227 NOHOLD ON LOCKED REQUEST
231 RAM ACCESS OUTSIDE FILE

243 RDOS OPEN ERROR

244 VOLUME ALREADY EXISTS

254 DEVICE NOT SUPPORTED

RAM Write Request

1. Specify the address of your data area in PRDAT of
the General Processing Packet (Table 11-6-3).

2. Specify the number of the record you want to write
in PRREC.

3. Specify Lock to prevent access by other users while
you are processing the record by setting PFLOC in
PRSTA.

4. Specify Unlock to make the record available to
other users when this write request is completed by
setting PFUNL in PRSTA.

5. Specify Write Immediate to write the record to your
file as soon as possible, by setting PFWIF in
PRSTA.

6. Specify Read Inhibit if you don’t want the system to
read the other records in the block into a buffer by
setting PFRIN in PRSTA.

Common WRITE Request Error Message

Code Description

200 ILLEGAL FUNCTION

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT
226 NOSUCH VOLUME

227 NOHOLD ON LOCKED REQUEST

230 NO MORE DISK SPACE

231 RAM ACCESS OUTSIDE FILE

234 RESIDUAL DISK ERROR

255 OUTPUT END VOLUME ERROR

093-000114-01

Licensed Material - Property of Data General Corporation

RAM Close Request

There are no required or optional parameters for a close
request. Simply supply a blank General Processing
Packet so the system will have a place to return
exceptional status information, if there is any.

Common CLOSE Request Error Messages

Code Description

210 FILE NOT OPEN

212 VL FILE PROCESSING ERROR

213 UNRESOLVED RESOURCE CONFLICT
217 VIRTUAL MEMORY EXHAUSTED
221 VL FILE OPEN ERR

222 VL FILE CLOSE ERR

231 RAM ACCESS OUTSIDE FILE

234 RESIDUAL DISK ERROR

242 FILE CLOSE ERROR

255 OUTPUT END VOLUME ERROR
256 INPUT END VOLUME ERROR

RAM Force End-of-Volume Request

1. Specify the number of the volume you wish to close
in PRDSP of the General Processing Packet. Note
that the first volume of any RAM file is always
numbered zero, and the system recognizes the
other volume numbers by the sequence in which
you enter their VDPs into the Volume Table.

Common FORCE END-OF-VOLUME Request Error Messages1
Code Description

210 FILE NOT OPEN

212 VL FILE PROCESSING ERROR

213 UNRESOLVED RESOURCE CONFLICT
217 VIRTUAL MEMORY EXHAUSTED
221 VLFILE OPEN ERR

222 VLFILE CLOSE ERR

224 LOGICAL END OF FILE

226 NOSUCH VOLUME

231 RAM ACCESS OUTSIDE FILE

232 ILLEGAL CLOSE

242 FILE CLOSE ERROR

255 OUTPUT END VOLUME ERROR
256 INPUT END VOLUME ERROR

DataGeneral

SOFTWARE DOCUMENTATION

RAM Set Exclusive Use Request

Note that you can gain exclusive access to your file
either by setting FIEXF in FDFL1 of the FDP, or
during file processing, by setting PFLOC in PRSTA of
the General Processing Packet. If no one else is using
the file, you may use the file exclusively until you
release it or close it. If, however, another user has
opened the file prior to your request, you will receive
error code number 206: EXCLUSIVE FILE.

RAM Preread Request

1. Specify the number of the record you want in
PRREC of the General Processing Packet (Table
11-6-3).

2. Specify Read Inhibit to inhibit the transfer of the
block containing the record to an I/0 buffer by
setting PFRIN in PRSTA. (This is handy when
your next request will be a write; it speeds up your
processing operations.)

Common PREREAD Request Error Messages

Code Description

200 ILLEGAL FUNCTION

206 EXCLUSIVEFILE

207 FILE LOCKED

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT
226 NOSUCH VOLUME

227 NOHOLD ON LOCKED REQUEST
231 RAM ACCESS OUTSIDE FILE

243 RDOS OPEN ERROR

244 VOLUME ALREADY EXISTS

254 DEVICE NOT SUPPORTED

End of Chapter

093-000114-01

11-3-5

Processing Your RAM File

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 4
Indexed Sequential Access Method
(ISAM) Files

This chapter will tell you how to open an ISAM file
under various conditions and how to use the different
processing requests. This section is
procedure-oriented, so please refer to Chapter 4 in
Section One if you have any questions about the
options explained here.

How to Open ISAM Files

You can open your ISAM file in any one of the
following ways:

® In the Create Update mode; or

® In the Update mode without a Database runtime File
Definition Packet; or

® In the Update mode with a Database runtime FDP.
(This is handy when you want to use a different
number of buffers than you recorded in the
Permanent File Specification.)

Steps for Opening in the Create
Update Mode

1. Setup the following:
A. For the Index:

e Index FDP (see Tables II-4-1, II-6-1, and
BLDFDP in Chapter 11-7)

® Volume names for each Index volume
(FDVTP of the FDP)

® One VDP for each Index volume (see Tables
11-4-3, 11-6-2, and BLDVDP in Chapter II-7)

® An Index Volume Table (i.e., concatenate
the Index VDPs)

093-000114-01

1-4-1

B. For the Database:

® Database FDP (Tables II-4-2, II-6-1, and
BLDFDP in Chapter II-7)

® Volume names for each Database volume
(FDVTP of each FDP)

® One VDP for each Database volume (Tables
I1-4-3, 11I-6-2, and BLDVDP in Chapter II-7)

® A Database Volume Table
2. Put the address of the Index FDP in AC2.
3. Issue a Pre-open (.PINFOS) system call.
4. When INFOS returns:

A. Make sure that the address of the Index FDP is
in AC2.

B. Issue an Open ((OINFOS) system call.

5. When INFOS returns, move the file’s pseudo
channel number from ACI1 to your program area.

Figure II-4-1 shows how the packets and tables relate.

Steps for Opening in the Create Update
Mode

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Index FDP Index Volume Table

filename.V1
Volume 1 Name Pointer .
Number of Volumes .
1 .
Volume Table Pointer :
.
42 tilename.Vn

Database FDP Pointer Volume n Name Pointer

49

Database FDP

Database Volume Table

) dbfilename.V1
Volume 1 Name Pointer

Number of Volumes

11
Volume Table Pointer

39

dbfilename.Vn
Volume n Name Pointer

15

SD-00763

Figure 11-4-1. Open ISAM File in Create Update Mode

11-4-2 093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

Table 11-4-1. ISAM Index FDP for Create Update Mode

(See Table 11-6-1)

You must specify the following:
1. ISAM access method (in FDFL1)
2. Variable length records (in FDFL1)

3. Create Update processing mode (in FDFL1)

4. Subindexing not allowed (in FDIFL)

5. The address of the Volume Table (FDVTP)

6. The address of the database FDP (FDDBP)

7. Initial node size (FDINS)
8. Maximum key length (FDMKL)

You may specify the following:

System default values for these options

are:
1. The number of 1/0 buffers for this 2 buffers, recorded as a changeable part
opening (FDBUF) of the file’s PFS
2. Page size (FDBLK) 512 bytes
3. Number of volumes (FDNVD) 1 volume

4. Read-After-Write verification
(in FDFL1)

5. Space management (in FDFL2)

No verification for this opening

No space management

093-000114-01

SOFTWARE DOCUMENTATION

6. Disable hierarchical replacement Hierarchically modulated LRU buffer
(in FDFL2) management used for this opening
11-4-3 Steps for Opening in the Create Update

Mode

DataGeneral

SOFTWARE DOCUMENTATION

4.

Table 11-4-2. ISAM Database FDP for Create Update Mode
(See Table 11-6-1)

You must specify the following:
1. RAM access method (in FDFL1)

2. Variable length records (in FDFL1)

3. Create Update processing mode (in FDFL1)

You may specify the following:

1. Page size (FDBLK)

2. Number of 170 buffers for this
opening (FDBUF)

3. Number of volumes (FDNVD)

4, Read-After-Write verification
(in FDFL1)

5. Space management (in FDFL2)

The address of the Volume Table (FDVTP)

System default values for these options
are:

512 bytes

1 buffer, recorded as a changeable part
of the file’s PFS

1 volume

No verification for this opening

No space management

Licensed Material - Property of Data General Corporation

— Table 11-4-3. VDPs for ISAM Index and Database Files Opened in the Create ______

Update Mode
(See Table 11-6-2)

You must specify the address of each volume’s name (VDVNP)

You may specify the following:

1. Volume size (VDVSZ)

2. Contiguous allocation (in VDIVC)

3. Disable file initialization
(in VDIVC)

4, Pad character (VDPAD)

System default values for these options
are:

65,535 blocks if random allocation; if
contiguous allocation is specified, you
must also specify the number of biocks
to be allocated.

Random allocation

If contiguous allocation, each block is
null filled

Null (binary 0)

11-4-4

093-000114-01

Licensed Material - Property of Data General Corporation

Steps for Opening in the Update Mode
without a Database Runtime FDP

1. Set up the following:
A. For the Index:

® Index FDP (Tables II-4-4, II-6-1, and
BLDFDP in Chapter I11-7)

® Index volume name (FDVTP of the FDP)

® A VDP for the Index volume (Tables I1-4-5,
I11-6-2, and BLDVDP in Chapter I1-7)

® Index volume table

B. For the Database:

® The Database filename (FDDBP of the
index’s FDP)

DataGeneral

SOFTWARE DOCUMENTATION

2. Put the address of the Index FDP in AC2.
3. Issue a Pre-open (.PINFOS) system call.
4. When INFOS returns:

A. Make sure that the address of the Index FDP is
in AC2.

B. Issue an Open ((OINFOS) system call.

5. When INFOS returns, move the file’s pseudo
channel number from AC1 to your program area.

Figure I1-4-2 shows how the packets and tables relate.

Index FDP

Index Volume Table

1" T
Volume Table Pointer
" . P ;
Database Name Pointer

dbfilename.V1

filename.V1

Volume 1 Name Pointer

49 . .
SD-00764 Figure 11-4-2. Open ISAM File in Update Mode without
Database Runtime FDP
093-000114-01 11-4-5 Steps for Opening in the Update Mode

without a Database Runtime FDP

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table 11-4-4. ISAM Index FDP for Update Mode without Database Runtime FDP

[(See Table 11-6-1) —.I

You must specify the following:

1. ISAM access method (in FDFL1)

2. Variable length records (in FDFL1)

3. Update processing mode (in FDFL1)

4. The address of the Volume Table (FDVTP)

5. The address of the database file name (FDDBP)

You may specify the following: Default values for these options are:

1. The number of I/0 buffers for this Contents of the index and database

opening (FDBUF) PFSs are used

2. Read-After-Write verification No verification for this opening
(in FDFL1)

3. Disable hierarchical replacement Hierarchically modulated LRU buffer
(in FDFL2) management used for this opening

Table 11-4-5. VDP for ISAM Index Opened in the Update Mode

You must specify the address of the name The contents of the . VL files for the index
of the first volume of the index in FDVTP and database are used in the Update
processing mode.

11-4-6 093-000114-01

Licensed Material - Property of Data General Corporation

Steps for Opening in the Update Mode
with a Database Runtime FDP

1. Set up the following:
A. For the Index:

o Index FDP (Tables II-4-6, II-6-1, and
BLDFDP in Chapter 11I-7)

e Index volume name (FDVTP of the FDP)

e Index VDP (Tables I1I-4-8, II-6-2, and
BLDVDP in Chapter I1I-7)

® Index Volume Table

B. For the Database:

® Database FDP (Tables II-4-7, 1I-6-1, and

BLDFDP)

® Database volume name (FDVTP of the
FDP)

e Database VDP (Tables 1I-4-8, II-6-2, and
BLDVDP)

® Database Volume Table

DataGeneral

SOFTWARE DOCUMENTATION

Put address of Index FDP in AC2.
Issue a Pre-open (.PINFOS) system call.
When INFOS returns:

A. Make sure that the address of the Index FDP is
in AC2.

B. Issue an Open (.OINFOS) system call.

When INFOS returns, move the file’s pseudo
channel number from AC1 to your program area.

Figure II-4-3 shows how the packets and tables relate.

Index FDP

Index Volume Table

1l

49l

Volume 1 Name Pointer —

Database Volume Table

——» filename.V1

11

Volume Table Pointer

39

v

$D-00765 Figure I1-4-3. Open ISAM File in Update Mode with

dbfilename.V1

olume 1 Name Pointer

Database Runtime FDP.

093-000114-01

N-4-7

Steps for Opening in the Update Mode
with a Database Runtime FDP

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

—— Table 11-4-6. ISAM Index FDP for Update Mode with Database Runtime FDP
(See Table 11-6-1)

You must specify the following:

1. ISAM access method (in FDFL1)

2. Variable length records (in FDFL1)

3. Update processing mode (in FDFL1)

4, The address of the Volume Table (FDVTP)
5. That a database FDP is present (in FDFL2)

6. The address of the database FDP (FDDBP)

You may specify the following: Default values for these options are:
1. The number of I/0 buffers to be The contents of the Index PFS are used
used for this opening (FDBUF)
2. Read-After-Write verification No verification for this opening
(in FDFL1)
3. Disable hierarchical replacement Hierarchically modulated LRU buffer
(in FDFL2) management is used for this opening

Table 11-4-7. ISAM Database Runtime FDP for Update Mode
(See Table 11-6-1)

You must specify the following:

1. RAM access method (in FDFL1)

2. Variable length records (in FDFL1)
3. Update processing mode (in FDFL1)

4. The address of the Volume Table (in FDVTP)

You may specify the following: Default values for these options are:
1. The number of 1/0 buffers to be The contents of the data base PFS are
used for this opening (FDBUF) used for this opening
2. Read-After-Write verification No verification for this opening
(in FDFL1)

r_Table 11-4-8. VDPs for ISAM Index and Database Opened in the Update Mode —,
(See Table 11-6-2)

You must specify the address of the name The contents of the . VL files for the index
of the first volume of each file in VDVNP and database are used in the Update
processing mode.

11-4-8 093-000114-01

Licensed Material - Property of Data General Corporation

Processing ISAM Files

You can issue processing requests as soon as you open
your ISAM file. For each request you issue, however,
you must supply an Extended Processing Packet (see
Table 1I-6-4 and BLDPP in Chapter II-7), and specify
either Keyed or Relative access in PRCCW of that
packet.

Keyed Access

Whenever you want to use keyed access, you must
provide a Key Table. An ISAM Key Table consists of a
single Key Definition Packet, followed immediately by
either a zero length key or a null word, as shown in
Figure 11-4-4.

Point here in your
processing request

0 oup [cen| apx - LENGTH = n

KEY 1 POINTER
0

—» Key

= DUPLICATE KEY OCCURRENCE —
NUMBER

LENGTH =0

SD-00766

Figure 11-4-4. Key Table

093-000114-01

11-4-9

DataGeneral

SOFTWARE DOCUMENTATION

Relative Access

As you might think, you don’t need a key table to do
Relative Access, since you won’t be using keys. With
each Relative processing request, you need only specify
a direction of motion relative to the last established
current position. In ISAM, you can move forward,
backward, up, down, down and forward, or not at all
(static). The available ISAM processing requests are as
follows:

® Read, Write, Rewrite

® Delete, Delete Subindex, Reinstate

® Retrieve Status, Retrieve Key, Retrieve High Key
® Close

Note that for all of the following processing requests,
the system will let you know:

® if it encounters end-of-file while
processing, or

a physical
® if the Read-After-Write verification cycle failed on a
previous write or rewrite request.

Refer to the macro call descriptions in Chapter 1I-7 to
build the indicated packets:

Packet Macro Calt
Extended Processing BLDPP

Key Definition BLDKDP
Subindex Definition BLDSDP

Processing ISAM Files

DataGeneral

SOFTWARE DOCUMENTATION

ISAM Read Processing Request

1.

Specify an access technique in PRCCW of the
Extended Processing Packet (Table 11-6-4).

A. For Keyed Access, you must build a Key Table
(i.e., a Key Definition Packet) with one key and
put a pointer to it in PRKTP.

B. For Relative Access, you must specify a
direction of motion in PRCCW.

On each access into the Index, the system returns
this information:

® Whether the key accessed is a duplicate,

® Whether the key accessed has been logically
deleted,

® The length of the key accessed.

If you want to read a record by using an
approximate or generic key, specify the desired
option in KDTYP of the Key Definition Packet.

If you want to establish a new current position,
specify Set Current Position in PRCCW.

If you don’t set a new current position, upon the
successful completion of this request, the INFOS
system returns to the last established current
position.

If you want the data record returned, specify the
address of your data area in PRDAT.

If you don’t want the data record returned, specify
Suppress Database in PRCCW.,

Licensed Material - Property of Data General Corporation

5. You may specify the length of the record you want
returned (in PRLEN). The system will let you
know if the actual record is longer than your
request. If the system does return a record, it will
let you know its length, its address, and whether it
has been logically deleted.

6. If you want to lock or unlock a record, specify:
Local lock or unlock (PFLOC/PFUNL in PRSTA
and CCLOC in PRCCW),

or
Global lock or unlock (PFLOC/PFUNL in PRSTA
and CCGLB in PRCCW),

or
Both local and global lock or unlock
(PFLOC/PFUNL in PRSTA and CCLOC and
CCGLB in PRCCW).

Common Error Messages for a Read Request

Code Description

200 ILLEGAL FUNCTION

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT

226 NO SUCH VOLUME

231 RAM ACCESS OUTSIDE FILE

243 RDOS OPEN ERROR

244 VOLUME ALREADY EXISTS

254 DEVICE NOT SUPPORTED

257 COMPARE ERROR (ISAM)

260 RESOLUTION ERROR (ISAM)

261 ILLEGAL REL MOTION

262 INVALID NODE ADDRESS

263 INVALID CURRENT ENTRY

266 SUBINDEX NOT DEFINED

267 END OF SUBINDEX

274 ILLEGAL COMMAND CONTROL

276 KEY POSITIONING ERROR

400 DATA BASE REC NOT PRESENT

403 DATA RECORD LOCKED

413 INDEX ENTRY LOCKED

11-4-10

093-000114-01

Licensed Material - Property of Data General Corporation
ISAM Write Processing Request

1.

—— Common Error Messages for a Write Request

Code Description

200 ILLEGAL FUNCTION

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT
226 NOSUCH VOLUME

230 NOMORE DISK SPACE

231 RAM ACCESS OUTSIDE FILE
234 RESIDUAL DISK ERROR

252 NONODESPACE

255 OUTPUT END VOLUME ERROR
257 COMPARE ERROR (ISAM)

260 RESOLUTION ERROR

261 ILLEGAL REL MOTION

262 INVALID NODE ADDRESS

263 INVALID CURRENT ENTRY
266 SUBINDEX NOT DEFINED

272 ILLEGAL KEY LENGTH

273 INVALID ENTRY NUMBER

274 ILLEGAL COMMAND CONTROL
275 KEY ALREADY EXISTS

276 KEY POSITIONING ERROR

277 INVALID RECORD LENGTH
414 NO WRITE WITHOUT KEY

You must specify Keyed Access in PRCCW of the
Extended Processing Packet (Table I1-6-4), build a
Key Table with one key (i.e., a Key Definition
Packet), and put a pointer to the Key Table in
PRKTP of the EPP.

You may Set Current Position if you want to
establish a new one by setting CCSCP in PRCCW.
If you don’t, the system will return you to the last
established current position when it successfully
completes this request.

You must specify the address of your data area in '

PRDAT and the length of the record to be written
in PRLEN if you want to link the index entry you
are creating to a data record. If you don’t want to
link the new index entry to a data record, specify
Suppress Database in PRCCW.

Y ou may specify Write Immediate in PRSTA if you
want the new index entry and data record written to
the file as soon as this request is completed. If you
do not specify Write Immediate, the INFOS system
will not transfer the contents of the buffer used for
this request until it needs the buffer for a
subsequent request.

You may lock or unlock a record by specifying:

Local lock or unlock (PFLOC/PFUNL in PRSTA

and CCLOC in PRCCW),
or
Global lock or unlock (PFLOC/PFUNL in PRSTA
and CCGLB in PRCCW),
or
Both local and global lock or wunlock

(PFLOC/PFUNL in PRSTA and CCLOC and
CCGLB in PRCCW).

DataGeneral

SOFTWARE DOCUMENTATION

ISAM Rewrite Processing Request

093-000114-01

1. You must specify an access technique in PRCCW
of the Extended Processing Packet (Table I1-6-4).
A. For Keyed access, you must build a Key Table

with one key (i.e., a Key Definition Packet) and
put a pointer to it in PRKTP.

B. For Relative access, you must specify a
direction of motion in PRCCW.

2. Specify Set Current Position in PRCCW if you want
to establish a new one. If you don’t, the system will
return to the last established current position.

3. A. If you are rewriting an existing data record,
specify the address of your data area in PRDAT
and the length of the record you’re now writing
in PRLEN.

B. If you are writing a new data record, specify the
address of your data area in PRDAT and the
length of the record you’re writing in PRLEN,

4. If you want to lock or unlock a record for rewriting,
specify:

Local lock or unlock (PFLOC/PFUNL in PRSTA

and CCLOC in PRCCW),

or

Global lock or unlock (PFLOC/PFUNL in PRSTA

and CCGLB in PRCCW),

or

Both local and global lock or unlock

(PFLOC/PFUNL in PRSTA and CCLOC and

CCGLB in PRCCW).

Common Error Messages for a Rewrite Request

Code Description

200 ILLEGAL FUNCTION

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT

226 NO SUCH VOLUME

231 ACCESS OUTSIDE FILE

234 RESIDUAL DISK ERROR

252 NO NODE SPACE

260 RESOLUTION ERROR

261 ILLEGAL REL MOTION

262 INVALID NODE ADDRESS

263 INVALID CURRENT ENTRY

266 SUBINDEX NOT DEFINED

267 END OF SUBINDEX

274 ILLEGAL COMMAND CONTROL

276 KEY POSITIONING ERROR

400 DATA BASE REC NOT PRESENT

403 DATA RECORD LOCKED

413 INDEX ENTRY LOCKED

11-4-11 Processing ISAM Files

DataGeneral

SOFTWARE DOCUMENTATION

ISAM Delete Processing Request

NOTE: This request allows you to either physically

delete an index entry and its corresponding data
record, or simply mark either one as logically
deleted. However, to physically delete an index
entry and its associated data record, you must
use keyed access. Thus:

1. Specify an access technique in PRCCW of the

Ex

A.

tended Processing Packet (Table 11-6-4).

For Keyed access, you must build a Key Table
with one key (i.e., a Key Definition Packet),
and put a pointer to it in PRKTP.

For Relative access, you must specify a
direction of motion in PRCCW.

. To mark an index entry as logically deleted,

specify Local Logical Delete (set CCLOC and
CCLOG in PRCCW).

To mark a data record as logically deleted,
specify Global Logical Delete (set CCGLB and
CCLOG in PRCCW).

3. Specify Set Current Position in PRCCW if you want
to establish a new one. If you don’t, the system will
return to the last established position when it
completes this request.

For a Physical Delete, current position will either

be on:
A. The next higher index entry from the one
deleted (if any), or
B. The initial system-set current position.
Common Error Messages for a Delete Request
Code Description
213 UNRESOLVED RESOURCE CONFLICT
226 NO SUCH VOLUME
230 NO MORE DISK SPACE
231 ACCESS OUTSIDE FILE
261 ILLEGAL REL MOTION
262 INVALID NODE ADDRESS
263 INVALID CURRENT ENTRY
267 END OF SUBINDEX
270 DELETE POSITIONING ERROR
272 ILLEGAL KEY LENGTH
274 ILLEGAL COMMAND CONTROL
275 KEY ALREADY EXISTS
276 KEY POSITIONING ERROR
403 DATA RECORD LOCKED
411 SUBINDEX HAS SUBINDEX; DELETE
SUBINDEX ERROR
412 ATTEMPT TO DELETE ENTRY
WITHOUT KEYED ACCESS
413 INDEX ENTRY LOCKED

Licensed Material - Property of Data General Corporation

ISAM Delete Subindex Processing Request

1.

You must specify wupward relative motion
PRCCW of the Extended Processing Packet.

Common Error Messages for a Delete Subindex Request N
Code Description
213 UNRESOLVED RESOURCE CONFLICT
230 NOMORE DISK SPACE
231 RAM ACCESS OUTSIDE FILE
261 ILLEGAL REL MOTION
262 INVALID NODE ADDRESS
263 INVALID CURRENT ENTRY
265 SUBINDICES NOT ALLOWED
266 SUBINDEX NOT DEFINED
267 END OF SUBINDEX
274 ILLEGAL COMMAND CONTROL
276 KEY POSITIONING ERROR

in

ISAM Reinstate Processing Request

1.

213
230
231
261
262
263
272
274
275
276
400
403

Specify an access technique in PRCCW of the
Extended Processing Packet (Table 11-6-4).

A.

Code Description

Common Error Messages for a Reinstate Request

For Keyed access, you must build a Key Table
with one key (i.e., a Key Definition Packet) and
put a pointer to it in PRKTP.

For Relative access, you must specify a
direction of motion in PRCCW.

. To reinstate an index entry, specify Local

(CCLOC in PRCCW).

To reinstate a data record, specify Global
(CCGLB in PRCCW).

To reinstate both a data record and an index
entry, specify both Local and Global in a single
request (i.e., set both CCLOC and CCGLB in
PRCCW).

UNRESOLVED SOURCE CONFLICT
NO MORE DISK SPACE

ACCESS OUTSIDE FILE
ILLEGAL REL MOTION
INVALID NODE ADDRESS
INVALID CURRENT ENTRY
ILLEGAL KEY LENGTH
ILLEGAL COMMAND CONTROL
KEY ALREADY EXISTS

KEY POSITIONING ERROR
DATA BASE REC NOT PRESENT
DATA RECORD LOCKED

11-4-12

093-000114-01

Licensed Material - Property of Data General Corporation

ISAM Retrieve Status Processing Request

1. Specify an access technique in PRCCW of the
Extended Processing Packet (Table I11-6-4).

A. For Keyed access, you must build a Key Table
with one key (i.e., a Key Definition Packet),
and put a pointer to it in PRKTP.

B. For Relative access, you must specify a
direction of motion in PRCCW.

2. Specify Set Current Position in PRCCW if you want
to establish a new one. If you don’t, the system will
return to the last established position when it
successfully completes this task.

3. The INFOS system will return the following status:

A. The record length, whether or not it’s marked
as logically deleted, and whether it’s locked.

B. The key length, whether it’s marked as logically
deleted, and its occurrence number if it’s a
duplicate.

—— Common Error Messages for a Retrieve Status Request

Code Description

213 UNRESOLVED RESOURCE CONFLICT
231 RAM ACCESS OUTSIDE FILE

261 ILLEGAL REL MOTION

262 INVALID NODE ADDRESS

263 INVALID CURRENT ENTRY

267 END OF SUBINDEX

274 ILLEGAL COMMAND CONTROL

276 KEY POSITIONING ERROR

400 DATA BASE REC NOT PRESENT

403 DATA RECORD LOCKED

DataGeneral

SOFTWARE DOCUMENTATION

ISAM Retrieve Key and Retrieve High Key
Processing Requests

1. Specify the address of the area to which the system
is to return the key in PRDAT and provide a Key
Definition Packet to receive a duplicate key
occurrence number (if any). If you didn’t allow
duplicate keys, place -1 in the second word of the
Key Table pointer.

2. Specify an access technique in PRCCW.
A. For Keyed access, you must build a Key Table
with one key (i.e., a Key Definition Packet),
and put a pointer to it in PRKTP.

B. For Relative access, you must specify a
direction of motion in PRCCW.

3. Specify Set Current Position in PRCCW if you want
to establish a new one, otherwise the system will
return to the last established current position.

4. The system will return the key, its length, and its
occurrence number if it’s a duplicate.

Common Error Messages for Retrieve Key and Retrieve —

High Key Requests

Code Description

213 UNRESOLVED RESOURCE CONFLICT
231 ACCESS OUTSIDE FILE

261 ILLEGAL REL MOTION

262 INVALID NODE ADDRESS

263 INVALID CURRENT ENTRY

267 END OF SUBINDEX

274 ILLEGAL COMMAND CONTROL

276 KEY POSITIONING ERROR

End of Chapter

093-000114-01

1-4-13

Processing ISAM Files

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Chapter 5
Data Base Access Method (DBAM) Files

This chapter discusses how to open a DBAM file in B. For the Database:
various circumstances and how to use the DBAM
processing requests. Similar to the rest of Section Two, ® Database FDP (Tables II-5-2, II-6-1, and
this chapter is procedure-oriented. You can find further BLDFDP)
details about the information described here in Chapter
S of Section One of this manual. ® Volume names for each Database volume
(FDVTP of the FDP)
Opening DBAM Files ® One VDP for each Database volume (Tables
You can open a DBAM file in five different ways: 1I-5-3, II-6-2, and BLDVDP)
e In the Create Update mode ® A Database Volume Table

® In the Update mode withouta Database runtime FDP 2. Put the address of the Index FDP in AC2.
e In the Update mode witha Database runtime FDP 3. Issue a Pre-open (PINFOS) system call.

® When you’re creating a new DBAM Index without a 4. When INFOS returns:

Database runtime FDP A. Make sure that the address of the Index FDP is

® When you’re creating a new DBAM Index with a in AC2. -

Database runtime FDP B. Issue an Open (.OINFOQS) system call.

Let’s look at each of these situations individually. 5. When INFOS returns, move_the file’s pseudo

channel number from AC1 to your program area.

for ning in the Create
Steps ° Ope 8 t Crea Figure I1-5-1 shows how the packets and tables relate.
Update Mode

1. Setup the following:
A. For the Index:

o Index FDP (see Tables II-5-1, II-6-1, and
BLDFDP in Chapter 1I-7)

® Volume names for each Index volume
(FDVTP of the FDP)

® One VDP for each Index volume (Tables
11-5-3, 11-6-2, and BLDVDP in Chapter I1-7)

e An Index Volume Table (i.e., concatenate
the Index VDPs)

093-000114-01 11-5-1 Steps for Opening in the Create Update
Mode

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
Index FDP Index Volume Table
0
filename.V1
Volume 1 Name Pointer .
Number of Volumes .
1 .
Volume Table Pointer .
42 filename.Vn

Database FDP Pointer

Volume n Name Pointer

49 E

Database FDP Database Volume Table

— dbfilename.V1
Volume 1 Name Pointer —

Number of Vlumes

11
Volume Table Pointer

39

dbfilename.Vn
Volume n Name Pointer

15

SD-00767

Figure I11-5-1. Open DBAM file in the Create Update Mode

11-5-2 093-000114-01

Licensed Material - Property of Data General Corporation

093-000114-01

Table 11-5-1. DBAM Index FDP for Create Update Mode

DataGeneral

SOFTWARE DOCUMENTATION

(See Table 11-6-1)

You must specify the following:

1. DBAM access method (in FDFL1)

2.
3.

Variable length records (in FDFL1)

The number of index levels (FDNIL)

Initial node size (FDINS)

. Maximum key length (FDMKL)

You may specify the following:

10.
11.

12.
13.

The number of 1/0 buffers for this
opening (FDBUF)

Page size (FDBLK)

Number of volumes (FbNVD)
Partial record length (FDPRL)
Root node merit factor (FDRMF)

Read-After-Write verification
(in FDFL1)

Space management (in FDFL2)
Optimized distribution (in FDFL2)

Disable hierarchical replacement
(in FDFL2)

Key compression (in FDIFL)

High priority node (in FDIFL)

Temporary subindex (in FDIFL)

Permanent data records (in FDIFL)

Create Update processing mode (in FDFL1)

The address of the Volume Table (FDVTP)
The address of the Database FDP (FDDBP)

System default values for these options
are:

2 buffers, recorded as a changeable part
of the file’s PFS

512 bytes

1 volume

No partial record (0 length)
Merit factor of 0

No verification for this opening

No space management
No optimized distribution

Hierarchically modulated LRU buffer
management used for this opening

Keys in this subindex not compressed

Root node priority based on its subindex
level

Permanent subindex

Data records linked to index entries in
this subindex can be physically deleted

11-5-3

Steps for Opening in the Create Update

Mode

DataGeneral

SOFTWARE DOCUMENTATION

Table 11-5-2. DBAM Database FDP for Create Update Mode

(See Table 11-6-1)
You must specify the following:
1. RAM access method (in FDFL1)
2. Variable length records (in FDFL1)
3. Create Update processing mode (in FDFL1)
4. The address of the Volume Table (FDVTP)
You may specify the following: System default values for these options
are:
1. Page size (FDBLK) 512 bytes
2. Number of I/0 buffers for this 1 buffer, recorded as a changeable part
opening (FDBUF) of the file’s PFS
3. Number of volumes (FDNVD) 1 volume
4. Read-After-Write verification. No verification for this opening
(in FDFL1)
S. Space management (in FDFL2) No space management

6. Optimized distribution (in FDFL2) No optimized distribution

—Table 11-5-3. VDPs for Index and Database Files Opened in the Create Update
Mode (See Table 11-6-2)

You must specify the address of each volume’s name in VDVNP.

You may specify the following: System default values for these options
are:
1. Volume size (VDVSZ) 65,535 blocks (Make sure that you have

at least this much available disk space if
you choose the default.)

2. Contiguous allocation (in VDIVC) Random allocation

3. Disable file initialization If contiguous allocation, each block is
(in VDIVC) null filled

4, Volume merit factor (VDVMF) 0 merit factor

5. Pad character (VDPAD) Null (binary 0)

11-5-4

Licensed Material - Property of Data General Corporation

093-000114-01

Licensed Material - Property of Data General Corporation

Steps for Opening in the Update Mode
without a Database Runtime FDP

1. Set up the following:

A. For the Index:

® Index FDP (Tables II-5-4, II-6-1, and
BLDFDP in Chapter 11I-7)

® Index volume name (FDVTP of the FDP)

® A VDP for the Index volume (Tables II-5-5,
1I-6-2, and BLDVDP in Chapter 11-7)

® Index volume table

DataGeneral

SOFTWARE DOCUMENTATION

2. Put the address of the Index FDP in AC2.
3. Issue a Pre-open (.PINFOS) system call.
4. When INFOS returns:
A. Make sure that the address of the Index FDP is
in AC2.
B. Issue an Open ((OINFOS) system call.
S. When INFOS returns, move the file’s pseudo

channel number from AC1 to your program area.

B. For the Database: Figure II-5-2 shows how the packets and tables relate.
® The Database filename (FDDBP of the
index’s FDP)

Index FDP Index Volume Table

° : : filename.V1
Volume 1 Name Pointer
11
— Volume Table Pointer
42 dbfilename.V1
Database Name Pointer
49 i
SD-00768 Figure 11-5-2. Open ISAM File in Update Mode without
Database Runtime FDP
093-000114-01 11-5-5 Steps for Opening in the Update Mode

without a Database Runtime FDP

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

— Table 11-5-4. DBAM Index FDP for Update Mode without Database Runtime FDP
(See Table 11-6-1) T

You must specify the following:

1. DBAM access method (in FDFL1)

2. Variable length records (in FDFL1)

3. Update processing mode (in FDFL1)

4. The address of the Volume Table (FDVTP)

5. The address of the database filename (FDDBP)

You may specify the following: Default values for these options are:
1. The number of 1/0 buffers for this Contents of index and database PFSs are
opening (FDBUF) used
2. Read-After-Write verification No verification for this opening
(in FDFL1)
3. Disable hierarchical replacement Hierarchically modulated LRU buffer
(in FDFL2) management used for this opening

(— Table 11-5-5. VDP for DBAM Index Opened in the Update Mode
(See Table 11-6-2)

You must specify the address of the name of the first volume in the file in FDVTP. The
system will use the contents of the PFS for the remaining information.

11-5-6 093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

with a Database Runtime FDP 3. Issue a Pre-open ((PINFOS) system call.
1. Set up the following:
4. When INFOS returns:
A. For the Index:
A. Make sure that the address of the Index FDP is
e Index FDP (Tables II-5-6, 1I-6-1, and in AC2.
BLDFDP in Chapter 11-7)
® Index volume name (FDVTP of the FDP) B. Issue an Open ((OINFOS) system call.
® Index VDP (Tables II-5-8, II-6-2, and ,
BLDVDP in Chapter II-7) 5. When INFOS returns, move the file’s pseudo
e Index Volume Table channel number from AC1 to your program area.
B. For the Database: Figure II-5-3 shows how the packets and tables relate.
® Database FDP (Tables II-5-7, II-6-1, and
BLDFDP)
e Database volume name (FDVTP of the
FDP)
® Database VDP (Tables II-5-8, 1I-6-2, and
BLDVDP)
® Database Volume Table
Index FDP Index Volume Table
filename.V1
Volume 1 Name Pointer
— Volume Table Pointer —
- Database FDP Pointer
Database FDP Database Volume Table
O dbfilename.V1
. Volume 1 Name Pointer
39 e
SD-00769 Figure 11-5-3. Open DBAM File in Update Mode with
Database Runtime FDP
093-000114-01 1-5-7 Steps for Opening in the Update Mode

with a Database Runtime FDP

DataGeneral

SOFTWARE DOCUMENTATION

e Table 11-5-6. DBAM Index FDP for Update Mode with Database Runtime FDP

Licensed Material - Property of Data General Corporation

(See Table 11-6-1)
You must specify the following:
1. DBAM access method (in FDFL1)
2. Variable length records (in FDFL1)
3. Update processing mode (in FDFL1)
4. The address of the Volume Table (FDVTP)
5. That a database FDP is present (in FDFL2)

6. The address of the database FDP (FDDBP)

You may specify the following: Default values for these options are:

1. The number of I/0 buffers for this The contents of the index PFS are used
opening (FDBUF)

2. Read-After-Write verification No verification for this opening
(in FDFL1)

3. Disable hierarchical replacement Hierarchically modulated LRU buffer
(in FDFL2) management is used for this opening

Table 11-5-7. DBAM Database Runtime FDP for Update Mode
(See Table 11-6-1)

You must specify the following:

1. RAM access method (in FDFL1)

2. Variable length records (in FDFL1)

3. Update processing mode (in FDFL1)

4. The address of the Volume Table (FDVTP)

You may specify the following: Default values for these options are:
1. The number of 1/0 buffers to be The contents of the database PFS are
used for this opening (FDBUF) used for this opening
2. Read-After-Write verification No verification for this opening
(in FDFL1)

—Table 11-5-8. VDPs for DBAM Index and Database Opened in the Update Mode

(See Table 11-6-2)

You must specify the address of the name of the first volume in the file in VDVNP. The

system will use the contents of the PFS for the remaining information.

11-5-8

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
Steps for Creating a New DBAM Index 2. Put the address of the new Index FDP in AC2.
without a Database Runtime FDP 3. Issue a Pre-open (.PINFOS) system call.

1. Set up the following: 4. When INFOS returns:

A. For the Index:
A. Make sure that the address of the new Index

® New Index FDP (Tables II-5-9, I-6-1, and FDPisin AC2.

BLDFDP in Chapter II-7
in Chapter I1-7) B. Issue an Open ((OINFOS) system call.

® New Ind 1 F
Fl?l‘;) ndex volume names (FDVTP of the 5. When INFOS returns, move the file’s pseudo

channel number from ACI to your program area.
® One VDP for each new Index volume

(Tables II-5-10. 1I-6-2. and BLDVDP in Figure II-5-4 shows how the packets and tables relate.
Chapter I1-7)
® New Index Volume Table
B. For the Database:

® Database filename (FDDBP of the index’s
FDP)

New Index FDP New Index Volume Table

0
oL Volume 1 Name Pointer
Number of Volumes

11 15 B
Volume Table Pointer

filename.V1

.

e e e v ee e oo

42 0 filename.Vn
Database Name Pointer Volume n Name Pointer
49
dbfilename. V1
SD-00770 Figure 11-5-4. Create a New DBAM Index without a
Database Runtime FDP
093-000114-01 11-5-9 Steps for Creating a New DBAM Index

without a Database Runtime FDP

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table 11-5-9. FDP for New DBAM Index without Database Runtime FDP
(See Table 11-6-1)

You must specify the following:

1. DBAM access method (in FDFL1)

2. Variable length records (in FDFL1)

3. Create Update processing mode (in FDFL1)

4. Thatyou are inverting a file (in FDFL1)

5. The number of index levels (FDNIL)

6. The address of the Volume Table (FDVTP)

7. The address of the database filename (FDDBP)

8. The initial node size (FDINS)

9. The maximum key length (FDMKL)

You may specify the following: System default values for these options

are:

1. The number of 1/0 buffers for this 2 buffers, recorded as a changeable part

opening (FDBUF) of the file’s PFS
2. Page size (FDBLK) 512 bytes
3. Number of volumes (FDNVD) 1 volume
4, Partial record length (FDPRL) No partial records (0 length)

5. Root node merit factor (FDRMF) No optimized distribution

6. Read-After-Write verification No verification for this opening
(in FDFL1)
7. Space management (in FDFL2) No space management

8. Optimized distribution (in FDFL2) No optimized distribution

9. Disable hierarchical replacement. Hierarchically modulated LRU buffer
(in FDFL2) management used for this opening
10. Key compression (in FDIFL) Keys in this subindex not compressed
11. High priority node (in FDIFL) Root node priority based on its subindex
level
12. Temporary subindex (in FDIFL) Permanent subindex

13. Permanent data records (in FDIFL) Data records linked to index entries in
this subindex can be physically deleted

1i-5-10 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

You must specify the address of each volume’s name in VDVNP,

You may specify the following: System default values for these options

1.

Table 11-5-10. VDP for New DBAM Index
(See Table 11-6-2)

are:

Volume size (VDVSZ) 65,535 blocks (Make sure that you have
at least this much available disk space if
you choose the default.)

093-000114-01

2. Contiguous allocation (in VDIVC) Random allocation
3. Disable file initialization (in If contiguous allocation, each block is
VDIVC) null filled
4, Volume merit factor (VDVMF) 0 merit factor
5. Pad character (VDPAD) Null (binary 0)
1n-5-11 Steps for Creating a New DBAM Index

without a Database Runtime FDP

DataGeneral

SOFTWARE DOCUMENTATION

1.

Licensed Material - Property of Data General Corporation

Steps for Creating a New DBAM Index 2. Put the address of the new Index FDP in AC2.
witha Dat,abase Runtime FDP 3. Issue a Pre-open (PINFOS) system call.
Set up the following:
A. For the Index: 4. When INFOS returns:
® New Index FDP (Tables II-5-11, II-6-1, and A. Make sure that the address of the new Index
BLDFDP in Chapter I1-7) FDPisin AC2.
°
}I;I]e)v;)lndex volume names (FDVTP of the B. Issue an Open (.OINFOS) system call.
® One VDP for each new Index volume 5. When INFOS returns, move the file’s pseudo
(Ta;ales I1-5-12, 11-6-2, BLDVDP in Chapter channel number from AC1 to your program area.
I1-7

® New Index Volume Table
B. For the Database:

® New Database runtime FDP for the new
Index (Tables II-5-13, 11-6-1 and BLDFDP)

® Database volume name (FDVTP of the
FDP)

® Database VDP (Tables II-5-14, 1I-6-2, and
BLDVDP)

® Database Volume Table

Figure II-5-5 shows how the packets and tables relate.

New Index FDP New Index Volume Table

0
Number of Volumes

1

Volume 1 Name Pointer

Volume Table Pointer

42

Volume n Name Pointer

o

Database FDP Database Volume Table

Volume Table Pointer

SD-00771 Figure 11-5-3. Create a New DBAM Index with a Database

Volume 1 Name Pointer

filename.V1

filename.Vn

dbfilename.V1

Runtime FDP

11-5-12

093-000114-01

Licensed Material - Property of Data General Corporation

093-000114-01

Table 11-5-11. FDP for New DBAM Index with Database Runtime FDP

Data

SOFTWARE DOCUMENTATION

(See Table 11-6-1)

You must specify the following:

1.

2.

3.

8.

9.
10. The maximum key length (FDMKL)

DBAM access method (in FDFL1)
Variable length records (in FDFL1)

Create Update processing mode (in FDFL1)

That you are inverting a file (in FDFL1)
The number of index levels (FDNIL)

The address of the Volume Table (FDVTP)

That a database FDP is present (in FDFL2)

The address of the database FDP (FDDBP)

The initial node size (FDINS)

You may specify the following:

1.

10.
11.

12.
13.

The number of I/0 buffers for this
opening (FDBUF)

Page size (FDBLK)

Number of volumes (FDNVD)
Partial record length (FDPRL)
Root node merit factor (FDRMF)

Read-After-Write verification
(in FDFL1)

Space management (in FDFL2)
Optimized distribution (in FDFL2)

Disable hierarchical replacement
(in FDFL2)

Key compression (in FDIFL)

High priority node (in FDIFL)

Temporary subindex (in FDIFL)

Permanent data records (in FDIFL)

System default values for these options
are:

2 buffers, recorded as a changeable part
of the file’s PFS

512 bytes

1 volume

No partial records (0 length)
No optimized distribution

No verification for this opening

No space management
No optimized distribution

Hierarchically modulated LRU buffer
management used for this opening

Keys in this subindex not compressed

Root node priority based on its subindex
level

Permanent subindex

Data records linked to index entries in
this subindex can be physically deleted

11-5-13

Steps for Creating a New DBAM Index
without a Database Runtime FDP

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table 11-5-12. VDP for New DBAM Index
(See Table 11-6-2)

You must specify the address of each volume’s name in VDVNP.

You may specify the following: System default values for these options
are:
1. Volume size (VDVSZ) 65,535 blocks (Make sure that you have

at least this much available disk space if
you choose the default.)

2. Contiguous allocation (in VDIVC) Random allocation

3. Disable file initialization If contiguous allocation, each block is
(in VDIVC) null filled

4, Volume merit factor (VDVMF) 0 merit factor

5. Pad character (VDPAD) Null (binary 0)

Table 11-5-13. DBAM Database Runtime FDP for New Index

(See Table 11-6-1)

You must specify the following:

1. RAM access method (in FDFL1)

2. Variable length records (in FDFL1)

3. Update processing mode (in FDFL1)

4. The address of the Volume Table (FDVTP)

You may specify the following: Default values for these options are:
1. The number of I/0 buffers to be Number recorded in the database PFS
used for this opening (FDBUF)
2. Read-After-Write verification No verification for this opening
(in FDFL1)

Table 11-5-14. VDP for DBAM Database Opened in the Update Mode —
(See Table 11-6-2)

You must specify the address of the name of the first volume in the file in VDVNP. The
system will use the contents of the PFS for the remaining information.

1i1-5-14 093-000114-01

Licensed Material - Property of Data General Corporation

Processing DBAM Files

You can issue DBAM processing requests as soon as
your file is open. For each request you issue, however,
you must build an Extended Processing Packet (see
Table 11-6-4 and BLDPP in Chapter II-7), and specify
either Keyed, Relative, or combined Keyed and
Relative access in PRCCW of that packet.
Furthermore, note that, for all processing requests, the
INFOS system will notify you:

® if it encounters a physical end-of-file while
processing, or

o if the Read-After-Write verification cycle failed on a
previous write or rewrite request.

Keyed Access

You must provide a Key Table for each Keyed access
request. A Key Table for a DBAM request is merely a
contiguous sequence of Key Definition Packets, and it
contains one definition for each subindex level through
which you want the INFOS system to pass. Each time
you use Keyed access, you must specify (in the FDP)
the address of the first word of your Key Table. (See
Figure 11-6-6 for further details on Key Tables.)

DataGeneral

SOFTWARE DOCUMENTATION

Relative Access

Obviously, you don’t need a Key Table for Relative
access because you’re not using keys. In Relative
access, motion is relative to the last established current
position, and, in a DBAM file, you can move in any of
eight unique directions: forward, backward, up, down,
up and forward, down and forward, up and backward,
and static (no move).

Combined Keyed and Relative Access

You can combine Keyed and Relative access in most
DBAM processing requests. And, when you do, you
must specify a direction of motion and provide a Key
Table. Furthermore, you can only request upward,
downward, or static movement. The system will
perform the Relative movement first, then apply the
contents of the Key Table from there. Therefore, you
need fewer key definitions in your Key Table for a
combined access processing request than you do for
plain Keyed access. For example, in Figure II-5-6,
imagine your current position is on ‘‘Payroll’” in the
subindex level one, and you want to read the record
associated with the key ‘‘Zappa’’ in subindex level two.
Just specify downward motion (to bring you down to
level two,) and provide a key table with just one key
definition (for ‘“Zappa’’).

To Subindex
Level 0

Current Position

Subindex
Level 1

Subindex
Level 2
[

SD-00772

093-000114-01

Figure 11-5-6. DBAM Index Structure

11-5-15

To
Database *

Processing DBAM Files

DataGeneral

SOFTWARE DOCUMENTATION

DBAM Read Processing Request

1.

Specify an access technique in PRCCW of the
Extended Processing Packet (Table 11-6-4).

A. For Keyed access, build a Key Table with one
key for each subindex level to be accessed (see
BLDKDP in Chapter II-7 to build Key
Definition Packets) and put a pointer to its first
word in PRKTP.

B. For Relative access, specify a direction of
movement in PRCCW,

For combined access, provide a Key Table, a
pointer to it in PRKTP, and a direction of
motion in PRCCW.

If you want to read a record by an approximate,
generic, or duplicate key, specify your desired
option in KDTYP of the Key Definition Packet. If
you want to read a duplicate key, place its
occurrence number in KDDKO.

Specify Set Current Position (in PRCCW) if you
want to establish a new one; otherwise, the system
will return to the last established current position.

Specify the address of your data area in PRDAT if
you want the system to return the data record;
otherwise specify Suppress Database in PRCCW.

Specify (in PRLEN) the length of the record to be
returned.

The system will tell you the record’s length, its
address, whether or not it has been logically
deleted, and whether the actual record is longer
than the length you specified.

Specify the address of your partial record area in
PRPRA if you want the partial record returned;
otherwise, specify Suppress Partial Record in
PRCCW.

The system will tell you (in PRSRL) the length of
any partial records returned.

If you want to lock or unlock, specify:

Local lock or unlock (PFLOC/PFUNL in PRSTA
and CCLOC in PRCCW),

or
Global lock or unlock (PFLOC/PFUNL in PRSTA
and CCGLB in PRCCW),

or
Both local and ¢global lock or unlock
(PFLOC/PFUNL in PRSTA and CCLOC and
CCGLB in PRCCW).

Licensed Material - Property of Data General Corporation

8. On each access into the Index, the system will
return:

A.

Code Description

413

the subindex level number of the key accessed
(in PRSIL of the Processing Packet),

whether or not the key accessed is a duplicate
(in PRSRS), and

whether or not the key accessed is logically
deleted (in PRSRS).

Common Error Messages for a DBAM
Read Request

ILLEGAL FUNCTION

FILE NOT OPEN

UNRESOLVED RESOURCE CONFLICT
NO SUCH VOLUME

RAM ACCESS OUTSIDE FILE
OPERATING SYSTEM OPEN ERROR
VOLUME ALREADY EXISTS
DEVICE NOT SUPPORTED
COMPARE ERROR (ISAM)
RESOLUTION ERROR (ISAM)
ILLEGAL REL MOTION

INVALID NODE ADDRESS
INVALID CURRENT ENTRY
SUBINDEX NOT DEFINED

END OF SUBINDEX

ILLEGAL COMMAND CONTROL
KEY POSITIONING ERROR

DATA BASE REC NOT PRESENT
DATA RECORD LOCKED

INDEX ENTRY LOCKED

11-5-16

093-000114-01

Licensed Material - Property of Data General Corporation

DBAM Write Processing Request

1.

2.

Specify an access technique in PRCCW of the
Extended Processing Packet (Table 11-6-4):

A. For Keyed access, provide a Key Table
containing one key for each subindex level to
be accessed and put a pointer to its first word in
PRKTP. The system will write the last key in
the Table to the appropriate subindex level, and
it will return that level number to PRSIL of the
Processing Packet.

For combined Keyed and Relative access,
specify a direction of motion in PRCCW,
provide a Key Table, and put its address in
PRKTP.

If you’re writing a duplicate key, specify that
you’re doing so by setting KTDUP in KDTYP
of the Key Definition Packet. The system will
assign an occurrence number for the duplicate
and return that number in KDDKO.

You may not use simple Relative access to write to a
DBAM file.

Specify Set Current Position in PRCCW if you want
to establish a new one; otherwise the system will
return you to the last established position.

A. Specify the address of your data area (in
PRDAT) and the length of the record to be
written (in PRLEN) if you want to link your
new Index entry to a new data record;
otherwise, specify Suppress Database in
PRCCW.

Specify the Record Merit Factor in PRRMF if
you specified Optimized Distribution in FDFL2
of the Database FDP.

If you want to link the index entry you are
creating to an existing data record, specify the
address of that record in PRDAT and specify
Inverting in PRCCW. (To get the address of an
existing data record, access it with a Read,
Write, or Rewrite request. The system always
returns the data record address for these
operations in PRDFB.)

Specify the address of your partial record area in
PRPRA if the subindex in which you’re
creating the index entry uses partial records;
otherwise specify Suppress Partial Record in
PRCCW.

If you write a partial record, the INFOS system
will return its length in PRSRL.

093-000114-01

5.

— Common Error Messages for a DBAM Write Request —,

DataGeneral

SOFTWARE DOCUMENTATION

Specify Write Immediate in PRSTA if you want to
write the index entry and the data record to the file
when this request is completed; otherwise, the
system will not transfer the contents of the buffers
used for this request until it needs them for a
subsequent request.

If you want to lock or unlock, specify:

Local lock or unlock (PFLOC/PFUNL in PRSTA
and CCLOC in PRCCW),

or
Global lock or unlock (PFLOC/PFUNL in PRSTA
and CCGLB in PRCCW),

or
Both Local and Global lock or unlock

(PFLOC/PFUNL in PRSTA and CCLOC and
CCGLBin PRCCW).

On each access into the index, the system will
return the following in the Processing Packet:

A. the subindex level of the key accessed (in
PRSIL),

whether or not the key accessed is a duplicate
(in PRSRS), and

whether or not the key accessed is logically
deleted (in PRSRS).

Code Description

200 ILLEGAL FUNCTION

210 FILE NOT OPEN

213 UNRESOLVED RESOURCE CONFLICT

226 NOSUCH VOLUME

230 NO MORE DISK SPACE

231 RAM ACCESS OUTSIDE FILE

234 RESIDUAL DISK ERROR

252 NONODESPACE

255 OUTPUT END VOLUME ERROR

257 COMPARE ERROR (ISAM)

260 RESOLUTION ERROR (ISAM)

261 ILLEGAL REL MOTION

262 INVALID NODE ADDRESS

263 INVALID CURRENT ENTRY

266 SUBINDEX NOT DEFINED

272 ILLEGALKEY LENGTH

273 INVALID ENTRY NUMBER

274 ILLEGAL COMMAND CONTROL

275 KEY ALREADY EXISTS

276 KEY POSITIONING ERROR

277 INVALID RECORD LENGTH

414 NO WRITE WITHOUT KEY
1-5-17 Processing DBAM Files

DataGeneral

SOFTWARE DOCUMENTATION

DBAM Rewrite Processing Request

1.

Specify an access technique in PRCCW of the
Extended Processing Packet (Table 11-6-4).

A. For Keyed access, provide a Key Table
containing one key for each subindex level to
be accessed and put a pointer to its first word in
PRKTP.

B. For Relative access, specify a direction of
motion in PRCCW.

C. For combined Keyed and Relative access,
provide a Key Table, put a pointer to it in
PRKTP, and specify a direction of motion in
PRCCW.

On each access into the Index, the system will
return the subindex level number of the key
accessed to PRSIL.

If you are rewriting a duplicate key, set KTDUP in
KDTYP of the Key Definition Packet and specify
the occurrence number in KDDKO.

Specify Set Current Position in PRCCW if you want
to establish a new one; otherwise the system will
return to the last established position.

A. If you are rewriting an existing data record,
specify the address of your data area in
PRDAT, and the length of the new record
you’re writing in PRLEN. In addition, you may
specify a new Record Merit Factor in PRRMF.

B. If you are not rewriting an existing data record
and you do not want the record returned,
specify Suppress Database in PRCCW.

C. If you are writing a new data record, specify the
address of your data area in PRDAT and the
length of the new record in PRLEN. Also,
specify a Merit Factor for the new record in
PRRMF if you specified Optimized
Distribution in FDFL?2 of the Database FDP.

A. If you have partial records in the subindex entry
in which you are rewriting this index entry,
specify either the address of your partial record
area (in PRPRA), or Suppress Partial Record
(in PRCCW).

B. If you rewrite a partial record, the INFOS
system will return its length in PRSRL.

6.

200
210
213
226
231
234
252
260
261
262
263
266
267
274
276
400
403
413

—— Common Error Messages for a DBAM Rewrite Request —

Code Description

Licensed Material - Property of Data General Corporation

To link the Index entry accessed for this request to
an existing data record, specify Inverting in PRCCW
and the address of the existing record in PRDAT.
However, an Index entry accessed for Inverting
cannot already have a data record link. (To get the
address of an existing data record, access it with a
Read, Write, or Rewrite request. The system
always returns the data record address for these
operations to PRDFB.)

On each access into the index, the system will
return the following in the Processing Packet:

A. The subindex level of the key accessed (in
PRSIL),

B. Whether or not the key accessed is a duplicate
(in PRSRS), and

C. Whether or not the key accessed is logically
deleted (in PRSRS).

If you want to use the Write Immediate feature, set
PFWIF in PRSTA.

To lock or unlock a record or an Index entry,
specify:

Local lock or unlock (PFLOC/PFUNL in PRSTA

and CCLOC in PRCCW),
or
Global lock or unlock (PFLOC/PFUNL in PRSTA
and CCGLB in PRCCW),
or
Both local and global lock or unlock

(PFLOC/PFUNL in PRSTA and CCLOC and
CCGLB in PRCCW).

ILLEGAL FUNCTION

FILE NOT OPEN

UNRESOLVED RESOURCE CONFLICT
NO SUCH VOLUME

ACCESS OUTSIDE FILE
RESIDUAL DISK ERROR

NO NODE SPACE

RESOLUTION ERROR (ISAM)
ILLEGAL REL MOTION
INVALID NODE ADDRESS
INVALID CURRENT ENTRY
SUBINDEX NOT DEFINED

END OF SUBINDEX

ILLEGAL COMMAND CONTROL
KEY POSITIONING ERROR
DATA BASE REC NOT PRESENT
DATA RECORD LOCKED
INDEX ENTRY LOCKED

11-5-18

093-000114-01

Licensed Material - Property of Data General Corporation
DBAM Define Subindex Processing Request

L.

Build a Subindex Definition Packet (see Figure
1I-6-7 and BLDSDP in Chapter 7) and specify its

1.

_ Common Error Messages for a Link Subindex

DataGeneral

SOFTWARE DOCUMENTATION

Build a Link Subindex Processing Packet (see Table
I11-6-9 and BLDLSP in Chapter I1I-7).

Specify a technique to access each index entry
(source and destination) in PRDCC and PRSCC of
the Link Packet.

A. For Keyed access, provide a Key Table
containing one key for each subindex level to
be accessed, and put the address of its first word
in PRDCC and PRSCC.

B. For Relative access, specify a direction of
motion in PRDCC and PRSCC.

C. For combined Keyed and Relative access,
provide Key Tables, their addresses, and a
direction of motion.

Specify Set Current Position (CCSCP) on either the
source (i.e., in word PRSCC) or the destination key
(i.e., in word PRDCC) if you want to establish a
new current position; otherwise the system will
return to the last established position. Note,
however, that if you Set Current Position on both
keys, the new position will be on the destination
key when the system successfully completes this
request.

Specify Local lock or Local unlock if you want to
lock or unlock either (or both) the source and
destination keys (i.e., set PFLOC or PFUNL in
PRSTA and CCLOC in either PRSCC or PRDCC).

If you link to an index entry which has been
logically deleted, the system will set SRLLD in the
Processing Packet.

Request
Code Description
213 UNRESOLVED RESOURCE CONFLICT
230 NOMORE DISK SPACE
231 ACCESS OUTSIDE FILE
261 ILLEGAL REL MOTION
262 INVALID NODE ADDRESS
263 INVALID CURRENT ENTRY
265 SUBINDICES NOT ALLOWED
266 SUBINDEX NOT DEFINED
267 END OF SUBINDEX
272 ILLEGAL KEY LENGTH
274 ILLEGAL COMMAND CONTROL
275 KEY ALREADY EXISTS
276 KEY POSITIONING ERROR
403 DATA RECORD LOCKED
406 - SUBINDEX LINK COUNT OVERFLOW
407 ALREADY LINKED TO SUBINDEX

address in PRSID of the Extended Processing 2.

Packet (Table I1-6-4).

2. In PRCCW, specify an access technique to reach
the index entry under which you’re defining the
subindex.

A. For Keyed access, provide a Key Table
containing one key for each subindex level to
be accessed and put a pointer to its first word in
PRKTP.

B. For Relative access, specify a direction of
motion in PRCCW.

C. For combined Keyed and Relative access,
provide a Key Table, put its address in PRKTP,
and specify a direction of motion in PRCCW.

3. Specify Local lock if you want to lock the accessed
index entry (i.e., set PFLOC in PRSTA and
CCLOC in PRCCW).

4. Specify Set Current Position if you want to establish
a new one by setting CCSCP in PRCCW,
otherwise, the system will return to the last
established position. 4,

—— Common Error Messages for a DBAM Define ——

Subindex Request

Code Description 5

213 UNRESOLVED RESOURCE CONFLICT

230 NO MORE DISK SPACE

231 RAM ACCESS OUTSIDE FILE

261 ILLEGAL REL MOTION

262 INVALID NODE ADDRESS

263 INVALID CURRENT ENTRY

265 SUBINDICES NOT ALLOWED

267 END OF SUBINDEX

272 ILLEGAL KEY LENGTH

274 ILLEGAL COMMAND CONTROL

275 KEY ALREADY EXISTS

276 KEY POSITIONING ERROR

406 SUBINDEX LINK COUNT OVERFLOW

407 ALREADY LINKED TO SUBINDEX

410 SUBINDEX LEVEL OVERFLOW

DBAM Link Subindex Processing Request
NOTE: For this request, you must position to two

existing index entries: the source (which
already has a defined subindex under it), and
the destination (which must not have a
subindex defined under it prior to this request).
The INFOS system will retrieve the source key
and copy its subindex link information to the
destination.

093-000114-01 11-5-19

Processing DBAM Files

DataGeneral

SOFTWARE DOCUMENTATION

DBAM Delete Processing Request

Ths request allows you to physically delete an index
entry and its corresponding data record, or to mark an
index entry or a data record (or both) as logically
deleted. However, to physically delete an index entry
and its data record, you must access the index entry via
Keyed access (i.e., set CCKEY in PRCCW of the
Extended Processing Packet, and provide a Key Table
and its address).

1. Specify an access technique in PRCCW.

A. For Keyed access,

provide a Key Table
containing one key for each level of subindex to
be accessed and put its address in PRKTP.

For Relative access, specify a direction of
motion in PRCCW.

For combined Keyed and Relative access,
provide a Key Table, put its address in PRKTP,
and specify a direction of motion in PRCCW.

If you provide a Key Table, the system will delete
(or mark as logically deleted) the last key in the
table.

2. A

NOTE:

To mark an index entry as logically deleted,
specify Local Logical Delete (set CCLOC and
CCLOG in PRCCW).

To mark a data record as logically deleted,
specify Global Logical Delete (set CCGLB and
CCLOG in PRCCW).

You may mark both the index entry and the
data record as logically deleted in a single
request by setting CCLOC, CCGLB, and
CCLOG.

For multiple-inverted records, a physical
delete will only delete one index entry
and decrease the pointer count for the
data record by one. You can physically
delete a data record only when the count
goes to zero (ie., when you have
physically deleted all the subindexes
which point to the record).

Licensed Material - Property of Data General Corporation

3. Specify Set Current Position in PRCCW if you want
to establish a new one; otherwise the system will
return you to the last established position.

A.

For a logical delete, Set Current Position will
return you to the accessed index entry.

For a physical delete, Set Current Position will
return you to either the next higher index entry
after the one deleted (if any), or the index
entry that owns the subindex containing the
deleted entry, or (if you are in subindex level 0)
to the system-set initial current position.

4. If you want to delete a duplicate key, you must set
KTDUP in KDTYP of the Key Definition Packet
and put the key’s occurrence number in KDDKO.

— Common Error Messages for a DBAM Delete Request -

Code Description

213 UNRESOLVED RESOURCE CONFLICT

226 NOSUCH VOLUME

230 NO MORE DISK SPACE

231 RAM ACCESS OUTSIDE FILE

261 ILLEGAL REL MOTION

262 INVALID NODE ADDRESS

263 INVALID CURRENT ENTRY

267 END OF SUBINDEX

270 DELETE POSITIONING ERROR

272 ILLEGAL KEY LENGTH

274 ILLEGAL COMMAND CONTROL

275 KEY ALREADY EXISTS

276 KEY POSITIONING ERROR

403 DATA RECORD LOCKED

411 SUBINDEX HAS SUBINDEX; DELETE
SUBINDEX ERROR

412 ATTEMPT TO DELETE ENTRY
WITHOUT KEYED ACCESS

413 INDEX ENTRY LOCKED

11-5-20

093-000114-01

Licensed Material - Property of Data General Corporation

DBAM Delete Subindex Processing Request

1.

NOTE:

~— Common Error Messages for a Delete Subindex Request -
Code Description
213 UNRESOLVED RESOURCE CONFLICT
230 NOMORE DISK SPACE
231 RAM ACCESS OUTSIDE FILE
261 ILLEGAL REL MOTION
262 INVALID NODE ADDRESS
263 INVALID CURRENT ENTRY
265 SUBINDICES NOT ALLOWED
266 SUBINDEX NOT DEFINED
267 END OF SUBINDEX
274 ILLEGAL COMMAND CONTROL
276 KEY POSITIONING ERROR

Specify an access technique in PRCCW of the
Extended Processing Packet (Table 11-6-4).

A. For Keyed access, provide a Key Table
containing one key for each subindex level to
be accessed and put its address in PRKTP.

B. For Relative access, specify a direction of
motion in PRCCW.

C. For combined Keyed and Relative access,
provide a Key Table, put its address in PRKTP,
and specify a direction of motion in PRCCW.,

The INFOS system will delete the subindex under
the last key in the Key Table provided, or that
under the key accessed by Relative motion.

Specify Set Current Position in PRCCW to
establish a position on the subindex entry which
owns the subindex you’re deleting; otherwise, the
system will return to the last established position.

You may issue this command as you desire,
but the system will not physically delete the
subindex until its use count goes to zero. That
is, the subindex will remain as long as at least
one other subindex path uses that subindex.

DBAM Reinstate Processing Request

1.

093

-000114-01

Specify an access technique in PRCCW of the
Extended Processing Packet (Table 11-6-4).

A. For Keyed access, provide a Key Table with one
key for each subindex level to be accessed and
put its address in PRKTP.

B. For Relative access, specify a direction of
motion in PRCCW.

DataGeneral

SOFTWARE DOCUMENTATION

C. For combined Keyed and Relative access,
provide a Key Table, put its address in PRKTP,
and specify a direction of motion in PRCCW.

A. Specify Local if you want to reinstate the index
entry (i.e., set CCLOC in PRCCW).

B. Specify Global if you want to reinstate the data
record (i.e., set CCGLB in PRCCW).

C. You may reinstate both the index entry and the
data record in a single request; that is, you may
set both CCLOC and CCGLB in PRCCW.

Specify Set Current Position in PRCCW to
establish a position either on the index entry you’re
reinstating (if you also set CCLOC in PRCCW), or
on the index entry which points to the data record
you’re reinstating (if you set CCGLB in PRCCW).

~— Common Error Messages for a DBAM Reinstate Request —

Code Description

UNRESOLVED RESOURCE CONFLICT
NO MORE DISK SPACE

RAM ACCESS OUTSIDE FILE
ILLEGAL REL MOTION
INVALID NODE ADDRESS
INVALID CURRENT ENTRY
ILLEGAL KEY LENGTH
ILLEGAL COMMAND CONTROL
KEY ALREADY EXISTS

KEY POSITIONING ERROR
DATA BASE REC NOT PRESENT
DATA RECORD LOCKED

DBAM Retrieve Key and Retrieve High Key
Processing Requests

1.

11-5-21

In the Extended Processing Packet (Table 11-6-4),
specify the address of the area to which you want
the system to return the key in PRDAT, and
provide the address of a Key Table in PRKTP to
receive a duplicate key occurrence number (if you
allowed duplicates). If you didn’t allow duplicates,
place a -1 in KDDKO of the Key Table.

Specify an access technique in PRCCW.

A. For Keyed access, provide a Key Table
containing one key for each subindex level to
be accessed and put its address in PRKTP.

B. For Relative access, specify a direction of
motion in PRCCW.

C. For combined Keyed and Relative access,

provide a Key Table, put its address in PRKTP,
and specify a direction of motion in PRCCW.

Processing DBAM Files

DataGeneral

SOFTWARE DOCUMENTATION

11-5-22

Licensed Material - Property of Data General Corporation

3. Specify Set Current Position in PRCCW to DBAM Retrieve Status Processing Request
establish a position on the index entry accessed by . . .
this request; otherwise, the system will return to L. %i?ggﬁ e?lr;’r&:)‘z;essssi‘ntelc’:glig?%ﬁl eP III{-CéCjSV of the
the last established position. g e
4. The INFOS system will return the key to your data A.For Keyed access, provide a Key Table
area, its length to PRSRL, and its occurrence containing one key for each subindex level to be
number if it’s a duplicate to PRSID. accessed and put its address in PRKTP.
— Common Error Messages for the DBAM Retrieve - B. For Relative access, specify a direction of motion
Key and Retrieve High Key Request in PRCCW.
Code Description
C.For combined Keyed and Relative access,
%;? g:&Ejglé\ElgsDoleTss(;gg%ﬁ(éONFLICT provide a Key Table, puts its address in PRKTP,
%61 ILLEGAL REL MOTION and specify a direction of motion in PRCCW.
262 INVALID NODE ADDRESS .
263 INVALID CURRENT ENTRY 2. Specify Set Current Position in PRCCW to
%g’z FLND gFElé'gaai’;D CONTROL establish a position on the index entry accessed by
576 Ké‘f PS\SITIONING ERROR this request; otherwise, the system will return you
to the last established position.
DBAM Retrieve Subindex Definition 3. The system will return the following information:
Processing Request
1. Specify (in PRSID) the address of the area where A'T}‘e record length (in PRLEN), whether or not
you want the system to return the subindex it’s marked as logically deleted, and whether or
defintion. not it’s locked (both in PRSRS).
2. Specify an access technique in PRCCW. B. The key length (in PRSRL), whether it has been
) logically deleted (in PRSRS), and its occurrence
A. For Keyed access, provide a Key Table number if it’s a duplicate (in KDDKO of the Key
containing one key .for each spbmdex level to Definition Packet).
be accessed and put its address in PRKTP.
. . . . v Common E M f DBAM Retri
B. For Relative access, specify a direction of ommon Error St::;g:esq:;:t elreve —
motion in PRCCW.
. Descripti
C. For combined Keyed and Relative access, Code Description
provide a Key Table, put its address in PRKTP, 213 UNRESOLVED RESOURCE CONFLICT
and specify a direction of motion in PRCCW. 231 RAM ACCESS OUTSIDE FILE
261 ILLEGAL REL MOTION
3. Specify Set Current Position in PRCCW to 262 INVALID NODE ADDRESS
establish a position on the index entry accessed by %gg lEriIVAé[DSSU';%ENT ENTRY
i ; otherwise, the system will return you D OF SUBINDEX
this request; otherwise, ystem y 274 ILLEGAL COMMAND CONTROL
to the last established current position. 276 KEY POSITIONING ERROR
. . 400 DATA BASE REC NOT PRESENT
Common Error Mefseg.es for a Retrieve Subindex — 403 DATA RECORD LOCKED
Definition Request
Code Description
213 UNRESOLVED RESOURCE CONFLICT
230 NO MORE DISK SPACE
231 RAM ACCESS OUTSIDE FILE
261 ILLEGAL REL MOTION
262 INVALID NODE ADDRESS
263 INVALID CURRENT ENTRY
265 SUBINDICES NOT ALLOWED
267 END OF SUBINDEX
272 ILLEGAL KEY LENGTH
274 ILLEGAL COMMAND CONTROL
275 KEY ALREADY EXISTS
276 KEY POSITIONING ERROR
406 SUBINDEX LINK COUNT OVERFLOW
407 ALREADY LINKED TO SUBINDEX
410 SUBINDEX LEVEL OVERFLOW
End of Chapter

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 6
Packet Formats

In the preceding chapters in this section, we told you
that you must set up FDPs and VDPs and supply
processing packets to make the INFOS system do what
you want it to. In this chapter we get down to the nuts
and bolts of packets. We will show you what each of the
various types of packets looks like, and we will describe
each specification within each packet.

General Packet Information and
Conventions

Each INFOS system packet contains two types of
parameters: those which occupy one or more full
words, and those which occupy one or more bits within
a given word. For full word specifications, you must
either enter the appropriate value or default the
parameter by specifying -1 for the entire word. For
single-bit specifications, a field value of 1 indicates the
presence of that parameter, and a value of 0 (the
system default value) indicates the absence of it. For
example, if you specify FIUBR for an FDP, you will set
one bit of one word within that packet to 1, indicating
that you have Unblocked records. If you default this
parameter (or make no specification for it), the system
will assume that you don’t have unblocked records -- in
other words, that your records are blocked.

We will present the data for the various packets as a
series of charts containing the following information:

® The Field Name for each parameter (under ‘‘Field
Name’);

® The feature or option which that parameter specifies
(under ““Description”’);

093-000114-01

11-6-1

® The field or bit name (i.e., the mnemonic) which
you specify to set up that parameter (under
“‘Specified As);

® The field value which will indicate the presence of
that parameter (under ‘‘Field Value”’); and

® What it will mean if you use the default value (under
“Default Means”’).

In the last column (‘“Default Means’’), the word
“Required” indicates that you cannot default that
parameter. Also, each chart contains a series of
footnotes to explain factors you should be aware of
when using certain parameters. We advise you to read
and heed these footnotes.

Finally, we refer you to Part One of this manual for
further details on any of the features and options
available in any of the packets.

File Definition Packet (FDP)

As you know by now, you must set up an FDP to
describe each file which your program opens. Figure
II-6-1 shows the location of every possible parameter in
an FDP. You will not use every parameter for any one
access method, so we will summarize the applicable
parameters for each access method after we describe
the packet.

File Definition Packet (FDP)

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

File Definition Packet
FIELD DECIMAL
NAME OFFSET
FDFL1 3
FDFL2 4
FDBLK 5 BLOCK OR PAGE SIZE
FDBUF 6 NUMBER OF BUFFERS
FDLEN (FDNIL) 7 RECORD LENGTH OR NUMBER OF INDEX LEVELS
FDNVD 10 NUMBER OF VOLUME TABLE ENTRIES
FOVTP R - VOLUME TABLE POINTER —
Fourr [- USER INPUT TRANSLATION TABLE POINTER —]
Fouor Ly . USER OUTPUT TRANSLATION TABLE POINTER —
FDTCF 17 Pt urefurs] ser|oti]or2jorafoTa L2 LLs T w2 [i3] im4
FODSD g - DATA SENSITIVE DELIMITER TABLE POINTER —
2
FOFSI o FILE SET ID POINTER —
FDEXP
EXPIRATION DATE
FDSEQ 26 SEQUENCE NUMBER
FDGEN 27 GENERATION NUMBER
FDACC 28 FILE ACCESSIBILITY
FDIDO 29 INITIAL DATA OFFSET
FDSFT oL SELECTIVE FIELD TRANSLATION TABLE POINTER —
FDDBP
DATABASE FILE DEFINITION PACKET POINTER OR NAME POINTER
FDINS INITIAL NODE SIZE
FDMKL/FDPRL MAXIMUM KEY LENGTH PARTIAL RECORD LENGTH
FDRMF
FDIFL
SD-00159A

Figure 11-6-1

1-6-2

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

Table 11-6-1. File Definition Packet (FDP)

Field Name/Description Specified As Field Value Default Means
FDFL1 3 [usr]amiJam2] Fri 12 [raw | ovR T exF I v+ [eve] rer IR v]
File Definition Flags
Unblocked Records F1UBR 1 Blocked Records
Access Method F1AM1/2 Required
RAM FIRAM 00
SAM FISAM 01
ISAM F1ISM 10
DBAM F1IDBM 10
Record Format F1FT1/2 Required
Undefined FIUND 00
Variable FIVAR 01
Fixed F1FIX 10
Data Sensitive F1SEN 11
Read-After-Write verification FIRAW 1 No verification
Overwrite F10OVR 1 No overwriting
Exclusive File! F1EXF 1 No exclusive use of file
Processing Mode F1PM1/2 Required
Input F1INP 00
Update F1UPD 01
Output F10UT 10
Create Update F1CRU 11
Rewrite Mode? F1RER 1 No rewriting or release
allowed
Inverting F1INV 1 See Comment 1
FDFL2 4 SPM : ORD | DHR FOP
Space Management? F2SPM 1 No Space Management
Optimized* Record Distribution F20RD 1 No optimized
distribution
Disable Hierarchical Replacement’ F2DHR 1 Buffers managed on
Hierarchically
Modulated LRU basis
(See Comment 4)
Database FDP Present® F2FDP 1 See Comment 1
FDBLK 5 BLOCK OR PAGE SIZE j
Block or Page Size FDBLK Size of blocks or pages 512 bytes for disks; 80
bytes for all other
devices
Footnotes

1
2
3
4.
5
6

093-000114-01 11-6-3 File Definition Packet (FDP)

Applicable only to SAM disk files and RAM files.

Applicable only to SAM disk files opened in the Update mode.

Applicable only to ISAM or DBAM files (index, database, or both) opened in the Create Update mode.
Applicable only to ISAM and DBAM files opened in Create Update.

Applicable only to ISAM and DBAM indexes.

Applicable only to ISAM and DBAM files opened in Update or DBAM indexes opened in Create Update (see also

Comment 1 below).

SOFTWARE DOCUMENTATION

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table H1-6-1. File Definition Packet (continued)

Field Name/Description Specified As Field Value Default Means
FDBUF 6 NUMBER OF BUFFERS]
Number of buffers FDBUF Number At creation: 2 for Index
files, 1 for all others
After creation: creation
specifications
:3:‘5": [RECORD LENGTH OR NUMBER OF INDEX LEVELS |
Record Length’ FDLEN Size SAM/RAM files =
block size
ISAM/DBAM =
required in database
FDP
Number of Index Levels* FDNIL Number Required for
ISAM/DBAM
indexes
FDNVD 10 | NUMBER OF VOLUME TABLE ENTRIES B
Number of Volume Table entries FDNVD Number Only one file volume
recognized
FDVTP " — VOLUME TABLE POINTER —
Volume Table Pointer FDVTP Address of first word of Required
volume table
FDUIT [. USER INPUT TRANSLATION TABLE POINTER —

User Input Translation Table Pointer

FDUIT Address of first byte of

Input Translation Table

See Comment 2

FDUOT 15
F—

USER OUTPUT TRANSLATION TABLE POINTER

User Output Translation Table Pointer

FDUOT Address of first byte of
Output Translation

Table

See Comment 2

Footnotes (continued)

7. For Variable and Data Sensitive records, specify your expected maximum record length; for Undefined length records,
default this specification; for Fixed length records, specify the exact record size. For tape files opened in the Input mode,
specify the same length as you did at file creation.

1-6-4

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table 1-6-1. File Definition Packet (continued)

Field Name/Description Specified As Field Value Default Means
FDTCF 17 (L1 [e[Lra[sFr]oti]ore]orafova] cir] e[via [T 72 [13 [74|
Translation and Label Control Flags
Label Type? TCLT1/2/3 ANSI
ANSI Labels TCANS 000
IBM Labels TCIBM 001
Selective Field Translation TCSFT 1 Entire record translated
(See Comment 3)
Output Translation’ No translation
No code translation TCNTO 0000
EBCDIC to ASCII TCEAO 0001
ASCII to EBCDIC TCEAO 0010
Anything to your code TCUTO 1111
(See Comment 2)
Label Level TCLL1/2/3 Required for tape
Level 1 TCLV1 000 processing
Level 2 TCLV2 010
Level 3 TCLV3 011
Input Translation'? TCIT1/2/3/4 No translation
No Input translation TCINIT 0000 (See Comment 2)
EBCDIC to ASCII TCEAI 0001
ASCII to EBCDIC TCAEI 0010
Anything to your code TCUTI 1111
FDDSD 18 — DATA SENSITIVE DELIMITER TABLE POINTER —
Data Sensitive Delimiter'! Table Pointer FDDSD Address of first byte of Delimiter = 0,), or |
Data Sensitive
Delimiter Table

Footnotes (continued)

8. Applies only to labeled tape files.
9. Applies only to SAM or RAM files opened in the Output or Create Update mode.
10. Applies only to SAM or RAM files opened in the Input or Update mode.

11. Applies only to SAM files where the record delimiter character is not0,), or |.

093-000114-01 11-6-5 File Definition Packet (FDP)

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table 11-6-1. File Definition Packet (continued)

Field Name/Description Specified As Field Value Default Means
20
FDFSI — FILE SET ID POINTER —
File Set ID Pointer!3 FDFSI Address!? of the first No file set ID in file’s
byte of file set ID (for HDRI1 label
ANSI labels) or
Volume serial number
(for IBM labels).
23
FDEXP EXPIRATION DATE]
Expiration Date!3 FDEXP Date File can be overwritten
at any time
FDSEQ 26 | SEQUENCE NUMBER]
Sequence Number!? FDSEQ Number On Input: No search
according to sequence
number
On Output: Assign next
available sequence
number to file based on
current tape position
FDGEN 27 [GENERATION NUMBER]
Generation Number!3 FDGEN Number On Input: No search by
(See Appendix B) generation and version
number
On Output: File will
have generation #1 and
version #0
FDACC 2 [= Y
File Accessibility'? FDACC Restricted access No restrictions on file
character processing

Footnotes (continued)

12. The File Set ID or Volume Serial Number must occupy the first six bytes of a seven-byte field, and the last byte must

contain the null character.

13. Applies only to tape files.

11-6-6

093-000114-01

Licensed Material - Property of Data General Corporation
Table 11-6-.1 File Definition Packet (continued)

DataGeneral

SOFTWARE DOCUMENTATION

FDSFT SELECTIVE FIELD TRANSLATION TABLE POINTER

Field Name/Description Specified As Field Value Default Means
FDIDO 29 | INITIAL DATA OFFSET]
Initial Data Offset'? FDIDO Number of bytes offset Records begin in first
byte of block
30

FDSFT Address of first byte of
Selective Field

Translation Table

Selective Field Translation Pointer'*

Required if you set
TCSFT =1

FDDBP 2l DATA BASE FILE DEFINITION PACKET POINTER OR NAME POINTER
Database FDP Pointer or Name Pointer FDDBP Address of first word of See Comment | below
Database FDP'®
FDINS 4a [INITIAL NODE SIZE]
Initial Node Size FDINS Initial size (in bytes) of Required for ISAM and
the Root Node for the DBAM files
Index or Subindex
you're defining
FDMKL
FDPRL a6 | MAXIMUM KEY LENGTH | PARTIAL RECORD LENGTH }
Maximum Key Length FDMKL Length of the longest System derived
key in Index (ISAM) or maximum'8
Level 0 subindex
(DBAM)
Partial Record Length FDPRL Length of partial No partial records
records in subindex allowed
level 0

Root Node Merit Factor!” FDRMF Merit Factor

Required if you set
F20RD =1

Footnotes (continued)
14. Applies only to SAM disk or tape files opened in the Input mode.

15. Applies only to SAM and RAM files.
16.
17.

18. The system will derive the default maximum according to this formula:

maxkeylength = (inital nod3e size - 36) - (10) - (partial record length)

or, if you allowed subindexes

initial node size - 36
maxkeylength = (3

) - (14) - (partial record length)

093-000114-01 11-6-7

For Index files, if FIINV = 1 and F2FDP = 0, then you must specify the address of the first byte of the database filename.
If you did not set F2ORD = 1 (Optimized Record Distribution), then you must specify 0 for this word.

File Definition Packet (FDP)

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table 11-6-1. File Definition Packet (concluded)

Field Name/Description Specified As Field Value Default Means
EDIFL 49 [PKc] nsi THPNT Tsi JPRM
Index Flags

Perform Key Compression IXPKC 1 No key compression

Np Sub{ndgxes IXNSI 1 Subindexes allowed

High Priority Node IXHPN 1 No high priority status for root

(See Comment 4) node of subindex level 0

Temporary Subindex!? IXTSI 1 The system will modify the

record use count when you
perform a Write, an inverted
Write, or a Delete

Permanent Data Records?® IXPRM 1 Access to record after file
closing will be unpredictable

Footnotes (concluded)

19. You should only set this bit if you can ensure that the record will not be deleted or rewritten to a greater length while you
are using the temporary subindex.

20. If you open a DBAM index in Create Update and specify FIINV (Inverting) plus IXTSI (Temporary Subindex), then you
should also specify IXPRM. This will ensure that you can rewrite the data record to a different length and still be able to
access it through temporary subindexes. Note, however, that if you do this, you will never be able to physically delete the

data record from the database.

Comments

1. You should use the parameters FIINV (Inverting), F2FDP (Database FDP present), and FDDBP (Database FDP pointer)
in combination as follows:

o When you open an ISAM or DBAM file in the Create Update mode, set FIINV and F2FDP to 0 and place the address of
the first word of the database FDP in FDDBP.

e When you open an ISAM or DBAM file in the Update mode and you do not want a runtime file specification for the
database, set FIINV and F2FDP to 0 and place the address of the first byte of the database filename in FDDBP. If you
do want a runtime file specification for the database, set F2FDP to 1 and place the address of the first word of the

database FDP in FDDBP.

e If you want to create another index for an existing database, open the DBAM index file in the Create Update mode and
set FIINV to 1. Then, if you do not want a runtime file specification for the database, set F2FDP to 0 and place the
address of the first byte of the database filename in FDDBP. If you do want a runtime file specification for the database,
set F2FDP to 1 and enter the address of the first word of the database FDP in FDDBP.

2. For input and output translation, you must specify parameters as follows:

e If you specify TCUTI, then you must build a code translation table and specify its address in FDUIT. If you specified
TCNIT, TCEAI or TCAEI, you don’t need to build a translation table or specify its address unless you also specified

TCUTO.
e Ifyou specify TCUTO, you need a code translation table, and you must specify its address in FDUOT.

NOTE: You may use the same translation table for input and output; you don’t need to build a separate one for each
processing function. '

3. If you want only selected fields of a record translated, you must specify TCSFT, build a Selective Field Translation Table,
and put the address of its first byte in FDSEFT. If you do this, furthermore, you must specify that you want translation on
input or output by setting the appropriate bits in TCIT1/2/ 3/4 or TCOT1/2/3/4.

4. 1If you open a DBAM index file in the Create Update. mode and set both F2DHR and IXHPN to 1, a temporary conflict
arises because both options modify the Hierarchically modulated LRU technique normally used by the INFOS system. If
you specify both parameters, the system will use F2DHR for the current opening, and record IXHPN (with a value of 1) as
an unchangeable part of the PFS. Therefore, on subsequent openings, the system will use IXHPN if you don’t specify
F2HDR. If you do specify F2HDR, it will take precedence over IXHPN and the system will use a strict LRU buffer
management technique. (See Chapter 6 in Part One for details on LRU and Hierarchical Modulation.)

11-6-8 093-000114-01

Licensed Material - Property of Data General Corporation

INFOS FDP Parameters by
Access Method/Device/and

Processing Mode

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

SAM files/Disk/Create Update and Output Modes ——

Optional

F1UBR
FIRAW
F1EXF
TCOT1/2/3/4
FDUOT
TCSFT
FDSFT
FDBLK
FDLEN
FDBUF
FDNVD
FDDSD

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

SAM files/Disk/Input and Update modes ———me——sy
—— p P

Optional

FIRAW

F10VR (Update only)
F1EXF

F1RER

TCIT1/2/3/4

FDUIT

TCSFT

FDSFT

FDIDO

FDDSD

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

—————— SAM files/Labeled Tape/Output mode

Optional

F1UBR
TCLT1/2/3
TCLL1/2/3
TCFSI
FDEXP
FDSEQ
FDGEN
FDACC
TCOT1/2/3/4
FDOUT
TCSFT
FDSFT
FDBLK
FDLEN
FDBUF
FDNVD

093-000114-01

11-6-9

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

SAM files/Labeled Tape/Input mode —

DataGeneral

SOFTWARE DOCUMENTATION

Optional

TCLT1/2/3
TCLL1/2/3
TCFSI
FDSEQ
FDGEN
FDACC
TCIT1/2/3/4
FDUIT
TCSFT
FDSFT
FDIDO
FDNVD

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

SAM files/Unlabeled Tape/Output mode ~———

Optional

F1UBR
TCOT1/2/3/4
FDOUT
TCSFT
FDSFT
FDBLK
FDLEN
FDBUF
FDNVD
FDDSD

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

SAM files/Unlabeled Tape/Input mode —————

Optional

TCIT1/2/3/4
FDUIT
TCSFT
FDSFT
FDIDO
FDNVD
FDDSD

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

—— SAM files/TTY (Interactive Terminal)/Output mode ——

Optional

TCOT1/2/3/4
FDOUT
TCSFT
FDSFT
FDBLK
FDLEN
FDBUF
FDDSD

File Definition Packet (FDP)

DataGeneral

SOFTWARE DOCUMENTATION

—— SAM files/TTY (Interactive Terminal)/Input mode

Required Optional
F1AM1/2 TCIT1/2/3/4
F1PM1/2 FDUIT
F1FT1/2 TCSFT
FDVTP FDSFT
FDBLK
FDLEN
FDBUF
FDDSD

Licensed Material - Property of Data General Corporation

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP
IXNSI

ISAM Index files/Disk/Create Update mode

Optional

FIRAW
F2SPM
F2DHR
FDMKL
FDINS
FDBLK
FDBUF
FDNVD

SAM files/Line Printer/Output mode

Required Optional
F1AM1/2 TCOT1/2/3/4
F1PM1/2 FDUOT
F1FT1/2 TCSFT
FDVTP FDSFT
FDBLK
FDLEN
FDBUF
FDDSD

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

ISAM Index files/Disk/Update mode ——————

Optional

FIRAW
F2FDP

FDDBP
F2DHR

Required

—— RAM files/Disk/Output or Create Update mode

Required Optional
F1AM1/2 FIRAW
F1PM1/2 FIEXF
F1FT1/2 TCOT1/2/3/4
FDVTP FDUOT
TCSFT
FDSFT
FDBLK
FDLEN
FDBUF
FDNVD

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

'-— ISAM Database files/Disk/Create Update mode

Optional

FIRAW
F2SPM
FDBLK
FDBUF
FDNVD

Required

(None)

RAM files/Disk/Input or Update mode

Required Optional
F1AM1/2 FIRAW
F1PM1/2 F1EXF
F1FT1/2 TCIT1/2/3/4
FDVTP FDUIT
TCSFT
FDSFT

ISAM Database files/Disk/Update mode ————

Optional

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP
FIRAW

Required

F1AM1/2
F1PM1/2
F1FT1/2

FDVTP

Optional

FIRAW
F1INV
F2FDP
FDDBP
F2SPM
F20RD
FDRMF
F2DHR
IXHPN
FDBUF

- DBAM Index files/Disk/Create Update mode

Optional

IXNSI
FDNIL
FDPRL
FDMKL
FDINS
IXPKC
IXTSI
IXPRM
FDBLK
FDNVD

11-6-10

093-000114-01

Licensed Material - Property of Data General Corporation

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

DBAM Index files/Disk/Update mode

DataGeneral

SOFTWARE DOCUMENTATION

DBAM Database files/Disk/Update mode

Optional

FIRAW
F2FDP

FDDBP
F2DHR

Required

F1AM1/2
F1PM1/2
F1FT1/2
FDVTP

DBAM Database files/Disk/Create Update mode ~———

Optional

FIRAW
F2SPM
F20RD
FDBLK
FDBUF
FDNVD

093-000114-01

Required Optional

(None) F1AM1/2
F1PM1/2
F1FT1/2
FDVTP
FIRAW

1-6-11 File Definition Packet (FDP)

DataGeneral

SOFTWARE DOCUMENTATION

Volume Definition Packets (VDP)

Just as you need an FDP to describe each file you open,
you also need a VDP to describe each volume of that
file. When you open any INFOS disk file in the Output
or Create Update mode, you’ll need a Volume Table.
This is nothing more than a contiguous sequence of the
VDPs for the file volumes. Once you have defined the
volumes and created your file, you only need to supply
the VDP for the first volume when you open the file
for updating. (The INFOS system makes a permanent,
unchangeable record of volume definitions for disk
files and uses it when you open in either the Input or
Update mode.)

Volume Definition Packet

Licensed Material - Property of Data General Corporation

When you open a tape file in either the Input or Output
mode, you must supply a Volume Table with a VDP for
each reel of tape. (The system does not permanently
store tape file VDPs.)

Files on interactive terminals and line printers are
single volume files by definition, and you must build a
VDP for them each time you open them for processing.

Figure II-6-2 shows the format of a VDP. Following the
packet description is a breakdown of the required and
optional parameters for each access method.

FIELD DECIMAL
NAME OFFSET
VDVNP 0
- VOLUME NAME POINTER —
VDVSZ 2 VOLUME SIZE
VDVLT 3)
- VOLUME LABEL TABLE POINTER —
VDHLT 5
- HEADER LABEL TABLE POINTER —]
VDTLT 7
| TRAILER LABEL TABLE POINTER —
VDIVC 10| DDR | vLB| DVC| DSL PAR | Dcc| DFI
VDDTO 11 DEVICE TIME OUT CONSTANT
VDVMF/VDPAD 13 VOLUME MERIT OR ACCESSIBILITY PAD CHARACTER
vDOID 14
| VOLUME OWNER ID POINTER —
SD-00165A

Figure 11-6-2

11-6-12

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
Table 11-6-2. Volume Definition Packet (VDP)

Field Name/Description Specified As Field Value Default Means
0
VDVNP — VOLUME NAME POINTER —
Volume Name Pointer VDVNP Address of first byte of Required

volume name

VDVSZ 2 L VOLUME SIZE

Volume sizef VDVSZ Number of contiguous Unlimited volume size
blocks allocated

3
VDVLT L VOLUME LABEL TABLE POINTER —
Volume Label Table Pointer! VDVLT Address of first byte of No user volume label
volume label table processed
5
VDHLT - HEADER LABEL TABLE POINTER —
Header Label Table Pointer! VDHLT Address of first byte of No user header label
Header Label Table processed
7
VDTLT - TRAILER LABEL TABLE POINTER —
Trailer Label Table Pointer VDTLT Address of first byte of No trailer labels
Trailer Label Table processed
Footnotes:

1. Applies only to labeled tape files.
2. Applies only to unlabeled tape files.

3. This option applies only to SAM disk and RAM files opened in the Output or Create Update mode. You should enable
conflict checking if more than one user will open a file for updating at the same time, or if a multitask program will open it.

4. If you specify ICERI=1, then you must also specify ICERR=1. You may also specify ICERI=0 and ICERR=1 G.e.,
system initialization and runtime release), but if you do so, you must also set PRDSP =.1 in the Processing Packet.

5. Applicable only if you specified Optimized Distribution for a DBAM file opened in the Create Update mode. (See Part
One, Chapter 5.)

6. Whenever you open a disk file in the Output or Create Update mode and set ICCTG=1 (indicating Contiguous
Allocation), then you must specify the number of contiguous blocks to be allocated. If you set ICCTG =0, you may enter
either the maximum number of blocks to be allocated on the volume being defined, or -1. Specifying -1 indicates that the
volume is unlimited in size and that the system will allocate up to 65,535 blocks on that volume.

093-000114-01 11-6-13 Volume Definition Packets (VDP)

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table 11-6-2. Volume Definition Packet (concluded)

Field Name/Description Specified As Field Value Default Means
VDIVC 10 -VLB]T)VC] [E.FAR] occ| oFi [cTa - ERI | ERR]Rwo_
VvDIVC
Volume Characteristics

Variable Length Blocks ICVLB 1 System transfers Fixed
length blocks

Disable System Labeling? ICDSL 1 System will try to read
or write labels

Generate Parity? ICPAR 1 System generates odd
parity

Enable Conflict Checking? ICECC 1 No conflict checking

Disable File Initialization ICDFI 1 System will zero out
blocks for the file

Contiguous Allocation® - ICCTG 1 Random allocation

Enable Runtime Initialization! ICERI 1 You must initialize
volumes via system
calls*

Enable Runtime Release! ICERR 1 You must release
volumes via system
calls?

Rewind on Volume Open! ICRWO 1 No rewind on open

VvDDTO 1 L DEVICE TIME OUT CONSTANT]

Device Timeout Constant VDDTO Number of seconds System-defined

timeout intervals used
(See Part One, Chapter

6, or Appendix E)
VDVMF
VDVAC 13 VOLUME MERIT OR ACCESSIBILITY] PAD CHARACTER J
VDPAD
Volume Merit Factor’ VDVMF Number Not using Optimized
Distribution
Volume Accessibility! VDVAC Code Number No accessibility code
Pad Character VDPAD ASCII character Binary 0 (null)
14
VDOID — VOLUME OWNER ID POINTER —
Volume Owner ID Pointer! VDOID Address of first byte of No return of ID

owner ID

11-6-14 093-000114-01

Licensed Material - Property of Data General Corporation

INFOS VDP Parameters by
Access Method/Device/and

Processing Mode

Required

VDVNP

SAM files/Disk/Create Update and Output modes —

Optional

VDVSZ
ICECC
ICDFI
ICCTG
VDDTO
VDPAD

Required

VDVNP
ICDSL

DataGeneral

SOFTWARE DOCUMENTATION

SAM files/Unlabeled Tape/Output mode

Optional

ICVLB
ICPAR
VDDTO
VDPAD

Required

Required

VDVNP

SAM files/Disk/Input and Update modes

Optional

(None)

VDVNP
ICDSL

SAM files/Unlabeled Tape/Input mode

Optional

ICVLB
VDDTO
VDPAD

Required

VDVNP

SAM files/Labeled Tape/Output mode

Optional

VDVLT
VDHLT
VDTLT
ICVLB
ICERI
ICERR
ICRWO
VDDTO
VDVAC
VDPAD
vDOID

Required

VDVNP

—— SAM files/TTY (Interactive Terminal)/Output mode —

Optional

ICDDR
VDDTO
VDPAD

Required

VDVNP

—— SAM files/TTY (Interactive Terminal)/Input mode —

Optional

ICDDR
VDDTO

Required

VDVNP

SAM files/Labeled Tape/Input mode —

Optional

VDVLT
VDHLT
VDTLT
ICVLB
ICERI
ICERR
ICRWO
VDDTO
VDVAC
VDOID

Required

VDVNP

SAM files/Line Printer/Output mode _T

Optional

ICDDR
VDDTO
VDPAD

Required

VDVNP

093-000114-01

— RAM files/Disk/Output and Create Update modes —

Optional

VDVSZ
ICECC
ICDFI
ICCTG
VDDTO

11-6-15

Volume Definition Packets (VDP)

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

RAM files/Disk/Input or Update modes
Required Optional

VDVNP (None)

ISAM Database files/Disk/Update mode
Required Optional

(None) VDVNP

ISAM Index files/Disk/Create Update mode

DBAM Index files/Disk/Create Update mode ——

Required

VDVNP

Optional

VDVSZ
ICDFI
ICCTG
VDDTO
VDPAD

Required

VDVNP

Required

VDVNP

————— ISAM Index files/Disk/Update mode ——T

Optional

(None)

Optional

VDVSZ
ICDFI
ICCTG
VDDTO
VDVMF
VDPAD

Required

VDVNP

Required

VDVNP

ISAM Database files/Disk/Create Update mode

Optional

VDVSZ
ICDFI
ICCTG
VDDTO
VDPAD

DBAM Index files/Disk/Update mode ——————

Optional

(None)

Required

VDVNP

~— DBAM Database files/Disk/Create Update mode

Optional

VDVSZ
ICDFI1
ICCTG
VDDTO
VDVMF
VDPAD

(None)

DBAM Database files/Disk/Update mode

Required

Optional

VDVNP

11-6-16

093-000114-01

Licensed Material - Property of Data General Corporation

Volume Tables

As we mentioned earlier, a Volume Table is a
contiguous sequence of one or more VDPs, each of
which is 16 words long. The contents of a Volume
Table for any given INFOS file depend on the type of
device on which the file resides and the processing
mode in which you’re opening it.

To build a Volume Table for SAM disk, RAM, ISAM,
or DBAM files which you are opening in the Output or
Create Update mode (i.e., at file creation), you must:

1. Place the VDPs in the Table in the order in which
you want the INFOS system to process them. If you
are using Optimized Distribution for an index or
database file, you must define its volumes in order
of decreasing speed. That is, define your
most-accessed (or fastest) volume(s) first, and
your least-accessed (or slowest) volume(s) last.

2. Specify (in the file’s FDP) the number of volumes
if the file resides on more than one.

3. In the file’s FDP, supply the address of the first
word of the first VDP in the Table.

For these files, the INFOS system will automatically
build and maintain an internal Volume Definition File,
or X.VL, where X is the name of your file. (In other
words, if your file’s name is PIGEON, its Volume
Definition File will be PIGEON.VL.) When you open a
disk file in the Input or Update mode, the system uses
the contents of the .VL file as a Volume Table.
However, for it to do this, you must;

1. Build a Volume Table consisting of only one VDP,
which, in turn, contains only the address of the
name of the first file volume you defined when you
created the file. (For ISAM and DBAM files, this
VDP must contain the address of the first Index
volume.)

2. Place the address of the first word of this VDP in
the appropriate field of the FDP.

093-000114-01

11-6-17

DataGeneral

SOFTWARE DOCUMENTATION

For example, if you open the above-mentioned
PIGEON file at runtime, you don’t need to redefine
each of its volumes. You simply build a new Volume
Table which contains only the address of the name of
the first volume you defined when you created
PIGEON. The system will then refer to its own
PIGEON.VL file to obtain the volume definition
information it needs to open the file. Naturally, to
access all this information, you have to provide (in the
runtime FDP) the address of the new, single-entry
VDP in the new Volume Table.

For SAM tape, line printer, and interactive terminal
files, you must build a Volume Table each time you
open the file. To do so:

1. Place one VDP in the Table for each volume of the
file, in the order in which you want the system to
process them.

2. Specify (in the file’s FDP) the number of VDPs in
the Volume Table. (Terminal, printer, and
unlabeled tape files will usually be single-volume
files.)

3. In the file’s FDP, supply the address of the first
word of the first VDP in the Table.

NOTE: While you must define all the volumes of a file
when you create it, the actual physical volumes
need not be on-line at file creation.
Furthermore, once you have opened a file, the
system no longer needs the Volume Table, and
you can use the space it occupied for processing.

Volume Tables

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
General processing Packet the INFOS system needs to successfully process the
. call, as well as the means for the system to return
(SAM and RAM files only) general status information to you. Figure I1-6-3 shows a
You must supply the address of a General Processing full General Processing Packet.

Packet whenever you issue a SAM or RAM processing
request. This type of packet contains the information

General Processing Packet

FIELD DECIMAL
NAME OFFSET
PRSTA 0 LOCI HLD l UNLI VClI I PEV l WIF l REBI RIN]T(LSlEXL l PEFlVEFLLMTRlUVL' UHL] UTL
PRDAT 1

- DATA AREA POINTER —
PRREC 3

— RECORD NUMBER —
PRLEN 5 RECORD LENGTH

PRDFB
DATA RECORD FEEDBACK
SD-00167A
Figure 11-6-3
Table 11-6-3. General Processing Packet
Field Name/Description Specified As Field Value Default Means
PRSTA 0 LOCI HLDW\JL] VCl IPEV I WIF IREBI RIN I XLSI EXL [PEF [VER] MTRI UVLI UHL[UTL]
Status Flags

Lock Record PFLOC 1 No record lock

Hold Record PFHLD 1 Processing request not
held in queue

Unlock Record PFUNL 1 Do not unlock
previously locked
record

Volume Change Indicator PFVCI 1 Not applicable!

Physical End-of-Volume? PFPEV 1 Not applicable!

Write Immediately if Modified? PFWIF 1 Buffer not flushed until
needed

Record Exceeds Block Size PFREB 1 Not applicable!

Read Inhibit PFRIN 1 Appropriate block

moved to a buffer and
record moved to block

Transfer Length Short PFXLS 1 Not applicable!
Excessive Transfer Length? PFEXL 1 Not applicable!
Physical End-of-File PFPEF 1 Not applicable!
Verification Failure’ PFVER 1 Not applicable!
Magnetic Tape Control Error® PFMTR 1 Not applicable!
User Volume Label Processed PFUVL 1 Not applicable!
User Header Label Processed PFUHL 1 Not applicable!
User Trailer Label Processed PFUTL 1 Not applicable!

11-6-18 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table 11-6-3. General Processing Packet (concluded)

Field Name/Description Specified As Field Value Default Means
1
PRDAT L DATA AREA POINTER —
Data Area Pointer PRDAT Address of first byte of No data transferred

your data area

PRREC — RECORD NUMBER —

Record Number’ PRREC Number of record Required
desired

PRLEN s | RECORD LENGTH]

Record Length PRLEN Exact size (in bytes) of Fixed length records
Variable, Undefined,
or Data Sensitive
records

PRDFB DATA RECORD FEEDBACK

Data Record Feedback PRDFB First two words = Not applicable!
record’s block
number
Last word = byte offset
of record

Footnotes:

1.

This parameter indicates information returned by the system. For example, if the system has to close one volume and open
another to find a requested record, it will tell you that it did so by setting the PFVCI bit to 1. Therefore, defaults are not
applicable for these bits. A 0 in this position merely indicates no change in that particular parameter’s status.

2. The system will only return this status after it has processed the last record in the last block.

3. Only applicable to Write requests in a RAM file. For all other SAM and RAM requests, set this bit to 0.

4. Applies only to SAM tape files. The system will return the actual length of the block transferred in PRLEN.

5. The system will set this flag only if 1)} you set FIRAW=1 in the file’s FDP and 2) the system could not successfully
complete the read-after-write verification cycle in this or a previous processing request. If this bit is set (i.e.,ifPFVER=1),
it usually indicates a hardware problem.

6. If PFMTR =1, it means that the system has encountered an 1/0 error while attempting a magnetic tape control request.
Since this may indicate a hardware problem, you should decide whether or not to continue processing.

7. For all SAM requests, specify -1 in the first word of this field.

093-000114-01 11-6-19 General Processing Packet (SAM and

RAM files only)

DataGeneral

SOFTWARE DOCUMENTATION

Extended Processing Packet
(ISAM and DBAM files only)

Licensed Material - Property of Data General Corporation

or DBAM processing request. It also provides the
means for the system to return general status
information. Figure II-6-4 shows a full Extended

Similar to the General Processing Packet, an Extended Processing Packet.
Processing Packet contains the information which the
INFOS system needs to successfully perform an ISAM

FIELD
NAME

PRSTA
PRDAT

PRKTP

PRLEN

PRDFB

PRSIL
PRRMF
PRCCW
PRPRA

PRSRL/PRSRS
PRSID

SD-00169A

DECIMAL
OFFSET

5 | SPL RECORD LENGTH
8
DATA RECORD FEEDBACK —

10 SUBINDEX LEVEL
IR RECORD MERIT FACTOR
12 | KEY | REL|{MC1|MC2|MC3}| SCP INV SPR- SDBlLOGT LOCIGLB
13

PARTIAL RECORD AREA POINTER —

18

19

Extended Processing Packet

DATA AREA POINTER —

KEY TABLE POINTER —

SYSTEM RETURNED LENGTH LLD | DUP | DRL | GLD

SUBINDEX DEFINITION PACKET POINTER

Figure 11-6-4

11-6-20 093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION
Table 11-6-4. Extended Processing Packet

Field Name/Description Specified As Field Value Default Means
Status Flags
Lock Record! PFLOC 1 No record lock
Unlock Record! PFUNL 1 Record not unlocked
Write Immediately if Modified PFWIF 1 Buffer not flushed until
needed
Physical End-of-File PFPEF 1 Not applicable?
Verification Failure PFVER 1 Not applicable?
1
PRDAT — DATA AREA POINTER —
Data Area Pointer? PRDAT Address of first byte of Required (unless you
your data area specify Suppress
Database)
3
PRKTP L KEY TABLE POINTER —]
Key Table Pointer* PRKTP Address of first word of Relative Motion
Key Table
PRLEN 5 | spL [RECORD LENGTH]
Specified Length? PRSPL 1 Transfer entire record
Record Length PRLEN For Read: Length of Not applicable®
record transferred
For Write or Rewrite: Required (unless you
Length of record to specify Suppress
be (re)written Database)

Footnotes:

1. You can Lock or Unlock an index entry, a data record, or both by specifying CCLOC=1 and/or CCGLB=1 at the same
time you specify PFLOC or PFUNL=1.

2. This parameter indicates information returned by the system. That is, if this field is filled, it means that the system has
encountered the status indicated. Therefore, defaults are not applicable. A 0 in this bit merely indicates no change in that
parameter’s status.

3. Note that if either CCSDB=1 (Suppress Database) or CCINV=1 (Write Inverted), the system will ignore the contents of
PRDAT.

4. You must also specify Keyed Access in CCKEY (word PRCCW) or the system will ignore the contents of PRKTP.

5. You may set PRSPL=1 and specify in PRLEN the number of bytes you want the system to transfer for a Read request.
Upon completion of the Read, the System will return the number of bytes transferred to PRLEN.

6. The system will return this information as indicated. Therefore, just leave these words blank.

093-000114-01 11-6-21 Extended Processing Packet (1ISAM and

DBAM files only)

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table 11-6-4. Extended Processing Packet (continued)

Field Name/Description Specified As Field Value Default Means
8
PRDFB | DATA RECORD FEEDBACK —
Data Record Feedback PRDFB Address of datarecord Not applicable®
transferred by this
request
Subindex Level PRSIL Subindex level number Not applicable®

of index entry accessed
for this request

Record Merit Factor PRRMF Record’s merit factor Required when you
number specify Optimized
Record Distribution

PRCCW 12 ITEY rREL | MC1 i MC2| Mcal scp-] INV -] SPR.I SDB | LOG ' LOC]GLE”

Command Control Flags

Keyed Access’ CCKEY 1 Relative access
Relative to Current Position CCREL 1 Keyed Access only
Motion Control Field CCMC1/2/3 Required for Relative
Forward CCFWD 000 or Combined Access
Backward CCBAK 001
Down CCDWN 010
Down and Forward CCDWF 011
Up and Forward CCUFW 100
Up and Backward CCUBK 101
Up CCuUP 110
Static CCSTA 111
Set Current Position CCSCP 1 No new current
position established
Write Inverted® CCINV 1 No new index entry
written
Suppress Partial Record CCSPR 1 Partial record read or
written
Suppress Database CCSDB 1 Database record read or
written
Logical Delete’ CCLOG 1 No logical delete
Local Selector!? CCLOC 1 No operation
performed on index
entry
Global Selector!? CCGLB 1 No operation
performed on data
record

11-6-22 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table 11-6-4. Extended Processing Packet (concluded)

Field Name/Description Specified As Field Value Default Means
13
PRPRA — PARTIAL RECORD AREA POINTER —
Partial Record Area Pointer PRPRA Address of first byte of Required (unless you
your Partial Record specify Suppress Partial
Area Records)
PRSRL/ L l
PRSRS 18 SYSTEM RETURNED LENGTH LLD I DUP l DRL [GLD—
System Returned Length PRSRL Length (in bytes) of Not applicable®
partial record accessed
System Returned Status) PRSRS
Local Logical Delete SRLLD 1 Not applicable?
Duplicate Key'! SRDUP 1 Not applicable?
Data Record Locked!? SRDRL 1 Not applicable?
Global Logical Delete SRGLD 1 Not applicable?
PRSID o SUBINDEX DEFINITION PACKET POINTER —
Subindex Definition Packet Pointer PRSID Address of first word of No new subindex being

Subindex Definition defined
Packet for intended
new subindex

Footnotes (concluded)

7. You must set this flag to 1 for all ISAM and DBAM Write or Physical Delete operations.

8. On a Write or Rewrite request, set CCINV =1 and specify the address of the existing database record in PRDAT.
9. Available for index entries or database records, or both, depending on how you use CCLOC and CCGLB.

10. Note that you can set either CCLOG =1 or CCGLB=1, or both (to operate on both the index entry and its associated data
record).

11. The system returns duplicate keys’ occurrence numbers in offset KDDKO of the Key Table.

12 The system will only set this flag for a Retrieve Status request; all other requests that attempt to access a locked data record
will receive error code 403 (data record locked).

093-000114-01 11-6-23 Extended Processing Packet (ISAM and
DBAM files only)

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Key Definition Packet Note that, as usual, the default for single-bit
parameters is 0, but you cannot default any of the full

Each Key Definition Packet describes a single key, and word parameters in this packet

to use Keyed or combined access, you must
concatenate the Key Definition Packets for each
request into a Key Table. We’ll discuss the Key Table
in the next section of this chapter, but first let’s look at
the components of Key Definition Packets, as
illustrated in Figure II-6-5.

- Key Definition Packet
FIELD DECIMAL
NAME OFFSET
KDKYP 1
— KEY POINTER —
KDDKO 3
- DUPLICATE KEY OCCURRENCE —
SD-00175A
Figure 11-6-5
Table 11-6-5. Key Definition Packet
Field Description Specified As Field Value Default Means
Name
KDTYP Key Type Flags KDTYP
Duplicate Keys! KTDUP 1 No duplicate keys read or
written
Generic Key? KTGEN 1 No generic search
Approximate Key? KTAPX 1 No approximate search
KDKYL Key Length KDKYL Length of key described Required
(between 1 and 255 bytes)
KDKYP Key Pointer KDKYP Address of first byte of key Required
described
KDDKO Duplicate Key Occurrence KDDKO For Write: occurrence number Occurrence number of
written 0 used. (Occurrence
For all other operations: number is returned
occurrence number of key here on a Write
processed request)
Footnotes:

1. If you set KTDUP=1 for a Write request, then specify 0 in each of the four bytes in KDDKO. If you set KTDUP =1 for
any other requests, you may specify in KDDKO either the occurrence number of the duplicate key or 0 (for the original
key).

2. You must set this bit to 0 for all write operations.

11-6-24 093-000114-01

Licensed Material - Property of Data General Corporation

Key Tables

Whenever you use Keyed access in ISAM or DBAM,
you must supply the address of the first word of a Key
Table. This table is nothing more than a contiguous
sequence of one or more Key Definition Packets. The
INFOS system applies each key packet at the subindex
level indicated by the packet’s relative position in the
table. That is, it applies the first entry in the table at
subindex level 0, the second key at subindex level 1,
and so forth. Therefore, the last nonzero key in the
table must be the entry that you want the system to

DataGeneral

SOFTWARE DOCUMENTATION

access in order to process your current request. Figure
11-6-6 shows a sample Key Table whose entries point to
keys at the subindex levels indicated.

Note that a Key Table for an ISAM request will contain
only one Key Definition Packet (because there is only
one subindex level in an ISAM index structure), but a
Key Table for a DBAM request may contain many
packets.

Finally, you terminate each Key Table by specifying a
zero length key.

Point here in your
processing request

)

oup [GEN | apx IS LENGTH = n
! KEY 1 POINTER
0
3
— OCCURRENCE NUMBER —
°oup [cen] arxf LENGTH = n

KEY 2 POINTER

0
3
— OCCURRENCE NUMBER -
0 first subindex level
APX LENGTH =
| bupP - v : N after relative motion (if any)
KEY 3 POINTER \ second subindex level
3 0 third subindex level
— OCCURRENCE NUMBER — fourth subindex level
0 -
DUP | GEN| APX | . LENGTH = n
] .
KEY 4 POINTER
0
3
L OCCURRENCE NUMBER —

SD-00773

093-000114-01

LENGTH = 0

Figure 11-6-6. Sample Key Table

11-6-25

Key Tables

DataGeneral

SOFTWARE DOCUMENTATION

Subindex Definition Packet

The Subindex Definition Packet
subindex you wish to create. You need to build one of

describes the

Licensed Material - Property of Data General Corporation

request, and the Extended Processing Packet for that
request must contain the address of the first byte of the
Subindek Definition Packet. Figure 1I-6-7 illustrates
the components of a Subindex Definition Packet.

these packets each time you issue a Define Subindex

Subindex Definition Packet

FIELD DECIMAL
NAME OFFSET
SDINS

INITIAL NODE SIZE

o

SDMKL. SDPRL

MAXIMUM KEY LENGTH PARTIAL RECORD LENGTH

L

SIFL e
SD U0173A
Figure 11-6-7
Table 11-6-7. Subindex Definition Packet
Field Name Description Specified As Field Value Default Means
SDINS Initial Node Size' SDINS Initial size (in bytes) Root node size of 506
of the Root Node for bytes
the subindex you're
defining
SDMKL Maximum Key SDMKL Length of longest key ~ System derived
Length in new subindex maximum key length*
SDPRL Partial Record Length SDPRL Length of longest No partial records
partial record allowed
SDRMF Root Node Merit SDRMF Merit factor of Root Not using Optimized
Factor? Node of new subindex Distribution
SDIFL Index Flags
Perform Key IXPKC 1 No key compression
Compression
No Subindexes IXNSI 1 Subindexes allowed
under one being
defined
High Priority Node IXHPN 1 No high priority for
Root Node of this
subindex
Temporary IXTSI 1 This is a permanent
Subindex? subindex
Permanent Data IXPRM 1 Data records linked
Records’ only to this subindex
disappear at file close
Footnotes

1. You can calculate this size by using either the formulas explained in Appendix B or the INDEXCALC utility, described in

the INFOS Utilities User’s Manual.

2. You must specify a merit factor if you are using Optimized Distribution. (See Appendix B for further details on merit

factors.)
You may only set this bit when you’re defining subindex level 0.
4. The system will derive the maximum key length according to the formula:

w&) - (10) - (partial record length)

maxkeylength = (

or, if you allowed subindexes:

maxkeylength = (initial no%e size - 36) - (14) - (partial record length)

11-6-26

093-000114-01

Licensed Material - Property of Data General Corporation

Point Processing Packet

You will only need a Point Processing Packet when you
issue a Point request for a SAM disk file. Figure I1-6-8
illustrates this packet’s components.

DataGeneral

SOFTWARE DOCUMENTATION

Point Processing Packet
FIELD DECIMAL
NAME OFFSET
PRSTA : { vai | PEI REB- xis | EXLlPEﬂ VER —
PRMOD 1 POINT MODE
PRHLB 2 HIGH ORDER LOGICAL BLOCK NUMBER
PRLLB 3 LOW ORDER LOGICAL BLOCK NUMBER
PRBOF 4 BYTE OFFSET
SD-00178A
Figure 11-6-8
Table 11-6-8. Point Processing Packet
Field Description Specified As Field Value Default Means
Name
PRSTA Status Flags Not applicable’
Volume Change Indicator PFVCI 1
Physical End-of-Volume PFPEV 1
Record Exceeds Block Size PFREB 1
Transfer Length Short PFXLS 1
Excessive Transfer Length? PFEXL 1
Physical End-of-File PFPEF 1
Verification Failure? PFVER 1
PRMOD Point Mode End of file
Relocate to End of File PMEOF 0
or Relocate to Record _PMLBN 1
Specified
PRHLB High Order Logical Block PRHLB 32-bit number of the block Required when you specify
Number containing the desired record PMLBN
PRLLB Low Order Logical Block PRLLB
Number
PRBOF Byte Offset PRBOF Starting location of record in No offset from
block specified in PRHLB and beginning of block
PRLLB
Footnotes:

1. These parameters indicate information returned by the system. For example, if the system has to close one volume and
open another to find a requested record, it will set PFVCI=1. Therefore, defaults are not applicable for these parameters.
A 0in any of these positions merely indicates no change in that parameter’s status.

2. The system will return the actual length of the block transferred in PRLEN of the FDP.

3. The system will set this flag only if: 1) you set FIRAW =1 in the FDP, and 2) the system could not successfully complete
the Read-After-Write verification cycle in this or a previous request. If this bit is set (i.e., if PEVER=1), it usually indicates
a hardware failure.

093-000114-

01

11-6-27

Point Processing Packet

DataGeneral

SOFTWARE DOCUMENTATION

Link Subindex Processing Packet

You only need to build a Link Subindex Processing
Packet when you want to use a Link Subindex request.
This packet describes the key you wish to link to a
given, previously-linked subindex. The ‘‘source key”’

FIELD DECIMAL
NAME OFFSET

PRSTA
PRDKT

Link Subindex Processing Packet

Licensed Material - Property of Data General Corporation

is defined as the index entry which already exists and
which owns the subindex you want to share. The
‘‘destination key’’ is the one you wish to link to the
source key’s subindex. It cannot own a subindex prior
to this request. Figure I1-6-9 illustrates this packet’s
components.

DESTINATION KEY TABLE POINTER

PRSKT

SOURCE KEY TABLE POINTER

PRDCC REL [Mc1|Mc2|mMca [scp [

PRSRS

SD-00180A

PRSCC KEY | REL | MC1| MC2|MC3|scp i

Figure 11-6-9

11-6-28

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table 11-6-9. Link Subindex Processing Packet

Field Name/Description Specified As Field Value Default Means

PRSTA 0 ‘ ' : o

Status Flags

Lock! PFLOC 1 Entry not locked

Unlock! PFUNL 1 Entry not unlocked
until file closed

Physical End-of-File? PFPEF 1 Physical end of file not
reached

Verification Failure? PFVER 1 Read-After-Write

verification complete

1
PRDKT — DESTINATION KEY TABLE POINTER —
Destination Key Table Pointer PRDKT Address of first word of Relative motion used
Destination Key Table to access destination
key
3
PRSKT — SOURCE KEY TABLE POINTER —
Source Key Table Pointer PRSKT Address of first word of Relative motion used
Source Key Table to access source key
Footnotes:

1. You can lock or unlock either the source or desintation key, or both. However, if you do choose to lock, you must also set
CCLOC=1in PRDCC or PRSCC (or both). You may also lock (or unlock) the source and destination entires in the same
request.

2. The system will set this status bit only when applicable.

093-000114-01 11-6-29 Link Subindex Processing Packet

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table 11-6-9. Link Subindex Processing Packet (concluded)

Field Name/Description Specified As Field Value Default Means

::;)CC 11| KEY| REL | MC1]MC2[MC3 | scP
PRSCC 12| KEY | REL | MC1{MC2|MC3| scp

Command Control Words

Keyed Access CCKEY 1 Relative motion used
Relative to Current CCREL 1 Keyed access used
Position?
Motion Control Field? CCMC1/2/3 Required for Relative
Forward CCFWD 000 motion
Backward CCBAK 001
Down CCDWN 010
Down and Forward CCDFW 011
Up and Forward CCUFW 100
Up and Backward CCUBK 101
Up ccup 110
Static CCSTA 111
Set Current Position* CCSCP 1 Current position stays
on source key
Local Selector? CCLOC 1 No lock or unlock

PRSRS 18 . LLD

Status Flag
Local Logical Delete SRLLD 1 Not applicable?

Footnotes (concluded)
3. Ifyouset CCREL=1, you must also indicate a direction in the motion control field (CCMC1/2/3).

4. If you set CCSCP=1 in both the source and destination control words, your current position will be on the destination key

at the completion of the request.

5. Ifyouset CCLOC=1 in either Command Control Word, you must also set either PFLOC=1 or PFUNL=1.

11-6-30 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Volume Initialization Packet

You need to build a Volume Initialization Packet for
each volume of a labeled tape file which you initialize
via the .IINFOS system call. (See Appendix A for
volume initialization procedures.) Figure II-6-10
illustrates this packet’s components.

Volume Initialization Packet

FIELD DECIMAL
NAME OFFSET

VIFLG 0

BAED mmm oo

VIACC 1 VOLUME ACCESSIBILITY
VIDVS 2

— DEVICE SPECIFIER POINTER —_
VIVID 4

L VOLUME IDENTIFIER POINTER —
VIOID 6

— OWNER IDENTIFIER POINTER —
VIUVT 8 L

USER VOLUME LABEL TABLE POINTER —
SD-00183A

Figure 11-6-10

Table 11-6-10. Volume Initialization Packet

Field Name/Description Specified As Field Value Default Means
Vi o [T 0]] oo [I |
Volume Initialization Flags
Label Type VFLT1/2/3 ANSI Labels
ANSI Labels TCANS 000
IBM Labels TCIBM 001
Label Level VFLL1/2/3 Required
Level 1 TCLV1 001
Level 2 TCLV2 010
Level 3 TCLV3 011
Full Initialization VFFUL 1 Partial initialization
Ignore User Volume VFIVI 1 See footnote 1
Identifier!
Footnotes:

1. If VFFUL=1, the system ignores this bit. If VFFUL =0 and VFIVI=0, the system compares the volume identifier with the
Voll label. If they match, the system equates the device specifier with the volume identifier so that you can refer to the
volume by its volume name, rather than by its device name. In other words, you can call the volume mounted on MTO
“PAYROLL" instead of “MTO0”. If the device specifier and the volume identifier don’t match, the system takes the
JINFOS call error return. If VFFUL =0 and VFIVI=1, the system simply equates the volume identifier in the Voll label to
the device specifier without comparing them.

093-000114-01 11-6-31 Volume Initialization Packet

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table 11-6-10. Volume Initialization Packet (concluded)

Field Name/Description Specified As Field Value Default Means
Volume Accessibility? VIACC Accessibility character Required when
in Vol 1 label VFFUL=1
2
VIDVS — DEVICE SPECIFIER POINTER —
Device Specifier Pointer? VIDVS Address of first byte of Required

device specifier

4
VIVID - VOLUME IDENTIFIER POINTER —
Volume Identifier Pointer VIVID Address of first byte of Partial initialization
volume identifier
(ANSI) or serial
number (IBM)
6
VIOID — OWNER IDENTIFIER POINTER —
Owner Identifier Pointer* VIOID Address of first byte of Owner ID not returned
owner ID area or written
8
VIUVT — USER VOLUME LABEL TABLE POINTER —
User Volume Label Table VIUVT Address of first word of No User Volume
Pointer® User Volume Label Labels written or
Table returned

Footnotes (continued)

2.

5.

This parameter exists solely to allow you to use tapes interchangeably with other systems. The INFOS system does not
restrict access based on the contents of this field.

The device specifier refers to the number of the tape drive on which this volume is mounted and can be in the range MT0
to MT7. You must set up the device specifier in memory such that its last character is null.

For ANSI labels, the owner identifier memory area can be up to 14 bytes long; for IBM labels, it can be up to 10 bytes long.
In both cases, you must terminate the identifier with a null character. On a full initialization, the system will write the
identifier to the Voll label; on a partial, the system will return the identifier recorded in the Voll label.

Applicable only to files with ANSI level 3 labels. For all other label types and levels, specify -1 in the first word of this field.

11-6-32 093-000114-01

Licensed Material - Property of Data General Corporation

Magnetic Tape Control Processing
Packet

You need to build this packet only when you want to
issue a Mag Tape Control request. This packet allows
you to position the tape during processing. In it, you
must specify a control function code (i.e., a mnemonic

Magnetic Tape Control Processing Packet

DataGeneral

SOFTWARE DOCUMENTATION

which specifies the function you wish to perform). If
you choose Read, Write, Space Forward, or Space
Backwards, you must also supply the number of words
or records, and (if you are transferring data) the
address of the area in memory to or from which you
want the data transferred. Figure 1I-6-11 illustrates this
packet’s parts.

FIELD
NAME DECIMAL
OFFSET
PRSTA
PRDAT 1 DATA AREA POINTER
PRCFC
3 CONTROL FUNCTION CODE
PRNWD NUMBER OF WORDS
SD-00139
Figure 11-6-11
11-6-33 Magnetic Tape Control Processing Packet

093-000114-01

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table 11-6-11. Magnetic Tape Control Processing Packet

Field Name/Description Specified As Field Value Default Means
PRSTA
Status flags PRSTA
1/0 Error! PFMTR 1 No error has occurred
PRDAT
Data Area Pointer PRDAT Address of first word of No data being
your data area transferred (required
for all data transfers)
PRCFC
Control Function Codes PRCFC Required
Space forward file MCSFF
Space backward file MCSBF
Read a record MCRD
Write a record MCWRT
Write an end-of-file MCWEF
Rewind MCREW
Space forward records MCSFR
Space backward records MCSBR
Erase MCERS
Mag Tape Status Registers! Register contents
PRNWD
Number of Words PRNWD Number of words or Required if you set
records (on an error, MCRD, MCWRT,
system returns here the MCSFR, or MCSBR
actual transfer length or
number of records
spaced over)
Footnote

1. The system sets this flag only if an I/O error occurs while processing a request. You must decide whether to continue

processing or not.

Now that you know what all the different packets look like, read Chapter 7 to find out how to build them using the

Macroassembler.

End of Chapter

11-6-34

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 7
How to Use the Macroassembler
with the INFOS System

The tape which contains your basic INFOS system also
contains a set of Macros which function as the
Assembly language interface. You can access these
Macros to build the packets you need simply by
including the appropriate macro calls in your source
code.

Keyword Parameters

For each call, there is a list of Keyword Parameters
which you must define immediately before you issue
the call and, in most cases, a list of parameters
associated with the call itself. You must define some of
the Keyword Parameters, but many also have a default
value. Note that you do not need to include those
Keyword Parameters for which you’re using the default
value in the list of assignments you make just before
the call. That is, you can either include a specific value
for a parameter, or, if you’re using the default value,
you can omit the assignment.

Furthermore, you must include a Keyword Parameter
list just before every macro call which you include in
your source code. The only exception to this rule is
when you want to use the same values and defaults for
a call which you are using more than once in your
program. In this case, you should just include RETAIN
= Y in the Keyword Parameter list for the first
occurrence of the call. This will tell the system to retain
those values until you code RETAIN = N. For
example, if you want to build several identical FDPs in
the course of your program (that is, you want to use the
same parameter values for each one), just include
RETAIN = Y in the parameter list you code for the
first BLDFDP (Build FDP) macro call. Then, the next
time you want to build an FDP, you only need to use
the call BLDFDP. The system will automatically use
the parameter values you specified earlier.

Finally, note that the default for Keyword Parameters
with a YES/NO response is NO.

093-000114-01

1n-7-1

You specify the parameters associated with the macro
calls themselves differently from the Keyword
Parameters. You must include in the call every element
in the parameter list. If you do not wish to specify a
value for an optional parameter, you must replace the
parameter with the word DEFAULT in the proper
sequence in the call.

In the lists that follow, note that slashes between
parameter values for Keywords (eg.,
Y/N/DEFAULT) indicate that you must select one of
the given values. Also, we have included in
parentheses the name of each Keyword as it appears in
the charts in the previous chapter so that you may refer
to them for default values or whatever. Finally, the
meanings of the values that you may assign to Keyword
Parameters are fairly easy to interpret, but here they
are anyway for your convenience:

General

Specify When you mean:

(N) numeric of up to full word

(byte) numeric of up to one byte or one
character (8-bit ASCII)

NO/N no

YES/Y yes

DEFAULT If you wish to use the default value, this
keyword parameter need not appear in
an equivalence line.

USER User-supplied option desired.

RETAIN If answered ‘‘YES’’, the system will
retain the current Keyword values for
that call until the end of the program, or
until it encounters “‘RETAIN = NO”’.

Keyword Parameters

DataGeneral

SOFTWARE DOCUMENTATION

Access Method

Specify When you mean:

SAM Sequential Access Method

RAM Random Access Method

ISAM Indexed Sequential Access Method
DBAM Data Base Access Method

Formatting Records

Specify When you mean:
F Fixed length

\Y% Variable length
U Undefined length
D Data-sensitive
1/0 Mode

Specify When you mean:
I Input

(6] Output

UPD Update

C Create update
Label Types

Specify When you mean:
ANSI ANSI

IBM IBM

Translation Specifiers

Specify When you mean:
NONE No translation
ASCII ASCII

EBCDIC EBCDIC

Finally, be careful when you’re specifying Keywords.
Even the interface code’s extensive error-checking will
not catch misspelled Keywords; these merely become
unreferenced equates.

Licensed Material - Property of Data General Corporation

Macro Functions

BLDFDP

To construct an INFOS File Definition
Packet.

Access Method:
Used for all access methods.

Keyword Parameters:

Assignment Line Actual
Parameter
UNBLOCKED = Y/N/DEFAULT (F1UBR)
ACCESS = SAM/RAM/ISAM/ (F1AM1-2)
DBAM/DBASE*
FORMAT = F/V/U/D (F1FT1-2)
VERIFY = Y/N/DEFAULT (FIRAW)
OVERWRITE = Y/N/DEFAULT (F1IOVR)
EXCLUSIVE = Y/N/DEFAULT (F1IEXF)
MODE = 1/0/UPD/C (F1PM1-2)
REWRITE = Y/N/DEFAULT (FIRER)
INVERT = Y/N/DEFAULT (F1INV)
ONLYINDEX = Y/N/DEFAULT (F20TD)
TEMPINDEX = Y/N/DEFAULT (IXTSD
SPACEMGMT = Y/N/DEFAULT (F2SPM)
OPTIMIZE = Y/N/DEFAULT (F20RD)
DBSPEC = Y/N/DEFAULT (F2FDP)
BLOCKSIZE = (n)/DEFAULT (FDBLK)
BUFFERS = (n)/DEFAULT (FDBUF)
RECORDSIZE = (n)/DEFAULT** (FDLEN)

* When using BLDFDP for a database file, specify
the parameter ““ACCESS = DBASE”’. This alerts
the interface diagnostic routines to expect Variable
length records.

** When you use BLDFDP for ISAM/DBAM files,
use this field to specify the number (n) of index
levels, not record size.

11-7-2 093-000114-01

Licensed Material - Property of Data General Corporation

Assignment Line
VOLUMES = (n)/DEFAULT
FDLBTYP = ANSI/IBM/
DEFAULT
FDLBLEV = (n)/DEFAULT
SELTRAN = Y/N/DEFAULT
INTRAN = NONE/USER/
DEFAULT/ASCIl/
EBCDIC
OUTTRAN = NONE/USER/
DEFAULT/ASCII/
EBCDIC
EXPMONTH = (n)/DEFAULT
EXPDAY = (n)/DEFAULT
EXPYEAR = (n)/DEFAULT
SEQUENCE = (n)/DEFAULT
FDGNRAT = (n)/DEFAULT
FILACC = (byte)/DEFAULT
BUFFOFF = (n)/DEFAULT
FDMINOD = (n)/DEFAULT
FDMAXKY = (byte)/DEFAULT
FDPRECLEN = (byte)/DEFAULT
FDRTMERIT = (byte)
COMPRESS = Y/N/DEFAULT
SUBINDEX = Y/N/DEFAULT
DISHIEREP = Y/N/DEFAULT
HIPRINOD = Y/N/DEFAULT
PERMREC = Y/N/DEFAULT

093-000114-01

Actual
Parameter

(FDNVD)
(TCLT1-3)

(TCLL1-3)
(TCSFT)
(TCIT1-4)

(TCOT1-4)

(FDEXP)

(FDSEQ)
(FDGEN)
(FDACC)
(FDIDO)
(FDINS)
(FDMKL)
(FDPRL)
(FDRMF)
(IXPKC)
(IXNSI)
(F2DHR)
(IXHPN)

(IXPRM)

DataGeneral

SOFTWARE DOCUMENTATION

Call:
BLDFDP vtp, uit, uot, dsd, fsi, sft, dbp.

where the call parameters are:

Definition
vtp Address of Volume
Definition Table
uit Optional address of User
Input Translate Table
uot Optional address of User
Output Translate Table
dsd Optional address of Data
Sensitive Delimiter Table
Sfsi Optional byte address of
File Set ID
sft Optional address of
Selective File Translation
Control
dbp Optional address of
Database Definition or
Database Name byte
address
Example A:
ACCESS = DBAM
FORMAT =V
MODE =C
BLOCKSIZE = 512
BUFFERS = 2
VOLUMES =1
FDMINOD = 502
FILACC =0
FDMAXKY = 4

FDPRECLEN =0
FDRTMERIT =0
SUBINDEX =Y

BLDFDP VTP, DEFAULT,

DEFAULT,
DEFAULT, DEFAULT, DEFAULT, FDDBP

Actual
Parameter
(FDVTP)
(FDUIT)
(FDUOT)
(FDDSD)

1
(FDFSI)

(FDSFT)

(FDDBP)

DEFAULT,

This will generate an Index FDP listing which looks like

Figure II-7-1.

1n-7-3

BLDFDP

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

54
55
56
57
S8
59
6¢

01
02
©v3
("X}
05
'd
v7
w8
09
10
11
12
13
14
15
16
17
18
19
2o
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
3o
37
38
39
4y
41
42
43
44
45
46
a7
48

¥d455 ' 3109929
00456'000¥406
03457 '098009

vluv6 ASDY

00460' V44030
V46l '0v000e
P0uU62'00V512
dVU63' 900002
20464177777
0L465'000000
Q0U66'0BVLRY
"I CYA LY
PRUT0'ER064S
VO471'6000V0
472177777
V473 'V0vVYe
Pu474'177777
©¥O475'v0v0oVe
P0U76'0V0VYY
00477'1777717
vYSVO'dVNVoY
00501'177777
PUS02'000VRY
VYOSV ' 6OVOYY
VoS04 '177777
AvSeS*'177777
Q0S¥6'177777
Q8507'177777
veS10'177777
VuS11'oveu0ed
08512177777
04sS13'177777
VU5 14'0000V0
20515'000081Y0
¥¥516'000000
00517'0v0ovee
V0S20'000V00
00521'000v02
00e522'v0o0000
29523 '0v00RVY
d¥S24'vv000L
00525'177777
00526'00000Y
00527'000537
Q¥530' 0oVl
VY531 'vouS0e
20532'000000
90533'002000
20534'000000
00535'00000Y
00536'000000

we we w.

FILE DEFINITION PACKET

%

e

[}

FIFLL i 3: FDFL!I
FIFL2 i 43 FDFLZ
BLOCKSIZE i St FDBLK
BUFFERS i 63 FDoUF
RECORDSIZE i 72 FDLEN
2

%

VOLUMES i lwd FONVD
VIX i 112 FOVTP
@

DEFAULT i 13: FODUIT
[/

DEFAULT i 15: FODUOT
"}

FITCF i 17: FOTCF
DEFAULT i 18: FDDSD
0

DEFAULT i 26% FUFSI
o

'

EXPDAY i 23: FDEXP
EXPMONTH

EXPYEAR

SEQUENCE i 26% FDSEW
FUGNRAT i 27: FDGENER
FILACC#2S56 i 28: FDACC
BUFFOFF 3 29: FOIDO
DEFAULT i 36: FDSFT
0

(Y

o

0

e

0

v

e

e

DEFAULT } 403 FDEFT
0

FDDB i 42: FDDBP
v

FOMINOD ; 443 FOMNS
6

FUOMAXKY*256 | FOPRECLEN ; 463 FOMKL / FDPRL
"

FORTMERITY ; 48: FORMF
FIIFL i 49: FDIFL

FigureII-7-1. Index File Definition Packet

-7-4

093-000114-01

Licensed Material - Property of Data General Corporation

Each line corresponds to a word in the packet. The first
column shows the relocatable location of that word; the
second gives the contents of that location (i.e., the
contents of each word); the third column describes the
contents of each word; and the fourth column gives the
decimal offset and the name of each field in the packet.
Finally, notice how the macro routines automatically
placed -1 (177777 octally) in the parameter words we

didn’t specify.

DataGeneral

SOFTWARE DOCUMENTATION
Example B:

This will generate an FDP for the Database associated
with the Index FDP shown in Example A.

ACCESS = DBASE
FORMAT =V

MODE =C
BLOCKSIZE = 512
VOLUMES = 1
BUFFERS =1
RECORDSIZE = 100
FILACC =0

FDDB: BLDFDP VDB

Figure II-7-2 is what the packet looks like.

’
i FILE DEFIVITION PACKET
H
00537'000V00 [}
vd54'0dvoLY "]
¥d541'08¥BYu 0
00542'004930 FIFL1 i 33 FDFLIL
YOS4U3'vYBVVY FIFLE ;i 4s FDFLZ
VYS44'vYYSL2 BLOCKSIZE ;i St FDBLK
wYS4S'¥veYol BUFFERS ; s+ FDBUF
GU546'9Ew100 RECORL3IZE i 7: FDLEN
©VaSu7'V0YVRY 0
VY550 'YL %}
VYSS1'0v0vvYal VOLUMES i 102 FDNVD
00552'0808665" vDB i 113 FODVTP
d9553'8vd0Y0 @
i 13: FDUIT
28554 Gl e
; 153 FDUOT
EvSSS'Rueran 0
LShe 'k duie FITCF i 17: FDTCF
; 18: FDDSD
LYSS7'CuLed "}
i 203 FDFSI
V6B Bk "]
wesei'debeve ("]
geseet17/717 EXPDAY ;i 23s FDEXP
QYS63' 177177 EXPMONTH
PRS64'1777717 EXPYEAR
weSes 1717177 SEQUENCE ;i 26: FDSEQ
Y6506"'1/77717 FDGNRAT 3 27: FDGENER
wese7'ocave FILACC®2S6 i 28: FDACC
eSTE L1777/ BUFFOFF ;7 29: FDILO
; 30: FDSFT
R@571'Coudve ")}
easS72' 0oy (']
¢us73'ceduoe v
2657600 "]
WES79 v viul® %]
2¢S76'0uvlY ")}
Y8577 'vdu0o0Y [}
20600 "'0VY0OVLY v
vievl'vrerAY v

093-000114-01

Figure I1-7-2. Database File Definition Packet

11-7-5 BLDFDP

DataGeneral

SOFTWARE DOCUMENTATION

BLDVDP
To construct a'Volume Definition Packet

Access Method:
Required for all access methods.

Keyword Parameters:

Assignment Line Actual
Parameter

VOLSIZE = (n)/DEFAULT (VDVSZ)
NORESTART = Y/N/DEFAULT (ICDDR)
VARYBLOCKS = Y/N/DEFAULT (ICVLB)
NOLABELS = Y/N/DEFAULT (ICDSL)
PARITY = Y/N/DEFAULT (ICPAR)
NOCHECK = Y/N/DEFAULT (ICDCC)
CONTIGUOUS = Y/N/DEFAULT (ICCTG)
REINIT = Y/N/DEFAULT (ICERD)
RUNRELEASE = Y/N/DEFAULT (ICERR)
OPENREWIND = Y/N/DEFAULT (ICRWO)
TIMEOUT = (n) (VDDTO)
VOLMERIT = (n)/DEFAULT (VDVMF)
VACCESS = (n)/DEFAULT (VDACC)
PADCHAR = (char)/DEFAULT (VDPAD)
DUPVOL = Y/N/DEFAULT (ICDVC)
NOFILINIT = Y/N/DEFAULT (ICDFI)

Licensed Material - Property of Data General Corporation

Call:
BLDVDP vnp, vit, hit, tlt, oid

where the call parameters are:

Actual
Parameter

Definition

vnp Byte address of the name (VDVNP)

string

vit Address of optional User (VDVLT)
Volume Label Table
(labeled magnetic tape
only)

hit Address of optional User (VDHLT)
Header Label Table
(labeled magnetic tape
only)

tt Address of optional User (VDTLT)
Trailer Label Table.
(labeled magnetic tape
only)

oid Byte address of optional (VDOID)

volume owner’s ID

(1abeled magnetic tape

only) .

If you’re not using labeled magnetic tape, write the call
as follows:

BLDVDP vnp DEFAULT DEFAULT DEFAULT DEFAULT

Example A:
VDP for an Index File
VOLSIZE = 1000

VOLMERIT =0
PADCHAR =0

VIX: BLDVDP INAME*2,DEFAULT,DEFAULT,DEFAULT
DEFAULT

This generates a VDP which looks like Figure I1-7-3.
Example B:
VDP for the Database associated with the above Index:
VOLSIZE = 1000
VOLMERIT =0
PADCHAR =0

VDB: BLDVDP DNAME*2,DEFAULT,DEFAULT,DEFAULT
DEFAULT

Figure I1-7-4 is what the Database VDP looks like.

11-7-6 093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

30
31
32
33
34
35
36
37
38
39

’
;7 VOLUME DEFINITION PACKET
’
WY 64S ' LRYsSeE" IMAMEx2
- M AT T n
vooedT'vrivii YCLSIZE
a6 177777 LEFAULT
KheS1'0BueLL @
Ld6eS2'177777 LEFAULT
dReS3'eever Q
GoesSd'1777717 DEFAULT
¥0655' Rl)
WH656'0E020¢)
Y Y AR AL VRPIVC
2660177777 TIMEOQUT
VY661 'udboLA (7]
00662'0V0000Y VOLMERIT%x256+PADCHAR
25663177777 DEFAULT

Q66U 2eRuoY

4

Figure 11-7-3. Index File Volume Definition Packet

—e we e

we

«e

- we

we we

@:VDViP

2i1vbvsz
JIVDVLT

SIVDHLT
TiVDTLT
10:vDIVC
11:vLDTO

13:VDVMF / VDPAD
14:VDOID

093-000114-01

Figure II-7-4. Database Volume Definition Packet

1n-7-7

56 ;

57 i VOLUME VEFINITION PACKET
58 ;

59 20665'00¥S26" UNAME %2

60 Vn666'VC0OGAR (5

vd1v ASDB

P01 BueeT7'MYlLYE vCGLSIZE

02 Bo6Te'1717777 LEFAULT

B3 Yo671'VLLOVY v

W4 67177777 DEFAULT

S ©vBe73'woveve 7

V6 ooiU'177777 CEFAULT

B7 ¢o75'VRERY0 2

08 VvubTe'BVBLVY ©

09 wlo77'wERLLl VPIVC

10 eu70@'177777 TIMEOUT

11 vorel'evervoe @

12 Qu7el'vupury VULMER]IT*256+PADCHAR
13 0763871777 VEFAULLT

14 vv7vud'v¥eBe %]

-

e

-

~e e

~e

BIVDVNP

2:vbvseZ
3:VvDVLT

S5:VOhLT
T:VOTLT
10:vDIVC
11:v0DT0

14sVOVMFE /7 VuPAD
143VvLOID

BLDVDP

DataGeneral

SOFTWARE DOCUMENTATION

BLDPP
To build a General or Extended
Processing Packet

Access Method:

Used for all access methods.

Keyword Parameters:

Assignment Line Actual
Parameter

LOCK = Y/N/DEFAULT (PFLOC)

HOLD = Y/N/DEFAULT (PFHLD)

UNLOCK = Y/N/DEFAULT (PFUNL)

IMMEDIATE = Y/N/DEFAULT (PFWIF)

INHIBIT = Y/N/DEFAULT (PFRIN)

KEYED = Y/N/DEFAULT (CCKEY)

RELATIVE = Y/N/DEFAULT (CCREL)

UP = Y/N/DEFAULT (ccup)

DOWN = Y/N/DEFAULT (CCDWN)

FORWARD = Y/N/DEFAULT (CCFWD)

BACKWARD = Y/N/DEFAULT (CCBAK)

STATIC = Y/N/DEFAULT (CCSTA)

SETCURR = Y/N/DEFAULT (CCscp)

PRSUPRES = Y/N/DEFAULT (CCSPR)

DBSUPRES = Y/N/DEFAULT (CCSDB)

RECLN = (n) (PRLEN)

TAPDISP = REWIND/ (PRLEN)*

NOREWIND/
RELREWIND
LIMRECLN = Y/N/DEFAULT (PRSPL)**

Licensed Material - Property of Data General Corporation

Call:
BLDPP dat, ktp, pra, sid

where the call parameters are:

Definition Actual
Parameter
dat Byte address of datarecord (PRDAT)
ktp Address of Key Table for (PRKTP)
ISAM or DBAM;
otherwise, DEFAULT
pra Byte address of partial (PRPRA)
record area (DBAM only;
otherwise DEFAULT)
sid Address of optional (PRSID)

NOTE:The generation of packet

Subindex Definition
Packet (DBAM only;
otherwise DEFAULT)

extensions is
conditional. That is, the number of positional
parameters in the call parameter list governs
whether or not the system generates an
Extended Processing Packet when you use
BLDPP. A BLDPP call with a single parameter
(Data Area Pointer) in the parameter list
produces a General Processing Packet suitable
for processing SAM or RAM files.

You should always code ISAM or DBAM
BLDPP processing calls with all four parameters
in the list. This will generate an Extended
Processing packet. (Of course, you may use the
word “DEFAULT” to indicate a parameter for
which you do not wish to specify a value.)

Example:

PP:

KEYED =Y

RELATIVE = Y

DOWN =Y

SETCURR =Y

BLDPP BUFX*2,DEFAULT ,DEFAULT,DEFAULT

This sets up an Extended Processing Packet which
looks like Figure II-7-5.

* This parameter

release as well as tape rewind on FEOV or close.

allows you to specify tape
disposition. If you do not specify one of these
options, the system will automatically rewind the
tape. The “RELREWIND”’ command enables run

*%

1n-7-8

In ISAM/DBAM processing this parameter sets bit
0 (PRSPL) of the record length field. This signifies
that the length specified is the largest desired input
and that the INFOS system should truncate any
longer records it finds. If you do not supply this
parameter, the system will reset the bit.

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

55
56
57
58

59 00621'000534"

60

00620 '000VVL

00622'000000

vor9 ASDR

01
02
vs
04
S
vé
a7
"]}
09
10
11
12

w623t 117777
¢0624'00BeYvY
vB625'dbuuhi
v0626 ' 1Yo
w627 'oovvd
VB630 ' ey
be63l'bueltow
B632'AVEVGY
©¥R633'wdbNYY
U634'152¢0
eR635'1777177
Pv636'0cuDL
2v637'002000
AR Y1)
vu6udl vl
vubu2 ' vl
vness'177711
0644 LEEoLY

093-000114-01

we we we

PROCESSING PACKET

PPSTA
BUFXx2
0

DEFAULT

]
FPLEN
("]

%]
v
(4]
K
0

PPCCw
DEFAULT

e
%)
v
©

0
DEFAULT

7]

1-7-9

«e we

-e

-e we

Figure I1-7-5. Extended Processing Packet

"M
12

12
13:

19:

PRSTA
PRDAT

PRKTF

PRSPL+PRLEN

PRCCw
PRPRA

PRSID

BLDPP

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
BLDPNT BLDMTC
To construct a Point Processing Packet To construct a Magnetic Tape Control
Processing Packet
Access Method:
SAM only. Access Method:

SAM magnetic tape files only
Keyword Parameters:
Keyword Parameters:

Assignment Line Actual
Parameter Assignment Line Actual
Parameter
BYTEOFF = (n)/DEFAULT (PRBOF)
BWDFIL = Y/N/DEFAULT (MCSBF)
EOFMODE = Y/N/DEFAULT (PMEOF)
BWDREC = Y/N/DEFAULT (MCSBR)
HILOGBLK = (n)/DEFAULT (PRHLB)
FWDFIL = Y/N/DEFAULT (MCSFF)
LOGBLKMODE = Y/N/DEFAULT (PMLBN)
FWDREC = Y/N/DEFAULT (MCSFR)
LOLOGBLK = (n) (PRLLB)
MTEOF = Y/N/DEFAULT (MCWEF)
Call: MTERASE = Y/N/DEFAULT (MCERS)
BLDPNT
MTREAD = Y/N/DEFAULT (MCRD)
You need no calling parameters for this macro call.
MTREWIND = Y/N/DEFAULT (MCREW)
Example: MTWRITE = Y/N/DEFAULT (MCWRT)
BYTEOFF = 25
HILOGBLK = 165704 WORDSIZE = (n) (PRNWD)
LOGBLKMODE =Y
LOLOGBLK = 034267 Call:
BLDPNT
BLDMTC dat
This generates a Point Processing Packet which looks .
like Figure I1-7-6. where the call parameter is:
Definition Actual
Parameter
dat Byte address of a data (PRDAT)
record for either the
MTREAD or MTWRITE
calls.

P0711'0000v0 0 i 0: PRSTA
VeT12'17771717 DEFAULT ;7 1t FRMOL
vu713'165704 HILUGBLK i i PRHLB
Be714'034267 LCLOGEBLK i 3: PRLLB
ko715'¢de6es BYTEUFF 7 4 PRBLF

Figure I1-7-6. Point Processing Packet

1-7-10 093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

BLDKDP Call:
To construct an INFOS Key Definition BLDKDP key
Packet.
where the call parameter is:
Access Method: Definition Actual
Used for indexed sequential (ISAM) and database Parameter
(DBAM) access key Byte address of the key (KDKYP)
Keyword Parameters: Example:
Assignment Line Actual KEYLEN = 2
Parameter BLDKDP
DUPLICATE = Y/N/DEFAULT (KTDUP) This produces the packet shown in Figure II-7-7.
GENERIC = Y/N/DEFAULT (KTGEN)
APPROXIMATE = Y/N/DEFAULT (KTAPX)
KEYLEN = (byte) (KDKYL)
HIOCCUR = (n)/DEFAULT (KDDKO)
LOOCCUR = (n)
boes ASDE
21 ;
ve i KEY DEFINITION PACKET
03 H
04 QV6EN2'VVYRYR2 KYTYPIKEYLEN. 5 0 KDTYP / KDKYL
05 ;7 1t KDKYP
b6 Veobl3'vbuvuel %]
B7 Qv6wvU'VBLYVVL HIOCCUR i 3: KDDKO
08 VV6UYS 'YLV LOOCLCUR

093-000114-01

Figure I11-7-7. Key Definition Packet

1-7-11

BLDKDP

DataGeneral

SOFTWARE DOCUMENTATION

BLDSDP
Used to build a Subindex Definition
Packet

Access Method:
DBAM only

Keyword Parameters:

Licensed Material - Property of Data General Corporation

Call:
BLDSDP

You need no calling parameters for this call.

Example:

MINNODE = 506

MAXKEY = 4

PARTRECLEN =0
ROOTMERIT = 0

Assignment Line Actual BLDSDP
Parameter
MINNODE = (0)/DEFAULT (SDINS) T!ns will generate the Subindex Definition Packet in
Figure I1I-7-8.

MAXKEY = (byte)/DEFAULT (SDMKL)

PARTRECLEN = (byte)/DEFAULT (SDPRL)

ROOTMERIT = (n)/DEFAULT (SDRMF)

COMPRESS = Y/N/DEFAULT (IXPKC)

SUBINDEX = Y/N/DEFAULT (IXNSD

TEMPINDEX = Y/N/DEFAULT (IXTSI)

HIPRINOD = Y/N/DEFAULT (IXHPN)

PERMREC = Y/N/DEFAULT (IXPRM)
35 i
36 ; SUB=INDEX DEFINITION PACKET
37 i
38 vvel2'vBVS06 MINNODE 3 o: SDMNS
39 00613'000008 %]
40 Quold'uve000 MAXKEY®256+PARTKECLEN 7 2: SDMKL / SOPRL
41 YVb15'VPVG00 0
42 QV616'000UV00 KOUTMERIT ;7 4: SDRMF
43 V0617'0000V0 SIIFL i 5% SDIFL

Figure I1-7-8. Subindex Definition Packet

11-7-12

093-000114-01

Licensed Material - Property of Data General Corporation

BLDLSP

Assignment Line

To build a Link Subindex Processing

Packet

Access Method:

DBAM only

DataGeneral

SOFTWARE DOCUMENTATION

Keyword Parameters:

Assignment Line

DSTBACK = Y/N/DEFAULT
DSTDOWN = Y/N/DEFAULT
DSTFWD = Y/N/DEFAULT
DSTKEYED = Y/N/DEFAULT
DSTREL = Y/N/DEFAULT
DSTSETC = Y/N/DEFAULT
DSTSTAT = Y/N/DEFAULT
DSTUP = Y/N/DEFAULT
SRCBACK = Y/N/DEFAULT
SRCDOWN = Y/N/DEFAULT
SRCFWD = Y/N/DEFAULT

SRCKEYED = Y/N/DEFAULT
SRCREL = Y/N/DEFAULT
SRCSETC = Y/N/DEFAULT
SRCSTAT = Y/N/DEFAULT
SRCUP = Y/N/DEFAULT
Actual
Parameter Call:
(CCBAK) BLDLSP dkt, skt
where the call par: t re:
(CCDWN) all parameters are
Definition
(CCFWD)
(CCKEY) dkt Byte address of
Destination Key Table
(CCREL)
skt Address of Source Key
(Ccscp) Table for ISAM and
DBAM; otherwise
(CCSTA) DEFAULT
DSTFWD = Y
(CCBAK) DSTREL = Y
SRCKEYED = Y
(CCDWN) SRCSETC =Y
BLDLSP DKT, SKT
(CCFWD)

Actual
Parameter

(CCKEY)
(CCREL)
(Ccscp)

(CCSTA)
(ccup)

Actual
Parameter

(PRDKT)

(PRSKT)

This will generate the Link Subindex Processing Packet

in Figure I1-7-9.

€050 oVl
2¢501'¢¢B711
LSl ' el
eU503'¢01600
PVSuy'ocvvey
©VS0S'Lovee
6U506'€0LYLY
VoSu7'dbYbYL
¢6S16'eveve
¢US11 ¢l
0ES12'0R¥¢Av
¥0513'849000
BVS514'102009
VB515'0090VK
¢wSle'Cweduy
vBS17'ceceve
VYSen 'l
vo521'eblibi
©vS22'cVbucY

093-000114-01

"}

DESTKEY

4
SOURCEKEY

[ORI

DESTCONTROL
SKCCUNTROUL

[I ORI S I

1-7-13

-

Figure I1-7-9. Link Subindex Processing Packet

LIFRSTA
1:PRURT

3:PRSK1

11:PRDCC
12:PRSCC

BLDLSP

DataGeneral

SOFTWARE DOCUMENTATION

BLDVIP

To construct a Volume Initialization

Packet.

Access Method:
SAM magnetic tape files only

Keyword Parameters:

Assignment Line Actual
Parameter
LABTYP = ANSV/IBM/ (VFLT1-3)
DEFAULT
LABLEV = (n)/DEFAULT (VFLL1-3)
FULLINIT = Y/N/DEFAULT (VFFUL)
IGNOREID = Y/N/DEFAULT (VFIVD)
FACCESS = (n)/DEFAULT (VIACC)

Licensed Material - Property of Data General Corporation

Call:

BLDVIP dvs, vid, oid, uvt

where the call parameters are:

Definition
dvs Byte pointer to the device
specifier
vid Byte address of the volume
ID
oid Byte address of the volume
owner’s ID
uvt Address of the User
Volume Label Table
Example:
LABTYP = ANSI
LABLEV =3
FULLINIT =Y
FACCESS =0

BLDVIP DVS, VID, OID, UVT

Actual
Parameter
(VIDVS)
(VIVID)

(VIOID)

(VIUVT)

This generates the packet in Figure II-7-10.

VU760'0L014G
YoTul 'l
bLleetbeléor
We703'ClLueo
ve7ed'toeesSa7
V785" Cbcudd
boTve'vvl 1S
Y707 'duvue
Pu710'vevllve
VoT11'v¥dvdo

VIFLG i
VULACC H
veviCt H
@
vuLlv i
[}
OwnE R H
¢
USERVLT ;
"]

Figure II-7-10. Volume Initialization Packet

1-7-14

BPIVIFLG
13v1ACC
2:vIDVS
asviviv
eiviulb

B:VIUVT

093-000114-01

Licensed Material - Property of Data General Corporation

BLDULT
To construct a User Label Table

Access Method:
SAM magnetic tape files only

Keyword Parameters:
None

Call:
BLDULT addr1, addr2, ... addrn

where the call parameter is:

addr Byte address for each of the n label areas you
want built into the table.

093-000114-01

-7-15

DataGeneral

SOFTWARE DOCUMENTATION

The Assembly Language Interface

In order to use the INFOS macro calls, you have to
invoke the Assembly Language interface by including
the call BLDIPKT on your assembly line before the
name of your program:

MAC BLDIPKT PROGNAME PROGNAME.RB/B $LPT/L

This, however, assumes that you have included
PARIU.SR in MAC.PS (the assembler’s symbol table)
and that PROGNAME.RB is the name you’re giving to
the assembly output. You may also use the .RB
pseudo-op within your source code to specify the name
of the binary file.

If you did not include PARIU.SR in MAC.PS, you
must invoke the interface by specifying:

MAC PARIU/S BLDIPKT PROGNAME
PROGNAME.RB/B SLPT/L

There is one caution here: You should check your
listing for diagnostic messages from BLDIPKT which
appear as “WARNING”’ or “ERROR”’ comment lines
just prior to a generated packet. Unlike error messages
from the assembler itself, these will not appear on the
system console. Furthermore, those labeled
“ERROR” (rather than “WARNING’’) may indicate
that the system has generated an unsatisfactory packet
because of omitted, faulty, or conflicting keywords.

The final part of this chapter contains a listing of the
INFOS User Parameters for assembly language.

The Assembly Language Interface

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

200003
veeeoy
26000S
Coovde
veede7
oegoe7
geeoie
260013
20e01s
geve17
20021
002
20024
Qevgee7
00B032
200033
00e034
000035
2009v36
0peese

eaeose
200052

2000S4Y
200056
2600656
00e060
Q0pa61
0eeoe6e

000000
ev¢noe
Qoeode
ped004
20e20sS
eegove

jSS=3IsSsS3SISSSITESETSs=TER;
;7 INFOS USEK PARANMETERS

.
’
;SSSESSSSSESSESSSSSEEESEESE;)

INFOS User Parameters for Assembly Language

#STITL PARTIU
; FILE DEFINITICN FPACKET
«UUSR FDFL1 s 3 3 INFCS
+DUSR FOFL?2 = FCFL1+1 s INFCOS
+DUSR FDBLK = FCFL2+1 i INFQOS
.DUSR FOBUF s FUBLK+1 7 INFGS
«DUSF FOLEN = FDBUF +1 i INFOS
.DUSR FONIL s FDLEN s INFOS
«CUSR FDNVD 2 FOLEN+3 ;INFOS
«DUSR FOVTP s FONVD+1 i INFOS
«DUSK FOUIT = FOVTP+2 JINFOS
«OUSR FLUGT = FOUIT+2 s INFOS
«CUSR FLTCF = FCUGT+2 JINFOS
+DUSR FOLSD = FDTCF+1 7 INFOS
+DUSR FOFSI = FCDSD+2 :INFOS
«DUSR FDEXF = FOFSI+3 i INFUS
«DUSR FOSEQ s FOEXP+3 ;INFOS
«DUSR FDGEN s FOSEG+} 7 INFOS
«DUSR FDACC = FDGEN+1 ; INFOS
.LUSR FOICO s FCACC+} sINFQS
«DUSR FDSFT s FOIDC+1 s INFOS
.DUSR FDLN1 = FDSFT+12 s INFCS
«CUSR FOEFT s FOSFT+1¢ 3 INFOUS
+DUSR FODBP z FDEFT+2 i INFUS
i INFOS
«DUSR FOMNS s FCDBP+2 i INFGS
«DUSR FOMKL = FCMNS+2 7 INFOS
+DUSR FOPRL = FCMKL s INFOS
«DUSK FORMF z FCPRL+2 i INFOS
.DUSR FOIFL z FCRVF+1 ;i INFGS
«DUSR FOLNZ s FOIFL+1 JINFOS
i SUBINDEX DEFINITICN PACKET
.DUSR SDMNS s 2 7 INFOS
.DUSR SDMKL s SDMKS+2 7 INFOS
«DUSR SOFRL s SOMKL 3 INFOS
+«DUSR SCKMF s SCPRL+2 JINFOS
.OUSR SDIFL s SDRMF+1 3 INFOS
«DUSR SOLEN : SDIFL+1 s INFOS

*FILE DEF FLAGS, I

*FILE DEF FLAGS, II

=BLOCK SIZE

-NUMBER CF BUFFERS

*RECCRC LENGTH

-NUMBER OF INCEX LEVELS
-NUM OF VOL TABLE ENTRIES
=VOLUME TABLE POINTER
=USER INPUT TKANS TBL PTR
=USER OGUTPUT TRANS TEL PTR
=TRANS & LABEL FLACS

=DATA SENS DELIM TABLE PTR
=FILE SET IC PTR
=EXPIRATICN CDATE

=SEQUENCE NUNBER
=GENERATION NUMBEF

=FILE ACCESSABILITY
=INITIAL CATA OFFSET

«SEL FIELD TRANS TABLE PTR
-SAM & RAM FLP LENGTH

=EXCLUCED FILE TAELE PTR
=CATA BASE FILE DOEF FACKET
=0F NAME POINTER

«MINIVMUM MODE S1ZE

=MAX KEY LENGTH (LK EBYTE)
=PART REC LEN (RH BYTE)
=RT NO MERIT FACTCF

=INDEX FLAGS

=]SAM & DBAM FDF LENGTH

=VINIMUM NCDE SIZE

eMAX KEY LEN (Lh EYTE)
“FART REC LEN (RH EBYTE)

=RF1 KD MRT FACT (Rk BYTE)
=INDEX FLAGS

=SUBINDEX DEF PACKET LENGTH

11-7-16

093-000114-01

Licensed Material - Property of Data General Corporation

INFOS User Parameters for Assembly Language (continued)

DataGeneral

SOFTWARE DOCUMENTATION

g1

82

03 H FILE DEFINITION FLAGS, (FDFLY)

24

25 100000 ,DUSR F1UBK = 180 }INFOS <UNBLOCKED RECORDS

e 24cvee .DUSR F1Am] s 181 s INFOS «ACCESS METHCD FIELD

e7 020000 ,DUSR F1Am2 = 182 3 INFOS =~

e oi1e0P9 ,DUSR F1FT1 s 1B3 $INFOS <RECORD FORMAT FIELD

@9 en4dee ,DUSR F1FTe s 184 $ INFCOS =

10 deéodp ,DUSR FIRAW = 185 s INFOS =READ ‘AFTER WRITE 'VER

11 veeees .DUSR F10VR s 188 sINFOS =OVERWRITE (APPEND (IF @)

12 oee1dv ,DUSR FIEXF s 189 #INFOS =EXCLUSIVE FILE

13 000020 .DUSR Fi1PMI z 1611 $INFOS -PROCESSING MODE RIELD

14 200010 ,DUSR F1PMe s 1812 3 INFOS =

15 gee0v04 ,DUSR F1RER z 1813 i INFOS =REWRITE (NCORMAL 'IF @)

16 eee001 ,DUSR FLINV = 1815 s INFOS =INVERTING (CBAM)

17

18 ; ACCESS METHCD SPECIFIERS (F1AM1,F1AN2)

19

2o Q60020 .DUSR F1AMM s F1AMI¢F1AN2 ;INFOS <FIELD MASK

21 p2e@ee ,DUSR F1SAM s F1avg i INFOS «SAM

e Yoeees ,DLUSR FIRAM = e 3 INFOS =RAM

23 @ueoed ,CUSR F1ISM s F1ANM] JINFOS ~18AM

24 aueoeo ,DUSR F1DBM s F1av} 3 INFOS <DBAM

2s

2¢ ; RECORD FORMAT SPECIFIERS (FIFT1,F1FT2)

21

28 214020 ,DUSR FIFTMm = FIFT14F1FT2 ;INFOS ~FIELD MASK

29 610800 ,DUSR FIFIX z FIFTY $INFOS =FIXED LENGTHE

30 geqeC0 ,DUSR F1VAR s F1FT2 5 INFOS *«VWARIABLE LENGTH

31 ¢eevee ,OUSR FIUND = @ 7 INFOS <UNDEFINEC LENGTH

32 214960 ,0USR F1SEN s FIFT1¢F1FT2 ;INFOS «CATA SENSITIVE

33

34 H PROCESSING MOCE SPECIFIERS (FIPV1,F1PM2)

35

36 peeo3o ,DUSR F1FMM = Fi1PM1+F1PM2 3INFOS =FIELD MASK

37 @0e0o¢ ,CUSR F1INP : (] $ INFOS =INPUT

38 09B0vee ,DUSR F10OUT = F1FM s INFOS =CUTPUT

39 220810 ,DUSKR F1UPD = FiPNe s INFOS =UFDATE

qe epevda ,DUSK F1CRU s F1PMi+F1PM2 ;INFOS =CREATE UPDATE

41

4e i FILE DEFINITICN FLAGS, II (FDFLZ)

43

44 828vRd ,DUSR F20T1 = 182 3 INFOS =OPEN ONLY THIS INDEX

45 Qdeedo ,DUSR FESPM = 185 JINFOS «SPACE MANAGEMENT

46 deevlee ,DUSK FeGRD = 189 INFOS =OPTIMIZE REC DISTRIBUTION

47 20ee4e ,DUSR F2DHR = 1810 3 INFOS =DISABLE HIERARCHICOAL 'REPLAC

48 eves1@ ,CUSR FeFDP = 1612 3 INFOS «DATA BASE FOP PRESENT
093-000114-01 n-7-17 The Assembly Language Interface

DataGeneral

SOFTWARE DOCUMENTATION

01
0e
03
o4 10¢oo0
05 eupove
e Beeeeoe
07 0100060
oe pouvee
09 002002
1@ 001000
11 egeyon
ie goeeoo
13 eee1eo
14 e0r040
1% 700010
16 geeoved
17 vpeave
18 0event
19
e
1
ee 1600090
23
o4 e0veavo
25 v2eeuen
26
27
28
29 2003490
30
31 20¢040
32 aee190
33 Gevldye
34
35
36
37 ¢o7400
3g
39 208020
4e @2g4yen
41 001000
4z 227400
43
44
45
4e 00@u17
47
48 000000
49 0¢0001
Se eeeooe
S1 00eo17
52
53
54
SS 100009
56 24gove
57 020000
S8 210000
59 eguede

.
’

«DUSR
«LUSR
+«DUSR
.CUSR
«DUSR
«UUSR
.DUSR
«DUSR
«DUSR
«DUSR
« DUSR
+LUSR
«DUSR
+DUSR
«DUSR

H
«DUSR

«DUSR
«DUSR

e

«DUSK

+DUSR
+DUSR

+DUSK

«DUSR
«DUSR
+DUSR
«DUSR

..

«DUSR

«DUSR
«DUSR
+DUSR
«DUSK

-

.DUSR
«CUSK
.CUSR
+DUSF
.DUSR

INFOS User Parameters for Assembly Language (continued)

TRANSLATICN AND LABEL CONTRGL FLAGS

TCLT1
JCLTR
TCLT3
TCSFT
TCOT1
TCOTe
TCO0T3
TC0TY
TCLLY
TCLL?
TCLL3
TCIT1
TCI1Te
TC173
TCIT4

LAEEL
TCLTM

TCANS
TCIbM

LABEL
TCLLWM
TCLVY

TCLve
TCLV3

LU L L T T LI T T I T T T T T]

LEVEL

180 i INFOS =LABEL TYPE FIELD
181 JINFOS =
1ee 3 INFQOS =
1E3 JINFOS =SELECTIVE FIELD TRANS
184 s INFOS <CLTPUT TRANS FIELC
18S JINFCS =
186 $INFOS -
1B7 JINFOS =
1E8 iINFCS =LABEL LEVEL
189 i INFOS =
18190 iINFOS =
1812 FINFOS =INPUT TRANS FIELD
1813 JINFOS =
1614 JINFCS =
1815 }INFCS =
TYPE SPECIFIERS (TCLT1=TCLT3)
TCLT14TCLT2+4TCLTY
s INFOS <FIELD MASK
e FINFOS <ANSI STANDARD
TCLT3 JINFOS =IBM STANDARC
SPECIFIERS (TCLL1=-TCLL3)
TCLLI+TCLLR24TCLL3
i INFOS =FIELD MASK
TCLL3 sINFOS ~LEVEL 1
TCLLR sINFOS =LEVEL 2
TCLL2+TCLL3 FINFCS =LEVEL 3
(TCOT1=-TCOT4)

Licensed Material - Property of Data General Corporation

OLUTPUT TRANSLATION SPECIFIERS

TCOTM™

TCNTO
TCEAQ
TCAEO
TCUTO

INPUT
TCITM

TONTI
TCtAlL
TCAE1l
TCUTI

INDE X

IXPKC
IXNS1I
1XHPN
IXTS1
IXPRM

TCOTI+TCOT2+TCOT3+TCCTY

s INFOS
(% FINFOS
TCQT4 7 INFOS
TC0T13 7 INFOS
TCOT™ 7 INFOS

TRANSLATION SPECIFIERS

FLAGS

TCITI+TCIT2+4TCIT3+TCITY

;s INFOS
(" JINFOS
TCIT4 7 INFOS
1CIT3 FINFOS
TCITV FINFGS

(FDIFL)

180 7 INFOS
181 JINFOS
1E2 i INFCS
183 i INFOS
1B4 FINFOS

(FDTCF)

=FIELD MASK

=NC TRANS ON OUTPUT
~EBCDIC TO ASCII
=ASCII 7O EBCDIC
=USER TABLE

(TCIT1=TCIT4)

=FIELD MASK

=NC TRANS ON INPUT
=EBCDIC TO ASCII
=ASCII 7O EECDIC
=USER TABLE

*PERFORM KEY COMPRESSION

=NO SUBINDICES

=+IGH PRIORITY NOCE

=TEMP INDEX (PRIM .CR SUB)
-MAKE CATA RECORDS PERMANENTY

11-7-18

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

INFOS User Parameters for Assembly Language (continued)

01

02 H VCLUME INITIALIZATIGN PACKET

03

24 peeved® ,DUSR VIFLG s 2 JINFOS =vOL INIT FLAGS

25 e¢eoo0t ,DUSR VIACC s VIFLG+} i INFOS =VvOL ACCESSABILITY (LH BYTE)

e poevnpe ,DUSR ViDvs = VIACC+! JINFCS =DEV SPECIFIER PTR

e7 P000V04 ,DUSR VIVID s VIDVS+2 ;INFOS =vOL ID PTR

08 gecdee ,DUSR VIOID = ViviD+¢2 3 INFOS «QWNER ID PTFK

09 0e0v10 ,DUSR VIUVT = VICID+2 sINFOS =USER VOL LABEL TAB PTEK

10 #8e012 LOUSR VILEN s VIUVT+2 s INFGS =VvQOL INIT PACKET LENCTH

11

12 i VOLUME INITIALIZATICN FLAGS (VIFLG)

13

14 102000 ,OUSR VFLT1 = TCLTY s INFUS =LABEL TYPE FLAGS

15 Q4gdee ,LUSR VFLT2 s JCLT ;INFUS =

16 026w ,DUSR VFLT3 = TCLT3 i INFOS =

17 do020@ ,DUSR VFLLL] TCLLL s INFUS =LABEL LEVEL FIELD

18 voeive ,CUSR VFLLZ s TCLLe 3 INFCS =

19 eeeede ,CUSR VFLL3 = TCLL3 s INFOS =

20 gecoe4 ,DUSR VFFUL = 1B13 sINFCS =FLLL INIT

21 evevee ,DUSR VFIV] s 1B14 s INFOS «]IGNORE VOL ID

2e

23 H NUTE THAT THE LABEL TYPE & LABEL LEVEL SFECIFIERS

24 H GIVEN ON ThHE FREVICLUS PFAGE MAY ALSC BE USEL FOR

25 i THIS FLAG WCRD

21

02 i VGLUME DEFINITIGN FACKET

83

a4 eeedve ,DUSR VDVNP s 4 JINFOS =VOLUME NAME POINTER

es 000002 ,DUSR vDbvsZ = VDVNF+2 s INFOS =VOLUME SIZE

06 00e0v3 ,DUSR VOVLT = VOCVSZ+1 sINFOS =VGLUME LABEL TABLE PRTR

27 000805 ,DUSR VOHLT = VOVLT+2 7 INFOS =-HEADER LABEL TABLE PTR

08 PYevB7 DUSR vDTL1 s VOHLT+2 JINFOS =TRAILER LABEL TABEL PTR

29 #@ee11 ,DUSR vOPDC = VDTLT+2 $INFOS =PKYS DEV CHARACTERISTICS

10 0e@012 ,DUSR VDIVC = VCPOC+! 3} INFOS =INFOS VOL CHARACTERISTICS

11 Qyeoe13 ,DUSR vDDTO s VDIVC+1 s INFOS =DEVICE TIME OUT OONSTANT

12 @eee15 .DUSR VOVMF = VCDTO+2 JINFOS =VvOL MERIT PACTOR(LH BYTE)

13 A6¥01S5 .DUSR VCACC = VDVMF s INFOS =vwCL ACCESSABLITY(LH BYTE)

14 ¥eeo1S .DUSR VCPAU s vDACC }INFOS =PAD CHARACTER (RH BYTE)

15 020016 .DUSR VDCID = VOPAD+1 s INFOS =VOLUME OWNER ID PCINTER

16 veee20 ,DUSK VOLEN = vDOID+2 $INFCS =vOL DEF PACKET LENGTH

17

18 H INFOS VOLUME CHARACTERISTICS (vDIVvC)

19

2e 10000 ,CUSR ICDODR = 160 sINFOS «DISABLE DEVICE RESTART

2l Q40000@ ,DUSR IcviLe s 161 s INFOS =VARIABLE LBENGTH BLOCKS

22 p2eev2 .LUSR icove = 182 7 INFOS -DUPLICATE VOLUME -CONTROL

23 e1eeve ,CUSR ICDOSL = 1E3 sINFOS «DISABLE SYSTEM LABELING

24 evevod ,DUSK ICPAR = 185 s INFOS <GENERATE PARITY

25 001090 ,DUSR Icocce = 186 7INFOS =DISABLE CONFLICT CHECKING

26 e0e200 ,DUSR I1CCT6 s 188 7 INFOS =CONTIGUOUS 'ALLOCATION

27 @eeu4e@ ,DUSR ICOFT = 1B7 7 INFOS .»DISABLE FILE INITIALIZATION

28 Beevy4e .DUSR ICER] s 1610 sINFOS =ENABLE RUN TIME 'INIT

29 oyen2e ,DUSR 1CERR s 1811 sINFOS ~ENABLE RUN TIME RELEASE

30 geevie ,DUSR ICRWO = iB1e i INFOS =REWIND ON VCL OPEMN

093-000114-01 1-7-19 The Assembly Language Interface

DataGeneral

SOFTWARE DOCUMENTATION

eeooue
oeeo0l
voeoe’
¥eevo3l
0000065

10¢000

eeeeos
goeo1e
eege12
000013

oeea1’
¢ego1d
geeo1s
000022
oeeoe2
oeeees
2een2s

100000
e4e0Q0
020000
¢16000
004000
eeco0e
vo1000
200400
peeceeo
pe@1a9
paeodo
eogecu
coealo
Qveoe4
eegoae
veeoal
215340
815377

10¢00@
v4eo0e
020000
g10000
004099
002000

-e

.DUSR
«DUSR
«DUSR
«DUSK
. DUSR

«DUSR

«DUSR
«DUSR
«DUSR
«DUSR

«DUSR
«DUSR
«DUSR
«DUSR
«DUSR
«DUSR
«DUSR

-

«DUSR
«DUSR
«DUSR
«DUSR
.DUSR
«DUSR
«OUSR
«DUSR
«DUSR
«DUSR
.CUSR
«DUSR
.DUSR
«DUSR
«DUSR
«DUSR
«DUSR
«DUSR

~e

-DUSR
«DUSR
«DUSR
+DUSR
«DUSR
+DUSR

INFOS User Parameters for Assembly Language (continued)

Licensed Material - Property of Data General Corporation

PROCESSING PACKET

PRSTA
PRDAT
PRREC
PRKTP
PRLEN

PRSPL

FRDSP
PRDFB
PRSIL
PRLMN]

PRRMF
PRCCW
PRPRA
PRSRL
PRSRS
PRSID
PRLNZ

PROCESSING FACKET STATUS FLAGS (PRSTA)

PFLOC
PEHLD
PFUNL
PFVCI
PFPEV
PEWIF
PFREB
PFRIN
PFXLS
PFEXL
PFPEF
PFVER
PEMTR
PFUVL
PFUHL
PFUTL
PFERM
PFERM

INDE X

CCKEY
CCREL
CCMC)
cCcmCe
CCMC3
ccsce

60 00 89 00 66 40 08 80 0 18 00 6 0 0 H oW N

COMVMAND CONTROL FLAGS (PRCCHK)

e
PRSTA+1
PRDAT+?
PRREC
PRKTF+?2

1B0

PRLEN

PRLEN+3
PRDFB+2
PRSIL+1

PRCFB+3
PRRMF+1
PRCCwW¢1
PRPRA+S
PRSRL

FRSRS+1
PRSID+2

180
181
182
183
1B4
185
1Be6
187
168
1B9
1E1¢
1811
1B12
1813
1814
1615

PFVCI+PFPEV+PFREB+PFXLS+PFEXL+PFPEF
PFERMePFVER+PFMTR+PFLVL+PFURL+PFUTL

180
1B1
1B2
1B3
1B4
1B5

7 INFOS «STATUS FLAGS

JINFCS «DATA AREA PCINTER

3 INFOS ~RECORD NUMBER (RAV)
$INFOS «KEY TABLE POINTER (ISAM)
7 INFOS =RECORD LENGTH

INFOS =WHEN USED GCES IN PRLEN

s INFOS =SFECIFIED RECORD LENGTH REQUESH
7 INFOS =(INPUT TO ISAM OR DBAM READ)

3 INFCS -RECORD EXCEEDS LENGTH REQUES EI
s INFOS =(RETURNED FROM 18AM OR DBAM RE4

3 INFCS =MAG TAPE DISPOSITION
JINFOS «DATA RECORD FEEDBACK
7 INFOS =SUB=INDEX LEVEL (RH BYTE)
s INFOS «SAM & RAM PROC PACKET LEN

JINFOS -RECORD MERIT FACTOR

3 INFOS =CCMMAND CONTROL WCRD

s INFOS =PARTIAL RECORD AREA PTR

$ INFUS =RETURNED LEN (LM BYTE)

7 INFOS «RETURNED STATUS (RH BYTE)
JINFOS -SUBINDEX DEF PACKET PTR
JINFCS =ISAM & DBAM PACKET LEN

?INFOS «LOCK RECORD

INFOS =HOLD REQUEST

7 INFOS =UNLOCK RECORD

7 INFOS =VOLUME CHANGE INDICATGOR
$ INFOS =PHYSICAL ENC OF VOLUME

s INFOS -WRITE IMMED IF MOCIFIED
; INFOS -RECORD EXCEEDS BUF SIZE
INFGS »READ INHIBIT ON (RAVM)

s INFOS =XFER LENGTH SHORT

7 INFOS <EXCESSIVE XFER LENGTH

INFOS =PHYSICAL END OF FILE

s INFOS «VERIFICATION FAILURE

s INFOS =MAG TAPE CONTROL ERROR

s INFOS =~USER VOL LABEL PRCCESSED
JINFOS =USER HDR LABEL PROCESSED
sINFOS «USER TRAILER LAB :PRCCESSECD

s INFOS =BEXCEPTIONAL RETURN MASK

s INFOS =KEYED

}INFOS =RELATIVE TO CUR PRCS

sINFOS =MOTION CONTROL FIELC
;INFOS =

3 INFOS = _

$INFOS =SET CURRENT POSITOCN

11-7-20

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

INFOS User Parameters for Assembly Language (continued)
01 200102 ,DUSR CCSPR = 1B9 7 INFOS ~SLPPRESS PARTIAL RECCRD
02 oeeevee ,DUSR ccsos s 1E11 i INFOS «SUPPRESS DATA BASE
03 pe@¢1e ,DUSK CCLOG z 1B12 7 INFOS «LOGICAL KEY DELETE
04 ee¢eoe4 ,DUSR ccLoc s 1813 7 INFOS =LOCAL LOG DELETE
05 gveee2 ,DUSR cceLB = 1814 ;INFOS =GLOBAL LOG CELETE
e1
ee i MCTION CONTROL SPECIFIERS (CCvC1=CCNC3)
23
] 234000 ,DUSR CCMCM s CCMC1+CCMC2+CCMCT
es i INFOS =FIELD MASK
€6 veepee ,DUSR CCFwD = 0 JINFOS «FORWARD
e7 084000 ,DUSR CCBAK s o] Jox i INFCS =BACKWARD
28 610000 ,DUSR CCDmN s ccmee s INFOS =CCwN
89 214000 ,DUSR CCDFw s CCMC2+CCMC3 ;INFCS =DOWM & FORWARD
1e 020000 .OUSR CCUFw s CCMmCL FINFOS =LP 8 FORWAKC
11 g24ee® ,DUSR CCUEK = CCMCI14CCMC3 ;INFUS =LP & BACKWARD
12 03000¢ .DUSR CCuP = CCMC1+CCMC2 FINFOS =UP
13 @34one ,DUSR CCSTA s CCMC1+CCMCR2+CCNMC
14 FINFOS =STATIC
15
1o i SYSTEM KETURNED STATUS FLAGS (PRSRS)
17
18 eve2e@ ,ULUSR SRLLD s 168 ; INFCS =LCCAL LOGICAL DELETE
19 oee190 ,DUSR SRDUP H 189 s INFOS =DUPLICATE KEY
20 Peev4o ,DUSR SRDKL = ig1e@ ;INFOS =DATA RECORD LOUCKEC
3 ¥9veveo ,DUSR SRGLD = 1811 7 INFOS =GLOBAL LOGICAL DELETE
Y peeg22e0 ,DUSR SKLOM s SRLLO+SRGLD ;INFOS ~LCGICAL DELETE MASK
23 ooe360 ,DUSR SRSFM s SKLLD+SRDUP+SRDRL+SKGLD
24 JINFOS =STATUS FIELL MASK
21
ee ; MAG=TAPE CUNTROL PROCESSING PACKET
e3
04 @oe0©3 .DUSR PRCFC s PRDAT+2 s INFOS «CONTROL FUNCTION .CODE
©S voevdd4 ,DUSK PRNWC s PRCFC+1 s INFOS <NUMBER OF WCRDS
2o
07 i MAGeTAPE CONTROL FUNCTION CCODES (PRCFC)
vs
29 ¢aeeoe ,DUSR MCSFF = 0 ;INFOS ~SPACE FORWARD FILE
10 eeeoey ,DUSR MCSEF = MCSFF+1 JINFOS ~SPACE BACKWARD FILE
11 voeadve ,DUSR MCRD = MCSBF+1 7 INFOS =-REAU
12 200023 ,DUSR MCWRT = MCRD+1 #INFOS =kRITE
13 02eve4 ,DUSK MCWEF s MCWRT+1 }INFOS =wWRITE EOF
14 Jeeves ,DUSR MCREW =z MCWEF+1 JINFOS =REWIND
15 evevns DUSR MCSFR = MCREW+1 i INFOS =SPACE FORWARD REC
1¢ 0eese7 ,DUSR MCSBR s MCSFR+1 $INFOS ~SPACE BACKWARD REC
17 veee1e ,DUSR MCERS = MCSBR+1 i INFOS =ERASE
18
19 ; PUINT PROCESSING PACKET
s
2l eeever ,DUSR FRMOD = PRSTA+1 s INFOS «INPUT MODE
ee 000002 ,DUSR PRHELB s PRMOD+1) INFOS =HI LOGICAL BLOCK
es P000¥3 ,DUSR FRLLB = PRHLB+1 s INFOS =LOW LOGICAL BLOCK
a4 vveved ,DUSR PRBUF s PRLLE+1 7 INFOS =BYTE OFFSET
25
26 ; POINT INPUT MODE (PRMOD)
27
28 000ave ,DUSR PMEOF = % s INFOS «POINT TO EOF
29 eeeaot LDUSR PMLBN s 1 s INFOS =LOGICAL BLOCK NUWM
30
093-000114-01 11-7-21 The Assembly Language Interface

DataGeneral

SOFTWARE DOCUMENTATION

9080a1
wQvB03
eego13
ood0o14

200000
egeeoe
2eeo0l
200003
peaees

100000
040000
020000

027400
p22ue0
022000
021073

«DUSK
«DUSR
«DUSR
«OUSR

«DUSR
+DUSR
«OUSR
.DUSR
«DUSR

.

«DUSR
+DUSR
«DUSR

-

.DUSR
+«DUSR
.DI0

«DUSR

INFOS User Parameters for Assembly Language (continued)
LINK SUB=INDEX PROCESSING PACKET

PRCKT
PRSKT
PRDCC
PRSCC

Licensed Material - Property of Data General Corporation

PRDAT
PRKTP
PRRNF
PRCCW -

KEY DEFINITION PACKET

KOTYP
KDKYL
KDKYP
KDDKO
KDLEN

)

KCTYP
KCKYL+1
KCKYP+2
KCCKO+2

KEY TYPE FLAGS (KDTYP)

KTDUP
KTGEN
KTAPX

iE0
1B1
182

INFCS SYSTEM CALLS

+PINFOS
+UINFUS
« INFOS
«1INFOS

5787
4587
4487
«SCALL 73

s INFOS
;s INFOS
7 INFOS
; INFOS

3 INFOS
7 INFOS
s INFOS
3 INFOS
3 INFGS

3 INFOS
i INFOS
;INFOS

s INFOS
s INFOS
s INFOS
7 INFOS

=DEST KEY TABLE PTR
=SOURCE KEY TABLE :PTR
=DEST COMMANC CONTROL
=SO0URCE COMMAND COMTROL

-KEY TYPE FLAGS (LK BYTE)
=KEY LEN (RH BYTE)

«KEY POINTER

=0UP KEY OCCURENCE

=KEY DEF PACKET LENGTH

=DUPLICATE KEY
=GENERIC KEY
=APPROX KEY

~PRE=OPEN

=0PEN

=PROCESSING CALL

=LABELED INIT FOR MAG TAPE

11-7-22

093-000114-01

Licensed Material - Property of Data General Corporation

08
29
10
11
12
13
14
15
16
17
18
19
aoe
21
ae
23
24
25
26
2
c8
29
30
31
32
33
34
35

¢oeovoo
gegaol
eeee0e
00e003
ee0e04
0egens
(41111
eeeoo7
000010
e0¢o11
eeeaie
000013
eoeel4
200015
A00016
000017
eeeo20e
vogeel
00ee2e
000023
oeeely
dueees
ogeees
veen27

-

+DUSR
+DUSR
+«DUSR
+DUSR
.DUSR
«DUSR
+DUSR
«DUSR
«DUSR
«DUSR
+DUSR
«DUSR
«DUSR
«DUSR
+DUSR
+DUSR
«DUSR
+CUSR
«DUSR
«DUSR
«DUSR
«DUSR

INFOS User Parameters for Assembly Language (continued)

« INFOS ARGUNENTS

o+POINT
o+ CNTRL
.FEUV
«1CLOSE
«SETX
+RELX
+« TRNCT
«IREAD
+IMRITE
+DEFSI
+LNKSI
«DELRC
+DELSI
+RETST
«RETHK
+RETKY
+KREINS
«RDDIR
+WRDIR
«RELRC
+RELSE
« REWRT
«RETDF
«FRERD

]
«POINT+Y
«CNTRL+1
+FEOV+L
«ICLOSE+]
«SETX+1
+RELX+1
¢ TRNCT+1
+IREAC+1
«IWRITE+1
+DEFSI+1
«LNKSI+}
«DELRC+}
«DELSI+1
«RETST+1
«RETHK+1
«RETKY+1
«REINS+1
«RODIR+1
«WRDIR+1
+RELRC+1
«RELSE+1
+REWRT+1
«KRETDF+1

FINFOS
7 INFOUS
$ INFCS
s INFOS
#INFOS
i INFUS
s INFQS
i INFOS
$INFOS
}INFOS
3 INFOS
? INFOS
7 INFOS
INFOS
JINFOS
7 INFOS
i INFOS
3 INFQS
$ INFOS
JINFOS
i INFOS
FINFOS
7 INFUS
s INFOS

DataGeneral

SOFTWARE DOCUMENTATION

=PCINT

=CCNTROL

=FCRCE END OF vOL
=INFOS CLOSE

=SET EXCLUSIVE USE
=RELEASE EXCLUSIVE USE
=TRUNCATE BLGCK
=INFCS READ

=INFOS WRITE
=DEFINE SUB=INDEX
=LINK SUB=INDEX
«CELETE RECORD
=DELETE SUB-INDEX
=RETURN STATUS
=RETURN HIGH KEY
*RETURN KEY
=REINSTATE REC
*REAC DIRECT
*WRITE DIRECT
=RELEASE REC
=RELEASE BUFFER
~REWRITE

~RETURN SUB-INDEX DEF
“PREREAD

093-000114-01

11-7-23

The Assembly Language Interface

DataGeneral

SOFTWARE DOCUMENTATION

INFOS

0ep200
0dece!

buocee
doecel
ooecey
eeee0s
000206
000287
ogeele
fee211
eeee1e
00e213
egee14
0eee1s
geegete
0eee17
eeee2oe
20eeet
egeeee
200223
egeea2y
vpeees
0eee26
Ly
008230
ene23t
eoees2
00e233
0ee234
200235
veee3s
ovvel7
000240
epeeuy
ggeeude
Boecus
soe2uy
00024S
eeR2ue6

gee247
egecse
eeeest
Que2ese
200253
2eees4
20ee2ss
0256
eee2s7
oeele6e
eeecel
200262
200263
vov264
000265

H

.DUSR
«DUSK

«DUSK
.DUSR
+DUSR
«DUSR
+DUSR
.DUSR
+DUSR
«DUSR
«DUSR
+DUSKR
+«DUSR
.DUSR
«DUSR
«DUSR
.DUSR
«DUSR
+DUSR
+DUSR
«DUSR
«DUSR
«DUSR
+DUSR
.DUSR
«DUSR
+.DUSR
«DUSR
.DUSR
+DUSR
.DUSR
+DUSR
«DUSR
«DUSR
«DUSR
«DUSR
«DUSR
«ODUSR

+DUSR
«DUSK
«DUSR
.DUSR
«DUSR
+DUSR
«DUSR
«DUSR
«DUSR
«DUSR
+«DUSR
«DUSR
«DUSR
+DUSK
«DUSR

User Parameters for Assembly Language (continued)

Licensed Material - Property of Data General Corporation

INFOS ERROR CODES

I0ILF
I0VTI

1CRDO
ICIFD
100PE
IORFC
IOEXF
IGLOK
ICFNC
I0PCF
I0VFP
I0URC
10RMP
I0DVF
10BEW
10VME
I0XTL
JOVFE
10VCE
I0IFO
IOLEF
10UXS
IONSV
ICNOH
I0NMD
I0ROF
101CL
ICPIO
I0RDE
10TMO
I0IAM
I0XER
10PRO
IGPRC
10FCE
10KOE
JOVAX
10Z0X
10IUC

IONMR
IONSI
IONTL
IONNS
IOMTE
IODNS
I0EVO
I0EV]
I0CMP
10REZ
IOIRM
I0INA
ICICE
I0TLV
I0SNA

0 00 00 08 06 30 00 00 08 G0 00 00 B0 00 B0 40 0 00 (€ 00 00 00 00 BOBY 00 00 00 O WM U H BN

@0
ICILF+1

I0VTI+!
ICRDOO+1
10IFD¢+1
ICOPE+!
I0RFC+1!
IGEXF+1
JOLCK+1
ICFNO+1
I0PCF+1
ICVFP+1
ICURC+1
I0ORMP+1
I0DVF+1!
ICBEW+!}
I0VME+1
I0XTL+1
IOVFE+1
I0VCE+!
I0OIFO+1
I0LEF+1
ICUXS+1
IONSV+1
IONOH+1
IONMD+Y
I0ROF+1
ICICL+Y
10PI0+}
IORDE+Y
I0TMO+L
I0TAM+1
IOXER+1
ICPRO+1
IGPRC+1
I0FCE+!
ICROE+1
IOVAX+1
I10ZDXx+1

I0IUC+1l
ICNMR+1
IONSI+1
IONTL+}
IONNS+1
IOMTE+}
JIODNS+1
I0EVO+1
ICEVI+l
IOCMP+1
I0REZ+1
10IRM+1
I0INAYY
ICICE+!
I0TLV+!

7 INFOS
i INFOS
s INFOS
i INFCS
i INFCS
7 INFCS
? INFOS
3} INFOS
3} INFOS
3 INFOS
3 INFOS
JINFOS
i INFOS
3} INFOS
INFOS
3 INFOS
JINFOS
3 INFCS
s INFOS
3 INFCS
;s INFOS
3 INFOS
3 INFOS
i INFOS
i INFOS
i INFOS
i INFOS
}INFOS
3 INFOS
3 INFOCS
7 INFOS
7 INFOS
7 INFOS
i INFOS
INFOS
i INFOS
i INFOS
3 INFOS
s INFCS
s INFOS
7 INFOS
JINFOS
3 INFOS
3 INFOS
7 INFOS
3 INFOS
i INFOS
i INFOS
i INFOS
s INFOS
3 INFOS
s INFOS
$ INFOS
3 INFOS
;i INFOS
7 INFOS

=ILLEGAL FUNCTION
=WARIABLE LENGTH TRANSFER
«ILLEGAL ON THIS DEVICE
~REWRITE GN CISK OMNLY
=ILLEGAL FUNCTION FOR DEV
=CPEN PROCESSING ERRCR
=REC FMT 8 FUNC COANFLICY
=FILE IN USE

=FILE LOCKED

<RILE NOT OPEN

=PERIPHERAL CONFLICT

=VL FILE PROCESSING ERROR
=UNRESOLVED RESOURCE CONFLICTY
-REWRITE MODE PROCESSING ERROR
*DUPLICATE VL FILE

=BLOCK SIZE EXCEEDS WINDOW SI E
=VIRTUAL MEMCRY EXKAUSTED
=TRANSLATE TABLE ULCAD ERROR
=VL FILE OPEN ERR

«VL FILE CLOSE ERR

=INSUF FREESPACE FOR OPEN
=LOGICAL END OF FILE

=USER TRANSLATE SPECIFICATION EFR
«NO SUCH VOLUME

=NO HOLD ON LOCKED REGUEST
«NO MORE DISK SPACE

«RAM ACCESS OUTSIDE FILE
=ILLEGAL CLOSE

=PHYSICAL I/C ERROR
~RESIDUAL DISK ERRCR

«DISK OR MAG=TAPE TINE=OUT
=ILLEGAL ACCESS METHOD
ILLEGAL TRANS REGLEST
=PREOPEN OPEM ERROF
-PREOPEN CLOSE ERRCR

=RILE CLUSE ERROR

=RD0OS CPEN ERRCR

-VWCLUME ALREADY EXISTS
=2ERO LEN DISK XFER REGQ
«ISAVM UPDATE CONFULICT
=TABLE OVERFLOW

= :INDEX NAME ERROR

“NO SUCH INDEX

=NAME TOO LONG

=NC NGDE SPACE

=VAG=TAPE 1/0 ERROFR
=DEVICE NOT SUPPORTED
«CUTPUT END VOLUME ERRCR
=INPUT END VOLUME ERROR
=CCMFARE ERROR (1SAV)
-RESOLUTION ERROR (ISAM)
-ILLEGAL REL MOTIOMN
=INVALID NCODE ADDORESS
«INVALID CURRENT ENTRY
«TOP LEVEL ERROR

-SUB INDICES NOT 'ALLCWED

11-7-24

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

INFOS User Parameters for Assembly Language (concluded)

0

gé eee267 ,DUSR 10ESI = IOSNP+1 INFOS ~END OF SUB=INDEX

23 éege7@ ,DUSR I0DPE s ICESI+1 JINFOS -DELETE POSITIONING ERROR

24 eeee71 ,DUSR I10MKW s ICDPE+} s INFOS «MULTI KEY WKRITE ERRCR

25 eee272 .DUSR I0IKL s ICMKW+1 FINFOS =ILLEGAL KEY LENGTFH

26 200273 .DUSR I0IEN s IOIKL+1 sINFOS =INVALID ENTRY NUMEER

27 ee@274 ,DUSR 101PS = ICIEN+} $INFOS =ILLEGAL COMMAND OCNTROL

28 20@275 ,DUSR 10KAE s I0IPS+1 #INFOS <KkEY ALLREACY EXISTS

29 20ve276 ,DUSR I0KPE = ICKAE+1 #INFOS =kEY POSITIONING ERRCR

1¢ eee277 .DUSR ICIRL s ICKPE+1 7 INFOS =INVALID RECORD LENGTH

11 goe400 ,DUSR 10RNF = 4eo s INFOS =DATA BASE REC NOT PRESENT

12 eee421 .DUSR IONTB s IORNP+1 s INFOS =MIN NODE SIZE TCC BIG

13 oee4d2 ,DUSR IONTS s IONTB+1 3 INFOS «MIN NODE SIZE 70O SMALL

14 eee40e3 ,DUSR I0DRL s IONTS+! 7 INFOS ~DATA RECCRD LGCKEC

15 eee404 ,DUSR 10SIA s ICDRL+1 # INFOS =SUB=INDEX IN USE

16 200425 ,DUSR IOVER = ICSIA+1 s INFOS =VERSION CONFLICT ERROR

17 000406 ,DUSR 1081IL s 10VER+! 7 INFOS «SUB=INDEX LINK COLNT

18 ; INFOS ~OVERFLOW

19 veey4e7 ,DUSR ICALS s 10SIL+1! i INFOS =ALREADY LINKED

20 # INFOS =T0 SUB=INDEX

21 @ee41ad ,CUSR 10SLO s ICALS+1 s INFOS =SUB=INDEX LEVEL GVERFLOW

22 @0@411 ,DUSR 10881 s ICSLO+} 7 INFOS =SUB=INDEX HAS SUB=INDEX

23 #INFCS ~DELETE SUB=INDEX 'ERROFR

24 eee412 ,DUSR I0DWK s ICSSI+i ;s INFOS =ATTEVNPT TO CELETE ENTRY

25 s INFOS =WITHGUT KEYED ACCESS

26 200413 ,DUSR I0ENL = IODWK+1 7 INFOS =INDEX ENTRY LOCKED

27 @@e414 ,DUSR IOWWK = I0ENL+1 7INFOS =NC WRITE WITHOUT KEY

28 208415 ,OUSR I0ILL s ICWWK+1 s INFOS ~ILLEGAL LABEL

29 eee416 ,DUSR ICILS s I0ILL+1 s INFOS -ILLEGAL LABEL SPEC

30 000417 ,DUSR 10VID = I0ILS+1 s INFOS =vOL ID DOESNT MATCH

31 00e420 ,DUSR ICF1D s ICVID+1 #INFOS =RILE ID DOESNT MATCH

32 ooe421 .DUSR I0FSQ = IOFID+} INFOS =FILE SEQ@ NUM DOESNT MATCH

33 eve422 ,DUSR I0GEN s ICFSG+1 7 INFOS =GEN NUM DOESNT MATCH

34 0eQ423 ,DUSR 10EXD s ICGEN+1 s INFOS «EXP DATE NOT EXPIRED

35 #0@424 ,DUSR 10BCT s ICEXD+1 s INFOS =BLOCK COUNT INCORRECT

16 600425 ,DUSR 1GRF1 s 10GBCT+1 3 INFOS =RECORD FORMAT CONFLICT

37 2e@426 ,DUSR IOFSN s IORFT+1 7 INFOS ~FILE SECTION NUMEER

38 eoe427 ,DUSR ICEIL = 1CFSN+1 7 INFOS -EXCESSIVE POSITION LEVELS

19 000430 ,DUSR 108LS z 10EIL+1 s INFOS =SYSTEM LOAD SIZE ERROR

49 2@¢431 ,DUSR 10FNF s JOSLS+1 s INFOS =TAPE FILE NOT FOUND

4 eeeu432 ,DUSR 1GBTS T TI0FNF+1 3 INFOS -BLOCKSIZE < 8 BYTES

42 220433 ,DUSR I0RTL s 10BTS+1 s INFOS -RECCRD+OVERFEAD > BLOCKSIZE

43 e0e434 ,DUSR I0WNE s IORTL+1 ;INFOS =WRITE IS NCT AT END-OF=FILE

44 JINFOS =FOR SHARED SAM UPCATE FILE

4s 00e435 .DUSR 100w0 = I10WNE+L JINFOS <hRITE ALLOWED ONLY FCR ONE

46 7 INFOS =USER GF SHARED SAM UPDATE FILE

47 eeeul36 ,DUSR 108PL = ICOKC+1 s INFOS « 'SPOCLING ENABLED ON 'ILLEGAL JE

48 eee437 ,DUSR ICRKR = ICSPL+1 s INFOS = INFOS RETRIEVE KEY ERROR

49 eoe442 ,DUSR ICDIP s ICRKR+1 $INFUS = DELETE INDEX POS ERRCR

Y geed44y ,DUSR J0MPK T ICDIF+1 5 INFOS = SPACE MANAGEMENT INCONSISTE. Y

51 @ee442 ,DUSR 108TR s JOMPR+1 ;INFOS = SEARCH CP TABLE ‘ERRCR

52

53

S4
+EOT

NOTE: See Appendix D for the octal values of the above error codes and further explanation of what each one
means.

End of Chapter

093-000114-01 11-7-25 The Assembly Language Interface

Part Three:
Appendixes

Labeled Magnetic Tapes

Subindex and Database File Properties

The INFOS/FORTRAN Interface

INFOS System Error Messages

Device Characteristics

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Appendix A
Labeled Magnetic Tapes

General Concepts

A labeled magnetic tape is one which contains your data
plus information about your data. This information is
contained in labels and consists of things like volume
name, filename, file format, etc. You get two
significant benefits from using labeled tapes:

® Your file information is retained in a consistent
format;

® You can call your files by a logical name rather than
by a device name.

Labels come in two types: system labels and user labels.
The INFOS system will automatically generate system
labels from the information you supply when you
create your file. If you want to store additional file
information, you may also specify the contents of your
own user labels.

You can fully or partially initialize volumes (i.e., reels
of tape) with the INFOS system, and you can initialize
and release volumes through system calls or at
runtime. Runtime initialization allows you to process a
multivolume file, even though you may have fewer
tape drives than the number of volumes in your file.

093-000114-01

IHi-A-1

Label Types and Levels

You can use any of the following label types and levels
for your INFOS files:

® ANSllevels 1, 2, or 3 (recorded in ASCII); or
e IBM levels 1 or 2 (recorded in EBCDIC).

The ANSI labels are defined by The American National
Standard, X3.27 - 1969, as modified by X3L5/36ST,
dated September 27, 1973. The IBM labels are defined
in various IBM publications. If you are not sure which
level to use for either label type, choose the highest -
i.e., ANSI 3 or IBM 2. This will give you the most
flexibility when you use your files, but won’t take
much more space on your tapes than the lower levels.
In other words, if you use the highest level when
you’re writing to your file, it will give you maximum
information about how your tape is organized when
you go to use it again. Also, when you are reading such
a file, the system will allow you to access any of the
lower label levels in addition to the highest one. For
example, if you specify ANSI 3 input, you can read
ANSI levels 1, 2, or 3; if you specify IBM 2, you can
read IBM levels 1 or 2.

The charts in Tables A-1 to A-5 summarize the
required and allowable label identifiers for each label
type and level. The terms Required and Allowed refer to
the Input processing mode. ‘‘Required’’ means that the
specified label must be on the tape if you want to
process it. ‘“Allowed’” means that the presence of that
label will not cause an error (i.e., the system will ignore
it). The term Processed refers to both the Input and
Output processing modes. On Input, the system will
read the ‘‘Processed’’ labels; on Output, it will write
the specified label on the tape. Finally, note that
End-of-Volume (EOV) labels are required on all
multivolume tape files.

Label Types and Levels

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table A-1. Level 1 ANSI Labels

Label Group Label Set Label Required | Allowed Processed
Name Name Iden-

tifier
Beginning of Volume VOL VOL1 VOL1 VOLI1
Volume Header
Beginning of File HDR HDRI1 HDR1-HDR9Y9 HDR1
File Section Header
End of File End of EOV EOV1 EOVI1-EOV9 EOV1
Section Volume
End of File End of EOF EOF1 EOF1-EOF9 EOF1

File

NOTES: ® You may only have Fixed Length data records at this level.

® You can record a single file on more than one volume.

Table A-2. Level 2 ANSI Labels

Label Group Label Set | Label Required | Allowed Processed
Name Name Iden-
tifier
Beginning of Volume VOL VOLI1 VOLI1 VOLI1
Volume Header
Beginning of File HDR HDRI1 HDR1-HDR9 HDR1
File Section Header
User UHL None UHL1-UHL9 UHL1-UHL9
Header
End of File End of EOV EOV1 EOV1-EOV9 EOV1
Section Volume
User UTL None UTL1-UTL9 UTL1-UTL9
Trailer
End of File End of EOF EOF1 EOF1-EOF9 EOF1
File
User UTL None UTL1-UTL9 UTL1-UTL9
Trailer

NOTES: ® You may have Fixed or Variable length data records at this level.

® You can record more than one file on a single volume.

1-A-2

093-000114-01

Licensed Material - Property of Data General Corporation
Table A-3. Level 3 ANSI Labels

DataGeneral

SOFTWARE DOCUMENTATION

Label Group Label Set | Label Required | Allowed Processed
Name Name Iden-
tifier
Beginning of Volume VOL VOLI1 VOLI1 VOL1
Volume Header
User UVL None UVLI1-UVL9 UFL1-UVL9
Volume
Beginning of File HDR HDR1 HDR1-HDR9 HDR1-HDR2
File Section Header
User UHL None UHL1-UHL9 UHL1-UHL9
Header
End of File End of EOV EOV1 EOVI1-EOV9 EOV1-EOQV2
Section Volume
User UTL None UTL1-UTL9 UTL1-UTL9
Trailer
End of File End of EOF EOF1 EOF1-EOF9 EOF1-EOF2
File
User UTL None UTL1-UTL9 UTL1-UTL9
Trailer

NOTES: ® You may have Fixed, Variable, or Undefined length data records, but
your records may not span blocks.

® You may record more than one file on a single volume.

093-000114-01 11-A-3 Label Types and Levels

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table A-4. Level 1 IBM Labels

Label Group Label Set Label Required | Allowed Processed
Name Name Iden-
tifier
Beginning of Volume VOL VOL1 VOL1 VOLI1
Volume Header
Beginning of File HDR HDRI1 HDR1-HDR9 HDRI1
File Section Header
User UHL None UHL1-UHL9 UHL1-UHL9
Header
End of File End of EOV EOV1 EOV1-EOV9 EOV1
Section Volume
User UTL None UTL1-UTL9 UTL1-UTL9
Trailer
End of File End of EOF EOF1 EOF1-EOF9 EOF1
File
User UTL None UTL1-UTL9 UTL1-UTL9
Trailer

NOTES: ® You can have Fixed, Variable, or Undefined length data records.
® You may record more than one file on a single volume.

® These labels correspond to those generated by the following IBM
operating systems: BPS, BOS, TOS, and DOS.

1n-A-4

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table A-5. Level 2 IBM Labels

Label Group Label Set Label Required | Allowed Processed
Name Name Iden-
tifier
Beginning of Volume VOL VOL1 VOL1 VOLI1
Volume Header
Beginning of File HDR HDRI1 HDR1-HDR9 HDR1-HDR2
File Section Header
User UHL None UHL1-UHL9 UHL1-UHL9
Header
End of File End of EOV EOV1 EOV1-EOV9 EOVI1-EOV2
Section Volume
User UTL None UTL1-UTL9 UTL1-UTL9
Trailer
End of File End of EOF EOF1 EOF1-EOF9 EOF1-EOF2
File

NOTES: ® You may have Fixed, Variable, or Undefined length data records, but
records may not span blocks.

® You may record more than one file on a single volume.

® These labels correspond to those generated by the IBM operating
systems OS, OS/VS1, and OS/VS2.

093-000114-01 In-A-5 Label Types and Levels

DataGeneral

SOFTWARE DOCUMENTATION

User Labels

There are three types of User Labels: Volume, Header,
and Trailer. They are useful if you want to specify
information about a file which doesn’t fit into the usual
label categories - such as file creation time, machine
configuration, or whatever. At the highest levels of
label processing, you can specify up to nine of each type
of label, which should be sufficient for most
applications.

You can specify User Labels for each volume of a file,
but, if you’re going to use them, you have to build a
label table into your program for each type of label you
want to use. Each table will contain an entry count
followed by an entry for each label which will point to
the User Label area of your program. Each of your User
Label areas can be up to 76 Bytes long. (The actual label
is 80 Bytes long, but the system automatically supplies
the first four bytes which contain the label identifier
and number.)

During input processing, the system reads each User
Label into its corresponding label area; on output, it
takes the label from your label area and writes it to your
tape.

One labor-saving feature to note: You don’t have to
build a unique table for each volume of your files. That
is, the definition areas of several volumes can point to a
single label table within your program. You can also
modify the contents of your label table or that of a
particular label area just by monitoring the status word
in the processing part of your program.

Volume Initialization and Release

Before you can open a file on a labeled magnetic tape to
process your records, you have to initialize the tape for
label processing. You can do this three ways:

1. with the LBINIT utility (as described in the INFOS
Utilities Users’ Manual); or

2. with the system call .IINFOS; or

3. viaruntime initialization.

However, once you have initialized a labeled magnetic
tape, you must use the INFOS SAM processing and

utility functions; you cannot process it with standard
operating system (RDOS) calls.

111-A-6

Licensed Material - Property of Data General Corporation

How to Initialize and Release Tapes
Through System Calls

The system call to partially or fully initialize a magnetic
tape volume for label processing is .IINFOS. When you
use this call, the system will automatically rewind your
selected drive. This call also allows you to access a
volume by its identifier rather than by a device
specifier, since it equates the volume identifier with the
selected drive. For example, you can access a volume
by its identifier PAYROLL, rather than MTO. If your
installation has multiple tape drives, you can also use
JINFOS to initialize several volumes before you
process them.

When you partially initialize a volume with .IINFOS,
the system reads the label group at the beginning of the
volume which contains the volume identification,
header labels, and user labels (if any). The system then
compares the volume identification in the label of the
first volume to the volume identifier which you specify.
If the two identifiers are not the same, you’ll get the
error message, ‘‘VOL ID DOESN'T MATCH’. You
can also tell the system not to compare identifiers, in
which case the system will initialize the volume
regardless of its volume identification.

You perform a full initialization in the same way that
you do a partial. When you fully initialize a tape,
however, the system writes the volume label plus
dummy header and trailer labels on the tape.
Consequently, you will lose any previous information
on a volume when you fully initialize it. If you’re using
virgin tape, you must fully initialize it before you use it.
Then you can either open the tape for use in your
current run, or release it and partially initialize it later.

If the system encounters no errors in either a full or
partial initialization, it sets a flag which indicates that
the volume has been initialized for label processing.
Once this is set, you cannot process the volume with
standard operating system (RDOS) calls.

After initialization, if the system encounters an error
when you are pre-opening, opening, or attempting your
first read or write request, it will automatically rewind
the tape so that you won’t be mispositioned. This
rewind will occur whether you requested it or not.

When you have finished processing a volume, release it
with the system call .RLSE.

093-000114-01

Licensed Material - Property of Data General Corporation

Runtime Initialization and Release
(General)

The INFOS system also allows you to initialize tapes at
runtime. This can be very useful when you have not
been able to initialize a tape beforehand, or if you have
a multivolume labeled tape file but fewer tape drives
than file volumes. This feature lets you partially
initialize tapes as you need them for processing and
release them when you’re finished. In order to use this
feature, however, you must enable runtime
initialization and release when you set up your file. The
system will not perform runtime initialization if the
tape is already initialized - it will simply ignore the
runtime request.

If you’re processing a multivolume file, you will
probably want to mount all your tapes before you start
in order to save time. However, if you have more file
volumes than tape drives, you must request runtime
release for each volume that you are replacing with
another. After you mount the next volume, you must
request runtime initialization for it and supply the
necessary information described below.

093-000114-01

1-A-7

DataGeneral

SOFTWARE DOCUMENTATION

Runtime Initialization

When the system wants you to set up a tape so that it
can initialize it, you will receive the messages MOUNT
VOLUME (name) and ENTER DEVICE SPECIFIER
on your system console. This tells you to do two things:

1. Mount the tape, and

2. Tell the system the device specifier of the drive on
which you mounted the tape (e.g., MTO).

The system will then try to initialize the tape. If the
volume identifier on the tape does not match the one
you specified when you set up the file, the system will
send you the following message: “VOLUME (name)
MOUNTED, USE ANYWAY?” If you still want to
use the volume you mounted, type in “YES” or “Y”.If
you respond “NO” or “N”, the system will ask you
“CANCEL (Y or N)?> If you then answer “Y" or
“YES”, the system will cancel your processing request
and rewind the tape. If you answer “N” or “NO”, the
system will rewind the tape so that you can mount
another.

NOTE: While the system is processing a runtime
initialization request, it will wait indefinitely for
you to respond to a prompt. However, while the
system is waiting for you to answer, it suspends
all other tasks it is processing at the time in both
the background and the foreground. In other
words, no one else can process data while the
system is waiting for you. Therefore you should
secure your desired tape or respond to the
prompt as quickly as possible to avoid incurring
the wrath of your fellow users.

Volume Initialization and Release

DataGeneral

SOFTWARE DOCUMENTATION

Runtime Release

Runtime release is an operation the system
automatically performs when it reaches the end of a
volume or when it encounters any situation that
requires the close of the volume or the file. After the
system has released your tape, it will tell you (via your

Licensed Material - Property of Data General Corporation

system console) the volume identifier and the drive
specifier. If you desire runtime release as part of your
close request, you must also specify rewind or else the
system will not perform the runtime release.

The diagram in Figure A-1 shows the sequence of
events for runtime initialization and release.

Read or Write
Processing Request

Preopen
Processing Request

L

]

Volume

Is Current

initialized ?

YES

System Does

Runtime Initialization

-

y

v

Read or Write

System Performs

Processing Request

Preopen Processing
Request Return

Y

End of

Volume ?

System Does
Runtime Release

/

Return to You

SD-00560

Figure A-1. Sequence of Events for Runtime Initialization

and Release

11-A-8

093-000114-01

Licensed Material - Property of Data General Corporation

Processing Labeled Magnetic Tapes

After you have initialized your tape and gone through
the pre-opening procedures, you’re ready to open the
tape for processing. The first thing to note here is that
the physical opening of your tape occurs when you
issue your first read or write request. On a write
request, the system compares the expiration date of the
volume to the current date; on a read request, the
system compares the record format of the tape to that
which you requested. If either of these don’t match,
you’ll get an error message. However, you can specify
Undefined records when you open a file for reading;
then the system will read all the records on the tape up
to the next tape mark, regardless of this format.

Next, you’ll want to position yourself to your first
desired record. To do this, the system needs a
Sequence Number, a Filename and a Generation
Number. Once you have decided whether to supply or
default these, the system will follow these three tape
positioning rules:

1. A. The system looks at the Sequence Number you
request, if any, first.

B. All subsequent searches will be forward only
from that Sequence Number position.

2. A. The system next verifies the Filename of the
record whose Sequence Number you
requested, unless you default the Filename.

B. If you did not specify a new Sequence Number,
the system will search forward from the end of
the last record you read.

3. A. If the Filename matches, the system verifies
the Generation Number (if you gave one) and
proceeds in a forward search.

B. If the system does not match either the
Filename or the Generation number, it will let
you know via an error message.

As these rules indicate, you can default the Filename
and Generation Number if you don’t know (or care
about) them, but your position on the tape is always
governed by the Sequence Number. If you default this
number by answering -1, the system will automatically
give you the next record on the tape. If you do not
default the Sequence Number, the system will position
the tape to the record whose Sequence Number you
specify. Then it will compare the Filename and
Generation Number of that record to those which you
specified (if any). If they don’t match, you’ll get an
error message. So it’s easy to move forward through
the records on your tape - just give -1 or a Sequence
Number.

093-000114-01

1-A-9

DataGeneral

SOFTWARE DOCUMENTATION

Now, what if you want to go backwards on the tape to a
record you read or passed over earlier? There are two
ways to do this: Give the system the exact Sequence
Number for the record you want to access, or rewind
the tape to the beginning and search for the record
using the -1 Sequence Number.

For example, suppose you have a file named
PAYROLL whose records represent several months of
weekly payroll accounting. To keep things simple, you
have numbered the records 0101, 0102, 0103, 0104,
0201, 0202, etc. The Filename PAYROLL will be part
of each record, as will the numbers 0101, 0102, 0103,
etc. Therefore, the name of the record which is
Sequence Number 1 is PAYROLL 0101; Sequence
Number 2is PAYROLL 0102, etc. If you have just read
the record PAYROLL 0502 (which is Sequence
Number 18), and you want to go back to the record
whose name is PAYROLL 0203, you can do so in two
ways. 1) You can code the equivalent of READ 7 if you
know that PAYROLL 0203 is, indeed, Sequence
Number 7. Or if you don’t know what the exact
Sequence Number of PAYROLL 0203 is: 2) You can
rewind the tape to its beginning and search forward,
using -1 as a Sequence Number, until you find
PAYROLL 0203.

If you had simply told the computer to search for
PAYROLL 0203 and used the Sequence Number -1,
the system would have gone forward from your current
position (Sequence Number 18) to the end of the tape.
Since it would not have found the record whose
Filename was PAYROLL and whose Generation
Number was 0203, it would have sent you the message,
TAPE FILE NOT FOUND. At this point you would
probably scratch your head and say, “l@**#$#*11l |
knowthat record is on this tape”’. And you’d be right. It
is on the tape, but the system will only search forward
unless you specify a Sequence Number or ask for
rewind before you search. So if you want to find a
record which you may have already passed, follow
either of the steps described above.

Positioning When Writing

So far we’ve dealt primarily with reading from a tape.
However, the same general positioning principles apply
when you’re writing to a tape - except that it’s much
simpler.

When you want to (re)write a record, the system looks
only at the Sequence Number; it will not verify the
Filename or Generation Number when you reposition.
So if you’re not absolutely sure of the Sequence
Number, read the record to which you have
repositioned before you rewrite it.

Processing Labeled Magnetic Tapes

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
There is one final caution about processing labeled Graphic Arts Section

magnetic tapes: If you give the system a Sequence . -

Number which is greater than the number of records The diagrams in Figures A-2 to A-6 and Tables A-6 to
on the tape, the hardware will position the tape beyond A-12 shpw the labels used in each label type and level
the end-of-tape markers and the INFOS system will and their sequence on tape.

hang. (Ouch!) This is not a desirable situation.

Single
File
Single SINGLE FILE MULTIPLE VOLUMES
Volume
VOL1 VOL1 VOL2 VOL3

HDR1 HDR1 HDR1 HDR1

FILE A FILE A FILE A FILE A
]
| d
A~ I~ L-\ -~ I~ S~ e I~
|
First Second Last
| Section Section Section

EOV1

SD-00350A

Figure A-2. Level 1 ANSI Labels Supported by the INFOS System

11-A-10 093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Multiple
Files
Single Single File Multiple Physical Volumes
Volume
VOL1 VOLA1 vOL2 VOL3
HDR1 ' HDR1 HDR1 HDR1
UHL1* UHL1* UHL1* UHL1*
to to to
UHL9 UHL9 UHL9
i
FILE
r—~~—
A | FILE FILE FILE
A A A
EOF1
UTL1*
to
UTLO ' ~L ~L JL, L .
HDR1
UHL1*
to !
URLY First Second Last
Section Section Section
FILE
I
EOVA1 EOV1
i uTL1* uTL1* uTL1*
to to
uTL9 UTL9
*Optional
SD-00562
Figure A-3. Level 2 ANSI Labels Supported by the INFOS System

093-000114-01 11-A-11 Graphic Arts Section

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
Multiple
Files
Single Single File Multiple Physical Volumes
Volume
VvoL1 VoL 1 VoL 2 voL3
uvL1* uvL1* uvLl* uvL1*
to ! to to to
uvL9 uvLs UvL9 uvL9
HDR1 HDR1 HDR1 HDR1
and and and and
HDR2 HDR2 HDR2 HDR2
UHL1* ! UHL1* UHL1* UHL1*
to to to to
UHL9 UHLS UHLS UHL9
1
FILE
A ~

FILE FILE FILE

)
{
I||__A__e
>
>
>

EOF1
and)
EOF2

utL

3
)
-
)|
(

)]
(
)
(
)
(
)
(

uTL9

HDR1
and
HDR2

UHL1*

UHL9 First Second Last
Section Section Section

FILE

H

—

EOV1 EOV1 EOF1
and and and
EOV2 EOV2 EOF2
| to to to
uTLS uTL9 UTLS

*Optional

SD-00563

Figure A-4. Level 3 ANSI Labels Supported by the INFOS System

11-A-12 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
Muitiple
Files
Single Single File Multiple Physical Volumes
Volume
voL1 VOL1 VOL2 VOL3
HDR1) HDR1 HDR1 HDR1
UHL1* UHL1* UHL1* UHL1*
to to to to
UHL9 UHL9 UHL9 UHL9
. I
] |
FILE
r~~ ~
FILE FILE FILE
| A ‘ 1 A A A
EOF1
uUTL1* ~ ~— ~ ~_ ,-L ﬂL
to i
uTL9 L L ’Tv L ot Tv s
HDR1
UHL1*
to !
UHL9 First Second Last
Section Section Section
FILE
I
EOV1 EOV1 EOF1
I uTtL1* uTL1* uTL1*
to to to
UTL9 UTL9 UTL9
*Optional
SD-00561
Figure A-5. Level | IBM Labels Supported by the INFOS System

093-000114-01 11-A-13 Graphic Arts Section

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Multiple
Files
Single
Volume

voL1

HDR1
and
HDR2

UHL1*
to
UHL9

FILE

EOF1
and
EOF2

UTL1*
to
uTL9

HDR1
and
HDR2

UHL1*
to
UHL9

FILE

SD-00564

VOL1

HDR1
and
HDR2

UHL1*
to
UHL9

FILE

First
Section

EOV1

and
EOV2

uTL1*
to
uTL9

11-A-14

Single File Multiple Physical Volumes

VOL 2

HDR1
and
HDR2

UHL1*
to

UHLS

FILE

Second
Section

T

EOV1
and
EOV2

uTL1*
to
UTL9

VOL3

HDR1
and
HDR2

UHL1*
to
UHLS

FILE

Last
Section

EOF1
and
EOF2

Figure A-6. Level 2 1BM Labels Supported by the INFOS System

uTtL1®
to
UTL9

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table A-6. ANSI Standard Volume Label Format

Byte Field Field | Field

Position | Name Size | Content

1to3 |LABEL IDENTIFIER 3 VOL

4 LABEL NUMBER 1 1

5to 10 | VOLUME IDENTIFIER 6 Up to six alphanumeric characters

assigned by the owner to
permanently identify this volume.

11 ACCESSIBILITY 1 A single alphanumeric character
indicating restrictions on access 1o
this volume.
A blank space indicates no
restrictions.

12to 37| RESERVED 26 Should contain blanks.

38t0o 51| OWNER IDENTIFICATION 14 Up to 14 alphanumeric characters
that identify the owner of this
volume.

52to 79| RESERVED 28 Should contains blanks.

80 LABEL STANDARD VERSION 1 A one-digit integer that indicates

the ANSI version to which the
labels and record formats on this
volume conform. The digit 3
means: ANSI x 3.27 - 1969.

Table A-7. ANSI Standard User Volume Labels

Byte Field Field | Field

Position | Name Size | Content

1to3 LABEL IDENTIFIER 3 UVL

4 LABEL NUMBER 1 1to9

5to 80 | USER INFORMATION 76 Up to 76 alphanumeric characters.
Not intended for wuse in an
interchange environment.

093-000114-01 I-A-15 Graphic Arts Section

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table A-8. ANSI Standard HDR 1, EOV1, EOF 1 Labels

Byte
Position

Field
Name

Field
Size

Field
Content

1to3

4

5to21

22t0 27

280 31

321035

361039

40to 41

421047

4810 53

54

55t0 60

611073

74 to 80

LABEL IDENTIFIER

LABEL NUMBER

FILE IDENTIFIER

FILE-SET IDENTIFIER

FILE SECTION NUMBER

FILE SEQUENCE NUMBER

GENERATION NUMBER

GENERATION VERSION

NUMBER

CREATION DATE

EXPIRATION DATE

ACCESSIBILITY

BLOCK COUNT

SYSTEM CODE

RESERVED

3

1

17

13

HDR or EOV or EOF
1

Up to 17 alphanumeric characters
assigned by the originator to
identify the file.

Up to six alphanumeric characters
to identify this file set among other
file sets.

A four-digit number to identify
this section among other sections
of this file.

A four-digit number to identify
this file among the files of this file
set.

A four-digit number to distinguish
among successive generations of
this file.

A two-digit number to distinguish
among successive iterations of the
same generation.

One space followed by a two-digit
number for the year, followed by a
three-digit number for the day of
the year. Space and five zeros
means no date.

One space followed by a two-digit
number for the year, followed by a
three-digit number for the day of
the year. Space and five zeros
means file expired.

One alphanumeric character
indicating restrictions on access to
this file. Space means no
restrictions.

For EOV and EOF, six digits
giving the number of data blocks
since the preceding
Beginning-of-File Label Group.
For HDR, all zeros.

Up to 13 Alphanumeric characters
identifying the system that
recorded the file.

Blank filled.

11-A-16

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
Table A-9. ANSI Standard HDR 2, EOV 2, EOF 2 Labels
Byte Field Field | Field
Position | Name Size | Content
1to3 LABEL IDENTIFIER 3 HDR or EOV or EOF
4 LABEL NUMBER 1 2
5 RECORD FORMAT 1 F = Fixed Length

D = Variable Length
U = Undefined Length

6to 10 |BLOCK LENGTH 5 Five digits specifying the
maximum number of characters
per block.

11to 15 | RECORD LENGTH 5 Five digits specifying record
length.
F = actual record length
D = maximum record length

including count field
U = content of Record Length

field is undefined
16to 50 | RESERVED 35 Blank fill.
51to 52 | BUFFER-OFFSET LENGTH 2 Two digits specifying the number

of characters of any additional field
inserted before first record in the
data block.

53to 80 JRESERVED 28 Blank fill.

Table A-10. IBM Standard Volume Label Format

Byte Field Field | Field

Position | Name Size | Content

1to3 |LABEL IDENTIFIER 3 VOL

4 LABEL NUMBER 1 1

5t0 10 | VOLUME SERIAL NUMBER 6 A unique identification code

assigned to the volume when it
enters the system or assigned by
the operator when the volume is

labeled.

11 RESERVED 1 Must contain a zero.

12to 21 | RESERVED 10 Not used for magnetic tape files.
Should contain blanks.

22to 31 | RESERVED 10 Should contain blanks.

32t0 41 | RESERVED 10 Should contain blanks.

42to 51 | OWNER NAME AND ADDRESS 10 Names the specific owner of the
volume. Any code or name can be
used.

52t0 80 | RESERVED 29 Should contain blanks.

093-000114-01 in-A-17 Graphic Arts Section

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Table A-11. IBM Standard HDR 1, EOV 1, EOF 1 Labels

Byte Field Field] Field

Position | Name Size | Content

1to3 LABEL IDENTIFIER 3 HDR or EOV or EOF

4 LABEL NUMBER 1 1

Sto21 |DATA SETIDENTIFIER 17 Up to 17 alphanumeric characters
giving the data set name. Can
include the generation and version
number.

221027 | DATA SET SERIAL NUMBER 6 Up to six alphanumeric characters
giving the volume serial number
for this volume.

28 to 31 | VOLUME SEQUENCE NUMBER |4 A four-digit number giving the
order of this volume in a
multivolume group.

32t0 35 | DATA SET SEQUENCE NUMBER | 4 A four-digit number giving the
relative position of the data set in a
multidata-set group.

361039 | GENERATION NUMBER 4 A four-digit number giving the
absolute generation number of the
data set or blanks.

401041 | GENERATION VERSION 2 A two-digit number giving the data

NUMBER set version number or blanks.
42t047 |[CREATION DATE 6 A six-digit number giving the year
and the day of the year the data set
was created.

4810 53 | EXPIRATION DATE 6 A six-digit number giving the year
and the day of the year the data set
can be scratched.

54 DATA SET SECURITY 1 A one-digit number giving the
security status of the data set.

55t0 60 | BLOCK COUNT 6 In EOV and EOF labels the
number of data blocks is given. In
HDR labels zeros must be given.

61t0 73 |SYSTEM CODE 13 A unique 13-byte code that
identifies the operating system.

74t0 80 | RESERVED 7 Should contain blanks.

111-A-18

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table A-12. IBM Standard HDR 2, EOV 2, EOF 2 Labels

Byte Field Field | Field
Position | Name Size | Content
1to3 LABEL IDENTIFIER 3 HDR or EOV or EOF
4 LABEL NUMBER 1 2
5 RECORD FORMAT 1 F = Fixed Length
V = Variable Length
U = Undefined Length
6to 10 | BLOCK LENGTH 5 F = Must be a multiple of
logical record length.
V = Must give maximum block
length and four bytes.
U = Must given maximum
block length.
11to 15| RECORD LENGTH 5 F = Must give logical record
length.
V = Must give maximum block

length and four bytes.
U = Must be zero filled.

16 to 34 | NOT USED 19 Blank fill.
35t0 36 | TAPE RECORDING TECHNIQUE | 2 T O = Odd parity with translation.

C O = Odd parity with conversion.
E 0 = Even Pairty no translation.

ET = Even parity with
translation.
00 = Odd parity-no translation or
conversion.
37 CONTROL CHARACTERS 1 A = ASCII control characters
M = Machine control characters
O = No control characters.
38 NOT USED 1 Blank fill.
39 BLOCK ATTRIBUTE 1 B = Blocked records
0 = Not blocked
40to 80 | NOT USED 41 Blank fill.
End of Appendix

093-000114-01 I-A-19 Graphic Arts Section

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Appendix B
Subindex and Database File Properties

Introduction

As you know by now, ISAM and DBAM files have two
independent parts -- an index file and a database file --
which the INFOS system links into a single unit for
processing. What you may not realize is that ISAM and
DBAM databases have identical physical properties, as
do an ISAM index file and any single DBAM subindex.
In this appendix, we’ll examine the properties of
subindexes and databases and the effects your design
decisions have on them.

Subindexes

Normally, you’ll want to design an index structure
which can hold your maximum expected number of
entries, but which you can also access as quickly as
possible. Furthermore, you’ll want to be able to use as
many buffers as necessary, and to keep your disk
storage space to a minimum. This is a good general
goal, but remember, also, that it is your application
which will ultimately determine the number and the
properties of your subindexes. So, in order to achieve
this goal, let’s examine the structure of a subindex and
how you can design one to best suit your needs.*

Nodes, which contain your index entries, are the basic
““building blocks’’ of a subindex. The system allocates
space for a subindex in node-sized pieces, and, as the
number of entries (and therefore the number of

*If you are familiar with techniques for index file
storage, note that subindexes in Data General’s INFOS
system are stored internally as a type of multiway
search tree, in particular, a variant of B-trees. Adjacent
nodes at the same level are cross-linked to simplify
sequential operations. Key pointers in a node are
ordered to allow fast binary searching for specific key
values. Our Key Compression is a form of front-end
compression which stores common prefixes of adjacent
keys in a node only once.

093-000114-01

nodes) in a subindex increases, the system places the
various nodes on different levels within the subindex.
We call these different levels tree levels; any subindex
can have up to 256 of them, although you will probably
never need more than three or four. Figure B-1 shows a
subindex with four tree levels.

Note that the tree levels are numbered sequentially
from zero at the bottom to the single Root Node at the
top of the structure. The Root Node is the first node
built in a subindex; as long as it is the only node in the
subindex, it is also the level zero node. When you first
write entries in a subindex, the system places them in
the Root Node. As you continue to write entries, the
Root Node grows from no entries to its maximum size.

ROOT
NODE
TREE
ve LEVEL
TWO
NODES
TREE
o LEVEL
ONE
NODES
TREE
v LEVEL
ZERO
NODES
SD-00582

1n-8-1

——— Figure B-1. Subindex with Four Tree Levels

Subindexes

DataGeneral

SOFTWARE DOCUMENTATION

(This maximum depends on your index file’s page,
node, and entry sizes; we’ll discuss how you can
compute these a little later.) When the Root Node
reaches its maximum count, it moves its contents into
two new nodes, which become tree level zero. The
system then creates two new index entries in the Root
Node which point to the entries in level zero.

As you continue to write index entries in this subindex,
the system places them in nodes at tree level zero. As it
creates each new level zero node, the system also adds
an entry to the Root Node. Eventually, the Root Node
will again grow to its maximum count, and there will be
one full node at level zero for each entry in the Root
Node. When this happens, the Root Node will again
split in two, and its contents become tree level one, that
is, an intermediate level of nodes between the Root
Node and level zero. In other words, as you write your
index entries, the system puts them into nodes at tree
level zero and builds a tree structure to access them.

Now you may ask, ‘““What is the maximum number of
entries that any node at any tree level can contain?”’
This number is called the branching factor, and the
answer is: ‘It depends on your page size, the length of
your index entries, and whether you use key
compression”’.

Your page size determines the depth of your
subindexes. (Page size, remember, is the length of data
transferred between an index file and its I/0O buffers,
and pages consist of nodes.) Node size is normally six
bytes less than your page size. Therefore, the larger
your page size, the fewer subindex levels the system
needs, because large nodes contain more index entries
than small ones. In other words, the system doesn’t
have to set up three or four tree levels if your page size
allows large enough nodes to contain all the subindex
entries on one or two levels.

The length of your index entries depends on your
maximum key size, your partial record length, and
whether or not you allowed subindexing. And when
you take all these factors together with your page size,
you can figure out the branching factor for any given
single node by slipping their values into one or more of
the formulas below. The formulas give you the
branching factors on the basis of one node per page, or
you can use them to determine the appropriate page
size for a given subindex, or the number of tree levels a
subindex will require, and/or the number of entries at
level zero. :

111-B-2

Licensed Material - Property of Data General Corporation

Note that these formulas assume full nodes, keys
whose lengths are very nearly the same, and no key
compression. If your key lengths tend not to be close to
their maximum, the branching factor value you get will
be too small. Similarly, your nodes will probably be full
only if you entered the data in the same sequence as the
keys are stored. Therefore, keep these conditions in
mind when using the formulas; they may not accurately
predict performance if your application varies greatly
from the average.

1. When the Root Node is not also the level zero
node, its branching factor is:

Page Size -42
Max Key Length + 10

2. When the Root Node is also the level zero node, its
branching factor depends on whether or not you
allowed subindexing.

A. If you allowed subindexing, use:

Page Size - 42
Max Key Length + Partial Rec Length + 14

B. If you did not allow subindexing, use:

Page Size - 42
Max Key Length + Partial Rec Length + 10

3. When the level zero node is also the Root Node,
use 2A or 2B. However, when the level zero nodes
are not the Root Node, their branching factor also
depends on whether or not you allowed
subindexing.

A. Ifyou allowed subindexing, use:

Page Size - 28
Max Key Length + Partial Rec Length + 14

B. If you did not allow subindexing, use:

Page Size - 28
Max Key Length + Partial Rec Length + 10

4. The branching factor for any intermediate level
node is:

Page Size - 28
Max Key Length + 10

093-000114-01

Licensed Material - Property of Data General Corporation
Notes:

1. The lower half of each formula reflects your index
entry size. If the sum of its components is not an
even number, round it up to the next even
number.

2. The top half of each fraction is the page size minus
the number of bytes the system needs for one
node.

3. You can use the INDEXCALC utility to perform all
branching factor calculations that you need. See the
INFOS System Utilities Manual for further details on
how to use INDEXCALC.

Now let’s examine these formulas with some real
numbers.

In Chapter 5 of Part One, we described a DBAM
database that had two independent indexes: one for a
mailing list, and one for customer accounts. Under the
mailing list index, we also assigned a subindex to carry
customer’s names and addresses in partial records.
Now let’s assume that we also have a customer base of
50,000 entries, that our keys occupy 5 bytes each, and
that the partial records are 50 bytes long. Since the
purpose of this subindex is to allow the rapid
production of address labels, there is no need for its
entries to have subindexes. We can use these numbers
to examine the effects of page size on the number of
tree levels and on the amount of disk storage space that
you’ll need for the subindex.

First we’ll try the smallest possible page size -- 512
bytes. To find how many level zero nodes we’ll need,
we’ll calculate the number of entries that can fit in a
maximum size level zero node and divide it into
50,000. Using formula 3B, above, we get:

(3B) Page Size - 28
Max Key Length + Partial Rec Length + 10
512-28 = 484 = 7 entries in each level zero

5450+10 65 node

50,000/7 = 7143 nodes required at level zero

093-000114-01

111-8-3

DataGeneral

SOFTWARE DOCUMENTATION

Now we need to find out how many entries will be in
the nodes at all the other levels. To do this, we use
formulas 4 (for all the intermediate level nodes), and 1
(for the Root Node):

4) Page Size -28
Max Key Length + 10

512 - 28 = 484 = 32 entries in each intermediate
5+ 10 1 level node
(1) Page Size - 42
Max Key Length + 10

512 - 42= 470 = 31 entries in the Root Node
5410 15

Since we know that:

® we need 7143 level zero nodes; and
® cach node in level zero has an entry in level one; and
® cach node in level one contains 32 entries,

we can determine how many level one nodes we need
simply by dividing 7143 by 32. Thus we’ll need 224
nodes on tree level one. Now, since the Root Node
only holds 31 entries and not 224, this means that we’ll
have to have a level two. And to determine the number
of nodes at level two, we divide 224 (the number of
nodes on level one) by 32 (the number of entries in
each intermediate level node). This gives us 7 level two
nodes, and it means that we don’t need any more tree
levels because the Root Node can hold up to 31 entries.

Subindexes

DataGeneral

SOFTWARE DOCUMENTATION

Therefore, we now have nodes with the following
branching factors (i.e., entries per node):

® Root Node =17
® Leveltwonodes = 32
® Levelone nodes = 32
® Level zeronodes = 7

Figure B-2 illustrates this particular subindex.

Licensed Material - Property of Data General Corporation

This four-level structure can accommodate 50,000
index entries (keys plus partial records) at level zero,
but it may take four disk accesses to retrieve any entry
at level zero. This is all done on the basis of one node
per page, and, since our page size (512 bytes) in this
example is the same size as a disk block, we'’ll need
7375 blocks of disk storage for this subindex (7143
blocks for level zero, plus 224 for level one, plus 7 for
level two, plus one for the Root Node).

ROOT NODE
(7 ENTRIES)

43306
LEVEL TWO

(7 NODES OF 32
ENTRIES EACH)

LEVEL ONE
(224 NODES OF 32
ENTRIES EACH)

LEVEL ZERO
(7143 NODES OF
7 ENTRIES EACH)

SD-00583

111-B-4

Figure B-2. Four-Level Subindex with Nodes

093-000114-01

Licensed Material - Property of Data General Corporation

Now, if we double our page size to 1024 bytes, we find
that each level zero node can hold 15 entries, which
means that we only need 3334 nodes at level zero.
Also, each level one node can hold 66 entries, so we’ll
only need 51 nodes there. Finally, we find that the Root
Node can hold 65 entries, so we won’t need any
intermediate tree levels between the Root Node and
level one. Thus, we have a rhree-level structure which
can store 50,000 entries, just by doubling the page size.
The branching factors for this subindex (illustrated in
Figure B-3) are as follows:

® Root Node = 5]
® Levelone nodes = 66
® Level zeronodes = 15

DataGeneral

SOFTWARE DOCUMENTATION

Our total number of nodes is now 3386 (3354 + 51 +
1), and each one requires two disk blocks (1024 bytes);
therefore we only need 6772 blocks of disk storage for
this subindex.

By increasing our page size from 512 to 1024 bytes, we
reduced the number of tree levels (and, therefore, disk
accesses per entry) by one, and the amount of
necessary disk storage by 603 blocks. Note, however,
that while we designed this subindex to hold 50,000
entries, that is not its maximum capacity; it will hold
50,000 entries if we only use 51 Root Node entries.
But, since the maximum number of entries which we
can have in the Root Node is 65, the absolute

SD-00774

093-000114-01

Figure B-3. Three-Level Subindex with Nodes

11-B-5

Subindexes

DataGeneral

SOFTWARE DOCUMENTATION

maximum capacity of this subindex is actually 60,450
entries. We derive this figure by multiplying the Root
Node branching factor (BF) by the level zero BF, then
multiplying that product by the intermediate level BF
raised to the power which corresponds to the number
of intermediate levels. In other words:

(page size - 42) .
max key length + 10

(page size - 28) .
max key length + partial rec length + 10

(page size - 28) "\ _
max key length + 10

maximum entry capacity of any
subindex

where n equals the number of intermediate levels. In
our case, we did this:

1
() () (1)) -

65*15*62 = 60,450.

On tfe other hand, our earlier example with the
four-level tree will hold 222,208 entries:

2
(4 () ((49)) -

31*7*322 = 222,208.

We square the intermediate level BF (32) because
there were two intermediate tree levels. Note that you
wouldn’t need any additional tree levels if you
expanded this subindex to its maximum, but you
would, naturally, need additional disk storage space.

111-B-6

Licensed Material - Property of Data General Corporation

Now let’s take a different, smaller example. We’ll use a
relatively small subindex with 5000 entries, each of
which is 26 bytes long, and has a 30-byte partial record
field. Furthermore (just to complicate things), some of
the index entries will have their own subindexes.
Because we’ll be using keyed access to get to this
subindex and we want top access speed, we’ll also want
the subindex to have no more than two tree levels. This
means that we’ll need a fairly large page size -- 2048
bytes, for instance, or 4096. Let’s start with 2048.

First we have to find out how many nodes we’ll need at
level zero, so we’ll apply formula 3B, above. This will
tell us the number of entries per node, which we can
then divide into 5000 to get the number of required
nodes.

(3B) Page Size - 28
Max Key Length + Partial Rec Length + 14

2048 - 28 = 28 entries in each level zero
26 + 30+ 14 node

5000/28 = 179 nodes needed at level zero
Now we need to find out if the Root Node branching
factor is equal to (or greater than) 179. If it is, we’re all

set; if not, then we’ll need at least three tree levels.
Using formula 1, we get:

(1) Page size - 42
Max Key Length + 10

2048 - 42 = 55 entries in the Root Node

26 + 10
Hmmm. This means that we can’t use a 2048-byte page
size to get a two-level tree. Let’s try a 4096-byte page:

(3B) 4096 - 42 = 58 entries in each level zero
26+ 30+ 14 node

5000/58 = 87 nodes at level zero
(1) 4096-42 = 112 entries in the Root Node
26 + 10

Ah-ha! Now we’re in business because there are more
entries in the Root Node than nodes at level zero.

093-000114-01

Licensed Material - Property of Data General Corporation

Selector Subindexes

Often you’ll find it convenient to use a selector
subindex in your index structure. A selector subindex
has just a few entries and the purpose of these entries
is, logically enough, to select some large portion of the
total index structure.

To illustrate the convenience of a selector subindex,
let’s first look at the database, in Figure B-4, which has
two unique index structures.

MAILING LIST CUSTOMER ACCOUNT

INDEX INDEX

MAIN
INDEX

LEVEL 1
SUBINDEXES

sess e

LEVEL 1
SUBINDEXES

eces s

LEVEL 2 i LEVEL 2
\\ SUBINDEXES | SUBINDEXES &

oo / seveveeoe

LEVEL 3
SUBINDEXES

eseesssesscssace

DATA BASE

John Smith
10 Elm Street
Boston, Ma 01740

303-28-1967

Figure B-4. A Database Accessed by Two
Unique Indexes

093-000114-01

111-B-7

DataGeneral

SOFTWARE DOCUMENTATION

Remember that when you open each index, the system
allocates a set of 1/0 buffers in your User Area, as well
as a complete set of control blocks in the system’s File
Control Area. A selector subindex, however, gives you
all the versatility of the two unique indexes, but saves
you File Control Space, and reduces the number of
buffers you need. Thus you can probably use a larger,
more efficient page size for your index. Figure B-5
shows what happens when we combine our two unique
indexes into one. Note that the original main indexes
have become level one subindexes under the new
selector subindex.

MAIN
(SELECTOR)
SUBINDEX

| CUST ACCT

LEVEL 1
SUBINDEXES

PR R A

LEVEL 2
SUBINDEXES

D N R I A A A

LEVEL 3
SUBINDEXES

sesesss s

LEVEL 4
SUBINDEXES

esssce o e e L A N I I AT Ar Y

DATA BASE

John Smith
10 Elm St
Boston. Ma 01740

303-28-1967

. Single Index Structure
Subindex

Selector Subindexes

DataGeneral

SOFTWARE DOCUMENTATION

In general, a selector subindex will only consist of a
Root Node, and you can find its maximum size by
using formula 2A, above. For this application, let’s say
that our page size is 2048 bytes and our keys are 9 bytes
long. We won’t use partial records here, since we just
want to use the entries in this subindex to select one of
the two major processing paths. Thus:

(24) Page Size - 42
Max Key Length + Partial Record Length + 14
2048 -42 = 2006 = 83 (maximum) entries in
9+0+14 24 the Root Node

NOTE: The sum of 9 + 14 is 23, but we rounded it up
to 24 because index entries begin on word
boundaries, not on byte boundaries. Also, if
you have a number of selector subindexes in
your index structure, and if you select Space
Management for the index, the INFOS system
will automatically put as many of those small
subindexes as it can on a single page, thereby
making the most out of your disk storage space.

Finally, make sure that the initial node size you specify
when you define any subindex is large enough to
contain at least three of your index entries. If you
don’t, you’ll get the message ‘““MIN NODE SIZE TOO
SMALL”’, and you’ll have to respecify it.

To sum up subindex design, first note that the
INDEXCALC utility (described in the INFOS Utilities
Users’ Manual) performs all the operations we’ve just
described for you. You simply give INDEXCALC your
maximum key size and the partial record length, and
tell it whether or not the subindexes you’re considering
can have subindexes. You can then solve for page size,
number of subindex tree levels, or the number or
entries the subindex can hold.

DBAM file design is a balancing act where you’re trying
to find the right page size, number of 1/0 buffers, and
index depth to best match your chosen access path (i.e.,
keyed, relative, or combined). By using INDEXCALC
(or by doing the calculations yourself), you can fine
tune the system to perform as efficiently as possible in
your application.

Licensed Material - Property of Data General Corporation

Database Files

Database files also use pages as the unit of transfer
between the database and its I/0 buffers. But, since the
system always transfers whole disk blocks, you should
specify your page size as some exact multiple of 512
bytes to avoid wasting buffer space. In addition,
database files use variable length records, so you have
to specify a maximum record size, as well as the page
size, when you create your file.

Once you know your maximum record size and page
size, you can easily figure out how many records you
can get on a page (known as the blocking factor), and
how much space you’ll have left. (Before you do this,
however, be aware that there is an overhead of four
bytes per record and four bytes per database page.) For
example, if your maximum record length is 275 bytes
and your page size is 1024 bytes, then your minimum
blocking factor is 3, with 183 unused bytes per page; for
a 2048-byte page, the blocking factor is 7, with 92
unused bytes per page, or 13 bytes per record wasted.
In other words, you can only get seven 275-byte
records on a 2048-byte page; the remaining space on
that page will not be filled. In general, the larger your
pages, the less unused space you’ll have in the buffers.

You also need to consider how you initially load your
file onto your disk(s). Normally you’ll want to sort the
keys for a given subindex from lowest to highest before
you load them because the INFOS system can handle
them most efficiently that way. That is, the system will
place index entries and database records in adjacent
pages (in their respective files, of course) as you write
them. Therefore, if you subsequently want to process
these records sequentially, the database blocking factor
will determine how many times the system has to
access the disk for read and rewrite operations. If you
load your records in order, the system won’t have to
keep moving blocks of records around in the buffers
and you’ll save a lot of access time. Conversely, if you
process the data records associated with a subindex via
normal keyed accesses, ordered loading will greatly
reduce the number of times the system has to access
the database for each read or rewrite.

End of Appendix

111-B-8

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Appendix C
The INFOS/FORTRAN Interface

NOTE: If you’re going to program your INFOS
application in FORTRAN IV or S, read
Chapter 6 in Part Two before reading this
Appendix. This will acquaint you with the
parameters within the various packets and
how they fit together, and will clarify the
descriptions which follow.

General Information

The INFOS/FORTRAN interface is a set of library
routines which apply to FORTRAN IV (F4INFOS.LB)
and FORTRAN 5 (FSINFOS.LB). These routines
allow you to place word or byte addresses into
parameter packet locations and to make INFOS system
calls. However, the routines do not provide all the
parameters which the various functions require, so you
must provide these ‘missing’ parameters in assignment
or data-initialization statements.

We have grouped the routines in this appendix into
four types to help you understand and remember them.
These ‘types’, however, have no meaning to either
FORTRAN or to the INFOS system.

093-000114-01

in-c-1

Packet Building Routines

These routines do not interact with the INFOS system;
therefore, the system cannot detect specification errors
within them. Consequently, you will find no error
arguments in the calls to the following routines:
INFFDP To build SAM and RAM File Definition
Packets

INFIFDP To build ISAM and DBAM File Definition
Packets

INFVDP To build Volume Definition Packets

INFVIP To build Volume Initialization Packets for

use with SAM labeled tape files

INFKEY To build ISAM and DBAM Key Definition
Packets

INFLSP To build a DBAM Link Subindex

Processing Packet

Table Building Routine

There is only one table building routine: INFULT. You
will use this routine to build a User Label Table for use
with SAM labeled tape files. This routine uses a
variable number of arguments, and, similar to the
Packet Building routines, does not interact with the
system; therefore, no error argument is provided.

General Information

DataGeneral

SOFTWARE DOCUMENTATION

Pure Processing Routines

Unlike the above routines, pure processing routines do
interact with the system; therefore, you will find error
arguments in the lists of arguments for these calls.
These error arguments enable the system to notify you
if something goes awry. The three pure processing
routines are:

INFPREP To perform Pre-open processing
INFOPEN To perform Open processing

INFINIT To perform volume initialization for SAM
labeled tape files

NOTE: These routines each have a
fixed-sequence call with no
arguments.

single,
optional

Building/Processing Routines

There are two building/processing routines:

INFOS To perform SAM or RAM file processing

INFOX To perform ISAM or DBAM file processing
These are similar to the packet building routines in that
they help you fill in packet slots, and to the pure
processing routines in that they interact with the
system and contain error arguments in the calls.

Arguments

The calling sequences of both the packet building and
the building/processing routines contain optional
arguments. In the descriptions of the calls which follow,
we have enclosed optional arguments within brackets
like this: [arg1]. In general, you can omit all the optional
arguments in a calling sequence if they do not apply,
but note that if you use any one of the arguments within
brackets, you must include all of them. To pass any
optional arguments which you don’t want in a particular
call, specify NIL, DEFAULT, or DEF for that
argument.

For example, suppose the arguments for a call appear in
this sequence:

(arg1, arg2 [,arg3, arg4, arg5, arg6] [arg7]).

If you want to use only arg3 and arg6, you can write
(ARG1, ARG2, ARG3, NIL, NIL, ARGS6).

You would simply omit the last argument (arg7) if you
didn’t want to use it.

Hi-C-2

Licensed Material - Property of Data General Corporation

NOTE: NIL, DEFAULT, and DEF have special
meanings. See the paragraphs which follow for
their descriptions.

Finally, sometimes arguments for a call will appear in
this sequence:

(arg1, arg2 [,arg3 [, arg4 [, arg5]]])

To use one or more of the inner, optional arguments,
you must include all of the outer ones. That is, if you
want arg5, then you must also include arg3 and arg4; if
you want arg4, you must include arg3, but you can omit

args.

Using DEFAULT (or DEF)

There are many instances where you can pass
DEFAULT or DEF for an argument. However, before
you use them, you must declare either (or both)
EXTERNAL.

Defaulting an argument instructs the interface routines
to place -1 in the corresponding packet slot, which, in
turn, causes the system to use one of these values:

® The system’s default value; or

® A default value which you have previously defined;
or

® No value. (This is used only when the argument has
no meaning to the access method.)

In the call descriptions which follow, we will tell you
when you may or may not default an argument.

Using NIL

Passing NIL for an argument is different from
defaulting an argument. When you specify NIL for an
argument, the interface routines do not alter the
parameter slot corresponding to that argument. Thus,
the INFOS system will use any previously-set
parameter value for that parameter. Therefore, you can
pass NIL for a required argument if the packet involved
already contains a parameter value acceptable to both
you and the INFOS system.

Y ou may also use NIL as a ‘‘place-holder’’ in a group of
optional arguments, all of which must be present, but
only some of which you need to specify: for example,
(ARG1, ARG2, ARG3, NIL, NIL, ARG#6) in the example
above.

Finally, similar to DEFAULT, you must declare NIL as
EXTERNAL before you use it.

093-000114-01

Licensed Material - Property of Data General Corporation

Error Conditions

The interface routines which interact with the INFOS
system all contain as their last, mandatory argument,
an integer variable which we call the ‘‘error argument’’.
When the routine terminates, it places an integer code
in this argument to inform the calling program of the
call’s status. This status code conforms to the standard
FORTRAN IV and FORTRAN 5 conventions
described in the FORTRAN IVand FORTRAN 5 User’s
Manuals (manual numbers 093-000053 and
093-000085, respectively). Briefly, this code means:

<0 (notused)
1 means no errors have occurred
2 (not used)

>3 anerror has occurred

You should always check the returned status code
before proceeding. Even if your program does not
include special code to recover from particular errors,
you should at least verify that the returned status code
is 1. The system error messages exist for your benefit;
do not ignore them. (Refer to Appendix D for
explanations of all INFOS error codes.)

An example of a typical application might look like this:

CALL INFINIT (VIP,IER)
IF (IER.NE.1) GO TO 999

(where 999 is the label of a statement which deals with
errors from this call.)

Using FINFOS.FR

The tape set which contains the FORTRAN library
routines also includes a ‘‘parameter tape’’ for the
INFOS/FORTRAN interface called FINFOS.FR. This
is a source file which defines the mnemonic names for
the many parameters you need when programming an
INFOS application in FORTRAN. We strongly urge
you to use mnemonics; your programs will be much
easier for both you and others to understand. We have
included a copy of the current (as of the printing of this
manual) FINFOS.FR at the end of this appendix. Use it
to look up the parameters you want for your
application; the call descriptions on the following pages
will show you how to set those parameters.

FINFOS.FR is structured as a FORTR AN source file so
that the FORTRAN compiler will accept it as a part of
your FORTRAN program. This allows you to write
your FORTRAN program using mnemonic names.
Therefore, do one of the following before compiling
your program:

093-000114-01

m-Cc-3

DataGeneral

SOFTWARE DOCUMENTATION

1. Attach FINFOS.FR to the beginning of your
FORTR AN source file; or

2. (FORTRAN 5 only) Write an INCLUDE
“FINFOS.FR” statement near the beginning of
your program. (You may also wish to compile your
program using “FORTRAN/I"’; this will shorten
your listing considerably.)

3. Insert selected portions of FINFOS.FR into your
FORTRAN source file. However, if you choose
this method, be careful how you edit FINFOS.FR.
Remember that the pieces you extract must be
proper FORTR AN statements.

Loading Your Program and the
Interface Routines

Once you have compiled all your FORTRAN
subprograms, you can load your program according to
the procedures described in either Appendix D of the
FORTRAN 1V USER’s Manual (number 093-000053)
or Chapter 2 of the FORTRAN 5 Supplement (number
093-000185). Then you can name the appropriate
interface library (F4AINFOS.LB or FSINFOS.LB) in
your RLDR command line between your FORTRAN
subprograms and the standard FORTRAN runtime
libraries.

Call Formats

In the following call descriptions, we have indicated,
where possible, specific data types for arguments.
However, certain arguments are shown as
‘‘aggregates’’. These can be:

® An array containing an entity (e.g., a data item,
packet address, word address, array address).

® An array element designating the beginning of an
entity stored in a portion of an array.

¢ A Hollerith constant large enough to contain an
entity.

® A scalar large enough to contain an entity.

¢ An EXTERNAL defined in Assembly Language.

Call Formats

DataGeneral

SOFTWARE DOCUMENTATION

Packet Building Routines

INFFDP
To build SAM and RAM File Definition
Packets

Call Format:
CALL INFFDP(tdp, vdt [, itt, ott, dsdt, fit] [.fsid])

Arguments:

fdp File Definition Packet aggregate f(i.e., a
variable which is the first word of the FDP).
Must be passed.

vdt Volume Definition Table aggregate made up
of one or more Volume Definition Packets
which must be located sequentially. Can be
passed as NIL. Be sure you indicate the
number of VDP’s in word FDNVD of the
FDP.

itt User Input Translation Table aggregate; only
needed if you want to translate from ASCII to
something other than EBCDIC, or from
EBCDIC to something other than ASCII. Can
be passed as NIL.

ott User Output Translation Table aggregate;
only needed if your translation is not ASCII to
or from EBCDIC. Can be passed as NIL.

dsdt Data Sensitive Delimiter Table aggregate. If
you are not using Data Sensitive records, pass
NIL for this argument. If your records are
delimited by a carriage return, form feed or
null, pass DEF or DEFAULT. If your records
are delimited by any other character(s), you
must build your own table, according to the
CMT instruction described in the
Programmer’s Reference Manual,
ECLIPSE-Line Computers (015-024).

St Selective Field Translation Table aggregate.
(See Comment 3 under Table 1I-6-1, earlier in
this manual.) Can be passed as NIL.

Sfsid File Set Identifier aggregate (applies to labeled
mag tapes only). Can be passed as NIL, DEF,
or DEFAULT.

Licensed Material - Property of Data General Corporation

Example:

(1) INTEGER FDP (FDLN1)

(2) INTEGER VDT (VDLEN,4)

(3) INTEGER ITRAN (128), OTRAN (128)

(4) CALL INFFDP (FDP, VDT, ITRAN, OTRAN, DEF, NIL,

“MINE”)

(5) FDP (FDFL1) = FIUBR+F1SAM+F1EXF
(6) FDP (FDBLK) = 512

(7) FDP (FDBUF) = 2

(8) FDP (FDLEN) = 512

(9) FDP (FDNVD) = 4

Line (1)

Line (2)

Line (3)

Line (4)

Line (5)

Line (6)
Line (7)
Line (8)
Line (9)

1i-C-4

allocates a File Definition Packet for a
SAM labeled tape file.

allocates a four-volume file. Note that you
must build a Volume Definition Table
with an INFVDP call (described later in
this appendix).

allocates Input and Output Translation
Tables (as described in Chapter 1 of Part
One). You can define these tables in
Assembly language or as
DAT A-Initialized FORTRAN arrays.

calls the routine. The INFOS/FORTRAN
interface will fill the File Definition Packet
with pointers to the Volume Definition
Table, the Input and Output Translation
tables, and with the aggregate name of the
File Set. The Data Sensitive Delimiter
Table aggregate is defaulted since a
labeled SAM file cannot use Data
Sensitive records. (No value is used in this
case.) The Selective Field Translation
Table slot in the parameter packet remains
untouched since its corresponding
argument was passed as NIL.

specifies unblocked records, the
Sequential Access method, and an
Exclusive file. The FORTRAN interface
will communicate this information to the
INFOS system and all specifications will
take effect when opening occurs.

specifies a block size of 512 bytes.

specifies two I/0 buffers.

specifies a record length of 512 bytes.
specifies that there are four Volume

Definition Packets in the Volume
Definition Table.

093-000114-01

Licensed Material - Property of Data General Corporation

INFIFDP
To build ISAM and DBAM File Definition
Packets.

Call Format:
CALL INFIFDP(fdp, vdt /,dbfdp[,dbn]])

Arguments:

fdp File Definition Packet aggregate (ie., a
variable which is the first word of the FDP).
Must be passed.

vdt Volume Definition Packet aggregate made up

of one or more VDP’s located sequentially.
Can be passed as NIL. Be sure you indicate
the number of VDP’s in word FDNVD of the

FDP.
dbfdp Database File Definition Packet aggregate.
Can be passed as NIL, DEF, or DEFAULT.
NOTE: You must notify the system that a
database FDP is present by setting
bit F2FDP in word FDFL2 of the
index FDP.
dbn Database Name aggregate. Can be passed as

NIL, DEF, or DEFAULT.

NOTE: The dbfdp and dbn arguments both deal with
the FDDBP slot in the File Definition Packet.
If you want to specify a Database FDP, pass
such an aggregate for dbfdp and either omit
dbn or pass NIL, DEF, or DEFAULT in its
place. If you want to specify a Database name,
pass NIL, DEF, or DEFAULT for dbfdp and
pass your Database name aggregate for dbn. If
you do not wish to alter the FDDBP slot,
simply omit the dbfdp and dbnarguments.

093-000114-01

1m-C-5

DataGeneral

SOFTWARE DOCUMENTATION

Example:

(1) INTEGER FDP (FDLN2)

(2) INTEGER DBFDP (FDLN1)

(3) INTEGER VDT (VDLEN, 2)

{(4) CALL INFIFDP(FDP, VDT, DBFDP, NiL)

(5) FDP (FDLEN) = 50

(6) FDP (FDPRL) = 10

(7) FDP (FDFL1) = F1INV

(8) FDP (FDFL2) = F20RD + F2FDP + F2DHR
(9) FDP (FDIFL) = IXPKC+ICTMP

(10)DBFDP (FDBUF) = 2

Line (1) allocates an Index File Definition Packet.

Line (2) allocates a Database FDP.

Line (3) allocates a two-volume file. You must
build a Volume Definition Table for each
with a call to INFVDP (described on the
next page).

calls the routine. This fills the FDVTP slot
with a pointer to the Volume Definition
Table and the FDDBP slot with a pointer
to the database FDP aggregate.

Line (4)

Line (5) specifies that the maximum record length

is 50 bytes.
Line (6) specifies a partial record length of 10
bytes.
the Database will be

Line (7) specifies that

inverted.
Line (8) specifies optimized record distribution for
the Index and Disable Hierarchical
replacement (i.e., LRU technique).
Line (9) specifies key compression and that the
Index is temporary.
Line (10) specifies a runtime specification of two
database buffers.

INFIFDP

DataGeneral

SOFTWARE DOCUMENTATION

INFVDP
To build Volume Definition Packets

Call Format:
CALL INFVDP (vdp, fnam [,vit, hit, tit] [,volid])

Arguments:

vdp Volume Definition Packet aggregate made up
of one or more VDP’s located sequentially.
Must be passed.

fnam Volume Name aggregate. Can be passed as
NIL.

vit Volume Label Table aggregate; applies only to

labeled magnetic tape files. Can be passed as
NIL, DEF, or DEFAULT.

hit Header Label Table aggregate; applies only to
labeled magnetic tape files. Can be passed as
NIL, DEF, or DEFAULT.

tt Trailer Label Table aggregate; applies only to
labeled magnetic tape files. Can be passed as
NIL, DEF, or DEFAULT.

volid Volume owner identifier aggregate; applies
only to labeled magnetic tape files. Can be
passed as NIL, DEF, or DEFAULT.

Example:

(1) PARAMETER ASTER = 52K

(2) INTEGER VDT (VDLEN,2)

(3) CALL INFVDP (VDT(1,1), NIL, DEF, NIL, DEF,
“SMITH")

(4) CALL INFVDP (VDT(1,2), NIL, DEF, DEF, DEF,
“SMITH")

(5) VDT (VDPAD,1) = ASTER

(6) VDT (VDPAD,2) = ASTER

Line (1) defines the character Asterisk. (See lines 6
and 7).

Line (2) allocates a two-volume Volume
Definition Table.

Line (3) calls the routine. This sets up the first
Volume Definition Packet in the Volume
Definition Table.

Line (4) calls the routine. This sets up the second

Volume Definition Packet in the Volume
Definition Table.

Lines (5-6) specify that the padding character for the
two volumes is the asterisk.

1i-C-6

Licensed Material - Property of Data General Corporation

INFVIP
To build Volume Initialization Packets
for use with labeled SAM files.

Call Format:
CALL INFVIP (vip, dnam [,vid[,void[ult]]])

Arguments:

vip Volume Initialization Packet aggregate. Must
be passed.

dnam Device name aggregate. Can be passes as NIL.

vid Volume Identifier aggregate. Can be passed as
NIL, DEF, or DEFAULT.

void Volume Owner Identifier aggregate. Can be
passed as NIL, DEF, or DEFAULT.

ult User Volume Label Table aggregate. Can be
passed as NIL, DEF, or DEFAULT.

Example:
(1) INTEGER VIP(VILEN)
(2) CALL INFVIP (VIP, “MT2”, “VOL4", “SMITH", NIL)

Line (1) allocates a Volume Initialization Packet.

Line (2) calls the routine and fills VDVNP with a
pointer to volume 4, and VDOID with a

pointer to ”’SMITH"".

093-000114-01

Licensed Material - Property of Data General Corporation

INFKEY
To build ISAM and DBAM Key Definition
Packets

Call Format:
CALL INFKEY (kdp, key [, len])

Arguments:
kdp Key Definition Packet aggregate. Must be
passed.

key Key value aggregate. Must be passed.

len Integer value giving flagged key length. Can
be passed as NIL, DEF, or DEFAULT.

If you pass a key length other than NIL, DEF, or
DEFAULT, the INFKEY routine stores it in the
right-hand byte of KDKYL. If you do not pass a key
length (or if you pass it as DEF or DEFAULT),
INFKEY computes the length of the key as the number
of nonnull bytes in the string and stores the computed
length in the right-hand byte of KDKYL. (Note that
null is a delimiting character only when INFKEY
computes key length.) If you pass key length as NIL,
the right-hand byte of KDKYL is not changed.

NOTES:

1. The INFKEY routine never alters the flag bits in
the left-hand byte of KDKYL. You should set up
these flags before calling INFKEY.

2. INFKEY sets up only one level of a key table at a
time. It does not set up the null word which must
follow the key packet, nor does it set up KDDKO
(Duplicate Key occurrence).

093-000114-01

m-Cc-7

DataGeneral

SOFTWARE DOCUMENTATION

Example:

The three following examples all produce the same
result. The only difference among them is the way that
the key length is specified.

A)

(1) INTEGER KTAB (KDLEN,4)
(2) KTAB (KDTYP,1) = KTDUP
(3) CALL INFKEY (KTAB(1,2), “SMITH")
(4) CALL INFKEY (KTAB (1,1), “NAME")

B)

(1) INTEGER KTAB (KDLEN,4)

(2) KTAB (KDTYP,2) = KTDUP

(3) CALL INFKEY (KTAB (1,2), “SMITH", 5)
(4) CALL INFKEY (KTAB(1,1), “NAME")

C)

(1) INTEGER KTAB (KDLEN,4)

(2) KTAB (KDTYP,2) = KTDUP+5

(3) CALL INFKEY (KTAB (1,2), “SMITH”, NIL)
(4) CALL INFKEY (KTAB(1,1), “NAME")

Line (1) allocates a Key Definition Packet.

Line (2) specifies duplicate keys (and, for example
C, indicates the key length).

Line (3) calls the routine, fills the PRKTP slot in
the Extended Processing Packet with a
pointer to the key table, and fills KDKYP
with a pointer to ‘““SMITH”’, which is the
second key in a table which has room for
up to three keys.

Line (4) calls the routine to set up KDKYP with a
pointer to ‘““NAME,” which is the first
key in the key table.

Since INFKEY does not write the null word which
must follow a Key Table to terminate it, we
recommend that you specify a zero length for the
terminating entry in the table. In our example, this line
would look like this:

(5) KTAB(KDKYL, 3) =0
This will make sure that the system reads the end of the

Key Table properly; otherwise, the results would be
unpredictable.

INFKEY

DataGeneral

SOFTWARE DOCUMENTATION

INFLSP
To build a DBAM Link Subindex
Processing Packet.

Call Format:
CALL INFLSP (Isp, skt, dkt)

Arguments:

Isp Link Subindex processing packet aggregate;
must be passed. (See Figure II-6-9 in this
manual.)

skt Source Key Table aggregate. Can be passed as

NIL. (See Figure 11-6-9.)

dkt Destination Key Table aggregate. Can be
passed as NIL.

NOTE: You must use this call in conjunction with an

INFOX call as follows:

(1) CALL INFLSP (Isp, skt, dkt)
(2) CALL INFOX (chan, LNKSI, Isp, nil, nil, nil, ier)

where the arguments for INFOX are:

chan Integer variable containing the file’s
pseudo-channel number, as returned from
INFOPEN. Must be passed.

LNKSI Integer value specifying the Link Subindex
processing function. Must be passed.

ier Integer variable error return. Must be passed.

Line (1) calls the Link Subindex packet building

routine.
Line (2) calls the DBAM processing routine. The

interface routines will set up pointers in
the processing packet, call INFOS, and
return a status code to the program.

n-c-8

Licensed Material - Property of Data General Corporation
Table Building Routine
INFULT

To build a User Label Table for use with
SAM labeled tape files.

Call Format:
CALL INFULT (ult, lab1 [lab2 [, ...[labn]]])

Arguments:
ult User Label Table aggregate. Must be passed.
lab1 Aggregates giving any user labels. Each can be

through passed as NIL, DEF, or DEFAULT.
labn

You can give any label as NIL, and the INFULT
routine will not touch the corresponding entry in an
existing table. Also, you can DEFAULT any label and
INFULT will place -1 in the corresponding entry.

If you’re using the routine to modify the contents of an
existing table, the number of entries in the modified
table will be equal to the number of filenames passed as
aggregates or as NIL, DEF, or DEFAULT when the
routine has finished.

Example:

CALL INFULT (VLT, “USERNO")
CALL INFULT (HLT, “START")
CALL INFULT (TLT, “END")

093-000114-01

Licensed Material - Property of Data General Corporation

Pure Processing Routines

INFPREP
To perform Pre-open file processing.

Call Format:
CALL INFPREP (fdp, ier)

Arguments:

fdp File Definition Packet aggregate (ie., a
variable which is the first word of the FDP),
Must be passed.

ier Integer variable error argument. Must be
passed.

Examples:

To do Pre-open processing of a SAM or RAM file:

(1) INTEGER FDP (FDLN1)
(2) CALL INFPREP (FDP, IER)
(3) IF (IER.NE.1) GO TO 999

To do Pre-open processing of an ISAM or DBAM file:

(1) INTEGER FDP (FDLN2)
(2) CALL INFPREP (FDP, IER)
(3) IF (IER.NE.1) GO TO 999

DataGeneral

SOFTWARE DOCUMENTATION

INFOPEN
To perform Open file processing

Call Format:
CALL INFOPEN (chan, fdp, ier)

Arguments:

Integer variable for return of file’s
pseudo-channel number. Must be passed.

chan

NOTE: Save this channel number. You will
need it for all subsequent calls to the

INFOS system.
fdp File Definition Packet aggregate. Must be
passed.
ier Integer variable error argument. Must be
passed.
Examples:

To perform Open processing of a SAM or RAM file:

(1) INTEGER FDP (FDLN1)
(2) CALL INFOPEN (NC, FDP, IER)
(3) IF (IER.NE.1) GO TO 999

To perform Open processing of an ISAM or DBAM
file:

Line (1) allocates a File Definition Packet. (1) INTEGER FDP (FDLN2)
(2) CALL INFOPEN (NC, FDP, IER)
Line (2) calls the routine (3) IF (IER.NE.1) GO TO 999
Line (3) sends control to an error recovery routine ~ Line (1) allocates a File Definition Packet.
if an error has occurred.)
Line (2) calls the routine and sets up the channel
number.
Line (3) sends control to an error recovery routine
if an error has occurred.
093-000114-01 mn-Cc-9 INFOPEN

DataGeneral

SOFTWARE DOCUMENTATION

INFINIT
To perform volume initialization for SAM
labeled tape files

Call Format:
CALL INFINIT (vip, ier)

Arguments:
vip Volume Initialization Packet aggregate, as
described in Table 1I-6-10. Must be passed.

ier Integer variable error return. Must be passed.

Example:
CALL INFINIT (VIP, IER)
IF (IER.NE.1) GO TO 999

This calls the routine and supplies the address of the
Volume Initialization Packet.

i-c-10

Licensed Material - Property of Data General Corporation

Building/Processing Routines

INFOS
To perform SAM or RAM file processing

Call Format:
CALL INFOS (chan, funct, pp [,dat] ,ier)

Arguments:

A variable which is resolvable as an integer, to
contain the file’s pseudo-channel number, as
returned by INFOPEN. Must be passed.

chan

funct A value (resolvable as an integer), which
specifies a SAM or RAM processing or utility
function. Must be passed. (You will find the
mnemonics for each processing function
under ‘‘Processing Function Codes” in

FINFOS.FR.)
pp Processing Packet aggregate. Must be passed.

dat Data Area aggregate giving area to or from
which transfer will be made. Can be passed as
NIL.

ier Integer variable error argument. Must be
passed.

Example:

(1) INTEGER PP(PRLN1)

(2) INTEGER AREA (25)

(3) PP(PRSTA) = PFLOC

(4) PP(PRREC) =0

(5) PP(PRREC+1) =N

(6) PP(PRLEN) = 50

(7) CALL INFOS (NC, IREAD, PP, AREA, IER)
(8) IF (IER.NE.1) GO TO 999

Line (1) allocates a SAM or RAM processing
packet.

Line (2) allocates a 50-byte record processing area.

Line (3) specifies locked record.

Lines (4-5) set up a two-word record number whose
value is Integer N.

Line (6) specifies a 50-byte record length.

Line (7) calls the routine.

Line (8) sends control to an error recovery routine

if an error has occurred.

093-000114-01

Licensed Material - Property of Data General Corporation

INFOX

To perform
processing

ISAM or DBAM file

Call Format:
CALL INFOX (chan, funct, pp, ktab, dat, pra /,sip/, ier)

Arguments:

chan

funct

PP

ktab

dat

pra

sip

ier

093-000114-01

Integer variable containing the file’s
pseudo-channel number, as returned by
INFOPEN. Must be passed.

A value (resolvable as an integer), which
specifies an ISAM or DBAM processing or
utility function. Must be passed. (For the
mnemonics you should use, see the section
on ‘“‘Processing Function Codes” in
FINFOS.FR.)

Processing Packet aggregate (i.e., a variable
which is the first word of the packet). Must be
passed.

Key Table aggregate. Can be passed as NIL.
Data Area aggregate giving the area to or from
which transfer will be made. Can be passed as
NIL.

Partial Record area aggregate. Can be passed
as NIL.

Subindex Packet aggregate. Can be passed as
NIL.

Integer variable error argument. Must be
passed.

Example:

DataGeneral

SOFTWARE DOCUMENTATION

(1) INTEGER XPP(PRLN2)

(2) INTEGER BUF(80)

(3) INTEGER PBUF(5)

(4) INTEGER KTAB(KDLEN,3)

(5) KTAB(KDTYP,1) =0

(6) CALL INFKEY (KTAB(1,1), “AB")
(7) KTAB (KDTYP,2) =0

(8) CALL INFKEY (KTAB(1,2), “CD", 2)
(9) KTAB(1,3) =0

(10) XPP(PRCCW) = CCKEY

(11) XPP(PRLEN) = 160

(12) CALL INFOX (NC, IREAD, XPP, KTAB, BUF, PBUF,

IER)

(13) IF(IER.NE.1) GO TO 999

Line (1)
Line (2)
Line (3)
Line (4)

Line (5-9)
Line (10)
Line (11)
Line (12)

Line (13)

m-c-1

allocates a DBAM Processing Packet.
allocates a 160-byte data area.

allocates a 10-byte partial record area.
allocates a Key Table aggregate for
two-level keys. Note that the Key Table is
terminated by an entry specifying a key
with zero length.

set up the Key Table aggregates.

specifies keyed access.

specifies a record length of 160 bytes

calls the routine. First, the INFOX routine
sets up pointers in the processing packet,
then calls the INFOS system to transfer
the record and the partial record to the
appropriate areas. Finally, it returns status
in IER.

sends control to an error recovery routine
if an error has occurred.

INFOX

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
INFOS User Parameters for FORTRAN
(ssss==ssssss=sz3css3sSS=ss=ssssss=c=====
C INFOS USER PARAMELTERS FOR FOKTRAN
Cssss=ssssssssz3ss=s===cs=ssss==ss=s==:==
C FINFOS,FR
c FILE DEFINITION PACKET
PARAMETER
+ FOFL1 s 4 ¢+ INFOS «FILE DEF FLAGS, I
+ FOFL2 = S +i INFUS =FILE DEF FLAGS, I1I
+ FDBLK s 6 ¢ i INFOS =BLOCK SIZE
+ FDBUF = 7 ¢ 7 INFOS =NUMBER OF BUFFERS
+ FDLEN s 8 + i INFOS =RECORD LENGTH
+ FONIL = 8 + 3 INFOS =NUMBER OF INDEX LEVELS
+ FDNVD s 11 +i INFOS =NUM OF VOL TABLE ENTRIES
+ FDVTP = le +7INFOS =VOLUME TABLE POINTER
+ FDUIT s 14 r i INFUS <USER INPUT TKANS TobL PTR
+ FLuuT s 16 ¢r7 INFUS «USER OQUTPUT TKANS TbL PTk
+ FODTCF s 18 +i INFOS =TRANS & LABEL FLAGS
+ FODSOD s 19 +i INFOS =DATA SENS DELIM TABLE PTR
+ FDFSI = 21 + i INFOS =FILE SET ID PTR
+ FDEXP = 24 ¢+ 7 INFOS =EXPIRATION DATE
+ FOSEQ = a7 ¢ i INFOS =SEQUENCE NUMBER
+ FOGEN = 2y 17 INFOS =GENERATION NUMBER
+ FDACC = 29 +» 3 INFOS =FILE ACCESSABILITY
+ FOIDO = 30 7 INFOS =INITIAL DATA OFFSET
+ FUSFT s 31 +7INFOS =SEL FIELD TRANS TABLE PTR
+ FDLNI1 = 4 17 INFOS =SAM & RAM FDP LENGTH
+
+ FDEFT = 41 ¢+ 7 INFOS <EXCLUDED FILE TABLE PTK
+ FODBP = 43 »7 INFOS =DATA BASE FILE DEF PACKET
+ 7 INFOS =0R NAME PUINTER
+ FOUMNS = 45 +# INFOS =MINIMUM NODE SIZE
+ FOMKL s 47 es INFUS «MAX KEY LENGTH (LH BYTE)
+ FOPRL = 47 ¢ s INFOS =PART REC LEN (RH BYTE)
+ FORMF = 49 r# INFOS =RT ND MERIT FACTGR
+ FUIFL = Su ¢ i INFOS =INDEX FLAGS
+ FHOLNZ = 59 i INFOS =1SAM & DBAM FDP LENGTH
C SUBINDEX DEFINITION PACKET
PARAMETER
+ SOMNS = 1 ¢+ JINFOS =MINIMUM NODE SIZE
+ SDOMKL z 3 +3INFOS =MAX KEY LEN (LH BYTE)
+ SDPRL = 3 »i INFOS <PART REC LEN (RH BYTE)
+ SORM¥ s S ¢ 5 INFOS =RT ND MRT FACT (RH bYTE)
+ SDIFL s 6 » i INFUS =INDEX FLALS
+ SDLEN = 6 i INFUS =SUobINDEX DEF PACKET LENGTH

1n-Cc-12 093-000114-01

Licensed Material - Property of Data General Corporation

INFOS User Parameters for FORTRAN (continued)
C FILE DEFINITION FLAGS, I (FDFLY)
PARAMETER
+ F1lUBR s 18000V UK +7 INFOS =UNBLOCKED RECORUS
+ FlAM] = 42000K »3INFOS =-ACCESS METHOD FIELUL
+ F1AM2] 20R0BUVK 1 3INFOS =
+ FLlFTL s 16000k +3INFOS =RECORD FORMAT FIELD
+ Fi1FT2 = 400K 1 s INFOS «
+ FIRAW = 2¢0LK »# INFOS «READ AFTER WRITE VER
+ F10OVR = 200K ¢+ 7 INFOS =OVERWRITE (APPEND IF V)
+ FIlEXF H 100K » s INFOS =EXCLUSIVE FILE
+ F1PM] = 20K »# INFOS =PROCESSING MODE FIELD
+ FiPMe s 10K r 7 INFOS =
+ FIRER = '] + 3INFUS =REWRITE (NOKMAL IF V)
+ FLlINV s 1 s INFOS «INVERTING (ISAM)
C ACCESS METROD SPECIFIERS (F1AM1,F1AM2)
PARAMETER
+ F1lAMM H 60V00K v s INFOS =FIELD MASK
¢+ F1SAWN = 20A00K y s INFUS =8SAM
¢+ F1lRAM H] » s INFOS =RAM
+ FlISM s 400Uk s INFUS =1SAM
+ FlouBwm = 4Q000BK s INFOS =DbAM
C RECORD FURMAT SPECIFIERS (FIFT1,F1FTR)
PARAMETER
¢+ FLFTM] 14020k 2 i INFOS =FIELD MASK
+ FI1FIX s 10020«x »5 INFOS =FIXED LENGTH
+ F1VAR H 490vk 3 INFOS =VARIABLE LENGTH
+ F1UND H "} ¢+ s INFOS <UNDEFINED LENGTH
+ FI1SEN = 14000K s INFOS =DATA SENSITIVE
C FRUCESSING MODE SPECIFIERS (F1PM1,F1PM2)
PARAMETER
+ FIPMM s 30K »3INFOS =FIELD MASK
+ FLlINP = ("] s s INFOS <INPUT
+ F10OUT s 2Lk 9+ INFOS «0UTPUT
+ FLUPD S 1¢K » s INFOS =UPDATE
+ FICRU] 30K s INFQCS «CREATE UPDATE
C FILE DEFINITION FLAGS, Il (FOFL2)
PARAMETEKR
+ F2071 s 2000V0K » s INFOS =0OPEN ONLY THIS INDEX
+ F2SPM H 200buK s INFUS =SPACE MANAGEMENT
+ F2ORD H 1U0K v INFOS «0OPTIMIZE REC DISTRIBUTION
+ F2DHR 4 40K » s INFOS =DISABLE HIERARCHICAL REPLACEMENT
+ F2FDP = 16K sINFOS =DATA BASE FOP PRESENT

DataGeneral

SOFTWARE DOCUMENTATION

093-000114-01 n-c-13

INFOS User Parameters for FORTRAN

TRANSLATION AND LABEL CONTROL FLAGS

SOFTWARE DOCUMENTATION
C
PARAMETER
+ TCLTL = 19¥0V0K v 7 INFOS
+ TCLT? s 4000YK » 2 INFOS
+ TCLT3 : 20000K r+ INFOS
+ TCSFT = 10000K ¢+ INFOS
+ TLOTY S 4000k ¢+ 7 INFOS
+ TLOT2 s 2000K r 7+ INFOS
+ TCOT3] 1000K ¢ 3 INFOS
+ TCUT4 s 400K » $INFOS
+ TCLLL s 200K + $ INFOS
+ TCLLZ 3 100K ¢+ 7+ INFOS
+ TCLL3 s 40K ¢ 7 INFOS
+ TCITL s 12K ¢+ 3 INFOS
+ TCITe s 4 ¢ 7 INFOS
+ TCIT3 = e 17 INFOS
+ TCIT4 s 1 3 INFOS
C LABEL TYPE SPECIFIERS (TCLT1=-T
PARAMETER
+ TCLTM = 16080CK s P INFOS
+ TCANS = (%] ¢ i INFOS
+ TCIBM s 20B00bK ; INFOS
C LABEL LEVEL SPECIFIEKS (TCLL1=-
PARAMETER
+ TCLLM = 340K v i INFUS
+ TCLVI = 40K v 7 INFQOS
+ TCLve = 100K 17 INFOS
+ TCLV3] 146K i INFOS
C QUTPUT TRANSLATIUN SPECIFIERS
PARAMETER
+ TCOT™ s 7400K ¢+ # INFOS
+ TCNTO = 0 v 7 INFOS
+ TCEAU s 400K i INFOS
+ TCAEOQ = 19CGUK s # INFOS
+ TCUTU - 7400h s INFOS
C INPUT TRANSLATION SPECIFIERS (
PARAMETER
+ TCITM = 17K +7 INFOS
+ TCNTI s (%] s 7 INFOS
+ TCEAI s 1 ¢ 7 INFOS
+ TCAEI s 2 v 7 INFCS
+ TCUTl = 17K s INFOS
C INDEX FLAGS (FDIFL)
PARAMETER
+ IXPKC = 10V0uV0OK » $ INFOS
+ IXNSI1 = d0BV0ALK ¢+ INFOS
+ IXHPN = 2UR0BK ¢+ INFQOS
+ IXTSI = 10086 0K +7 INFOS
+ IXPRM H 4uluvK 7 INFUOS

INFOS User Parameters for FORTRAN (continued)

Licensed Material - Property of Data General Corporation

(FDTCF)

=LABEL TYPE FIELD

=SELECTIVE FIELC TRANS
=UUTPUT TRANS FIELD

=LABEL LEVEL
=INPUT TRANS FIELD

CLT3)

=FIELD MASK
=ANSI STANCARD
=1BM STANGARD

TCLL3)

=FIlelD MASK
~LEVEL 1
-LEVEL 2
=LEVEL 3

(TCOT1=-TCOT4)

=F1ELD MASK

=NO TRANS ON OUTPUT
-£BCDIC TO ASCII
=ASCI1 70 EBCOIC
*USER TABLE

TCIT1=TCIT4)

=FIELD MASK

«NO TRANS ON INPUT
=EBCDIC 7O ASCII
=ASCII TC EBCDIC
-USER TABLE

-PERFOKM KEY CUMPRESSIUN

=NO SUBINDICES

-HIGH PRIORITY NODE

=~TEMPORARY INDEX (PRIMARY OR SuB)
=MAKE DATA RECORDS PERMANENT

1-C-14

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
INFOS User Parameters for FORTRAN (continued)
c VOLUME INITIALIZATION PACKET
PARAMETER
+ VIFLG = 1 +i INFOS «VOL INIT FLAGS
+ VIACC = 2 + 3 INFOS =VOL ACCESSABILITY (LH BYTE)
+ VIDVS = 3 +i INFOS =DEV SPECIFIER PTR
+ VIVID H] 5 +# INFOS =vOL ID PTR
+ VIOID s 7 »7 INFOS <OWNER ID PTR
+ VIUVT s 9 + 3 INFOS =~USER VOL LABEL TAB PTR
+ VILEN s 19 7 INFOS =VvOL INIT PACKET LENGTH
C VOLUME INITIALIZATION FLAGS (VIFLG)
PARAMETEK
+ VFLTI = loovoon » 3 INFOS ~LABEL TYPE FLAGS
+ VFLTZ = 400K +7i INFOS =
+ VFLT3 = 2UB0VeK v INFOS =
+ VFLLL s 2V0K ¢+ 7 INFOS =LABEL LEVEL FJIELD
+ VFLLZ s 106K ¢ i INFOS =
+ VFLL3 s 4K r 3 INFUS =
+ VFFUL = 4 ¢+ INFOS <FULL INIT
+ VFIVI = e s INFOS ~IGNORE vOL 1D
c NuTE THAT THE LABEL TYPE & LABEL LEVEL SPECIFIEKRS
C GJVEN ON THE PREVIOUS PAGE MAY ALSO BE USED FOR
C THIS FLAG WQKD
C VOLUME DEFINITION PACKET
PARAMETER
+ VOVNP s i ¢+ 7 INFOS =VOLUME NAME POINTER
+ Vovsez : 3 + 7 INFOS =VOLUME SIZE
+ VOVLT : 4 ¢ 3 INFOS =VOLUME LABEL TABLE PTR
+ VDHLT] o + 7 INFOS =HEADER LABEL TABLE PTR
+ VOTLT s 8 ¢ 5 INFOS =TRAILER LABEL TABEL PTR
+ VvDOPDC s 10 + i INFOS =PHYS DEV CHARACTERISTICS
+ VDIvVC = i1 » 7 INFOS <INFUS vOL CHARACTERISTICS
+ VvDDTO = 12 ¢ # INFUS =DEVICE TIME OUT CONSTANT
+ VDVMF = 14 +# INFOS =VOL MERIT FACTOR(LH BYTE)
+ VUVACC s 14 ¢ 7 INFOS =VOL ACCESSABLITY(LH BYTE)
+ VDPAD = 14 ¢+ 7 INFOS =PAD CHARACTER (RH BYTE)
+ VvDOI1D = 15 +iINFUS =VOLUME UWNER ID POINTER
+ VDLEN s 16 3 INFOS =VOL VEF PACKET LENGTH
C INFOS VOLUME CHARACTEKRISTICS (vD1lveC)
PARAMETER
+ ICDOR s 100000K ¢+ 7 INFOS =<DISABLE DEVICE RESTART
+ ICvLB = 4uvo0oK 17 INFOS =VARIABLE LENGTH BLOCKS
+ ICDVC = 200ubeK r$ INFGS «DUPLICATE VOLUME CONTROL
+ 1ICDOSL = 108006K +7i INFOS «DISABLE SYSTEM LABELING
+ ICPAR = 2000K ¢+ 3 INFOS =GENERATE PARITY
+ 1ICDCC z 10V0K ¢ INFOS =DISABLE CONFLICT CHLLKING
+ ICCTG : 200K ¢+ 71NFOS <CONTIGUUUS ALLOCATION
+ ICDFI = 4u0K ¢ s INFOS -DISABLE FILE INITIALLZATION
+ ICERI = 4ok ¢i INFUS <ENABLE RUN TIME INIT
+ ICERR = 20K s # INFOS =-ENABLE RUN TIME RELEASE
+ ICRnO s 10K F INFOUS =REWIND ON vOL OPEN

093-000114-01 1-C-15 INFOS User Parameters for FORTRAN

DataGeneral

SOFTWARE DOCUMENTATION

c
+
+
+
+
t
+
+
t
+
+
+
+
+
+
+
+
+
C
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
C
+
C
+
+
+
+
+
+

PRUOCESSING PACKET

PARAMETER

PRSTA = 1 r i INFGS
FRDA I s 2 ¢+ INFOS
PRREC s 4 sy INFUS
PRKTP = g » 7 INFOS
PKLEN = 6 v i INFOS
PRDSP H 6 ¢ # INFOS
PRDFB = 9 ¢ # INFOS
PRSIL = 11 v+ INFOS
FRLN1 s 11 v 1 INFOS
PRRMF = 12 ¢ 3 INFOUS
PKCCW s 13 e 1 INFOS
PRPRA s 14 i INFOS
PRSRL = 19 r7 INFOS
PRSKS s 19 ¢+ 7 INFOS
PRSID = 29 » 3 INFOUS
PRLNZ z 21 7 INFOS
PRUCESSING PACKET STATUS FLAGS

PARAMETER

PFLOC s 1080V0oK ¢ 7 INFOS
PFHLD = 40000K » $ INFOS
PFUNL s 20900K ¢ INFOS
PFvCI H 12000K v $ INFOS
PFPEV H] 490K » s INFUS
PFWIF s 2001k 13 INFOS
PFREB s 10V0K +» 7 INFOS
PFRIN = 400K + 7+ INFOS
PFXLS S 200K v 7 INFUS
PFEXL = 100K ¢ 7 INFOS
PFPLF z 40R 3 INFOS
PFVER H 20K v 7 INFUS
PFMTrR H 10K +» 7 INFOS
PFUVL = 4 v i INFUS
PFUHL = ¢ ¢+ 3 INFOS
PFUTL = 1 s 3 INFUS
PFERM z 15377K i INFUS

RECORD LENGTH FLAG (PKLEN)

PARAMETER

PRSPL = 1V900UK i INFOS
s INFOS
i INFGS
s INFOS

INDEX COUMMAND CONTRUL FLAGS (PRCCW)

PARAMETER

CCKEY s 100000k » 7 INFOS
CCREL s 49500k i INFOS
CCMC1 s 20000n r 7 INFOS
CCMCe = 100VuK » 7+ INFOS
cemC3 = 4a00K s+ INFOS
ccsce s 2VV0K ¢ 3 INFOS

INFOS User Parameters for FORTRAN (continued)

Licensed Material - Property of Data General Corporation

*STATUS FLAGS

=DATA AREA PUINTER

=RECUKD NUMBEKR (RAM)

=KEY TABLE PUINTER (I1SAM)
*RECORD LENGTH

=MAG TAPE DISPOSITION
=DATA RECORD FEEDBACK
=SUR=INDEX LEVEL (RH BYTE)
=SAM & RAM PROC PACKET LEN

=RECORD MERIT FACTOR
=COMMAND CONTKOL WORD
=PARTIAL RECORL AREA PIR
=RETURNEU LEN (LH ®BYTE)
=RETURNLD STATUS (RH BYTE)
=SUBINDEX DEF PACKET PTR
=ISAM & DBAM PACKET LEM

(PRSTA)

=LUCK RECORD

=HOLD REQUEST

=UNLOCK RECORD

~VOLUME CHANGE IMDICATOR
=PHYSICAL END OF VOGLUME
=WRITE IMMED lF MODIFIED
-RECOKD EXCEEDS BUF SIZt
=READ INHIBIT ON (RAM)
=XFER LENGTH SHORT
~EXCESSIVE XFER LENGTH
=PHYSICAL END OF FILE
=VERIFICATIUN FAILURE
*MAG TAPE CONTROL ERROR
=USER VOL LABEL PROCESSED
=USER HDR LABEL PROCESSED
=USER TRAILER LAB PROCESSED
=EXCEFPTIUNAL RETURN MASK

«SPECIFIED REUCOKD LENGTH REQUESTED
=(INPUT TO ISAM OR UBAM READ)
=RECORD EXCEEDS LENGTH KEGUESTEUL

= (KETURNED FROm ISAM OR D3AM READ)

“KEYED
~KELATIVE TO LUR POS
~MOTION CONTKOL FIELD

«SET CURRENT POSITOUN

111-C-16

093-000114-01

Licensed Material - Property of Data General Corporation

INFOS User Parameters for FORTRAN (continued)

DataGeneral

SOFTWARE DOCUMENTATION

¢+ CCINYV s 40VK ¢+ 3 INFUS «]INVERTED ENTRY
¢+ CCSPR 3 10¢K ¢ 7 INFUS =SUPPRESS PARTIAL RECORL
¢+ CCsDB s 20K ¢ INFOS =SUPPRESS DATA BASE
+ CCLOG z 1¢K » 3 INFOS =LOGICAL KEY DELETE
¢+ CCLOC : 4q ¢+ INFOS «LOCAL LOG DELETE
¢+ CCGLB z e 3 INFOS =GLOBAL LOG DELETE
MOTION CONTROL SPECIFLERS (CCMCleCCMC3)
PAKAMETEK
+ CCMCM s 34000k »3INFOS eFJELD MASK
+ CCFwD] 0 » 3 INFOS «FORWARD
+ CCbAK = 490UK 1 i INFUS =BACKWARD
¢+ LCOWN] 16000K s $ INFOS <DOWN
¢+ CCOFwW s 14u@0K +$ INFOS <UOWN & FURWARD
+ CCUFw s 20000K » 3 INFUS =UP & FORWARD
+ CCuBK] 24Q00K 1y 3 INFOS =UP & BACKWAKD
+ CCupP = 3000QuK ¢+ INFOS =UP
+ CCSTA s 3440¢K i INFOS =STATIC
SYSTEM RETURNED STATUS FLAGS (PRSRS)
PARAMETER
+ SRLLD s 200K +# INFOS =LOCAL LOGICAL DELEIE
+ SRLUP H 10¥K »# INFOS «DUPLICATE KEY
+ SRORL = 4ok ¢ 3 INFOS =DATA RELCORD LOCKED
+ SRGLD : 20K 13 INFUS =GLOBAL LUGICAL DELETE
+ SRLDM s 220K ¢+ 3 INFOS =LOGICAL DELETE MASK
+ SRSFm s 360K s INFOS =STATUS FIELD MASK
093-000114-01 Hi-c-17 INFOS User Parameters for FORTRAN

Licensed Material - Property of Data General Corporation

INFOS User Parameters for FORTRAN (continued)

SOFTWARE DOCUMENTATION
C
+
+
o
*
+
+
+
+
+
+
+
+
¢
*
+
+
+
o
+
+
c
+
+
+
+
¢
+
+
+
+
+
c
+
+
+

MAG~TAPE CONTROL PROCESSING PACKET

PARAMETER
PRCFC = 4 17 INFOS =CONTROL FUNCTION CUDE
PRNWD] S i INFOS =NUMBER OF WORDS

MAG=TAPE CUNTRUL FUNCTION CODES (PRCFC)

PARAMETER

MCSFF s ("] »i INFOS «SPACE FORWARD FILE
MCSBF s 1 ¢+ 7 INFOS =SPACE BACKWARD FILE
MCRD s 2 + 3 INFOS =READ

MCWRT s k) 17 INFUS =WRITE

MCWEF s 4 ¢ 7 INFOS =WRITE EOF

MCREW s) ¢ 7 INFUS <REWIND

MCSFR = 6 + 3 INFOS =SPACE FORWARD REC
MCSBR s 7 + 3 INFUS =SPACE BACKWARD REC
MCERS s 8 i INFOS =ERASE

POINT PROCESSING PACKET

PARAMETER

PRMOD = 2 + 7 INFOS =INPUT MODE

PRHLB : 3 ¢ INFOS =HI LOGICAL BLOCK
FRLLE = 4 » 5 INFOS ~LUW LUGICAL BLOCK
PRBOF = S i INFOS =BYTE OFFSET

POINT INPUT MODE (PRMGD)

PAKAMETER
PMEUF = 0 +# INFOS =PUINT TO EOF
PMLBN s 1 3InFOS «LOGICAL BLOCK NUM

LINK SUB=INDEX PRUCESSING PACKET

PARAMETER

PROKT = 2 ¢+ INFOS =DEST KEY TABLE PTR
PRSKT = 4 +7i INFOS =SCUKCE KEY TABLE PIK
PRDCC = 12 ¢ i INFOS =DEST COMMAND CONTROL
PRSCC s 13 3 INFOS =SQURCE CUMMAND CONTROL

Kby DEFLINITIUN PACKET

PARAMETER

KOTYP = 1 + 3 INFOS «=KEY TYPE FLAGS (LH BYTE)
KDKYL = 1 s # INFOS =KEY LEN (RH BYTE)

KDKYP = 2 r# INFOS »KEY POINTER

KDDKO = 4 ¢+ INFOS =DUP KEY OCCURENCE

KOLEN = 5 i INFUS =KEY DEF PACKET LENGTH

KEY TYPE FLAGS (KDTYP)

PARAMETER

KTUUP = 109000K ¢+ 7 INFOS «DUPLICATE KEY
KTGEN = 40000K +» 3 INFOS «GENERIC KEY
KTAPX s 20002k ; INFOS «APPROX KEY

1m-Cc-18 093-000114-01

Licensed Material - Property of Data General Corporation

PROCESSING FUNCTION CODES

INFOS User Parameters for FORTRAN (continued)

DataGeneral

SOFTWARE DOCUMENTATION

PARAMETER
+ PUINT s 0 ¢+ 7 INFOS =POINT
+ CNTRL s 1 » 3 INFOS «CUNTROL
+ FEUQV s 2 ¢+ INFOS =FORCE END OF vVOL
+ JCLOSE = 3 »7INFOS =INFOS CLOSE
+ SETX = 4 » 7 INFOS =SET EXCLUSIVE USE
+ RELX s S »7 INFOS ~RELEASE EXCLUSIVE USE
+ TRNCT s 6 ¢r7 INFOS =TRUNCATE BLOCK
+ IREAD = 7 ¢+ INFOS =INFOS READ
+ IWRITE = 8 13 INFOS =INFOS WRITE
+ DEFSI = 9 » 7 INFOS -DEFINE SUB=INDEX
+ LNKSI s 190 » 7 INFOS =LINK SUB=INDEX
+ DELRC s 11 »# INFOS <DELETE RECORD
+ DELSI s 12 ¢y 7 INFOS «DELETE SUB~INDEX
+ RETST s 13 +# INFOS «RETURN STATUS
+ RETHK s 14 v 7 INFOS *RETURN HIGH KEY
+ RETKY s 15 »7 INFOS =RETURN KEY
+ KEINS = 16 ¢ 3 INFOS »REINSTATE REC
+ RDDIK = 17 » 2 INFOS »READ DIRECT
+ WRDIR = 18 ¢+ INFOS =wRITE DIRECT
+ RELRC = 19 +»# INFOS «RELEASE REC
+ RELSE s 20 »#INFOS =»RELEASE BUFFER
+ REWRT = el r 7 INFOS =REWRILTE
+ RETDF s ee 17 INFOS =RETURN SuB=INDEX DEF
+ PRERD s 23 s INFOS =PREREAD
093-000114-01 111-C-19 INFOS User Parameters for FORTRAN

DataGeneral

SOFTWARE DOCUMENTATION

P O T O I I I e I I R I S SR R S S G e e e Ue PP O

INFOS ERROUR CODES

PARAMETER

101ILF H 131
IovTl z 132
10RDU = 133
I0IFD = 134
I00PE s 135
10RFC = 136
IUEXF = 137
1OLOK H 138
I0FNO = 139
IOPCF s 140
IOVFP s 141
10URC s 142
I0RMP H 143
I00VF = 144
l1obew S 145
IUVME s 146
10XTL s 147
10vVfe s 148
10VCE = 149
10IFO] 154
IOLEF = 151
Iouxs = 152
IONSV = 153
LONOH = 154
IUNMD = 15%
I0ROF H 156
I0ICL H] 157
l10PIC s 158
I0ORDE = 159
I0T™MO s 160
I01AM s 161
IUXER = 162
I0PRU S 163
10PRC = 164
IUFCE s 165
I0OROE s 166
IuvAX = 167
1020x s 168
l0JuC s 169
1ONMR = 170
IunS1 s 171
IUNTL = 172
IUNNS = 173
IOMTE = 174
I00ONS = 175
I0EVO H 176
1oevl = 177
loCwmp z 178
I0KEZ s 179
I0OIRM = 180
I0INA s 161
I0lCE = 182
IoTLy s 183
I0SNA = 184
JUSNP z 185
10ESI = 186
I0DPE = 187

Licensed Material - Property of Data General Corporation

INFOS User Parameters for FORTRAN (continued)

»# INFOS
¢ 7 INFOS

7 INFOS
¢ # INFOS
» 3 INFOS
sy INFOS
»$ INFOS
+ 7 INFOS
s 3 INFOS
¢+ 7 INFOS
»i INFOS
¢+ # INFOS
¢+ 3 INFOS
v i INFUS
¢+ 3 INFOS
+ 3+ INFOS
s 7 INFOS
v 7 INFOS
v+ INFOS
+ 7 INFOS
¢+ INFOS
v+ INFUS
¢+ INFOS
v+ INFOS
»# INFOS
» 5 INFOS
¢ 3 INFOS
y 2 INFCS
¢ 7 INFOS
v+ INFOS
» 7 INFOS
1 i INFOS
» 7 INFUS
¢+ 5 INFOS
r 3 INFOS
v 3 INFOS
¢ 7 INFOS
» 7 INFOS
» 3 INFOS
13 INFOS
i INFOS
» 1 INFOS
»# INFOS
v 7 INFOS
2+ INFOS
¢+ INFOS
s+ INFUS
v i INFUS
s 2 INFOS
» 5 INFOS
s 3 INFOS
¢ 7 INFOS
» 3 INFOS
¢ 7 INFOS
7 INFOS
7 INFOS
r 7 INFUS
v 7 INFOS
¢ INFOS

=]ILLEGAL FUNCTION
=VARIABLE LENGTH TRANSFER
=ILLEGAL ON THIS DEVICE
=REWRITE ON UISK ONLY
=ILLEGAL FUNCTIUN FOR OEV
=0PEN PROCESSING ERPOR
=REC FMT & FUNC CONFLICT
=FILE IN USE

=FILE LOCKED

=FILE NOT OPEN

=PERIPHERAL CONFLICT

VL FILE PROCESSING ERROR
*UNRESOLVED RESOURCE CONFLICT
*REWRITE NMODE PROCESSING ERROR
=DUPLICATE VL FILE

~BLOCKh SIZE EXCEEDS WINDOW SIZE
=VIRTUAL MEMORY EXHAUSTED
=TRANSLATE TABLE LOAD ERRUR
*VvL FILE OPEN ERR

=Vl FILE CLOSE ERR

=INSUF FREESPACE FOR OPEN
=LOGICAL END OF FILE

=USER TRANSLATE SPECIFICATION ERRUR
=NO SUCH VOLUME

=NO HOLD ON LOCKED REGUEST
-NO MORE Dl1SK SPACE

=KRAM ACCESS OUTSIDE FILE
=ILLEGAL CLOSE

=PHYSICAL 1/0 ERROR
*RESIVUAL DISK ERROGR

=DISK GR MAG=TAPE TIME=OUT
-ILLEGAL ACCESS METHUD
=ILLEGAL TRANS REWUEST
=PREUPEN OPEN ERROR
=PREQOPEN CLOSE ERROR

-FILE CLOSE ERROR

=RDOS OPEN ERROR

=VOLUME ALREADY EXISTS
=ZtRU LEN DISK XFER REQ
=ISAM UPDATE CUNFLICT
-TABLE OVERFLOW

-INDEX NAME SPEC ERROR

=NO SUCH INDEX

=NAME TOO LONG

«NO NODE SPACE

=MAG=TAPE 1/0 ERROR
=DEVICE NOT SUPPURTED
«QUTPUT END VOLUME EKROK
=INPUT END VOLUME ERRCR
=CUMPARE ERROR (1s5am)
“RESULUTION ERROR (ISAM)
«ILLEGAL REL MOTION
«INVALID NODE ADDRESS
«INVALID CURRENT ENTRY
=TUP LEVEL EKROR

=SUB IVUICES NOT ALLOWED
«SUB=INDEX NGT DEFINED
=EnD UF SUB=]NDEX

=DELETE PUSITIONING ERROR

11-C-20 093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
INFOS User Parameters for FORTRAN (concluded)
+ IOMKw = 188 ¢+7INFOS =MULTI KEY WRITE ERROR
+ IO0IKL] 189 ¢ #INFOS «JLLEGAL KEY LENGTH
+ IOIEN s 190 »# INFOS «INVALID ENTRY NUMBER
+ 1I01PS s 191 ¢ # INFOS =ILLEGAL COMMAND CONTROUL
+ IUKAE J 192 v IMNFUS *KEY ALLREALY EXISTS
+ IOKPE = 193 + 7 INFOS «KEY POSITIONING ERRUR
+ JOIRL s 194 »7INFOS «INVALID RECORD LENGTH
+ IORNP s 259 17 INFOS =DATA BASE REC NOT PRESENT
+ IONTB s 262 v+ 7 INFOS «MIN NODE SIZE TOO EIG
+ IONTS s 261 ¢+ 7 INFOS »MIN NCDE SIZE TCO SMALL
+ I10DRL z 262 »+ INFOS =DATA RECURD LOCKECD
+ I0SIA s 263 ¢+ 7 INFOS =SuB=INDEX IN USE
+ IOVER s 204 ¢+ INFOS =VERSION CUNFLICT EFROK
+ IO0SIL s 265 17 INFOS =SUB=INDEX LINK COUNT
+ i INFGCS <GVERFLOW
+ I0ALS s 260 i INFOS =ALREADLY LINKED
+ i INFOS =J0 SUB=]INDEX
+ J0SLO s 207 ¢+ INFUS «SUB=INDEX LEVEL OVEKFLOW
+ 10SSl s 268 r 3} INFOS =SUB=INDEX HAS SUB=INVEX
+ s INFOS «DELETE SUB<INDEX ERKUR
+ 100wK s 269 ¢+ # INFOS =ATTEMPT TO DELETE ENTKRY
+ 7 INFOS =WITHOUT KEYED ACCESS
+ IOENL s 270 ¢ #INFOS =INVEX ENTRY LOCKED
+ I0wwK =z 271 ¢ 3INFOS =NO Wik[TE WITHOUT KcoY
+ 10ILL s 27e »7INFOS =ILLEGAL LABEL
+ I0ILS s 273 s s INFOS «ILLEGAL LABEL SPEC
+ I0vID = 274 »# INFOS =VOL ID DOESNT MATCH
+ IOFID s 27s »7# INFOS =FILE ID DOESNT MATCH
+ IUFSQ s 276 » i INFOS =FILE SEQ NUM DOESNT MATCH
+ IO0GEN = 277 ¢ INFOS =GEN NUM DOESNT MATCH
+ I0EXD H 278 ¢t 7 INFOS =EXP UATE NOT EXPIRED
+ I0BCT = e79 ¢+ #INFOS =BLOCK COUNT INCORRECT
+ IORFT s 280 +# INFOS =RECORD FORMAT CONFLICT
+ JOFSN s 281 ¢ 7 INFOS =F]ILE SECTION NUMBER
+ IO0EBIL s 28¢ r7INFOS =EXCESSIVE POSITION LEVELS
+ 10SLS s 283 ¢+ #INFOS «SYSTEM LOAD SI1ZE EKRUR
+ IOFNF H] 284 » s INFOS =TAPE FILE NOT FOUND
+ I0BTS s 285 s INFOS -BLOCKSIZE < 8 BYTES
+ IORTL = 286 + 7 INFOS =RECORD+OVERHEAD > ©LOCKSIZE
+ IOWNE = 287 27 INFOS =nRITE IS NOT AT END=OF-FILE
+ 7 INFOS «FUR SHARED SAM UPDATE FILE
+ 100wO z 288 +»7 INFOS =WRITE ALLOWED ONLY FOR GNE
+ 7 INFOS «USER OF SHARED SAM UPDATE FILE
+ I0SPL s 289 ¢ 3 INFOS « SPOCLING ON ILLEGAL DEVICE
+ 1URKR 3 290 ¢+ INFOS = RETRIEVE KEY ERRGR
+ I10DIP = 291 »7INFOS =« DELETE INDEX POS1TION ERRCUR
+ IOMPR H 292 ¢y INFOS = SPACE MANAGEMENT INCCONSISTENCY
+ IO0STR s €93 s INFUS = SEARCH CP TABLE EKRRUR
End of Appendix

093-000114-01 m-c-21 INFOS User Parameters for FORTRAN

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Appendix D
INFOS System Error Messages

The chart which follows attempts to shed some light on
the messages you’ll receive if either you or the system
go awry. We have included the octal code number of
the error (which the system will return to your
program), the mnemonic name of the error, a brief
description of what that code means, and a reference to
the chapter(s) within this manual where you can find
further information about the operation(s) mentioned.
In this last column, we use a roman numeral to denote
the section of this manual in which you should look
(e.g., Part I), and a decimal number to denote the
chapter within that part (e.g., I,6 means refer to Part I,
Chapter 6).

Note that you can get the message associated with any
error code by using the INFOSER utility. To do this,
simply type in the following:

INFOSER n

where n is the error code number.

The system will return the code number and its
message.

093-000114-01

1-D-1

Note to All FORTRAN Programmers:

The error code which thg INFOS system returns to
your FORTRAN programs will be in decimal, not octal.
In addition, it will be three numbers higher than that
returned to Assembly programs. Therefore, before
using INFOSER, subtract three from the error code
returned to your program by the system, then type in

INFOSER n/D

where n is the returned error code number minus
three.

You may also perform the following steps on the
decimal number you receive if you want to use this
appendix:

1. Subtract three from the error code returned by the
system.

2. Convert the result to an octal number.
3. Look up that octalnumber in the following listing.

For example, if the system returned error code 287 to
your program, you woulid do this:

1. 287 -3 = 28410

2. 28410 = 4348
3. Error code 434 = IOWNE

INFOS System Error Messages

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Code | Name Description Reference

200 IOUER You have requested either an unknown function (check your spelling), or one which 1-2,3,4,0r5;
doesn’t apply to either the access method or the processing mode you selected. or

11-2,3,4,0r 5

201 IOVTI The system has encountered a block whose length is not equal to the block size you I1-6
specified for this run. This indicates that you requested a write operation but neglected
to set ICVLB (Allow Variable Length Blocks) in the FDP.

202 IORDO You specified the Rewrite mode (FIRER in the FDP) for a nondisk device. I1-6; 1-2

203 IOIFD You requested a Mag Tape Control function for a nontape device. 11-6;11-2

205 IORFC You requested the Rewrite function for a Data Sensitive record. 1-2;11-2

206 IOEXR You have attempted to gain exclusive use of a file already in use. 1-2;11-6

207 IOLOK You have attempted to open a file already opened for exclusive use. I-2;11-6

210 IOFNO You have issued a processing function request for a file which you have not I1-1
successfully Pre-opened and Opened. (Check AC2 for Pre-open and Open error
messages.)

211 IOPCE You have attempted to open a nondisk device which is already open. 1I-1

212° | IOIRE The system has encountered an error while attempting to process your file’s .VL file. I1-6

213 IOPND The system has timed out while waiting for an internal resource required to complete I-6;11I-E
your current request.

214 I0IRI You have issued a rewrite inverted request and the address of the data record (in the I-5:11-5
index entry) does not match the address you specified.

215 IODVF You have attempted to use a currently existing name for your file (i.e., change your I-6
file’s name).

216° | IOBEW Your block size exceeds your specified ‘window’ size. I-6

217 IOVME There isn’t enough room in either the foreground or the background (whichever I1-6
you’re using) to build the buffers for the file you’re trying to open.

220 IOXLE You requested code translation, but the system cannot load its translation table into 11-6
memory.

221 IOVFE The system cannot open your file as requested because of an error in the . VL file or 11-6
because the file doesn’t exist.

222 IOVCE The system has encountered an error while attempting to close the .VL file. 11-6

223 IOMEM You did not provide enough file control space to open your file as requested. 1-6

224 IOLEF The system has determined that it cannot process your current request without going
beyond the end of the file.

225 IOUTS You have made an error in specifying what you want translated. 11-6

226 IONSV You have requested access to a volume which doesn’t exist. I-1

227 IONOH You have requested access to a record which is locked, but you did not specify ‘““Hold*’ [1-2 or 3; II-6
in your request.

11-D-2

093-000114-01

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Code | Name Description Reference

230 IONMD There is no more disk space available to continue processing. 1-2,3,4,0r5

231 IOEOF The system has determined that the record you want is outside the bounds of your I-3
existing RAM file.

232 IOCNV The system has encountered an error while attempting to close one volume and open 11-6
another.

234 IOUOR The system cannot write a block of data to your file. (This usually indicates a hardware
problem.)

235 IOTMO Either your disk or your mag tape has timed out. I-6; III-E

237 IOXER You have requested translation, but have not provided all the necessary parameters. 11-6

241 IOPRC The system either can’t find (or has encountered difficulty processing) the file’s 11-1
Permanent File Specification.

242 10FCE The system has encountered an error while trying to close the file’s PFS. 1I-1

243 |IOFOE The INFOS system cannot complete the operating system phase (RDOS) of the file 11-1
opening procedure.

244 IOFAX You have attempted to create a file whose name is already in use (use another
filename).

245 10ZDX You have requested a zero length transfer for a disk.

247 IONMR You have attempted to open an index which does not belong to the database you 11-4,50r 6
specified.

250 IONSI The system is not able to close all the open files. (You can correct this by rebooting the
system before processing.)

251 IONTL The filename you have specified is too long. (Filenames cannot exceed 48 characters, I-6
including all device specifiers, delimiters and extensions.)

252 IONIS You have no more available space for your ISAM or DBAM file. 1-6; 111-B

253 IOMTE The system has detected an error while processing a magnetic tape request. I-2; I11-A

254 IODNS You have attempted to open a file residing on a device which the INFOS system does 1-6; lII-E
not support.

256 IOEVI The system has encountered the end of a volume while processing an input file.

257 I0CMP The system has encountered invalid data in an index. THIS IS A FATAL ERROR.

260 |IOREZ (Same as IOCMP.)

261 10SPE The system has encountered an error while trying to position to the entry you specified |I-4or 5;
in the ‘Key’ and/or ‘Relative Motion’ field(s). 11-4 or 5;

11-6

262 IOINA The system has encountered difficulty while trying to access an index. (Try reloading
your file.)

263 10ICE You have specified an invalid direction of relative motion from your current position. I-5; 11-5
(To rectify this, try moving Up or using keyed access.)

093-000114-01

in-p-3

INFOS System Error Messages

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Code | Name Description Reference
265 IOSNA You have attempted to Define, Link, or Delete a subindex where subindexes are not 1-5; 11-5.,6
allowed. I11-B
266 IOSNP You have attempted to Link to or Delete a nonexistent subindex. I-5;11-5,6;
I11-B
267 IOEST You have attempted to use Relative Motion beyond the bounds of the subindex. 1-5; 1I-5;
111-B
270 I0DPE You have tried to delete an index entry on which someone else is currently positioned. {I-4 or 5
271 IOMKW You have issued a Write request using a multilevel key, and one of the keys you I-5;11-5,6
specified does not match any other at its indicated subindex level.
272 I0IKL You have attempted to write a key which is either zero length or too long. I-4 or §5; 11-6
273 I0IEN The system has encountered an error while trying to access your index. This indicates I1I-B
either an index structure problem or a system bug.
274 101IPS You did not specify either CCKEY or CCREL in PRCCW of your Extended Processing |1I-6; I-4 or 5;
Packet. 11-4 or 5.
275 I0KAE You have tried to Write an index entry which already exists in that subindex. I-5; I1I-B
276 IOKPE The system has encountered an error while trying to position to your specified entry. I-4or 5,
II-40r$5
277 I0IRL 1) You have attempted to Rewrite a SAM record with a length different from the one |1-2
read, or
2) You have attempted to Write an ISAM or DBAM record that is longer than your I-40r5
specified page length.
400 IONDR No database record exists for the index entry you specified. I-4o0r5
401 IONTB The node size you specified is too large for your specified page size. I11-B
402 IONTS The node size you specified is not large enough to hold three index entries. 111-B
403 IODRL The database record associated with the index entry you specified is currently locked. I-4or$5;
II-4o0r5
405 IOVER You have attempted to open a file which was created under a system whose parameter 11-6
versions are different than your current system.
406 IOSTL Too many subindex links currently exist to complete your request. I-5; 1I-5;
II-B
407 IOSAE You have attempted to Define or Link a subindex to a subindex entry which already I-5; 11-5;
owns a subindex. 111-B
410 I0SLO You have attempted to define a subindex at level 257. I-5; 11-5;
[I-B
411 [IOSST You have attempted to delete a subindex which owns at least one subindex and which I-5; 11-5;
is currently linked to only one other subindex. 111-B
412 IODWK You have attempted to perform physical deletion, but you did not specify Keyed I-5; 1I-5
access.

11-D-4

093-000114-01

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION
Code |Name Description Reference
413 I0ENL The index entry you have attempted to access is locked. I-40rS;

II-4or 5
414 IOWWK | You have attempted to write a new record without specifying Keyed access. I-4or §;
[1-4,50r6
415 IOILL You have used an illegal label format on a labeled magnetic tape file. (Usually this II-A
means that the system did not find one or more of the required labels.)
416 I0ILS The system does not support the label type and level which you specified in either the 11-6; 111-A
Volume Initialization Packet or in the File Definition Packet.
417 I0VID The volume identifier you specified does not match that on the volume label. 111-A; 11-6
420 IOFID The file identifier you specified does not match that on the volume label. 11-6; 11I-A
421 IOSFQ The file sequence number you specified does not match any of those on the tape. II-A

422 IOGEN The generation number you specified does not match that on the record you requested. | I11I-A

423 IOEXD You have attempted to write over a file whose expiration date has not yet been II-A
reached.

424 IOBCT The block count of the trailer label does not agree with the system’s count. II-A

425 IORFT 1Ygulhave specified a record format which conflicts with that specified in the header 1-2; III-A
abel.

426 |IOFSN The file section number on the header label is not correct. HI-A

427 IOLVR You have attempted to access more subindex levels than exist in your index. I-5

431 IOFNF The system has not been able to locate a tape file with the specifier you indicated. I1-A

432 IOBTS You have specified a page size of less than eight (8) bytes for a database file. (Database | I-5

pages must be at least eight bytes long.)

434 IOWNE You have attempted to Write in a shared SAM file (opened in the Update mode) at I-2
some point other than the end-of-file.

435 IOOWO Someone else is currently writing in the SAM file for which you issued a write request. | I-2

436 10SPL You have specified spooling for a device other than a line printer or teletype. I-2
440 IODIP You have attempted to Delete in an index file while someone else is positioned in that I-4 or 5,
index for the same purpose. [I-4or 5

441 IOMPR You specified Space Management and the map doesn’t agree with the page space
available. (When this happens, the system will use the page size rather than the map
size.)

442 IOSTR You have requested either Delete or Define Subindex, and the system cannot find the
original of your specified duplicate key.

End of Appendix

093-000114-01 I-D-5 INFOS System Error Messages

Licensed Material - Property of Data General Corporation

Appendix E
Device Characteristics

DataGeneral

SOFTWARE DOCUMENTATION

TTI TTO |PTR PTP PLT CDR |LPT A/D CRT MUX | MTA | CAS F.H. M.H.

Disk | Disk

Device Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No

Restart

Variable No No No No No No Yes No No No No No No No

Blocks

Normally Yes | No Yes |Yes |Yes |Yes |Yes JYes |Yes |Yes |No No No No

Single

Volume

System Yes

Labels

Parity No No No

Conflict Yes Yes Yes Yes |Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Checking

Random Yes Yes Yes Yes

Allocation

Initialize Yes Yes Yes Yes

Contiguous

Files

Runtime Yes Yes

Intialization

Runtime Yes Yes

Release

Rewind on Yes Yes

Volume Open . .

Seconds to 65535 |30 30 30 180 10 15 3 600 180 15 600

Timeout

End of Appendix
093-000114-01 11-E-1 Device Characteristics

Licensed Material - Property of Data General Corporation

Index

In this Index, page references are shown as follows: the
roman numeral denotes the section of the manual
(e.g., Part 1) and the decimal number denotes the
chapter and page reference. Thus, I-4-2 indicates that
you will find information about that topic in Part I,
Chapter 4, page 2; f and ff are used to denote the page
or pages following the reference.

access, concurrent
ISAM 1-4-2
access methods I-1-1
keyed 1-4-2
relative 1-4-8
(see also relative access and keyed access)
address space 1-6-5
atlocation (contiguous vs. random) of disk space 1-6-10
ANSl levels III-A-1ff
appending records 1-2-12
approximate keys 1-5-17
arguments (FORTRAN) III-C-2
assembly language parameters II-7-1, II-7-15

background I-6-5
BCBs (Buffer Control Blocks) 1-6-3ff
BF

see branching factors
BLDFDP II-7-2ff
BLDIPKT II-7-15
BLDKDP II-7-11
BLDLSP 1I-7-13
BLDMTC I1I-7-10
BLDPNT II-7-10
BLDPP II-7-8
BLDULT II-7-15
BLDVDP II-7-6
BLDVIP 1I-7-14
blocking factor III-B-8
block-packing I-1-5

ISAM and DBAM

see page size

RAM I-3-1

SAM 1-2-5f

size I-1-4f

093-000114-01

branching factors III-B-2

buffers

DataGeneral

SOFTWARE DOCUMENTATION

control blocks (BCBs) I-6-3ff

DBAM I-5-6ff

I/0 management I-1-5, I-6-8f

I/0 space 1-6-6f, 1-6-2

ISAM [-4-4ff
RAM I-3-1
SAM I-2-1

building/processing routines
FORTRAN III-C-2, ITI-C-10

byte pointers II-1-1

call formats (FORTRAN) 1II-C-3

calls, system 1I-1-3
cells 1-6-2

channel number 1I-1-3, III-C-9

close request
RAM II-3-5
SAM II-2-6

CMT instruction III-C-4
COBOL, Prefatory Note, Part II

code, resident RDOS/INFOS 1-6-2
combined access (keyed plus relative) 1-5-13, II-5-15

compression, key I-5-5,1-6-3
concurrent tasking I-1-2
contiguous allocation 1-6-10

ISAM I-4-5

RAM I-3-2

SAM I-2-2
control area, file 1-6-3
control blocks I-6-3ff

Create Update mode 1-1-2, II-4-1ff, II-5-1ff

CTR instruction 1-1-4
current position 1-4-2

database
files 1I1-B-8
records 1-4-2
suppress

ISAM 1-4-10, 11-4-10f
DBAM 1-5-17, 1I-5-16f

Index-1

Index

DataGeneral

SOFTWARE DOCUMENTATION

data sensitive record I-1-3
transfers 1I-1-5
data transfers 1-1-4, III-B-8
see also appropriate access method
DBAM (Data Base Access Method)
access methods I-5-11, I1-5-15
approximate keys I-5-17
automatic key compression 1-5-5
creation I-5-6ff
define subindex 1-5-16, 11-5-19
delete 1-5-16, 11-5-20
delete subindex I-5-16, 11-5-21
file inversions 1-5-4
general concepts 1-1-2, I-5-1ff
generic keys 1-5-17
index levels I-5-1, I-5-6
link subindex I-5-16, 11-5-19
linked subindexes 1-5-4
lock/unlock 1-5-17, 11-5-17
multiple indexes 1-5-4
opening 1-5-10, II-5-1ff
optimized distribution 1-5-5
partial records 1-5-3
processing I-5-11ff, 11-6-20
programming II-5-1ff
read 1-5-15, 1I-5-16
reinstate 1-5-16, I1-5-21
retrieve high key I-5-17, 1I-5-21
retrieve key 1-5-17, 11-5-21
retrieve status 1-5-16, I1-5-22
retrieve subindex definition 1-5-17, II-5-21
rewrite 1-5-16, II-5-18
subindexes 1-5-1
suppress database 1-5-17, 1I-5-16
suppress partial record I-5-17, II-5-16
temporary indexes I-5-5
volume merit factors 1-5-8
write I-5-15, 11-5-17
DEFAULT (in FORTRAN) III-C-2
define subindex 1-5-16, 11-5-19
definition, retrieve subindex 1-5-17, I1-5-22
delete subindex 1-4-10, 1-5-16, 11-4-12, I1-5-21
deleting records
ISAM 1-4-9f, 11-4-12
DBAM 1-5-16, I1-5-20
delimiter tables 1-1-4
device timeouts 1-6-10, III-E
direct access
see RAM
disable file initialization 1-2-2, I-4-5
disk files
processing 1-1-7
SAM I-2-1ff, 11-2-1ff
disk space allocation 1-6-10
distribution, optimized I-5-5
duplicate keys 1-4-2

Index-2

Licensed Material - Property of Data General Corporation

end-of-volume labels HI-A-1ff

entries, subindex III-B-1f

error conditions (FORTRAN) III-C-3

error messages 11I-D

extended processing packets II-1-2, I1-6-20
building 1I-7-8

extensions (to filenames) 1-6-10

F4INFOS.LB III-C-1ff
FSINFOS.LB III-C-1ff
FCBs (File Control Blocks) I-6-3ff
FDPs
see file definition packets
FEOV 1-3-6, I1-3-5
File
control area 1-6-3f
control blocks (FCBs) 1-6-3f
creation I-1-7
DBAM 1-5-6
ISAM 1-4-3
RAM I-3-1
SAM [1-2-2ff
extensions 1-6-10
initialization (SAM) 1-2-2
inversion 1-5-4
naming 1-6-8, I-1-7
multivolume I-1-6
opening I-1-7, II-1-3
DBAM I-5-10ff, II-5-1ff
ISAM 1-4-7, I1-4-1ff
RAM I-3-3, 1I-3-1ff
SAM I-2-4ff, 11-2-1ff
processing
DBAM I-5-11ff, II-5-15ff, III-C-10
ISAM 1-4-8ff, 11-4-9ff, 1II-C-10
RAM 1-3-3ff, I1-3-4ff, I1I-C-10
SAM I-2-12ff, I1-2-4ff, I11-C-10
file definition packets II-1-1f, I1-6-1ff
building II-7-2 (assembly), III-C-4f (FORTRAN)
parameters I1-6-9
file specification, permanent 1-1-7, 1-4-3, II-1-4f
FINFOS.FR (FORTRAN) III-C-3, ITII-C-12ff
fixed length records I-1-3
transfers 1-1-5
force end of volume (FEOQV) 1-3-6, I1-3-5
foreground I-6-5
FORTRAN (IV or 5) III-C-1ff
call formats III-C-3ff
loading your program III-C-3
user parameters III-C-12ff

general processing packets II-1-2, I1-6-18ff
building II-7-8

generation number III-A-9

generation, system (INFOS) 1-6-1

generic keys 1-5-17

global deletion 1-4-9f, 1I-4-12, I1-5-20

>grounds (foreground and background) 1-6-5

093-000114-01

Licensed Material - Property of Data General Corporation

header labels 11I-A-6, IT1I-A-10ff
hierarchical replacement 1-4-4
high key, retrieve

ISAM 1-4-10, 11-4-13

DBAM [-5-17, I1-5-21
high priority nodes 1-5-6, 1-6-8
Hold feature 1-3-6
HPNs

see high priority nodes

IBM levels III-A-1ff
JINFOS 1I-1-3
Index

entries III-B-2

levels I-5-1, I-5-6

multiple [-5-4

structure 1-4-2ff, I-5-1ff, I1I-B-1
Indexcalc utility III-B-2, I1I-B-8, 1-6-3
INFFDP III-C-1, III-C-4
INFIFDP III-C-1, III-C-5
INFINIT III-C-2, III-C-10
INFKEY III-C-1, ITII-C-7
INFLSP III-C-1, III-C-8
INFOPEN III-C-2, I1I-C-9
INFOS (FORTRAN call) III-C-2, III-C-10
INFOS 77 11-1-4
INFOSER utility III-D-1
INFOX HI-C-2, III-C-11
INFPREP III-C-2, III-C-9
INFULT III-C-1, 1II-C-8
INFVDP 1II-C-1, ITII-C-6
INFVIP III-C-1, III-C-6
Initialization

labeled mag tape III-A-6ff

at runtime III-A-7
via system calls I1I-A-6
SAM files 1-2-2

volume initialization packet 1I-6-31; III-C-10

Input mode 1-1-2
interface
Assembly language II-7-1ff
FORTRAN IV or 5 MI-C-1
inversions, file 1-5-4

invoking Assembly language interface II-7-15

170 buffer space 1-6-6
buffer management I-6-8

ISAM (Indexed Sequential Access Method)
concurrent access 1-4-2
creation I-4-3
current position 1-4-2, 11-4-9
database records 1-4-2
duplicate keys 1-4-2
general concepts I-1-1, I-4-1
global/local deletion 1-4-9f, 11-4-12
hierarchical replacement 1-4-4
index file 1-4-2ff
key length 1-4-4
keyed access 1-4-2, 11-4-9
lock/unlock I-4-10, II-4-10ff

093-000114-01

DataGeneral

node size 1-4-3
occurrence numbers [-4-2
opening 1-4-7, I1-4-1ff
pages 1-4-3
permanent file specification I-4-3f
processing 1-4-8ff, 11-4-8ff, I1-6-20
programming II-4-1ff, II-6-20
read 1-4-9,11-4-10
read-after-write verification 1-4-4, 11-4-9
reinstate 1-4-10, 11-4-12
relative access 1-4-8, 11-4-9
retrieve high key 1-4-10, II-4-13
retrieve key 1-4-10, I1-4-13
retrieve status 1-4-10, [1-4-13
rewrite 1-4-9, [1-4-11
space management [-4-3
suppress database 1-4-10, I1-4-10
volume definition I-4-5f
volume table entries [-4-4
write [-4-9, 11-4-11
keys
access I-1-1, 1-4-2, I1-4-9
approximate and generic 1-5-17
compression I-5-5, 1-6-3, IT1I-B-1
definition packets II-1-2, II-6-24, II-7-11, IT1I-C-7
DBAM I-5-1ff
duplicate 1-4-2
ISAM 1-4-4
retrieve high
ISAM 1-4-10, 1I-4-13
DBAM [-5-17, 11-5-21
retrieve
ISAM [-4-10, 1I-4-13
DBAM I-5-17,11-5-21
key table II-4, II-5-15, 11-6-25
keyword parameters II-7-1

labeled magnetic tapes 1-1-6, I1I-A-1ff
control processing packet 1I-7-10
creation [-2-4ff
initialization 1-2-4, I1I-A-1, ITI-A-6ff
opening I-2-7ff, I1-2-1ff
positioning I1I-A-9ff
processing III-A-9
user labels III-A-6
label table, user II-7-15
label types and levels III-A-1ff
LBINIT (utility) III-A-6
least-recently-used method 1-1-5, I-6-8f
line printers (as files) I-1-7
linking subindexes 1-5-4, I-5-16, I1-6-28, II-7-13
link subindex processing packets II-1-2, I1-6-28

building II-7-13 (Assembly); III-C-8 (FORTRAN)

local deletion 1-4-9f

lock
DBAM 1-5-17, II-5-16ff
ISAM 1-4-10, 11-4-10ff
RAM I1-3-5,11-3-4

logical volumes I-1-6

Index-3

SOFTWARE DOCUMENTATION

Index

DataGeneral

SOFTWARE DOCUMENTATION

LRU
see least-recently-used method

Macroassembler I1-7-1ff
magnetic tape
- control request 11-2-7, 11-6-33f, I11-7-10
labeled I1I-A, 1-2-4ff, I-1-6, 1I-2-1ff
unlabeled 1-6-11
management, buffer 1-1-5
memory space [-6-1ff
merit factors 1-5-8
modes
Create Update 1-1-2
Input 1-1-2
Output I-1-3
processing I-1-2
Update 1-1-2
multiple indexing 1-6-4
see also DBAM
multitasking 1-1-2
multivolume files 1-1-6

names, file 1-1-7, 1-6-8
NIL (in FORTRAN) III-C-2
nodes I-4-3, I1I-B-1ff

high priority 1-6-8

root 1-6-8, I1I-B-1ff

occurrence numbers 1-4-2

.OINFOS 1I-1-3

open procedures II-1-3
DBAM 1-5-10, II-5-1ff
FORTRAN III-C-9
ISAM 1-4-7, II-4-1ff
RAM I1-3-3, I1-3-1ff
SAM 1-2-4,1-2-7, 11-2-1ff

optimized distribution 1-5-5

Output mode 1-1-3

overwriting (SAM) 1-2-12

packet building III-C-1, III-C-4ff
packets II-1-1ff, I1-6-1ff
building II-7-1ff
pages 1-4-3
size I1I-B-2
parameters
Assembly language 1I-7-1ff
FORTRAN user III-C-12ff
PARIU II-7-16ff
partial records 1-5-3
suppression [-5-17
partitions 1-6-5
peripheral devices 1-2-7, 1-6-10
permanent file specification (PFS) 1I-1-4, 1-1-7, I-4-3ff
physical volumes I1-1-6
.PINFOS II-1-3
pointers, word and byte 1I-1-1
point function 1-2-12, 1I-2-7
processing packets I1-1-2, [1-6-27, 1I-7-10
positioning (labeled mag tapes) III-A-9

Index-4

Licensed Material - Property of Data General Corporation
pre-open 1I-1-3
FORTRAN processing routine III-C-9
pre-read function 1-3-4
priority, high (nodes) 1-6-8
processing, file
disks 1-1-7
FORTRAN III-C-10
tapes 1-1-7,1-2-12, I1I-A-9
see also SAM, RAM, ISAM, DBAM
processing modes 1-1-2
processing packets
building II-7-8ff
extended I11-6-20, 11I-1-2, 11I-7-8
general I1-1-2, 11-6-18, 11-7-8
link subindex 1I-6-28
magnetic tape control 11-6-33f
point 11-6-27, I1-7-10
processing routines (FORTRAN) 1II-C-2, III-C-9ff
programming your INFOS system 1I-1-1ff
DBAM II-5-1ff
ISAM 1I-4-1ff
RAM II-3-1ff
SAM II-2-1ff
pseudo channel number II-1-3

RAM (Random Access Method)
close 11-3-5
creation I-3-1f
FEOV 1-3-6, 1I-3-5
Hold 1-3-6
lock and SETX 1
opening 1-3-3, 11
pre-read 1-3-5, 11
processing I-3-3, II-
read 1-3-3,11-3-4
read and write sequence 1-3-4
read inhibit 1-3-6
write 1I-3-4, I1-3-4
write immediate I-3-5
random allocation 1-6-10
DBAM I-5-8ff
ISAM 1-4-5
RAM I-3-2
SAM 1-2-2
RDOS
and INFOS I-6-1
read-after-write verification 1-4-4, 1-6-6f
read ahead-write behind technique 1-1-6
read function .
DBAM I-5-15, II-5-16
ISAM 1-4-9, 11-4-10
RAM 1-3-3,11-3-4
SAM 1-2-12, 11-2-5
read inhibit 1-3-5
records
delimiters 1-1-4
formats I-1-3f
packing I-1-5
partial 1-5-3
suppress partial 1-5-17

-3-6, II-3-5
-3-1ff

-3-6
3-4ff, 11-6-18

093-000114-01

Licensed Material - Property of Data General Corporation

reinstate function
ISAM [-4-10, 11-4-12
DBAM I-5-16, 11-5-21
relative access/position processing 1-4-8, 11-4-9
release (mag tapes) III-A-6ff
RELX 1-2-13
resident RDOS/INFOS code 1-6-2
retrieve high key
ISAM 1-4-10, 11-4-13
DBAM 1-5-17, 1I-5-21
retrieve key
ISAM 1-4-10, I1-4-13
DBAM I-5-17,11-5-21
retrieve status
ISAM 1-4-10, 11-4-13
DBAM 1-5-16, I1-5-22
retrieve subindex definition 1-5-17
rewrite function
DBAM 1-5-16, 11-5-18
ISAM 1-4-9, 11-4-11
SAM [1-2-12,11I-2-5
root nodes I-5-5, 1-6-8, III-B-1f
RPG II, Prefatory Note, Part I1
runtime initialization (labeled mag tapes) I1I-A-7
runtime release (labeled mag tapes) III-A-7f

SAM (Sequential Access Method)
appending records 1-2-12
close request II-2-6
creating files I-2-2ff, I-2-4
disk files I-2-1
file definition options 1-2-8f
file processing summary 1-2-13, 11-2-4
initializing tape files 1-2-4
labeled tape files 1-2-4, 11-2-1, III-A
mag tape control I1-2-6
opening files 1-2-4, 1-2-7, 1I-2-1ff
overwrite 1-2-12
point feature 1-2-12, II-2-5
processing I-2-12f, II-2-4ff, 11-6-18
reading 1-2-12, I1-2-5
rewrite 1-2-12, II-2-5
SETX and RELX features 1-2-13
unlabeled tape files 1-2-7
using peripheral devices 1-2-7
volume definition I-2-5, [-2-2, 1I-2-3f
volume definition options 1-2-10f
writing 1-2-12, 11-2-5

selector subindex III-B-7

sequence numbers (mag tapes) III-A-9

SETX I-2-13,1-3-5

single volume files 1-1-6

space management 1-4-3

stacks 1-6-2

status, retrieve
DBAM I-5-16, 11-5-22
ISAM 1-4-10, 11-4-13

093-000114-01

Index-5

DataGeneral

SOFTWARE DOCUMENTATION

subindexes
define I-5-16, II-5-19
definition packets II-1-2, II-6-26, I1-7-12
delete I-5-16, I1-5-21
file properties I1I-B-1ff
levels I-5-1, ITI-B-1ff
link I-5-16, I1-5-19, I-5-4, 11-6-28
retrieve definition 1-5-17, II-5-22
selector III-B-7
suppress database
DBAM 1-5-17, II-5-16ff
ISAM [-4-10, 1I-4-10ff
suppress partial records 1-5-17, II-5-16ff
SYSGEN considerations (system generation) I-6-1
system
area (memory) 1-6-2
buffers I-6-2ff
calls II-1-3f
generation 1-6-1
labels III-A-1

table building routines (FORTRAN) III-C-1, III-C-8
tables II-1-2, 1I-6-25, 11-6-17, 11-7-15

tape files - processing 1-1-7

tasking, concurrent 1-1-2

temporary indexes I-5-5

timeout intervals 1-6-11, III-E

trailer labels I1I-A-6

transfers, data 1-1-4ff

translation tables 1-1-4

tree levels III-B-1

unblocked records
see undefined length records
undefined length records 1-1-3
transfers I-1-5
unlabeled magnetic tapes 1-2-7, [-6-11
unlock
see lock
Update mode I-1-2, I1-4-5ff, II-5-5
user area 1-6-5
user labels III-A-6
user label table
Assembly III-C-8
FORTRAN III-C-8

variable length records I-1-3
transfers I-1-5
VCBs (Volume Control Blocks) 1-6-3
VDPs
see volume definition packets
virtual memory 1-6-5
.VL file 1I-6-17

Index

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
volumes windows I-6-2f

control blocks (VCBs) 1-6-3 word pointers 1I-1-1

defining I-4-5f, I-2-10f write function

definition packets 1-1-2, I11-6-12, I1-7-6, III-C-6 DBAM I1-5-15, 11-5-17

force end of 1-3-6 ISAM 1-4-9, 11-4-11

initialization packets II-1-2, II-6-31, I1-7-14, III-C-6 RAM [-3-4, 1I-3-4

initializing (mag tape) III-A-6ff; SAM I-2-12, 11-2-5

FORTRAN III-C-10 write immediate 1-3-5, I11-3-4

labels I1I-A-6, ITII-A-15ff
logical vs. physical 1-1-6
merit factors I-5-8

size 1-4-5

tables 1-4-4, II-1-2, 11-6-17

Index-6 093-000114-01

Title

Other

EDP Manager
Senior System Analyst

Operator

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few
minutes to respond.

If you have any comments on the software itself, please contact your Data General representative. If you wish to
order manuals, consult the Publications Catalog (012-330).

(Listin order: | = Primary use)
Introduction to the product
Reference
Tutorial Text

O
O
(] Analyst/Programmer
|
O
w

hat programming language(s) do you use?

Operating Guide

Yes

aocooaad

Name

Somewhat

gocoodao

Is the manual easy to read?

Is it easy to understand?

Is the topic order easy to follow?

Is the technical information accurate ?

Can you easily find what you want?

Do the illustrations help you?

Does the manual tell you everything you need to know ?

(Please note page number and paragraph where applicable.)

Company

Address

SD-00742

Date

FOLD DOWN FIRST FOLD DOWN

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States

Postage will be paid by:

Data General Corporation ‘
Southboro, Massachusetts 01772

ATTENTION: Software Documentation

FOLD UP SECOND FOLD UP

SD-00742A STAPLE

