
INFOS®

System User's Manual

(ROOS>

093-00011 4-01

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Ordering No. 093-000114
@Data General Corporation, 1975, 1978
All Rights Reserved
Printed in the United States of America
Revision 01, April 1978
Licensed Material - Property of Data General Corporation

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

Revision History:

093-000114

INFOS®
System User's Manual

(RDOS)
093-000114

Original Release - July 1975
First Revision - April 1978

The RDOSIINFOS System User's Manual (093-000114-01) replaces:

the INFOS System Programmer's Manual (093-000114-00)
the INFOS System Planning Manual (093-000115-01)
the INFOS Language Interface Manual (093-000127-02)

This document has been extensively revised from revision OO~ therefore,
change indicators have not been used.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

u.s. Registered Trademarks

CONTOUR I INFOS NOV ALITE
DATAPREP NOVA SUPERNOVA
ECLIPSE NOVADISC

Trademarks

DASHER
microNOVA

Licensed Material - Property of Data General Corporation
DataGeneraI
SOFTWARE DOCUMENTATION

Preface

Welcome to the INFOS® System User's Manual This
manual will tell you everything you need to know to
plan and program your application of the INFOS
system. Here you'll find how the system works, what
features you can use, what types of things the system
will do, and how you can fine tune the system for
maximum performance efficiency.

Before you get into all that, however, let's take a
minute to look at the INFOS system as a whole -- rather
than as individual pieces. First, what is the INFOS
system?

This is not an easy question to answer simply~ after all,
that's what this whole manual is about. Think of the
system as a forest which you are viewing from an

airplane. From this altitude, all you can see is a bunch
of trees. But, in the INFOS forest, these trees represent
your processing options. By choosing the appropriate
trees, your programs can work their way through the
INFOS forest, drawing on its abundant resources to
create, access, and maintain simple or complex data
files. As you move closer to the forest, you'll notice
numerous saplings scattered throughout. These
represent parts of our Real-Time Disk Operating
System, or RDOS. That is, the INFOS system is a
grown-up RDOS. Finally, you'll find that the roots of
t}~~ .. BDQSIINFOS forest ~row only on a Data General
~ercial ECLIPSE computer.

Figure 1. INFOS Forest

093-000114-01 iii Preface

DataGeneral
SOFTWARE DOCUMENTATION

As you near the INFOS system forest, you'll notice
many ways to approach it. You can take the paths
marked COBOL, RPG II, FORTRAN IV or 5, Business
BASIC, or Macroassembler. You will also pass through
parts of the INFOS forest if you follow the path of
DG's IDEA system.

Finally, you can also get into the forest on the trail
marked INFOS Utilities. These allow you to create,
sort, delete, copy, rename, and inquire about your
files, as well as initialize magnetic tapes, and retrieve
your file specifications at runtime.

This manual is your guidebook through the INFOS
forest. It will help you choose between the options
which the system allows you. To make this manual as
useful as possible, we have organized it into a
modular-type format.

iv

Licensed Material - Property of Data General Corporation

Part One is the heart of this manual. It explains, in plain
English, all the features and functions available in the
INFOS system. Furthermore, Chapter 1 of Part One is
the most important chapter in this manual because it
presents the basic, general information you need to
know before you begin planning or programming your
INFOS application. Read this chapter carefully~ it can
save you a lot of grief later on.

Following Chapter 1, you can either read all of the
remaining chapters in Part One, or choose the chapters
which seem most applicable to your needs. For
example, if you already know which access methods
will best suit your situation, you can go directly to those
chapters. Later, if you wish, you can read the chapters
you skipped to learn about other INFOS capabilities. If,
however, you are unfamiliar with the details of the
options available in the INFOS system, you should read

093-000114-01

Licensed Material - Property of Data General Corporation

Chapters 2 through 5 to help you decide on the best
method for solving your problems. And, no matter
which access method you choose, you should read
Chapter 6 in Part One. It describes the things you need
to know about the RDOS interface with the INFOS
system, as well as miscellaneous planning
considerations.

So, whether you're a Programmer, a Systems Analyst,
or just curious, you should read the appropriate
chapters in Part One to learn about the nature of the
flora and fauna in the INFOS forest. Then, if it's
applicable, you can read the corresponding chapters in
Part Two to find out how to make those features and
functions available to your programs. (Remember,
however, to read Chapter 1 in Part Two to learn about
general INFOS system programming considerations
and Chapter 6 if you need to know about the contents
of packets and how to use our Macroassembler.)

DataGeneral
SOFTWARE DOCUMENTATION

Part Three contains the appendixes for this manual.
Appendixes A and B contain detailed information
about labeled magnetic tapes and things you should
consider when you're using the Data Base Access
Method -- in other words, further details for your
planning considerations. Appendixes C, D, and E
describe programming details: the interface between
the INFOS system and FORTRAN, explanations of the
system's error messages, and a chart of characteristics
of the various peripheral devices. We'll refer you to
these back-of-the-book sections for additional details,
but do not mistake them for "excess" information.

There are many beautiful sights within the INFOS
forest, but every trail has its pitfalls. Read this
guidebook carefully to find out where they are and how
to avoid them.

End of Preface

093-000114-01 v Preface

Licensed Material - Property of Data General Corporation
DataGeneral
SOFTWARE DOCUMENTATION

Contents

Part One: Planning Your RDOS/INFOS System

Chapter 1 - General Information

Access Methods and File Formats 1-1-1
Sequential Access Method 1-1-1
Random Access Method 1-1-1
Indexed Sequential Access Method 1-1-1
Data Base Access Method 1-1-2

Concurrent Tasking .. 1-1-2
General Considerations 1-1-2

Processing Modes 1-1-2
Create Update Mode 1-1-2
Update Mode 1-1-2
Input Mode 1-1-2
Output Mode 1-1-3

Record Formats 1-1-3
Fixed Length Record Format 1-1-3
Variable Length Record Format 1-1-3
Undefined Length Record Format 1-1-4
Data Sensitive Record Format 1-1-4

Data Transfers .. 1-1-4
Record Packing 1-1-5
Transferring Fixed Length Records 1-1-5
Transferring Variable Length Records 1-1-5
Transferring Undefined Length Records 1-1-5
Transferring Data Sensitive Records 1-1-5
Buffer Management. 1-1-5
Footnotes to Data Transfers 1-1-6

A Word About Volumes 1-1-6
Multivolume Files 1-1-6
How to Process INFOS Files .1-1-7

How to Create a New File 1-1-7
Line Printers and Terminals as INFOS Files 1-1-7
File Naming, Briefly 1-1-7
How to Process an Existing Tape File 1-1-7
How to Process an Existing Disk File . 1-1-7

Summary ... 1-1-7

093-000114-01 vii Contents

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Chapter 2 - Sequential Access Method (SAM) Files

SAM Disk Files ... 1-2-1
How to Create SAM Disk Files•................ 1-2-2
How to Open an Existing SAM Disk File 1-2-4

SAM Labeled Tape Files 1-2-4
Initialization ... 1-2-4
How to Create SAM Labeled Tape Files 1-2-4
How to Open an Existing SAM Labeled Tape File 1-2-7

How to Use Peripheral Devices as SAM Files 1-2-7
What to Do with Unlabeled SAM Tape Files 1-2-7
SAM Summary ... 1-2-7
How to Process SAM Files 1-2-12

Reading an Existing File 1-2-12
Writing a New SAM File 1-2-12
Appending Records 1-2-12
Rewriting Existing Records 1-2-12
Overwriting Existing Records 1-2-12
Additional Features (Point, SETX, and RELX) 1-2-12

Summary .. 1-2-13

Chapter 3 - Random Access Method (RAM) Files

How to Create a RAM File 1-3-1
How to Open an Existing RAM File 1-3-3
Processing Your RAM File 1-3-3

Read " 1-3-3
Write ... 1-3-4
Pre-read ... 1-3-4
Write Immediate 1-3-5
Read Inhibit ... 1-3-5
Lock and SETX 1-3-5
Hold .. 1-3-6
FEOV ... 1-3-6

Chapter 4 - Indexed Sequential Access Method (lSAM) Files

General Concepts ... 1-4-1
The Database .. 1-4-2
The Index File .. 1-4-2
Concurrent Access 1-4-2
Space Management 1-4-3

How to Create an ISAM File 1-4-3
Creating the Index File 1-4-3
Defining Volumes of Your Index File 1-4-5
Defining Your Database File 1-4-6
Defining Volumes of Your Database File 1-4-6

How to Open an Existing ISAM File 1-4-7
Opening Your Index File 1-4-7
Opening Your Existing Database File 1-4-7

Processing Your ISAM File (Background) 1-4-8
Processing Your ISAM File (Operations) 1-4-9

viii 093-000114-01

DataGeneraI
licensed M~teri~1 - Property of D~t~ Gener~1 Corpor~tion SOFTWARE DOCUMENTATION

Chapter 4 - Indexed Sequential Access Method (lSAM) Files
(continued)

Processing Functions . 1-4-9
Read .. 1-4-9
Write ... 1-4-9
Rewrite .. 1-4-9
Delete ... 1-4-9
Reinstate ... 1-4-10
Delete Subindex· ·1-4-10

Utility Functions .. 1-4-10
Retrieve Status .. 1-4-10
Retrieve Key .. ·1-4-10
Retrieve High Key 1-4-10

Auxiliary Features ... 1-4-10
Lock/Unlock .. ·1-4-10
Suppress Database 1-4-10

Chapter 5 - Data Rase Access Method (DRAM) Files

General Concepts ... 1-5-1
Subindexing ... 1-5-1
Partial Records .. 1-5-3
Multiple Indexes and File Inversions 1-5-4
Linked Subindexes 1-5-4
Automatic Key Compression 1-5-5
Optimized Distribution 1-5-5
Temporary Indexes 1-5-5

How to Create an INFOS DBAM File 1-5-6
Defining Your Index File 1-5-6
Defining Each Volume of an Index File 1-5-8
Defining Your Database File 1-5-9
Defining Each Volume of Your Database File 1-5-9

How to Open an Existing DBAM File 1-5-10
Processing Your DBAM File 1-5-11

DBAM Access Methods - Keyed, Relative, and Combined 1-5-11
Combining Relative and Keyed Access 1-5-13

DBAM Processing Operations 1-5-15
DBAM Procf':;~ing Functions 1-5-15

Read .. 1-5-15
Write .. 1-5-15
Rewrite .. 1-5-16
Delete ... 1-5-16
Reinstate ... 1-5-16
Define Subindex 1-5-16
Link Subindex .. 1-5-16
Delete Subindex 1-5-16

DBAM Utility Functions 1-5-16
Retrieve Status .. 1-5-16
Retrieve Key ... 1-5-17
Retrieve High Key 1-5-17
Retrieve Subindex Definition 1-5-17

DBAM Auxiliary Features 1-5-17
Lock/Unlock and Suppress Database 1-5-17
Nonspecific Search Keys 1-5-17
Suppress Partial Record 1-5-17

093-000114-01 ix Contents

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Chapter 6 - The RDOS/INFOS Interface

Considerations When You're Generating an INFOS System 1-6-1
Memory Space .. 1-6-2
The System Area 1-6-2

Resident INFOS/RDOS Code 1-6-2
System Buffers 1-6-2
Windows .. 1-6-3
INFOS System File Control Area 1-6-3

The User Area .. 1-6-5
Summary ... 1-6-5

110 Buffer Space .. 1-6-6
110 Buffer Management 1-6-8
File Naming ... 1-6-10
Disk Space Allocation 1-6-10
Using Peripheral Devices as INFOS Files 1-6-11
How to Deal with Unlabeled Magnetic Tapes 1-6-11

Part Two: Programming Your RDOS/INFOS System

Chapter 1 - General Information

Packets .. 11-1-1
Packet Types .. 11-1-1

File Definition Packets . 11-1-1
Volume Definition Packets 11-1-2
General Processing Packets . 11-1-2
Extended Processing Packets 11-1-2
Key Definition Packets 11-1-2
Subindex Defini tion Packets . 11-1-2
Point Processing Packets 11-1-2
Link Subindex Processing Packets 11-1-2
Volume Initialization Packets 11-1-2

Tables .. 11-1-2
How to Open an INFOS File 11-1-3
System Calls .. 11-1-3
The Permanent File Specification 11-1-4

Chapter 2 - Sequential Access Method <SAM) Files

How to Open SAM Files 11-2-1
Processing SAM Files 11-2-4

Read Processing Request 11-2-5
Write Processing Request 11-2-5
Rewrite Processing Request 11-2-5
Close and Force End of Volume Requests 11-2-6
Magnetic Tape Control Request 11-2-7
Point Request .. 11-2-7

x 093-000114-01

DataGeneral
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Chapter 3 - Random Access Method (RAM) Files

How to Open a RAM File 11-3-1
Steps in Opening a RAM File 11-3-1
Processing Your RAM File 11-3-4

Read Request .. 11-3-4
Write Request .. 11-3-4
Close Request .. 11-3-5
Force End-of-Volume Request. 11-3-5
Set Exclusive Use Request 11-3-5
Pre read Request 11-3-5

Chapter 4 - Indexed Sequential Access Method (lSAM) Files

How to Open ISAM Files. II -4-1
Steps for Opening in the Create Update Mode 11-4-1
Steps for Opening in the Update Mode without a Database Runtime FDP 11-4-5
Steps for Opening in the Update Mode with a Database Runtime FDP 11-4-7
Processing ISAM Files 11-4-9

Keyed Access .. 11-4-9
Relative Access 11-4-9
Read Processing Request 11-4-10
Write Processing Request 11-4-11
Rewrite Processing Request. 11-4-11
Delete Processing Request . II -4-12
Delete Subindex Processing Request 11-4-12
Reinstate Processing Request . II -4-12
Retrieve Status Processing Request 11-4-13
Retrieve Key and Retrieve High Key Processing Requests 11-4-13

Chapter 5 - Data Base Access Method (DBAM) Files

Opening DBAM Files 11-5-1
Steps for Opening in the Create Update Mode 11-5-1
Steps for Opening in the Update Mode without a Database Runtime FDP 11-5-5
Steps for Opening in the Update Mode with a Database Runtime FDP 11-5-7
Steps for Creating a New DBAM Index without a Database Runtime FDP 11-5-9
Steps for Creating a New DBAM Index with a Database Runtime FDP 11-5-12
Processing DBAM Files 11-5-15

Keyed Access .. 11-5-15
Relative Access 11-5-15
Combined Keyed and Relative Access 11-5-15
Read Processing Request 11-5-16
Write Processing Request 11-5-17
Rewrite Processing Request 11-5-18
Define Subindex Processing Request 11-5-19
Link Subindex Processing Request 11-5-19
Delete Processing Request 11-5-20
Delete Subindex Processing Request 11-5-21
Reinstate Processing Request 11-5-21
Retrieve Key and Retrieve High Key Processing Requests 11-5-21
Retrieve Subindex Definition Processing Request 11-5-22
Retrieve Status Processing Request 11-5-22

093-000114-01 xi Contents

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Chapter 6 - Packet Formats

General Packet Information and Conventions 11-6-1
File Definition Packet (FDP) 11-6-1

INFOS FDP Parameters by Access Method/Device/and Processing Mode ... 11-6-9
Volume Definition Packets (VDP) 11-6-12

INFOS VDP Parameters by Acccess Method/Device/and Processing Mode ... 11-6-15
Volume Tables ... 11-6-17
General Processing Packet (SAM and RAM files only) 11-6-18
Extended Processing Packet (ISAM and DBAM files only) 11-6-20
Key Definition Packet 11-6-24
Key Tables ... 11-6-25
Subindex Definition Packet 11-6-26
Point Processing Packet 11-6-27
Link Subindex Processing Packet 11-6-28
Volume Initialization Packet· . 11-6-31
Magnetic Tape Control Processing Packet· 11-6-33

Chapter 7 - How to Use the Macroassembler with the INFOS
System

Keyword Parameters 11-7-1
General .. 11-7-1
Access Method 11-7-2
Formatting Records 11-7-2
110 Mode ... 11-7-2
Label Types ... 11-7-2
Translation Specifiers 11-7-2

Macro Functions .. 11-7-2
BLDFDP ... 11-7-2
BLDVDP ... 11-7-6
BLDPP .. 11-7-8
BLDPNT ... 11-7-10
BLDMTC .. 11-7-10
BLDKDP ... 11-7-11
BLDSDP ... 11-7-12
BLDLSP ... 11-7-13
BLDVIP ... 11-7-14
BLDULT ... 11-7-15

The Assembly Language Interface 11-7-15

Part Three: Appendixes

Appendix A - Labeled Magnetic Tapes
General Concepts ... 1I1-A-1
Label Types and Levels 11I-A-1
User Labels ... 11I-A-6
Volume Initialization and Release HI-A-6

How to Initialize and Release Tapes Through System Calls 11I-A-6
Runtime Initialization and Release (General) 1I1-A-7
Runtime Initialization 11l-A-7
Runtime Release 1I1-A-8

Processing Labeled Magnetic Tapes 11I-A-9
Positioning When Writing 1I1-A-9

Graphic Arts Section. III -A -10

xii 093-000114-01

DataGeneral
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Appendix B - Subindex and Database File Properties

Introduction ... III-B-1
Subindexes ... III-B-1
Selector Subindexes .. III-B-7
Database Files ... III-B-8

Appendix C - The INFOS/FORTRAN Interface

General Information .. III-C-1
Packet Building Routines III-C-1
Table Building Routine 1I1-C-1
Pure Processing Routines III-C-2
Building/Processing Routines 11I-C-2

Arguments ... 1I1-C-2
Using DEFAULT (or DEF) 11I-C-2
Using NIL .. 1I1-C-2
Error Conditions .. 1I1-C-3
Using FINFOS.ER ... III-C-3
Loading Your Program and the Interface Routines 1I1-C-3
Call Formats .. III-C-3
Packet Building Routines III-C-4

INFFDP ... III-C-4
INFIFDP ... III-C-5
INFVDP ... 1I1-C-6
INFVIP .. 1I1-C-6
INFKEY .. III-C-7
INFLSP .. 1I1-C-8

Table Building Routine III-C-8
INFUL T ... III-C-8

Pure Processing Routines 1I1-C-9
INFPREP ... 111-C-9
INFOPEN ... III-C-9
INFINIT ... III-C-1 0

Building/Processing Routines III-C-1 0
INFOS ... III-C-1 0
INFOX ... III-C-11

Appendix D - INFOS System Error Messages

Note to All FORTRAN Programmers 1I1-D-1

Appendix E - Device Characteristics

093-000114-01 xiii Contents

DataGeneral
SOFTWARE DOCUMENTATION licensed Material - Property of Data General Corporation

Illustrations

Figure Caption

1
2

INFOS Forest
How to Read this Manual

. iii

. iv

1-1-1 Disk File Data Transfer 1-1-4
1-1-2 Transferring Fixed Length Records 1-1-5
1-3-1 RAM Read and Write Sequence 1-3-4
1-3-2 Sequence of Events for a Pre-read Request 1-3-5
1-3-3 Sequence of Events for a Read Inhibit Request 1-3-5
1-4-1 INFOS ISAM File .. 1-4-1
1-4-2 ISAM Index File .. 1-4-8
1-5-1 DBAM Two-Level Index 1-5-2
1-5-2 Three-Level DBAM Index 1-5-3
1-5-3 Single Database With Two Indexes 1-5-4
1-5-4 A Linked Subindex 1-5-4
1-5-5 Single and Multilevel Keys in DBAM 1-5-11
1-5-6 Relative Movement within a DBAM File 1-5-12
1-5-7 Segment of a Multilevel Index Structure 1-5-13
1-6-1 Components of the System Area 1-6-2
1-6-2 Partitioned User Area 1-6-5
1-6-3 User Area Partitioned for a 65K Byte Foreground 1-6-5
1-6-4 Buffer Space Requirements Per File Opening 1-6-7
1-6-5 Least-Recently-Used Technique for Input 1-6-8
1-6-6 DBAM Index with Sixteen HPNs 1-6-9

11-3-1 FDP and Volume Table Relationship 11-3-1
11-4-1 Open ISAM File in Create Update Mode 11-4-2
11-4-2 Open ISAM File in Update Mode without Database Runtime FDr 11-4-5
11-4-3 Open ISAM File in Update Mode with Database Runtime FDP 11-4-7
11-4-4 Key Table ... 11-4-9
11-5-1 Open DBAM File in the Create Update Mode 11-5-2
11-5-2 Open ISAM File in Update Mode without Database Runtime FDP 11-5-5
11-5-3 Open DBAM File in Update Mode with Database Runtime FDP 11-5-7
11-5-4 Create a New DBAM Index without a Database Runtime FDP 11-5-9
11-5-5 Create a New DBAM Index with a Database Runtime FDP 11-5-12
11-5-6 DBAM Index Structure 11-5-15
11-6-1 File Definition Packet 11-6-2
11-6-2 Volume Definition Packet 11-6-12
11-6-3 General Processing Packet 11-6-18
11-6-4 Extended Processing Packet 11-6-20
11-6-5 Key Definition Packet 11-6-24
11-6-6 Sample Key Table .. 11-6-25
11-6-7 Subindex Definition Packet 11-6-26
11-6-8 Point Processing Packet 11-6-27
11-6-9 Link Subindex Processing Packet 11-6-28
11-6-10 Volume Initialization Packet 11-6-31
11-6-11 Magnetic Tape Control Processing Packet 11-6-33
11-7-1 Index File Definition Packet 11-7-4
11-7-2 Database File Definition Packet 11-7-5
11-7-3 Index File Volume Definition Packet 11-7-7
11-7-4 Database Volume Definition Packet. 11-7-7
11-7-5 Extended Processing Packet 11-7-9
11-7-6 Point Processing Packet 11-7-10

xiv 093-000114-01

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Figure Caption

11-7-7 Key Definition Packet 11-7-11
11-7-8 Subindex Definition Packet. 11-7-12
11-7-9 Link Subindex Processing Packet 11-7-13
11-7-10 Volume Initialization Packet 11-7-14

A-I Sequence of Events for Runtime Initialization and Release III-A-8
A-2 Levell ANSI Labels Supported by the INFOS System III-A-10
A-3 Level 2 ANSI Labels Supported by the INFOS System III-A-11
A-4 Level 3 ANSI Labels Supported by the INFOS System III-A-12
A-5 Levell IBM Labels Supported by the INFOS System III-A-13
A-6 Level 2 IBM Labels Supported by the INFOS System III-A-14
B-1 Subindex with Four Tree Levels III-B-1
B-2 Four-Level Subindex with Nodes III-B-4
B-3 Three-Level Subindex with Nodes III-B-5
B-4 A Database Accessed by Two Unique Indexes III-B-7
B-5 Single Index Structure with a Selector Subindex III-B-7

Tables
Table Title

1-1-1 Processing Modes 1-1-3
1-1-2 Record Formats and Access Methods 1-1-4
1-2-1 Steps in Creating a SAM Disk File 1-2-3
1-2-2 Steps in Creating a SAM Labeled Tape File 1-2-6
1-2-3 File Definition Options When You Open a New SAM File 1-2-8
1-2-4 File Definition Options When You Open a New SAM File 1-2-9
1-2-5 Volume Definition Options When You Open a New SAM File 1-2-10
1-2-6 Volume Definition Options When You Open an Existing SAM File 1-2-11
1-2-7 SAM File Processing Summary ' 1-2-13
1-3-1 Steps in Creating a RAM File 1-3-2
1-3-2 Steps in Opening an Existing RAM File 1-3-3
1-4-1 Steps in Defining Your ISAM Index File 1-4-4
1-4-2 Steps in Defining Each Volume of Your ISAM Index File 1-4-5
1-4-3 Steps in Defining Your ISAM Database File 1-4-6
1-4-4 Steps in Defining Each Volume of an ISAM Database File 1-4-6
1-4-5 Steps in Opening an Existing ISAM Index File 1-4-7
1-5-1 Steps in Creating a DBAM Index File 1-5-7
1-5-2 Steps in Defining Each Volume of a DBAM Index File 1-5-8
1-5-3 Steps in Defining a DBAM Database File 1-5-9
1-5-4 Steps in Defining Each Volume ofa DBAM Database File 1-5-9
1-5-5 Steps in Opening an Existing DBAM Index File 1-5-10
1-5-6 Steps in Opening an Existing DBA.M Database File 1-5-10
1-5-7 DBAM Processing Operation 1-5-15

11-1-1 FDP Parameters that Become Unchangeable Entries in the File's PFS 11-1-5
11-1-2 FDP Parameters that Become Runtime Entries in the File's PFS 11-1-5
11-2-1 SAM Processing Functions II-2-4
11-4-1 ISAM Index FDP for Create Update Mode JI-4-3
11-4-2 ISAM Database FDP for Create Update Mode JI-4-4
11-4-3 VDPs for ISAM Index and Database Files Opened in the Create Update Mode ... JI-4-4
JI-4-4 ISAM Index FDP for Update Mode without Database Runtime FDP IJ-4-6

093-000114-01 xv Tables

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Oata General Corporation

Table Title

11-4-5 VDP for ISAM Index Opened in the Update Mode. 11-4-6
11-4-6 ISAM Index FDP for Update Mode with Database Runtime FDP 11-4-8
11-4-7 ISAM Database Runtime FDP for Update Mode 11-4-8
11-4-8 VDPs for ISAM Index and Database Opened in the Update Mode 11-4-8
11-5-1 DBAM Index FDP for Create Update Mode 11-5-3
11-5-2 DBAM Database FDP for Create Update Mode 11-5-4
11-5-3 VDPs for Index and Database Files Opened in the Create Update Mode 11-5-4
11-5-4 DBAM Index FDP for Update Mode without Database Runtime FDP 11-5-6
11-5-5 VDP for DBAM Index Opened in the Update Mode. 11-5-6
11-5-6 DBAM Index FDP for Update Mode with Database Runtime FDP 11-5-8
11-5-7 DBAM Database Runtime FDP for Update Mode 11-5-8
11-5-8 VDPs for DBAM Index and Database Opened in the Update Mode 11-5-8
11-5-9 FDP for New DBAM Index without Database Runtime FDP 11-5-10
11-5-10 VDP for New DBAM Index 11-5-11
11-5-11 FDP for New DBAM Index with Database Runtime FDP 11-5-13
11-5-12 VDP for New DBAM Index 11-5-14
11-5-13 DBAM Database Runtime FDP for New Index 11-5-14
11-5-14 VDP for DBAM Database Opened in the Update Mode 11-5-14
11-6-1 File Definition Packet (FDP) 11-6-3
11-6-2 Volume Definition Packet (VDP) 11-6-13
11-6-3 General Processing Packet 11-6-18
11-6-4 Extended Processing Packet 11-6-21
11-6-5 Key Definition Packet 11-6-24
11-6-7 Subindex Definition Packet 11-6-26
11-6-8 Point Processing Packet 11-6-27
11-6-9 Link Subindex Processing Packet 11-6-29
11-6-10 Volume Initialization Packet II-6-31
11-6-11 Magnetic Tape Control Processing Packet 11-6-34

A-I Levell ANSI Labels III-A-2
A-2 Level 2 ANSI Labels III-A-2
A-3 Level 3 ANSI Labels III-A-3
A-4 Levell IBM Labels III-A-4
A-5 Level 2 IBM Labels III-A-5
A-6 ANSI Standard Volume Label Format III-A-15
A-7 ANSI Standard User Volume Labels III-A-15
A-8 ANSI Standard HDR 1, EOVI, EOF 1 Labels III-A-16
A-9 ANSI Standard HDR 2, EOV 2, EOF 2 Labels III-A-I7
A-I0 IBM Standard Volume Label Format III-A-I7
A-II IBM Standard HDR 1, EOV 1, EOF 1 Labels III-A-I8
A-12 IBM Standard HDR 2, EOV 2, EOF 2 Labels III-A-I9

xvi 093-000114-01

Part One:
Planning Your

RDOS/INFOS System

Ger.eral Information

Sequential Access Method (SAM) Files

Random Access Method (RAM) Files

Indexed Sequential Access Method
(lSAM) Files

Data Rase Access Method (DRAM) Files

The RDOS/INFOS Interface

Licensed Material - Property of Data General Corporation
DataGeneraI
SOFTWARE DOCUMENTATION

Chapter 1
General Information

Access Methods and File Formats
The first thing you have to do in designing your
INFOS® application is choose an access method. Why?
Because in the INFOS system the file access methods
implicitly define the file formats. Obviously you want
an access method that will allow you to process your
data as efficiently as possible, so the INFOS system
offers you four options:

• Sequential Access Method
• Random Access Method
• Indexed Sequential Access Method
• Data Base Access Method

The following paragraphs briefly describe each of these
methods. Chapters two, three, four, and five give you
more detailed information about how to apply each
method to your situation.

Sequential Access Method
The Sequential Access Method (SAM) is useful when
you want to retrieve data in the same sequence as you
recorded it. If most of the information you enter into
the computer is recorded on sequential access devices
(e.g., magnetic tape), use SAM to create and process
your files. Also if you will usually output the data
generated in processing your file to a sequential device
such as a line printer, a magnetic tape, or an interactive
terminal, you should choose SAM. You can output to
all of these devices with the INFOS system, or you can
store your SAM file on a disk.

Random Access Method
The Random Access Method (RAM) supports a
different set of applications than SAM. With RAM, you
can directly access any record in your file without
having to read any of the other records. This is known
as random (or direct) access. The sequence in which
the INFOS system stores records in a RAM file has no

093-000114-01 1-1-1

bearing on the sequence in which you retrieve them
when you want to process them. RAM can do this
because the records are written and read according to
logical record numbers which you supply.

For example, you could arrange an inventory file by
part numbers, which would become the record
numbers. If you subsequently enter a new part record
and want to retrieve it later, it won't matter where that
record is stored in the file; you would simply code the
equivalent of "Read part (record) number 7792." With
RAM, you don't have to rewrite an entire file to keep
the records in order; you just enter your data as you
have it and retrieve it in order any time you want.

RAM files must reside on disk, since only disks are
capable of performing random access.

Indexed Sequential Access Method
The Indexed Sequential Access Method (ISAM) gives
you a simple and efficient way to access your data both
sequentially and randomly. For example, suppose you
want to update customer records in a receivables file
randomly during a billing period, and process the file
sequentially at the end of that period to prepare the bills
for mailing. To do this, you would store the records
sequentially according to customer number. Then you
would update the records as necessary (randomly)
during the billing period, and access them in order of
customer number (sequentially) to prepare your bills.
ISAM lets you do this through a feature called keyed
access.

When you set up an ISAM file, you associate a key
(word or number) with each record. You then use
these keys during retrieval to either locate records
randomly, or determine the order in which you want to
process them sequentially. In the example above, the
customer number is the key.

Access Methods and File Formats

..

DataGeneral
SOFTWARE DOCUMENTATION

Your keys can be made up of either numbers or letters,
and can vary in length to give you more efficiency in
storing your data. The INFOS system also uses an
automatic technique to maintain the key/data
association. Therefore, you can gain very fast access to
your data with no restrictions on the growth or
shrinkage of your file. And you can even associate
different data records with the same key value. For
instance, if you wanted to access the records of
customers within a given geographical area, ISAM
could give you a listing by zip codes.

Like RAM files, ISAM files must reside on disk.

Data Base Access Method
Sometimes you'll find that ISAM is inadequate for
sophisticated applications. That's why the Data Base
Access Method (DBAM) exists. It gives you all the
features of ISAM, but extends them in three useful
ways:

• First, you may tie your data records to more than
one key.

• Second, you can index sets of data records according
to different sets of keys.

• Third, you can get to your data records by means of
a "compound" key.

For example, suppose you assign unique customer
numbers on a nationwide basis, but you service the
customers through regional offices. At some point, you
may want to process the accounts serviced by each
regional office individually as well as consider all the
accounts in each region. To do this, you would simply
create an additional key/data-record association and
use the key: "region name, customer number." Then
you could process the records of that region
sequentially by customer number, or you could
randomly locate a specific account number.
Furthermore, if an account is serviced by more than
one region, you could access its records through more
than one regional index. In other words, each region's
records would be organized like a little ISAM file,
except that they would all be part of the same database.

Remember that if you use the Data Base Access
Method, you only need to store each data record once.
Thus you can avoid both storage use overhead and the
unnecessary pain of maintaining duplicate copies of
identical data records. DBAM's flexibility lets you
access a record by customer name, account number,
location, or any other key you want.

Naturally, to do all this, DBAM files have IO reside on
disk.

Licensed Material - Property of Data General Corporation

Concurrent Tasking
The INFOS system gives you both foreground and
background processing capabilities. In addition, it
provides multitasking capabilities in both grounds. You
can use the same file in both grounds at the same time,
and you can open that file more than once in either
ground -- or in both. In other words, you can run tasks
concurrently within a ground and between grounds.
The INFOS system automatically interleaves
concurrent inqUIrIes and processes them very
efficiently. So you can access a RAM, ISAM, or DBAM
file through several terminals simultaneously. Also you
can have the system perform several tasks
independently, yet concurrently, on the same file,
using either the foreground or background, or both.

1-1-2

General Considerations
The following INFOS concepts and features will apply
regardless of which access method (s) you choose. Keep
them in mind as you plan your system.

Processing Modes
Now that you've begun to think about how you want to
organize and access your file, let's look at the ways you
can process the data in that file. Each time you want to
manipulate the data in your file, you must choose one
of the INFOS system's four processing modes. Your
choice will depend on three factors:

• the direction in which you want to transfer data
• whether or not the file exists
• the type of device on which the file resides

Create Update Mode

You can use this mode with any access method, but the
file must not exist. So you will use Create Update when
you want to create new files. However, you may read
from your file, as well as write to it, in this mode.

If you select Create Update for a SAM file, the file
must reside on disk.

Update Mode

You can select the Update processing mode for any
existing file that resides on disk. This mode allows you
to both read from and write to your file.

Input Mode

You can only choose the Input Mode if you are
processing an existing SAM file that resides on disk,
tape, or an interactive terminal, or if you are processing
an existing RAM file. In the Input Mode, you can only
read data from the file - you cannot write data to it.

093-000114-01

Licensed Material - Property of Data General Corporation

Output Mode

You use the Output Mode to create SAM and RAM
files, so you can only use it for a SAM or RAM file that
doesn't exist. In this mode you can only write data to
the file~ you cannot read from the file.

For your reference, the chart in Table 1-1-1
summarizes the relationships among access methods,
device types, processing modes, and the direction of
data transfer.

Record Formats

The INFOS system supports four different record
formats -- Fixed, Variable, and Undefined lengths, and
Data Sensitive. ISAM and DBAM files use Variable
length records for maximum flexibility and processing
efficiency. For the same reason, you may only use
Fixed length reco 'ds in RAM files. SAM files,
however, can use any of the formats, allowing you to
process magnetic tapes generated on other systems and
make the most efficient use of your storage space.

Fixed Length Record Format

Each record in a SAM or RAM file with a Fixed Length
record format is exactly as long as every other record.
RAM uses this format exclusively because it provides
the fastest access to your data. The system doesn't have
to read all your records to find the one you want, nor
does it have to do any special computation to find that
record.

DataGeneral
SOFTWARE DOCUMENTATION

For example, say that you are setting up an inventory
file and each record will contain the same amount of
data about each part on file: the part number, a brief
verbal description, the price, and the quantity you have
in stock. Each time you buy or sell those parts, you're
going to want to update your file. Since the records are
all the same length and you want to access them
randomly to update the data, a file with fixed length
records (i.e., SAM or RAM) would be ideal. It will
allow you to maintain the file easily and retrieve specific
information as quickly as you need it because the
computer can get directly to your data via the part
number.

Variable Length Record Format

When you create a SAM or ISAM/DBAM file with
Variable Length records, the system will ask you to
specify a maximum length for the records in that file.
After that, no two records need to be the same length,
but none can exceed your specified maximum. (The
INFOS system keeps track of both the maximum
record length for the file, and the exact length of each
record in the file.)

You can use only this format for ISAM and DBAM
files because each record occupies exactly the space
necessary to hold it. So you get maximum flexibility in
building and maintaining your files, as well as optimum
use of your disk space.

Table 1-1-1. Processing Modes

FILE FILE DOES
EXISTS NOT EXIST

INPUT UPDATE OUTPUT CREATE
UPDATE

READ READ & WRITE READ &
ONLY WRITE ONLY WRITE

DISK YES YES YES YES

TAPE YES NO YES NO

SAM LINE NO NO (See note) NO
PRINTER
INTERACTIVE YES NO (See note) NO
TERMINAL

RAM - DISK ONLY YES YES YES [yES

ISAM - DISK ONLY NO YES NO YES

DBAM - DISK ONLY NO YES NO IYES

NOTE: You may only open existing peripheral files for output.

093-000114-01 1-1-3 General Considerations

DataGeneral
SOFTWARE DOCUMENTATION

You can use this format very effectively in setting up a
customer record file. Since you have more information
about long-time customers than you do about new
ones, the records in the file will be of varying lengths.
A Fixed Length record format would waste space every
time you put a new customer record in a space designed
to hold a long-time customer record; and it wouldn't
allow you to expand your record size as you acquired
more information about your customers. The Variable
Length format, however, will allow you to pack as
many records as will fit into the available disk space,
with very little wasted space. The system automatically
allocates the "right-sized" space when you want to
enter a new record (or add information to, or delete it
from, an existing one), and then places the record in
that space.

Undefined Length Record Format

This format allows you to treat your file as a sequence
of bytes, rather than specific-length records. Therefore
you can append new data onto the end of the file, or
read any section within the file, regardless of the size of
the individual records. Obviously, this gives you more
flexibility in reading records.

For instance, you may want to read a file whose record
format you don't know. If this happens, simply define
the file as a SAM Input file with Undefined Length
records and specify an expected maximum record siz~.

Note that you should use this format sparingly because
of the way the computer transfers Undefined Length
records. (We'll give this more detail in the "Record
Packing" section of this chapter.)

Data Sensitive Record Format

The length of each record in this format is determined
by the occurrence of a delimiter table. The INFOS
system will automatically terminate a record when it
encounters either a carriage return (»), a line feed (1), or
a null character (0). However, you may also use the
delimiter table to specify another ASCII character as a
record length delimiter for your application. (See the
CrR instruction description in the Programmer's
Reference Manual, ECLIPSE-Line Computers for details
on how the system uses translation tables.)

The Data Sensitive record format can be particularly
useful when you want to read or write a SAM file on an
interactive terminal, and/or when you want to output
data from a SAM file to a line printer. For example, if
you wanted to enter data into your file from an
interactive terminal, you would first define the file as a
SAM Input file with Data Sensitive records. Then you
would specify the maximum length of your records as n
characters. Unless you specify some other character for
use as a record terminator, the INFOS system will
automatically transfer a record to your program each
time you depress the carriage return on your terminal.

Licensed Material - Property of Data -General Corporation

Table 1-1-2 summarizes the relationship between
record formats and access methods.

Table 1-1-2. Record Formats and Access Methods

Access Available Record Format(s)
Method

SAM Fixed, Variable, Undefined, Data Sensitive

RAM Fixed only

ISAM Variable only

DBAM Variable only

Data Transfers
When you create an INFOS file, you must specify the
length of the data you want transferred between the file
and the computer's main memory. This is called the
block size. Also each time you open an INFOS file to
process it, you can specify the number of buffers to be
used for the processing run. For a tape file, each buffer
you allocate is exactly the same length as the block size
you specified when you opened the file. For a disk file,
you must allocate buffers which are integer multiples of
512 characters long, because that is the size of the
physical sector of the disk where the data is stored. In
other words, when you are using disk files, you will
specify your block size, then the INFOS system will
transfer the data from the smallest number of sectors
which contain an equal or greater number of characters
than your block specification.

Main Memory

512 Characters
SO-00555

'---- Figure /-1-1. Disk File Data Transfer ---~

1-1-4 093-000114-01

Licensed Material - Property of Data General Corporation

For example, if you specify a block size of 1,000
characters for a disk file, the System will transfer the
data from two 512-character sectors of the disk to the
computer's main memory. In other words, it will use
one buffer of 1024 characters to hold the information
you wish to process, even though your data may not
completely fill that buffer.

Note that buffer space is not taken from your program
area. The INFOS system allocates the buffers in the
computer's free space, i.e., that memory area not
occupied by application programs, operating system
code, or INFOS system code. See Chapter 6 for further
information about the allocation of buffer space.

Record Packing

In general, the number of records you can pack into a
block depends on the length of the records and the size
of the block. You will know both the maximum record
length and the block size, since you specify the record
format (which helps determine the record length) and
the block size when you create/open the file.

As we just mentioned, you can only transfer data from
disks in blocks which are integral mUltiples of 512
characters, but you can transfer data from nondisk
devices in fixed or variable length blocks. Let's briefly
look at how the INFOS system transfers your data as
blocks.

Transferring Fixed Length Records

The INFOS system always transfers Fixed length
records in Fixed length blocks. Furthermore, Fixed
length records require exactly as many bytes in a file as
in main memory.

Main Memory

Characters

SD-00556

Figure /-1-2. Transferring Fixed Length Records

093-000114-01 1-1-5

DataGeneral
SOFTWARE DOCUMENTATION

Transferring Variable Length Records

If you want to transfer Variable length records from a
nondisk device to a disk, the system will place as many
of those records as it can into the space you specify as
the block size. The block size of a disk file is always an
integral number of disk sectors. Therefore, the INFOS
system transfers Variable length records in much the
same way as it transfers Fixed length records, except
that it allows four ~4) bytes more per file l?JQ<:~k- for
Variable length records than for Fixed because of
~~~!~ri.ij)-yerheao.---- ----- ---------

Transferring Undefined Length Records 

If you specify that a SAM Input file has Undefined 
length records, the INFOS system considers them to be 
unblocked. This means that the system considers each 
block to be one record, and it will transfer only one 
record at a time. Therefore, you should use this format 
sparingly. 

Undefined length records give you great flexibility 
because they allow you to process files (especially tape 
files) created on another operating system and to 
transfer data between character-oriented devices and 
the INFOS system. However, this method of 
transferring blocks of data can be wasteful or 
inefficient. 

Transferring Data Sensitive Records 

Data in Data Sensitive record files is always transferred 
in fixed-length blocks, but, unlike Fixed length 
records, Data Sensitive records can span blocks. That 
is, the system sees Data Sensitive records simply as 
strings of characters terminated by a delimiter 
character. Therefore, it will fill blocks of Data Sensitive 
records much more compactly than other blocks. This 
format is very useful when you want to print your data 
directly from your file. You just insert a delimiter 
character every 80 or 132 characters (for a line printer), 
regardless of the record bounds, and the system will 
transfer the data in the correct size for the device. 

Buffer Management 

Because the INFOS system lets you request any 
number of buffers, it uses a buffer management 
technique called the Least Recently Used (LRU) 
method for SAM and RAM processing. For ISAM and 
DBAM processing, the system uses a variation of the 
LRU method called hierarchical modulation (see 
Chapter 4 for further details). 

When you specify more than one buffer for a 
processing run, the LR U method keeps track of how 
long ago each buffer was used. If all the buffers are in 
use when you issue a read or write request, the system 
writes the contents of the buffer you accessed least 
recently to the file, then places the current data in it. 

General Considerations 



DataGeneral 
SOFTWARE DOCUMENTATION 

The INFOS system also uses a "read ahead/write 
behind" technique for greater efficiency in processing 
SAM files. This means that as you are processing a 
sequential file, the system anticipates the data you will 
want next and brings it into main memory before you 
call for it. It then holds this data in extra buffers until 
you want it. The "write behind" process proceeds in 
just the opposite way. The system realizes that you 
don't have any further use for a sequential record 
which you have finished processing, so it removes 
processed records from main memory, allowing you to 
proceed uninterrupted with other records and leaving 
space for them to occupy. 

Footnotes to Data Transfers 

1. The INFOS system will not necessarily initiate a 
data transfer every time you issue a read or write 
request. This is due partly to the number of records 
in a block, and partly to the way that the system 
manages the buffers. For example, if you want to 
read record 8501, the system will retrieve the block 
containing that record and transfer it to its first 
buffer. Then you may want to read record 8503. If 
that record is in the block which contains record 
8501, the system does not need to transfer the data 
to main memory because it has already done so. 
Record 8503 is currently in the first buffer. 

2. When you begin to design your program, don't 
forget to designate a Data Area to and from which 
the INFOS system can transfer each record you 
want to process. In this area, the data meets your 
program; on input, the system moves single 
records from a buffer to your Data Area, and, on 
output, it moves them from the Data Area to a 
buffer. Naturally, your Data Area should be large 
enough to hold the largest record you expect to 
process. 

3. No matter what access method or peripheral 
devices you use, you can change the 
system-assigned values for timeout intervals to suit 
your needs. These system-assigned values vary for 
different devices, but, in each case, the system will 
close your file if it cannot complete a data transfer 
after twelve (12) of these intervals. We'll discuss 
timeout intervals in more detail in Chapter 6. 

A Word About Volumes 
Throughout this manual, we will use the word 
"volume". The INFOS system contains two types of 
volumes: physical volumes and logical volumes. 
Physical volumes are the recording media on which you 
store your file, e.g., disk packs or tape reels. Logical 
volumes are subsets of your file. For example, this 
entire manual consists of three files within one physical 

Licensed Material - Property of Data General Corporation 

1-1-6 

volume. That is, we have a Planning file (i.e., Part 
One), a Programming file (Part Two), and an 
Appendix file (Part Three). Furthermore, within each 
file (Part) there are a number of chapters. These 
chapters are the logical volumes; each is a subset of the 
entire file (Part). Once you open a Part (file) you can 
access any of the chapters (logical volumes) within that 
Part. In other words, every INFOS file consists of at 
least one (and usually several) logical volumes. 

This concept becomes more complicated when you 
realize that your entire file can reside on many physical 
volumes. An encyclopedia can illustrate this well. Each 
book (physical volume) in the encyclopedia set (the 
whole file) contains many chapters (logical volumes), 
but it is only a part of the entire set. Therefore, the 
complete encyclopedia (i.e., the whole file) consists of 
many, many chapters (logical volumes) and is 
contained within many books (physical volumes). 

To keep things as simple as possible, whenever we use 
the word "volume" in this manual, we will mean 
logical volume unless we specifically say physical 
volume. 

Multivolume Files 

You can design your INFOS file to occupy as much or 
as little space as you need. If your files will be on disk, 
you can let: 

• 1 disk contain 1 file, or 
• many disks contain 1 file, or 
• 1 disk contain many files, or 
• many disks contain many files. 

If you want to work with labeled tapes, you can let: 

• 1 reel of tape contain 1 file, or 
• 1 reel of tape contain many files, or 
• many reels of tape contain 1 file. 

NOTE: You cannot create or process a tape set which 
contains many files on many reels. 

Unlabeled tape files and files on interactive terminals 
or a printer are normally considered to be single 
volume files. 

Multivolume files are useful because they remove the 
restrictions on file size which would normally constrain 
you under RDOS. That is, RDOS files can only exist on 
one disk (comprising at most 64K (65,535) sectors), or 
on one reel of tape. Your INFOS file, however, can 
reside on up to 255 separate devices, increasing the 
number of disk sectors you can use for file storage from 
64K to over 16 million. Looking at it another way, this 
increases your maximum disk file size to about eight 
billion characters. 

093-000114-01 



Licensed Material - Property of Data General Corporation 

How to Process INFOS Files 

How you process your INFOS file depends on whether 
you want to create a new file or access records from an 
existing file. 

How to Create a New File 

When you want to create a new INFOS file, you must: 

1. Define its characteristics, that is, specify the access 
method and record format you want, as well as the 
physical characteristics of each volume. (When you 
want to create ISAM or DBAM files, the index - as 
well as the database - is also a file. This means that 
you must define the features of the index and all its 
volumes along with the database and all its 
volumes.) 

2. Select the INFOS options you want~ for example, 
code translation and data verification. 

3. Choose the file attributes you need, such as block 
size and number of buffers. 

4. Open the file. 

When you have completed these four steps 
successfully, you will have a fully-defined INFOS file to 
which you can begin writing data. 

You can also create a new INFOS disk file with the 
ICREATE utility. 

line Printers and Terminals as INFOS Files 

Files on line printers and interactive terminals are 
characteristically single volume files. If you want to use 
such a file, follow steps, 1, 2, and 3 above, but choose a 
processing mode based on the direction in which you 
want to transfer data. If you want to transfer data from 
a source to a line printer or an interactive terminal, 
open the file in the Output processing mode~ if you want 
to enter data from an interactive terminal, open the file 
in the Input processing mode. 

File Naming, Briefly 

The name you give to the first (or only) volume of a 
SAM or RAM file you have created becomes the whole 
file's name. ISAM and DBAM files take their symbolic 
names from the name you give to the first (or only) 
volume of their indexes. You can find more information 
on file naming in Chapter 6. 

How to Process an Existing Tape File 

You open an existing tape file in essentially the same 
way that you create one. That is, follow steps one 
through three above, then open the file in the Input 
processing mode so that you can read its records. 

DataGeneral 
SOFTWARE DOCUMENTATION 

NOTE: When you are defining the volumes, remember 
that unlabeled tapes are normally single volume 
and that labeled tapes are most often 
multivolume. Don't forget to define all the 
volumes. 

How to Process an Existing Disk File 

When you create a disk file, the INFOS system 
automatically produces a permanent file specification 
which contains the permanent attributes you define at 
file creation - block size and number of buffers, for 
example. The system also records the definitions for 
each volume of the file. While processing an existing 
disk file, you can temporarily override some of the 
attributes of the file and select INFOS options for use 
in the current processing run, but you cannot change 
any of the file's permanent characteristics, nor any of 
the volume definitions. For example, you can specify a 
different number of buffers for use in the current 
processing run, but you cannot change the access 
method, record format, or block size that you specified 
when you created the file. You will find further 
discussion of the things which you can and cannot 
change in Chapters 2, 3, 4, and 5. 

Since the system already has the file specifications, all 
you need to do to open a disk file is: 

• For SAM and RAM files: 

1. Specify the file's access method and record 
format~ 

2. Give the file's name - that is, the name you gave 
t~ the first volume~ 

3. Open the file in the Input or Update processing 
modes. 

• For ISAM and DBAM files: 

l. Specify the file's access method and record 
format~ 

2. Give the file's name - that is, the name you gave 
to the first volume of the file 's index~ 

3. Open the file in the Update processing mode. 

Summary 
This chapter has presented all the introductory 
considerations you need to know before you begin to 
plan your particular application of the INFOS system. 
The rest of this manual will give you the details of the 
points raised here. 

End of Chapter 

093-000114-01 1-1-7 Summary 





\ DataGeneral 
Licensed Material - Property of Data General Corporation SOF'TWAAE DOCUMENTATION 

Chapter 2 
Sequential Access Method (SAM) Files 

Sequential access files are just what they sound like: the 
system writes your records one after the other and 
reads them back according to their physical sequence. 
Furthermore, INFOS SAM files give you five 
additional features which make them stronger than the 
average SAM: 

1. Choice of file format - You can set up your records 
in any of the four INFOS formats -- Fixed, 
Variable, Undefined, or Data Sensitive -- to 
accommodate your particular application. 

2. Use of most peripheral devices - You can create or 
store your files on any Data General disk device, 
magnetic tape, interactive terminal, or line printer. 
So you don't have to worry about processing your 
files once you've selected a device. 

3. Reduction of 110 wait time (Multibuffering) - You 
can process your INFOS SAM files very efficiently 
because when you specify more than one buffer the 
system automatically overlaps the 110 operation of 
your program with its data processing functions. 
That is, the system anticipates your data 
requirements and brings the next block of data on 
your access device into a second buffer while it is 
processing the information in the first buffer. 
(Remember that the system allocates space for all 
buffers in the extended memory area, not in your 
program space.) Also, depending on the type of 
device on which you're storing your data and the 
direction in which your program is transferring that 
data, you can choose the INFOS processing mode 
which will be most effective for you. 

4. Variety of processing options - All SAM processing 
functions don't apply to all devices (e.g., you can't 
read from a line printer) but, where appropriate, 
they do let you read, write, and rewrite data, 

093-000114-01 1-2-1 

append new records to the end of a file, and 
overwrite a file. The INFOS SAM also has a 
"Read-After-Write" option which you can use to 
verify the accuracy of each record written to a SAM 
tape or disk file. 

5. Code translation - INFOS SAM files allow code 
translation on both input and output. That is, the 
INFOS system can automatically convert any 
character set you have into any other character set. 
The INFOS system can do this for an entire record 
or for certain fields within that record. 

The INFOS SAM is not the SAMe old thing. The 
INFOS system significantly increases the number of 
functions which you normally have under RDOS. It 
also removes artificial limits on your file's size; your 
file can exist on up to 255 separate volumes. But these 
are just the general features of an INFOS SAM file. If 
you put your SAM file on a disk, you get even more. 

SAM Disk Files 
To give your SAM file maximum flexibility, put it on a 
disk. Using a disk will allow you to do input and output 
when you create or use the file. It will also allow you to 
use the SAM Rewrite Option (as described later in this 
chapter). When you open an existing SAM file, you 
need only minimum specifications; the INFOS system 
automatically uses the information in the permanent 
file specification. Also, if your file is on a disk, many 
users can share access to it, using single- or m ultitask 
programs, because the INFOS system automatically 
resolves conflicting requests for data. You may, 
however, request exclusive use of your disk file 
whenever you open it. The system will then prevent 
other programs from accessing your file until you 
release it or close it. 

SAM Disk Files 



DataGeneral 
SOFTWARE DOCUMENTATION 

How to Create SAM Disk Files 

To create a SAM disk file, you can use either the 
Output or Create Update processing mode. (If you also 
want the ability to read and rewrite records, choose the 
Create Update mode and specify the Rewrite option.) 
You can then choose any of the four INFOS record 
formats. If you choose Fixed Length records, you must 
specify their exact size; if you choose Variable Length, 
give the expected size of the longest record in the file. 
Data Sensitive records allow you to specify your own 
record terminator, but if you default this choice, the 
system will automatically terminate a record whe~ it 
encounters either a carriage return 0)' null (0), or lIne 
feed. 

Next, you can either indicate a specific block size or let 
the system automatically set the size at 512 characters. 
You can also if appropriate, indicate that your records 
are unblocked, in which case the system will put just 
one record in each block. 

SAM disk files allow you to specify any number of 
buffers and each one will be as long as your block size. 
Howev~r, if you specify two or more buffers, you will 
greatly reduce your I/O wait time ?ecause the syste~ 
will automatically keep them active. (If you don t 
specify a number of buffers, the system will only give 
you one.) Also, if you want to offset your. data recor.ds 
from the beginning of a buffer, you can simply specify 
initial data offset. 

Licensed Material - Property of Data General Corporation 

Your SAM disk file can consist of as many volumes as 
you need, but you have to define each volume when 
you create the file. Part of this definition involves 
naming each volume, and the name you give to the 
first volume becomes your file's symbolic name. 
Another part of the definition allows you to choose an 
ASCII pad character for each volume. If you don't care 
what character is used, simply default this choice and 
the INFOS system will automatically use the null 
character (0). 

You also have to choose whether you want to allocate 
the file's space in each disk volume contiguously or 
randomly, and whether you want to initialize the file 
space. (Initialization reserves disk space and sets all 
bytes in that space to zero.) We recommend that you 
specify Disable File Initialization, since initialization of 
a 64K block volume takes approximately twenty 
minutes. If you choose contiguous allocation, you must 
specify the number of physical blocks you want to 
allocate. If you choose random allocation, you can 
specify a volume size or you can let the system allocate 
space as it is available - up to a maximum of 65,535 disk 
blocks. (Note, however, that if you run out of disk 
space before a logical volume is full, the system will not 
send the overflow to the next volume. Refer to 
Chapter 6 for a more detailed explanation of disk space 
allocation and volume size.) 

Finally, unless you specify a different interval, the 
INFOS system automatically assigns timeout intervals 
of three seconds for fixed-head disks, five seconds for 
moving-head disks, and 15 seconds for magnetic tapes. 

Those are the choices and/or specifications you have to 
make when you want to create a SAM disk file. The 
chart in Table 1-2-1 summarizes these steps and 
indicates whether they are mandatory or optional. 

1-2-2 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Table 1-2-1. Steps in Creating a SAM Disk File 

You Must Do These: You May Do These: 

Choose a processing mode 

• Create Update or Output {Specify Rewrite option} 

Choose a record format 

• Fixed, Variable, Undefined, Data {Specify delimiter{s} for Data Sensitive 
Sensitive records} 

• Specify exact length of Fixed Records 

• Specify expected maximum length of 
Variable length records 

Specify block size {default = 512 characters/block} 

(Indicate records are unblocked) 

Choose a number of buffers {default = 1 buffer allocated} 

Define each volume 

• Name, characteristics, etc. {Override default pad character} 

Specify Random or Contiguous space {Specify volume size for Random 
allocation allocation; default = 65,535 blocks} 

Specify number of physical blocks for {Specify initialization or no initialization} 
Contiguous allocation 

{Specify value for timeout intervals} 

{Specify initial data offset} 

093-000114-01 1-2-3 SAM Disk Files 



DataGeneral 
SOFTWARE DOCUMENTATION 

How to Open an Existing SAM Disk File 
You'll follow the same basic steps when you open an 
existing SAM disk file as you did when you created it. 
That is, you must: 

• Choose a processing mode; either Input or Update. 

• Specify the same record format you used when you 
created the file. (If you want to, you can specify the 
Undefined Length record format, but remember 
that records in this format are only transferred one 
at a time into the buffers') 

• State the name of the first, or only, volume. 

You may specify a different number of buffers for this 
processing run than you did at creation. However, if 
you want to use the number you originally specified, 
don't do anything. The system will automatically 
allocate the number recorded in your file's permanent 
specification. 

There are also three other features you may use when 
you open your file, but you must specify them each 
time you want them: 

• code translation (ASCII to EBCDIC, or vice versa, 
or either one to your own code). 

• data verification (you have to open in the Update 
processing mode to use this). 

• exclusive file use (as described in the last section of 
this chapter). 

Finally, note that you cannot change any of your file's 
volume characteristics when you open it. 

That's all there is to opening an existing SAM disk file. 
Before we explain how to process SAM files, however, 
let's look at how to create and open SAM files on other 
devices. 

Licensed Material - Property of Data General Corporation 

SAM Labeled Tape Files 
The INFOS system will let you use magnetic tape labels 
which conform to ANSI standard levels 1,2, and 3, and 
IBM standard levels 1 and 2. Using these labels, you 
can create and process labeled tape files in the following 
forms: 

• single file/single volume 
• single file/multivolume 
• multifile/single volume 

NOTE: You cannot create or process a 
multifile/multivolume tape set. 

This section of Chapter 2 describes the general 
principles involved in initializing, creating, and opening 
labeled tape files. If you want further details on any of 
these points, refer to Appendix A at the back of this 
manual. 

Initialization 
Before you can create a labeled tape file or open an 
existing one, you have to initialize your tape reels. The 
Labeled Magnetic Tape Initialization Utility (call: 
LBINIT), described in the INFOS Utilities Users' 
Manual, is the easiest and most efficient way to 
initialize at runtime. However, you can also initialize 
(and release) tapes through your programs with INFOS 
system requests. 

How to Create SAM Labeled Tape Files 
Creating a SAM labeled tape file is not unlike creating a 
SAM disk file, except that you'll use only the Output 
processing mode. After you select Output mode, you 
need to specify the record format you want to use -
Fixed, Variable, or Undefined. As with SAM disk files, 
you have to give the exact record length if you use 
Fixed length records. If you want to use Variable length 
records, you can either specify the length of the largest 
record or let the system assume that the largest record 
is four'characters less than your block size. However, if 
you do specify a maximum size, it also cannot be any 
longer than four characters less than your block size. 

1-2-4 093-000114-01 



Licensed Material - Property of Data General Corporation 

And speaking of block size, that's the next choice you 
have. You can either specify a size, or you can default 
the choice - in which case the system will give you 
blocks which are 80 characters long. At this point you 
can also specify that you want unblocked records - that 
is, just one record per block. As usual, the system 
automatically gives you unblocked records if you 
choose the Undefined record format. 

After your block choice, you'll have to choose the 
number of buffers you'll need. Again, if you don't give 
the system a specific number, it will give you only one. 
And if your data records don't start at the beginning of 
a buffer, you can specify the number of characters by 
which you want the system to offset them. 

Next, you must specify the type and level of the labels 
you want to write (i.e., ANSI 1, 2, or 3~ or IBM 1 or 2). 
Then you have the option of specifying the following: 

• file set identifier 
• file expiration date 
• file sequence and generation numbers 
• accessibility (data security) code 

You also have the same option for selecting recording 
code translation as you have with a SAM disk file. That 
is, you can convert your data from any recording code 
you have into any other code. 

093-000114-01 

DataGeneral 
SOFTWARE DOCUMENTATION 

Your next step is to define each volume (i.e., each 
physical reel of tape). In other words, if your data file 
will exist on three reels of tape, you must define all 
three reels. The first part of this volume definition will 
be the volume name, consisting of a volume identifier 
followed by a colon, then a file identifier followed by a 
null character - for example, MTO: PAYROLLO. The 
next part of the volume definition includes a volume 
label, header labels, trailer labels, and, depending on 
which label type and level you are using, user labels. 
You can also specify that the system rewind each 
volume on opening, and you can enable runtime 
initialization and release for each volume. 

Finally, while you're at it, there are four other options 
you can use for each volume. First, you can specify 
fixed or variable length blocks. Second, you can choose 
a pad character other than the system-supplied null (0). 
Third, you can specify a volume accessibility character. 
And, fourth, you can choose a different timeout 
interval than the system-assigned interval of 15 
seconds. 

That may seem like a lot to do just to create a labeled 
tape file, but it's not really. It's simply that the INFOS 
system gives you quite a few options to allow you to use 
a labeled tape file as effectively as possible. For your 
reference, the chart in Table 1-2-2 shows the 
mandatory steps and the optional ones. 

1-2-5 SAM Labeled Tape Files 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 1-2-2. Steps in Creating a SAM Labeled Tape File 

You Must Do These You May Do These 

Specify Output processing mode 

Choose a record format 

• Fixed, Variable, Undefined, or Data 
Sensitive 

Specify exact length of Fixed records (Specify length of longest Variable 
record) 

Choose a block size (Default = 80 character block; 
maximum = 8192 bytes) 

(Specify unblocked records) 

Choose desired number of buffers (Default = 1 buffer) 

(Specify, number of characters for initial 
data offset) 

Specify label type and level (Specify file set identifier) 

• ANSI 1, 2, 3 or IBM 1, 2 (Specify file expiration date) 
(See Appendix A) 

(Specify file sequence) 

(Specify generation numbers, accessibility 
code) 

(Specify code translation) 

Define each volume 

• Name, volume label, header labels, 
trailer labels 

(Specify rewind tape on open) 

(Enable runtime initialization and release 
for each volume) 

(Choose Fixed or Variable length blocks 
for each volume) 

(Select pad character - default = 0) 

(Specify timeout interval) 

1-2-6 093-000114-01 



Licensed Material - Property of Data General Corporation 

How to Open an Existing SAM Labeled 
Tape File 

There are two differences between the opening 
procedures for an existing SAM labeled tape file and 
the creation procedures we just explained. First, you 
must use either the Input or Update processing mode. 
(Choose Update when you want to append new records 
to the end of your file.) Second, you must do the 
following: 

• Initialize the tape units; 

• Define the file's characteristics; 

• Indicate the attributes and INFOS options you want; 
and 

• Define each volume in the file. 

Other than this, the procedures are exactly the same. 
We'll tell you about your processing options for this 
type of file in the last part of this chapter. 

How to Use Peripheral Devices as 
SAM Files 

Here's a handy feature for you. The INFOS system 
allows you to define a line printer or an interactive 
terminal as a SAM file. This means that you can use the 
read and write functions of the INFOS system to 
transfer data between your program and these 
peripheral devices. Or, to put it another way, you can 
transmit data between your program and the terminal, 
or send data generated by your program to a line 
printer. 

Vou can also use a single terminal for both input and 
output. Normally, SAM limits your data transfers to a 
single direction per file. But you can use the single 
terminal for both input and output by defining two files 
like this: 

1. Define and open one file as a SAM Output file. 
When you specify the volume definition, use the 
system device name $TTO ($TTO 1 in the 
foreground). This will allow you to transmit data 
from your program to the terminal. 

2. Define and open the other file as a SAM Input file 
and use the system device name $TTI (I). This will 
allow you to enter data from the same terminal. 

DataGeneral 
SOFTWARE DOCUMENTATION 

If you want to write data to a line printer, simply define 
and open a SAM output file using the name $LPT. 

You have essentially the same INFOS option for 
peripheral files as you do for other SAM files. For 
example, your program can read a SAM file with IBM 
level two labels and select portions of the data records 
for output to a $TTO file. Or the system can 
automatically translate records from EBCDIC to ASCII 
during transmission to the terminal. 

You'll find more information on physical files and their 
characteristics in Chapter 6. 

What to Do with Unlabeled SAM 
Tape Files 

The INFOS system also allows you to create and 
process unlabeled SAM tape files. This can be helpful if 
you want to process a tape file generated under RDOS 
or on an external system. If you have a tape and you 
don't know what's on it, merely define and open it as a 
SAM Input file with Undefined records and specify a 
relatively large block size (say, 2,500 characters). If you 
mount the tape on tape unit zero, name the file MTO:O. 
Then, after you open the file and issue your first read 
request, the INFOS system will transfer whatever is on 
the tape until it comes to the first interrecord gap, or 
until the end of the file, whichever comes first. Again, 
Chapter 6 has more details on this topic. 

SAM Summary 
The charts in Tables 1-2-3 to 1-2-6 summarize the 
options you have when you open a SAM file. Charts A 
and B (Tables 1-2-3 and 1-2-4) show the SAM file 
definition options, and charts C and D (Tables 1-2-5 
and 1-2-6) show the SAM volume definition options. 
After these charts, you'll find the section on how to 
process SAM files. 

093-000114-01 1-2-7 SAM Summary 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 1-2-3. File Definition Options When You Open a New SAM File 

Chart A 

Record Format 
• Fixed 
• Variable 
• Undefined 
• Data 

Sensitive 

Block Size 

Blocked or 
Unblocked 
Records 

Number of 
Buffers 

Data Offset 

Record Length 

Overwrite or 
Append Option 

Rewrite Option 

Exclusive Use 

Code Translation 

Read-After­
Write 
Verification 

Number of 
Volumes 

NOTES: 

Create 
Update Mode 

Disk Disk 

Choose one of the four Record 
Formats. If you use Data 
Sensitive, the system will 
terminate your records by 0, ), or 
1. unless you specify other 
delimiters. 

Specify any size block up to 8K 
bytes. The system will transfer 
your data in multiples of 512. 

Labeled· 
Tape 

Choose from: 
Fixed 
Variable 

or 
Undefined 
only 

Output Mode 

Unlabeled 
Tape 

Choose one of 
the four record 
formats. 

$TTO $LPT 

Data Sensitive (with 
system-supplied terminators) is 
the usual format for these devices, 
but you may also used Fixed and 
Undefined. 

Specify any block size you want. If you don't specify a size, the system will 
use 80 characters. (80 characters is normal for $TTO; 80 or 132 characters is 
normal for $LPT.) 

Specify unblocked records if you want only one record per block. If you want more than one record per block, you need 
make no specification. (Note that Data Sensitive records can span blocks and Undefined records are always 
unblocked.) 

Choose any number of buffers. If you specify more than one, the system automatically keeps them filled, greatly 
reducing your I/O wait time. If you do not specify any buffers, the system will give you only one. For nondisk files, 
buffer size = block size. For disk files, buffer size equals the next highest multiple of 512 which equals or exceeds 
block size. 

If your records do not start at the beginning of a block, specify the number of characters by which you want the system 
to offset the first record. 

If your file has Fixed Length records, you must specify the record length. Ifit has Variable Length records, specify the 
expected length of the longest record. This length cannot exceed four characters less than the block size. If you do not 
specify a maximum length, the system assumes that the longest is four characters less than your block size. 

This allows you 
to write at some 
point other than 
end of file; 
however, you 
will lose 
whatever existed 
beyond that 
point. 

Allows you to 
update in place 
using 
read/rewrite and 
read/release 
command 
sequences. 

If you specify exclusive use, no 
one else can access the file while 
you have it open. 

You can verify each block 
transferred to your file for 
recording accuracy. 

Specify the number of volumes if your file will reside on more than one volume. If you do not specify a number, the 
system assumes that it is a single volume file and will only process the first volume definition. 

*You must also specify the label type and level (i.e., ANSI 1, 2, or 3 or IBM 1, or 2) when you are working wit~ a labeled tape fil.e in the Output 
mode. In addition, you may specify the File Set Identifier, the Expiration Date, the Sequence and/or Generation Number, a File Accessibility 
Code, Runtime Initialization, and/or Runtime Release. 

1-2-8 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Chart B 

Record Format 

• Fixed 
• Variable 
• Undefined 
• Data 

Sensitive 

Block Size 

Blocked or 
Unblocked Records 

Number of Buffers 

Data Offset 

Record Length 

Overwrite or 
Append Option 

Rewrite Option 

Exclusive Use 

Code Translation 

Read-After-Write 
Verification 

Number of Volumes 

093-000114-01 

Table 1-2-4. File Definition Options When You Open a New SAM File 

Update Mode 

Disk 

Choose the same format you used to 
create the file. The system will then verify 
this by comparing it with the permanent 
file specifications. If it doesn't match, an 
error will return. 

Do not specify a block size~ the system 
uses the permanent file specification. 

Input Mode 

$TTI 

Data Sensitive (with system-supplied terminators) is usual format 
but you can also use Fixed or Undefined. 

Specify the same block size you used to create the file. If you don't 
specify a size, the system uses 80 characters. (Normal block size 
for $TTI is 80 characters~ for tape files with Undefined Length 
records, specify a large block size.) 

If you specified unblocked records (j.e., one record per block), when you created the file, do the same here. 
Otherwise, the system will transfer as many records as can fit into a block. (NOTE: Data Sensitive records can span 
blocks.) 

Specify any number of buffers. If you 
don't specify any, the system will give 
you the number recorded in the 
permanent file specification. 

Do not specify an offset. The system will 
use the offset recorded in the permanent 
file specification, if any is there. 

Do not specify a record size. The system 
will use the permanent file specification. 

Specify overwrite if you want to use it on 
this opening (see Create Update Chart A 
for cautions). 

Specify Rewrite if you want to use it on 
this opening. Operates same as under 
Create Update. 

Specify Exclusive use if you want it for 
this opening. (This is not kept in 
permanent file specifications.) 

Specify this if you want it. (Not part of the 
permanent file specification.) 

Do not specify any number of volumes. 

Specify any number of buffers. If you don't specify any, you will 
get only one. If you specify more than one, the system 
automatically keeps them filled. 

Specify the same offset as you did at creation, otherwise you'll 
probably get unrecognizable data transferred to YOUl; program. 

Specify the record size you used when you created your file. 

The system will use the permanent file Specify the same number as you did when you created the file. 
specifications. 

1-2-9 SAM Summary 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 1-2-5. Volume Definition Options When You Open a New SAM File 

Chart C 

Volume Name 

Allocation 
Technique 
• Random 
• Contiguous 

Timeout Interval 

Block Format 

Parity 

Volume Label 

Pad Character 

NOTES: 

Create 
Update Mode 

Disk Disk 
Labeled 
Tape· 

Output Mode 

Unlabeled 
Tape 

$TTO $LPT 

You must specify a name for each volume when you create a file. The name you give to the file's first (or only) volume 
becomes the file's symbolic name. 

Specify Random or Contiguous 
allocation for each volume in the 
file. Then specify the number of 
512 character blocks which you 
want the systcm to allocatc. If} uu 
do not choose a technique and a 
number, the system will randomly 
allocate up to 65,535 blocks per 
volume. 

The system assigns each device a timeout interval, but you may assign any interval you want on a per volume basis. If 
the system cannot complete an I/O transfer after 15 intervals, it will give you an end-of-file condition. 

Disk files always have Fixed 
Length blocks. (Refer to Chapter 
6 for further details') 

Specify Fixed or Variable length blocks. 

The INFOS system normally 
generates odd parity. You must 
specify even parity if you want it. 

Specify that this 
is a volume of an 
unlabeled file. 

Specify the character you want INFOS to use to fill the unused portion of a block. If you don't specify a character, the 
system will use the non printable ASCII null (0) character. 

*You may also specify the following for each volume of a labeled tape file which you are processing in the Output mode: 

• Volume Accessibility 
• Volume Owner Identifier 
• 1-9 UVL, UHL UTL labels (depending on your file's label type and level) 
• Runtime Initialization/Release 
• Rewind on open 

1-2-10 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Chart D 

Volume Name 

Allocation 
Technique 
• Random 
• Contiguous 

Timeout Interval 

Block Format 

Parity 

Volume Label 

Pad 
Character 

NOTES: 

Table 1-2-6. Volume Definition Options When You Open an Existing SAM File 

Update Mode 

Disk Disk 

Specify only the name of the first (or 
only) volume. 

Do not specify an allocation technique. 
The system will use the permanent file 
specification . 

Do specify a timeout interval. The system 
will use the permanent file specification. 

Do not specify a block format. The 
system will use the permanent file 
specification. 

Do not specify a pad character. 
system will use the permanent 
specification. 

Labeled 
Tape· 

Input Mode 

Unlabeled 
Tape 

$TTI 

Since $TTI and Unlabeled tapes are generally single volume files, 
and Labeled tapes are multivolume files, you must name and 
define each volume each time you open it. 

The system assigns each device a timeout interval, but you may 
assign a different one on a per volume basis. If the system cannot 
complete an 110 transfer after 15 intervals, it will give you an 
end-of-file condition. 

Specify the same block format you specified when you created the 
file. If you don't know the format, specify variable blocks. 

If you specified even parity when you 
created the file, specify it for this opening. 

*For each volume ofa labeled tape file which you are processing in the Input mode, you may also specify Runtime Initialization/Release and/or 
Rewind on Open. The system will automatically return the Volume Accessibility and Volume Owner Identification to your program if the 
volume contains them. And if the volume has any user labels, you can also designate the areas in your program which will receive their contents. 

093-000114-01 1-2-11 SAM Summary 



DataGeneral 
SOFTWARE DOCUMENTATION 

How to Process SAM Files 
The INFOS system gives you five basic processing 
options for a SAM file. You can: 

• Read an existing file 
• Write a new file 
• Append records to the end of an existing file 
• Rewrite existing records 
• Overwrite a file 

Reading an Existing File 

When you want to read an existing SAM file, open it in 
the Input Mode. Your file can reside on any device -
disk, interactive terminal, labeled or unlabeled tape -
and you can read all of it or only a part. The system will 
return the length of each record you read, and, after 
you read the last record, will send you an end-of-file 
message. 

Writing a New SAM File 

This function is as simple as reading a file. Simply open 
the file in the Output mode and specify the length of 
each record as you write it. As in reading, you can use 
all devices to write a file - disks, labeled or unlabeled 
tapes, interactive terminals, or line printers. 

Appending Records 

If you want to append new records to a file on tape or 
disk, open the file in the Update mode and issue a write 
request. This will position you to the end of the file and 
you can write as many records as the device will hold. If 
you are working with a labeled tape, the system will 
automatically place the existing labels from the 
end-of-file section and the end-of-file label groups in 
their appropriate places when you close the file. 

Rewriting Existing Records 

Sometimes you'll want to examine your records and 
change some of them. To do this, open your disk file in 
the Update mode, specify the rewrite option, and issue 
your first read request. After you read each record, you 
can either leave it unchanged or rewrite it. If you do not 
want to modify the record, issue a release request~ if 
you want to change, update, or replace the record, issue 
a rewrite request, then rewrite the record. If your file 
has Variable length records, make sure that each 
rewritten record is exactly as long as the one it's 
replacing. You can also lock the record you are 
rewriting, preventing other users from accessing the 
record while you're examining or rewriting it. To use 
this feature, indicate that you want the record locked 
each time you issue a read request. The system will 
then keep the record locked until yo{. issue the next 
rewrite or release request. 

Licensed Material - Property of Oata General Corporation 

Overwriting Existing Records 

The INFOS system also allows you to read records up 
to any point in your disk file, then write new records 
over those which exist after the last record you read. To 
do this, open the file in the Update or Create Update 
mode and select the overwriting option. You can then 
read to your desired point in the file and issue a write 
request. The end of the last record you write then 
becomes the new end-of-file and you will, therefore, 
lose any records which previously existed beyond it. 

For example, if you open your file and issue several 
read requests before you issue your first write request, 
the system will preserve the records you read and the 
record you write will become the new end-of-file. From 
this point in the file on, all your subsequent write 
requests will append new records to this new end-of-file 
and you will lose any records that were in that part of 
the file. 

Additional Features 

When you want to process a SAM file, you'll use one of 
the five functions described above. In conjunction with 
these, however, the INFOS system gives you two 
additional features - Point and SETX - which make the 
five basic procedures more useful. 

Point 

You'll use the Point function when you want to change 
your position in a disk file that you are processing. 
Here's how it works: 

The INFOS system automatically keeps track of your 
current position within an open file. The system always 
sets this position just after the last record transferred 
and gives you feedback about the record's position in 
the file - i.e., the block number which contains the 
record and the record's location within that block. You 
can use the Point function to move from your current 
position to any other record in the file, as long as you 
know that record's position. To change positions, issue 
a Point request which gives your desired relocation 
position. Be careful when you use Point, however. If 
you issue a Point request in conjunction with an 
Overwrite, any record you write at your new location 
will become the new end-of-file and you will lose 
everything beyond that point. 

You can use Point in any processing mode, but you'll 
probably find it most useful in Update and Create 
Update when you want to return to a record which you 
have read and/or rewritten earlier. 

1-2-12 093-000114-01 



Licensed Material - Property of Data General Corporation 

SETX and RELX 

This INFOS SAM feature lets you have exclusive use 
of your file and prevents other users from opening it 
until you release it. You can gain exclusive access in 
two ways: either request exclusive use when you open 
the file or use the Set Exclusive Use (SETX) function 
request. If no one else has opened the file when you 
issue the SETX request, the system will give you 
exclusive access. If the file is already open, you'll get 
the error message "FILE IN USE". When you don't 
need to restrict access any further, issue a Release 
Exclusive Use (RELX) function request to return the 
file to general use. If you don't issue RELX, the system 
will not return the file to general use until you close it. 

Summary 
The INFOS system gives you a lot of flexibility when 
you're processing a SAM file. Depending on the device 
your file resides on and the processing mode you 
choose, you can do just about anything to your data. 
Furthermore, as you are processing data, the system 
will also let you know of any exceptional status (such as 
reaching the physical end of a volume or an unusual 
transfer length). In addition, if you selected 
Read-After-Write data verification, it will tell you when 
the data you have written to your file doesn't exactly 
match the contents of its originating buffer. 

DataGeneral 
SOFTWARE DOCUMENTATION 

The chart in Table 1-2-7 summarizes the available 
mode(s) and device(s) for each INFOS SAM file 
processing function. 

Table 1-2-7. SAM File Processing Summary 

Function Mode and Devices Available 

Read Create Update (D) 
Update (D) 
Input (0, L, U, TO» 

Write Create Update (D) 
Output (0, L, U, T(O), P) 
Update (0, L, U) 

Read/Rewrite Create Update (D) 
Read/Release Update (D) 

Point Create Update (D) 
SETX/RELX Output (D) 

Update (D) 
Input (D) 

Devices: 0= Disk T(O) = Interactive 
L = Labeled Tape Terminal (Output) 
U = Unlabeled Tape T(I) = Interactive 

Terminal (Input) 
P = Line Printer 

End of Chapter 

093-000114-01 1-2-13 Summary 





Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

Chapter 3 
Random Access Method (RAM) Files 

The INFOS system's Random Access Method (RAM) 
lets you directly access any data record in your file 
without going through all the records before it. That is, 
unlike SAM files, you don't need to read a lot of 
records to get to the one (s) you want; you just jump in, 
read or write the record (s) you want, and jump out. 
RAM is simple, quick, and easy to use. And a single 
RAM file can reside on as many as 255 disks. 

When you build a RAM file, chances are that your 
~eco~ds will all be of the same type - for example, 
InVOiCe, personnel, or inventory records - and each of 
these records will have some natural record number 
associated with it, such as invoice or part numbers. 
These natural numbers are the keys to RAM because 
the INFOS system stores and retrieves records by these 
numbers. So when you want to read or write a RAM 
record, you just give the record number to the system 
and it will go directly to the record. But be sure to give 
your records small numbers (i.e., 1, 2, 3, etc.) because 
the system assigns records to the physical space 
corresponding to the record number. For example, the 
system will put record number 100 into space number 
100 on your disk; if this is your lowest numbered 
record, you will waste spaces 0 through 99. All in all, 
however, RAM is still the quickest and easiest access 
method. 

To make things even easier, you can create a RAM file 
with the ICREATE utility and load it with the ICOPY 
utility, both of which are described in the INFOS 
Utilities User's Manual. And if you're initially loading 
your RAM file from a source file that is already 
arranged by record number, you'll have a very 
efficiently constructed RAM file. 

Finally, to give you maximum efficiency, INFOS RAM 
offers several processing modifiers which can reduce 
your I/O wait time practically to zero. 

093-000114-01 1-3-1 

How to Create a RAM File 
To create a RAM file, first choose a processing mode. 
You can use either the Output or the Create Update 
mode, depending on the direction in which you want to 
transfer data. The Output mode only lets you write to 
the file, while the Create Update mode lets you both 
read and write. Both modes give you the same file and 
volume definition options. Also, no matter which 
mode you choose, you can only have Fixed Length 
records and you must specify their length. 

Next, you should specify a block size in terms of a 
number of characters. You can use any size you want, 
but remember that the system always transfers data in 
blocks which are multiples of 512 characters. For 
example, if your records are 125 characters long and 
you want four records per block, you can specify a block 
size of 500 characters. But the system will transfer your 
records in a 512 character block; 500 of these will 
contain data and 12 will be unused. You can also default 
the choice of a block size and the system will 
automatically use a 512 character block. But be careful 
when you specify a block size; your choice of size can 
have a significant effect on the efficiency both of your 
data transfers and of your disk use. You can find 
further details on record packing in Chapter 6. 

After you choose a block size, determine the number 
of buffers you'll need for I/O transfers. As with block 
size, you can specify any number of buffers, and if you 
use two or more you can also use RAM's Pre-read 
feature (described later in this chapter) to retrieve one 
record while you are processing another. If you don't 
specify a number of buffers, the system will give you 
only one. This could reduce your data transfer 
efficiency. (In general, buffers are like heads - two are 
better than one.) 

How to Create a RAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

When you are creating a RAM file, you must also 
specify the number of volumes in your file and name 
each one. The name you give to the first volume 
becomes the file's symbolic name. If you don' t specify 
a number of volumes, the INFOS system will assume 
that the file has only one volume. 

You can (and often should) also specify contiguous 
allocation for the first volume of a multivolume file. 
This will increase your processing speed for the original 
file. Then, for the second and subsequent volumes, 
you should default this choice and let the system 
allocate space on the disk randomly. When you choose 
contiguous allocation, you must also tell the system 
how many 512-character blocks to allocate. The system 
will then automatically erase all previous information 
from the blocks you specified, unless you tell it not to. 
When you specify random allocation, the system will 
allocate up to 65,535 blocks (of 512 characters) on an 
"as needed" basis unless you specify a maximum 
number of blocks for allocation. 

In addition, you can specify a timeout interval for each 
volume you define, or you can let the system use its 
own - three seconds for fixed-head disks and five 

Licensed Material - Property of Data General Corporation 

seconds for moving-head disks. (See Chapter 6 for 
further details on timeout intervals') 

Finally, you have four other options to choose from 
when you are creating your RAM file. You can: 

• use the SETX and RELX functions (described in the 
"Processing" section of this chapter) to gain 
exclusive use of your file either on opening or while 
processing; 

• have the system automatically translate any 
recording code you have into any other recording 
code; 

• request that the system verify each block of data 
written to your file for recording accuracy; 

• specify a pad character for each volume, or by 
defaulting, let the system use the null (0) character. 

This is all you must choose from and/or specify when 
you want to create a RAM file. In Table 1-3-1 we've 
summarized these things in terms of mandatory ones 
and optional ones. 

Table 1-3-1. Steps in Creating a RAM File 

You Must Do These: You May Do These: 

Choose a processing mode 

• Create Update or Output 

Specify Fixed Length records 

Specify exact length of records 

Specify block size (default = 512 characters) 

Specify a number of buffers (default = 1 buffer) 

Specify number of volumes in file 

• Name each volume 

• Specify Contiguous or Random 
allocation 

• Specify number of blOCKS for Contiguous (Specify maximum number of blocks for 
allocation Random allocation) 

(Specify length of timeout interval) 

(Request SETX function) 

(Request code translation) 

(Request data verification) 

1-3-2 093-000114-01 



Licensed Material - Property of Data General Corporation 

How to Open an Existing RAM File 
The process for opening an existing RAM file is very 
much like the one for creating it. However, opening an 
existing file is simpler because the system-generated 
Permanent File Specification contains such things as 
the length of the file's records, the number of buffers 
you originally wanted, all volume specifications, the 
allocation technique, the length of the timeout 
intervals, and the pad character. 

As a result, you only have to: 

• Choose either the Update or Input processing mode. 
Update allows you to read and write~ Input only lets 
you read your file. 

• Specify that you are opening a RAM file with fixed 
length records and give the file's symbolic name. 

• Choose a number of buffers for use in this 
processing run. If you want to use the same number 
you used at creation, default this choice. 

• If you want them, specify code translation, data 
verification, and exclusive use of the file. 

That's all there is to it. The system gets the rest of the 
information it needs from the Permanent File 
Specification. Table 1-3-2 summarizes these steps. 

DataGeneraI 
SOFTWARE DOCUMENTATION 

Processing Your RAM File 
Once you've created and opened your RAM file, 
you're ready to process the data in it. In addition to the 
basic read and write functions, INFOS RAM gives you 
several processing request modifiers which you can use 
to improve the efficiency of the basic functions. But, 
before we get to the modifiers, let's examine what the 
INFOS system does with a RAM file during the normal 
read and write sequences. 

Read 
When you want to read a record, you'll code the 
equivalent of "Read record number xxx. " The system 
will then go through the following steps: 

It determines whether the block containing record xxx 
is in a buffer. 

• If it is, the system will: 

Move it from the buffer into your data area. 

• If it is not, the system will: 

Find a buffer for the block (it may have to write the 
contents of a buffer to disk to do this). 

Transfer the block containing the record from disk 
to the buffer. 

Transfer record xxx from the buffer to your data 
area. 

Table 1-3-2. Steps in Opening an Existing RAM File 

You Must Do These: You May Do These: 

Choose a processing mode 

• Update or Input 

Specify that this is a RAM file with Fixed 
Length records 

Give the file's symbolic name 

(Specify a number of buffers) 

(Request SETX function) 

(Request code translation) 

(Request data verification) 

093-000114-01 1-3-3 Processing Your RAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

Write 
When you want to write a record, you will first place the 
record in your data area, then code the equivalent of 
"Write record number xxx." When you enter this 
command, the system will: 

Determine whether the block that contains the record 
(or will contain it if it's a new record) is already in a 
buffer 

• If it is, the system will: 

Move the record from your data area onto the 
buffer. 

• If it is not, the system will: 

Find a buffer to hold the appropriate block. 

Transfer the block to the buffer. 

Move the record from your data area to the buffer. 

Write the contents of the buffer to the file either 
when it needs to use the buffer for a subsequent 
request or as soon as possible, if you have specified 
Write Immediate. 

You code: 
'Read (write) record xxx' 

NO 

YES 

Licensed Material - Property of Data General Corporation 

This basic read and write sequence is illustrated in 
Figure 1-3-1. 

That's what the system does with your RAM file when 
you want to read or write. Note that the first three steps 
are the same whether you're reading or writing. 

Now, all that waiting time for block transfers and buffer 
emptying can mount up if you've got a lot of data to 
process. Therefore, in order to reduce your 110 wait 
time as much as possible, INFOS RAM offers the 
following processing request modifiers. 

Pre-read 
If you ask for two or more buffers when processing 
your file, the RAM Pre-read function lets you specify 
the number of the record you will want when you have 
finished processing your current record. The system 
will then attempt to find a buffer for that next record. If 
one is empty, the system will bring the block containing 
the record into the buffer. If all the buffers are full, the 
system will empty the one whose contents you used the 
longest time ago. Then it will bring the appropriate 
block into that buffer. Thus, you won't have to wait for 
the system to empty a buffer or transfer the block if 
you use Pre-read. 

2 ,-----. 

4 

SO-00557 

-.t If a buffer is not I 
I available the system I 
I empties the buffer I 

whose contents were 
3 I accessed the longest 

The system transfers the _.J time ago. I 
block to a buffer. I 

On a read: 

The system moves the record 
from the buffer to your data area 

On a write: 

The system moves the record 
from your data area to the buffer 

L... _____ ...I 

'--------- Figure 1-3-1. RAM Readalld WriteSequellce -------...... 

1-3-4 093-000114-01 



Licensed Material - Property of Data General Corporation 

SD-00558 

On a read 

The system moves the record 
from the buffer to your data area 

On a write 

The system transfers the record from 
your data area to the buffer 

Figure 1-3-2. Sequence 0/ Events/or a Pre-read Request 

For example, say that you want to update records 
numbered 9, 36, 105, 202, and 203 in your RAM file, 
and you want to use two buffers. You can initially issue 
two Pre-read requests, using the record numbers 9 and 
36, and the system will bring the blocks containing 
those records into the first and second buffers. Then, 
before you begin processing record number 36, you can 
request Pre-read for record number 105. The system 
will write the contents of the first buffer to the file in 
order to empty the buffer and read in record 105. In 
other words, every time you request Pre-read, the 
system empties a buffer while you are working on your 
current record and reads the next specified block into 
that buffer. This can greatly reduce your 110 wait time 
because you won't have to wait while the system clears 
a buffer for the next record. 

Write Immediate 

You can also modify a write command with a Write 
Immediate request. As you just saw, the system does 
not normally transfer the contents of a buffer to your 
file until it needs that buffer for a later processing 
request. However, if you request Write Immediate, the 
system writes the contents of the buffer to the file 
immediately. This is especially valuable when you use it 
in conjunction with Pre-read because it immediately 
clears a buffer for the system to use for the next record. 
Write Immediate thus gives you some control over the 
transfer process and can be useful in situations where 
you want to add or change a record as quickly as 
possible. It can also be useful if you're sharing a file 
with other users. 

093-000114-01 1-3-5 

DataGeneral 
SOFTWARE DOCUMENTATION 

Read Inhibit 

Read Inhibit can save you time when you are writing 
records into a block which you know is empty (for 
example, when you initially load your file). This 
request tells the system to assign a buffer for that 
empty block, but not to transfer the block to the buffer 
when you issue your write command. So instead of 
moving the block back and forth, the system will just 
move the newly-written record from your data area to 
the buffer. Then, when it needs the buffer, it will write 
the whole block to the file. In other words, Read Inhibit 
clears a buffer for the record, not for its block. This 
saves you more 110 wait time because the system 
doesn't have to find the proper block and bring it back 
into the buffer, then take it back to the file. Be careful 
with this modifier, however; if you use it to write a 
record to a block which already contains data, you will 
erase everything in that block except your 
newly-written record. 

You issue a read 
inhibit request. 

You issue a 
write request. 

The system transfers 
the record from 
your data area 
to the buffer. 

SO-00756 

NO The system empties 
.>-_~ the buffer whose 

contents you accessed 
the longest time ago. 

Figure 1-3-3. Sequence a/Events/ora Read Inhibit 
Request 

Lock and SETX 

Lock and SETX are variations on the theme of 
exclusive use. The Lock modifier gives you exclusive 
access to the block containing the record you're 
processing. However, you must be careful to unlock 
each record you lock because no one can use the record 
until you close the file. The SETX command operates 
similarly, but gives you exclusive use of your .file. And, 
as with Lock, no other user can open your file until you 
issue a Release Exclusive Use (RELX) request, or until 
you close the file. You can use both Lock and SETX 
with all read and write requests. 

Processing Your RAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

Hold 
If you're working in a multiuser environment, you may 
want to use the Hold feature in conjunction with your 
read and write requests. If a record you want to access is 
in use or locked by someone else, you can issue a Hold 
request. Then the system will hold your processing 
request in a queue and' give you the record when it 
becomes available. 

Licensed Material - Property of Data General Corporation 

FEOV 

A Force End of Volume (FEOV) request allows you to 
close a volume of a multivolume file. This request tells 
the system to write all the records you've modified to 
the file, then close it. It can be useful if, for some 
reason, you cannot or don't want to close your entire 
file and you need to move a single volume of a 
multivolume file to another disk drive or processing 
unit. The system will automatically reopen a volume 
closed with FEOV if you want to access it again. 

End of Chapter 

1-3-6 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

Chapter 4 
Indexed Sequential Access Method 

(ISAM) Files 

General Concepts 
Back in the dawn of real time, simple sequential and 
random access methods worked very well. They were, 
and still are, very useful for particular applications. 
However, as real-time marched on, people found that 
they needed on-line, remote-access databases and 
more complex data organizations. They also wanted to 
randomly access their data by something other than its 
relative record number. (A clutch plate is a clutch plate, 
not a 16216.) Unfortunately, neither sequential nor 
random file organizations could solve these problems. 
Thus ISAM, and the notion of keyed access, was born. 

Now you can access a record by a key, rather than by its 
physical or logical position. A key is a shorthand way of 
telling the system which record you want. It can be any 
piece of data within a record, or it can be an element 
external to the record. For example, you can use 
employees' names or Social Security numbers as keys 

Index File 

to a file of personnel records, or you can use data which 
isn't part of the records (e.g., telephone extension, 
department name, shoe size). 

In the INFOS system, the keys are in a separate file 
from the data records. That is, an INFOS ISAM file is 
really two files: one for the keys (called the index), and 
one for the data records (called the database). 

These two files can reside on the same disk or each can 
have its own disk, or each can reside on many disks. In 
any case, it's not necessary that each disk you use have 
the same physical characteristics as every other. For 
example, you may want the index on a fast, fixed-head 
disk and the database on a slower, moving-head disk. 
Naturally, the number of disks you use depends on • 
how much storage space you need for the index and 
database. 

Let's look more closely at each part of an ISAM file. 

LS::D:....-O:.,:O:.:..7,;.;57 ____________ Figure 1-4-1. INFOS 1SAM File ---------------

093-000114-01 1-4-1 General Concepts 



DataGeneral 
SOFTWARE DOCUMENTATION 

The Database 

The database section of an ISAM file is a simple, 
random-access file. You can write records to the file in 
any order and process them as you need them. 
Furthermore, in the INFOS system's ISAM, you can 
use variable length records, which make record 
construction easier for you and more efficient in terms 
of disk storage space. Your data records can be as long 
as 6136 characters, or as short as one character, and you 
can enlarge or reduce your records at any time with a 
simple rewrite operation. Moreover, after you specify 
the type of disk you want to store the records on, you 
never need to worry about where each one is located. 
The system automatically keeps track of each record 
and puts new records into whatever space is available 
on the appropriate disk. Nevertheless, the database part 
of an ISAM file is simply a random collection of up to 
four and a quarter billion data records. 

The Index File 

Likewise, the index file is quite simple: it is merely an 
ordered file of keys to the database records. As you 
write each database record, you supply a key to that 
record. The system automatically puts the keys in order 
in the index file and keeps track of the location of that 
key's data record. The most important thing about 
keys, however, is that you supply them so you know 
what they mean. Your keys need have no meaning to 
the system; the system merely stores them in your 
index file and uses them to access your data. To 
retrieve a record, you just supply the key and the 
system gives you the record. Thus, you can process 
your data records randomly by supplying individual 
keys, or you can process them sequentially according to 
the order of the keys in the index. 

To make your keys even more useful, you can make 
them up from any combination of ASCII characters -­
letters, numbers, special characters such as @, #, $, or 
binary strings -- and each key can be up to 255 
characters long. Furthermore, each key can be exactly 
as long as you require, and no two need to be the same 
length. Of course, if you have a file of, say, personnel 
records which are keyed by Social Security numbers, all 
the keys can (and will) be the same length. 

You can also construct keys which have no 
corresponding database records. For example, suppose 
you have a data-gathering application which will extend 
over several weeks. You can build an ISAM file with a 
key for each piece of data you expect to collect, even 

Licensed Material - Property of Data General Corporation 

though some of them won't be available until later in 
the project. You simply write the key to the file without 
a dat.a record, and, later, access that key and perform a 
rewnte to add that record to the file. This is known as 
database record suppression, and we'll discuss it 
further in the processing section of this chapter. 

1-4-2 

In another application, you may want to use one key to 
access a group of data records. This concept is called 
duplicate keys and it can come in very handy. For 
instance, if you maintain a nationwide mailing list, you 
may ~ant to key records by city name. Your list may 
contam hundreds of names and addresses for the city of 
Boston, and you may want to key them all by that word. 
You would simply specify that you are using duplcate 
keys when you are writing your index file. 
Consequently, the system will automatically assign the 
first BOSTON key an occurrence number of zero. Then 
it will give the first duplcate key an occurrence number 
of one (i.e., BOSTON 1). The second duplicate will 
become Boston 2, and so forth. 

The system will continue to assign incremental 
occurrence numbers each time you write a key called 
~OSTON. Then, when you want to do a mailing, 
simply request a read for the duplicate key BOSTON O. 
After that, you can read all the Boston records 
sequentially. However, note that if you use a keyed 
access without indicating an occurrence number, you'll 
only get the first occurrence of that key. That is, if you 
want to read BOSTON 26, you must code the 
equivalent of "READ BOSTON 26". If you just say 
""READ BOSTON", you'll only get BOSTON O. 

This is the bottom line for index files: no matter how 
many keys you have in your index, you can access any 
of them very rapidly. This gives you the benefits of 
random access, in addition to the sequential processing 
capabilities provided by the logical order of the keys in 
the index. 

Concurrent Access 

The INFOS system allows many users to open an ISAM 
data file simultaneously (either through multitasking 
or use of the foreground/background, or both), 
because the system automatically interleaves 
operations aimed at the same file. Furthermore, to 
prevent conflicts when you're rewriting and/or deleting 
records, the INFOS system provides Lock and Unlock 
capabilities so that you may reserve and free records 
and their associated keys while you're processing them. 

093-000114-01 



Licensed Material - Property of Data General Corporation 

Space Management 
You can specify the Space Management feature for 
either the index or the database file (or both), 
regardless of whether they are on the same or different 
devices. Space Management tells the system to reuse 
the space a deleted record used to occupy. Thus your 
files can grow or shrink according to your needs. For 
example, suppose you have an inventory file with a 
relatively stable number of data records which grow 
and/ or shrink because of daily transactions. If you 
choose Space Management, the system will 
automatically reuse the spaces originally occupied by 
database records which it has relocated because of a 
change in their size. Thus, you'll never have to dump, 
sort, reallocate, or reload your file to recover lost or 
unused space. 

In summary, the INFOS system's ISAM lets you 
organize your data randomly, but access it either 
randomly or sequentially. And since both your data 
records and your keys are of variable lengths, your 
entire file becomes more convenient and efficient, 
especially if you use Space Management. 

Now that you're familiar with the general set-up of the 
INFOS system's ISAM, let's look at how you can 
create, open, and process your ISAM file. 

How to Create an ISAM File 
There are two ways to create an ISAM file: you can use 
the ICREATE interactive utility (as described in the 
INFOS Utilities User's Manual ), or you can write a 
program to create the file. Regardless of which method 
you use, however, remember that you're actually 
setting up a pair of files: one for your keys (i.e., the 
index), and one for your database. Therefore, you 
must define each file separately and, in addition, define 
each volume for each file separately. 

093-000114-01 

DataGeneral 
SOFTWARE DOCUMENTATION 

Creating the Index File 
To create an Index file, you must first specify that you 
are defining an Index file with Variable Length records. 
Then you must request the Create Update processing 
mode and specify that you are using one index level. 
Next, you have to include a Volume Table Pointer. 
This tells the system the starting point in the 
computer's memory of the Volume Definition Table. 
Finally, you must specify the initial node size. To 
explain what this means, we must digress slightly. 

In Chapter One, we said that the system transfers data 
in blocks and that, for disk files, these blocks are 512 
characters long. In an ISAM file, the system transfers 
data in pages, which can be up to twelve blocks long 
(i.e., 6144 characters). 

In an Index file, pages are made up of nodes, which, in 
turn, are made up of at least enough file space to hold 
three keys. The system automatically uses these nodes 
to build your Index file. Or, from another angle, each 
node contains at least enough space to hold three keys 
and each page may contain from one to 255 nodes. 
Naturally, the number of nodes in any given page 
depends on the size of that page, and the size of the 
nodes (determined by the number of characters in each 
key). 

Now, you will specify the initial node size in bytes. 
However, the larger you make your nodes, the more 
efficient your index processing will be because of the 
way that the system accesses ISAM files. The only 
maximum restriction on initial node size is that it 
cannot be greater than your page size minus six bytes. 
Further information on nodes and how the system uses 
them is in Appendix B. 

1-4-3 How to Create a ISAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

Once you have specified all the above information, the 
system will save it as part of the Permanent File 
Specification. Then, in addition to this Permanent File 
information, you can also specify any or all of the 
following options: 

• Page size. You can choose any size page you want (up 
to the size you specified at system generation) or 
you can default this choice and the system will give 
you pages which are 512 characters long. 

• Number of Buffers. This tells the system how many 
buffers to use for your I/O processing. If you default 
this choice, the system will give you two buffers. 

• Space Management. (See the section on Space 
Management earlier in this chapter.) 

• Number of Volume Table Entries. When you're 
working with a multi-volume index file, you must 
indicate how many volumes the file contains. If you 
default this choice, the system will assume that there 
is only one. 

• Maximum Key Length. Your keys can range in length 
from one to 255 characters, and no two keys need be 
the same length. However, tell the system the 
expected length of your longest key because it 
requires that your nodes hold at least three keys, and 

Licensed Material - Property of Data General Corporation 

defaulting this choice will give you keys of a size 
such that three will fit in a node. This may be 
inconsistent with your desired key size, and the 
system will tell you so in an error message. 

• Database File Definition Pointer. If you're building a 
new index file for an existing database, you can 
modify the number of buffers recorded in the 
Permanent File Specification for that database. If 
you do this, however, you must tell the system 
where, in the computer's memory, the new 
specifications start. 

• Disable Hierarchical Replacement. If you are 
processing your ISAM file randomly with many 
buffers (i.e., more than three or four), use this 
option. If you are using very few buffers, you should 
use the Hierarchical Replacement feature. It will 
save you time and make your I/O transfers more 
efficient because it alters some of the internal steps 
which the system performs to buffer the index 
pages. 

• Read-After- Write Verification. This will tell the system 
to automatically verify each block of data it writes to 
your file. 

Table 1-4-1 summarizes all the steps for defining an 
Index file. 

Table 1-4-1. Steps in Defining Your ISAM Index File 

You Must Specify These: You May Specify These: 

This is an index file with Variable Length (Space Management) 
records 

Create Update processing mode (Read-After-Write Verification) 

One index level 

Starting address of Volume Table Pointer 

Initial Node Size 

Page Size (default == 512 characters) 

Number of Buffers (default == 2 buffers) 

Number of Volume Table entries (default == 1 volume) 

Maximum Key Length (default == size which allows 3 
keys/node) 

(Database file definition pointer) 

(Disable Hierarchical Replacement) 

1-4-4 093-000114-01 



Licensed Material - Property of Data General Corporation 

Defining Volumes of Your Index File 

In addition to defining your entire index file, you also 
have to define each volume which contains a part of the 
index. This is considerably easier than defining the file 
because you only have to give the memory address of 
the volume name and specify an ASCII character for 
the system to use as padding for partially filled pages. In 
addition to these two mandatory spcifications you also 
have the following options: 

• Contiguous Allocation. If you want the system to 
allocate space on this volume in one contiguous 
piece (rather than over many random ones), specify 
this option and the volume size. Note, furthermore, 
that you can increase your processing speed by 
allocating your first volume contiguously to hold 
your present keys. Then you can use Random 
Allocation for the remaining (or future) volumes to 
handle file expansion. 

• Volume Size. If you choose Contiguous Allocation, 
you must indicate the number of blocks on this 
volume that you want the system to immediately 
allocate for keys. If you choose Random Allocation, 
you can either specify a maximum volume size or let 
the system assign a size of 65,535 blocks of 512 
characters each. It will then use those blocks as it 
needs them. 

DataGeneraI 
SOFTWARE DOCUMENTATION 

Note that it is your responsibility to ensure that you 
have sufficient disk space for each volume. If you 
select Random Allocation, we recommend that you 
specify a volume size if you want any file overflow to 
go to another volume. If you select Contiguous 
Allocation, we recommend that you also select 
Disable File Initialization because initialization is not 
required and takes about twenty minutes for a 
maximum-size volume. 

• Disable File Initialization. For a contiguously allocated 
file, this option tells the system not to automatically 
erase all previous information in your allocated 
blocks. 

• Timeout Interval. This options allows you to establish 
your own timeout intervals if you wish. Normally, 
the system-assigned intervals are three seconds for 
fixed-head disks and five seconds for moving-head 
disks. The system will return an error if it cannot 
complete a data transfer within these intervals. 

That's all there is to defining each volume of your 
index file. Table 1-4-2 summarizes these steps. 

Table 1-4-2. Steps in Defining Each Volume of Your ISAM Index File 

You Must Do These: You May Do These: 

Specify address of the Volume Name 

Specify a pad character 

Choose Random or Contiguous Allocation (default = Random) 

(If contiguous, specify Disable File 
Initialization) 

Specify Volume size (default = 65,535 blocks) 

(Specify a timeout interval) 

093-000114-01 1-4-5 How to Create a ISAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

Defining Your Database File 

Half of your ISAM file now exists. However, defining 
the database file and its volume (s) is very similar to 
defining the index. You only need to know a few new 
things. First you must tell the system that this is a 
randomly accessed file with variable length records. 
And, second, you cannot use these index-related 
options: 

• Disable Hierarchical Replacement 
• Maximum Key Length 
• Initial Node Size 
• Database File Definition Pointer. 

Other than this, you'll follow the same steps you follow 
when you create an Index file. See Table 1-4-3 for a 
summary. 

Licensed Material - Property of Data General Corporation 

Defining Volumes of Your Database File 

As usual, you also have to define each volume of your 
database file. However, these steps are exactly the 
same as those for the index file, so we'll just 
summarize them in Table 1-4-4. 

Table 1-4-3. Steps in Defining Your ISAM Database File 

You Must Specify These: You May Specify These: 

This is a RAM file with Variable Length (Space Management) 
records 

Create Update processing mode (Read-After-Write Verification) 

Starting address of the Volume Table 
pointer 

Number of Volume Table entries (default = 1 volume) 

Block size (default = 512 characters) 

Numbers of Buffers {default = 1 buffed 

Table 1-4-4. Steps in Defining Each Volume of an ISAM Database File 

You Must Specify These: You May Specify These: 

The address of the Volume Name 

Pad character 

Contiguous or Random Allocation (default = Random) 

Of Contiguous, Disable File Initialization) 

Volume size (default = 65,535 blocks) 

(Timeout interval) 

1-4-6 093-000114-01 



Licensed Material - Property of Data General Corporation 

How to Open an Existing ISAM File 
You've probably already figured out that opening an 
existing ISAM file is another two-part process (Index 
and Database), but opening is easier than creating and 
opening. 

Opening Your Index File 

There's nothing new here. You follow exactly the same 
procedures to open your index as you did to create it, 
except that you don't have to specify an initial node size 
or a maximum key length. (Those values are already in 
the Permanent File Specification.) Table 1-4-5 should 
look familiar by now. 

DataGeneral 
SOFTWARE DOCUMENTATION 

Opening Your Existing Database File 

If you do not specify a starting address for the database 
file definition when you open your index, the system 
will automatically use all the information in the 
Permanent File Specification to open the file. 

If, however, you do specify the database file definition 
address, then you will have to specify: 

• that the file has Variable length records; 
• that you will be using the Update processing mode; 
• the memory address of your Volume Table; 
• the name of your first volume; and 
• that this is a randomly accessed file. 

You also have the option of specifying a different 
number of buffers than you recorded in the Permanent 
File Specification. 

Table 1-4-5. Steps in Opening an Existing ISAM Index File 

You Must Specify These: You May Specify These: 

You're opening an Index file with 
Variable Length records 

Update processing mode (Read-After-Write Verification) 

One index level (default - lleveI) 

Starting address of the Volume Table 
pointer 

Name of the first volume 

Number of Buffers (default - number specified in PFS) 

(Disable Hierarchical Replacement) 

(Database file definition present) 

(Database file definition pointer) 

093-000114-01 1-4-7 How to Open an Existing ISAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

Processing Your ISAM File 
(Background) 

Before we tell you about all the different things you can 
do to your ISAM files, it's important that you 
understand the two methods of accessing these files. 
We've already mentioned keyed access in the earlier 
part of this chapter, so now let's look at relative access 
(also called relative position processing). 

Whenever you open an INFOS ISAM file, the system 
automatically sets a current position. Current position is 
like a "home base", on which the system stands as it 
reaches out to access your file. Initially the system sets 
this position just above the first key, as shown in Figure 
1-4-2. 

Each time you access a key (and its associated database 
record), you can set a new current position at that key. 
Thus, by resetting your current position with each 
processing operation, you can read your file 
sequentially using relative motion. Since all positioning 
in your file thereafter will be relative to your current 
position, we call this relative access (relative position 
processing). You can move in any of six directions 
from your current position: 

• Down, which moves you from the initial current 
position to a position just in front of the first key, 
and which sends you a warning that you haven't 
actually accessed a key~ 

• Down and forward, which gives you access to the 
first key from the initial current position; 

• Forward, which lets you access the next key in the 
file~ 

• Backward, which lets you access the key before the 
current one~ 

• Upward, which returns you to the system-set initial 
current position, and, like down, sends you a 
warning; or 

* Initial Current Position 

Key Key Key Key Key Key Key 
A B C 0 E F G 

Licensed Material - Property of Oata General Corporation 

• Static, which lets you access the same key without 
changing position. 

Relative access depends upon your setting or resetting 
a current position. All motion within your file (except 
static) will be away from the current position you have 
set, in whatever direction you indicate. In other words, 
you need only specify a direction of motion when you 
are using relative access; you don't need to specify a 
key. 

For example, say that you want to rewrite several 
records, then access your entire file sequentially. Using 
relative access, you would do the following: 

1. Request a read operation with down and forward 
relative motion. This will give you access to the first 
key and its data record. You should also set current 
position when you request the read, so that you will 
have a "home base" on the key you accessed 
rather than on the initial current position. This will 
let you use ST ATIC motion for your rewrite, rather 
than another positioning movement. 

2. Request a rewrite operation with static relative motion. 
This is the fastest way to rewrite your file, since the 
system doesn't have any positioning to do before it 
processes your request. 

3. Request forward reads with set current position and 
static rewrites for each record you want to update 
until you reach the end of the index. 

4. Request Upward motion, when you have finished 
rewriting the individual records you wanted, to 
reposition yourself to the initial current position. 

5. Request a read operation with down and forward 
relative motion to reaccess the first record, then 
process your entire file sequentially by requesting 
reads with forward motion; remember also to set a 
new current position. 

Key Key Key 
H I J 

Lp 

Hack E9 /,,,,,,,,.1 

f)oll'lI 
, 
~ 

Key Key Key Key 
K L M N 

, 
L 

8D-00758 
'--------------~-- Figure 1-4-2. ISAM Index File ------------------' 

1-4-8 093-000114-01 



Licensed Material - Property of Data General Corporation 

It's as easy to process a file randomly with keyed access 
as it is to process one sequentially with relative access. 
You simply give the system the key for the record you 
want and you've got it. Furthermore, the concept of 
current position also applies to keyed access processing 
and can save you a lot of time when you're rewriting. 
By setting a current position on the record you want to 
rewrite, you can read the record before you rewrite it, 
then use static relative motion to rewrite. This speeds 
things up because static motion is always faster than the 
other movements. 

For instance, you could use keyed access to perform 
the read function in our last example. In this case, you 
would simply issue a read request using the key for 
each record you want, and set current position at that 
record. Then you would rewrite with static relative 
motion as before. 

As this example illustrates, you can use keyed or 
relative access at any time in an ISAM file. However, 
you cannot combine them in a single operation~ that is, 
you cannot request forward motion to key x. You can 
request a processing operation for key x, or you can 
request an operation with forward motion, but you 
can't combine the two. 

Now that you've got the necessary background 
information, let's see what you can do with your ISAM 
file. 

Processing Your ISAM File 
(Operations) 

For clarity, we'll break down the ISAM processing 
operations into three categories: 

• Processing Functions - read, write, rewrite, delete, 
and reinstate~ 

• Utility Functions - retrieve status, retrieve key, and 
retrieve high key~ 

• Auxiliary Features - lock/unlock and suppress 
database. 

The processing functions can modify either the file's 
structure or its content, but the Utility Functions never 
modify structure or content. The Auxiliary Features 
are just that - extra goodies. 

093-000114-01 

DataGeneral 
SOFTWARE DOCUMENTATION 

Processing Functions 

Read 

The ISAM read function is the one you'll use to 
retrieve data from your file via either keyed or relative 
access. You can do a relative read in any of the six 
directions described above; the system's motion is 
relative to your last established current position. For a 
keyed read, the system gives you the record you 
request. If you request a keyed read for a duplcate key, 
you must specify the occurrence number or you will get 
only the first occurrence of the key. 

Write 

Unlike read, you can write to an ISAM file only by 
keyed access. That is, with each write request, you 
must supply a key which will become a new index entry. 
If you try to write a key which already exists, the 
system will send you an error message unless you 
requested duplicate keys. When you're writing 
duplicate keys, the system will automatically assign 
each one an occurrence number; thus all the keys in 
your index will remain unique. 

Rewrite 

This function lets you update or change any existing 
database record (but not its key). It works with both 
keyed and relative access. Rewriting will not change the 
structure of the index, but you can change the length of 
a database record. 

Your positioning options under rewrite are the same as 
those for read; it's just that the data flows in the 
opposite direction (i.e., to the file, not from it). 

Delete 

This function gives you the ability to delete records 
from your Index and Database files and comes in two 
flavors: physical and logical deletion. Physical deletion 
uses keyed access to erase the record and/or its key 
from your file. When you use physical deletion in 
conjunction with the Space Management feature, you 
eliminate the need to reorganize your file. The system 
will automatically reallocate the space left by your 
deleted records. 

1-4-9 Processing Your ISAM File (Meat) 



DataGeneral 
SOFTWARE DOCUMENTATION 

When you use logical deletion, records and their index 
entries are not erased, but merely marked as logically 
deleted. When you access a logically deleted record, the 
system will let you know that the record has been so 
marked, but will still give you access to it. If you mark 
the Index entry, it is called loeallogical deletion~ if you 
mark the database record, it's a global logical deletion. 
You may mark both local and global logical deletion for 
any record. 

For example, if you had a personnel file, you might 
want to logically delete the records of those employees 
who were on a leave-of-absence~ you're not paying 
them, but they may return to work. On the other hand 
you would physically delete the records of all 
employees when they resign, are fired, or die. 
Naturally, if you try to access an element which has 
been physically deleted, you'll get an error message. 

Reinstate 

This function lets you remove the marks from the 
records which you have previously logically deleted~ in 
other words, it reinstates those records to your files. 
You can reinstate an index entry or a database record, 
or both, and you can do it via keyed or relative access. 

Delete Subindex 

This function allows you to physically delete all entries 
from your Index and database records. You may find 
this function useful when you no longer need an ISAM 
file, but you want to retain the file space allocated for it. 

Utility Functions 

Retrieve Status 

The Retrieve Status function lets you determine, 
through keyed or relative access, the following 
information: 

• the length of a database record and whether or not it 
has been logically deleted~ and 

• the length of that record's key, whether it is a 
duplicate, and whether or not it has been logically 
deleted. 

Licensed Material - Property of Data General Corporation 

Retrieve Key 

You can use this function to retrieve any key and its 
length through keyed or relative access. Normally the 
system will just give you the data record you req~est 
but you can use this command to find out what the ke; 
for a record is. This can be useful when you are 
processing your file via relative access, moving from 
record to record, and you want to know the key (or the 
key's length) for a particular record. 

Retrieve High Key 

Use of this command will tell you what the ending key 
in your index is. You can Retrieve High Key through 
keyed or relative access. 

Auxiliary Features 

Lock/Unlock 

Sometimes you may want to have exclusive access to a 
key or a database record. For these times, INFOS 
ISAM offers you an optional protective feature: you 
can locally lock any key, or you can globally lock the 
database record. Once you lock an element, no one can 
access it unless they unlock it. For example, if you are 
rewriting a data record, you can request a read which 
will set current position on that record and lock it. 
Then, you can rewrite it with a static motion and unlock 
it at the same time. 

If you're working in a multiuser environment and you 
access an element which someone else has locked 
you'll get the error message DATA RECORD 
LOCKED. If you really need that record, you can 
reaccess it by explicitly stating in your operation request 
that you want it unlocked. Then the system will remove 
the lock and perform your operation. You can use the 
lock/unlock feature with any of the ISAM processing 
functions described above except REINST ATE. 

Suppress Database 

In every processing operation, you have the option of 
not retrieving the data record associated with the key 
you access. For example, if you only want to establish a 
current position in the index, just issue a processing 
request that suppresses the retrieval of the database 
and sets current position. Or, if you want to create an 
index entry with no corresponding data record (for, 
say, each week of a long-term data gathering survey), 
you can merely issue a write command with database 
suppression for the key you want to write. 

End of Chapter 

1-4-10 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Chapter 5 
Data Rase Access Method (DRAM) Files 

Preliminary Note: Because DBAM is an extension of 
ISAM, read Chapter 4 to make sure you understand 
ISAM before you start this chapter. 

General Concepts 
The INFOS system's Data Base Access Method 
(DBAM) is to its ISAM as Superman is to Clark Kent: 
you get all the features you had in ISAM, but DBAM 
extends and strengthens those features to make your 
data processing easier, more versatile, and more 
efficient. These extended features include: 

• Subindexing within a single index file 
• Partial records 
• Multiple indexes for a single database file 
• Linked subindexes 
• Temporary indexes 
• Automatic key compression 
• Optimized data distribution 
• Approximate and generic search keys 

Despite all these feature extensions, however, the 
basic structure of a DBAM file is still the same as that 
of an ISAM file. That is, you will still build two files: 
one for your index and one (and only one) for your 

093-000114-01 

database. Each of these files can reside on one or more 
disks, or both can reside on the same disk. Your 
DBAM data records need have no relationship to one 
another, yet the file structure lets you build your file so 
that you can access it easily and logically. 

DBAM is designed to be convenient. For example, you 
can access a single data record through many sets of 
keys in one index, and through many sets of keys in an 
entirely. different index. To understand fully why 
DBAM IS so useful and versatile, let's examine each of 
its unique features. 

Subindexing 

You can access a data record through many different 
paths because the INFOS system lets you build 
subindexes within your index structure. Often you may 
want to divide a large collection of information into 
smaller, more manageable units. For instance, recall 
the mailing list example we used in the last chapter. In 
an ISAM file, the keys for all the data records are in a 
single, or main, index. In our example, we used city 
names as keys. But, if you wanted to do a mailing to the 
northeast region of the country, you had to know the 
names of all the cities in that region. DBAM's 
subindexes help you avoid this problem . 

1-5-1 General Concepts 

.. 



DataGeneral 
SOFTWARE DOCUMENTATION 

In DBAM, the main index does not usually contain 
keys to data records~ rather, it contains keys to other 
keys. In our example, the main DBAM index will 
contain one index entry for each region of the country. 
Each of these keys will then point to a subindex as 
shown in Figure 1-5-1. 

If you divided the country into nine regions, then the 
main index will contain nine entries. Each of these will 
have a subindex defined under it. In other words, level 
one in the illustration contains nine subindexes. 

There are two things to remember about a DBAM 
index structure. First, each unique division of the index 
is called a subindex. The general corollary to this is that 

Licensed Material - Property of Data General Corporation 

you can define one subindex for each entry in any other 
subindex and the maximum number of subindexes in 
an index is limited only by the amount of available 
physical storage space, not by the system. Second, 
counting the topmost (i.e., the main) index, you can 
define a maximum of 256 index levels. 

Index levels are numbered consecutively from 0 at the 
top to 255 at the bottom. Level 0 is the main index and 
it has the same properties as an ISAM index, except 
that you can define subindexes under it. So, you have 
the main index at level 0, each of whose entries points 
to a su bindex-at level one. 

MAIN INDEX MIO­
ATLANTIC 

MIO­
CENTRAL NORTHEAST • • • • • • • • • SOUTHEAST SOUTHWEST 

LEVEL 1 
SUBINDEXES 

SO-00759 

• • • • • • • • • • • • 

Figure 1-5-1. DBAM Two-Level Index 

1-5-2 093-000114-01 



Licensed Material - Property of Data General Corporation 

For an example, let's say that you want a highly 
selective mailing list. Instead of using city names as 
keys in the level one subindexes, let's use metropolitan 
regions. This will give you an even finer division of the 
data records. For instance, in the subindex for the 
Midatlantic region, you will have index entries such as 
New York Metro, Rochester Metro, Philadelphia 
Metro, and Baltimore Metro, as shown in Figure 1-5-2. 

Each of these keys then points to a subindex at level 
two. The keys at level two could be city names, which 
you could then subindex by zip code, and so forth. As 
you can see, you can construct as many levels of 
subindexes as you need for your application. 

Partial Records 
Now let's suppose that your mailing list is part of a 
larger application which maintains customer records for 
a large mail order catalog business. For the mailing list 

MAIN 
INDEX 

LEVEL 1 
SUBINDEXES 

DataGeneral 
SOFTWARE DOCUMENTATION 

portion of this application, INFOS DBAM will allow 
you to carry the customer names and addresses in the 
partial record section of the index entries. That is, each 
entry you create in a subindex can contain a fixed 
length partial record whose length you can choose, up 
to 255 characters. All the partial records in one 
subindex are fixed-length (i.e., they occupy the same 
amount of space), but you can select this feature for 
only specific subindexes, and thus avoid wasting too 
much space. So, if you set up partial records to hold 
frequently accessed data, you can save a lot of 1/0 time 
because you won't ever have to access your database 
file to get that data. However, note that you can access 
the data in the partial records only through their 
associated keys. Also, if the data in your partial records 
duplicates any database record information, you are 
responsible for updating both the partial record and the 
database - the system will not do it for you. 

••• 

, ~ 

LEVEL 2 
SUBINDEXES 

SO-00760 

093-000114-01 

, , , '- ~ 
• • • 

:;:; *"« <:< ~;;::; i ? ~ ~ ~ lX ii 

Figure 1-5-2. Three-Level DBAM Index 

1-5-3 General Concepts 



DataGeneral 
SOFTWARE DOCUMENTATION 

Multiple Indexes and File Inversions 
To maintain the customer records for the catalog order 
business we just mentioned, you can create a whole 
new index structure (with or without subindexes) for 
your existing database. That is, you won't have to 
duplicate any existing data records~ a new index 
structure will give you a different set of paths to get to 
those records. 

The technique for creating a new index is called File 
Inversion. To invert a file, you must first access a 
database record via an already established key or set of 
keys. Then you do a write inverted operation to your 
new index and the system will automatically create a 
new index entry there. Thus, you will have linked two 
unique index entries - one in each index - to the same 
database record. 

Figure 1-5-3 illustrates a single database with two 
unique indexes. 

Licensed Material - Property of Data General Corporation 

Linked Subindexes 

You can also link subindexes in any INFOS DBAM 
index to provide local data sharing. Just as inverting 
allows you to create a new index without duplicating 
your database, linked subindexes let you share data 
without reproducing a subindex structure. For 
example, you can build a single DBAM file for use by 
both your Personnel and Payroll departments. When 
the Personnel department wants to access a record, it 
will probably use the employee's name or social 
security number. Likewise, the Payroll department will 
most likely use a social security number or an employee 
number. To save storage space, you can use the Link 
Subindex feature to create just one social security 
number subindex which both departments can share, 
as illustrated in Figure 1-5-4. 

1-5-4 093-000114-01 



Licensed Material - Property of Data General Corporation 

Automatic Key Compression 

This DBAM feature can save you a lot of room in your 
index if you have several keys with identical leading 
characters. That is, if you have several keys whose first 
three or more characters are the same, you can have 
the system automatically store only the unique parts of 
those keys, along with one entry of the initial, identical 
part. For example, let's say that you have an inventory 
of parts whose numbers look like this: AI0I-PP-0710, 
where AI0l is a department number, PP means 
product part, and 0710 is the actual part number. With 
the dashes, this is a twelve-character key. If department 
AI0l is responsible for, say, 6500 product parts, you're 
going to have 6500 keys, each containing the same 
eight leading characters, A 101-PP-. Why waste over a 
half million bytes (1000 sectors) of your index space 
with all that duplication? 

When you define the subindex to contain the part 
number keys for department AI0l, simply specify 
automatic key compression. This is what will happen: 
when you create the first index entry, the system will 
use the entire key - say, AI0I-PP-0001. But when you 
create the second entry and you specify the key 
AI0I-PP-0067, only the unique part of the key (67) 
becomes part of that index entry. Thus, in this 
instance, you will save eight characters per key, and, in 
a subindex with 6500 keys, you'll save almost 52,000 
character positions in the index. 

There are three points to remember about key 
compression: 

• Specify the entire key for each index entry you 
create; the system performs the compression 
automatically. 

• Specify the entire key when you subsequently access 
that index. For example, code the equivalent of 
"Read the record whose key is AI0I-PP-2122", 
rather than "Read the record whose key is 2122". 

• Key compression will not alter your processing speed 
or efficiency. 

Optimized Distribution 

This is a handy time-saver for your index or database 
files, or both. Optimized distribution lets you store the 
database records or the nodes within your subindexes 
which you use most frequently on a disk (or disks) with 
the fastest access time. This technique is especially 
useful for the root nodes. (A root node of a subindex is 
like the door to that subindex~ it's the first point of 
contact between a subindex and its next highest index 
level. Don't worry about this right now. You can find 
further details on root nodes in Appendix B if you want 
them.) 

093-000114-01 

DataGeneral 
SOFTWARE DOCUMENTATION 

For instance, in our mailing list application, you could 
tell the system to store the subindex containing the 
customer name and address partial records on a fast 
moving-head disk. Thus, in addition to not having t~ 
access the database records to produce a mailing list, 
you would reduce the time it takes to access the 
subindex itself. Also, if you service some of your 
cus~omers more frequently than others, you can store 
theIr database records on a fast-access disk. 

N ?t~, ho~e~er,. that you don't have to keep your 
o~lgmal dlstnbutlOn of data across the various speed 
dIsks. If you find that you don't access certain records 
as ~requently as you used to, you can simply rewrite 
theIr records to a slower disk. Or, if small customers 
become big customers, you can rewrite their records 
onto a faster disk. In other words, you can use this 
feature to save time in accessing your most frequently 
used records. 

Temporary Indexes 

Occasionally you may want to create and use one or 
more indexes only for the duration of a processing run. 
These are called temporary indexes. For example, if you 
were preparing a special report, you might want to 
access each entry in our mailing list file, looking for 
customers who have spent, say, $100, $200, and $300 
in the past month. You could create three temporary 
indexes (one for each category) to store the 
information you find. There are actually two ways to do 
this: you could either create three new subindexes for 
your present main index, or your could create three 
new index files to contain your special report data. 
G~n~rall.y, it's easier to create a subindex for your 
eXIstIng mdex file than to define an entirely new index 
file. 

Whichever method you choose, however, the 
procedure will be the same after you have created the 
(sub)index. When you find a customer who satisfies 
the criterion for your report (i.e., one who has spent 
$100, $200, or $300), you will write an index entry in 
the appropriate (sub)index. Then, after you have 
accessed all of your existing entries and finished 
making your temporary (sub)indexes, you can 
sequentially access those (sub)indexes to produce your 
special report. 

There's just one other important point to keep in mind 
when you're using temporary indexes: deleting a 
temporary index does not delete any database records 
whose only access is through that index. However, you 
will not'be able to access those database records unless 
you tie them to a permanent index entry. That is, if you 
do not tie a new data record to a permanent index 
entry, you won't be able to access it after you delete its 

1-5-5 General Concepts 



DataGeneral 
SOFTWARE DOCUMENTATION 

temporary (sub)index, but it will continue to occupy 
space in your file. Therefore, be careful with temporary 
indexes; don't waste valuable file space by creating 
inaccessible data records. 

Those are most of the extended features that make 
DBAM unique. There are more, but we'll cover them 
when we get to the "Processing" section of this 
chapter. First, however, let's see how you create and 
open a DBAM file. 

How to Create an INFOS DRAM File 
Since the structure of a DBAM file is so similar to that 
of an ISAM file, the steps for creating one are similar 
too. As with ISAM, you'll build two files - one for the 
index and one for the database. The only difference 
between ISAM and DBAM at creation is in the number 
of steps involved. Therefore, in the creation steps that 
follow, we will explain only those features which differ 
from their IS AM counterparts, or which are unique to 
DBAM. If you are unsure of an unexplained point, 
refer back to the "Creation" section of Chapter Four. 

Defining Your Index File 
To begin, you have to specify that you are creating an 
index file with Variable Length records, and that you 
are using the Create Update processing mode. 
Following this, the other required specifications are: 

• Number o/index levels: At runtime, you must indicate 
the number of subindex levels you expect your 
index to have. If you aren't sure how many subindex 
levels you'll want, just specify a relatively large 
number (5 or 6 will probably do). This won't waste 
any space in the index, and, if you find that this 
'number is insufficient, you can change it on a 
subsequent opening. 

NOTE: If you specify only one index level at 
runtime, you will not be able to use any 
subindexes. 

• Volume Definition Table Pointer 

• Minimum Node Size 

• Database File Definition Pointer 

• Numbero/Volume Table Entries 

Licensed Material - Property of Data General Corporation 

• Number 0/ Buffers: The default value here is two 
buffers, but you can choose more if you wish. 

• Page Size: This is the same as block size in SAM and 
RAM, except that, because of the way that the 
system transfers data, you're limited to 12 disk 
sectors, not 512 characters. The mInImum 
restriction here is that a page must be at least six 
characters larger than your largest expected node. If 
you default this choice, your pages will only be 512 
characters long. 

After you specify all of the above, you get to choose 
from these eleven index file definition options: 

• Read-After-Write Verification 

• Space Management 

• Enable Hierarchical Replacement 

• Maximum Key Length 

• Optimized Record Distribution 

• Key Compression 

• Partial Record Length: All partial records in your 
index will be the same length, but you can choose 
that length, up to 255 character, to suit your needs. 

• No Subindexes: If you don't want to use 
subindexes, you can specify so here and you'll save 
four bytes of disk space per key in your index. 

• Temporary Index: If you want to use them, say so. 

• Permanent Data Records: If you're creating a data 
record through a temporary index and you want to 
keep it after you delete the temporary index, specify 
it here. 

• High Priority Node: If you're working with a 
complex index structure with many subindexes, you 
can use this option to keep in memory the root node 
of an important index or subindex. (See Appendix B 
for further explanation.) 

1-5-6 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneraI 
SOFTWARE DOCUMENTATION 

Table 1-5-1. Steps in Creating a DRAM Index File 

You Must Specify These: You May Specify These: 

This is an index file with Variable length (Space management) 
records 

Create Update processing mode (Read-After-Write verification) 

Number of index levels (default - 1 level) 

Volume Definition Table pointer 

Number of Volume Table entries (default - 1 volume) 

Minimum node size (default - 6 bytes less than block size) 

Database file definition pointer 

Page size (default - 512 characters) 

Number of buffers (default - 2 buffers) 

(No subindexes) 

(Disable hierarchical replacement) 

(Maximum key length) 

(Optimized record distribution) 

(Key compression) 

(Partial record length) 

(Temporary indexes) 

(Permanent data records) 

(High priority node) 

093-000114-01 1-5-7 How to Create an INFOS DRAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

Defining Each Volume of an Index File 

As in ISAM, you must define each volume which is 
part of your file. There are only two required 
specifications here: the volume name pointer and the 
pad character. Then there are five options: 

• Volume Size 

• Contiguous or Random Allocation 

• Device Timeout Interval 

Licensed Material - Property of Data General Corporation 

• Volume Merit Factor: This is related to Optimized 
Record Distribution. If you selected that option for 
your file, you must assign a merit factor to each 
volume in the file. Simply put, this means that you 
must tell the system the merit factor of the highest 
priority volume first; the other volumes must follow 
in order of decreasing merit factors. Also, when you 
write a record, you must specify a merit factor, 
thereby choosing which data volume will hold the 
record. 

• Disable File Initialization 

Table 1-5-2. Steps in Defining Each Volume of a DRAM Index File 

You Must Specify These: You May Specify These: 

Volume name pointer 

Pad character 

(Contiguous allocation; default = random) 

(Volume size; default = 65,535 blocks) 

(Timeout interval) 

(Volume merit factor) 

(Disable file initialization) 

1-5-8 093-000114-01 



Licensed Material - Property of Data General Corporation 

Defining Your Database File 

DataGeneral 
SOFTWARE DOCUMENTATION 

There's nothing new here. See Table 1-5-3 for a summary of your options. 

Table 1-5-3. Steps in Defining a DRAM Database File 

You Must Specify These: You May Specify These: 

Random access method 

Variable length records (Space management) 

Create Update processing mode (Read-After-Write verification) 

Volume table pointer 

Number of volumes (default = 1 volume) 

Page size (default = 512 characters) 

Number of Buffers (default = 1 buffer) 

(Optimized Record Distribution) 

Defining Each Volume of Your Database File 

Again, there are no new concepts here. See Table 1-5-4 for a summary. 

Table 1-5-4. Steps in Defining Each Volume of a DRAM Database File 

You Must Specify These: You May Specify These: 

Volume name pointer 

Pad character 

Volume size (default = 65,535 blocks) 

Contiguous or random allocation (default = random) 

(Timeout interval) 

(Volume merit factor) 

(Disable file initialization) 

093-000114-01 1-5-9 How to Create an INFOS DRAM File 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

How to Open an Existing DRAM File 
There are very few differences between opening a DBAM file and opening an 
ISAM file, as the charts in Table 1-5-5 and 1-5-6 illustrate. 

Table 1-5-5. Steps in Opening an Existing DBAM Index File 

You Must Specify These: You May Specify These: 

This is an index file with Variable length 
records 

Update mode (Read-After-Write verification) 

Number of index levels (default == permanent file specification) 

Address of volume table pointer 

Number of buffers (default == permanent file specification) 

(Disable hierarchical replacement) 

(Database file definition present) 

(Database file definition pointer) 

Table 1-5-6. Steps in Opening an Existing DBAM Database File 

You Must Specify These: You May Specify These: 

This is a RAM file with Variable length 
records 

Update mode 

Volume table address 

Name of first volume 

(Different number of buffers from the 
permanent file specification) 

1-5-10 093-000114-01 



Licensed Material - Property of Data General Corporation 

Processing Your DRAM File 

DRAM Access Methods - Keyed, Relative, 
and Combined 
Like ISAM, DBAM lets you get to your data through 
keyed or relative access; unlike ISAM, however, you 
can also combine these two access techniques. When 
you use keyed access in D BAM, the system applies the 
key or keys you specify from the top of the index 
structure. That is, it applies the first key to the main 
index, the second key to the first appropriate subindex, 
the third key to the next subindex, etc. When you use 
relative access, your motion will be relative to your last 
established current position. (Current position in 
DBAM means the same as it did in ISAM.) When you 
combine keyed and relative access in a single operation, 
the system always performs the relative motion first; 
then it applies the key (s) from there. 

That's the general idea, but let's examine each access 
technique a little more closely. 

Keyed access in DBAM means that you give the 
INFOS system a key or a set of keys which will lead you 
to a subindex entry, which, in turn, mayor may not 

DataGeneral 
SOFTWARE DOCUMENTATION 

lead you to a database record. (If you're using partial 
records, for example, you may not want to see the 
entire data record.) Furthermore, you can access a 
single data record through more than one key or set of 
keys. Figure 1-5-5 illustrates a few possible DBAM 
keyed access paths. 

If you wanted to retrieve the "Product List", you 
would simply code the equivalent of "READ 
PRODUCTS". This is called a single level key because 
you're orily using one index level to get to your desired 
data. To retrieve the "Parts List" record, however, you 
would have to code: "READ UNITS, PARTS". This is 
a multilevel key; you use it to go from the main index (on 
one level) to a subindex (on another level), and then to 
the record. Finally, note that you can retrieve the data 
record "EXTENDER AOI" by coding the equivalent 
of either "READ COST, EXTENDER" or "READ 
UNITS, COMPONENTS, AOI". Thus you can see that 
keyed access in DBAM is different from that in ISAM 
because, in DBAM, your keys can move you through 
multiple subindexes before you get to the record you 
want. In ISAM, remember, you went directly to the 
data record using only one key. 

SO-00761 
Figure /-5-5. Single and Multilevel Keys in DBAM ------------.... 

093-000114-01 1-5-11 Processing Your DRAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

Relative access in DBAM is also somewhat different 
from that in ISAM. In DBAM, you're still moving in a 
direction relative to your last established current 
position, but you can move in eight different directions 
instead of just six. We'll use Figure 1-5-6 to help 
illustrate these directions. 

Level 0 
(Main Index) 

Levell 
Subindexes 

Level 2 
Subindexes 

SD-00591 

Ll' 

Had'\{/r(/ E=e /O/'l\{/r(/ 

f)Ollll 

Figure /-5-6. Relative Movement within a DBAM File 

Forward relative motion gives you the next entry in the 
subindex containing your last established current 
position. For example, if your current position is on 
entry CI, forward motion will give you C2. If you also 
request set current position, the system will set it on C2; 
otherwise, it will stay on C I. If your current position is 
on C4 and you request forward motion, you'll get the 
error message "END OF SUBINDEX" because there 
is no entry in the subindex beyond C4, and you cannot 
cross subindex boundaries using only forward motion. 

Backward relative motion gives you the previous entry 
in your current subindex. For instance, if your current 
position in on entry C4 and you requ.e~t ba~kward 
motion, you'll get C3. Setting current posItion with that 
request will move it to C3; otherwise the system will 
return you to C4 when you're through with C3. If 
you're on CI and you request backward motion, you'll 
get the error message "ILLEGAL REL MOTION" 
because there is no other entry in the subindex before 
Cl. 

Upward relative motion gives you the index e~try o.n 
the next highest level to which your current submdex IS 
linked. In other words, if you are on entry C4 and you 
request upward motion, you'll get entry C. Again, you 
have to set current position on C when you request 
movement if you don't want the system to return to 
C4. Naturally, if you are on C and you requ~~t upward 
motion, you'll get a "TOP LEVEL ERROR message 
since there is no higher subindex. 

Licensed Material - Property of Data General Corporation 

Up and forward motion moves you up to the next 
highest level and forward to the next entry in that level. 
For instance, if your current position is on EI4 and you 
request up and forward motion, you will access entry 
E2. (Don't forget to set current position again.) Now, if 
your current position is on E2 and you request up and 
forward, you'll get the message "END OF 
SUBINDEX" because, even though the system can 
move you up a level to E, it cannot go forward; there is 
no entry on that level beyond E. Naturally, if you are 
on E, you cannot move up and forward - there's no 
place to go. 

Up and backward motion moves you up to the next 
highest level and backward to the entry just before your 
current subindex's source. For example, if you are on 
C3 and you request up and backward motion, you'll get 
B. (Set current position, if you want to.) Similar to up 
and forward, if you are on EI4 and you request up and 
backward, you'll get an error message because the 
system can move up to EI, but it cannot move 
backwards from there. 

Downward motion will move you to just in front of the 
first entry on the next subindex level. In other words, if 
you are on E, downward motion will put you just in 
front of El. However, this command does not 
automatically set a new current position; you have to 
specify that if you want it. Downward motion is handy 
when you want to sequentially access each entry in a 
subindex; you just move down, set current position 
there, and read forward. 

NOTE: You can only use this command for entries that 
have subindexes. You cannot, for example, 
move down from E3 because it has no 
subindexes. If you try to, you'll get the error 
message "SUBINDEX NOT DEFINED". 

Down and forward relative motion moves you down to 
the next subindex and forward into the first entry in 
that subindex. For instance, if you are on entry C and 
you request down and forward motion, you'll get C I. If 
you are in the system-set, initial current position (i:e., 
just above the main index), down and forward motion 
will give you entry A. 

Static motion accesses information stored in the index 
entry where you set your last current position. This 
information can be data and/or partial records. The 
only times you cannot use static motion is whe~ y~u 
are in the initial current position or when you are Just m 
front of the first entry in a subindex. 

1-5-12 093-000114-01 



Licensed Material - Property of Data General Corporation 

These are the only relative motion commands you can 
make; you'll get an error message if you try anything 
else. Therefore, if you are on D and you want to access 
El, you have to code the equivalent of: "READ 
FORWARD, SET CURRENT POSITION" and then "READ 
DOWN AND FORWARD, SET CURRENT POSITION." 
This seems like a pain, and it is. That's why DBAM lets 
you combine relative and keyed access. 

Combining Relative and Keyed Access 

When you combine keyed and relative access in a single 
operation in DBAM, you effectively reduce your total 
access time because neither you nor the system have to 
do as much to access the index entry you want. That is, 
when you combine relative and keyed access, the 
relative motion takes you to the subindex that will be 
the starting point for the keyed access. Therefore the 
system doesn't have to start at the top of the index and 
apply the keys you supply, one at a time, until it gets to 
the entry you want. 

Since you are using the relative motion part of a 
combined request just to establish a starting point for 
the keyed access, you'll only need three directions of 
relative motion: up, down, and static. In any single 
request, you can only explicitly specify one of these 
directions; the system always applies keyed access 
downward from the starting subindex. Static motion 
tells the system that the starting subindex is the one in 
which you last set current position. For example, in 
Figure 1-5-7, a static motion request for entry C5 from 
a current position on C 1 would tell the system to look 
for C5 in the subindex containing Cl. 

Subindex 
level 4 

Subindex 
level 5 

Subindex 
level 6 

SD-00592 

DataGeneral 
SOFTWARE DOCUMENTATION 

We'll use Figure 1-5-7 to help illustrate combined 
keyed and relative access. 

Upward motion tells the system to move up a level 
before starting keyed access. That is, if you were 
positioned on entry A41 and you coded the equivalent 
of "READ UP, A2, SET CURRENT POSITION", the 
system would move from subindex level 6 to subindex 
level 5, then search for entry A2. When it found A2, it 
would set a new current position on it. If you didn't 
want to set current position on A2, you would just code 
"READ UP, A2"; the system would return you to A41 
when it finished accessing A2. 

Downward motion, obviously, will start keyed access at 
the next lower subindex level. So, if you were on entry 
E5, you could code the equivalent of "READ DOWN, 
E25" and, if you wanted to, "SET CURRENT 
POSITION". This would move you from entry E5 to 
entry E25 and, if you specified it, set a new current 
position. 

The fun comes in combining keyed and relative access 
to randomly retrieve any entry in a subindex. For 
example, in Figure 1-5-7, how would you get from a 
current position on El to entry C3? Well, you would 
code the equivalent of "READ UP, C, C3, SET CURRENT 
POSITION". This positions you on entry C3. (If you just 
said "READ UP, C, C3" the system would return you to 
El after you accessed C3.) 

~ ___________ Figure 1-5-7. Segment a/a Multilevel Index Structure ------------

093-000114-01 1-5-13 Processing Your DRAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

Now let's say that your current position is on EI and 
you want to access entry A41. You could code the 
equivalent of any of the following: 

READ UP, A, A4, A41 

READ UP, A, A4, A41 
SET CURRENT POSITION 

(This will return you 
to E I after you access 
A4I) 

(This will get you to 
A41 and reset current 
position there) 

READ UP, A, A4, SET CURRENT (This will set your new 
POSITION READ A41 current position at A4 

after you access A4I) 

READ UP, A, SET CURRENT 
POSITION READ A4, A41 

(This will return you 
to A after you access 
A4I) 

As you can see, you can reset your current position 
anywhere along your route from one subindex entry to 
another. 

Now let's look at an example of relative motion in two 
steps. If you wanted to go from entry E23 to entry D, 
you would code the equivalent of: 

READ UP, SET CURRENT POSITION (if desired), 
READ UP, D, SET CURRENT POSITION (ifdesired). 

Licensed Material - Property of Data General Corporation 

Notice that you can't go directly from E21 to D in one 
read motion; you can only specify one motion in each 
single request. 

To summarize, you can use all three accessing 
techniques - relative, keyed, or combination - in a 
single program that accesses a DBAM file. Sometimes 
you'll only want to use one way, i.e., relative motion to 
sequentially access each entry in an index level, but 
often you'll find that the combination of relative and 
keyed will save you access and frustration time. 

Remember these four things when you're accessing 
your DBAM file: 

I. Keep track of your current position and, generally, 
reset it each time you move. 

2. Specify only one relative motion direction at a time. 

3. Specify complete keyed access paths. 

4. Unless you specify otherwise, the system will apply 
keys downward from the top level of the index. 

As long as you keep these points in mind, you should 
have no trouble getting to the index entries or data 
records you want. 

1-5-14 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

DRAM Processing Operations 
All the ISAM Processing Functions, Utility Functions 
and Auxiliary Features are available in DBAM. (See 
Table 1-5-7.) However, all these features and functions 
are enhanced because of the differences between the 
ISAM and DBAM internal structures and access 
methods. DBAM also gives you three more Processing 
Functions, one more Utility Function, and two 
additional Auxiliary Features. The next sections tell 
you how DBAM's operations differ from ISAM's. 

DRAM Processing Functions 

Read 
You can read a DBAM file through keyed, relative, or 
combined access, which allows you to retrieve data 
from your file easily and quickly. On any read, you can 
set current position, suppress the retrieval of a partial 
and/ or a database record, and lock or unlock an index 
entry or a database record. If you access an index entry 
which has no database record associated with it, you'll 
get an error message. However, you can avoid this by 

requesting suppress database. If you want to read only 
the database record but not its partial record, you can 
request suppress partial record. If you (Iocally) lock an 
index entry for a database record which has other 
access paths, other users can get to that record via those 
other paths. If you (globally) lock a data record, no one 
else can access it through any access paths unless they 
or you explicitly unlock it. 

Write 

Each write operation creates a new index entry in a 
subindex. Therefore, with each write request, you 
must supply the key that you want to become part of 
the new entry. As in ISAM, you can only write to a 
DBAM file through keyed access. If you supply a 
multilevel key for a write operation, the system will 
begin writing at the last level of that key. And, unless 
you specify invert or suppress database, the system will 
write a new database record to go along with the new 
key you write. If you specify suppress database, the 
system will only write the index entry; if you specify 
invert, the system will write just the index entry and 
link it to an existing database record. You can also use 
write in conjunction with optimized record distribution 
to write a record on the most efficient type of disk. 

Table 1-5-7. DRAM Processing Operations 

ISAM Features Available in DRAM Additional DRAM Features 

• Processing Functions • Processing Functions 

Read Define Subindex 

Write Link Subindex 

Rewrite Delete Subindex 

Delete 

Reinstate 

• Utility Functions • Utility Functions 

Retrieve Status Retrieve Subindex Definition 

Retrieve Key 

Retrieve High Key 

• Auxiliary Features • Auxiliary Features 

Lock/Unlock Nonspecific Search Keys 

Suppress Database Suppress Partial Record 

093-000114-01 1-5-15 DRAM Processing Functions 



DataGeneral 
SOFTWARE DOCUMENTATION 

If you are writing new entries in a subindex which 
contains partial records, the system will expect you to 
write partial records in your new entries unless you 
specify suppress partial record for each new entry. 
Remember also that you must specify duplicate keys if 
you want to write them~ otherwise you'll get an error 
message. Finally, you cannot write over an existing 
database record with this command - you must use 
rewrite. 

NOTE: If the system cannot find enough space on a 
volume to write a new database record, but it 
can write the index entry, it will write the 
index entry and send you an error message. 
However, it will make no attempt to correct 
the fact that the index entry is not connected 
to a database record. Therefore, you may get 
an error message if you attempt to access the 
key without specifying Suppress Database. To 
correct this situation, issue a Delete request 
for the key in question. 

Rewrite 

This function lets you update an eXisting partial or 
database record. As in ISAM, your options for 
rewriting are the same as for reading; the flow of data 
just goes in the opposite direction. Rewrite will not 
create a new index entry; a key must already exist for 
the record you want to rewrite. To rewrite a partial 
record only, you specify suppress database. 

You can also use rewrite to relocate a record to a 
different speed disk. And a rewrite inverted will link an 
existing index entry which is not currently associated 
with a data record to a record which does have at least 
one access path. 

You can rewrite through keyed, relative, or combined 
access. 

Delete 

DBAM delete is the same as ISAM delete: you can 
physically or logically delete an index entry by local 
deletion, or a database record by global deletion. 
However, you cannot physically delete a database 
record which is accessible through more than One index 
entry. If you try to do this, you'll only delete the index 
entry you used to get to the record. You can use any 
access method for a logical deletion, but you can use 
only keyed access to physically delete a record or an 
index entry. 

Reinstate 
There are no differences between ISAM reinstate and 
DBAM reinstate~ both allow you to remove logical 
deletion flags from keys or data records. 

Licensed Material - Property of Data General Corporation 

Define Subindex 

When you create a DBAM file, you define your index 
structure and its main level. However, if you want to 
use subindexes, you have to define each one 
individually in your program. This involves specifying 
the following for each subindex: 

• Minimum node size 

• Maximum key length 

• Partial record length 

• Key compression (if you want it) 

• No subindexes (if you don't want any subindexes 
under this one) 

• Merit factor for the subindex root (similar to the 
volume merit factor described above in "Defining 
Your DBAM Index File" and applicable only if you 
previously chose optimized record distribution). 

Link Subindex 

Earlier in this chapter we described your ability to link a 
subindex to other entries within its index file. This 
processing request will carry out that link through 
keyed, relative, or combined access. 

Delete Subindex 

This function lets you physically or logically delete a 
subindex from an index entry. You can use all three 
types of access to get to the index entry whose 
subindex you want to delete. Once you get to the 
desired subindex, the system determines whether or 
not it's linked to any other entry in the index (including 
its own subindexes). If it is, the INFOS system will 
unlink the desired subindex but leave it intact. If the 
subindex you want to delete is not linked to any others, 
the system will delete it. 

DRAM Utility Functions 

Retrieve Status 

Similar to the ISAM feature of the same name, 
Retrieve Status lets you determine the status and 
length of any record through all forms of access. That 
is, this request operates exactly like a read request, 
except that you'll get a record's status instead of the 
record itself. Specifically, the system tells you the 
following: 

• The length of the database record 

• The length of the record's key 

1-5-16 093-000114-01 



Licensed Material - Property of Data General Corporation 

• The partial record length 

• Whether the record's key is a duplicate 

• Whether the record is locked 

• Whether the record or its key have been locally or 
globally deleted 

Retrieve Key 

Using keyed or relative access, or both, you can use 
this function to find the key for any given record and its 
occurrence number. If you use relative positioning with 
this request, the system will tell you the key after it 
finishes positioning. As in ISAM, this function is handy 
when you're sequentially processing a file with relative 
access and you want to know the key for a particular 
record. If you want to physically delete a record which 
doesn't contain its own key, this function is necessary 
because you have to specify a key in order to physically 
delete a record. 

Retrieve High Key 
You can find the final key in any subindex in a 
multi-indexed file with this request. (The final key is 
that which has the highest binary value in the index.) 
You can also position to any key in the subindex with 
this request, and you can use any of the forms of 
access. 

Retrieve Subindex Definition 

This request will tell you the parameters which were 
used to define a particular subindex. After the system 
locates an index entry through one of the access 
techniques, it will tell you the parameter for that 
entry's subindex. This is frequently useful in helping 
produce a backup file for a database. In order to 
reconstruct a database, a program has to be able to 
determine the parameters of each subindex it 
encounters. 

DRAM Auxiliary Features 

Lock/Unlock and Suppress Database 

You can use Lock/Unlock and Suppress Database with 
a DBAM file just as you can with ISAM. If you don't 
remember what these do, refer to the Auxiliary 
Features section of Chapter 4. 

DataGeneral 
SOFTWARE DOCUMENTATION 

Nonspecific Search Keys 

Nonspecific search keys allow you to access a subindex 
even if you don't know the exact key you're looking 
for. They come in two kinds: Generic and Approximate 
search keys. A Generic key will give you the first record 
whose key matches the one you supply, up to the 
length of the generic key. For example, if you have an 
invoice file keyed by date, the keys could look like this: 
760601, 760602, 760603, etc. (i.e., year, month, day). If 
you wanted all the invoices sent out in June, 1976, you 
would give the generic key 7606, and the system would 
give you the first record whose key began 7606. Then 
you would sequentially process your file from that point 
to get the rest. If there were no invoices for June, you 
would get an error message, "DATABASE RECORD 
NOT PRESENT". If there were invoices for June, 
you'd get the record of the first one, whether it was 
760601 or 760624. In other words, generic keyed access 
seeks only keys which begin with exactly the same key 
characters. 

Approximate keys, however, retrieve the first record 
with an equal or greater key value. For example, if you 
wanted the first invoice sent after July first (760701), 
you would specify the approximate key 760700 and the 
system would find the first invoice written on or after 
July 00, even if it wasn't in July. That is, if the first 
invoice wasn't written until August eighth (760808), 
the system would return it to you because there were 
no keys between 760700 and 760808. However, if you 
had tried a generic keyed access using 760700, you 
would have gotten only an error message because the 
system would not have found any keys which matched 
760700. 

Suppress Partial Record 

This feature allows you to suppress retrieval of the 
partial record associated with the key and/or data 
record you're processing. For example, assume you 
have a Personnel file whose partial records contain 
salary information. If you want to rewrite an 
employee's data record to include some new 
information such as a change in marital status, you can 
specify Suppress Partial Record to avoid having to 
rewrite the partial record. This feature is also useful 
when you want to read an entire database record, not 
just that part stored in the partial record. (Note, 
however, that if your partial records contain data which 
is also in the data record, you are responsible for 
updating both the partial and the database record.) 

End of Chapter 

093-000114-01 1-5-17 DRAM Auxiliary Features 





Licensed Material - Property of Data General Corporation 
DataGeneraI 
SOFTWARE DOCUMENTATION 

Chapter 6 
The RDOS/INFOS Interface 

Yes, folks, this is the infamous Chapter 6. As you've 
read through this manual, you've come across hints 
about information that "will be explained in greater 
detail in Chapter 6". Well, we're finally going to reveal 
those details, including: 

• Considerations when you're generating an INFOS 
system 

• Buffer space and buffer management 

• File naming 

• Disk space allocation 

• Using peripheral devices as INFOS files 

• How to deal with unlabeled magnetic tapes 

We call this chapter the RDOSIINFOS interface 
because, as we mentioned in the Preface to this 
manual, the INFOS system uses the RDOS system's 
file handling abilities as a base for all its operations. 
Therefore, you have to be aware of certain RDOS 
system facilities and limitations when you're designing 
and programming your INFOS application. In other 
words, this chapter is a compendium of all the 
system -related information which wasn't particularly 
pertinent to our earlier discussions. 

093-000114-01 1-6-1 

Considerations When You're 
Generating an INFOS System 

As you know, the INFOS system is a logical extension 
of the file handling facilities of RDOS. It requires a 
mapped ECLIPSE computer with a minimum of 128K 
bytes of main memory. (Don't worry too much about 
this -- many ECLIPSEs give you up to 512K bytes.) In 
general, however, the overall effectiveness of your 
INFOS system depends on how you balance your 
peripheral equipment and main memory, as well as 
your typical job mix. 

The "other guys' " systems frequently limit you to a 
single system configuration to satisfy a variety of job 
mixes. Not so with INFOS~ it lets you configure a 
number of different variations to satisfy the variety of 
your job mix requirements, and it lets you store all your 
configurations on a single 'system disk'. Then, once 
you become familiar with the CLI, you can release one 
variation and boot another into operation in just a few 
minutes. 

To generate your INFOS systems, use the procedures 
in our How to Load and Generate Your RDOS System, 
(manual number 093-188). System generation 
(sysgen) is a straightforward, simple operation in which 
you supply numeric value responses to sysgen 
questions. The values you enter determine the size and 
performance of each INFOS system you generate. 
Now, to make the most of sysgen, let's examine how 
you can use the computer's memory. 

Considerations When You're Generating 
an INFOS System 



DataGeneral 
SOFTWARE DOCUMENTATION 

Memory Space 

Think of the computer's memory as having two distinct 
logical parts: the System Area, which contains the 
system software and data areas, and the User Area, 
which contains your application programs. How you set 
up each of these areas determines how efficiently your 
system will perform. 

The System Area 

Your system area will never need more than 64K bytes 
of memory, and the more you shrink the system 
memory requirements, the more memory you'll have 
for your User Area. You control the total size of the 
System Area through the sysgen dialog. During this 
dialog, you'll have to specify how much memory you 
want to allocate to each part of the System Area, i.e., 
for 'windows', INFOS file control space, system 
buffers, and resident INFOS/RDOS code. Your 
specifications here will significantly affect system size 
and performance, so we'll examine each factor. Figure 
1-6-1 will help you visualize the components of the 
System Area. 

Figure /-6-/. Components o/the System Area 

Resident INFOS/RDOS Code 

The resident code portion of the INFOS system 
occupies about 4.5K bytes of memory. In the How to 
Load and Generate ... manual, there's a list of the 
various RDOS component sizes which you can use to 
calculate how much memory the resident RDOS code 
will take. Notice that you can cut down the size of 
resident RDOS code if you exclude drivers for 
peripheral devices which your programs will never 
reference. 

The resident code area also includes space for stacks 
and cells. Stacks keep track of the progress of each of 
your programs and make it possible for your programs' 
tasks to execute concurrent system calls. The system 
also uses them for spooling and INFOS disk 110. You 
can specify a maximum of ten stacks, but you must 
allow one stack for the system and one stack for each 

Licensed Material - Property of Data General Corporation 

'ground' in your User Area. That is, if you're using 
background and foreground, you must specify (at 
least) three stacks -- one for the foreground, one for 
the background, and one for the system; if you're just 
using background, you need only two. Beyond these 
mandatory specifications, however, you have two 
options: you can specify one stack for spooling (if 
appropriate), and/or you can allocate one stack for each 
task in either ground which will execute system calls 
concurrently with other tasks. 

Each stack requires 530 bytes of memory, and each 
time you boot the system in, it will give you the 
number of stacks you specified when you generated the 
system. During processing, the system uses the stacks 
as they are needed; that is, a stack must be available to 
execute a requested function each time that a task (or 
the INFOS system) issues a system call. If a stack isn't 
available, the system can't execute the call until 
another call finishes and releases its stack. Generally 
speaking, the more stacks you specify for a multitask 
program, the faster your programs will run. However, 
be careful: allocation of too many stacks may restrict 
you when you try to set up your User Area. 

Cells are 32-byte pieces of memory which help the 
system keep track of all your requests. You'll 
automatically get three cells for each stack you allocate. 
Beyond this, the INFOS system needs four extra cells 
of its own and, if you want to spool your output, you'll 
need two more cells. You can specify up to 64 extra 
cells at sysgen, and, within limits, the more you 
specify, the better the system will perform. 

System Buffers 

System buffers are 542 bytes long. The INFOS system 
uses them for RDOS data file buffering, to hold the 
map directory for randomly allocated volumes, and to 
hold RDOSIINFOS system overlays. In general, the 
number of system buffers determines how many 
system overlays will be in memory and how long they'll 
be there. 

The system automatically allocates at least six buffers 
for RDOS functions; two for each stack you specify. 
However, at sysgen, you can specify up to 63 extra 
buffers. As a rule of thumb, you should specify a 
sufficient number of extra system buffers to hold the 
overlays that the system needs to carry out an average 
function. (Note, however, that the number of buffers 
needed is a dynamic variable that depends on your 
processing functions.) In general, an optimum number 
of buffers for SAM processing is seven; for RAM, the 
optimum is six; and for ISAM/DBAM, approximately 
eighteen should be adequate. If you're using Space 
Management, increase each of these totals by two for 
each volume you are processing. 

1-6-2 093-000114-01 



Licensed Material - Property of Data General Corporation 

Windows 

During the sysgen dialog, the system will ask you to 
specify a maximum ISAM/DBAM page size in 
increments of 2K, 4K, or 6K bytes so that it can allocate 
enough space for 'windows'. The INFOS system uses 
two windows to look at the User Area, and two to look 
at the System Area. Each User window is 2K bytes 
long, but you can choose a System window length of 
2K, 4K, or 6K bytes. Therefore, the total space the 
system needs for windows will be either 8K, 12K, or 
16K bytes, according to this formula: 

(2*ps) + 4 = Window space in K bytes 

where 2 is the number of system windows, ps is the 
maximum page size (2K, 4K, or 6K bytes), and 4 is the 
number of K bytes which the system needs for user 
windows. Thus, the page size you specify at sysgen 
becomes the maximum physical transfer length for 
ISAM and DBAM files. 

Our experience has shown that an ISAM/DBAM index 
page size of 1024 bytes is quite efficient for most 
applications. This means that you'll frequently be able 
to construct a system using the 2K page size 
specification. (If you are using big pages, you should 
also consider specifying Key Compression.) Appendix 
B of this manual will give you the formulas for 
calculating ISAM and DBAM page and node sizes, or 
you can use the INDEXCALC utility (described in the 
INFOS Utilities Users' Manual) to find the optimum 
page and node size for various ISAM and DBAM index 
files. 

INFOS System File Control Area 

The area in which the INFOS system builds a set of 
control blocks for a file is known as the File Control 
Area. If the system doesn't have enough room in this 
area to construct these blocks, you won't be able to 
open your file. At sysgen, you will specify the size of 
the File Control Area in increments of lK bytes to a 
maximum of 16K bytes. Let's see how to figure out this 
size. 

The INFOS system uses three types of control blocks: 
File Control Blocks (FCBs), Volume Control Blocks 
(VCBs), and Buffer Control Blocks (BCBs). You have 
to use various combinations of these blocks to open 
each SAM, RAM, index, and database file. For SAM, 
RAM, and database files, you need: 

• 1 FCB~ 

• 1 VCB for each volume in the file~ and 

• 1 BCB for each I/O buffer you have allocated in your 
User Area. 

DataGeneral 
SOFTWARE DOCUMENTATION 

In addition, if you want to use code translation in a 
SAM or RAM file opening task, you must allow space 
for the system to build an appropriate translation table 
in the File Control Area. Make sure that you've 
accounted for a full set of control blocks for each task 
that opens a SAM or RAM file. Each type of control 
block in a SAM or RAM file uses the following number 
of bytes: 

--------SAM and RAM Files -------

• FCBs 304 bytes 

• VCBs Numberofvolumes * 182 

• BCBs Number of buffers * (70+ (block size+ 511)1128) 

• Trans- 256 bytes per table 
lation 
Tables 

For example, to open a single volume SAM file with 
one buffer and an 80-character block size, you'll need 
561 bytes. Here's how we figure it: 

One FCB 
One VCB 
One BCB 
Total 

304 bytes 
182 bytes (I * 182) 
75 bytes (1*(70+(80+511)1128)=1*(70+5» 
561 bytes 

Each type of control block in an ISAM or DBAM 
database file needs the following number of bytes: 

,-------ISAM/DBAM Database Files----__ 

• FCBs 256 bytes 

• VCBs Numberofvolumes * 182 

• BCBs Numberofbuffers*(70+ (page size+511)1128) 

The set of control blocks for an index file consists of: 

• Two FCBs (one for the task and one for the INFOS 
system)~ 

• One VCB for each volume of the file~ and 

• One BCB for each I/O buffer you're using. 

093-000114-01 1 .. 6-3 Memory Space 



DataGeneral 
SOFTWARE DOCUMENTATION 

The system builds a complete set of control blocks for 
the database file and the index file when your first task 
opens an ISAM or a DBAM file. Each subsequent task 
in an open ISAM or DBAM file needs only its own 
index FeB because it shares the original set of control 
blocks with the other tasks for that file. You can use 
these formulas to figure out how much control space 
you'll need for your ISAM indexes: 

r---------ISAM Index Files -------_ 

• System FCBs 256 bytes 

• Task FCBs Number of index users*324 

• VCBs Number of volumes* 182 

• BCBs Number ofbuffers*(70+ (page size+ 510/128) 

So, an ISAM file which has a one-volume index with a 
page size of 512 bytes and two buffers, and a 
two-volume database with a page size of 512 bytes and 
one buffer needs·1616 bytes: 

One system FCB 
First task FCB 
VCBs 
BCBs 

Subtotal 

FCBs 
VCBs 
BCBs 

Subtotal 
Grand Total 

ISAM Index 

256 bytes 
324 bytes (1 *324) 
182 bytes (1 *182) 
156 bytes 
(2*(70+ (512+ 5111128) =2*(70+8» 
918 bytes 

ISAM Database File 

256 bytes 
364 bytes (2* 182) 
78 bytes 
(1 *(70+ (512+ 511)1128) = 1 *(70+8» 
698 bytes 
1616 bytes (918+698) 

NOTE: The next task to use this open file will only 
need 256 bytes (i.e., one task FeB) because it 
shares all the other previously allocated control 
blocks. 

Now, when you're dealing with a multiple-indexed 
DBAM file, the system will allocate one full set of 
control blocks for each index that you open, but only 
one set of control blocks for the database. That is, your 
first DBAM opening task will need a full set of index 
and database blocks, but if you open the same database 
with another index name, you only need to account for 
a set of index control blocks; subsequent opening tasks 
will share the database blocks allocated at the first 
task's opening. 

Licensed Material - Property of Data General Corporation 

Each DBAM index you open uses the following control 
space: 

r---------DBAM Index Files------__ 

• System FCBs 256 bytes 

• Task FCBs 

• VCBs 

• BCBs 

(Number of index users*304) + 
(Number of index levels*20) 

Number of volumes* 182 

Number ofbuffers*(70+ (page size+ 510/128) 

For example, let's say that you're opening a 
multiple-indexed DBAM file which has a two-volume 
index with five levels, a page size of 1024 bytes, and 
four buffers; also, its database has six volumes, six 
buffers, and a page size of 2048 bytes. The first task 
that opens the file will need 3240 bytes: 

System FCBs 
Task FCBs 
VCBs 
BCBs 

Subtotal 

FCBs 
VCBs 
BCBs 

Subtotal 
Total 

DBAM Index 

256 bytes 
404 bytes (0 *304) + (5*20» 
364 bytes (2* 182) 
328 bytes 
(4*(70+ 0024+ 511)/128) =4*(70+ 12» 
1352 bytes 

DBAM Database 

256 bytes 
1092 bytes (6* 182) 
540 bytes 
(6*(70+ (2048+ 510/128) =6*(70+ 20» 
1888 bytes 
3240 bytes 

Note here, also, that your next task to open this file 
under the same index will only need its own task FeB, 
i.e., 404 bytes. However, if you wanted to open the 
same database under a different index, you would have 
to account for space for that index's blocks. 

For instance, let's open the database in the above 
example through a three-volume index with four index 
levels, a page size of 1024 bytes, and two buffers. In 
this case, the system will need an additional 1350 bytes 
of memory: 

System FCBs 
Task FCBs 
VCBs 
BCBs 

Total 

1-6-4 

DBAM Index 

256 bytes 
384 bytes( 0 *304) + (4*20» 
546 bytes (3 * 182) 
164 bytes 
(2*(70+ 0024+ 510/128) =2*(70+ 12» 
1350 bytes 

093-000114-01 



Licensed Material - Property of Data General Corporation 

Finally, a note on what happens when you close a file. 
When a task closes a SAM or RAM file, the system 
releases the file's control space for use by other tasks. 
In mUltiple-opened ISAM and DBAM files, however, 
the system does not release the space occupied by the 
control blocks until the last task using the file closes it. 
That is, if a task closes a multiple-opened ISAM or 
DBAM file while other tasks are still using the file, the 
system only releases the space for the closing task's 
FeB. 

The User Area 

Once you've figured out how much memory space 
you'll need for the System Area, subtract your answer 
from the total amount of memory and you'll know how 
much you have left for your program and your I/O 
buffers. Of course, the amount of memory you need in 
the User Area depends on your job mix. For example, 
if your job mix requires only one application program, 
you can use a simple background configuration~ if it 
requires two programs, you'll probably want to 
partition the User Area into a background/foreground 
configuration, as shown in Figure 1-6-2. 

SO-00577 

L-___ FiKure /-6-2. Partitioned User Area ------I 

Even though both 'grounds' are the same size in 
Figure 1-6-2, they don't need to be, and, in fact, you 
will specify the size of each ground at runtime with the 
ell's SMEM command. In general, the size of your 
programs plus their buffer requirements will tell you 
where to set the partition. For instance, suppose that 
your largest foreground program is a single-task, 60K 
byte DBAM program which uses four 1024-byte index 

DataGeneral 
SOFTWARE DOCUMENTATION 

buffers and two 512 byte database buffers. You'll need 
5120 total bytes for your buffers, which means that the 
total memory requirement for the foreground is 65K 
bytes, as illustrated in Figure 1-6-3. 

96K 

65K 

60K 

o 
SO-00578 

Figure /-6-3. User Area Partitioned.lora 65K Byte 
Foreground 

The buffer space (in either 'ground') which your 
application needs will basically depend on how many 
INFOS files your program will have open at anyone 
time. The next section of this chapter will show you 
how to calculate buffer space. 

The difference between your program size and the size 
of its 'ground' is the INFOS I/O buffer area or the 
ground's Virtual Memory. When you open a file, in 
fact, you may get the error message "OUT OF 
VIRTU Al MEMOR Y", which means that there isn't 
enough room in the ground's virtual memory to build 
the buffers for the file you're trying to open. Most of 
the time, however, you can solve this problem simply 
be resetting the partition with a ell SMEM command. 

Summary 

Figuring how much memory the system will need and 
how much you'll have left involves a series of 
trade-offs. Fortunately, the IN FOS system lets you 
vary your parameters rather widely to get the most 
efficient system configuration. Play with your values 
before you start to generate a system~ very often you'll 
find that what you want to do fits easily into your User 
Area. But, if it gets tight, just remember all the options 
you have considering page size, window size, number 
of stacks and cells, and system buffers. By properly 
manipulating all of these variables, you can mold your 
system to fit your application like a glove. 

093-000114-01 1-6-5 Memory Space 



DataGeneral 
SOFTWARE DOCUMENTATION 

1/0 Buffer Space 

In the previous section, we mentioned that the system 
allocates I/O buffers in a ground's virtual memory. 
Any task in either ground can open any INFOS file, but 
the amount of virtual memory that the system needs 
for a program in either ground depends on the 
following: 

1. The number of unique files you want to open, and 
the number of concurrent openings of any of these. 

2. The block or page size of each unique file you're 
going to open. 

3. The number of buffers for each unique file. 

4. Whether or not you requested Read-After-Write 
verification. 

Items 2, 3, and 4 are self-explanatory, but let's look at 
number one. For a task to open any SAM or RAM file, 
there must be room in virtual memory to allocate the 
number of buffers requested by the task. In other 
words, each task uses its own buffers, it does not share 
them with other tasks. Therefore, if there is no room in 
virtual memory for the number of buffers a task 
requests, the system cannot perform that task. 

In ISAM and DBAM, however, this is not the case. 
The first task that opens an ISAM/DBAM file will get 
its requested number of buffers, and each subsequent 
opening for that file will use those same buffers, but no 
more than those, no matter how many the subsequent 
opening requests. Therefore, if you're working in SAM 
or RAM, make sure you've got enough virtual 
memory space to hold all the buffers for all the tasks 
you're going to want to perform. If you're working in 
ISAM or DBAM, make sure that the number of 
buffers you request in your first task is sufficient for 
your later tasks. 

Licensed Material - Property of Data General Corporation 

Also, with regard to number four above, your opening 
task in ISAM and DBAM must request 
Read-After-Write verification if you want to use it in 
any subsequent tasks. If the first task does not specify 
Read-After-Write, you will not be able to use it later for 
that file, even though you ask for it. The system will 
simply ignore your subsequent request. 

Finally, similar to what happens in the System Area 
the INFOS system will release the buffer space for ~ 
SAM or RAM file when your last task closes the file. 
However, it will not release ISAM/DBAM buffer space 
until the last task using the file closes it. 

Figure 1-6-4 shows you how to compute buffer space 
requirements (in bytes) for the opening of each type of 
file, both with and without Read-After-Write 
verification. 

For example, referring to Figure 1-6-4, suppose you 
want to open a SAM file which has three buffers and 
blocks that are 512 characters long, and you want to use 
Read-After-Write. You'll need 3072 bytes worth of 
virtual memory for the opening task: 2*3 buffers*512 
bytes per block. (But don't forget to make allowances 
for later tasks which will open that file -- they will need 
their own buffer space, too.) 

Now if you're opening a database file without 
Read-After-Write, but with four buffers and a page size 
of 1024 bytes, how many bytes are those buffers going 
to need? The answer is 4096 bytes (4*1024). However, 
if you choose this configuration, you won't be able to 
use Read-After-Write for later tasks in this file, nor can 
you use more than these four buffers. So plan ahead 
and you won't unnecessarily limit your processing 
capabilities. 

093-000114-01 



Licensed Material - Property of Data General Corporation 

Bytes = (Number of buffers) * 
(Block size) 

SD-00579 

For each task that 
issues an open file 

request. 

ISAM and DBAM 

YES 

DataGeneral 
SOFTWARE DOCUMENTATION 

Use the existing buffers 
regardless of how may this task 
wants. If the original task did 
not ask for Read-After-Write and 
this task does, the system uses 
the existing buffers but does 
nol perform Read-After-Write 
verification. 

DATA BASE 

Figure /-6-4. Buffer Space Requirements Per File Opening 

093-000114-01 1-6-7 1/0 Buffer Space 



SOFTWARE DOCUMENTATION 

1/0 Buffer Management 
In general, the INFOS system regulates buffers 
according to the Least-Recently-Used technique 
(LRU). Under this technique, the system keeps track 
of the buffer whose contents it accessed the longest 
time ago. This, of course, is the least recently used 
buffer. Figure 1-6-5 illustrates the LRU technique for 
input; the technique for output is the same, except that 
the data movement between your data area and the 
buffers goes in the opposite direction. 

The INFOS system searches 
the buffers for the block 
containing the data you 
requested. 

The INFOS system: 

1 Moves the data 
from the buffer to 
your data area. 

2. Moves the buffer's 
clock ahead. 

SD-00580 

The INFOS system: 

1. Finds the buffer whose 
current contents were 
accessedthe~ngest 

time ago 

2. Flushes the buffer, if 
necessary. 

3. Enques a system I/O 
request to transfer the 
block to the buffer. 

4 Resets the buffer's clock 
to zero. 

5 Moves the data to your 
data area when the 
transfer is complete. 

6 Starts the buffer's clock. 

Figure 1-6-5. Least-Recently-Used Technique/or Input 

Due to the nature of SAM file processing in the Input 
mode, the INFOS system automatically prereads the 
next block you're going to want while you're 
processing your current one (as long as you allocate 
more than one buffer). Thus, SAM file buffers are 
always kept full. On Write requests in the Output 
mode, the system will automatically write the contents 
of a buffer to your file as soon as that buffer is full. 
(Note, therefore, that you will speed up your 
processing considerably by allocating more than one 
buffer.) For SAM file processing in the Update mode 
and all RAM file processing, the system uses the basic 
LR U technique. 

Licensed Material - Property of Data General Corporation 

I~AM an? DBAM index file buffers, however, can be a 
slIghtly dIfferent story. Normally, the system manages 
these buffers according to a hierarchically modulated 
LRU, but you can disable the modulation at runtime. 
Whe? you're designing your file, you can specify 
certam root nodes as High Priority Nodes (HPNs), and, 
when your first task opens your DBAM file, you can 
request that the system not hierarchically modulate the 
LRU. (Root nodes, remember, are the 'doors' into 
each subindex level; we'll explain hierarchical 
modulation in a minute.) 

In certain DBAM applications, you're going to want to 
access your file as quickly as possible. One way to get 
maximum access speed is to keep your root nodes in 
memory as long as possible because they are the 
subindex contact points you need most frequently to 
locate index entries. So, when you design your DBAM 
file, you can specify that the root nodes of certain 
critical subindexes are HPNs. Then, when you first 
access these nodes, the INFOS system will keep them 
in buffers as long as possible. In other words, HPNs 
modify the more general LRU technique. Therefore, 
because of the way that the system handles HPNs, your 
first task should ask for a relatively large number of 110 
buffers. 

We use the term 'relatively large' because the number 
of buffers for HPNs depends on your application and 
how you set up your index levels. Sometimes you'll 
want to use one buffer per HPN (if you've got enough 
virtual memory), at other times, you'll only want 
enough buffers to hold the HPNs in the portion of the 
index structure which your program is processing. 
Note, however, that you need your HPN buffers in 
addition to those which you normally need to access 
your DBAM index structure. Figure 1-6-6 illustrates an 
index structure with sixteen HPNs. 

If you have enough virtual memory and sufficient 
room in the system's File Control Area for the buffer 
control blocks, your first task could open the file in 
Figure 1-6-6 with 25 110 buffers; sixteen for the HPNs 
and the rest for normal index access. If this isn't 
practial, and if your program only uses one section of 
the index (i.e., the left-, center-, or right-most branch 
in Figure 1-6-6), then you could specify about fifteen 
110 buffers when your first task opens the file. This 
would insure that the system would keep the HPNs for 
the section you're using in memory, and still have 
enough buffers left over for your normal index 
processing. 

1-6-8 093-000114-01 



Licensed Material - Property of Data General Corporation 

and the rest for normal index access. If this isn't 
practial, and if your program only uses one section of 
the index (i.e., the left-, center-, or right-most branch 
in Figure 1-6-6), then you could specify about fifteen 
1/0 buffers when your first task opens the file. This 
would insure that the system would keep the H PNs for 
the section you're using in memory, and still have 
enough buffers left over for your normal index 
processing. 

Alternatively, if you're short on buffers but you still 
want top speed, use the system default of hierarchical 
modulation for the LRU when you open the file, and 
don't designate any HPNs when you create it. Thus you 
won't fill all your buffers with root nodes, but rather 
the system will automatically use the buffers for the 
most applicable nodes in each subindex level. In other 

DataGeneral 
SOFTWARE DOCUMENTATION 

words, the system will use the same butTers over and 
over (according to LR U) on various index levels, 
essentially giving you the root nodes. However, since 
you don't have to specify HPNs, the system doesn't tie 
up buffers with some root nodes which you mayor may 
not want to use as frequently as some others. 

In general, your buffering decisions are going to come 
down to a tradeoff between speed and space. For many 
applications, the basic LRU technique is perfectly 
adequate and efficient. However, if you want to 
squeeze all the speed out of your system that you can, 
you can always modify the LRU in a DBAM file with 
High Priority Nodes, or hierarchical modulation, or, 
occasionally, both. You can even com bine these with 
key compression and relative processing to give you top 
speed. 

MAIN INDEX 
(HPN) 

SUBINDEX 
(HPN) 

SUBINDEX SUBINDEX SUBINDEX 
(HPN) (HPN) (HPN) 

SD-00581 

SUBINDEX 
(HPN) 

SUBINDEX SUBINDEX SUBINDEX 
(HPN) (HPN) (HPN) 

SUBINDEX 
(HPN) 

SUBINDEX SUBINDEX SUBINDEX 
(HPN) (HPN) (HPN) 

SUBINDEX SUBINDEX SUBINDEX 
(HPN) (HPN) (HPN) 

1-.. _____________ FiRure 1-6-6. DBA M Index with Sixteen HPNs ---------------..1 

093-000114-01 1-6-9 1/0 Buffer Management 



DataGeneral 
SOFTWARE DOCUMENTATION 

File Naming 
To access all devices and disk files, you have to give the 
system their full filename; to access cassettes and 
magnetic tapes, you need their full file number. A 
filename can consist of upper or lowercase letters, 
numbers, and/or the $ character; for example, you 
could name your file Payroll, or MTO, or $LPT. Your 
filename can contain any number of these characters, 
although the system will only look at the first ten. 

You can also append an extension to a filename. An 
extension is another set of alphanumeric characters, 
including $; again, however, the system only looks at 
the first two characters in an extension. In addition, you 
must put a period (.) between the filename and the 
extension; for example, P A YROLL.PS. Your only 
limitation here is that you shouldn't name a source file 
"(filename) .SV", because of the confusion it would 
cause with a system-named save file. 

The system itself also appends extensions to filenames 
to indicate the type of information they contain and to 
distinguish them from other files connected to the 
same source file. For instance, if you named your 
source file A.SR, the system might produce files from 
this source called: 

A.RB .B,elocatable ~inary file 

A.SV Core Image (~a~e file) 

A.LS 1i§ting file 

A.OL Qverlay file 

X.VL Permanent File Specification for ~o!ume A 

X.IX Permanent File Specification for all the indexes 
for the database file X created by A. --

Finally, after you give an index file a name at creation, 
you must always refer to that index and its database by 
the full creation name. For example, if you name an 
index file OPO:l, you must always call it OPO:l; you 
can't merely call it "l", even though you may be 
working within that directory. 

Licensed Material - Property of Data General Corporation 

Disk Space Allocation 
If your INFOS file resides on a disk, you can allocate 
the space on that disk randomly or contiguously. When 
you choose random allocation, the system allocates 
disk sectors as they are needed, regardless of their 
physical location on the disk. Hence, the system keeps 
sector addresses on the disk in sector address maps. 
Therefore, the system may require many disk accesses 
to retrieve a given record: one (or more) to retrieve the 
record address from the map, and one to retrieve the 
actual record. These potential multiple accesses can 
seriously affect performance for a large file, but 
random allocation does have two major advantages: 

• You can use your disk space much more efficiently 
because the system doesn't allocate sectors until it 
actually needs them. 

• There's a better chance of finding room for a full 
volume of randomly allocated data than for 
contiguous data because the largest contiguous block 
of free disk sectors will almost always be smaller 
than the total number of free disk sectors. 

With contiguous allocation the system allocates 
adjacent blocks of disk sectors when you create your 
file. This gives contiguous allocation four advantages: 

• The system doesn't need sector disk maps because it 
can directly compute sector addresses. 

• You can often use multiple sector transfers because 
the sectors are physically adjacent. Hence a 
moving-head disk doesn't have to move very much 
at all and your access time improves considerably. 

• Your writing operations are more efficient because 
the system makes room for your entire body of data 
when you create your file; therefore it doesn't have 
to find room for new data during the processing 
operation. 

• You know at the start that there is enough room for 
your whole file or whatever section you want to put 
there. 

If you're having trouble choosing an allocation 
technique for your file, remember that different 
volumes of your file can have different allocation 
specifications. For example, if you have a database file 
on two volumes, you can allocate the first one 
contiguously with a size adequate to accommodate the 
amount of data you expect to have. Then you can 
choose random allocation for the second volume to 
handle any unexpected growth. 

1-6-10 093-000114-01 



Licensed Material - Property of Data General Corporation 

Using Peripheral Devices as 
INFOS Files 

When you want to use peripheral devices (e.g., line 
printers, paper tape readers, teletypes) as INFOS files, 
you're going to find that your block size is controlled by 
the physical limitations of the device. That is, you 
cannot use a block size larger than the number of 
characters in a line of the device, except in certain 
circumstances. For example, you cannot use a block 
size larger than 80 or 132 characters if you're using a 
line printer because the printer will just print any 
characters beyond that length on top of each other and 
you'll get a blob at the end of each incomplete line. 

However, as we said, there is a way to avoid this. You 
can use any size block you want with an 80-character 
line printer as long as you include a carriage return or a 
line feed delimiter at least every 80 characters. A simple 
analogy here would be a typewriter. Every 80 characters 
or so, you have to hit the carriage return so that your 
words stay on the page. And so it is when you're using a 
line printer (or a similarly limited device) as an output 
file. Simply insert a carriage return (or a line feed) at 
least every 80 characters and you can use any size block 
you want. 

Something else to consider when you want to use a 
peripheral device as an INFOS file is that you can adjust 
the timeout intervals to suit your application. That is, 
the system has different timeout intervals built into it 
for each type of peripheral device. When the system 
cannot do output or get input after one of these 
intervals, it sends a message to your console. If it then 
can't complete your processing function after twelve 
intervals, the system closes that file. For example, 
suppose you're writing to a line printer as a SAM 
output file and the printer jams. The system will try to 
write, but won't be able to. So, after fifteen seconds, it 
will send you the message "DEVICE TIMEOUT ON 
FILE (filename)", and, at the same time, will try to 
write again. If the system goes through this cycle twelve 
times and still cannot complete the write request, it will 
close the file. However, if you've got a job that you 
want to process in a hurry, you may not want to wait 
fifteen seconds to find out that there's something 
wrong~ in this case, you can change the timeout 
interval to two or three seconds so that you know 
immediately when there's a problem. 

DataGeneral 
SOFTWARE DOCUMENTATION 

For the record, here are the timeout intervals for 
several types of peripheral devices: 

Device 

Teletype (input) 

Teletype (output) 

Paper tape printer/reader 

Punched card reader 

Line printer 

CRT 

Magnetic tape 

Cassettes 

Fixed-head disks 

Moving-head disks 

Interval 

Indefinite (The system 
will wait forever for you 
to input data) 

30 seconds 

30 seconds 

10 seconds 

15 seconds 

10 minutes 

15 seconds 

10 minutes 

3 seconds 

5 seconds 

NOTE: See Appendix E for a full chart showing device 
characteristics. 

How to Deal with Unlabeled 
Magnetic Tapes 

When you want to read data from an unlabeled 
magnetic tape, simply specify the name of the drive on 
which you mounted it, and then a sequence number for 
the section of the tape you want. For example, if you 
have an unlabeled tape and you mount it on tape drive 
number one, its name becomes MTl. Then, if you 
want to read the data which lies between the beginning 
of the tape and the first tape mark, you'd code the 
equivalent of "READ MT1 :0". (Data segments on a tape 
are numbered consecutively starting with zero.) If you 
wanted to read the second section of the tape, you'd 
code the equivalent of "READ MT1 :1 ". That's all there 
is to it. The system will start reading wherever you tell 
it to, and will keep reading until it comes to a tape 
mark, even if that mark is at the other end of the tape. 

By the way, you can also use the above procedure to 
read the header labels on a labeled magnetic tape. Just 
pretend it's an unlabeled tape (the system won't know 
if you don't tell it) and consider the header labels as the 
first section on the tape. 

End of Chapter 

093-000114-01 1-6-11 How to Deal with Unlabeled Magnetic 
Tapes 





Part Two: 
Programming Your 

RDOS/INFOS System 

General Information 

Sequential Access Method (SAM) Files _ 

Random Access Method (RAM) Files __ 

Indexed Sequential Access Method 
(lSAM) Files 

Data Rase Access Method (DRAM) Files 

Packet Formats 

How to Use the Macroassembler with 
the INFOS System 





DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Prefatory Note 

We have designed the Programming section of this 
manual for use by experienced Programmers. You 
cannot learn how to program here, just what to program. 
Furthermore, our discussion is geared primarily toward 
Assembly Programmers, although those of you who 
will be using FORTRAN will also find the information 
pertinent. (Appendix C, The FOR TRAN-INFOS 
Interface will fill any gaps left by the main text.) 

If you're going to use COBOL or RPG II, you will find 
that the details in this section are not directly applicable, 
but they will give you a general idea of what you need 
to include in your programs, as well as insight into the 
way that the COBOL and RPG II runtime routines 
communicate with the INFOS system. For further 
details on Data General's COBOL and RPG II and their 
applications, we recommend that you also read our 
COBOL Reference Manual (number 093-180) or our 
RPG II Programmer's Reference Manual (093-117). 

End of Preface 

093-000114-01 II-i Prefatory Note 





DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Chapter 1 
General Information 

Packets 
Your program and the INFOS system communicate 
with each other through Packets and Tables. A packet 
is a group of logically related control parameters, from 
which you specify those features (both required and 
optional) which you want to use in a particular system 
call. For example, to do a read operation, your program 
must supply a Processing Packet to tell the system how 
to find and where to place a record in memory. You can 
also specify various options in that packet, for example, 
record lock or space management. When you make the 
system call to do the read, you indicate the address of 
the Processing Packet. And, after the system completes 
the read operation, it places the length of the record it 
read (along with other pertinent information about the 
record's status) in the Processing Packet before it 
returns to your program. 

Each type of packet has a specific format. That is, each 
packet is a certain number of words long, and each 
parameter has a specific location within each packet. 
Some parameters only occupy a single bit location in a 
given word, while some occupy as many as three words. 
Furthermore, most packets contain at least one 
two-word field which is used as a pointer field. There 
are two types of pointers: 

• Word pointers, which point to the first word of such 
system elements as other packets or Volume or Key 
Tables~ and 

• Byte pointers, which point to the first byte of 
elements Byte pointers, which point to the first byte 
of elements which you supply, such as names or user 
tables. 

Note also that if a packet contains a pointer field and 
the particular operation you are performing does not 
require that address (or if you want to use a system 

default value for a particular parameter), you must 
enter -1 in the first word of the field. If you don't, the 
INFOS system will consider the contents of that field to 
be a valid address, and it may attempt to use that 
address in processing the call. 

Packet Types 
The INFOS system uses a different type of packet for 
each of the following functions: 

• File definition 
• Volume definition 
• General processing (SAM and RAM) 
• Extended processing (ISAM and DBAM) 
• Key definition 
• Subindex definition 
• Point processing 
• Link subindex processing 
• Volume initialization 

Since this manual will refer to each of these packet 
types, we will briefly describe each one now. For 
further details on the format and contents of each one, 
however, refer to Chapter 6 in this part of this manual. 
For descriptions of the calls you use to build each 
packet type, see Chapter 7 in this part (for assembly 
language) or Appendix C (for FORTRAN). 

File Definition Packets 

You must build a File Definition Packet (FOP) for 
each INFOS file which your program opens. The FD P 
contains a description of the file. If the file does not 
exist, but will reside on a disk, the system will use most 
of this information to build the file's Permanent File 
Specification. Then, on subsequent openings of that 
file, the system will refer to the Specification for this 
information. If your file is not disk-resident, however, 
you will have to respecify the file on each opening, 
since the system does not maintain a Permanent File 
Specification for this type of file. 

093-000114-01 11-1-1 Packet Types 



DataGeneral 
SOFTWARE DOCUMENTATION 

Volume Definition Packets 

A Volume Definition Packet (VDP) describes the 
physical characteristics of a file. When you open any 
INFOS file in the Output or Create Update mode, you 
have to build a VDP for each volume of the file, then 
put all the VDPs for the file into a Volume Table. Once 
you've created the file and defined the volumes, you 
only have to give the system the address of the VDP 
for the first volume in the file when you want to reopen 
the file for updating. The INFOS system automatically 
records the volume definitions and uses them when 
your program needs them. 

When you open a tape file, however, you must build a 
Volume Table consisting of one VDP for each reel of 
tape. Unlike disk files, the system does not 
permanently record tape file VDPs. 

Similarly, you must build a VDP for each TTY and 
printer file which you open for processing, since these 
are single-volume files by definition. 

General Processing Packets 
This type of packet contains the information which the 
system needs to perform a SAM or RAM file 
processing request. It also provides the means for the 
system to return general status information to you. 
Therefore, whenever you issue a call, you must include 
the address of the appropriate General Processing 
Packet. 

Extended Processing Packets 

When you issue an ISAM or DBAM function request, 
you must supply the address of the Extended 
Processing Packet containing the information which 
the INFOS system needs to successfully process the 
call. Since this type of packet is just an extension of a 
General Processing Packet, it will also return general 
status information to you. 

Key Definition Packets 

Each Key Definition Packet describes a single key. You 
must build one packet for each key, then place all the 
packets in a contiguous Key Table. The INF~S system 
will use each key in the table for processmg at the 
subindex level indicated by the packet's relative 

Licensed Material - Property of Data General Corporation 

position in the table. That is, for a keyed access, the 
system will apply the first key in the table at subindex 
level 0, the second at subindex levell, and so forth. 
Thus, whenever you use keyed access for an ISAM or 
DBAM processing request, you will set one field of the 
Extended Processing Packet to point to the first word of 
your key table. 

Subindex Definition Packets 

You will only use this type of packet when you issue a 
Define Subindex function request. As you might think, 
the contents of this packet describe the subindex you 
wish to define. You point to this packet through the 
Extended Processing Packet which you use to initiate 
the request. 

Point Processing Packets 

This packet describes the existing point within a SAM 
disk file where you want the system to position your 
program. You can only use this packet with a Point 
function request when you're processing a SAM disk 
file. 

Link Subindex Processing Packets 

This packet tells the system the key and the subindex 
you wish to link. The only time you'll use this packet is 
when you want to issue a Link Subindex function 
request. 

Volume Initialization Packets 

This packet tells the system how you want to initialize a 
given labeled tape file. You must build one of these 
packets for each labeled tape volume you wish to 
initialize. Full details on labeled tape initialization 
procedures are in Appendix A. 

Tables 
The INFOS system uses two types of tables. One type is 
simply a contiguous collection of logically similar 
information -- for example, a User Header Label Table, 
which contains one or more user-supplied header 
labels. The other type consists of a contiguous 
sequence of packets. An example of this is a Volume 
Table, which is made up of one or more Volume 
Definition Packets. 

11-1-2 093-000114-01 



Licensed Material - Property of Data General Corporation 

How to Open an INFOS File 
You can use the following set of steps to open any 
INFOS file in any processing mode: 

1. Construct the packets and tables required by the 
access method, the processing mode, and the device 
type you are going to use, as explained in the other 
chapters in this section. 

2. Issue a Pre-open system call as described in the 
following section. The INFOS system will examine 
the contents of the FOP and resolve all the defaulted 
parameters before it returns to your program. 

3. When the system returns, issue an Open system call 
as described below. The system will then construct 
the required control blocks and tables in its file 
control space, allocate the I/O buffers in virtual 
memory, assign a pseudo channel number to the 
file, and return that number in ACl. You should 
make sure this number is in AC 1 whenever you 
issue subsequent system processing calls for this file. 

If the INFOS system encounters an error while 
processing a Pre-open or Open request, it may return 
one of the following error codes to AC2. 

NOTE: You may also receive an RDOS File System 
error on Pre-open or Open; see the RDOS 
Reference Manual for a list of those. 

.---- Common Pre-open Error Messages ---__. 

Code Description 

212 SYSTEM FILE PROCESSING ERROR 
213 UNRESOLVED RESOURCE CONFLICT 
221 SYSTEM FILE OPEN ERROR 
241 PRE-OPEN CLOSE ERROR 
405 VERSION CONFLICT ERROR 

.----Common Open Error Messages ----...... 

Code 

206 
207 
212 
213 
215 
216 
217 
220 
221 
223 
226 
237 
241 
242 
244 
251 
254 

Description 

FILE IN USE 
FILE LOCKED 
SYSTEM FILE PROCESSING ERROR 
UNRESOLVED RESOURCE CONFLICT 
DUPLICATE SYSTEM FILE 
SYSTEM FILE READ ERROR 
SYSTEM FILE WRITE ERROR 
ILLEGAL FILE NAME 
SYSTEM FILE OPEN ERROR 
INSUFFICIENT FREE SPACE FOR OPEN 
NO SUCH VOLUME 
ILLEG AL TRANSFER REQUEST 
PRE-OPEN CLOSE ERROR 
FILE CLOSE ERROR 
VOLUME ALREADY EXISTS 
NAME TOO LONG 
DEVICE NOT SUPPORTED 

093-000114-01 11-1-3 

DataGeneral 
SOFTWARE DOCUMENTATION 

System Calls 
You make INFOS system calls in the same way that you 
make RDOS system calls, except that you must first 
load AC2 with a pointer to the first word of the packet 
associated with that call. The system calls and their 
associated packets are as follows: 

• To Pre-Open a file: 

AC2 = Pointer to File Definition Packet 

.SYSTM 

.PINFOS 
error return 
normal return 

• To Open a file: 

AC2 = Pointer to File Definition Packet 

.SYSTM 

.OINFOS 
error return 
normal return 

NOTE: When the INFOS system successfully 
completes an .OINFOS call, it will return a 
pseudo channel number for the file to ACl. 

• To initialize volumes of a labeled tape file: 

AC2 = Pointer to Volume Initialization Packet 

.SYSTM 

.IINFOS 
error return 
normal return 

• To process a file: 

A) 
AC2= 

Pointer to either General Processing Packet 
(for SAM/RAM) or Extended Processing 
Packet (for ISAM/DBAM). Also, when 
you use the following call, you must place 
the file's pseudo channel number in ACl. 

.SYSTM 

.lNFOS argument 
error return 
normal return 

System Calls 



DataGeneral 
SOFTWARE DOCUMENTATION 

The arguments for the .INFOS call are: 

Octal 
Value 

00 

01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 

21 
22 
23 
24 
25 
26 
27 

B) 

Argument Function 

.POINT Move your position to a new point 
in a SAM disk file. 
Reserved for sysem use. 

.FEOV Force End-Of-Volume. 

.ICLOSE INFOS Close . 

. SETX Set Exclusive Use . 

. RELX Release Exclusive Use . 

.TRUNC Truncate a block. 

.IREAD INFOS Read . 

. IWRITE INFOS Write . 

. DEFSI Define Subindex . 

. LNKSI Link Subindex . 

.DELRC Delete a record. 

.DELSI Delete a Subindex. 

. RETST Return data record status . 

. RETHK Return high key in subindex . 

.RETKY Return key. 

.REINS Reinstate a logically deleted record 
or index entry. 
Reserved for system use. 
Reserved for system use. 
Reserved for system use. 
Reserved for system use. 

. REWRT Rewrite . 

.RETDF Return subindex definition. 

. PRERD Pre-Read . 

Alternatively, you may use the following 
processing call: 

AC2 = Address of the Processing Packet 
ACO = Octal value of your desired 
argument 

.SYSTM 

.INFOS 77 
error return 
normal return 

Licensed Material - Property of Data General Corporation 

Finally, whenever the INFOS system takes the error 
return to any system call, it returns an error code to 
AC2. (Appendix D contains explanations of all INFOS 
error codes.) 

The Permanent File Specification 
When you create an INFOS disk file by opening it in 
the Output or Create Update mode, the system builds a 
Permanent File Specificaion (PFS) from the 
information you supply in the File Definition Packet 
(FDP) used in the Pre-open system call. Each FDP 
contains two types of parameters: those which are 
unchangeable, and those which apply only to this 
opening of the file. The unchangeable parameters 
define the file's logical and physical characteristics; for 
example, volume size and record format. Table 11-1-1 
shows these unchangeable FDP parameters and their 
default values (if any). 

The second type of parameters, shown in Table 11-1-2, 
become part of the PFS, but you can override their PFS 
value for any opening. Thus, when you close the file, 
the system remembers the values you specified for 
these parameters, but lets you alter them on 
subsequent openings. Thus you can choose some of the 
features for one opening, and others for another. An 
example of this type of parameter is the number of I/O 
buffers. The number of buffers you specify at file 
creation becomes part of the PFS, but you can specify 
any other number at any subsequent opening of the 
file. You can also default the number of buffers for any 
opening after file creation, and the system will allocate 
the number recorded in the PFS. 

11-1-4 093-000114-01 



Licensed Material - Property of Data General Corporation 

Table 11-1-1. FOP Parameters that Become 
Unchangeable Entries in the File's PFS 

Feature Parameter System 
Default Value 

Unblocked Records FlUBR Blocked 
Records 

Access Method FlAMl None 
FlAM2 

Record Format FlFfl None 
FlFf2 

Space Management F2SPM No Space 
Management 

Optimized Distribution F20RD No 
Optimized 
Distribution 

Block or Page Size FDBLK 512 Bytes 

Record Length FDLEN Block Size 

Number of Index Levels FDNIL One 

Number of Volume Table FDNVD One 
Entries 

Initial Node Size FDINS Page Size 
Minus 6 
Bytes 

Maximum Key Length FDMKL None 

Partial Record Length FDPRL Zero 

Root Node Merit Factor FDRMF Zero 

Key Compression IXPKC No Key 
Compression 

No Subindexes IXNSI Subindexing 
Allowed 

High Priority Node IXHPN No High 
Priority 
Node 

DataGeneral 
SOFTWARE DOCUMENTATION 

Table 11-1-2. FOP Parameters that Become Runtime 
Entries in the File's PFS 

Feature Parameter System 
Default Value 

Read-After-Write FlRAW No 
Verification Verification 

Overwrite FlOVR Write At 
End-Of-File 

Exclusive File FlEXF Nonex-
clusive Use 

Rewrite Mode FIRER No 
Rewriting 

Disable Hierarchical F2DHR Not 
Replacement Disabled 

Volume Table Pointer FDVTP None 

User Input Translation FDUIT No 
Table Pointer Translation 

on Input 

User Output Translation FDUOT No 
Table Pointer Translation 

on Output 

Selective Field TCSFf No 
Translation Selective 

Field 
Translation 

Data Sensitive Delimiter FDDSD Null, 
Table Pointer Carriage 

Return, 
Form Feed 

Selective Field FDSFf No 
Translation Table Pointer Selective 

Field 
Translation 

Number of Buffers FDBUF 2 for 
Indexes 
1 for others 

Processing Mode FlPMl None 
FlPM2 

End of Chapter 

093-000114-01 11-1-5 The Permanent File Specification 





DataGeneraI 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Chapter 2 
Sequential Access Method <SAM) Files 

This chapter contains procedure-oriented descriptions 
of how to open a SAM file under various conditions, 
and how to use the SAM processing functions. Please 
refer to Chapter 2 of Section One or to Appendix A if 
you have any questions about the options discussed 
here. 

How to Open SAM Files 
You can open your SAM file in the following ways: 

Disk files: 

• In the Create Update mode (for all functions) 
• In the Output mode (for writing only) 
• In the Update mode (for all functions) 
• In the Input mode (for reading only) 

Labeled Magnetic Tape files: 

• In the Output mode (for writing) 
• In the Input mode (for reading) 

The procedure for opening any of these files is the 
same; just follow these steps: 

093-000114-01 

1. Set up the following: 

• File Definition Packet (FDP) (Figure 11-6-0 
(Use macro call BLDFDP; see Chapter 11-7) 

• Volume name for the first file volume (FDVTP 
of the FDP) 

• One Volume Definition Packet (VDP) for each 
volume (Use macro call BLDVDP; see Chapter 
11-7 and Figure 11-6-2) 

• Volume Table (i.e., concatenate the VDPs) 

2. Put the address of the FDP in AC2. 

3.' Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

• Make sure that the address of the FDP is in 
AC2. 

• Issue an Open (.OINFOS) system call. 

5. When INFOS returns, move the file's pseudo 
channel number from ACl to your program area. 

The difference between the opening procedures for the 
various modes lies in the contents of the FDPs and the 
VDPs. So, when opening your SAM file, follow the 
above procedures, and set up the FDPs and VDPs 
according to the appropriate charts following. 

11-2-1 How to Open SAM Files 

.. 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

FOP for Disk Files Opened in the Create Update or Output Modes 
(See Table 11-6-1) 

You must specify the following: 

1. Either Create Update mode (for all functions), or Output (for writing only) 
(FICRU or FlOUT ofFDFL1) 

2. SAM access method (FISAM ofFDFL1) 

3. A record format; either Fixed, Variable, Undefined, or Data Sensitive (in FDFL1) 

4. A) Exact length of Fixed length records (if used) (FDLEN) 

B) Expected maximum length of Variable length records (if used) (FDLEN) 

C) Pointer to delimiter table for Data Sensitive records (ifused) (FDDSD) 

5. Address of the Volume Table (FDVTP) 

You may specify the following: 

1. 

2. 

3. 

4. 

5. 

Block size (FD BLK) 

Number of buffers for this opening 
(FDBUF) 

Rewrite option (Create Update 
mode only) 
(Fl RER of FD FL 1) 

Read-After-Write verification 
(FlRAWofFDFL1) 

Exclusive file use (Fl EXF of 
FDFL1) 

System default values for these options: 

512 bytes 

One buffer, recorded as a changeable 
part of the file's PFS 

You may not modify records at this 
open 

No verification for this opening 

Others may use this file while you do 

_--- VDP for Disk Files Opened in the Create Update or Output Modes 
(See Table 11-6-2) 

You must specify the address of each volume's name (VDVNP) 

You may specify the following: 

1. 

2. 

3. 

4. 

5. 

Volume size (VDVSZ) 

Contiguous allocation 
(ICCTG ofVDIVC) 

Disable file initialization 
(ICDFI ofVDIVC) 

Pad character (VDPAD) 

Device timeout intervals (VDDTO) 

11-2-2 

System default values for these options: 

65,535 blocks (Make sure that you have 
at least this much available disk space if 
you choose the default.) 

Random allocation 

If contiguous allocation, each block is 
null filled 

Null (binary 0) 

3 seconds for fixed-head disks; 
5 seconds for moving head disks 

093-000114-01 



DataGeneraI 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

FDP for SAM Disk Files Opened in the Input or Update Modes ____ .... 
<See Table 11-6-1) 

You must specify the following: 

1. Input mode (for reading only) or Update mode (for all functions) 
(FlINP or FIUPD ofFDFLl) 

2. SAM access method (FISAM ofFDFLl) 

3. Same record format which you used at file creation (FDFLl) 

4. Address of the Volume Table (FDVTP) 

You may specify the following: 

1. 

2. 

3. 

Number of buffers for this opening 
(FDBUF) 

Read-After-Write verification 
(Update mode only) 
(FIRAW ofFDFLI) 

Exclusive file use (Fl EXF of 
FDFLl) 

System default values for these options: 

Number recorded in the file's PFS 

No verification for this opening 

Others may use this file while you do 

__ --- VDP for SAM Disk Files Opened in the Input or Update Modes ____ ... 

093-000114-01 

(See Table 11-6-2) 

You must specify the address of the name of the first file volume (in VDVNP). The 
system will then use the contents of the PFS. 

FDP for All Labeled Magnetic Tape Files ________ """1 

(See Table 11-6-1) 
You must specify the following: 

1. SAM access method (FISAM ofFDFLl) 

2. A record format: either Fixed, Variable, or Undefined (See FDFLl) 

3. Output mode (for writing), or Input mode (for reading) (See FDFLl) 

4. Address of the Volume Table (FDVTP) 

5. Label type and level (See FDTCF) 

You may specify the following: System default values for these options: 

1. 

2. 

3. 

4. 

Block size (FD BLK) 

Number of buffers (FDBUF) 

Record length (FDLEN) 

HDRI Label contents (FDFSI) 

80 bytes 

One buffer 

Records will equal block size 

Volume identifier for the first volume 
of the file 

11-2-3 How to Open SAM Files 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

VDP for All Labeled Magnetic Tape Files ________ ---, 
(See Table 11-6-2) 

You must specify the following: 

1. The address of the name of the first volume of the file (VDVNP) 

2. Pad character (VDPAD) 

3. Enable runtime initialization and release (if applicable) (VDIVC) 

You may specify the following: 

1. 

2. 

Device timeout interval (VD DTO) 

Address of User Label Tables 
(VDVLT, VDHLT, VDTLT) 

System default values for these options: 

15 seconds 

No use of user labels 

Table 11-2-1. SAM Processing Functions 

Sequential Direct 
Access Access 
Devices Devices 

Input Output Input Output Update Create 
Mode Mode Mode Mode Mode Update 

Mode 

READ X X X X 

WRITE X X X X 

REWRITE* X X 

RELEASE* X X 

·Only valid if you specified Rewrite in the FD P 

Processing SAM Files 
You can issue processing requests as soon as you open 
your SAM file, but the functions available depend on 
the device on which the file resides and the processing 
mode you're using. If your file resides on a sequential 
access device, you can only read from the file in the 
Input mode or write to it in the Output mode. 
However, if your file resides on a direct access device, 
you can read, write, rewrite, or release your file, as 
illustrated in Table 11-2-1. Note that you must provide a 
General Processing Packet for each processing request 
you make. You will find the packet format in Table 
11-6-3 and instructions for building one under BLDPP 
in Chapter 11-7. 

You can use either the .INFOS argument system call or 
the .INFOS 77 call to process your SAM file. 
Furthermore, no matter which processing function you 
use, the system will tell you if it encounters any of the 
following exception conditions: 

11-2-4 

• If you have reached the physical end-of-file, 

• If a record being written is too large to fit into your 
specified block size, 

• If the Read-After-Write cycle failed on a previous 
write or rewrite request, 

• If the physical length of data transfer is less than 
your specified block size, 

• If the length of the data you're transferring is longer 
than a particular sequential device can handle. 

NOTE: A condition causing an exceptional status 
return may have occurred prior to the 
processing request in which the system returns 
the status. 

093-000114-01 



Licensed Material - Property of Data General Corporation 

In addition, for read and write operations, the system 
will always return the length of the data it transfers to 
your program area (in bytes), the block address of the 
record read, and the number of bytes by which the 
record is offset from the beginning of the block. 

The following section lists everything you have to 
know about and do for each type of SAM processing 
request and the error messages which the system will 
return to you if required. (For further explanation of all 
INFOS error messages, see Appendix DJ 

SAM Read Processing Request 
1. Specify the address of your data area in PRDAT of 

the General Processing Packet (Table 11-6-3). 

2. Specify Lock (in PFLOC of PRST A in the General 
Processing Packet) if you want to prevent other 
users from accessing the record you're reading. 
Note, however, that if you want to use Lock, you 
must also specify Rewrite in FDFLI of the FDP 
when you open the file, and your file must reside 
on a direct access device. 

_----Common READ Request Error Messages --..... 

Code Description 

200 ILLEGAL FUNCTION 
201 VARIABLE LENGTH TRANSFER ILLEGAL ON 

THIS DEVICE 
206 EXCLUSIVE FILE 
207 FILE LOCKED 
210 FILE NOT OPEN 
211 PERIPHERAL CONFLICT 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
232 ILLEG AL CLOSE 
243 RDOS OPEN ERROR 
244 VOLUME ALREADY EXISTS 
254 DEVICE NOT SUPPORTED 
256 INPUT END VOLUME ERROR 
415 ILLEGAL LABEL 
416 ILLEGAL LABEL SPEC 
417 VOL ID DOESNT MATCH 
424 BLOCK COUNT INCORRECT 
425 RECORD FORMAT CONFLICT 
426 FILE SEQ NUMBER 

DataGeneral 
SOFTWARE DOCUMENTATION 

SAM Write Processing Request 
1. Specify the address of your data area in PRDAT of 

the General Processing Packet (Table 11-6-3). 

2. Specify (in PRLEN) the length of any Data 
Sensitive, Undefined, or Variable length records 
which you are writing. 

...... --- Common WRITE Request Error Messages __ _ 

Code Description 

200 ILLEG AL FUNCTION 
201 VARIABLE LENGTH TRANSFER ILLEGAL ON 

THIS DEVICE 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
232 ILLEGAL CLOSE 
233 PHYSICAL 110 ERROR 
255 OUTPUT END VOLUME ERROR 
415 ILLEGAL LABEL 
416 ILLEGAL LABEL SPEC 
417 VOL ID DOESNT MATCH 
423 EXP DATE NOT EXPIRED 
424 BLOCK COUNT INCORRECT 
425 RECORD FORMAT CONFLICT 
426 FILE SEQ NUMBER 

SAM Rewrite Processing Request 
NOTE: You may request Rewrite only if you specified 

it in FDFLI of the FDP when you opened this 
file and if your file resides on a direct access 
device. 

I. Specify the address of your data area in PRD AT of 
the General Processing Packet (Table 11-6-3). 

2. Specify (in PRLEN) the length of the record you 
are modifying. Note that you cannot change the 
length of a record with this request; the modified 
record must be exactly the same length as the 
record read. 

.-__ Common REWRITE Request Error Messages __ --. 

Code Description 

200 ILLEGAL FUNCTION 
201 V ARIABLE LENGTH TRANSFER ILLEGAL ON 

THIS DEVICE 
203 ILLEGAL FUNCTION FOR DEV 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
234 RESIDUAL DISK ERROR 

093-000114-01 11-2-5 Processing SAM Files 



DataGeneral 
SOFTWARE DOCUMENTATION 

SAM Close and Force End of Volume 
Requests 
There are no required specifications for these requests. 
However, if your file resides on magnetic tape, you 
may leave the tape positioned behind the file by 
specifying -1 in PRDSP of the General Processing 
Packet. If you do not specify it, the system will 
automatically rewind the tape. 

r-___ Common CLOSE Request Error Messages ___ ~ 

Code Description 

201 VARIABLE LENGTH TRANSFER ILLEGAL ON 
THIS DEVICE 

210 FILE NOT OPEN 
212 VL FILE PROCESSING ERROR 
217 VIRTUAL MEMORY EXHAUSTED 
221 VL FILE OPEN ERR 
222 VL FILE CLOSE ERR 
232 ILLEGAL CLOSE 
234 RESIDUAL DISK ERROR 
242 FILE CLOSE ERROR 
255 OUTPUT END VOLUME ERROR 
415 ILLEG AL LABEL 
416 ILLEG AL LABEL SPEC 
417 VOL ID DOESNT MATCH 
424 BLOCK COUNT INCORRECT 
425 RECORD FORMAT CONFLICT 
426 FILE SEQ NUMBER 

Licensed Material - Property of Data General Corporation 

Common fORCE END-Of-VOLUME Request Error Messages 

Code Description 

201 VARIABLE LENGTH TRANSFER ILLEGAL ON 
THIS DEVICE 

210 FILE NOT OPEN 
212 VL FILE PROCESSING ERROR 
213 UNRESOLVED RESOURCE CONFLICT 
217 VIRTUAL MEMORY EXHAUSTED 
221 VL FILE OPEN ERR 
222 VL FILE CLOSE ERR 
224 LOGICAL END OF FILE 
226 NO SUCH VOLUME 
232 ILLEGAL CLOSE 
242 FILE CLOSE ERROR 
255 OUTPUT END VOLUME ERROR 
256 INPUT END VOLUME ERROR 
415 ILLEG AL LABEL 
416 ILLEG AL LABEL SPEC 
417 VOL ID DOESNT MATCH 
424 BLOCK COUNT INCORRECT 
425 RECORD FORMAT CONFLICT 
426 FILE SEQ NUMBER 

11-2-6 093-000114-01 



Licensed Material - Property of Data General Corporation 

Magnetic Tape Control Request 
NOTE: Do not mix these requests with other SAM 

processing requests for the same file. That is, 
to process a magnetic tape, you must either 
use all magnetic tape control requests, or all 
standard requests, Mixing the two may have 
undesireable effects on your file. 

1. Build a Magnetic Tape Control Processing Packet 
(see Table 11-6-11 and BLDMTC in Chapter 11-7). 

2. Specify in PRCFC what you want the system to do 
with your tape. Your options are: 

Parameter Function 

MCSFF Space forward to next tape mark and 
position behind it. 

MCSBF Space backward over two tape marks, 
then forward over one~ position there. 

MCRD Read a record, starting at the present 
position. (Specify the record length in 
PRNWD.) 

MCWR T Write a record, starting at the present 
position. (Specify the record length in 
PRNWD.) 

MCWEF Write an end-of-file mark at the present 
position, then position directly behind 
it. 

MCREW Rewind the tape to the load point, then 
return to you. 

MCSFR Space forward n records (specified in 
PRNWD) or until encountering an 
end-of-file or end-of-tape mark. 

MCSBR Space backward n records (specified in 
PRNWD) until encountering a tape 
mark or the beginning of the tape. 

MCERS Erase a two and one-half inch strip of 
tape, beginning at the current position. 

DataGeneral 
SOFTWARE DOCUMENTATION 

3. If you are transferring records, specify the address 
of your data area in PRD AT. 

4. If the system encounters an 110 error while 
processing your tape, it will set PFMTR in PRST A. 
(Leave PRSTA blank when initiating your 
request.) It will also return the contents of the mag 
tape status registers in PRCFC~ these flags are 
described in the Programmer's Reference Manual -
Peripherals (number 015-021). 

For an error during a Read or Write, the system will 
return the actual transfer length in PRNWD~ for a 
Space Forward or Backward error, PRNWD will 
contain the number of records spaced over. 

Common MAGNETIC TAPE CONTROL Request Error 
Messages 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
253 MAG-TAPE 110 ERROR 

Point Request 
NOTE: You may only issue this request when your 

file resides on a direct-access device. 

1. Specify the Point mode in PRMOD of the Point 
Processing Packet (see Table 11-6-8). 

2. Specify the desired record's block record in 
PRHLB. 

3. Specify how far the desired record is offset from the 
beginning of its block (in PRBOF). 

__ ---Common POINT Request Error Messages __ __ 

Code Description 

200 ILLEGAL FUNCTION 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
224 LOGICAL END OF FILE 
232 ILLEGAL CLOSE 
255 OUTPUT END VOLUME ERROR 
256 INPUT END VOLUME ERROR 

End of Chapter 

093-000114-01 11-2-7 Processing SAM Files 





Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

Chapter 3 
Random Access Method (RAM) Files 

This chapter provides procedure-oriented descriptions 
of how to open and process a RAM file. Refer to 
Chapter 3 in Section One of this manual for further 
elaboration on the points discussed here. 

How to Open a RAM File 
You can open a RAM file in four different ways: 

• In the Output mode (only writing allowed) 

• In the Create Update mode (all processing functions 
allowed) 

• In the Input mode (only reading allowed) 

• In the Update mode (all processing functions 
allowed) 

Depending on what you want to do with your file after 
you open it, you can specify either the Output or the 
Create Update mode when you create the file. To open 
an existing file, you can specify either the Input or 
Update mode. However, the procedure you follow to 
open the file will be the same regardless of the mode 
which you choose. Only the contents of the FOP and 
the VDPs will vary according to the mode. The steps 
for opening a file and the contents of the FOP and 
VDPs for each processing mode follow. 

FDP 

o 

11 

13 

Steps in Opening a RAM File 
1. Set up the following: 

• FOP (see Table 11-6-1 and BLDFDP in Chapter 
11-7) 

• Volume names for each file volume (in FDVTP 
of the FOP) 

• One VDP for each file volume (see Table 11-6-2 
and BLDVDP in Chapter 11-7) 

• A Volume Table (i.e., concatenate the VDPs) 

2. Put the address of the FOP in AC2. 

3. Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

• Make sure that the address of the FOP is in 
AC2. 

• Issue an Open (.OINFOS) system call. 

5. When INFOS returns, move the file's pseudo 
channel number from AC1 to your program area. 

Figure 11-3-1 shows how the FOP and the Volume 
Table relate. 

Volume Table 

filename V1 
Volume 1 Name Pointer 

L.,;S;.,;..D_-O_07_6_2 _______ Figure 1/-3-1. FDPand Volume Table Relationship 

093-000114-01 11-3-1 Steps in Opening a RAM File 

.. 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

r----- FOP for RAM Files Opened in the Output or Create Update Mode ___ ---. 
<See Table 11-6-1) 

You must specify the following: 

1. RAM access method (in FDFL1) 

2. Fixed length records (in FD FL 1) 

3. Either Output mode (for writing only) or Create Update mode (for all processing 
functions) (in FDFLl) 

4. The starting address of the Volume Table (FDVTP) 

You may specify the following: System default values for these options: 

1. Number of file volumes (FDNVD) One volume 

2. Code translation (in FDTCF) No translation done 

3. Block size (FDBLK) 512 bytes 

4. Record length (FD LEN) Records are same length as block size 

5. Number of buffers (FDBUF) One buffer 

6. Read-After-Write verification No verification for this opening 
(in FDFLl) 

7. Set Exclusive Use (in FDFLl) Others may access this file while you do 

_---VDP for RAM Files Opened in the Output or Create Update Mode 
<See Table 11-6-2) 

You must specify the following: 

1. The address of the name of the first file volume (VDVNP) 

2. A pad character (VDPAD) 

You may specify the following: 

1. Volume size (VDVSZ) 

2. Contiguous allocation (in VDIVC) 

3. Device timeout interval (VDDTO) 

System default values for these options: 

65,535 blocks (Make sure that you have 
at least this much available disk space if 
you choose the default.) 

Random allocation 

5 seconds for moving-head disks; 
3 seconds for fixed-head disks 

11-3-2 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

093-000114-01 

r------- FOP for RAM Files Opened in the Input or Update Mode _____ _ 
(See Table 11-6-1) 

You must specify the following: 

1. RAM access method (in FDFLI) 

2. Fixed length records (in FDFLI) 

3. Either the Input mode (for reading only) or the Update mode (for all processing 
functions) (in FDFLI) 

4. The address of the Volume Table (FDVTP) 

You may specify the following: 

1. 

2. 

3. 

Number of buffers (FDBUF) 

Read-After-Write verification 
(U pdate mode only) 
(in FDFLI) 

Set Exclusive Use (in FDFLI) 

System default values for these 
options: 

N urn ber recorded in the PFS 

No verification for this opening 

Others may use this file while you do 

4. Number of file volumes (FDNVD) Only one file volume recognized 

,.... ____ VDP for RAM Files Opened in the Input or Update Mode 

You must specify the address of the name of the first volume in the file in VDVNP. The 
system will use the contents of the PFS for the remaining information. 

11-3-3 Steps in Opening a RAM File 



DataGeneral 
SOFTWARE DOCUMENTATION 

Processing Your RAM File 
You can issue anyone of the following processing 
requests as soon as you open your RAM file: 

• Read 
• Write 
• Close 
• Force end-of-volume 
• Set Exclusive Use 
• Pre read 

For read and write requests, the system will always 
return the length (in bytes) of the record transferred or 
written, the block address of the record, and the 
number of bytes by which the record is offset from the 
beginning of the block. In addition, the system will 
return the following exceptional status information for 
all processing requests: 

• If it encounters a physical end-of-file while 
processing, 

• If the read-after-write verification cycle failed twice 
on a previous request. 

NOTE: You will receive exceptional status returns after 
the fact. That is, the condition for which you get 
the return will have occurred in a previous 
request. 

The following section lists the procedures for each type 
of RAM processing request and the error messages the 
system may return to you. (For further explanation of 
all INFOS error messages, see Appendix DJ 

To build a General Processing Packet, see BLDPP in 
Chapter 11-7. 

RAM Read Request 
1. Specify the address of your data area in PRDAT of 

the General Processing Packet (Table 11-6-3). 

2. Specify the number of the record desired in 
PRREC. 

3. A. Specify Lock if you want to prevent access by 
other users while you are reading the record by 
setting PFLOC in PRST A. 

B. If the record you specify is already locked by 
another user, you may set PFHLD in PRST A 
to specify that your request be held in a queue 
until the record becomes available. 

Licensed Material - Property of Data General Corporation 

_---Common READ Request Error Messages ___ _ 

Code Description 

200 ILLEG AL FUNCTION 
206 EXCLUSIVE FILE 
207 FILE LOCKED 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
227 NO HOLD ON LOCKED REQUEST 
231 RAM ACCESS OUTSIDE FILE 
243 RDOS OPEN ERROR 
244 VOLUME ALREADY EXISTS 
254 DEVICE NOT SUPPORTED 

RAM Write Request 

1. Specify the address of your data area in PRDAT of 
the General Processing Packet (Table 11-6-3). 

2. Specify the number of the record you want to write 
inPRREC. . 

3. Specify Lock to prevent access by other users while 
you are processing the record by setting PFLOC in 
PRSTA. 

4. Specify Unlock to make the record available to 
other users when this write request is completed by 
setting PFUNL in PRST A. 

5. Specify Write Immediate to write the record to your 
file as soon as possible, by setting PFWIF in 
PRSTA. 

6. Specify Read Inhibit if you don't want the system to 
read the other records in the block into a buffer by 
setting PFRIN in PRST A. 

_--- Common WRITE Request Error Message __ _ 

Code Description 

200 ILLEGAL FUNCTION 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
227 NO HOLD ON LOCKED REQUEST 
230 NO MORE DISK SPACE 
231 RAM ACCESS OUTSIDE FILE 
234 RESIDUAL DISK ERROR 
255 OUTPUT END VOLUME ERROR 

11-3-4 093-000114-01 



Licensed Material - Property of Data General Corporation 

RAM Close Request 
There are no required or optional parameters for a close 
request. Simply supply a blank General Processing 
Packet so the system will have a place to return 
exceptional status information, if there is any. 

po-__ Common CLOSE Request Error Messages ----. 

Code Description 

210 FILE NOT OPEN 
212 VL FILE PROCESSING ERROR 
213 UNRESOLVED RESOURCE CONFLICT 
217 VIRTUAL MEMORY EXHAUSTED 
221 VLFILEOPENERR 
222 VL FILE CLOSE ERR 
231 RAM ACCESS OUTSIDE FILE 
234 RESIDUAL DISK ERROR 
242 FILE CLOSE ERROR 
255 OUTPUT END VOLUME ERROR 
256 INPUT END VOLUME ERROR 

RAM Force End-of-Volume Request 
1. Specify the number of the volume you wish to close 

in PROSP of the General Processing Packet. Note 
that the first volume of any RAM file is always 
numbered zero, and the system recognizes the 
other volume numbers by the sequence in which 
you enter their VOPs into the Volume Table. 

Common fORCE END-Of-VOLUME Request Error Me.sage. 

Code Description 

210 FILE NOT OPEN 
212 VL FILE PROCESSING ERROR 
213 UNRESOLVED RESOURCE CONFLICT 
217 VIRTUAL MEMORY EXHAUSTED 
221 VL FILE OPEN ERR 
222 VL FILE CLOSE ERR 
224 LOGICAL END OF FILE 
226 NO SUCH VOLUME 
231 RAM ACCESS OUTSIDE FILE 
232 ILLEG AL CLOSE 
242 FILE CLOSE ERROR 
255 OUTPUT END VOLUME ERROR 
256 INPUT END VOLUME ERROR 

DataGeneral 
SOFTWARE DOCUMENTATION 

RAM Set Exclusive Use Request 
Note that you can gain exclusive access to your file 
either by setting F1EXF in FOFL1 of the FOP, or 
during file processing, by setting PFLOC in PRSTA of 
the General Processing Packet. If no one else is using 
the file, you may use the file exclusively until you 
release it or close it. If, however, another user has 
opened the file prior to your request, you will receive 
error code number 206: EXCLUSIVE FILE. 

RAM Preread Request 
1. Specify the number of the record you want in 

PRREC of the General Processing Packet (Table 
11-6-3) . 

2. Specify Read Inhibit to inhibit the transfer of the 
block containing the record to an I/O buffer by 
setting PFRIN in PRST A. (This is handy when 
your next request will be a write; it speeds up your 
processing operations.) 

___ Common PREREAD Request Error Messages 

Code Description 

200 ILLEGAL FUNCTION 
206 EXCLUSIVE FILE 
207 FILE LOCKED 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
227 NO HOLD ON LOCKED REQUEST 
231 RAM ACCESS OUTSIDE FILE 
243 RDOS OPEN ERROR 
244 VOLUME ALREADY EXISTS 
254 DEVICE NOT SUPPORTED 

End of Chapter 

093-000114-01 11-3-5 Processing Your RAM File 





Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

Chapter 4 
Indexed Sequential Access Method 

(ISAM) Files 

This chapter will tell you how to open an ISAM file 
under various conditions and how to use the different 
processing requests. This section is 
procedure-oriented, so please refer to Chapter 4 in 
Section One if you have any questions about the 
options explained here. 

How to Open ISAM Files 
You can open your ISAM file in anyone of the 
following ways: 

• In the Create Update mode; or 

• In the Update mode without a Database runtime File 
Definition Packet; or 

• In the Update mode with a Database runtime FDP. 
(This is handy when you want to use a different 
number of buffers than you recorded in the 
Permanent File Specification.) 

Steps for Opening in the Create 
Update Mode 

1. Set up the following: 

A. For the Index: 

• Index FDP (see Tables 11-4-1, 11-6-1, and 
BLDFDP in Chapter 11-7) 

• Volume names for each Index volume 
(FDVTP of the FDP) 

• One VDP for each Index volume (see Tables 
11-4-3, 11-6-2, and BLDVDP in Chapter 11-7) 

• An Index Volume Table (i.e., concatenate 
the Index VD Ps) 

093-000114-01 

B. For the Database: 

• Database FDP (Tables 11-4-2, 11-6-1, and 
BLDFDP in Chapter 11-7) 

• Volume names for each Database volume 
(FDVTP of each FDP) 

• One VDP for each Database volume (Tables 
11-4-3,11-6-2, and BLDVDP in Chapter 11-7) 

• A Database Volume Table 

2. Put the address of the Index FDP in AC2. 

3. Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

A. Make sure that the address of the Index FDP is 
in AC2. 

B. Issue an Open (.OINFOS) system call. 

5. When INFOS returns, move the file's pseudo 
channel number from ACI to your program area. 

Figure 11-4-1 shows how the packets and tables relate. 

11-4-1 Steps for Opening in the Create Update 
Mode 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Index FDP Index Volume Table 
o 

filename.V1 
Volume 1 Name Pointer 

11 

42 filename.Vn 

49 

Database Volume Table 
o 

dbfilename. V 1 
Volume 1 Name Pointer 

11 

dbfilename.Vn 

'--5o_-_00_7_6_3 ________ Figure IJ-4-1. Open ISAM File in Create Update Mode -----------....... 

11-4-2 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

,..------- Table 11-4-1. ISAM Index FDP for Create Update Mode 
(See Table 11-6-1) 

093-000114-01 

You must specify the following: 

1. ISAM access method (in FDFLl) 

2. Variable length records (in FDFLl) 

3. Create Update processing mode (in FDFLl) 

4. Subindexing not allowed (in FDIFL) 

5. The address of the Volume Table (FDVTP) 

6. The address of the database FDP (FDDBP) 

7. Initial node size (FDINS) 

8. Maximum key length (FDMKL) 

You may specify the following: 

1. 

2. 

3. 

4. 

5. 

6. 

The number of I/O buffers for this 
opening (FDBUF) 

Page size (FDBLK) 

Number of volumes (FDNVD) 

Read-After-Write verification 
(in FDFLl) 

Space management (in FDFL2) 

Disable hierarchical replacement 
(in FDFL2) 

System default values for these options 
are: 

2 buffers, recorded as a changeable part 
of the file's PFS 

512 bytes 

1 volume 

No verification for this opening 

No space management 

Hierarchically modulated LRU buffer 
management used for this opening 

11-4-3 Steps for Opening in the Create Update 
Mode 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

,.------- Table 11-4-2. ISAM Database FOP for Create Update Mode 
(See Table 11-6-1) 

You must specify the following: 

1. RAM access method (in FD FL 1 ) 

2. Variable length records (in FDFLl) 

3. Create Update processing mode (in FDFLl) 

4. The address of the Volume Table (FDVTP) 

You may specify the following: 

1. Page size (FDBLK) 

2. Number ofl/O buffers for this 
opening (FDBUF) 

3. Number of volumes (FDNVD) 

4. Read-After-Write verification 
(in FDFLl) 

5. Space management (in FDFL2) 

System default values for these options 
are: 

512 bytes 

1 buffer, recorded as a changeable part 
of the file's PFS 

1 volume 

No verification for this opening 

No space management 

_ Table 11-4-3. VOPs for ISAM Index and Database Files Opened in the Create 
Update Mode 

(See Table 11-6-2) 

You must specify the address of each volume's name (VDVNP) 

You may specify the following: 

1. Volume size (VDVSZ) 

System default values for these options 
are: 

65,535 blocks if random allocation; if 
contiguous allocation is specified, you 
must also specify the number of blocks 
to be allocated. 

2. Contiguous allocation (in VDIVC) Random allocation 

3. 

4. 

Disable file initialization 
(in VDIVC) 

Pad character (VD PAD) 

11-4-4 

If contiguous allocation, each block is 
null filled 

Null (binary 0) 

093-000114-01 



Licensed Material - Property of Data General Corporation 

Steps for Opening in the Update Mode 
without a Database Runtime FDP 

1. Set up the following: 

A. For the Index: 

• Index FDP (Tables 11-4-4, 11-6-1, and 
BLDFDP in Chapter 11-7) 

• Index volume name (FDVTP of the FDP) 
• A VDP for the Index volume (Tables 11-4-5, 

11-6-2, and BLDVDP in Chapter 11-7) 
• Index volume table 

B. For the Database: 

• The Database filename (FDDBP of the 
index's FDP) 

Index FDP 
o o 

11 15 

DataGeneral 
SOFTWARE DOCUMENTATION 

2. Put the address of the Index FDP in AC2. 

3. Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

A. Make sure that the address of the Index FDP is 
in AC2. 

B. Issue an Open (.OINFOS) system call. 

5. When INFOS returns, move the file's pseudo 
channel number from AC1 to your program area. 

Figure 11-4-2 shows how the packets and tables relate. 

Index Volume Table 

filename.V1 
Volume 1 Name Pointer 

42 
t----~ dbfilename.V1 

'-8_0_-0_0_76_4 ________ Figure l/-4-2. Open ISAM File in Update Mode without __________ ~ 
Database Runtime FDP 

093-000114-01 11-4-5 Steps for Opening in the Update Mode 
without a Database Runtime FOP 



DataGeneraI 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 11-4-4. ISAM Index FDP for Update Mode without Database Runtime FDP 
<See Table 11-6-1) 

You must specify the following: 

1. ISAM access method (in FDFLl) 

2. Variable length records (in FDFLl) 

3. Update processing mode (in FDFLl) 

4. The address of the Volume Table (FDVTP) 

5. The address of the database file name (FDDBP) 

You may specify the following: 

1. 

2. 

3. 

The number ofItO buffers for this 
opening (FDBUF) 

Read-After-Write verification 
(in FDFLl) 

Disable hierarchical replacement 
(in FDFL2) 

Default values for these options are: 

Contents of the index and database 
PFSs are used 

No verification for this opening 

Hierarchically modulated LRU buffer 
management used for this opening 

_-- Table 11-4-5. VDP for ISAM Index Opened in the Update Mode----__. 

You must specify the address of the name 
of the first volume of the index in FDVTP 

The contents of the .VL files for the index 
and database are used in the Update 
processing mode. 

11-4-6 093-000114-01 



Licensed Material - Property of Data General Corporation 

.Steps for Opening in the Update Mode 
with a Database Runtime FOP 

1. Set up the following: 

A. For the Index: 

• Index FDP (Tables 11-4-6, 11-6-1, and 
BLDFDP in Chapter 11-7) 

• Index volume name (FDVTP of the FDP) 
• Index VDP (Tables 11-4-8, 11-6-2, and 

BLDVDP in Chapter 11-7) 
• Index Volume Table 

B. For the Database: 

• Database FDP (Tables 11-4-7, 11-6-1, and 
BLDFDP) 

• Database volume name (FDVTP of the 
FDP) 

• Database VDP (Tables 11-4-8, 11-6-2, and 
BLDVDP) 

• Database Volume Table 

o 

11 

42 

o 

11 

39 

DataGeneral 
SOFTWARE DOCUMENTATION 

2. Put address of Index FDP in AC2. 

3. Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

A. Make sure that the address of the Index FDP is 
in AC2. 

B. Issue an Open (.OINFOS) system call. 

5. When INFOS returns, move the file's pseudo 
channel number from ACI to your program area. 

Figure 11-4-3 shows how the packets and tables relate. 

Index Volume Table 

filename.V1 
Volume 1 Name Pointer 

Database Volume Table 

dbfilename.V1 
Volume 1 Name Pointer 

SO-00765 Figure /1-4-3. Open ISAM File in Update Mode with __________ ---' 
Database Runtime FDP. 

093-000114-01 N-4-7 Steps for Opening in the Update Mode 
with a Database Runtime FOP 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 11-4-6. ISAM Index FOP for Update Mode with Database Runtime FOP 
<See Table 11-6-1} 

You must specify the following: 

1. ISAM access method (in FDFLl) 

2. Variable length records (in FDFLl) 

3. Update processing mode (in FDFLl) 

4. The address of the Volume Table (FDVTP) 

5. That a database FOP is present (in FDFL2) 

6. The address of the database FOP (FDDBP) 

You may specify the following: 

1. 

2. 

3. 

The number of 110 buffers to be 
used for this opening (FDBUF) 

Read-After-Write verification 
(in FDFLl) 

Disable hierarchical replacement 
(in FDFL2) 

Default values for these options are: 

The contents of the Index PFS are used 

No verification for this opening 

Hierarchically modulated LRU buffer 
management is used for this opening 

~ ___ Table 11-4-7. ISAM Database Runtime FOP for Update Mode ____ -. 
<See Table 11-6-1} 

You must specify the following: 

1. RAM access method (in FD FL 1 ) 

2. Variable length records (in FDFLl) 

3. Update processing mode (in FDFLl) 

4. The address of the Volume Table (in FDVTP) 

You may specify the following: 

1. 

2. 

The number of 110 buffers to be 
used for this opening (FDBUF) 

Read-After-Write verification 
(in FDFLl) 

Default values for these options are: 

The contents of the data base PFS are 
used for this opening 

No verification for this opening 

Table 11-4-8. VDPs for ISAM Index and Database Opened in the Update Mode 
<See Table 11-6-2} 

You must specify the address of the name 
of the first volume of each file in VDVNP 

The contents of the. VL files for the index 
and database are used in the Update 
processing mode. 

11-4-8 093-000114-01 



Licensed Material - Property of Data General Corporation 

Processing ISAM Files 
You can issue processing requests as soon as you open 
your ISAM file. For each request you issue, however, 
you must supply an Extended Processing Packet (see 
Table 11-6-4 and BLDPP in Chapter 11-7), and specify 
either Keyed or Relative access in PRCCW of that 
packet. 

Keyed Access 
Whenever you want to use keyed access, you must 
provide a Key Table. An ISAM Key Table consists of a 
single Key Definition Packet, followed immediately by 
either a zero length key or a null word, as shown in 
Figure 11-4-4. 

o F----r---r---

3 

o 

3 

DUPLICATE KEY OCCURRENCE 
NUMBER 

--------1 

Key 

L,..S_D_-O_O_76_6 ___ Figure 1/-4-4. Key Table -----..... 

DataGeneral 
SOFTWARE DOCUMENTATION 

Relative Access 

As you might think, you don't need a key table to do 
Relative Access, since you won't be using keys. With 
each Relative processing request, you need only specify 
a direction of motion relative to the last established 
current position. In ISAM, you can move forward, 
backward, up, down, down and forward, or not at all 
(static). The available ISAM processing requests are as 
follows: 

• Read, Write, Rewrite 
• Delete, Delete Subindex, Reinstate 
• Retrieve Status, Retrieve Key, Retrieve High Key 
• Close 

Note that for all of the following processing requests, 
the system will let you know: 

• if it encounters a physical end-of-file while 
processing, or 

• if the Read-After-Write verification cycle failed on a 
previous write or rewrite request. 

Refer to the macro call descriptions in Chapter 11-7 to 
build the indicated packets: 

Packet Macro Call 

Extended Processing BLDPP 
Key Definition BLDKDP 
Subindex Definition BLDSDP 

093-000114-01 11-4-9 Processing ISAM Files 



DataGeneral 
SOFTWARE DOCUMENTATION 

ISAM Read Processing Request 
1. Specify an access technique in PRCCW of the 

Extended Processing Packet (Table 11-6-4). 

A. For Keyed Access, you must build a Key Table 
(i.e., a Key Definition Packet) with one key and 
put a pointer to it in PRKTP. 

B. For Relative Access, you must specify a 
direction of motion in PRCCW. 

On each access into the Index, the system returns 
this information: 

• Whether the key accessed is a duplicate, 

• Whether the key accessed has been logically 
deleted, 

• The length of the key accessed. 

2. If you want to read a record by using an 
approximate or generic key, specify the desired 
option in KDTYP of the Key Definition Packet. 

3. If you want to establish a new current position, 
specify Set Current Position in PRCCW. 

If you don't set a new current position, upon the 
successful completion of this request, the INFOS 
system returns to the last established current 
position. 

4. If you want the data record returned, specify the 
address of your data area in PRO AT. 

If you don't want the data record returned, specify 
Suppress Database in PRCCW. 

Licensed Material - Property of Data General Corporation 

5. You may specify the length of the record you want 
returned (in PRLEN). The system will let you 
know if the actual record is longer than your 
request. If the system does return a record, it will 
let you know its length, its address, and whether it 
has been logically deleted. 

6. If you want to lock or unlock a record, specify: 

Local lock or unlock (PFLOC/PFUNL in PRST A 
and CCLOC in PRCCW), 

or 
Global lock or unlock (PFLOC/PFUNL in PRSTA 
and CCGLB in PRCCW), 

or 
Both local and global lock or unlock 
(PFLOC/PFUNL in PRST A and CCLOC and 
CCGLBin PRCCW). 

___ Common Error Messages for a Read Request 

Code Description 

200 ILLEGAL FUNCTION 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
231 RAM ACCESS OUTSIDE FILE 
243 RDOS OPEN ERROR 
244 VOLUME ALREADY EXISTS 
254 DEVICE NOT SUPPORTED 
257 COMPARE ERROR (ISAM) 
260 RESOLUTION ERROR (ISAM) 
261 ILLEGAL REL MOTION 
262 INVALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
266 SUBINDEX NOT DEFINED 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 
400 DATA BASE REC NOT PRESENT 
403 DATA RECORD LOCKED 
413 INDEX ENTRY LOCKED 

11-4-10 093-000114-01 



Licensed Material - Property of Data General Corporation 

ISAM Write Processing Request 
1. You must specify Keyed Access in PRCCW of the 

Extended Processing Packet (Table 11-6-4), build a 
Key Table with one key (i.e., a Key Definition 
Packet), and put a pointer to the Key Table in 
PRKTP of the EPP. 

2. You may Set Current Position if you want to 
establish a new one by setting CCSCP in PRCCW. 
If you don't, the system will return you to the last 
established current position when it successfully 
completes this request. 

3. You must specify the address of your data area in 
PRD AT and the length of the record to be written 
in PRLEN if you want to link the index entry you 
are creating to a data record. If you don't want to 
link the new index entry to a data record, specify 
Suppress Database in PRCCW. 

4. You may specify Write Immediate in PRST A if you 
want the new index entry and data record written to 
the file as soon as this request is completed. If you 
do not specify Write Immediate, the INFOS system 
will not transfer the contents of the buffer used for 
this request until it needs the buffer for a 
subsequent request. 

5. You may lock or unlock a record by specifying: 

Local lock or unlock (PFLOC/PFUNL in PRST A 
and CCLOC in PRCCW), 

or 
Global lock or unlock (PFLOC/PFUNL in PRSTA 
and CCGLB in PRCCW), 

or 
Both local and global lock or unlock 
(PFLOC/PFUNL in PRST A and CCLOC and 
CCGLB in PRCCW). 

Common Error Messages for a Write Request 

Code Description 

200 ILLEGAL FUNCTION 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
230 NO MORE DISK SPACE 
231 RAM ACCESS OUTSIDE FILE 
234 RESIDUAL DISK ERROR 
252 NO NODE SPACE 
255 OUTPUT END VOLUME ERROR 
257 COMPARE ERROR (ISAM) 
260 RESOLUTION ERROR 
261 ILLEGAL REL MOTION 
262 INVALID NODE ADDRESS 
263 INVALID CURRENT ENTRY 
266 SUBINDEX NOT DEFINED 
272 ILLEGAL KEY LENGTH 
273 INVALID ENTRY NUMBER 
274 ILLEGAL COMMAND CONTROL 

, 275 KEY ALREADY EXISTS 
276 KEY POSITIONING ERROR 
277 INV ALID RECORD LENGTH 
414 NO WRITE WITHOUT KEY 

DataGeneral 
SOFTWARE DOCUMENTATION 

ISAM Rewrite Processing Request 
1. You must specify an access technique in PRCCW 

of the Extended Processing Packet (Table 11-6-4). 

A. For Keyed access, you must build a Key Table 
with one key (i.e., a Key Definition Packet) and 
put a pointer to it in PRKTP. 

B. For Relative access, you must specify a 
direction of motion in PRCCW. 

2. Specify Set Current Position in PRCCW if you want 
to establish a new one. If you don't, the system will 
return to the last established current position. 

3. A. If you are rewriting an existing data record, 
specify the address of your data area in PRDAT 
and the length of the record you're now writing 
in PRLEN. 

B. If you are writing a new data record, specify the 
address of your data area in PRD AT and the 
length of the record you're writing in PRLEN. 

4. If you want to lock or unlock a record for rewriting, 
specify: 

Local lock or unlock (PFLOC/PFUNL in PRST A 
and CCLOC in PRCCW), 

or 
Global lock or unlock (PFLOC/PFUNL in PRST A 
and CCGLB in PRCCW), 

or 
Both local and global lock or unlock 
(PFLOC/PFUNL in PRST A and CCLOC and 
CCGLB in PRCCW). 

Common Error Messages for a Rewrite Request 

Code Description 

200 ILLEGAL FUNCTION 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
231 ACCESS OUTSIDE FILE 
234 RESIDUAL DISK ERROR 
252 NO NODE SPACE 
260 RESOLUTION ERROR 
261 ILLEGAL REL MOTION 
262 INVALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
266 SUBINDEX NOT DEFINED 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 
400 DAT A BASE REC NOT PRESENT 
403 DATA RECORD LOCKED 
413 INDEX ENTRY LOCKED 

093-000114-01 11-4-11 Processing ISAM Files 



DataGeneral 
SOFTWARE DOCUMENTATION 

ISAM Delete Processing Reql:lest 
NOTE: This request allows you to either physically 

delete an index entry and its corresponding data 
record, or simply mark either one as logically 
deleted. However, to physically delete an index 
entry and its associated data record, you must 
use keyedaccess. Thus: 

1. Specify an access technique in PRCCW of the 
Extended Processing Packet (Table 11-6-4). 

A. For Keyed access, you must build a Key Table 
with one key (i.e., a Key Definition Packet), 
and put a pointer to it in PRKTP. 

B. For Relative access, you must specify a 
direction of motion in PRCCW. 

2. A. To mark an index entry as logically deleted, 
specify Local Logical Delete (set CCLOC and 
CCLOG in PRCCW). 

B. To mark a data record as logically deleted, 
specify Global Logical Delete (set CCG LB and 
CCLOG in PRCCW). 

3. Specify Set Current Position in PRCCW if you want 
to establish a new one. If you don't, the system will 
return to the last established position when it 
completes this request. 

For a Physical Delete, current position will either 
be on: 

A. The next higher index entry from the one 
deleted (if any), or 

B. The initial system-set current position. 

___ Common Error Messages for a Delete Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
230 NO MORE DISK SPACE 
231 ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
267 END OF SUBINDEX 
270 DELETE POSITIONING ERROR 
272 ILLEGAL KEY LENGTH 
274 ILLEGAL COMMAND CONTROL 
275 KEY ALREADY EXISTS 
276 KEY POSITIONING ERROR 
403 DATA RECORD LOCKED 
411 SUBINDEX HAS SUBINDEX; DELETE 

SUBINDEX ERROR 
412 ATTEMPT TO DELETE ENTRY 

WITHOUT KEYED ACCESS 
413 INDEX ENTRY LOCKED 

Licensed Material - Property of Data General Corporation 

ISAM Delete Subindex Processing Request 
1. You must specify upward relative motion in 

PRCCW of the Extended Processing Packet. 

Common Error Messages for a Delete Subindex Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
230 NO MORE DISK SP ACE 
231 RAM ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
265 SUBINDICES NOT ALLOWED 
266 SUBINDEX NOT DEFINED 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 

ISAM Reinstate Processing Request 
1. Specify an access technique in PRCCW of the 

Extended Processing Packet (Table 11-6-4). 

A. For Keyed access, you must build a Key Table 
with one key (i.e., a Key Definition Packet) and 
put a pointer to it in PRKTP. 

B. For Relative access, you must specify a 
direction of motion in PRCCW. 

2. A. To reinstate an index entry, specify Local 
(CCLOC in PRCCW). 

B. To reinstate a data record, specify Global 
(CCGLB in PRCCW). 

C. To reinstate both a data record and an index 
entry, specify both Local and Global in a single 
request (i.e., set both CCLOC and CCGLB in 
PRCCW). 

tr--- Common Error Messages for a Reinstate Request 

Code Description 

213 UNRESOLVED SOURCE CONFLICT 
230 NO MORE DISK SPACE 
231 ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INVALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
272 ILLEGAL KEY LENGTH 
274 ILLEGAL COMMAND CONTROL 
275 KEY ALREADY EXISTS 
276 KEY POSITIONING ERROR 
400 DATA BASE REC NOT PRESENT 
403 DATA RECORD LOCKED 

11-4-12 093-000114-01 



Licensed Material - Property of Data General Corporation 

ISAM Retrieve Status Processing Request 
1. Specify an access technique in PRCCW of the 

Extended Processing Packet (Table 11-6-4). 

A. For Keyed access, you must build a Key Table 
with one key (i.e., a Key Definition Packet), 
and put a pointer to it in PRKTP. 

B. For Relative access, you must specify a 
direction of motion in PRCCW. 

2. Specify Set Current Position in PRCCW if you want 
to establish a new one. If you don't, the system will 
return to the last established position when it 
successfully completes this task. 

3. The INFOS system will return the following status: 

A. The record length, whether or not it's marked 
as logically deleted, and whether it's locked. 

B. The key length, whether it's marked as logically 
deleted, and its occurrence number if it's a 
duplicate. 

Common Error Messages for a Retrieve Status Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
231 RAM ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 
400 DATA BASE REC NOT PRESENT 
400 DATA RECORD LOCKED 

DataGeneral 
SOFTWARE DOCUMENTATION 

ISAM Retrieve Key and Retrieve High Key 
Processing Requests 

1. Specify the address of the area to which the system 
is to return the key in PRDAT and provide a Key 
Definition Packet to receive a duplicate key 
occurrence number (if any). If you didn't allow 
duplicate keys, place ... 1 in the second word of the 
Key Table pointer. 

2. Specify an access technique in PRCCW. 

A. For Keyed access, you must build a Key Table 
with one key (i.e., a Key Definition Packet), 
and put a pointer to it in PRKTP. 

B. For Relative access, you must specify a 
direction of motion in PRCCW. 

3. Specify Set Current Position in PRCCW if you want 
to establish a new one, otherwise the system will 
return to the last established current position. 

4. The system will return the key, its length, and its 
occurrence number if it's a duplicate. 

Common Error Messages for Retrieve Key and Retrieve 
High Key Requests 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
231 ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INVALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 

End of Chapter 

093-000114-01 11-4-13 Processing ISAM Files 





DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Chapter 5 
Data Rase Access Method (DRAM) Files 

This chapter discusses how to open a DBAM file in 
various circumstances and how to use the DBAM 
processing requests. Similar to the rest of Section Two, 
this chapter is procedure-oriented. You can find further 
details about the information described here in Chapter 
5 of Section One of this manual. 

Opening DRAM Files 
You can open a DBAM file in five different ways: 

• In the Create Update mode 

• In the Update mode withouta Database runtime FDP 

• In the Update mode with a Database runtime FDP 

• When you're creating a new DBAM Index without a 
Database runtime FDP 

• When you're creating a new DBAM Index with a 
Database runtime FDP 

Let's look at each of these situations individually. 

Steps for Opening in the Create 
Update Mode 

1. Set up the following: 

A. For the Index: 

• Index FDP (see Tables 11-5-1, 11-6-1, and 
BLDFDP in Chapter 11-7) 

• Volume names for each Index volume 
(FDVTP of the FDP) 

• One VDP for each Index volume (Tables 
11-5-3,11-6-2, and BLDVDP in Chapter 11-7) 

• An Index Volume Table (i.e., concatenate 
the Index VDPs) 

093-000114-01 11-5-1 

B. For the Database: 

• Database FDP (Tables 11-5-2, 11-6-1, and 
BLDFDP) 

• Volume names for each Database volume 
(FDVTP of the FDP) 

• One VDP for each Database volume (Tables 
11-5-3, 11-6-2, and BLDVDP) 

• A Database Volume Table 

2. Put the address of the Index FDP in AC2. 

3. Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

A. Make sure that the address of the Index FDP is 
in AC2. 

B. Issue an Open (.OINFOS) system call. 

5. When INFOS returlls~move_1@_file's pseudo 
channel number from AC 1 to your program area. 

Figure 11-5-1 shows how the packets and tables relate. 

Steps for Opening in the Create Update 
Mode 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Index FDP Index Volume Table 

filename.V1 
Volume 1 Name Pointer 

filename.Vn 

Database Volume Table 

~---~ dbfilename.V1 
Volume 1 Name POinter 

dbfilename.Vn 

L,.S.;;..D_-_O_07_6_7 ________ Figure /1-5-1. Open DBA Mfile in the Create Update Mode ------------

11-5-2 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

093-000114-01 

Table 11-5-1. DBAM Index FOP for Create Update Mode ____ __ 
(See Table 11-6-1) 

You must specify the following: 

1. DBAM access method (in FDFLI) 

2. Variable length records (in FDFLI) 

3. Create Update processing mode (in FDFLI) 

4. The number of index levels (FDNIL) 

5. The address of the Volume Table (FDVTP) 

6. The address of the Database FDP (FDDBP) 

7. Initial node size (FDINS) 

8. Maximum key length (FDMKL) 

You may specify the following: System default values for these options 
are: 

1. The number of I/O buffers for this 
opening (FDBUF) 

2. Page size (FD BLK) 

3. Number of volumes (FDNVD) 

4. Partial record length (FDPRL) 

5. Root node merit factor (FDRMF) 

6. Read-After-Write verification 
(in FDFLI) 

7. Space management (in FDFL2) 

8. Optimized distribution (in FDFL2) 

9. Disable hierarchical replacement 
(in FDFL2) 

10. Key compression (in FDIFL) 

11. High priority node (in FDIFL) 

2 buffers, recorded as a changeable part 
of the file's PFS 

512 bytes 

1 volume 

No partial record (0 length) 

Merit factor of 0 

No verification for this opening 

No space management 

No optimized distribution 

Hierarchically modulated LRU buffer 
management used for this opening 

Keys in this subindex not compressed 

Root node priority based on its subindex 
level 

12. Temporary subindex (in FDIFL) Permanent subindex 

13. Permanent data records (in FDIFL) Data records linked to index entries in 
this subindex can be physically deleted 

11-5-3 Steps for Opening in the Create Update 
Mode 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

..----- Table 11-5-2. DBAM Database FOP for Create Update Mode 
(See Table 11-6-1) 

You must specify the following: 

1. RAM access method (in FD FL 1) 

2. Variable length records (in FDFL1) 

3. Create Update processing mode (in FDFLl) 

4. The address of the Volume Table (FDVTP) 

You may specify the following: 

1. Page size (FDBLK) 

2. Number ofI/O buffers for this 
opening (FDBUF) 

3. Number of volumes (FDNVD) 

4. Read-After-Write verification. 
(in FDFLl) 

5. Space management (in FDFL2) 

6. Optimized distribution (in FDFL2) 

System default values for these options 
are: 

512 bytes 

1 buffer, recorded as a changeable part 
of the file's PFS 

1 volume 

No verification for this opening 

No space management 

No optimized distribution 

Table 11-5-3. VDPs for Index and Database Files Opened in the Create Update 
Mode (See Table 11-6-2) 

You must specify the address of each volume's name in VDVNP. 

You may specify the following: 

1. Volume size (VDVSZ) 

System default values for these options 
are: 

65,535 blocks (Make sure that you have 
at least this much available disk space if 
you choose the default.) 

2. Contiguous allocation (in VDIVC) Random allocation 

3. 

4. 

5. 

Disable file initialization 
(in VDIVC) 

Volume merit factor (VDVMF) 

Pad character (VDPAD) 

If contiguous allocation, each block is 
null filled 

o merit factor 

Null (binary 0) 

11-5-4 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Steps for Opening in the Update Mode 
without a Database Runtime FDP 

1. Set up the following: 

A. For the Index: 

• Index FDP (Tables 11-5-4, 11-6-1, and 
BLDFDP in Chapter 11-7) 

• Index volume name (FDVTP of the FDP) 
• A VDP for the Index volume (Tables 11-5-5, 

11-6-2, and BLDVDP in Chapter 11-7) 
• Index volume table 

B. For the Database: 

• The Database filename (FDDBP of the 
index's FDP) 

Index FOP 
o 

11 

2. Put the address of the Index FDP in AC2. 

3. Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

A. Make sure that the address of the Index FDP is 
in AC2. 

B. Issue an Open (.OINFOS) system call. 

5. When INFOS returns, move the file's pseudo 
channel number from ACI to your program area. 

Figure 11-5-2 shows how the packets and tables relate. 

Index Volume Table 

filename.V1 
Volume 1 Name Pointer 

42 
dbfilename.V1 

49 

SO-00768 Figure /1-5-2. Open ISAM File in Update Mode without __________ ---J 

'------------ Database Runtime FDP 

093-000114-01 11-5-5 Steps for Opening in the Update Mode 
without a Database Runtime FOP 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 11-5-4. DBAM Index FOP for Update Mode without Database Runtime FOP 
<See Table 11-6-1) 

You must specify the following: 

1. DBAM access method (in FDFLl) 

2. Variable length records (in FD FL 1) 

3. Update processing mode (in FDFLl) 

4. The address of the Volume Table (FDVTP) 

5. The address of the database filename (FDDBP) 

You may specify the following: 

1. 

2. 

3. 

The number of I/O buffers for this 
opening (FDBUF) 

Read-After-Write verification 
(in FDFLl) 

Disable hierarchical replacement 
(in FDFL2) 

Default values for these options are: 

Contents of index and database PFSs are 
used 

No verification for this opening 

Hierarchically modulated LRU buffer 
management used for this opening 

__ --,- Table 11-5-5. VDP for DBAM Index Opened in the Update Mode ___ __ 
<See Table 11-6-2) 

You must specify the address of the name of the first volume in the file in FDVTP. The 
system will use the contents of the PFS for the remaining information. 

11-5-6 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Steps for Opening in the Update Mode 
with a Database Runtime FDP 

1. Set up the following: 

A. For the Index: 

• Index FDP (Tables 11-5-6, 11-6-1, and 
BLDFDP in Chapter 11-7) 

• Index volume name (FDVTP of the FDP) 
• Index VDP (Tables 11-5-8, 11-6-2, and 

BLDVDP in Chapter 11-7) 
• Index Volume Table 

B. For the Database: 

• Database FDP (Tables 11-5-7, 11-6-1, and 
BLDFDP) 

• Database volume name (FDVTP of the 
FDP) 

• Database VDP (Tables 11-5-8, 11-6-2, and 
BLDVDP) 

• Database Volume Table 

Index FDP 
o 

11 

42 

49 

11 

2. Put address of Index FDP in AC2. 

3. Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

A. Make sure that the address of the Index FOP is 
in AC2. 

B. Issue an Open (.OINFOS) system call. 

5. When INFOS returns, move the file's pseudo 
channel number from AC1 to your program area. 

Figure 11-5-3 shows how the packets and tables relate. 

Index Volume Table 

filename,V1 
Volume 1 Name Pointer 

Database Volume Table 

dbfilename,V1 
Volume 1 Name Pointer 

'-S_D_-O_O_7_69 _________ Figure //-5-3. Open DBAM File in Update Mode with ___________ ""'" 
Database Runtime FDP 

093-000114-01 11-5-7 Steps for Opening in the Update Mode 
with a Database Runtime FDP 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 11-5-6. DBAM Index FOP for Update Mode with Database Runtime FDP __ -. 
<See Table 11-6-1) 

You must specify the following: 

1. DBAM access method (in FDFL1) 

2. Variable length records (in FDFL1) 

3. Update processing mode (in FDFLl) 

4. The address of the Volume Table (FDVTP) 

5. That a database FOP is present (in FDFL2) 

6. The address of the database FOP (FDDBP) 

You may specify the following: Default values for these options are: 

1. 

2. 

3. 

The number ofItO buffers for this 
opening (FDBUF) 

Read-After-Wri te verification 
(in FDFLl) 

Disable hierarchical replacement 
(in FDFL2) 

The contents of the index PFS are used 

No verification for this opening 

Hierarchically modulated LRU buffer 
management is used for this opening 

_--- Table 11-5-7. DBAM Database Runtime FOP for Update Mode 
<See Table 11-6-1) 

You must specify the following: 

1. RAM access method (in FD FL 1 ) 

2. Variable length records (in FDFLl) 

3. Update processing mode (in FDFLl) 

4. The address of the Volume Table (FDVTP) 

You may specify the following: 

1. 

2. 

The number ofItO buffers to be 
used for this opening (FDBUF) 

Read-After-Write verification 
(in FDFLl) 

Default values for these options are: 

The contents of the database PFS are 
used for this opening 

No verification for this opening 

Table 11-5-8. VDPs for DBAM Index and Database Opened in the Update Mode 
(See Table 11-6-2) 

You must specify the address of the name of the first volume in the file in VDVNP. The 
system will use the contents of the PFS for the remaining information. 

11-5-8 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Steps for Creating a New DBAM Index 
without a Database Runtime FDP 

1. Set up the following: 

A. For the Index: 

• New Index FDP (Tables 11-5-9, 11-6-1, and 
BLDFDP in Chapter 11-7) 

• New Index volume names (FDVTP of the 
FDP) 

• One VDP for each new Index volume 
(Tables 11-5-10, 11-6-2, and BLDVDP in 
Chapter 11-7) 

• New Index Volume Table 

B. For the Database: 

• Database filename (FDDBP of the index's 
FDP) 

New Index FOP 
o 

11 

42 

2. Put the address of the new Index FDP in AC2. 

3. Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

A. Make sure that the address of the new Index 
FDP is in AC2. 

B. Issue an Open (.OINFOS) system call. 

5. When INFOS returns, move the file's pseudo 
channel num·ber from AC1 to your program area. 

Figure 11-5-4 shows how the packets and tables relate. 

New Index Volume Table 

filename.V1 
Volume 1 Name Pointer 

filename.Vn 

dbfilen3me. V1 

L.,S_D_-O_O_7_70 _________ Figure //-5-4. Create a New DBAM Index without a --_________ .....J 

Database Runtime FDP 

093-000114-01 11-5-9 Steps for Creating a New DRAM Index 
without a Database Runtime FDP 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 11-5-9. FOP for New DRAM Index without Database Runtime FOP __ -, 
(See Table 11-6-1) 

You must specify the following: 

1. DBAM access method (in FDFLl) 

2. Variable length records (in FDFLl) 

3. Create Update processing mode (in FDFLl) 

4. That you are inverting a file (in FD FL 1) 

5. The number of index levels (FDNIL) 

6. The address of the Volume Table (FDVTP) 

7. The address of the database filename (FDDBP) 

8. The initial node size (FDINS) 

9. The maximum key length (FDMKL) 

You may specify the following: 

1. The number of I/O buffers for this 
opening (FDBUF) 

2. Page size (FDBLK) 

3. Number of volumes (FDNVD) 

4. Partial record length (FDPRL) 

5. Root node merit factor (FDRMF) 

6. Read-After-Write verification 
(in FDFLl) 

7. Space management (in FDFL2) 

8. Optimized distribution (in FDFL2) 

9. Disable hierarchical replacement. 
(in FDFL2) 

10. Key compression (in FDIFL) 

11. High priority node (in FDIFL) 

12. Temporary subindex (in FDIFL) 

13. Permanent data records (in FDIFL) 

11-5-10 

System default values for these options 
are: 

2 buffers, recorded as a changeable part 
of the file's PFS 

512 bytes 

1 volume 

No partial records (0 length) 

No optimized distribution 

No verification for this opening 

No space management 

No optimized distribution 

Hierarchically modulated LRU buffer 
management used for this opening 

Keys in this subindex not compressed 

Root node priority based on its subindex 
level 

Permanent subindex 

Data records linked to index entries in 
this subindex can be physically deleted 

093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

093-000114-01 

Table 11-5-10. VDP for New DBAM Index 
<See Table 11-6-2} 

You must specify the address of each volume's name in VDVNP. 

You may specify the following: 

1. 

2. 

3. 

4. 

5. 

Volume size (VDVSZ) 

Contiguous allocation (in VDIVC) 

Disable file initialization (in 
VDIVC) 

Volume merit factor (VDVMF) 

Pad character (VDPAD) 

System default values for these options 
are: 

65,535 blocks (Make sure that you have 
at least this much available disk space if 
you choose the default.) 

Random allocation 

If contiguous allocation, each block is 
null filled 

o merit factor 

Null (binary 0) 

11-5-11 Steps for Creating a New DRAM Index 
without a Database Runtime FOP 



DataGeneral 
SOFTWARE DOCUMENTATION 

Steps for Creating a New DRAM Index 
with a Database Runtime FDP 

1. Set up the following: 

A. For the Index: 

• New Index FDP (Tables 11-5-11, 11-6-1, and 
BLDFDP in Chapter 11-7) 

• New Index volume names (FDVTP of the 
FDP) 

• One VDP for each new Index volume 
(Tables 11-5-12, 11-6-2, BLDVDP in Chapter 
11-7) 

• New Index Volume Table 

B. For the Database: 

• New Database runtime FDP for the new 
Index (Tables 11-5-13,11-6-1 and BLDFDP) 

• Database volume name (FDVTP of the 
FDP) 

• Database VDP (Tables 11-5-14, 11-6-2, and 
BLDVDP) 

• Database Volume Table 

New Index FDP 
o 

11 

42 

Licensed Material - Property of Data General Corporation 

2. Put the address of the new Index FDP in AC2. 

3. Issue a Pre-open (.PINFOS) system call. 

4. When INFOS returns: 

A. Make sure that the address of the new Index 
FDP is in AC2. 

B. Issue an Open (.OINFOS) system call. 

5. When INFOS returns, move the file's pseudo 
channel number from ACI to your program area. 

Figure 11-5-5 shows how the packets and tables relate. 

New Index Volume Table 

filename.V1 
Volume 1 Name Pointer 

filename.Vn 

Database Volume Table 

dbfilename.V1 
Volume 1 Name Pointer 

Fixure 1/-5-5. Create a New DRAM Index with a Database _________ ---J L..-_________ Runtime FDP 
SO-00771 

11-5-12 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGmeral 
SOFTWARE DOCUMENTATION 

093-000114-01 

___ Table 11-5-11. FOP for New DBAM Index with Database Runtime FOP 
<See Table 11-6-1) 

You must specify the following: 

1. DBAM access method (in FDFLl) 

2. Variable length records (in FDFLl) 

3. Create Update processing mode (in FDFLl) 

4. That you are inverting a file (in FDFLl) 

5. The number of index levels (FDNIL) 

6. The address of the Volume Table (FDVTP) 

7. That a database FDP is present (in FDFL2) 

8. The address of the database FDP (FDDBP) 

9. The initial node size (FDINS) 

10. The maximum key length (FDMKL) 

You may specify the following: System default values for these options 
are: 

1. The number of 110 buffers for this 
opening (FDBUF) 

2. Page size (FDBLK) 

3. Number of volumes (FDNVD) 

4. Partial record length (FDPRL) 

5. Root node merit factor (FDRMF) 

6. Read-After-Write verification 
(in FDFLl) 

7. Space management (in FDFL2) 

8. Optimized distribution (in FDFL2) 

9. Disable hierarchical replacement 
(in FDFL2) 

10. Key compression (in FDIFL) 

11. High priority node (in FDIFL) 

12. Temporary subindex (in FDIFL) 

13. Permanent data records (in FDIFL) 

11-5-13 

2 buffers, recorded as a changeable part 
of the file's PFS 

512 bytes 

1 volume 

No partial records (0 length) 

No optimized distribution 

No verification for this opening 

No space management 

No optimized distribution 

Hierarchically modulated LRU buffer 
management used for this opening 

Keys in this subindex not compressed 

Root node priority based on its subindex 
level 

Permanent subindex 

Data records linked to index entries in 
this subindex can be physically deleted 

Steps for Creating a New DBAM Index 
without a Database Runtime FOP 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

__ ------ Table 11-5-12. VDP for New DBAM Index 
<See Table 11-6-2) 

You must specify the address of each volume's name in VDVNP. 

You may specify the following: 

1. 

2. 

3. 

4. 

5 . 

Volume size (VDVSZ) 

Contiguous allocation (in VDIVC) 

Disable file initialization 
(in VDIVC) 

Volume merit factor (VDVMF) 

Pad character (VDPAD) 

System default values for these options 
are: 

65,535 blocks (Make sure that you have 
at least this much available disk space if 
you choose the default.) 

Random allocation 

If contiguous allocation, each block is 
null filled 

o merit factor 

Null (binary 0) 

...... ----Table 11-5-13. DBAM Database Runtime FOP for New Index ____ __ 
<See Table 11-6-1) 

You must specify the following: 

1. RAM access method (in FDFL1) 

2. Variable length records (in FDFLl) 

3. Update processing mode (in FDFL1) 

4. The address of the Volume Table (FDVTP) 

You may specify the following: 

1. 

2. 

The number of I/O buffers to be 
used for this opening (FDBUF) 

Read-After-Write verification 
(in FDFLl) 

Default values for these options are: 

Number recorded in the database PFS 

No verification for this opening 

___ Table 11-5-14. VDP for DBAM Database Opened in the Update Mode __ __ 
<See Table 11-6-2) 

You must specify the address of the name of the first volume in the file in VDVNP. The 
system will use the contents of the PFS for the remaining information. 

11-5-14 093-000114-01 



Licensed Material - Property of Data General Corporation 

Process i ng D BAM Fi les 
You can issue D BAM processing requests as soon as 
your file is open. For each request you issue, however, 
you must build an Extended Processing Packet (see 
Table 11-6-4 and BLDPP in Chapter 11-7), and specify 
either Keyed, Relative, or combined Keyed and 
Relative access in PRCCW of that packet. 
Furthermore, note that, for all processing requests, the 
INFOS system will notify you: 

• if it encounters a physical end-of-file while 
processing, or 

• if the Read-After-Write verification cycle failed on a 
previous write or rewrite request. 

Keyed Access 

You must provide a Key Table for each Keyed access 
request. A Key Table for a DBAM request is merely a 
contiguous sequence of Key Definition Packets, and it 
contains one definition for each subindex level through 
which you want the INFOS system to pass. Each time 
you use Keyed access, you must specify (in the FDP) 
the address of the first word of your Key Table. (See 
Figure 11-6-6 for further details on Key Tables.) 

Subindex 
Level 1 

DataGeneral 
SOFTWARE DOCUMENTATION 

Relative Access 

Obviously, you don't need a Key Table for Relative 
access because you're not using keys. In Relative 
access, motion is relative to the last established current 
position, and, in a DBAM file, you can move in any of 
eight unique directions: forward, backward, up, down, 
up and forward, down and forward, up and backward, 
and static (no move). 

Combined Keyed and Relative Access 

You can combine Keyed and Relative access in most 
DBAM processing requests. And, when you do, you 
must specify a direction of motion and provide a Key 
Table. Furthermore, you can only request upward, 
downward, or static movement. The system will 
perform the Relative movement first, then apply the 
contents of the Key Table from there. Therefore, you 
need fewer key definitions in your Key Table for a 
combined access processing request than you do for 
plain Keyed access. For example, in Figure 11-5-6, 
imagine your current position is on "Payroll" in the 
subindex level one, and you want to read the record 
associated with the key "Zappa" in subindex level two. 
Just specify downward motion (to bring you down to 
level two,) and provide a key table with just one key 
definition (for "Zappa"). 

~ D"",, 

I 
To J. 
/)alabasc , 

L.S;,..D_-O_07_7_2 ------------ Figure //-5-6. DBAM Index Structure ______________ ---J 

093-000114-01 11-5-15 Processing DRAM Files 



DataGeneral 
SOFTWARE DOCUMENTATION 

DRAM Read Processing Request 
1. Specify an access technique in PRCCW of the 

Extended Processing Packet (Table 11-6-4). 

A. For Keyed access, build a Key Table with one 
key for each subindex level to be accessed (see 
BLDKDP in Chapter 11-7 to build Key 
Definition Packets) and put a pointer to its first 
word in PRKTP. 

B. For Relative access, specify a direction of 
movement in PRCCW. 

C. For combined access, provide a Key Table, a 
pointer to it in PRKTP, and a direction of 
motion in PRCCW. 

2. If you want to read a record by an approximate, 
generic, or duplicate key, specify your desired 
option in KDTYP of the Key Definition Packet. If 
you want to read a duplicate key, place its 
occurrence number in KDDKO. 

3. Specify Set Current Position (in PRCCW) if you 
want to establish a new one; otherwise, the system 
will return to the last established current position. 

4. Specify the address of your data area in PRDAT if 
you want the system to return the data record; 
otherwise specify Suppress Database in PRCCW. 

5. Specify (in PRLEN) the length of the record to be 
returned. 

The system will tell you the record's length, its 
address, whether or not it has been logically 
deleted, and whether the actual record is longer 
than the length you specified. 

6. Specify the address of your partial record area in 
PRPRA if you want the partial record returned; 
otherwise, specify Suppress Partial Record in 
PRCCW. 

The system will tell you (in PRSRL) the length of 
any partial records returned. 

7. If you want to lock or unlock, specify: 

Local lock or unlock (PFLOC/PFUNL in PRST A 
and CCLOC in PRCCW), 

or 
Global lock or unlock (PFLOC/PFUNL in PRSTA 
and CCGLB in PRCCW), 

or 
Both local and global lock or unlock 
(PFLOC/PFUNL in PRST A and CCLOC and 
CCGLB in PRCCW). 

Licensed Material - Property of Data General Corporation 

8. On each access into the Index, the system will 
return: 

A. the subindex level number of the key accessed 
(in PRSIL of the Processing Packet), 

B. whether or not the key accessed is a duplicate 
(in PRSRS), and 

C. whether or not the key accessed is logically 
deleted (in PRSRS). 

_-- Common Error Messages for a DBAM __ _ 
Read Request 

Code Description 

200 ILLEGAL FUNCTION 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
231 RAM ACCESS OUTSIDE FILE 
243 OPERATING SYSTEM OPEN ERROR 
244 VOLUME ALREADY EXISTS 
254 DEVICE NOT SUPPORTED 
257 COMPARE ERROR (ISAM) 
260 RESOLUTION ERROR (ISAM) 
261 ILLEGAL REL MOTION 
262 INVALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
266 SUBINDEX NOT DEFINED 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 
400 DATA BASE REC NOT PRESENT 
403 DAT A RECORD LOCKED 
413 INDEX ENTRY LOCKED 

11-5-16 093-000114-01 



Licensed Material - Property of Data General Corporation 

DRAM Write Processing Request 
1. Specify an access technique in PRCCW of the 

Extended Processing Packet (Table 11-6-4): 

A. For Keyed access, provide a Key Table 
containing one key for each subindex level to 
be accessed and put a pointer to its first word in 
PRKTP. The system will write the last key in 
the Table to the appropriate subindex level, and 
it will return that level number to PRSIL of the 
Processing Packet. 

B. For combined Keyed and Relative access, 
specify a direction of motion in PRCCW, 
provide a Key Table, and put its address in 
PRKTP. 

C. If you're writing a duplicate key, specify that 
you're doing so by setting KTDUP in KDTYP 
of the Key Definition Packet. The system will 
assign an occurrence number for the duplicate 
and return that number in KDDKO. 

You may not use simple Relative access to write to a 
DBAM file. 

2. Specify Set Current Position in PRCCW if you want 
to establish a new one; otherwise the system will 
return you to the last established position. 

3. A. Specify the address of your data area (in 
PRD AT) and the length of the record to be 
written (in PRLEN) if you want to link your 
new Index entry to a new data record; 
otherwise, specify Suppress Database in 
PRCCW. 

B. Specify the Record Merit Factor in PRRMF if 
you specified Optimized Distribution in FDFL2 
of the Database FDP. 

C. If you want to link the index entry you are 
creating to an existing data record, specify the 
address of that record in PRD AT and specify 
Inverting in PRCCW. (To get the address of an 
existing data record, access it with a Read, 
Write, or Rewrite request. The system always 
returns the data record address for these 
operations in PRDFB.) 

4. A. Specify the address of your partial record area in 
PRPRA if the subindex in which you're 
creating the index entry uses partial records; 
otherwise specify Suppress Partial Record in 
PRCCW. 

B. If you write a partial record, the INFOS system 
will return its length in PRSRL. 

DataGeneral 
SOFTWARE DOCUMENTATION 

5. Specify Write Immediate in PRSTA if you want to 
write the index entry and the data record to the file 
when this request is completed; otherwise, the 
system will not transfer the contents of the buffers 
used for this request until it needs them for a 
subsequent request. 

6. If you want to lock or unlock, specify: 

Local lock or unlock (PFLOC/PFUNL in PRST A 
and CCLOC in PRCCW), 

or 
Global lock or unlock (PFLOC/PFUNL in PRST A 
and CCGLB in PRCCW), 

or 
Both Local and Global lock or unlock 
(PFLOC/PFUNL in PRST A and CCLOC and 
CCGLB in PRCCW). 

7. On each access into the index, the system will 
return the following in the Processing Packet: 

A. the subindex level of the key accessed (in 
PRSIL), 

B. whether or not the key accessed is a duplicate 
(in PRSRS), and 

C. whether or not the key accessed is logically 
deleted (in PRSRS). 

Common Error Messages for a DRAM Write Request 

Code Description 

200 ILLEG AL FUNCTION 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
230 NO MORE DISK SPACE 
231 RAM ACCESS OUTSIDE FILE 
234 RESIDUAL DISK ERROR 
252 NO NODE SPACE 
255 OUTPUT END VOLUME ERROR 
257 COMPARE ERROR (ISAM) 
260 RESOLUTION ERROR (ISAM) 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
266 SUBINDEX NOT DEFINED 
272 ILLEGAL KEY LENGTH 
273 INV ALID ENTRY NUMBER 
274 ILLEGAL COMMAND CONTROL 
275 KEY ALREADY EXISTS 
276 KEY POSITIONING ERROR 
277 INV ALID RECORD LENGTH 
414 NO WRITE WITHOUT KEY 

093-000114-01 11-5-17 Proce~sing DRAM Files 



DataGeneral 
SOFTWARE DOCUMENTATION 

DRAM Rewrite Processing Request 

l. Specify an access technique in PRCCW of the 
Extended Processing Packet (Table 11-6-4). 

A. For Keyed access, provide a Key Table 
containing one key for each subindex level to 
be accessed and put a pointer to its first word in 
PRKTP. 

B. For Relative access, specify a direction of 
motion in PRCCW. 

C. For combined Keyed and Relative access, 
provide a Key Table, put a pointer to it in 
PRKTP, and specify a direction of motion in 
PRCCW. 

On each access into the Index, the system will 
return the subindex level number of the key 
accessed to PRSIL. 

2. If you are rewriting a duplicate key, set KTDUP in 
KDTYP of the Key Definition Packet and specify 
the occurrence number in KDDKO. 

3. Specify Set Current Position in PRCCW if you want 
to establish a new one; otherwise the system will 
return to the last established position. 

4. A. If you are rewriting an existing data recor?, 
specify the address of your data area In 

PRD AT, and the length of the new record 
you're writing in PRLEN. In addition, you may 
specify a new Record Merit Factor in PRRMF. 

B. If you are not rewriting an existing data record 
and you do not want the record returned, 
specify Suppress Database in PRCCW. 

C. If you are writing a new data record, specify the 
address of your data area in PRD AT and the 
length of the new record in PRLEN. Als?, 
specify a Merit Factor for the new record In 

PRRMF if you specified Optimized 
Distribution in FDFL2 of the Database FDP. 

5. A. If you have partial records in the subindex entry 
in which you are rewriting this index entry, 
specify either the address of your partial record 
area (in PRPRA), or Suppress Partial Record 
(in PRCCW). 

B. If you rewrite a partial record, the INFOS 
system will return its length in PRSRL. 

Licensed Material - Property of Data General Corporation 

6. To link the Index entry accessed for this request to 
an existing data record, specify Inverting in PRCCW 
and the address of the existing record in PRD AT. 
However, an Index entry accessed for Inverting 
cannot already have a data record link. (To get the 
address of an existing data record, access it with a 
Read, Write, or Rewrite request. The system 
always returns the data record address for these 
operations to PRDFB.) 

7. On each access into the index, the system will 
return the following in the Processing Packet: 

A. The subindex level of the key accessed (in 
PRSIL), 

B. Whether or not the key accessed is a duplicate 
(in PRSRS), and 

C. Whether or not the key accessed is logically 
deleted (in PRSRS). 

8. If you want to use the Write Immediate feature, set 
PFWIF in PRST A. 

9. To lock or unlock a record or an Index entry, 
specify: 

Local lock or unlock (PFLOC/PFUNL in PRST A 
and CCLOC in PRCCW), 

or 
Global lock or unlock (PFLOC/PFUNL in PRST A 
and CCGLB in PRCCW), 

or 
Both local and global lock or unlock 
(PFLOC/PFUNL in PRST A and CCLOC and 
CCG LB in PRCCW). 

Common Error Messages for a DBAM Rewrite Request 

Code Description 

200 ILLEGAL FUNCTION 
210 FILE NOT OPEN 
213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
231 ACCESS OUTSIDE FILE 
234 RESIDUAL DISK ERROR 
252 NO NODE SPACE 
260 RESOLUTION ERROR (ISAM) 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
266 SUBINDEX NOT DEFINED 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 
400 D A T A BASE REC NOT PRESENT 
403 DATA RECORD LOCKED 
413 INDEX ENTRY LOCKED 

11-5-18 093-000114-01 



Licensed Material - Property of Data General Corporation 

DRAM Define Subindex Processing Request 

1. Build a Subindex Definition Packet (see Figure 
II-6-7 and BLDSDP in Chapter 7) and specify its 
address in PRSID of the Extended Processing 
Packet (Table II-6-4). 

2. In PRCCW, specify an access technique to reach 
the index entry under which you're defining the 
subindex. 

A. For Keyed access, provide a Key Table 
containing one key for each subindex level to 
be accessed and put a pointer to its first word in 
PRKTP. 

B. For Relative access, specify a direction of 
motion in PRCCW. 

C. For combined Keyed and Relative access, 
provide a Key Table, put its address in PRKTP, 
and specify a direction of motion in PRCCW. 

3. Specify Local lock if you want to lock the accessed 
index entry (i.e., set PFLOC in PRST A and 
CCLOC in PRCCW). 

4. Specify Set Current Position if you want to establish 
a new one by setting CCSCP in PRCCW; 
otherwise, the system will return to the last 
established position. 

Common Error Messages for a DBAM Define 
Subindex Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
230 NO MORE DISK SPACE 
231 RAM ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTR Y 
265 SUBINDICES NOT ALLOWED 
267 END OF SUBINDEX 
272 ILLEGAL KEY LENGTH 
274 ILLEGAL COMMAND CONTROL 
275 KEY ALREADY EXISTS 
276 KEY POSITIONING ERROR 
406 SUBINDEX LINK COUNT OVERFLOW 
407 ALREADY LINKED TO SUBINDEX 
410 SUBINDEX LEVEL OVERFLOW 

DRAM Link Subindex Processing Request 

NOTE: For this request, you must position to two 
existing index entries: the source (which 
already has a defined subindex under it), and 
the destination (which must not have a 
subindex defined under it prior to this request). 
The INFOS system will retrieve the source key 
and copy its subindex link information to the 
destination. 

DataGeneral 
SOFTWARE DOCUMENTATION 

1. Build a Link Subindex Processing Packet (see Table 
II-6-9 and BLDLSP in Chapter II-7). 

2. Specify a technique to access each index entry 
(source and destination) in PRDCC and PRSCC of 
the Link Packet. 

A. For Keyed access, provide a Key Table 
containing one key for each subindex level to 
be accessed, and put the address of its first word 
in PRDCC and PRSCC. 

B. For Relative access, specify a direction of 
motion in PRDCC and PRSCC. 

C. For combined Keyed and Relative access, 
provide Key Tables, their addresses, and a 
direction of motion. 

3. Specify Set Current Position (CCSCP) on either the 
source (i.e., in word PRSCC) or the destination key 
(i.e., in word PRDCC) if you want to establish a 
new current position; otherwise the system will 
return to the last established position. Note, 
however, that if you Set Current Position on both 
keys, the new position will be on the destination 
key when the system successfully completes this 
request. 

4. Specify Local lock or Local unlock if you want to 
lock or unlock either (or both) the source and 
destination keys (i.e., set PFLOC or PFUNL in 
PRST A and CCLOC in either PRSCC or PRDCC). 

5. If you link to an index entry which has been 
logically deleted, the system will set SRLLD in the 
Processing Packet. 

Common Error Messages for a Link Subindex 
Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
230 NO MORE DISK SPACE 
231 ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INVALID NODE ADDRESS 
263 INV ALID CURRENT ENTR Y 
265 SUBINDICES NOT ALLOWED 
266 SUBINDEX NOT DEFINED 
267 END OF SUBINDEX 
272 ILLEGAL KEY LENGTH 
274 ILLEGAL COMMAND CONTROL 
275 KEY ALREADY EXISTS 
276 KEY POSITIONING ERROR 
4m DATA RECORD LOCKED 
406· SUBINDEX LINK COUNT OVERFLOW 
407 ALREADY LINKED TO SUBINDEX 

093-000114-01 11-5-19 Processing DBAM Files 



DataGeneral 
SOFTWARE DOCUMENTATION 

DRAM Delete Processing Request 

Ths request allows you to physically delete an index 
entry and its corresponding data record, or to mark an 
index entry or a data record (or both) as logically 
deleted. However, to physically delete an index entry 
and its data record, you must access the index entry via 
Keyed access (i.e., set CCKEY in PRCCW of the 
Extended Processing Packet, and provide a Key Table 
and its address). 

1. Specify an access technique in PRCCW. 

A. For Keyed access, provide a Key Table 
containing one key for each level of subindex to 
be accessed and put its address in PRKTP. 

B. For Relative access, specify a direction of 
motion in PRCCW. 

C. For combined Keyed and Relative access, 
provide a Key Table, put its address in PRKTP, 
and specify a direction of motion in PRCCW. 

If you provide a Key Table, the system will delete 
(or mark as logically deleted) the last key in the 
table. 

2. A. To mark an index entry as logically deleted, 
specify Local Logical Delete (set CCLOC and 
CCLOG in PRCCW). 

B. To mark a data record as logically deleted, 
specify Global Logical Delete (set CCG LB and 
CCLOG in PRCCW). 

C. You may mark both the index entry and the 
data record as logically deleted in a single 
request by setting CCLOC, CCGLB, and 
CCLOG. 

NOTE: For multiple-inverted records, a physical 
delete will only delete one index entry 
and decrease the pointer count for the 
data record by one. You can physically 
delete a data record only when the count 
goes to zero (i.e., when you have 
physically del~ted all the subindexes 
which point to the record). 

Licensed Material - Property of Data General Corporation 

3. Specify Set Current Position in PRCCW if you want 
to establish a new one; otherwise the system will 
return you to the last established position. 

A. For a logical delete, Set Current Position will 
return you to the accessed index entry. 

B. For a physical delete, Set Current Position will 
return you to either the next higher index entry 
after the one deleted (if any), or the index 
entry that owns the subindex containing the 
deleted entry, or (if you are in subindex level 0) 
to the system-set initial current position. 

4. If you want to delete a duplicate key, you must set 
KTDUP in KDTYP of the Key Definition Packet 
and put the key's occurrence number in KDDKO. 

Common Error Messages for a DRAM Delete Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
226 NO SUCH VOLUME 
230 NO MORE DISK SP ACE 
231 RAM ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INVALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
267 END OF SUBINDEX 
270 DELETE POSITIONING ERROR 
272 ILLEGAL KEY LENGTH 
274 ILLEGAL COMMAND CONTROL 
275 KEY ALREADY EXISTS 
276 KEY POSITIONING ERROR 
403 DATA RECORD LOCKED 
411 SUBINDEX HAS SUBINDEX; DELETE 

SUBINDEX ERROR 
412 ATTEMPT TO DELETE ENTRY 

WITHOUT KEYED ACCESS 
413 INDEX ENTRY LOCKED 

11-5-20 093-000114-01 



Licensed Material - Property of Data General Corporation 

DRAM Delete Subindex Processing Request 

1. Specify an access technique in PRCCW of the 
Extended Processing Packet (Table 11-6-4). 

A. For Keyed access, provide a Key Table 
containing one key for each subindex level to 
be accessed and put its address in PRKTP. 

B. For Relative access, specify a direction of 
motion in PRCCW. 

C. For combined Keyed and Relative access 
provide a Key Table, put its address in PRKTP: 
and specify a direction of motion in PRCCW. 

2. The INFOS system will delete the subindex under 
the last key in the Key Table provided, or that 
under the key accessed by Relative motion. 

3. Specify Set Current Position in PRCCW to 
establish a position on the subindex entry which 
owns the subindex you 're deleting~ otherwise, the 
system will return to the last established position. 

NOTE: You may issue this command as you desire, 
but the system will not physically delete the 
subindex until its use count goes to zero. That 
is, the subindex will remain as long as at least 
one other subindex path uses that subindex. 

Common Error Messages for a Delete Subindex Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
230 NO MORE DISK SPACE 
231 RAM ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
265 SUBINDICES NOT ALLOWED 
266 SUBINDEX NOT DEFINED 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 

DRAM Reinstate Processing Request 

1. Specify an access technique in PRCCW of the 
Extended Processing Packet (Table 11-6-4). 

A. For Keyed access, provide a Key Table with one 
key for each subindex level to be accessed and 
put its address in PRKTP. 

B. For Relative access, specify a direction of 
motion in PRCCW. 

093-000114-01 11-5-21 

DataGeneral 
SOFTWARE DOCUMENTATION 

C. For combined Keyed and Relative access 
provide a Key Table, put its address in PRKTP' 
and specify a direction of motion in PRCCW. ' 

2. A. Specify Local if you want to reinstate the index 
entry (i.e., set CCLOC in PRCC'Y). 

B. Specify Global if you want to reinstate the data 
record (i.e., set CCGLB in PRCCW). 

C. You may reinstate both the index entry and the 
data record in a single request~ that is, you may 
set both CCLOC and CCGLB in PRCCW. 

3. Specify Set Current Position in PRCCW to 
establish a position either on the index entry you're 
reinstating (if you also set CCLOC in PRCCW) or 
on the index entry which points to the data rec~rd 
you're reinstating (if you set CCGLB in PRCCW). 

Common Error Messages for a DRAM Reinstate Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
230 NO MORE DISK SPACE 
231 RAM ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTRY 
272 ILLEGAL KEY LENGTH 
274 ILLEGAL COMMAND CONTROL 
275 KEY ALREADY EXISTS 
276 KEY POSITIONING ERROR 
400 DATA BASE REC NOT PRESENT 
403 DATA RECORD LOCKED 

DRAM Retrieve Key and Retrieve High Key 
Processing Requests 

1. In the Extended Processing Packet (Table 11-6-4) 
specify the address of the area to which you want 
the system to return the key in PRO AT and 
provide the address of a Key Table in PRKTP to 
receive a duplicate key occurrence number (if you 
allowed duplicates). If you didn't allow duplicates 
place a -1 in KOOKO of the Key Table. ' 

2. Specify an access technique in PRCCW. 

A. For Keyed access, provide a Key Table 
containing one key for each subindex level to 
be accessed and put its address in PRKTP. 

B. For Relative access, specify a direction of 
motion in PRCCW. 

C. For combined Keyed and Relative access 
provide a Key Table, put its address in PRKTP' 
and specify a direction of motion in PRCCW. ' 

Processing DRAM Files 



DataGeneral 
SOFTWARE DOCUMENTATION 

3. Specify Set Current Position in PRCCW to 
establish a position on the index entry accessed by 
this request~ otherwise, the system will return to 
the last established position. 

4. The INFOS system will return the key to your data 
area, its length to PRSRL, and its occurrence 
number if it's a duplicate to PRSID. 

Common Error Messages for the DRAM Retrieve 
Key and Retrieve High Key Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
231 RAM ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTR Y 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 

DRAM Retrieve Subindex Definition 
Processing Request 
1. Specify (in PRSID) the address of the area where 

you want the system to return the subindex 
defintion. 

2. Specify an access technique in PRCCW. 

A. For Keyed access, provide a Key Table 
containing one key for each subindex level to 
be accessed and put its address in PRKTP. 

B. For Relative access, specify a direction of 
motion in PRCCW. 

C. For combined Keyed and Relative access, 
provide a Key Table, put its address in PRKTP, 
and specify a direction of motion in PRCCW. 

3. Specify Set Current Position in PRCCW to 
establish a position on the index entry accessed by 
this request~ otherwise, the system will return you 
to the last established current position. 

Common Error Messages for a Retrieve Subindex 
Definition Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
230 NO MORE DISK SPACE 
231 RAM ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INVALID CURRENT ENTRY 
265 SUBINDICES NOT ALLOWED 
267 END OF SUBINDEX 
272 ILLEGAL KEY LENGTH 
274 ILLEGAL COMMAND CONTROL 
275 KEY ALREADY EXISTS 
276 KEY POSITIONING ERROR 
406 SUBINDEX LINK COUNT OVERFLOW 
407 ALREADY LINKED TO SCBINDEX 
410 SUBINDEX LEVEL OVERFLOW 

Licensed Material - Property of Data General Corporation 

DRAM Retrieve Status Processing Request 
1. Specify an access technique in PRCCW of the 

Extended Processing Packet (Table 11-6-4). 

A. For Keyed access, provide a Key Table 
containing one key for each subindex level to be 
accessed and put its address in PRKTP. 

B. For Relative access, specify a direction of motion 
inPRCCW. 

C. For combined Keyed and Relative access, 
provide a Key Table, puts its address in PRKTP, 
and specify a direction of motion in PRCCW. 

2. Specify Set Current Position in PRCCW to 
establish a position on the index entry accessed by 
this request~ otherwise, the system will return you 
to the last established position. 

3. The system will return the following information: 

A. The record length (in PRLEN), whether or not 
it's marked as logically deleted, and whether or 
not it's locked (both in PRSRS). 

B. The key length On PRSRL), whether it has been 
logically deleted (in PRSRS), and its occurrence 
number if it's a duplicate (in KDDKO of the Key 
Definition Packet). 

Common Error Messages for a DRAM Retrieve 
Status Request 

Code Description 

213 UNRESOLVED RESOURCE CONFLICT 
231 RAM ACCESS OUTSIDE FILE 
261 ILLEGAL REL MOTION 
262 INV ALID NODE ADDRESS 
263 INV ALID CURRENT ENTR Y 
267 END OF SUBINDEX 
274 ILLEGAL COMMAND CONTROL 
276 KEY POSITIONING ERROR 
400 OAT A BASE REC NOT PRESENT 
403 DATA RECORD LOCKED 

End of Chapter 

11-5-22 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

Chapter 6 
Packet Formats 

In the preceding chapters in this section, we told you 
that you must set up FDPs and VDPs and supply 
processing packets to make the INFOS system do what 
you want it to. In this chapter we get down to the nuts 
and bolts of packets. We will show you what each of the 
various types of packets looks like, and we will describe 
each specification within each packet. 

General Packet I nformation and 
Conventions 

Each INFOS system packet contains two types of 
parameters: those which occupy one or more full 
words, and those which occupy one or more bits within 
a given word. For full word specifications, you must 
either enter the appropriate value or default the 
parameter by specifying -1 for the entire word. For 
single-bit specifications, a field value of 1 indicates the 
presence of that parameter, and a value of 0 (the 
system default value) indicates the absence of it. For 
example, if you specify F1UBR for an FDP, you will set 
one bit of one word within that packet to 1, indicating 
that you have Unblocked records. If you default this 
parameter (or make no specification for it), the system 
will assume that you don't have unblocked records -- in 
other words, that your records are blocked. 

We will present the data for the various packets as a 
series of charts containing the following information: 

• The Field Name for each parameter (under "Field 
Name")~ 

• The feature or option which that parameter specifies 
(under "Description")~ 

093-000114-01 11-6-1 

• The field or bit name (i.e., the mnemonic) which 
you specify to set up that parameter (under 
"Specified As")~ 

• The field value which will indicate the presence of 
that parameter (under "Field Value")~ and 

• What it will mean if you use the default value (under 
"Default Means"). 

In the last column ("Default Means"), the word 
"Required" indicates that you cannot default that 
parameter. Also, each chart contains a series of 
footnotes to explain factors you should be aware of 
when using certain parameters. We advise you to read 
and heed these footnotes. 

Finally, we refer you to Part One of this manual for 
further details on any of the features and options 
available in any of the packets. 

File Definition Packet (FOP) 
As you know by now, you must set up an FDP to 
describe each file which your program opens. Figure 
II -6-1 shows the location of every possible parameter in 
an FDP. You will not use every parameter for anyone 
access method, so we will summarize the applicable 
parameters for each access method after we describe .. 
the packet. 

File Definition Packet (FOP) 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

------------------ File Definition Packet ----------------_ 
FIELD 
NAME 

FOFL1 
FOFL2 
FOBLK 
FOBUF 
FOLEN (FONIU 

FONVO 
FOVTP 

FOUIT 

FOUOT 

FOTCF 
FOOSO 

FOFSI 

FOEXP 

FOSEQ 
FOGEN 
FOACC 
FOIOO 
FOSFT 

FOOBP 

FOINS 

FOMKLlFOPRL 

FORMF 

FOIFL 

SD-00159A 

DECIMAL 
OFFSET 

o 

3 
4 
5 
6 
7 

10 
11 

13 

15 

17 

18 

20 

23 

26 
27 
28 
29 
30 

42 

44 

46 

48 

49 

Figure 11-6-1 

11-6-2 093-000114-01 



Licensed Material - Property of Data General Corporation 

Field Name/Description 

FDFLl 

File Definition Flags 
Unblocked Records 
Access Method 

RAM 
SAM 
ISAM 
DBAM 

Record Format 
Undefined 
Variable 
Fixed 
Data Sensitive 

Read-After-Write verification 
Overwrite 
Exclusive File l 

Processing Mode 
Input 
Update 
Output 
Create Update 

Rewrite Mode2 

Inverting 

FDFL2 4 

Space Management3 

Optimized4 Record Distribution 

Disable Hierarchical ReplacementS 

Database FDP Present6 

Table 11-6-1. File Definition Packet (FOP) 

Specified As 

F1UBR 
F1AM1I2 
F1RAM 
F1SAM 
FlISM 
F1DBM 
F1FT1I2 
F1UND 
F1VAR 
F1FIX 
F1SEN 
F1RAW 
FIOVR 
FIEXF 
FIPM1I2 
FlINP 
FIUPD 
FlOUT 
FICRU 
FIRER 

FlINV 

F2SPM 
F20RD 

F2DHR 

F2FDP 

Field Value 

00 
01 
10 
10 

00 
01 
10 
11 
I 
I 
I 

00 
01 
10 
11 
I 

DataGeneraI 
SOFTWARE DOCUMENTATION 

Default Means 

Blocked Records 
Required 

Required 

No verification 
No overwriting 
No exclusive use of file 
Required 

No rewriting or release 
allowed 
See Comment I 

No Space Management 
No optimized 
distribution 
Buffers managed on 
Hierarchically 
Modulated LRU basis 
(See Comment 4) 
See Comment I 

FDBLK 5 L BLOCK OR PAGE SIZE 
------------------------------------------------~ 

Block or Page Size FDBLK 

Footnotes 
1. Applicable only to SAM disk files and RAM files. 

2. Applicable only to SAM disk files opened in the Update mode. 

Size of blocks or pages 512 bytes for disks; 80 
bytes for all other 
devices 

3. Applicable only to ISAM or DBAM files (index, database, or both) opened in the Create Update mode. 

4. Applicable only to ISAM and DBAM files opened in Create Update. 

5. Applicable only to ISAM and DBAM indexes. 

6. Applicable only to ISAM and DBAM files opened in Update or DBAM indexes opened in Create Update (see also 
Comment 1 below). 

093-000114-01 11-6-3 File Definition Packet (FOP) 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 11-6-1. File Definition Packet (continued) 

Field Name/Description Specified As Field Value Default Means 

FDBUF 6 I NUMBER OF BUFFERS I 
Number of buffers FDBUF Number At creation: 2 for Index 

files, 1 for all others 
After creation: creation 
specifications 

FDLEN 
7 I FDNIL 

RECORD LENGTH OR NUMBER OF INDEX LEVELS I 
Record Length 7 FOLEN Size SAM/RAM files = 

block size 
ISAM/OBAM = 

required in database 
FOP 

Num ber of Index Levels4 FONIL Number Required for 
ISAM/OBAM 
indexes 

FDNVD 10 I NUMBER OF VOLUME T ABLE ENTRIES I 

Number of Volume Table entries FONVO Number Only one file volume 
recognized 

FDVlP 
11 

~ VOLUME T ABLE POINTER j 
Volume Table Pointer FDVTP Address of first word of Required 

volume table 

FDUll 13 ~ USER INPUT TRANSLA TlON TABLE POINTER j 
User Input Translation Table Pointer FDUIT Address of first byte of See Comment 2 

Input Translation Table 

FDUOT 15 F USER OUTPUT TRANSLATION T ABLE POINTER -1 
User Output Translation Table Pointer FDUOT Address of first byte of See Comment 2 

Output Translation 
Table 

Footnotes (continued) 

7. For Variable and Data Sensitive records, specify your expected maximum record length~ for Undefined length records, 
default this specification~ for Fixed length records, specify the exact record size. For tape files opened in the Input mode, 
specify the same length as you did at file creation. 

11-6-4 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Table 11-6-1. File Definition Packet <Continued) 

Field Name/Description Specified As Field Value Default Means 

FDTCF 17 1 L T1 1 LT21 LT31 SFT 1 OT1 1 OT21 OT31 OT41 LL 1 1 LL21 LL3 _ IT1 I IT2 I IT3 I IT4 1 

Translation and Label Control Flags 
Label Type8 TCLT1I2/3 ANSI 

ANSI Labels TCANS 000 
IBM Labels TCIBM 001 

Selective Field Translation TCSFT 1 Entire record translated 
(See Comment 3) 

Output Translation9 No translation 
No code translation TCNTO 0000 
EBCDIC to ASCII TCEAO 0001 
ASCII to EBCDIC TCEAO 0010 
Anything to your code TCUTO 1111 

(See Comment 2) 
Label Level TCLLI/2/3 Required for tape 

Level 1 TCLVI 000 processing 
Level 2 TCLV2 010 
Level 3 TCLV3 all 

Input Translation \0 TCITlI2I3/4 No translation 
No Input translation TCINIT 0000 (See Comment 2) 
EBCDIC to ASCII TCEAI 0001 
ASCII to EBCDIC TCAEI 0010 
Anything to your code TCUTI 1111 

FDDSD 18~ DATA SENSITIVE DELIMITER TABLE POINTER -=1 

Data Sensitive Delimiter!! Table Pointer FDDSD Address of first byte of Delimiter = O. ). or 1 
Data Sensitive 
Delimiter Table 

Footnotes (continued) 

8. Applies only to labeled tape files. 

9. Applies only to SAM or RAM files opened in the Output or Create Update mode. 

10. Applies only to SAM or RAM files opened in the Input or Update mode. 

11. Applies only to SAM files where the record delimiter character is notO. ). or 1· 

093-000114-01 11-6-5 File Definition Packet (FDP) 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table 11-6-1. File Definition Packet (continued) 

Field Name/Description Specified As Field Value Default Means 

FDFSI 20 r- FILE SET ID POINTER ="1 
File Set 10 Pointerl3 FDFSI Address l2 of the first No file set 10 in file's 

byte of file set 10 (for HDRllabel 
ANSI labels) or 
Volume serial number 
(for IBM labels). 

FDEXP 23 b EXPIRATION DATE ~ 
Expiration DateI3 FDEXP Date File can be overwritten 

at any time 

FDSEQ 26 I SEQUENCE NUMBER I 

Sequence N um berl J FDSEQ Number On Input: No search 
according to sequence 
number 
On Output: Assign next 
available sequence 
number to file based on 
current tape position 

FDGEN 27 I GENERATION NUMBER I 

Generation Numberl3 FDGEN Number On Input: No search by 
(See Appendix B) generation and version 

number 
On Output: File will 
have generation # 1 and 
version #0 

FDACC 28 I FILE ACCESSIBILITY 

File Accessibilityl3 FDACC Restricted access No restrictions on file 
character processing 

Footnotes (continued) 

12. The File Set 10 or Volume Serial Number must occupy the first six bytes of a seven-byte field, and the last byte must 
contain the null character. 

13. Applies only to tape files. 

11-6-6 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Table 11-6-.1 File Definition Packet <Continued) 

Field Name/Description Specified As Field Value Default Means 

FDiDO 29 I INITIAL DATA OFFSET I 
Initial Data Offset l4 FDIDO Number of bytes offset Records begin in first 

byte of block 

FDSFT 30 ~ SELECTIVE FIELD TRANSLATION TABLE POINTER -1 
Selective Field Translation Pointerl) FDSFT Address of first byte of Required if you set 

Selective Field TCSFT = I 
Translation Table 

FDDBP 42 ~ DATA BASE FILE DEFINITION PACKET POINTER OR NAME POINTER -1 
Database FOP Pointer or Name Pointer FDDBP Address of first word of See Comment I below 

Database FDpl1> 

FDINS 44 I INITIAL NODE SIZE I 

Initial Node Size FDINS Initial size (in bytes) of Required for ISAM and 
the Root Node for the DBAM files 
Index or Subindex 
you're defining 

FDMKL 
FDPRL 46 I MAXIMUM KEY LENGTH I PARTIAL RECORD LENGTH I 

Maximum Key Length FDMKL Length of the longest System derived 
key in Index (ISAM) or maximum l8 

Level 0 subindex 
(DBAM) 

Partial Record Length FDPRL Length of partial No partial records 
records in subindex allowed 
level 0 

FDRMF 48 ROO r NODE MERIT FACTOR :J 

Root Node Merit Factor l7 FDRMF Merit Factor Required if you set 
F20RD = 1 

Footnotes (continued) 
14. Applies only to SAM disk or tape files opened in the Input mode. 

15. Applies only to SAM and RAM files. 

16. For Index files, if FlINV = 1 and F2FDP = 0, then you must specify the address of the first byte of the database filename. 

17. If you did not set F20RD = 1 (Optimized Record Distribution), then you must specify 0 for this word. 

18. The system will derive the default maximum according to this formula: 

max key length = (inital nOd; size - 36) _ (10) - (partial record length) 

or, if you allowed subindexes 

(
initial node size - 36) ( ) ( . ) maxkeylength = 3 - 14 - partial record length 

093-000114-01 11-6-7 File Definition Packet (FOP) 



DataGeneral 
SOFTWARE DOCUMENTATION 

Field Name/Description 

Licensed Material - Property of Data General Corporation 

Table 11-6-1. File Definition Packet <Concluded) 

Specified As Field Value Default Means 

F D I FL 49 '--_..1..-_'-----11...----11...-_ 

Index Flags 
Perform Key Compression 
No Subindexes 
High Priority Node 

(See Comment 4) 

Temporary Subindex19 

Permanent Data Records2° 

Footnotes (concluded) 

IXPKC 
IXNSI 
IXHPN 

IXTSI 

IXPRM 

No key compression 
Subindexes allowed 
No high priority status for root 
node of subindex level 0 

The system will modify the 
record use count when you 
perform a Write, an inverted 
Write, or a Delete 
Access to record after file 
closing will be unpredictable 

19. You should only set this bit if you can ensure that the record will not be deleted or rewritten to a greater length while you 
are using the temporary subindex. 

20. If you open a DBAM index in Create Update and specify FlINV (Inverting) plus IXTSI (Temporary Subindex), then you 
should also specify IXPRM. This will ensure that you can rewrite the data record to a different length and still be able to 
access it through temporary subindexes. Note, however, that if you do this, you will never be able to physically delete the 
data record from the database. 

Comments 
1. You should use the parameters FlINV (Inverting), F2FDP (Database FDP present), and FDDBP (Database FDP pointer) 

in combination as follows: 

• When you open an ISAM or DBAM file in the Create Update mode, set FlINV and F2FDP to 0 and place the address of 
the first word of the database FDP in FDDBP. 

• When you open an ISAM or DBAM file in the Update mode and you do not want a runtime file specification for the 
database, set FlINV and F2FDP to 0 and place the address of the first byte of the database filename in FDDBP. If you 
do want a runtime file specification for the database, set F2FDP to 1 and place the address of the first word of the 
database FDP in FDDBP. 

• If you want to create another index for an existing database, open the DBAM index file in the Create Update mode and 
set FlINV to 1. Then, if you do not want a runtime file specification for the database, set F2FDP to 0 and place the 
address of the first byte of the database filename in FDDBP. If you do want a runtime file specification for the database, 
set F2FDP to 1 and enter the address of the first word of the database FDP in FDDBP. 

2. For input and output translation, you must specify parameters as follows: 

• If you specify TCUTI, then you must build a code translation table and specify its address in FDUIT. If you specified 
TCNIT, TCEAI, or TCAEI, you don't need to build a translation table or specify its address unless you also specified 
TCUTO. 

• If you specify TCUTO, you need a code translation table, and you must specify its address in FDUOT. 

NOTE: You may use the same translation table for input and output~ you don't need to build a separate one for each 
processing function. 

3. If you want only selected fields of a record translated, you must specify TCSFT, build a Selective Field Translation Table, 
and put the address of its first byte in FDSFT. If you do this, furthermore, you must specify that you want translation on 
input or output by setting the appropriate bits in TCITI/2/3/4 or TCOT1I2/3/4. 

4. If you open a DBAM index file in the Create Update. mode and set both F2DHR and IXHPN to 1, a temporary conflict 
arises because both options modify the Hierarchically modulated LRU technique normally used by the INFOS system. If 
you specify both parameters, the system will use F2DHR for the current opening, and record IXHPN (with a value of 1) as 
an unchangeable part of the PFS. Therefore, on subsequent openings, the system will use IXHPN if you don't specify 
F2HDR. If you do specify F2HDR, it will take precedence over IXHPN and the system will use a strict LRU buffer 
management technique. (See Chapter 6 in Part One for details on LRU and Hierarchical Modulation.) 

11-6-8 093-000114-01 



Licensed Material - Property of Data General Corporation 

INFOS FDP Parameters by 
Access Method/Device/and 
Processing Mode 

SAM files/Disk/Create Update and Output Modes 
Required 

FIAMI12 
FIPM1I2 
FIFT1I2 
FDVTP 

Optional 

FIUBR 
FIRAW 
FIEXF 
TCOT1I2/3/4 
FDUOT 
TCSFT 
FDSFT 
FDBLK 
FDLEN 
FDBUF 
FDNVD 
FDDSD 

__ -- SAM files/Disk/Input and Update modes --_ 

Required 

FIAM1I2 
FIPM1I2 
FIFTI12 
FDVTP 

Optional 

FIRAW 
FIOVR (Update only) 
FIEXF 
FIRER 
TCIT1I2/3/4 
FDUIT 
TCSFT 
FDSFT 
FDIDO 
FDDSD 

r----- SAM files/Labeled Tape/Output mode ---_ 

Required 

FIAM1I2 
FIPM1I2 
FIFTI12 
FDVTP 

093-000114-01 

Optional 

FIUBR 
TCLTI1213 
TCLLI1213 
TCFSI 
FDEXP 
FDSEQ 
FDGEN 
FDACC 
TCOTI1213/4 
FDOUT 
TCSFT 
FDSFT 
FDBLK 
FDLEN 
FDBUF 
FDNVD 

DataGeneraI 
SOFTWARE DOCUMENTATION 

r---- SAM files/Labeled Tape/Input mode ---.... 

Required Optional 

FIAMI12 
FIPM1I2 
FIFT1I2 
FDVTP 

TCLTI1213 
TCLL1I2/3 
TCFSI 
FDSEQ 
FDGEN 
FDACC 
TCITI12/3/4 
FDUIT 
TCSFT 
FDSFT 
FDIDO 
FDNVD 

,----SAM files/Unlabeled Tape/Output mode -----. 

Required 

FIAM1I2 
FIPM1I2 
FIFTI12 
FDVTP 

Optional 

FIUBR 
TCOT1I2/3/4 
FDOUT 
TCSFT 
FDSFT 
FDBLK 
FDLEN 
FDBUF 
FDNVD 
FDDSD 

...--- SAM files/Unlabeled Tape/Input mode ---_ 

Required 

FIAMl/2 
FIPM1I2 
FIFT1I2 
FDVTP 

Optional 

TCIT1I2/3/4 
FDUIT 
TCSFT 
FDSFT 
FDIDO 
FDNVD 
FDDSD 

SAM files/TTY <Interactive TerminaO/Output mode 

Required 

FIAMI12 
FIPMI12 
FIFTI12 
FDVTP 

Optional 

TCOTI1213/4 
FDOUT 
TCSFT 
FDSFT 
FDBLK 
FDLEN 
FDBUF 
FDDSD 

File Definition Packet (FOP) 



DataGeneral 
SOFTWARE DOCUMENTATION 

SAM files/TTY (Interactive Terminal)/Input mode 

Required Optional 

FIAM1I2 TCITlI2/3/4 
FIPMll2 FOUIT 
FIFT1I2 TCSFT 
FOVTP FDSFT 

FOBLK 
FOLEN 
FOBUF 
FOOSO 

---- SAM files/Line Printer/Output mode ---..... 

Required 

FIAMll2 
FIPMll2 
FIFT1I2 
FOVTP 

Optional 

TCOTl1213/4 
FOUOT 
TCSFT 
FOSFT 
FOBLK 
FOLEN 
FOBUF 
FOOSO 

RAM files/Disk/Output or Create Update mode 

Required 

FIAMl12 
FIPMl12 
FIFT1I2 
FDVTP 

Optional 

FIRAW 
FIEXF 
TCOTl1213/4 
FOUOT 
TCSFT 
FOSFT 
FOBLK 
FOLEN 
FOBUF 
FONVO 

_--- RAM files/Disk/Input or Update mode ----, 

Required 

FIAM1I2 
FIPMl12 
FIFT1I2 
FOVTP 

Optional 

FIRAW 
FIEXF 
TCITlI2/3/4 
FOUIT 
TCSFT 
FOSFT 

Licensed Material - Property of Data General Corporation 

,---- ISAM Index files/Disk/Create Update mode --..... 

Required Optional 

FIAMII2 FIRAW 
FIPMII2 F2SPM 
FIFT1I2 F20HR 
FOVTP FOMKL 
IXNSI FOINS 

FOBLK 
FOBUF 
FDNVO 

----ISAM Index files/Disk/Update mode ----

Required 

FIAM1I2 
FIPMl12 
FIFTl12 
FOVTP 

Optional 

FIRAW 
F2FOP 
FOOBP 
F20HR 

ISAM Database files/Disk/Create Update mode 

Required 

FIAM1I2 
FIPMll2 
FIFTl12 
FOVTP 

Optional 

FIRAW 
F2SPM 
FOBLK 
FOBUF 
FONVO 

_--ISAM Database files/Disk/Update mode ----. 

11-6-10 

Required 

(None) 

Optional 

FIAMll2 
FIPM1I2 
FIFTI12 
FOVTP 
FIRAW 

DBAM Index files/Disk/Create Update mode --..... 

Required 

FIAMl12 
FIPMl12 
FIFTll2 
FOVTP 

Optional 

FIRAW 
FlINV 
F2FOP 
FOOBP 
F2SPM 
F20RD 
FDRMF 
F20HR 
IXHPN 
FDBUF 

Optional 

IXNSI 
FDNIL 
FDPRL 
FDMKL 
FDINS 
IXPKC 
IXTSI 
IXPRM 
FDBLK 
FONVO 

093-000114-01 



Licensed Material - Property of Data General Corporation 

__ --- DRAM Index files/Disk/Update mode -----, 

Required 

FIAMl12 
FIPMl12 
FIFTl12 
FDVTP 

Optional 

FIRAW 
F2FDP 
FDDBP 
F2DHR 

DRAM Database files/Disk/Create Update mode 

Required 

FIAMl12 
FIPMl12 
FIFTl12 
FDVTP 

Optional 

FIRAW 
F2SPM 
F20RD 
FDBLK 
FDBUF 
FDNVD 

DataGeneral 
SOFTWARE DOCUMENTATION 

r---- DRAM Database files/Disk/Update mode -----. 

Required 

(None) 

Optional 

FIAMl12 
FIPMl12 
FIFTl12 
FDVTP 
FIRAW 

093-000114-01 11-6-11 File Definition Packet (FOP) 



DataGeneral 
SOFTWARE DOCUMENTATION 

Volume Definition Packets (VDP) 
Just as you need an FDP to describe each file you open, 
you also need a VDP to describe each volume of that 
file. When you open any INFOS disk file in the Output 
or Create Update mode, you'll need a Volume Table. 
This is nothing more than a contiguous sequence of the 
VDPs for the file volumes. Once you have defined the 
volumes and created your file, you only need to supply 
the VDP for the first volume when you open the file 
for updating. (The INFOS system makes a permanent, 
unchangeable record of volume definitions for disk 
files and uses it when you open in either the Input or 
Update mode.) 

Licensed Material - Property of Data General Corporation 

When you open a tape file in either the Input or Output 
mode, you must supply a Volume Table with a VDP for 
each reel of tape. (The system does not permanently 
store tape file VDPs.) 

Files on interactive terminals and line printers are 
single volume files by definition, and you must build a 
VDP for them each time you open them for processing. 

Figure 11-6-2 shows the format of a VDP. Following the 
packet description is a breakdown of the required and 
optional parameters for each access method. 

----------------- Volume Definition Packet ------------------, 
FIELD DECIMAL 
NAME OFFSET 

VDVNP 0 
VOLUME NAME POINTER 

VDVSZ 2 

VDVLT 3 
VOLUME LABEL TABLE POINTER 

VDHLT 5 
HEADER LABEL TABLE POINTER 

VDTLT 7 
TRAILER LABEL TABLE POINTER 

VDIVC 10 
I-----I'-------L_~ __ 

VDDTO 11 

14 

VDVMFIVDPAD 13 1-_...:.....:..:...:... ___________ 1--_____________ , 

VDOID 
VOLUME OWNER 10 POINTER 

SO-00165A 

Figure 11-6-2 

11-6-12 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Table 11-6-2. Volume Definition Packet (VDP) 

Field Name/Description Specified As Field Value Default Means 

VDVNP of VOLUME NAME POINTER j 
Volume Name Pointer VDVNP Address of first byte of Required 

volume name 

VDVSZ 2 I VOLUME SIZE I 
Voh.lme size6 VDVSZ Number of contiguous Unlimited volume size 

blocks allocated 

VDVLT 3F VOLUME LABEL TABLE POINTER j 
Volume Label Table Pointer! VDVLT Address of first byte of No user volume label 

volume label table processed 

VDHLT sF HEADER LABEL TABLE POINTER j 
Header Label Table Pointer! VDHLT Address of first byte of No user header label 

Header Label Table processed 

VDTLT 7~ TRAILER LABEL TABLE POINTER j 
Trailer Label Table Pointer VDTLT Address of first byte of No trailer labels 

Trailer Label Table processed 

Footnotes: 
1. Applies only to labeled tape files. 

2. Applies only to unlabeled tape files. 

3. This option applies only to SAM disk and RAM files opened in the Output or Create Update mode. You should enable 
conflict checking if more than one user will open a file for updating at the same time, or if a multi task program will open it. 

4. If you specify ICERI == 1, then you must also specify ICERR == 1. You may also specify ICERI == 0 and ICERR == 1 (i.e., 
system initialization and runtime release), but if you do so, you must also set PRDSP == 1 in the Processing Packet. 

5. Applicable only if you specified Optimized Distribution for a DBAMfile opened in the Create Update mode. (See Part 
One, Chapter 5.) 

6. Whenever you open a disk file in the Output or Create Update mode and set ICCTG == 1 (indicating Contiguous 
Allocation), then you must specify the number of contiguous blocks to be allocated. If you set ICCTG == 0, you may enter 
either the maximum number of blocks to be allocated on the volume being defined, or -1. Specifying -1 indicates that the 
volume is unlimited in size and that the system will allocate up to 65,535 blocks on that volume. 

093-000114-01 11-6-13 Volume Definition Packets (VDP) 



DataGeneral 
SOFTWARE DOCUMENTATION 

Field Name/Description 

VDIVC 

VDIVC 
Volume Characteristics 

Variable Length Blocks 

10 

Disable System Labeling2 

Generate Parity2 

Enable Conflict Checking3 

Disable File Initialization 

Contiguous Allocation6 

Enable Runtime Initializationl 

Enable Runtime Releasel 

Rewind on Volume Openl 

Licensed Material - Property of Data General Corporation 

Table 11-6-2. Volume Definition Packet <Concluded) 

Specified As Field Value Default Means 

ICVLB System transfers Fixed 
length blocks 

ICDSL System will try to read 
or write labels 

ICPAR System generates odd 
parity 

ICECC No conflict checking 
ICDFI System will zero out 

blocks for the file 
ICCTG 1 Random allocation 
ICERI 1 You must initialize 

volumes via system 
calls4 

ICERR You must release 
volumes via system 
calls4 

ICRWO No rewind on open 

VDDTO 11 LI ______________________ D_E_V_IC_E_T_I_M_E_O_U_T_C_O_N_S_T_A_N_T ____________________ ~ 

Device Timeout Constant 

VDVMF 
VDVAC 
VDPAD 

Volume Merit FactorS 

Volume Accessibilityi 
Pad Character 

VDOID 

13 

Volume Owner ID Pointeri 

VDDTO 

VOLUME MERIT OR ACCESSIBILITY 

VDVMF 

VDVAC 
VDPAD 

Number of seconds System -defined 
timeout intervals used 
(See Part One, Chapter 
6 , or Appendix E) 

PAD CHARACTER 

Number 

Code Number 
ASCII character 

Not using Optimized 
Distribution 
No accessibility code 
Binary 0 (null) 

VOLUME OWNER 10 POINTER 

VDOID 

11-6-14 

Address of first byte of No return of ID 
owner ID 

093-000114-01 



Licensed Material - Property of Data General Corporation 

INFOS VDP Parameters by 
Access Method/Device/and 
Processing Mode 

SAM files/Disk/Create Update and Output modes 

Required 

VDVNP 

Optional 

VDVSZ 
ICECC 
ICDFI 
ICCTG 
VDDTO 
VDPAD 

_--SAM files/Disk/Input and Update modes ----. 

Required Optional 

VDVNP (None) 

~--- SAM files/Labeled Tape/Output mode ----

Required Optional 

VDVNP VDVLT 
VDHLT 
VDTLT 
ICVLB 
ICERI 
ICERR 
ICRWO 
VDDTO 
VDVAC 
VDPAD 
VDOID 

_--- SAM files/Labeled Tape/Input mode ---......, 

Required 

VDVNP 

Optional 

VDVLT 
VDHLT 
VDTLT 
ICVLB 
ICERI 
ICERR 
ICRWO 
VDDTO 
VDVAC 
VDOID 

DataGeneral 
SOFTWARE DOCUMENTATION 

,......--- SAM files/Unlabeled Tape/Output mode ---, 

Required 

VDVNP 
ICDSL 

Optional 

ICVLB 
ICPAR 
VDDTO 
VDPAD 

,......--- SAM files/Unlabeled Tape/Input mode -----. 

Required 

VDVNP 
ICDSL 

Optional 

ICVLB 
VDDTO 
VDPAD 

SAM files/TTY <Interactive Terminal)/Output mode 

Required 

VDVNP 

Optional 

ICDDR 
VDDTO 
VDPAD 

SAM files/TTY <Interactive Terminal)/Input mode 

Required 

VDVNP 

Optional 

ICDDR 
VDDTO 

.----- SAM files/Line Printer/Output mode ---'"'"l 

Required 

VDVNP 

Optional 

ICDDR 
VDDTO 
VDPAD 

RAM files/Disk/Output and Create Update modes 

Required 

VDVNP 

Optional 

VDVSZ 
ICECC 
ICDFI 
ICCTG 
VDDTO 

093-000114-01 11-6-15 Volume Definition Packets (VDP) 



DataGeneral 
SOFTWARE DOCUMENTATION 

,.....--- RAM files/Disk/Input or Update modes ---... 

Required Optional 

VDVNP (None) 

_--ISAM Index files/Disk/Create Update mode --""" 

Required Optional 

VDVNP VDVSZ 
ICDFI 
ICCTG 
VDDTO 
VDPAD 

,.....--- ISAM Index files/Disk/Update mode -----

Required Optional 

VDVNP (None) 

ISAM Database files/Disk/Create Update mode 

Required 

VDVNP 

Optional 

VDVSZ 
ICDFI 
ICCTG 
VDDTO 
VDPAD 

Licensed Material - Property of Data General Corporation 

r----- ISAM Database files/Disk/Update mode --_ 

Required Optional 

(None) VDVNP 

r---- DRAM Index files/Disk/Create Update mode 

Required Optional 

VDVNP VDVSZ 
ICDFI 
ICCTG 
VDDTO 
VDVMF 
VDPAD 

,.....--- DRAM Index files/Disk/Update mode ---.., 

Required Optional 

VDVNP (None) 

DRAM Database files/Disk/Create Update mode 

Required 

VDVNP 

Optional 

VDVSZ 
ICDFI 
ICCTG 
VDDTO 
VDVMF 
VDPAD 

,.....--- DRAM Database files/Disk/Update mode --_ 

Required Optional 

(None) VDVNP 

11-6-16 093-000114-01 



Licensed Material - Property of Data General Corporation 

Volume Tables 
As we mentioned earlier, a Volume Table is a 
contiguous sequence of one or more VDPs, each of 
which is 16 words long. The contents of a Volume 
Table for any given INFOS file depend on the type of 
device on which the file resides and the processing 
mode in which you're opening it. 

To build a Volume Table for SAM disk, RAM, ISAM, 
or DBAM files which you are opening in the Output or 
Create Update mode (i.e., at file creation), you must: 

1. Place the VDPs in the Table in the order in which 
you want the INFOS system to process them. If you 
are using Optimized Distribution for an index or 
database file, you must define its volumes in order 
of decreasing speed. That is, define your 
most-accessed (or fastest) volume(s) first, and 
your least-accessed (or slowest) volume (s) last. 

2. Specify (in the file's FDP) the number of volumes 
if the file resides on more than one. 

3. In the file's FDP, supply the address of the first 
word of the first VDP in the Table. 

For these files, the INFOS system will automatically 
build and maintain an internal Volume Definition File, 
or X. VL, where X is the name of your file. (In other 
words, if your file's name is PIGEON, its Volume 
Definition File will be PIGEON.VL.) When you open a 
disk file in the Input or Update mode, the system uses 
the contents of the .VL file as a Volume Table. 
However, for it to do this, you must: 

1. Build a Volume Table consisting of only one VDP, 
which, in turn, contains only the address of the 
name of the first file volume you defined when you 
created the file. (For ISAM and DBAM files, this 
VDP must contain the address of the first Index 
volume.) 

2. Place the address of the first word of this VDP in 
the appropriate field of the FDP. 

DataGeneraI 
SOFTWARE DOCUMENTATION 

For example, if you open the above-mentioned 
PIGEON file at runtime, you don't need to redefine 
each of its volumes. You simply build a new Volume 
Table which contains only the address of the name of 
the first volume you defined when you created 
PIGEON. The system will then refer to its own 
PIGEON.VL file to obtain the volume definition 
information it needs to open the file. Naturally, to 
access all this information, you have to provide (in the 
runtime FDP) the address of the new, single-entry 
VDP in the new Volume Table. 

For SAM tape, line printer, and interactive terminal 
files, you must build a Volume Table each time you 
open the file. To do so: 

1. Place one VDP in the Table for each volume of the 
file, in the order in which you want the system to 
process them. 

2. Specify (in the file's FDP) the number of VDPs in 
the Volume Table. (Terminal, printer, and 
unlabeled tape files will usually be single-volume 
files.) 

3. In the file's FDP, supply the address of the first 
word of the first VDP in the Table. 

NOTE: While you must define all the volumes of a file 
when you create it, the actual physical volumes 
need not be on-line at file creation. 
Furthermore, once you have opened a file, the 
system no longer needs the Volume Table, and 
you can use the space it occupied for processing. 

093-000114-01 11-6-17 Volume Tables 



DataGeneral 
SOFTWARE DOCUMENTATION 

General Processing Packet 
(SAM and RAM files only) 

You must supply the address of a General Processing 
Packet whenever you issue a SAM or RAM processing 
request. This type of packet contains the information 

Licensed Material - Property of Data General Corporation 

the INFOS system needs to successfully process the 
call, as well as the means for the system to return 
general status information to you. Figure 11-6-3 shows a 
full General Processing Packet. 

,...---------------- General Processing Packet ---------------__ 
FIELD DECIMAL 
NAME OFFSET 

PRSTA 0 LOC 

PRDAT 

PRREC 3 

PRLEN 5 

PRDFB 8 

SO-00167A 

Field Name/Description 

PRSTA 

Status Flags 
Lock Record 
Hold Record 

Unlock Record 

Volume Change Indicator 
Physical End-of-Volume2 

Write Immediately if Modified3 

Record Exceeds Block Size 
Read Inhibit 

Transfer Length Short 
Excessive Transfer Length4 

Physical End-of-File 
Verification Failure5 

Magnetic Tape Control Error6 

User Volume Label Processed 
User Header Label Processed 
User Trailer Label Processed 

DATA AREA POINTER 

RECORD NUMBER 

RECORD LENGTH 

DATA RECORD FEEDBACK 

Figure 11-6-3 

Table 11-6-3. General Processing Packet 

Specified As 

PFLOC 
PFHLD 

PFUNL 

PFVCI 
PFPEV 
PFWIF 

PFREB 
PFRIN 

PFXLS 
PFEXL 
PFPEF 
PFVER 
PFMTR 
PFUVL 
PFUHL 
PFUTL 

11-6-18 

Field Value Default Means 

No record lock 
Processing request not 
held in queue 
Do not unlock 
previously locked 
record 
Not applicable l 

Not applicable1 
Buffer not flushed until 
needed 
Not applicable l 

Appropriate block 
moved to a buffer and 
record moved to block 
Not applicable l 

Not applicable! 
Not applicable l 

Not applicablel 

Not applicablel 

Not applicable l 

Not applicable l 

Not applicable 1 

093-000114-01 



DataGeneraI 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Table 11-6-3. General Processing Packet (concluded) 

Field Name/Description Specified As Field Value Default Means 

E 1 j PRDAl DATA AREA POINTER 

Data Area Pointer PRDAT Address of first byte of No data transferred 
your data area 

PRREC 3F RECORD NUMBER j 
Record Number7 PRREC Number of record Required 

desired 

PRLEN 5L. RECORD LENGTH I 
Record Length PRLEN Exact size (in bytes) of Fixed length records 

Variable, Undefined, 
or Data Sensitive 
records 

PRDFB SF DATA RECORD FEEDBACK ~ 
Data Record Feedback PRDFB First two words = Not applicable I 

record's block 
number 

Last word = byte offset 
of record 

Footnotes: 

I. This parameter indicates information returned by the system. For example, if the system has to close one volume and open 
another to find a requested record, it will tell you that it did so by setting the PFVCI bit to 1. Therefore, defaults are not 
applicable for these bits. A 0 in this position merely indicates no change in that particular parameter's status. 

2. The system will only return this status after it has processed the last record in the last block. 

3. Only applicable to Write requests in a RAM file. For all other SAM and RAM requests, set this bit to O. 

4. Applies only to SAM tape files. The system will return the actual length of the block transferred in PRLEN. 

5. The system will set this flag only if 1) you set Fl RA W = 1 in the file's FDP and 2) the system could not successfully 
complete the read-after-write verification cycle in this or a previous processing request. If this bit is set (j.e., if PFVER = 1), 
it usually indicates a hardware problem. 

6. If PFMTR = 1, it means that the system has encountered an I/O error while attempting a magnetic tape control request. 
Since this may indicate a hardware problem, you should decide whether or not to continue processing. 

7. For all SAM requests, specify -1 in the first word of this field. 

093-000114-01 11-6-19 General Processing Packet (SAM and 
RAM files only) 



DataGeneral 
SOFTWARE DOCUMENTATION 

Extended Processing Packet 
(lSAM and DRAM files only) 

Similar to the General Processing Packet, an Extended 
Processing Packet contains the information which the 
INFOS system needs to successfully perform an ISAM 

Licensed Material - Property of Oat a General Corporation 

or DBAM processing request. It also provides the 
means for the system to return general status 
information. Figure 11-6-4 shows a full Extended 
Processing Packet. 

r----------------- Extended Processing Packet -----------------., 
FiElD DECIMAL 
NAME OFFSET 

PRSTA 0 

PRDAT 
OAT A AREA POINTER 

PRKTP 3 
KEY TABLE POINTER 

PRLEN 5 

PRDFB 8 

PRSIL 10 

PRRMF 11 

PRCCW 12 
~~~~-~--L-~--

PRPRA 13

PRSRL/PRSRS 18~-__ ~---------------------L-~--~-~--
19 PRSID

SUBINDEX DEFINITION PACKET POINTER

SD-00169A

Figure 11-6-4

11-6-20 093-000114-01

DataGeneraI
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Table 11-6-4. Extended Processing Packet

Field Name/Description Specified As Field Value Default Means

PRSlA o

Status Flags
Lock Record) PFLOC No record lock
Unlock Record) PFUNL Record not unlocked
Write Immediately if Modified PFWIF Buffer not flushed until

needed
Physical End-of-File PFPEF Not applicable2

Verification Failure PFVER Not applicable2

PROAl ~ OAT A AREA POINTER -1
Data Area Pointer3 PRDAT Address of first byte of Required (unless you

your data area specify Suppress
Database)

PRKlP 3~ KEY TABLE POINTER -1
Key Table PointerA PRKTP Address of first word of Relative Motion

Key Table

PRLEN 5 I SPL I RECORD LENGTH

Specified LengthS PRSPL 1 Transfer entire record
Record Length PRLEN For Read: Length of Not applicable6

record transferred
For Write or Rewrite: Required (unless you

Length of record to specify Suppress
be (re)written Database)

Footnotes:

1. You can Lock or Unlock an index entry, a data record, or both by specifying CCLOC= 1 and/or CCGLB= 1 at the same
time you specify PFLOC or PFUNL = 1.

2. This parameter indicates information returned by the system. That is, if this field is filled, it means that the system has
encountered the status indicated. Therefore, defaults are not applicable. A 0 in this bit merely indicates no change in that
parameter's status.

3. Note that if either CCSDB= 1 (Suppress Database) or CCINV = 1 (Write Inverted), the system will ignore the contents of
PRDAT.

4. You must also specify Keyed Access in CCKEY (word PRCCW) or the system will ignore the contents ofPRKTP.

5. You may set PRSPL= 1 and specify in PRLEN the number of bytes you want the system to transfer for a Read request.
Upon completion of the Read, the System will return the num ber of bytes transferred to PRLEN.

6. The system will return this information as indicated. Therefore, just leave these words blank.

093-000114-01 11-6-21 Extended Processing Packet (lSAM and
D8AM files only)

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Table 11-6-4. Extended Processing Packet (continued)

Field Name/Description

PRDFB 8~

Data Record Feedback

PRSIL 10

Subindex Level

PRRMF 11

Record Merit Factor

PRCCW 12

Command Control Flags
Keyed Access 7

Relative to Current Position
Motion Control Field

Forward
Backward
Down
Down and Forward
Up and Forward
Up and Backward
Up
Static

Set Current Position

Write Inverted8

Suppress Partial Record

Suppress Database

Logical Delete9

Local SelectorlO

Global Selector 1O

Specified As Field Value Default Means

OAT A RECORD FEEDBACK -1
PRDFB

PRSIL

PRRMF

CCKEY
CCREL
CCMC1I2/3
CCFWD
CCBAK
CCDWN
CCDWF
CCUFW
CCUBK
CCUP
CCSTA
CCSCP

CCINV

CCSPR

CCSDB

CCLOG
CCLOC

CCGLB

11-6-22

Address of data record Not applicable6

transferred by this
request

SUBINDEX LEVEL

Subindex level number Not applicable6

of index entry accessed
for this request

Record's merit factor
number

000
001
010
011
100
101
110
111
1

Required when you
specify Optimized
Record Distribution

Relative access
Keyed Access only
Required for Relative
or Com bined Access

No new current
position established
No new index entry
written
Partial record read or
written
Database record read or
written
No logical delete
No operation
performed on index
entry
No operation
performed on data
record

093-000114-01

Licensed Material - Property of Data General Corporation

Table 11-6-4. Extended Processing Packet <Concluded)

Field Name/Description

PRPRA

Partial Record Area Pointer

PRSRL/
PRSRS 18

System Returned Length

System Returned Status
Local Logical Delete
Duplicate Keyll
Data Record Locked12

Global Logical Delete

PRSID

Subindex Definition Packet Pointer

Footnotes (concluded)

Specified As Field Value

PARTIAL RECORD AREA POINTER

PRPRA

PRSRL

PRSRS
SRLLD
SRDUP
SRDRL
SRGLD

Address of first byte of
your Partial Record
Area

Length (in bytes) of
partial record accessed

1
1
1
1

SUBINDEX DEFINITION PACKET POINTER

PRSID Address of first word of
Subindex Definition
Packet for intended
new subindex

7. You must set this flag to 1 for all ISAM and DBAM Write or Physical Delete operations.

DataGeneral
SOFTWARE DOCUMENTATION

Default Means

Required (unless you
specify Suppress Partial
Records)

Not applicable6

Not applicable2

Not applicable2

Not applicable2

Not applicable2

No new subindex being
defined

8. On a Write or Rewrite request, set CCINV = 1 and specify the address of the existing database record in PRDAT.

9. Available for index entries or database records, or both, depending on how you use CCLOC and CCGLB.

10. Note that you can set either CCLOG= 1 or CCGLB= 1, or both (to operate on both the index entry and its associated data
record).

11. The system returns duplicate keys' occurrence numbers in offset KDDKO of the Key Table.

12 The system will only set this flag for a Retrieve Status request; all other requests that attempt to access a locked data record
will receive error code 403 (data record locked).

093-000114-01 11-6-23 Extended Processing Packet (lSAM and
DRAM files only)

DataGeneral
SOFTWARE DOCUMENTATION

Key Definition Packet
Each Key Definition Packet describes a single key, and
to use Keyed or combined access, you must
concatenate the Key Definition Packets for each
request into a Key Table. We'll discuss the Key Table
in the next section of this chapter, but first let's look at
the components of Key Definition Packets, as
illustrated in Figure 11-6-5.

Licensed Material - Property of Data General Corporation

Note that, as usual, the default for single-bit
parameters is 0, but you cannot default any of the full
word parameters in this packet.

Key Definition Packet -----------------
FIELD DECIMAL
NAME OFFSET

,.--.---.---
KOTYP KDKYL 0

!--_L..-_L..-_

KDKYP
KEY POINTER

KOOKO :3
[,UPLICATE KEY OCCURRENCE

SDOClI,':JA

Figure 11-6-5

Table 11-6-5. Key Definition Packet

Field
Name

KDTYP

KDKYL

KDKYP

KDDKO

Footnotes:

Description

Key Type Flags
Duplicate Keys!

Generic Key2
Approximate Key2

Key Length

Key Pointer

Duplicate Key Occurrence

Specified As Field Value

KDTYP
KTDUP

KTGEN
KTAPX
KDKYL

KDKYP

KDDKO

Length of key described
(between 1 and 255 bytes)
Address of first byte of key
described
For Write: occurrence number
written
For all other operations:
occurrence number of key
processed

Default Means

No duplicate keys read or
written
No generic search
No approximate search
Required

Required

Occurrence number of
o used. (Occurrence
number is returned
here on a Write
request)

1. If you set KTDUP= 1 for a Write request, then specify 0 in each of the four bytes in KDDKO. If you set KTDUP= 1 for
any other requests, you may specify in KDDKO either the occurrence number of the duplicate key or 0 (for the original
key).

2. You must set this bit to 0 for all write operations.

11-6-24 093-000114-01

Licensed Material - Property of Data General Corporation

Key Tables
Whenever you use Keyed access in ISAM or DBAM,
you must supply the address of the first word of a Key
Table. This table is nothing more than a contiguous
sequence of one or more Key Definition Packets. The
INFOS system applies each key packet at the subindex
level indicated by the packet's relative position in the
table. That is, it applies the first entry in the table at
subindex level 0, the second key at subindex levell,
and so forth. Therefore, the last nonzero key in the
table must be the entry that you want the system to

Point here in your
processing request

DataGeneral
SOFTWARE DOCUMENTATION

access in order to process your current request. Figure
11-6-6 shows a sample Key Table whose entries point to
keys at the subindex levels indicated.

Note that a Key Table for an ISAM request will contain
only one Key Definition Packet (because there is only
one subindex level in an ISAM index structure), but a
Key Table for a DBAM request may contain many
packets.

Finally, you terminate each Key Table by specifying a
zero length key.

o
LENGTH = n

3

o

3

o

3

u

3

o

3

o

OCCURRENCE NUMBER

LENGTH = n

KEY 2 POINTER

o

OCCURRENCE NUMBER

LENGTH = n

KEY 3 POINTER

o

OCCURRENCE NUMBER

LENGTH = n

KEY 4 POINTER

o

OCCURRENCE NUMBER

first subindex level
after relative motion (if any)

second subindex level

third subindex level

fourth subindex level

L S.:.,:D_-_OO_7_7_3 _____________ Figure 1/-6-6. Sample Key Table ---------------......

093-000114-01 11-6-25 Key Tables

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Subindex Definition Packet
The Subindex Definition Packet describes the
subindex you wish to create. You need to build one of
these packets each time you issue a Define Subindex

request, and the Extended Processing Packet for that
request must contain the address of the first byte of the
Subindex Definition Packet. Figure 11-6-7 illustrates
the components of a Subindex Definition Packet.

_---------------Subindex Definition Packet---------------..........
FiElD DECIMAL
NAME OFFSErT __ ~

SDINS 0

SDMKL SDPRL 2

SDRMF

SDIFL

SO U01 73A

5

Figure 11-6-7

Table 11-6-7. Subindex Definition Packet

Field Name Description Specified As Field Value

SDINS Initial Node Size l SDINS Initial size (in bytes)
of the Root Node for
the subindex you're
defining

SDMKL Maximum Key SDMKL Length of longest key
Length in new subindex

SDPRL Partial Record Length SDPRL Length of longest
partial record

SDRMF Root Node Merit SDRMF Merit factor of Root
Factor2 Node of new subindex

SDiFL Index Flags
Perform Key IXPKC
Compression
No Subindexes IXNSI

High Priority Node IXHPN

Temporary IXTSI
Subindex3

Permanent Data IXPRM
Records3

Footnotes

Default Means

Root node size of 506
bytes

System derived
maximum key length4

No partial records
allowed

Not using Optimized
Distribution

No key compression

Subindexes allowed
under one being
defined
No high priority for
Root Node of this
subindex
This is a permanent
subindex
Data records linked
only to this subindex
disappear at file close

1. You can calculate this size by using either the formulas explained in Appendix B or the INDEXCALC utility, described in
the INFOS Utilities User's Manual.

2. You must specify a merit factor if you are using Optimized Distribution. (See Appendix B for further details on merit
factors.)

3. You may only set this bit when you're defining subindex level O.

4. The system will derive the maximum key length according to the formula:

(initial node size - 36) () (.) max key length == 3 - 10 - partial record length

or, if you allowed subindexes:

k h (initial node size - 36) (14) (t' I d I th) max eylengt == 3 - - par la recor eng

11-6-26 093-000114-01

Licensed Material - Property of Data General Corporation

Point Processing Packet
You will only need a Point Processing Packet when you
issue a Point request for a SAM disk file. Figure 11-6-8
illustrates this packet's components.

DataGeneral
SOFTWARE DOCUMENTATION

r---Point Processing Packet---
FIELD DECIMAL
NAME OFFSET

PRSTA 0

PRMOD

PRHLB 2

PRLLB 3

PRBOF 4

SO-OO178A

Figure 11-6-8

Table 11-6-8. Point Processing Packet

Field
Name

PRSTA

Description

Status Flags
Volume Change Indicator
Physical End-of-Volume
Record Exceeds Block Size
Transfer Length Short
Excessive Transfer Length2

Physical End-of-File
Verification Failure3

PRMOD Point Mode
Relocate to End of File

or Relocate to Record
Specified

PRHLB High Order Logical Block
Number

PRLLB Low Order Logical Block
Number

PRBOF Byte Offset

Footnotes:

Specified As Field Value

PFVCI
PFPEV
PFREB
PFXLS
PFEXL
PFPEF
PFVER

PMEOF
PMLBN

PRHLB

PRLLB

PRBOF

o
1

32-bit number of the block
containing the desired record

Starting location of record in
block specified in PRHLB and
PRLLB

Default Means

Not applicable!

End of file

Required when you specify
PMLBN

No offset from
beginning of block

1. These parameters indicate information returned by the system. For example, if the system has to close one volume and
open another to find a requested record, it will set PFVCI = 1. Therefore, defaults are not applicable for these parameters.
A 0 in any of these positions merely indicates no change in that parameter's status.

2. The system will return the actual length of the block transferred in PRLEN of the FD P.

3. The system will set this flag only if: 1) you set FIRAW=l in the FDP, and 2) the system could not successfully complete
the Read-After-Write verification cycle in this or a previous request. If this bit is set (i.e., if PFVER = 1), it usually indicates
a hardware failure.

093-000114-01 11-6-27 Point Processing Packet

DataGeneral
SOFTWARE DOCUMENTATION

Link Subindex Processing Packet
You only need to build a Link Subindex Processing
Packet when you want to use a Link Subindex request.
This packet describes the key you wish to link to a
given, previously-linked subindex. The "source key"

Licensed Material - Property of Data General Corporation

is defined as the index entry which already exists and
which owns the subindex you want to share. The
"destination key" is the one you wish to link to the
source key's subindex. It cannot own a subindex prior
to this request. Figure 11-6-9 illustrates this packet's
components.

--------------Link Subindex Processing Packet ---------------,
FIELD
NAME

PRSTA

PRDKT

PRSKT

PRDCC

PRSCC

PRSRS

SO-00180A

DECIMAL
OFFSET

a

3

11

DESTINATION KEY TABLE POINTER

SOURCE KEY TABLE POINTER

~----~-4----~----~-----+-----
12

18

Figure 11-6-9

11-6-28 093-000114-01

Licensed Material - Property of Data General Corporation

Field Name/Description

PRSTA

Status Flags
Lock)
Unlock)

Physical End-of-File2

Verification Failure2

PRDKT

o

Destination Key Table Pointer

PRSKT

Source Key Table Pointer

Footnotes:

Table 11-6-9. Link Subindex Processing Packet

Specified As Field Value

PFLOC
PFUNL

PFPEF

PFVER

PRDKT

PRSKT

DESTINATION KEY TABLE POINTER

Address of first word of
Destination Key Table

SOURCE KEY TABLE POINTER

Address of first word of
Source Key Table

DataGeneral
SOFTWARE DOCUMENTATION

Default Means

Entry not locked
Entry not unlocked
until file closed
Physical end of file not
reached
Read-After-Write
verification complete

Relative motion used
to access destination
key

Relative motion used
to access source key

1. You can lock or unlock either the source or desintation key, or both. However, if you do choose to lock, you must also set
CCLOC = 1 in PRDCC or PRSCC (or both). You may also lock (or unlock) the source and destination entires in the same
request.

2. The system will set this status bit only when applicable.

093-000114-01 11-6-29 Link Subindex Processing Packet

DataGeneral
SOFTWARE DOCUMENTATION

Field Name/Description

PRDCC
and
PRSCC

11

12

Command Control Words
Keyed Access
Relative to Current

Position3

Motion Control Field3

Forward
Backward
Down
Down and Forward
Up and Forward
Up and Backward
Up
Static

Set Current Position4

Local SelectorS

PRSRS 18

Status Flag
Local Logical Delete

Footnotes (concluded)

Licensed Material - Property of Data General Corporation

Table 11-6-9. Link Subindex Processing Packet (concluded)

Specified As

CCKEY
CCREL

CCMC1I2/3
CCFWD
CCBAK
CCDWN
CCDFW
CCUFW
CCUBK
CCUP
CCSTA
CCSCP

CCLOC

SRLLD

Field Value

000
001
010
011
100
101
110
111
1

Default Means

Relative motion used
Keyed access used

Required for Relative
motion

Current position stays
on source key
No lock or unlock

Not applicable2

3. If you set CCREL= 1, you must also indicate a direction in the motion control field (CCMCI/2/3).

4. If you set CCSCP = 1 in both the source and destination control words, your current position will be on the destination key
at the completion of the request.

5. If you set CCLOC = 1 in either Command Control Word, you must also set either PFLOC = 1 or PFUNL = 1.

11-6-30 093-000114-01

Licensed Material - Property of Data General Corporation

Volume Initialization Packet
You need to build a Volume Initialization Packet for
each volume of a labeled tape file which you initialize
via the .IINFOS system call. (See Appendix A for
volume initialization procedures.) Figure 11-6-10
illustrates this packet's components.

DataGeneral
SOFTWARE DOCUMENTATION

r----------------- Volume Initialization Packet ---------------_
FIELD DECIMAL
NAME OFFSET

r---~-T---

VIFLG 0
~-'---'---

VIACC

VIDVS 2
DEVICE SPECIFIER POINTER

VIVID 4
VOLUME IDENTIFIER POINTER

VIOID 6
OWNER IDENTIFIER POINTER

VIUVT 8
USER VOLUME LABEL TABLE POINTER

SO-00183A

Figure 11-6-10

Table 11-6-10. Volume Initialization Packet

Field Name/Description

VIFlG o

Volume Initialization Flags
Label Type

ANSI Labels
IBM Labels

Label Level
Level 1
Level 2
Level 3

Full Initialization
Ignore User Volume

Identifier l

Footnotes:

Specified As

VFLT1/2/3
TCANS
TCIBM
VFLL1I2/3
TCLV1
TCLV2
TCLV3
VFFUL
VFIVI

Field Value

000
001

001
010
011
1
1

Default Means

ANSI Labels

Required

Partial initialization
See footnote 1

I. If VFFU L = 1, the system ignores this bit. If VFFUL = 0 and VFIVI = 0, the system compares the volume identifier with the
Vol1 label. If they match, the system equates the device specifier with the volume identifier so that you can refer to the
volume by its volume name, rather than by its device name. In other words, you can call the volume mounted on MTO
"PA YROLL" instead of "MTO". If the device specifier and the volume identifier don't match, the system takes the
.IINFOS call error return. If VFFUL = 0 and VFIVI = 1, the system simply equates the volume identifier in the Vol 1 label to
the device specifier without comparing them.

093-000114-01 11-6-31 Volume Initialization Packet

DataGeneral
SOFTWARE DOCUMENTATION

Field Name/Description

VIACC

Volume Accessibility2

VIDVS

Device Specifier Pointer3

VIVID

Volume Identifier Pointer

VIOID

Owner Identifier Pointer4

VIUVT

User Volume Label Table
PointerS

Footnotes (continued)

Licensed Material - Property of Data General Corporation

Table 11-6-10. Volume Initialization Packet <Concluded>

Specified As Field Value Default Means

VIACC

VIDVS

VIVID

VIOID

VIUVT

Accessibility character Required when
in Vol 1 label VFFUL=1

DEVICE SPECIFIER POINTER j
Address of first byte of Required
device specifier

VOLUME IDENTIFIER POINTER j
Address of first byte of Partial initialization
volume identifier
(ANSI) or serial
number (IBM)

OWNER IDENTIFIER POINTER

Address of first byte of Owner ID not returned
owner ID area or written

USER VOLUME LABEL TABLE POINTER

Address of first word of
User Volume Label
Table

No User Volume
Labels written or
returned

2. This parameter exists solely to allow you to use tapes interchangeably with other systems. The INFOS system does not
restrict access based on the contents of this field.

3. The device specifier refers to the number of the tape drive on which this volume is mounted and can be in the range MTO
to MT7. You must set up the device specifier in memory such that its last character is null.

4. For ANSI labels, the owner identifier memory area can be up to 14 bytes long; for IBM labels, it can be up to 10 bytes long.
In both cases, you must terminate the identifier with a null character. On a full initialization, the system will write the
identifier to the Volliabel; on a partial, the system will return the identifier recorded in the Volliabei.

5. Applicable only to files with ANSI level 3 labels. For all other label types and levels, specify -1 in the first word of this field.

11-6-32 093-000114-01

Licensed Material - Property of Data General Corporation

Magnetic Tape Control Processing
Packet

You need to build this packet only when you want to
issue a Mag Tape Control request. This packet allows
you to position the tape during processing. In it, you
must specify a control function code (i.e., a mnemonic

DataGeneral
SOFTWARE DOCUMENTATION

which specifies the function you wish to perform). If
you choose Read, Write, Space Forward, or Space
Backwards, you must also supply the number of words
or records, and (if you are transferring data) the
address of the area in memory to or from which you
want the data transferred. Figure 11-6-11 illustrates this
packet's parts.

,--_____________ Magnetic Tape Control Processing Packet ______________ _

FIELD
NAME

PRSTA 0

PRDAT

PRCFC
3

PRNWD 4

8D-00139

093-000114-01

DECIMAL
OFFSET

DATA AREA POINTER

CONTROL FUNCTION CODE

NUMBER OF WORDS

Figure 11-6-11

11-6-33 Magnetic Tape Control Processing Packet

DataGeneral
SOFTWARE DOCUMENTATION

Field Name/Description

PRSlA
Status flags

110 Errorl

PROAl
Data Area Pointer

PRCFC
Control Function Codes

Space forward file
Space backward file
Read a record
Write a record
Write an end-of-file
Rewind
Space forward records
Space backward records
Erase

Mag Tape Status Registersl

PRNWD
Number of Words

Footnote

Licensed Material - Property of Data General Corporation

Table 11-6-11. Magnetic Tape Control Processing Packet

Specified As Field Value Default Means

PRSTA
PFMTR No error has occurred

PRDAT Address of first word of No data being
your data area transferred (required

for all data transfers)

PRCFC Required
MCSFF
MCSBF
MCRD
MCWRT
MCWEF
MCREW
MCSFR
MCSBR
MCERS

Register contents

PRNWD Number of words or Required if you set
records (on an error, MCRD, MCWRT,
system returns here the MCSFR, or MCSBR
actual transfer length or
number of records
spaced over)

1. The system sets this flag only if an 110 error occurs while processing a request. You must decide whether to continue
processing or not.

Now that you know what all the different packets look like, read Chapter 7 to find out how to build them using the
M acroassem bIer.

End of Chapter

11-6-34 093-000114-01

Licensed Material - Property of Data General Corporation
DataGeneraI
SOFTWARE DOCUMENTATION

Chapter 7
How to Use the Macroassembler

with the INFOS System

The tape which contains your basic INFOS system also
contains a set of Macros which function as the
Assembly language interface. You can access these
Macros to build the packets you need simply by
including the appropriate macro calls in your source
code.

Keyword Parameters
For each call, there is a list of Keyword Parameters
which you must define immediately before you issue
the call and, in most cases, a list of parameters
associated with the call itself. You must define some of
the Keyword Parameters, but many also have a default
value. Note that you do not need to include those
Keyword Parameters for which you're using the default
value in the list of assignments you make just before
the call. That is, you can either include a specific value
for a parameter, or, if you're using the default value,
you can omit the assignment.

Furthermore, you must include a Keyword Parameter
list just before every macro call which you include in
your source code. The only exception to this rule is
when you want to use the same values and defaults for
a call which you are using more than once in your
program. In this case, you should just include RETAIN
= Y in the Keyword Parameter list for the first
occurrence of the call. This will tell the system to retain
those values until you code RETAIN = N. For
example, if you want to build several identical FOPs in
the course of your program (that is, you want to use the
same parameter values for each one), just include
RET AIN = Y in the parameter list you code for the
first BLDFDP (Build FOP) macro call. Then, the next
time you want to build an FOP, you only need to use
the call BLDFDP. The system will automatically use
the parameter values you specified earlier.

Finally, note that the default for Keyword Parameters
with a YES/NO response is NO.

093-000114-01

You specify the parameters associated with the macro
calls themselves differently from the Keyword
Parameters. You must include in the call every element
in the parameter list. If you do not wish to specify a
value for an optional parameter, you must replace the
parameter with the word 0 EF A UL T in the proper
sequence in the call.

In the lists that follow, note that slashes between
parameter values for Keywords (e.g.,
Y /N/DEFAUL T) indicate that you must select one of
the given values. Also, we have included in
parentheses the name of each Keyword as it appears in
the charts in the previous chapter so that you may refer
to them for default values or whatever. Finally, the
meanings of the values that you may assign to Keyword
Parameters are fairly easy to interpret, but here they
are anyway for your convenience:

General

Specify

(N)

(byte)

NO/N

YES/Y

DEFAULT

USER

RETAIN

11-7-1

When you mean:

numeric of up to full word

numeric of up to one byte or one
character (8-bit ASCII)

no

yes

If you wish to use the default value, this
keyword parameter need not appear in
an equivalence line.

User-supplied option desired.

If answered "YES", the system will
retain the current Keyword values for
that call until the end of the program, or
until it encounters "RET AIN = NO".

Keyword Parameters

DataGeneral
SOFTWARE DOCUMENTATION

Access Method

Specify When you mean:

SAM Sequential Access Method

RAM Random Access Method

ISAM Indexed Sequential Access Method

DBAM Data Base Access Method

Formatting Records

Specify When you mean:

F Fixed length

v Variable length

U Undefined length

o Data-sensitive

1/0 Mode

Specify When you mean:

Input

o Output

UPD Update

C Create update

Label Types

Specify When you mean:

ANSI ANSI

IBM IBM

Translation Specifiers

Specify When you mean:

NONE No translation

ASCII ASCII

EBCDIC EBCDIC

Finally, be careful when you're specifying Ke~word.s.
Even the interface code's extensive error-checkmg wIll
not catch misspelled Keywords; these merely become
unreferenced equates.

Licensed Material - Property of Data General Corporation

Macro Functions

BLDFDP
To construct an INFOS File Definition
Packet.

Access Method:
Used for all access methods.

Keyword Parameters:
Assignment Line Actual

Parameter

UNBLOCKED = Y/N/DEFAULT (FIUBR)

ACCESS = SAM/RAMIISAMI (FIAMI-2)
DBAM/DBASE·

FORMAT = F/V/U/D (FIFTI-2)

VERIFY = Y/N/DEFAULT (FIRAW)

OVERWRITE = Y/N/DEFAULT (FIOVR)

EXCLUSIVE = Y/N/DEFAULT (FIEXF)

MODE = I10/UPD/C "(FIPMI-2)

REWRITE = Y/N/DEFAULT (FIRER)

INVERT = Y/N/DEFAULT (FIINV)

ONLYINDEX = Y/N/DEFAULT (F20TI)

TEMPINDEX = Y/N/DEFAULT (IXTSI)

SPACEMGMT = Y/N/DEFAULT (F2SPM)

OPTIMIZE = Y/N/DEFAULT (F20RD)

DBSPEC = Y/N/DEFAULT (F2FDP)

BLOCKSIZE = (n)/DEFAULT (FDBLK)

BUFFERS = (n)/DEFAULT (FDBUF)

RECORDSIZE = (n)/DEFAULTu (FDLEN)

* When using BLDFDP for a database file, specify
the parameter "ACCESS = DBASE". This alerts
the interface diagnostic routines to expect Variable
length records.

11-7-2

** When you use BLDFDP for ISAM/DBAM files,
use this field to specify the number (n) of index
levels, not record size.

093-000114-01

Licensed Material - Property of Data General Corporation

Assignment Line

VOLUMES = (n)/DEFAULT

FDLBTYP

FDLBLEV

= ANSIIIBMI
DEFAULT

= (n)/DEFAULT

Actual
Parameter

(FDNVD)

(TCLTl-3)

(TCLLl-3)

SELTRAN = Y/N/DEFAULT (TCSFT)

INTRAN = NONE/USERI (TCITl-4)
DEFAULTI ASCIII
EBCDIC

OUTTRAN = NONE/USERI (TCOTl-4)
DEFAULTI ASCIII
EBCDIC

EXPMONTH = (n)/DEFAULT

EXPDAY = (n)/DEFAULT (FDEXP)

EXPYEAR = (n)/DEFAULT

SEQUENCE = (n)/DEFAULT (FDSEQ)

FDGNRAT = (n)/DEFAULT (FDGEN)

FILACC = (byte)/DEFAULT (FDACC)

BUFFOFF

FDMINOD

= (n)/DEFAULT

= (n)/DEFAULT

(FDIDO)

(FDINS)

FDMAXKY = (byte)/DEFAULT (FDMKL)

FDPRECLEN = (byte)/DEFAULT (FDPRL)

FDRTMERIT = (byte) (FDRMF)

COMPRESS = Y/N/DEFAULT (IXPKC)

SUBINDEX = Y/N/DEFAULT (IXNSI)

DISHIEREP = Y/N/DEFAULT (F2DHR)

HIPRINOD = Y/N/DEFAULT (IXHPN)

PERMREC = Y/N/DEFAULT (IXPRM)

DataGeneraI
SOFTWARE DOCUMENTATION

Call:
BLDFDP vtp, uit, uot, dsd,jsi, sit, dbp.

where the call parameters are:

Definition Actual
Parameter

vtp Address of Volume (FDVTP)
Definition Table

uit Optional address of User (FDUIT)
Input Translate Table

uot Optional address of User (FDUOT)
Output Translate Table

dsd Optional address of Data (FDDSD)
Sensitive Delimiter Table

I

lsi Optional byte address of (FDFSI)
File Set 10

sft Optional address of (FDSFT)
Selective File Translation
Control

dbp Optional address of (FDDBP)
Database Definition or
Database Name byte
address

Example A:

ACCESS = DBAM
FORMAT = V
MODE = C
BLOCKSIZE = 512
BUFFERS = 2
VOLUMES = 1
FDMINOD = 502
FILACC = 0
FDMAXKY = 4
FDPRECLEN = 0
FDRTMERIT = 0
SUBINDEX = Y
BLDFDP VTP, DEFAULT, DEFAULT, DEFAULT,
DEFAULT,DEFAULT,DEFAULT,FDDBP

This will generate an Index FDP listing which looks like
Figure 11-7-1.

093-000114-01 11-7-3 BLDFDP

SOFTWARE DOCUMENTATION

54
5S
5b
57
58 ld~qS5'.d~1D~0~
59 1d0Q5b' ~0lthild0
b~ 0~"51'16~~00fb

100~b ASDd
01 004b0'~4403~
02 "'~4bl'0~0000
03 004b2'0010512
"'4 0~4b3'000002
0S 004b4'177177
I7-b 0ft4b5'00000k1
",1 004ob'000100ij
I{)8 ~ld4bl'ItJIdItJ"'01
09 00410'000b45
1 ~ t00~ 71 'lOkH101d0
11 1d0472'177177
12 01i'J~73'''0tOldld0
13 0~474'177711
14 00475'00~0"'0
15 0041b'0~0000
lb 00477'177777
17 ~~5~0'01tJ01001tJ
18 00501'177717
19 0~502'00000k)
2b 1c!105ld3'0010000
21 1/:l0504'177171
22 011:1505'177777
23 00S0b'177777
24 100507'177777
2~ ",,,,510'117777
2b "'10511'000000
27 00512'177777
c8 010513'1/1777
2~ 100514'00100100
30 00515'0100000
31 0"'~1&'001i'J00k)
32 010517'0~0"'00
33 100520'0010000
34 00521'0010000
3S 00522'000000
3b 00523'0010001t.l
37 1d0524'IOld0001c?
38 00525'177777
39 0052b'000k)0~
410 00527'000537'
'41 IOldS30'01tJ~1001Q
42 00531'100105102
43 010532'0100000
44 00533'002000
45 00534'0001&101&1
4b 00535'00101/:l0~
~7 0053&'000000
48

Licensed M~teri~1 - Property of D~t~ Gener~1 Corpor~tion

FI~E DEFINITIO~ PACK~T

o
o
o

FIFLl
FIFL2
8LOCKSIZE
SUFFlHS
RECORDSIZE
12)

0
VOLU~E.S
VIX
k)
DEFAULT
0
DEFAULT
iii
F-I1CF
DE-FAULT
IU
DEFAULT
ro
0
tXPOAY
EXPMONTH
tXPYEAR
SEQU~NCE
Fl.IGNRAT
FILACC*25b
BUFf-O~F
DEFAULT
0
~

0
~
0
ft)

10
0
~

DtFAULT

" FODS
I/:l
f-OM1NOD
0

3:
4:
5:
b:
7:

1",:
11 :

13:

15:

1'1 :
18:

20:

23:

2b:
27:
28:
29:
310:

40:

42:

44:

FOMAXKY*2S&lFDPRECLEN
10
FDRTMERIT ; 48:
FIIFL ; 49:

FDFLl
"D~L2
FDBLK
FD"UF
FDLE~j

FDNVD
FDVTP

FDUIT

FDUOT

FDTCF
FDDSD

FL)FSI

FDEXP

FD:>EQ
FDG[NER
FDACC
FDIDO
,.OSFT

FDEFT

FDDBP

F[)~NS

; 4&: FOMKL I FOPRL

FCR~F
FOIFL

Figure 11-7-1. Index File Definition Packet

11-7-4 093-000114-01

Licensed Material - Property of Data General Corporation

Each line corresponds to a word in the packet. The first
column shows the relocatable location of that word; the
second gives the contents of that location (i.e., the
contents of each word); the third column describes the
contents of each word; and the fourth column gives the
decimal offset and the name of each field in the packet.
Finally, notice how the macro routines automatically
placed -1 (177777 octally) in the parameter words we
didn't specify.

~C

v' 7 FILE.
~8
0'1
Ie 00537'0~0~100
11 k;"'54~'001000'"
12 101!l541 '0kh1lih~1O
13 00542'004030
14 ~0543' Ich'01OlOd
15 (J1O~44'0"''''512
1b v.110545'0~~"'01
17 0~"4 b ' kHHJl00
18 1005~7''''IO'''~''''''
19 IOI05c;:,0'1c1~1000'"
2~ 0~551'0'''01001
21 00S52''''00bbS'
22 1!l0553 , 01,H"0~0
23
24 00554 I 00~H)0e,

25
2b v, k' 55 C; , [,HH: v! ~r1
27 1;': ~'I 5 ~ t ' 0 Ie: k'lki ~i w;
28
29 IZIc1557 , ":It:I~~HH!J
3kl
31 \(!1I15b~' ~11£.0It;ki~

32 kH! ., 6 1 ' ,1" ~ ~ U ki

33 it~~b2 I 17 17 n
34 0105b3'177"177
35 00564'177777
3b khj'='65'177777
37 k3~~ob'l/7777
38 ~'~5b 7 '1t0~i(J~0
39 "'-057~'17777f

4'"
41 1?12'571 '16"'~IOk)~
42 12' 13 5 7 2 ' "'l~ ~ It '" 0
43 1C~57.3' ~;elZ'~0C
44 01657i{ I ~~:'0~e~J

45 l~ 0 5 7" I 16 '" Ie ,,~ kJ ~~
4b ~1t57b'''''~~001iJ
47 "'~5 7 7' ItlkH.l000
48 00b~"""''''01c1~~
49 10 k~ bIOI ' 10 II! III II' 0 '"
50

DataGeneraI
SOFTWARE DOCUMENTATION

Example B:

This will generate an FDP for the Database associated
with the Index FDP shown in Example A.

ACCESS == DBASE
FORMAT == V
MODE == C
BLOCKSIZE == 512
VOLUMES == 1
BUFFERS == 1
RECORDSIZE == 100
FILACC == 0

FDDB: BLDFDP VDB

Figure 11-7-2 is what the packet looks like.

Dl:.fhlITluN ~'~,Cl< ET

'" 10
Ii)

FIFLI 3: FDFL1
FIFL2 4: .. DFL2
BLOCKSIZE 5: FDBLK
BUFFERS b: FDBUF
RECORl;31lE 7 : fDLEt"

° ° VOLUMES 1O: FDNVD
VD" 11 : FDVTP
It:l

13: FDUIT
~

15: FDUOT

° FITCF 17: FDTCF
18: FDDSD

° 20: FDF-SI
0
10
EXPDAY 231 FDEXP
EXPMONTH
t:.XIJYEAR
St-QLJt:.NCE 2b: FDSEQ
FDGNRAT 27: FDGENER
FILACC*25b 28: FDACC
"UFFOFF 29: FDIOO

30: FDSFT

'" ~
0

'" 0
10
0
10
Ic1

Figure /l-7-2. Database File Definition Packet

093-000114-01 11-7-5 BLDFDP

DataGeneral
SOFTWARE DOCUMENTATION

BLDVDP
To construct a'Volume Definition Packet

Access Method:

Required for all access methods.

Keyword Parameters:

Assignment Line Actual
Parameter

VOLSIZE = (n)/DEFAULT (VDVSZ)

NORESTART = Y/N/DEFAULT (ICDDR)

VARYBLOCKS = Y/N/DEFAULT (ICVLB)

NOLABELS = Y/N/DEFAULT (ICDSL)

PARITY = Y/N/DEFAULT (ICPAR)

NOCHECK = Y/N/DEFAULT (ICDCC)

CONTIGUOUS = Y/N/DEFAULT (ICCTG)

REINIT = Y/N/DEFAULT (ICERI)

RUNRELEASE = Y/N/DEFAULT (ICERR)

OPENREWIND = Y/N/DEFAULT (ICRWO)

TIMEOUT = (n) (VDDTO)

VOLMERIT = (n)/DEFAULT (VDVMF)

VACCESS = (n)/DEFAULT (VDACC)

PADCHAR = (char)/DEFAULT (VDPAD)

DUPVOL = Y/N/DEFAULT (ICDVC)

NOFILINIT = Y/N/DEFAULT (ICDFI)

Licensed Material - Property of Data General Corporation

Call:
BLDVDP vnp, vlt, hit, tit, oid

where the call parameters are:

Definition

vnp

vlt

hit

tit

oid

Byte address of the name
string

Address of optional User
Volume Label Table
(labeled magnetic tape
only)

Address of optional User
Header Label Table
(labeled magnetic tape
only)

Address of optional User
Trailer Label Table·
(labeled magnetic tape
only)

Byte address of optional
volume owner's ID
(labeled magnetic tape
only)

Actual
Parameter

(VDVNP)

(VDVLT)

(VDHLT)

(VDTLT)

(VDOID)

If you're not using labeled magnetic tape, write the call
as follows:

BLDVDPvnp DEFAULT DEFAULT DEFAULT DEFAULT

Example A:
VDP for an Index File

VOLSIZE = 1000
VOLMERIT = a
PADCHAR = a

VIX: BLDVDP INAME*2,DEFAUL T,DEFAUL T,DEFAUL T
DEFAULT

This generates a VDP which looks like Figure 11-7-3.

Example B:
VDP for the Database associated with the above Index:

VOLSIZE = 1000
VOLMERIT = a
PADCHAR = a

VDB: BLDVDP DNAME*2,DEFAUL T,DEFAUL T,DEFAUL T
DEFAULT

Figure 11-7-4 is what the Database VDP looks like.

11-7-6 093-000114-01

Licensed Material - Property of Data General Corporation

30
31
32
33 0~645'~~0520"
34 v.il6b46'((.;f6rti001a
3~ 16~b47'~V.l~~i1
36 "-lk1o'SVJ'177777
3 7 Iii ftj b5 1 'lci0Vl0161U
38 'IJ'<.1652'177777
39 00653' k)e-~'(Hh~
4fa'10654'177777
41 1tl0b5~' IfJliHHH1il1
42 Ith1656'01C0i.1fak.~
43 0(tJb"7'IfJ({J~lcJi~k')
44 ~lCb60'177777
45 IOldobl'kJ0~"''''1r?J
40 000b2'k100td01d
47 !i;1(}663, 177777
48 01t6b4 I 0~01~~HJ

VULUME D~FINITION PACKET

J 1\,M,1E *2
VI
V~LSIZE
L;EI-AULT
~

UEFAULT
o
DEFAULT
o
10
VPIVC
TII~EuUT
o
VOLM~RIT*25btPADCHAR
DfFAULT
16

0: VDVI~P

2:VuV5Z
3:VDVLT

5:VDHLT

7:VDTLT

10:VDIVC
11:VIJDTO

DataGeneral
SOFTWARE DOCUMENTATION

13:VDVMF I VDPAD
14:VDOID

'-------------- Figure 11-7-3. Index File Volume Definition Packet --------------'

50
57
5~
59 00605''''00526"
60 0"~666' 0~'0rr.lr?Je

0tdlVJ ASDB
01 00607' ~0 Hh10
02 000710'177777
03 00071' (tJ~k?01(hJ
1£14 Itlf.jo7~'l17777
kl5 lriH~073'Ic;JQHj0~r,
kl6 1t'l1e74' t 7771"1
07 IOIt07~'~kHj0160

k) 8 1l'I0 b 7 6 ' '" 01iH!, '" k-'
09 L10077'~0I21ev;fc1
10 0167~0'177777
11 10107rl'0~0~~e
12 007102'~JIt!IioIG~~1!i
13 01r:H~3'i7177l
1 4 Vi '" 710 4 ' IU kiJltJ 1(J(11O

VULUM~ uErlNITION PACKET

~OLSIZE
GI:.FAULT
~

D~FAULl
~.

Ct:FAULT
~~

~

VPIVC
Tl~EOUT
o
vuLM~RIT*25b~PADCHAk
L>EF-AlILT
Iij

0:VDVNP

2:~[iVSl

3:vDVLT

Ij:VDhLT

7:VUTLT

10:VDIVC
11:VDDTO

1.~ : V [i V I~ F I V !.i P P ()
14PJLJOIO

Figure 11-7-4. Database Volume Definition Packet -------------

093-000114-01 11-7-7 BLDVDP

DataGereal
SOFTWARE DOCUMENTATION

BLDPP
To build a General or Extended
Processing Packet

Access Method:
Used for all access methods.

Keyword Parameters:
Assignment Line

LOCK

HOLD

UNLOCK

IMMEDIATE

INHIBIT

KEYED

RELATIVE

UP

DOWN

FORWARD

BACKWARD

STATIC

SETCURR

PRSUPRES

DBSUPRES

RECLN

TAPDISP

LIMRECLN

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

= Y/N/DEFAULT

,... Y/N/DEFAULT

= Y/N/DEFAULT

= (n)

= REWINDI
NOREWINDI
RELREWIND

= Y/N/DEFAULT

Actual
Parameter

(PFLOC)

(PFHLD)

(PFUNL)

(PFWIF)

(PFRIN)

(CCKEY)

(CCREL)

(CCUP)

(CCDWN)

(CCFWD)

(CCBAK)

(CCSTA)

(CCSCP)

(CCSPR)

(CCSDB)

(PRLEN)

(PRLEN)*

(PRSPL)**

* This parameter allows you to specify tape
disposition. If you do not specify one of these
options, the system will automatically rewind the
tape. The "RELREWIND" command enables run
release as well as tape rewind on FEOV or close.

Licensed Material - Property of Data General Corporation

Call:
BLDPP dat, ktp, pra, sid

where the call parameters are:

Definition

dat

ktp

pra

sid

Actual
Parameter

Byte address of data record (PRD AT)

Address of Key Table for
ISAM or DBAM;
otherwise, DEFAULT

(PRKTP)

Byte address of partial (PRPRA)
record area (DBAM only;
otherwise DEFAULT)

Address of optional (PRSID)
Subindex Definition
Packet (DBAM only;
otherwise DEFAULT)

NOTE: The generation of packet extensions is
conditional. That is, the number of positional
parameters in the call parameter list governs
whether or not the system generates an
Extended Processing Packet when you use
BLDPP. A BLDPP call with a single parameter
(Data Area Pointer) in the parameter list
produces a General Processing Packet suitable
for processing SAM or RAM files.

You should always code ISAM or DBAM
BLDPP processing calls with all four parameters
in the list. This will generate an Extended
Processing packet. (Of course, you may use the
word "DEFAULT" to indicate a parameter for
which you do not wish to specify a value.)

Example:
KEYED = Y
RELATIVE = Y
DOWN = Y
SETCURR = Y

PP: BLDPP BUFX*2,DEFAUL T,DEFAUL T,DEFAUL T

This sets up an Extended Processing Packet which
looks like Figure 11-7-5.

** In ISAM/DBAM processing this parameter sets bit
o (PRSPL) of the record length field. This signifies
that the length specified is the largest desired input
and that the INFOS system should truncate any
longer records it finds. If you do not supply this
parameter, the system will reset the bit.

11-7-8 093-000114-01

Licensed Material - Property of Data General Corporation

55
50
57
58 00&20'0"0~~~
5900b21'01013534"
b0 00b22'0130"'00

160~9 ASDB
01 101.1&23'177777
02 li'0b2"'1d0~16101d
IOJ ~0b25'lOlllO"'01
04 ~0&2b' l1kH~ lih)0
I()S ~1c1027'1iJ1C0IdtQlO
10& 00b3~' ~0"~kh1
07 (,j0b31 , ftJ\LIi.H~"h;
"'8 01tj&32'0k11a~~1C
"'9 ~0b33'1c)160~k1~
10 00b34' 1 S20v,~}
11 00035'177777
12 0I6b3b'0~"'d0~
13 f()~b3 7' 0~kH~k~1()
14 ~0b41U'k)ttI~000
15 0\./)bI.l1' tdfblOrt~e
1 b 1010642' 1t1O~liH,1O
17 I6Pb1.U'1777/7
1 8 I~ 10 0 '4 4 ' It1Ici ki kh:lId
19

PROCESSING ~ACK~T

PPSTA
BUF-X*2
o

DEFAULT
I()
,",PLEN
o
~;

~~

o
l'

o
PPCC~
DEFAULT
rt

'" 10
C
10
uEFAULT
Ie)

0: PRSTA
1: Pf(DAT

3: PRKTP

DataGeneral
SOFTWARE DOCUMENTATION

5: PRSPL+PRLEN

12: PRCCw
13: PRPRA

19: PRSID

'-------------- Figure //-7-5. Extended Processing Packet -------------...

093-000114-01 11-7-9 BLOPP

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

BLDPNT BLDMTC
To construct a Point Processing Packet To construct a Magnetic Tape Control

Processing Packet

Access Method:
SAM only.

Keyword Parameters:
Assignment Line Actual

Parameter

BYTEOFF - (n)/DEFAULT (PRBOF)

EOFMODE - Y/N/DEFAULT (PMEOF)

HILOGBLK - (n)/DEFAULT (PRHLB)

LOGBLKMODE - Y/N/DEFAULT (PMLBN)

LOLOGBLK - (n) (PRLLB)

Call:
BLDPNT

You need no calling parameters for this macro call.

Example:
BYTEOFF - 25
HILOGBLK - 165704
LOGBLKMODE - Y
LOLOGBLK - 034267
BLDPNT

This generates a Point Processing Packet which looks
like Figure 11-7-6.

Access Method:
SAM magnetic tape files only

Keyword Parameters:
Assignment Line

BWDFIL - Y/N/DEFAULT

BWDRBC - Y/N/DEFAULT

FWDFIL - Y/N/DEFAULT

FWDREC - Y/N/DEFAULT

MTEOF - Y/N/DEFAULT

MTERASE - Y/N/DEFAULT

MTREAD - Y/N/DEFAULT

MTREWIND - Y/N/DEFAULT

MTWRITE - Y/N/DEFAULT

WORD SIZE - (n)

Call:
BLDMTC dat

where the call parameter is:

Definition

Actual
Parameter

(MCSBF)

(MCSBR)

(MCSFF)

(MCSFR)

(MCWEF)

(MCERS)

(MCRD)

(MCREW)

(MCWRT)

(PRNWD)

Actual
Parameter

dat Byte address of a data (PRD AT)
record for either the
MTREAD or MTWRITE
calls.

~1t1711 'r,hHh'J100 It1 It): PRSTA
IOkJ712'177777 DE.FAULT 1 : ~R~~Ol,

kJ~713'1057fd~ HILlllidLK 2 : PRHLb
1t)0714'034207 LLL(JG~LK 3: PRLLB
~"'71~'e,~eVj~~ BYTEuFF 4 : PRbL'F

L-. _____________ Figure //-7-6. Point Processing Packet

11-7-10 093-000114-01

Licensed Material - Property of Data General Corporation

BLDKDP
To construct an INFOS Key Definition
Packet.

DataGeneral
SOFTWARE DOCUMENTATION

Call:
BLDKDP key

where the call parameter is:

Access Method:

Used for indexed sequential (ISAM) and database
(D BAM) access

Keyword Parameters:

Assignment Line Actual
Parameter

Definition

key

Example:

KEYLEN - 2
BLDKDP

Byte address of the key

Actual
Parameter

(KDKYP)

DUPLICATE = Y/N/DEFAULT (KTDUP) This produces the packet shown in Figure 11-7-7.

GENERIC = Y/N/DEFAULT

APPROXIMATE = Y/N/DEFAULT

KEY LEN

HIOCCUR

LOOCCUR

= (byte)

- (n)/DEFAULT

= (n)

1O"'1d~ ASDtj
01
102
~3

104 0"'b"'2''''10~002
0S
rob k'l0()103''''0k:l1dk:l~
07 0"'bk:l4'''''''''''''k:lk:
08 ~~b"'5'1O"'\()IOlt.l1O

093-000114-01

(KTGEN)

(KTAPX)

(KDKYL)

(KDDKO)

KEY DEFINITION PACKET

K YTYP 1 KE YLEN.

o
tlIUCCUF<
LOO('CUR

Figure /l-7-7. Key Definition Packet

11-7-11

0: KOTYP I KD~YL
1: KOKYP

3: KODKO

BLDKDP

DataGeneral
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

BLDSDP Call:
Used to build a Subindex Definition
Packet

BLDSDP

Access Method:
DBAM only

Keyword Parameters:
Assignment Line

MINNODE - (n)/DEFAULT

MAXKEY - (byte)/DEFAULT

PARTRECLEN - (byte)/DEFAULT

ROOTMERIT - (n)/DEFAULT

COMPRESS - Y/N/DEFAULT

SUBINDEX - Y/N/DEFAULT

TEMPINDEX - Y/N/DEFAULT

HIPRINOD - Y/N/DEFAULT

PERMREC =-= Y/N/DEFAULT

35
36
37
38 1d1d612'1d01050b
39 00613'0010000
40 01Ob14'kJ02000
41 IOlOb15'1ij0~000
42 00b16'01d0000
43 1d0b17'001d01d0

You need no calling parameters for this call.

Actual
Parameter

Example:
MINNODE - 506
MAXKEY - 4
PARTRECLEN - 0
ROOTMERIT - 0
BLDSDP

(SDINS)
This will generate the Subindex Definition Packet in
Figure 11-7-8.

(SDMKL)

(SDPRL)

(SDRMF)

(IXPKC)

(IXNSI)

(IXTSI)

(IXHPN)

(IXPRM)

SUe-I~Q~X DEFI~lTION PACI\E:,T

MINNODE J Id: SD~'NS
10
MAXKEY·2Sb+~ARTkECLEN 2: SDMKL I SDPKL
0
kOUTMERIT 4: SDRMF
SIIFL 5: SDIFL

Figure 1/-7-8. Subindex Definition Packet

11-7-12 093-000114-01

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

BLOLSP
To build a Link Subindex Processing
Packet

Access Method:
DBAMonly

Keyword Parameters:
Assignment Line Actual

Parameter

DSTBACK - Y/N/DEFAULT (CCBAK)

DSTDOWN - Y/N/DEFAULT (CCDWN)

DSTFWD - Y/N/DEFAULT (CCFWD)

DSTKEYED - Y/N/DEFAULT (CCKEY)

DSTREL - Y/N/DEFAULT (CCREL)

DSTSETC - Y/N/DEFAULT (CCSCP)

DSTSTAT - Y/N/DEFAULT (CCSTA)

DSTUP - Y/N/DEFAULT (CCUP)

SRCBACK - Y/N/DEFAULT (CCBAK)

SRCDOWN - Y/N/DEFAULT (CCDWN)

Assignment Line

SRCKEYED - Y/N/DEFAULT

SRCREL

SRCSETC

SRCSTAT

SRCUP

Call:

- Y/N/DEFAULT

- Y/N/DEFAULT

- Y IN/DEFAULT

- Y/N/DEFAULT

8LOLSP dkt, skt

where the call parameters are:

Definition

dkt

skt

Example:

Byte address of
Destination Key Table

Address of Source Key
Table for ISAM and
DBAM; otherwise
DEFAULT

OSTFWO - Y
OSTREL - Y
SRCKEYEO - Y
SRCSETC - Y
BLOLSP OKT, SKT

Actual
Parameter

(CCKEY)

(CCREL)

(CCSCP)

(CCSTA)

(CCUP)

Actual
Parameter

(PRDKT)

(PRSKT)

SRCFWD - Y/N/DEFAULT (CCFWD)
This will generate the Link Subindex Processing Packet
in Figure 11-7-9.

~~S~kj t ~0'r"1~t)
erc~~il t 1l~0711

~~~IU~'~~~roklki 
~ ~ ~ " 3 t .a 0 11£; 0 ,,; 
00SkJ4t0f{o~1001l! 

"'~~0StIt0k!'000 
ro~50b'1£i0~l{)til{) 
Ide,~1d 7' IdlOld01c:hi 
~ti~ 1 {{j t e~H~~00 

t:"'~ II 'll'fdV)filtJit1 
fdliS 12' Ith~fdv\0kJ 
~0~13'~4~~~0 

IOI{)S14'1020~'" 
~IO~ 15' ItHo"'~1d1o 
k:luS 1 b' { 1000~~ 
k.:0~ 1 7 t \jee~~i0 
"'VS~0 '1OIlIthh'~ 
~~521'~rolllO"'~ 
k;"'S22'G~IOIOIi:~ 

I{) 

DE.STKE-Y 

" ~OURCE.KE.~ 
'" ~ 
o 

'" ~ 
10 
10 
UtS TCONHWL 
~t<(.C Ul'~ TRuL 
~ 

o 
~ 

o 
10 

" 

~:PRSTA 

J l:PfotiJ"T 

J 3:PRSI<1 

11:PRDCC 
12:PRS('C 

'------------- Figure 1/-7-9. Link Subindex Processing-Packet -----------..... 

093-000114-01 11-7-13 BLOLSP 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

BLDVIP Call: 
To construct a Volume Initialization 
Packet. 

BLDVIP dvs, vid, oid, uvt 

Access Method: 
SAM magnetic tape files only 

Keyword Parameters: 

Assignment Line Actual 
Parameter 

LABTYP = ANSIIIBMI (VFLTI-3) 
DEFAULT 

LABLEV = (n)/DEFAULT (VFLLI-3) 

FULLINIT = Y/N/DEFAULT (VFFUL) 

IGNOREID = Y/N/DEFAULT (VFIVI) 

FACCESS = (n)/DEFAULT (VIACC) 

~kj70d'0~~14Li 

1Ck:17"'1'~101C~~~ 
~('7~~c' k:11C 1 ~"'(" 
00703'e0~~010 

10 IC 7 It 4 ' '" ~~ '" ') ~ 7 
"'~7~5'~1O~~~'" 
1O~7~lb''''~115~) 
1(I~707'10101tV1~''' 
010171~'dIl1111£l(j 

~0711'1£l1O"'",1{l1O 

VIFL(, 
VULACC 
Ol:vlCI:. 
~ 

VULIU 

'" O"'IIjU~ 
~ 

where the call parameters are: 

Definition 

dvs Byte pointer to the device 
specifier 

vid Byte address of the volume 
ID 

oid Byte address of the volume 
owner's ID 

uvt Address of the User 
Volume Label Table 

Example: 
LABTYP = ANSI 
LABLEV = 3 
FULLINIT = Y 
FACCESS == 0 
BLDVIP DVS, VID, OlD, UVT 

Actual 
Parameter 

(VIDVS) 

(VIVID) 

(VIOID) 

(VIUVT) 

This generates the packet in Figure 11-7-10. 

0:VIFL(, 
l:VIACC 
2:VIDVS 

4:V!vIU 

b:VIUll.J 

USU< VL T b:VluVT 
It1 

'--------------- Figure 1/-7-10. Volume Initialization Packet ------------..... 

11-7-14 093-000114-01 



Licensed Material - Property of Data General Corporation 

BLDULT 
To construct a User Label Table 

Access Method: 
SAM magnetic tape files only 

Keyword Parameters: 

None 

Call: 
BLDUL T addr1 , addr2, ... addrn 

where the call parameter is: 

addr Byte address for each of the n label areas you 
want built into the table. 

DataGeneral 
SOFTWARE DOCUMENTATION 

The Assembly Language Interface 
In order to use the INFOS macro calls, you have to 
invoke the Assembly Language interface by including 
the call BLDIPKT on your assembly line before the 
name of your program: 

MAC BLDIPKT PROGNAME PROGNAME.RB/B $LPT IL 

This, however, assumes that you have included 
PARIU.SR in MAC.PS (the assembler's symbol table) 
and that PROGNAME.RB is the name you're giving to 
the assembly output. You may also use the .RB 
pseudo-op within your source code to specify the name 
of the binary file. 

If you did not include PARIU.SR in MAC.PS, you 
must invoke the interface by specifying: 

MAC PARIU/S BLDIPKT PROGNAME 
PROGNAME.RB/B $LPT IL 

There is one caution here: You should check your 
listing for diagnostic messages from BLDIPKT which 
appear as "WARNING" or "ERROR" comment lines 
just prior to a generated packet. Unlike error messages 
from the assembler itself, these will not appear on the 
system console. Furthermore, those labeled 
"ERROR" (rather than "WARNING") may indicate 
that the system has generated an unsatisfactory packet 
because of omitted, faulty, or conflicting keywords. 

The final part of this chapter contains a listing of the 
INFOS User Parameters for assembly language. 

093-000114-01 11-7-15 The Assembly Language Interface 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

,...... ____________ INFOS User Parameters for Assembly Language ------------_ 

01 
02 
03 
104 
05 

07 
fc:)8 
0q 
H~ 

11 
12 
13 
14 
15 
16 
1 7 
18 
1q 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3~ 
31 
32 
33 
34 
35 
36 
37 
38 
39 
41{l 
41 
42 
43 
44 
45 
46 
47 
48 

J=========::===:==Z====:==i 
i INFOS UStR P~RA~ETERS ; 
i=========================; 

~000~3 .I,)USR 
fc:)00004 .DUSR 
0010005 .DUSR 
0fc:)~H"~b • DUSR 
10100007 .DUSR 
0000107 .DUSR 
1010101012 .DUSR 
100101013 .DUSR 
01001015 .DUSk 
000017 .DUSR 
10001021 .DUSR 
1000022 .DUSR 
101010"'24 .DUSR 
e0e~27 .DUSR 
ee0fd32 .DUSR 
12110101033 .DUSR 
1010101034 .DUSR 
1010101035 .DUSR 
01Oe~3b .DlISR 
10000510 .OUSR 

1010010510 .DUSR 
1010101052 .DlJSR 

1010101054 .DUSR 
01210e5b .DUSR 
e0efd5b .DUSR 
~0eeol .DUSIo< 
01000b1 .DUSR 
01OIOeb2 .DUSR 

.TITL 

FILE DEfl~ITICN F~CK~T 

f 0 FL.1 = 
FDfL2 = 
FDBLK = 
FOBUF = 
FOLEN = 
FONll = 
FONVD ~ 

FDVTP = 
FDUIT = 
FLUOT = 
FLTCF = 
FO[)S[) = 
FDf-SI = 
FDEXP = 
FDSlQ = 
FOGEN = 
FDACC = 
FDIDO = 
FOSFT I: 

FOU-J1 = 

FDEFT = 
FODBP I: 

FO~~S = 
FOMKL = 
FflPf"L = 
fDRfi.F I: 

FDIFl • 
FDLN2 = 

3 
FCFL1+1 
FCFL2+1 
FLBLtI.+1 
FDBUF+l 
FDLEN 
FDLEN+3 
FDNVD+1 
FCVTP+2 
Fl)UIl+2 
FCUOT+2 
FDlCF+1 
FCDSD+2 
FOf-SI+3 
FCEXP+3 
FDSEG+l 
FDGEN+l 
FDACC+l 
Fe1De+1 
FDSF1+12 

FDSFT+12 
FDEFT+2 

FCOBP+2 
FO~NS+2 

FtMKL 
FCPRL+2 
FDR~F-+l 
FOlfL+l 

; H~F as 
JI~FOS 
iINFOS 
il~FGS 
ilNFOS 
iINFOS 
;INFOS 
;INFOS 
;INFOS 
i It~FOS 
iINFOS 
;INFOS 
;INFQS 
; If\lFOS 
;INFOS 
;INFOS 
; It. F os 
;INFOS 
iINFOS 
;I~FCS 

;lJ\F(JS 
; I~iFOS 
;lNFOS 
ilNHiS 
;INFOS 
;INFOS 
ilt-oFOS 
;lNFGS 
IINFOS 

SUBINOtX DEFl~ITlG~ PACKEl 

010101010", .DUSR 
01000102 .OUSR 
10101010102 .DUSR 
1010010104 .DUSR 
0121e0e5 .OUSR 
0e0100b .DUSR 

Sl)MNS 
SO~t<.L 
SOPRL 
SCf<~F 
SOIFL 
SDLtN 

= = 
: 

= 
= 
= 

10 
SDMNS+2 
SDMt<.L 
SCPRl+2 
SDR~F+l 
SDIFL+l 

11-7-16 

;INFOS 
;INFOS 
; H:FOS 
;INFOS 
JINFOS 
; H-iFOS 

-FILE DEF FW~'S, I 
-FILE OEF Fl/lGS, II 
-BLOCK SIZE 
-~UMBER OF BUfFERS 
-RECORD LENG1H 
-~~M8ER OF L~GfX lEVfLS 
-N~M OF VOL TABLE ENTRIES 
-VOLU~E TABLE POlhTER 
-USER INPUT TkANS TBl PTR 
-USER OUTPUl TR~NS lel PTR 
-T~~~S & L~eEL FLAGS 
-D~TA SEhS DElIM l~BlE PTR 
-FILE SET IC PTR 
-eXPIR~TIGN CATE 
-SEQUENCE NUfiBER 
-GENER~TION~U~BE~ 
-FILE ACCESS/IBILIlV 
-l~ITIAL C~TA OFFSET 
-SEL FIELD T~ANS 11/1BLE PTR 
·S~M ~ RAM FDP Lf~GTH 

·~XCLUCEL FILE TAELE PTR 
-D~TA ~ASE FILE OEF ~ACKET 
-OR NA~E POIf\TER 
-~INI~UM NODE SIZE 
-~AX ~EY LE~GT~ (L~ BYTE) 
-P~RT REC L~f\ (~H eYTE) 
-RT NO MERIT FAtTOR 
-l~OEX FLAGS 
·ISA~ & DBA~ FOP LENGTh 

-~INI~UM NODE SIZE 
-~/iX KEY LEN (Lh BYTE) 
-P~~T REC L~~ (RH BYTE) 
-Pl NO ~RT FACT (R~ BYTE) 
-l~UE.X FLAGS 
-SUBINDEX OEF PAC~ET LENGTH 

093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

01 
02 
03 
04 
05 
1216 
07 
08 
0'1 
H~ 
1 1 
12 
13 
14 
15 
16 
17 
18 
1'1 
20 
21 
22 
23 
24 
25 
26 
27 
28 
2'1 
30 
31 
32 
33 
34 
35 
36 
37 
38 
3'1 
4~ 

41 
42 
43 
44 
45 
46 
47 
48 

093-000114-01 

HH~000 .DUSR 
fl4e0e0 .DUSR 
020000 .DUSR 
01012100 .DUSR 
004000 .DUSR 
12102000 .DUSR 
00e200 .DUSR 
00010'" .DUSR 
000020 .DUSR 
000010 .DUSR 
00e004 .DUSR 
000001 .DUSR 

06000121 .DUS~ 
02fil000 .DUSR 
01tl0000 .UUSR 
04e000 .CUSR 
040000 .DUSR 

014000 .DUS~ 
010000 .DUSR 
0040e0 .DUSR 
0~000e .DlJSR 
014000 .DUSR 

000030 .DUSR 
000000 .DUSR 
0000~0 .DUSR 
0000Hl .DUSk 
00~H130 .DUSR 

020000 .DUSR 
0iil2000 .DUSR 
000100 .DUSR 
00€040 .DUSR 
01210010 .DUSR 

INFOS User Parame ers for Assembly Language contmued> 

FlL~ DEFl~I1IO~ FL~GS, I (FDFL1) 

F1LJBR : 
F1AM1 : 
FIAM2 : 
F1FTl : 
FIF12 : 
FIRA,. : 
FIOVR = 
FIE.XF = 
FIPMl = 
FIPM2 = 
FIRER • 
FIINV = 

180 
IIH 
182 
183 
IB4 
185 
IB8 
IBq 
lEll 
1B12 
1813 
1815 

JI~FOS -UNBLOCKED RECORDS 
;INFOS -ACCESS METHOD FIELD 
JI~FOS -
JI~FOS -RECORD FOR~AT FIELD 
II~FOS -
; INFOS -READ ·AFTER ~RITE I\lER 
; I ~ F 0 S - 0 V E R ~ R I T E (I A P PEN 0 : I F 0 ) 
JINFOS -rXCLUSIVE FILE 
JINFOS -PROCESSI~G ~ODE AIELD 
II~FOS -
;INFOS -RE~RITE (NORMAL 'IF 0) 
;INFOS -l~VERTING (CBAM) 

ACCESS METHCD SPECIFIERS (FIA~1,FIA~2) 

FIAt-IM 
F1SAM 
FIRAM 
FllSM 
F1DBM 

: 

= 
= 
: 

= 

FIA~1+FIA~2 ;INFOS -FIELD MASK 
FIA~2 ;I~FOS -SAM 
o JINFOS -RAM 
FIA~l ;I~FOS -rSAM 
FIA~l II~FOS -DBAM 

RECORD FO~~Al SPECIFIERS (FIFT1,FIFT2) 

FIFT~ 
FIFlX 
FIVAR 
FIU~ID 
F 1 Sf N 

: 

= = 
: 

FIFT1.FIFT2 ;INFOS -FIELD MASK 
FIFTl IINFOS -FIXED LENGl~ 
FIFT2 IINFOS -~ARIABLE Le~GTH 
o ;I~FOS -U~DfFINEC ~ENGTH 
FIFTltFIFT2 IINFOS -C~TA SENSITIVE 

P~OC~SSING ~OD~ SPECIFIERS (FIP~1,F1PM2) 

FIP,..,M 
Fllr-..P 
FlOUT 
FIUPD 
FICRU 

: 

= 
: 

= 
= 

FIPM1tFIP~2 IINFOS -FIELD MASK 
o IINFOS -~~PUT 
FIFMl ;INFOS -OUTPUT 
FIP~2 ;INFOS -UFD~TE 
FIP~1+FIP~2 ;INFOS -CREATE UPDATE 

FILE DEFI~ITION FLAGS, 11 (FDFL2) 

F20Tl 
F2SPt-I 
F2GRD 
F2DHR 
F2FDP 

= 
= 
= 
= 
= 

IB2 
IB5 
1Bq 
1810 
lE12 

11-7-17 

II~FOS -OPEN ONLY THIS INDEX 
JINFOS -SPACE MANAGEMENT 
;INFOS -OPTIMIZE REC DISlRIBUTION 
JINFOS -DISABLE HIE'RARCHI,OAL IREPL'AC 
JINFOS -DATA BASE FOP PRESE~T 

The Assembly Language Interface 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

INFOS User Parameters for Assembly Language <Continued> 

01 
02 TPANSLATIO~ A~D L~BEl CONTROL FL~GS (FDTCF) 
03 
rtHI UH~00121 .DUSR TCLTl : 180 ;I~FOS -ll~8El TYPE FIELD 
05 040011:1121 .DUSR TClT2 : IBl IINFOS -
0t: 020000 .DUSR TClT3 = le2 ;INFOS -
07 01~000 .CUSR lCSFl = le3 IINFOS -SElECTIV~ FIELD lRA~S 
08 004000 .DUSR lCOll : le4 iI~FOS -O~TPUT TRA~S FIELD 
0CJ 002000 .LJUSR T(OT2 = lSS iINFOS -
Ul eel~e0 .DUSR 1(OT3 = IBb iINFOS -
11 000400 .DUSR TC()T4 = 187 iIf\jFOS -
12 000200 .DUSR TClll : 188 i It~FCS -LIA BE l lEVEL 
13 00e100 .uUSR lCLl2 = 18c} ilNFOS • 
14 00e040 .DUSR lCLl3 = 181121 iINFOS -
15 ~00010 .DUSR TCITl = IB12 II~FOS -H,PUT TRANS FIELD 
16 0k10004 .DUSR TCIT2 : 1813 i!f'"FOS -
17 0000i2J2 .DUSR TCl13 : lB14 iINFOS .. 
18 0~H~001 .DUSR TCI14 : lB15 II~FOS -
lCJ 
2ril LAE,EL TYPE SPECIFIERS (TCL1I-TClT3) 
21 
22 160000 .DUSR TClTM = TCLT1+TClT2+TCLT3 
23 IINFOS -FIELD MASt< 
24 1210000121 .DUSR TCAf\S : 0 I HIIFOS "A~Sl STANDARD 
25 02012100 .DUSR lCI~~ : TClT3 ilNFOS -IBM STANDARD 
26 
27 lABEL LE:VEl SPECIFIERS (TClll-TCll3) 
28 
2CJ 0~Hn40 .DUSk TCLLf." : TCLL1+TCLl2+TClL3 
30 ilt-4FOS -FIELD t-1ASI< 
31 e0004~ .DUSR TeLVl = TelL3 iINFOS -lEVEL 1 
32 i(HHHf2l0 .DUSR TC.LV2 : TCLL2 iINFOS -LEVEL 2 
33 ~H:Hl141d .DUSk TCLV3 = TCLl2+1CL.L3 i H~FCS -LEVEL 3 
34 
35 OUTPuT TRA~SLATlO~ SPECIFIERS (TCOTI-TCOT4) 
36 
37 ~07400 • DUSfot TCOT~ : TCOT1+TCOT2+TCOT3+TCOT4 
38 ;INFOS -FIELD t-1ASI< 
3CJ 000000 .DUSR TCNTO = 0 iINFOS -~O TRANS O~ OUTPUT 
4ril 000400 .DUSR lCEAO : TCOT4 iI~FOS -EBCDIC TO ~SCII 
41 001000 .DUSR TCAEO : lC013 ilt-4FOS -ASCII TO EBCDIC 
42 007400 .DUSR TCUTO = TCOTt': ilNFOS -USER TABLE 
43 
44 I~PUT TRANSLATION SPECIFIERS (TCITI-TCIT4) 
45 
46 000017 .DlISR l(;Il~i : lCIT1+1ClT2+TCI13+TCI14 
47 ;It-4FOS -FIELD MASt< 
48 12100000 .DUSR TC~TI : 0 ;l~FOS -~G TRANS ON INPUT 
4c} 01lJ00el .DUSR TC~AI : TCI14 ;I~FOS -EBCDIC TO ~SCII 
50 e~e002 .DUSR TCAtl : lCIT3 il~FOS .ASCII TO EEeDIC 
51 00€017 .DUSR TeUTI : TClTt' ;INFOS -USER TABLE 
52 
53 If\oDEX FLAGS (FDlFL) 
54 
55 1~000k1 .DUSR lXP!(C : lE0 ;I~FOS -PERFORM KEY COMPRESSION 
56 04~000 .DUSR lX~SI : lB1 ;INFOS -NO SUBINDICES 
57 020000 .DUSR IXHP~~ : 1t2 ;INFOS -~IGH PRIORITY NODE 
58 011H)00 .DlISR 1XTS1 : lB3 ;I~FOS -l~MP INDEX (PRI~ leR SUB) 
59 00~000 .DUSR IXPRt-' I: lB4 ilNFOS -~AI<E DATA RECORDS PERt'ANENT 

11-7-18 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

01 
02 
03 
0~ 

05 
06 
07 
08 
0q 
10 
11 
12 
13 
1~ 

15 
16 
17 
18 
l·q 
20 
21 
22 
23 
2~ 
25 

01 
02 
03 
0~ 

05 
06 
07 
08 
0q 
10 
11 
12 
13 
14 
15 
16 
1 7 
18 
lq 
20 
21 
22 
23 
2~ 

25 
26 
27 
28 
2q 
30 

093-000114-01 

00012100 .DUSR 
00e001 .DUSR 
000002 .DUSR 
00"H'0~ .DUSR 
00012106 .DUSR 
12JriHHH 0 .DUSR 
000012 .DUSR 

10e000 .DUSR 
1214001210 .LlUSR 
02~Hh?0 .OUSR 
00020121 .DUSR 
000100 .DUSR 
e000~0 .OUSR 
00~004 .DUSR 
00012102 .DUSR 

00 Ic! 01210 
00001212 
000011:)3 
01210005 
00Cl1007 
00012111 
000012 
00012113 
00012115 
0121121015 
0121121015 
0121012116 
id0012120 

1(011)00 
12140000 
02e000 
eHH2J~0 
0021000 
00101d0 
000200 
00e400 
000040 
0fc10020 
0~HH110 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSk 

.DUSk 

.DUSR 

.l)USR 

.CUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

.DUSR 

INFOS User Parameters for Assembly Language <Continued) 

VOLU~~ INITIALIZATIGN PAC~El 

VIFLG 
VIACe 
VIDVS 
VIVID 
VIOID 
VIUVT 
VILEN 

: 
: 
: 
: 

= 
: 

= 

o 
V1FLG+l 
\lIACC+l 
VIOVS+2 
VIVID+2 
'11010+2 
VIUVT+2 

;INFOS -VOL INIT F~AGS 
;INFOS -VOL ACCESSABILITY (LH BYTE) 
;INFOS -DEV SPECIFIER. PTR 
ilNFOS -VOL 10 PTR 
;lNFOS -O~NER 10 PTR 
ilNFOS ·~SER Val LABEL TAB PIR 
;I~FOS -Val I~IT PACKET lBNGTH 

VGlUM~ INITIALIZATIC~ FLAGS (VIFlG) 

VFLTl 
VFLT2 
VFLT3 
vFLLl 
VFll2 
VFlL3 
VFFUl 
VFIVI 

: 

= 
: 
: 
: 
: 
: 
: 

TClTl 
TClT2 
TCLT3 
Tell1 
TClL2 
TCll3 
1813 
181i.1 

;I~FUS -LA~El TYPE FLAGS 
ilf\F(jS -
;INFOS -
;INF~S -LABEL lEVEL fIELD 
;H~FOS -
;I~FOS -
iINFOS -FLlL INIT 
;INFOS -IGNORE VOL ID 

NUTE THAT TrE lA~El TYPE & lA8~L lEVEL SPECIFIERS 
GIVEN O~ ThE FRfVILLS PAGE ~AY ALSO Bt us~c FOR 
ThIS FLAG ~CRD 

V~lU~E DEFl~lTIGN ~ACKET 

VDVNP : 
VDVSZ : 
VDVlT : 
VDHlT : 
VDTll = 
VDPDC : 
VDIVe = 
VDDTO : 
VDV~,F ~ 

VDACC = 
VCPALl = 
VDGID = 
VDLEN = 

o 
VDV~I-'+2 
VDVSZ+l 
VDVLT+2 
VDHlT+2 
VDTlT+2 
VDPDC+l 
VDIVC+l 
VDDTO+2 
VOVtJ,F 
VDACC 
VDPAD+l 
VDOID+2 

;INFOS 
;INFOS 
; H'4FOS 
;I~FOS 
JINFOS 
;INFOS 
JINFOS 
; Ir~FOS 
;I~FOS 
;INFOS 
;INFOS 
;INFOS 
JINFOS 

·VOLU~E NAME POIN1ER 
-VOlUft1E SIZE 
-VGLUft1E LABEL TAB~E P1R 
-HEADER LABEL TABLE PlR 
-TRAILER ~ABEL TABEl PTR 
-P~YS OEV CHARAC1ERIS1ICS 
-~~FOS VOL C~ARAClERISTICS 
-DEVICE TIME OUT OONSlANT 
-VOL ft1ERIT ~ACTOR{L~ BYTE) 
-~OL ACCESSABLITYCLH BYTE) 
-PAD CHARAC1ER (R~ BY1El 
-VOLUft1E OWNER IDAOr~lER 
-V,OL DEF PACKET L~~GTH 

INFOS VOlU~E CHARACTERISTICS (VOIVC) 

ICDDR = 
ICVlB = 
ICDve = 
ICDSL = 
ICPAR = 
ICDCC = 
ICCTG = 
ICDFI = 
ICER! = 
lCERR = 
ICRv,O = 

180 
lEll 
182 
183 
lB5 
le6 
188 
1E7 
1810 
1811 
1B12 

11-7-19 

;INFOS -OISABLE DEVICE RESlART 
;INFOS -VARIABLE L~NGTH BlOC~S 
; I~FOS -DUPLICATE VOLUME ,CO,NTROL 
;INFOS -DISABLE SYSTE~ LAeEL~NG 
;INFOS -GENERATE P.RITY 
;INFOS -DISABLE CONFLICT CHECKING 
; INFOS -CONTIGUOUS IALLOC'ATIO~ 
;INFOS .-DISABLE FILE INtllAlIZATION 
JINFOS -~~ABlE RUNTlft1E rNIT 
;INFOS -E~ABLE RUNTIME RELEASE 
;INFOS -REWIND ON VGl OP~~ 

The Assembly Language Interface 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

INFOS User Parameters for Assembly Language <Continued) 

1211 
1212 ; PROCESSING PACKET 
1213 
1214 1211211211210121 .DUSR PRSTA = 0 ,INFOS -STATUS FLAGS 
1215 0121el2l12l1 .DUSR PRDAT = PRSTA+l 'INFOS -DATA AREA POINTER 
l2Ie 12112112112103 .DUSR PRPEC : PRDAT+2 ,INFOS -RECORD ~UMBER (RA~) 

1217 0~"Hll1213 .DUSF< PRKTP - PRREC ,INFOS -KEY TABLE POINTER (ISAM) -
1218 12112112112105 .DUSR PRLEN = PRKTP+2 ,INFOS -RECORD LENGTH 
I2Iq 
Ie 11210121121121 .DUSR PRSPL = IBI2I J H~FOS -~~EN USEe GOES IN PRLEN 
11 'INFOS -SPECIFIED RECORD LB~GTH REQUES' 
12 ,INFOS -CINPUT TO ISAM OR DBA~ RE_D) 
13 'INFOS -RECORD EXCEEDS LB~GT~ REQUEf E[ 
14 ,INFOS -(RETURNED F~OM ISAM OR DBAM RE' 
15 
16 1211211211211215 .DUSR F-RDSP = PRLEN ,INFOS -~AG TAPE DISPOSI'IO~ 
17 1211211211211121 .DUSR PROFS = PRLEN+3 ,INFOS -DATA RECORD FEEDBACK 
18 12112112112112 .DUSR PRSIL = PRDFB+2 ,INFOS -SUB-INDEX lEVEL ~RH BYTE) 
lq 12112112112113 .DUSR PPL~l a P~SIL+l ,INFOS -SAM & RA~ PROC PACKET LEN 
2e 
21 1211210013 .DUSR PRRMF = PR('FB+3 ,INFOS -RECORD MERIT FACTOR 
22 12112112112114 .DUSR PRCC~ = PRR~F+l ,INFOS -COMMAND CONTROL ~ORC 

23 121121012115 .DUSR PRPRA = PRCCw+l ;I~FOS -~ARTIAL RECORD AREA PTR 
24 121012112122 .DUSR PRSRL = PRPRA+S ;INFOS -RETURNED LEl~ (LH BYTE) 
25 12112112112122 .CUSR PRSRS : PRSRL 'INFOS -RETURNED Sl_TUS (RH BYTE) 
26 1210~H~23 .DUSR P~SID = PRSRS+l ,INFOS -SUBINDEX DEF PAC~ET PTR 
27 121012112125 .DUSR PRLN2 : PRSID+2 ,INFOS -ISAM & DBAM PAC~fT LBN 
28 
2q 
3~ ; PROCESSING FACKET STATUS FLAGS (PRSTA) 
31 
32 11210121121121 .DUSR PFLOC = 1 Be ,INFOS -L10CK RECORD 
33 12141211211210 .DUSR P~HLD = 1 B-1 'I~FOS -HOLD REQUEST 
34 1212121121121121 .DUSR PFUNL : IB2 ,INFOS -U~LOCK RECORD 
35 121 Hi 0121121 .DUSR PFVCI = IB3 ;INFOS -VOLU~E CHANGE INDICATOR 
3t 1211214121121121 .DUSR PFPEV : IB4 'INFOS -PHYSICAL ENC OF VOLUME 
37 1211212121121121 .DUS~ PF~IF = IB5 ,INFOS -~RITE IMMED IF MOCIFIED 
38 1211211121121121 .DUSR PFREB = lBb ,INFOS -RECORD EXCEEDS BUF SIZE 
3q 1211211214121121 .DUSR PFRIN = 187 ,INFOS .READ INHIBIT ON (RA~) 

4121 1211211212121121 .DUSR PFXLS = lB8 ,INFOS -XFER LENGTH SHORT 
41 12112112110121 .CUSR PFEXL = 189 ,INFOS -~XCESSIVE XFER LB~GTH 

42 1210 ft' 1214121 .CUSR PFPEF = 181~ ,INFOS -P~YSICAL END OF F.ILE 
43 0ee12l2fE1 .CUSR PFVER :. IBll ,INFOS -VERIFICATION FAILLRE 
44 1211211211211121 .DUSR PFMTR = IB12 ,INFOS .~AG T~PE CONTROL ERROR 
45 01210011'4 .CUSR PFUVL = 1813 ,INFOS -USER VOL ~AeEL P~CCESSED 

4c 121001211212 .DUSR PFUHL = IB14 ,INFOS -~SER HDR LABEL PROCESSED 
47 001Hll2l1 .DUSR PFUTL = lB15 ,INFOS -USER TRAILER LA6 ,PRCCESSEC 
48 12115340 .DUSR PFERM = PFVCI+PFPEV+PFRE8+PPXLS+PFEXL+PFPEF 
4q 12115377 .DUSR PFERM = PFERM+PFVER+PF~TR+PF~VL+PFUHL+PFUTL 

5~ ,INFOS -eXCEPTIONAL RETUR~ ~ASK 

51 
52 ; l~DfX COtJ\~,~~D CC~TROL FLAGS (PRCC~) 

53 
54 1121e000 .DUSR CCKEY = 18121 ,INFOS -K'E YEO 
55 04121000 .DUSR CCREL = IBl ;INFOS -RELATIVE TO CUR ACS 
5c 12120000 .DUSR CCt-'lCl = 182 'INFOS -~OTION CONTROL FIELC 
57 0Ut~00121 .DUSR CCMC2 = 183 ;INFOS -
58 00401110 .CUSR CCMC3 = 164 ;lNFOS -
5q 121020121121 .DUSR CCSCP = 185 ,INFOS ~SET CURR~Nt POSITON 

11-7-20 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

131 
02 
03 
134 
05 

01 
132 
03 
eLi 
05 
eo 
07 
08 
13'1 
le 
11 
12 
13 
14 
15 
1e 
17 
18 
1'1 
20 
21 
22 
23 
24 

01 
132 
03 
134 
05 
0e 
~7 
~8 

13'1 
1~ 

11 
12 
13 
1L1 
15 
16 
1 7 
18 
1'1 
2fci 
21 
22 
23 
24 
25 
20 
27 
28 
2'1 
30 

093-000114-01 

e0e100 .DUSR 
01313020 .DUSR 
000010 .DUSR 
000004 .DUSR 
000002 .DUSR 

03t1000 .DUSR 

00121000 .DUSR 
00t1000 .DUSR 
e10000 .DUSR 
01t1000 .DUSR 
020000 .DUSR 
132400"" .DUSR 
030000 .DUSR 
034000 .OUSR 

000200 .uUSR 
00el00 .DUSR 
000040 .DUSR 
e00"'20 .DUSR 
000220 .DUSR 
0kH~3b0 .DUSf; 

00e003 .DUSR 
kl0(,h104 • DUSR 

00e00e. .DUSR 
0~HH'~1 .DUSR 
00e002 .DUSR 
000003 .DUSR 
0000134 .DUSR 
000005 .DUSR 
000",o0 .DUSR 
000k107 .DUSR 
"'0liH)10 .DUSR 

000001 .DUSR 
000002 .DUSR 
rHH:l0kl3 .DUSR 
0010004 .DUSR 

00000"" .DUSR 
ee0001 .DUSR 

INFOS User Parameters for Assembly Language <Continued> --________ _ 

CCSPR 
(CSDB 
CCLOG 
CCLOC 
CCGLB 

= 
= 
: 

= = 

1~'1 

IB11 
IB12 
1813 
1814 

;INFOS -SLPPRESS PARTIAL RECCRD 
;I~FOS -SLPPRESS DATA ~AS~ 
;INFOS -LOGICAL KEY DELETE 
;l~FOS -LOCAL LOG DELETE 
;INFOS -GLOBAL LOG DELETE 

MOTION CONTROL SPECIFIERS (C(tJC1-CCtJC3) 

CC~Ct', = 

(CF~D = 
CCBAK = 
CCD~N = 
CCDF~ : 
(CUF~ : 
CCUBI< = 
CCUP : 
CCSTA = 

CCMC1+CC~C2+CC~C3 
;INFOS -FIELD MAS~ 

o ;INFOS -FOR~ARD 
CC~C3 ;INFOS -~AC~~ARD 
C(Me2 ;lNFOS -ce~~ 
CCMC2+CC~C3 ;lNFOS -DOW~ ~ FOR~~RD 
CCMCl ;I~FOS -LP & ~ORWAhC 
CC~Cl+CC~C3 ;lNFOS -LP & BACK~A~D 
CC~C1+CC~C2 ;INFOS -~p 
CC~Cl.CC~C2+CC~C3 

;INFOS -STATIC 

SYSTEM RElu~NED STATUS FLAGS (PRSRS) 

SRLLu 
SF-DUP 
SRDRL 
SRGLO 
SRLD~ 

SRSFM 

= 1~8 ;I~FCS -LCCAL LOGIOAl D~LETE 
= lS9 ;I~FOS -D~PLICATE KEY 
= 1B10 ;l~~OS -DATA RECORD L~CKEC 
= . lBl1 ;I~FOS -GLOBAL LOGICAL DELETE 
= SRLLD+SRGLD ;lNFOS -LCGIC-L DELET~ ~ASK 
: SRLLD+SRDuP+SRDRL+S~GLD 

;I~FOS -S'ATU~ FIELC MASK 

MAG-TAPE CUNT~OL PROCESSING PACK~T 

PPCFC 
PRNrtC 

= 
: 

PRDAT+2 
PRCFC+l 

; INFOS -CONTROL FUNCTION ,CODE 
IINFOS -NUMBER OF ~CROS 

~AG-TAPE CO~TROL FU~CTION ceDES (PRCFC) 

~CSFF 
~CSBF 
~(;RLi 

t':CV4RT 
MCWEF 
~CRE~ 

MCSFR 
~CSbR 
r.:CERS 

= 
: 

= 
= 
= 
= : 
= 
: 

o 
MCSFF+1 
M(SBF+l 
fl,CRD+l 
t',twRT+l 
MCrtEF+l 
t'CRE~+l 
tJ.CSFRt1 
tlCSBRtl 

PUINT PROCESSING PACKET 

F-RMOD 
PRHLI:) 
FRLLB 
PRBlJF 

= 
= 
= 
= 

PRS1A+l 
PR~OD+l 
P~HLb.l 
PFiLLB+1 

;INFOS -SPACE FOR~ARD FI~E 
JI~FOS ~SPACE BACK~ARD FILE 
;lNFOS -REAu 
;INFOS -hRITE 
JINFOS -~RITE EOF 
;INFOS -REWIND 
;INFOS -SPACE FORwARD REC 
:INFOS -SPACE BACKwARD REC 
;I~FOS -ERASE 

;I~FOS -INPUT MODE 
JINFOS -HI LOGICAL BLOCK 
;INFOS -LOW LOGIOAL BLOCK 
;INFOS -BYTE OFFSET 

POll\iT INPUT r.'ODE (PRt-40D) 

PMEOF 
PMlB~ 

= 
: 

o 
1 

11-7-21 

JINFOS -POINT TO EOF 
;INFOS -LOGICAL BLOCK NU~ 

The Assembly Language Interface 



DataGeneral 
SOFTWARE DOCUMENTATION 

31 
32 
33 
31.l 
35 
36 

01 
02 
03 
04 
05 
06 
07 
08 
0q 
HJ 
11 
12 
13 
14 

01 
02 
e3 
04 
05 
06 
07 

00011101 .DUSF< 
00111003 .DUSR 
000013 .DUSR 
000014 .DUSR 

000000 .DUSR 
000000 .OUSR 
000001 .DUSR 
000003 .OUSR 
000005 .DUSR 

100000 .OUSR 
040000 .OUSR 
020000 .OUSR 

027400 .OUSR 
022400 .OUSR 
022000 .010 
021073 .0USR 

Licensed Material - Property of Data General Corporation 

INFOS User Parameters for Assembly Language <Continued> ---------_..... 

LI~~ SUB-I~CEX P~OCESSING PACKET 

PfWKT 
PRSKT 
PROCC 
PRSCC 

= 
= 
= 
= 

PROAl 
Pf.(K1P 
PRR~F 
PRCC~ . 

KEY DEFINITION PAC~ET 

KOTYP 
KOKYL 
""OKYP 
KOOKO 
KOlEN 

= 
= = 
= 
= 

o 
KCTYP 
KCKYL+l 
K[;KYPt2 
KCDKOt2 

KEY TYPE FLAGS (I<OTYP) 

""lOUP 
KTGEN 
KTAPX 

= 
= 
= 

IB0 
IBl 
IB2 

INFGS SYSTE~ CALLS 

.PINF05 = 

.OINFOS = 

.INFOS = 

.IINFOS = 

57B7 
45B7 
44B7 
.SCALL 73 

11-7-22 

;I~FOS -OEST KEY TABLE Pl~ 
,INFOS -SOUf(CE KEY TABLE ~P·TR 
;INFOS -DEST COMMANC CON1ROL 
,INFOS -SOURCE COM~ANO CO~TROL 

;INFOS -KEY TYPE FWAGS (L~ BYTE) 
;INFOS -KEY LEN (R~ BYTE) 
,INFOS -~EY POINTER 
'I~FOS -OLP KEY OCCURENCE 
IINFGS -~EY OEF PACKET L8~Gl~ 

'INFOS -DUPLICATE KEY 
;1~FOS -GENERIC KEy 
;I~FOS -APPROX KEY 

'INFOS -PRE-OPEN 
,INFOS -OPEN 
,JNFOS -PROCESSJ~G CALL 
;INFOS -W~BELEO I~IT FOR ~AG TAPE 

093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

f A INFOS User Parameters or ssem bl L y anguage continue d) 

08 
0q 
10 ; .1NFOS ARGutJE.~TS 

11 
12 000000 .DUSR .POINT = 0 iINFOS -P.CINT 
13 000001 .DUSR .CNTRL = .POI~ltl iINFUS -CONTROL 
1~ 000002 .DUSR .FEUV = .CNTRltl iINFOS -PORCE END OF VOL 
15 00e003 .DUSR .ICLOSE = .FEOVtl iINFOS -H~FOS CLOSE 
Ib e0000~ .DUSR .SE1X = .1CLOSEtl iINFOS -SET EXCLUSIVE USE 
1 7 000005 .DUSR .RELX = .SE1Xtl iI~F(JS -RELEASE EXCLUSIVE USE 
18 ~0000b .DUSR .TRNCT = .RELXt1 iINFOS -TRU~CATE BLOCK 
lq 000007 .DUSR .IREAD = .TRNCTtl iINFOS -U~FOS READ 
2e 000010 .DUSR .I~RITE = .IREADtl JINFOS - liN F 0 S ~ R I T E 
21 00e011 .DUSR .DEFSI = .IWRITEtl JINFOS -DEFINE SuB-INDEX 
22 000012 .DUSR .lNKSI = .DEFSltl IINFOS -LI~K SUB-INDEX 
23 000013 .DUSR .DElRC a .lNI<SItl ;INFOS -DELETE RECORD 
2~ 000014 .DUSR .DElSI = .DELRetl iINFOS -OELETE SUB-INDEX 
25 000015 .DUSR .RETST = .DElSltl iINFOS -RETURN STATUS 
26 00001b .DUSR .RETHI< = .RETST+l ;INFOS -RETURN HIGH KEY 
27 000017 .DUSR .RETI<Y = .RETHIHl iINFOS -RETURN KEY 
28 000020 .DUSR .REINS = .RETI<Y+l iINFOS -REINSTATE REC 
2q 000021 .DUSR .RDDIR = .REINStl iINFOS -READ DIRECT 
30 000022 .DUSR .~RDIR = .RDDIRtl iINFOS -~RITE DIRECT 
31 000023 .OUSR .RELRC = .~RDIRtl iINFOS -RELEASE REC 
32 000024 .DUSR .RELSE = .RELRCtl iINFOS -RELEASE BUFFER 
33 000025 .DUSR .RErtRT = .RELSE+1 iINFOS -REwRITE 
34 00002b .DUSR .RETDF = .RE~RTtl iINFllS -RETURN SUe-INDEX OEF 
35 ~0e027 .DUSR .PRERD = .kETDFtl iINFOS -PREF\E'AD 

093-000114-01 11-7-23 The Assembly Language Interface 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

INFOS U ser P t arame ers f or A ssem bl L y anguage <Co f d) n mue 

01 
02 I INFOS ERROR CODES 
03 
0~ 000200 .DUSR IOILF = 200 ;INFOS -ILLEGAL FU~CTION 

05 IIHH,201 .DUSR IOVTI z ICILF+1 ;INFOS -V~RIABLE LB~GTH l~~~SFER 
~t.l ;I~FOS -ILLEGAL ON ·THIS DEVICE 
I{) 7 "HH~202 .DUSI< IORDO = IOVTI+1 ;INFOS -RE~RITE ON CISKO~LY 
~8 000203 .DUSR ICJIFD = IeRDO+1 ;INFOS -ILLEGAL FUNCTION FOR DEV 
09 0011204 .DUSR IOOPE z IOIFD+1 ;I~FOS -OPEN PROCESSING E~ROR 

1" 000205 .CUSR IORFC = IOOPE+1 ;INFOS -REC F~T & FUNC CO~FLICT 

11 000206 .DUSR IOEXF = IORFC+l IINFOS -FILE IN USE 
12 000207 .DUSR IOLOK = IOEXF+l II~FOS -FILE LOCKED 
13 000210 .DUSR IOFNO I: lOLOK+1 IINFOS -PILE NOT OPEN 
14 000211 .DUSR IOPCF = IOF~O+1 II~FOS -PERIPHERAL CONFLICT 
15 000212 .DUSR 10VFP = IOPCF+l IINFOS -VL FILE PROCESSING ·ERROR 
16 0~H~213 .DUSR IOURC = ICVFP+l ;INFOS -U~RESOLVED RESOURCE CONFLICT 
17 00021~ .DUSR 10R~P = ICURC+l IINFOS -REWRITE ~OOE PROCESS~NG ERROR 
18 000215 .DUSR IOOVF = IORtJ,P"1 ;INFOS -DUPLICATE VL FILE 
19 000216 .DUSR 10BEw = lODVF+l IINFOS -BLOCK SIZE EXCEECS ~INDOW SI E 
20 000217 .DUSR lOV~E. I: IOBEw+l IINFOS -¥IRTUAL ME~ORY EX~ALSTED 
21 000220 .CUSR IOXTL = IOVME+l ;INFOS -lRANSLATE l~BLE WOAD ERROR 
22 000221 .DUSR 10VFE = lOXTL+l ;lNFOS -VL FILE OPEN ERR 
23 000222 .CUSR IOVCE : lOVFE+l IINFOS -VL fILE CLOSE ERR 
24 000223 .DUSR IOIFO = IOVCE+1 ;I~FOS -INSUF FREESPACE FOR OPEN 
25 00022~ .CUSR IOLEF = lOIFO+l ;INFOS -LOGICAL END OF FILE 
2b 000225 .DUSR lOUXS = IOLEF+1 ;INFOS -USER TRANSLATE SPECIFICATIO~ Ef; 
27 00022b .DUSR IONSV = IOUXS+l ;lNFOS -NO SUCH VOLU~E 
28 000227 .DUSR IONOH = IONSV+1 IINFOS -NO HOLD ON LOCKED REQUEST 
29 000230 .DUSR IONMD = lONOH+1 ;INFOS -NO ~ORE DIS~ SPACE 
3~ 000231 .DUSR I(JROF = lON~D+l ;INFOS -RAM ACCESS OUTSIDE FILE 
31 ';HH~232 .DUSR IOlCL I: IOROF+l ;INFOS -ILLEGAL CLOSE 
32 000233 .DUSR IOPIO = ICICL+l ;INFOS -PHYSICAL 1/0 ERROR 
33 00023~ .CUSR JORDE = IOPIO+l IINFOS -RESIDUAL DISK ERRCR 
34 000235 .CUSR IOTtJO = IORDE+1 IINFOS -DISK OR ~AG-TAPE TItJE-OUT 
35 000230 .DUSR IOIA~ : IOT~O+1 IINFOS -ILLEGAL ACCESS M~THOD 

3t.l 00~237 .DUSR IOXER = 10IAM.,1 ;INFOS -ILLEGAL TR.~S REGLEST 
37 000240 .CUSR 10PRO = IOXER+1 ;I~FOS -PREOPEN OPE~ ERRO~ 

38 0002~1 .DUSR IOPRC = IePRO+l ;INFOS -P~EOPEN CLOSE ERRCR 
39 000242 .DUSR IOFCE = lOPRC+l ;lNFOS -~ILE CLOSE ERROR 
~I£l 000243 .DUSR 10F<OE = 10FCE+l ;INFOS -RDOS OPEN ERROR 
~1 0012244 .DU·SR IOVAX = IOROE+1 JINFOS -VOLUME ALR~~DY E~ISTS 

42 00~245 .DUSR 101DX = IOVAX+1 ;INFOS -ZERO LEN DISK XFER REG 
43 0002~6 .DUSR 10lUC = 101DX+l ;I~FOS -ISAtJ UPDATE CONFUICT 
4" ;INFOS -TABLE OVERFLOW 
45 00121247 .DUSR IONMR = IOlUC+l II~FOS - II NDE X NAME ERROR 
46 000250 .DUSR 10"SI = lONMR+l ;INFOS -'NO SUCH INDEX 
47 000251 .DUSR IONTL : IONSI+l ;lNFOS -~AME TOO LO~G 

46 00~252 .DUSR IONNS = IONTL+1 ;INFOS -~O NODE SPACE. 
~9 000253 .DUSR IOt-lTE = IONNS.,1 IINFOS -~~G-TAPE. 1/0 ERROR 
50 00025~ .DUSR lOONS = IOMTE+l ;INFOS -DEVICE NOT SUPPORTED 
51 0012255 .DUSR IOEVO = IODNS+1 ;INFOS -OUTPUT END VOLUME ERROR 
52 000256 .DUSR IOEVI = IOEVO+l ;I~FOS - liN PUT END VOLUME ERROR 
53 00rzl257 .DUSR 10CMP : IOEVI.,1 ;INFOS -COMPARE ERROR (I5AtJ) 
54 000260 .DUSR lOPEZ = lOC~P+1 JINFOS -RESOLUTION ERROR (lSAtJ) 
55 00121261 .DUSR IOIRM = 10REz.,1 ;INFOS -ILLEGAL REL MOTIO~ 

56 00121262 .DUSR IOI~A = 10IRM+l ;INFOS -lNVALID NODE ADDRESS 
57 1210121263 .DUSR ILICE. = IOl~A+l JINFOS -~~VALID CURRENT BhTRY 
58 12100264 .DUSR IOTLV = 10ICE+l ;lNFOS -TOP LEVEL ERROR 
59 00121265 .DUSR IOSNA = IOTl".,1 ;INFOS -SLB INDICES NOT 'ALL'CwED 

11-7-24 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

INFOS User Parameters for Assembly Language <Concluded) 

211 
02 00e2b7 .DUSR IOESI :: IOSNP+l ;INFOS -E~D OF SUB-INDEX 
213 21002721 .DlISR IODPE :: ICESI+l ;INFOS -DE LETE POS I T I ON I!~ G ERROR 
etl 2100271 .DUSR IOf.1KW : IODPE+l ;INFOS -~ULTI KEY ~RITE E~RCR 

215 eee272 .DUSR IOIKL : ICMKW+l ;I~FOS -ILLEGAL ~EY LENGTr 
216 2100273 .DUSR IOIEN :: IOIKL+l ;INFOS -L~VALID ENTRY Nu~eER 

07 0210274 .DUSR IOIPS : IOIEN+l ;INFOS -ILLEGAL CO~~AND oeNTROl 
08 212121275 .DUSR IOKAE :: IOIPS+l ;INFOS -KEY ALlREADY EXISTS 
eq 00027b .DUSR IOKPE : ICKAE+l ;INFOS -KEY POSITIONING ERRCR 
121 02121277 .DUSR IOIRL :: IOKPE+l ;INFOS -1~VAlID RECORD l8~GTH 

11 000t1e0 .DUSR lORNP : tl0e ;I~FOS -OATA BASE REC NOT PRESENT 
12 e00t101 .DUSR lONTB : IORNPtl ;INFOS -~IN NODE SIZE TOG BIG 
13 21004212 .DUSR IONTS :: IONTBtl ;INFOS -~,IN NODE SIZE TOO St,rAlL 
It1 0e0t1e3 .DUSR IODRl : lONTS+l ;INFOS -DATA RECORD LOCKED 
15 000404 .DUSR IOSIA :: IODRl+l ;INFOS -SUB-INDEX LN USE 
Ib 000405 .DUSR lOVER : IOSIA+l ;INFOS -VERSION CONFLICT ERROR 
17 00040b .DUSR lOSIl :: IOvER+l ;INFOS -SuB-INDEX LINK COLNT 
18 ;INFOS -OvERFLOW 
lq 000407 .DUSR 10ALS :: IOSIltl iINFOS -ALREADY LINI<ED 
20 ;INFOS -1'0 SUB-It-.DE')( 
21 000410 .DUSR IOSLO : IOALS+l ;INFOS -SUB-INDEX LEVEL OvERFLOW 
22 21210411 .DUSR IOSSI : IOSLO+l ;INFOS -SUB-INDEX HAS SUB-INDEX 
23 ;INFOS -DELETE SUB-INDEX ,ERROR 
2t1 000t112 .DUSR IODWK I: 10SSI+l ;INFOS -ATTE~PT TO DELETE ENTRY 
25 ;INFOS -WITHOUT KEYED ACOESS 
2b 212121413 .DUSR IOENL : IODWKtl ;INFOS -INDEX ENTRY LOCKED 
27 212121414 .DUSR 10WWK = IOENltl ;I~FOS -NO WRITE WITHOUT KEY 
28 eeetl15 .DUSR lOIlL = IGW~K+l iINFOS -ILLEGAL lABEL 
2q ee041b .DUSR lOlLS :: 10IlL+l ;INFOS -ILLEGAL LABEL SPEC 
321 212121417 .DUSR 10VID = 10IlS+l ;INFOS -VOL ID DOESt-.T MATCH 
31 212121420 .DUSR IOFID :: IOVIDtl ;INFOS -RILE 10 DOESNT ~ATC~ 

32 212121421 .DUSR IOFSQ = IOFIDtl ;INFOS -FILE SEQ NU~ DOESNT ~ATCH 

33 21021422 .DUSR IOGEN :: 10FSQ+l ;I~FOS -GEN NUM DOES NT ~ATCH 

34 2100423 .DUSR lOEXD = IOGEN+l ;INFOS .EXP DATE NOT E)(P~RED 

35 21210424 .DUSR 10BCT : ICEXD+l ;INFOS -BLOCK COUNT INCORRECT 
3b 2100425 .DUSR IGf<Fl : 10BCT+l ilNFOS -RECORD FOR~AT CONFLICT 
37 eee42b .DUSR IOFSN : 10RFT+l ;INFOS -FILE SECTION NUMEER 
38 2100427 .DUSR 10Ell :: ICFSN+l ;INFOS -EXCESSIVE POSITIO~ lEVELS 
3q 21210430 .DUSR 10SlS = IOEIL+l iINFOS -SYSTEM LOAD SIZE ERROR 
tie 21210431 .DUSR IOFNF = IOSlS+l ;INFOS -JAPE FILE NOT FOU~D 

til e00t132 .DUSR 10BTS I: 10FNFtl ilNFOS -BlOCKSIZE < 8 BYTES 
42 2100433 .DUSR 10RTL :: 10BTSti ;INFOS -RECGRD+OVER~EAD> BlOCKSIZE 
tl3 eee43t1 .OUSR IOwNE :: IORTl+l iINFOS -~RITE IS NOT AT 8~D-OF-FILE 

tIti rINFOS -FOR SHARED SAM UPDATE FILE 
tiS e00t135 .DUSR IOU~U = IOrtNE+l ;I~FOS -~RITE ALLO~ED ONLY FOR O~E 

tlb ;INFOS -USER OF SHA~ED SA~ UPDATE FILE 
47 ee0t13b .OUSR IOSPL = 100,,0+1 ;INFOS - 'SPOOLING E,NABLED O~ 'ILLEGAL JE 
48 ee0t137 .DUSR IORKR = IOSPl+l ;INFOS - INFOS RETRIEVE KEY ERROR 
tlq eeetitie .DUSR IODIP = ICRKR+1 ; H"FOS - DELETE INDEX POS E~ROR 

521 eee4t11 .DUSR IOMPR : IODIFtl iINFOS - SPACE MANAGEMENT I~CONSISTE.,:~ 

51 ee04t12 .DUSR IOSTR : IOMPRt1 ;INFOS - SEARCH CP TABLE 'ER~OR 
52 
53 
5t1 

.EOT 

NOTE: See Appendix D for the octal values of the above error codes and further explanation of what each one 
means. 

End of Chapter 

093-000114-01 11-7-25 The Assembly Language Interface 





Labeled Magnetic Tapes 

Subindex and Database File Properties 

Part Three: 
Appendixes 

The INFOS/FORTRAN Interface 

INFOS System Error Messages 

Device Characteristics -





Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

Appendix A 
Labeled Magnetic Tapes 

General Concepts 
A labeled magnetic tape is one which contains your data 
plus information about your data. This information is 
contained in labels and consists of things like volume 
name, filename, file format, etc. You get two 
significant benefits from using labeled tapes: 

• Your file information is retained in a consistent 
format~ 

• You can call your files by a logical name rather than 
by a device name. 

Labels come in two types: system labels and user labels. 
The INFOS system will automatically generate system 
labels from the information you supply when you 
create your file. If you want to store additional file 
information, you may also specify the contents of your 
own user labels. 

You can fully or partially initialize volumes (i.e., reels 
of tape) with the INFOS system, and you can initialize 
and release volumes through system calls or at 
runtime. Runtime initialization allows you to process a 
multivolume file, even though you may have fewer 
tape drives than the number of volumes in your file. 

Label Types and Levels 
You can use any of the following label types and levels 
for your INFOS files: 

• ANSI levels 1, 2, or 3 (recorded in ASCII) ~ or 

• IBM levels 1 or 2 (recorded in EBCDIC). 

The ANSI labels are defined by The American National 
Standard, X3.27 - 1969, as modified by X3LS/36ST, 
dated September 27, 1973. The IBM labels are defined 
in various IBM publications. If you are not sure which 
level to use for either label type, choose the highest -
i.e., ANSI 3 or IBM 2. This will give you the most 
flexibility when you use your files, but won't take 
much more space on your tapes than the lower levels. 
In other words, if you use the highest level when 
you're writing to your file, it will give you maximum 
information about how your tape is organized when 
you go to use it again. Also, when you are reading such 
a file, the system will allow you to access any of the 
lower label levels in addition to the highest one. For 
example, if you specify ANSI 3 input, you can read 
ANSI levels 1, 2, or 3~ if you specify IBM 2, you can 
read IBM levels 1 or 2. 

The charts in Tables A-I to A-S summarize the 
required and allowable label identifiers for each label 
type and level. The terms Required and Allowed refer to 
the Input processing mode. "Required" means that the 
specified label must be on the tape if you want to 
process it. "Allowed" means that the presence of that 
label will not cause an error (i.e., the system will ignore 
it). The term Processed refers to both the Input and 
Output processing modes. On Input, the system will 
read the "Processed" labels~ on Output, it will write 
the specified label on the tape. Finally, note that 
End-of-Volume (EOV) labels are required on all 
multivolume tape files. 

093-000114-01 III-A-1 Label Types and Levels 

.. 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table A-l. Levell ANSI Labels 

Label Group Label Set Label Required Allowed Processed 
Name Name Iden-

tifier 

Beginning of Volume VOL VOLI VOLI VOLI 
Volume Header 

Beginning of File HDR HDRI HDRI-HDR9 HDRI 
File Section Header 

End of File End of EOV EOVI EOVI-EOV9 EOVI 
Section Volume 

End of File End of EOF EOFI EOFI-EOF9 EOFI 
File 

NOTES: • You may only have Fixed Length data records at this level. 

• You can record a single file on more than one volume. 

Table A-2. Level 2 ANSI Labels 

Label Group Label Set Label Required Allowed Processed 
Name Name Iden-

tifier 

Beginning of Volume VOL VOLI VOLI VOLI 
Volume Header 

Beginning of File HDR HDRI HDRI-HDR9 HDRI 
File Section Header 

User UHL None UHLI-UHL9 UHLI-UHL9 
Header 

End of File End of EOV EOVI EOVI-EOV9 EOVI 
Section Volume 

User UTL None UTLI-UTL9 UTLI-UTL9 
Trailer 

End of File End of EOF EOFI EOFI-EOF9 EOFI 
File 

User UTL None UTLI-UTL9 UTLI-UTL9 
Trailer 

NOTES: • You may have Fixed or Variable length data records at this level. 

• You can record more than one file on a single volume. 

III-A-2 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

093-000114-01 

Table A-3. Level 3 ANSI Labels 

Label Group Label Set Label Required Allowed Processed 
Name Name Iden-

tifier 

Beginning of Volume VOL VOLI VOLI VOLI 
Volume Header 

User UVL None UVLI-UVL9 UFLI-UVL9 
Volume 

Beginning of File HDR HDRI HDRI-HDR9 HDRI-HDR2 
File Section Header 

User UHL None UHLI-UHL9 UHLI-UHL9 
Header 

End of File End of EOV EOVI EOVI-EOV9 EOVI-EOV2 
Section Volume 

User UTL None UTLI-UTL9 UTLI-UTL9 
Trailer 

End of File End of EOF EOFI EOFI-EOF9 EOFI-EOF2 
File 

User UTL None UTLI-UTL9 UTLI-UTL9 
Trailer 

NOTES: • You may have Fixed, Variable, or Undefined length data records, but 
your records may not span blocks. 

• You may record more than one file on a single volume. 

III-A-3 Label Types and Levels 



SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table A-4. Levell IBM Labels 

Label Group Label Set Label Required Allowed Processed 
Name Name Iden-

tifier 

Beginning of Volume VOL VOLI VOLI VOLI 
Volume Header 

Beginning of File HDR HDRI HDRl-HDR9 HDRI 
File Section Header 

User UHL None UHLl-UHL9 UHLl-UHL9 
Header 

End of File End of EOV EOVI EOVl-EOV9 EOVI 
Section Volume 

User UTL None UTLl-UTL9 UTLl-UTL9 
Trailer 

End of File End of EOF EOFI EOFl-EOF9 EOFI 
File 

User UTL None UTLl-UTL9 UTLI-UTL9 
Trailer 

NOTES: • You can have Fixed, Variable, or Undefined length data records. 

• You may record more than one file on a single volume . 

• These labels correspond to those generated by the following IBM 
operating systems: BPS, BOS, TOS, and DOS. 

III-A-4 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

093-000114-01 

Table A-S. Level 2 IBM Labels 

Label Group Label Set Label Required Allowed Processed 
Name Name Iden-

tifier 

Beginning of Volume VOL VOLI VOLI VOLI 
Volume Header 

Beginning of File HDR HDRI HDRl-HDR9 HDRl-HDR2 
File Section Header 

User UHL None UHLl-UHL9 UHLl-UHL9 
Header 

End of File End of EOV EOVI EOVl-EOV9 EOVl-EOV2 
Section Volume 

User UTL None UTLl-UTL9 UTLl-UTL9 
Trailer 

End of File End of EOF EOFI EOFl-EOF9 EOFl-EOF2 
File 

NOTES: • You may have Fixed, Variable, or Undefined length data records, but 
records may not span blocks. 

• You may record more than one file on a single volume. 

• These labels correspond to those generated by the IBM operating 
systems OS, OS/VS 1, and OS/VS2. 

III-A-S Label Types and Levels 



DataGeneral 
SOFTWARE DOCUMENTATION 

User Labels 
There are three types of User Labels: Volume, Header, 
and Trailer. They are useful if you want to specify 
information about a file which doesn't fit into the usual 
label categories - such as file creation time, machine 
configuration, or whatever. At the highest levels of 
label processing, you can specify up to nine of each type 
of label, which should be sufficient for most 
applications. 

You can specify User Labels for each volume of a file, 
but, if you're going to use them, you have to build a 
label table into your program for each type of label you 
want to use. Each table will contain an entry count 
followed by an entry for each label which will point to 
the User Label area of your program. Each of your User 
Label areas can be up to 76 Bytes long. (The actual label 
is 80 Bytes long, but the system automatically supplies 
the first four bytes which contain the label identifier 
and number.) 

During input processing, the system reads each User 
Label into its corresponding label area; on output, it 
takes the label from your label area and writes it to your 
tape. 

One labor-saving feature to note: You don't have to 
build a unique table for each volume of your files. That 
is, the definition areas of several volumes can point to a 
single label table within your program. You can also 
modify the contents of your label table or that of a 
particular label area just by monitoring the status word 
in the processing part of your program. 

Volume Initialization and Release 
Before you can open a file on a labeled magnetic tape to 
process your records, you have to initialize the tape for 
label processing. You can do this three ways: 

1. with the LBINIT utility (as described in the INFOS 
Utilities Users' Manual); or 

2. with the system call .IINFOS~ or 

3. via runtime initialization. 

However, once you have initialized a labeled magnetic 
tape, you must use the INFOS SAM processing and 
utility functions; you cannot process it with standard 
operating system (RDOS) calls. 

Licensed Material - Property of Data General Corporation 

How to Initialize and Release Tapes 
Through System Calls 

The system call to partially or fully initialize a magnetic 
tape volume for label processing is .IINFOS. When you 
use this call, the system will automatically rewind your 
selected drive. This call also allows you to access a 
volume by its identifier rather than by a device 
specifier, since it equates the volume identifier with the 
selected drive. For example, you can access a volume 
by its identifier PAYROLL, rather than MTO. If your 
installation has multiple tape drives, you can also use 
.IINFOS to initialize several volumes before you 
process them. 

When you partially initialize a volume with .IINFOS, 
the system reads the label group at the beginning of the 
volume which contains the volume identification, 
header labels, and user labels (if any). The system then 
compares the volume identification in the label of the 
first volume to the volume identifier which you specify. 
If the two identifiers are not the same, you'll get the 
error message, "VOL 10 DOESN'T MATCH". You 
can also tell the system not to compare identifiers, in 
which case the system will initialize the volume 
regardless of its volume identification. 

You perform a full initialization in the same way that 
you do a partial. When you fully initialize a tape, 
however, the system writes the volume label plus 
dummy header and trailer labels on the tape. 
Consequently, you will lose any previous information 
on a volume when you fully initialize it. If you're using 
virgin tape, you must fully initialize it before you use it. 
Then you can either open the tape for use in your 
current run, or release it and partially initialize it later. 

If the system encounters no errors in either a full or 
partial initialization, it sets a flag which indicates that 
the volume has been initialized for label processing. 
Once this is set, you cannot process the volume with 
standard operating system (RDOS) calls. 

After initialization, if the system encounters an error 
when you are pre-opening, opening, or attempting your 
first read or write request, it will automatically rewind 
the tape so that you won't be mispositioned. This 
rewind will occur whether you requested it or not. 

When you have finished processing a volume, release it 
with the system call .RLSE. 

III-A-6 093-000114-01 



Licensed Material - Property of Data General Corporation 

Runtime Initialization and Release 
(General) 

The INFOS system also allows you to initialize tapes at 
runtime. This can be very useful when you have not 
been able to initialize a tape beforehand, or if you have 
a multivolume labeled tape file but fewer tape drives 
than file volumes. This feature lets you partially 
initialize tapes as you need them for processing and 
release them when you're finished. In order to use this 
feature, however, you must enable runtime 
initialization and release when you set up your file. The 
system will not perform runtime initialization if the 
tape is already initialized - it will simply ignore the 
runtime request. 

If you're processing a multivolume file, you will 
probably want to mount all your tapes before you start 
in order to save time. However, if you have more file 
volumes than tape drives, you must request runtime 
release for each volume that you are replacing with 
another. After you mount the next volume, you must 
request runtime initialization for it and supply the 
necessary information described below. 

DataGeneral 
SOFTWARE DOCUMENTATION 

Runtime Initialization 

When the system wants you to set up a tape so that it 
can initialize it, you will receive the messages MOUNT 
VOLUME (name) and ENTER DEVICE SPECIFIER 
on your system console. This tells you to do two things: 

1. Mount the tape, and 

2. Tell the system the device specifier of the drive on 
which you mounted the tape (e.g., MTO). 

The system will then try to initialize the tape. If the 
volume identifier on the tape does not match the one 
you specified when you set up the file, the system will 
send you the following message: "VOLUME (name) 
MOUNTED, USE ANYWAY?" If you still want to 
use the volume you mounted, type in "YES" or "Y". If 
you respond "NO" or "N", the system will ask you 
"CANCEL (Y or N)?" If you then answer "Y" or 
"YES", the system will cancel your processing request 
and rewind the tape. If you answer "N" or "NO", the 
system will rewind the tape so that you can mount 
another. 

NOTE: While the system is processing a runtime 
initialization request, it will wait indefinitely for 
you to respond to a prompt. However, while the 
system is waiting for you to answer, it suspends 
all other tasks it is processing at the time in both 
the background and the foreground. In other 
words, no one else can process data while the 
system is waiting for you. Therefore you should 
secure your desired tape or respond to the 
prompt as quickly as possible to avoid incurring 
the wrath of your fellow users. 

093-000114-01 III-A-7 Volume Initialization and Release 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Runtime Release 

Runtime release is an operation the system 
automatically performs when it reaches the end of a 
volume or when it encounters any situation that 
requires the close of the volume or the file. After the 
system has released your tape, it will tell you (via your 

System Performs 
Read or Write 
Processing Request 

system console) the volume identifier and the drive 
specifier. If you desire runtime release as part of your 
close request, you must also specify rewind or else the 
system will not perform the runtime release. 

The diagram in Figure A-I shows the sequence of 
events for runtime initialization and release. 

Preopen Processing 
Request Return 

SD-00560 Figure A-i. Sequence o/Events/or Runtime Initialization 
and Release 

III-A-8 093-000114-01 



Licensed Material - Property of Data General Corporation 

Processing Labeled Magnetic Tapes 
After you have initialized your tape and gone through 
the pre-opening procedures, you're ready to open the 
tape for processing. The first thing to note here is that 
the physical opening of your tape occurs when you 
issue your first read or write request. On a write 
request, the system compares the expiration date of the 
volume to the current date; on a read request, the 
system compares the record format of the tape to that 
which you requested. If either of these don't match, 
you'll get an error message. However, you can specify 
Undefined records when you open a file for reading; 
then the system will read all the records on the tape up 
to the next tape mark, regardless of this format. 

Next, you'll want to position yourself to your first 
desired record. To do this, the system needs a 
Sequence Number, a Filename and a Generation 
Number. Once you have decided whether to supply or 
default these, the system will follow these three tape 
positioning rules: 

1. A. The system looks at the Sequence Number you 
request, if any, first. 

B. All subsequent searches will be forward only 
from that Sequence Number position. 

2. A. The system next verifies the Filename of the 
record whose Sequence Number you 
requested, unless you default the Filename. 

B. If you did not specify a new Sequence Number, 
the system will search forward from the end of 
the last record you read. 

3. A. If the Filename matches, the system verifies 
the Generation Number (if you gave one) and 
proceeds in a forward search. 

B. If the system does not match either the 
Filename or the Generation number, it will let 
you know via an error message. 

As these rules indicate, you can default the Filename 
and Generation Number if you don't know (or care 
about) them, but your position on the tape is alwa~s 
governed by the Sequence Number. If you default thls 
number by answering -1, the system will automatically 
give you the next record on the tape. If you do not 
default the Sequence Number, the system will position 
the tape to the record whose Sequence Number you 
specify. Then it will compare the Filename and 
Generation Number of that record to those which you 
specified (if any). If they don't match, you'll get an 
error message. So it's easy to move forward through 
the records on your tape - just give -lor a Sequence 
Number. 

DataGenerai 
SOFTWARE DOCUMENTATION 

Now, what if you want to go backwards on the tape to a 
record you read or passed over earlier? There are two 
ways to do this: Give the system the exact Sequence 
Number for the record you want to access, or rewind 
the tape to the beginning and search for the record 
using the -1 Sequence Number. 

For example, suppose you have a file named 
PAYROLL whose records represent several months of 
weekly payroll accounting. To keep things simple, you 
have numbered the records 0101, 0102, 0103, 0104, 
0201, 0202, etc. The Filename PAYROLL will be part 
of each record, as will the numbers 0101, 0102, 0103, 
etc. Therefore, the name of the record which is 
Sequence Number 1 is PAYROLL 0101; Sequence 
Number 2 is PAYROLL 0102, etc. If you have just read 
the record PAYROLL 0502 (which is Sequence 
Number 18), and you want to go back to the record 
whose name is PAYROLL 0203, you can do so in two 
ways. 1) You can code the equivalent of READ 7 if you 
know that PAYROLL 0203 is, indeed, Sequence 
Number 7. Or if you don't know what the exact 
Sequence Number of PAYROLL 0203 is: 2) You can 
rewind the tape to its beginning and search forward, 
using -1 as a Sequence Number, until you find 
PA YROLL 0203. 

If you had simply told the computer to search for 
PAYROLL 0203 and used the Sequence Number -1, 
the system would have gone forward from your current 
position (Sequence Number 18) to the end of the tape. 
Since it would not have found the record whose 
Filename was PAYROLL and whose Generation 
Number was 0203, it would have sent you the message, 
T APE FILE NOT FOUND. At this point you would 
probably scratch your head and say, "!I@**#$#*!I! I 
know that record is on this tape" . And you'd be right. It 
is on the tape, but the system will only search forward 
unless you specify a Sequence Number or ask for 
rewind before you search. So if you want to find a 
record which you may have already passed, follow 
either of the steps described above. 

Positioning When Writing 
So far we've dealt primarily with reading from a tape. 
However, the same general positioning principles apply 
when you're writing to a tape - except that it's much 
simpler. 

When you want to (re)write a record, the system looks 
only at the Sequence Number; it will not verify the 
Filename or Generation Number when you reposition. 
So if you're not absolutely sure of the Sequence 
Number, read the record to which you have 
repositioned before you rewrite it. 

093-000114-01 III-A-9 Processing Labeled Magnetic Tapes 



DataGeneral 
SOFTWARE DOCUMENTATION 

There is one final caution about processing labeled 
magnetic tapes: If you give the system a Sequence 
Number which is greater than the number of records 
on the tape, the hardware will position the tape beyond 
the end-of-tape markers and the INFOS system will 
hang. (Ouch!) This is not a desirable situation. 

Single 
File 
Single 
Volume 

VOL1 

HDR1 

FILE A 

SD-003S0A 

VOL1 

HDR1 

FILE A 

First 
Section 

Licensed Material - Property of Data General Corporation 

Graphic Arts Section 
The diagrams in Figures A-2 to A-6 and Tables A-6 to 
A-12 show the labels used in each label type and level 
and their sequence on tape. 

SINGLE FILE MULTIPLE VOLUMES 

VOL2 

HDR1 

FILE A 

Second 
Section 

VOL3 

HDR1 

FILE A 

Last 
Section 

L...-_________ Figure A -2. Levell A NSf Labels Supported by the f N FOS System ----------"" 

III-A-10 093-000114-01 



Licensed Material - Property of Data General Corporation 

Multiple 
Files 
Single 
Volume 

VOL 1 

HDR1 

UHL 1* 
to 

UHL9 

SO-00562 

·Optional 

VOL1 

HDR1 

UHL 1· 
to 

UHL9 

FILE 
A 

First 
Section 

DataGeneral 
SOFTWARE DOCUMENTATION 

Single File Multiple Physical Volumes 

VOL2 

HDR1 

UHL 1· 
to 

UHL9 

FILE 
A 

Second 
Section 

VOL3 

HDR1 

UHL 1· 
to 

UHL9 

FILE 
A 

Last 
Section 

L...-_________ Figure A-3. Level 2 ANSI Labels Supported by the INFOS System -----------' 

093-000114-01 III-A-ll Graphic Arts Section 



DataGeneraI 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Multiple 
Files 
Single Single File Multiple Physical Volumes 
Volume 

VOLl VOL1 VOL3 

UVL 1* UVL 1 * UVL 1 * UVL 1 * 
to to to to 

UVL9 UVL9 UVL9 UVL9 

HDR1 HDR1 HDR1 HDR1 
and and and and 

HDR2 HDR2 HDR2 HDR2 

UHL 1* UHL 1 * UHL 1 * UHL 1 * 
to to to to 

UHL9 UHL9 UHL9 UHL9 

FILE FILE FILE 
A A A 

EOF1 
and 

EOF2 

UTL 1* 
to 

UTL9 

HDR1 
and 

HDR2 

UHL 1* 
to 

UHL9 First Second Last 
Section Section Section 

EOF1 EOV1 EOV1 EOF1 
and and and and 

EOF2 EOV2 EOV2 EOF2 

UTL 1* UTL 1 * UTL 1 * UTL 1 * 
to to to to 

UTL9 UTL9 UTL9 UTL9 

*Optional 

SD-00563 

'---------- Figure A -4. Level 3 A NSf Labels Supported by the f N FOS System ------------' 

III-A-12 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneraI 
SOFTWARE DOCUMENTATION 

Multiple 
Files 
Single 
Volume 

VOL 1 

HDR1 

UHL 1* 
to 

UHL9 

80-00561 

093-000114-01 

*Optional 

VOL1 

HDR1 

UHL 1 * 
to 

UHL9 

FILE 
A 

First 
Section 

Single File Multiple Physical Volumes 

VOL2 

HDR1 

UHL 1 * 
to 

UHL9 

FILE 
A 

Second 
Section 

Figure A-5. Levell IBM Labels Supported by the INFOS System 

III-A-13 

VOL3 

HDR1 

UHL 1 * 
to 

UHL9 

FILE 
A 

Last 
Section 

Graphic Arts Section 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Multiple 
Files 
Single Single File Multiple Physical Volumes 
Volume 

VOL 1 VOL1 VOL 2 VOL3 

HDR1 HDR1 HDR1 HDR1 
and and and and 

HDR2 HDR2 HDR2 HDR2 

UHL 1* UHL 1 * UHL 1 * UHL 1 * 
to to to to 

UHL9 UHL9 UHL9 UHL9 

FILE FILE FILE 
A A A 

EOF1 
and 

EOF2 

UTL 1* 
to 

UTL9 

HDR1 
and 

HDR2 

UHL 1* 
to 

UHL9 First Second Last 
Section Section Section 

EOF1 EOV1 EOV1 EOF1 
and and and and 

EOF2 EOV2 EOV2 EOF2 

UTL 1* UTL 1 * UTL 1 * UTL 1 * 
to to to to 

UTL9 UTL9 UTL9 UTL9 

*Optional 
SD-00564 

Figure A -6. Level 2 IBM Labels Supported by the IN FOS System 

III-A-14 093-000114-01 



DataGenerai 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

093-000114-01 

Table A-6. ANSI Standard Volume Label Format 

Byte Field 
Position Name 

1 to 3 LABEL IDENTIFIER 

4 LABEL NUMBER 

5 to 10 VOLUME IDENTIFIER 

11 ACCESSIBILITY 

12 to 37 RESERVED 

38 to 51 OWNER IDENTIFICATION 

52 to 79 RESERVED 

80 LABEL STANDARD VERSION 

Field 
Size 

3 

1 

6 

26 

14 

28 

Field 
Content 

VOL 

1 

Up to six alphanumeric characters 
assigned by the owner to 
permanently identify this volume. 

A single alphanumeric character 
indicating restrictions on access to 
this volume. 
A blank space indicates no 
restrictions. 

Should contain blanks. 

Up to 14 alphanumeric characters 
that identify the owner of this 
volume. 

Should contains blanks. 

A one-digit integer that indicates 
the ANSI version to which the 
labels and record formats on this 
volume conform. The digit 3 
means: ANSI x 3.27 - 1969. 

Table A-7. ANSI Standard User Volume Labels 

Byte Field Field Field 
Position Name Size Content 

1 to 3 LABEL ID ENTIFIER 3 UVL 

4 LABEL NUMBER 1 1 to 9 

5 to 80 USER INFORMATION 76 Up to 76 alphanumeric characters. 
Not intended for use in an 
interchange environment. 

III-A-15 Graphic Arts Section 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table A-B. ANSI Standard HDR 1, EOV1, EOF 1 Labels 

Byte Field 
Position Name 

1 to 3 LABEL IDENTIFIER 

4 LABEL NUMBER 

5 to 21 FILE IDENTIFIER 

22 to 27 FILE-SET IDENTIFIER 

28 to 31 FILE SECTION NUMBER 

32 to 35 FILE SEQUENCE NUMBER 

36 to 39 GENERATION NUMBER 

40 to 41 GENERA TION VERSION 
NUMBER 

42 to 47 CREATION DATE 

48 to 53 EXPIRATION DATE 

54 ACCESSIBILITY 

55 to 60 BLOCK COUNT 

61 to 73 SYSTEM CODE 

74 to 80 RESERVED 

Field Field 
Size Content 

3 

17 

6 

4 

4 

4 

2 

6 

6 

6 

13 

7 

III-A-16 

HDR or EOV or EOF 

Up to 17 alphanumeric characters 
assigned by the originator to 
identify the file. 

Up to six alphanumeric characters 
to identify this file set among other 
file sets. 

A four-digit number to identify 
this section among other sections 
of this file. 

A four-digit number to identify 
this file among the files of this file 
set. 

A four-digit number to distinguish 
among successive generations of 
this file. 

A two-digit number to distinguish 
among successive iterations of the 
same generation. 

One space followed by a two-digit 
number for the year, followed by a 
three-digit number for the day of 
the year. Space and five zeros 
means no date. 

One space followed by a two-digit 
number for the year, followed by a 
three-digit number for the day of 
the year. Space and five zeros 
means file expired. 

One alphanumeric character 
indicating restrictions on access to 
this file. Space means no 
restrictions. 

For EOV and EOF, six digits 
giving the number of data blocks 
since the preceding 
Beginning-of-File Label Group. 
For HDR, all zeros. 

Up to 13 Alphanumeric characters 
identifying the system that 
recorded the file. 

Blank filled. 

093-000114-01 



DataGeneraI 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

093-000114-01 

Table A-9. ANSI Standard HDR 2, EOV 2, EOF 2 Labels 
Byte Field Field 
Position Name Size 

1 to 3 LABEL IDENTIFIER 3 

4 LABEL NUMBER 1 

5 RECORD FORMAT 1 

6 to 10 BLOCK LENGTH 5 

11 to 15 RECORD LENGTH 5 

16 to 50 RESERVED 35 

51 to 52 BUFFER-OFFSET LENGTH 2 

53 to 80 RESERVED 28 

Field 
Content 

HDR or EOV or EOF 

2 

F = Fixed Length 
0 = Variable Length 
U = Undefined Length 

Five digits specifying the 
maximum number of characters 
per block. 

Five digits specifying record 
length. 
F = actual record length 
o = maximum record length 

including count field 
U = content of Record Length 

field is undefined 

Blank fill. 

Two digits specifying the number 
of characters of any additional field 
inserted before first record in the 
data block. 

Blank fill. 

Table A-l0. IBM Standard Volume Label Format 

Byte Field Field Field 
Position Name Size Content 

1 to 3 LABEL 10 ENTIFIER 3 VOL 

4 LABEL NUMBER 1 1 

5 to 10 VOLUME SERIAL NUMBER 6 A unique identification code 
assigned to the volume when it 
enters the system or assigned by 
the operator when the volume is 
labeled. 

11 RESERVED 1 Must contain a zero. 

12 to 21 RESERVED 10 Not used for magnetic tape files. 
Should contain blanks. 

22 to 31 RESERVED 10 Should contain blanks. 

32 to 41 RESERVED 10 Should contain blanks. 

42 to 51 OWNER NAME AND ADDRESS 10 Names the specific owner of the 
volume. Any code or name can be 
used. 

52 to 80 RESERVED 29 Should contain blanks. 

III-A-17 Graphic Arts Section 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Table A-11. IBM Standard HDR 1, EOV 1, EOF 1 Labels 

Byte Field 
Position Name 

Field Field 
Size Content 

1 to 3 LABEL IDENTIFIER 3 

4 LABEL NUMBER 

5 to 21 DATA SET IDENTIFIER 17 

22 to 27 DATA SET SERIAL NUMBER 6 

28 to 31 VOLUME SEQUENCE NUMBER 4 

32 to 35 DATA SET SEQUENCE NUMBER 4 

36 to 39 GENERATION NUMBER 

40 to 41 GENERA TION VERSION 
NUMBER 

42 to 47 CREATION DATE 

48 to 53 EXPIRATION DATE 

54 DATA SET SECURITY 

55 to 60 BLOCK COUNT 

61 to 73 SYSTEM CODE 

74 to 80 RESERVED 

4 

2 

6 

6 

6 

13 

7 

III-A-18 

HDR or EOV or EOF 

Up to 17 alphanumeric characters 
giving the data set name. Can 
include the generation and version 
number. 

Up to six alphanumeric characters 
giving the volume serial number 
for this volume. 

A four-digit number giving the 
order of this volume in a 
multivolume group. 

A four-digit number giving the 
relative position of the data set in a 
multidata-set group. 

A four-digit number giving the 
absolute generation number of the 
data set or blanks. 

A two-digit number giving the data 
set version number or blanks. 

A six-digit number giving the year 
and the day of the year the data set 
was created. 

A six-digit number giving the year 
and the day of the year the data set 
can be scratched. 

A one-digit number giving the 
security status of the data set. 

In EOV and EOF labels the 
number of data blocks is given. In 
HDR labels zeros must be given. 

A unique I3-byte code that 
identifies the operating system. 

Should contain blanks. 

093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

093-000114-01 

Table A-12. IBM Standard HDR 2, EOV 2, EOF 2 Labels 

Byte Field Field 
Position Name Size 

1 to 3 LABEL IDENTIFIER 3 

4 LABEL NUMBER 1 

5 RECORD FORMAT 1 

6 to 10 BLOCK LENGTH 5 

11 to 15 RECORD LENGTH 5 

16 to 34 NOT USED 19 

35 to 36 TAPE RECORDING TECHNIQUE 2 

37 CONTROL CHARACTERS 

38 NOT USED 

39 BLOCK ATTRIBUTE 

40 to 80 NOT USED 41 

Field 
Content 

HDR or EOV or EOF 

2 

F = Fixed Length 
V = Variable Length 
U = Undefined Length 

F = Must be a mUltiple of 
logical record length. 

V = Must give maximum block 
length and four bytes. 

U = Must given maximum 
block length. 

F = Must give logical record 
length. 

V = Must give maximum block 
length and four bytes. 

U = Must be zero filled. 

Blank fill. 

To = Odd parity with translation. 
C 0 = Odd parity with conversion. 
Eo = Even Pairty no translation. 
ET = Even parity with 

translation. 
00 = Odd parity-no translation or 

conversion. 

A = ASCII control characters 
M = Machine control characters 
o = No control characters. 

Blank fill. 

B = Blocked records 
o = Not blocked 

Blank fill. 

End of Appendix 

III-A-19 Graphic Arts Section 





Licensed Material - Property of Data General Corporation 
DataGeneraI 
SOFTWARE DOCUMENTATION 

Appendix B 
.Subindex and Database File Properties 

I ntrod uction 
As you know by now, ISAM and DBAM files have two 
independent parts -- an index file and a database file -­
which the INFOS system links into a single unit for 
processing. What you may not realize is that ISAM and 
DBAM databases have identical physical properties, as 
do an ISAM index file and any single DBAM subindex. 
In this appendix, we'll examine the properties of 
subindexes and databases and the effects your design 
decisions have on them. 

Subindexes 
Normally, you'll want to design an index structure 
which can hold your maximum expected number of 
entries, but which you can also access as quickly as 
possible. Furthermore, you'll want to be able to use as 
many buffers as necessary, and to keep your disk 
storage space to a minimum. This is a good general 
goal, but remember, also, that it is your application 
which will ultimately determine the number and the 
properties of your subindexes. So, in order to achieve 
this goal, let's examine the structure of a subindex and 
how you can design one to best suit your needs. * 

Nodes, which contain your index entries, are the basic 
"building blocks" of a subindex. The system allocates 
space for a subindex in node-sized pieces, and, as the 
number of entries (and therefore the number of 

*If you are familiar with techniques for index file 
storage, note that subindexes in Data General's IN~OS 
system are stored internally as a type of multtway 
search tree, in particular, a variant of B-trees. Adjacent 
nodes at the same level are cross-linked to simplify 
sequential operations. Key pointers in a node are 
ordered to allow fast binary searching for specific key 
values. Our Key Compression is a form of front-end 
compression which stores common prefixes of adjacent 
keys in a node only once. 

nodes) in a subindex increases, the system places the 
various nodes on different levels within the subindex. ~ 
We call these different levels tree levels; any subindex 
can have up to 256 of them, although you will probably 
never need more than three or four. Figure B-1 shows a 
subindex with four tree levels. 

Note that the tree levels are numbered sequentially 
from zero at the bottom to the single Root Node at the 
top of the structure. The Root Node is the first node 
built in a subindex; as long as it is the only node in the 
subindex, it is also the level zero node. When you first 
write entries in a subindex, the system places them in 
the Root Node. As you continue to write entries, the 
Root Node grows from no entries to its maximum size. 

SD-00582 

Figure B-1. Subindex with Four Tree Levels 

093-000114-01 111-8-1 Subindexes 



DataGeneral 
SOFTWARE DOCUMENTATION 

(This maximum depends on your index file's page, 
node, and entry sizes; we'll discuss how you can 
compute these a little later.) When the Root Node 
reaches its maximum count, it moves its contents into 
two new nodes, which become tree level zero. The 
system then creates two new index entries in the Root 
Node which point to the entries in level zero. 

As you continue to write index entries in this subindex, 
the system places them in nodes at tree level zero. As it 
creates each new level zero node, the system also adds 
an entry to the Root Node. Eventually, the Root Node 
will again grow to its maximum count, and there will be 
one full node at level zero for each entry in the Root 
Node. When this happens, the Root Node will again 
split in two, and its contents become tree level one, that 
is, an intermediate level of nodes between the Root 
Node and level zero. In other words, as you write your 
index entries, the system puts them into nodes at tree 
level zero and builds a tree structure to access them. 

Now you may ask, "What is the maximum number of 
entries that any node at any tree level can contain?" 
This number is called the branching jactor, and the 
answer is: "It depends on your page size, the length of 
your index entries, and whether you use key 
compression" . 

Y our page size determines the depth of your 
subindexes. (Page size, remember, is the length of data 
transferred between an index file and its 110 buffers, 
and pages consist of nodes.) Node size is normally six 
bytes less than your page size. Therefore, the larger 
your page size, the fewer subindex levels the system 
needs, because large nodes contain more index entries 
than small ones. In other words, the system doesn't 
have to set up three or four tree levels if your page size 
allows large enough nodes to contain all the subindex 
entries on one or two levels. 

The length of your index entries depends on your 
maximum key size, your partial record length, and 
whether or not you allowed subindexing. And when 
you take all these factors together with your page size, 
you can figure out the branching factor for any given 
single node by slipping their values into one or more of 
the formulas below. The formulas give you the 
branching factors on the basis of one node per page, or 
you can use them to determine the appropriate page 
size for a given subindex, or the number of tree levels a 
subindex will require, and/or the number of entries at 
level zero. 

Licensed Material - Property of Data General Corporation 

Note that these formulas assume full nodes, keys 
whose lengths are very nearly the same, and no key 
compression. If your key lengths tend not to be close to 
their maximum, the branching factor value you get will 
be too small. Similarly, your nodes will probably be full 
only if you entered the data in the same sequence as the 
keys are stored. Therefore, keep these conditions in 
mind when using the formulas; they may not accurately 
predict performance if your application varies greatly 
from the average. 

1. When the Root Node is not also the level zero 
node, its branching factor is: 

Page Size -42 
Max Key Length + 10 

2. When the Root Node is also the level zero node, its 
branching factor depends on whether or not you 
allowed subindexing. 

A. If you allowed subindexing, use: 

Page Size - 42 
Max Key Length + Partial Rec Length + 14 

B. If you did not allow subindexing, use: 

Page Size - 42 
Max Key Length + Partial Rec Length + 10 

3. When the level zero node is also the Root Node, 
use 2A or 2B. However, when the level zero nodes 
are not the Root Node, their branching factor also 
depends on whether or not you allowed 
subindexing. 

A. If you allowed subindexing, use: 

Page Size - 28 
Max Key Length + Partial Rec Length + 14 

B. If you did not allow subindexing, use: 

Page Size - 28 
Max Key Length + Partial Rec Length + 10 

4. The branching factor for any intermediate level 
node is: 

Page Size - 28 
Max Key Length + 10 

III-B-2 093-000114-01 



Licensed Material - Property of Data General Corporation 

Notes: 

1. The lower half of each formula reflects your index 
entry size. If the sum of its components is not an 
even number, round it up to the next even 
number. 

2. The top half of each fraction is the page size minus 
the number of bytes the system needs for one 
node. 

3. You can use the INDEXCALC utility to perform all 
branching factor calculations that you need. See the 
INFOS System Utilities Manual for further details on 
how to use INDEXCALC. 

Now let's examine these formulas with some real 
numbers. 

In Chapter 5 of Part One, we described a DBAM 
database that had two independent indexes: one for a 
mailing list, and one for customer accounts. Under the 
mailing list index, we also assigned a subindex to carry 
customer's names and addresses in partial records. 
Now let's assume that we also have a customer base of 
50,000 entries, that our keys occupy 5 bytes each, and 
that the partial records are 50 bytes long. Since the 
purpose of this subindex is to allow the rapid 
production of address labels, there is no need for its 
entries to have subindexes. We can use these numbers 
to examine the effects of page size on the number of 
tree levels and on the amount of disk storage space that 
you'll need for the subindex. 

First we'll try the smallest possible page size -- 512 
bytes. To find how many level zero nodes we'll need, 
we'll calculate the number of entries that can fit in a 
maximum size level zero node and divide it into 
50,000. Using formula 3B, above, we get: 

(3B) Page Size - 28 
Max Key Length + Partial Rec Length + 1 0 

512 - 28 = 484 = 7 entries in each level zero 
5 + 50 + 10 65 node 

50,000/7 = 7143 nodes required at level zero 

DataGeneral 
SOFTWARE DOCUMENTATION 

Now we need to find out how many entries will be in 
the nodes at all the other levels. To do this, we use 
formulas 4 (for all the intermediate level nodes), and 1 
(for the Root Node): 

(4) Page Size -28 
Max Key Length + 10 

512 - 28 = 484 = 32 entries in each intermediate 
5 + 10 15 level node 

(J) Page Size - 42 
Max Key Length + 10 

512 - 42= 470 = 31 entries in the Root Node 
5 + 10 15 

Since we know that: 

• we need 7143 level zero nodes~ and 
• each node in level zero has an entry in level one~ and 
• each node in level one contains 32 entries, 

we can determine how many level one nodes we need 
simply by dividing 7143 by 32. Thus we'll need 224 
nodes on tree level one. Now, since the Root Node 
only holds 31 entries and not 224, this means that we'll 
have to have a level two. And to determine the number 
of nodes at level two, we divide 224 (the number of 
nodes on level one) by 32 (the number of entries in 
each intermediate level node). This gives us 7 level two 
nodes, and it means that we don't need any more tree 
levels because the Root Node can hold up to 31 entries. 

093-000114-01 III-B-3 Subindexes 



DataGeneral 
SOFTWARE DOCUMENTATION 

Therefore, we now have nodes with the following 
branching factors (i.e., entries per node): 

• Root Node = 7 
• Level two nodes = 32 
• Level one nodes = 32 
• Level zero nodes = 7 

Figure B-2 illustrates this particular subindex. 

Licensed Material - Property of Data General Corporation 

This four-level structure can accommodate 50,000 
index entries (keys plus partial records) at level zero, 
but it may take four disk accesses to retrieve any entry 
at level zero. This is all done on the basis of one node 
per page, and, since our page size (512 bytes) in this 
example is the same size as a disk block, we'll need 
7375 blocks of disk storage for this subindex (7143 
blocks for level zero, plus 224 for level one, plus 7 for 
level two, plus one for the Root Node). 

... 

ROOT NODE 
(7 ENTRIES) 

LEVEL TWO 
(7 NODES OF 32 
ENTRIES EACH) 

LEVEL ONE 
(224 NODES OF 32 
ENTRIES EACH) 

......... LEVEL ZERO 
(7143 NODES OF 
7 ENTRIES EACH) 

SD-00583 

Figure B-2. Four-Level Subindex with Nodes 

111-8-4 093-000114-01 



Licensed Material - Property of Data General Corporation 

Now, if we double our page size to 1024 bytes, we find 
that each level zero node can hold 15 entries, which 
means that we only need 3334 nodes at level zero. 
Also, each level one node can hold 66 entries, so we'll 
only need 51 nodes there. Finally, we find that the Root 
Node can hold 65 entries, so we won't need any 
intermediate tree levels between the Root Node and 
level one. Thus, we have a three-level structure which 
can store 50,000 entries, just by doubling the page size. 
The branching factors for this subindex (illustrated in 
Figure B-3) are as follows: 

• Root Node = 51 
• Level one nodes = 66 
• Level zero nodes = 15 

DataGeneral 
SOFTWARE DOCUMENTATION 

Our total number of nodes is now 3386 (3354 + 51 + 
1), and each one requires two disk blocks (1024 bytes); 
therefore we only need 6772 blocks of disk storage for 
this subindex. 

By increasing our page size from 512 to 1024 bytes, we 
reduced the number of tree levels (and, therefore, disk 
accesses per entry) by one, and the amount of 
necessary disk storage by 603 blocks. Note, however, 
that while we designed this subindex to hold 50,000 
entries, that is not its maximum capacity; it will hold 
50,000 entries if we only use 51 Root Node entries. 
But, since the maximum number of entries which we 
can have in the Root Node is 65, the absolute 

== == .............. . 
5D-00774 Figure B-3. Three-Level Subindex with Nodes 

093-000114-01 111-8-5 Subindexes 



DataGeneral 
SOFTWARE DOCUMENTATION 

maximum capacity of this subindex is actually 60,450 
entries. We derive this figure by multiplying the Root 
Node branching factor (BF) by the level zero BF, then 
multiplying that product by the intermediate level BF 
raised to the power which corresponds to the number 
of intermediate levels. In other words: 

( 
page size - 42 ) 
max key length + 10 * 

( 
page size - 28 \ * 
max key length + partial rec length + 10 l 

(( 
page size - 28 ) n) _ 
max key length + 10 -

maximum entry capacity of any 
subindex 

where n equals the number of intermediate levels. In 
our case, we did this: 

65*15*62 = 60,450. 

On tlfe other hand, our earlier example with the 
four-level tree will hold 222,208 entries: 

( 512-42)*(512-28 )* ((512-28)2) 
5 + 10 5 + 50 + 10 5 + 10 

31 * 7 * 322 = 222,208. 

We square the intermediate level BF (32) because 
there were two intermediate tree levels. Note that you 
wouldn't need any additional tree levels if you 
expanded this subindex to its maximum, but you 
WOUld, naturally, need additional disk storage space. 

Licensed Material - Property of Data General Corporation 

Now let's take a different, smaller example. We'll use a 
relatively small subindex with 5000 entries, each of 
which is 26 bytes long, and has a 30-byte partial record 
field. Furthermore (just to complicate things), some of 
the index entries will have their own subindexes. 
Because we'll be using keyed access to get to this 
subindex and we want top access speed, we'll also want 
the subindex to have no more than two tree levels. This 
means that we'll need a fairly large page size -- 2048 
bytes, for instance, or 4096. Let's start with 2048. 

First we have to find out how many nodes we'll need at 
level zero, so we'll apply formula 3B, above. This will 
tell us the number of entries per node, which we can 
then divide into 5000 to get the number of required 
nodes. 

(3B) Page Size - 28 
Max Key Length + Partial Rec Length + 14 

2048 - 28 = 28 entries in each level zero 
26 + 30 + 14 node 

5000/28 = 179 nodes needed at level zero 

Now we need to find out if the Root Node branching 
factor is equal to (or greater than) 179. If it is, we're all 
set; if not, then we'll need at least three tree levels. 
Using formula 1, we get: 

(J) Page size - 42 
Max Key Length + 10 

2048 - 42 = 55 entries in the Root Node 
26 + 10 

Hmmm. This means that we can't use a 2048-byte page 
size to get a two-level tree. Let's try a 4096-byte page: 

(3B) 4096 - 42 = 58 entries in each level zero 
26 + 30 + 14 node 

5000/58 

(J) 4096 - 42 
26 + 10 

= 87 nodes at level zero 

= 112 entries in the Root Node 

Ah-ha! Now we're in business because there are more 
entries in the Root Node than nodes at level zero. 

111-8-6 093-000114-01 



Licensed Material - Property of Data General Corporation 

Selector Subindexes 
Often you'll find it convenient to use a selector 
subindex in your index structure. A selector subindex 
has just a few entries and the purpose of these entries 
is, logically enough, to select some large portion of the 
total index structure. 

To illustrate the convenience of a selector subindex, 
let's first look at the database, in Figure B-4, which has 
two unique index structures. 

093-000114-01 

DataGeneral 
SOFTWARE DOCUMENTATION 

Remember that when you open each index, the system 
allocates a set of I/O buffers in your User Area,as well 
as a complete set of control blocks in the system's File 
Control Area. A selector subindex, however, gives you 
all the versatility of the two unique indexes, but saves 
you File Control Space, and reduces the number of 
buffers you need. Thus you can probably use a larger, 
more efficient page size for your index. Figure B-5 
shows what happens when we combine our two unique 
indexes into one. Note that the original main indexes 
have become level one subindexes under the new 
selector subindex. 

MAIN 
(SELECTOR) 
SUBINDEX 

Selector Subindexes 



DataGeneral 
SOFTWARE DOCUMENTATION 

In general, a selector subindex will only consist of a 
Root Node, and you can find its maximum size by 
using formula 2A, above. For this application, let's say 
that our page size is 2048 bytes and our keys are 9 bytes 
long. We won't use partial records here, since we just 
want to use the entries in this subindex to select one of 
the two major processing paths. Thus: 

(2A) Page Size - 42 
Max Key Length + Partial Record Length + 14 

2048 - 42 = 2006 = 83 (maximum) entries in 
9 + 0 + 14 ~ the Root Node 

NOTE: The sum of 9 + 14 is 23, but we rounded it up 
to 24 because index entries begin on word 
boundaries, not on byte boundaries. Also, if 
you have a number of selector subindexes in 
your index structure, and if you select Space 
Management for the index, the INFOS system 
will automatically put as many of those small 
subindexes as it can on a single page, thereby 
making the most out of your disk storage space. 

Finally, make sure that the initial node size you specify 
when you define any subindex is large enough to 
contain at least three of your index entries. If you 
don't, you'll get the message "MIN NODE SIZE TOO 
SMALL", and you'll have to respecify it. 

To sum up subindex design, first note that the 
INDEXCALC utility (described in the INFOS Utilities 
Users' Manual) performs all the operations we've just 
described for you. You simply give INDEXCALC your 
maximum key size and the partial record length, and 
tell it whether or not the subindexes you're considering 
can have subindexes. You can then solve for page size, 
number of subindex tree levels, or the number or 
entries the subindex can hold. 

DBAM file design is a balancing act where you're trying 
to find the right page size, number of 110 buffers, and 
index depth to best match your chosen access path (i.e., 
keyed, relative, or combined). By using INDEXCALC 
(or by doing the calculations yourself), you can fine 
tune the system to perform as efficiently as possible in 
your application. 

Licensed Material - Property of Data General Corporation 

Database Files 
Database files also use pages as the unit of transfer 
between the database and its 110 buffers. But, since the 
system always transfers whole disk blocks, you should 
specify your page size as some exact multiple of 512 
bytes to avoid wasting buffer space. In addition, 
database files use variable length records, so you have 
to specify a maximum record size, as well as the page 
size, when you create your file. 

Once you know your maximum record size and page 
size, you can easily figure out how many records you 
can get on a page (known as the blocking factor), and 
how much space you'll have left. (Before you do this, 
however, be aware that there is an overhead of four 
bytes per record and four bytes per database page.) For 
example, if your maximum record length is 275 bytes 
and your page size is 1024 bytes, then your minimum 
blocking factor is 3, with 183 unused bytes per page; for 
a 2048-byte page, the blocking factor is 7, with 92 
unused bytes per page, or 13 bytes per record wasted. 
In other words, you can only get seven 275-byte 
records on a 2048-byte page; the remaining space on 
that page will not be filled. In general, the larger your 
pages, the less unused space you'll have in the buffers. 

You also need to consider how you initially load your 
file onto your disk(s). Normally you'll want to sort the 
keys for a given subindex from lowest to highest before 
you load them because the INFOS system can handle 
them most efficiently that way. That is, the system will 
place index entries and database records in adjacent 
pages (in their respective files, of course) as you write 
them. Therefore, if you subsequently want to process 
these records sequentially, the database blocking factor 
will determine how many times the system has to 
access the disk for read and rewrite operations. ]f you 
load your records in order, the system won't have to 
keep moving blocks of records around in the buffers 
and you'll save a lot of access time. Conversely, if you 
process the data records associated with a subindex via 
normal keyed accesses, ordered loading will greatly 
reduce the number of times the system has to access 
the database for each read or rewrite. 

End of Appendix 

111-8-8 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

Appendix C 
The INFOS/FORTRAN Interface 

NOTE: If you're going to program your INFOS 
application in FORTRAN IV or 5, read 
Chapter 6 in Part Two before reading this 
Appendix. This will acquaint you with the 
parameters within the various packets and 
how they fit together, and will clarify the 
descriptions which follow. 

General Information 
The INFOS/FORTRAN interface is a set of library 
routines which apply to FORTRAN IV (F4INFOS.LB) 
and FORTRAN 5 (F5INFOS.LB). These routines 
allow you to place word or byte addresses into 
parameter packet locations and to make INFOS system 
calls. However, the routines do not provide all the 
parameters which the various functions require, so you 
must provide these 'missing' parameters in assignment 
or data-initialization statements. 

We have grouped the routines in this appendix into 
four types to help you understand and remember them. 
These 'types', however, have no meaning to either 
FORTRAN or to the INFOS system. 

Packet Building Routines 

These routines do not interact with the INFOS system; 
therefore, the system cannot detect specification errors 
within them. Consequently, you will find no error 
arguments in the calls to the following routines: 

INFFDP To build SAM and RAM File Definition 
Packets 

INFIFDP To build ISAM and DBAM File Definition 
Packets 

INFVDP To build Volume Definition Packets .. 

INFVIP To build Volume Initialization Packets for 
use with SAM labeled tape files 

INFKEY To build ISAM and DBAM Key Definition 
Packets 

INFLSP To build a DBAM Link Subindex 
Processing Packet 

Table Building Routine 

There is only one table building rou tine: INFUL T. You 
will use this routine to build a User Label Table for use 
with SAM labeled tape files. This routine uses a 
variable number of arguments, and, similar to the 
Packet Building routines, does not interact with the 
system; therefore, no error argument is provided. 

093-000114-01 III-C-1 General Information 



DataGeneral 
SOFTWARE DOCUMENTATION 

Pure Processing Routines 
Unlike the above routines, pure processing routines do 
interact with the system; therefore, you will find error 
arguments in the lists of arguments for these calls. 
These error arguments enable the system to notify you 
if something goes awry. The three pure processing 
routines are: 

INFPREP To perform Pre-open processing 

INFOPEN To perform Open processing 

IN FIN IT To perform volume initialization for SAM 
labeled tape files 

NOTE: These routines 
fixed -sequence 
arguments. 

each have a 
call with no 

Building/Processing Routines 
There are two building/processing routines: 

single, 
optional 

INFOS 

INFOX 

To perform SAM or RAM file processing 

To perform ISAM or DBAM file processing 

These are similar to the packet building routines in that 
they help you fill in packet slots, and to the pure 
processing routines in that they interact with the 
system and contain error arguments in the calls. 

Arguments 
The calling sequences of both the packet building and 
the building/processing routines contain optional 
arguments. In the descriptions of the calls which follow, 
we have enclosed optional arguments within brackets 
like this: [arg 11. In general, you can omit all the optional 
arguments in a calling sequence if they do not apply, 
but note that if you use anyone of the arguments within 
brackets, you must include all of them. To pass any 
optional arguments which you don't want in a particular 
call, specify NIL, DEFAULT, or DEF for that 
argument. 

For example, suppose the arguments for a call appear in 
this sequence: 

(arg1, arg2 [,arg3, arg4, arg5, arg6] [,arg7]L 

If you want to use only arg3 and argS, you can write 
(ARG1, ARG2, ARG3, NIL, NIL, ARGS). 

You would simply omit the last argument (arg 7) if you 
didn't want to use it. 

Licensed Material - Property of Data General Corporation 

NOTE: NIL, DEFAULT, and DEF have special 
meanings. See the paragraphs which follow for 
their descriptions. 

Finally, sometimes arguments for a call will appear in 
this sequence: 

(arg1, arg2 [,arg3 [, arg4 [, arg5J]}) 

To use one or more of the inner, optional arguments, 
you must include all of the outer ones. That is, if you 
want arg5, then you must also include arg3 and arg4; if 
you want arg4, you must include arg3, but you can omit 
arg5. 

Using DEFAULT (or DEF) 
There are many instances where you can pass 
DEFAULT or DEF for an argument. However, before 
you use them, you must declare either (or both) 
EXTERNAL. 

Defaulting an argument instructs the interface routines 
to place -1 in the corresponding packet slot, which, in 
turn, causes the system to use one of these values: 

• The system's default value~ or 

• A default value which you have previously defined; 
or 

• No value. (This is used only when the argument has 
no meaning to the access method,) 

In the call descriptions which follow, we will tell you 
when you mayor may not default an argument. 

Using NIL 
Passing NIL for an argument is different from 
defaulting an argument. When you specify NIL for an 
argument, the interface routines do not alter the 
parameter slot corresponding to that argument. Thus, 
the INFOS system will use any previously-set 
parameter value for that parameter. Therefore, you can 
pass NIL for a required argument if the packet involved 
already contains a parameter value acceptable to both 
you and the INFOS system. 

You may also use NIL as a "place-holder" in a group of 
optional arguments, all of which must be present, but 
only some of which you need to specify: for example, 
(ARG1, ARG2, ARG3, NIL, NIL, ARGS) in the example 
above. 

Finally, similar to DEFAULT, you must declare NIL as 
EXTERN AL before you use it. 

III-C-2 093-000114-01 



Licensed Material - Property of Data General Corporation 

Error Conditions 
The interface routines which interact with the INFOS 
system all contain as their last, mandatory argument, 
an integer variable which we call the "error argument". 
When the routine terminates, it places an integer code 
in this argument to inform the calling program of the 
call's status. This status code conforms to the standard 
FORTRAN IV and FORTRAN 5 conventions 
described in the FORTRAN IVand FORTRAN 5 User's 
Manuals (manual numbers 093-000053 and 
093-000085, respectively). Briefly, this code means: 

:s 0 (not used) 
1 means no errors have occurred 
2 (not used) 

~ 3 an error has occurred 

You should always check the returned status code 
before proceeding. Even if your program does not 
include special code to recover from particular errors, 
you should at least verify that the returned status co~e 
is 1. The system error messages exist for your benefit; 
do not ignore them. (Refer to Appendix D for 
explanations of all INFOS error codes.) 

An example of a typical application might look like this: 

CALL INFINIT (VIP,IER) 
IF UER.NE.1) GO TO 999 

(where 999 is the label of a statement which deals with 
errors from this call.) 

Using FINFOS.FR 
The tape set which contains the FORTRAN library 
routines also includes a "parameter tape" for the 
INFOS/FORTRAN interface called FINFOS.FR. This 
is a source file which defines the mnemonic names for 
the many parameters you need when programming an 
INFOS application in FORTRAN. We st~ongly urge 
you to use mnemonics; your programs will be much 
easier for both you and others to understand. We have 
included a copy of the current (as of the printing of this 
manual) FINFOS.FR at the end of this appendix. Use it 
to look up the parameters you want for your 
application; the call descriptions on the following pages 
will show you how to set those parameters. 

FINFOS.FR is structured as a FORTRAN source file so 
that the FORTRAN compiler will accept it as a part of 
your FORTRAN program. T~is allows yo~ to write 
your FORTRAN program usmg mnemOnIC na'!l.es. 
Therefore, do one of the following before complhng 
your program: 

DataGeneral 
SOFTWARE DOCUMENTATION 

1. Attach FINFOS.FR to the beginning of your 
FORTRAN source file; or 

2. (FORTRAN 5 only) Write an INCLUDE 
"FINFOS.FR" statement near the beginning of 
your program. (You may also wish to compile your 
program using "FORTRANII"; this will shorten 
your listing considerably.) 

3. Insert selected portions of FINFOS.FR into your 
FOR TRAN source file. However, if you choose 
this method, be careful how you edit FINFOS.FR. 
Remember that the pieces you extract must be 
proper FORTRAN statements. 

Loading Your Program and the 
Interface Routines 

Once you have compiled all your FORTRAN 
subprograms, you can load your program according to 
the procedures described in either Appendix D of the 
FOR TRAN IV USER's Manual (number 093-000053) 
or Chapter 2 of the FOR TRAN 5 Supplement (number 
093-000185). Then you can name the appropriate 
interface library (F4INFOS.LB or F5INFOS.LB) in 
your RLDR command line between your FORTRAN 
subprograms and the standard FORTRAN runtime 
libraries. 

Call Formats 
In the following call descriptions, we have indicated, 
where possible, specific data types for arguments. 
However, certain arguments are shown as 
"aggregates". These can be: 

• An array containing an entity (e.g., a data item, 
packet address, word address, array address). 

• An array element designating the beginning of an 
entity stored in a portion of an array. 

• A Hollerith constant large enough to contain an 
entity. 

• A scalar large enough to contain an entity. 

• An EXTERNAL defined in Assembly Language. 

093-000114-01 III-C-3 Call Formats 



DataGeneral 
SOFTWARE DOCUMENTATION 

Packet Building Routines 

INFFDP 
To build SAM and RAM File Definition 
Packets 

Call Format: 

CALL INFFOP<tdp, vdt [,itt, ott, dsdt,jtt] [Jsid]) 

Arguments: 
fdp 

vdt 

itt 

ott 

dsdt 

fit 

fsid 

File Definition Packet aggregate (i.e., a 
variable which is the first word of the FDP). 
Must be passed. 

Volume Definition Table aggregate made up 
of one or more Volume Definition Packets 
which must be located sequentially. Can be 
passed as NIL. Be sure you indicate the 
number of VDP's in word FDNVD of the 
FDP. 

User Input Translation Table aggregate; only 
needed if you want to translate from ASCII to 
something other than EBCDIC, or from 
EBCDIC to something other than ASCII. Can 
be passed as NIL. 

User Output Translation Table aggregate; 
only needed if your translation is not ASCII to 
or from EBCDIC. Can be passed as NIL. 

Data Sensitive Delimiter Table aggregate. If 
you are not using Data Sensitive records, pass 
NIL for this argument. If your records are 
delimited by a carriage return, form feed or 
null, pass DEF or DEFAULT. If your records 
are delimited by any other character(s), you 
must build your own table, according to the 
CMT instruction described in the 
Programmer's Reference Manual, 
ECLIPSE-Line Computers (015-024). 

Selective Field Translation Table aggregate. 
(See Comment 3 under Table 11-6-1, earlier in 
this manual.) Can be passed as NIL. 

File Set Identifier aggregate (applies to labeled 
mag tapes only). Can be passed as NIL, DEF, 
or DEFAULT. 

Licensed Material - Property of Data General Corporation 

Example: 
(1) INTEGER FOP (FOLN1) 
(2) INTEGER VOT (VOLEN,4) 
(3) INTEGER ITRAN (128), OTRAN (128) 
(4) CALL INFFOP (FOP, VOT, ITRAN, OTRAN, OEF, NIL, 

"MINE") 
(5) FOP (FOFL 1) = F1 UBR+F1 SAM +F1 EXF 
(6) FOP (FOBLK) = 512 
(7) FOP (FOBUF) = 2 
(8) FOP (FOLEN) = 512 
(9) FOP (FONVO) = 4 

Line (1) allocates a File Definition Packet for a 
SAM labeled tape file. 

Line (2) allocates a four-volume file. Note that you 
must build a Volume Definition Table 
with an INFVDP call (described later in 
this appendix). 

Line (3) allocates Input and Output Translation 
Tables (as described in Chapter 1 of Part 
One) . You can define these tables in 
Assembly language or as 
DATA-Initialized FORTRAN arrays. 

Line (4) calls the routine. The INFOS/FORTRAN 
interface will fill the File Definition Packet 
with pointers to the Volume Definition 
Table, the Input and Output Translation 
tables, and with the aggregate name of the 
File Set. The Data Sensitive Delimiter 
Table aggregate is defaulted since a 
labeled SAM file cannot use Data 
Sensitive records. (No value is used in this 
case.) The Selective Field Translation 
Table slot in the parameter packet remains 
untouched since its corresponding 
argument was passed as NIL. 

Line (5) specifies unblocked records, the 
Sequential Access method, and an 
Exclusive file. The FORTRAN interface 
will communicate this information to the 
INFOS system and all specifications will 
take effect when opening occurs. 

Line (6) specifies a block size of 512 bytes. 

Line (7) specifies two 110 buffers. 

Line (8) specifies a record length of 512 bytes. 

Line (9) specifies that there are four Volume 
Definition Packets in the Volume 
Definition Table. 

III-C-4 093-000114-01 



Licensed Material - Property of Data General Corporation 

INFIFDP 
To build ISAM and DRAM File Definition 
Packets. 

Call Format: 
CALLINFIFOP(fdp, vdt [,dbfdp[,dbn]}) 

Arguments: 

fdp File Definition Packet aggregate (i.e., a 
variable which is the first word of the FDP). 
Must be passed. 

vdt Volume Definition Packet aggregate made up 
of one or more VDP's located sequentially. 
Can be passed as NIL. Be sure you indicate 
the number of VDP's in word FDNVD of the 
FDP. 

dbfdp Database File Definition Packet aggregate. 
Can be passed as NIL, DEF, or DEFAULT. 

NOTE: You must notify the system that a 
database FDP is present by setting 
bit F2FDP in word FDFL2 of the 
index FDP. 

dbn Database Name aggregate. Can be passed as 
NIL, DEF, or DEFAULT. 

NOTE: The dbfdp and dbn arguments both deal with 
the FDDBP slot in the File Definition Packet. 
If you want to specify a Database FDP, pass 
such an aggregate for dbfdp and either omit 
dbn or pass NIL, DEF, or DEFAULT in its 
place. If you want to specify a Database name, 
pass NIL, DEF, or DEFAULT for dbfdp and 
pass your Database name aggregate for dbn. If 
you do not wish to alter the FDDBP slot, 
simply omit the dbfdp and dbn arguments. 

Example: 
(1) INTEGER FOP (FOLN2) 
(2) INTEGER OBFOP (FOLN 1 ) 
(3) INTEGER VOT (VOLEN, 2) 

DataGeneral 
SOFTWARE DOCUMENTATION 

(4) CALLINFIFOP(FOP, VOT, OBFOP, NIL) 
(5) FOP (FOLEN) = 50 
(6) FOP (FOPRL) = 10 
(7) FOP (FOFL1) = F11NV 
(8) FOP (FOFL2) = F20RO + F2FOP + F20HR 
(9) FOP (FOIFL) = IXPKC+ICTMP 
(1 O)OBFOP (FOBUF) = 2 

Line (1) 

Line (2) 

allocates an Index File Definition Packet. 

allocates a Database FDP. 

Line (3) allocates a two-volume file. You must 
build a Volume Definition Table for each 
with a call to INFVDP (described on the 
next page). 

Line (4) calls the routine. This fills the FDVTP slot 
with a pointer to the Volume Definition 
Table and the FDDBP slot with a pointer 
to the database FDP aggregate. 

Line (5) specifies that the maximum record length 
is 50 bytes. 

Line (6) specifies a partial record length of 10 
bytes. 

Line (7) specifies that the Database will be 
inverted. 

Line (8) specifies optimized record distribution for 
the Index and Disable Hierarchical 
replacement (i.e., LRU technique). 

Line (9) specifies key compression and that the 
Index is temporary. 

Line (10) specifies a runtime specification of two 
database buffers. 

093-000114-01 III-C-5 INFIFDP 



DataGeneral 
SOFTWARE DOCUMENTATION 

INFVDP 
To build Volume Definition Packets 

Call Format: 
CALL INFVDP (vdp, fnam {, vlt, hIt, tltl (, volid}) 

Arguments: 

vdp 

fnam 

vlt 

hIt 

tIt 

Volume Definition Packet aggregate made up 
of one or more VDP's located sequentially. 
Must be passed. 

Volume Name aggregate. Can be passed as 
NIL. 

Volume Label Table aggregate; applies only to 
labeled magnetic tape files. Can be passed as 
NIL, DEF, or DEFAULT. 

Header Label Table aggregate; applies only to 
labeled magnetic tape files. Can be passed as 
NIL, DEF, or DEFAULT. 

Trailer Label Table aggregate~ applies only to 
labeled magnetic tape files. Can be passed as 
NIL, DEF, or DEFAULT. 

volid Volume owner identifier aggregate; applies 
only to labeled magnetic tape files. Can be 
passed as NIL, DEF, or DEFAULT. 

Example: 
(1) PARAMETER ASTER = 52K 
(2) INTEGER VDT (VDLEN,2) 
(3) CALL INFVDP (VDT(1, 1), NIL, DEF, NIL, DEF, 

"SMITH") 
(4) CALL INFVDP (VDT(1,2), NIL, DEF, DEF, DEF, 

"SMITH") 
(5) VDT (VDPAD,1) = ASTER 
(6) VDT (VDPAD,2) = ASTER 

Line (1) defines the character Asterisk. (See lines 6 
and 7). 

Line (2) allocates a two-volume Volume 
Definition Table. 

Line (3) calls the routine. This sets up the first 
Volume Definition Packet in the Volume 
Definition Table. 

Line (4) calls the routine. This sets up the second 
Volume Definition Packet in the Volume 
Definition Table. 

Lines (5-6) specify that the padding character for the 
two volumes is the asterisk. 

Licensed Material - Property of Data General Corporation 

INFVIP 
To build Volume Initialization Packets 
for use with labeled SAM files. 

Call Format: 
CALL INFVIP (vip, dnam (, vid{, void{,ultJ]}) 

Arguments: 
vip Volume Initialization Packet aggregate. Must 

be passed. 

dnam Device name aggregate. Can be passes as NIL. 

vid Volume Identifier aggregate. Can be passed as 
NIL, DEF, or DEFAULT. 

void Volume Owner Identifier aggregate. Can be 
passed as NIL, DEF, or DEFAULT. 

ult User Volume Label Table aggregate. Can be 
passed as NIL, DEF, or DEFAULT. 

Example: 
(1) INTEGER VIP(VILEN) 
(2) CALL INFVIP (VIP, "MT2", "VOL4", "SMITH", NIL) 

Line (1) 

Line (2) 

allocates a Volume Initialization Packet. 

calls the routine and fills VDVNP with a 
pointer to volume 4, and VDOID with a 
pointer to "SMITH". 

III-C-6 093-000114-01 



Licensed Material - Property of Data General Corporation 

INFKEY 
To build ISAM and DRAM Key Definition 
Packets 

Call Format: 

CALL INFKEY (kdp, key [, len}) 

Arguments: 

kdp Key Definition Packet aggregate. Must be 
passed. 

key 

len 

Key value aggregate. Must be passed. 

Integer value giving flagged key length. Can 
be passed as NIL, DEF, or DEFAULT. 

If you pass a key length other than NIL, DEF, or 
DEFAULT, the INFKEY routine stores it in the 
right-hand byte of KDKYL. If you do not pass a key 
length (or if you pass it as DEF or DEFAULT), 
INFKEY computes the length of the key as the number 
of nonnull bytes in the string and stores the computed 
length in the right-hand byte of KDKYL. (Note that 
null is a delimiting character only when INFKEY 
computes key length.) If you pass key length as NIL, 
the right-hand byte of KDKYL is not changed. 

NOTES: 

1. The INFKEY routine never alters the flag bits in 
the left-hand byte of KDKYL. You should set up 
these flags before calling INFKEY. 

2. INFKEY sets up only one level of a key table at a 
time. It does not set up the null word which must 
follow the key packet, nor does it set up KDDKO 
(Duplicate Key occurrence). 

DataGeneral 
SOFTWARE DOCUMENTATION 

Example: 

The three following examples all produce the same 
result. The only difference among them is the way that 
the key length is specified. 

A) 

(1) INTEGER KTAB (KDLEN,4) 
(2) KTAB (KDTYP,1) = KTDUP 
(3) CALL INFKEY (KTAB(1 ,2), "SMITH") 
(4) CALL INFKEY (KTAB (1,1), "NAME") 

B) 

(1) INTEGER KTAB (KDLEN,4) 
(2) KTAB (KDTYP,2) = KTDUP 
(3) CALL INFKEY (KTAB (1,2), "SMITH", 5) 
(4) CALL INFKEY (KTAB(1, 1), "NAME") 

C) 

(1) INTEGER KTAB (KDLEN,4) 
(2) KTAB (KDTYP,2) = KTDUP+5 
(3) CALL INFKEY (KTAB (1,2), "SMITH", NIL) 
(4) CALL INFKEY (KTAB(1, 1), "NAME") 

Line (1) 

Line (2) 

Line (3) 

Line (4) 

allocates a Key Definition Packet. 

specifies duplicate keys (and, for example 
C, indicates the key length). 

calls the routine, fills the PRKTP slot in 
the Extended Processing Packet with a 
pointer to the key table, and fills KDKYP 
with a pointer to "SMITH", which is the 
second key in a table which has room for 
up to three keys. 

calls the routine to set up KDKYP with a 
pointer to "NAME," which is the first 
key in the key table. 

Since INFKEY does not write the null word which 
must follow a Key Table to terminate it, we 
recommend that you specify a zero length for the 
terminating entry in the table. In our example, this line 
would look like this: 

(5) KTAB(KDKYL,3) = 0 

This will make sure that the system reads the end of the 
Key Table properly; otherwise, the results would be 
unpredictable. 

093-000114-01 III-C-7 INFKEY 



DataGeneral 
SOFTWARE DOCUMENTATION 

INFLSP 
To build a DBAM Link Subindex 
Processing Packet. 

Call Format: 
CALL INFLSP (lsp, skt, dkt) 

Arguments: 
Isp 

skt 

dkt 

Link Subindex processing packet aggregate; 
must be passed. (See Figure 11-6-9 in this 
manual.) 

Source Key Table aggregate. Can be passed as 
NIL. (See Figure 11-6-9.) 

Destination Key Table aggregate. Can be 
passed as NIL. 

NOTE: You must use this call in conjunction with an 
INFOX call as follows: 

(1) CALL INFLSP (Isp, skt, dkt) 
(2) CALL INFOX (chan, LNKSI, Isp, nil, nil, nil, iar) 

where the arguments for INFOX are: 

chan Integer variable containing the file's 
pseudo-channel number, as returned from 
INFOPEN. Must be passed. 

LNKSI Integer value specifying the Link Subindex 
processing function. Must be passed. 

ier 

Line (1) 

Line (2) 

Integer variable error return. Must be passed. 

calls the Link Subindex packet building 
routine. 

calls the DBAM processing routine. The 
interface routines will set up pointers in 
the processing packet, call INFOS, and 
return a status code to the program. 

Licensed Material - Property of Data General Corporation 

Table Building Routine 

INFULT 
To build a User Label Table for use with 
SAM labeled tape files. 

Call Format: 
CALL INFUL T (ult, lab1 {,lah2 (, ... {,Iahn]]}) 

Arguments: 
ult User Label Table aggregate. Must be passed. 

lab1 Aggregates giving any user labels. Each can be 
through passed as NIL, DEF, or DEFAULT. 
lahn 

You can give any label as NIL, and the INFUL T 
routine will not touch the corresponding entry in an 
existing table. Also, you can DEF AUL T any label and 
INFUL T will place -1 in the corresponding entry. 

If you're using the routine to modify the contents of an 
existing table, the number of entries in the modified 
table will be equal to the number of filenames passed as 
aggregates or as NIL, DEF, or DEFAULT when the 
rou tine has finished. 

Example: 
CALL INFULT (VLT, "USERNO") 
CALL INFULT (HLT, "START") 
CALllNFUL T (TL T, "END") 

III-C-B 093-000114-01 



Licensed Material - Property of Data General Corporation 

Pure Processing Routines 

INFPREP 
To perform Pre-open file processing. 

Call Format: 

CALL INFPREP (fdp, ier) 

Arguments: 
fdp 

jer 

File Definition Packet aggregate (i.e., a 
variable which is the first word of the FDP). 
Must be passed. 

Integer variable error argument. Must be 
passed. 

Examples: 

To do Pre-open processing of a SAM or RAM file: 

(1) INTEGER FOP (FOLN1) 
(2) CALL INFPREP (FOP, IER) 
(3) IF UER.NE.1) GO TO 999 

To do Pre-open processing of an ISAM or DBAM file: 

(1) INTEGER FOP (FOLN2) 
(2) CALL INFPREP (FOP, IER) 
(3) IF UER.NE.1) GO TO 999 

Line (1) 

Line (2) 

Line (3) 

allocates a File Definition Packet. 

calls the routine 

sends control to an error recovery routine 
if an error has occurred. 

DataGeneral 
SOFTWARE DOCUMENTATION 

INFOPEN 
To perform Open file processing 

Call Format: 
CALL INFOPEN (chan, fdp, jer) 

Arguments: 

chan Integer variable for return of file's 
pseudo-channel number. Must be passed. 

fdp 

jer 

NOTE: Save this channel number. You will 
need it for all subsequent calls to the 
INFOS system. 

File Definition Packet aggregate. Must be 
passed. 

Integer variable error argument. Must be 
passed. 

Examples: 
To perform Open processing of a SAM or RAM file: 

(1) INTEGER FOP (FOLN1) 
(2) CALL INFOPEN (NC, FOP, IER) 
(3) IF UER.NE.1 ) GO TO 999 

To perform Open processing of an ISAM or DBAM 
file: 

(1) INTEGER FOP (FOLN2) 
(2) CALL INFOPEN (NC, FOP, IER) 
(3) IF OER.NE.1 ) GO TO 999 

Line (1) 

Line (2) 

Line (3) 

allocates a File Definition Packet. 

calls the routine and sets up the channel 
number. 

sends control to an error recovery routine 
if an error has occurred. 

093-000114-01 III-C-9 INFOPEN 



DataGeneral 
SOFTWARE DOCUMENTATION 

INFINIT 
To perform volume initialization for SAM 
labeled tape files 

Call Format: 
CALL INFINIT (vip, ier) 

Arguments: 
vip 

ier 

V olume Initialization Packet aggregate, as 
described in Table 11-6-10. Must be passed. 

Integer variable error return. Must be passed. 

Example: 
CALL INFINIT (VIP, IER) 
IF UER.NE.1) GO TO 999 

This calls the routine and supplies the address of the 
V olume Initialization Packet. 

Licensed Material - Property of Data General Corporation 

Building/Processing Routines 

INFOS 
To perform SAM or RAM file processing 

Call Format: 
CALL INFOS (chan, funct, pp (,dati ,ier) 

Arguments: 
chan A variable which is resolvable as an integer, to 

contain the file's pseudo-channel number, as 
returned by INFOPEN. Must be passed. 

funct A value (resolvable as an integer), which 
specifies a SAM or RAM processing or utility 
function. Must be passed. (You will find the 
mnemonics for each processing function 
under "Processing Function Codes" in 
FINFOS.FR.) 

pp Processing Packet aggregate. Must be passed. 

dat Data Area aggregate giving area to or from 
which transfer will be made. Can be passed as 
NIL. 

ier Integer variable error argument. Must be 
passed. 

Example: 
(1) INTEGER PP(PRLN1) 
(2) INTEGER AREA (25) 
(3) PP(PRSTA) = PFLOC 
(4) PP(PRREC) = 0 
(5) PP(PRREC + 1) = N 
(6) PP(PRLEN) = 50 
(7) CALL INFOS (NC, IREAD, PP, AREA, IER) 
(8) IF UER.NE.1) GO TO 999 

Line (1) 

Line (2) 

Line (3) 

allocates a SAM or RAM processing 
packet. 

allocates a 50-byte record processing area. 

specifies locked record. 

Lines (4-5) set up a two-word record number whose 
value is Integer N. 

Line (6) 

Line (7) 

Line (8) 

specifies a 50-byte record length. 

calls the routine. 

sends control to an error recovery routine 
if an error has occurred. 

III-C-10 093-000114-01 



Licensed Material - Property of Data General Corporation 

INFOX 
To perform ISAM or DBAM file 
processing 

Call Format: 
CALL INFOX (chan, tunct, pp, ktab, dat, pra {,sip}, ier) 

Arguments: 
chan Integer variable containing the file's 

pseudo-channel number, as returned by 
INFOPEN. Must be passed. 

tunct A value (resolvable as an integer), which 
specifies an ISAM or DBAM processing or 
utility function. Must be passed. (For the 
mnemonics you should use, see the section 
on "Processing Function Codes" in 
FINFOS.FR.) 

pp Processing Packet aggregate (i.e., a variable 
which is the first word of the packet). Must be 
passed. 

ktab Key Table aggregate. Can be passed as NIL. 

dat Data Area aggregate giving the area to or from 
which transfer will be made. Can be passed as 
NIL. 

pra Partial Record area aggregate. Can be passed 
as NIL. 

sip Subindex Packet aggregate. Can be passed as 
NIL. 

ier Integer variable error argument. Must be 
passed. 

Example: 
(1) INTEGER XPP(PRLN2) 
(2) INTEGER BUF(80) 
(3) INTEGER PBUF(5) 
(4) INTEGER KTAB(KDLEN,3) 
(5) KTAB(KDTYP,1) = 0 

DataGeneral 
SOFTWARE DOCUMENTATION 

(6) CALL INFKEY (KTAB(1, 1), "AB") 
(7) KTAB (KDTYP,2) = 0 
(8) CALL INFKEY (KTAB(1 ,2), "CD", 2) 
(9) KTAB(1,3) = 0 
(10) XPP(PRCCW) = CCKEY 
(11) XPP(PRLEN) = 160 
(12) CALL INFOX (NC, IREAD, XPP, KTAB, BUF, PBUF, 

IER) 
(13) IF(lER.NE.1) GO TO 999 

Line (1) allocates a DBAM Processing Packet. 

Line (2) allocates a 160-byte data area. 

Line (3) allocates a 10-byte partial record area. 

Line (4) allocates a Key Table aggregate for 
two-level keys. Note that the Key Table is 
terminated by an entry specifying a key 
with zero length. 

Line (5-9) set up the Key Table aggregates. 

Line (10) specifies keyed access. 

Line (11) specifies a record length of 160 bytes 

Line (12) calls the routine. First, the INFOX routine 
sets up pointers in the processing packet, 
then calls the INFOS system to transfer 
the record and the partial record to the 
appropriate areas. Finally, it returns status 
in IER. 

Line (13) sends control to an error recovery routine 
if an error has occurred. 

093-000114-01 III .. C-11 INFOX 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

----------------- INFOS User Parameters for FORTRAN -----------__ _ 

c======================:============== 
C INFOS USER PARAMtTERS FOR FORTRAN 
c==::=======::::====================== 
C fINFOS.FR 

C FILE OEFINITION PAC~ET 

PARAMtT£R 
t FDFLl = 4 ,iINFOS -FILE DEF FLAGS, I 
t FDFL2 = 5 ,iINFUS -FILE DEF FLAGS, I I 
t FDBLK = b ,iINFOS -tjLUCK SIZE 
+ FDBUF = 7 ,iINFOS -NUMBER OF BUFFE~S 
t FDLEN = 8 ,iINFOS -RECORD LENGTH 
t FuNIL = 8 ,iINFOS -NUMbER OF INDEX LEVELS 
t FDNVD = 11 ,;INFOS -NUM OF VOL TABLE ENTRIES 
t FOVTP = 1~ ,iINFOS -VOLUME. TABLE POINTER 
t FDulT = 14 ,ilNFUS -USER I~PUT TkANS TIjL PTN 
t FUUUT = If) ,ilNFUS -USER OUTPUT lkANS TbL PT". 
t FDTCF = 18 ,;INFOS -TRANS & LABEL FL,4GS 
t FuDSD = 19 ,;I~FOS -DATA SENS DELlM TABLE PTR 
+ FDFSI = 21 ,iINFOS -FILE SET ID PTR 
+ FDEXP = 24 ,iINFOS -EXPIRATION OATE 
t FDSEQ = 27 ,iINFOS -SEQUENCE NUMBER 
t FDGEN = 2~ ,iINFOS -GENERATION NUMBER 
t FDACC = 29 ,iINFOS -FILE ACCESSABILITY 
t FDlDO = .H' ,iINFOS -INITIAL DATA OFFSET 
t FuSFT = 31 ,iINFOS -SEL FIELD TRANS TABLE PTR 
t FDLNI = 4V1 ,iINFOS -SAM & RAM FOP LENGTH 
t 
t FL>EFT = 41 ,iINFOS -EXCLUDED FILE TABLE PTR 
t FDDBP = 43 ,iINFOS -OATA BASE. FILE DEF PACKET 
t i lI''4FOS -OR NAME POINTER 
t FOMNS = 45 ,iINFOS -MINIMUM NODE SIZE 
t FOMKL = 47 ,iINF-US -MAX ~EY LENGTH (LH BYTE) 
+ FDPRL = 47 , i H'4FOS -PART REC LEN (RH BYTE) 
t FDRMF = 49 ,iINFOS -RT NO MERIT FACTO~ 
t FCllFL = SIt1 ,iINFOS -INDEX FLAGS 
+ FI)LN2 = 5~ ilNfoOS -ISAM & DbAfv1 FDP LENGTH 

C SUBINDEX uEFINITION PACKET 

PA~AME1ER 

t SOMNS = 1 ,IINFOS -MINIMUM NODE SIZE 
t SOMKL = 3 ,iINFOS -MAX KEY LEN (LH tHTE) 
t SDPRL = 3 ,ill~FOS -PAkT REC LEN (RH BYTE) 
t SDRM'- = S ,iINFOS -RT NO MRT FACT (RH IjYTE) 
t SDIFL = b ,iINFUS - HH)E.~ fLAbS 
+ SDLt.N = b iINFuS -SUI:)INDEX Dt.F PACKET LEl'lGTH 

III-C-12 093-000114-01 



DataGeneraI 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

INFOS User Parameters for FORTRAN (continued) 

C FILE DEFI~IrlON FLA~S, I (FD~L1) 

PARAM~TER 
t F1UB~ = l001thHoK ,;INFO~ -UNBLOCKED R~CORuS 
t FlAM1 = "0~00K ,IINFOS -ACCESS M~THOD FIELu 
t F1AM2 = 2~0011K , ; Ir'<lFOS -
t F1FTl = 110000K ,;INFOS -RECORD FORMAT FIELD 
t F1FT2 = 4~~HoK ,;INFOS -
t FlRAW = 2k?0~K ,;INFOS -R~AD AFTER wRITE VER 
t FlOVR = 2~0K ,;INFOS -OVERWRITE (APPEND IF It1) 
t FlEXF = 1001< ,;INFOS -EXCLUSIVE FILE 
t F1PMl = 201'. ,;INFOS -PROCESSING MODE FIELD 
+ flPM2 = 10K ,;INFOS -
t FlR~~ = ~ ,IINFOS -R~rHUTE (NORMAL IF It1) 
+ F1INV = 1 IINFOS -INVERTING (ISA~) 

C AC~ESS METHOD SPECIFIERS (F1AM1,F1A~2) 

PAkAMETER 
+ FlAMM = b01Q00K , ; It''4F OS -Fl~Lu MASK 
t F 1 SAI';j = 2~tlI"'0K ,;INFOS -SAIV1 
+ F1~AM = 0 ,I!NFOS -RAM 
+ F1ISM = 401Q01OK ,; It'4FUS -ISAM 
+ F10BM = ~~000K ;INFOS -DbAM 

C RECORD FORMAT SP~CIFIERS (F1FT1,F1FT2) 

PARAME.TER 
t F1FTM = 1 "1,H~01< ,;lNFOS -FIFlD MASI< 
t F1FIX = l0000K ,;lNFOS -FIXED LENGTH 
.. F1VAR = 4100k:JK ,IINFOS -VARIABLE LENGTH 
t FlUND = '" 

,;INFOS -UNDEFINED LENGTH 
+ F1SEN = l4rcHH~K ;INFOS -DATA SENSITIVE 

L PRuCESSING MODE SPECIFIERS (F1PM1,F1PM2) 

PARAMETER 
t F1PMM = 30K ,IINFOS -FIELD MASI< 
t FlINP = It1 ,;INFOS -INPUT 
t FlOUT = 21(;K ,;INFOS -OUTPUT 
t F1UPD = l~K ,;lNFOS -UPOATt:. 
+ F1CRU = 3~K ;INFOS -CREATE UPDATE 

C FILE DEFINITIO~ FLAGS, II (FOFL2) 

PAkAM~l~~ 
t F2011 = 2001001< ,;INFOS -OP~N ONLY THIS INDEX 
t ~2SPM = 201olOK ,;INFOS -SPACE MANAGEMENT 
+ F20~D = 1ld0K ,;INFOS -OPTIMIZ~ REC DI~TRIBUTION 

+ F2DHR = 4"'K ,;!NFOS .DISA~LE HIERARCHICAL REPLACEMENT 
+ F2FDP = 1ldK ;INFOS -DATA BASE FDP PRESENT 

093-000114-01 III-C-13 INFOS User Parameters for FORTRAN 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

C 

C 

c 

c 

C 

c 

INFOS User Parameters for FORTRAN (continued) 

TRANSLATION AND lAbEL CONTROL FLAGS (FDTCF) 

PARAMETER 
t TCLTl = 
t TCLT? : 
t TClT3 : 
t TCSFT : 
t TLOTl :; 
t Tl,;OT2 : 
t lCOT3 : 
t TCOT4 = 
t TCLll : 
t TCLl2 : 
t TCLl3 : 
t TCI11 = 
t TCIT2 : 
t TCIT3 : 
t TCIT4 : 

1~1Ci01l10K 
400k1IdK 
2~000K 

100010K 
40001'. 
20~"K 
1010klK 

4roklK 
200K 
100K 

40K 
lrl'K 

4 
2 
1 

LA~EL TYPE SPECIFIERS 

PARAMf:.TER 
t TLL TI'1 = 
t TCANS = 
t TCIBM = 

LABEL LEVEL SPEC!FIE~S 

PARAMETER 
t TClLM = 
+ TCLVl = 
t TClV2 = 
t TCLV3 : 

3401'0. 
40K 

l~0K 
14101'0. 

,iINFO~ -LAbf:.L TYPE fIELD 
,;INFOS -
,;lNFuS -
,:INFOS -Sf:.LECTIVE FIELD TRANS 
,;INFOS -UUTPUT lRANS Flf:.LU 
,iH~FOS -
,IINFOS -
,;INfUS -
,;INFOS -LABEL LEVEL 
,iINFOS -
,iINFOS -
,;INFOS -INPUT TRANS FIELD 
,;INFOS -
,;INFOS .. 

;INFOS -

(TCLT1-TCLT3) 

,:lNFOS -FItLD ~ASr< 
,;INFOS -ANSI STAN~ARD 

;INFOS .. IbM STANDARD 

(TClll-TCLl3) 

,;INFuS -FI~LD MASt\ 
,;INFOS -Lt.VEL 1 
,;lNFOS -LEVEL 2 

ilt-4FOS -LEVEL 3 

OUTPUT TRANSlATIUN SPECIfIERS (TCOT1-TCOT4) 

PARAMeTER 
+ TCOTM : 
t TCNTO = 
t TCEAU : 
t TCAEO = 
+ TCUT(J = 

7400K 
o 

~0~t\ 

l"'~klK 
7400t\ 

,;INFUS -flf:.LD MASK 
,ilNFOS -NO TRANS ON OUTPUT 
,iINFOS -EBCDIC TO ASCII 
,;lNFO~ -ASCII TO EBCDIC 

iINFOS -USER TAblE 

iNPUT TRANSLATION SPECIFIERS (TCIT1-TCIT4) 

PARAMETER 
t TCITM = 
t TCNTl : 
+ TCEAl : 
+ TCAEI : 
t TCUTI : 

lfWf:.X FLAGS 

PAR At-1 E T E R 
+ IXPKC = 
+ IXNSI = 
t IXHPN = 

17K 
~ 

1 
2 

171\ 

(rD1FL) 

,;I~FOS -FIELD MASK 
,;INFOS -NO TRANS ON INPUT 
,iINFOS -EbCDlC TO ASCII 
,iINFCS -ASCII TO EBCDIC 

;INFOS -USER TAbLE 

,iINFO~ -PERFO~M KEY CUMPRESSIUN 
,iINFOS -NO SUBINUICES 
,iINFOS -HIGH PRIORITY NODE 

+ lXTSr = 
t IXPRM = 

10k10k10K 
"kllt)~H1K 
21d~00K 
100k.i0K 

4100101K 
,ilNFOS "TEMPO~ARY INDEX (PRIMARY OR SUB) 
;I~FOS -MAKE DATA RECORDS PERMANENT 

III-C-14 093-000114-01 



DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

INFOS User Parameters for FORTRAN (continued) 

C VOLUME INITIALIZATION PACKET 

C 

PARAMETER 
... VIFLG = 
... VIACC = 
... VIOV::; = 
... VIVID = 
... VIOID = 
... V.1UVT = 
t VILEfJ = 

1 
2 
3 
5 
7 
9 
10 

,iINFOS -VOL INIT FLAGS 
,;INFOS -VOL ACCESSABILITY CLH BYTE) 
,iINFOS -DEV SPECIFIER PTR 
,iINFOS -VOL 10 PTR 
,iINFOS -OwNER ID PTR 
,;INFO~ -USER VOL lABEL TAB PTR 

iINFOS -VOL INIT PACKET LENGTH 

VULUME I~.1TIALIZA1IO~ FLAGS (VIFL6) 

PARAMETER 
... VFlT1 = 
... VFLT2 = 
... VFLT3 = 
... VFLL1 = 
... VFLL2 = 
t VFL.L3 = 
... VFFUL = 
... VFIVI = 

1001d12l0" 
qlt)01t)I2IK 
2~0~0K 

2100K 
100K 
q~K 

q 
2 

,iINFOS -LABEL TYPE FLAGS 
,iINFOS -
,iINFOS -
,ilNFUS -LA~tL LEVEL FIELD 
,iINFOS -
, i rr .. FlJS -
,iINFUS -FULL INIT 

;INFOS -IGNORE VOL ID 

C NuTE THAT THE LAB~L TYPE & LABEL LEVEL SPECIFIE~S 
C G!VEN ON THE PREVIOUS PAGE MAY ALSO BE USED FOR 
C TH!S FLAG WO~D 

C VOLUME DEFINITION PACKET 

C 

093-000114-01 

PARAMETER 
... VDVNP = 
... VuVSl = 
... VDVLT = 
... VDHLT = 
... VOllT = 
... VDPDC = 
... VDIVC = 
... VDDTO = 
... VDVMF = 
... Vl)ACC = 
... VDPAD = 
t VDOID = 
t VDLEN = 

1 
3 
q 

o 
8 
10 
11 
12 
1q 
14 
14 
15 
1b 

,;INFOS -VOLUME NAME POINTER 
,ilNFOS -VOLUME SIZE 
,;INFOS -VOLUME LA~EL TABLE PTR 
~iINFOS -HEADER LABEL TABLE PTR 
,iINFOS -TRAILER LABEL TABEL PTR 
,iINFOS -PHYS DEV CHARACTERISTICS 
,iINFOS -lNF-uS VOL CHARACTERISTICS 
,iINF~S -DEVICE TIME OUT CONSTANT 
,iINFOS -VOL MERIT FACTORCLH BYTE) 
,;INFOS -VOL ACCESSAbLITYCLH BYTE) 
,iINFOS -PAD CHARACTER (RH BYTE) 
, ; II ~ F US - VOL U tv. E U W N E RID PO Ir'4 T E R 

iINFOS -VOL ~EF PACKET L~NGTH 

INFOS VOlU~E CHARACT~HISTICS (VDIVC) 

PARArv1ETER 
t lCODR = 
t ICVLB = 
t ICDVC = 
t ICDSl = 
t ICPAR = 
t ICDCC = 
... ICClG = 
... lCDFI = 
... ICERI = 
... lCERR = 
... l(;R~O = 

10~12I01t)K 

4tJI2I0121K 
20010ICK 
10121121fdK 

2121121I21K 
1121"'(oK 

2121I21K 
ql.1121K 

4k:lK 
20K 
l~K 

,;INFOS -DlSA~LE DEVICE RESTART 
,iINFOS -VARIABLE LENGTH BLOCKS 
,;INFGS -DUPLILATE VOLU~E CONTROL 
,iINFOS -DISABLE SYSTEM LABELING 
,;INFOS -GENERATE PARITY 
,iINFOS -DISAblE CONFLICT tHL(KI~G 
,ilNFOS -CONTIGUUUS ALLOCATION 
,iINFOS -DISAbLE FILE INITIAL1ZATIGN 
,iINFUS -ENABLE HUN TIMl INIT 
,;INFOS -ENABLE RUN TI~E RELEASE 

;lNFOS -Ht~l~D ON VOL OPtN 

III-C-15 INFOS User Parameters for FORTRAN 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

INFOS User Parameters for FORTRAN <Continued> 

C P~UCESSING PACKET 

C 

C 

c 

PA~AMETI:.~ 

.. P~STA = 
t PRDA r = 
t PRRI:.C = 
t PRKTP = 
t Pf<LEN = 
+ PRDSP = 
t PROFS = 
t PRSIL = 
t tJRLNl ; 
t 
t PRRMF 
t PRC~~ 
t PRPRA 
t PRSRL 
.. PRSRS 
t PRSID 
t PRLN2 

= 
= 
= 
= 
= 
= 
= 

1 
2 
4 
4 
b 
b 
9 
11 
11 

12 
13 
14 
19 
19 
2~ 
21 

,;INFOS -STATUS FLAGS 
,;INFOS -DATA AR~A P~INTEh 
, i I N F 0 S - R E C U ~ 0 N U M 8 E R ( R A ~! ) 
,;INfOS -KEY TABLE PUI~TER llSAMl 
,;INFOS -RECORD lENGTH 
,IINFOS -MAG TAPE DISPOSITION 
,IINFOS -DATA RECORD FEEDBACK 
, I H~ F 0 S - S U 8 - I NO E X LEV E l (R H B Y T E ) 
,IINFOS -SAM & RA~ PROC PACKET lEN 

,;INFUS -RECORD ~ERIT FACTOR 
,;I~FUS -COMMAND CONTkOl ~ORD 
,;INFOS -PARTIAL RlCOR~ ARI:.A P1R 
,;INfOS -RETUR~Eu lEN (lH ~YTE) 
,;I~FOS -RI:.TURNlD STATUS (RH BYTE) 
,;lNfUS -SUBINDEx DEf PACKET PTR 

;INFOS -ISAM & DBAM PACKET LEN 

PRUCESSING PACKET STATUS FLAGS (PRSTA) 

PARA~ETER 

t PFLOC = 
t PFHLD = 
+ PFUNL = 
t fJFvCI = 
.. PFPEV = 
t PF~lr- = 
.. PFRE6 = 
.. PFRIN = 
.. PFXLS = 
.. PFEXL = 
t PFPI:.F = 
.. PFVER = 
.. PFtHt"( :-
.. PFUVL = 
t PFUHL = 
.. PFUTL ; 
.. PFERtwl : 

1001,HiJ0K 
'40001OK 
20000K 
100010K 

400"K 
200k~" 
101tl0K 

""'10K 
20~K 

1100'" 
40'" 
20K 
10K 

4 
2 
1 

15377K 

RECORD LENGfH FLAG 

P~t<AMETI:.R 

t PRSPL = 

,IINFOS -LUCK RECURD 
,IINFOS -HOLD REQUEST 
,;I~FOS -UNLOCK RECORD 
,;lNFO~ ·VOL~MF CHANGE INDICATOR 
,iINFOS -PHYSICAL END OF VOLU~E 
,IINFOS -~RITE IMMED IF MODIFIED 
,;INFOS -RECOkD EXCEEDS BUF SIZI:. 
,;INFOS -READ INHI~lT ON (RAM) 
,;INFUS -XFER LENGTH SHORT 
,;lNFOS -EXCESSIVE XFER LENGTH 
,;INFOS -PHYSICAL END OF FILE 
,;IN~US -VERI~I~ATIUN FAILURE 
,;INFOS -MAG TAP!:. CO~TRUL I:.RROR 
,iINFuS -USER VOL LABEL PROCESSED 
,;INFOS -USER HDR LA~I:.L PRuCESSEu 
,;INFUS -USER TRAILER LAB PROCESSED 

;INFUS -EXCEPTIUNAL RETURN MASK 

(PF<LEN) 

iINFOS -SPECIFIED Rt~ORD LENGTH REQU~STED 
;lNFOS -(INPUT TO ISAM OR 08AM REAu) 
;INFOS -RtCORD EXC~t~S LENbTH f<EQU~STEu 
;INFOS -(RETURNED FROM ISA~ OR OdAM READ) 

INDEX CUM~ANO CONTRUL FLAGS (PRCC~'n 

PARAMETER 
t CCKEY = 
t CCREL = 
t CCMCl = 
t CCM(;2 = 
t c.;CMC3 = 
t CCSCP : 

1~0000K 
40.o0~K 
200e01"-. 
llJkJlOkiK 

QI!l00K 
2~1c10K 

,;l~FOS -KEYED 
,iI~FUS -kELATIVt TO LU~ PUb 
,;INFOS -MOTION LO~TROL FII:.LD 
,ilNFOS -
,ilNFOS -
,;INFOS -SET CURRENT PUSITUN 

III-C-16 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneraI 
SOFTWARE DOCUMENTATION 

INFOS User Parameters for FORTRAN (continued) 

+ CCINV = 40IUK ,IINFUS -INVE.RTED E.NTRY 
t CCSPR = 10~K ,iINFuS -SUPPRESS PAR1IAL RECORU 
t CCSDB = 2rtlK ,iINFOS -SUPPRESS DATA bASE 
t CtLOG = lICK ,JINFOS -LOGICAL KEY DELETE 
t CCLOC : 4 ,IINFOS -LOCAL LOG DELETE 
t CCGLB : 2 IINFOS -GLOBAL LOG DELETE 

C MO T 1 o~. CONT~UL SPECIF!E,kS (CC~Cl-CCMCl) 

PAkAME,lEk 
+ CCMCM : l400tal< ,IINFOS -FIELD MASK 
+ CCFwD = 0 ,IINFOS -FORWARD 
t CCbAK = 4kl0rtlK ,ilNFCJS -BACKwARD 
t l.ClJwN : 110 fa klItH< ,IINFOS -DOWN 
+ CCDFW = 11.1~00K ,IINFOS -IJOwN & FORwARD .. CCUFW : 201000K ,'I~FuS -UP & FORWARD 
t CCUSK : 21.10001'. ,IINFO~ -UP ~ ;;ACK~~AkD 
t CCUP : l00010K ,iINFOS -UP 
+ ceSTA : 34~0"'K i It~F OS -STATIC 

SY~TEM RETUR~E~ STATUS FLAGS (PRSRS) 

PARAMETER 
t SRLL.D : 2001'. ,iINFOS -LOCAL. LOGICAL DELE1E 
t SRL)UP ;: 10~f( , I It'4FOS -DuPLICATE KEY 
t SRL>RL : 40" ,'INFO~ -DATA RECORD LOCKED 
t SRGLD : 2~K ,IINFUS -GLOBAL LOGICAL DELET~ 

+ ~RLDM : 220K ,IINFOS -L.OGICAL DELETE MASK .. SRSFM : 3b0K IINFOS -STATUS FIELD MASK 

093-000114-01 III-C-17 INFOS User Parameters for FORTRAN 



DataGeneral 
SOFTWARE DOCUMENTATION 

C 

t 
t 

C 

+ 
t 
+ 
+ 
+ 
t 
t 
t 
t 

C 

t 
t 
t 
t 

C 

t 
t 

C 

t 
t 
t 

+ 

(. 

+ 
+ 
+ 
t 

• 
C 

t 
t 
t 

Licensed Material - Property of Data General Corporation 

INFOS User Parameters for FORTRAN <Continued) 

MAG-TAPE CONTROL PROCESSING PACKET 

PARAMt.TER 
PRCFC = 
PRNWD = 

4 
5 

,;INFOS -CONTROL FUNCTION COD~ 
;I~FOS -NUMB~R OF hORDS 

~AG-TA~E CUNTRUL ~UNCTION CODES (PRCFC) 

PARAMETER 
MCSFF = 0 
MCS8F = 1 
MCRO = 2 
MCWRT = j 

MCwt.F = 4 
MCRt::W = 5 
MCSFR = b 
MeSBR = 7 
MCERS = 8 

POINT PROCESSING 

PARAME.T£R 
PRMOD = 2 
PRHLB = 3 
I-'RLLB = 4 
PRBOF = 5 

PUINT INPUT MODE 

PAI-<AMETER 

,;INFOS 
,;INFOS 
,; II~FOS 
,iINFOS 
,;INFOS 
, ; H~FOS 
,iINFOS 
,;INFUS 

iINFOS 

PACKET 

,;INFOS 
,;INFOS 
,;INFOS 

ilNFOS 

(PRMGD) 

-SPACE FORWARD FIL~ 
-SPAI,;E ~ACK~ARO ~ILE 
-HEAD 
-WRITt:. 
-WRITE Ell" 
-RE~HND 
-SPACE FORWARD REC 
-SPACE BACKWARD REt 
-ERASE 

-INPUT MODE 
-HI LOGICAL BLOCK 
-LOW LlJblCAL cLOCK 
-BYTE. UFFSE:T 

PMEUF = 
PMLBN = " 1 

,iINFOS -POI~T TO EOF 
;INFOS -LOGICAL BLOCK NUM 

LINK SUB-INOEX PROCE5S1NG PACKET 

PARAME.TER 
PRDKT = 2 ,;lNFOS -DE:Sl K~Y TABLE PTR 
PRSKT = LI ,;INFO~ -SGUkCt:. KEY TAbLE. P1R 
P~DCC = 12 ,;INFOS -DEST COMMAND CONTROL 
PRSCC = 13 ;INFOS -SOURCE COMMAND CO~TkOL 

K~~ JEFINITIJN PACKET 

PARAMETI:.R 
KuTY~ = 1 ,;INFOS -KEY TYPE FLAGS (LH BYTE) 
KDKYL = 1 
KDKYP : 2 
KDDKU = 4 
KDLEN : 5 

KI:.Y TYPI:. FLAGS (KDTYP) 

PAf.(A~t:.TEH 
KTiJUP : 
KTGE.N = 
KTAPX : 

1"'00~0K 
~0000K 

200001'. 

,;INFOS -KEY LEN (RH BYTE) 
,;INFOS -KEY POINTER 
,iINFOS -OUP KEY OCCURENCE 

; Ir~FOS -KEY DEF I-'ACKET LENGTH 

,ilNFOS -DUPLICATE KEY 
,;INFOS -GENERIC KEY 
;l~FOS -APPROX KEY 

III-C-18 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

INFOS User Parameters for FORTRAN (continued) 

C PROC ESS I I~G FUNCTIOI'. CODE.S 

PARAMETER 
+ POINT : '" ,;INFOS -POINT 
+ CNTRL : 1 "INFOS -CUNTROL 
+ FEUV : 2 ,'INFOS -FORCE END OF VOL 
+ lCLOSE : 3 ,;lNFOS -INFOS CLOSE 
+ SETX : 4 ,;INFOS -SET EXCLUSIVE USE 
+ RELX : 5 ,;INFOS -RELEASE EXCLUSIVE USE 
+ TRNCT : 0 ,;lNFOS -TRUNCATE BLOCK 
+ IREAD : 7 ,;INFOS -INFOS READ 
+ IWRITE. : ts ,IINFOS -INFOS WRITE 
+ DE.FSI : 9 ,IINFOS -DEFINE SUS-INDEX 
+ LNKSI : 10 ,;INFOS -LINK SUB-INDEX 
+ D~LRC : 11 ,;INFOS -DELETE RE.CORD 
+ DELSI = 12 ,;INFOS -UELE1E. SUB-INDEX 
+ RETST = 13 ,IINFOS -RETURN STATUS 
+ RETHK = 14 ,IINFOS -RETURN HIGH KEY 
+ RETKY = 15 ,iII'4FOS -RETURN Kl:Y 
+ REINS = 10 ,IINFOS -Rt:.INSTA"rE RI:.C 
+ RDDIR = 17 ,IINFOS -RfAD DIRECT 
t WRDIR = 18 , ; H'lFOS -r,RITE:. UIR[CT 
+ RE:.LRC = 11i ,;INFOS -RELEASE REC 
+ RELSE : 20 ,IINFOS -RELE.ASE BUFFER 
+ RE.WRT = 21 ,;INFOS -REwRITE 
+ RETDF : 2~ , ; I1~FOS -kEIU~N SuB-INDt:.X DEF 
+ PRERD = 23 ;INFOS -PREREAD 

093-000114-01 III-C-19 INFOS User Parameters for FORTRAN 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

INFOS User Parameters for FORTRAN <Continued> 

C INF05 tRROi.( CODES 

PARAMtTER 
t IOILF : 131 ,iINFOS -ILLEGAL FUNCTION 
t IuVTI : 132 ,;INFOS -VARIABLE LENGTH TRANSFER 
t ;INFOS -ILLt:GAL ON THIS DEVICE. 
t !U~DU : 133 ,iINFOS -RE~RITE ON I,)ISK ONLY 
t IOIFD = 134 ,iINFOS -ILLEGAL FUNCTIuN FOR OEV 
t IOOPE = 135 ,iINFOS -OPEN PROCESSING tRDOP. 
t .LORFC = 130 ,;INFOS -REC FMT & FUNC COr-.tFLICT 
t IUtXF = 137 ,iINFOS -FILE IN USE 
t lOLOK = 138 ,;lNfOS -FILt LOCt\ED 
t IOFNU = 139 ,iINFOS -FILe. NOT OPE.N 
t IOPCF = 14k) ,iINFOS -PERIPHERAL CONFLICT 
t IUVFP = 141 ,~INFOS -VL FILE PROCESSING ERROR 
t IOURe = 142 , i lt~FOS -UNRESOLVED RESOURCE CONFLICT 
t IORt",P = lq3 ,;I~FUS -RE~vR 1 TE r.-,ODE PROCESSING ERROR 
t IODIJF = 144 ,iH~FOS -DUPLICA1E VL FILE 
t lQEllw = 145 ,iINFOS -ULOCI\ SIZE EXCEEDS ~INuOw SIZE 
t 1 uVIYlE = 140 ,;INFOS -VIRTUAL MEMORY EXHAUSTt:-:iJ 
t lOXIL = 147 ,iINFOS -TRANSLATE TABLt LUAD t:-:RRUR 
t IUVft:. = 1~8 ,; HolFOS -ilL FILE OPEN ERR 
t IOvCE. = 149 ,;INFOS -VL FILE CLOSE ERR 
t IOIFO = 15k) ,iINFOS -INSUF FREESPACE FOR OPEN 
t IOLEF = 151 ,JINFOS -LOGICAL END OF FILE. 
t IOUXS = 152 ,~INFOS -USER TRANSLATE SPECIFlCATION ERROR 
t IUNSV : 153 ,iINFOS -NO SUCH VOLUME 
... 1 OI~OH = 154 ,iINFOS -NO hOLD ON LOCKED REQUEST 
... lUNMD = 155 ,iINFOS -NO 1~IOkE DISK SPACE 
t IOROF = 150 ,~INFOS -RAM ACCESS OUTSIDE FILE 
t IOICL = 157 ,;INFOS -ILLEGAL CLOSE 
t IUPID = 15ts ,;lNFOS -PHYSICAL 1/0 E.RROR 
t ImWE = 159 ,;INFOS -RESIDUAL DISK ERROR 
t IOTMO = 100 ,iINFOS -OISI\ GR MAG-TAPE TIME-OUT 
t IUIA~ = 101 ,;lI'4FOS -ILLEGAL ACCESS MlTh~D 
t IuXER = 102 , ; I I~F US -ILLEl:iAl T RAN S R E I~ U ~ S T 
t IOPRG = 1b3 ,;INFOS -PREOPEN OPEN ERROR 
t lUPRC = 104 ,;!NfOS -PRE.OPEN CLOSt tRf'OR 
t IOFCE = 105 ,;INFOS -FILt CLOSE ERROR 
t IOROF.. = 100 ,;INFOS -RDOS OPEN ERROR 
t ILJVAX = 107 ,;INFOS -VOLUME ALREADY EXISlS 
t IOZDX = 10~ ,;INFOS -Zt:RO LEN [)lSK XFER REQ 
t lalUe = 109 ,;l~FOS -ISA~ UPDATt eU~FLllT 
t ;INFUS -TABLE OVERFLO~ 
t IONMR = 17'" ,iINFu~ -INDEX NAME SPE.C ERROR 
t ILJ'JSI ; 171 ,;INFOS -NO SUCH INDEX 
t luNTL = 172 ,;INFOS -NAME TOu LONG 
t IUNNS = 173 ,;INFOS -NO NUDE SPACE 
t IOMTE = 174 ,iINFOS -MAG-TAPE 1/0 ERROR 
t lOONS = 175 ,;INFUS -DEVICE NOT SUPPORTED 
... luEVO = 170 ,;INFUS -OUTPUT END VOLUME tkROk 
t IOtVI = 177 ,;lNFOS -INPUT I:.NU VO~UME. E.RROR 
t IOCfv1P = 178 ,iINFOti -CUMPAR~ ERROR II SAI"'I) 
t IOI-<EZ = 179 ,;INFOS -RESuLUTION ERROR (ISAtIo) 
t IOIRM = 18~ ,iINFOS -ILLEGAL REL MOTION 
t 10lNA = 181 ,;INFOS -INVALID NO()~ ADDRE5S 
t IUICE = 182 ,;INFOS -INVALID CURRENT ENTRY 
+ IOTLV = 183 ,;INFOS -TUP LEVE.L tkROR 
t IOSNA = 184 ,iINFOS -SUB I\lDICES r~OT ALLO .... ED 
t luSNP = 185 ,;INFO::; -SU8-INDI:.X NuT DE.F ItH:.v 
t ~ Ot ~ I = 180 ,;lNFOS -EI .. D uF SUfj-lNDEX 
... IODPE. = ld7 ,;INFOS -DELETE PUSITIONING ERROR 

III-C-20 093-000114-01 



Licensed Material - Property of Data General Corporation 

.....----------- INFOS User Parame ers or FORTRAN (concluded) 

DataGeneraI 
SOFTWARE DOCUMENTATION 

+ IOMK~ = 188 
+ IOIKL = 189 
t IOIEN = 1Q0 
+ IOIPS = 191 
t IUKAE = 192 
t IOKPE = 193 
t IOIRL = 19q 
t IORNP = 259 
t IONT~ = 260 
+ IONTS = 261 
+ IODRL = 262 
+ IOSIA = 263 
+ lOVER = 20q 
+ IOSIL = 205 
t 
+ IOALS = 260 
+ 
+ lOSlO = 207 
+ 10SS1 = 268 
+ 
+ IODWK = 2b9 
+ 
+ 10E~L = 270 
+ IOwWK = 271 
+ IOILl = 272 
+ lOllS = 273 
+ 10VID = 27q 
+ lOFID = 275 
+ IOFSQ = 276 
+ 10GEN ; 277 
+ IOEXD ; 278 
+ IOBeT = 279 
+ 10RFT = 28~ 
+ IOFSN = 281 
t IO~IL = 282 
+ IOSlS : 2ij3 
+ IOFNF : 28q 
+ IO~T~ ; 285 
+ IURTL = 286 
+ IOWNE ; 287 
+ 
+ IOOwU = 288 
+ 
t IOSPL = 289 
t IURKR = 290 
+ IODIP = 291 
+ 10MPR ; 292 
t IOSTR _ ~93 

093-000114-01 

,;INFOS -MULTI KEY WRITE ERROH 
,IINFOS -ILLEGAL KEY LENGTH 
,;INFOS -INVALID ENTRY NUMBER 
,;INFOS -ILLEGAL COMMAND CONTRvl 
,'I~FuS -KEY ALLR~AUY ~XISTS 
,iINFOS -KEY POSITIONING ERROR 
,;INFOS -INVALID RECORD LENGTH 
,;INFOS -DATA BASE REC NOT PRESE~T 
,;INFOS -MIN NUDE SIZE TOO BIG 
,;INFOS .MIN NODE SIZE TCO S~ALL 
,ilNFOS -DATA RECURD LOCKED 
,;INFOS -SuB-I~DEX IN USE 
,;lNFOS -VtR~ION CUNFLICT EFROk 
,;INFOS -SU8-INDEX LINK COUNT 

iINFOS -OVERFLOw 
,;lNFOS -ALREADY LINKED 
;INFO~ -TO SUB-lNDEX 

,;INFUS -SUS-INDEX LEVEL OV~kFL~~ 
,IINFOS -SUB-INDEX HAS SU8-IN~EX 

:INFOS -D~LETE ~UB-INDEx E~~G~ 
,;INFOS -ATTE~PT TO DELETE ENTRY 

;lNFOS -WITHOUT K~Y~D ACCESS 
,;INFOS -INUEX ENTRY LOCKED 
,IINFOS -NO WklTE WllhUUT ~~Y 
,;INFOS -ILLEGAL LABEL 
,iI~FOS -lLL~GAL LAUEL SPEC 
,;INFOS -VOL ID DOESNT MATCH 
,;INFOS -FILE ID DOESNT MATCH 
,iINFOS -FILE SEQ NU~I DOESNT iv1ATCli 
,;INFOS -G~N NUM DO~SNT MATCH 
,iINFOS -EXP ~ATE NOT EXPIR~D 
,iINFOS -BLOCK COUNT INCORRECT 
,IINFOS -RECORD FORMAT CONFLICT 
,iINFOS -FILE SECTION NUM~ER 
,;INFOS -EXCESSIVE POSITION LEVELS 
,IINFOS -SYSTEM LOAD SIZE ERRUR 
,iINFOS -TAPE FILE NOT FOUND 
,;INFOS -~LOCKSIZ~ < 8 BYTES 
,IINFOS -RECORO+OvERHEAU > ~L0C~SIZ~ 
,ilNFOS -~RITE IS NOT AT END-OF-FIlE 

iINFOS -FuR SHARED SAM UPDATE FILE 
,;INFOS -WRITE ALLOWED ONLY FOR O~E 

;INFOS -USER OF SHARED SAM UPDATE FILE 
,;INFOS - SPOOLING ON ILLE~AL DEVICE 
,ilNFOS - RETRIEVE KEY ERROR 
,;lNFOS - DELETE INDEX POSITIO~ ERR~R 
,iINFOS - SPACE MANAGEMENT INCONSI~TENCY 

;INFuS - SEARCH CP TABLE ERROR 

End of Appendix 

III-C-21 INFOS User Parameters for FORTRAN 





Licensed Material - Property of Data General Corporation 
DataGeneraI 
SOFTWARE DOCUMENTATION 

Appendix D 
INFOS System Error Messages 

The chart which follows attempts to shed some light on 
the messages you'll receive if either you or the system 
go awry. We have included the octal code number of 
the error (which the system will return to your 
program), the mnemonic name of the error, a brief 
description of what that code means, and a reference to 
the chapter(s) within this manual where you can find 
further information about the operation (s) mentioned. 
In this last column, we use a roman numeral to denote 
the section of this manual in which you should look 
(e.g., Part n, and a decimal number to denote the 
chapter within that part (e.g., 1,6 means refer to Part I, 
Chapter 6). 

Note that you can get the message associated with any 
error code by using the INFOSER utility. To do this, 
simply type in the following: 

INFOSER n 

where n is the error code number. 

The system will return the code number and its 
message. 

Note to All FORTRAN Programmers: 
The error code which the INFOS system returns to 
your FORTRAN programs will be in decimal, not octal. 
In addition, it will be three numbers higher than that 
returned to Ass~mbly programs. Therefore before 
using INFOSER, subtract three from the er;or code 
returned to your program by the system, then type in 

INFOSER ntO 

where n is the returned error code number minus 
three. 

You may also perform the following steps on the 
decimal number you receive if you want to use this 
appendix: 

1. Subtract three from the error code returned by the 
system. 

2. Convert the result to an octal number. 

3. Look up that octa/number in the following listing. 

For example, if the system returned error code 287 to 
your program, you would do this: 

1. 287 - 3 = 28410 

2. 28410 = 4348 
3. Error code 434 = IOWNE 

093-000114-01 III-D-1 INFOS System Error Messages 

.. 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Code Name Description Reference 

200 IOUER You have requested either an unknown function (check your spelling), or one which 1-2,3,4,or5; 
doesn't apply to either the access method or the processing mode you selected. or 

11-2,3,4,or 5 

201 IOVTI The system has encountered a block whose length is not equal to the block size you 11-6 
specified for this run. This indicates that you requested a write operation but neglected 
to set ICVLB (Allow Variable Length Blocks) in the FOP. 

202 IOROO You specified the Rewrite mode (FIRER in the FOP) for a nondisk device. 11-6; 1-2 

203 IOIFO You requested a Mag Tape Control function for a nontape device. 11-6;11-2 

205 IORFC You requested the Rewrite function for a Data Sensitive record. 1-2;11-2 

206 IOEXR You have attempted to gain exclusive use of a file already in use. 1-2;11-6 

207 IOLOK You have attempted to open a file already opened for exclusive use. 1-2;11-6 

210 IOFNO You have issued a processing function request for a file which you have not II-I 
successfully Pre-opened and Opened. (Check AC2 for Pre-open and Open error 
messages.) 

211 IOPCE You have attempted to open a nondisk device which is already open. II-I 

212' lOIRE The system has encountered an error while attempting to process your file's .VL file. 11-6 

213 IOPNO The system has timed out while waiting for an internal resource required to complete 1-6;III-E 
your current request. 

214 IOIRI You have issued a rewrite inverted request and the address of the data record (in the 1-5;11-5 
index entry) does not match the address you specified. 

215 IOOVF You have attempted to use a currently existing name for your file (i.e., change your 1-6 
file's name). 

216" IOBEW Your block size exceeds your specified 'window' size. 1-6 

217 IOVME There isn't enough room in either the foreground or the background (whichever 1-6 
you're using) to build the buffers for the file you're trying to open. 

220 IOXLE You requested code translation, but the system cannot load its translation table into 11-6 
memory. 

221 IOVFE The system cannot open your file as requested because of an error in the. VL file or 11-6 
because the file doesn't exist. 

222 IOVCE The system has encountered an error while attempting to close the .VL file. 11-6 

223 IOMEM You did not provide enough file control space to open your file as requested. 1-6 

224 IOLEF The system has determined that it cannot process your current request without going 
beyond the end of the file. 

225 lOUTS You have made an error in specifying what you want translated. 11-6 

226 IONSV You have requested access to a volume which doesn't exist. 1-1 

227 IONOH You have requested access to a record which is locked, but you did not specify "Hold" 1-2 or 3; 11-6 
in your request. 

111-0-2 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneraI 
SOFTWARE DOCUMENTATION 

Code Name Description Reference 

230 IONMD There is no more disk space available to continue processing. 1-2,3,4, or 5 

231 IOEOF The system has determined that the record you want is outside the bounds of your 1-3 
existing RAM file. 

232 IOCNV The system has encountered an error while attempting to close one volume and open 11-6 
another. 

234 IOUOR The system cannot write a block of data to your file. (This usually indicates a hardware 
problem.) 

235 IOTMO Either your disk or your mag tape has timed out. 1-6~ III-E 

237 IOXER You have requested translation, but have not provided all the necessary parameters. 11-6 

241 IOPRC The system either can't find (or has encountered difficulty processing) the file's II-I 
Permanent File Specification. 

242 IOFCE The system has encountered an error while trying to close the file's PFS. II-I 

243 IOFOE The INFOS system cannot complete the operating system phase (RDOS) of the file II-I 
opening procedure. 

244 IOFAX You have attempted to create a file whose name is already in use (use another 
filename) . 

245 IOZDX You have requested a zero length transfer for a disk. 

247 IONMR You have attempted to open an index which does not belong to the database you 11-4, 5 or 6 
specified. 

250 IONSI The system is not able to close all the open files. (You can correct this by rebooting the 
system before processing.) 

251 IONTL The filename you have specified is too long. (Filenames cannot exceed 48 characters, 1-6 
including all device specifiers, delimiters and extensions.) 

252 ION IS You have no more available space for your ISAM or DBAM file. 1-6~ III-B 

253 IOMTE The system has detected an error while processing a magnetic tape request. 1-2~ III-A 

254 IODNS You have attempted to open a file residing on a device which the INFOS system does 1-6~ III-E 
not support. 

256 IOEVI The system has encountered the end of a volume while processing an input file. 

257 IOCMP The system has encountered invalid data in an index. THIS IS A FATAL ERROR. 

260 IOREZ (Same as IOCMP.) 

261 IOSPE The system has encountered an error while trying to position to the entry you specified 1-4 or 5~ 
in the 'Key' and/or 'Relative Motion' field(s). 11-4 or 5~ 

11-6 

262 IOINA The system has encountered difficulty while trying to access an index. (Try reloading 
your file.) 

263 IOICE You have specified an invalid direction of relative motion from your current position. 1-5~ 11-5 
(To rectify this, try moving Up or using keyed access.) 

093-000114-01 111-0-3 INFOS System Error Messages 



DataGeneral 
SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation 

Code Name Description Reference 

265 IOSNA You have attempted to Define, Link, or Delete a subindex where subindexes are not 1-5; 11-5,6 
allowed. III-B 

266 IOSNP You have attempted to Link to or Delete a nonexistent subindex. 1-5; 11-5,6; 
III-B 

267 IOEST You have attempted to use Relative Motion beyond the bounds of the subindex. 1-5; 11-5; 
III-B 

270 IODPE You have tried to delete an index entry on which someone else is currently positioned. 1-4 or 5 

271 IOMKW You have issued a Write request using a multilevel key, and one of the keys you 1-5; 11-5,6 
specified does not match any other at its indicated subindex level. 

272 IOIKL You have attempted to write a key which is either zero length or too long. 1-4 or 5; 11-6 

273 IOIEN The system has encountered an error while trying to access your index. This indicates III-B 
either an index structure problem or a system bug. 

274 IOIPS You did not specify either CCKEY or CCREL in PRCCW of your Extended Processing 11-6; 1-4 or 5; 
Packet. 11-4 or 5. 

275 IOKAE You have tried to Write an index entry which already exists in that subindex. 1-5; III-B 

276 IOKPE The system has encountered an error while trying to position to your specified entry. 1-4 or 5; 
11-4 or 5 

277 IOIRL 1) You have attempted to Rewrite a SAM record with a length different from the one 1-2 
read, or 

2) You have attempted to Write an ISAM or DBAM record that is longer than your 1-4 or 5 
specified page length. 

400 IONDR No database record exists for the index entry you specified. 1-4 or 5 

401 IONTB The node size you specified is too large for your specified page size. III-B 

402 IONTS The node size you specified is not large enough to hold three index entries. III-B 

403 IODRL The database record associated with the index entry you specified is currently locked. 1-4 or 5; 
11-4 or 5 

405 lOVER You have attempted to open a file which was created under a system whose parameter 11-6 
versions are different than your current system. 

406 IOSTL Too many subindex links currently exist to complete your request. 1-5; 11-5; 
III-B 

407 IOSAE You have attempted to Define or Link a subindex to a subindex entry which already 1-5; 11-5; 
owns a subindex. III-B 

410 IOSLO You have attempted to define a subindex at level 257. 1-5; 11-5; 
III-B 

411 IOSST You have attempted to delete a subindex which owns at least one subindex and which 1-5; 11-5; 
is currently linked to only one other subindex. III-B 

412 IODWK You have attempted to perform physical deletion, but you did not specify Keyed 1-5; 11-5 
access. 

111-0-4 093-000114-01 



Licensed Material - Property of Data General Corporation 
DataGeneral 
SOFTWARE DOCUMENTATION 

Code Name Description Reference 

413 IOENL The index entry you have attempted to access is locked. 1-4 or 5; 
11-4 or 5 

414 IOWWK You have attempted to write a new record without specifying Keyed access. 1-4 or 5; 
11-4,5 or 6 

415 IOILL You have used an illegal label format on a labeled magnetic tape file. (Usually this III-A 
means that the system did not find one or more of the required labels.) 

416 lOlLS The system does not support the label type and level which you specified in either the 11-6; III-A 
Volume Initialization Packet or in the File Definition Packet. 

417 IOVID The volume identifier you specified does not match that on the volume label. III-A; 11-6 

420 IOFID The file identifier you specified does not match that on the volume label. 11-6; III-A 

421 IOSFQ The file sequence number you specified does not match any of those on the tape. III-A 

422 IOGEN The generation number you specified does not match that on the record you requested. III-A 

423 IOEXD You have attempted to write over a file whose expiration date has not yet been III-A 
reached. 

424 IOBCT The block count of the trailer label does not agree with the system's count. III-A 

425 IORFT You have specified a record format which conflicts with that specified in the header 1-2; III-A 
label. 

426 IOFSN The file section number on the header label is not correct. III-A 

427 IOLVR You have attempted to access more subindex levels than exist in your index. 1-5 

431 IOFNF The system has not been able to locate a tape file with the specifier you indicated. III-A 

432 IOBTS You have specified a page size of less than eight (8) bytes for a database file. (Database 1-5 
pages must be at least eight bytes long.) 

434 IOWNE You have attempted to Write in a shared SAM file (opened in the Update mode) at 1-2 
some point other than the end-of-file. 

435 IOOWO Someone else is currently writing in the SAM file for which you issued a write request. 1-2 

436 IOSPL You have specified spooling for a device other than a line printer or teletype. 1-2 

440 IODIP You have attempted to Delete in an index file while someone else is positioned in that 1-4 or 5; 
index for the same purpose. 11-4 or 5 

441 IOMPR You specified Space Management and the map doesn't agree with the page space 
available. (When this happens, the system will use the page size rather than the map 
size.) 

442 IOSTR You have requested either Delete or Define Subindex, and the system cannot find the 
original of your specified duplicate key. 

End of Appendix 

093-000114-01 III-D-5 INFOS System Error Messages 





Licensed Material - Property of Data General Corporation 

TTl TTO 

Device Yes Yes 
Restart 

Variable No No 
Blocks 

Normally Yes No 
Single 
Volume 

System 
Labels 

Parity 

Conflict 
Checking 

Random 
Allocation 

Initialize 
Contiguous 
Files 

Runtime 
I ntialization 

Runtime 
Release 

Rewind on 
Volume Open 

Seconds to 
Timeout 

093-000114-01 

Appendix E 
Device Characteristics 

PTR PTP PLT CDR LPT AID CRT MUX 

Yes Yes Yes Yes Yes Yes Yes Yes 

No No No No Yes No No No 

Yes Yes Yes Yes Yes Yes Yes Yes 

End of Appendix 

III-E-1 

DataGeneraI 
SOFTWARE DOCUMENTATION 

MTA CAS F.H. M.H. 
Disk Disk 

No No No No 

No No No No 

No No No No 

Yes Yes 

No No No No 

Yes Yes Yes Yes 

Yes Yes Yes Yes 

Yes Yes Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

15 600 -
Device Characteristics 





DataGeneral 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

Index 

In this Index, page references are shown as follows: the 
roman numeral denotes the section of the manual 
(e.g., Part I) and the decimal number denotes the 
chapter and page reference. Thus, 1-4-2 indicates that 
you will find information about that topic in Part I, 
Chapter 4, page 2; f and ff are used to denote the page 
or pages following the reference. 

access, concurrent 
ISAM 1-4-2 

access methods 1-1-1 
keyed 1-4-2 
relative 1-4-8 
(see also relative access and keyed access) 

address space 1-6-5 
allocation (contiguous vs. random) of disk space 1-6-10 
ANSI levels Ill-A-lff 
appending records 1-2-12 
approximate keys 1-5-17 
arguments (FORTRAN) III-C-2 
assembly language parameters 11-7-1,11-7-15 

background 1-6-5 
BCBs (Buffer Control Blocks) 1-6-3ff 
BF 

see branching factors 
BLDFDP 11-7-2ff 
BLDIPKT 11-7-15 
BLDKDP 11-7-11 
BLDLSP 11-7-13 
BLDMTC 11-7-10 
BLDPNT 11-7-10 
BLDPP 11-7-8 
BLDULT 11-7-15 
BLDVDP 11-7-6 
BLDVIP 11-7-14 
blocking factor III-B-8 
block-packing 1-1-5 

ISAM and DBAM 
see page size 

RAM 1-3-1 
SAM 1-2-5f 
size 1-1-4f 

branching factors III-B-2 
buffers 

control blocks (BCBs) 1-6-3ff 
DBAM 1-5-6ff 
I/O management 1-1-5, 1-6-8f 
I/O space 1-6-6f, 1-6-2 
ISAM 1-4-4ff 
RAM 1-3-1 
SAM 1-2-1 

building/ processing rou tines 
FORTRAN III-C-2,III-C-I0 

byte pointers 11-1-1 

call formats (FORTRAN) III-C-3 
calls, system 11-1-3 
cells 1-6-2 
channel number 11-1-3, III-C-9 
close request 

RAM 11-3-5 
SAM 11-2-6 

CMT instruction III-C-4 
COBOL, Prefatory Note, Part II 
code, resident RDOSIINFOS 1-6-2 
combined access (keyed plus relative) 1-5-13,11-5-15 
compression, key 1-5-5, 1-6-3 
concurrent tasking 1-1-2 
contiguous allocation 1-6-10 

ISAM 1-4-5 
RAM 1-3-2 
SAM 1-2-2 

contro] area, file 1-6-3 
control blocks 1-6-3ff 
Create Update mode 1-1-2, 11-4-1ff, 11-5-lff 
CTR instruction 1-1-4 
current position 1-4-2 

database 
files 111-B-8 
records 1-4-2 
suppress 
ISAM 1-4-10,1I-4-10f 
DBAM 1-5-17,1I-5-16f 

093-000114-01 Index-1 Index 



DataGeneral 
SOFTWARE DOCUMENTATION 

data sensitive record 1-1-3 
transfers 1-1-5 

data transfers 1-1-4, III-B-8 
see also appropriate access method 

DBAM (Data Base Access Method) 
access methods 1-5-11,11-5-15 
approximate keys 1-5-17 
automatic key compression 1-5-5 
creation 1-5-6ff 
define subindex 1-5-16,11-5-19 
delete 1-5-16, 11-5-20 
delete subindex 1-5-16,11-5-21 
file inversions 1-5-4 
general concepts 1-1-2, 1-5-lff 
generic keys 1-5-17 
index levels 1-5-1, 1-5-6 
link subindex 1-5-16,11-5-19 
linked subindexes 1-5-4 
lock/unlock 1-5-17,11-5-17 
multiple indexes 1-5-4 
opening 1-5-10,1I-5-1ff 
optimized distribution 1-5-5 
partial records 1-5-3 
processing 1-5-1lff, 11-6-20 
programming 11-5-lff 
read 1-5-15,11-5-16 
reinstate 1-5-16,11-5-21 
retrieve high key 1-5-17,11-5-21 
retrieve key 1-5-17,11-5-21 
retrieve status 1-5-16, 11-5-22 
retrieve subindex definition 1-5-17,11-5-21 
rewrite 1-5-16, 11-5-18 
subindexes 1-5-1 
suppress database 1-5-17, II-5-16 
suppress partial record 1-5-17,11-5-16 
temporary indexes 1-5-5 
volume merit factors 1-5-8 
write 1-5-15 11-5-17 

DEFAULT (in'FORTRAN) III-C-2 
define subindex 1-5-16, 11-5-19 
definition, retrieve subindex 1-5-17,11-5-22 
delete subindex 1-4-10, 1-5-16, 11-4-12, 11-5-21 
deleting records 

ISAM 1-4-9f, 11-4-12 
DBAM 1-5-16,11-5-20 

delimiter tables 1-1-4 
device timeouts 1-6-10,III-E 
direct access 

see RAM 
disable file initialization 1-2-2, 1-4-5 
disk files 

processing 1-1-7 
SAM 1-2-lff,II-2-lff 

disk space allocation 1-6-10 
distribution, optimized 1-5-5 
duplicate keys 1-4-2 

Licensed Material - Property of Data General Corporation 

end-of-volume labels Ill-A-lff 
entries, subindex III-B-lf 
error conditions (FORTRAN) III-C-3 
error messages III-D 
extended processing packets 11-1-2, 11-6-20 

building 11-7-8 
extensions (to filenames) 1-6-10 

F4INFOS.LB III-C-lff 
F5INFOS.LB III-C-lff 
FCBs (File Control Blocks) 1-6-3ff 
FDPs 

see file definition packets 
FEOV 1-3-6, 11-3-5 
File 

control area 1-6-3f 
control blocks (FCBs) 1-6-3f 
creation 1-1-7 

DBAM 1-5-6 
ISAM 1-4-3 
RAM 1-3-1 
SAM 1-2-2ff 

extensions 1-6-10 
initialization (SAM) 1-2-2 
inversion 1-5-4 
naming 1-6-8,1-1-7 
multivolume 1-1-6 
opening 1-1-7, 11-1-3 

DBAM 1-5-10ff,II-5-lff 
ISAM 1-4-7, 11-4-lff 
RAM 1-3-3,1I-3-lff 
SAM 1-2-4ff, 11-2-1ff 

processing 
DBAM 1-5-11ff, 11-5-15ff, III-C-I0 
ISAM 1-4-8ff, 11-4-9ff, III-C-I0 
RAM 1-3-3ff, 11-3-4ff, III-C-I0 
SAM 1-2-12ff, 11-2-4ff, III-C-I0 

file definition packets 1I-1-lf, 11-6-lff 
building 11-7-2 (assembly), III-C-4f (FORTRAN) 
parameters 11-6-9 

file specification, permanent 1-1-7,1-4-3, II-I-4f 
FINFOS.FR (FORTRAN) III-C-3,III-C-12ff 
fixed length records 1-1-3 

transfers 1-1-5 
force end of volume (FEOV) 1-3-6,11-3-5 
foreground 1-6-5 
FORTRAN (IV or 5) III-C-lff 

call formats III-C-3ff 
loading your program III-C-3 
user parameters III -C-12ff 

general processing packets II -1-2, II -6-18ff 
building 11-7-8 

generation number III-A-9 
generation, system (INFOS) 1-6-1 
generic keys 1-5-17 
global deletion 1-4-9f, 11-4-12, 11-5-20 
'grounds (foreground and background) 1-6-5 

Index-2 093-000114-01 



DataGeneraI 
Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION 

header labels III-A-6,III-A-I0ff 
hierarchical replacement 1-4-4 
high key, retrieve 

ISAM 1-4-10, 11-4-13 
DBAM 1-5-17,11-5-21 

high priority nodes 1-5-6,1-6-8 
Hold feature 1-3-6 
HPNs 

see high priority nodes 

IBM levels Ill-A-lff 
.IINFOS 11-1-3 
Index 

entries III-B-2 
levels 1-5-1, 1-5-6 
multiple 1-5-4 
structure 1-4-2ff, 1-5-lff, III-B-l 

Indexcalc utility III-B-2, III-B-8, 1-6-3 
INFFDP III-C-l, III-C-4 
INFIFDP III-C-l, III-C-5 
IN FIN IT III-C-2,III-C-I0 
INFKEY III-C-l, III-C-7 
INFLSP III-C-l, III-C-8 
INFOPEN III-C-2,III-C-9 
INFOS (FORTRAN call) III-C-2,III-C-10 
.INFOS 77 11-1-4 
INFOSER utility III-D-1 
INFOX III-C-2,III-C-ll 
INFPREP III-C-2,III-C-9 
INFUL T III-C-l, III-C-8 
INFVDP III-C-l, III-C-6 
INFVIP III-C-l, III-C-6 
Ini tializa ti on 

labeled mag tape III-A-6ff 
at runtime III-A-7 
via system calls III-A-6 

SAM files 1-2-2 
volume initialization packet 11-6-31; III-C-10 

Input mode 1-1-2 
interface 

Assem bly language 11-7-1 ff 
FORTRAN IV or 5 III-C-l 

inversions, file 1-5-4 
invoking Assembly language interface 11-7-15 
110 buffer space 1-6-6 

buffer management 1-6-8 
ISAM (Indexed Sequential Access Method) 

concurrent access 1-4-2 
creation 1-4-3 
current position 1-4-2, 11-4-9 
database records 1-4-2 
duplicate keys 1-4-2 
general concepts 1-1-1, 1-4-1 
global/local deletion I -4-9f, II -4-12 
hierarchical replacement 1-4-4 
index file 1-4-2ff 
key length 1-4-4 
keyed access 1-4-2, 11-4-9 
lock/unlock 1-4-10,1I-4-10ff 

093-000114-01 

node size 1-4-3 
occurrence numbers 1-4-2 
opening 1-4-7, 11-4-1 ff 
pages 1-4-3 
permanent file specification 1-4-3f 
processing 1-4-8ff, 11-4-8ff, 11-6-20 
programming 11-4-1ff, 11-6-20 
read 1-4-9,11-4-10 
read-after-write verification 1-4-4, 11-4-9 
reinstate 1-4-10,11-4-12 
relative access 1-4-8, 11-4-9 
retrieve high key 1-4-10,11-4-13 
retrieve key 1-4-10, II -4-13 
retrieve status 1-4-10, 11-4-13 
rewrite 1-4-9,11-4-11 
space management 1-4-3 
suppress database 1-4-10, 11-4-10 
volume definition 1-4-5f 
volume table entries 1-4-4 
write 1-4-9, 11-4-11 

keys 
access 1-1-1,1-4-2,11-4-9 
approximate and generic 1-5-17 
compression 1-5-5,1-6-3, III-B-l 
definition packets 11-1-2,11-6-24,11-7-11, III-C-7 
DBAM 1-5-lff 
duplicate 1-4-2 
ISAM 1-4-4 
retrieve high 
ISAM 1-4-10,11-4-13 
DBAM 1-5-17,11-5-21 
retrieve 
ISAM 1-4-10, 11-4-13 
DBAM 1-5-17,11-5-21 

key table 11-4,11-5-15,11-6-25 
keyword parameters 11-7-1 

labeled magnetic tapes 1-1-6,III-A-1ff 
control processing packet 11-7-10 
creation 1-2-4ff 
initialization 1-2-4, Ill-A-l, III-A-6ff 
opening 1-2-7ff,II-2-lff 
positioning III-A-9ff 
processing III-A-9 
user labels III-A-6 

label table, user 11-7-15 
label types and levels III-A-1ff 
LBINIT (utility) III-A-6 
least-recently-used method 1-1-5,1-6-8f 
line printers (as files) 1-1-7 
linking subindexes 1-5-4,1-5-16,11-6-28,11-7-13 
link subindex processing packets 11-1-2,11-6-28 

building 11-7-13 (Assembly); III-C-8 (FORTRAN) 
local deletion 1-4-9f 
lock 

DBAM 1-5-17,1I-5-16ff 
ISAM 1-4-10,1I-4-10ff 
RAM 1-3-5, 11-3-4 

logical volumes 1-1-6 

Index-3 Index 



DataGeneral 
SOFTWARE DOCUMENTATION 

LRU 
see least-recently-used method 

Macroassembler 11-7-lff 
magnetic tape 
, control request 11-2-7, 11-6-33f, 11-7-10 

labeled III-A, 1-2-4ff, 1-1-6, 11-2-lff 
unlabeled 1-6-11 

management, buffer 1-1-5 
memory space 1-6-1ff 
merit factors 1-5-8 
modes 

Create Update 1-1-2 
Input 1-1-2 
Output 1-1-3 
processing 1-1-2 
Update 1-1-2 

multiple indexing 1-6-4 
see also DBAM 

multitasking 1-1-2 
multivolume files 1-1-6 

names, file 1-1-7, 1-6-8 
NIL (in FORTRAN) III-C-2 
nodes 1-4-3,III-B-lff 

high priority 1-6-8 
root 1-6-8,III-B-lff 

occurrence numbers 1-4-2 
.OINFOS 11-1-3 
open procedures 11-1-3 

DBAM 1-5-10,1I-5-lff 
FORTRAN III-C-9 
ISAM 1-4-7,1I-4-lff 
RAM 1-3-3,1I-3-1ff 
SAM 1-2-4, 1-2-7, 11-2-lff 

optimized distribution 1-5-5 
Output mode 1-1-3 
overwriting (SAM) 1-2-12 

packet building III-C-l, III-C-4ff 
packets 1I-1-lff,II-6-1ff 

building 11-7 -lff 
pages 1-4-3 

size 111-B-2 
parameters 

Assembly language 11-7-lff 
FORTRAN user III-C-12ff 
PARIU 11-7-16ff 
partial records 1-5-3 

suppression 1-5-17 
partitions 1-6-5 
peripheral devices 1-2-7,1-6-10 
permanent file specification (PFS) 11-1-4, 1-1-7, 1-4-3ff 
physical volumes 1-1-6 
.PINFOS 11-1-3 
pointers, word and byte 11-1-1 
point function 1-2-12, 11-2-7 

processing packets 11-1-2,11-6-27,11-7-10 
positioning (labeled mag tapes) III-A-9 

Licensed Material - Property of Data General Corporation 
pre-open 11-1-3 

FORTRAN processing routine III-C-9 
pre-read function 1-3-4 
priority, high (nodes) 1-6-8 
processing, file 

disks 1-1-7 
FORTRAN III-C-I0 
tapes 1-1-7,1-2-12, III-A-9 
see also SAM, RAM, ISAM, DBAM 

processing modes 1-1-2 
processing packets 

building 11-7 -8ff 
extended 11-6-20,11-1-2, 11-7-8 
general 11-1-2,11-6-18,11-7-8 
link subindex 11-6-28 
magnetic tape control 11-6-33f 
point 11-6-27,11-7-10 

processing routines (FORTRAN) III-C-2,III-C-9ff 
programming your INFOS system II-I-Iff 

DBAM 11-5-lff 
ISAM 11-4-lff 
RAM 11-3-lff 
SAM 11-2-lff 

pseudo channel number 11-1-3 

RAM (Random Access Method) 
close 11-3-5 
creation 1-3-lf 
FEOV 1-3-6, 11-3-5 
Hold 1-3-6 
lock and SETX 1-3-6, 11-3-5 
opening 1-3-3,1I-3-lff 
pre-read 1-3-5, 11-3-6 
processing 1-3-3, 11-3-4ff, 11-6-18 
read 1-3-3, 11-3-4 
read and write sequence 1-3-4 
read inhibit 1-3-6 
write 1-3-4, 11-3-4 
write immediate 1-3-5 

random allocation 1-6-10 
DBAM 1-5-8ff 
ISAM 1-4-5 
RAM 1-3-2 
SAM 1-2-2 

RDOS 
and INFOS 1-6-1 
read-after-write verification 1-4-4, 1-6-6f 
read ahead-write behind technique 1-1-6 
read function 

DBAM 1-5-15,11-5-16 
ISAM 1-4-9,11-4-10 
RAM 1-3-3, 11-3-4 
SAM 1-2-12,11-2-5 

read inhibit 1-3-5 
records 

delimiters 1-1-4 
formats 1-1-3f 
packing 1-1-5 
partial 1-5-3 
suppress partial 1-5-17 

Index-4 093-000114-01 



Licensed Material - Property of Data General Corporation 

reinstate function 
ISAM 1-4-10,11-4-12 
DBAM 1-5-16,11-5-21 

relative access/position processing 1-4-8, 11-4-9 
release (mag tapes) III-A-6ff 
RELX 1-2-13 
resident RDOSIINFOS code 1-6-2 
retrieve high key 

ISAM 1-4-10,11-4-13 
DBAM 1-5-17,11-5-21 

retrieve key 
ISAM 1-4-10,11-4-13 
DBAM 1-5-17,11-5-21 

retrieve status 
IS AM 1-4-10,11-4-13 
DBAM 1-5-16,11-5-22 

retrieve subindex definition 1-5-17 
rewrite function 

DBAM 1-5-16,11-5-18 
ISAM 1-4-9, 11-4-11 
SAM 1-2-12,11-2-5 

root nodes 1-5-5,1-6-8, III-B-lf 
RPG II, Prefatory Note, Part II 
runtime initialization (labeled mag tapes) III-A-7 
runtime release (labeled mag tapes) III-A-7f 

SAM (Sequential Access Method) 
appending records 1-2-12 
close request 11-2-6 
creating files 1-2-2ff, 1-2-4 
disk files 1-2-1 
file definition options 1-2-8f 
file processing summary 1-2-13,11-2-4 
initializing tape files 1-2-4 
labeled tape files 1-2-4,11-2-1, III-A 
mag tape control 11-2-6 
opening files 1-2-4,1-2-7, 11-2-lff 
overwrite 1-2-12 
point feature 1-2-12,11-2-5 
processing 1-2-12f, 11-2-4ff, 11-6-18 
reading 1-2-12,11-2-5 
rewrite 1-2-12,11-2-5 
SETX and RELX features 1-2-13 
unlabeled tape files 1-2-7 
using peripheral devices 1-2-7 
volume definition 1-2-5, 1-2-2, 11-2-3f 
volume definition options 1-2-10f 
writing 1-2-12,11-2-5 

selector subindex III-B-7 
sequence numbers (mag tapes) III-A-9 
SETX 1-2-13,1-3-5 
single volume files 1-1-6 
space management 1-4-3 
stacks 1-6-2 
status, retrieve 

DBAM 1-5-16,11-5-22 
ISAM 1-4-10,11-4-13 

DataGeneraI 
SOFTWARE DOCUMENTATION 

subindexes 
define 1-5-16, 11-5-19 
definition packets 11-1-2,11-6-26,11-7-12 
delete 1-5-16,11-5-21 
file properties 111-B-lff 
levels 1-5-1, III-B-lff 
link 1-5-16, 11-5-19, 1-5-4, 11-6-28 
retrieve definition 1-5-17, 11-5-22 
selector 111-B-7 

suppress database 
DBAM 1-5-17,1I-5-16ff 
ISAM 1-4-10, 11-4-10ff 

suppress partial records 1-5-17, 11-5-16ff 
SYSGEN considerations (system generation) 1-6-1 
system 

area (memory) 1-6-2 
buffers 1-6-2ff 
calls II -1-3 f 
generation 1-6-1 
labels III-A-l 

table building routines (FORTRAN) III-C-l, III-C-8 
tables 11-1-2,11-6-25,11-6-17,11-7-15 
tape files - processing 1-1-7 
tasking, concurrent 1-1-2 
temporary indexes 1-5-5 
timeout intervals 1-6-11, III-E 
trailer labels III-A-6 
transfers, data 1-1-4ff 
translation tables 1-1-4 
tree levels III-B-l 

unblocked records 
see undefined length records 

undefined length records 1-1-3 
transfers 1-1-5 

unlabeled magnetic tapes 1-2-7, 1-6-11 
unlock 

see lock 
Update mode 1-1-2, 11-4-5ff, 11-5-5 
user area 1-6-5 
user labels III-A-6 
user label table 
Assembly III-C-8 
FORTRAN III-C-8 

variable length records 1-1-3 
transfers 1-1-5 

VCBs (Volume Control Blocks) 1-6-3 
VDPs 

see volume definition packets 
virtual memory 1-6-5 
.VL file 11-6-17 

093-000114-01 Index-5 Index 



DataGeneral 
SOFTWARE DOCUMENTATION 

volumes 
control blocks (VCBs) 1-6-3 
defining 1-4-5f, 1-2-10f 
definition packets 1-1-2,11-6-12,11-7-6, III-C-6 
force end of 1-3-6 
initialization packets 11-1-2,11-6-31,11-7-14, III-C-6 
initializing (mag tape) III-A-6ff; 
FORTRAN III-C-I0 
labels III-A-6,III-A-15ff 
logical vs. physical 1-1-6 
merit factors 1-5-8 
size 1-4-5 
tables 1-4-4, 11-1-2, 11-6-17 

Licensed Material - Property of Data General Corporation 

windows 1-6-2f 
word pointers 11-1-1 
write function 

DBAM 1-5-15,11-5-17 
ISAM 1-4-9, 11-4-11 
RAM 1-3-4, 11-3-4 
SAM 1-2-12,11-2-5 

write immediate 1-3-5, 11-3-4 

Index-6 093-000114-01 



________________________________________________________________________ No. __________________ _ 

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you 
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few 
minutes to respond. 

If you have any comments on the software itself, please contact your Data General representative. If you wish to 
order manuals, consult the Publications Catalog (012-330). 

Senior System Analyst 
Analyst/Program mer 

Operator 
Other ______________________________________ _ 

I ntroduction to the product 
Reference 

Tutorial Text 
Operating Guide 

What programming language(s) do you use? 

SD-00742 

Somewhat 

D 
o 
o 
o 
o 
o 
o 

Is the manual easy to read? 
Is it easy to understand? 
Is the topic order easy to follow? 
Is the technical information accurate? 

Can you easily find what you want? 
Do the illustrations help you? 



FOLD DOWN FIRST FOLD DOWN 

------------------------------------------------------------------------------------------------

BUSINESS REPLY MAIL 
No Postage Necessary if Mailed in the United States 

Postage will be paid by: 

Data General Corporation 
Southboro, Massachusetts 01 772 

ATTENTION: Software Documentation 

FIRST 
CLASS 
PERMIT 
No. 26 

Southboro 
Mass. 01772 

' .. 
-----------------------------------------------------------------.------------------------------

FOLD UP SECOND FOLD UP 

SO-00742A STAPLE 


