
MPjAOS 

Macroassembler, Binder, and 
Library Utilities 

•• Data General 







NOTICE Data General Corporation (DGC) has prepared this document for use 
by DGC personnel, customers, and prospective customers. The 
information contained herein shall not be reproduced in whole or in 
part without DGC's prior written approval. 

DGC reserves the right to make changes in specifications and other 
information contained in this document without prior notice, and 
the reader should in all cases consult DGC to determine whether any 
such changes have been made. 

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC 
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT­
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN 
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE­
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN 
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE­
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR­
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PROD­
UCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRAN­
TY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY 
OF DGC WHATSOEVER. 

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, 
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSO­
EVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARIS­
ING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFOR­
MATION CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, 
KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH 
DAMAGES. 

DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, 
microNOVA, NOVA, PROXI, SUPERNOVA, ECLIPSE MV /8000, 
TREND VIEW, MANAP, and PRESENT are U.S. registered 
trademarks of Data General Corporation, and AZ-TEXT, DG/L, 
ECLIPSE MV /6000, REV-UP, SWAT, XODIAC, GENAP, DEFINE, 
CEO, SLATE, microECLIPSE, BusiPEN, BusiGEN, and BusiTEXT 
are U.S. trademarks of Data General Corporation. 

Ordering No. 069-400210 
© Data General Corporation, 1982 
All Rights Reserved 
Printed in the united States of America 
Rev. 00, July 1982 



This manual is in three parts. 

Part I, on the macroassembler, describes how to use this language 
processing program. First, it briefly reviews the program develop­
ment and assembly processes. Then, it fully describes syntax; 
definition of symbols and macros; and assembler organization, 
control, execution and output. Pseudo-ops are described thematically 
and summarized in an alphabetically organized dictionary. 

Part 2, on the binder, describes how to use the binder program to 
produce executable programs from object modules. It explains how 
to specify object modules, overlays, and library files as input; how to 
select output; and how to interpret printed output from the binder. 
This section also includes a thorough description of object block 
formats, which are necessary for the construction of system utitities 
such as assemblers and compilers. 

Part 3, on the library file editor and symbol cross-reference analyzer, 
describes two programs that enable you to manage efficiently any 
number of object modules. 

Preface 



Preface 

Command-Line 
Conventions 

Related Manuals 

Throughout this manual, we use the following conventions to 
illustrate command-line formats: 

COMMAND 

argument 

{optional} 

Upper-case letters indicate a command mnemonic. Code this 
mnemonic into your program exactly as it appears in the 
command line. 

Lower-case italics represent an argument. Replace this symbol 
with the exact code for the argument you need. 

Curly brackets indicate an optional argument. (Command 
switches also appear in this format.) Do not include the 
brackets in your code; they only set off the option. 

A vertical bar indicates a choice of arguments (either arg1 or 

arg2)' 

The following manuals also belong to the series of books published 
on the MP / AOS operating system. 

MP/AOS Concepts and Facilities (DGC No. 069-400200) provides a 
concise but thorough introduction to the MP / AOS operating system 
for users who want to assess the system's advantages. 

MP/AOS System Programmer's Reference (DGC No. 093-40005ll 
documents MP / AOS system software and provides a complete 
dictionary of system calls and library routines. 

MP/AOS Command Line Interpreter (CLI) (DGC No.069-40020ll 
describes the interactive CLI program, the user's main interface to 
the MP / AOS system. A command dictionary provides command 
descriptions, formats, and examples. 

Loading MP/AOS (DGC No. 069-400207) describes how to install 
MP / AOS software on ECLIPSE-line computers and how to load 
tailored systems. 

MP/AOS System Generation and Related Utilities (DGC No. 
069-400206) describes the generation of an MP / AOS system tailored 
to specific applications. It also describes the following utilities, 
providing sample dialogues as appropriate: 

• SYSGEN, the interactive system generation utility; 

• DINIT, the disk initializer; 

• FIXUP, the disk repair utility; 

• SPOOLER, which controls line printer operations; 

• ELOG (error logger), the utility for interpreting the system log file. 



MP/ADS Debugger and Performance Monitoring Utilities (DGC No. 
069-400205) describes the following utilities, providing a dictionary 
of debugger commands and sample dialogues as appropriate: 

• FLIT, the process debugger; 

• PROFILE, which measures execution-time performance; 

• OPM, the process monitor that displays current system resource 
allocation and status. 

MP / ADS Advanced Program Development Utilities (DGC 069-400208) 
describes the following utilities: 

• Text control system (TCS), a method for managing different 
versions of a single file, 

• BUILD, an aid in creating a new version of a file from previously 
exising files, 

• FIND, which locates occurrences of strings in text files. 

MP/ADS SPEED Text Editor (DGC No. 069-400202) documents the 
features of SPEED, the MP lAOS character-oriented text editor. 

MP / ADS SLA TE Text Editor (DGC 069-400209) documents the 
features of SLATE, a screen- and line-oriented text editor. 

MP/ADS File Utilities (DGC No. 069-400204) describes the following 
utility programs, providing sample dialogues for each: 

• FEDIT, a file editor that permits modification of system files, 
including program and data files; 

• FDISP, which can display the address and data contents of a file 
or compare two files, displaying the parts that differ; 

• SCMP, which can compare two source programs line by line; 

• MOVE, which allows the transfer of files among directories; 

• AOSMIC, which allows manipulation of MP I ADS and MP lOS 
disks and files on an AOS system; 

• FOXFIRE, which permits the transfer of files among MP lOS, 
MP lAOS, and AOS systems over asynchronous communication 
lines. 

SP /Pascal Programmer's Reference (DGC No. 069-400203) documents 
an extended Pascal for system programmers. SP IPascal has all of 
the features of MP IPascal as well as special features targeted for the 
MP I AOS operating systems. 

Books on three additional programming languages supported by 
MP I AOS have previously been published as part of the bookset for 
the MP IDS operating system: 

Preface 



Preface 

MP/Pascal Programmer's Reference (DGC No. 069-400031) docu­
ments for system programmers a Pascal-based language targeted for 
the MP I as operating system. 

MP/FORTRAN IV Programmer's Reference (DGC No. 069-400033) 
documents for system programmers a language based on ANSI 1966 
standard FORTRAN with extensions. 

MP /Basic Programmer's Reference (DGC No. 069-400032) documents 
for new users a programming language based on ANSI standard 
Basic with extensions. 

MPjOS 

For information on Microproducts and a bibliography of documenta­
tion on the Microproducts line, see Introduction to Microproducts, 
DGC No. 014-000685. 

For information on cross development between MP lOS and MP lAOS, 
see MP/OS System Programmer's Reference, DGC No. 093-400001. 



Preface 
Command-Line Conventions .............. ii 
Related Manuals ........................ ii 

Part 1 The Macroassembler 

1. Review of the Macroassembler 
Program Developr.nent .................... 4 
Role of the Macroasser.nbler . .............. 4 

Assembler Output ....................... 7 

2. The Assembly Process 
The Source Program .................... 10 

Statement Format ...................... 10 
Statement Types ....................... 10 
Statement Components .................. 12 
Summary ............................. 14 

Asser.nbler Operations ................... 15 

3. Syntax and Relocation Rules 
Character Set . .......................... 18 
Stater.nent Forr.nat . ...................... 20 
Stater.nent Types ........................ 21 

Assembly Language Instructions .......... 21 
Macros ............................... 22 
Pseudo-ops ............................ 22 
Assignments ........................... 24 
Data .................................. 24 

Stater.nent Cor.nponents .................. 25 
Delimiters and Terminals ............... 25 
Numbers .............................. 26 
Symbols ............................... 32 
Expressions ........................... 33 
Operators in Expressions ................ 33 

Contents 

Relocating Syr.nbols ..................... 38 
Addresses and Contents, Relocation 
Comparison ........................... 39 

Relocating Expressions .................. 40 
Absolute Expressions ................... 40 
Relocatable Expressions ................. 41 
Resolving Relocatable Expressions ........ 42 

4. Partitioning Programs and 
Controlling Assembly 
Partitioning Prograr.ns ................... 48 

Assembler Location Counters ............. 49 
Location Counter and Memory Management50 
Beginning and Ending Modules ........... 51 

Controlling Asser.nbly ................... 52 
Intramodule Assembly Control ........... 52 
Extramodule Pseudo-Ops ................ 55 

5. Defining and Data 
Macros ............................... . 60 

Macro Definitions ...................... 60 
Macro Calls ............................ 65 
Listing Macro Expansions ............... 67 
Macro Related 
Pseudo-Ops ............................ 67 
Loops and Conditionals in Macros ........ 68 
Macro Examples ....................... 69 

Defining Syr.nbols . . . . . . . . . . . . . . . . . . . .. .73 
Semi-Permanent Symbols ................ 74 
Defining Labels ........................ 76 
Generated Numbers and Symbols ......... 77 

Specifying Data Attributes . .............. 80 
Radix Control .......................... 80 
Text Strings ........................... 80 



Contents 

6. Executing the Assembler 
Operating Procedures """"""""'" 84 

Simplest Use of Assembler, , , , , , , ' , , , ' , ' ,84 
Command Line Switches , , , , ' , ' , ' , , , , , , ,85 
Filenames, , , , , , , , , , , , , , , , , , , , , , , , , , , , ,87 
Building a Permanent Symbol Table , , , , , ,88 

Interpreting Printed Output """""'" 89 
Assembly Listing , , , , , , , , , , , , , , , , , , , , , , ,89 
Cross-Reference Listing """""'"",,92 
Error Listing """""""""""",,93 

7. Pseudo-op Dictionary, , , , ,95 

Part 2 The Binder 

1. Review of Binder Concepts 
Program Development"""""""" ,176 
Binder Role , , , ' , , , , , , , , , , , , , , , , 176 

Executable Programs ",""""""'" 1 77 
Binder Output Files ' , , , , , , , , , , , , , , , , , , , 179 

Binder Operations """"""" , , , , 1 79 
First Pass ' , , , , , , , , , , , , , ' , , , ' , , , , 180 
Between Passes ' , , , , , , , , , , , , ' , ' , 181 
Second Pass ' , , , , , , , , , , , ' , ' , , , 181 

2. Libraries and Overlays 
Libraries, , , , , , , , , , , , , , , , , , , 184 

Library Structure "',""""",""', 184 
Library Start Block , , , , , , , , , , , , , , , , , 184 
Binding Libraries """""""'"",,185 
Library-Related Utilities """"""'" 185 

Overlays, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,185 

3. Using the Binder 
Binder Command Line, , , , , , , , , , , , , , 188 

Filename Arguments, , , , , , , , , , , , , , , , , , ,189 
Using Libraries """"" , , , , , , , 190 

Executable Output Files ' , , , , , , , , , , , , , , , 191 
Program/Overlay Files, , , , , , , , , , , , , , , , ,191 
System Files, , ' , , , , , , , , , , , , ,192 
Program Parameter Symbols, , , , 192 

Binder Listings ' , , , , , , , , , , , , , , , , ' , , , , , , 193 
Load Map , , , , , , , , , , , , , , , , , , ' , , , , , , , , , 193 
Symbols Listing , ' , , , , , , , , , , , , , , , , , , , , , 195 
Error Listing """""""',",',"" 195 

4. Object Module Formats 
Contents of Object Modules ' , , , , , , , ' , ' , , 198 
Object Block Format ' , , , , , , , , , , , , , , , , , ' 198 

Block Header , , , , , , , , , , , , , ' , , , , , , ' , , , , 198 
Block Body , , , , , , , , , , , , , , , , , ' , , , , , , , , , 199 
Library File Format, , , ' , , , , , , , , , , , , , , ,206 

Part 3 Library File Editor 
and Symbol Cross-Reference 
Analyzer 

1. Library File Editor and Symbol 
Cross-Reference Analyzer 
Library File Editor, , , , , , , , , , , , , , , , , , , , ,212 

LED Command Line ' , , , , , , , , , , , , , , , , , ,212 
Creating aNew Library File ' , , , , , , , , , , ,212 
Force-Bind Flag , , , , , , , , , , , , , , , , , , ,213 

Symbol Cross-Reference Analyzer, , , , , , ,214 
SCAN Command Line ' , ,214 
Arguments to SCAN, , , , , , , , , , , , , ,215 
SCAN Output ' , , , , , , , , , , , , , , , , , ,215 

A. ASCII Character Set", , , , , , ,217 

B. Macroassembler Error Codes, 219 

C. Cross Development , ' , , ,229 

Index , , , , , , , , , , ,231 

DG Offices 

How to Order Technical 
Publications 

Technical Products Publications 
Comment Form 
Users' Group Membership Form 



Figures 
Part 1 
1.1 From source program to memory . . . . .. 6 
1.2 Assembler outputs . . . . . . . . . . . . . . . . . . 7 
2.1 The source statement . . . . . . . . .15 
4.1 Varying sizes of process segments .......... 49 
6.1 Assembly listing ......................... 90 
6.2 Cross-reference listing. . . . . . . . . . . . . .. 93 
6.3 Error listing. . . . . . . . . . ......... ' .. 94 
Part 2 
1.1 Binder in program development . . 177 
3.1 Binder input modules (impure area) 

into program file. .. . . . . . . . . ... 190 
3.2 Partial binder listing (without /LIBLIST) .194 
3.3 Partial binder listing (with /LIBLIST) . . . 195 
4.1 Object module format . . . . . . . . . . 198 
4.2 Data block structure . . . . . . . . .201 
4.3 Structure of relocation dictionary entries .. 202 
4.4 Title block structure . . . . . . .......... 202 
4.5 End block structure. . . . . . . . . . . . . 202 
4.6 Unlabelled common block structure ....... 203 
4.7 External symbols block structure ......... 203 
4.8 Symbol entry in external symbols block. . 203 
4.9 Entry symbols block structure. . . . . . . . .. .204 
4.10 Symbol entry in entry symbols block ...... 204 
4.11 Task block structure .................... 205 
4.12 Named common block structure .......... 205 
4.13 Library format. . . . . . . . . . . . . . ..... ' . 206 
4.14 Format of library start block and module 

descriptor .................. . 
4.15 Format of library end block 
Part 3 
1.1 Partial SCAN listing 
Appendices 
A.l ASCII Character Set ...... . 

Tables 
Part 1 
3.1 Special Characters. 
3.2 Statement field terminals. 
3.3 Terminals.. . ..... . 
3.4 Operators ............ . 
3.5 Operator priority levels .... . 
3.6 Relocatable expressions 
4.1 Location counter / code relationships 

.. 207 

. .207 

.216 

. . . . 218 

· .19 
· .20 

.25 
. .. 34 

37 
· .45 

... 50 
4.2 Location counter and memory management 

pseudo-ops . . . . . . ........... 51 

Contents 

4.3 Pseudo-ops that begin and end modules ..... 52 
4.4 Loop and conditional pseudo-ops ........... 53 
4.5 Value symbols that control assembly ....... 54 
4.6 Stack control pseudo-ops .................. 54 
4.7 Intermodule communication pseudo-ops .... 55 
4.8 Binder directive pseudo-ops ............... 57 
5.2 Symbol definition pseudo-ops ............. 75 
5.3 Generated symbols in source and listings ... 78 
5.4 Radix control pseudo-ops ................. 80 
5.5 Pseudo-op that affect text strings .......... 81 
6.1 MASM command line function switches .... 86 
6.2 Filename extensions. . . . ............. 87 
6.3 Object filenames ........................ 88 
6.4 Assembly listing fields ................... 91 
6.5 Address and data field relocation base 

symbols. . . . . . . . . . . . . .................. 91 
6.6 Pseudo-ops that control assembly listings ... 92 
6.7 Cross-reference assignment mnemonics ..... 93 
6.8 Error codes. . . . . . . . . . . . . . . . . . . . .. 94 
7.1 Carry mnemonics . . . . . . . . .. 10 1 
7.2 Shift mnemonics. . . . . . . . . . . . . . . . . .. ..101 
7.3 Mnemonics for optional skip field ... 102 
7.4 Function mnemonics .................... 112 
7.5 .DUSR vs. simple assignments ... . .. 122 
7.6 Priority of object filenames ....... . .152 
Part 2 
1.1 Binder passes . . . . . . . . . . . . . . . 180 
1.2 Relocation bases . . . . . . . . . . .180 
3.1 Binder command line switches. . . . . . .189 
3.2 Overlay designators. . . . . . . . ......... 191 
3.3 Program parameter symbols ............. 192 
4.1 Object block types. . . . . . ......... 199 
4.2 Relocation operations . . . . . 200 
Part 3 
1.1 LED switches . . . . . . ...... . 
1.2 SCAN function switches .. 
1.3 SCAN listing codes. 
Appendices 

.212 
. .. 215 
. .216 

B.l Error codes and their symbols. . . . . 220 
C.l Binder switches, MP/OS target. .230 
C.2 Binder switches, MP / AOS target ......... 230 
C.3 Binder switches, AOS target.. . .......... 230 





The Macroassembler 





Review of the 
ndacroassennbler 

This chapter begins by reviewing the steps involved in writing and 
running a program. It then describes the role of the macroassembler 
and how it relates to the organization of memory. 



Review of the Macroassembler 

Program 
Development 

Role of the 
ndacroassembler 

There are five steps in developing an assembly language program: 

1. Writing and editing the program. Normally, you enter the 
program from a consol~ using one of Data General's text editors. 
The program in ASCII format is called a source module and, 
when stored on disk, a source file. By convention, source filenames 
usually end with the .SR extension. 

2. Assembling the program. The macroassembler produces the object 
module, stored in a new file, called the object file. Object filenames 
end with the .OB extension. You must eliminate assembly errors 
from the source module before proceeding to the next step, which 
transforms the object filets) into an executable program. 

3. Binding the program. The binder transforms one or more object 
modules into an executable program. Output from the binder is 
called the program file, and its name ends with a .PR extension. 

4. Executing the program. You execute the program by typing 

XEQ program-filename J 

at the console. When the program performs as you intend, this is 
the last step in the procedure. 

5. Debugging the program. Two general types of errors may occur 
when you run your program: runtime errors, which the operating 
system detects, and errors in the logic of the program. To find the 
cause of either type of error, you can use the source listing and 
MP / AOS debugger (see MP / ADS Debugger and Performance 
Monitoring Utilities, DGC No. 069-400205). 

The role of the assembler is to process the information in the source 
module in such a way that the binder can use it to produce an 
executable program file. A brief preview of the actions of the binder 
may help you understand the nature of the information that the 
assembler incorporates into the object module. 

As explained in MP/ADS System Programmer's Reference (DGC No. 
093-400051), MP / AOS programs run in a process space of 32K 
addresses. Similarly, programs occupy a logical address space of 32K 
addresses. When a program is running, address 0 of the program's 
address space uses address 0 of the process's address space, address 1 
uses address 1, and so forth. Hence, a process is defined as the 
system representation of a program, in some phase of execution, 
with a unique identifier and a separate address space. 

Addresses in a program's or a process's address space are called 
absolute addresses. These addresses are absolute in the sense that 
they are unique and well-defined, but they are not physical addresses. 
For example, each process has an absolute location 100 distinct from 
location 100 in any other process. Each time the program is run, the 
program may place the contents of location 100 in a different physical 
address. 



The process space is divided into three main areas. 

• Lower page zero consists of addresses in the range 0-377 s. 

• The pure area contains portions of the program, usually instruc­
tions, that are not modified during execution. The range of 
addresses in this area differs from program to program. 

• The impure area contains portions of the program, usually data, 
that may be altered during execution. The range of addresses in 
this area differs from program to program. 

The function of the binder, then, is to use information provided by 
the assembler to assign to each 16-bit word in the program file an 
absolute address in one of these process areas. 

To provide the information for the binder, the assembler translates 
each line in the source program into one or more 16-bit words, 
calculates an address for each word, and places the words and their 
addresses in the object module. (Object module formats are discussed 
in detail in Part 2, Chapter 4.) 

Each address assigned by the assembler consist of a relocation base 
and an offset from the relocation base. The assembler has a location 
counter associated with each relocation base. You control the 
assignment of relocation bases by incorporating assembler directives 
into your program. These directives determine the process 
area-pure, impure, or lower page zero-into which the translation 
of each line of your source program will be placed. The assembler 
calculates the offset part of the address by incrementing the 
appropriate location counter. 

The addresses produced by the assembler are either absolute ad­
dresses or relative, relocatable addresses. 

• Absolute addresses are not modified by the binder. The informa­
tion in the relocation base and offset fully specifies the actual 
absolute location that the word will occupy in the program. 
Absolute addresses are most used to specify locations in lower 
page 0 with hardware-defined functions. 

• Relocatable addresses determine the area that the word will reside 
in, but not the absolute address within that area. The binder 
computes the absolute address from the relocatable address. 

The assembler has a location counter for each of four relocation 
bases. These bases can be thought of as four assembler partitions, as 
follows: 

Review of the Macroassembler 



Review of the Macroassembler 

Partition 

Absolute 

ZREL 

NRELO 

NREL 1 

Type of Address and Code 

Non-relocatable (pure or impure code) 

Lower page zero, relocatable (impure code) 

Normal relocatable (impure code) 

Normal relocatable (pure code) 

Chapters 3 and 4 contain further information on relocation rules 
and relocation bases or partitions. 

The binder may combine more than one object module in a single 
program file. Names used in more than one module are global 
symbols. (Those used in only one module are local symbols. In 
addition to using global symbols, modules may communicate by 
sharing common areas which may be either named or unnamed. 
You use assembler directives explained in Chapter 4 for intermodule 
communication. 

When you execute the program, the operating system places the 
program file in memory, translating the logical addresses in the 
program file to physical addresses in memory. Figure 1.1 illustrates 
the stages involved in converting an assembly language source 
module (or modules) into a running program. 

Memory 

Figure 1.1 From source program to memory 



In addition to the object module, the assembler produces two kinds 
of printed output to enable you to see that your source program has 
been assembled as you intended. These are the source listing and the 
error listing. 

The source listing has two sections: the assembly listing matches 
each line of the source program against the assembled (binary) 
version, so that you may see how each line was interpreted by the 
assembler; the cross-reference listing helps you find symbols that 
you define in the source program. 

The error listing lists lines in your program that the assembler was 
either unable to interpret or recognized as logically inconsistent. 

Finally, you may instruct the assembler to construct a permanent 
symbol table to allow you to re-use symbols defined in one assembly 
during another assembly. This file is not printable. 

Figure l.2 illustrates the several outputs from the assembler. More 
details and samples of the various listings are given in Chapter 6. 

Source 
module 
ISR file) 

1)G.(l86'26 

Figure 1.2 Assembler outputs 

r----, 
I Permanent I 
I symbol I 

table I 
] IPS file) I 
L ____ J 

Program 
CPR) 
file 

Review of the Macroassembler 

Assembler Output 





The Assembly 
Process 

This chapter gives an overview of the actual assembly process. But 
first, it briefly reviews the elements of your input to the assembler. 
This input is in the form of one or more assembly language source 
modules (source files). The various outputs from the assembler are 
described and illustrated in Chapter 6. 



The Assembly Process 

The Source 
Program 

Statement Format 

Statement Types 

An assembly language source module consists of a series of source 
lines or statements. A source statement is a sequence of ASCII 
characters terminated by an end-of-line character (New Line, Form 
Feed, or Carriage Return). Below, is a summary of source statements 
in terms of their format, functions (type of statement), and compo­
nents. 

In general, all source statements in your module should adhere to 
the following format: 

label: statement body ;comment l 

Each nonblank line in your source module must contain a value for 
at least one of these three fields. 

Statement Label 

A label symbolically names a memory location. By using labels, you 
can refer to locations without regard for numeric addresses. 

If a source statement has a label, it must appear at the beginning of 
the source line and must be followed by a colon. For example: 

BEGIN: LDA D,SUM 
JUMP: JMP @17 

See "Defining Labels," Chapter 5, for further information on the use 
of labels. 

Statement Body 

The statement body may contain an assembly language instruction, 
macro or system call, pseudo-op, assignment, or data. 

These five kinds of statement body are discussed below, under 
"Statement Types." 

Comments 

You may include comments in your program to facilitate program 
development, maintenance, and documentation. The assembler does 
not interpret comments, and therefore comments do not affect the 
generation of the object module. 

The five types of source statements are as follows: 

assembly language instructions 
macros and system calls 
pseudo-ops 
assignments 
data. 



Each statement type must conform to the general statement format 
shown above. In addition, each of the five statement types also has 
its own specific syntax (see Chapter 3). 

Assembly Language Instructions 

Assembly language instructions perform specific operations at execu­
tion time. These instructions can be grouped into classes, which 
include: 

I/O instructions are used to communicate with peripheral devices. 
If, however, your program will run under an operating system, you 
will generally use I/O system calls instead of I/O instructions to 
communicate with peripherals. 

Memory reference instructions allow you to transfer data between 
memory and an accumulator or modify the program counter (PC) 
and/or a location in memory. 

Arithmetic and logic (ALC) instructions perform operations on 
data residing in the accumulators. 

Stack instructions allow you to manipulate the ECLIPSE hardware 
stack. 

In addition to using instruction mnemonics that are a part of the 
ECLIPSE instruction set, you may define your own instruction 
mnemonics (see Chapter 5). 

Macros and System Calls 

A macro is a series of assembly language source statements that you 
assign a name. Whenever you wish to place that section of source 
code in your source module, you simply enter the macro name; the 
assembler substitutes the corresponding statements. 

Included in the MP / AOS software package is a set of predefined 
macros, called system calls, that cause the system to perform 
functions on behalf of user programs. In some instances, such as 
when performing I/O under an operating system, you must use 
system calls instead of machine instructions. 

Chapter 5 explains how to use macros in your program. System calls 
are fully documented in MP / ADS System Programmer's Reference, 
DGC No. 093-400051. 

Pseudo-Ops 

A pseudo-op is a pseudo instruction because your program never 
executes it; rather, the assembler does. Pseudo-ops are used in the 
construction of the object module, but do not directly correspond to 
any words in it. Pseudo-ops are either assembler directives or value 
symbols. 

The Assembly Process 



1 The Assembly Process 

Statement 
Components 

Assembler directives perform the following functions, among others: 

• tell the assembler where in memory each word is to be placed; 

• allow separately assembled source modules to communicate with 
each other; 

• define macros. 

Value symbols are internal assembler variables. For example, .PASS 
is a value symbol representing the stage (pass I or pass 2) the 
assembler has reached in assembling a program. 

The syntax of pseudo-ops is explained in Chapter 3. 

Assignments 

An assignment statement associates a relocatable I6-bit value with a 
symbolic name. After associating a value with a symbol, you may 
use the symbol any time you wish to indicate the value. 

Data 

A data statement consists of a single number, symbol, or expression 
(see "Statement Components," below). When the assembler encoun­
ters a data statement, it evaluates the number, symbol, or expression 
and stores the value in memory. 

Examples of data statements are: 

o 
322 
32*5 
SIX 

The commercial "at" character (@) may be included in a data 
statement to indicate indirect addressing. Indirect addressing is 
explained in the Principles of Operation manual for your ECLIPSE 
computer. The syntax of @ is explained in Chapter 3. 

A source statement consists of one or more syntactic units, called 
atoms. Each atom is a string of one or more ASCII characters that 
the macroassembler views as a single entity. 

Expressions (made up of numbers, symbols, and operators) are not, 
strictly speaking, atoms but are considered as such for purposes of 
this discussion. There are, then, five types of atoms: 

terminals and delimiters 
numbers 
symbols 
expressions 
instruction modification characters. 



Delimiters and Terminals 

Delimiters, also called end-of-line characters, separate the source 
statements in your module. The delimiters are New Line, Form 
Feed, and Carriage Return. In this manual, a curved down arrow (J) 

represents any of these delimiters. 

Terminals are characters that separate numbers, symbols, and 
expressions from each other within a single source statement. In the 
following statement, the comma, colon and semicolon are terminals: 

BEGIN: LDA O,SUM ;load accumulator 

Terminals and their use are explained in Chapter 3. 

Numbers 

In a source statement, a number is an integer or a floating-point 
constant (fraction and exponent). 

The macroassembler recognizes three types of number representa­
tion: 

• single-precision integer, stored in one word (16 bits); 

• double-precision integer, stored in two words (32 bits); 

• single-precision floating-point constant, stored in two words 
(32 bits). 

Single-precision integers may appear in expressions and data state­
ments. Double-precision and floating-point constants appear only in 
data statements. 

Formats for number representation are explained in Chapter 3. 

Symbols 

A symbol is a name assigned to a binary word. Symbols may be 
defined during one assembly for use during subsequent assemblies. 
The definitions for re-usable symbols are stored in a symbol file. 
During assembly, the assembler constructs a symbol table containing 
the definitions of all symbols used by your program. Chapter 6 
explains the procedures for building a symbol table. 

There are three classes of symbols: 

• Permanent symbols consist solely of pseudo-ops. Conversely, all 
pseudo-ops are permanent symbols. These can either direct the 
assembly process or represent internal values. The assembler uses 
the symbol's context in the source line to determine its intended 
use. You cannot redefine these symbols. 

• Semi-permanent symbols are symbols defined using the symbol­
definition pseudo-ops described in Chapter 5. These include the 

The Assembly Process 



The Assembly Process 

Summary 

ECLIPSE instruction set mnemonics in the symbol file furnished 
by Data General, as well as any instructions you have defined in a 
parameter file or in the source program you are assembling. 
Instructions for redefining semi-permanent symbols are contained 
in Chapter 5. 

• Nonpermanent symbols are labels and symbols defined in 
assignment statements. Instructions for redefining nonpermanent 
symbols are contained in Chapter 5. 

Expressions 

An expression is a series of symbols and/ or integers separated by 
operators. For example, Z + 2 is an expression that consists of a 
symbol and an integer separated by the operator +. 

Though an expression is not a single atom, it is heuristically useful 
to consider expressions as atoms when describing the assembler 
algorithm. 

The use and format of expressions are explained in Chapter 3. 

Instruction Modification Characters 

The commercial "at" sign (@) is used to indicate indirect addressing 
in memory reference instructions and to set bit 0 of expression 
results for data words. 

The number sign (#) is used in certain ALC instructions to indicate a 
no-load operation. 

Figure 2.1 illustrates the three ways of looking at source statements 
described in this chapter (by format, type, and components). 



Terminals 

and delimiters 

Instruction 
modification 
characters 

Source 
statement 

The Assembly Process 

Data 

Numbers Expressions 
Macros and 
system calls Assignments 

DG-08628 

Single 

precisIOn 
integers 

Double 
precision 

constants 

Single 
precision 
floating­

point 
constants 

Figure 2.1 The source statement 

Symbols Labels 

Body 

An assembly language source module is a series of ASCII characters 
grouped into source statements. The macroassembler interprets those 
statements and produces a binary representation of the source 
module. The resulting binary module is called an object module. 

To produce an object module, the assembler scans the source code 
twice and is therefore called a two-pass assembler. During its two 
passes through the source code, the assembler evaluates source 
statements for validity, interprets symbols, expands macros, assigns 
relocatable addresses, and performs the calculations and data manip­
ulations needed to produce the object module. 

Pseudo-ops 

Assembler 
Operations 



The Assembly Process 

During the first pass, the assembler fills in the symbol table, using 
the symbol file and whatever symbol definitions appear in your 
source program. (See Chapter 6 for more about the symbol file). Not 
all symbols are defined the first time they appear in the source code, 
as in this example: 

At10 

A:3 

The first time the assembler encounters the symbol A, it places that 
symbol in the symbol table and marks it as undefined. Later, upon 
finding that A is a label, the assembler places the value 3 in the 
symbol table. 

The two passes are reflected in the error listing, which contains 
tallies of "pass 1 errors" and "pass 2 errors." The error listing is fully 
described in Chapter 6. The assembler allows a program to monitor 
its own assembly by using the .PASS pseudo-op (see Chapter 4). 

The assembler assigns relocatable addresses to the translations of 
source statements according to assembler directives in the source 
program. During the second pass, the assembler assigns a relocatable 
address to each word that you have not assigned an absolute address. 
All relocatable addresses are expressed in terms of relocation bases 
and offsets. Chapter 3 explains the rules that the assembler uses 
when assigning these addresses. 

For a better understanding of the actions performed by the assembler, 
refer to Part 2, Chapter 4, which describes object module formats. 
General forms of the two-pass algorithm appear in many assembler­
design texts. 



Syntax and 
Relocation Rules 

This chapter lists the valid assembler character set and describes the 
syntax for each type of statement that can occur in the source 
program. It also explains the order of evaluation of operators within 
expressions and the determination of each expression's relocation 
property. 



Syntax and Relocation Rules 

Character Set Each source module consists of a string of ASCII characters. The 
MP / AOS macroassembler allows you to use the following characters 
in a source module: 

• Upper- and lowercase alphabetic characters: A through Z and a 
through z. The macroassembler does not distinguish between upper 
case and lower case, except in text strings and string character 
constants (see .TXT in Chapter 7 and "Special Integer-Generating 
Formats," Chapter 3). 

• Numerals: a through 9 

• Symbol name characters: $ ? _ 

• Format control and end-of-line characters: Carriage Return, Form 
Feed, New Line, space, horizontal tab. 

• Special characters: 

, 
! & + * 

/ < > @ # $ 

% A 

\ E B D ** ( ) [ ] 

The special characters have special meanings to the macroassembler. 
Table 3.1 lists the meaning of each special character. 

Do not use delete (ASCII 1778), control characters, or characters 
with the parity bit set to 1 in your source module unless they are in 
comments or text strings (see. TXT, Chapter 7). If the macroassembler 
encounters one of these, it returns an error and ignores the illegal 
character. The null character (ASCII 0008) is always ignored. 

Appendix A lists the octal codes for each ASCII character. 



Character 

: (colon) 

; (semicolon) 

. (period) 

, (comma) 

+ (plus sign) 

- (minus sign) 

* (asterisk) 

/ (slash) 

B (upper or lower case) 

& (ampersand) 

! (exclamation point) 

> (greater than) 

< (less than) 

= = (two equal signs) 

= (equal sign) 

> = (greater than or equal) 

= (less than or equal) 

< > (not equal) 

, (apostrophe) 

" (quotation mark) 

"(uparrow) 

% (percent) 

_ (underscore) 

$ (dollar sign) 

\ (backslash) 

D (upper or lower case) 

E (upper or lower case) 

( ) (parenthesis) 

[] (square brackets) 

* * (double asterisks) 

@ (at sign) 

# (number sign) 

Table 3.1 Special Characters 

Meaning 

Follows all labels 

Precedes all comments 

Syntax and Relocation Rules 

A permanent symbol with the value and relocation property of the current location 
counter 

Indicates a decimal integer or a floating-point constant 

May appear in symbol names 

Delimits arguments 

Addition operator 

Unary operator indicating a positive value 

Subtraction operator 

Unary operator indicating a negative value 

Multiplication operator 

Division operator 

Single precision bit alignment operator (16 bits) 

Logical AND operator 

Logical OR operator 

Relational operator 

Relational operator 

Assigns a value to a symbol 

Assigns a literal value 

Relational operator 

Relational operator 

Relational operator 

Converts two ASCII characters to their octal values 

Converts an ASCII character to its octal value 

Identifies formal arguments in a macro definition string 

Terminates a macro definition string 

Directs the assembler to ignore the special meaning of a character that appears in a 
macro definition string 

May appear in symbol names 

Break character in number strings 

Generates unique labels within macros. 

Generates numbers and symbols 

Double precision (32-bit integer) indicator. 

Exponential notation indicator 

May surround a number, symbol, or expression to alter operator priority 

May enclose arguments in a macro call or conditional label 

Suppresses listing of the source line 

Indirect addressing indicator; directs the assembler to place a 1 in the indirect addressing 
bit 

No-load indicator; directs the assembler to place a 1 in the no-load bit 



Syntax and Relocation Rules 

Statement Format Assembly language statements conform to the format 

label: statement body ;comment ) 

Each non blank line in your source module must contain a value for 
at least one of these three fields. 

If you do not want the source line listed, place double asterisks (**) 

on the line. 

The assembler distinguishes between fields by searching for termi­
nals. Table 3.2 lists the characters that terminate each field in the 
source statement. 

Table 3.2 Statement field terminals 

You may include extra spaces and tabs between the statement fields 
in your source line without affecting the assembler's interpretation 
of that line. Thus, the following lines are equivalent: 

label:statement body;comment ) 

label: statement body ;comment ) 

The maximum length for a source statement is 136 characters. The 
macroassembler truncates all lines that are too long. 

The naming of labels is explained under "Symbols," later in this 
chapter. The formats for each type of statement body are explained 
under "Statement Types." 

The comments in your source program facilitate program develop­
ment and maintenance. The assembler does not interpret comments, 
and they do not affect the generation of the object module. 

Comments may appear alone on a line, or following a label or 
statement body. When the assembler encounters a semicolon, it 
ignores all subsequent characters up to the line delimiter. Comments 
appear on the assembly listing output. 



This section describes the syntax associated with the five types of 
source statements, namely assembly language instructions, macros, 
pseudo-ops, assignments, and data. 

Each assembly language instruction in the source module conforms 
to the syntax 

inst {arg j . .. 

where: 

inst is an assembly language instruction mnemonic. 

arg is an argument to the assembly language instruction. Not all 
instructions require arguments; some require more than one. 

The following are examples of assembly language instructions: 

LOA 0,1,1 
JMP LOOP 
POPB 

The Principles of Operation manual for your ECLIPSE computer 
describes each assembly language instruction. 

Literals 

A literal is a data value implicitly defined in an argument to a 
memory reference instruction. The format for a literal is 

MRI { ac, j = {exp I ext I inst j 

where: 

MRI is the mnemonic for a memory reference instruc­
tion. 

{exp I ext I instl is an expression, an external reference symbol 
(.EXTD or .EXTN), or an assembly language instruc­
tion. (The brackets and bars ( I ) simply indicate that 
you have a choice. They are not included in the 
command line.) 

When the assembler encounters an equal sign in the displacement 
field of a memory reference instruction, it calculates the data value 
following the sign and stores the value in another location. Literals 
are grouped together in a literal pool whose location you may 
explicitly control. 

You may use any absolute or relocatable expression, external 
reference symbol, or one-word instruction as a literal. 

Syntax and Relocation Rules 

Statement Types 

Assembly Language 
Instructions 



Syntax and Relocation Rules 

Macros 

Pseudo-ops 

You may use the .LPOOL (literal pool) assembler directive to explicitly 
set aside a storage area for the literals generated by your program. If 
you use the .LPOOL directives in the .ZREL area of your program 
(page zero, relocatable), all parts of the program will be able to 
directly reference any literal in the "pooL" 

If you do not include the .LPOOL directive, the .END pseudo-op 
contains an implicit .LPOOL, so that every literal generated by the 
program is assured a location. See Chapter 7 for a complete 
description of both the .LPOOL and the .END pseudo-ops and 
examples of their use. 

Literals defined at the time they are referenced in the MRI 
instruction occur only once within a literal pool, even if referenced 
by more than one instruction. Literals that are undefined when used 
in the MRI are given unique locations in the literal pool. 

The following examples show uses of literals. 

LOA 1. =3 
JSR @ = SUBR 
LOA 2.=AOO 1.2 

A macro is a series of assembly language source statements that you 
assign a name. 

The syntax of a macro call is 

macro-name arg . . . 

where: 

macro-name is the name you assign to the series of statements. 

arg is an argument to the macro. 

Chapter 5 explains how to create and use macros. 

Pseudo-ops are permanent symbols. They are used either as assembler 
directives, which instruct the assembler to do something, or value 
symbols, which represent internal assembler variables or values. 

The syntax for an assembler directive is 

.pseudo-op {arg} . .. 

where: 

. pseudo-op 

arg 

is the name of a pseudo-op . 

is an argument to the pseudo-op. 

By convention, pseudo-op names begin with a period, and every 



pseudo-op mnemonic is a permanent symbol. Assembler directives 
are the first character on a source line. 

When a pseudo-op is used as a value symbol, at least one atom (other 
than a label) must precede it. For example: 

X= .RDX 

This statement assigns the value of the current input radix to the 
variable X. 

Depending on how you use them in your source program, certain 
pseudo-ops can be used either as assembler directives or value 
symbols. The macro assembler uses the symbol's context in the source 
line to determine its intended use. 

If the source line begins with a pseudo-op, the macro assembler 
interprets it as an assembler directive. If you use the pseudo-op as an 
argument or as an operand in an expression, the macro assembler 
interprets it as a value symbol. To clarify these rules, consider the 
following examples. 

You may use the pseudo-op .RDX either to specify a new radix for 
numeric input (as an assembler directive) or to represent the value 
of the current input radix (as a value symbol). In the line 

.RDX 10 

the symbol .RDX begins the source line. Therefore, the macroassem­
bIer interprets it as an assembler directive and sets the current input 
radix to 10 (decimal). However, in the source line 

(.RDX) 

the character "(" signifies the beginning of an expression. Thus, the 
macro assembler interprets .RDX as a value symbol and generates a 
storage word with the numeric value of the current input radix (in 
this case, 10). 

Other Assembler Directives 

Three assembler directives do not conform to the format shown 
above: 

• Double asterisks (**) in a source line (usually, at the beginning of 
the line) instruct the assembler to suppress the listing of that line. 
This directive is listed along with pseudo-ops that control listings 
in Chapter 6 (Table 6.7). 

• A backslash (\) followed by a symbol name instructs the assembler 
to generate an integer or symbol name. This directive is explained 
in Chapter 5. 

• A dollar sign ($) appended to a label generates unique labels 
within a macro. This symbol is explained in Chapter 5. 

Syntax and Relocation Rules 



Syntax and Relocation Rules 

Assignments 

Data 

An assignment statement associates a 16-bit value with a symbolic 
name. 

The syntax of an assignment statement is 

user-symbol = I integer I symbol I expression I instruction} 

where: 

user-symbol is a user-symbol conforming to the rules for symbol 
names; 

integer 

symbol 

expression 

instruction 

is any 16-bit constant (you may not place a double­
precision or floating point number here); 

is any local user symbol or value symbol; 

is any valid expression; 

is any valid instruction. 

Do not include the brackets or bars in your command line. They 
merely set off your choice. 

Examples of assignment statements are 

A=322 
E=.RDX 
G=ADD 0,1 

If you place an instruction on the right hand of an assignment 
statement, the assembler assigns the assembled value of the instruc­
tion to the user symbol. The assembled value must not be longer 
than 16 bits. 

The syntax for the data statement is 

{ @ } { number I symbol I expr} 

where: 

@ is the indirect bit symbol. 

{number! symbol! expr} is any 16-bit number, valid local user 
symbol, or expression. (The brackets and 
bars indicate that you have a choice. They 
are not inserted in the command line.) 

The @ symbol causes a 1 to be placed in bit 0, the indirect addressing 
bit. 



The assembler generates a 16-bit storage word for each data 
statement. 

Indirect addressing is explained in the Principles of Operation 
manual for your ECLIPSE computer. 

This section explains the syntax associated with each of the 
components of source statements - delimiters and terminals, 
numbers, symbols, and expressions. 

Delimiters are characters that separate the source statements in 
your module. The delimiters, also called end-of-line characters, are 
New-Line, Form Feed, and Carriage Return. 

In this manual all delimiters are represented by a curved down 
arrow OJ. 

Terminals are characters that separate numbers, symbols, and 
expressions within a single source statement. Operators form a subset 
of terminals and are used to construct expressions (see "Expressions/" 
below). Table 3.3 lists all terminals, including operators. 

Symbol 

+ - * I 
== >< 
<=>= 
<> 
&! 
B 

o 

[] 

% 

_ (uhderscO('a) 

Table 3.3 Terminals 

Description 

Assi.gns 8 value toth!ilc symbol preceding this sign 
Indicates a literal reference 

Inclicates the preceding symbol is a label 

Indicates. the beginning of a comment string 

Arithmetic operators 

Relatic)013l operators 

Logical operators 
B.i1:· alignment . operator 

\V1ayencfo!ilea.number, symbol, or expression or an assembler 
symbol 

Mayehclo!ileth€! arguments in a maQrocaU or an assembler 
syml:)ol. 

Terminat€!sa . macro definition stri~g 

Dire(!tsthemacroassembler to ignore the special meaning of 
a character that it precedes in a.macro ... definition string 
Break character in a number string. 

Syntax and Relocation Rules 

Statement 
Components 

Delimi ters and 
Terminals 



Syntax and Relocation Rules 

Numbers The macroassembler allows you to use three types of number 
representation: 

• single-precision integer, stored in one word (16 bit); 

• double-precision integer, stored in two words (32 bits); 

• single-precision floating-point constant, stored in two words (32 
bits). 

Single-precision integers may appear in expressions and data state­
ments. Double-precision integers and floating-point constants appear 
only in data statements. 

Single-Precision Integers 

The macro assembler represents single-precision integers as single 
16-bit words in the range 0 to 65,535 10 (0 to 1777778). 

You can use two's complement notation to represent any signed 
integer in the range -32,76810 to +32,767 10. 

The first bit (bit 0) is the sign bit. If that bit is 0, the integer is 
positive; if it is 1, the integer is negative. Single-precision integers 
are represented as follows: 

I : I 1 I 15 

The format of a single-precision integer in your source module is 

{ sign} d { d ... } {.} break 

where: 

sign is the integer's sign; use minus for negative numbers and 
plus for positive numbers. If you do not supply a sign, the 
macro assembler assumes that the integer is positive. 

d is a digit in the range of the current input radix; the first 
digit must be in the range 0 through 9. 

break 

is an optional decimal point. The macroassembler inter­
prets the integer as decimal (base 10) if you supply the 
decimal point. 

terminates the integer. The break character may be any 
delimiter or terminal except :, [ , ], and (. 

If a decimal point precedes the break character, the macroassembler 
evaluates the integer as decimal. If you omit the decimal point, the 
macroassembler evaluates the integer in the current input radix. 
You may set the input radix to any base from 2 to 20 (see the .RDX 
pseudo-op in Chapter 7). 



When you select a radix of 11 or greater, your integers may contain 
letters that represent digits. For example, in base 16, the number 2F 
represents the value 47 10. 

If the first digit of an integer starts with a letter, you must precede 
that integer with the digit O. Otherwise, the macroassembler cannot 
distinguish the integer from a symbol. The following examples of 
legal hexadecimal (base 16) integers help clarify this rule. 

OF 
OA45 
6A9 

Take special care when using the bit alignment operator B with the 
integer. If you are using an input radix of 12 or greater, the 
macroassembler interprets B as a digit. If you want the macroassem­
bIer to interpret B as the bit alignment operator, place an underscore 
immediately before the B, or use parentheses. For example, 

16 ;Input radix equals 16 . 

Syntax and Relocation Rules 

. RDX 
49B7 
49.137 
(49)B7 

;Macroassembler interprets B as hexadecimal digit. 
;Macroassembler interprets B as bit alignment operator. 
;Macroassembler interprets B as bit alignment operator. 

Refer to "Operators in Expressions" in this chapter for a description 
of the bit alignment operator B. 

Double-Precision Integers 

The macroassembler represents double-precision integers in two 
consecutive words of memory (32 bits). Using two's-complement 
notation, you can represent any signed integer from 
-2,147,483,648 10 to +2,147,483,647 10. Unsigned double-precision 
integers may range from 0 to 4,294,967,295 10. 

The first bit of the first word (bit 0) is the sign bit. If that bit is 0, the 
integer is positive; if it is I, then the integer is negative. Double­
precision integers are represented as follows: 

I: 11 iii iii iii iii j j,J '6' , , , , , , , , j , , , , '3,1 

The general format for a double-precision integer in a source module 
is 

{ sign} d{ d ... } { . } 0 break 



Syntax and Relocation Rules 

where: 

sign is the integer's sign; use minus for negative numbers and 
plus for positive numbers. If you do not supply a sign, the 
macro assembler assumes that the integer is positive. 

d is a digit in the range of the current input radix; the first 
digit must be in the range 0 through 9. 

D 

is an optional decimal point. The macroassembler inter­
prets the integer in base 10 if you supply the decimal 
point. 

indicates a double-precision integer. 

break terminates the integer. The break character may be any 
delimiter or terminator. 

According to this definition, all of the following are legal integers: 

250 250 13200 -10 +2410 -1777770 

If a decimal point precedes the break character, the macroassembler 
interprets that integer as decimal. If you omit the decimal point, the 
macro assembler evaluates the integer in the current input radix. 

The first digit in each integer must be in the range 0 through 9. If 
the input radix is 11 or greater, your integer may contain letters 
(e.g., 3FI6). If the first digit of a number is a letter, precede that 
letter with a zero (Le., use OF5 instead of F5). 

If the input radix is greater than or equal to 14, the letter D is 
interpreted as a digit. To force the assembler to interpret D as the 
double-precision indicator, precede the D with an underscore. For 
example, assuming radix 16: 

120 ;0 represents digit. 

12--0 ;0 signals that 12 is a double-precision integer. 

Special Integer-Generating Formats 

Two special input formats convert ASCII characters to integers. 

The first format converts a single ASCII character to its 8-bit binary 
value. The input format is 

"a 



where: 

a 

is a quotation mark that directs the macro assembler to use the 
binary code for the following ASCII character. 

represents any legal ASCII character except New Line, Form 
Feed or Null (see "Character Set" at the beginning of this 
chapter for a list of the legal characters). 

The accompanying examples illustrate the use of the quotation mark. 

You may also use quoted characters as part of an expression. The 
accompanying examples illustrate this usage. 

When you use quotation marks with a delimiter ("J), the macroassem­
bIer assembles the octal value for the delimiting character and also 
terminates that source line. 

The macroassembler packs the value generated by this format in the 
rightmost byte of the word (i.e., in the least significant 8 bits). For 
example, the macroassembler stores" A as follows: 

o A 

The second special integer-generating format converts up to two 
ASCII characters into an integer. The format is 

'string' 

where: 

is an apostrophe; the macroassembler requires you to enclose 
the ASCII characters in apostrophies; 

string consists of any number of ASCII characters; the macroassem-
bIer uses only the first two characters in this string. 

The macroassembler packs the octal values of string's first two 
characters from left to right in bits 0-15 of the integer. For example, 
the macro assembler stores both AB and ABCD as 

A B 

i 15 I 

If you supply only one character, the macroassembler places the 
corresponding octal value in the left byte of the word. Thus, the 
macroassembler stores F as 

F o 

Syntax and Relocation Rules 

... ":i~nla"'e 

...... Ft'~~:<l~5 

. ;101 

4:5 

·····;'.odaI.VaJue 

':~'~,1+4 
~1g3;'6 
43.,45 



Syntax and Relocation Rules 

Source Octal Value 

"A 101 

'AS' 40502 
'SA' 41101 

0 

"+ 5-2 3 

Two apostrophes without an intervening character string generate 
an integer containing all zeros (Le" absolute zero). 

You may use the two special integer-generating formats wherever 
the macroassembler allows you to use integers. The accompanying 
simple expressions use the special formats. See "Generated Numbers 
and Symbols" in Chapter 5 for another related integer-generating 
format. 

Single-Precision Floating-Point Constants 

Floating-point constants represent fractional and exponential values. 
These numbers cannot appear in expressions or assignments. They 
may appear only in data statements. 

The macroassembler uses two contiguous words of memory (32 bits) 
to represent a single-precision floating-point number. The number is 
represented as follows: 

I s I exponent I mantissa I mantissa I 
o l' , , , , '7 8' , , , , , '15 16' , , , , , , , , , , , , , '31 

Bit 0 is the sign bit. If that bit is 0, the number is positive; if it is 1, 
the number is negative. 

Exponent is the integer exponent of 16, expressed in excess-64 
notation. The macro assembler represents exponents from - 6410 to 
+ 6310 with their binary equivalents from 0 to 12710 (1778), The 
macroassembler represents a zero exponent as 6410 (1008), 

The macro assembler represents the mantissa as a 24-bit binary 
fraction. You may view the mantissa as six 4-bit hexadecimal digits. 
The range of the mantissa's magnitude is 

16 - 1 < = mantissa < = (1 - 166) 

You may obtain the negative form of a floating-point number by 
complementing bit 0 (Le., from 0 to 1, or from 1 to 0). The exponent 
and mantissa remain the same. 

The range of a floating-point constant is 

16 - 1 * 1664 < = floating-point constant < = (1 - 166) * 1663 

which is approximately 

5.4*10- 79 < = floating-point constant < = 7.2*1075 

The macro assembler normalizes all nonzero floating-point numbers. 
A floating-point number is normalized if the fraction (mantissa) is 
greater than or equal to 1/16 and less than 1. In other words, the 
binary representation of a normalized number has a 1 in one of the 
first four bits (8-11) of the mantissa. For example, if you specify the 
number 65.32, the macroassembler converts it to the base 16 
equivalent of .6532*102• 



Much of the floating-point number source format is optional. The 
minimum format is one digit, followed by either a decimal point or 
the letter E, followed by another digit. For example, 3.5 and 6E2 are 
both floating-point constants. 

The complete source format for a single-precision floating-point 
number is one of the following: 

I sign I d { d. ·1· d { d .. ·11 E I sign I dl d II break 

I sign I d{ d ... I E I sign I d { d I break 

where: 

sign indicates the sign of a value (positive or negative) and is 
one of the following characters: + or - . If the sign appears 
before the number, then it defines the sign of that number. 
If a sign character appears after the letter E, then it defines 
the exponent's sign. If you do not supply a sign, the 
macroassembler assumes that the value is positive. 

d is a digit in the range 0 through 9. The macroassembler 
always inteprets the mantissa and exponent as decimal 
(e.g., 26.5 equals .265 * 102 regardless of the current input 
radix). 

E 

break 

is an optional decimal point. If you include a decimal point 
but do not follow that point with either a digit or the letter 
E, the macroassembler treats the value as an integer, not a 
floating-point number. 

indicates floating-point number representation. You must 
follow the E with one or two digits representing the value 
of the exponent. 

terminates the floating-point number. The break character 
may be a semicolon, end-of-line character, tab, or space. 

You may format the same floating-point number with the letter E, a 
decimal point, or both. For example: 

Floating-Point Constant 

254.33 

256.33EO 

25433E-02 

25433E-2 

2543.3E-1 

0.25433E03 

Assembled Value 

041376052172 

041376052172 

041376052172 

041376052172 

041376052172 

041376052172 

Syntax and Relocation Rules 



Syntax and Relocation Rules 

Symbols 

The two octal numbers under the heading" Assembled Value" depict 
the two I6-bit words that represent the floating-point constant's 
value. 

If the current input radix is 15 or greater, the macroassembler may 
interpret the letter E as a digit rather than the floating-point number 
indicator. If the decimal point is omitted, to avoid ambiguity, precede 
the exponential E with an underscore when representing a floating­
point constant. For example, 

.RDX 16 ;Input radix is 16. 
-5E3 ;E is a hexadecimal digit and -5E3 represents 

;an integer. 
-5.E3 ;E indicates floating-point number 
-5JE3 ;representation (i.e., -5*103 ). 

The following examples show floating-point numbers and the corre­
sponding values that the macro assembler stores. 

Floating-Point Constant 

1.0 

3.1415926 

-1EO 

+5.0E-1 

+273.0EO 

0.33E2 

Assembled Value 

040420 000000 

040462 041766 

140420 000000 

040200 000000 

041421 010000 

041041 000000 

The following section explains the syntax for naming symbols. 
Additional rules for defining and redefining symbols are explained 
in Chapter 5, "Defining Symbols." 

Symbol Names 

Every symbol must conform to the following syntax: 

al b ... } break 

where 

a is the first character of the symbol name and may be any 
upper- or lower-case letter, period, question mark, or 
underscore. 

b represents the succeeding characters in the symbol name 
and can include upper- and lower-case letters, numerals 
(0 - 9), period, question mark, and underscore. 



break terminates the symbol name; a break character may be 
any terminal or delimiter except left parenthesis or under­
score. 

The assembler does not distinguish between upper- and lower-case 
letters. For example, "START" is interpreted as identical to "start". 
Symbol names must be unique to eight characters if the /8 switch is 
used, and five characters if the switch is not used. Additional 
characters are ignored. 

If you include the underscore character in a symbol that appears in 
a macro definition, or as an argument to a macro, precede that 
underscore character with another underscore. That is, inside the 
macro, use A_B to represent the symbol A_B (see "Macro Defini­
tion" in Chapter 5). 

Syntax and Relocation Rules 

This section explains expression syntax. Then it lists and explains Expressions 
the operators that may appear within expressions and the order of 
their operation. 

Expressions conform to the format: 

{sign } operand operator operand . . . break 

where 

sign is one of the unary operators, + or -. 

operand may be a user symbol, value symbol, integer constant, or 
another (parenthesized) expression. 

operator is a macroassembler operator; operands must precede 
and follow every operator except the unary operators. 

break terminates the expression; the break character may be 
any terminal or delimiter. 

For example, the following are legal expressions: 

START-1 6*3-5 At3*B/C 

Do not include spaces or tabs within expressions, since these are 
terminals that indicate the end of an expression. 

Operators are terminals made of one or two characters that tell the 
assembler how to interpret the information in an expression. 

Binary operators require two operands, one before and one after the 
operator. 

Operators in 
Expressions 



Syntax and Relocation Rules 

Unary operators require a single operand, which follows the operator. 
Two unary operators may, however, be separated by parentheses. 

Operators fall into three groups: arithmetic, logical, and relational. 
There is also one bit alignment operator. Table 3.4 lists the operators. 
The plus (+) and minus (-) may be unary or binary. All other 
operators are binary. 

Type of 
Operator 

Arithmetic 

Logical 

Relational 

Bit alignment 

Table 3.4 Operators 

Operator 

+ 

* 
I 
& 

<> 
< 

<= 
> 

>= 
B 

Arithmetic Operators 

Meaning 

Addition (2 + 3) or unary plus (+3) 
Subtraction (5 - 4) or unary minus 
(-4) 

Multiplication 
Division 

Logical AND 
Logical OR 

Equal to 
Not equal to 
Less than 
Less than or equal to 
Greater than 
Greater than or equal to 

Single precision bit alignment (16 bits) 

The binary operators + , - , *, and / perform the common arithmetic 
operations of addition, subtraction, multiplication and division, 
respectively. 

The unary plus and minus operators indicate whether the following 
expression is positive or negative (greater than or less than zero). 

Logical Operators 

The macroassembler provides two logical binary operators: & and !. 
The operator & directs the macroassembler to perform a logical AND 
operation; the operator ! represents the logical OR (inclusive) 
operation. 

For a logical AND (&), the result in a given bit position is 1 only if 
both operands contain a 1 in that bit position. The following example 
shows how the macroassembler evaluates the logical expression 
6&4: 

Bit representation of 6: 000 ... 110 
Bit representation of 4: 000 ... 100 
Result of logical AND (&): 000 ... 100 



Thus, the resulting value of the expression 6&4 is 4 (1002), 

For a logical OR operation (!), the result in a given bit is 1 if either or 
both operands contain a 1 in that bit position. The following example 
shows the logical OR operation for the expression 6!4: 

Bit representation of 6: 000 ... 110 
Bit representation of 4: 000 ... 100 
Result of logical OR (!): 000 ... 110 

The value of the expression 6!4 is 6 (1102), 

Both operands in a logical expression must be absolute expressions; 
using relocatable expressions as operands will cause an error. 

Relational Operators 

An expression containing a relational operator is a relational 
expression. 

A relational expression evaluates to either absolute zero (false) or 
absolute one (true). Absolute zero has a zero in every bit; absolute 
one has zeros in all bits except the least significant bit (bit 15), 
which contains a one. These values are not relocatable. 

The following examples show how the macroassembler evaluates 
relational expressions. 

Expression Assembled Value Comment 

5==6 000000 False 

3==3 000001 True 

7>1 000001 True 

55<=41 000000 False 

7<>6 000001 True 

The octal number under the heading "Assembled Value" depicts the 
16-bit word that represents the expression's value. Each expression 
yields a single-precision result. 

Bit Alignment Operator 

The macroassembler recognizes a bit alignment operator, B. This 
operator allows you to right justify an integer on a bit boundary. 

The format for using the bit alignment operator is 

operand B position 

where: 

operand is an integer, local symbol, or expression whose value 
you wish to align. 

Syntax and Relocation Rules 



Syntax and Relocation Rules 

B is the bit alignment operator. 

position is an integer, symbol, or expression whose value indicates 
the bit position for aligning operand. If it is an integer, it 
will be interpreted in decimal (rather than in the current 
input radix). 

When you use a bit alignment expression, the macro assembler aligns 
the rightmost bit of operand at the bit position specified in position. 

The bit alignment expression must not contain any spaces, etc. 

The value of position must be in the range 

o < = position < = 1510 

The result of a B bit alignment expression equals 

operand * 2 (15. - position) 

When the operand is an integer and you use an input radix of 12 or 
greater, the macroassembler interprets the character B as a digit 
instead of an operator. To avoid ambiguity, place the operand value 
inside parentheses or precede it with an underscore. For example: 

.RDX 
31B4 
(31)B4 
3t.B4 

16 ;Input radix equals 16 
;B is interpreted as a hexadecimal digit 
;B is recognized as the bit alignment operator 
;B is recognized as the bit alignment operator 

When the operand is a symbol, the assembler can misread B as part 
of the symbol; that is, the assembler may not recognize B as an 
operator. Therefore, if the operand preceding the bit alignment 
operator is a symbol, enclose that argument in parentheses. For 
example: 

Assembled Value Expression 

000025 A=25 

000006 AB9=6 

002500 (A)B9 

Comment 

User symbol A has the value 25. 

User symbol AB9 has the value 6. 

Aligns the rightmost bit of 258 in 
bit 9. 

When using the bit alignment operator in a lengthy expression, 
enclose both operands in parentheses to ensure that the assembler 
aligns the value correctly. For example: 



Assembled Value Expression Comment 

014000 (3812)8(3+4) (3812) equals 308 . Thus, the expres-
sion equals (30)8(7). 

Priority of Operators 

You may use more than one operator in an expression. The 
macroassembler evaluates operators according to their priority 
levels. It resolves high priority operators first and low priority 
operators last. Table 3.5 lists the priority levels of all operators. 

Operators 

B 

+ -* I'&! 
< <= > >= 
== <> 

Table 3.5 Operator priority levels 

Priority Level 

3 (highest priority) 

2 

1 (lowest priority) 

If an expression contains operators of equal priority, the assembler 
evaluates them from left to right. 

The following examples show how the macroassembler uses operator 
priority to evaluate expressions. The radix equals 8. 

Assembled Value Expression 

000001 3*2==6 

000000 4<6-3 

000005 4/2+3 

000011 3*2-1+4 

000006 3! 1 *2 

000001 4&2< >3!1 

030000 2*3B4 

Comment 

The macroassembler evaluates * first, 
then = =. The relationship is true. 

The macroassembler evaluates -
first, then <. The relationship is false. 

/ and + are equal in priority so the 
assembler evaluates them from left to 
right (first /, then +). 

All operators are of equal priority so 
the macroassembler evaluates them 
from left to right. 

Both operators are of equal priority so 
the macroassembler evaluates them 
from left to right (3! 1 =3;(3)*2=6). 

The macroassembler evaluates & first, 
followed by!, and, lastly, <>. The 
resulting relationship is true. 

8 has higher priority than *, so the 
assembler evaluates 3B4 first. It then 
multiplies the result by 2. 

You may change the order in which the macroassembler evaluates 
operators by including parentheses in your expression. The macroas-

Syntax and Relocation Rules 



Syntax and Relocation Rules 

Relocating 
Symbols 

sembler always evaluates an expression in parentheses first. Within 
a set of parentheses, the macroassembler evaluates operators accord­
ing to the priority sequence presented above. If you nest one set of 
parentheses inside another set, the macroassembler evaluates the 
innermost expression first. 

The following examples show the use of parentheses in expressions. 
The radix equals 8. 

Assembled Value Expression Comment 

000006 2*(4-1) MASM performs operations in the 
following order: (4-1)=3; 2*(3)=6. 

000002 1 +(6/2)/2 Order of operations: (6/2)=3. 
1 +(3)=4; (4)/2=2. 

000004 (3 * 2) - (4/2) Order of operations: (3*2)=6. 
(4/2) = 2; (6) - (2) = 4. 

000001 (5<=5)+ Order of operations: (5<=5)= 1. 
(6==2) (6= =2)=0; (1)+(0)= 1. 

000006 3*((3+ 1)/2) Order of operations:(3+ 1)=4. 
((4)/2)=2; 3*((2))=6. 

000025 A=25 Radix equals 8. 

000010 C=10 

Each symbol is associated with a relocation base either explicitly or 
implicitly, according to the rules enumerated below. 

1. Each externally defined symbol (defined using the .EXTD or 
.EXTN pseudo-ops) is assigned a unique, explicitly defined reloca­
tion base (see example at rule 3). 

2. Labels are assigned the relocation base of the partition in which 
they appear. For example, 

A: 

B: 

.ZREL ;the following words are in the 
;ZREL partition 

10 

20 

;Each entry requires one word 
;of storage. Thus the value 10 resides 
;at relative location 0, and the value 
;20 resides at relative location 1 

3. If you define one symbol with respect to another symbol that has 
a relocation base, then the second symbol is assigned the first 
one's relocation base. For example, 

.ZREL 
M: .10 M has the .ZREL base 

.NREL 0 Impure area 

X: 5 X has impure NREL base 
A = X +3 A has the same base as X 
N = M + 1 N has the same base as M 



4. If you define a symbol in terms of integers alone, the symbol is 
assigned the absolute relocation base. For example, 

B=3 ;B has the absolute relocation base. 

5. All symbols defined by instructions are assigned the absolute 
relocation base. For example, 

F= LOA 0,1 ; F has absolute relocation base 

6. All value symbols except .LOC, .POP, .TOP and the period!.) have 
absolute relocation base. 

Remember that each address has relocation properties, as do the 
contents of each address. For example, consider the following source 
lines: 

A=5 
FIVE: A 

When constructing the object module, the assembler assigns a 
relocatable address to the label FIVE. Thus, FIVE has a relocation 
base and offset associated with it. The value at FIVE is A, which is 
itself a symbol with relocation properties. 

The contents of any address may be a symbol or expression; each 
symbol and expression has a relocation property. The example below 
develops this idea . 

. ZREL 
Z: A 
A: 10 

.NREL 
NO: B 

B=At1 

0 

Z has the .ZREL base, as does A 
Value at A, 10, has absolute base 

NO has NREL 0 relocation base 
; Value at NO has the same base as A 
; according to rule 3. 

Syntax and Relocation Rules 

Addresses and 
Contents, Relocation 
Comparison 



Syntax and Relocation Rules 

Relocating 
Expressions 

Absolute Expressions 

Labels are named addresses and are assigned the relocation base of 
the preceding .LOC, .NREL, or .ZREL. In the example above, the 
address A has the ZREL relocation base, and the value at A has 
absolute relocation, since it is a constant. Similarly, the symbol NO 
has a different relocation base than its contents, the symbol B. 

Expressions can be divided into two classes: 

• absolute expressions; 

• relocatable expressions. 

Absolute expressions resolve to integer values, and are assigned the 
absolute relocation base. 

Relocatable expressions resolve to relocatable values. That is, the 
result of a relocatable expression is not simply an integer; it contains 
a relocatable component that cannot be resolved until the program is 
bound. 

The simplest absolute expressions contain operands that have integer 
values. For example 

6*6 
(.PASS) 
(.RDX)<=(6/2) 

Absolute expressions can also contain relocatable operands if the 
resulting value has no relocatable components. That is, if all 
relocatable components cancel each other out, the expression is 
absolute. Consider the following example . 

. ZREL 
A: 10 
B: 20 

(B-A)t40 

The macroassembler computes the values for A and B as follows: 

A = RBz + 0 
B = RBz + 1 



where: 
RBz is the ZREL relocation base. 

o is the offset from RBz that the macroassembler assigns to A. 

1 is the offset from RBz that the macroassembler assigns to B. 

The values for A and B are relative to the ZREL relocation base. 
Thus, A and B have relocatable values. 

The macro assembler evaluates the expression (B - A) + 40 as follows: 

(B-A)+40=((RBz + 1)-(RBz + 0)) + 40 

=(RBz - RBz) + (1 - 0) + 40 

=(0) + 1 + 40 

=41 

In this expression, the two relocatable components (RBz) cancel each 
other out, leaving an absolute value (Le., 41). Thus, the expression 
(B - A) + 40 is an absolute expression, even though it contains 
relocatable operands. 

Since all labels have relocatable values, you may never use labels in 
absolute expressions unless their relocatable components cancel out. 

Since the assembler can completely resolve an absolute expression, 
it verifies that the expression's value is legal for the field it appears 
in. For example: 

LDA 0,23571 

The absolute expression 23571 is too large to fit in the 8-bit LDA 
displacement field. Thus, the macro assembler returns an error for 
this instruction. 

Relocatable expressions resolve to relocatable values. That is, the 
result of a relocatable expression is not simply an integer; it contains 
a relocatable component that cannot be resolved until bind time. 

The assembler can reduce all valid relocatable expressions to one of 
the following syntaxes: 

{ 2 * 1 rei-symbol ± abs-expr 

abs-expr ± rei-symbol { * 21 
where: 

rel-symbol 

abs-expr 

is a symbol whose value is relocatable. 

is an absolute expression. 

The following example contains several relocatable expressions. 

Syntax and Relocation Rules 

Relocatable 
Expressions 



Syntax and Relocation Rules 

Resolving Relocatable 
Expressions 

.ZREL 
A: 10 

.NREL 0 
B: 20 
e: 30 

A + 20 
B-5 
A + (B - e) 

;A has the ZREL relocation base 

;B and e have the unshared (impure) NREL code 
;relocation base 
;Relocation symbol A plus absolute expression 20. 
;Rel-symbol B minus abs-expr 5. 
;Rel-symbol A plus abs-expr (B - e). 

(10 + (B - e))-A ;Abs-expr (10 + (B - e)) minus reI-symbol A. 

Note that you may include more than one relocatable symbol in an 
expression as long as all but one of thp.ir relocation bases cancel out. 
In the example module, A + (B - C) contains three relocatable values. 
However Band C have the same relocation base (impure NREL 
code); thus, (B-C) has an absolute value. 

You may multiply the relocatable symbol by two. For example: 

.ZREL 
X: 10 
Y: 20 

2*X 
(10) + (2*Y) 

Both 2*X and (10) + (2*Y) are legal expressions. 

An expression whose relocatable symbol value is multiplied by two 
is called byte-relocatable. In most cases, you use byte-relocatable 
expressions as byte-pointers (values that specify a byte's address). In 
the example above, the expression 2*X is a byte-pointer to the left 
byte at address X. For more information on byte-pointers, refer to 
the Principles of Operation manual for your ECLIPSE computer. 

At assembly time, all relocatable expressions must resolve to a 
relocation base, a relocation operation, and an integer component 
(Le., an absolute value). 

An example will help clarify these rules: 

.ZREL ;ZREL memory partition. 
5 ;The value 5 resides at location 0 

X: 15 
X + 4 

;in this module; 15 resides at 
;location 1. 



In this example, the value of label X equals the ZREL relocation base 
plus 1 word; Le., X's value equals the third address in the ZREL 
partition. Thus, you can think of X's value as 

x = RBz + 1 

where: 

RBz is the ZREL relocation base. 

1 is the offset from RBz that the macro assembler assigns to X. 

The macroassembler cannot completely resolve the expression X + 
4 because the ZREL relocation base does not have a value. However, 
the macro assembler can partially evaluate the expression as follows: 

(X - 4) =((RBz + 1) - 4) 

=(RBz - 3) 

At this point, the macroassembler cannot process the expression any 
further. Thus, it passes to the binder the absolute value 5 (integer 
component), the ZREL relocation base RBz (relocatable component), 
and the unresolved operator +. 
During the binding process, the ZREL relocation base for this 
expression receives a value. Then, the binder can fully resolve the 
values for the symbol X and the expression X - 4. 

In most cases, you include only one relocatable operand in each 
expression (as in the example). The macroassembler does, however, 
allow you to include more than one relocatable value in a single 
expression. Again, the expression must resolve to a single relocation 
base, a + or - operator, and an integer component or you will 
receive an error. For example: 

.ZREL 
V: 10 
X: 20 

.NREL 0 
30 

Z: 40 
(X - V) + Z 

The expression (X - Y) + Z includes three relocatable operands. X 
and Y have the ZREL relocation base; Z has the unshared (impure) 
NREL base. The macroassembler evaluates this expression as follows: 

(X - Y) + Z =((RBz + 1) - (RBz + 0)) + (RBn + 1) 

=((RBz - RBz) + (1 - 0)) + (RBn + 1) 

=((0) + (1)) + (RBn + 1) 

=RBn + 2 

Syntax and Relocation Rules 



Syntax and Relocation Rules 

RBz is the ZREL relocation base, and RBn is the unshared NREL code 
base. The values 1, 0, and 1 are the offsets for X, Y, and Z from their 
respective relocation bases. 

Since both ZREL relocation bases cancel out, the expression is legal. 
After processing the expression, the macroassembler passes to the 
binder the absolute value 2 (integer component), the relocatable 
value RBz (relocatable component), and the relocation operation. 

The previous section explained that you may mutliply a relocatable 
symbol value by 2 to create a byte-relocatable expression; for 
example: 

.ZREL' 
10 

X: 10 
2*X 

The expression 2*X serves as a byte pointer to the first byte at 
address X. The macroassembler evaluates this expression as follows: 

2*X = 2* (RBz + 1) 

=(2* RBz) + (2 * 1) 

=(2* RBz) + 2 

The macroassembler cannot process this expression any further. 
Thus, it passes to the binder the relocation base (2*RBz), the relocation 
operation (+), and the integer value 2. Any expression whose 
relocatable component equals two times a relocation base is byte­
relocatable. 

Table 3.6 displays different forms of expressions and shows how the 
assembler resolves each. The following notation is used in Table 3.6: 

nand m represent two different absolute values; they may be 
integers, symbols, or absolute expressions. 

rand p represent two relocatable values with the same relocation 
base; they may be symbols or expressions. 

s represents a relocatable value whose relocation base is 
different from that of rand p. 

RBr is the relocation base associated with r's values. 

roff is the offset of r's value from relocation base RBr; i.e., 
r = RBr + roff. 

All expressions involving the operators <, < =, >, > =, = =, or 
< > result in an absolute value of either zero (false) or one (true). 



When operands in these expressions have different relocation bases, 
all comparisons result in a value of zero (false), except when the 
operator is <> (not equal to). 

The logical operators & and! require absolute operands. 

~ •.•. ];~i,;~~t~~.,:i" ·········t!· •. :i'~~eIQCriiOn' 

rIp 

Table 3.6 Re/ocatable expressions 

NOTES: Blank columns indicate the expression is illegal. 

Any expression with a relocatable component equal to 2 *RBr is byte-relocatable. 

Syntax and Relocation Rules 





Partitioning 
Programs and 

Controlling 
Assembly 

This chapter contains an overview of the pseudo-ops you can use to 
partition your program and to control assembly and binding. 

The first section expands the discussion of assembler partitions 
given in Chapter 1. It lists and describes pseudo-ops that relate to 
partitions and types of code (pure and impure; shared and unsharedl. 
It also lists the pseudo-ops you can use to begin and end a module. 

The second section describes the pseudo-ops that control assembly 
and binding, explaining how portions of a source module are 
assembled, how modules communicate with each other, and how 
information is relayed to the binder. 

Refer to Chapter 7 for examples and instructions. 



Partitioning Programs and Controlling Assembly 

Partitioning 
Programs 

You control the partitioning of your program with the location 
counter and memory management pseudo-ops described in this 
chapter. Depending on the pseudo-ops used, the assembler determines 
the offset for each program component in your source module, using 
one of five locations counters: 

Absolute 
ZREL 
NRELO 
NREL 1 
GLOC 

The assembler builds different "data blocks" in the object module for 
each location counter. 

NOTE: Each location counter can have several different and nonsequential or 

noncontiguous data blocks in the object module. The following discussion is 

general and does not strictly apply to .GLOC. (See the pseudo-op dictionary in 

Chapter 7 for further discussion.) 

The binder, in turn, places each relocatable unit of code in the pure 
or impure areas of the user process space. Pure code is placed in the 
shared or overlay segment of memory (depending on binder 
directives), and impure code is placed in the impure segment. These 
segments vary in size from program to program. As a consequence, 
an absolute location might turn out to be in the impure area of one 
program and the pure area of another program (although this is rare 
and not encouraged). 

For example, as illustrated in Figure 4.1, absolute address 26037 
may be in the impure area of one program and in the pure area of 
another program, depending on the amounts of code assigned to the 
NREL 0 (impure) and NREL 1 (pure) partitions in each program. 

See the MP/AOS System Programmer's Reference, DGC No. 
093-400051 and Part 2 of this manual for further information about 
process areas and program images. 



Partitioning Programs and Controlling Assembly 

32K 

26032 

DG-08633 

4008 

3778 

o 

Program A 

Shared or overlay 

(pure) 

Impure 

Lower page 

zero 

Figure 4.1 Varying sizes of process segments 

The Absolute Counter 

32K 

26032 

4008 

3778 

o 

Program B 

Shared or overlay (pure) 

Impure 

Lower page 

zero 

The absolute address location counter is used for source lines to 
which you have assigned absolute addresses. Unlike relocatable 
addresses, these addresses are not modified by the binder. Absolute 
addresses may be anywhere in the logical address space -locations 
o through 32K-l (0777778). 

Typically, you use absolute locations for words in lower page zero 
that have functions associated with them. These are the locations for 
auto-increment and auto-decrement (locations 20 to 27 and 30 to 37) 
and stack and frame values. 

The ZREL Counter 

The ZREL location counter is used for words that have relative 
addresses in lower page zero (locations 508 to 3778), You may express 
any address in the ZREL partition in 8 bits. Thus, when referencing 
a location in the ZREL partition you may use any memory reference 
instruction (MRI) since all provide displacement fields of 8 or more 
bits. When the program is run, the ZREL portion of the program 
resides in an area of memory that is neither shared nor write­
protected. 

The NREL Counter 

The NREL location counter is used for words that have relative 
addresses in the range 4008 to 0777778 , Words in NREL 0 (impure) 
are located in an area of memory that is not shared or write-protected. 
Code in NREL 1 (pure) is write-protected, and is placed in either the 
shared or the overlay segment of the process space, depending on 
how the program is bound. 

The GLOC Counter 

The GLOC counter is used to partition code relative to a symbol in 
another module. The attributes of the code (pure, impure, etc.) are 
determined at bind time by the attributes of the external symbol. 

Assembler Location 
Counters 



Partitioning Programs and Controlling Assembly 

Location Counter and 
Memory Management 

Assembler Type of Code 
Location 
Counters 

Absolute 

ZREL 

NREL 0 

NREL 1 

GLOC 

Shared (pure) 
Overlay (pure, not shared) 
Impure (not shared) 

Impure (not shared) 

Impure (not shared) 

Shared (pure) 
Overlay (pure, not shared) 

Any 

Table 4.1 Location counter/code relationships 

Write 
Protected? 

Yes/No 

No 

No 

Yes 

Generally, you use location counter and memory management 
pseudo-ops to assign memory locations to the statements in your 
source module. Specifically, the pseudo-ops in this category allow 
you to 

• reserve a block of storage locations; 

• set the location counter to a specific value; 

• place source code in predefined memory partitions. 

Table 4.2 lists the lcoation counter and memory management 
pseudo-ops. 

The period pseudo-op (.) is a value symbol that represents the current 
location counter. A location counter is an assembler variable that 
designates the address and relocation base of the next memory 
location the macroassembler will assign. 

The .ZREL and .NREL pseudo-ops direct the assembler to place the 
source lines that follow them in predefined memory partitions. Use 
.ZREL for relocatable data that must reside in lower page zero 
(locations 0-3778), Use .NREL for relocatable data that can be 
anywhere else in the user process space (locations 4008 to 0777778), 

The .NREL pseudo-op allows you to place source code in either 
shared or un shared partitions. 

When used as value symbols, .NREL and .ZREL return next values 
and relocations for the NREL 0 and ZREL location counters. 

Use the .LOC pseudo-op to set the location counter to a specific value 
within a memory partition. Use .ELK to reserve an initialized 
fixed-length block of addresses. Such blocks are commonly used for 
data storage (tables, for example!. 



Partitioning Programs and Controlling Assembly 

Use the .LPOOL pseudo-op to mark locations where literal pools can 
be built, if necessary. 

Table 4.2 Location counter and memory management pseudo-ops 

In addition to the pseudo-ops listed in Table 4.2, the .COMM and 
CSIZ pseudo-ops are used for memory allocation. They reserve 
common areas for intermodule communication. 

Five pseudo-ops mark the beginning and end of modules. 

The .TITLE pseudo-op provides a name for the object module. This is 
an internal name that is not the same as the file name of the object 
module. The name specified by .TITLE need not be the same as the 
name specified by .OB. 

The .OB pseudo-op allows you to name the object module with a 
name other than the sourcefile.OB automatically assigned by the 
assembler. Use of this pseudo-op is related to the file naming rules 
explained in Chapter 6. 

The .REV pseudo-op helps you number revision levels of a program 
- for example, MP / AOS Rev 2.3 and MP / AOS Rev 3.0. 

The .END pseudo-op terminates the source code you pass to the 
assembler. Also, by supplying an address to .END, you indicate 
where you want the program to begin at execution time. 

Beginning and Ending 
Modules 



Partitioning Programs and Controlling Assembly 

Controlling 
Assembly 

Intramodule 
Assembly Control 

Use .EDF or .EDT when you include more than one source file on the 
macro assembler command line. When you place this pseudo-op at 
the end of a file, you inform the assembler that the end of the 
current input file has been reached but more files will follow. All 
files, except the last one, should end with the .EDF or .EDT pseudo-op; 
the last one should end with .END 

Table 4.3 lists the pseudo-ops that begin and end modules. 

P$!IilUcbrOps .Afi~mbler 
Directive 

.. ~ENO Yes 

.f20f.·or Yes 
.,~QT·.· 

;OB Yes 

.fif:\I Yes 

,TinE Yes 

Value Description 
Symbol 

No fndicate end of program module; 
declare start address 

NOlndieate end of file (tape) 

No$pecify name of object (OB) file. 

No A~signre'lision level 

No>Name an object module 
. {recognizedbv binder} 

Table 4.3 Pseudo-ops that begin and end modules 

Pseudo-ops that control assembly are either intramodule or 
extramodule. 

Intramodule pseudo-ops give instructions to the assembler that are 
used during the assembly of a single module. These include: 

• Loop and conditional assembly pseudo-ops that allow you to 
include or not include sections of source code in assembly 
depending on the evaluation of an absolute expression. 

• Value symbol pseudo-ops that monitor the assembler's own actions. 

• Assembler stack control pseudo-ops that allow you to store and 
retrieve values and relocation properties during an assembly. 

Extramodule pseudo-ops are of two types: 

• Intermodule communication pseudo-ops that coordinate refer­
ences among different modules bound into a single program. 

• Binder directive pseudo-ops that enable you to pass to the binder 
information it will need to build the program file. 

Loop and Conditional Assembly 

The pseudo-ops in this category allow you to 



Partitioning Programs and Controlling Assembly 

• assemble a series of source lines a specified number of times; 

• conditionally assemble or bypass source lines based on the 
evaluation of an expression. 

Table 4.4 lists the pseudo-ops you use to perform these functions. 

Tabla 4.4 Loop and conditional psaudo-ops 

Assemb~th,efaIlQwin9 source lines 
a$)troi~snUo1ber of·tiine$ 
Defifl .. tha~lid~It)QP or conditional 
ass~tltYc~~ .. C· 

;U~c~ . 'c ~~~iJi.SOUl'ce line.s 

A$SI'm'l .. c .•..••.••..•• jjtJ~~g sour£~line.s 
only if tbe:~as~of1:he 'flupplied 
exptessipn~uals~ro 
Assemble t~f~lf()vvjng source lines 
only jf d,evarueoft!:tesupplied 
expression fS9r$fiter than zero 

Assemble tne foUbWing sourCe liMs 
only if ttl~W4bj~ofthe supplied 
expre~$I~i'l~sthan zero 

Assem~f~~~~t~g$ouraJ lines. 
Qnl.v>.ift\i~:M~Pt~esuppJied . 
expres$iOn(Jb$$ o6tequal zero 

The .DO and .ENDC are used in conjunction to assemble a section of 
source code repeatedly, that is, to implement a loop at assembly 
time. 

The .IF pseudo-ops are used with the .ENDC pseudo-op to indicate 
sections of the source module that are to be assembled if an expression 
satisfies a certain condition. For example, the .IFE pseudo-op directs 
the assembler to process a section of code only if the supplied 
expression (the argument to .IFE) equals zero. 

The .GOTO pseudo-op allows you to unconditionally skip a section of 
the source module. The argument to the .GOTO pseudo-op is a 
conditional label. These labels, set off in brackets, indicate the end 
of a conditional assembly. (See .ENDC in Chapter 7 for an example). 
You can use this pseudo-op in conjunction with those described 
above to identify sections of the source program to be conditionally 
assembled. 



Partitioning Programs and Controlling Assembly 

Assembler Monitoring 

Three value symbols, .PASS, .MCALL, and .ARGCT, may be used as 
expressions for evaluation in conditional assembly. Table 4.5 summa­
rizes these pseudo-ops. 

Table 4.5 Value symbols that control assembly 

Chapter 6 explains how to use .ARGCT and .MCALL within macros. 
Refer to Chapter 7 for examples and instructions for all three 
pseudo-ops. 

Assembler Stack Control 

The assembler maintains a push-down stack for use at assembly 
time that is analogous to but distinct from the hardware stack which 
is used during program execution (run time). The last item placed on 
the stack is the first item retrieved from it. 

Table 4.6 lists the three pseudo-ops you use to manipulate the stack. 

Table 4.6 Stack control pseudo-ops 

The .PUSH and .POP pseudo-ops are used to place and retrieve 
values from the stack. The .POP pseudo-op is also a value symbol 
representing the popped value. The .TOP pseudo-op is a value symbol 
equal to the value of the expression most recently placed on the 
stack. 



Partitioning Programs and Controlling Assembly 

Chapter 7 contains complete descriptions of these pseudo-ops and 
examples of their use. 

Intermodule Communication 

Intermodule communication pseudo-ops allow you to define symbols 
and data in one source module and to reference that information 
from a separately assembled module. (Recall that symbols referenced 
in more than one module are global symbols; when assembling one 
module, the assembler assigns an external relocaton base to symbols 
defined in other modules.) 

Intermodule communication pseudo-ops declare entry points, exter­
nal symbols, and both labeled and unlabeled common areas. Table 
4.7 lists the intermodule communication pseudo-ops. 

Table 4.7 Intermodu/e communication pseudo-ops 

The .COMM and .CSIZ pseudo-ops reserve common areas for 
intermodule communication. Using these pseudo-ops, you may create 
data storage areas that are accessible to each module in your program. 
Use .COMM when you wish to assign a name to the common area 
(labeled common area); use .CSIZ to create an unlabeled common 
area. 

Extramodule 
Pseudo-Ops 



Partitioning Programs and Controlling Assembly 

!\n .ENT symbol may represent either an address or a data value 
that is available for use by separately assembled modules. The 
separately assembled modules that reference the .ENT symbol must 
each declare it with an .EXTD or .EXTN pseudo-op; these pseudo-ops 
tell the assembler that a symbol is defined externally (in a separately 
assembled module). 

The symbols that the .EXTD and .EXTN pseudo-ops declare differ in 
the number of bits necessary to represent their values. You may use 
an .EXTD symbol (external displacement) in any field that is no 
more than 8 bits wide. Use an .EXTN (external normal) to declare a 
symbol that requires a field at least 16 bits wide. 

The .EXTU pseudo-op instructs the assembler to interpret undefined 
symbols as external displacement (.EXTD) symbols. This pseudo-op 
may be used in programs where undefined symbols are defined at 
bind-time by the use of run-time libraries. 

The .GADD and .GREF pseudo-ops enable you to calculate a value by 
adding a scalar to a value defined in another module. 

Sizing External Symbol Values 

If a symbol is declared .EXTN, the assembler assumes that it is a 
16-bit value. If the symbol is declared .EXTD, the assembler assumes 
it is an 8-bit value. The assembler assures that a symbol declared 
.EXTN is not used in the displacement field of a memory reference 
instruction. 

If you use an externally defined symbol in a field that is not wide 
enough, the assembler reports an error. For example, if your source 
program includes the statement 

.EXTN A 

the assembler assumes that the value of A is too large to be represented 
in 8 bits. Each time that you use A in this source module, the 
assembler checks that the corresponding field is not the displacement 
field of a memory reference instruction. If you use A in a memory 
reference instruction, for example 

JMP A 

the assembler returns an error. 

Binder Directives 

Three pseudo-ops allow you to pass to the binder information that it 
will need to build the program's interface to the operating system. 
To use these pseudo-ops, you need to understand the concepts 
explained in the MPjAOS System Programmer's Reference, DGC No. 
093-400051, and in Part 2 of this manual. These pseudo-ops are 
listed in Table 4.8. 



Partitioning Programs and Controlling Assembly 

Although these pseudo-ops do not affect the translation of the source 
module, they are assembler directives in the sense that they instruct 
the assembler to pass information. 

Table 4.8 Binder directive pseudo-ops 





Defining and Data 

This chapter is in three sections. The first section explains how to 
define and use macros. The second section explains how to define 
symbols other than macros and pseudo-ops and how to redefine 
symbols other than pseudo-ops. The third section reviews the use of 
pseudo-ops that define the attributes of numeric and string data. 



Defining and Data 

Macros 

Macro Definitions 

Macros are programming constructs that shorten the work of writing 
programs. A macro is a named series of source lines. 

To associate a name with a macro string, use the .MACRO pseudo-op. 
The format for using .MACRO is 

.MACRO macro-name l 
macro-definition-string 

% 

where: 

macro-name is the name you will use to refer to this 
macro. Macro-name must conform to the 
rules for symbols presented in Chapter 3. 
You must follow macro-name with a delimit­
er to clearly separate the macro name from 
its definition. 

macro-definition-string consists of zero or more source statements. 
The assembler substitutes these statements 
for macro-name in your module. 

% terminates the macro definition string. 

The following source code defines and uses a simple macro. 

% 

. MACRO FIVES 
5 
5 

FIVES 

Macro Continuations 

;The name of the macro is FIVES . 
;The macro definition string consists of 
;two data entries 
;End of macro definition string; not part of 
;macro body. 

;When the assembler encounters the macro 
;name FIVES, it substitutes the macro 
;definition string in your module (in 
;this case, two consecutive data entries). 

You may extend a macro definition by including more than one 
macro-definition string, each beginning with the .MACRO pseudo-op 
and ending with the per cent sign macro terminator. Each macro 
name must be the same, and there may be no intervening macro 
definitions. 

For example, 



.MACRO JOHN 

% 

[program code] 

.MACRO JOHN 

% 

will generate a macro John, but, 

% 

% 

% 

generates an error. 

Redefining Macros 

.MACRO JOHN 

.MACRO MARY 

.MACRO JOHN 

You can only redefine macros by using the .XPNG pseudo-op (see 
below). However, .XPNG deletes the entire symbol table. 

Partial Lines 

In most cases, you will write macro definitions in the form of one or 
more lines. You place the % immediately after the last line of the 
macro definition as the first item of the next line. You can also 
define a macro as zero or more lines followed by part of another 
line. You do this by placing the % immediately after the last character 
of the partial line. Any characters following the % will not be part of 
the macro definition. For example, 

Defining and Data 



Defining and Data 

. MACRO Z ;This macro definition 
STA O,SY% ;is made of a partial line 

.MACRO W ;This macro definition 
STA O,SYO ;is made of two 
STA 1,SY1 ;full lines 
% 
. MACRO R ;This macro definition 
STA 2,SY2 ;is made of a full 
STA 3,SY% ;line and a partial line 

Special Characters 

Within the macro definition string, two characters have special 
meanings: underscore (_) and uparrow(TJ. The underscore (ASCII 
code 1378) directs the assembler to store the next character without 
interpreting it. Thus, you usually use the underscore to store 
characters that otherwise have special significance when in a macro 
definition string. In other words, if you precede the characters %, _, 
or T with an underscore, the macroassembler does not interpret 
them. 

For example, if you want to place a percent sign in a source line, you 
must precede it with an underscore. If you do not, the assembler 
interprets % as the end of the macro. Thus, if you want to place the 
string 

% MEANS PER 100 

in a macro, enter 

_ % MEANS PER 100. 

Also, by using the underscore and percent in this fashion, you may 
write one macro that creates a second macro. 

If you place an underscore before a character that the assembler 
would not interpret anyway (Le., a character other than %, -, or TJ, 
the assembler ignores the underscore. For example, the assembler 
interprets 

% 

. MACRO X 
A...B 

as equivalent to 

;The assembler removes­
;from the symbol A...B. 



% 

.MACRO X 
AB 

Inside a macro, to use a symbol containing an underscore, include 
an extra underscore in the symbol. The first underscore directs the 
assembler to store the second one as part of the symbol. Thus, to 
indicate the symbol A_B in a macro, enter A_B. 

The second character that has a special meaning inside macros is 
the uparrow m (ASCII 1368), You use this character when defining a 
macro that accepts arguments. 

The assembler returns all characters in the macro definition string, 
except the underscore (_), uparrow m, and percent (%), exactly as it 
interprets these characters in non-macro source code. 

Arguments in Macro Definitions 

You may include formal (dummy) arguments in the macro definition 
string. When you call the macro, you supply an actual value for each 
formal argument. When the assembler expands the macro, it replaces 
the formal arguments in the macro definition string with the actual 
arguments in the macro call. 

Within the macro definition string, all formal arguments begin with 
an uparrow m (ASCII 1368 ), There are three formats for formal 
arguments: 

Tn where n is a digit from 0 to 9 

Ta where a is a letter from A to Z or a to z. 

T?a where a is a single character from the following set: A - Z, 
a-z,O-9,? 

A digit following T represents the position of an actual argument in 
the macro call's argument list. That is, when the assembler expands 
the macro, it replaces all occurrences of Tn with the nth actual 
argument in the macro call. 

For example, in the following macro, the formal argument T2 appears 
in the macro definition string. When you call the macro, the 
assembler replaces T2 with the second argument in the macro call. 

. MACRO TWO ;Define macro TWO . 
A = T2 ;A equals the second argument you 

;pass to macro TWO. 
% ;Macro terminator (not part of macro). 

TWO 3,4 

A = 4 

Defining and Data 



Defining and Data 

In the above example, the assembler substitutes the second argument 
for T2 and therefore A now equals 4. 

The Tn format allows you to reference only the first nine arguments 
to the macro IT!, 12, ... , T9). Since the assembler allows you to supply 
up to 6310 arguments, you must use the Ta and 17a formats to represent 
arguments 10 through 63. 

The a or ?a following T is a user symbol whose value the assembler 
looks up when expanding the macro. The value of the symbol 
indicates the position of the actual macro argument that replaces it 
(as in Tn). The value for a or ?a must be in the range 0-63. 

The following example illustrates the use of Ta and 17a within a 
macro definition string. 

0=1 ;Initialize symbols 0 and ?N. 
?N=3 

. MACRO PLUS ;Define macro PLUS . 
X=TD t T?N ;X is the sum of two arguments. 

% ;Macro delimiter. 

PLUS 2.4.5 ;Call macro PLUS with three arguments. 
X=2t5 ;X is the sum of two arguments. 

When the macroassembler expands the macro, D equals 1 and ?N 
equals 3. Thus Tn evaluates to Tl and 17N evaluates to 13. After the 
call to macro PLUS, X has the value of the first argument plus the 
third argument (X=2+5). 

A zero or negative value following an uparrow (e.g., TO, or TI, where 
1= -5) is unconditionally replaced by the null string (a string with 
no characters). Similarly, the macroassembler substitutes the null 
string for any formal argument value that is larger than the number 
of actual arguments you supply to the macro call. For example, the 
macroassembler substitutes the null string for 13 if you supply only 
two arguments when calling the macro. These rules apply to all 
three formal argument formats (i.e., Tn, Ta, and 17a). 



After defining a macro, you insert the macro name wherever you 
want to insert the macro definition string in your module. The 
macro name and arguments, which need not be kept on one line, are 
a macro call. 

A macro call has one of three formats - the macro name with no 
argument, the name followed by an argument list, or the name 
followed by a bracketed argument list: 

macro-name 
macro-name 
macro-name 

where 

arg1 ... arg n 
[arg1 ... arg n} 

macro-name is the name of the macro, and 

argn is an actual argument that replaces the appropriate 
formal argument during macro expansion. 

During macro expansion argl replaces every occurrence of Tl (or Ta 
where a= 1 within the macro; arg2 replaces every occurrence of T2 
within the macro. In general, argn replaces every occurrence of Tn 
(or the equivalent of the nth formal argument) within the macro. 

You use the first form of a macro call for macros having no formal 
arguments within their definitions or for macros accepting null 
arguments. 

You can use any of the macro forms to call a macro which requires 
arguments. However, if you use the first form, all formal arguments 
are replaced by null strings. In the second form, a New-Line character 
or semicolon terminates the argument list; in the third form, a right 
bracket (]) terminates the argument list. If your arguments do not fit 
on one line, use the third form. In that form, a New-Line character 
acts just like a comma character: it serves only as a terminal between 
arguments. You must be sure not to separate the last argument on a 
line and the New-Line character with any commas, since the 
macroassembler assumes the intervening commas represent other 
arguments. For example: 

ABC [1,2J 3,4] ;Specifies 4 arguments 
ABC [1,2,J 3,4] ;Specifies 5 arguments 

In the first example, the New-Line character separates the second 
and third arguments. In the second example, the New-Line character 
separates the third and fourth arguments. In this example, the third 
argument follows the second comma and is a null argument. 

Defining and Data 

Macro Calls 



Defining and Data 

NOTE: If you use the third form and some characters follow your argument list, 
the macroassembler lists the characters after the macro expansion. 

Using the third form, if you begin your macro reference with the 
special atom * *, then the macroassembler suppresses the listing of 
the first line of the macro call (the line containing the * *J. Arguments 
appearing on other lines, plus any characters following the argument 
list, still appear in the listing. If you begin a macro reference line 
with * * and suppress the listing of the macro expansion using the 
.NOMAC pseudo op, all lines in the macro reference and any 
characters following the argument string are suppressed. 

Macro definition and reference: 

% 

** 

. MACRO 
LOA 
LOA 
MOV 
JMP 

NIUN [1,MRI, 
2,SUON 

NIUN 
"1,"2 
"3,"4 
"5,"6 
"7 

1,3 J 
MAR] ;This is the comment string J 

Expansion with .NOMAC 0: 

00000 024000 LOA 1,JIR 
00001 024000 MAR] LOA 1,MRI 
00002 030000 LOA 2,SHON 
00003 135000 MOV 1,3 
00004 000000 JMP MAR 

;This is the comment string 
00005 044000 STA 1,KSRTH 

Expansion with .NOMAC 1: 

00006 024000 LOA 1,JIR 
;This is the comment string 

00013 044000 STA 1,KSRTH 



Macro definitions replace macro calls in the object file and in macro 
expansion listings. The listing shows both macro calls and macro 
expansions; the object file, however, contains only the object code 
for the macro expansions with actual arguments. 

For example, consider the trivial macro 

.MACRO OSP 
"'1% 

which simply expands to its first argument. A source line using the 
number 121 as an argument to the macro DSP would be 

LOA 0,OSP[121],3 

The listing line would show the macro and argument expanded to 
just the argument, that is, DSP[121] would expand to 121. The source 
listing would show both the macro and it expansion: 

LOA 0,OSP[121] 121,3 

The expanded line to be translated to the object file would be 

LOA 0,121,3 

You can use the pseudo-op .NOMAC to suppress the listing of macro 
expansions. If you suppress macro expansions, the load instruction 
in the example above appears in the listing exactly as it does in the 
source listing line. 

In addition to .MACRO and .NOMAC (described above), the assembler 
provides two other pseudo-ops you may use with macros: .ARGCT 
and .MCALL. 

The .ARGCT pseudo-op is a value symbol that returns the number of 
actual arguments you pass to a macro. Use this symbol inside the 
macro definition string. For example: 

% 

.MACRO X 
T1+T2 
(.ARGCT) 

X 4,5 ;Pass two arguments to X 
4+5 
(.ARGCT) ;At expansion time, the value for 

;.ARGCT is 2 because macro X was 
;called with two arguments. 

Defining and Data 

Listing Macro 
Expansions 

Macro Related 
Pseudo-Ops 



Defining and Data 

Loops and 
Conditionals in 
Macros 

The .MCALL pseudo-op is also a value symbol that you may use 
inside a macro definition string. This symbol has the value 0 during 
the first call to that macro on the current assembler pass. The 
symbol has a value of 1 during subsequent calls in the current pass 
and - 1 outside a macro. For example: 

% 

.MACRO Y 

.IFE 
JSR 
.ENDC 

.MCAll 
@FIRST 

;Assemble all code up to .ENDC only 
;if the value of .MCAll equals zero. 

The first time you call macro Y, .MCALL equals O. Thus, the .IFE 
condition will be true and the macroassembler will assemble the 
statement in the conditional block (JSR @ FIRST). However, on 
subsequent calls to macro Y, .MCALL will equal 1 and the macroas­
sembler will not assemble the .IFE block. 

When you use a .DO loop or an .IF conditional inside a macro, be 
sure you include a corresponding .ENDC pseudo-op in that same 
macro. The assembler reports an error if it encounters the macro 
definition terminator (%) before .ENDC. In addition, the macroassem­
bIer takes one of the following actions: 

• If there is a .DO statement inside a macro with no corresponding 
.ENDC, the assembler interprets it as .DO 0 or .DO 1, depending 
on the loop count. 

• If you do not terminate an .IF conditional inside a macro, the 
macroassembler ends the conditional immediately before the 
macro definition terminator (%). 

The following example shows the proper use of a .DO loop 

% 

.MACRO lOOP 

.00 T1 ;When you call this macro, the first 
3 ;argument indicates how many times to 
4 ;assemble the .00 loop. 

.ENDC ;The end of the .00 loop is inside the 
;macro definition string. 

The following code shows the correct use of an .IF pseudo-op inside 
a macro: 



.MACRO 

.IFE 
10 
20 
. ENDC 
30 
40 

% 

COND 
T1 

;If the first argument you pass to this 
;macro equals 0, the macroassembler assembles 
;the data entries 10 and 20. Note that the 
;.ENDC statement appears inside the macro . 

;The macroassembler assembles data entries 30 
;and 40 regardless of the argument value you 
;pass to this macro. 

Defining and Data 

The first example is a macro which computes the logical OR of two 
values. To call this macro, use the form: 

Macro Examples 

OR acs acd 

where 

acs is the source accumulator, and 

acd is the destination accumulator . 

% 

. MACRO OR 
COM 
AND 
ADC 

"1,"1 
"1,"2 
"1,"2 

;Complement AC"1 
;Clear ·on" bits of AC"1 
;OR result to AC"2 

FACT is a macro that computes the factorial of a number. The 
factorial of a number, nt, is the value: 

n!=n*(n-1)*(n-2)*(n-3)* ... *(2)*( 1) 

The macro uses the recursive formula 

n! = n*(n-1)! 

to calculate the factorial value, where n is the input integer. Recursive 
means that the macro calls itself repeatedly. 

If the input integer is not 1, the macro cannot immediately return 
the value of the factorial because (n-l)! has to be calculated. The 
macro saves the value of the input integer, decrements it, and uses 
the decremented value as the new input integer when the macro 
calls itself to calculate (n-I)!. 

If n-l is not 1, the macro repeats the decrement and call procedure. 
When the macro calls itself with an input integer of 1, the macro 
can calculate I!, return to the next higher level, calculate the next 



Defining and Data 

factorial using the saved value of the input integer for this level, 
return to the next level, and so on, until it calculates (n-I)! and 
finally n!. The format used for calling this macro is 

FACT n i 

where 

n is the number to be factorialized, and 

i will be the factorial of n. 

The FACT macro is shown below. 

.MACRO FACT 

.00 T1=1 
T2= 1 
. EN DC 
.00 T 1 < > 1 
FACT T1-1.T2 

T2= T1*T2 

. ENDC 
% 

;Is input integer 1? 
;If so. set the initial value of the 
;factorial to be 1. 
;If input integer is not 1. then 
;decrement it and 
;call FACT again. Macroassembler 
;saves the old value of the input integer 
;for use when the macro returns to 
;this level. 
;When input integer is 1. the value of 
;the factorial becomes the current 
;value of the factorial times the 
;value of the input integer at 
;this level . 



Defining and Data 

FACT 6,1 
000000 .00 6 = =1 

1= 1 
.ENDC 

000001 .00 6 < >1 
FACT 6-1,1 

000000 .00 6-1==1 
1= 1 
.ENDC 

000001 .00 6-1 < >1 
FACT 6-1-1,1 

000000 .00 6-1-1 = =1 
1= 1 
.ENDC 

000001 .00 6-1-1 < >1 
FACT 6-1-1-1,1 

000000 .00 6-1-1-1==1 
1= 1 
.ENDC 

000001 .00 6-1-1-1 < >1 
FACT 6-1-1-1-1,1 

000000 .00 6-1-1-1-1 = =1 
1= 1 
.ENDC 

000001 .00 6-1-1-1-1 < >1 
FACT 6-1-1-1-1-1,1 

000001 .00 6-1-1-1-1-1 = =1 
000001 1= 1 

.ENDC 
000000 .00 6-1-1-1-1-1 < >1 

FACT 6-1-1-1-1-1-1,1 
1= 6-1-1-1-1-1*1 
.ENDC 

000002 1= 6-1-1-1-1*1 
.ENDC 

000006 1= 6-1-1-1*1 
.ENDC 

000030 1= 6-1-1*1 
.ENDC 

000170 1= 6-1*1 
.ENDC 

001320 1= 6*1 
.ENDC 
.END 



Defining and Data 

The next example shows a macro which allows you to structure 
your programs with IF-THEN-ELSE statements. The macro requires 
five arguments. The first two are accumulators. The third is a 
condition that allows you to test the other two accumulators. Table 
5.1 below describes the values the third argument can assume and 
the test each value specifies. 

Value Test Performed 

o Test if fitst accumulator . > second accumulator 

1 Test· if first accumulator second accumulator 

2. Test. if first accumulator < second accumulator 

3 Test if first accumulator <>second accumulator 

Table 5.1 Third argument values 

If the test condition is true, then the macro jumps to the address 
given as argument 4 (the THEN address). If the test condition is not 
true, the macro jumps to the address given as argument 5 (the ELSE 
address). So the format of the actual macro call is 

IF aCl' aC2' test,adrt, adrf 

where 

test 

are the two accumulators, 

specifies the test you want to make, 

is the address the macro returns to if the test 
condition is true, and 

is the address the macro returns to if the test 
condition is false. 

The IF-THEN-ELSE macro is shown below. 



.MACRO IF 

.00 T3=0 ;This is the GREATER 
;THAN routine. 

SUBZ# T1.T2.SZC If T1 >T2 then go to 
;THEN routine. 

JMP T4 ; Else go to ELSE routine. 
JMP T5 
.ENDC 
.00 13=1 ;This is the equal routine. 
SUB# T1.T2.SNR If T1=T2 then go to 

;THEN routine. 
JMP T4 ; Else go to ELSE routine. 
JMP T5 
.ENDC 
.00 13=2 ;This is the LESS THAN 

;routine. 
SUBZ# T1.T2.SEZ If T1 < T2 then go to 

;THEN routine. 
JMP T4 
JMP T5 ; Else go to ELSE routine. 
.ENDC 
.00 13=3 ;This is the NOT EQUAL 

; routine. 
SUB# T1.T2.SZR If T1 < >T2 then go to 

;THEN routine. 
JMP T4 ; Else go to ELSE routine. 
JMP T5 
.ENDC 

% 

You may define symbols with values 

as labels 
in assignment statements 
as macros 
with instruction definition pseudo-ops. 

You may also build symbol names, using generated symbols and 
numbers. 

In addition to the symbols that you define, there are symbols whose 
definitions are supplied by Data General in the internal and 
permanent symbol tables. 

Procedures for defining labels, assignments, and macros are ex­
plained above and in Chapter 3. This section explains the rules for 
the redefinition of these types of symbols and for the automatic 
generation of symbol names. 

Defining and Data 

Defining Symbols 



Defining and Data 

Semi-Permanent 
Symbols 

The rules for the redefinition of symbols can be summarized as 
follows: 

• Pseudo-ops cannot be redefined. 

• Labels cannot be redefined. 

• Macros can be extended, but not redefined without the use of 
.XPNG, which erases all symbol definitions. 

• Semi-permanent symbols can be redefined. If the 1M switch is 
used, semi-permanent symbols can be redefined only by using 
.XPNG. 

• Symbols used only in assignments can be redefined. 

• Externally defined symbols cannot be defined differently. 

These rules are developed below. 

Semi-permanent symbols are symbols defined, using the symbol­
definition pseudo-ops listed in Table 5.2. Refer to Chapter 7 for how 
to use these pseudo-ops. These symbols may be found in the 
permanent symbol file (MASM.PS, for instance) or in your source. 

As their name implies, semi-permanent symbols are not as easily 
redefined as assignment symbols. Unless you wish to allow multiple 
definitions of the same symbol within a program, you cannot redefine 
a semi-permanent symbol without deleting the entire symbol table. 
(Use the 1M switch described in Chapter 6 to prohibit multiple 
definition of semi-permanent symbols. The procedure for deleting a 
permanent symbol table and rebuilding a new one is also explained 
in Chapter 6.) 



.. ··~~~.stoteir)$tr~tiqnrSEluiring .anaccurt\ula­

·~~·of;stor.iO$tr"~ionrequiring no accurt\ula-

ll()'~~~dti~r,e~ng a.vi~ o~ and no 

.il~~i~'~tiQl}SPeti1Yjng·a~>8t9~u'ator anddeVi¢e 

.. tionre~u.ri~sdu~gel.!:les.tif'latlon. andbp~a-:, 

.)~)~V:~~:)~t'on$~C~P~PSeu~$ 

Table 5.2 Symbol definition pseudo-ops 

Redefining Symbols in Assignments 

If you define a symbol in an assignment statement, you may redefine 
it at any point in your program. For example, 

START: A=3 
A=LOA 0,0 
A=9 

Defining and Data 



Defining and Data 

Defining Labels 

At the end of this sequence, the symbol A has the value 9. 

A label symbolically names a memory location. By using labels, you 
can refer to locations without using numeric addresses. 

Labels appear at the beginning of the source line and must be 
followed by a colon. All labels must conform to the rules for symbol 
names. 

The following source lines show how to use labels: 

BEGIN: 
JUMP: 

LOA 
JSR 

O,SEVEN 
@17 

SEVEN: 7 

The value of a label equals the value of the location counter at the 
label. Since the macro assembler computes the label value prior to 
processing the rest of the source line, a label usually equals the 
address of the next storage location that the assembler creates. 

According to these rules, the label BEGIN in the first line of the 
previous example receives the address of the assembled LDA 
instruction as its value. Location SEVEN contains the value 7. 

Since some source lines do not generate storage words, a label is not 
necessarily associated with the source statement it appears in. For 
example, 

START: 
NREL 1 
. TITLE 
NREL 

M001 
o 

Here, the first statement assigns the title MODI to the source module. 
This statement does not generate a storage word. Therefore, the 
label START receives as a value the address of the next location 
assembled. 

Similarly, a label may appear alone on a line, in which case its value 
equals the address of the next storage location assembled. 

LABEL1: 
LOA 0,1 

In this example, the value of LABELl equals the address of the 
assembled LDA instruction. 



LABEL 1: 
LABEL2: LOA 0,1 

Here both LABELl and LABEL2 equal the address of the LDA 
instruction. 

You may place more than one label on a source line; all labels will 
receive the same value. For example: 

LOOP1: LOOP2: LOOP3: ADD 0,1 

LOOP1,LOOP2, and LOOP3 all equal the memory address of the 
assembled ADD instruction. 

Do not label lines that contain the following pseudo-ops: .GLOC, 
.LOC, .NREL, .ZREL. These pseudo-ops may alter the value of the 
location counter and labelling them may cause errors. 

The assembler offers two formats to automatically generate numbers 
and symbol names. The backslash (\) is used to generate numbers 
and symbols that increment by 1. The dollar sign ($) is used to 
generate alphanumeric labels. 

Backslash 

To generate number and symbols with the backslash, use the 
following format: 

\ symbol 

At assembly time, the assembler replaces \symbol with a 3-digit 
number representing the value of symbol. The assembler uses the 
current input radix for this substitution and truncates the value of 
symbol to three characters, if necessary. 

\symbol may stand alone in code to form an integer, or it may 
follow characters that, together with the value of \symbol, form a 
number or symbol. For example, 

A=2 ;Initialize A and B. 
B=1234 

X\A: 1 ;X\A evaluates to the symbol X002 
X\B: 1 ;X\B evaluates to the symbol X234 

;(the 1 is truncated from 1234). 
C=\At\B ;\A equals 002 and \B equals 234 

;so C equals 236. 
450.\A ;450.\A evaluates to 450.002 

Defining and Data 

Generated Numbers 
and Symbols 



Defining and Data 

The assembly listing for a generated number or symbol shows the 
replacement value and the \symbol designation. For example, the 
above section of source code would appear as follows in the assembly 
listing: 

000001 .NREL 1 

000002 A = 2 
001234 B = 1234 

00000!000001 X\A002: 1 
00001!000001 X\B234: 1 

000236 C = \A002+\B234 
00002 ! 041434 450.\A002 

020010 

Table 5.3 shows the correspondence between source code, the 
assembly listing, and the cross-reference listing. 

Table 5.3 Generated symbols in source and listings 

You may increment the symbol used for \symbol just as you would 
increment any other value. For example, the following code creates 
labels for a table. (The listing follows the code.) 

Source Code 

.RDX 
** X=O 

TABLE: . 00 
A\X: 
** 
** . ENDC 

8 

64. 
0 
X=X+1 

;Initialize counter X (** means 
;suppress listing of this line) . 
;Assemble this loop 64 (decimal) times. 
;Create labels AOOO, A001, ... , A077. 
;Increment counter X . 
;End of .00 loop. 



Assembly Listing 

000010 .ROX 

000100 TABLE: .00 
00000 000000 A\XOOO: 0 
00001 000000 A\X001: 0 
00002 000000 A\X002: 0 

00076 000000 A\X076: 
00077 000000 A\X077: 0 

Dollar Sign 

8 

64. 

The macroassembler replaces each occurrence of $ (except those in 
text strings) with three characters from the set 0-9, A-Z. The 
macro assembler determines which three characters to use by con­
verting the count (in radix 36) of the total number of all macro calls 
to ASCII. In nested macros, the macroassembler saves the replace­
ment value for $ in the outer macro when the inner macro is 
expanded. 

Generally you should not use $ as the first character in a label, since 
the first replacement character may be a digit. 

The following example shows how to use $ to generate labels . 

. MACRO LABGN 
L$: 0 
% 

LABGN 
00000 000000 L$001: 0 

LABGN 
00001 000000 L$002: 0 

LABGN 
00002 000000 L$003: 0 

Defining and Data 



Defining and Data 

Specifying Data 
Attributes 

Radix Control 

Text Strings 

The assembler recognizes several pseudo-ops that define the attributes 
of numeric and string data. 

The radix control pseudo-ops allow you to specify both the input 
radix and the output radix for your source module. The assembler 
uses the input radix to interpret numeric expressions in your source 
code and the output radix to display numeric values in the various 
output listings. 

Table 5.4 describes the two radix control pseudo-ops. 

Input and output radices are entirely distinct, and you set them 
independently, using the .RDX and .RDXO pseudo-ops. You may 
specify input radices in the range 2-20 and output radices in the 
range 8-20. The default radix for both input and output is 8 (that is, 
octal). 

You may use .RDX and .RDXO as value symbols. They return the 
current input and output radices, respectively. 

Mtmtbler 
. Direc::tive 

Table 5.4 Radix control pseudo-ops 

v .... ' Description 
Symbol" 

,',,< '< 

Y.$~t()j:~re$el'\tradix for numeric 
ibput,ctlhversion 
~t, ,()tre~ent radix for numeric 
" outPut'col"lversion 

For information about number and integer-generating formats, see 
Chapter 3. 

The text string pseudo-ops assemble character strings into their 
equivalent ASCII codes. That is, using these pseudo-ops, you may 
enter an ASCII string in your source code and have the assembler 
store its binary representation in memory. 

Storage of a character requires 7 bits of an 8-bit byte. The leftmost 
(parity) bit can be set to 0, 1, even, or odd parity. 

You can specify ASCII source text strings within source modules in 
several ways. Depending on which text string pseudo-op you use, 
you can set parity and change the way the assembler packs the text 
string. Table 5.5 lists the pseudo-ops that affect text strings. 



Pseudo-QP . Assembfe.r ValUe 
Directive SymbQJ 

;TXT Yes. No 

.TXTE Yes No 

.TXTF "(e$ No 

.roM YeS Yes 

,TXTN YeS Yes 

.TXTO Yes No 

Table 5.5 Pseudo-op that affect text strings 

Description 

Set leftmosi bit to 0 

Set IeftmQstbit of each.cl\ataCter 
for evenp<JfiW 

Set leftmost bit tq 1 uncondhiQA­
ally 

Specify~ft/rigbtor right/left 
bytepackingwithin words' .. , 

Terminate an.even length byte 
string with nq null bytes .<i two 
null bytes 

Set leftmO$tbit Qf each character 
for odd parity 

Using .TXT, you can direct the assembler to store the binary 
equivalent of an ASCII text string in memory. The assembler always 
packs two characters into each I6-bit word when it stores a text 
string (i.e., one character per 8-bit byte). 

By default, the assembler packs character bytes left to right within 
memory words. You may override this convention by issuing the 
.TXTM pseudo-op. 

If a string has an odd number of characters, the assembler places a 
null (all zero) byte in the word with the last character. If the string 
has an even number of characters, the assembler places either no 
null bytes or two null bytes after the last character, depending on 
your directions (see .TXTN). 

If you wish to store only one or two ASCII characters in memory, 
you do not have to use pseudo-ops. "Special Integer-Generating 
Formats" in Chapter 3 describes alternative methods for storing 
characters. 

NOTE: Do not use _, T, and % as characters in a . TXT string within a macro body. 

Also do not use :, ;, $, and \ as string delimiters. 

Defining and Data 





Executing the 
Assembler 

This chapter explains how to execute the assembler and interpret its 
printed output. The first part of the chapter explains the command 
line used to invoke the assembler and the switches used on that 
command line. 

The second part of the chapter explains how to interpret the printed 
output from the assembler. 



Executing the Assembler 

Operating 
Procedures 

Simplest Use of 
Assembler 

The CLI command line that invokes the macroassembler is 

XEQ MASM {function switch} path name { arg-switch I 
{pathname{ arg-switch II ... 

where: 

XEQ is a CLI command that executes a program. The 
single character X is an acceptable abbreviation 
for XEQ. 

MASM is the name of the macro assembler program (less 
.PR extension). 

function switch is one or more optional global switches (see Table 
6.1). 

pathname is the pathname of a source file. You must include 
at least one source file in each MASM command 
line. If you include more than one source file, 
make sure that all but the last one end with the 
.EOF or .EOT pseudo-op; end the last file with 
.END. 

arg-switch is the /S local (argument) switch explained below. 

When you enter the MASM command, the macroassembler assembles 
one or more source files and, depending on the command line 
switches you use, produces an object file and a variety of listings. 

If you do not use any function switches, the object file has the name 
of the first filename without the local /S switch on the command 
line; the assembler does not produce an assembly listing; and it 
reports all errors to the console. 

The simplest use of the assembler generally involves the inclusion in 
your source program of three assembler directives: 

1. A title directive, with the format 

.TITLE name 

If you do not include this directive, the assembler assigns the title 
.MAIN. The module's title is then unlikely to be the same as the 
object filename. 

2. A location directive, either .LOC, .ZREL or .NREL. If you do not 
include a location directive, the assembler begins assigning 
locations at absolute location zero. 

3. A directive to indicate the end of the program, with the format: 

.END label 

where label is a symbolic name for the starting address for 
execution of the program. 



If you are familiarizing yourself with assembly language program­
ming of Data General computers, you can build simple test programs 
around this skeleton. Functional programs of course require a more 
developed framework, including a stack with stack and frame 
pointers, and so forth. 

To assemble the source module, enter the command line 

XEQ MASM source-tile 

where source-file is the name of the file that contains your source 
module. You may include or omit the .SR extension. 

The assembler creates an object file with the name source-tile.OB, 
and reports assembly errors to the console. 

Chapters 3 through 5 explain all the assembler directives you may 
include in the source module. This chapter explains the command 
line switches you may use to modify the action of the assembler. 

Command line switches are of two kinds: function switches and 
argument switches. Function switches (also called global switches) 
are applied to the program name argument, MASM, and set parame­
ters that hold for an entire assembly. Argument switches (also called 
local switches) are applied to source file names and affect the 
assembly of that file only. 

Function Switches 

Table 6.1 describes the function switches you may use in a MASM 
command line. 

Executing the Assembler 

Command Line 
Switches 



Executing the Assembler 

Switch 

18 

IE 
IE == t;IenamtJ 

IF 
IK 

IL 
IL ==fjletlamtJ 

1M 

IN 

10 

IP 
IPS-filetll¥Tle 

IR 

IS 

Action 

" : 

MaktJS symb~1 nantes sigriific~ntup tQeightcharacters. Without this switch, they are significant to five 
characters; Pseudo-ops are alwayssignincant to five characters. 

Narries the (If;lject file filename.OS. The assembler does not add the .0Bextension if the filename already 
ha$One. This switch overrides the ~OB pseudo-op and the naming convention based on source file name. 

Reports errors to the console. 

Creates file filename and reports all assembly errors to that file. If filename already exists, the macroassembler 
app~ndSnew; error. messages to the end of. that file. 

(lenerates'OI" suppresses formfeedsas required to prodOce an even number of assembly listing pages. 

Keeps the macroassembter's temporary symbol table file at the end of assembly •. If this switch is not used, 
the temporary symbol file is delet.edafter the source module has been assembled. 

PrOducesanassemb\vli~inganddirectsit to the.line printer (@LPTt 

Identical to the 11.switche~Pt.that the listing will reside in filename. If the file already exists, the 
macroa&sembler appends the. new listing to the end of that file. 

ta~th&. ~bl~r totreatalf$em~rmanent symbol redefinitIons as. errors. Normally, the assembler 
allows you. to redefine sl¥ni-;permanent symbols. 

Tells therit~l:IrOliiSSembfer .not to create an object file. The assembler checks for errors and produces 
listihgs,.I:JUtd~ ~tereat13an .OB .fil~. Use :this switch tocllecK'for.4,llTQIs or create a listing. 

Oi~ectsth~ lIis.s~mbJer toin~lude all so~ce 'Un8$ in the assembIYIi$ting~ re~dless of any directives to 
,suppreasltstingttlatmay.appear.in :the~u ... ce program. Thatis,the'lO switch overrides the .NOCON, 
.NOCOC. ,NOMAI: and>two,asterisk , .... ') cfireetives. . 

Irnilij~semj-permanents~mbols· in the cross-reference listing. 

Oir~¢tstileassemb1er to use filename as tnepermanent symbol fUe' for the current assembly. If YQu do not 
~ •• th~ ~wltl:lh, the ~ssemg1erusesMASM.F'S as the permanent symbol file.lfyau use this switch with IS, 
. the aS$emb1ercreate~ a·new.~mi:lnentsymbol table and places i:t in ,filename .. 
.pr~es:an:object file eVen if there is an assembly error. By default, the assembler does not produce an 
object fife Wh!:lnthere are errors. . 

Oil'ects<the',MacrOi!Jsi6mbtertoCreate a permanent symbol file, called MASM.PS, for use in future 
assemblies. The JSS8mbter ~ips the sel'.X)ndpass, does not produce an Qbjectfile. 

H~$the slime fUrIDtion~sthe ISswitcn.,except that psJile is use<:l as the name of the new permanent 
'svrnbOl1ile;ps_filemlWbe~ filename or pathname. The original cOpy.ofMASM.PS remains unchanged, 
andtl'leold"cOpy, if anYiofps-file is deleted. . 

Table 6.1 MASM command line function switches 

Argument Switch 

The assembler has only one argument switch, IS. When appended to 
a filename that is input as a source module to the assembler, it 
instructs the assembler to skip that file on the second pass of the 
assembly. 

Any file specified with this switch must not generate any storage 
words. This switch is typically used on parameter definition and 
macro definition files. Skipping such a file on the second assembly 
pass does not hinder the assembly of the other files in the command 
line. It merely decreases the size of the output listing and reduces 
assembly time. 



MP lAOS employs filename conventions to help you know a file's 
contents at a glance. Filenames end with a period and an extension 
that indicates their contents. 

Table 6.2 summarizes the filename conventions that are relevant to 
assembly language programming. The table lists only the filename 
extensions, not the complete filename. 

Extension Contents of File 

.08 Object binary file (generated by language processor) 

.PR Executable program file (generated by binder) 

.PS Permanent symbol file (generated by assembler) 

.SR Assembly language source file 

Table 6.2 Filename extensions 

Normally the names of your source files end with the .SR extension, 
as in filename.SR. However, you do not need to specify the .SR 
extension in the command line. The assembler always searches for 
filename.SR first, in any case. If the assembler does not find it, it 
searches for filename. 

For example, the following command lines are functionally equiva­
lent: 

XEQ MASM FILE1 FILE2 

XEQ MASM FILE1.SR FILE2.SR 

The object file normally receives the name of the first source file 
that does not include the IS switch in the command line. The .SR 
extension is replaced by the .OB extension. You may specify a 
different name for the object file by using the IB = switch or the .OB 
pseudo-op. Table 6.3 shows the file-naming priority employed by the 
macroassembler. 

Do not confuse the object module's title, which you set using the 
.TITLE pseudo-op with the the object file's name. (See Chapter 4 for 
an explanation of module titles.) 

Executing the Assembler 

Filenames 



Executing the Assembler 

Building a Permanent 
Symbol Table 

Priority Object Filename 

1 (highest) 16 = filename 

2 .06 filename 

3 (lowest) Default filename 

Table 6.3 Object filenames 

Description 

The ob1ect file receives the name you 
specify with the/6 = function switch 
on the assembler command line. 

The object file receives the name you 
specify in an .OB pseudo-op in a source 
file. 

The object file receives the name of 
the first source file on the assembler 
command line, that does not have a 
local IS switch. 

The assembler builds a temporary symbol table file during each 
assembly. To build this table, the assembler uses the symbol file 
MASM.PS or whatever file you specify with the IPS= switch. 

The two procedures described below explain how to add symbols to 
an existing symbol file and how to replace a symbol file with an 
entirely new one. 

Adding to an Existing Symbol File 

To add to an existing symbol file, 

1. Write one or more parameter files. Such files contain symbol and 
macro definitions but no pure code. 

2. Assemble the parameter filets), using the IS switch (and the IPS 
switch to specify the symbol file if it is not MASM.PS) The /S 
switch causes the assembler to create a new symbol file by 
adding symbols defined in the parameter filets) to those in the 
symbol table. This new symbol file is named MASM.PS (or the 
name you specified with the / S = switch), regardless of the 
name of the input symbol file. The assembler performs the first 
pass only, and does not produce an object file. 

Creating a New Permanent Symbol File 

To create a new permanent symbol file, 

1. Write one or more parameter files. Such files contain symbol and 
macro definitions, but no code. Include the .XPNG pseudo-op at 
the beginning of the first of these files. 

2. Assemble the parameter filets), using the IS switch to specify the 
symbol file (or IS= switch if it is not MASM.PS). The .XPNG 
psuedo-op causes the assembler to delete the existing symbol 
table and to create a new one. The IS or /S= switch causes the 
assembler to build a new permanent symbol file. The new symbol 
file is named MASM.PS or filename, depending on whether you 



used the /S or /S= switch. The assembler performs the first 
pass only, and does not produce an object file. 

When building a permanent symbol file CPS file), use the /8 switch 
(for 8-character symbols) whenever possible. This allows the perma­
nent symbol file to be used for both 5- and 8-character assemblies. 
Otherwise, the .PS file is likely to work properly for 5-character 
assemblies only. 

The assembler produces four types of output; two of these (the object 
file and the permanent symbol file) are not printed but are disk files. 
The two types of printed output produced by the assembler are the 
assembly and cross-reference listing and the error listing. Both of 
these listings are optional, as explained below. 

The assembly listing shows you how the assembler interpreted your 
source file. The listing is a series of lines, each divided into several 
fields. Table 6.4 lists the information contained in each field in an 
assembly listing, and Figure 6.1 is a sample assembly listing. 

Executing the Assembler 

Interpreting 
Printed Output 

Assembly Listing 



DG-08634 

Executing the Assembler 

001 MARGO MP IMASM ASSEMBLER REV 1.00 07/14/81 15,35,04 
. TITLE MARGORP : ROUTINE TO REVERSE 6-CHAR STRING 

Error code 
02 

or codes ~ 
04 

05 

Line number ~ 

Original 
Source line 

Data field 
relocation symbol 

Assembled 

07 

08 
09 
10 

11 
12 
13 
14 

15 
16 

17 
18 

19 
20 

21 
22 
23 00000' 054417 
FAF AOOOO019 

FU 00001' 000000 
26 00002' 021000 
27 

28 
value ---=------' 

00003'~ 

29 

Address 
relocation symbol 

Location 

UUF 

31 
32 

33 
34 
35 

36 
37 
38 
39 
40 

00007 . 041000 

00010 • 045002 

00011' 021001 

00015~41001 
00016' 002401 

-----;-:---' 
41 counter 

.ENT 

. EXTN 

.EXTO 

.. 

% 

MARG : SYMBOL MARG DEFINED IN THIS MODULE 

STRING : BYTE --> STRING TO REVERSE 
MASK : MASKS OUT PARITY BITS 

.NREL 0 

I. MACRO 
I 

SWAPC I 

. IFE A1_A2 

--> ERROR- SCRATCH AND REVERSE ACS MUST DIFFER 
.ENDC 
. NOMAC : SHUT OFF LISTING 

. IFN A1_A2 

MOVS A1. A1 SWAP . EM 

LOA A2.MASK PARITY MASK 
AND A2. A1 MASK OUT PARITY 
.ENDC 

STA 3. TEMP SAVE RETURN 

LOA 2. STRING BYTE --> STRING TO REVERSE 

MUVZR 2.2 WORD --> STRING TO REVERSE 

LOA 0.0.2 1ST WORO OF STRING 

LOA 1.2.2 3RD WORD OF STRING 

SWAPC 0.3 REVERSE 1ST CHAR 

SWAPC 1.1 REVERSE 3RD CHAR 
--> ERROR- SCRATCH AND REVERSE ACS MUST DIFFER 

STA 0.0.2 REPLACE THEil! 

STA 1.2.2 
lOA 0.1.2 MIDDLE WORD OF STRING 

SWAPC 0.3 REVERSE THEM 

STA 0.1.2 REPLACE 

JMP @TEMP 

.BlK 

.END 

00014 TOTAL ERRORS. 00000 PASS 1 ERRORS 

Figure 6.1 Assembly listing 



Columns 

1-3 

4-8 

9 

10-15* 

16 

17 ... 

Information Contained 

If there are assembly errors on this line, error codes appear in 
these columns. The first error is reported in column three, the 
second in column two, and the third in column one. If there are 
more than three errors, error flags do not appear here but are 
recorded in the total error count. 

If there are no errors, these columns contain a two-digit number 
indicating the line number on current listing page and a blank 
space. 

The value of the location counter (address), jf applicable. If the 
current source statement generates more than one word of 
code, the value in these columns is the address of the first 
word. If the source statement does not generate any storage 
words, these columns are left blank. 

A one-character symbol indicating the relocation base of the 
address in columns 4-8 (see Table 6.5). 

Data field for the 16-bit word ofthe assembled instruction or 
expression, or the 16-bit word or the value on the right side of 
an·assignment statement or pseudo-op argument. 

If the assembled value requires two or more l6-bit words (as in 
.TXT or extended instructions) the second word is listed in 
columns 10-15 on the next lines of the listing. 

A one,-character symbol indicating the relocation base of the 
value in columns 10-15 (see Table 6.6). 

The source statement exactly as written or expanded by macro 
calls. 

Table 6.4 Assembly listing fields 

'Certain source statements do not generate storage words in the object module. 

For these lines, the listing data field contains the value of an argument or other 

relevant expression. For example: 

000001 . NREL 1 

The data field contains the value of the argument to NREL, namely 1. 

Character 

(space) 

Meaning 

Absolute relocation 

Psgezero relocation 

Page lero byte relocation 

NRELO ward rel.ocation.(impurecade) 

NREL 1 word relocation (pure code) 

NREL 0 byte relocation (impure c.ode) 

& NREL lbyterelocatia" lpurecode) 

$ Externalsymbal relocation 

U Undefined symbal (an cross-reference listing) 

Table 6.5 Address and data field relocation base symbols 

Executing the Assembler 



Executing the Assembler 

Cross-Reference 
Listing 

Assembly Listing Control 

The assembler does not automatically produce an assembly listing. 
If you want one, you must include either the /L or the /L=filename 
on the MASM command line. The /L switch directs the assembler to 
send the listing to @LPT; the / L = filename switch sends the listing 
to a specified file. 

The assembler provides several directives that allow you to manipu­
late the contents and formats of the assembly listing. Table 6.6 lists 
switches and pseudo-ops that affect the assembly listing. 

These modifiers affect only the listing, not the object file. 

Table 6.6 Pseudo-ops that control assembly listings 

The cross reference listing provides an alphabetic list of symbols 
and their values, and also shows the page and line numbers of the 
assembly listing in which the symbols appear. 

In addition, the cross-reference listing also indicates the page and 
line on which you defined (or redefined) the symbol (if applicable). 
The macroassembler signals the defining reference(s) by placing a 
number sign (#) after the appropriate page/line indicator. 

The cross-reference listing includes several symbol type flags that 
provide additional information about the symbols in your program. 
Table 6.7 lists the assignment mnemonics and their meanings. 

These mnemonics appear in the cross-reference immediately after 
the symbol's value. Figure 6.2 is a sample cross reference listing. 



Character Meaning 

(spaces) 

EN 

EO 

XD 

XN 

NC 

MC 

Local symbol 

Entry symbol (defined in .ENT statement) 

Overlay entry (defined in .ENTO statement) 

External displacement (defined in .EXTD statement) 

External normal (defined in .EXTN statement) 

Named common (defined in .COMM statemet) 

Macro name 

Table 6.7 Cross-reference assignment mnemonics 

002 MARGO 
Symbol type 

ACS OOOOOOU 

OIFFE OOOOOOU 

ERROR OOOOOOU 

MARG OOOOOOU 

MASK 000001$ 

MUST OOOOOOU 

MUVZR OOOOOOU 

REVER OOOOOOU 

SCRAT OOOOOOU 

Symbol name STRIN 000002$ 

SWAPC 004023! 
Relocation 000017J type l 
Page/line on which 
symbol appears 

EN 

XD 

XN 

MC 

1130 

1130 
1/30 

1103 

1106 1/29 1/35 

1130 

1/25 

1130 

1130 

1/05 1124 

1/10# 1/28 1129 134 

1/23 1138# 

Page/line where defined ------------' 
DG-08635 

Figure 6.2 Cross-reference listing 

Cross-Reference Listing Control 

The assembler produces a cross-reference listing only when it 
generates an assembly listing. Thus, to receive a cross-reference 
listing, you must include the /L or /L= filename switch on the 
MASM command line. The cross reference appears after the assembly 
listing in the same file. 

The cross-reference listing normally contains only user symbols. By 
using the IP switch on the command line, you can direct the 
macroassembler to include semi-permanent symbols in the listing. 

The error listing shows the title of the source file and lists all lines 
that contained errors. It does not contain any information in addition 
to that found in the assembly listing, but it provides you with a short 
summary of problem areas. Figure 6.3 shows the error listing 
generated by the program shown in Figure 6.1. 

Executing the Assembler 

Error Listing 



Executing the Assembler 

Error Listing Control 

To produce an error listing, include either the IE or IE= filename 
switch. The IE switch sends output to the console. The IE = filename 
switch sends the output to filename. 

When you produce an assembly listing (Le., issue the IL or /L=file­
name function switch), the macroassembler reports all errors to the 
assembly listing file and, if you include the IE switch, to the error 
listing file. Within the assembly listing, the error count appears 
after the source code listing. 

Table 6.8 lists error codes. Appendix B contains complete descriptions 
of error conditions. 

Figure 6.3 Error listing 

Table 6.8 Error codes 

• TITLE 
.ENT 
.Wl 

MUYZII 



Pseudo-Op 
Dictionary 

This chapter lists alphabetically by mnemonics all pseudo-ops that 
can be used with the macroassembler. The name and command-line 
format of the pseudo-op are given in each case, followed by a brief 
explanation of its use and, where relevant, an example. 

In examples showing assembly listings, the line numbers have been 
omitted. Also, for ease of reading, extra spaces have been inserted 
between certain fields. See the preface for conventions used in 
command-line formats. 



Pseudo-Op Dictionary 

. (period) Current Location Counter 

The period symbol (.) has the value and relocation property of the 
current location counter. The location counter is an assembler 
variable that holds the address and relocation base of the next 
memory location the macroassembler will assign. 

Example 

000000 

000003 

000001 
000003 
000003 
020010 

.NREL 1 
3 

.LOC .+2 ;Set the location counter to 
LDA 0.10 ;its current value plus two 

;words; the relocation base 
;does not change. 



Number of Arguments Passed to Macro 

The pseudo-op .ARGCT is a value symbol. Its value equals the number 
of arguments you passed to the macro containing it. For example, if 
you pass three arguments to a macro, then the symbol .ARGCT has 
the value 3 for that macro expansion. 

If you use .ARGCT outside a macro, its value is -1. 

Example 1 

000000 

% 

000000 ! 000011 
000001 ! 000002 

Example 2 

% 

.NREL 1 

.MACRO ARG 
T1+T2 
(.ARGCT) 

ARG 4,5 
4+5 
( .ARGCT) 

. MACRO ARG 

.IFE .ARGCT 
10 
.ENDC 

;Define macro ARG. 

;Call ARG with 2 arguments 

;(value of .ARGCT is 2). 

;Define macro ARG . 
;If you call ARG with no 
; arguments, assemble the 
;value 10. Otherwise, 

.IFN .ARGCT ;assemble the value of 
T1 ;the first argument . 
. ENDC 

Pseudo-Op Dictionary 

.ARGCT 



Pseudo-Op Dictionary 

.BlK Reserve a block of memory 

.BLK abs-expr 

Reserves a block of memory words. Abs-expr specifies the length (in 
I6-bit words) of this block. Abs-expr must be a non-negative absolute 
expression. 

The assembler increments the current location counter by abs-expr 
when it encounters .BLK in your source. 

Example 

.NREL 0 
00000 ' 040405 STA 0, F 
00001 ' 044405 STA 1, F + 1 
00003 ' 050405 STA 2, F + 2 
00004 ' 054405 STA 3, F + 3 
00005 ' 000004 F: .BLle 4 
00011 ' 034510 LOA 3,110 



Reserve a Labeled Common Area 

.COMM usym abs-expr 

Reserves a labeled (or named) common area for intermodule commu­
nication. A common area is a data storage area that you may access 
from separately assembled modules in your program. 

The assembler assigns the name usym (user symbol) to this common 
area. The assembler regards usym as an entry point and, therefore, 
you should not redefine this symbol anywhere in your program. 

Specify the size of the common area (in 16-bit words) in the abs-expr 
argument. This argument must be a positive absolute expression. 

To reference this common area from another module in your 
program, use .COMM, or .EXTN, to declare usym as externally 
defined. If you issue the same .COMM statement in two separately 
assembled modules, the binder resolves them to the same area in 
memory. If the areas allocated are of different sizes, the binder uses 
the largest. 

Example 

· TITLE A 
.COMM X,30 

. COMM Y,20 

. END 

· TITLE B 
.COMM X,30 

. END 

· TITLE C 
.EXTN X 

. END 

;Module A. 
;Reserve a common area named X 
;of length 30 words . 
;Common area Y contains 20 words . 

;Separately assembled module B. 
;X refers to the same common area as 
;declared in module A . 

;Separately assembled module C. 
;X is defined in a different module 
;and, in this case, refers to the 
;starting address of the common 
;area declared in module A . 

Pseudo-Op Dictionary 

.COMM 



Pseudo-Op Dictionary 

.CSIZ Reserve an Unlabeled Common Area 

.CSIZ abs-expr 

Reserves an unlabeled common area for intermodule communication. 
A common area is a data storage area that you may access from 
separately assembled modules in your program. 

The size of this unlabeled common area is equal to the number of 
I6-bit words you specify in the abs-expr argument. This argument 
must be a non-negative absolute expression. 

The binder assigns the name ?CLOC to the starting address of your 
unlabeled common area. To reference this common area from a 
separately assembled module, declare ?CLOC, using an .EXTN or 
.EXTD pseudo-op. 

If you include more than one .CSIZ pseudo-op in a single source 
module, the macroassembler uses the largest value as the size of the 
unlabeled common area. Similarly, if separately assembled modules 
issue .CSIZ pseudo-ops, the binder uses the largest value. 

Example 

. TITLE A 

.EXTN ?CLOC 

.CSIZ 100 

. END 

. TITLE B 

.EXTN ?CLOC 

. END 

;Module A . 

;Reserve an unlabeled common area 
;100 words long . 

;Separately assembled module B . 
;?CLOC is the starting address of 
;the unlabeled common area declared 
;in module A . 



Define ALe Instruction 

.DALe usym = {inst I exp j 

Defines usym as a user symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) You 
must specify source and destination accumulators, and you may 
specify an optional skip field. Specify these fields with the following 
format: 

usym{ c j{ sh j{ # j acs acd {skip j 

The fields assemble as shown below. 

I~ c SKIP 

10 I 11 13 

NOTE: The skip character # may be anywhere as a break character. It assembles 

as a 1 in bit 12. 

If you define a 3-character usym with this pseudo-op, you can add 
mnemonics to manipulate the value of carry and to shift the specified 
data, thus forming a 4- or 5-character instruction mnemonic. Table 
7.1 list the mnemonics that affect the carry. Table 7.2 lists the 
mnemonics that perform shift operations. 

Table 7.3 lists the mnemonics that specify an optional skip test. 

Mnemonic 

z 
o 
c 

Sets·Bits 
10-11 to 

Action 

00 No action 

01 

10 

11 

Sets carry to zero 

Sets carry to one 

Complements carry 

Table 7.1 Carry mnemonics 

Mnemonic 

L 

R 
S 

Sets Bits 8-9 Action 
to 

00 

01 

10 

11 

No action 

Shifts data le·ft one bit 

Shifts data right one bit 

Swaps data bytes 

Table 7.2 Shih mnemonics 

Pseudo-Op Dictionary 

.DALe 



Pseudo-Op Dictionary 

Table 7.3 Mnemonics for optional skip field 

Example 

103000 .DALC ADD=103000 
00000 103000 ADD 0,0 ;These three 

; statements 
00001 103002 ADD O,O,SZC ;specify fields 

;correctly. 
00002 133001 ADD 1,2,SKP 

F 00003 123000 ADD 1 ;These two 
; statements 

FF 00004 103000 ADD ;do not specify 
;fields correctly. 



Define Commercial Memory Reference Instruction 

.DCMR usym = {inst I exp} 

Defines usym as a user symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
requires an accumulator and a displacement. You may specify an 
optional index field as well. Use the following format: 

usym ae disp {index} 

The three fields assemble as shown below. 

o 

DISPLACEMENT 

o 

Once defined, usym is an instruction mnemonic. 

Example 

102170 . DCMR 
000001 .NREL 

00000 112570 ELDB 
001376 

00002 113570 ELDB 
001373 

00600 040502 ALPHA: .TXT 
001400& PT1= 
001401& PT2= 

ELDB=102170 
1 
2,PT1 

3,PT2 

"AB" 
ALPHA*2 
ALPHA*2t1 

;AC2 contains the 
;character A 
;AC3 contains the 
;character B 

15 

15 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 

Pseudo-Op Dictionary 

.DCMR 



1 Pseudo-Op Dictionary 

.DEMR Define Extended Memory Reference Instruction 

.DEMR usym = {inst I exp} 

Defines usym as a user symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
requires a displacement. You may specify an optional index field as 
well. Use the following format: 

usym disp {index} 

The two fields assemble as shown below. 

o 
I INDEX I 

i 5 6 i 7 8 i 16 

@ DISPLACEMENT 

o 15 

NOTE: You can use @ anywhere in the instruction to indicate indirect addressing. 
This atom sets bit 0 of the second word to 1. 

Once defined, usym is an instruction mnemonic. 

Example 

102070 .DEMR EJMP=102070 
.EXTN ADDR 

000001 .NREL 1 
00000 102070 EJMP ADDR 

000001$ 
00002 102470 EJMP .+3 

000002 
F 00004 102070 EJMP 2 .. +3 ;This specifies an 

000002 ; accumulator. which is 
; incorrect. 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 



Define Extended Memory Reference Instruction Requiring an 
Accumulator 

.DERA usym = {inst I exp} 

Defines usym as a user symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
requires an accumulator and a displacement. You may specify an 
optional index field as well. Use the following format: 

usym ae disp {index} 

The three fields assemble as shown below. 

o 15 

@ DISPLACEMENT 

o 15 

NOTE: You can use @ anywhere in the instruction to indicate indirect addressing. 

This atom sets bit 0 in the second word to 1. 

Once defined, usym is an instruction mnemonic. 

Example 

122070 .DERA ELDA=122070 
000001 .NREL 1 

000000 122470 ELDA 0, .+3 
000002 

FFO 000002 122070 ELDA .+3 ;This specifies the 
000000 ;wrong number of 

; arguments. 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 

Pseudo-Op Dictionary 1 

.DERA 



Pseudo-Op Dictionary 

.DEUR Define Extended User Instruction 

.DEUR usym = I inst I exp} 

Defines usym as a user symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
requires a displacement. Use the following format: 

usym disp 

The field assembles as shown below. 

o 15 

@ DISPLACEMENT 

o 15 

NOTE: You can use @ anywhere in the displacement field to indicate indirect 

addressing. This atom sets bit 0 in the second word to 1. 

Once defined, usym is an instruction mnemonic. 

Example 

163710 .DEUR SAVE=163710 
061777 .DEUR VCT=061777 
000001 .NREL 1 

000000 163710 SAVE 4 
000004 
000000 SYMB =0 

000002 ! 061777 VCT SYMB 
000000 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 



Define Floating Load or Store Instruction Requiring an 
Accumulator 

.DFLM usym = {inst I exp} 

Defines usym as a user symbol with the value of an instruction or 
expression. (EXP evaluates to the bit pattern of an instruction). 
Usym is a floating point load or store instruction requiring an 
accumulator and a displacement. You may specify an optional index 
field as well. Use the format shown below: 

usym [pac disp {index} 

The three fields assemble as shown below. 

o 
INDEX I FPAC I 

15 

@ DISPLACEMENT 

o 15 

NOTE: You can use the character @ anywhere in the instruction to indicate 
indirect addressing. This atom sets bit 0 in the second word to 1. 

Once defined, usym is an instruction mnemonic. 

Example 

102050 .DFLM FLDS=102050 
000001 .NREL 1 

00000 122050 FLDS 0, .+2 
000001 

F 00002 102050 FLDS .+3 ;This specifies the 
;wrong number 
;of arguments. 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 

Pseudo-Op Dictionary 

.DFLM 



1 Pseudo-Op Dictionary 

.DFLS Define Floating Load or Store Instruction 

.DFLS usym = {inst I exp} 

Defines usym as a user symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) You 
may specify an optional index field as well. Use the following format: 

usym disp (index) 

The two fields assemble as shown below. 

o 
I INDEX I 

15 

@ DISPLACEMENT 

o 15 

NOTE: You can use @ anywhere in the instruction to indicate indirect addressing. 
This atom sets bit 0 of the second word to 1. 

Once defined, usym is an instruction mnemonic. 

Example 

123350 .DFLS FLST=123350 
000000 .NREL 1 

.EXTN DR 
00000 ' 123350 FLST DR 

000001$ 
F 00002 ' 123350 FLST ;This specifies no 

000000 ;displacemennt 
; field 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 



Define an Instruction Requiring an Accumulator 

.DIAC usym= {inst I exp} 

Defines usym as a symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
is an instruction requiring an accumulator. Use the following format: 

usym ac 

The field assembles as shown below. 

15 

Once defined, usym is an instruction mnemonic. 

Example 

061000 .DIAC CM=061000 
062000 .DIAC MA=062000 

00000 061000 CM 0 ;This command is 
;DOA 0,0. 

00002 066000 MA 1 ;This command is 
;008 1,0. 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 

Pseudo-Op Dictionary 

.DIAC 



Pseudo-Op Dictionary 

.DleD Define an Instruction Requiring an Accumulator and Count 

.DleD usym= {inst I exp I 
Defines usym as a symbol with the value of an instruction or an 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
is an instruction requiring count and destination fields. Use the 
following format: 

usym n ac 

where n is an integer between 1 and 4. 

The two fields assemble as shown below. 

15 

Once defined, usym is an instruction mnemonic. 

Example 

100010 .DICD ADI=100010 
00000 104010 ADI 1,1 
00001 110010 ADI 1,2 
00002 160010 ADI 4,0 

o 00003 104010 ADI 5,1 ;Specifies illegal 
;count field. 

F 00004 100010 ADI 1 ;Specifies too few 
;arguments. 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 



Define an Instruction Requiring an Accumulator and an 
Immediate Value 

.DIMM usym= I inst I exp} 

Defines usym as a symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
requires an accumulator and an immediate value. Use the following 
format: 

usym immed ae 

The fields assemble as shown below. 

o 

IMMEDIATE 

o 

Once defined, usym is an instruction mnemonic. 

Example 

163770 .DIMM ADDI=163770 
000001 .NREL 1 

00000 173770 ADDI 1002.2 
001002 

;This statement is 
; correct. 

F 00002 163770 ADDI 0 ;Specifies incorrect 
000000 ;number of arguments. 

15 

15 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 

Pseudo-Op Dictionary 

.DIMM 



Pseudo-Op Dictionary 

.010 Define an I/O Instruction without an Accumulator 

.010 usym = I inst I exp } 

Defines usym as a symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction. Usym 
is an I/O instruction requiring a device code. Use the following 
format: 

usym{ f) device_code 

The fields assemble as shown below. 

DEVICE CODE 

10 15 

NOTE: If you define a three-character usym with this pseudo-op, you can follow it 

immediately with one of the letters from Table 7.4. Each letter represents an 

optional function code which sets bits 8-9 of the instruction word. This procedure 

is shown in the example below. 

Optional 
Mnemonic 

S 

C 

P 

Sets Bits Action· 
8-9 to 

00 No act jon 

0.1 Sets Busy· flag. clears Dooi'f .flag,.slli\rting. device 

10 Clears Done and Busy flags, idlin~r device 

11 Sets Done and BUl:lyflags, pulsing 1/0 bus control 
line 

Table 7.4 Function mnemonics 

• The actions of these flags are device dependent. For a more detailed discussion of 

specific I/O devices, refer to the MP/AOS System Programmer's Reference, DGC 
No. 093-400051. 

Once defined, usym, is an instruction mnemonic. 

Example 

.010 NIO=060000 

.010 SKPBZ=063500 
NIOS 14 
NIO 14 
SKPBZ 10 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 



Define an I/O Instruction with an Accumulator 

.DIOA usym{ f} = {inst I exp} 

Defines usym as a symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
is an I/O instruction which requires an accumulator and a device 
code. Use the following format: 

usym{ f} ac device_code 

The fields assemble as shown below. 

DEVICE CODE 

10 15 

NOTE: If you define a three-character usym with this pseudo-op, you can follow it 

immediately with one of the letters listed in Table 7.4. Each letter represents an 

optional function code which sets bits 8-9 of the instruction word. This procedure 

is illustrated in the example below. 

Once defined, usym, is an instruction mnemonic. 

Example 

060400 .DIOA 
000001 .NREL 

00000 ! 070410 
00001 ! 070610 

DIA 
DIAC 

DIA=060400 
1 

2, TTl 
2,TTI 

;Correct. 
;Correct. 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 

Pseudo-Op Dictionary 

.DIOA 



Pseudo-Op Dictionary 

.DISD Define an Instruction with Source and Destination 
Accumulators 

.DISD usym=(inst I exp} 

Defines usym as a symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
is an instruction requiring source and destination accumulators. You 
may not specify the load/no-load, carry, shift, or skip options. Use 
the following format: 

usym acs acd 

The fields assemble as shown below. 

15 

Once defined, usym is an instruction mnemonic. 

Example 

102710 .01SO LOB=102710 
000001 .NREL 1 

00000 030410 LOA 2 .. PTR 
00001 146710 LOB 2.1 ;Byte addressed by AC2 

;is loaded into AC1. 

00010 000022& .PTR: .+1*2 
00011 040502 . TXT "ABCOE" 

041504 
042400 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 



Define a Skip Instruction with Source and Destination 
Accumulators 

.DISS usym= {inst I exp J 

Defines usym as a symbol with the value of an instruction or 
expression. (Exp evaluates to the pattern of an instruction.) Usym is 
an instruction requiring source and destination accumulators. Note 
that this pseudo-op does not allow you to specify the load/no-load or 
skip options. Use the following format: 

usym acs acd 

The fields assemble as shown below. 

Once defined, usym is an instruction mnemonic. 

Example 

101010 

00000 131010 
F 00001 121010 

.DISS SGT=101010 ;This an ECLIPSE 
; instruction 

.NREL 1 
SGT 1,2 
SGT 1 ;Not enough 

; arguments 

15 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 

Pseudo-Op Dictionary 

.DISS 



11 Pseudo-Op Dictionary 

.DMR Define a Memory Reference Instruction with Displacement 
and Index 

.DMR usym= {inst I exp} 

Defines usym as a symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
is a memory reference instruction requiring either a displacement 
or an addres~. You may also include an index. Use the following 
format: , 

usym displacement {index} 

The fields assemble as shown below. 

DISPLACEMENT 

15 

You can use the character @ anywhere in the instruction to indicate 
indirect addressing. This atom sets bit 5 to 1. 

Once defined, usym is an instruction mnemonic. 

Example 

000001 .NREL 1 
000000 .DMR JMP=OOOOOO 

00000 000402 WIZ: JMP .+2 
F 00001 000400 JMP 0,1,2 ;Incorrect number of arguments. 

00002 003001 JMP @1,2 ;Correct number of arguments. 
;plus use 
;of indirect flag. 

00003 ! 000775 JMP WIZ ;Correct number of arguments. 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 



Define a Memory Reference Instruction Requiring an 
Accumulator 

.DMRA usym= I inst I exp I 
Defines usym as a symbol with a value of an instruction or expression. 
(Exp evaluates to the bit pattern of an instruction.) Usym is a memory 
reference instruction requiring an accumulator and a displacement. 
You may specify an optional index field as well. Use the following 
format: 

usym ac displacement {index} 

The fields assemble as shown below. 

DISPLACEMENT 

I 15 

You can specify the atom @ anywhere in the instruction as a break 
character. This atom assembles a 1 in bit 5. 

Once defined, usym is an instruction mnemonic. 

Example 

000001 .NREL 1 
020000 .OMRA LOA=20000 

00000 030204 LOA 2, .+4 
00001 025400 LOA 1,0,3 
00002 031401 LOA 2,1,3 
00003 033401 LOA 2,@1,3 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 

Pseudo-Op Dictionary 

.DMRA 



Pseudo-Op Dictionary 

.00 Assemble Source Lines Repetitively 

. DO abs-expr 

Directs the assembler to assemble a portion of your source module 
repetitively. The macro assembler assembles the source lines follow­
ing .DO the number of times given in abs-expr. Abs-expr must be an 
absolute expression. 

You must terminate the .DO loop with the .ENDC pseudo-op. Thus, 
the .DO portion of your module has the general form: 

.00 abs-expr 

. ENDC 

;The assembler assembles these 
;lines abs-expr times . 

;Terminates the .00 loop. 

You may use .DO to perform conditional assembly of source lines by 
passing a relational expression as an argument (pass an expression 
that contains <,>,==,<=,>=,or<». If the relational expres­
sion is true, its value is 1 and the assembler assembles the .DO loop 
once. If the relational expression is false, its value is 0 and the 
assembler does not assemble the loop. 

You may nest .DOs to any depth. Be sure the innermost .DO 
corresponds with the innermost .ENDC, etc. See "Loops and 
Conditionals in Macros" (Chapter 5) for more information. 

Example 1 

Source Code 

.NREL 0 

FIRST: 1 
SECOND: 3 
SUM: 0 

.00 3 
LOA 1.FIRST 
LOA 2.SECOND 
ADD 1.2 
STA 1,SUM 
.ENDC 
.END 



Pseudo-Op Dictionary 

Assembly listing 

000000 .NREL 0 
00000 ' 000001 FIRST: 1 
00001 ' 000003 SECOND: 3 
00002 ' 000000 SUM: 0 

000003 .DO 3 
00003 ' 024775 LDA 1,FIRST 
00004 ' 030775 LDA 2,SECOND 
00005 ' 133000 ADD 1,2 
00006 ' 044774 STA 2,SUM 

.ENDC 
00007 ' 024771 LDA 1,FIRST 
00010 ' 030771 LDA 2,SECOND 
00011 ' 133000 ADD 1,2 
00012 ' 044770 STA 2,SUM 

.ENDC 
00013 ' 024765 LDA 1,FIRST 
00014 ' 030765 LDA 2,SECOND 
00015 ' 133000 ADD 1,2 
00016 ' 044764 STA 2,SUM 

. EN DC 

.END 
Example 2 

A=3 
.DO A==3 ;Assemble the following code once 
3 ;if the value of A equals 3. Otherwise, 
.ENDC ;do not assemble the code at all. 



Pseudo-Op Dictionary 

.DTAC Define an Instruction with Two Accumulator Fields 

.DTAC usym= {inst I exp} 

Defines usym as a symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an instruction.) Usym 
is an instruction requiring source and destination accumulators. Use 
the following format: 

usym acs acd 

The fields assemble as shown below. 

I ACS 
i 7 8 i 9 10 i 15 

Once defined, usym is an instruction mnemonic. 

Example 

060401 .OTAC LOB=060401 
00000 030410 LOA 2, .PTR 
00001 064601 LOB 2,1 ;Byte addressed 

;by AC2 is loaded 
;into AC1 

00010 000022 .PTR: (.+1)*2 
00011 040502 .TXT "ABCOE" 

041504 
042400 

See .DUSR for an explanation of attributes common to all .D __ 
pseudo-ops. 



Define a User Symbol for Cross Referencing 

.DUSR usym= {inst I exp} 

Defines usym as a user symbol with the value of an instruction or 
expression. 

Exp may be any legal macro assembler expression. It may not be a 
floating-point constant. 

An instruction may be any legal ECLIPSE assembly language 
instruction. If you supply an instruction, the assembler computes 
the assembled value of that instruction and assigns it to usym. (Refer 
to "Assignments," Chapter 3, for more information about using 
instructions in assignments.) 

Once defined, usym may be used anywhere you would use a 
single-precision operand . 

. DUSR symbols are semi-permanent. They can be redefined only as 
another .D __ pseudo-op symbol. (If you used the 1M switch in the 
command line, .DUSR can be redefined only by using the .XPNG 
pseudo-op, which deletes the entire symbol table.) It would be more 
correct to define usym with an assignment statement, if you don't 
want the symbol to be semi-permanent (see Table7.5). 

The above information applies to all symbol-definition pseudo-ops of 
the form .D __ . Each symbol definition pseudo-op has an implied 
syntax to be associated with the defined symbol. 

Pseudo-Op Dictionary 1 

,DUSR 



1 Pseudo-Op Dictionary 

Table 7.5 .DUSR vs. simple assignments 

Example 

. TITLE ASSGN 
000000 .NREL 1 
000010 A=10 ;A, B, and C are user symbols. 
000020 .DUSR B=20 
000030 . DUSR C=30 
000110 A=110 ;You may redefine A, B, and 
000120 B=120 ;C at any time. 

.END 



Define an Instruction with Two Accumulators and an Operation 
Number 

.DXOP usym= {inst I exp} 

Defines usym as a symbol with the value of an instruction or 
expression. (Exp evaluates to the bit pattern of an expression.) Usym 
is an instruction requiring source and destination accumulators and 
an operation number. Specify these fields with the following format: 

usym acs acd op_no. 

The fields assemble as shown below. 

ACS I ACD I OP CODE I 
1'2 3'4 5' '7 s' 15 

Once defined, usym is an instruction mnemonic. 

Example 

100030 .DXOP XOP=100030 
000001 .NREL 1 

00000 130130 XOP 1,2,1 
F 00001 100030 XOP 1,2 ; Incorrect number 

;of arguments 

Pseudo-Op Dictionary I 

.DXOP 



1 Pseudo-Op Dictionary 

.EJECT Begin a New Listing Page . 

. EJECT 

Directs the assembler to begin a new page in the assembly listing 
output (after listing the .EJECT source statement). 

Example 

Source Code 

MOV 1,2 
.EJEC ;Start a new listing page. 
LOA 1,0,1 

Assembly Listing 

Page 1 
00000 131000 MOV 1,2 

.EJEC 
Page 2 

00001 024401 LOA 1,0,1 



End-of-Program Indicator 

.END {expr} 

Terminates your source program. The assembler does not process 
any source code that follows the .END pseudo-op, so this should be 
the last statement in your source. 

If you assemble several modules at once, only the last one should 
include the .END statement (use .EOF to end the other modules). If 
you do not include the .END pseudo-op at the end of the last module 
on the assembly command line, the assembler supplies one for you 
(without an argument). 

The optional expr argument specifies a starting address for execution 
of your program file. You must supply a start execution address in 
one of your source modules or the binder returns an error. 

The .END pseudo-op can also be used to build a pool of literal values 
(see .LPOOL). 

Example 

. TITLE MOD1 

.NREL 1 
START: SUB 0,0 

.END START 
;End of module MOD1. Begin execution 
;of program at location START. 

Pseudo-Op Dictionary 1 

.END 



Pseudo-Op Dictionary 

.ENDC End of Conditional or Repetitive Assembly 

.ENDC {conditionaL/abel} 

If the syntax is .ENDC, this pseudo-op terminates line for repetitive 
assembly (lines following .DO), following .IFE, .IFG, .IFL, or .IFN). 

If the syntax is ENDC conditionaLlabel, this pseudo-op declares a 
label which marks the end of the next block of conditionally 
assembled code. If the first block (Le., the statements between the 
.DO and the .ENDC) is assembled, then the second block (Le., the 
statements between the .ENDC and the label) will not be assembled. 
If the first block is not assembled, then the second block will be 
assembled. If the second block follows a .DO block which is not 
assembled, then the second block will be assembled only once. 

Example 

.IFN ALPHA ;Assemble only if 
;ALPHA is not zero 

SUB 0,0 
.ENDC FAIL ;End of conditional 

; assembly. If ALPHA 
;does not equal 0, 
;then do not assemble 
;the code between 
;this .ENDC statement 
;and [FAIL] 

ADD 1,0 
MUL 
SUB 0,0 

[FAIL] 

.00 ALPHA ;If ALPHA=O, then 
;do not assemble the 

ADD 0,0 ;code between .00 
;and the next .ENDC 

.ENDC ;End the .00 loop 



Define an External Entry 

.ENT usym 1 { ... usymn } 

Declares usym as a user symbol that you define in this source 
module but that you may reference from separately assembled 
modules. 

You must define a user symbol in the module containing the .ENT 
declaration. This user symbol must be unique among all external 
symbols you define in the modules you intend to bind together. If 
the symbol is not unique, the binder issues a message indicating 
multiply-defined symbols. 

To reference usym from a separately assembled module, use the 
.EXTD or .EXTN pseudo-op. 

Example 

PTR: 

TABLE: 

. TITLE 

. ENT 

. ZREL 
TABLE 
.NREL 
0 

.END 

. TITLE 

.EXTD 

A 
PTR 

1 

B 
PTR 

.NREL 1 

;Module A . 
;PTR is defined in this module and 
;may be referenced by other modules . 

;Separately assembled module B . 
;PTR is defined in another module. 

LDA O,@PTR ;Reference to externally defined 
;symbol PTR . 

. END 

Pseudo-Op Dictionary 

.ENT 



Pseudo-Op Dictionary 

.ENTO Define an Overlay Entry 

.ENTO usym 

Associates usym with the node number and the number of the 
overlay in which this module resides. If the module is loaded outside 
an overlay, the value of usym is set to -1. You may reference the 
overlay from another module by using usym. 

NOTES: In the referencing module you must dec/are usym as an .EXTN. 

The value of usym is assigned at bind time. 

Example 

. TITLE MOD 

.NREL 1 

.ENTO OVMOD 

.END 



Explicit End-of-File (Tape) 

.EOF 

.EOT 

These pseudo-ops provide the assembler with an explicit end-of-file 
or end-of-tape indicator. They indicate the end of one source module, 
but imply that more source modules follow in the current assembly. 
Thus, use .EOF or .EOT to terminate each source module in the 
MASM command line, except the last one, which should end with 
.END. 

If you do not include .EOF or .EOT pseudo-ops in your source modules, 
the assembler automatically supplies them for you. 

Example 

. TITLE A 

. NREL 1 
START: 

;The first piece of source code 
;resides in file A . 

.EOF ;End of file A but not of source code . 

. TITLE B 

.NREL 1 

.END START 

;The second part of the source 
;code resides in file B. 

;End of current assembly. Start program 
;execution at location START. 

The MASM command line that assembles these two source modules 
is 

XEQ MASM A B J 

Pseudo-Op Dictionary 1 

.EOF, .EOT 



Pseudo-Op Dictionary 

.EXTD Define an External Displacement Reference: 8 Bits 

.EXTD usym 1 { ... usymn } 

Declares usym as a user symbol that you reference in this source 
module but that you define in a separately assembled module. You 
must declare usym with an .ENT pseudo-op in the module that 
defines it. Also, you cannot redefine usym within the current 
assembly. 

You may use an .EXTD symbol as a displacement or lower page zero 
(absolute or ZREL) address in any memory reference (MRI) instruc­
tion. When used in this manner, the symbol's value must satisfy one 
of the following equations: 

0< =lower page zero address< =3778 
- 2008 < = displacement < = 1778 

Be sure the value of the .EXTD symbol can fit into the corresponding 
field at bind time. 

Example 

. TITLE A ;Source module A . 

.ENT 0 

0: 

TABLE: 

.ZREL 
TABLE 
.NREL 

.END 

. TITLE 

.EXTD 

.NREL 
LOA 

.END 

1 

;0 is a label in page zero relocatable (ZREL) 
;memory and, therefore, its value can be 
;expressed in 8 bits. 

B ;Separately assembled module B . 
o ;0 is defined externally and can be 
1 ;expressed in an 8-bit field. 
0,0 ;Load the value at location 0 into ACO. 



Define an External Narrow Reference: 16 Bits . 

. EXTN usym 1 { ... usymn I 
Declares usym as a user symbol that you reference in this source 
module but that you define in a separately assembled module. You 
must declare usym with a .ENT or .ENTO pseudo-op in the module 
that defines it. Also you cannot redefine usym within the current 
assembly. 

When you use an .EXTN symbol in your program, make sure the 
corresponding field is not a memory reference instruction displace­
ment field. Otherwise, the assembler returns an error. 

Example 

. TITLE 

.ENT 
N=3777 

. END 

. TITLE 

.EXTN 

. NREL 
ANDI 

A 
N 

B 
N 
1 

N,O 

;Source module A. 

;N's value may be expressed in 16 bits . 

; Separatel y assemlbled module B. 
;N is defined in another module and 
;its value may be expressed in 16 bits . 
;Reference to externally defined symbol N. 

Pseudo-Op Dictionary 

.EXTN 



1 Pseudo-Op Dictionary 

.EXTU Treat Undefined Symbols as External Displacements 

.EXTU 

Causes the assembler to treat all symbols undefined after pass 1 as if 
they had appeared in an .EXTD statement. 

NOTE: This pseudo-op is not recommended for use in untested user programs. 

Example 

. TITLE GEEZ 

.EXTU 
00000 024000$ LDA 1,IBUS 

.END 



Force Bind a Module from a Library . 

. FORCE 

Directs the binder to unconditionally bind this object file from a 
library into your program file. 

Normally, the binder includes an object module from a library only 
if that module satisfies an external reference appearing in another 
module. However, if you use .FORCE in a module that resides in a 
library, that module will be bound whenever the library name 
occurs in a binder command line. 

Example 

CUBE: 

. TITLE 

.FORCE 

.ENT 

.NREL 

.END 

SQUARE 

CUBE 
1 

;SQUARE is part of a library. Whenever the 
;library name appears in a bind command line, 
;module SQUARE will be bound into the program 
;file. Thus, the program will have access to 
;entry CUBE, even if that symbol is not 
; referenced. 

Pseudo-Op Dictionary 

.FORCE 



Pseudo-Op Dictionary 

.GADD Add a Scalar Value to an External Symbol Value 

.GADD usym, expr 

Generates a storage word whose contents are resolved at bind time. 
The binder searches for the value of usym and, if found, adds it to 
expr to form the contents of the storage word. If the binder does not 
find the value of usym, it generates a binder error. In this case the 
storage word will contain only the value of expr. 

Usym must be a user symbol defined in some separately assembled 
file and must appear in that program in an .ENT, .ENTO, or .COMM 
statement. 

Example 

000200 
00200 000201 ZEB: 

. TIll ZEBRA 

.ENT ZEB 

.lOC 200 

.+1 

. END 

.TITl STRIPE 

.EXTN ZEB 

;ZEB has the value 200 . 

00100 000006 ZEBl: .GADD ZEB,S+1 ;Value at ZREl will be 206 plus 
;the ZEB relocation base 
;at bind time 

.END 



Initialize Data Fields Relative to an External Symbol. 

.GLOe external-symbol 

The .GLOe pseudo-op defines a block of data whose starting address 
will equal the value of external-symbol at bind time. Define your 
data immediately after the .GLOe statement. The first occurrence of 
a .LOe, .NREL, .ZREL, .or .END pseudo-op terminates the data block. 
Another .GLOe statement also ends the current data block. 

To reference the data block from a separately assembled module, 
include external-symbol in an .ENT or .eOMM statement within 
that module. In the current module, you must declare external­
symbol as externally defined with an .EXTD or .EXTN pseudo-op. 

Within the block there can be no label definitions and location 
counter (period (.) or .LOe) references. 

By using .GLOe, you may initialize your data locations at bind time 
instead of at run time. This can save memory space and reduce your 
program's execution time. 

Example 

. TITLE 

.COtflt 

. END 

. TITLE 

.EXTN 

.GLOC 
1 

2 
3 

4 
.END 

A 
DATA,10 

B 
DATA 
DATA 

;Source module A . 
;Common area DATA contains 10 (octal) 
;words of memory . 

;Separately assembled module B. 

;This statement directs the binder to 
;lnltlallze common area DATA with 
;the values 1 through 4. 

Pseudo-Op Dictionary 

.GLOe 



Pseudo-Op Dictionary 

.GOTO Suppress Assembly 

.GOTO usym 

Suppresses the assembly of lines until the scan encounters another 
usym enclosed in square brackets. 

Example 

00000 021001 
00001 131100 

[START] 

.GOTO START ;Start assembly 
;at START. 

LOA 0,0,2 ;00 not assemble 
MOVL 0,0 ;these instructions. 
SUB 1,1 

LOA 
MOV 

0,1,2 ;Start assembly here. 
1,2 



Assign Expression Value to Symbol 

.GREF usym, expr 

Adds the value of usym to expr, except that a carry out of the 
low-order 15 bits is not allowed to alter bit 0, which keeps the value 
of bit 0 of expr. Otherwise, functions like the .GADD pseudo-op. 

Pseudo-Op Dictionary 

.GREF 



Pseudo-Op Dictionary 

.lFE, .lFG, .lFL, .lFN Perform Conditional Assembly 

.1 FE abs-expr 

.IFG abs-expr 

.IFL abs-expr 

.IFN abs-expr 

These pseudo-ops direct the macroassembler to either assemble or 
by-pass portions of your module on the basis of abs-expr (an absolute 
expression). The macroassembler assembles the source lines follow­
ing an .IF pseudo-op if the value of abs-expr satisfies the condition 
defined by that pseudo-op. 

The four .IF pseudo-ops define the following conditions: 

.IFE abs-expr Assemble if abs-expr equals O . 

. IFG abs-expr Assemble if abs-expr is greater than O . 

. IFL abs-expr Assemble if abs-expr is less than O . 

. IFN abs-expr Assemble if abs-expr does not equal O. 

You must terminate the conditional assembly lines with the .ENDC 
pseudo-op. 

Thus, the conditional portion of your module has the general form: 

.IFx abs-expr 

. ENDC 

;One of the four conditional pseudo-ops 
; (. IFE, .IFG, .IFL, or . IFN). 
;Assemble these source lines if abs-expr 
;satisfies the .IFx condition. 

;Terminate conditional assembly . 

When nesting .IFs, be sure the innermost .IF corresponds to the 
innermost .ENDC, etc. 

Note that each .IF condition is a form of a .DO statement. For 
example, the statement .IFE A is equivalent to .DO A= =0. Both 
direct the macroassembler to assemble the following code once if A 
equals O. 

In the value field of the assembly listing, the assembler places a 1 if 
abs-expr satisfies the pseudo-op condition and 0 if it does not satisfy 
the condition. 



000200 

Example 

000000 
000001 
000100 
200 

A=Q 

.IFE A ;A equals 0 so MASM assembles the 
100 ;conditional portion of the module. 

. EN DC ;End of conditional. 

Pseudo-Op Dictionary 



Pseudo-Op Dictionary 

.LOC Set the Current Location Counter . 

. LOC expr 

.LOC 

In the first format, .LOC is an assembler directive. In the second, it 
is a value symbol. 

When used as an assembler directive, the .LOC pseudo-op sets the 
current location counter to the value and relocation base given by 
expr. The location counter is an assembler variable that holds the 
address of the next location the assembler will assign. 

The argument you supply to .LOC may be any legal assembler 
expression. If you do not supply an argument, the assembler returns 
an error. 

As an example, if expr resolves to an absolute value, then the 
assembler sets the current location counter to that value and 
subsequent addresses are not relocatable (they are absolute). 

When you use .LOC as a value symbol, it has the value and relocation 
property of the current location counter, with the exception noted 
below. 

Example 

000100 
00100 000001 
00101 000002 
00102 000003 

000000 
00000'000000 A: 

000001 
00000 ! 000000 B: 

000010' 
00010'000001 
00011'000002 
00012'000003 

000025! 
00025!000004 
00026!000005 
00027 ! 000006 

.LOC 
1 
2 
3 
.NREL 
0 
.NREL 
0 
.LOC 
1 
2 
3 
.LOC 
4 
5 
6 

100 Absolute location 100 
(miscellaneous code) 

o Label A has NREL 0 relocation 

1 Label B has NREL 1 relocation 

A+10 Set location counter to 
relocation base of A (NREL 0) 
Start assigning at 10th 
address after A 

B+25 Set relocation counter to 
relocation base of B (NREL 1) 
Start assigning at 25th 
address after B 



Exception 

If .LOC is pushed to the assembler stack and subsequently used to 
restore the location counter, e.g., 
. PUSH .LOC 
.LOC .POP 

then the value is ignored and only the relocation property is changed. 
This allows you to save the current relocation mode within a macro 
and restore it correctly without affecting the relative location counter 
value, which may have been altered within the macro. 

Pseudo-Op Dictionary 



Pseudo-Op Dictionary 

.LPOOL Permit Construction of a Literal Pool 

.LPOOL 

The .LPOOL pseudo-op marks locations where the macroassembler 
may deposit the values of literal expressions which have not yet 
been assigned addresses during the current assembler pass. The 
number of values in a literal pool determines the pool's size. Each 
value occupies one word. The macroassembler ignores an .LPOOL 
pseudo-op if no values are currently unassigned. 

Since the .LPOOL pseudo-op marks a potential data area, make sure 
it does not appear in the path of executable code. Usually you place 
.LPOOL pseudo-ops after branching instructions, returns from subrou­
tines, and other areas typically used for storing data. If you do not 
include an .LPOOL pseudo-op in a program that uses literals, then 
the literal pool will be constructed by the .END pseudo-op. 

You can set the relocation property of literal pool addresses using the 
.LOC, .ZREL, and .NREL pseudo-ops. 



Pseudo-Op Dictionary 

Example 

000001 .NREL 1 

00000 020000- LOA O,="A ; Literal reference 

.ZREL ; Handy place for literal pool 

00000 - 000101 . LPOOL ; Pool for value of "A 

.EXTN RIVER 

000100 BANK = 100 

000001 .NREL 1 

.LPOOL ; Unused literal pool 

00001 ! 032404 LOA 2,@=RIVER ; External value 
00002 ! 024404 LOA 1,=-400/2 
00003 ! 020403 LOA 0,=-200 ; Duplicate literal value 
00004 002403 JMP @=BANK 

00005 000000$ . LPOOL 3-word pool for 4 values 
177600 
000100 



Pseudo-Op Dictionary 

.MACRO Define a Macro . 

. MACRO usym 
macro-defini tion-string 
% 

The .MACRO pseudo-op defines usym as the name of macro­
definition-string (zero or more source lines that you use repeatedly 
in your module). After defining the macro, you simply insert usym 
in your source module, and the assembler substitutes macro­
definition-string. 

When defining a macro, you must terminate the macro definition 
string with the percent character (%). 

Chapter 5 provides a complete discussion of the assembler's macro 
facility. 

Example 

000001 .NREL 1 
. MACRO TEST ;Define macro TEST . 
T1 ;Macro definition consists of 
T2 ;3 data statements that get 
13 ;values from the first 3 

% ;arguments passed to TEST. 

TEST 4,5,6 ;Call TEST with 3 arguments. 
000004 4 ;Macro definition consists 
000005 5 ;of data statements that get 
000006 6 ;values from first 3 arguments. 



Indicate Macro Usage. 

The .MCALL pseudo-op is a value symbol with the value 1 if the 
macro containing it was called previously on this assembly pass, and 
the value 0 if this is the first call to that macro on the current pass. 
Thus, you generally use .MCALL when you want the assembler to 
use one macro expansion the first time a macro is called and a 
different expansion for subsequent calls to that macro. 

If you use .MCALL outside a macro, its value is -1. 

Example 

. MACRO 

.00 

JSR 
.ENDC 
.00 

. PUSH 

.ZREL 
.X: X 

.LOC 
JSR 
JMP 

X: 

JMP 
XEND: 

.ENDC 
% 

Z 
.MCALL< >0 

@.X 

.MCALL= =0 

.POP 
X 
XEND 

0,3 

;If this is not the first 
;macro call assemble 
;this code 

;If this is the first macro 
;call then generate 
;subroutine X 
;Save the location counter 

;Restore location counter 
;Call subroutine X 
;Jump to end 
;This would be the code 
;for X 

;Return to main routine 

;End the .00 loop 
;End the macro 

Pseudo-Op Dictionary 

.MCALL 



Pseudo-Op Dictionary 

.NOCON Inhibit or Re-enable the Listing of Conditional Lines . 

. NOCON abs-expr 

The .NOCON pseudo-op either inhibits or permits the listing of the 
conditional portions of the source module that do not meet the 
conditions given for assembly. That is, .NOCON either inhibits or 
enables the listing of false conditionals. If the value of abs-expr does 
not equal zero, the assembler inhibits listing; if the value of abs-expr 
equals zero, the assembler lists all conditionals. Abs-expr must be an 
absolute expression . 

. NOCON does not affect the conditional portions of the source 
program assembled. Again, this pseudo-op influences only the listing 
of conditionals that are false (those .DOs and .IFs that are not 
assembled). 

By default, the macroassembler lists all conditionals. 

You may override the .NOMAC pseudo-op at assembly time by using 
the /0 function switch on the MASM command line. 

You may use .NOCON as a value symbol in your module. The value 
of .NOCON equals the value of the last abs-expr you passed to .NOCON. 

The default value for .NOCON is O. 

Example 

Source Code 

A=3 
.IFE A 
10 
20 
30 
.ENDC 

;False. MASM lists false 
;conditionals. by default. 

.NOCON 1 ;Inhibit listing of false conditionals . 

. IFE A ;False. MASM will not list this portion 
40 ;of code. 
50 
60 
.ENDC 

.IFN A 
70 
100 
110 

.ENDC 

;True. MASM lists the assembled code 
;regardless of the .NOCON setting. 



Pseudo-Op Dictionary 

Assembly Listing 

000003 A=3 
000000 .IFE A ;False. MASM lists false 

10 ; conditionals , by default. 
20 
30 
.ENOC 

000001 . NOCON 1 ;Inhibit listing of false conditionals . 

.ENOC 

000001 .IFN A ;True. MASM lists the assembled code 
000070 70 ;regardless of the .NOCON setting. 
000100 100 
000110 110 

.ENOC 



Pseudo-Op Dictionary 

.NOLoe Inhibit or Re-enable the Listing of Source Lines without 
Location Fields . 

. NOLOC abs-expr 

The .NOLOC pseudo-op directs the assembler to either inhibit or 
enable the listing of source lines that lack a location field. That is, 
.NOLOC controls the listing of source lines that would not have a 
location listed in the output. If abs-expr evaluates to a nonzero value, 
the assembler inhibits listing; if abs-expr equals zero, listing occurs. 
Abs-expr must be an absolute expression. 

By default, the assembler lists all source lines, whether they have 
location fields or not. 

You may override the .NOLOC pseudo-op at assembly time by using 
the /0 function switch on the MASM command line. 

You may use .NOLOC as a value symbol, in which case it has the 
value of the last abs-expr you passed to .NOLOC. 

The default value for .NOLOC is O. 

Example 

Source Code 

.NOLOC 0 

.NREL 1 

. TXT "ABCDEF" 

. NOLOC 1 

. TXT "GHIJ" 

LDA O,TEMP 
. LOC .+12 
STA O,TEMP 
. END 

;This prints . 
;This does not print. 
;This line prints, 
;but the second 
; line does not. 
;This prints 
;This will not print . 
;This prints. 
;This will not print . 



Pseudo-Op Dictionary 

Assembly Listing 

000000 .NOLOC 0 
00000 000001 .NREL 1 
00001 ! 040502 .TXT "ABCDEF" ;This prints. 

041504 
042506 
000000 

00005 ! 043510 .TXT "GHIJ" ;This line prints, 

00010 ! 020411 LDA O,TEMP ;This prints. 
00023 ! 040411 STA O,TEMP ;This prints. 



Pseudo-Op Dictionary 

.NOMAC Inhibit or Re-Enable the Listing of Macro Expansions . 

. NOMAC abs-expr 

The .NOMAC pseudo-op either inhibits or permits the listing of 
macro expansions. If abs-expr (an absolute expression) does not 
equal zero, the assembler does not include macro expansions in the 
listing; if abs-expr equals zero, listing occurs. 

By default, the assembler includes all macro expansions in the listing 
output. 

You may override the .NOMAC pseudo-op at assembly time by using 
the /0 function switch on the MASM command line. 

You may use .NOMAC as a value symbol, in which case it has the 
value of the last abs-expr you passed to .NOMAC. 

The default value for .NOMAC is O. 

Example 

% 

00000 000005 

.MACRO MAC ;Define macro MAC. 
5 
6 

MAC 
5 

;Call macro MAC with default .NOMAC. 

00001 000006 6 

000001 .NOMAC 1 ;Inhibit listing of macro expansions. 

MAC ;MASM does not list MAC's expansion. 

00004 000100 100 ;A line not part of macro. 



Specify Normal Relocation 

.NREL {exprJ 

The .NREL pseudo-op causes subsequent source statements (up to the 
next .NREL, .LOC or .ZREL pseudo-op) to be assembled using either 
the pure code relocation counter (.NREL 1) or the impure code 
relocation counter (.NREL 0). The argument expr is optional; the 
default value is zero. 

Use .NREL 1 for sections of the program that can be write-protected 
(typically, instructions). Use NREL 0 for sections of the program that 
will be modified during program execution (typically, data areas). 
Code in the .NREL 1 section may be shared among processes. Code in 
the .NREL 0 section may not be shared. Any portions of the program 
to be used in overlays must be in the pure area. 

Example 

000000 .NREL 0 ;Impure area (note the relocation base 
;indicator of subsequent address) 

00000 ' 000000 0 
00001 000001 1 

000001 .NREL 1 ;Pure area (note the relocation base 
00000 ' 020000- LOA 0,=10 ;indicator of subsequent address) 

000000 .NREL 0 ;Impure area again 
00002 000005 5 
00003 ' 000006 6 

000001 .NREL 1 ;Pure area again 
00001 024001- LOA 1,=120 

Pseudo-Op Dictionary 

.NREL 



Pseudo-Op Dictionary 

.OB Name an Object File . 

. OB filename 

The .OB pseudo-op directs the assembler to name the object file 
filename. The assembler appends the object file extension .OB onto 
filename unless that name already ends in .OB. 

If more than one .OB pseudo-op appears in the source, the assembler 
returns an error. 

If you include the IN switch in the MASM command line, directing 
the assembler not to produce an object file, the assembler ignores the 
.OB pseudo-op. 

If you specify the IB= switch on the MASM command line, the 
assembler overrides the .OB pseudo-op, and the object file receives 
the name following the IB= switch. 

In sum, the assembler uses the hierarchy given in Table 7.6 to name 
object files: 

Table 7.6 Priority of object filenames 

One of the primary uses of the .OB pseudo-op is in conditional code 
assembly. You may direct the assembler to assign a name to the 
object file according to the evaluation of some expression (see the 
example). 

Example 

.IFE 

.OB 

. ENDC 

.IFN 

. OB 

.ENDC 

VAR 
SYS1 

VAR 

SYS2 

;If the value of VAR equals 0, MASM 
;names the object file SYS1.0B . 

; Otherwise , MASM names the 
;file SYS2.0B . 



Number of Assembly Pass. 

The macro assembler scans your source code twice during the 
assembly process. Each scan is called a pass. 

The .PASS pseudo-op is a value symbol that returns the current 
assembly pass number .. PASS equals 0 on assembly pass one and 1 
on pass two. 

Example 

This example defines parameters A, B, and C for later use in the 
assembly. Since the values of A, B, and C remain constant, MASM 
need not assemble them on pass two. This use of .P ASS is similar to 
that of the IS argument switch (see Chapter 6) . 

.IFE 
A=O 
B=1 
C=2 
.ENDC 

. PASS 
;MASM assembles these statements 
;on pass one only (i.e .. when 
;.PASS equals 0). 

Pseudo-Op Dictionary 

.PASS 



Pseudo-Op Dictionary 

.POP Pop the Value and Relocation Property of the Last Expression 
Pushed onto the Stack. 

The permanent symbol .POP has the value and relocation property 
of the most recent expression you placed on the assembler stack 
(using .PUSH). When you use .POP, the assembler removes this entry 
from the stack. 

If the assembler stack contains no values, then .POP has the value 0 
and the absolute relocation property. In addition, the assembler 
returns an error for that source statement. 

Example 

000025 A=25 
00000 000025 A 

;Define A. 
;Assemble A's present value. 

000025 .PUSH A ;Push A's value onto the assembler's 
000015 A=15 ;stack. Assign A a new value 

00001 000015 A ;and assemble that value. 

000025 A=.POP ;Assign A the value from the top 
00002 000025 A ;of the stack and assemble A's 

;new value. 

See the .PUSH description for another example. 



Push a Value and its Relocation Property onto the Stack . 

. PUSH expr 

The .PUSH pseudo-op allows you to save on the assembler stack the 
value and relocation property of any valid assembler expression. 
You may continue to push expressions onto the stack until the stack 
is exhausted. 

The assembler stack is the push-down type. That is, the last 
expression you place on the stack is the first one to be removed. Use 
the .POP pseudo-op to access information on the stack. 

Example 

000010 .ROX 8 ;Input radix is 8 (octal); 
00000 000010 (.RDX) ;Assemble the current 

;input radix value. 
000010 .PUSH .RDX ;Save the input radix on the 

;stack. 
00001 000012 .RDX 10 ;Set the input radix 

;to 10 (i.e., decimal) 
000012 (.RDX) ;Assemble the current input 

;radix value. 
000010 .RDX .POP ;Set the input radix to the 

;value on top of the stack 
00002 000010 (. RDX) ;(in this case, 8). Assemble 

;the current input radix value. 

See the .POP description for another example. 

Pseudo-Op Dictionary 

.PUSH 



Pseudo-Op Dictionary 

.RDX Set Radix for Numeric Input Conversion . 

. RDX abs-expr 

The .RDX pseudo-op defines the radix (base) that the macroassembler 
uses to interpret the numeric expressions in your source module. For 
example, if you specify an input radix of 1610, the assembler 
interprets all numeric expressions in your module in hexadecimal. 

The assembler always interprets abs-expr in decimal. This argument 
must be an absolute expression and its value must be in the following 
range: 

2 < = abs-expr< = 2010 

If you do not specify an input radix in your module, the default 
value is 810 (Le., octaIl. 

If you specify a radix greater than 10, you must use letters to 
represent digits greater than 10 but less than the specified radix. For 
example, if you declare an input radix of 1610 (hexadecimaIl, use the 
digits 0 through 9 to represent the quantities 0 through 910, and use 
the letters A through F to represent the values 10 through 1510, 

If the input radix is greater than 10, your numeric constant might 
start with letters. In these cases, you must place a 0 before the initial 
letter of the numeric constant to distinguish it from a symbol. For 
example, if you specify an input radix of 1610 (.RDX 16), then you 
should express the value for decimal 15 as OF, not simply F. 

Regardless of the input radix, the assembler interprets any number 
containing a decimal point as decimal. For example, the numeric 
expression 12. always equals 1210, regardless of the input radix. 
This feature allows you to combine decimal numbers in expressions 
with numbers of other radixes (e.g., OF + 12. - 3A2). 

Note that the input and output radixes are entirely distinct. Setting 
the input radix does not affect the output radix (set with .RDXO). 

You may use .RDX as a value symbol. In this case, .RDX has the 
value of the current input radix. 



Example 

In this example, the output radix is 8 (Le., octal). You may alter this 
setting with the .RDXO pseudo-op. 

01 000010 . RDX 8 ;Input radix is 8 . 
02 00000 000123 123 ;MASM assembles 123 in octal. 
03 
04 000012 . RDX 10 ;Set input radix to 10 . 
05 00001 000173 123 ;MASM assembles 123 in decimal. 
06 
07 000020 . RDX 16 ;Set input radix to 16 . 
08 00002 000443 123 ;MASM assembles 123 in hexadecimal. 
09 00003 000017 OF ;Note the leading zero. 
10 00004 000173 123. ;MASM assembles 123. in decimal even 
11 ;though the input radix is 16. 
12 
13 00005 000020 (.RDX) ;Assembles the current input radix 
14 ;value. 

Pseudo-Op Dictionary 



Pseudo-Op Dictionary 

.RDXO Set the Radix for Numeric Output Conversion . 

. RDXO abs-expr 

The .RDXO pseudo-op defines the radix (base) that the assembler 
uses to represent numeric expressions in the assembly listing. For 
example, if you specify an output radix of 1010, the assembler 
presents all locations and values in decimal, regardless of the input 
radix. 

The assembler always interprets abs-expr as decimal. This argument 
must be an absolute expression, and its value must be in the following 
range: 

810< =abs-expr< = 2010 

If you do not specify an output radix in your module, the assembler 
uses 810 (Le., octal). 

You may use .RDXO as a value symbol, in which case it equals the 
current output radix. The assembler always expresses the current 
output radix as 10. 



Pseudo-Op Dictionary 

Example 

000010 . RDX 8 ;Input radix is 8 . 
000010 .RDXO 8 ;Output radix is 8. 
000077 77 
000022 22 
000045 45 
000012 .RDX 10 ;Input radix is 10 . 
00010 . RDXO 10 ;Output radix is 10. 
00077 77 
00022 22 
00045 45 
00016 .RDX 16 ;Input radix is 16 . 
0010 . RDXO 16 ;Output radix is 16. 
0077 77 
0022 22 
0045 45 

000010 .RDXO 8 ;Output radix is 8. 
000167 77 ;Input radix is 16. 
000042 22 
000105 45 

00010 .RDXO 10 ;Output radix is 10. 
00119 77 ;Input radix is 16. 
00034 22 
00069 45 
00010 (.RDXO) ;Assemble the value of the current output 

;radix. MASM always represents this as 10, 
;regardless of the current output base. 



Pseudo-Op Dictionary 

.REV Set the Revision Level 

.REV ma~rev min_rev 

Identifies a program's revision level. You enter the major and minor 
revision levels as numbers in the current radix or as legal expressions. 
Revision levels are carried into the object file and then into the 
program file. Both the major and minor revision levels have a 
numeric range of 0 through 255 lO• This pseudo op may appear 
anywhere in the source module. 

If MASM finds no .REV then it puts the value -1 in the object 
module. The -1 would be interpreted as 255.255. The binder, 
however, recognizes -1 as an undefined revision number and doesn't 
use it. 

Use the eLI REV command to obtain revision information of a 
program file . 

. TITLE QUIZ 

.REV 12.1 ;Revision data is in octal (default 
;input radix) 



Entitle an Object Module . 

. TITLE usym 

The .TITLE pseudo-op provides a name for your object module by 
placing usym in the module's title block. 

The title you assign in the module appears at the top of each page in 
the assembly listing. Usym need not be unique from other symbols 
except for macro names. 

If you do not include .TITLE in your source module, the assembler 
supplies the default name .MAIN. 

Note that the name you assign in the .TITLE statement has no 
relation to the name of the object file (see the .OB pseudo-opl. 

Example 

.TITl MODULE 1 

Pseudo-Op Dictionary 

.TITLE 



Pseudo-Op Dictionary 

. TOP Value and Relocation of Top Stack Word 

.TOP 

.TOP has the value and relocation property of the most recent 
expression pushed onto the variable stack .. TOP differs from .POP in 
that it does not pop the last pushed expression from the stack. If you 
have not pushed any expressions before you issue a .TOP pseudo-op, 
the macro assembler returns 0 (absolute relocation) and flags the 
.TOP line with the overflow error flag (0). 

Example 

000010 .RDX 8 

000010 .PUSH .RDX 

000020 .RDX 16 

000010 .RDX .TOP 

000012 .RDX 10 

000010 .RDX .POP 



Reserve a Number of Tasks . 

. TSK abs-expr 

The .TSK psuedo-op specifies the maximum number of tasks that 
your program can initiate at execution time. The argument you pass 
to .TSK must be an absolute expression. The range of values this 
argument can take depends on the parameters established at SYSGEN. 

If several object files in the same binder command line contain .TSK 
declarations, the binder uses the largest. 

Example 

. TITLE 

.TSK 
MOD 
5 ;This program may initiate 

;up to 5 tasks at runtime. 

Pseudo-Op Dictionary 1 

.TSK 



Pseudo-Op Dictionary 

.TXT Store a Text String 

.TXT %string% 

This pseudo-op directs the assembler to store the binary equivalent 
of an ASCII text string in consecutive memory words. In the above 
syntax description, string is an ASCII text string and % represents a 
character that you use to delimit the string. The delimiter may be 
any character except 

• a character that appears in text string string or 

• New Line, Form Feed, Carriage Return, Tab, Space, Null, Colon, 
Semicolon, Dollar Sign and Backslash. 

You may use New Line, Form Feed, and Carriage Return to continue 
a string from line to line, but the assembler will not store these 
characters as part of the text string. 

When the assembler encounters .TXT, it interprets the first character 
after the break as the string delimiter. The assembler then stores the 
following characters in pairs in consecutive memory words until it 
encounters the delimiting character again. That is, the assembler 
generates one I6-bit storage word for every two characters in string. 

The assembler allocates an 8-bit byte for each character (Le., two 
characters per I6-bit word). By default, the assembler packs the 
characters of your string from left to right within memory storage 
words. You may alter this packing mode with the .TXTM pseudo-op. 

If your string contains an odd number of characters, the assembler 
pairs a null (all zero) byte with the last character of the string. If 
your string contains an even number of characters, the assembler 
stores a null word (2 null bytes) immediately after the string. You 
may suppress this null storage word by using the .TXTN pseudo-op. 

If you wish to use an expression to specify a character in a text 
string, enclose the expression in angle brackets « ». The assembler 
evaluates this expression, truncates the result to 8 bits, and stores it 
in the appropriate byte of memory. You may not include relational 
operators within the expression. 

By using angle brackets, you may store the ASCII codes for characters 
that you could not otherwise include in your text string. For example, 
you may not include aNew Line character in your text string. 
However, you may include the ASCII code for New Line in a text 
string if your enclose that value in brackets, as follows: 

.TXT "A<12>" 



This statement directs the assembler to generate a storage word that 
contains the ASCII codes for A (lOIs) and New Line (12s). By default, 
the macroassembler stores a null (all zero) word in the following 
location . 

. TXT sets the leftmost (parity) bit of each byte to 0, except when the 
byte is the result of an expression. See .TXTE for information about 
changing the parity bit. 

Example 

For examples, see .TXTE, .TXTM, and .TXTN. 

Pseudo-Op Dictionary 



Pseudo-Op Dictionary 

. TXTE, . TXTF, . TXTO Specify a Text String 

.TXTE *string* 

.TXTF *string* 

.TXTO *string* 

These pseudo-ops cause the assembler to scan the input following the 
character * up to the next occurrence of the character * in string 
mode. The character * may be any character not used within the 
string except Null, any new-line character, or any space character. 
The * delimits but is not part of the string. You may use a new-line 
character to continue the string from line to line or from page to 
page, but this character is not stored as part of the text string. 

Every two bytes generate a single storage word containing binary 
codes for the ASCII bytes. Storage of a character of a string requires 
seven bits of an eight-bit byte. The leftmost (parity) bit may be set to 
1, even parity, or odd parity as follows: 

. TXTF 

. TXTE 

. TXTO 

sets leftmost bit to 1 unconditionally . 

sets leftmost bit for even parity on byte . 

sets leftmost bit for odd parity on byte . 

The packing mode can be altered using the .TXTM pseudo-op. If an 
even number of bytes is assembled, the null word following these 
packed bytes can be suppressed by the .TXTN pseudo-op. 

Within the string, you can use angle brackets « » to delimit an 
arithmetic expression. The macroassembler evaluates the expression 
and masks it to eight bits. (This means you can set the parity bit for 
a .TXT string here. The macroassembler masks out the parity bit for 
.TXTE, .TXTO, and .TXTF strings later.) Angle brackets are the only 
means, for example, to store a new-line character as part of the text 
string (see example). 

NOTE: You cannot use relational operators within the expression. 

In the default condition, bytes are packed left to right, and a word of 
null bytes is generated at the end of the string. 



Pseudo-Op Dictionary 

Example 

.TXT nAB <12> eDEn ;AII the examples 
;will assemble . 

. TXTE $AB eD$ 

.TXTF @AB eD@ 

.TXTO EAB eDE 



Pseudo-Op Dictionary 

.TXTM Change Text Byte Packing 

. TXTM abs-expr 

The .TXTM pseudo-op directs the assembler to pack bytes either left 
to right or right to left within memory words when it encounters a 
.TXT pseudo-op. If abs-expr evaluates to zero, the assembler packs 
the bytes right to left; if abs-expr does not equal zero, the assembler 
packs bytes left to right. The argument you supply to .TXTM must be 
an absolute expression. 

If you do not use the. TXTM pseudo-op in your module, MASM packs 
bytes from left to right, by default. 

You may use .TXTM as a value symbol. In this case, .TXTM represents 
the value of the last abs-expr you supplied to it. 

The default value for .TXTM is 1. 

Example 

00000 000001 (.TXTM) ;Default value of .TXTM = 1 

00001 040502 . TXT .. ABC DE .. ;Bytes packed left-to-right 
041504 
042400 

000000 . TXTM 0 ;Pack bytes right-to-left 
; within each word 

00004 000000 (.TXTM) 

00005 041101 . TXT .. ABCDE .. ;Bytes packed right-to-left 
042103 
000105 



Determine Text String Termination . 

. TXTN abs-expr 

The .TXTN pseudo-op specifies whether or not the assembler will 
place a null word at the end of a . TXT text string that contains an 
even number of characters. 

If abs-expr evaluates to zero, all text strings containing an even 
number of characters terminate with a I6-bit null word (all zeros). If 
abs-expr does not equal zero, the assembler does not place a null 
word after the last two characters in your string. The argument you 
supply to .TXTN must be an absolute expression. 

If you do not use .TXTN in your module, the assembler terminates 
even length text strings with a null word, by default. When a string 
contains an odd number of characters, the assembler stores a null 
byte with the last character, in all cases. 

You may use .TXTN as a value symbol. In this case, .TXTN represents 
the value of the last abs-expr you passed to it. 

The default value for .TXTN is O. 

Example 

000000 .TXTN 0 
00000 030462 .TXT 11234/ ;End string with a word of zeros 

031464 
000000 

00003 000000 (.TXTN) 
000001 .TXTN 1 

00004 030462 .TXT 11234/ ;00 not add zeros to this string 
031464 

00006 000001 (. TXTN) 

Pseudo-Op Dictionary 

.TXTN 



Pseudo-Op Dictionary 

.XPNG Remove All Non-Permanent Symbol and Macro Definitions 

.xPNG 

Deletes the symbol table and macro definition table. This pseudo-op 
is primarily used in the following sequence: 

1. You write a source file containing .XPNG followed by definitions 
of any symbols or macros. 

2. You assemble the source file using the /S or /S= function switch 
in the MASM command line. This causes the assembler to stop the 
assembly after pass 1 and save the symbols in a new symbol table 
file. 

3. Then you can use the new symbol file containing the symbols 
defined in step 2. 

See "Building a Permanent Symbol Table," in Chapter 6 for further 
information. 

Example 

. TITLE XP 

.XPNG 
020000 .DMRA LDA=20000 
040000 .DMRA STA=40000 

.END 

The CLI command form is 

XEQ MASM/S XP J 

The macroassembler symbol table now contains LDA and ST A. 



Specify Lower Page Zero Relocation . 

. ZREL 

The .ZREL pseudo-op directs the assembler to assign relocatable 
addresses in lower page zero to subsequent source lines in your 
module. Lower page zero relocatable (ZREL) memory extends from 
location 508 to 3778 , Thus, you may express any ZREL location in a 
displacement field of 8 or more bits (in any memory reference 
instruction) . 

The words following the .ZREL pseudo-op receive relocatable ad­
dresses starting with zero. If you change location counters during an 
assembly and later return, the assembler continues assigning ZREL 
addresses at the point where it left off. 

At bind time, all ZREL code is contiguous in memory. 

Example 

00000-000000 
00001-000000 

000001 
00000 ! 000001 
00001 ! 000001 

00002-000002 
00003-000002 

. TITLE Z 

.ZREL 
0 
0 
.NREL 1 
1 
1 
.ZREL 
2 
2 

;Place the following code in lower 
;page zero relocatable (ZREL) memory 
;Note the address relocation base 
;Pure code 

;Lower page zero 
;MASM continues assigning 
;ZREL addresses at the point where it left off 

Pseudo-Op Dictionary 

.ZREL 





The Binder 





Review of Binder 
Concepts 

The binder is a utility program that forms executable programs 
from assembled or compiled object modules. This chapter reviews 
the steps in developing an executable program and the binder's role 
in that process. It lists the inputs to the binder and the various 
outputs, including the executable program files, error files, and load 
maps. It also sketches the algorithm employed by the binder to 
construct program files. 



Review of Binder Concepts 

Program 
Development 

Binder Role 

The five steps in writing and running a program are as follows: 

1. Writing and editing the program. Normally, you enter the 
program from a console using one of Data General's text editors. 
The program in ASCII format is called a source module or source 
program and, when stored on disk, a source file. By convention, 
source filenames usually end with an extension of two or more 
letters to indicate the language in which they are written. 

2. Assembling or compiling the program. The macroassembler or 
compiler produces an intermediate binary file called an object 
module, stored in a new file, called the object file. Object filenames 
end with the .OB extension. You must eliminate assembly errors 
or compiling errors from the object module before proceeding to 
the next step, which transforms the object filets) into an executable 
program. 

3. Binding the program. The binder transforms one or more object 
modules into an executable program. Output from the binder is 
called the program file, and its name ends with a .PR extension. 

4. Executing the program. You generally execute the program by 
typing 

XEQ program-filename) 

at the console. When the program performs as you intend, this is 
the last step in the procedure. 

5. Debugging the program. Two general types of errors may occur 
when you run your program: runtime errors, which the system 
software detects, and errors in the logic of the program that do 
not permit the program to perform as you intend. To find the 
cause of either type of error you can use the MP / AOS FLIT 
debugger (see MP / AOS Debugger and Performance Monitoring 
Utilities, DGC No. 069-400205) and the source listings. 

The MP / AOS binder is a utility program that forms executable 
programs from object modules. It accepts one or more object modules 
as input, resolves inter-module references, and determines the 
memory allocation for the program. To do this, the binder may also 
load object modules from one or more library files and control 
overlay organization. In addition to forming executable programs to 

run under the MP / AOS operating system, the binder can also generate 
new MP / AOS systems and error message text (ERMES) files. 

The role of the binder is illustrated in Figure 1.1. 



Source 
files 

I 
Assembler 
or compiler 

L....-..----,v,---------' 

DG-DS722 

Object 

modules 

Figure 1.1 Binder in program development 

Object Modules 

Binder 

Program 
file 

Object modules (sometimes called OBs) are the output of assemblers 
and compilers. These files contain the binary translation of the 
source modules' input to assembler or compiler. The object module 
also contains information that the binder needs to assign addresses 
in the logical address space to each word in the program. 

The assembler or compiler assigns a relocation base and offset to 
code contained in the object module. (Part 1, Chapter 2 explains how 
the MP / AOS assembler performs this function.) The binder, in turn, 
assigns an absolute address to each relocation base and uses each 
word's offset from a base to calculate that word's address. To do this, 
the binder employs one of the relocation formulas described below 
(see "Binder Operations"). Chapter 4 describes how relocation bases 
and offsets are represented within object modules. 

Object modules are made up of object blocks. Each OB block type has 
a different format, and all language processors use the same OB 
format conventions. Thus, to the binder, an object file produced by 
the assembler is indistinguishable from one produced by a compiler. 
Object blocks are described in detail in Chapter 4, but you do not 
need to be aware of object block formats unless you are writing a 
system utility, such as an assembler, compiler, or binder. 

Review of Binder Concepts 

Executable Programs 



1 Review of Binder Concepts 

If you are writing in assembly language, you may embed instructions 
to the binder in the text of the assembly language source program. 

Library Files 

To avoid rewriting and reassembling or recompiling subroutines 
and other commonly used modules, you can store object modules in 
a library file. A library file is a file that contains object modules and 
indexing information that enables the binder to find quickly any 
module you may require. 

The library file editor (LED) enables you to keep your library files 
current. The symbol cross-reference analysis (SCAN) program enables 
you to inspect quickly the contents of modules in library files. This 
program allows you to see in which module each symbol is used, and 
if any symbols are defined in more than one module. See Part 3 for 
a description of the SCAN program and the library file editor. 

Logical Address Space 

As explained in MP/AOS System Programmer's Reference, DGC No. 
093-400051, MP / AOS programs run in a process space of 32Kwords. 
The binder assigns to each relocatable address supplied by the 
assembler or compiler an absolute address in the program's logical 
address space. The program's logical address space is divided into 
three main areas: 

• Lower page zero consists of addresses in the range 0-377. 

• The pure area contains portions of the program, usually instruc­
tions, that are not modified during execution. The range of 
addresses in this area differs from program to program. 

• The impure area contains portions of the program, usually data, 
that may be altered during execution. The range of addresses in 
this area differs from program to program. 

Chapter 3 explains how these areas are shown on the listing. 

The Program 

To make an executable program out of one or more object modules, 
the binder constructs the program exactly as it will be represented 
in memory. To do this, it resolves external symbol references, and 
assigns absolute addresses to the relocatable addresses supplied by 
the assembler or compiler. 

Names used in more than one module are global symbols (those used 
in only one module are local symbols). In addition to using global 
symbols, modules may communicate by sharing common areas of 
the process space. The binder manages references to both named 
and unnamed common areas. 



Executable programs produced by the binder are of two general 
types -- those that run under the MP / AOS operating system, and 
system programs that comprise the operating system. In most cases, 
however, system files can be more easily created with the SYSGEN 
utility described in MP / AOS System Generation and Related Utilities, 
DGC No. 069-400206. 

Programs that run under the MP / AOS system are program (.PR) files 
with or without corresponding overlay (.OL) files. Chapter 2 describes 
overlay files and their relation to program files. 

In addition to the .PR and .OL files, the binder produces three types 
of output - a program symbol table file, an error file and a listing 
file. 

The symbol table (.ST) file contains a non-printable list of symbols 
used in the program, along with their values. This file is used by the 
FLIT debugger, PROFILE, and other programs. 

The error file lists any errors detected by the binder. Chapter 3 lists 
and describes these errors. 

The listing file contains a load map that summarizes the apportion­
ment of your program to the available logical address space. You 
may also cause the binder to include in this file a list of object 
modules from a library file and a summary of their allocation 
and/or get a listing of global symbols. 

The following description of binder operations is intended to help 
you understand what the binder does internally and why it takes 
time to bind a program. You do not need this information to use the 
binder, nor do you need the partition numbers listed in Table 1.2 
unless you are writing a code generator. 

To produce a program file, the binder scans (takes a "pass" over) the 
object files twice. Table 1.1 summarizes the actions of the binder 
during each pass. 

Review of Binder Concepts 

Binder Output Files 

Binder 
Operations 

.. 
'} 

• i 



Review of Binder Concepts 

First Pass 

Pass 

, 

Between 
passes 

2 

Action 

Scans the object modules listed in the command line and gauges 
memory requirements ofesch. 
Organizes portions of object module into partitions. 
Builds symbol table. 

Builds a map of ZREl, pure and impure program areas. 
Assigns final relocation values to all values and partitions. 

Relocates the contents of each partition relative to each partition's 
relocation base. 
Finishes building load map. 
Resolves the contents of the data elements. 
Builds the .PR, .OL, and .ST files. 

Table 1.1 Binder passes 

During the first pass, the binder scans each object module supplied 
as input and determines the number and kind of relocation bases in 
each. A partition number corresponds to each relocation base as 
illustrated in Table 1.2. The numbers 0 to 7 are assigned by the 
language processor (assembler or compiler) to pre-defined partitions 
- absolute, relocatable lower page zero (ZREL), normal relocatable 
pure and impure (NREL). Each external symbol is assigned a partition 
number in the range 8 to 4095 in the order in which the binder 
encounters them. 

During this pass the binder also builds a temporary table of relocation 
bases for each module and gathers the information needed to 
construct the symbol table ( the .ST file). 

Base Description 
Number 

o 
.1 

2,3 

4 

Absolute (no relocation) 

lower page zero (ZREl) locations 0-47 

Reserved for system use 

Impure code (NREl 0) 

5 Pure data 

6 Impure data 

7 Pure code (NREl 1) 

8104095 External relocation 

Table 1.2 Relocation bases 



Between the first and second passes, the binder starts to build the 
load map, which is a table showing the relocation bases assigned to 
the partitions in the object modules. 

At this point, the binder also begins to relocate the symbols and data 
words assosciated with each partition. To do this, it positions the 
data and symbol elements within each partition. 

During the second pass the binder resolves the value of each data 
word and constructs the final format of the ouput files you have 
specified, including the program file CPR) and the load map. 

Review of Binder Concepts 

Between Passes 

Second Pass 





Libraries and 
Overlays 

Libraries provide a mechanism for storing object modules, helping 
you keep track of them and enabling the binder to find the ones you 
need. This chapter contains a summary of information about library 
use under MP / AOS. 

Overlays are sections of a program that take turns in memory and 
reside on disk when not being used. This chapter contains an 
overview of the use of overlays under MP / AOS, and a preview of the 
instructions for using overlays presented in Chapter 3. 



Libraries and Overlays 

Libraries 

Library Structure 

Library Start Block 

Libraries are files that contain object modules and indexing informa­
tion to enable the binder to find quickly the modules it needs. As you 
read the description that follows, remember the distinction between 
object files and object modules: 

• Object files are the representation of object modules on disk or 
other secondary memory. They can be manipulated, using the 
MP / AOS file system. 

• Object modules do not invoke the file system; a module is 
referenced by its title (which may be different from its filename). 
The file system of the operating system does not recognize titles, 
which are an internal identifier used by the binder. 

Chapter 4 contains a detailed description of the internal structure of 
libraries. Briefly, libraries comprise a library start block (described 
below), object modules and a library end block, in that order. The 
library start block contains the summary information about each 
module in the library; this information allows the binder to 
determine which modules it needs and to find them. The body of the 
library consists of concatenated, unmodified object modules. The 
library end block is a simple marker that the binder recognizes as 
the end of the library; it contains no other information. 

The library start block contains three essential kinds of information: 

• force-bind flags (see below); 

• indexing information to allow the binder to find the modules it 
needs (see Chapter 4). 

• the names of symbols defined and referenced in each module (see 
Chapter 4); 

Force-Bind Flags 

A force-bind flag is a bit that you can set to force the binder to bind 
a module from a library file into a program, even if the module 
contains no symbol referenced by the program. 

Each object module in a library has two force-bind flags associated 
with it. One flag is in the object module and is used only when the 
module is incorporated into a new library. The other flag is in the 
library start block; this flag determines whether the module is to be 
automatically bound. 

In assembly language programs, you can set the force-bind flag in 
the object module by using the .FORCE pseudo-op. (This is the only 
means provided by any existing language translator to set this flag.) 
You can set the force-bind flag in the library start block for any 
object module (not just assembly language modules), using the library 
file editor. 



Libraries and Overlays 

Part 3 describes in detail the mechanics of the force-bind flag. 

The Binder processes each file (.OB or .LB) in the command line in Binding Libraries 
the order of its appearance. The MP / AOS system library (OSL) is 
bound automatically and last, by default. When a library is bound, 
any library module that resolves an unresolved symbol or has the 
force-bind flag set is included in the program. The binder scans each 
library once per pass from beginning to end and binds the first 
module that declares one of your program's unresolved symbols as 
an entry symbol. 

Because the binder scans each library only once per pass from 
beginning to end, the order of modules within the library is 
imponant. Chapter 3 explains the programming implications of the 
order of modules in libraries. You can use the library file editor to 
construct new libraries with the object modules arranged as you 
need them. 

Refer to Chapter 3 for an example of how to specify libraries in the 
binder command line. 

You build libraries using the library file editor (LED) and you can 
analyze library contents using the Symbol Cross-Reference Analyzer 
(SCAN). The symbol analyzer enables you to identify multiply-defined 
symbols and symbols without entry declarations. (See Pan 3 for a 
description of LED and SCAN.) 

Under MP / AOS, running programs CPR files) occupy a process space 
made up of a ZREL, a pure area, and an impure area and limited in 
size to 32 Kwords. Overlays are ponions of a program that occupy 
the process space for only a portion of the time that the program is 
running. 

The area of the process space that an overlay uses is called an 
overlay node. Programs may have several overlay nodes, and each 
node may accommodate several overlays, one at a time. When not 
occupying an overlay node, overlays reside on disk in an overlay 
file. 

The binder creates program and overlay files from object files 
according to instructions that you place in the binder command line 
(see Chapter 3). In order to be used in an overlay, an object module 
must contain only "pure code" (program statements that are not 
modified while the program is running). Aside from this restriction, 
any object module may be used in either a program or an overlay 
file. Thus, you may bind the same object modules in different ways. 
You can then use the binder listings (see Chapter 3) to determine 
which combination of program and overlay file is best. 

Library-Related 
Utilities 

Overlays 



Libraries and Overlays 

NOTE: For information about how to write the overlay-handling sections of your 
program, see the programmer's reference manual for the language you are using. 

When you bind overlays, the binder creates one program file and 
one overlay file. The overlay file has the same name as the program 
file, but with the suffix .OL instead of .PR. The binder allocates 
space in the program file for the overlay nodes, with each node 
allocated enough space to hold its largest overlay. Using information 
from the object modules that are in the overlays, the binder resolves 
the overlay control symbol references within the program (which 
includes overlaid code, if necessary). 

When you execute a program that uses overlays, the overlay file 
must be in the same directory as the .PR file. The command line for 
an overlaid program is the same as for a non-overlaid program. 



Using the Binder 

This chapter explains how to execute the binder program and how 
to interpret its printed output. It explains the command line and 
switches that tell the binder how to use object modules to create 
program, overlay, and system files, what type ofload map to produce, 
and where to display or store output. The chapter also contains 
annotated binder listings and examples of command lines. 



Using the Binder 

Binder Command 
Line 

To execute the binder, you type the CLI command line described 
below. You supply as arguments to the command the names of the 
object files and libraries that you wish to bind. Using function 
switches, you specify the type of executable output and the type of 
listing that you wish produced, and whether or not you want a 
symbol table as output. And, if you are binding a program that uses 
overlays, you use an overlay designator in the command line to 
indicate which modules are to be used in each overlay node. 

The format of the binder command line is 

XEO BIND{lswitch} obname {ov} obname2 {ov } ... { v} 

where: 

XEO is the CLI command to execute the program (you may 
abreviate XEO to X); 

switch is one of the function switches listed in Table 3.1 or 
described in Appendix C. 

obname is the name of an object module or library file (with 
optional .OB or .LB extension); 

ov is an overlay designator (See "Overlays," below); 

V is a symbol defined by including the symbol name, 
followed by /VAL= and an octal value. For example, 
including XYZ/VAL= 1234 on the command line defines 
a symbol XYZ and assigns it the value 1234. 



Using the Binder 

Switch Effect 

/ALPHA When used with the /L = switch, appends to the load map an alphabetically sorted list of global 
symbols. Used without the /L = switch, has no effect. 

/E = filename 

/ERMES 

/KERNEL 

Puts error messages into filename. If you do not use this switch, the error messages go to the console. 

Creates an MP/AOS error message file. 

Builds the kernel section of the MP/AOS operating system. 

/L = filename 

/UBUST 

Puts the load map into filename. If you do not use this switch, no load map is generated. 

When used with the /L = switch, lists individually all modules bound from libraries. Used without the 
/L = switch, has no effect. 

Prevents binding of the system library file OSL.LB. /N 
/NUMERIC When used with the /L = switch, appends a list of global symbols, sorted by numeric value. Used 

without the /L = switch, has no effect. 

/P = filename Use filename instead of the name of the first object file in the command line as the root for program file 
names. 

/REV= value Sets the program's revision number to value. The number may contain a period to separate major and 
minor revision numbers. 

Builds the supervisor section of the MP/AOS operating system. /SUPER 

/TASKS 

/SYS 

Specifies the maximum number of tasks that the program may have active at one time. 

Builds an MP / AOS system file. 

Table 3.1 Binder command line switches 

NOTE: Additional switches used for cross-development on other operating systems 

are described in Appendix C. 

The binder looks in your working directory and then through your 
search list for each filename you list as an argument to the command 
line. The .OB and .LB extensions are optional - if you do not 
specify an extension, the binder first looks for each filename with 
the .OB extension, then with the .LB extension, and finally with no 
extension. If you do specify one of these extensions, the binder looks 
only for the file as you have typed it. 

Order Of Filenames In Command Line 

The binder converts relative addresses assigned by the assembler or 
compiler in such a way that the first module listed on the command 
line receives the lowest absolute addresses, and other modules are 
added in their order on the command line. Figure 3.1 illustrates how 
the binder builds the pure area (NREL 0) of a program file from 
corresponding areas of the input modules. In this example, the 
modules were specified on the command line in the order ABC. The 
other areas of the program (ZREL, NREL 1) are built analogously. 

In many cases, the order in which you list input modules will not 
affect the way the program runs; if, however, your program does not 
run as you intend, consider the effect of binding the same modules 
in a different order. 

Filename Arguments 



Using the Binder 

Figure 3.1 Binder input modules (impure area) into program file. Other areas are built analogously. 

Using Libraries 

The name of the first file in the command line determines the 
names of all the program files (not load map or error files). To name 
the output filets), the binder strips off whatever extension is on the 
name of the first file in the command line and appends the 
appropriate name extension ('PR, .OL, .ST, etc.) You may override 
this naming procedure by using the /P=fi1ename switch. 

Symbols in Input Modules 

The binder reports an error when an already defined symbol is 
declared as an entry symbol in a non-library module. See below for 
an explanation of how the binder handles symbols that are defined 
in more than one library module. 

When you specify a library name or names in the binder command 
line, and if there are unresolved symbols after all other modules 
have been bound, the binder checks each library specified. The 
binder scans each library once per pass from beginning to end and 
binds the first module that declares one of your program's unresolved 
symbols as an entry symbol. 

Symbols in Library Modules 

If the binder uses a library module that declares an entry symbol 
that has already been declared an entry symbol elsewhere, it ignores 
the redefinition and does not report an error. This allows you to 
create default entries that are used only if the symbol has not been 
defined in a previous module. 



Order of Modules in Libraries 

The order of modules in libraries is important for two reasons. 

As explained above, the binder reads the library from beginnng to 
end, and uses the first definition of multiply-defined symbols. Also, 
if module A occurs in a library before module B, and B gets bound 
and refers to an entry in A, then A must also get bound. Since B is 
unable to cause A to be bound, another mechanism (such as .FORCE 
in A, or another previous reference to A) must be used to cause A to 
be bound. 

Force-Bind Flag 

When the force-bind flag for an object module in a library file is set, 
the binder automatically binds that module, whether or not it 
contains symbols referenced elswhere in the program. You may use 
the library file editor to set the force-bind flag for each module in a 
library. 

System Library 

Data General supplies the library OSL.LB with each MP lAOS 
operating system. This library contains routines that are needed to 
support certain system functions. Unless you use the IN command 
line switch, the binder automatically checks this library after the 
other files in the command line have been processed. 

The binder can produce two classes of executable output files: 
program I overlay files and system files. 

When you do not use the ISUPER or IKERNEL switch, the binder 
produces a program file (.PR) and, when you use overlay designators, 
an overlay file. The program file can be executed by MP lAOS 
systems; overlay files are used with program files. 

To specify overlays in the command line, use the designators listed 
in Table 3.2. These symbols must be separated from all other 
arguments by spaces or a comma. 

Table 3.2 Overlay designators 

Using the Binder 

Executable 
Output Files 

Program/ Overlay 
Files 



Using the Binder 

System Files 

Program Parameter 
Symbols 

The following command line shows how to use overlay designators 
in a command line. 

) XEQ BIND/L=MAIN.MAP MAIN 51 !* 52 ! 53 *! !* 54 55 ! 56 *! J 

The inputs to the binder are a main program MAIN.OB and six 
subroutines SLOB to S6.0B. The binder creates the program file 
MAIN .PR and the overlay file MAIN .OL. MAIN .PR contains subrou­
tine S 1 and two overlay nodes. The first overlay node has two 
overlays, which contain S2 and S3, respectively. The other node also 
has two overlays: one contains both S4 and S5, and the other contains 
S6. The binder also produces a load map in file MAIN .MAP. 

The binder provides two switches that enable you to build the 
MP / AOS system. The /KERNEL switch builds the kernel of the 
system, and the /SUPER switch builds the supervisor. These elements 
of the operating system are described in MP / AOS System Program­
mer's Reference, DGC No. 093-400051. 

In most cases, however, system files can be more easily created with 
the SYSGEN utility described in System Generation and Related 
Utilities, DGC No. 069-400206. 

See Appendix C for an explanation of how to use the binder to 
generate an MP / OS system. 

In addition to detecting and tabulating global symbols in the input 
modules, the binder also keeps track of parameters that describe 
your program. You may reference these values using the symbols 
listed in Table 3.3. 

Symbol Name Value 

?AOS 0 = MP/OS or MP/AOS program file 
1 = AOS program file 

?CLOC Starting address of an unnamed common block 

?CSZE Size of an unnamed common block 

?NMAX One plus the highest impure memory address used by the 
program 

?NTAS 

?OVTB 

?REV 

STYP? 

Maximum number of tasks in the program 

Starting address of the overlay table 

Program revision number 

0= MP/OS 
1 = AOS 
2 = MP/AOS 

Table 3.3 Program parameter symbols 



Listings include the load map, the symbols list and the error listing. 
Each is described briefly below. 

When you include the /L=filename switch on the binder command 
line, the binder produces a load map and places it in filename. The 
listing is in two sections. 

The first section lists the starting address, ending address and length 
(in words) of the page zero, impure, and pure areas of the program 
and each overlay node. 

The second section lists the filename, title, starting addresses and 
lengths of pure, impure, and lower page zero areas for each object 
file listed separately on the command line (Le., not those modules 
taken from libraries). It also lists, for each of these, the number of 
words whose absolute addresses were assigned by an assembler or 
compiler. 

The second section of the load map also lists the same information 
for each overlay node. 

When you use the /LIBLIST switch, the load map lists the same 
information for each module bound from a library as it does for 
modules not in libraries. When you do not use the /LIBLIST switch, 
the load map lists summaries of this information for each library. 

Figure 3.2 shows a binder load map produced using the /L = switch 
alone. Figure 3.3 shows a binder load map produced using the 
/LIBLIST switch with the /L = switch. 

Using the Binder 

Binder Listings 

Load Map 



DG-Q9091 

Using the Binder 

Length of the area In 16-blt words ----------------­

Ending address 

Starting address of the area ---------~ 

~ Program area: pure. Impure 

or page zero 

Title of module 

Page Zero 
Pure 

Node a 
Node 1 

Impure 

50 
54000 
42000 
50000 

400 

End 

32 
77462 
47777 
53777 

2675 

~ 
Iset uSing .TITLE) 

Name of .OB or .LB file -----II Filename I 
Overlay mode 

MAIN. OB 
51. OB 

Number of overlay 52.0B 
-~-

0/1 
that can occupy ---------------' 

the node 

Number of words 

haVing absolute 

53.0B 

54.0B 
55.0B 

560B 

05L. LB 

1/0 - -

111 - -

------

addresses In ----------------

module 

MAIN 

51 

52 

53 

54 
55 

56 

Length 

32 
23463 
6000 
4000 
2276 

Pure Pure 
5trt Lth 

54000 375 
54375 1576 

42000 5761 

42000 3047 

50000 2510 
52510 572 

5000 3543 

75405 1025 

Figure 3.2 Partial binder listing (without iLlBLlST) 

Impure Impure Zrel Zrel Abs 

5trt Lth 5trt Lth Num 

401 
410 

412 242 50 

654 51 

703 53 
704 

54 

~ 



Using the Binder 

Length of the area in 16-bit words -------------------, 

Ending address 

Starting address of the area -----------, 

Program area: pure, 

Impure, or page zero 

Title of module 

(set using .TITLEI 

Name of .OB 

or .LB file 

Modules in one library 

~ 
Page Zero 
Pure 

Node 0 
Node 1 

Impure 

I Filename I 

OSL. LB 

Start 

50 
54000 
42000 
50000 

OVLY 
KWART 
FAULT 
S?AV 
ERMSG 
TMSG 
MPINS 
SYSEN 

End 

32 32 
77462 23463 
47777 6000 
53777 4000 
2675 2276 

Pure Pure Impure Impure Zrel Zrel Abs 

Strt Lth Strt Lth Strt Lth Num 

75405 13 
75421 
75424 11 
75435 57 
75514 224 
75740 443 

76403 27 r?l 
Number of words having J 
absolute addresses in ------------------------------' 

one module 

DG-09092 

Figure 3.3 Partial binder listing (with /LlBLlST) 

When you include the / ALPHA switch with the /L= switch, the 
binder appends an alphabetic list of global symbols to the load map; 
when you include the /NUMERIC switch, the binder appends a list 
of global symbols sorted by numeric value. 

The binder sends a listing of warnings and errors to the console, or 
to the file you specify using the /E= switch. Errors prevent the 
binder from producing an executable file. Warnings are caused by 
conditions that must be corrected, but that do not prevent the binder 
from creating an executable file. 

Symbols Listing 

Error Listing 





Object Module 
Formats 

This chapter describes the organization of object modules. You do 
not need the information in this chapter unless you are writing a 
system utility such as an assembler or compiler, but it may give you 
an insight into the workings of the binder. 



Object Module Formats 

Contents of Object 
Modules 

Figure 4.1 Object module format 

Object Block 
Format 

Block Header 

Object modules contain the instructions and data of your source 
program, translated into 16-bit binary words, and the relocation 
information for each program component (symbols, addresses and 
data words). Addresses can have relocation properties that the binder 
uses to compute the order of words in the program file. 

In addition to a binary translation and relocation properties of each 
program component, object modules also contain summary and index 
information that the binder uses to construct the program file. This 
information includes the names and locations of local, entry, and 
external symbols; the number of tasks in the program; and the 
names and lengths of common areas. 

Each object module is organized into object blocks. These blocks 
identify the module, mark its beginning and end, identify the type 
and relocation property of every relocatable entity, and contain the 
summary information just described. Object modules conform to the 
format illustrated in Figure 4.1. The first block is a title block and 
the last block is an end block; there may be only one of each of these 
per module. Between the title block and end block are other object 
blocks that contain the program components. Within an object 
module, there may be any number of object blocks. External symbol 
blocks must precede the data blocks or entry blocks that contain 
data or values relocated from the external symbols. Object block 
types are listed in Table 4.1. 

Object blocks are made up of a block header and a block body. The 
block header has the same format for all block types; the format of 
the block body differs for each block type. 

The first three words of every block comprise the block header. The 
rightmost, low-order byte of the first word contains a number that 
indicates the type of the block, as summarized in Table 4.1. The 
second word in the block is the sequence number, which is used as a 
validity check. (The title block must be number 1, and all subsequent 
blocks must be consecutively numbered.) The third word, length, 
specifies the total number of words in the block, including the 
header. 

One bit of the leftmost, high-order byte of the first word is used only 
in the title block, which is described below. The rest of the byte is 
reserved otherwise. 



Number Block Type 
(octal) 

0 Data 

Title 

2 End 

3 Unlabelled common 

4 External symbols 

5 Entry symbols 

6 Local symbols 

7 Library start 

10 Reserved (address information) 

11 Reserved (shared library) 

12 Task 

13 Reserved (limit) 

14 Named common 

15 Reserved (accumulating symbol) 

16 Reserved (debugger symbols) 

17 Reserved (debugger lines) 

20 Reserved (lines title) 

21 Library end 

22 Reserved (statistics) 

23 Reserved (partition definition) 

24 Reserved (conditional load block) 

25 Reserved (overlay definition) 

26 Reserved (binder revision) 

27 Reserved (filler) 

100 Library load 

Table 4.1 Object block types 

Block header format is shown at the top of Figure 4.2. 

This section describes formats of object block bodies according to 

the numerical order of block types shown in Table 4.1. All object 
blocks begin with the three-word block header described above; 
block bodies therefore begin with the fourth word. 

Relocation Information 

The relocation information for each program component is embedded 
in the block body. This information consists of a relocation base and 
a relocation operation. 

Object Module Formats 

Block Body 



Object Module Formats 

The relocation base is a number that indicates whether the program 
component is absolute, is to be relocated in the pure or impure area 
of this program, or is to be relocated relative to an externally 
defined symbol. 

The relocation operation is the number of the formula that the 
binder should use to calculate the absolute address or value of the 
program component. These operations are described in Table 4.2. 

Table 4.2 Relocation operations 



Data Block 

Data blocks (type no. 0) contain the code and data of the source 
program being bound. Word 4 contains the number of data words in 
the block body. Word 5 contains the start address, relative to the 
relocation base, to which data words are to be relocated. The 
relocation base is specified in bits 0-11 of word 6. This formula 
implies that all words in a data block are placed in the same partition. 

The data words begin at word 7 of the block. Following these words 
are relocation dictionary entries. These are two-word entries that 
contain an offset and another relocation base and operation. 

Figure 4.2 illustrates the format of a data block. Figure 4.3 illustrates 
the structure of relocation dictionary entries. 

Length 

Number of words of data 

Start address 

Address reloe. base 

Figure 4.2 Data block structure 

Object Module Formats 



Object Module Formats 

H I 1 

Sequence number (1) 

Length 

Rev No. (malar/minor) 

Byte length 

Title byte pointer 

Title 

, F()rce~bind flag (hit 4) 

DG-05675 

Figure 4.4 Title block structure 

Word 
Offset to data word 

Reloc. base 1 Reloc.op 
2 

3 
12 Bits 4 Bits 

4 DG"()5677 

5 

7 

Figure 4.3 Structure of relocation dictionary entries 

Title Block 

The title block (type no. 1) is the first in every object module. 

The fourth bit in the first word of the header (not the body) is the 
force bind flag for the module. When this bit is 1, the flag is set (see 
Chapter 3). 

Word 4 contains the reVISIOn number of the program, word five 
contains the title length in bytes, and word 6 is a byte pointer 
(relative to first word of block) to the title string, which begins in 
word 7. 

Figure 4.4 illustrates the structure of the title block. 

0-----7 8 ---- 15 Word End Block 

I 2 The structure of the end block (type no. 2) is illustrated in Figure 4.5. 
Sequence number 2 Word 4 of the block specifies the starting address of the program. 

Word 5 specifies its relocation base and operation. 
5 3 

Start address 4 

Reloc.base I Reloc.op 5 

0 11 12 15 

OG"()5686 

Figure 4.5 End block structure 



Unlabelled Common Block 

Unlabelled common blocks (type no. 3) specify an area of the logical 
address space without a user-defined name (used by more than one 
module). 

The structure of an unlabelled common block is illustrated in Figure 
4.6. Word 4 specifies the length of the area. If there are several 
blocks that specify different lengths, the binder uses the largest area 
specified. Word 5 contains the relocation base and operation of the 
area length. Both relocation values must be 0, to indicate an absolute 
value with no relocation. 

External Symbols Block 

External symbols are global symbols defined in another object 
module. 

Figure 4.7 illustrates the structure of an external symbols block. 
Figure 4.8 illustrates a symbol entry in the external symbols block. 

Object Module Formats 

C 7 8 15 Word 

I 3 

Sequence number 2 

5 3 

Length of 

unlabelled common 4 

Reloc.base I Reloc.op 

a 11 1 2 15 

DG-Q5684 

Figure 4.6 Unlabelled common block structure 

Word 

I 4 

Sequence number 2 

Length 3 

N umber of symbols 4 

~8 Symbol entries ::F: 

Symbol name space 

r T 

D(''l-05681 

Figure 4.7 External symbols block structure 

8 Bits 

,-__ --;:::.==:::::::::==:::::,' Word 

o I Length of name 

Byte pOinter to name 2 

DG-D568? 

Figure 4.8 Symbol entry in external symbols 

block 



Object Module Formats 

Length 

Number of symbols 

Symbol entries 

Figure 4.9 Entry symbols block structure 

Figure 4.10 Symbol entry in entry symbols 

block 

Entry Symbols Block 

Entry symbols are global symbols that are defined in one object 
module and referenced in others. 

Figure 4.9 illustrates the structure of an entry symbols block (type 
no. 5). 

Word 4 of the block specifies the number of symbols it contains. The 
remainder of block consists of a four-word entry for each symbol, 
and a symbol name space. Each symbol entry contains 

• type, 

• byte length of the symbol's name, 

• a byte pointer into the name space, 

• value for the symbol, 

• relocation base and operation for the symbol's value. 

The symbol name space is a string of bytes in which the names of 
the symbols are spelled out. The symbol names may be concatenated 
or overlapped since each symbol name has its own byte pointer and 
length. For example, the single string CAB could be used to contain 
the names of symbols C, A, B, CA, AB, and CAB. 

The symbol's type is 4 for overlay entries, and 0 for all other entries. 
If the type is 4, the relocation operation must be 5 to indicate 
overlay relocation. 

Figure 4.10 illustrates the structure of a symbol entry in an entry 
symbols block. 

Local Symbols Block 

Local symbols are those used only within the object module that 
defines them. The binder ignores local symbols blocks; they are 
generated by Data General assemblers and compilers for use by 
debuggers on other systems. 

A local symbols block (type no. 6) has the same structure as an entry 
symbols block (see Figures 4.9 and 4.10). The only difference is the 
block type number in the first word of the block. Word 4 of the 
block specifies the number of symbols it contains. The remainder of 
the block consists of a four-word entry for each symbol, and a 
symbol name space. Each local symbol entry contains 

• type, 

• byte length of the symbol's name, 

• a byte pointer into the name space, 

• value for the symbol, 

• relocation base and operation for the symbols's value. 



The symbol name space is a string of bytes in which the names of 
the symbols are spelled out. The symbol names may be concatenated 
or overlapped since each symbol name has its own byte-pointer and 
length. For example, the single string CAB could be used to contain 
the names of symbols C, A, B, CA, AB, and CAB. 

Task Block 
Task blocks (type no. 12) are used in multitasked programs to tell the 
binder how many tasks the program requires. 

Figure 4.11 illustrates task block structure. 

After the block header, a single word specifies the number of tasks. 

Named Common Block 

A named common block (type no. 14) describes a common area with 
a user-defined name. If the binder finds several blocks with the 
same name, it assigns one area for all the blocks. If the area is 
specified with several different sizes, the binder allocates the largest 
area requested. 

The structure of a named common block is illustrated in Figure 4.12. 
Word 4 specifies the size of the common area. Word 5 must be zero. 
This indicates absolute relocation for the value in word 4. Word six 
specifies the length of the area's name (in bytes), and word 7 is a 
byte-pointer to the name. The leftmost 12 bits of word 9 are ignored 
by the binder; the rightmost 4 bits represent 1, since word relocation 
is always used. The remaining words contain the block's name. 

Object Module Formats 

I 12 

Sequence number 

4 

Number of tasks 

OG-05685 

Figure 4.11 Task block structure 

Word 

\ 
14 

Sequence number 2 

Length 3 

Common size 4 

Reloc. base I Reloc.op 5 

I Name length 6 

Byte pointer to name 7 

Reserved 8 

Reloc base I 1 9 

0 11 12 15 

Name 10 

OG-05683 

Figure 4.12 Named common block structure 



Ob ject Module Formats 

Library File Format 

Figure 4.1 3 Library format 

Libraries consist of a library start block, one or more object modules, 
and a library end block. The format of a library file is shown in 
Figure 4.13. The MP / AOS libary file editor constructs library files 
(including start and end blocks) from a list of object modules (see 
Part 3). 

Library Start Block 

Figure 4.14 shows the structure of a library start block (type no. 7). 

The library start block begins with the standard three-word block 
header; the sequence number is always 1. 

The next word after the header contains the number of object 
modules in the library. 

Beginning with word 5 are module descriptors for every module in 
the library. Each module descriptor consists of a six-word header, 
the object module title string, and a symbol descriptor for each 
symbol that is declared as an entry to the module. 

The first word of a module descriptor gives the descriptor's word 
length. The next two words are a 32-bit number giving the word 
offset from the start of the first module in the library to the start of 
the object module being described. (The offset value in the first 
module descriptor is 0). The fourth word gives the word length of the 
OB module and the fifth word gives the number of entry symbols 
within the module. 

The left byte of the sixth word contains the force-bind flag (bit 4) for 
the module (see Chapter 2). Other bits in this byte are reserved. The 
right byte in this word gives the length (in bytes) of the module's 
title. The sixth word is followed by the title string. After the title 
string, the remainder of the module descriptor consists of the symbol 
descriptors. Each symbol descriptor contains one word giving the 
symbol's length, and a byte string containing the symbol's name. 



Length 

Number of DB's 

Module 
descriptor 
(1) 

Module 
descriptor 
(2) 

Module 

Figure 4,14 Format of library start block and module descriptor 

Library End Block 

Word offset to 

start of DB 

Length of DB 

Number of entries 

Title length 

Title 
of DB 

Symbol 
descriptor (1) 

Symbol 

Figure 4.15 shows the structure of a library end block (type No. 21). 

All libraries end with this block, which consists of only the 
three-word header. The sequence number is always 1 and the length 
is always 3. 

Object Module Formats 

Symbol Descriptor 

Length of symbol 

Symbol name 

21 

Sequence number (1) 

Length (3) 

figure 4,15 Format of library end block 





Library File Editor 
and Symbol 

Cross-Reference 
Analyzer 





Library File Editor 
and Symbol 

Cross-Reference 
Analyzer 

This chapter describes two utility programs that maintain libraries 
of object modules. The library editor (LED) enables you to build 
library files from object files and from other libraries. The symbol 
cross-reference analyzer (SCAN) enables you to inspect the use of 
global symbol names in your program and to identify mutliply­
defined and undefined symbols. 



Library File Editor and Symbol Cross-Reference Analyzer 

Library File 
Editor 

LED Command Line 

Creating a New 
Library File 

The library file editor is a utility program that builds libraries from 
object files or libraries that you specify as input. To build the 
library, the editor abstracts the information it needs from the 
modules and constructs the library start block, strips the files of the 
MP lAOS file header, concatenates the object modules, and appends 
the library end block. Library structure is explained in greater 
detail in Chapter 4. 

Using the library file editor, you may set or clear the library start 
block force-bind flag for each module. A description of the force-bind 
flag appears in this chapter. 

The format of the LED command line is 

XEQ LED j!function-switch I filename\ /arg-switch I··· 
where: 

funtion-switch is one or more of the function switches listed in 
Table 1.1. 

filename is the filename or path name of an object file or 
library file. 

arg-switch is the IF or IC argument switch. 

Switch Description 

ILa=filenameSpecifies filename.LB ast/)e nameoUhe library being created. 
Ifovou do not use trusswitch, . the library name is derived from 
the first filename on the command line. 

IL Sends a listing of module . titles and siles to the console. 

It""", filename Places a listing of module titles and sizes in filename. 

JE Sends allstingofanyertormessages to the console. 

IE = filename Places a list of error messages in filename. 

Table 1.1 LED switches 

To create a new library file, invoke the library editor using the ILB 
switch (this switch is optional but recommended). To build the 
library, the editor abstracts the information it needs from the object 
files and library files listed on the command line, constructs the 
library start block, concatenates the object modules, and appends 
the library end block. 

Filename Arguments to Library Editor 

The editor looks in your working directory and then through your 
search list for each filename you list as an argument to the command 
line. The .OB and .LB extensions are optional; if you do not type an 
extension, the binder looks first for each filename with the .OB 
extension, then with the .LB extention, and finally with no extension. 



Library File Editor and Symbol Cross-Reference Analyzer 

If you do specify one of these extensions, the editor looks only for 
the file as you specified it. 

Order of Filenames in Command Line 

The editor places modules in the library in the order that they are 
listed in the command line. As explained in Chapter 3, the order of 
modules in the library is important, since the binder scans a library 
only once, from beginning to end. Before building a library, 
determine the order of modules to ensure that all symbols are defined 
when the library is bound. 

When you do not use the ILB=filename switch, the name of the 
first file in the command line determines the name of the library 
file produced. To name the new library, the editor strips off whatever 
extension is on the name of the first file and appends .LE. 

Listing the Library 

To obtain a list of the titles and sizes of the modules in the library 
you are creating, use the IL= filename switch. If you use the switch 
without a filename, the list is displayed on your console. When you 
bind the library, you may obtain a list of the modules used by 
including the ILIBLIST switch on the binder command line. 

As explained in Chapter 2, each object module in a library has two 
force-bind flags associated with it. One flag is in the module title 
block, and the other is in the library start block. When the program 
is bound, the flag in the library start block determines whether the 
module will be automatically bound. 

The force-bind flag of the title block can be set in assembly language 
modules by using the .FORCE pseudo-op (see Part 1, Chapter 7). 

The force-bind flag in the library start block can be set in two ways: 

• by using a switch on an object file name in the LED command 
line. The IF switch sets the flag; the IC switch clears it; 

• by using a switch on a library filename in the LED command line. 
The IF switch sets the flag for every module in the program, and 
the I C switch clears it. 

If neither switch is used, the flag is copied unchanged from the 
module title block to the library start block. 

Force-Bind Flag 



Library File Editor and Symbol Cross-Reference Analyzer 

Symbol 
Cross-Reference 
Analyzer 

SCAN Command Line 

For example, assume that you have these files in your working 
directory: 

• an object file PRO.OB with the force-bind flag set; 

• an object file NEST.OB with the force-bind flag not set; 

• a libary file KLV.LB in which some of the title-block force-bind 
flags are set and some are not. 

If you now type 

XEQ LED PRO.OB NEST.OB/F KLV.LB/C 

the editor will construct a new library called PRO.LB. In it, the 
library start block force-bind flag for PRO.OB and NEST.OB will be 
set, and the libary start block flags for all the other modules will be 
cleared. (For simplicity, this example does not show the use of the 
/LB= switch. Remember, the use of /LB= is recommended.) 

None of the force-bind flags in the title blocks for these modules will 
be affected. 

The symbol cross-reference analyzer (SCAN) is a utility program that 
produces information about the use of global symbol names in 
libraries and object modules. SCAN provides an alphabetical list of 
all symbol names in the modules and, for each symbol name, an 
alphabetical list of the modules in which the symbol is used. It 
identifies symbols that are undefined within the set of scanned 
modules, as well as those that are multiply-defined. 

You can use this program to check for symbols that are multiply 
defined and to help you look for symbols that may be inconsistently 
defined. You can also use it to determine that a symbol name you are 
considering is unique, and to find all affected modules when you 
change a symbol definition. 

To execute SCAN, type the command line given below. Using function 
and argument switches, you can modify the criteria for including 
symbol names in the listing (or for including a symbol count and no 
symbol names) and for suppressing certain information on the listing. 

The format of the SCAN command line is 

XEQ SCAN { / function-switch} filename{ / arg-switch } ... 

where: 

funtion-switch is one of the function switches listed in Table 1.2. 

filename 

arg-switch 

The minimal unique abbreviation is acceptable. 
(N ote that the mnemonics associated with the 
/OPTIONS= switch contain a letter and minus 
sign.) 

is the name of an obect file or library file. 

is the /OMIT argument switch described under 
"Arguments to SCAN," below. 



Library File Editor and Symbol Cross-Reference Analyzer 

Table 1.2 SCAN function switches 

The arguments to the SCAN are the names of libraries or object files 
in your working directory or on your searchlist. The filename 
arguments may be in any order. If a filename does not have an 
extension, the SCAN looks in turn for a filename with the .OB 
extension, the .LB extension, and finally no extension. 

When you append the switch /OMIT to an argument, the listing does 
not include that title in the cross-reference listing. For example, if a 
file has an object module entitled BOB, containing an external 
reference to FRED, you can use /OMIT to cause SCAN to omit BOB 
from the list of modules referring to FRED. 

SCAN produces a single listing with four fields, as illustrated in 
Figure 1.1. 

Starting in the fourth column is a vertical list of symbol names, 
alphabetically ordered. On the same line as the symbol name is a 
horizontal list of any modules in which the symbol is declared as an 
entry symbol. Beneath this line are one or more horizontal lines that 
alphabetically list modules in which the symbol is declared as an 
external symbol. Modules that contain symbol definitions are listed 
one per line. 

When a symbol is declared as an entry symbol in more than one 
module, as an entry symbol but not as an external symbol, or as an 
external symbol but not an entry symbol, the SCAN listing includes 
a single-letter code to the left of the symbol name. The meaning of 
these letters is explained in Table 1.3. 

Arguments to SCAN 

SCAN Output 



1 Library File Editor and Symbol Cross-Reference Analyzer 

Entry Defining title 
Referencing titles ... 

Symbol ----------- - ---------
name [@ PROFILE 
Title of REPORT UN..LOOKUP 
module that 

~ defines symbol AC1 
REPORT UN..LOOKUP 

Modules that AC2 PROFILE 
reference the ~ UN..LOOKUP I 
symbol 

BANNER BANNER 
REPORT 

BUF...ADDR PROFILE 
REPORT 

BUF .LEN PROFILE 

REPORT 

Symbol -----ill 
code 

CALCULATL PROFILE 

CMDFILE PROFILE 

COhtlANDFIL PROFILE 

Z CONTINUEJ,1 PROFILE 

DG-09095 

Figure 1.1 Partial SCAN listing 

Table 1.3 SCAN listing codes 



ASCII Character Set 

KEY 
DECIMAL OCTAL HEX SYMBOL MNEMONIC 

19',1 000 U@',l t @ t(:;tt.'I'1 
III 001 Lll1j t A 1('~:~1 

I,~,l 002 f~'Q~'l t B h:liI~~'1 

f<j;J 0031'\:~\1 t C f:~~;:j 
I':~l 004 ti~~\j t D !!\~~~l,\~t 
I ;'5,1 005 !\;6,~~l tE!:':~:'1 
!::6':1 006 r'~f'l t F i:~~G~:',1 

/ '1 ~ 007 i{g~~;1 t G b:i~I3'i 

,81 01 0 !',~:tl t H ~'U 

'~l 011 k~~~l t I l:i4Iil~~ 
Ild;l 0121:~1;i:1 t J i?,=::~:1 

11,(,1 o13I~?!I\l t K [,:lli1 
I ttl 014 L~N t L ti:JlIl:~ 

I ,13 ,I 015I','IllP;1 t M ~.!1 

l:t:~?1 016 t::~ti:~ t N t\:~l,~;~i 

I 'l ¥:j 0171:~r:~?1 t 0 f:~~'::'~1 

/16,\ 020 !:~~:1 t p I~~~:'I 
I~'ll 021 ~?:;i1lj~:'1 t Q l!i!.:~wll 
l,j~l 022 f:'~~,!! t R 1:'\,f).l~:;:;1 

1 '19:j 02 3 i::'I'~n t S ~~Il~~:;1 

lao,1 0241:,i~1 t T I:~~~;l 
! 211 025 t:~~'l t U 1:,,1IJ~:;i 

1221 026 1:tl::1 tv !b:~;c;l 

~431 027 1:;:';,1 t W ~::~~::;~~ 

~~#l 030 1:::;~li1 t x 1~1~.t 
L~~l 0311~'t~~?1 t y 1!~'jJ\;;I,;1 
~~:;I 03211(:;1~::1 t z ~~~.!!~ 

[Pit,:1 033 f'~"i:1 ESC r~~" 
lis:1 034I,:l~:,1 t \ ~;::~~?:1,~1 

I~$ll 035 &~~:I t I l,i::W?),:;;1 
k,~~j 0361~:~t\1 t t !:::~:\\i;r;:1 
1~1:1 0371:'1:1'1 t - !;?i~~·:::'~ 

KEY 
DECIMAL OCTAL HEX SYMBOL 

tj~gl 040 I:~'i SPAC< I 
N~'i::i 041 1::~1~:·:1 ! I 
'W,~S~ 0421:;~:~~,j,Q~~TEl 
ii~~.:;1 0431\?:~~'1 # 

I:~.~ 044 r';~:l $ 

t:;~l\;.1 045 t.;~~l o~ 

i~1~!0il 046 f'~i~'1 & 

I:::~.~rl 047 hg1 1 "~05 
li#ll;';·~l 050 !;)~i8:1 ( 
1::#liil 051 !~:;f~i,l ) 
1!\liiij 052 t~:~.?1M * 
I!'i~~ 053 b:g~~'1 + 

~:f~:I 0541';l~lco~., 
IGi~;'l 055 [ft?q -
~;.;'~ 056/".,21; ,I ''';'OD 

t~~~;'1 057 F~tJ , 
e~fL~l 060 ~'!~IH 0 
kt.~il 0611:;;ll:,j:.J 1 
Ilr1{l'!;J 0621;~~' 2 
l~~\~;::! 063 i;~~J 3 

t;~~f:?~ 0641~1¢1 4 
II\:iiJ 065 t i~1 5 
I!~~:I 066Ic\~1 6 
Il~i"'l' 067 (:3V·1 7 ~""'~ ",,~ L'~,>, ~;. 

tj~l 070 t:;~,:1 8 

Itt:J;:~ 071 ti~~.i:! 9 

f!R:::1 072 ~:?ik::1 : 
lohA!*,,,,s~ fl,;:",o ,,", 

.\;~ 073 !:;~!fl ; 
~~,g;:1 074 !i:::~t:·1 < 
I:~ti:::l 075IF~::1 -
~II~:I 076 ~!l~~?il > 
t~.'1 077 !:\~~::lj ? 

l~iiti~ 1 00 I:\~i\~ @ 

KEY 
DECIMAL OCTAL HEX SYMBOL 

i9.fi 1101 14:.11 A 

kfi6J 1021:~~l B 

i:~111 031~~:1 C 

!;1~~11 041,.4,04] D 

!~tU 1051~,~;1 E 

(J~ll0614~1 F 

[.;'11107 f'41j G 

[,012jll0j4ii:j H 

1')31 111 1413:1 I 

t7~.11121. 4A;! J 

I 151113[4Sj K 

l.j~1114 i4~1 L 

I. 771 115 L4:p.1 M 

!)$1116!4E:j N 

119111714Fl 0 

! 86·1120 l.il9>'1 P 

1 8t\121151;:1 Q 

1~21122l$.~q R 

! .. ~~.j 1231~3·:1 S 

1':'1l,4,1124 [54] T 

1'85'\ 1251!lsj U 

181>1126 rSlll v 
I·S11127\;5.71 w 

1.'s81130 t 581 X 

~;:'~~·1131 1$9.'1 y 
1 9011321 SA] Z 

(::~~,,1133 L~~.I [ 
1!:~~l134 t:~e,:;1 \ 
1;!j:i~;1135 ~9~.!J;1 I 

t?\~:1136 !>~i::l~ t 0'A 
~~:9'$ ,11 3 71~ '5:1'::1 ;;-_ 

I,:~'~ 140 r~.!l:?J IG':Y" I 

KEY 
DECIMAL OCTAL HEX SYMBOL 

~:i~~:;1141 t;"tiJ a 

~:Hi1142 !(;:~~?j b 
I;.;~~ 143 (.~~;! c 

t~'i~11144 ~,,~j!J d 

[:tlf; 145 kJ~l e 

t~t~;~ 14611:~~::;1 f 

i!J~11147 k;~ld g 

t\~H~ 150 f!:)~:.l h 

l;ifJ$~lll 51 ii~~'.l 
i\ili\j152 t:\;~0~ j 

.!\t~l153 i'li~~<1 k 

liif~~~ 154 t~~:1 I 

&;1.1 155 !:ji!W'l~ m 

l:[!;~~1156 ~!~i~'1 n 

illi~~'11 5 7Il~8~ 1 0 

~\~t)t~4 160 l:i~~,'1 p 

i1,JJ,1161 r~I:1;1 q 1 

1\';!~1162 !~~Z~~q r I 
Il~P~:'1163 rt~~~!l 5 I 
~t1V:~l! 164 ri~l~::l t I 
t~~:I~!l1651~~$\,l u 

I\li;J~~ 166 ~;:\\~~l v 

~:!;J,;,j 1671:ii,'·~.'1 w 

1:\tit:j170 I~~:~~;I x 

1;~i;i,;1171 ~l~~\pl y 
t~1'11172 tr~:~~:l~ z 

p\t~j8 17 31~$lfr't [ l'",t~:b" ""SMi!!ff" 

l'tl~1117 4 ll.tilfi I 

Itll, 175 i!~~tlj J 

11'1~ 1761~'I~J ,~" I 
Ill.ll77I::;~l~~;!.~~~nl 





ndacroassennbler 
Error Codes 

Macroassembler error messages appear as single letter flags in the 
first three character positions of a listing line. If a line of code 
contains one error, the error flag appears in character position three 
of that line. If there is a second error in a line, the second error flag 
appears in character position two. A third error in a line causes an 
error flag to appear in character position one. A fourth or subsequent 
error does not cause a flag to appear in the listing, but it is included 
in the total error count. 

The macroassembler writes lines containing errors to the specified 
error file and as part of your assembly listing. You can usually 
suppress output of errors to the error file. If you suppress the program 
listing, the error listing is written to the error file. If you suppress 
both the assembly and the error listings, then the error listing is sent 
to the console. Table B.l lists the error codes and their symbols. 

The following pages provide explanations and examples of each 
error code. However, the examples do not show all possible causes of 
assembly errors. 



Macroassembler Error Codes 

ni$ia~~owl)rtor.()r$ta~ -';q~ 
~~~'(frf~ ......... . 

Qu~~I~~ble line errol" 
~e!~i~error ... 

. cirl.~~fsymbol : error 

Vaflab'Iabel~ror . 
Te;~ji ... ot· .. . 
'11~~~~~Of extel'11al . 

Table B.1 Error codes and their symbols 

A Addressing Error 

Indicates an addressing error in a memory reference instruction. 

Example 1 

In this example a page zero relocatable instruction tries to reference 
a normal relocatable (.NREL) address . 

00003'000010 G: 

AOOOOO-044000 

Example 2 

. NREL 0 
10 
.ZREL 
STA O,G 

In this example an .NREL location tries to reference an address 
outside the program location counter's address range. 

. NREL 0 
A00004'020000' LOA O,V 

004423' .LOC .+416 
00423' 000002 V:2 

;(.-200< = disp < = .+177) . 

;V is outside the 
; instruction's 
;address range. 



Bad Character 

Indicates an illegal character in some context. This type of error 
often leads to other errors. 

Example 

In this example the label contains an illegal character: % . 

. NREL 
BOOOOO'024023 .A%: LOA 1,23 

Macro Error 

Occurs under the following circumstances: 

• You specify more than 6310 arguments. 

• You attempted to continue the definition of a macro which was 
not the last one you defined. 

The example illustrates the last circumstance. 

Example 

% 

% 

% 

.MACRO A ;This defines macro A. 

; other code 

. MACRO A ;This is a legal continuation of macro 
;A's definition. 

.MACRO B ;This is a new macro. 

;Other code 

C .MACRO A ;Since you have begun a new macro, B, 
;you cannot continue to define macro A. 

Macroassembler Error Codes 

B 

c 



Macroassembler Error Codes 

D Radix Error 

E 

Occurs in three instances: 

• The argument in a .RDX command is not within the range of 
2-20. 

• The argument in a .RDXO command is not within the range of 
8-20. 

• You use a digit not within the current input radix. 

Example 1 

0 000030 .RDX 4*6 
Example 2 

000002 .RDX 2 
000000 000013 B: 35 

Equivalence Error 

Occurs when an equivalence line contains an undefined symbol to 
the right of the equal sign. This error may occur on pass 1 before the 
symbol has been defined or on pass 2 if the symbol was never 
defined. 

Example 

EE 
EUU 000000 

A=B 
A=B 

;Pass 1 - B is unidentified. 
;Pass 2 - B is unidentified. 

F Format Error 

Occurs when you try to use a format that is illegal for the current 
line. This error often occurs in conjunction with other errors. 

Example 1 

FOOOOO 143000 
Example 2 

ADD 2 ;Not enough arguments. 

FOOOOO 041410 STA 0.10.3.SNC ;Too many arguments and wrong 
;operand for instruction type. 

Example 3 

060512 
FOOOOO 060512 

. DUSR C=DIAS 
C 1 ;This symbol does not accept 

; arguments. 



Global Symbol Error 

Occurs when there is an error in the declaration of an external or 
entry symbol. 

Example 1 

In this example HH is never defined. 

GU 

Example 2 

.ENT 

.END 
HH 

In this example, AA is an entry in a program which declares AA 
external. 

G AA: 
.EXTN AA 
.END 

Conditional Assembly Error 

Occurs when an .ENDC pseudo op is not preceded by a .DO or .IFx 
psuedo op. 

Example 

000002 .00 2 

.ENDC 
K .ENDC 

Macroassembler Error Codes 

G 

K 



Macroassembler Error Codes 

L Location Error 

Occurs when errors are detected in lines affecting the location 
counter. 

If the expression in a .LOC or a .BLK statement evaluates to less than 
zero, then the macro assembler flags the line with an L. An L also 
flags such a line if the expression in a .LOC or a .BLK statement 
cannot be evaluated on the first pass of the assembler. In either case, 
the macro assembler ignores the .LOC or the .BLK and leaves the 
location counter unchanged. 

Example 1 

L 177777 .LOC -1 
Example 2 

77711'000000 A: 0 
L 100012' 

Example 3 

LU 000000 .BLK B 

.BLK 

M Multiple Definition Error 

.+100 

;B undefined. 

Flags an illegal attempt to redefine a symbol. Within an assembly 
program, labels may be defined only once. Also, when 1M is set, 
semipermanent symbols may not be redefined. Each time a multiply­
defined symbol appears, the macro assembler flags it with an M. 

Multiple occurrences of the .OB pseudo-op also cause M errors. 

Example 

MOOOOO'OOOOOO ALPH: 0 
PM00001'000001 ALPH: 1 

NOTE: The second definition of ALPH is also flagged as a phase error (P) on the 

second pass. See P, the Phase Error entry. 



Number Error 

Occurs if a single-precision integer is greater than or equal to 216, or 
if a double-precision number is greater than or equal to 232. The 
macroassembler truncates the former number to 16 bits, and the 
latter to 32 bits. This error also occurs if a floating-point number is 
too large. 

Example 

000012 .RDX 10 
N000140 65539 
000003 

Field Overflow Error 

Occurs in the following cases: 

• You exceed the size of the stack. 

• You did not issue a PUSH before issuing a .POP or a .TOP. 

• You code an instruction operand too large to fit the corresponding 
field. 

• You supply a value for a field which already contains a value. 

When overflow occurs in an instruction field the field remains 
unchanged. 

Example 

000000 020775 LOA 5,. -3 ;AC field is too large. 
070400 .DIAC R=DIA 2,0 

000001 070400 R 1 ;AC field already has value. 
000002 000000 .POP ;Stack is empty. 
000003 000000 .TOP ;Stack is empty. 

Macroassembler Error Codes 

N 

o 



Macroassembler Error Codes 

P Phase Error 

Occurs during pass 2 when the macroassembler detects some 
unexpected difference from the source program scan on pass 1. For 
example, a label defined on the first pass which has a different value 
on the second pass causes a phase error. If you multiply-define a 
label, the M error flags each statement containing the symbol; the P 
error flags the second and later statements containing the symbol. 

Example 

M00001 000000 B: 0 
PM00002 000000 B: 1 

Example 

00000 000001 .BlK .PASS 
P00001 000000 c: 0 

Q Questionable Line 

Occurs under the following conditions: 

• You used a # or @ atom improperly. 

• You used a ZREL displacement field in a memory reference 
instruction indexed by AC2 or AC3. 

• You used a conditional skip instruction immediately before a 
two-word instruction. 

• You wrote an illogical ALC instruction. 

Example 

Q00002 113000 ADD O,@2 ;Incorrect use of @ . 
. ZREL 

00000-000010 FLD: .BlK 10 
000001 .NREL 1 

QOOOOO ! 000000 lDA O,FlD,2 ;FlD may get bound into 
;a location greater than 177. 

00001!125015 MOY# 1,1,SNR ;MOY instruction 
Q00002 ! 000000 ELDA O,SYMB ;precedes a two-word 

; instruction. 
QOOO03!105010 MOY# 0,1 ;No-load bit is 

;set here, but no 
;skip specified. 



Relocation Error 

Indicates one of the following: 

• The macroassembler cannot evaluate an expression to a legal 
relocation type (absolute, word-relocatable, or byte-relocatable). 

• The expression mixes .ZREL and pure .NREL symbols. 

• The expression mixes impure .NREL and .ZREL symbols. 

• The expression mixes pure and impure .NREL symbols. 

Example 1 

000000 .NREL 0 
00000'000010 E: 10 
00001'000000" E+E 

R00002'000000' E+E+E 

Example 2 

.ZREL 
00000-000000 A: 0 

000001 .NREL 1 
00000 ! 000000 0 

R00001!000000! B: AtB 

Undefined Symbol Error 

;Contents are .NREL 
;byte-reloctable. 
;Contents not absolute, 
;word-relocatable, or 
;byte-relocatable. 

;A and B are of different 
;relocation types. 

Occurs during pass 2 when the macroassembler encounters a symbol 
whose value was not defined after pass 1. Occurs during pass 1 when 
a symbol definition depends on another symbol whose value is 
unknown. 

NOTE: A symbol does not have to be defined in a source module if it is already 
defined in MASM.PS. 

Example 

U00002 030000 LOA 2,B ;B is as yet unknown. 
Also see the example given in the entry for Equivalence Error (E). 

Macroassembler Error Codes 

R 

u 



Macroassembler Error Codes 

V Variable Label Error 

Occurs if anything other than a symbol follows the .GOTO or .ENDC 
pseudo ops. 

Example 1 

FV 

FV 

000001 
000001 

[AUG] 

[HQF] 

X Text Error 

.GOTO 

.GOTO 

.IFE 

.IFE 

.ENDC 

.ENDC 

14 
AUG 

o 
o 

14 
HQF 

Occurs if the two expression delimiters < and > within a text 
string do not enclose a recognizable arithmetic or logical expression. 
You cannot use relational operators within text strings. 

Example 

.NREL 0 
00000'00001 X: 1 
00001'00002 Y: 2 

XOOO02'054476 .TXT #<X+ Y># ;Spaces not allowed in 
000000 ; expressions. 

XOOO04'000000 . TXT #<+># ;Lacks operands. 
XOOO05'000076 . TXT #<X=>Y># ;Illegal relational operator. 

054476 ;Macroassembler 
000000 ;sees < X = > as the 

;expression, which is not a 
;legal expression 

.END 



Cross Development 

The three tables in this appendix describe switches you can use to 
bind programs under one operating system (the host system) to be 
run under another operating system (the target system). 

For information on compatibility among operating systems or how 
to tailor a program to run under more than one system, refer to the 
system programmer's references for the host and target systems. 



Cross Development 

Table C.l Binder switches. MP/DS target 

Table C.2 Binder switches, MP / ADS target 

Table C.3 Binder switches, ADS target 

IJVlmDOI t~ble in the 

switch. 

. '. ... . tne nignest 
.. TI1edefault value is 

... Does not.put the 
file, and . assumes 
1$0117178_ 

LOads ttle Impure 
at the top of 

r:H.f"lCl.I",,,."'A ..... · qata in 

memory 

. '$earches 



A 
A assembler error code 220 
Address 

absolute 4, 5, 178 
logical 4, 6, 178 
physical 4, 6 
relocatable 5, 171 
starting 125 

Address error 220 
Addressing 

indirect 12, 14 
ALC instruction 100 
Angle brackets 

in text string 164, 166 
AOS 193 
Apostrophe 

in integer-generating formats 29 
ARGCT 54, 67, 97 
ASCII characters 18, 217 

and text strings 80, 164 
Assembler 

execution of 84 
function of 5 
simplest use of 84 
See also specific topics, such as 
Output, Command line, Listing, 
Switches, Error codes, etc. 

Assembler directive 5 
binder 4 
form feed 124 
function of 12 
library 133 
overlay 128 
program revision 160 
syntax of 22 
tasks 163 

Assembler passes 
See Pass 1, Pass 2 

Assembly language instruction 
syntax of 21 

Assembly listing 
See Listing 

Assignment 
definition of 12 
symbol definition in 75 
syntax of 24 

Asterisks 
double 20, 23, 66, 92 

At sign (@) 12, 14 
error in using 226 
in data statement 24 

Atoms 12 

B 
B assembler error code 221 
B bit alignment operator 27, 34 

and symbol naming 36 
syntax of 35 

Index 

with single-precision integers 27 
Backslash 23,77 
Bad character error 221 
Beginning modules 52 
Binder 

filename arguments 189 
function of 5, 176, 178, 179 
See also specific topics, such as 
Output, Command line, Listing, 
Switches, Error codes, etc. 



Index 

Binder directives 56 
BLK 50, 98 

errors with 224 
Block body 199 
Block header 198 
Brackets 

in macro call 65 
with conditional labels 53, 136 

Byte packing 164, 168 
Byte pointers 42 

c 
C assembler error code 221 
Character set 18, 217 
Characters 

illegal 18 
special 19 

CLOC 100, 193 
COMM 51, 55, 99 
Command line 

conventions 1 
for assembler 84 
for binder 188 
for LED 212 
for SCAN 214 

Comments 10, 20 
Common area 55, 99, 100, 178 

function of 6 
Common block 

in object module 203 
Conditional assembly 53 

and .DO 118 
and .ENDC 126 
and .GOTO 136 
and .IF pseudo-ops 138 
and .PASS 153 
error in 223 
monitoring of 54 

Conditionals 
in macros 68 

Cross development 229 
Cross-reference listing 

assembler 92 
control of 93 

CSIZ 51, 55, 100 
CSZE 193 

D 

D assembler error code 222 
D double-precision indicator 28 
DALC 75,101 
Data 

specification of 80 
Data block 

and location counters 48 
of object module 201 

Data statement 
syntax of 24 

DCMR 75,103 
Debugging 4 
Decimal point 

in radix specification 156 
in double-precision integers 28 
in floating-point constants 31 
in single-precision integers 26 

Delimiters 13, 25 
DEMR 75,104 
DERA 75,105 
DEUR 75,106 
DFLM 75,107 
DFLS 75,108 
DIAC 75,109 
DICD 75,110 
DIMM 75, III 
DIO 75, 112 
DIOA 75, 113 
DISD 75,114 
Displacement 

external 130 
DISS 75, 115 
DMR 75,116 
DMRA 75,117 
DO 53,118 

in macros 68 
Dollar sign 23, 79 
Double asterisks 

See Asterisks 
Double-precision integer 13, 27 
DTAC 75, 120 
DUSR 75,121 
DXOP 75, 123 

E 
E assembler error code 22 
E floating-point indicator 31 
EJECT 51, 124 
END 51, 84, 125 

and LPOOL 22 



End block 
of object module 200 

End-of-line character 
See Delimiter 

ENDC 53,126 
error with 223 
in macros 68 

Ending modules 52 
ENT 55, 56, 127 
ENTO 57,128 
Entry point 

common area 99 
of external symbols 127 

Entry symbol 
assembler error 223 
in SCAN listing 215 

Entry symbols block 
in object module 204 

EOF 52, 84, 129 
EOT 52, 84, 129 
Equal sign 

errors involving 222 
in literal referance 21 

Equivalence error 222 
Error codes 

assembler 94, 219 
Error file 

assembler 219 
binder 179 

Error listing 
assembler 93, 94 

Exponent 
in floating-point constants 30 

Expression 
absolute 40 
and atoms 12 
byte-relocatable 42, 44 
definition of 14 
relational 35 
relocation of 40 
syntax of 33 

EXTD 55, 56,100, 130 
relocation base of 38 

External displacement 56 
External normal 56 
External relocation 55 
External symbol 

assembler error 223 
in SCAN listing 215 
sizing of 56 

External symbols block 
in object module 203 

EXTN 55, 56, 99, 100, 131 
relocation base of 38 

Extramodule pseudo-ops 52, 55 
EXTU 55, 56, 132 

F 
F assembler error code 222 
Factorial 

macro for computing 69 
Field overflow error 225 
Filenames 

binder command line 189 
extensions, assembler 87 
LED command line 212, 213 

Floating-point constant 13, 30 
Floating-point instruction 

See Instruction 107 
FORCE 57, 133, 184, 213 
Force-bind flag 133, 191 

definition of 184 
in library start block 213 

Form feed 124 
Format error 222 

G 
G assembler error code 223 
GADD 55, 56, 134 
Generating numbers and symbols 77 
Global symbol 55 

assembler error in 223 
definition of 6 

GLOC 55,135 
and labels 77 

GOTO 53,136 
GREF 55, 56, 137 

H 
Header 

of object block 198 
Host system 

in cross development 230 

I 
IF pseudo-ops 53, 138, 68 
IF-THEN-ELSE statements 

in macro example 72 
Immediate value III 
Impure area 5,151,178 

on binder load map 193 
relative size of 48 

Impure segment 
type of code in 48 

Index 



Index 

See Addressing 
Input modules 

order of for binding 189 Instruction 
ALC 11 
as symbol, relocation of 39 
classes of 11 
commercial 103 
definition pseudo-ops 103 
extended user 106 
floating point 107 
floating point 108 
input/output 11 
memory reference 11 
stack 11 
user-defined I/O 112 
user-defined I/O 113 

Integer-generating formats 28 
Integers 

as absolute expressions 40 
in symbols, relocation of 39 
See also double-precision, single-precision 

Intermodule communication 55 
Intramodule pseudo-ops 52 

K 
K assembler error code 223 
Kernel 

of MP / ADS system 192 

L 
L assembler error code 224 
Label 

LB 

and location counter 76 
conditional 53 
conditional 126 
conditional 136 
definition of 76 
relocation base of 38 
relocation base of 39 

See Library file 
LED 178, 185, 212 
Library 

binder scanning of 190 
binding 133 
binding 185 
definition of 184 
order of modules in 185 
order of modules in 191 
structure of 184 

Library end block 184,207 
Library file 178 

Indirect addressing 
creation of 212 
format of 206 

Library file editor 
See LED 

Library start block 184, 206 
Listing 

assembler cross-reference 7 
assembler cross-reference 92 
assembler error 7, 16, 93 
assembler source 7 
assembler, conditional 146, 148 
assembly 7, 89 
assembly conditional 150 
assembly, control of 92 
assembly, fields in 93 
binder 193 
binder error 195 
binder file 179 
binder symbols 195 
LED 213 
SCAN 215 

Literal pool 142 
Literal pool 

definition of 21 
Literals 21 
Load map 

binder 181, 193 
binder listing 179 

LOC 50,140 
and labels 77 
errors with 224 

Local symbol 
definition of 6 

Local symbols block 
in object module 204 

Location counter 5, 96, 98 
absolute 49, 140 
and assembler partitions 5 
and program partitioning 48 
external symbol 135 
GLOC 49 
NREL 49 
NREL 151 
pseudo-ops 50, 51 
ZREL 49,171 

Location error 
assembler 224 

Location field 
listing of 148 

Logical address 
See Address 



Logical AND 
See Operators, logical 

Logical OR 
See Operators, logical 

Loops 53 
in macros 68 

Lower page zero 171, 178 
addresses of 5 
and hardware functions 49 
uses of 49 

LPOOL 22, 51, 142 

M 
M assembler error code 224 
MACRO 60, 144 
Macro 

arguments to 97 
definition of 11, 60 
definition string 60, 63, 144 
expansion of 145 
extension of 60 
listing of 66, 150 
loops and conditionals in 68 
partial lines in 61 
redefinition of 61 
syntax of 22 
text string in 81 

Macro calls 65 
Macro error 

assembler 221 
Macro expansions 65, 97 

listing of 67 
Macroassembler 

See Assembler 
Mantissa in floating-point constants 30 
MASM.PS 88, 170 
MCALL 54, 68, 145 

Memory management 
and program partitioning 48 
pseudo-ops 50, 51 

Memory reference instruction 
addressing error 220 
extended 104, 105 
in ZREL 49, 171 
user-defined 116, 117 
with EXTD 56 

Module descriptors 
in library start block 206 

Monitoring 
of assembler 54 

MP / AOS documentation ii 
MP lOS documentation ii 

MRI 
See Memory reference instruction 

Multiple definition error 224 

N 
N assembler error code 225 
Named common block 

in object module 203 
NMAX 193 
NOCON 92, 146 
NOLOC 92, 148 
NOMAC 66, 67, 92, 150 
NREL 50,151 

and labels 77 
NTAS 193 
Null word 

in text string 169 
Number error 225 
Number sign (#) 14 

error in using 226 
Numbers 26 
Numbers 

generated 77 
types of 13 

o 
o assembler error code 225 
OB 51, 152 
OB file 87 
Object block 177, 198 
Object block type 199 
Object file 

definition of 4 
macro definitions in 67 
naming of 87 
naming of 152 
priority of naming methods 88 
vs. object module 184 

Object module 177 
as binder input 176 
definition of 4 
format of 198 
naming of 87 
title of 51, 161 
vs. object file 184 

Offset 
from relocation base 5 

OL files 
See Overlay files 

Operating system 179 

Index 



Index 

Operators 
arithmetic 34 
binary 33 
bit alignment. See bit alignment 34 
in expression relocation 43, 44 
in expressions 33 
logical 34, 45, 69 
priority of 37 
relational 34, 35 
unary 34 

OSL 185 
Output assembler 7 

binder 179 
printed 89 
SCAN 215 

Output file 
binder 190, 191 

Overlay 185 
assembler directive 128, 151 
control symbol 186 
designators 191, 192 

Overlay file 179, 185, 186 
binder 191 

Overlay node 
definition of 185 
on load map 193 

Overlay segment 
type of code in 48 

OVTB 193 

P 
P assembler error code 226 
Page zero 

on binder load map 193 
Parameter file 86, 88 
Parameter symbol 192 
Parentheses 

in expressions 37 
with bit alignment operator 36 

Parity 
in text string 80, 164, 166 

Partitions 6, 180 
Partitioning programs 48 
PASS 54, 153 
Pass 1 

assembler 16 
binder 180 

Pass 2 
assembler 16, 86 
binder 181 

Percent sign 
in macro definitions 60 
in text string 164, 81 

Period (.) 50, 96 
Permanent symbol 

See Symbol 
Phase error 226 
POP 54,154 

with .LOC 140 
PR file 

See Program files 
Process 

definition of 4 
Process areas 5 
Process space 178 

and relocatable code 48 
Program 

development of 4, 176 
executable 178, 179 

Program file 87, 179, 181, 191 
binder 191 
definition of 4 

PS file 87 
Pseudo-ops 

assembler monitoring 54 
assembly listing 92 
beginning modules 52 
definition of 22 
dictionary of 95 
ending modules 52 
extramodule 52, 55 
instruction definition 10 1, 103 
intramodule 52 
location counter 50, 51 
loop and conditional assembly 53 
macro-related 67 
memory management 50,51 
stack control 54 
symbol definition 75 

Pure area 5, 151, 178 
on binder load map 193 
relative size of 48 

Pure code 
in overlays 185 

PUSH 54,155 
with .LOC 140 

Q 

Q assembler error code 226 
Quotation marks 

in integer-generating formats 28 

R 
R assembler error code 227 



Radix 
assembler error 222 
control of 80 
input 156 
output 158 
with bit alignment operator 36 
with double-precision integers 28 
with floating-point constants 32 
with single-precision integers 26 

RDX 80,156 
RDXO 80, 92. 158 
Recursion 

in macros 69 
Relocatable expressions 41 

resolution of 42 
syntax of 41 
table of 45 

Relocation 
as shown in object block 198 
assembler error in 227 
formula of 199 
of expressions 40 
of symbols 38 

Relocation base 5 
in object module 177 
number of 180 
symbols in assembly listing 91 

REV 51, 160, 193 
Run-time libraries 56 

S 
Scalar value 56, 134, 137 
SCAN 185,214.215 

listing codes 216 
Semi-permanent symbols 

and cross-reference listing 93 
redefinition of 74 

Shared code 151 
Shared segment 

type of code in 48 
Sign bit 

in double-precision integers 27 
in floating-point constants 30 
in single-precision integers 26 

Single-precision integer 13, 26 
Source file 

definition of 4 
Source module 

definition of 4 
to running program 6 

Source statement 
See Statement 

SR file 87 
ST files 

See Symbol table 
Stack 154, 155, 162 
Stack control 54 
Statement 

body 10 
components 12, 15, 25 
data 12 
fields 10, 29 
format 10, 20 
label 10 
length of 20 
source 10 
types 10, 21 

String 
See Text string 164 

String delimiters 81 
STYP 193 
Supervisor program 

MP I AOS system 192 
Switches 

assembler 18 33, 89 
assembler IB 87 
assembler IE 94 
assembler IL 92, 93, 94 
assembler 1M 74 
assembler IP 93 
assembler IS 84, 86, 87, 88 
assembler IS= 88 
assembler command line 86 
assembly listing 92 
binder 189 
binder I ALPHA 195 
binder IE= 195 
binder IKERNEL 191, 192 
binder /L= 193 
binder ILIBLIST 193, 213 
binder IN 191 
binder /NUMERIC 195 
binder /P= 190 
binder /SUPER 191, 192 
binder IVAL 188 
cross development 230 
LED 212 
LED IF and IC argument 212, 213 
LED ILB= 213 
SCAN 215 
SCAN /OMIT argument 214 

Index 



Index 

Symbol 
classes of 13 
definition errors 224, 227 
definition of 13 
deletion of 170 
external 127, 130, 131, 132, 135 
generated 77 
global 178 
in assignments 75 
in binder input 190 
in binder listing 195 
in library modules 190 
in macros 33 
in SCAN listing 215 
local 178 
nonpermanent 14 
permanent 13 
program parameter 192 
redefinition of 74, 170 
relocation of 38 
semi-permanent 13 
syntax of 32 
types of 73 
undefined 132 
user-defined 121 

Symbol definition 
pseudo-ops for 75 

Symbol descriptor 
in library start block 206 

Symbol file 13, 74 
additions to 88 
creation of 88 

Symbol table 7, 88, 179 
Symbol table 

deletion of 170 
function of 13 

SYSGEN 179, 192 
System call 

definition of 11 
System cross-reference analyzer 

See SCAN 
System files 192 
System library 191 

T 
Target system 

in cross development 230 
Task block 

in object module 205 
Terminals 13, 25 

for statement fields 20 

Text error 
assembler 228 

Text string 164, 166, 168, 169 
assembling of 80 
in macros 81 

TITLE 51, 161, 198 
Title block 

of object module 198, 201 
TOP 54,162 
TSK 57, 163 
TXT 81,164 
TXTE 81 
TXTE, TXTF, TXTO 166 
TXTF 81 
TXTM 81, 168 
TXTN 81, 169 
TXTO 81 
Type flags 

in cross-reference listing 92 

U 
U assembler error code 227 
Undefined symbol error 227 
Underscore 

in macro definitions 62 
in symbol names 33 
in text strings in macros 81 
with bit alignment operator 36 

Unlabelled common block 
in object module 203 

Unshared code 151 
Uparrow 

in macro definitions 63 
in text strings in macros 81 

v 
V assembler error code 228 
Value symbol 23 

function of 12 
relocation base of 39 

Variable label error 228 

W 
Write protection 49 

X 
X assembler error code 228 
XPNG 61, 75, 88, 170 

Z 

ZREL 50, 171 
and labels 77 
and literal pools 22 



DG OFFICES 

NORTH AMERICAN OFFICES 
Alabama: Birmingham 
Arizona: Phoenix, Tucson 
Arkansas: Little Rock 

California: Anaheim, EI Segundo, Fresno, Los Angeles, Oakland, Palo Alto, Riverside, 
Sacramento, San Diego, San Francisco, Santa Barbara, Sunnyvale, Van Nuys 
Colorado: Colorado Springs, Denver 
Connecticut: North Branford, Norwalk 
Florida: Ft. Lauderdale, Orlando, Tampa 
Georgia: Norcross 
Idaho: Boise 
Iowa: Bettendorf, Des Moines 
Illinois: Arlington Heights, Champaign, Chicago, Peoria, Rockford 
Indiana: Indianapolis 
Kentucky: Louisville 
Louisiana: Baton Rouge, Metairie 
Maine: Portland, Westbrook 
Maryland: Baltimore 

Massachusetts: Cambridge, Framingham, Southboro, Waltham, Wellesley, Westboro, 
West Springfield, Worcester 
Michigan: Grand Rapids, Southfield 
Minnesota: Richfield 
Missouri: Creve Coeur, Kansas City 
Mississippi: Jackson 

Montana: Billings 
Nebraska: Omaha 
Nevada: Reno 
New Hampshire: Bedford, Portsmouth 
New Jersey: Cherry Hill, Somerset, Wayne 
New Mexico: Albuquerque 

New York: Buffalo, Lake Success, Latham, Liverpool, Melville, New York City, 
Rochester, White Plains 

North Carolina: Charlotte, Greensboro, Greenville, Raleigh, Research Triangle Park 
Ohio: Brooklyn Heights, Cincinnati, Columbus, Dayton 
Oklahoma: Oklahoma City, Tulsa 
Oregon: Lake Oswego 
Pennsylvania: Blue Bell, Lancaster, Philadelphia, Pittsburgh 
Rhode Island: Providence 
South Carolina: Columbia 
Tennessee: Knoxville, Memphis, Nashville 
Texas: Austin, Dallas, EI Paso, Ft. Worth, Houston, San Antonio 
Utah: Salt Lake City 
Virginia: McLean, Norfolk, Richmond, Salem 
Washington: Bellevue, Richland, Spokane 
West Virginia: Charleston 
Wisconsin: Brookfield, Grand Chute, Madison 

DG-04976 

INTERNATIONAL OFFICES 
Argentina: Buenos Aires 
Australia: Adelaide, Brisbane, Hobart, Melbourne, Newcastle, Perth, Sydney 

Austria: Vienna 
Belgium: Brussels 
Bolivia: La Paz 
Brazil: Sao Paulo 
Canada: Calgary, Edmonton, Montreal, Ottawa, Quebec, Toronto, Vancouver, 
Winnipeg 

Chile: Santiago 
Columbia: Bogata 
Costa Rica: San Jose 
Denmark: Copenhagen 
Ecuador: Quito 
Egypt: Cairo 

Finland: Helsinki 
France: Le Plessis-Robinson, Lille, Lyon, Nantes, Paris, Saint Denis, Strasbourg 
Guatemala: Guatemala City 
Hong Kong 
India: Bombay 
Indonesia: Jakarta, Pusat 
Ireland: Dublin 
Israel: Tel Aviv 
Italy: Bologna, Florence, Milan, Padua, Rome, Tourin 
Japan: Fukuoka, Hiroshima, Nagoya, Osaka, Tokyo, Tsukuba 

Jordan: Amman 
Korea: Seoul 
Kuwait: Kuwait 
Lebanon: Beirut 
Malaysia: Kuala Lumpur 
Mexico: Mexico City, Monterrey 

Morocco: Casablanca 
The Netherlands: Amsterdam, Rijswijk 
New Zealand: Auckland, Wellington 
Nicaragua: Managua 
Nigeria: Ibadan, Lagos 
Norway: Oslo 

Paraguay: Asuncion 
Peru: Lima 
Philippine Islands: Manila 
Portugal: Lisbon 
Puerto Rico: Hato Rey 
Saudi Arabia: Jeddah, Riyadh 
Singapore 
South Africa: Cape Town, Durban, Johannesburg, Pretoria 
Spain: Barcelona, Bibao, Madrid 
Sweden: Gothenburg, Malmo, Stockholm 
Switzerland: Lausanne, Zurich 
Taiwan: Taipei 
Thailand: Bangkok 
Turkey: Ankara 
United Kingdom: Birmingham, BristOl, Glasgow, Hounslow, London, Manchester 

Uruguay: Montevideo 
USSR: Espoo 

Venezuela: Maracaibo 
West Germany: Dusseldorf, Frankfurt, Hamburg, Hannover, Munich, Nuremburg, 
Stuttgart 





How to Get in 
Touch with TIPS 

t., Data General 





Yes No 

0 0 

0 0 

0 0 

0 0 

Name: 

Company: 

Address: 

State: 

D(;-OfiX!() 

Please help us improve our future 

publications by answering the questions below. 

Use the space provided for your comments. 

Is this manual easy to read? 

In what ways do you find this manual useful? 

Do the illustrations help you') 

Does the man ual tell you all you need to know'? 

What additional information would you like? 

Is the information accurate'? 

(If not please specify with page number and 
paragraph.! 

Technical Products 
Publications 

Comment Form 
Title: _________________ _ 

Document No. ____ O_6_9_-_4_0_0_2_10_-_0_0 ____ _ 

o You (can, cannot) find things easily. o Other: 

o Language (is, is not) appropriate. 

o Technical terms (are, are not) defined 
as needed. 

o Learning to use the equipment o To instruct a class 

o As a reference o Other 

o As an introduction to the 
product 

o Visuals (are,are not) well designed. 

o Labels and captions (are,are not) clear. 

o Other: 

Title: 

Division: 

City: 

Zip: Telephone: Date: 

•• Data General 



FOLD FOLD 

TAPE TAPE 

FOLD FOLD 

II 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 26 SOUTHBORO. MA. 01772 

Postage will be paid by addressee 

~. Data General 
ATTN: Technical Products Publications (C -138) 
4400 Comput er Drive 
Westboro, MA 01581 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



S 
2 
5 
~ 
( 

) 
) 

4. Data General 
users 
gpoup Installation Membership Form 

Name _________________ Position ________________ Date _____ _ 

Company, Organization or School ____________________________________ _ 

Address _________________ City ____________ State ___ Zip _____ _ 

Telephone: Area Code ______ No. __________ Ext. ____________________ _ 

o OEM 

o End User 

o System House 

o Government 

o Educational 

Qty. Installed I Qty. On Order 

o AOS 0 RDOS 

o DOS 0 Other 

o MPjOS 

Specify _____ _ 

o Algol 0 Assembler 

o DG/L 0 Fortran 

o Cobol 0 RPG II 

o PASCAL 0 PLil 

o Business BASIC 0 Other 

o BASIC 

Specify ______ _ 

o Batch (Centrall 

o Batch (Via RJE) 

o On-Line Interactive 

o HASP o CAM 

o RJE80 o XODIAC 

o RCX 70 o Other 

Specify 

0 ________ _ 

From whom was your machine(s) 
purchased? 

o Data General Corp. 

o Other 
Specify ______ _ 

Are you interested in joining a 

special interest or regional 
Data GenerallJsers Group? 

° ----------

t. DataGeneral 
Data (ipnpral C'nrnnratinn WDc.thnrn M.e.AI"hl.cllJlttc ft11:.Qn I~ 1?\ 'I';''' 111011 



FOLD 

TAPE 

FOLD 

II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772 

Postage will be paid by addressee 

t.DataGeneral 
ATTN: Users Group Coordinator (C-228) 
4400 Computer Drive 
Westboro, MA 01581 

FOLD 

TAPE 

FOLD 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 





-. Data General 
Data General Corporation, Westboro, Massachusetts 01580 

069-400. 


