
[)A.TA GENERAL
CORPORATION

Southboro.
Massachusetts 01772

(617) 485-9100

DOS OPERATOR'S GUIDE

Copyright (C) Data General Corp., 1972

093-000076-00

January, 1972

I.

II.

III.

IV.

V.

VI.

VII.

VIII.

IX.

X.

CONTENTS

WHAT IS DOS?

SECTIONS OF DOS

LAYOUT OF DISK

DOS BOOTSTRAP

FILE NAHES

CLI

CLI COMMANDS

PROGRAMMED DOS COMMANDS

SYSTEM GENERATION

HULTIPLE FILE DEVICES

Devices Providing Multiple File Access
Directory Devices
Magnetic Tape
Initializing a Tape Drive
Releasing a Tape Drive
Referencing a File On Magnetic Tape
Writing Files To Magnetic Tape
Creating a System Tape For Bootstrapping DOS
User Serviced Interrupts
Panics

XI. BATCH PROCESSING

I. WHAT IS DOS?

DOS is a highly sophisticated utility program with which the

user can perform numerous operations with simple commands. All

corrmands to DOS request the system to perform some operations

on files. This is the key to the power of DOS. Files may be

pre-named storage areas on disc, or files may be I/O peripheral

device drivers. To DOS, both look alike. A file is simply an

area in some storage medium, where information can be retained.

This storage medium may be paper tape, punched cards, magnetic

tape, or magnetic disc. Files may be manipulated, edited,

assembled, loaded, etc. by DOS. In fact, programs, while

running may utilize DOS with special call instructions. DOS

eliminates the need for the user to concern himself with disc

storage housekeeping and I/O driver routines.

II. SECTIONS OF DOS

DOS comprises two (2) distinct sections: The Disc Operating

System (DOS), and the Command Line Interpreter (CLI). In a

system with 16K of core, 256K fixed head disk, reader, and punch,

DOS requires about 4650 decimal words of store. The CLI requires

about 5.5K of store, when in core. When the system is in use,

the DOS section is always residing in the upper 4.5K of core

and locations 0 thru 15. DOS is the section that executes all

commands, updates the directories of the files that exist on

disk, handles all I/O servicing, and controls the I/O interrupt

facilities.

Commands to DOS can originate from user programs, or from the

program called CLI. CLI is a 5.5K program that enables a user

to communicate with DOS from the Teletype Keyboard. The CLI is

stored on disk and is brought into core when needed. Commands

entered from the console to the CLI are formatted and stored

on disk in the file called COM.CM. When the operator types

carriage return or form feed, the CLI's job is through and it

simply tells DOS to overlay the requested program, which then

reads the COM.CM file.

Resident on disk is a directory of the files that exist on disk.

This directory resides on disk along with a duplicate of the

DOS and CLI programs. Anytime a file is altered, DOS immediately

updates the disk file directory. This assures the user that the

system and file directory can always be recovered and restored

in the event of system shutdown. The only critical time for a

system shutdown to occur is during the actual disk file updating.

This failure is highly improbable.

III. LAYOUT OF DISK

Our fixed head, head-per-track disk is a single disk platter

with 32, 64, or 128 heads mounted on a radial line. In actuality,

however, space limitations require the heads to be staggered.

G
The circumferential line that travels beneath a head is called a

track. Thus a 32-head disk has 32 tracks, etc. By convention,

the outermost track is track 0, and the track numbers increase

inward.

Each track has a storage capacity of 2048 16-bit words. For

ease of file keeping, each track is segmented into 8 sectors, or

blocks, numbered from 0 thru 7. Thus, a 64K disk has 32 tracks

and 256, 256-word blocks of storage. A 128K disk has 64 tracks

and 512, 256-word blocks of storage, and a 256K disk has 128

tracks and 1024, 256-word blocks of storage.

The disk layout is compatible with the disk interface since the

interface is designed to do a complete 256-word block transfer

111-2

whenever a disk transfer is initiated.

This block layout of the disk is the basis of the file directory,

retained by DOS. The file directory contains, in essence, only

two (2) entries for every unique file on disk. One entry is

the unique file name itself, and the other entry is the disk

address of the first 256 word block where that file is stored.

File Directory

FOO
disk address 3

JOE
disk address 12

EDIT. SV
disk address 6

ASH. SV
disk address 8

"
"

256 word block

r

DATA

""
words 1 thru 255

~

~

LN

word
256

Within that 256-word block of the file, the first 255 words are

the file contents; whether they be data, source, or binary

111-3

information is immaterial at this time. The 256th word in

the block contains a pointer to the next 256 word disk block

where this file is stored. This pointer is known as a link

word (LW). This link word is used by DOS to determine the

next disk address where this file is stored. DOS computes this

next address as follows:

last disk address ® LW = next disk address

Since the relationship:

next disk address e LW = last disk address

also holds true, DOS can read back through a file as well as

forward.

A number of blocks on the disk are needed to store DOS, the

CLI, a disk map dictionary, and a DOS bootstrap program. The

CLI and DOS utilize approximately 62 blocks of disk space. The

disk map dictionary is variable in size, depending upon the disk

size in the system. This dictionary utilizes 1 bit of disk space

for every block of disk. Thus, the dictionary for a 64K disk

uses 1 block (256 bits), for a l28K disk it uses 1 block (512

bits), and for a 256K disk it needs 1 block (1024 bits) of disk

space. This map dictionary (MAP. DR) on the disk is utilized to

keep track of the free storage areas on the disk. Another block

is utilized to store a special DOS bootstrap program whose

function it is to reload the complete system into core, from the

disk.

111-4

The minimum disk overhead required by DOS is, therefore:

USE # BLOCKS REQ'D

Bootstrap 1
File Directory 1 (min)
Map Directory 1 (min)
Reserved blocks
for overlays 3

DOS + CLI 62

68 = 17408 words

A number of programs are supplied with, and will operate under,

DOS: Editor, Relocatable Assembler, Relocatable Loader,

Debug III, Fortran IV Compiler, Algol 60 Compiler, an octal

editor (OEDIT), etc. These programs may be left on disk, or

may be loaded only when needed, thus freeing the disk space

for user storage.

When residing on disk, these programs utilize the following

number of blocks, in addition to those reserved for DOS as

indicated above:

EDITOR

RELOCATABLE ASSEMBLER

RELOCATABLE LOADER

DEBUG III

FORTRAN COMPILER

FORTRAN RUN TIME LIBRARIES

ALGOL COMPILER

ALGOL RUN TIME LIBRARIES

ALGOL TRACE (DEBUG) PROGRAM

OCTAL EDITOR (OEDIT)

9

18

10

11

43

122

80

121

37

4

III-5

Until now, only the fixed head disk has been referenced as the

bulk storage medium. Also available as bulk storage devices are

removable pack, moving arm disks. These disks differ from the

fixed head disks in operation, but not in principle. The fixed

head disk has two surfaces, with magnetic pick-up heads permanently

positioned over the disc. Switching from one track to the other

is done electronically. The moving arm disks usually have more

than one storage surface. A moving arm, containing one magnetic

pick-up head per surface, is moved along the disk surface to

position itself over a particular track. Thus, switching from

one track to another on the same surface is a mechanical process.

However, switching from one surface to another is electronically

accomplished. The combination of equivalent tracks on all the

surfaces is known as a cylinder.

The differences in the discs appear to DOS, essentially, only in

the form of access speed variations. The following comparisons

can be made:

A B C D
HEADS SURFACES TRACKS BLOCKS CAPACITY CAPACITY

PER (BLOCKS) (WORDS)
TRACK A*B*C D*256

4019A fixed 2 32 8 256(B*C) 65,536
40l9B fixed 2 64 8 512 (B *C) 131,072
40l9C fixed 2 128 8 1024 (B*C) 262,144
4047A moving 2 203 12 4872 1,247,232
4047B* moving 4 203 12 9744 2,494,464
4048A moving 10 203 6 12180 3,118,080

*This is 2 4047A disks with no door on one of them, thus

prohibiting pack removal.

111-6

If more than one fixed head disk is in the system (up to 8), it

appears to DOS as only one disk (DK~) of expanded size, and the

disk overhead is still a minimum of 68 blocks. Each moving arm

disk (up to 4) appears to DOS as a unique device (DP~, DPI, DP2,

DP3). If one of the DP disks is used to retain the system (the

bootstrap device), it must be DP~, and DP~ has a minimum disk

overhead of 68 blocks. DP disks used only for file storage

(do not have copies of eLI and DOS), have a minimum disk over-

head of only 6 blocks. DK and DP disks may be mixed in a system.

IV. DOS BOOTSTRAP

In the event that the system is turned off, or programs are

executed without DOS, thus destroying the core resident DOS,

it becomes necessary to restore the DOS to core by loading it

from the disk. As explained in section III, there is 1 block

on the disk which contains a special bootstrap program whose

function it is to restore DOS to core from the disk. By

executing this bootstrap program, an automatic loading, or

bootstrapping procedure is initiated.

DOS can be bootstrapped only from the disk which was specified

as the "bootstrap device" at sysgen, and only if that disk

was given the INSTALL command, causing the Bootstrap Program

to be written onto track #0, sector #0 of that disk. In addition,

the only bootstrappable disks are the fixed head disk (DK~) or

DP~. The reason for bootstrapping being available only on

sector #0 of track #0 of unit #0 will become evident.

To understand the process, it is necessary to understand the

disk interface. In order to accomplish a disk transfer of a

block of data, the processor must know the two end points of the

transfer: The memory address and the disk block address. The

processor obtains these 2 pieces of information from the A and B

buffers in the disk interface.

It is important to note at this time, that pressing the RESET

switch on the front console resets the entire system, including

IV-2

the A and B buffers on the disk interface. If a disk transfer

were initiated at this time, the disk block address would be

unit 0, track 0, sector 0, and the memory address would be

location 00000. For this reason, the bootstrap program is

always stored on TRACK a of SECTOR a of UNIT a and is always

loaded into the first 256 core locations: Addresses 00000

thru 00 377.

To do a BOOT of DOS on the Supernova:

1. Press RESET
2. Set data switches to 000020 (Fixed head disk

device code) or 000033 (Moving arm disk device
code)

3. Press CHANNEL START
4. Message "DOS REV ~4

R"
should be typed by the CLI.

To do a BOOT of DOS on the NOVA 800 or NOVA 1200 with the

program load option:

1. Press RESET
2. Set data switches to 100020 (Fixed head disk

device code) or 100033 (Moving arm disk device
code)

3. Press PROGRAM LOAD
4. Mess age "DOS REV ~4

R"
should be typed by the CLI.

To do a BOOT of DOS on the Nova, Nova 800, or Nova 1200 without

the program load option:

1. Press RESET
2. Set data switches to 000376
3. Press EXAMINE
4. Set data switches to 060120 for the fixed head

disk. (Set data switches to 060133 for the
moving arm disk.)

5. Press DEPOSIT
6. Set data switches to 000377

IV-3

7. Press DEPOSIT NEXT
B. Set data switches to 000376
9. Press START

10. Message "DOS REV fl4
R"

should be typed by the CLI.

If a magnetic tape unit exists in the system, it is possible

to make the magnetic tape unit the bootstrap device, thus

relieving the 62 block DOS+CLI disk overhead, or just to be

used as a system back-up medium.

1. Mount special system tape (see Chapter X)
onto magnetic tape unit #0 and position
the tape to the load point.

2. Press RESET
3. A. SUPERNOVA: Set data switches to 000022

(MTA device code) and press CHANNEL START
B. N1200/NBOO with Program Load: Set data

switches to 100022 (MTA device code) and
press PROGRAM LOAD.

C. Nova and N1200/NBOO without Program Load:
Follow steps 2 thru 9 above, changing
step 4 to 060122.

4. Message "FULL (0) OR PARTIAL (l)?" is typed
5. Type "1"

The disk overhead is now a minimum of 6 blocks. If it is

desired to copy DOS+CLI onto the disk to make it a bootstrap

device, type the command:

XFER MT\4':l SYS.SV; (:HATR SYS.SV SP: IN$TALL SYS.SV~

V. FILE NAMES

A complete file name may take either of the following forms:

FILE NAME
FILE NAME. FILE NAME EXTENSION

The FILE NAME may be up to 10 characters in length. The characters

may be any of the 37 symbols A thru Z, 0 thru 9, or $.

The FILE NAME EXTENSION, when used, must be separated from the

FILE NAME by a period (.). If the extension is used, it becomes

part of the complete file name. The extension may be up to 2

characters in length, and these characters may be any of the

37 symbols A thru Z, 0 thru 9, or $.

The extension provides the user with a means, if he desires, of

writing a code which identifies the file as being of a certain

type. Except for the extensions SR, RB, SV, and LS, the user

is free to make his own assignments.

Some file names reserved by DOS at this time are:

COM.CM
ASM.SV
EDIT.SV
RLDR.SV
SYS.LB
$TTI
$TTR
$TTO
$TTP
$PTR
$PTP
$CDR
$LPT
$PLT
MTn. ff

; (EOF is the character CTRL Z)
; (EOF is CTRL Z for ASCII, and

time-out for binary or ASCII)
; (no leader/trailer with $TTO)
; (leader/trailer, no tab simu­

lation or line feeds with $TTP)

V-2

For protective purposes, files may be given attributes which,

when employed, limit the use of these files. The five (5) pos-

sible attributes are:

P - Permanent file - (cannot be renamed or deleted)
S - Save file (absolute core image)
W - Write protected file (cannot be written)
R - Read protected file (cannot be read)
A - Attribute protected (attributes cannot be changed)

If more than one unique disk exists in the system, each such disk

contains a file directory of the information contained in its

storage. Since more than one file directory can exist at any

one time, DOS must be aware of which directory it is to reference.

At sysgen time the master storage device is specified when the

response DSK or DKP is given to the query

ENTER MASTER DEVICE

Initially, and after a bootstrap, it is the file directory on

the master storage device that DOS references. If any commands

are given which refer to a file, DOS searches for that file on

the master storage device. If it is desired to have DOS search

for files on another disk, which has its own file directory

also, OOS must be given the command to "change directory devices."

This is done by giving the command DIR followed by the device we

wish to become the directory device.

example: DIR DP3}, (DOS will now search for files
on disk pack 3)

V-3

Changing directory devices causes DOS to search for all files

on that new disk. It is possible to reference individual

files on any disk or magnetic tape without changinq the directory

device. This is done by preceedinq the filename with the

device at where it is stored.

example: DP2 :BOB
DKO:BOB

(references file BOB on disk pack 2)
(references file BOB on the fixed head disk)

In the case of disk pack units, it is possible to remove packs

containing files and to insert new packs (either virgin packs

or packs containing older files). Before a disk pack (or

magnetic tape) is removed, type the command RELEASE followed

by that device name.

example: RELEASE DPI J.,

RELEASE MT2 J..
(allows removal of the disk pack from
disk pack drive 1)

(rewinds the tape on magnetic tape
unit 2 for removal)

If the newly inserted disk pack contains useful files, give

the command:

INIT DPl il

This initializes disk pack unit 1 and retains the free storage

map directory and the file directory that were on it.

If the newly inserted disk pack is a virgin pack, give the

command:

INIT/F DPl~

This initializes disk pack unit 1 and builds a new free storage

map directory and file directory.

VI. CLI

The CLI is in core and available for commands when the ready

message "R" has been printed by the CLI.

DOS doesn't execute any commands until the CLI has received a

Carriage Return or Form Feed. Within a command line there may

be several commands, each must be separated ty a semi-colon (;).

No commands are executed until a CR or FF is received. The

CLI builds a specially edited file of the command line,

deposits this into the file COM.CM, and then turns control

over to DOS.

If the command line is to be carried over onto the next line

of the Te letype, an up arrow (1) should be typed prior to

pressing the CR. The l' causes the next CR to be ignored as

the end of command line delimiter.

The command line itself may be edited by utilizing the RUBOUT

key for character deletion and the back slash ('\) (shift + L)

for entire line deletion.

Any program can be interrupted (including the CLI) by typing

CTRL A. The CLI then types "INT." This form of interrupt

destroys the interrupted program in core, making it impossible

to CONTINUE the interrupted program.

VI - 2

Interrupting a program by typing CTRL C causes the CLI to type

"BREAK. " This form of interrupt leaves the interrupted

program in a state of possible continuance, since the program

is not interrupted until a logical breaking point is encountered.

Arguments within a command line may be repeated any number of

times by use of the numeric switches. The argument to be

repeated is followed by a slash (/) then by the number of times

it is to be repeated. This is known as a numeric switch.

A letter switch is unique to the command word involved, however,

if used, it follows the (/) as does the numeric switch. If

the letter switch is appended to the command word, it becomes

a global switch which applies to all the arguments. If the

letter switch is appended to an argument, it becomes a local

switch which applies to only that argument.

An astE!risk (*) used in place of any letter of a file name,

within a command, instructs DOS to refer to every file name

that matches, independent of the character that appears in the

position of the (*). A single (*) may refer to the entire

file name or extension.

Files containing command sequences may be built and executed.

The command string is entered into a file, and to execute this

command string the file is referred to indirectly by enclosing

its file name within the symbol (@).

VII. CLI COMMANDS

XFER

"transfer the contents of one file to another file"

Globals: A
example: XFER $PTR BOB. SR ~

TYPE

"XFER/A file $TTO"

example: TYPE BOB. SR t2

PRINT

"XFER/A file $LPT"

example: PRINT BOB.SRe

BPUNCH

"XFER file $PTP"

example: BPUNCH $PTRJ.

PUNCH

"XFER/A file $PTP"

example: PUNCH BOB. SRt,

DISK

"LEFT: #blocks USED: #blocks"

example: DISKJ.

LIST

"gives file names, number of bytes in the file, and the file
attributes"

Globals:
example:

ALB
LIST BOB. *J.

VII - 2

CREATE

"makes an entry into the file directory"

example: CREATE AL. XXJ.

DELETE

"deletes an entry from the file directory"

Globals: V
example: DELETE DP3:JOE*.*J,

APPEND

"creates a new file by appending several existing files"

example: APPEND MTl:3 DPl:BOB DPO:AL SAM $PTR/3 ~

RENAME

"change the name of a file in the file directory"

example: RENAME BOB JOE~

CHATR

"Change the attributes of a file"

example: CHATR Sys.SV

DUMP

"transfer files from disk, in special OOS format"

Globals: A V
example: DUMP/V

LOAD

MTl.l2 BOB .SV e

"reload OOS formatted files onto disk"

Globals: A V
example: LOAD/V $PTR e

VII - 3

SAVE

"rename the contents of BREAK.SV"

example: SAVE JOE.svl

EDIT

"bring the Editor into core for execution"

Input file information is supplied by the command *GRBOBl$$
Output file information is supplied by the command *GWBOB2$$
When the input and output files are no longer needed,

give the command *GC$$
To return to the CLI, give the command *H$$
Other Editor commands are similar to those of the DGC stand

alone Text Editor.

example: EDIT J.

ASH

"bring the Extended Assemb ler into core for execution"

Globals: L N U
Locals: B L S
example: ASM /U/E/X

ALGOL

EST X
N
$PTR/2 AL $LPT/L JOE

"bring the Algol compiler into core for execution"

Globals:
Locals:
example:

FORT

L N E S
B L S
ALGOL/E BOB

A B

$LPT/L J

BOB .RB/B ~

"bring the Fortran compi ler into core for execution"

Globals:
Locals:
example:

L N
B L
FORT/E

E S
S

BOB

A B F X

$LPT/L J,

VII - 4

RLDR

"bring the Relocatab le Loader into core for execution"

Globals:
Locals:
example:

FILENAME

A D L
U 8 N
RLDR/A/D

8 Z

JOE.8V/8 $PTR/3

"bring this file into core for execution"

example: BOB ?-

DEB

BOB $LPT/L

"bring a file into core but execute at the Debugger starting
address"

example: DEB

MKAB8

"make an absolute binary object file from a save file"

Globals: Z
Locals: 8
example: MKAB8

MK8AVE

BOB.8V $PTP 400/8 J..

"make a save file from an absolute binary object file"

Globals: Z
example: MK8AVE

OEDIT

$PTR BOB. 8V il.

"bring the Octal Editor into core for execution"

example: OEDIT BOB.8V'

LFE

"bring the Library File Editor into core for execution"

Arguments:
Locals:
example:

A A/M
A B L
LFE A

D I
o

8Y8.LB

M N R x

$LPT/L~

VIII. PROGRAMMED DOS CGr-1MANDS

Commands may be passed to DOS from user programs by including

the calling sequence within the program.

.SYSTM
command or command n
abnorma1return
normal return

;DOS Call-assembles as JSR @2
;DOS Command-n=Othru7,77
;error return location

Since the .SYSTM call is actually a JSR instruction, the

contents of AC3 are destroyed. On a normal return, DOS

restores ACO, AC1, AC2, and C as they were, and AC3 gets

restored with the contents of location 16. If the user

program stores the (AC3) into location 16 prior to doing

the .SYSTM call, then DOS will restore C and all AC's as

they were. On an error return (AC2) contains the error

code. If n=Othru7, DOS uses that number; if n=77, DOS uses

(AC2) •

. INIT

"ana1agous to the CLI command INIT"

(ACO) = BPTR to device name
(AC1) = 1 for IF

f. 1 for partial

.DIR

"ana1agous to the CLI command DIR"

(ACO) = BPTR to device name

VIII - 2

.RLSE

"analagous to the CLI command RELEASE"

(ACO) = BPTR to device name

.INST

"analagous to the CLI command INSTALL"

(ACO) = BPTR to device name

.CREAT

"analagous to the CLI command CREATE"

(ACO) = BPTR to file name

.DELET

"analagous to the CLI command DELETE"

(ACO) = BPTR to file name

. RENAME

"analagous to the CLI command RENAM.E"

(ACO) = BPTR to old file name
(AC1) = BPTR to new file name

.OPEN n

"links a file name to a channel number n, such that all further
references to that file may be made through the channel number"

(ACO) = BPTR to file name
(AC1) = file characteristic inhibit (set=O in normal cases)

n=O thru 7 for desired channel number. If n=77,
then DOS takes (AC2) as the channel number .

. CHATR n

"analagous to the CLI command CHATR"

(ACO) = new attributes

VIII - 3

.GTATR n

"obtains the present attributes of a file"

(ACO) receives the file's attributes

Input/Output (I/O) under DOS may be done on a Line, Sequential,
or Random Basis.

Line I/O:
Sequential I/O:
Random I/O:

.APPEND n

ASCII character string ending with a CR or FF
byte image format with a byte count required
image format by record number

"analagous to the .OPEN n command. Normally data written to a
file begins at the start of the file and overwrites existing
data. The .APPEND n command causes data written to be
appended to the existing contents of the data file."

(ACO), (AC1) n = (see .OPEN n command)

.CLOSE n

"breaks the link between a file name and a channel number"

. RESET

"breaks all channel number links"

.RDL n

"reads a line from channel n"

On input from $CDR, DOS does a Hollerith to ASCII conversion.
Normal return occurs on a CR or FF.
Abnormal return occurs if 132 characters are input.

(ACO) = BPTR to user input buffer area
(AC1) receives byte count of number of characters input

.RDS n

"reads a string of bytes from channel n"

(ACO) = BPTR to user input buffer area
(AC1) = byte count of number of bytes to be read.

On input from $CDR, this count must be even (2 bytes/col) .
If EOF occurs, (AC1) receives byte count of number of
bytes input.

VIII - 4

.RDR n

"reads one 6 4-word record from channel n"

(ACO) = Memory address of user input buffer area
(AC1) = Record number (record numbers start at 0)

.WRL n

"writes a line to channel n"

Output is terminated by a null, CR, FF, or 132 characters.

(ACO) = BPTR to user output buffer area
(AC1) receives byte count of number of characters output

.WRS n

"wri tes a string of bytes to channel n"

(ACO) = BPTR to user output buffer area
(AC1) = byte count of number of bytes to be written

.WRR n

"writes one 64-word record to channel n"

(ACO) = Memory address of user output buffer area
(AC1) = Record number (record numbers start at 0)

. GCHAR

"inputs one character from $TTI"

(ACOO_s) = 0
(AC0 9- 15) = ASCII character input

.PCHAR

"outputs one character to $TTO"

(AC0 9 _ 15) = ASCII character to be output

.MEM

"find NMAX and HMA"

(ACO) receives HMA
(ACl) receives NMAX

VIII - 5

OOS

AVAILABLE AREA

USER PROGRAM
AREA

DOS

SUB 1,0 returns size of Available Area

.MEMI

"adjust NMAX"

(ACO) = + D, where new NMAX = old NMAX + D

.EXEC

"saves core and overlays another program"

There are up to four levels of overlay:

CLI B
level: o 2

HMA

NMAX

15
o

The core saved is: (location 16) thru the higher of
(location SST) or NMAX

(ACO) = BPTR to file name of program to be brought into core
(ACl) = Starting Address of new program:

.RTN

= 0, DOS starts at the program's starting address
= 1, DOS starts at the Debugger address

"returns previous level program to core and begins execution
at the normal return address"

DOS restores C, ACO, ACl, AC2, and AC3 (gets (16)).

VIII - 6

.ERTN

"returns previous level program to core and begins execution
at the abnormal return address"

(AC2) receives (AC2) from terminated overlay.

If the return is to the CLI, the CLI prints the error message
associated with that error code in AC2 .

• BREAK

"anal agous to CTRL C In the CLI"

IX. SYSTEM GENERATION

(see Appendix B of the DGC "Disk Operating System User's Manual"
#093-000048-03}

X. MULTIPLE FILE DEVICES

Devices Providing Multiple File Access

At present there are three possible types of devices on which

system and user files can be stored that the Disk Operating

System can readily access for multiple reading and writing.

These are:

1. Fixed head disk - Usually one per system configuration,
having the mnemonic:

DKO

If there were more than one fixed head disk controller,
the second controller would be designated DKI.

2. Disk pack of the movable head disk - There can be up
to four disk packs per disk and they are designated:

DPO, DPl, DP2, DP3

3. Magnetic tape units - Up to eight magnetic tape drives
are permitted per system, and they are designated:

MTO, MTl, ... MT7

Directory Devices

Directory devices are those devices that have their own file

directory, containing the names, attributes, and byte counts of

all files stored on the device. Only disk packs and the fixed

head disk can maintain such a file directory.

Files are stored on magnetic tape by file number, the number

indicating the order in which they were written onto the tape.

DOS accesses files on magnetic tape by their file number, not

by referencing a file name in a directory.

x - 2

Magnetic Tape

DOS has access to files on magnetic tape. The DOS system will

support up to eight 9 track magnetic tape drives. The system

allows up to 100 files to be written onto a given tape. Reading

and writing is at high density (800 bpi). If the unit specified

is a 7 track drive or is selected to low density, the message:

UNIT IMPROPERLY SELECTED

will be given.

Initializing a Tape Drive

Initializing a tape drive causes the tape on that drive to be

rewound. Full initialization UF switch) will cause the tape

to be rewound and two EOF' s "to be wri tten.

Releasing a Tape Drive

To rewind a tape drive, the RELEASE command can be given.

Referencing a File on Magnetic Tape

Files are placed on tape in numeric order, beginning" vIi th the

file O. Up to 100 files may be put on a given tape: the last

permissible file is 99.

A given file is referenced in a command by a tape drive specifier

followed by file number. Either a one-digit or two-digi t number

may be used to reference the first ten file numbers, i.e.

MT1: 04 and MT1: 4 are E;;qui valent.

Both the tape drive specifier and the file number must be given.

The file number must be in the range 0--99 and the tape drive

unit number must be in the range 0-7.

x - 3

Writing Files to Magnetic Tape

Files must be placed on magnetic tape in numeric order. For

example, suppose the user transfers a file to tape that has

just been initialized:

XFER FILEO MTO: O~

FILEO will be the first file on the tape. The tape on drive 0

will now contain the following:

o

1

First file, containing
contents of FILEO.

Once a file is written,
the file number of the
next file is assigned.
File 1 is a null file.

An attempt to place a new file on the tape above with one of

the following commands:

XFER FILEX MTO: 2 J.

XFER FILEY MTO: 4 ~

will result in an error message:

ILLEGAL FILE NAME

where only file 0 has
been written to tape

x - 4

It is possible to overwrite a magnetic tape file. For example,

assume a tape on drive 0 contains four files:

o

1

2

3

4

Null file.

The command:

XFER MYFILE MTO:I~

will cause the contents of MYFILE to overwrite the tape beginning

at the file I position. When a tape file is written in this

manner, all subsequent files on tape are lost. In the example,

the tape will contain:

x - 5

o

1

2

Null file.

Creating a System Tape for Bootstrapping DOS

1. Select an unused magnetic tape, mount it on the tape drive,
and give the command:

INIT/F MTna. (where n is the tape drive number)

2. Load tape #088-000015 into the $PTR, and give the command:

LOAD/V $PTR ~

3. Give the command:

XFER TBOOT. SV MTn : 0 •

4. Give the command:

XFER SYSOOO. SV MTn: 1 ~

With the presence of magnetic tape in the system, it is usually

desirable to dump the DGC system programs onto the system for

reloading following a bootstrap.

User Serviced Interrupts

A facility has been provided for the user to service his own

interrupts using DOS. The procedure and restrictions are outlined

on the next page.

x - 6

Two parameters are defined mnemonically by the Disk Operating

System parameter tape 090-000176. The first, UIS, defines a

dd h th t t the address of h ~·~ page zero a ress were e user mus s ore ~-

own interrupt service routine. The second, UMSK, contains the

address of a DOS subroutine that properly maintains the interrupt

mask word and enables interrupts for the user.

If the user does not change the word at location UIS, a PANIC

with code 210 is given when an interrupt is detected that is

not recognized by DOS. However, if the user initializes the

word at UIS to contain an address within his own program, control

is transferred to that address via JSR when an interrupt not

recognized by DOS is detected.

When the user receives control, interrupts are OFF and ACO

contains the device code of the interrupting device. The user

may examine this code or, alternatively, skip on the appropriate

DONE flip flops of the devices from which he expects interrupts.

It is the user's responsibility to save AC3 and to return to

this address after completion of his service routine, but all

other accumulators and carry are saved for him by the system.

If the user can complete his servicing of his device with

interrupts disabled and is not concerned about the other devices

running under DOS interrupting, he need not make use of the

subroutine provided for maintaining the current mask word. In

x - 7

general, however, the user should use this subroutine to mask

out his device and all lower priority devices and to turn on

interrupts again. To use this routine, the user must supply in

ACO a bit corresponding to the interrupt disable mask bit for

every device, including his own, that he considers of lower

priority. Note that as a minimum the user must set a bit in

ACO corresponding to his own device interrupt disable flip flop.

The calling sequence for this routine is simply,

JSR @UMSK

The system will maintain the mask word properly, turn on

interrupts, and return control to the user with ACO containing

the new mask word.

Panics

There are a number of hardware malfunctions that may cause the

system to "PANIC." Should a PANIC occur, the contents of the

accumulators will be printed on the TTY, followed by a PANIC

code. The output will appear as follows:

000015 177777 000011 037500 000210

ACO ACI AC2 AC3 PANIC CODE

The PANIC codes are:

210 - Unknown interrupt. Offending device code in ACO.

220 - System stack overflow.

230 - Repeated critical disk write errors.

240 - Repeated critical read errors.

250 - Repeated critical disk read or write errors.

x - 8

260 - Runaway tape reader. (An NIOC to an input device
did not stop its forward motion.)

270 - Fatal magnetic tape hardware status. ACO contains
the magnetic tape controller status.

XI. BATCH PROCESSING

Utilizing the technique of referencing command files, it is

possible to produce a batch processing mode of operation.

example: A system containing a card reader ($CDR) is to be
used for batch processing student programs written
in Fortran, Algol, and Assembly Language.

* the underlined dialogue is generated by the operator

R
XFER/A $TTI FORTRAN J,
CREATE XX.XX;DELETE XX.* ;XFER/A $CDR xX.Fs;1J.
FORT XX.FS ;RLDR XX FORTLIBI FORTLIB2 FORTLIB3
XX~
;fZ ... _ (CTRL Z)
R
XFER/A $TTI XALGOL~
CREATE XX.XX;DELETE XX.*; XFER/A $CDR xX.AS;fJ
ALGOL XX.AS; RLDR XX ALGOLLIB1 ALGOLLIB2 ALGOLLIB3;i'~
XX,
1'Z
R
XFER/A $TTI ASSEMBLY ~
CREATE XX.XX;DELETE XX.*; XFER/A $CDR xx.sR;f~
ASM XX. SR; RLDR XX ; XX ~
-pZ
R

FORTLIB4 ;.,).

Students' program decks should now be loaded into the card

reader with one of the following cards placed at the beginning

of the program:

@FORTRAN@
@XALGOL@
@ASSEMBLY@

An EOF card (12,11,0,1 multipunch) should be placed at the end

of each program deck.

The computer operator then types:

@$CDR@.l.

