
~. Data General
Customer Documentation

AOS/VS System Concepts

A OS /VS System Concepts

093-000335-01

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000335
CCopyright Data General Corporation, 1983, 1986
All Rights Reserved
Printed in the United States of America
Revision 01, February 1986
Licensed Material - Property of Data General Corporation

NOTICE
DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED
HEREIN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL
NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED
IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases consult DGC to determine whether
any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET
FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS
DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC
FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which
governs its use.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MV/4000, ECLIPSE
MV /6000, ECLIPSE MV /8000, INFOS, MANAP, microNOV A, NOVA, PRESENT, PROXI, SWAT
and TRENDVIEW are U.S. registered trademarks of Data General Corporation, and AEC/STAGE,
AI/STAGE, AOSMAGIC, AOS/VSMAGIC, ArrayPIus, AWE/4000, AWE/8000,AWE/l0000, BusiGEN,
BusiPEN, BusiTEXT, COMPUCALC, CEO CODDeCtiOn, CEO DrawingBoard, CEO Wordview, CEOwrite,
CSMAGIC, DASHER/One, DATA GENERAL/One, DESKTOP/ux, DG/GATE, DG/L, DG/STAGE,
DG/ux, DG/XAP, DGConnect, DXA, ECLIPSE MV /2000, ECLIPSE MV /10000,
ECLIPSE MV /20000, Electronic/STAGE, FORMA-TEXT, GATEKEEPER, GOC/l000,
GOC/2400, GENAP, GW /4000, GW /8000, GW /10000, Mechanical/STAGE, microECLIPSE, MV tUX,
PC Liaison, RASS, REV-UP, Software Engineering/STAGE, SPARE MAIL, TEO,
UNITE, and XODIAC are trademarks of Data General Corporation.

AOSjVS System Concepts
093-000335-01

Revision History:

Original Release - March 1983
First Revision - February 1986

Effective with:

AOSjVS Rev. 7.00

A vertical bar or an asterisk in the margin of a page indicates substantive change
or deletion, respectively, from the previous revision except for Chapters 6, 10, and
11, which contain all new information ..

Preface

This manual describes Revision 7.00 of the AOS /VS Operating System. It supersedes the
Advanced Operating System/Virtual Storage (AOS/VS) Programmer's Manual, Volume 1,
System Concepts.

This manual is for experienced assembly language programmers. If you have not done any
assembly language programming on the AOS/VS system, you might want to read the
following manuals first:

• Learning to Use Your AOS/VS System (093-000031). In this manual, Chapters 13 and
14 introduce you to assembly language programming on the AOS/VS system.

• Advanced Operating System/Virtual Storage (AOS/JVS) Macroassembler (MASM)
Reference Manual (093-000242). This manual describes the AOS/VS assembly language
and the Macroassembler utility.

In this manual, AOS/VS System Concepts, we divide our description into the following
chapters:

• Chapter 1 introduces the AOS /VS system.

• Chapter 2 describes virtual memory concepts and how you can manage your use of
memory on an AOS/VS system.

• Chapter 3 describes what a process is and how you can create and manage processes.

• Chapter 4 describes how to create and manage files.

• Chapter 5 describes how to perform input/output (I/O) to both files and devices.

• Chapter 6 describes how to create and manage windows, how to perform I/O to windows,
and how to create graphics applications that use windows.

• Chapter 7 describes how to create and manage a multitasking environment.

• Chapter 8 describes how to perform interprocess communications using the AOS/VS
interprocess communications (lPC) facility.

• Chapter 9 describes how to create and manage proc:ess connections.

• Chapter 10 describes how to initialize physical processors and manage a multiprocessor
system.

• Chapter 11 describes how to create process classes and create scheduling arrangements,
called logical processors, using these process classes.

• Chapter 12 describes how to manage certain AOS/VS resources.

• Chapter 13 describes how to support user devices.

093-000335 Licen8ed Material - Property of Data GenElral Corporation iii

• Chapter 14 describes how to support binary synchronous communications applications.

• Chapter 15 describes how to manage 16-bit processes.

• Appendix A describes the format of the SYSLOG file, from which you can extract
information on system use.

Some features of AOS/VS may change from revIsIon to revIsIon. Please see the latest
AOS/VS Release Notice for information about functional changes and enhancements. You
will find this Release Notice in the utilities directory (:UTIL) on your system tape.

Related Manuals
Within this manual, we refer to the following related manuals:

System Call Dictionary (AOS/VS and AOS/DVS) (093-000241).

How to Generate and Run AOS/VS (093-000243).

Command Line Interpreter (CLI) User's Manual (AOS and AOS/VS) (093-000122).

Using CLASP (Class Assignment and Scheduling Package) (093-000422).

SWAT® Debugger User's Manual (093-000258).

ECLIPSE® 32-Bit Principles of Operation (014-000704).

In addition to the "Principles of Operation" manual listed above, you may find the following
machine-specific supplements of interest:

ECLIPSE MV/2000™ DC System Principles of Operation (014-001203).

ECLIPSE MV/4000® System Principles of Operation (014-001226).

ECLIPSE MV/8000® Principles of Operation (014-001227).

ECLIPSE MV/IOOOOTM System Principles of Operation (014-001228).

ECLIPSE MV/20000™ System Principles of Operation (014-001169).

ECLIPSE MV/4000® SC and Data General DS Systems Functional Characteristics
(014-001066) .

iv Licensed Material - Property of Data General Corporation 093-000335

Reader, Please Note
In this manual, we use the following conventions:

Symbol
<>

*

**

Meaning

Angle brackets - indicate the paraphrase of an argument or statement,
which you have to supply.

One asterisk - indicates multiplication. lFor example, 2*3 means 2 multiplied
by 3.

Two asterisks - indicate exponentiation. For example, 2**3 means 2 raised
to the 3rd power.

Unless the text specifies a specific radix, we give aU memory addresses as octal values,
and all other numbers as decimal values.

Finally, in the examples, we use

This typeface to showell and source file entries.

This typeface for data values returned by AOS/VS.

Contacting Data (~eneral

• If you have comments on this manual, please use the prepaid Remarks Form that
appears after the Index. We want to know what you like and dislike about this manual.

• If you need additional manuals, please use the endosed TIPS order form (USA only)
or contact your Data General Sales representative.

End of Preface

093-000335 Licensed Material - Property of Data General Corporation v

Contents

Chapter 1 - Introduction to AOS/,fS
What Is Virtual Memory? .. 1-1
The Ring Structure of AOS/VS Memory ... 1-2

Segment Protection .. 1-2
The Ring/Segment Hierarchy .. 1-2
Subroutine Calls and Segment Protection .. 1-2
The Advantages of Using Inner Rings ... 1-3

Multiprocessor Support .. 1-3
Process Scheduling Options .. 1-3

AOS/DVS Compatibility ... 1-4
AOS Compatibility ... 1-4
System Calls .. 1-4

Chapter 2 - Managing Memory
Ring Structure:: ... 2-2

Subroutine Calls .. 2-4
User Rings ... 2-4

Demand Paging ... 2-5
Prepaging at Fault Time Option ... 2-5
Program Load Option ... 2-5

Variable Swapfiles .. 2-6
Shared and Unshared Memory Pages .. 2-7

Unshared Pages ... 2-7
Shared pages .. 2-7

Protected Shared Files ... 2-9
Coordinated Shared-File Update ... 2-10
Validating Memory ... 2-10
Dedicated and Undedicated Memory Pages .. 2-10
Managing Your Memory Context .. 2-10

Chapter 3 - Creating, Managing, and Terminating
Processes

What Is a Process? .. 3-2
Processes and Virtual Memory ... 3-2
Processes and Physical Memory .. 3-4

Adjusting the Size of the Working Set .. 3-4

093·000335 Licensed Material - Property of Data General Corporation vii

Process Scheduling 3-5
Standard Scheduling 3-5
Class Scheduling .. 3-7
Rescheduling a Process ... 3-9

Process Hierarchy 3-9
Process Identification .. 3-9

Specifying a Process Name 3-10
The Process Identifier (PID) ... 3-10
The Virtual Process Identifier (VPID) ... 3-13

Creating a Process .. 3-13
Specifying Process Privileges .. 3-14
Process Creation Parameters .. 3-14
Overriding Default Restrictions: Superuser and Superprocess Mode 3-15
Process Blocking .. 3-16

Process Information 3-17
Process Name, PID Number, or Pathname ... 3-17
Use of System Resources ... 3-17
Identity of Son Processes .. 3-18
Class Scheduling Status .. 3-18
Local PID Information ... 3-18
Active Processes on a Remote Host .. 3-18
Execute-Protection Status ... 3-18

Process Traps .. 3-18
Break Files and Memory Dumps ... , 3-19
Transferring Process Control to the Debugger Utility ... 3-20
Linking Programs Together with the ?CHAIN System Call 3-21
Loading Programs into Inner Rings ... 3-21
Process and Memory Sample Programs 3-22

Creating a Swappable Son Process: the SON Subroutine 3-22
Getting and Displaying Runtime Statistics: the RUNTIME Program 3-25
Loading a Program into an Inner Ring: the RINGLOAD Program 3-31

Chapter 4 - Creating and Managing Files
Disk File Structures ... 4-2
Directory Creation 4-4
Directory Entries ... 4-5
File Types .. 4-5
Directory Access ... 4-6
Filenames ... 4-7
Pa thnames .. 4-8
Link Entries .. 4-10

Use of ?CREATE and ?DELETE System Calls in Link Entries 4-11
File Access .. 4-11
Access Control Lists ... 4-14

ACL Templates ... 4-14
The Permanence Attribute ... 4-15

Logical Disks ... 4-15
Releasing a Logical Disk .. 4-16

Disk Space Control 4-16
File Creation and Management Sample Programs ... 4-18

viii Licensed Material - Property of Data General Corporation 093-000335

Chapter 5 - Performing Input/Output (I/O)
File Structure Under the AOS/VS Operating System .. 5-2
Channels ... 5-2
File I/O Operation Sequence .. 5-3
File Pointers .. 5-4
Record I/O .. 5-5

Dynamic-Length Records .. 5-5
Fixed-Length Records ... 5-5
Data-Sensitive Records ... 5-5
Variable-Length Records .. 5-5

Block I/O .. 5-5
Reuse of Disk Blocks .. 5-6

Physical Block I/O ... 5-6
Modified Sector I/O .. 5-7
Controlling File Access Through the AOS /VS Lock Manager 5-7

Returning Lock Status .. 5-9
Unlocking Files and File Elements ... 5-9

Device Names ... 5-9
Generic File Names ... 5-10
Multiprocessor Communications Adapters ... 5-12
Character Devices ... 5-12

Full-Duplex Modems ... 5-13
Auto-Answer Modems ... 5-14
Non-Auto-Answer Modems .. 5-14
Card Readers ... 5-15
Character Device Assignment .. 5-15

Line-Printer Format Control ... 5-16
Terminal Format Control .. 5-16

Defining, Enabling, and Disabling Terminal Interrupts 5-18
Using IPC Files as Communications Devices ... 5-18
Transferring Data through a Pipe File .. 5-19

Boundry Conditions in Pipes .. 5-19
Creating a Pipe ... 5-20
Opening a Pipe for I/O ... 5-21
Reading and Writing to Pipes ... 5-21
Closing or Deleting a Pipe ... 5-21
Controlling Access to a Pipe .. 5-22
Invalid System Calls ... 5-22

Performing I/O to Labeled Magnetic Tapes .. 5-23
Labeling Formats ... 5-23
Label Types .. 5-24
Volume Labels ... 5-26
Header 1 Labels .. 5-27
Header 2 Labels .. 5-29
User Header and User Trailer Labels .. 5-31
End-of-Volume 1, End-of-File 1 Labels .. 5-31
End-of-Volume 2, End-of-File 2 Labels .. 5-31

File I/O on Labeled Magnetic Tapes .. 5-31
File I/O on Unlabeled Magnetic Tapes .. 5-34
File I/O Sample Programs .. 5-34

Block I/O Sample Program ... 5-38
Pipe File Sample Program (Fragment) .. 5-41

093-000335 Licensed Material - Property of Data G4tneral Corporation ix

Chapter 6 - Windowing
What Is Windowing? ... 6-2

Windowing Terminals ... 6-2
Window Pathnames ... 6-4
Referring to a Window ... 6-4
Window Types ... 6-4
Window Characteristics .. 6-5

View Ports and Scan Ports ... 6-5
Using the View and Scan Ports to Change a Window 6-6
Window Overlap .. 6-7

Window Priorities ... 6-8
Window Groups ... 6-9
Changing Window and Group Priorities ... 6-10
Changing Window and Group Visibility ... 6-10
The Active Group .. 6-10
When Should You Group Windows? .. 6-11

Setting Up a Window .. 6-11
Creating a Window ... 6-11
Assigning a Window to a Process ... 6-12
Adjusting the Priority of a Newly Created Window 6-13
Adjusting the Appearance of a Newly Created Window 6-13
Making a Window Visible .. 6-14
Opening a Channel to a Window : 6-14

Manipulating a Window ...•.............................. 6-14
How does a Process Manipulate Windows? ... 6-15
How Does the User Manipulate Windows? ... 6-16

Getting Input from a Window .. 6-17
Opening a Window for Input .. 6-18
The Input Buffer ... 6-18
Input Focus .. 6-18
Controlling Input from the Keyboard ... 6-19
Controlling and Interpreting Input from a Pointer Device 6-20
Getting Pointer Event Information .. 6-24
Controlling the Appearance of the Pointer .. 6-25
Getting Information About the Pointer Device ... 6-25

Suspending Output to a Window ... 6-25
Sending Output to a Character Window ... 6-26

Model ID .. 6-26
Initial State .. 6-26
DG Mode Restrictions .. 6-27
Unsupported Commands ... 6-27

Sending Output to a Graphics Window ... 6-28
How Do Graphics Windows Differ From Character Windows? 6-28
Pixel Maps ... 6-30
Palettes ... 6-34
Working with Palettes .. 6-38
Copying Information from a Disk File to a Palette 6-40
Copying Information from a Palette to a Disk File 6-40
Clip Rectangles .. 6-40

When You're Done with a Window ... 6-41
Closing a Window ... 6-41
Deleting a Window ... 6-41

x Licensed Material - Property of Data General Corporation 093-000335

Chapter 7 - Initiating and Managing Tasks
What Is a Task? .. 7-2

The Advantages of Multitasking ... 7-2
AOS/VS Task Protection .. 7-2

Ring Maximization .. 7-2
Ring Specification ... 7-3

Task Identifiers and Priority Numbers .. 7-3
Task Initiation ... 7-3

Allocating a Task's Stack Space and Defining the Stack 7-4
Inner-Ring Stacks ... 7-5
Task Scheduling .. 7-6

Disabling Task Scheduling ... 7-7
Task Suspension .. 7-7
Task Readying .. 7-8
Redirecting a Task ... 7-8
Protecting Inner-Ring Tasks from Redirection ... 7-9
Terminating a Task .. 7-10

Defining Termination-Processing Routines ... 7-10
Detecting Task Creation and Termination .. 7-10
Terminal-to-Task Communication ... 7-11
Task-to-Task Communication .. 7-11
Locking and Unlocking a Critical Region ... 7-12
MV /Family Floating-Point Registers ... 7-13
Multitasking Sample Programs ... 7-13

Chapter 8 - Using the Interprocess Communications
(IPC) Facility

Sending Messages Between IPC Ports ... 8-2
Typical IPC System Call Sequence .. 8-4
Send and Receive Headers ... 8-4

System and User Flags .. 8-6
User Flag Word ... 8-7

Process Termination Messages ... 8-7
Termination Message Formats and Process PID-Size Types 8-9
Termination Message Format for PID-Size Type Band C Processes 8-9
Specifying the Termination Message Format That a Process Receives 8-12
32-Bit Termination Messages for PID-Size Type A Processes 8-12
Termination Messages for PID-Type A Processes - 16-Bit Sons 8-13

?ISEND and ?IREC System Call Logic ... 8-15
Sample IPC Programs ... 8-17

The HEAR Program .. 8-17
The SPEAK Program .. 8-21

Chapter 9 - Creating and Managing Process
Connections

Why Use Process Connections? .. 9-2
Creating a Process Connection .. 9-2

Creating a Double Process Connection ... 9-3
The Server Process ... 9-3

Terminating Process Connections .. 9-4

093-000335 Licensed Material - Property of Data GenlEtral Corporation xi

Obituary Messages at Disconnection .. 9-5
Obituary Message Formats .. 9-5

Inner-Ring Connection Management .. 9-6
Fast Interprocess Synchronization ... 9-7

Chapter 10 - Managing a Multiprocessor Environment
Processor Configuration after AOSjVS System Initialization 10-2
Entering System Manager Mode -; .. 10-3
Initializing a Job Processor ... 10-3

Specifying a Microcode File .. 10-4
Attaching a Job Processor to Another Logical Processor 10-4
Releasing a Job Processor from the AOSjVS System .. 10-4

Chapter 11 - Creating and Managing a Class
Scheduling Environment

What Is a Class? ... 11-2
User and Program Localities ... 11-2

Why Use Class Scheduling? ... 11-3
What Is Standard Scheduling? .. 11-3

Entering System Manager Mode .. 11-4
Enabling Class Scheduling ... 11-5

Disabling Class Scheduling .. 11-5
Getting the Status of Class Scheduling .. 11-5

Class Scheduling Arrangements - Logical Processors .. 11-5
Creating and Changing Process Classes .. 11-7

Assigning Classes to User and Program Localities 11-7
Modifying the Class Locality Matrix ... 11-7
Adding and Deleting Classes ... 11-7

Creating and Managing Logical Processors ... 11-7
Specifying Class Assignments for the Logical Processor 11-9

Specifying the User Process Interval .. 11-9
Specifying Primary Class Percentages .. 11-10
Getting Class Scheduling Information .. 11-10

Deleting a Logical Processor ... 11-10
Getting Logical Processor Status .. 11-10

Chapter 12 - Using and Managing AOS/VS System
Resources

Using the System's Clock and Calendar ... 12-2
Using the EXEC Utility .. 12-2
Using the File Editor (FED) Utility .. 12-3
Accessing Symbol Tables ... 12-3
Managing User Profiles ... 12-3
Reading and Updating the Error Message File (ERMES) 12-4
Writing to the System Log File ... 12-4
Getting System, Process, and Queue Locations .. 12-4
Getting the System's Revision Number ... 12-5

xii Licensed Material - Property of Data General Corporation 093-000335

Chapter 13 - Supporting User Devices
?IDEF System Call Requirements ... 13-3
?IDEF System Call Options ... 13-4
User Interrupt Service .. 13-7
User Stacks ... 13-8
Communicating from an Interrupt Service Routine ... 13-8
Defining and Using Devices on More than One I/O Channel 13-8
Enabling and Disabling Access to All Devices ... 13-9

Re-enabling LEF Mode .. 13-9
LEF Mode ... 13-10
The Power-Failure/Auto-Restart Routine .. 13-10

Chapter 14 - Supporting Binary Synchronous
Communications (BSC)

BSC Concepts ... 14-2
BSC Line Configurations ... 14-3

Multipoint Line Selection and Polling .. 14-4
Relative Terminals ... 14-5

BSC Protocol .. .!-•••••••••••••• 14-5
BSC Error-Recovery Procedures ... 14-8
BSC Implementation .. 14-9

Chapter 15 - Managing 16-Bit Processes
Memory Modification with Disk Images ... 15-2
Using Overlays .. 15-2
Resource System Calls ... 15-4
Procedure Entries .. 15-5
Alternate Return from Resources ... 15-5
System Management of Resource System Calls ... 15-6
Runtime Relocatability Requirements .. 15-7
Primitive Overlay System Calls .. 15-8
Extended State Save Area ... 15-9

Appendix A - System Log Record I=ormat
Reporting the Contents of the SYSLOG File ... A-I

Reading the SYSLOG File ... A-I
Record Header Format ... A-2
SYSLOG Record Formats .. A-3

Anatomy of a System Log File Record .. A-I6

093-000335 Licensed Material - Property of Data General Corporation xiii

Tables

Table

2-1 Context-Management System Calls ... 2-12

3-1 Priority Mapping - ResidentjPre-emptible to Swappable 3-6
3-2 Priority - Changing from Swappable to ResidentjPre-emptible 3-7
3-3 Program and Process PID-Size Types ... 3-12
3-4 Process Privileges ... 3-14

4-1 File Types ... 4-5
4-2 Filename Conventions .. 4-7
4-3 Valid Pathname Prefixes ... 4-8
4-4 File Access Privileges .. 4-12
4-5 Valid ACL Templates ... 4-15

5-1 File Types You Can Create with the ?OPEN System Call 5-4
5-2 AOSjVS Devices and Device Names ... 5-10
5-3 Generic Filenames .. 5-11
5-4 Modem Flags .. 5-13
5-5 Control Characters and Their Functions .. 5-17
5-6 Control Sequences and Their Functions .. 5-17
5-7 Label Formats and Levels: Files per Volume Set, Record Types 5-23
5-8 Types of Labels .. 5-26
5-9 Contents of VOL1 Volume Labels .. 5-27
5-10 Contents of User Volume Labels (UVLs) .. 5-27
5-11 Contents of HDR1 File Header Labels .. 5-28
5-12 Contents of HDR2 File Header Labels .. 5-30
5-13 Contents of UHL and UTL User Labels ... 5-31

6-1 Actions Users Can Perform with DGjVIEW .. 6-16
6-2 Graphics Windows Versus Character Windows ... 6-29
6-3 Sample Palette ... ·6-36

8-1 Contents of IPC Send and Receive Headers ... 8-6
8-2 Contents of System Flag Word (Offset ?ISFL) .. 8-6
8-3 Process Termination Codes In Offset ?IUFL for ?IREC and ?ISEND

Headers ... 8-8
8-4 Extended Termination Messages .. 8-9
8-5 Termination Message Format for PID-Size Type Band C Processes 8-10
8-6 ?RETURN Codes .. 8-12
8-7 32-Bit Termination Message to PID-Size Type A Processes 8-12
8-8 Format of Termination Message Sent to a PID-Type A Process on

a 32-Bit Process User Trap .. 8-13
8-9 ?RETURN Codes .. 8-14
8-10 Termination Message Format for 16-Bit Process User Traps 8-14

xiv Licensed Material - Property of Data General Corporation 093-000335

13-1 Contents of Map Definition Table Entry ... 13-6
13-2 LEF Mode and Device Access System Call Functions Summary 13-9

14-1 BSC Protocol Data-Link Control Characters (DLCC) 14-6
14-2 BSC Error-Recovery Procedures ... 14-8

A-I SYSLOG Event Codes and Record Lengths. ... A-3

093-000335 Licensed Material - Property of Data General Corporation xv

Illustrations

Figure

2-1 Segments and Their Protection Rings ... 2-3
2-2 Working Sets in Memory ... 2-8
2-3 Memory Context .. 2-11

3-1 Working Sets in Memory ... 3-3
3-2 Process Hierarchy .. 3-9
3-3 Process Names ... 3-10
3-4 Sample Process Tree ... 3-15
3-5 Ring Structure ... 3-22

4-1 File Growth Stages .. 4-3
4-2 Sample Directory Tree .. 4-4
4-3 Directory Structure .. 4-9
4-4 Initializing a Logical Disk .. 4-17
4-5 Control Point Directories (CPDs) .. 4-17

5-1 Diagram of a Pipe File ... 5-19
5-2 Labels and Data on a Labeled Magnetic Tape ... 5-25

6-1 Multiple Windows on a Terminal .. 6-3
6-2 The View Port and the Scan Port .. 6-6
6-3 Overlapping Windows .. 6-7
6-4 Window Priorities .. 6-8
6-5 Grouping Windows .. 6-9
6-6 Copying Data from a File to a Pixel Map .. 6-33
6-7 Copying Data from a Pixel Map to a File .. 6-35
6-8 Correspondence Between Fraction and 32-Bit Number for Color Levels 6-37

7-1 Task States ... 7-7

8-1 Structure of IPC Send and Receive Headers .. 8-5
8-2 Structure of the ?IUFL Offset .. 8-8
8-3 ?ISEND Logic Flowchart ... 8-15
8-4 ?IREC Logic Flowchart .. 8-16

9-1 Model Customer/Server Configuration ... 9-2
9-2 Multilevel Customer/Server Configuration ... 9-3
9-3 Double Connection ... 9-3

10-1 Processor Configuration after AOS/VS System Initialization 10-3

11-1 A Class for Privileged Users .. 11-2
11-2 Using Different Logical Processors with One Job Processor 11-6
11-3 Using Different Logical Processors with Two Job Processors 11-8

xvi Licensed Material - Property of Data General Corporation 093·000335

13-1 Device Control Table (DCT) ... 13-3
13-2 Structure of Map Definition Table ... 13-5

14-1 Point-to-Point/Multipoint Line Configurations ... 14-4
14-2 ?SSND System Call, Initial, Point-to-Point ... 14-10
14-3 ?SSND System Call, Continue, Point-to-Point .. 14-12
14-4 ?SRCV System Call, Initial and Continue, Point-to-Point 14-12
14-5 ?SSND System Call, Multipoint Control Statilon .. 14-13
14-6 ?SRCV System Call, Multipoint Control Statiion .. 14-14
14-7 ?SRCV System Call, Multipoint Tributary Station 14-15
14-8 ?SEBL System Call, Point-to-Point ... 14-16

15-1 Basic Overlay Area Equals Size of Largest Overlay 15-3
15-2 Multiple Overlay Area (Total Area = Basic Size # 2) 15-3
15-3 Passing a Procedure Entry Descriptor via the Stack 15-5
15-4 Resource System Call Stack after ?RSA VE System Call 15-6
15-5 Invalid Return Address from ?RCALL System Call 15-7

A-I Log Record Header .. A-2
A-2 Log Record Codes, Events, and Message Lengths, Excluding Header A-I 0
A-3 An Octal and Decimal DISPLAY of a System Log File A-16
A-4 Octal and Decimal Versions of a SYSLOG R,ecord A-17

093-000335 Licensed Material - Property of Data Generl~1 Corporation xvii

Chapter '1
Introduction to AOSjVS

The Advanced Operating System/Virtual Storage (AOS/VS) is a 32-bit, demand-paged,
virtual-memory operating system that runs on Data General's ECLIPSE® MV /Family of
machines.

Because of its 32-bit addressing capability, its multiuser and mUltiprogramming support,
and its compatibility with existing Data General software, AOS/VS is suited to both
commercial and scientific applications. Specifically, AOS/VS provides you with the fol­
lowing:

• A logical address space of up to 2048 megabytes per process.

• Virtual memory management.

• Sophisticated process-protection schemes.

• Support for a multiprocessor environment.

• The option of creating process classes and scheduling processes by class.

• Compatibility with both the Advanced Operating System/Distributed Virtual System
(AOS/DVS) and the Advanced Operating System (AOS).

• Support for concurrent 16- and 32-bit programs.

• A wide range of system and applications utilities.

• High-level language support.

What Is Virtual Me~moryl
Virtual memory allows you to run programs that are: larger than the physical memory
configuration of your system. With virtual memory, AOS/VS can move the active portions
of a program from disk to memory while the program is executing. Then, when the system
needs more memory, AOS/VS returns the inactive portions of the program to disk. This
act of moving portions of the program in and out of memory is what we call demand
paging.

An executing program is a process. The part of a process that is in physical memory at
any given time is its working set. The size of each process's working set changes as the
demands of the process change. AOS /VS determines the working set size by examining
the number of pages that the process currently needs, as well as the process's history of
page faults.

Page faults are references to memory locations that an! not currently in physical memory.
When a page fault occurs, the AOS/VS demand-paging mechanism moves the page that
is needed from disk into physical memory.

093-000335 Licensed Material - Property of Data General Corporation 1-1

AOS/VS allocates a large working set to a process that has a history of many page faults.
Consequently, to run your system as efficiently as possible, you should reduce the number
of page faults. One way to reduce the number of page faults is to write your code in
modules that cluster the instructions and data together as closely as possible. The fewer
page faults your process causes, the smaller and more stable is its working set. Still, some
page faults are unavoidable.

The Ring Structure of AOS/VS Memory
The entire range of memory locations that a process can address is called its logical address
space. The logical address space is divided into eight 512-megabyte units called segments.
Although these segments are connected by strict protocols, they are independent of one
another. Because of the independence of the segments, AOS/VS can use each segment for
a different function. This makes your virtual memory system very efficient and reliable.

Segment Protection
Each segment is protected by a ring that AOS/VS permanently binds to that segment.
Ring 0 (the innermost ring) protects Segment 0, Ring 1 protects Segment 1, and so on
through Ring 7 (the outermost ring), which protects Segment 7.

These rings prevent segments from interfering with one another; if a program that is
executing in one segment needs to change or access the contents of another segment, it
must observe strict protocols established by the rings. (The system observes these protocols
without your knowledge.)

The Ring/Segment Hierarchy
AOS/VS arranges the eight segments and their rings hierarchically. Segment 0 has the
greatest ability to change or access the contents of other segments, and Segment 7 has
the least. Similarly, Ring 0 gives Segment 0 the greatest protection from interference by
other segments, and Ring 7 gives Segment 7 the least protection.

Segments 0 through 3 contain the AOS/VS operating system. Segments 4 through 7
contain user programs. Because the user programs and the AOS/VS operating system
share a single large logical address space, context switching - the transfer of control from
one process to another - is often unnecessary. In fact, system calls and calls to routines
that are in another segment become subroutine calls. While system calls require some
participation by AOS/VS for their execution, a process does not have to switch contexts
when it issues a system call. This allows you to avoid the additional processing overhead
that context switching requires.

Ordinarily, a segment can only change or access the contents of segments that have segment
and ring numbers higher than its own segment and ring number. For example, the rings
will not allow a process running in Segment 4 to access the contents of Segments 0 through
3, but they would allow that same process to access Segments 4 through 7.

Subroutine Calls and Segment Protection
With a subroutine call, a segment having a segment number that is higher than or equal
to that of the segment in which the subroutine resides can access that subroutine. In this
case, the ring that protects the segment containing the subroutine allows the subroutine
call to pass through a gate. This gate points to the starting location of the subroutine.

Although you cannot make a cross-ring subroutine call directly to the starting location of
the subroutine, you can return directly from the subroutine. Subroutine returns do not

1-2 Licensed Material - Property of Data General Corporation 093-000335

have to pass through gates. The only restriction on subroutine returns is that they must
originate from a segment whose number is lower than or equal to the target segment.

For information on the hardware instructions that allow you to define gates and reference
code in the outer rings, see the "Principles of Operation" manual for your computer.

The Advantages of Using Inner Rings
The AOSjVS system allows you to write multitasked programs that will execute in more
than one user ring (the user rings are Rings 4 through 7). Use of the inner rings gives
you the following advantages:

• Improved software performance.

You can take better advantage of the large logical address space of the MV -series
hardware by using the inner user rings to create local servers. Local servers are servers
that share the same· logical address space as their customers. You can load a local
server into the inner rings of a process.

Local servers are faster than global servers, which must run as separate processes. Local
servers do not need to use the interprocess communications (IPC) facility system calls
or the ?MFBC and ?MTBC system calls to move data between customer and server.
Instead, because a local server resides in the same logical address space as its customer,
local servers can use MV -series hardware instructions to perform identical synchronization
and data movement.

• Improved accounting.

When you use the inner rings to implement local servers, the server becomes part of
the logical address space of the process that uses it, and is no longer a separate process.
A local server's use of resources is accounted for by AOSjVS as part of the resources
used by the customer's process.

• Larger logical address space

By using the inner rings, you can expand your logical address space from 512 megabytes
(the capacity of one user ring) to 2048 megabytes (the capacity of the four user rings).

Multiprocessor Support
The AOSjVS system supports multiprocessor hardwan~ configurations. In a multiprocessor
environment, important system processes, such as the AOSjVS kernal, run on an initial
mother processor that the system manager brings up at VSGEN. Other processes can run
on both the mother and child processors; you bring up a child processor after system
initialization. To bring up a child processor, you can either use the CLI INITILIZE
command, or you can use the system calls that we dc!scribe later in this book.

Process Scheduling Options
In addition to a standard scheduling arrangement, the AOS jVS system allows you to
create other, special scheduling arrangements.

Under standard scheduling, AOSjVS schedules procc!sses to run based on the priorities
that the processes receive when you create them.

To create other scheduling arrangements, you must first create classes, into which you
can group the processes on the system. You can thc;m allocate the amount of processor
time that each class can receive. For example, during the working day, you might want
to use a scheduling arrangement that favors interactive processes. You could allocate up

093-000335 Licensed Material - Property of Data Gelneral Corporation 1-3

to 75 percent of the available processor time to a class of interactive processes, and the
remaining 25 percent to a class of batch processes. At night, you might use a different
scheduling arrangement: up to 80 percent of the processor time for batch processes, and
20 percent for interactive processes.

AOS /VS supports class scheduling in both the uni- and multiprocessor environments. In
fact, in the multiprocessor environment, AOS/VS allows you to use a different scheduling
arrangement for each physical processor, should you choose to do so.

Aos/DVS Compatibility
AOS/VS and AOS/DVS are compatible; for most applications, you need only relink
AOS/DVS-written programs to run them under AOS/VS. However, some AOS/DVS
programs may require you to reassemble or recompile them before they can run under
AOS/VS.

AOS Compatibility
AOS/VS and AOS are also compatible. Not only can you can run both 32-bit and 16-bit
programs concurrently under AOS/VS, but, usually, you only need to relink AOS-written
programs to run them under AOS/VS. However, some programs may require you to
reassemble or recompile them before they can run under AOS/VS.

Your AOS/VS system's compatibility with AOS also extends to the file structure, magnetic­
tape formats, and peripheral devices. You can transport disk files and tapes developed
under AOS to AOS /VS without rewriting them. In addition, 16-bit device drivers written
under AOS/VS can coexist with their 32-bit counterparts.

AOS/VS also supports overlays for 16-bit programs. However, AOS/VS does not support
overlays for 32-bit programs. 32-bit programs do not need overlays because they take
advantage of the AOS/VS system's virtual memory scheme, which allows 32-bit programs
to exceed the size of the system's physical memory.

Certain system databases, such as task control blocks (TCBs) and the user status table
(UST) are in the system's address space. Consequently, AOS-written programs that ma­
nipulate these databases without using task system calls need modification. AOS/VS does
provide each program with a copy of the program's UST, but for reading purposes only.
The AOSjVS system calls use 32-bit packets. If your AOS assembly language program
uses the appropriate mnemonics for the packet offsets, you need only reassemble them
with the new 16-bit parameter file (PARU.16) and relink them to run under AOSjVS.

System Calls
AOS/VS supports a wide variety of system calls. System calls are command macros that
call on predefined system routines. There are various categories of system calls, which
allow you to do the following:

• Manage the logical address space.

• Create and manage processes.

• Establish interprocess communications.

• Create and maintain disk files and directories.

1-4 Licensed Material - Property of Data General Corporation 093-000335

• Perform file input and output.

• Create and manage windows.

• Create and manage a multitasking environment.

• Manage the system's physical processors.

• Create and manage process classes and the special scheduling arrangements that use
these classes.

• Define and access user devices.

• Establish binary synchronous communications.

• Establish customer jserver connections between proc1esses.

• Perform input and output in blocks, rather than in records or lines.

This manual groups the system calls into functional categories, with a chapter that describes
each category. The individual system call descriptions ar<~ arranged alphabetically in Chapter
13.

End of Chapter

093-000335 Licensed Material - Property of Data Gemtral Corporation 1-5

Chapter 2
Managing Memory

The system calls that you use to manage memory are

?ESFF
?FLUSH
?GMEM
?GSHPT
?LMAP
?MEM
?MEMI
?PMTPF
?RPAGE
?SCLOSE
?SOPEN
?SOPPF
?SPAGE
?SSHPT
?VALAD
?VALIDATE

093-000335

Flush shared file memory pages to disk.
Flush contents of a shared page to disk.
Return the current number of undedicated pages.
List the current size of the shared partition.
Ma p a lower ring.
List the current unshared memory parameters.
Change the number of unshared memory pages.
Permit access to an open, protected shared file.
Release a shared page and decrement its use count.
Close a shared file.
Open a shared file.
Open a protected shared file.
Read a shared page and incre:ment its use count.
Establish a new shared partition size.
Validate a logical address.
Validate an area of memory.

Licensed Material - Property of Data Gf!neral Corporation 2-1

This chapter describes how AOSjVS organizes memory. It also describes how a process
- an executing set of instructions and system calls - can manage its own memory.

To understand this chapter, you must be familiar with the following terms and what they
mean to AOS jVS:

• Logical context.

Logical context refers to the total pages available to you, including shared, unshared,
and unused pages.

• Logical address space.

Logical address space is the entire range of locations that a process can address. A
process's user-visible logical address space can be up to 512 megabytes for each user
ring (we describe "user rings" and the AOSjVS memory structure below).

• Shared page.

A shared page is a memory-resident page in your logical address space that is accessible
to more than one process. Shared pages are usually write-protected to prevent overwriting.
(See the "Shared Pages" section in this chapter for more information.)

• Unshared page.

An unshared page is a page in your logical address space that only one process can
access. Unshared pages cannot be write-protected.

• Unused page.
An unused page is a page in your logical address space that is neither shared nor
unshared. We describe the relationships between shared, unshared, and unused pages
later in this chapter under the heading "User Context."

• Working set.
Working set is the subset of a process's logical address space that resides in memory.
The working set of a process changes in size and content as the process references
pages, and then stops referencing them.

Ring Structure
The AOS jVS system divides its logical address space into eight 512-megabyte units called
segments. Although strict protocols connect these segments, they are independent of one
another. This allows AOSjVS to use each segment for a different function.

2-2 Licensed Material - Property of Data General Corporation 093-000335

A hardware ring protects each segment (see Figure 2-1). Ring 0, the innermost ring,
protects Segment 0, Ring 1 protects Segment 1, and so on through Ring 7, the outermost
ring, which protects Segment 7.

The rings prevent segments from interfering with one another. If a program that is executing
in one segment needs to change or access the contents of another segment, the program
must observe strict protocols that the rings establish. (The system observes these protocols
without your knowledge.)

AOS/VS arranges the eight segments and rings hierarchically. Segment 0 has the greatest
ability to change or access the contents of other segments, while Segment 7 has the least.
Similarly, Ring 0 gives Segment 0 the greatest protection from interference by other
segments, while Ring 7 gives Segment 7 the least protection.

Segments 0 through 3 contain the AOS/VS operating system, with the kernel residing in
Segment O. Segments 4 and 5 are for both user programs and certain optional software
supplied by Data General. Segments 6 and 7 are for user programs alone.

10-03281

Figure 2-1. Segments and Their Protection Rings

093-000335 Licensed Material - Property of Data Gene,ral Corporation 2-3

Subroutine Calls
Because the user programs and the AOSjVS operating system share a single logical address
space, context switching - the transfer of control from one process to another - is often
unnecessary. In fact, system calls and calls to routines that are in another segment become
subroutine calls. While system calls require some participation by AOSjVS for their
execution, a process does not have to switch contexts when it issues a system call.

Ordinarily, a segment can only change or access the contents of segments that have a
segment and ring number higher than or equal to its own segment and ring number. For
example, the rings will not allow a program which is executing in Segment 4 to access
the contents of Segments 0 through 3, but they would allow that same process to access
the contents of Segments 4 through 7.

With a subroutine call, however, a segment that has a segment number higher than or
equal to the target segment can access the segment in which the subroutine actually resides.
In this case, the ring that protects the target segment allows the subroutine call to pass
through a gate. This gate points to the starting location of the subroutine.

Although you cannot make a cross-ring subroutine call directly to the starting location of
the subroutine, you can return directly from the subroutine. Subroutine returns do not
have to pass through gates. The only restriction on subroutine returns is that they must
originate from a segment that has a number lower than or equal to the target segment.

For information on the hardware instructions that allow you to define gates and reference
code in the inner rings, see the "Principles of Operation" manual for your Data General
MV jFamily computer.

User Rings
Ring 7 is the default user ring. However, you can load a program file into one of the
other user rings (4 through 6) by issuing the ?RINGLD system call. AOSjVS also allows
you to write programs that execute in more than one user ring.

By using the inner user rings, you can

• Improve software performance
You can use the inner user rings to create local servers. Local servers, which you load
into the inner rings of a process, are more efficient than global servers. Global servers
must use system calls to move data between customer and server. Local servers, which
reside in the same logical address space as their customers, can use instead the more
efficient MV -series hardware instructions to perform the same tasks.

• Improve accounting.
When you create local servers in the inner user rings, the local server becomes part of
the logical address space of the process that uses it - the local server is not a separate
process. A local server's use of resources is accounted for by AOS jVS as part of the
resources that the customer's process uses.

• Expand the logical address space.
By using the inner user rings, you can expand your logical address space from 512
megabytes - the capacity of one user ring - to 2048 megabytes - the capacity of
all four user rings).

2-4 licensed Material - Property of Data General Corporation 093-000335

Demand Paging
AOS/VS is a demand-paged, virtual-memory operating system. Virtual memory is a
composite of both main memory and disk memory. Demand paging is the method that
AOS/VS uses to add logical pages to the working set of a process as the process refers
to (demands) those pages. The working set, which is that subset of a process's logical
address space that is currently in memory, changes in size and content as the process
demands pages.

The pages outside the working set make up the process's virtual address space. In Chapter
3, Figure 3-2 shows the working sets and virtual address space of several processes.

Prepaging at Fault Time Option
By default, when a page fault occurs - a process demands a page - the system adds
one page to the working set. You have the option, howe:ver, of requesting that the system
add the faulting page, plus a cluster of logically contiguous virtual pages, to the working
set at fault time. We call this option prepaging at fault time. Prepaging is the process of
adding unreferenced virtual pages to a working set.

The prepaging option is useful when

• A program includes large array-like data structures for which the virtual addresses
exceed the amount of main memory available.

• The algorithm that processes a large data structure references the entire structure or
parts of it sequentially.

• The area in which you want prepaging to occur is in unshared or unused memory.

If your program has such characteristics and you understand its page referencing patterns,
prepaging can speed up execution considerably. The system is far more efficient when it
moves a cluster of contiguous pages into main memory than when it moves them in one
by one.

Before you can use the prepaging option, your system manager must set the prepaging
parameter during the VSGEN dialog. The prepaging parameter specifies the maximum
number of pages that you can add to the working set for each page fault. If the system
manager has set the parameter to 0 or 1, then prepaging is turned off system-wide.

If prepaging is enabled, you must use the SPRED utility to edit the preamble of your
program file to indicate

• The starting and ending addresses for the cluster art~a - remember this must be an
unshared or unused portion of memory.

• The cluster size in pages.

For more information on the prepaging option and the VSGEN dialog, see How to Generate
and Run AOS/VS.

Program Load Option
Every process starts with a working set large enough to accommodate Page 0 (the first 2
Kbytes of the logical address space) and the program counter (PC) page. The program
counter points to the instruction that is currently execut.ing in a program.

093-000335 Licensed Material - Property of Data Geneml Corporation 2-5

You have the option, however, of initialy loading all or part of the unshared address space
in your program file into physical memory. This program load option is useful when the
program that you are executing

• Is short.

• Runs briefly.

• Frequently references a large unshared area.

By loading pages into memory initially, you save the time incurred by multiple, sequential
page faults.

To load your program initially

• Your system manager must have previously enabled the initial program load option
during the VSGEN dialog. The system manager enables this option by indicating the
number of pages that a process can have at initial load time.

• You must specify the address range of the area that you want to load in the preamble
of your program. To specify the address range, use the SPRED utility to edit the
preamble of your program file.

For more information of the initial program load option, see How to Generate and Run
AOSjVS.

Variable Swapfiles
Memory contention occurs on a system when the currently active processes all need total
working sets that are larger than the memory available. When contention is light,
AOS/VS removes inactive pages from each process and keeps them in a page file dedicated
to the process. If the process later demands the page(s) in the page file, the system restores
them to the working set.

When heavy memory contention occurs, the system picks a process to swap out to disk.
The system swaps the process out in a swap file. Each process has its own swap file in
the SWAP directory.

By default, swap files have a fixed size. The fixed size of the swap file can be a disadvantage
for those processes whose working sets exceed the size of the swap file. To swap such a
process out to disk, the system must break the process's working set up into several swap
files. When the system later swaps this process back into memory, the process must incur
a series of page faults to restore the process's working set to memory. For processes with
large working sets, this paging can be costly.

To avoid breaking up large working sets into several swap files, you can set up a system
to allow swap files that vary in size from process to process.

To enable the use of variable swap files

• The system manager must enable the use of variable swap files and specify a default
and a maximum swap file size during the the VSGEN dialog.

• The system manager must give those users who run programs with large working sets
the privilege of changing their swap file size.

2-6 Licensed Material - Property of Data General Corporation 093-000335

• The privileged user must specify a size for the swap file that is equal to the program's
working set size by editing the preamble of the program files with the SPRED utility.

For more information on enabling variable swap files and the VSGEN dialog, see How
to Generate and Run AOS/VS.

Shared and Unshared M~~mory Pages
Memory pages can be either unshared or shared.

Un shared Pages
Unshared pages are pages in your logical address space which only one process can access.
You cannot write-protect unshared pages.

Shared pages
Shared pages are pages of physical memory that mul1tiple users can read and (possibly)
modify.

The system monitors the use of shared pages. If a shared page is not used, that page
remains in memory only as long the demand for memory is low. If the demand for memory
exceeds the amount of memory that is available, the system releases the unused shared
page and places it on a least recently used (LRU) chain.

An LRU chain is a list of released shared pages that the system arranges in least recently
used order. Any process can reuse the shared pages on the LRU chain. (See Figure 2-2.)
You can conserve memory by using shared pages, because they allow more than one process
to use the same re-entrant code or data. Also, shared pages reduce disk I/O, because
AOS/VS does not immediately swap them to disk when a process releases them. Instead,
it retains shared pages in a cache-like collection in memory for other processes to use.

The ?SPAGE system call reads one or more contiguous pages of a disk file into the shared
area of the caller's logical address space. If the ?SPAGE system call tries to read pages
that are beyond the disk file's end-of-file (EOF), AOS/VS writes zeros into those pages,
allocates them to the disk file, and then reads those ze:roed pages into shared area.

The ?RPAGE system call releases one or more sharc!d pages from the caller's logical
address space, but may retain them in memory. If you have modified a shared page and
you want to release and update that page immediately, you must issue either a ?FLUSH
system call, a modified version of the ?RPAGE system call, or the ?ESFF system call.
Each of these system calls provides a way to write the contents of a shared page to disk.

Before you can use the ?SPAGE, ?RPAGE, or ?FLUSH system calls, you must use the
?SOPEN system call to open the target file for shared access. A file opened this way is
called a shared file. The ?SOPEN system call gives you the option of opening your shared
file for Read-only access. To close a shared file, you must issue the ?SCLOSE system
call.

There are three ways to use shared memory pages:

• Explicitly, by using the shared-page system calls, such as ?SSHPT, ?SOPEN, ?SPAGE,
and so on.

• Implicitly, by defining a shared area with assembly language pseudo-ops.

• By opening a file for shared access with a special form of the ?OPEN system call.

093-000335 Licensed Material - Property of Data General Corporation 2-7

Initial Working Set for Process A

Process A

Physical
Memory

" ~work ing Set

Working Set after Process A demands pages

Process A

Physical
Memory

"
"" Wor

king Set

Working Sets for Processes A Band C ,

Process A ~ I--

Shared Pages

"" Physical
~mory

~
f"

Process B

j Process C

j

Virtual Address Space
10-03262

Figure 2-2. Working Sets in Memory

2-8 Licensed Material - Property of Data General Corporation 093-000335

The .NREL and .PART pseudo-<>ps allow you to define shared areas in an assembly
language program. The .NREL pseudo-<>p directs the macroassembler (MASM) to place
the code or data that comes after it into one of the predefined normal relocatable (NREL)
memory partitions. To specify which partition you want, use the appropriate nonzero
argument with the pseudo-<>p.

For example, the statement .NREL 5 tells MASM to place all subsequent source statements
in the predefined shared-data partition. The statements .NREL 1 and .NREL 7 tell MASM
to place all subsequent source statements in the predefined shared-code partition.

To define your own partitions in NREL memory, use the .PART pseudo-<>p. This pseudo-<>p
allows you to define a variety of attributes (characteristics) for the partition, including
whether it is part of shared or unshared memory. When you link your source code, the
Link utility uses your .NREL and .PART specifications to create shared (and unshared)
partitions in the final program file. The shared areas be·eome part of the logical address
space of any process that uses the program file.

For information on using the ?OPEN system call for page sharing, see Chapter 5.

Protected Shared Fiiles
A set of common local servers can use shared memory files to coordinate access to a
common resource. Each local server that wants to share the memory must first open, and
then read from or write to, the same shared file.

Inner-ring servers may need to limit access to their sharc::d files. They may not want any
segments other than themselves to have access to their shared memory. However, the access
control list (ACL) protection mechanism cannot protect a local server, because all segments
within a process share the same username. The ?SOPPF and the ?PMTPF system calls
permit a more private form of protecting shared files.

You can use the ?SOPPF system call to open a shared file in a protected manner. Once
a shared file has been opened in a protected manner, the opener can issue the usual shared­
page system calls, just as if the channel were opened by a ?SOPEN system call. To close
a shared file, whether or not it was opened in a protl~cted manner, you can use the
?SCLOSE system call.

The first ?SOPPF system call behaves differently than subsequent ?SOPPF system calls
that open the same shared file. For more information on the difference between first and
subsequent opens, see the individual system call description of the ?SOPPF system call in
the System Call Dictionary (AOS/VS and AOS/DVS).

The segment image that uses the ?SOPPF system call to open a protected shared file for
the first time is the first opener of the file. The first opener of a protected shared file
can use the ?PMTPF system call to permit other segment images to access the file. The
other segments can then issue a somewhat different form of the ?SOPPF system call to
open the file.

Only the first opener of a protected shared file can issue a ?PMTPF system call against
that file. To complete this system call successfully, the connection between the PID jring
tandem that issues the ?PMTPF system call (the server) and the PIDjring tandem of the
target (the customer) must be valid.

The ?PMTPF caller also informs AOS jVS of the type of file access privileges that it
wants to pass to another segment image. The caller can only pass on those priviliges that
it already has. Access privileges are not cumulative.

093-000335 Licensed Material - Property of Data General Corporation 2-9

An access grant remains active until one of the following events occurs:

• The connection between the first opener of the protected shared file and the target
segment image is broken.

• The first opener closes the file.

• The first opener revokes the access grant by issuing another ?PMTPF with fewer or
no access privileges.

Coordinated Shared-File Update
Periodically, inner-ring servers may need to record the checkpoint state of a set of shared
memory pages - this may be critical for recovery from system failure.

The ?ESFF system call helps record the checkpoint state of shared memory by flushing
to disk all modified pages associated with a specified shared file, no matter where they
are in system memory. AOS /VS tries to flush all modified shared pages, even if it
encounters an I/O error while it is flushing the pages.

The ?ESFF system call makes only one pass through the pages in a shared file. Should
another process (or other tasks within the same process) concurrently update the shared
file, the checkpoint state will be uncertain.

Validating Memory
In some situations, particularly when developing inner ring servers, you can avoid those
user traps caused by referencing an invalid area of memory by first validating your access
privileges to that memory area. To validate a logical address, you can use the ?VALAD
system call. To validate a specific range of addresses, you can use the ?V ALIDATE system
call. For example, if a ring 7 caller provides a ring 4 address to a ring 4 server, you could
use the ?V ALIDATE system call to indicate that the caller's ring is 7. As a result, the
call would return a validation error to protect the server.

Dedicated and Undedicated Memory Pages
Just as AOS/VS distinguishes between shared and unshared pages, it also distinguishes
between dedicated and undedicated memory pages:

• Dedicated pages are memory pages that AOS/VS reserves for specific purposes. They
include physical pages occupied by the resident portion of AOS/VS and pages wired
to a resident process by the ?WIRE system call.

• Undedicated pages are pages that AOS/VS can assign to any process as the process
needs them. Undedicated pages are not necessarily "unused" pages; they are simply
available for reassignment. The ?G MEM system call returns the current number of
undedicated pages available to the calling process.

Managing Your Memory Context
Your unshared area starts at the first word of the logical address space in the current
ring, and expands toward numerically higher addresses. The shared page area occupies the
numerically highest portion of the address space and expands upward and downward.

2-10 Licensed Material - Property of Data General Corporation 093-000335

Between the shared and unshared portions of the logical context, there can be an "unused"
area. You can allocate this area with the system calls ?MEMI and ?SSHPT.

The ?MEMI system call modifies the unshared area's upper boundary. When a process
issues the ?MEMI system call to allocate pages to the unshared area, AOSjVS zeros those
pages before allocating them.

The ?SSHPT system call modifies the number of sharted pages in the logical address space
and the position of the shared area in your user address space.

Figure 2-3 shows the relationship among the unshared, unused, and shared areas in a
typical user context.

10-03263

093-000335

o
Unshared I

t-----t T

(1 Mbyte) ~ Shared --- !
77777777777

Figure 2-3. Memory Context

Unused Area

Licensed Material - Property of Data GEtneral Corporation 2-11

Table 2-1 lists the system calls that you can use to manage a process's logical context.

Table 2-1. Context-Management System Calls

System Call Function

?ESFF Flushes shared file memory pages to disk (shared pages only).

?FLUSH Flushes contents of a shared page to disk.

?GSHPT Lists shared-partition information for this context (shared pages only).

?MEM Lists the maximum number of un shared pages available, the number of
unshared pages used, and the highest currently used unshared address in
Ring 7 (unshared pages only).

?MEMI Increases or decreases the number of unshared pages in Ring 7 (unshared
pages only).

?PMTPF Permits access to an open, protected shared file (shared pages only).

?RPAGE Releases a shared page (shared pages only).

?SCLOSE Closes a shared file (shared pages only).

?SOPEN Opens a file for shared access (shared pages only).

?SOPPF Opens a protected shared file (shared pages only).

?SPAGE Reads a shared page (shared pages only).

?SSHPT Establishes a new shared-partition size (shared pages only).

End of Chapter

2-12 Licensed Material - Property of Data General Corporation 093-000335

Chapter 3
Creating, Managing, and Terminating

Processes

You can use the following system calls to create, manage, and terminate processes:

? A WIRE Change wiring characteristics of Agent portion of a resident process.
?BLKPR Block a process.
?BRKFL Terminate a process and create a break file.
?CHAIN Pass control to a new program.
?CTYPE Change a process's type.
?DADID Get the PID of a process's father.
?ENBRK Enable a break file.
?EXPO Set, clear, or examine execute-protection status.
?GBIAS Get the system's current bias factors.
?GLIST Get a process's search list.
?GPID Get a list of active PIDs on a remote host.
?GUPID Translate a host ID and PID into a VPID.
?GUNM Get the username of a process.
?HNAME Return a host ID or host name.
?IHIST Start a histogram for a 1 fr-bit process.
?KHIST Terminate a histogram.
?LOCALITY Change a process's user locality.
?MDUMP Dump the memory image from a specified ring to a file.
?PCLASS Get a process's class ID, and user and program localities.
?PIDS Return information on local PIDs.
?PNAME Get a process name.
?PRIPR Change the priority of a process.
?PROC Create a process.
?PST AT Return status information on a process.
?RESCHED Schedule another process for execution.
?RETURN Terminate the calling process and transfer control back to its father.
?RINGLD Load a program file into a specified ring.
?RNGPR Return the .PR filename for a ring.
?RNGST Stop lower rings from being loaded.
?RUNTM Get runtime statistics on a process.
?SBIAS Set the system's bias factors.
?SONS Return a list of son processes.
?SUPROC Enter, leave, or get status of Superprocess Mode.
?SUSER Enter, leave, or return status of Su.peruser Mode.
?SYSPRV Enter, leave, or get status of System Manager Mode, Superprocess Mode,

?TERM
?TPID
?UBLPR
?UNWIRE
?WHIST
?WIRE

093·000335

or Superuser Mode.
Terminate a process.
Translate a VPID into a host ID a.nd PID.
Unblock a process.
Unwire pages previously wired.
Start a histogram for a 32-bit process.
Wire pages to the working set.

Licensed Material - Property of Data GEtneral Corporation 3-1

This chapter describes processes and how they use memory. It also describes how AOS/VS schedules
processes for processor time. The chapter then describes how to create, manage, and terminate
processes.

What Is a Process'l
A process is an executing set of instructions. A process can contain both instructions that you have
written and instructions that the operating system has provided as a resource. The fIle that contains
these instructions is a program.

Each process can contain one or more tasks, which execute asynchronously (that is, at different
times). You can design your program so that several tasks execute a single re-entrant sequence of
instructions, or so that each task executes a different instruction path. The AOS/VS system always
gives processor time to the highest priority ready task within the highest priority ready process. We
describe process priority later in this chapter. For more information on tasks, see Chapter 7.

Processes and Virtual Memory
As we described in Chapter 2, AOS/VS is a virtual memory, demand-paged system. Virtual memory
means that memory is a composite of physical (computer) memory and disk memory. Demand­
paged means that AOS/VS adds a page to each process's working set of pages on process demand.
AOS/VS releases unused pages as processes require more memory.

Each process starts with a certain number of pages of virtual memory - its initial working set. The
working set is a subset of the process's total logical address space. When the process needs more
pages (perhaps to execute a routine that isn't in memory), a page fault occurs; AOS/VS then adds
an additional page to the process working set. The theoretical limit on the number of pages in a
process's working set exceeds 1,000,000 - providing a limit of 2 gigabytes on any process's logical
address space. (See Figure 3-1.)

There can be many processes running simultaneously. Memory contention occurs when all currently
active processes (including the AOS/VS system and its peripheral manager) desire a working set
larger than the computer's physical memory. Memory contention can occur much of the time.

In light memory contention, AOS/VS resolves the situation by removing inactive pages from proc­
esses and storing their images in its PAGE directory. The processes remain in physical memory, but
with fewer pages in their working sets. Later, if demanded, the system restores these pages to the
working sets. This is called paging.

In heavy memory contention, AOS/VS removes whole processes (selecting blocked processes first),
and stores their images in its SWAP directory. AOS/VS removes their entire working sets from
memory. Later, AOS/VS restores the working sets to physical memory and the processes can run
again. This is called swapping.

If there is no memory contention, no paging or swapping occurs. But if there is contention,
AOS/VS may page or swap processes to disk on the basis of their process types and priorities.

Getting control of a job processor is a two-phase operation. Before a process can do it, its working
set must be in physical memory.

3-2 Licensed Material - Property of Data General Corporation 093-000335

Initial Working Set for Process A

Process A

Physical
Memory

"
Work ing Set

Working Set after Process A demands pages

Process A

Physical
Memory

" ~wor king Set

Working Sets for Processes A Band C .
Process A --

Shared Pages

~ Physical

~mory

"" "
Process B

Process C

j

Virtual Address Space .

Figure 3-1. Working Sets in Memory

093-000335 Licensed Material - Property of Data Genenll Corporation 3-3

Processes and Physical Memory
AOS jVS gives processes physical memory according to type; scheduling characteristics, such as
process class and priority, are secondary. The process types are

• Resident.

• Pre-emptible.

• Swappable.

The AOSjVS system scheduler allocates memory for each type as follows:

Process Type How It Gets Physical Memory

Resident Gets memory on demand and keeps it. The scheduler retains the process initial
working set in memory; the system may page the process, but may not swap it.

Pre-emptible Gets memory if the memory is not needed by a resident process. The scheduler
swaps a pre-emptible process if

Swappable

• A resident or higher priority pre-emptible process requires memory; or

• The process becomes blocked and any other process requires memory.

Gets memory if the memory is not required by a resident or unblocked pre-emptible
process. The scheduler can swap the process as needed during memory contention.

By default, all user processes, including the batch processes that the system creates for users, are
swappable.

Adjusting the Size of the Working Set

When you create a process, you can specify the size of its initial working set. You can also adjust
the size of its working set once a process has gained memory.

By default, when a process frrst gains memory, the system allocates enough memory for the initial
working set to include both page 0 (the frrst 2 kilobytes of the logical address space) and the program
counter (PC) page. However, when you create a process (?PROC system call), you can set both a
minimum and a maximum working set size. This allows you to set a minimum working set size that
exceeds the initial default working set size. It also allows you to limit the amount of memory that
the process can use.

The process's type also affects the size of the working set. For example, a resident process always
has a larger initial working set than a pre-emptible or swappable process. When you create a resident
process or change a process into a resident process (?CTYPE system call), the system automatically
binds those pages to the working set that contain the Agent portion of the process. (The Agent is
that part of the AOSjVS system that pre-processes system calls and serves as an interface to the
operating system.)

You can also remove, or unwire, all Agent pages (except those needed for user device support) from
the resident process by using the? A WIRE system call. By unwiring the Agent pages from a resident
process, you make more memory available and improve system performance; however, the resident
process may be less efficient.

3-4 Licensed Material - Property of Data General Corporation 093-000335

You can wire and and unwire memory pages to the working set of any process by using the ?WIRE
and ?UNWIRE system calls. The ?WIRE system call wires pages to the working set. The ?UN­
WIRE system call releases previously wired pages. You should be careful, however, not to wire too
many pages to the working set of a resident process. Should! memory contention occur, the system
will not be able to swap these pages to disk. This reduces the amount of memory available and
degrades system performance.

If the system manager has enabled the pre-paging option in the VSGEN dialog, you can also specify
the number of pages that the system adds to the working set when a page fault occurs. For more
information on the pre-paging option, see Chapter 2.

Process Scheduling
The AOS/VS system schedules processes for processor time in one of two ways: standard scheduling
(the default) and class scheduling.

Standard Scheduling
Standard scheduling works as follows: when a job processor becomes free, the highest priority, ready
process gains control of that processor. This process will then use the job processor for a full subslice
period of 32 milliseconds, unless one of the following events takes place:

• The process encounters a blocking event.

• Another higher priority process becomes ready.

Process Priority

The AOS/VS system determines the relative priority of processes based on their priority numbers.
These priority numbers range from 1, the highest priority, to 511, the lowest priority.

The AOS/VS system divides these process numbers into thr~~ ranges, or "groups", between which
there are no gaps or overlaps. In the VSGEN dialog, the system manager specifies the range of
priority numbers in each group. The ranges for these groups are

• Group 1 - high priority - default priority numbers 1 through 255.

Includes resident and pre-emtible processes with priority ll, 2, or 3. Also includes processes with
priorities 4 through n, where n is the VSGEN "lowest priority for group 1" that the system
manager specifies.

• Group 2 - medium priority - default priority numbers 256 through 258.

Includes priorities n + 1 through m, where m is the VSGEN "lowest priority for group 2" that
the system manager specifies.

• Group 3 - low priority - default priority numbers 259 through 511.

Includes priorities m + 1 through 511, the lowest priority.

The group into which a process's priority falls determines the type of scheduling that the system uses
for that process. The system uses two types of scheduling: round-robin and heuristic.

With round-robin scheduling, the system gives processes of equal priority an equal amount of pro­
cessor time, without regard for their behaviour. The system schedules both Group 1 and Group 3
processes on a round-robin basis.

With heuristic scheduling, the system schedules processes according to their behavior, favoring
interactive processes over processor-intensive, noninteractive processes. The system schedules Group
2 processes heuristically.

093-000335 Licensed Material - Property of Data GenElral Corporation 3-5

For example, based on a Group 2 process's prior behavior, the system will expect that process to
have a certain number of blocking events within a certain time. If the process has more blocking
events within that time, the system will increase the process's priority, giving it a better chance at
getting processor time. However, if the process has/ewer blocking events, it is starting to monopolize
the processor; the system then reduces that process's priority so as to give more interactive processes
a better chance at getting processor time.

Changing Process Priority - the ~PRIPR System Call
You can change the priority of a process by issuing the ?PRIPR system call. You can issue the
?PRIPR system call from either the process itself, or from another process. However, if you issue
the ?PRIPR system call from another process, that process must be in Superprocess mode (we
describe Superprocess mode later in this chapter).

Changing Process Priority - by Process Type

A process's type can affect its priority. While a resident or pre-emptible process can have any of the
priorities 1 through 511, a swappable process cannot have any of the priorities of a Group 1 process.
Consequently, if you change a Group 1 resident or premptible process into a swappable process, the
AOS/VS system will lower the actual priority of that process (see the "System Mapping of Priority
Numbers" section that follows).

By default, when you create a process, that process is of the same type and priority as its father
process (the process from which you create it). However, in the ?PROC system call, you can specify
that the new process be of a different type from that of its father process. You can also change the
process type of an existing process by issuing the ?CTYPE system call.

System Mapping of Priority Numbers
To maintain compatibility with the AOS (16--bit) operating system, the AOS/VS system "maps"
the priority numbers of swappable processes: The actual priority of the swappable process, and the
priority that the AOS/VS system displays in response to the CLI PRIORITY command, may be
different. The system uses the "actual", undisplayed priority to schedule the process for processor
time.

Given that the boundries of the three scheduling groups are

Group 1 Priorities 1 through n.

Group 2 Priorities n + 1 through m.

Group 3 Priorities m + 1 through 511.

the AOS/VS system maps priority numbers as shown in Table 3-1.

Table 3-1. Priority Mapping - ResidentlPre-emptible to Swappable

Original Priority Displayed Priority Actual Priority
Before Change After Change After Change

(ResidentlPre-emptible) (Swappable) (Swappable)

1 through 3 1 through 3 n + 1 throughn + 3 *

4 through n 2 n+ 1 throughn + 3*

n + 1 throughn + 3 1 through 3 n + 1 through n + 3

n + 4 through m n + 4 through m n + 4 through m

m + 1 through 511 m + 1 through 511 m + 1 through 511

• Compatible with AOS priority mapping.

3-6 Licensed Material - Property of Data General Corporation 093-000335

When you change a swappable process to a resident or pre-emptible process, the AOS/VS system
gives the resident or pre-emptible process the swappable pr<x:ess's displayed priority, not its actual
priority. (See Table 3-2.)

Table 3-2. Priority - Changing from Swappable to
Resident/Pre-emptibI4e

Actual Priority of
Swappable Displayed Priority of ResidentiPre-emptibie

Process Swappable Process Priorty After Change

n + 1 throughn + 1 through 3 1 through 3 *
3

4 through n 4 through n 4 through n

n + 4 through 511 n + 4 through 511 n + 4 through 511

• Compatible with AOS priority mapping.

Bias Factors for Interactive and Compute-Bound Processes

Under standard scheduling, AOS/VS generally keeps interactive processes in memory longer than
noninteractive, processor-intensive processes. However, you can adjust the way in which standard
scheduling does this by setting the system's bias factors. The system's bias factors determine both
the minimum and maximum number of noninteractive, compute-bound processes that AOS /VS
will try to keep in memory.

To set the system's bias factors, issue the ?SBIAS system call. To return the system's current bias
factors, issue the ?GBIAS system call.

Class Scheduling
A class is a set of processes that gets special scheduling treatment. Usually, this treatment involves
the allocation of a percentage of processor time. A logical processor, which is a scheduling arrange­
ment for one or more classes, detennines the amount of processor time that each class can use.

Each class has a name and one or more user and program localities, called locality pairs, that identify
it. When class scheduling is enabled, a process will run in a specific class if its locality pair matches
one of those that the system manager has dermed for that class.

When the system manager creates a user prome with PREDITOR, the system manager specifies
both the user's default user locality, and any other user localities to which the user can assign a
process. The selective preamble editor (SPRED) determines the process's program locality in the
program me.

You can create process classes, and the logical processor(s) that schedule them, with either the system
calls that we describe in Chapter 9, or, if you have it on your system, with the CLASP (Class
Assignment and Scheduling Package) utility. For more information on the CLASP utility, see Using
CLASP (Class Assignment and Display Package).

Primary Versus Secondary Classes

A logical processor can allocate processor time for up to 16 classes. It can rank each class as either
primary or secondary.

093-000335 Licensed Material - Property of Data General Corporation 3-7

• Primary class - has a guaranteed percentage of processor time. Processes in a primary class can
use up to their assigned percentage of proceesor time.

• Secondary class - no guaranteed percentage, but ranked in levels. After ready processes in the
primary classes get time, secondary processes compete for time by level.

Under class scheduling, the highest priority, ready process gets control of the processor, unless

• The process belongs to a primary class that has used up its percentage.

• The process belongs to a secondary class, and a higher level secondary class or a primary class
process is ready.

In either of these cases, the process can't get processor time in the current interval, regardless of its
priority.

Specifying User Localities at Process Creation

By default, when you create a process, that process has the same user locality as its father process.
If the father process has the privilege to change its user locality, the son process will also have this
privilege. The son process can then change its user locality to any of those localities to which its
father process is privileged to change.

In the ?PROC system call, you can specify that the process have a different user locality from that
of its father process. By default, this locality must be one of those to which the father process is
privileged to change.

You can also give the new process a set of user localities that it is privileged to use, which is different
from that for which its father process is privileged to use. By default, the set of user localities for
this process can contain only those localities to which the father process is privileged to change.

Changing the User Locality After Process Creation

Once a process exists, it can use the ?LOCALITY system call to change its user locality. By default,
the new user locality can only be one of the user localities for which the process is privileged.

A process can also use the ?LOCALITY system call to change the locality of another process in its
sub-tree (the target process must be a son, grandson, and so on). The calling process can only change
the target process's locality to one for which the calling process is privileged. The calling process can
also change the set of user localities for which the target process is privileged.

Getting Locality Information

To determine the current user locality of a process, and the other user localities to which it is
privileged, you can use the ?PCLASS system call. By determining those user localities for which a
process is privileged, the ?PCLASS system call helps you to avoid assigning a process to a user
locality for which the process is not privileged.

Assigning Localities without Restriction - System Manager Mode

If a process has the system manager privilege - given by PREDITOR in the user profile - and
has turned on System Manager mode with the ?SYSPR V system call, the process can

• Assign any user locality to a new process, and give that process privileges to any other user
localities.

• Change the user locality of any existing process to any user locality.

We describe the ?SYSPR V system call in Chapter 9.

3-8 Licensed Material - Property of Data General Corporation 093-000335

Rescheduling a Process
If an executing process cannot proceed, you can issue the ?RESCHED system call, which allows
the calling process to give up control of the processor and forces AOSjVS to immediately schedule
another process for execution.

Process Hierarchy
When you initialize the system, AOS/VS creates a process called the system root, from which all
other processes proceed. From the system root, AOSjVS cn~tes the system processes, such as the
peripheral manager (PMGR), which manages character I/0. AOSjVS also creates at least one
user process, called the initial (operator) process. The initial process can create subordinate processes,
or sons, and assign them a process type and priority number ..

AOSjVS organizes processes into a hierarchical tree structure, where processes on the lower levels
are subordinate to their relatives on the higher levels. (See Figure 3-2.)

The system root is the highest process in the system hierarchy; every other process is a son of the
system root. User processes are sons of the initial process.

Process Identification
A process name and a process identifier (PI D) identify each process. When you create a process,
you assign the process its name. At the same time, AOSjVS assigns the process a PID. The PID
can be in the range from 1 through n, where n is the maximum number of processes that you
specified at VSGEN (the default maximum is 255).

PMGR

User
Processes

093-000335

System Root

Initial (Operat()r) Process

&...-]
~------~-------~

System Processes

Figure 3-2. Process Hierarchy

Licensed Material - Property of Data Gen4tral Corporation 3-9

Specifying a Process Name

A full process name is a character string that consists of a usemame and a simple process name,
with a colon (:) between the two elements. Each element can contain up to 15 valid filename char­
acters. The valid filename characters that you can include in the process name are

• Letters A through Z. (AOS/VS treats uppercase and lowercase letters the same.)

• Numbers 0 through 9.

• Period (.), dollar sign ($), question mark (?), and underscore (_).

AOS/VS uses the usemame part of the process name to determine the process's geneology and its
fIle access privileges. By default, each son process has its father's usemame. A father process can
assign its sons a different usemame only if the father was created (by issuing the ?PROC system
call) with the privilege to do so.

You can use either a full process name or a simple process name as input to the system calls. When
you supply a simple process name, AOS/VS expands it. (See Figure 3-3.)

Figure 3-3 shows a process with the full process name SAM:PROC2, where SAM is the usemame
and PROC2 is the simple process name. If you issue a system call from SAM:PROCI with the
simple process name PROC2 as an input parameter, AOS/VS recognizes the target process as
SAM:PROC2.

You cannot specify the same simple process name for processes that have the same usemame. If
you do, AOS/VS returns error code ERPNU (process name already in use).

The Process Identifier (PID)

When you create a process, the AOS/VS system gives it a PID that is in the range appropriate to
that process. The appropriate range for a process depends on both the maximum number of processes
allowed on the system, and on whether you created the program that is executing prior to or under
Revision 7.00 of AOS/VS.

Prior to Revision 7.00 of AOS/VS, up to 255 processes could run on the system at one time.
Consequently, the process identifIers ranged from 1 to 255. However, as of Revision 7.00, you can
allow the system to run a higher number of processes - up to 4096 - by so specifying in the
VSGEN dialog. Consequently, the PIDs can range from 1 to whatever number you specify as the

3-10

/
FAY PROC1 SAM PROC1

/"-
FAY PROC2 FAY PROC# SAM PROC2 SAM PROC3

FAY PROC1
FAY PROC2

FAY PROC3

SAM PROC1
SAM PROC2
SAM PROC3

Figure 3-3. Process Names

Licensed Material - Property of Data General Corporation 093-000335

maximum (up to 4096). Under Revision 7.00, the default number of processes that the system will
run is 255.

If the system allows the default maximum of 255, programs written under previous revisions of the
operating system will run without the need for alteration.. But, if the system allows a maximum
number of processes exceeding 255, you must determine if any program fIles written under previous
revisions of the operating system have any PID-related restrictions (we describe PID-related restric­
tions in the next section).

After you have identified and corrected any PID-related restrictions, you must

1. Assemble and link the new program.

2. Use SPRED, the selective preample editor, to change the program's PID-size type. The pro­
gram's PID-size type determines whether or not, and under what conditions, a program can run
using a PID above 255.

We describe the PID-size types after we describe the types of PID-related restrictions that you might
fmd in a program.

PID-Related Restrictions in Program Files

If a program issues a system call for which there is a PID-related restriction, you may have to change
that program before you can run it successfully. The system calls with PID-related restrictions are
?PSTAT, ?IREC, and ?EXEC. You can check your program fIles for these system calls by either
checking your source fIles directly, or by running the macro PIDCALL CHECK, shipped with
AOS/VS Revision 7.00, against the program fIle.

If a program does issue one or more of these calls, check the context in which it issues the call. If
the program issues the call in a context that isn't limited, you don't need to change the program.

"PST A T System Call - The ?PST AT call returns status information on processes, including
a list of sons; however, ?PSTAT can list only sons with PIDs 1-255. ?PSTAT has no other PID­
related limitation.

If a program uses the ?PSTAT system call, and relies on the son information returned in the ?PST AT
packet, you can add the ?SONS system call to the program. The ?SONS system call can return
information on all son processes. The program must get the sons information from the ?SONS
buffer, not from the ?PSTAT packet.

.,IREC System Call - If the program uses the ?IREC system call to listen for termination or
obituary messages from a connected process, the program must change the way in which it interprets
the message. The format of the message in the ?IREC packet has changed. We describe the ?IREC
system call, which you use for interprocess communication, in Chapter 8, and the management of
process connections in Chapter 9 .

.,EXEC System Call - If the program uses the ?XFSTS function of the ?EXEC system call,
which can return only PID numbers up to 255, you should replace the ?XFSTS function with the
extended function, ?XFXTS. The ?XFXTS function can return any PID number, including those
above 255.

Program and Process PID-Size Types

Under Revision 7.00 of AOS/VS, if you specify a maximum number of processes that exceeds 255
at VSGEN, then each program and process falls into one of three PID-size types. Table 3-3 describes
these program and process PID-size types.

093-Q00335 Licensed Material - Property of Data GenEtral Corporation 3-11

Table 3-3. Program and Process PID-Size Types

Program PID-Size Type

SmallPIO-type program.

A smallPIO program can't run if PIOs 1
through 255 are in use.

SmallPIO is the PIO-size type of all pro­
grams before AOSjVS Revision 7.00 (ex­
cept the CLI and EXEC, which were hybrid
in Revision 6.(0). The Link program cre­
ates programs of SmallPIO-size by default.

Hybrid program.

A hybrid program's program fIle has been
edited with the SPREO editor and its PIO­
size type made hybrid. (You can tell
SPREO to label any program as hybrid,
but if the program has any small-PIO lim­
itation, the process may not be able to com­
municate with PIOs above 255. And, since
AOSjVS thinks the process is a legitimate
hybrid, it won't detect PIO-range errors.

A hybrid program can't run if PIOs 1
through 255 are in use.

Most programs shipped with AOSjVS
Revision 7.00 are hybrid programs.

AnyPIO program.

An anyPIO program's program fIle has
been edited with the SPREO editor and its
PIO-size type made anyPIO. (As with a
hybrid program, you can tell SPREO to
label any program as anyPIO, but if the
program has small-PIO limitations, com­
munication errors may occur and go un­
detected by AOSjVS.)

An anyPIO program can run at any PIO
up to the maximum specified at VSGEN.
The system will run it above 255 if possible.

Process PID-Size Type

Type A process.

A type A process has a PIO between 1 and
255. It can't execute any program if PIOs
1 through 255 are in use. Error conditions
may result if a process with a PIO over 255
tries to communicate with a type A process.

This is the PIO-type of all processes before
AOSjVS Revision 7.00 (except the CLI and
EXEC).

Type B process.

A type B process has a PIO between 1 and
255. It can't run if PIOs 1 through 255 are
in use, but can create and communicate with
a process of any PIO-size type.

Most DG programs, including the CLI and
EXEC, run as type B processes. By default,
the CLI run for each user is a type B proc­
ess; by default, a user CLI must run in the
range of 1 through 255, but can execute any
PIO-type program.

Most processes from programs supplied with
AOSjVS are type B processes.

Type C process (if a PIO above 255 is free).
Type B process (if no PID above 255 is free).

A type C process can execute any PIO-size
type program. But error conditions may arise
after it executes a smallPIO program (since
the father process has a PIO the son can't
understand).

Because an anyPIO program can run at any PIO, it's the most flexible PIO-size type. Its only
disadvantage appears when it has a PIO above 255, where type A processes may not be able to
communicate with it. You can avoid this problem by making all smallPIO programs into hybrid or
anyPIO programs

Changing the PID-Size Type

To change a program's PIO-size type, run the SPREO program, edit choice 6, specify the PIO-size
type desired, apply changes (choice 8), and leave SPREO by typing BYE. To do this, you need write
access to the program fIle.

3-12 Licensed Material - Property of Data General Corporation 093·000335

(Remember, don't use SPRED to make a smallPID program into a hybrid or anyPID program until
you've made sure that the program doesn't have any PID-r,elated limitations. At least, run the
PIDCALLCHECK macro on it to check for any potentially limiting system calls; if the macro
finds any, don't change the program PID-size type until youl've determined whether or not those
system calls actually limit the program.)

The Virtual Process Identifier (VPID)

The AOS/VS system uses the virtual process identifier (VPID) to identify a process on a remote
host. A VPID consists of a host ID-PID combination.

Some system calls require a VPID as input. You can translate a host ID and PID into a VPID by
issuing the ?GVPID system call. Conversely, you can break a VPID down into its component host
ID and PID by issuing the ?TPID system call.

If, before you issue the ?GVPID system call, you need to get a host ID, you can issue the ?HNAME
system call. The ?HNAME system call returns either the host ID or host name, as you specify.

Depending on your input specifications, the following system calls return the process name and/or
PID of a target process:

• ?PNAME returns the full process name or PID of either the calling process or another target
process.

• ?GLIST returns the process's search list (?GLIST can also return the search list of the program
file executing under that process.

• ?GUNM returns the username associated with a specific simple process name or PID.

• ?DADID returns the PID of a father process of either the calling process or of another target
process.

Creating a Process

To create a process, and to specify its privileges and characteristics, use the ?PROC system call. The
?PROC system call allows you to create the process on either a local or remote host.

Once you have used the ?PROC system call to create a process, that process continues to exist until

• The process traps, or encounters a hardware error. (See the "Process Trapping" section in this
chapter.)

• The process terminates voluntarily. (See the descriptions of the ?TERM and the ?RETURN
system calls in The System Call Dictionary (AOSjVS and AOSjDVS).

• Another process terminates the process. (See the description of the ?TERM system call in The
System Call Dictionary (AOSjVS and AOSjDVS).

• The process's father terminates.

093-000335 Licensed Material - Property of Data General Corporation 3-13

Specifying Process Privileges
Within the ?PROC packet, you can specify a number of privileges for a newly created process; for
example, the right to create sons and to assign those sons minimum and maximum working-set
parameters, and the right to override the usual file access controls. However, you cannot assign the
new process any privileges that the calling process does not have.

Table 3-4 lists the bit masks in offset ?PPRV of the ?PROC packet that define process privileges.

Table 3-4. Process Privileges

Privilege Meaning

?PVPC The new process can create an unlimited number of sons.

?PVWS The new process can create sons of a different program fIle type (that is, 16-bit or
32-bit program fIles).

?PVEX The new process can remain unblocked while one of its sons executes.

?PVWM The new process can defme working-set parameters for its sons.

?PVPR The new process can use the ?PRIPR system call to change its own priority or to
assign its sons higher priorities than its own.

?PVTY The new process can use the ?CfYPE system call to change its process type or to
create sons of any process type.

?PVIP The new process can issue the ?IS END and ?IS.R primitive IPC system calls. (See
Chapter 7 for information on IPC system calls.)

?PVUI The new process can create sons that have usemames different from its own.

?PVDV The new process can defme and access user devices. (See Chapter 10 for information
on devices.)

?PVSP The new process can issue the ?SUPROC system call to tum on Superprocess mode.
(See the "Superuser Mode" and "Superprocess Mode" sections in this chapter.)

?PVSU The new process can issue the ?SUSER system call to tum on Superuser mode.
(See the "Superuser Mode" and "Superprocess Mode" sections in this chapter.)

Process Creation Parameters
AOS /VS determines the number of offspring a process can create by checking its ?PROC packet
for

• The ?PVPC privilege, which specifies that the new process can create an unlimited number of
sons processes.

This privilege overrides every other creation parameter in the ?PROC packet. When a process
that does not have the ?PVPC privilege tries to create a son, AOS/VS performs the following
steps to check the other creation parameters:

1. Checks to see if the number of sons and their combined ?PPCR count exceed the calling
process's ?PPCR value. If yes, AOS/VS signals an error. If no, AOS/VS performs Step 2.

2. Checks to see if bit ?PVEX is set. If yes, AOS /VS allows the calling process to create the
son. If no, AOS/VS performs Step 3.

3. Checks to see if the calling process has the ?PVEX privilege. If yes, AOS/VS allows the
calling process to create the son. If no, AOS jVS does not allow the calling process to create
the son.

3-14 Licensed Material - Property of Data General Corporation 093-000335

• The ?PVEX privilege, which specifies that the new process can remain unblocked while one of
its sons executes.

• The presence of offset ?PPCR, which specifies the maximum number of offspring.

Offset ?PPCR is a cumulative value. That is, if a process with a ?PPCR value of 10 creates 2
sons, each with a ?PPCR value of 4, the original process cannot create any other sons, because
2 sons plus 2*4 (8 potential grandsons) equals 10.

• The presence of the ?PFEX mask (within offset ?PLFG), which determines whether the new
process blocks while its sons execute.

You can use ?PROC system calls in your program if you want to create son processes, which, in
tum, can create other sons. Figure 3-4 shows a process tree of this kind: process A created processes
B, C, and D; process B created process F; and process D created processes G and E.

Overriding Default Restrictions: Superuser and Superprocess Mode
By default, a process can issue certain system calls only against its subordinate processes, and can
use only those files for which it has the necessary access privileges. However, if the system manager
has given you the Superuser or Superprocess privilege in your user profile, you can override these
restrictions by putting a process into Superuser or Superprocess mode.

You should restrict the use of Superuser and Superprocess privileges, because a process in Superuser
mode can delete any file, and a process in Superprocess mode 4:;an terminate any process.

Superuser Mode

A process that is in Superuser mode can access any file, regardless of the file's ACL, and can also
determine the access privileges of any process to any fIle.

When you create a process, you can assign the Superuser privilege to a process by setting the ?PVSU
mask in the ?PPRV offset of the ?PROC packet. The process can then issue the ?SUSER system
call to tum on Superuser mode.

A process that has the Superuser privilege can pass the privilege on to its sons. These son processes
can in tum issue the ?SUSER system call to tum on Superus4er mode. Once a process has turned
on Superuser mode, it remains in that state until it issues a second, complimentary ?SUSER system
call to tum it off.

Father

A

I
B C 0 } Sons of A

/

[F G ~ } Grandsons of A

10-03267

Figure 3-4. Sample Process Tree

093-000335 Licensed Material - Property of Data General Corporation 3-15

Superprocess Mode

A process in Superprocess mode can change the state of any process, not just its subordinate processes,
by issuing one of the following system calls:

?BLKPR Blocks a process.

?UBLPR Unblocks a process.

?BRKFL Terminates a process and creates a break me.

?CTYPE Changes a process's type.

?GTACP Gets a process's access control privileges.

?PRIPR Changes a process's priority.

?TERM Terminates a process.

(For more information on these system calls, see the individual system call descriptions in Chapter
15.)

When you create a process, you can assign the Superprocess privilege to that process by setting mask
?PVSP in offset ?PPRV of the ?PROC packet. You can then issue the ?SUPROC system call from
that process to turn on Superprocess mode.

A process with the Superprocess privilege can also pass that privilege to its sons, although sons
created with this privilege are not in Superprocess mode initially. A process remains in Superprocess
mode until it issues a second. complementary ?SUPROC system call to tum off Superprocess mode.

Process Blocking
AOS/VS blocks a process under the following conditions:

• When another process explicitly blocks it, using the ?BLKPR system call.

• When the process creates a subordinate process, called a son, and voluntarily blocks itself until
the son terminates. (See the section, "Creating a Process", in this chapter for information on the
process hierarchy.)

• When the process issues a system call that suspends its only active task.

The last condition implies that the process has only one task or that all of its other tasks are suspended.
?IREC and ?WDELAY are two examples of system calls that can cause a process to block. (See
The System Call Dictionary (AOS/VS and AOSjDVSj for more information on the ?IREC and
?WDELA Y system calls and see Chapter 7 for more information on tasks.)

3-16 Licensed Material - Property of Data General Corporation 093-000335

AOS /VS unblocks a process under the following conditions:

• When the process previously blocked with ?BLKPR is explicitly unblocked with ?UBLPR.
(?BLKPR and ?UBLPR work as a pair; ?UBLPR unblocks only those processes that were
previously blocked with ?BLKPR.)

• When a son created by the process terminates (provided the father voluntarily blocked to wait
for the son to terminate)

• When a task within the process becomes ready to run (AOS/VS blocked the process because it
had no ready task)

When memory contention occurs, AOS /VS is more likely to swap blocked processes or to remove
pages from them. The processes that have been blocked the: longest are the prime candidates for
these actions.

A resident process cannot be explicitly blocked.

Process Information
You can issue system calls that return information about the calling process, a target process, or
about processes on remote hosts. These system calls can return the following information:

• Process name or PID number.

• PID numbers of son processes.

• Process's use of system resources.

• Class scheduling status.

• Local PID Information: maximum number of PIDs allowed, number of PIDs active, and so on.

• List of active PIDs on a remote host.

Process Name, PID Number, or Pathname
To get the process name or PID number of a process, issue the ?PNAME system call. Often, other
system calls require this information as input.

To get the pathname of a process, issue the ?GLIST system call.

Use of System Resources
To get information on a process's use of system resources, you can issue the ?RUNTM, ?WHIST,
or ?IHIST system call.

The ?RUNTM system call returns the following process information:

• The real time that has elapsed since process creation (in seconds, within the range 0 through
(2**32)-1).

• The CPU time that the process used (in milliseconds).

• The number of blocks read or written.

• The page usage over a period of time (in page-seconds). AOS/VS calculates page-seconds by
mUltiplying processor usage by main memory usage.

093-000335 Licensed Material - Property of Data Gen4itral Corporation 3-17

The ?WHIST system call generates a histogram for a 32-bit process (the ?IHIST system call
generates a histogram for a 16-bit process). A histogram is a data array which provides a global
view of processor activity. To issue the ?WHIST or ?IHIST system calls, a process must be resident.
The calling process can activate only one histogram at a time. To terminate a histogram, the process
must issue the ?KHIST system call.

Each histogram shows which address was being executed at each tick of the system's real-time clock.
As a result, a histogram provides you with a pattern of activity for instructions.

AOS/VS updates the histogram statistics after each tick, or real-time clock pulse.

The ?WHIST system call does not zero out existing histograms in a data array. This allows you to
stop a histogram and restart it without losing data; unless you want to aggregate data, you should
explicitly reset the array to zero before you use it for another histogram.

The ?PST AT system call returns internal statistics about a process and performance information
about all programs that are currently executing.

Identity of Son Processes
The ?PST AT system call also returns a list of those son processes that have PIO numbers between
1 and 255. To return a list of all son processes, issue the ?SONS system call, which returns a list of
all son processes.

Class Scheduling Status
To get the class 10 and the user and program localities of a process, issue the ?PCLASS system
call. The process for which you request this information can be either the calling process or target
process.

Local PID Information
To get information on local PIOs, issue the ?PIOS system call. The ?PIOS system call returns

• The maximum number of PIDs that the system allows (as set in (the VSGEN dialog).

• The number of active PIDs currently on the system.

• The number of processes that currently have PIOs under 256.

Active Processes on a Remote Host
To get a list of the active processes on a remote host, issue the ?GPIO system call.

Execute-Protection Status
To make it easier to fmd errors in your code, you may want to prevent your program from executing
certain logical pages, such as pages that contain data. Therefore, AOS/VS provides execute protec­
tion. The ?EXPO system call allows you to set, clear, or examine a process's execute-protection
status.

Process Traps
A process trap is a hardware error. Each process exists until it terminates voluntarily, becomes
terminated by another process, or encounters a process trap (that is, traps). Anyone of the following
conditions can cause a process to trap:

3-18 Licensed Material - Property of Data General Corporation 093-000335

• The process tries to reference an address that is outside its logical address space or refers to an
invalid address within Ring 7.

• The process tries to use more than 16 levels of indirection in a memory reference instruction.

• The process tries to read, write, or execute code that is protected against any of these actions (for
example, it attempts to write to the write-protected shanrl area of its logical address space). The
?V ALIDATE system call decreases the likelihood of th~s kind of trap by letting you check an
area for access before attempting a read or write.

• The process uses I/O instructions while LEF is disabled and I/O protection is enabled.

• A process tries to execute a privileged instruction in a us.er ring.

When a process traps or terminates voluntarily, AOS/VS us.es the IPC facility to send that process's
father a termination message. If the process terminated on a trap, the IPC message describes the
cause. (See Chapter 7 for more information on termination messages.)

Break Files and Memory Dumps
When a process terminates, you can save the state of certain memory parameters and tables (for
example, the process's UST and TCBs) in two ways.

• You can create a break fIle.

A break fIle is a status fIle in the terminated process's working directory that contains this infor­
mation. You must be logged on to examine a break fIle.

• You can dump the contents of a particular ring to a dump fIle.

A dump fIle contains all of the information that a break me contains, plus a copy of the memory
image. Also, you do not have to be logged on to examine: a dump fIle.

To perform a dump, issue the ?MDUMP system call, which creates a dump fIle wherever you
specify.

There are two ways to terminate a process and explicitly crc~te a break fIle:

• Issue the ?BRKFL system call.

• Type a CTRL-C CTRL-E sequence from the process terminal. (See Chapter 5 for a full de­
scription of terminal control characters and control seqmmces.)

To create a break fIle every time a process traps, set the ?PBRK bit in the ?PFLG offset of the
process's ?PROC packet.

AOS/VS copies the following words to the break fIle:

Status Word Contents

?BRACO

?BRACI

?BRAC2

?BRAC3

?BRPC

093-000335

Value of ACO

Value of ACI

Value of AC2

Value of AC3

Value of the program counter (PC)

licensed Material - Property of Data General Corporation 3-19

Status Word Contents

?BRTID

?BRFP

?BRSP

?BRSL

?BRSB

TID (Task ID)

Value of the stack frame pointer

Value of the stack pointer

Value of the stack limit

Value of the stack base

The breakftle analysis program (BRAN) produces a report that displays information on the termi­
nated process, such as the program type, memory use, the task that was active when the process
terminated, and so on. For more information on running the Breakftle Analysis Program, see the
BRAN entry in the Command Line Interpreter (CU) User's Manual (ADS and ADSjVS).

Unless you specify another pathname, AOS/VS assigns the break me the default pathname

?pid.time.BRK

where

pid is the five-digit PID of the terminated process.

time is the time of the termination, in the form hours....Jninutes......seconds.

AOS/VS creates a break me only when the terminated process has Write or Append access to its
working directory and the working directory has enough disk space for the break me.

Unlike the ?BRKFL system call, which terminates a process and creates a break me, the ?ENBRK
system call does not terminate the process. Instead, if the process traps, issues a CTRL-C CTRL-E,
or is the target of a TERM/BREAK, the ?ENBRK system call allows AOS/VS to create a break
me of whatever user ring you specify. The ?ENBRK system call allows AOS/VS to create a break
me, it does not explicitly direct it to do so.

Transferring Process Control to the Debugger Utility
The ?DEBUG system call allows you to transfer control to the Debugger utility while your process
is running. By including the ?DEBUG system call in your program, you can set up predefmed
breakpoints for testing purposes. Another way to call the Debugger utility is to choose the ?PFDB
option in offset ?PFLG of the ?PROC packet.

You can use the ?DEBUG system call to examine or modify inner-ring user contexts. The user
debugger does not base its protection logic upon the ring-maximization protection scheme. Instead,
all access is based upon the ACLs of the inner-ring segment image.

To examine a user ring, the caller must have Read access to the segment image me. Also, the caller
must have Write access to the segment image me to permit any modification (including setting
breakpoints) of the user ring. (To set breakpoints in any user ring, you must always have Write
access to Ring 7.)

3-20 Licensed Material - Property of Data General Corporation 093-000335

Linking Programs Together with the lCHAIN System Call
The ?CHAIN system call allows you to link together several steps of a long, complex program set,
where each program is a separate program fIle. The programs may be of different types (i.e., 16-bit
and 32-bit). This is useful if you're approaching maximum PID counts on your system or if you
lack the privilege to create unlimited sons. The ?CHAIN system call actually releases the system
resources that one process is using, and then executes a new program. The ?CHAIN system call
transfers the following attributes to the new program:

• The username, process name, PID, terminal, search list, default ACL, and working directory of
the calling process.

• The generic fIle associations of the calling process (for example, the fIlenames associated with the
generic fIles @INPUT, @OUTPUT, @LIST, and @DATA).

• The privileges, process type, and priority of the calling process.

When a process chains to a new program, AOS/VS perfonns the following steps:

1. Unloads all of the process's inner user rings.

2. Terminates all son processes that were previously creatled by ?PROC system calls issued from
the inner user rings.

3. Breaks the connection, which, in turn, causes AOS/VS to revoke access privileges to protected
shared fIles.

Loading Programs into Inner Rings
To load program fIles into a specific rings, you can issue the:: ?RINGLD system call. Then, to fmd
out what program was loaded into the ring, you can issue thc~ ?RNGPR system call. If you want to
prevent the ?RINGLD system call from loading a runtime routine into a particular ring, you can
issue the ?RINGST sytem call. (See Chapter 2 for more information on the ring structure.)

To cross from an outer ring to an inner ring, a program must have access to the proper ring gates;
that is, entry points to the code in the inner ring. When you write a program to execute in rings 4,
5, or 6, you must defme an array of the legal entry points (gates).

In the module in which you defme your gate array, you must declare the gate entry points as .EXTG
(external gate). Also, in your source module, you must declarc~ your gate entry points as .ENT (entry
point). (See the GATE.ARRA Y sample program in Chapter 5 for an example of using the .EXTG
pseud<H>p.) The Principles of Operation ECLIPS£® 32-Bit Systems manual explains how to ref­
erence gates and how to set up gate arrays.

Figure 3-5 shows how a process can span rings. For the purpose of the figure, assume that the main
program has used the ?RINGLD system call to load a program fIle into Ring 6.

093-000335 Licensed Material - Property of Data General Corporation 3-21

Main Program

Figure 3-5. Ring Structure

Access from
Ring 6 through

gate in Ring 6

Full access from
inner rings to
outer rings

Process and Memory Sample Programs
This chapter ends with examples that demonstrate the use of system calls to manage processes and
memory.

Creating a Swappable Son Process: the SON Subroutine
The following subroutine, SON, creates a swappable son process. The son process runs program
SPEAK.PR, which is an IPC sample program. (See Chapter 8.)

NOTE: To use the SON subroutine, you must have the Create Without Block privilege in your
user proflle.

; Get progr. nellie to ?PROt:
~: WSSVS 0

XLEFB 0, PRGtIf*2

.TITLE S'*

.ENT S'*

.tIB.

xwsn
?PROt
Eft
WRTN

0, PKT +?PStIf
PKT
~

;Default partition 4 .

; Save rettrn frCIII XJSR.
; Byte pointer to the progr.
;naE.

; Put in ?PROC packet.
;Create process.
; Report error and quit.
; Retlrn to caller.

3-22 Licensed Material - Property of Data General Corporation 093·000335

PRGt6t: . TXT "SPEAK.PR"

ERROR: WlDAI ?RFEC'?RFCF!?RFER. 2 ;Error flags: Error code is in
;ACO (?RFEC). message is in

;CLI format (?RFCF). and

;?PROC packet:

PH: .au: ?PlTH

.LOC
• WORD

.LOC PKT?PPRI

.00 -1

PKT+?PFLG
o

· LOC PKT +?PStIt
· DMIm PRGtW2

. LOC PKT+?PIPC

.DOD -1

· LOC PKT +?Ptt.t
.DOD -1

· LOC PKT +?PtBt
.DWORO -1

. LOC PKT + ?PDIR

.ODD -1

· LOC PKT +?PC«*
.DWORD 0

093-000335

;father should handle this as
;an error (?RFER).
; Return to CLI.
;Report error and quit.

;Allocate enough space for
; packet.

; Default process creation
; specifications. (See the
; descripti100 of ?PROC in
; Chapter 13.)

;Default priority of son
; process to same as father.

;Byte pointer to pathname of
;program file for son to
; execute .

; No IPC message header to
;send to son (default is -1).

;Default son's simple process
; naE to ASCII representation
;of its PID.

;Default l18XiJuD rumer of
; son's logical pages to same
;as father .

; Default name of son' s working

;directory to salE as father

; Default n_ of son' s
;OCQNS(LE device to salle as
; father

Licensed Material - Property of Data G.aneral Corporation 3-23

. Lot PKT + ?PCAL
• WORD -1 ; The default rumer of system

;@lls son can issue
;concurrently is two.

.LOC PKT+?PWSS
• WORD -1 ; Default son's EXiDun working

;set size to no limit.

. Lot PKT+?PlRt ;Byte pointer to son's
;username .

• DWORO -1 ; Default son's usemame to
;saIIIe as father.

.LOC PKT + ?PPRY ;Son's privileges .
• WORD ?PYIP ;Son an issue ?ISEtII and

;?IS.R.

.LOC PKT + ?PPCR
• WORD 0 ;Son can create no sons.

.LOC PKT+?PIItI
• WORD -1 ; Default son's miniDun working

; set size to no miniIun.

.LOC PKT+ ?PIPF
• DWDRD ;SOn has no @INPUT file .

.LOC PKT+?POFP

.DWORO 0 ; Son has no OOUTPUT file.

.LOC PKT+?PLFP

.DWDRD 0 ;Son has no @LIST file.

.LOC PKT+?PDFP

.DWDRD 0 ;SOn has no @OATA file.

.LOC PKT + ?SM:H

.DWDRD -1 ; Default max:iIUD processor time
;allotted for son to remainder
;of father's time limit.

. LOC PKT + ?PLTH ;End of packet .

. END ~ ; End of SON progrCIII.

3-24 Licensed Material - Property of Data General Corporation 093-000335

Getting and Displaying Runtime Statistics: the RUNTIME Program
The following program, RUNTIME, gets its own runtime statistics and displays these statistics on
the terminal.

First, RUNTIME opens the console, and then it issues the ?RUNTM system call, and finally, it
converts the runtime statistics to ASCII decimal values and displays them on the terminal screen.
Although RUNTIME gets its own runtime statistics, you can use it to get any process's runtime
statistics by passing the process's filename.PR or the process's PID. To use RUNTIME as a sub­
routine, start with a proper save and end with a proper return .

. TITlE RlmlfE

. ENT RlmlfE, cooau

.~a

;Open terminal for liD.

RtJfTltE: ?OPEN
WBR

?WRITE -
CON
ERRm

CON
ERROR

;Open terminal (CON) 1:or 110.
; Report error and quit.

; Display ESsage on te'rminal.
; Report error and QUit.

; Call ?RIMTM to get statistics.

LOOP: WLDAI
?RIMTM
6
XWLDA

XLEFB

XJSR

XLEFB

XWSTA

?WRITE

ER

XWLDA
XLEFB

093-000335

-1,0
RPKT
ERROR
l.MSECS

2,MSECMSG*2

COOERT

0,MSECMSG*2

0, CON + ?lBAD

CON

ERRm

1,PSECS
2,PSECMSG*2

; Check self.
;Get statistics in RPKT.
; Report error and quit.
; Get t1JIe in milliseconds frCIII
;RPKT.

; Byte adct'ess of message that
; describes llilliseconds
; elapsed.
;Convert milliseconds ,elapsed
; to ASCII decimal and put
;converted value in
;lIilliseconds elapsed IleSsage.

; Get byte pointer to
; IIilliseconds elapsed IleSsage.

; Put lli11iseconds elapsed
;leSsage in liD packet.

; Display lllilliseconds t~lapsed
; message on tenainal.
; Report error and quit.

; Get page-seconds fran RPKT.
; Byte address of messa;Je that
; describes page-seconds
; elapsed.

Licensed Material - Property of Data General Corporation 3-25

XJSR ctJNERT

XLEFB 0,PSECMSG*2

XWSTA 0, CON + ?IBAD

?WRITE CON

I3R ERRm

; See 1 f user wants to stop.

XLEFB 0,BlF*2

USTA 0, CON + ?IBAD

?READ CON
I3R ERRm

tt..DAI 'ST' ,0
Xtt..DA 1,BlF

WStE 0,1

I3R BYE

I3R UXP

; Error handler and return.

ERRfJt: tt..DAI ?RFEC!?RFCF!?RFER,2

BYE: WSL8 2,2
?REMN
I3R ERRm

; Open and I/O packet for tenll1nal.

CON: .BLK ?IBlT

. LOC CON + ?ISTI

. QI) ?ICRF!?RTDS! ?(FlO

;Convert page-seconds elapsed
; to ASCII deciJllal and put
; converted value in
; page-seconds elapsed message.
; Get byte pointer to
; page-seconds elapsed message.

; Put page-seconds elapsed
;1eSSaQe in 1/0 packet.

; Display page-seconds elapsed
; message on terminal.
; Report error and ~ t.

; Get byte pointer to I/O
; buffer.
;Put in 1/0 packet.

;Look for terminator.
;Report error and ~ t.

;Put ST in ACO.
;Put first word of buffer in
;AC1.

;Skip next instruction if
;f1rst word 1s not ST.
; If first word is ST, go to
;BYE.
; If first word is not ST, do
;UXP again.

; Error flags: Error code is
;in ACO (?RFEC), message is in
; CLI format (?RFCF), and
;father should handle this
; as an error (?RFER).

; Good return flags.
;Return to father.
; ~ error re1lrn.

;Allocate enough space for
; packet.

;File specifications .
; Change forRlat to
; data-sensi ti ve records and
; open for if1)Ut and output.

3-26 Licensed Material - Property of Data General Corporation 093-000335

.LOC C(J4+?I~

• WORD -1

.LOC C(J4+?IBAD

.DWORD lTEXT*2

.LOC C(J4 + ?IRCL
• WORD 120 .

.LOC C(J4 +?IFtf>

.DWORD CONS*2

.LOC C(J4 + ?IDEI..
• DWORD -1

. LOC C(J4 +?IBL T

; Default physical block size
; to 2 Kbytes.

; Set byte pointer to record
; 110 buffer.

; Record length is 120
; characters.

; Byte pointer to pattniJle.

;Dellmtter table addre;s .
; Use default delimi. t~>: 0011.
;tEW LItE. form feed. ,and
;carr1age rett.rn (default is
;-1) .

;End of packet.

; Filename, start message, and buffer. A. ROC 1fo11ows.
CONS: . TXT "6C0NSll.E" ; Use generic nane.

lTEXT: . TXT "I g1 ve nJlt1me statistics on a process.
Type ST[N..] to return to father. <212> <12>"

BlF: .BLK (BlF-CONS) *2) ;Use rumer of bytes in
;lIeSsage .

. ROC 0 ; ResI.ae listing all.

; Messages to include converted statistics. .ROC here.

MSECMSG: . TXT milliseconds elapsed. < 12> "
PSECMSG: . TXT page-seconds elapsed. Type

ST[N..] to stop. type another character to loop. <212> <: 12> "
.ROC 0

;?RlJfTM packet.

RPKT: .BLK ?GRLTH ;Allocate enough space for
;packet.

seeS: .LOC RPKT+?GRRH
.DMlRD 0 ;AOS/VS returns el~1 tile

; in seconds.

MSECS: .LOC RPKT + ?GRCH
. DOD 0 ; AOS/VS rebrns el~1 Processor

; tiE in mlliseconds.

093-000335 Licensed Material - Property of Data General Corporation 3-27

; See 1 f user wants to stop.

XLEFB 0.BlF*2

XWSTA O. CON + ?IBAD

?READ CON
WBR ERROR

tl.DAI 'S1' .0
XNlDA 1.BlF

WSNE 0.1

WBR BYE

WBR LOOP

;Error handler and return.

ERROR: tulAI ?RFEC! ?RFCF!?RFER. 2

BYE: WSlE 2.2
'?RE'TmN
WBR ERROR

;Open and I/O packet for terminal.

CON: .BlK ?IBLT

. LOC CON + ?ISTI

.WORD ?ICRF!?RTDS!?OFIO

.LOC CON+?I~

• WORD -1

.LOC CON + ?IBAD

.DWDRD lTEXT*2

.LOC CON + ?IRCL

. WORD 120 .

; Get byte pointer to 110
; buffer.
;Put in I/O packet.

;Look for tenminator.
;Report error and QUit.

;Put ST in ACO.
;Put first word of buffer in
;AC1.

;Skip next if first word is
;notST.

;If first word is ST. go to
;BYE.
; If first word is not ST. do
;LOOP again.

;Error flags: Error code is
;in ACO (?RFEC). message is in

;CLI format (?RFCF). and
;father should handle this
; as an error (?RFER).

; Good retlrn flags.
;Return to father.
;?REll.R4 error return.

; Allocate erlOlql space for
; packet .

;File specifications.
; Change fonnat to data-
; sensi ti ve records and open
; for input and output.

; Default physical block size
; to 2 Kbytes.

;Byte pointer to record I/O
;buffer.

;Record length is 120
; characters.

3-28 Licensed Material - Property of Data General Corporation 093-000335

· LOC C(w +?IFNP
.DWORD CONS*2

· LOC C(w +?IOEL
. DMlRD -1

· LOC CON +?IBL T

; Byte pointer to pathname.

;Delimiter table addr~ss .
;Use default delimiters: null.
; tU LIfE. form feed. ,and
;carriage return (def~llt is
;-1).

;End of packet.

; Filename , start message. and buffer. A NOLOC 1 follows.
CONS: . TXT "OC(WS(ll" ; Use generic rae.

lTEXT: . TXT "I give nJ'ItiJIe statistics on a process.
Type ST[tI.] to return to father. <212> < 12> "

BtF: .BLK (BtF-CONS) *2) ;Use rutler of bytes ill
;message.

· t«JI..OC 0 ; Resune listing all.

; Messages to include converted statistics. . NOLOC here.

MSECMSG: . TXT milliseconds elapsed. < 12> "
PSECMSG: . TXT page-seconds elapsed. Type

ST[N..] to stop. type another character to loop. <212><:12>"
.NOLOC 0

;?RlMM packet.

RPKT: .BlK

SECS: .LOC
.DWfR)

MSECS: .LOC
.DWORD

10: .LOC
.DWORD

PSECS: .LOC

.DWORD

?GRLTH

RPKT+?GRRH
0

RPKT+?GRCH
0

RPKT + ?GRIH
0

RPKT+?GRPH

0

;Allocate enough space for
;packet.

;AOS/VS returns elapse(1 tile
; in seconds.

; AOS/VS returns elapse(1 Processor
; tile in ailliseconds.

;AOS/VS returns number of
; blocks read or wri ttel'l.
; Page usage over elapsEid Processor
;tiE.
; AOS/VS returns page us.age
; over elapsed Processor tile in
; page-seconds .

. LOC C(w +?GRL TH ;End of packet.

093·000335 Licensed Material - Property of Data General Corporation 3-29

; CONVERT routine converts binary value into its decillal ecJJi valent and
; puts 1 t in a text string. AC1 contains the value and AC2 contains
; the byte address of the text message.

CONVERT: WSSVS 0 ;Save return.
RlV 2,3 ; Use AC3 to shift byte pointer.

WADI 3,3 ; Add integer 3 to byte address.
N.DAI 10. ,2 ;Put 10 in AC2

DlOOP: WSL8 0,0 ; Zero ACO (higl-order portion
;of dividend). AC1 still
; contains low-order portion of
; dividend.

WDIVS ; Divide by 10, put quotient in
; AC1, and put remainder in ACO.

IORI 60,0 ; OR in 60 for ASCII rumer.
WSTB 3,0 ;Store ACO byte in byte

; address of AC3.

WSBI 1,3 ; Decrement byte address.
t.l)V 1,1,Stfi ; Is quotient O?
~TN ;If quotient is 0, return to

; caller.
reA DlOOP ; If quotient is not 0, do

; another digit.

. BI) RlIfTlfIE ; End of RlIfTltE program .

3-30 Licensed Material - Property of Data General Corporation 093-000335

Loading a Program into an Inner Ring: the R.INGLOAD Program

The following program, RINGLOAD, loads program INRING into an inner ring. Then, RING­
LOAD uses an LCALL instruction to call INRING. RINGLOAD assumes that fIle INRING.PR,
which was linked from INRING and GATE.ARRA Y exists. (GA TE.ARRA Y is at the end of this
section.)

. TITlE RltG..OAD

.ENT RltG..OAD

.tfR

; Open terminal for I/O and issue ?RINGlD to load program into in'ler
;r1ng.

RltG..OAD: ?(lIEN CON
ER ERRm

?WRITE CON
ER ERRm

XLEFB O,PNAME*2

?RINGlD
ER ERRm

LCAll I~ING,O,O

;Open CON (terminal) 'for I/O.
;?OPEN error return.

; Display message on tl!nlli.nal.
;?WRlTE error return.

; Get byte pointer to ItfUNG
; name.

;Load I~ING.
;?RINGlD error return.

; Call ItfUNG and set the index
; and arguaent COlI1t t() O.
; Report ItfUNG error.

; Back frCIII I~Itt3. Depart wi ttl IleSsage for CLI.

XLEFB O,hES2*2 ; Get byte pointer to 1'arewell
;message.

XWSTA O,CON+?IBAD ;Put in I/O packet.

?WRITE CON ; Display IESsage on tenD1nal.
ER ERRm ; ?WRITE error return.

ISlE 2,2 ; Set return flags for normal
;retlrn. - BYE ;Done. Give message and
;depart.

; lmer-r1ng program and current program error handlers.

I~: llDFB O,ItlES ;Get imer-ring program error
;message.

LIST AD, CON + ?IBAD ;Put in I/O packet.

?"UTE CON _ ERROR

093-000335

; Display message on terminal.
;?WRlTE error IeSsage.

Licensed Material - Property of Data General Corporation 3-31

ERRm: WlDAI ?RFEC! ?RFCF!?RFER, 2

BYE: ?RE"TlM
ER ERROR

; Error flags: Error code is in
;ACO (?RFEC) , message is in
; CLI format (?RFCF) , and
; father should handle this as
; an error (?RFER).

; Return to CLI.
;?RETURN error return.

; Definition of 1mer-ring program ring bracket and gate. AOS/VS uses
;this, instead of the progrllll name (INRING) to access gate and
; inner-ring progrllll ESsages. A. NOlOC 1 follows.

INRING = 5S3 + 0 ; Ring 5 + first gate.

PNAtE: • TXT "INRING.PR" ; ProgrCIII naae is INRING.

fES1: . TXT "I'm RINGLOAD. I l1li about to ?RINGlOAD progrllll
INRING. <12>"

fES2: . TXT "<212>I'm RINGlOAD. 1'1 back frOOl INRING, and I'm
terminating. < 12> "

ItfES: .TXT "<212>ERROR IN ItfB-RING PROGRAM. <12>"
· NOlot 0 ; Resune listing all.

;Open and I/O packet. (You need this packet for I/O.)

CON:

3-32

.BL.K ?IBLT

· LOC CON + ?lSTI
• WORD ?ICRF!?RTDS! ?OFIO

.LOC CON +?It.fiS
• WORD -1

.LOC CON+?IBAD

.DWDRD fES1*2

.LOC CON+?lRCL
• WORD 120 .

.LOC CONS + ?IFNP

. DOD CONS*2

;Allocate enough space for
;packet.

;File specifications.
; Change format to
;data-sensitive records and
;open for input and output.

; Default physical block size
; to 2 Kbytes.

; Byte pointer to record 110
; buffer.

;Record length is 120.
; characters.

; Byte pointer to pathnalne.

Licensed Material - Property of Data General Corporation 093-000335

. LOC CON +?I[R

. ODD -1

. LOC CON + ?lBLT

CONS: . TXT "OCONSOLE"

. BIl RINGLOAD

The INRING Program

; Delill1 ter table addrE!Ss .
; Use default delimiters: null.
; tB LINE. form feed. and
; marriage retum (defclUl t is
;-1) .

;End of packet.

;Use generic name.

; End of RINGLOAD progr-an .

Program RINGLOAD loads the following program, INRING, into Ring 5. Then, RING LOAD
uses an LCALL instruction to call INRING.

INRING saves the return address, opens the terminal, writes messages, and invokes the Debugger
(so you can explore the inner ring). To return to RINGLOAD in Ring 7, type ESC R.

Except for the I/O packet, all code in INRING is shared.

You must link INRING with GATE.ARRAY (the last program in this section). Depending on the
LCALL name definition in GATE.ARRA Y, the link that the gate defines in GATE.ARRA Y, and
the Link switch that you use, you can execute INRING in Rings 4, 5, or 6. In this case, RING LOAD
defined the LCALL name as Gate 5 (5S3), GA TE.ARRA Y defined Gate 5, and the Link command
line was X LlNK/RING=5INRING GATE.ARRAY .

. TITLE IhfiING

. ENT IhfiING

.tt£. 1
.EXTl GATE. ARRAY

;Define a two-word pointer to the gate array.

. LOC 34

.DWDRD GATE.ARRAY
; Locations 34 and 35 .
; Pointer.

; save the rettrn. open the terminal. write the message. and enter the
; debugger.

INRING: WSAVR 0 ; save frcne (ACs. PC in AC3).
?{PEN CON ;~ terminal (CON) for 110.
WBR ERTN ;?OPEN error return.

?WRITE CON ; Display message frml Ring 5
; on terminal.

B ERTN ; Report error and QUi.t.

?DEBOO ;Enter debugger.

B ERTN ; Report error and QUl.t.

LLEFB D.tES2*2 ; Get byte pointer to return
;message.

LWSTA O. CON + ?lBAD ;Put in I/O packet.

093-000335 Licensed Material - Property of Data General Corporation 3-33

?WRITE CON

WBR ERTN

; Done. Ready for good return to caller.

LDAFP 3
XWISZ 0,3

WRTN

; Display another JDeSsage on
;terminal.
; ?WRITE error return.

;Get frame pointer in AC3.
; Increment return address for
;normal return to process
; issuing ?l..CALl.
; Return to caller.

;INRING error handler. Returns error to outer-ring caller, not CLI.

ERTN: LDAFP
LWSTA

WRTN

3
O,?OACO,3

;Text messages. .NDLOC 1 follows.

;Get frame pointer in AC3.
; Put error code (ACO) in saved
;frame's ACO.
; Return to LCALl process's
; error return.

hES1: . TXT ''I'm ItfUNG. I'll in the inner ring. I'm about to debug.
Type ESC R to proceed. <212><12>"

hES2: .TXT "<212><212>FrOll IhfiING. I'm about to WRTN.<12>"

. NOl.OC 0

-t1B.

; Open 110 packet for OC(JGU.

CON: .BLK ?lBLT

· Lac C'* + ?lSTI
.WORD ?ICRF!?RTDS!?IFIO

· Lac C'* + ?1t.fiS
.WORD -1

· Lac C'* + ?IBAD
.DWmD hES1*2

· Lac C'* +?lRCL
.WORD 120.

; Resune listing all .

; Use lIlShared code for packet,
; because prograa and AOS/YS
;lrite into it.

;Allocate enough space for
; packet.

;File specifications.
; Change format to data-
; sensitive records and open
; for input and output.

; Default physical block size
; to 2 Kbytes.

;Byte pointer to record 1/0
;ooffer.

; Record length is 120
; characters.

3-34 Licensed Material - Property of Data General Corporation 093-000335

· LOC CON + ?IFtf>
.DOD CONS*2

· LOC CON +?IOEL
. DWORD -1

The GATE. ARRAY Program

;Byte pointer to patm_.

;Oelimiter table addr~)s .
; Use default delm ter!): null.
; tU LItE. fom feed. ,and
;marriage retlrn (default is
;-1).

The following program, GATE.ARRA Y, defmes the gate array. Generally, you must defme the
gate array in a separate module. A gate array module mUist contain .EXTG PROG-ENTRY­
NAME, where PROG-ENTRY-NAME is the start entry name in the program that will be accessed
through the gate. Also, you must link the gate array module: with the inner-ring program. In this
case, the Link command line is

X L1NK/ RING =5 IN RING GATE.ARRAY

.TITlE GATE.ARRAY

.EXTG ItIUt«i

.ENT GATE. ARRAY

.t1B. 1 ; Shared code for gener;a1 use .
• ENABLE ABS

GATE. ARRAY: .DWORD 1 ; Gate array. one gate.
.ODD (RIt«i7- ; LIt« will determine tjhe

RIt«i5) I ItfUt«i

RIt«i7 = 7S3
RIt«i5 = 553

. END GATE. ARRAY

093-000335

; address. A progrCII in f!rIy

;ring Cf!rI access the gate.

;B1ts 1 3 specify Gate 7.
;B1ts 1 3 specify Gate 5.

;End of GATE.ARRAY progral .

End of Chapter

Licensed Material - Property of Data Gen'ltral Corporation 3-35

Chapter 4
Creating and Managing Files

You can use the following system calls to create and manage files:

?CGNAM Get a complete path name from a channel number.
?CPMAX Set maximum size for a control point directory (CPD).
?CREATE Create a file or directory.
?DACL Set, clear, or examine a default access control list.
?DELETE Delete a file entry.
?DIR Change the working directory.
?FSTAT Get file status information.
?GACL Get a file entry's access control list.
?GLINK Get the contents of a link entry.
?GLIST Get the contents of a search list.
?GNAME Get a complete pathname.
?GRNAME Return the complete pathname of a generic file.
?GNFN List a particular directory's entries.
?GT ACP Get access control privileges for specific file and username.
?INIT Initialize a logical disk.
?RECREATE Recreate a file.
?RELEASE Release an initialized logical disk (LD).
?RENAME Rename a file.
?SACL Set a new access control list.
?SATR Set or remove attributes for a file or directory.
?SLIST Set the search list.

093-000335 Licensed Material - Property of Data General Corporation 4-1

This chapter describes the AOS/VS file structure and the system calls that you use to
create and maintain files and directories.

A file is a collection of related data that is treated as a unit. File also refers to the disk
blocks used to store files. Each file has a filename by which you and AOS /VS address
that file. You can create files and assign them filenames by using the ?CREA TE system
call, the CLI, or one of the text editors AOS/VS supports. Or, you can create files as
you assemble, compile, and link your source code.ln the latter case, the utilities assign the
filenames.

There are two general types of devices that allow you to store and retrieve file information.
You can use multifile devices, such as disks and magnetic tape, to perform file I/O and
to store and retrieve files. Other devices, such as terminals, you can use strictly for file
I/O.

Disk File Structures
Each file consists of one or more file elements. A file element is a set of contiguous
512-byte disk blocks. (Contiguous disk blocks are blocks with sequential addresses). The
default file-element size is 4 (four disk blocks per element), or whatever file-element size
you selected during the system-generation procedure. (Refer to the How to Generate and
Run AOS/VS manual for more information on the system-generation procedure.) You can
also specify a file-element size when you create a file.

AOS/VS always rounds file-element sizes to the next higher multiple of the default file­
element size. For example, if you create a file with a file-element size of 5 and the default
file-element size is 4, AOS/VS rounds the file-element size to 8.

AOS/VS allocates disk space to a file based on its file-element size. For example, a file
with a file-element size of 4 grows in units of four contiguous blocks.

The blocks that make up a file element are always contiguous, although the file elements
may not be. For example, a file with a file-element size of 4 may consist of a number of
scattered four-block elements.

To keep track of each file's file elements, AOS/VS maintains one or more index levels
for each disk file. An index is a single block that lists the address of each file element.
As a file exhausts one index, AOS/VS provides a superior index, to a maximum of three
index levels. A pointer in each index level links that level with its immediate subordinate
level. Figure 4-1 shows typical growth stages for a file with a file-element size of 4.

4-2 Licensed Material - Property of Data General Corporation 093·000335

Initial File Element
Block (512 bytes)

} Data

One-Level Index

} Data

~-
Index •

•
•

} Data

Two-Level Index

I L
1

} Data

Index •
•
•

I 1
r

Index
} Data

•
•
•

1 ~ r
Index

10-03289

Figure 4-1. File Growth Stages

093-000335 Licensed Material - Property of Data Gttneral Corporation 4-3

Files with larger file-element sizes have fewer separate elements and, therefore, require
fewer index levels. Files with smaller file-element sizes are easier to store, however, because
each block in a file element must be contiguous. (It is easier for AOS/VS to find 8
contiguous blocks, for example, than to find 500.)

The maximum size for a disk file is 2**23 blocks. You cannot use all the blocks in the
total disk storage, however, because AOS/VS must reserve some for index blocks, to store
disk bootstraps, and for other purposes.

Directory Creation

Generally, you group related disk files into directories for convenience. A directory is a
file that contains information about a particular set of files. For example, you might create
a directory called PL_l to group all PL/I source files, or a directory called UPD to
contain all user profiles. The AOS/VS filename conventions also apply to directory names.

AOS/VS organizes directories into a hierarchical tree structure similar to the process tree
structure. (See Figure 4-2.) The initial directory, called the root, is superior to all others
in the hierarchy. A colon (:) represents the root.

Directory

Subdirectory ~ PL1 D<LL

I
File Entries ~ PL 1.PR DGL.PR

UTIL

~ System Root

UDD

COMMON

DFSHEET

PROGS

UPD

BIFF

IAN

FUMBLE

PL 1.TEMP DGL.ST

10-03270

Figure 4-2. Sample Directory Tree

4-4 Licensed Material - Property of Data General Corporation 093-000335

Directory Entries
Each directory contains a directory entry for everyone of its subordinate files. A typical
directory entry contains the name of the file, its file type, a list of the access privileges
for various users, and other information unique to the file type. For example, a directory
entry for an IPC file contains such additional information as the PID of the process that
created the file and the file's local port number. AOS/VS recognizes 256 different types
of directory entries, numbered from 0 through 255.

Data General reserves types 0 through 127; the user parameter files PARU.32 and PARU.16
define these types. Users can define directory entry types 128 through 255.

File Types
A file's characteristics and function determine its file type. Table 4-1 lists the AOS/VS
file types.

User data files (file type ?FUDF) are not executable files. Typically, you use ?FUDF files
to store the object files or text files you create with one of the text editors.

As Table 4-1 indicates, there are three types of program files:

• ?FPRV files, which are developed under AOS/VS.

• ?FPRG files, which are developed under AOS.

• ?FUN files, which are developed under DG/UXTM and MV /UXTM operating systems.

Table 4-1. File TypE~s

Mnemonic Type Spedal Attributes/Restrictions

?FUDF User Data File Usually applies to source or object files.

?FfXT Text File Should contain ASCII text.

?FPIP Pipe File A transient file for use in transferring data
between files.

?FPRG AOS Program File Program file for use under AOS (16-bit code).

?FPRV AOS/VS Program File Program file for use under AOS/VS (16-bit
code or 32-bit code).

?FUNX VS /UNIX file File for use under DG lUX and MV lUX op-
erating systems.

?FDIR Disk Directory None.

?FCPD Control Point (See the "Disk Space Control" section in this
Directory chapter.)

?FLNK Link File None.

?FSTF Symbol Table File Produced by the Link utility and used primarily
by AOS/VS.

?FUPF User Profile File Used by mier profile editor (PREDITOR) and
EXEC.

?FSDF System Data File None.

093-000335 Licensed Material - Property of Data General Corporation 4-5

Table 4-1. File Types

Mnemonic Type Special Attributes/Restrictions

?FIPC IPC Port Entry (See Chapter 8.)

?FMTF Magnetic Tape File None.

?FGFN Generic Filename Refers to the generic filenames; that is,
@OUTPUT, @LIST, @DATA, etc.

?FGLT Generic Labeled Tape None.

?FGLM Generic Labeled Media None.

?FDKU Disk Unit None.

?FSPR Spoolable Peripheral None.
Directory

?FQUE Queue Entry None.

?FLDU Logical Disk Cannot create with the ?CREA TE system
call. (See "Logical Disks" in this chapter.)

?FMCU Multiprocessor Cannot create with the ?CREATE system
Communications Unit call.

?FMTU Magnetic Tape Unit Device for accessing magnetic tape files; can-
not create with the ?CREATE system call.

?FLPU Data Channel Line Cannot create with the ?CREATE system
Printer call.

?FNCC FORTRAN Carriage None.
?FPCC Control
?FFCC
?FOCC

?FCRA Card Reader Cannot create with the ?CREA TE system
call.

?FPLA Plotter Cannot create with the ?CREA TE system
call.

?FCON Terminal (console), Cannot create with the ?CREATE system
hard copy or video call.
display.

?FSYN Synchronous Cannot create with the ?CREA TE system
Communications Line call.

You cannot execute an AOS-written program under AOSjVS unless you relink it with
the AOSjVS Link utility. (In some cases, you must reassemble or recompile an AOS
program file to execute it under AOSjVS.) If you try to execute an ?FPRG program file
under AOSjVS, it returns the ERIFT (illegal file type) error code.

Directory Access
Each process that runs under AOSjVS has a working directory. A working directory is a
process's reference point in the overall directory structure and its starting point for file
access. (In other words, your working directory is the directory you are working in.) You
can use any directory as a working directory, provided you have proper access to it. In
most cases, you will probably access files from your current working directory. When you
refer to a file that is not in your working directory, you must refer to it by a pathname,
unless you've included the file's parent directory in the search list for your process.

4-6 Licensed Material - Property of Data General Corporation 093-000335

If you want to change your working directory so that you can access files that are not
currently in it, issue the ?DIR system call. Also, the ?DIR system call allows you to return
to your initial working directory after you are finishc~d working elsewhere.

A search list is a list of directories that AOS/VS searches if it fails to find the file that
you want in your working directory. You can use the ?SLIST system call to create a
search list or to change the contents of an existing search list. To examine your current
search list, issue the ?GLIST system call.

Filenames
A filename is a byte string that consists of at least one, or as many as 31, ASCII characters.
The legal filename characters are

• Uppercase and lowercase alphabetic characters (a--z, A-Z).

• Numerals 0 through 9.

• Period (.).

• Dollar sign ($).

• Question mark (?).

• Underscore (_).

AOS/VS treats uppercase and lowercase alphabetic c,haracters as the same.

To rename a file, issue the ?RENAME system call.

In general, you can use any conventions you like to name files and families of files. Table
4-2 lists the filename conventions used by AOS/VS and its utilities.

Table 4-2. Filename COlllventions

File Filenames End In

Assembly language source files .SR
eLI macro files .eLI
Object files .OlB
Program files .PR
Temporary files . TMP and begin with ?
Library files .LB

You create source files for a program's source code, and then assemble or compile them
to produce object files. One or more linked object modules and/or library files make up
an executable program file. In general, you use temporary files for data that requires only
short-term disk storage.

093-000335 Licensed Material - Property of Data General Corporation 4-7

Pathnames
A pathname specifies the exact location of a directory or file in the file structure. For
example, you could use the following pathname to locate directory EAGLE, an entry in
the superior directory PAT:

:UDD:PAT:EAGLE

Directory PAT is subordinate to directory UDD, which is subordinate to the system root,
represented by the colon (:).

A path name can consist of

• A prefix alone (such as a colon to indicate the system root).

• An optional prefix followed by the name of a directory or file.

• Pairs of prefixes and directory names or filenames.

The prefix directs AOS/VS to a particular point in the file structure. Table 4-3 lists the
valid pathname prefixes.

Table 4-3. Valid Pathname Prefixes

Prefix Meaning

: Start at the system root directory.

= Start at the current working directory.
A (Caret or SHIFf-6) Move up to the immediately superior directory. (You can

use more than one caret in a pathname.)
@ Start at the peripheral directory (:PER).

The peripheral directory (:PER), which is subordinate to the root, contains the names of
generic filenames that refer to classes of I/O devices, and the names of system devices.
(See Chapter 5 for more information on generic filenames and the peripheral directory.)

The = prefix directs AOS/VS to search only the working directory. Generally, when a
pathname has no = prefix and the file that you want is not in the working directory,
AOS /VS checks the search list. The = prefix prevents AOS /VS from doing this.

To construct a pathname to a directory other than your working directory, use either a
single prefix, or one or more pairs of prefixes and directory names. For example, the
prefixes cause AOS/VS to move to the directory two levels above your current working
directory. The pathname :UDD:PAT explicitly directs AOS/VS to directory PAT, which
is subordinate to both UDD and the root.

A full pathname traces the path of a particular file all the way from the root to the file's
parent directory. The last entry in a full pathname is :filename, where filename is the
name of the file you want to access. The following is a complete pathname to the file
GLOSSARY, which is an entry in directory EAGLE:

:UDD:PAT:EAGLE:GLOSSARY

4-8 Licensed Material - Property of Data General Corporation 093-000335

Figure 4-3 illustrates the use of path name strings for a sample directory structure.

Many system calls require pathnames as arguments. VVhen you give a pathname as an
argument, you must terminate the path name with a nu.ll <000> byte (unless otherwise
indicated in the AOSjVS and DVS System Call Dictionary).

Similarly, when the system passes pathnames to your programs, it too terminates the
pathname with a null byte. Consequently, when you use a system call that returns a
pathname (or a simple filename), you must allow sufficient buffer space to hold both the
pathname and the null byte that terminates it.

The ?GNAME and ?CGNAM system calls both return a file's complete pathname, starting
with the root. However, the ?GNAME system call requires a filename or portion of a
pathname as input, while the ?CGNAM system call requires the file's channel number as
input. (We describe channels in Chapter 5.)

'C System Root

/~
UTIL A

/ ~EE~/ ~
Directory ------~~~ LANG B C

I / /~ file3

Subdirectory ~ PL'

I
File Entries ~ PL , .PR

PL '.TEMP

10-03271

Working
Directory

D

Pathname

/\E:file2

D

I
file'

E

I
file2

System Action

From working directory D, move up to
directory B, and down to directory E.
Loc;ate file2 and E.

Figure 4-3. Directory Structure

093-000335 Licensed Material - Property of Data Genenll Corporation 4-9

Assuming that the directory structure is the one shown in Figure 4-3, and that D is the
working directory, issuing the ?GNAME system call would yield the following results:

Your Input

file1
"E

"E:file2

lCNAME Output

:A:B:D:file1
:A:B:E
:A:B
:A:B:E:file2

The ?GRNAME system call is similar to the ?GNAME system call, except that it returns
the complete pathname of a generic file. You cannot use the ?GNAME system call to
get the true pathname of a generic file. For example, given the input pathname, @DATA,
the ?GNAME system call would return :PER:DATA as the complete pathname even
though the complete pathname of "the file is actually :UDD:USER:DATA. In this case,
the ?GRNAME system call would return :UDD:USER:DATA. (See Chapter 5 for more
information on generic files.)

Link Entries
A link entry (file type ?FLNK) is a file that contains a path name to another file.

Link entries act as a pathname shorthand. When you specify a link entry in a pathname,
AOS/VS substitutes the contents of the link for its name. In Figure 4-3, for example,
you can create a link called G that contains the pathname :A:B:D. Thereafter, whenever
you refer to link G, AOS/VS resolves that link to :A:B:D.

NOTE: Link entries work differently as input to the system calls ?CREATE and ?DE-
LETE. The next section discusses these two exceptions.

A prefix is optional in a link-entry pathname. If there is a prefix, AOS/VS starts resolving
the pathname at the directory that the prefix specifies. If there is no prefix, AOS/VS
starts resolving the pathname at the link entry's parent directory.

In addition to acting as pathname abbreviations, link entries serve another purpose. A
process can access a file without copying the actual file into its working directory. To do
this, the process must include the appropriate link entry in its working directory.

Another way to avoid copying the file is to include the directory that contains the file in
a search list. This works only if no other directory in the search list contains a file with
the same name. The ?SLIST system call sets a search list for the calling process. Note
that a search list cannot contain more than eight pathnames.

One of the entries of a link can be another link. This is called a link-to-link reference.
Too many link-to-link references can cause the system call that is referencing the link to
overflow its stack. If a stack overflow does occur, AOS/VS returns the stack overflow
error message, ERSTO.

Because the number of link-to-link references that you can use depends on both your
program and AOS/VS, it is impossible to predict how many link-to-link references will
cause a stack overflow. Therefore, if a stack overflow occurs while you are using a pathname,
examine the pathname. Then, if the path name contains link-to-link references, remove
them.

4-10 licensed Material - Property of Data General Corporation 093-000335

To find out what a particular link entry represents, iissue the ?GLINK system call. The
?GLINK system call is particularly useful if you cannot decide whether to delete an
existing link entry and/or create a new one.

Use of lCREA TE and lDELETE System Calls in Link Entries
You can use the ?CREA TE and ?DELETE system calls to create and delete link entries
just as you would other files. When you apply these calls to link entries, however,
AOS/VS creates or deletes the link itself, not its contents.

For example, suppose in directory :A you create link entry B, which contains the pathname
D:E. If you issue ?DELETE against pathname :A:B, AOS/VS deletes link B without
resolving its contents. Directories D and E remain intact, however, as does directory A.
(Directory A is simply the path to link entry B.)

AOS/VS resolves a link if it is simply part of the pa1thname of a file you want to create
or delete. Consider the preceding example. If you issue ?DELETE against file C in the
pathname :A:B:C, AOS/VS resolves link B to :D:E, and then deletes file C in directory
:D:E. Again, directories A, D, and E remain intact.

File Access
To read, write, or execute a file, you must have the proper access to it. Under AOS/VS
there are five kinds of access for every file.

• Owner access.

• W rite access.

• Append access.

• Read access.

• Execute access.

Table 4-4 lists the access privileges and their meaning for directories and all other file
types.

093-000335 Licensed Material - Property of Data General Corporation 4-11

4-12

Privilege

Owner
Access

Write
Access

Append
Access

Table 4-4. File Access Privileges

Nondirectory Files
-Specific Privileges

• Read and change the file's
ACL.

• Read the filestatus and
permanence attribute of the
file.

• Set the permanence attrib­
ute of the file.

• Get a complete pathname
of the file.

• Rename or delete the file.

• Crea te a user data area
(UDA) for the file and read
or write to it.

• Modify the data in the file.

• Read the filestatus and
permanence attribute of the
file

• Get a complete path name
of the file.

• Create a User Data Area
(UDA) for this file and
write to it.

• Read the filestatus and
permanence attribute of the
file.

• Get a complete pathname
of the file.

Directories
-Specific Privileges

• Read and change the ACL
of the directory.

• Initialize an LDU if you
have owner access to the
LDU's root directory.

Rename or delete the di­
rectory.

• Create, delete, and rename
the directory's files.

• Read and change each file's
ACL.

• Read and set the perma­
nence attribute of the di­
rectory's files.

• Initialize and release an
LDU in the directory.

• Add files to the directory.

• Initialize an LDU in the
directory.

(continues)

Licensed Material - Property of Data General Corporation 093-000335

Privilege

Read
Access

Execute
Access

Table 4-4. File Access I~rivileges

Nondirectory Files
-Specific Privileges

• Examine the data in the
file

• Read the filestatus and
permanence attribute of the
file.

• Get a complete pathname
of the file.

• Read a user data area for
the file.

• Execute the file.

• Read the filestatus and
permanence attribute of the
file.

• Get a complete pathname
of this file.

Directories
-Specific Priveleges

• List the name, filestatus,
and permanence attribute
of each file in the direc­
tory.

• Use this directory as a
working directory.

• Read each file's ACL.

• Get the contents of a link
entry in the directory.

• N arne the directory in a
pathname (this is essential
if you want to name the
directory or refer to it.)

• Make the directory your
working directory.

• Resolve a pathname using
a link in the directory.

(concluded)

Execute access is the most essential kind of access to directories, because it allows you to
use the directory name in a pathname. Without this privilege, all other access privileges
to a directory are meaningless.

Owner access to a directory allows you to initialize logical disks in that directory with the
?INIT system call. (See the "Logical Disks" section in this chapter.)

If you are writing to a file with the ?WRITE system call, you must have both Read and
Write access to it. If, on the other hand, you are writing to it with the ?WRB system
call, you only need write access. When reading from a file with ?READ or ?RDB, you
need Read access to it. For more information about reading and writing to files, see
Chapter 5.

093-000335 Licensed Material - Property of Data General Corporation 4-13

Access Control Lists
AOSjVS maintains a unique access control list (ACL) for every file that is not a link
entry. An ACL is an ordered list of the users who can access the file and the type of
access granted to each user. When you try to read, write, or execute a file, AOSjVS
checks your username against each entry in the parent directory's ACL and against each
entry in the file's ACL.

For example, if the ACL for file :TJ:GLOSSARY.PR allows username TJ Read and
Execute access, as well as Execute access to the directory TJ and the root, then users that
log on under username TJ can execute the file GLOSSARY.pr and read its data. However,
these same users cannot delete the file GLOSSARY.PR, or change its ACL, unless they
also have WRITE access to GLOSSARY.PR's parent directory, TJ.

There are several ways to set an ACL for a file or a directory. One way is to use the
CLI command ACL. Another way is to define a file's ACL from your source code via
the ?CREATE, ?SACL, or ?DACL system calls. The ?CREA TE system call allows you
to define the ACL along with the other specifications for the new file or directory. The
?SACL system call allows you to set an ACL for a file or directory.

To determine a particular file or directory's ACL, issue the ?GACL system call. The
?GTACP system call is more specific in that it returns the ACL for a specific file and
username. If you are in Superuser mode, the ?GTACP system call allows you to find out
if a given user has access to a particular file.

Depending on your input parameters, the ?DACL system call sets, clears, or examines the
default ACL mode for one or more processes that have specific usernames. Default ACL
mode is process specific, rather than file specific. For example, a process can issue the
?DACL system call to turn on default ACL mode and define a specific ACL for all files
it will later create. A default ACL defined with the ?DACL system call exists until the
?DACL caller terminates or until it redefines that default by issuing another ?DACL
system call.

The ?CREATE, ?DACL, and ?SACL system calls take the following bit masks as ACL
specifications:

Mask

?FACA
?FACE
?FACR
?FACW
?FACO

Meaning

Append access
Execute access
Read access
Write access
Owner access

ACL Templates
When you create an ACL, you can define access privileges for specific usernames, or you
can use ACL templates to represent certain usernamejcharacter combinations. Table 4-5
lists the valid ACL templates and the character combinations that they represent.

4-14 Licensed Material - Property of Data General Corporation 093-000335

Table 4-5. Valid ACL Templates

Template Meanin!;

+ Matches any character string. For exampl,e, the ACL username specification
PA + matches any character string that begins with PA. (For example, it
matches PAT, PAM, PAUL, PA-B, and PA.M)

- Matches any character string except those that contain one or more periods.
(For example, PA- matches PAT, PAM, and PA-B, but not PA.M.)

* Matches any single character except period. (For example, PA* matches PAT
and PAM, but not PAUL, PA-B, or PA.M.)

AOS/VS scans ACL entries from left to right. Consequently, you should not place the
plus sign (+) template first, because it will override more specific templates or usernames.
For example, the following ACL specification begins with +<?FACR> (the zeros are
delimiters), which gives all users Read access only (?FACR), even though the second
element assigns Owner access to a specific username (J> AT):

+ <O><?FACR>PAT <0> <?FACO> <0>

The Permanence Attribute
Any user with Owner access can easily delete a directory or file. Therefore, AOS/VS
provides the permanence attribute for additional protection.

The permanence attribute prevents users from deleting a directory or file, regardless of its
ACL. The ?SATR system call sets the permanence attribute, or removes it, if the target
directory or file already has permanent status. The ?FSTAT system call returns various
information about a directory or file, including whether or not it has the permanence
attribute.

If you set the permanence attribute for a file, you should also set it for the file's parent
directory. Otherwise, a process can delete the file by deleting the parent directory.

Logical Disks
A logical disk (LD) is one or more physical disk units that you treat as a single logical
unit. Each file resides entirely within a single LD.

Each LD is a collection of disk space that contains a directory tree structure. Each LD
has a single directory called the local root, which is the foundation for constructing this
directory structure. You specify an ACL for the local root when you construct the LD.

When you bootstrap AOS/VS, you select one LD as the Master LD. The root of this LD
becomes the system root, which is identified by the colon (:).

093-000335 Licensed Material - Property of Data Gen.!tral Corporation 4-15

Before you can use any LO except the Master LO, you must initialize it with the ?INIT
system call or the CLI INITIALIZE command. To use the ?INIT system call, you must
have

• Owner access to the LO's local root directory.

• Execute access to each disk unit in the LO.

• Write or Append access to the target directory.

The ?INIT system call grafts the LO's local root to a specified directory (see Figure 4-4).

The disk structure within each LO can have up to eight directory levels, excluding the
local root (directory level zero within that LO). You can graft an LO into any directory
in another LO, with the exception of the lowest directory level (level 8). The maximum
directory level attainable is limited only by the maximum length of a pathname under
AOS/VS, which is 256 characters.

Releasing a Logical Disk
An LO remains initialized until you release it. If you want to remove an LO's component
volumes from the disk drives so that you could mount other volumes, you would have to
release that LO. To release an LO, you issue the ?RELEASE system call.

Disk Space Control
You can control how AOS/VS allocates disk space by designating certain directories in
an LO as control point directories (CPOs). CPOs function exactly like other directories,
but they contain the following two additional variables:

• Current space (CS), which is the amount of space currently allocated.

• Maximum space (MS), which is the maximum amount of space available in the directory.
CS is the current number of disk blocks occupied by the CPO and its subordinate files,
except for files in a subordinate LO. When you create a CPO, AOS/VS initializes CS
to O. MS is the maximum number of disk blocks available to the CPO and all its
subordinate files, except for files in an subordinate LO. To specify MS, issue the
?CPMAX system call.

Each LO's local root is a CPO. Thus, a local root's CS is the total space currently used
in the LO, and its MS is the maximum number of disk blocks the LO can contain.

CPOs restrict a file's disk space to a predefined limit. When a file requires more disk
space, AOS/VS first checks the MS and CS of its CPO. AOS/VS allocates more disk
space to that file only if it can do so without causing the CPO's CS to exceed its MS.
If a file's path name contains more than one CPO, AOS/VS compares the CS to the MS
at every point, starting with the CPO closest to the file.

Figure 4-5 shows a simple directory structure with two CPOs.

Assume that the LO root and directory CPl in Figure 4-5 are CPOs. If filel needs an
additional n blocks, AOS/VS first adds n to the CS of CPl, which is the control point
closest to filel. If CS+n is greater than the MS for CPl, any attempt to allocate additional
space for file 1 will fail.

4-16 Licensed Material - Property of Data General Corporation 093-000335

10-03272

10-03273

093·000335

: ..-Svstem Root

UTIL

/~
DGL FORT4

Assume that the LD to be initialized is LD ALPHA.
ALPHA's local root, directory UDD, contains two
inferior directories: USERS, and USERS. If you
issue the 71NIT system call for ALPHA, and you
specify 0 in AC 1, AOS/VS grafts ALPHA to the
system root, and the directory tree becomes

Master LD (after 7INIT)

: ..-Sys;tem Root

U()D

/"" DGL FORT4 USERA USERS

Figure 4-4. Initializing a Logical Disk

LD Root

Control Point CP 1

/~
Directory A Dire'ctory S

I I
:CP 1 :Afile 1 :CP 11 :S:file2

Figure 4-5. Control Point Directories (CPD s)

Licensed Material - Property of Data General Corporation 4-17

When you create a CPO, AOS/VS does not initially check its MS against those of the
other CPOs in the directory structure. In fact, AOS/VS permits oversubscription, as long
as the directory structure's total CS does not exceed the MS in any superior control point,
up to and including the local root. Note that you cannot set a CPO's MS to less than its
CS.

File Creation and Management Sample Programs
The following program, FILCREA, opens the terminal and asks you for the name of the
file you want to create. Then, if the file already exists, FILCREA deletes the file and
recreates it for you.

.TITLE FILCREA

.ENT FILCREA

.NREL

FILCREA:?OPEN CON
WBR ERROR

?WRITE CON
waR ERROR
XLEFB O,BUF*2
XWSTA 0, CON + ?lBAD

?READ CON
waR ERROR

CREATE: ?CREATE CPKT

WBR TEST

?WRITE CON
WBR ERROR

XLEFB O,TMES*2

XWSTA 0, CON + ?lBAD
?WRITE CON

WBR ERROR

WSUB 2,2
?RETURN
WBR ERROR

;Here we deal w1th errors frOi ?CREATE.

TEST: ILDAl
WSEQ
waR

ERNAE,2
2,0
ERROR

;Open CON (terminal) for liD.
;Error out.

;Write message.
;Quit.
;Get byte pointer to buffer.
;Put in I/O packet.

; Read filename.
;Quit.

;Create file (ACO still
;contains byte pOinter to
;filename.)
;Try to handle the error.

;Echo the filename.
;Quit.

;Get byte pOinter to
;confirmation message.
;Put in I/O packet.
;Display confirmation message
;on terminal.
;Quit.

;Good return flags.
;Return to the CLI.
;?RETURN error return.

;Is the error code
;"f1Iename already exists"?
;No. Report error and quit.

;F11e already ex1sts. Delete it and start again.

4-18 Licensed Material - Property of Data General Corporation 093-000335

XLEFB O,BUF*2
?oELETE
WBR ERROR
WBR CREATE

; Get byte pOinter to I)uffer.
;oelete file.
;NOW what?
;Resume processing.

;All errors except those from ?CREATE COile here. We just return with
;an error code.

ERROR: WLoAI ?RFEC!?RFCF!?RFER

?RETURN
WBR ERROR

;?CREATE packet.

CPKT: .BLK ?CLTH

.LOC CPKT + ?CFTYP

. WORD ?ORoS*400!?FUoF

.LOC CPKT+?CCPS

. WORD 0

.LOC CPKT+ ?CTlM

. OrfORD -1

. LOC CPKT+?CACP

.oWORD ACL*2

.LOC CPKT+ ?CoEH

. WORD 0

. LOC CPKT+ ?CoEL

. WORD -1

.LOC CPKT+ ?CMIL

. WORD -1

. LOC CPKT+ ?CLTH

; Error flags: Error cl)de is
;in ACO(?RFEC), lllessage is
; in CLI format (?RFCF), and
;caller should handle this as
;an error (?RFER).
;Return to the CLI.
;?RETURN error return.

; Allocate enough spaCI! for
;packet.

; Record type in left I)yte and
; data type in right b~fte.

; File control paratletl!rs .
; Ignore.

; Address of tilDe blocl(.
; Set all values to cUlrrent
;time (default is -1).

;Set up byte pOinter to ACL .

; Reserved
;Set to O .

;File element size .
;Set to default .

;Maximum number of index
;levels. Default .

;End of packet .

ACL: . TXT "Usernalle<O> <?FACO! ?FACW! ?FACR> <0>" ;Set ACL to OIR .

;File already exists. Delete it and start again.

XLEFB O,BUF*2
?oELETE
WBR ERROR
WBR CREATE

093-000335

;Get byte pOinter to buffer.
;oelete file.
;NOW what?
;Resume processing.

Licensed Material - Property of Data General Corporation 4-19

;All errors except those from ?CREATE come here. We just return with
;an error code.

ERROR: WlDAI ?RFEC!?RFCF!?RFER

?RETURN
WBR ERROR

;?CREATE packet.

CPKT: .BlK ?ClTH

.lOC CPKT + ?CFTYP

. WORD ?ORDS*400!?FUDF

.lOC CPKT+?CCPS

. WORD 0

. lOC CPKT+?CTIM

. DWORD -1

. lOC CPKT+ ?CACP

. DWORD ACl*2

.lOC CPKT+?CDEH

. WORD 0

. lOC CPKT+?CDEL

. WORD -1

.lOC CPKT+?CMIl

. WORD -1

. lOC CPKT+ ?ClTH

;Error flags: Error code is
;in ACO (?RFEC). message is
;in ClI format (?RFCF). and
;caller should handle this as
;an error (?RFER).
;Return to the ClI.
;?RETURN error return.

;Allocate enough space for
; packet.

;Record type in left byte and
;data type in right byte.

;File control parameters.
; Ignore.

;Address of time block .
;Set all values to current
;time (default is -1).

;Set up byte pOinter to ACl .

; Reserved
;Set to O.

;File element size .
;Set to default.

;Maximum number of index
;levels. Default.

;End of packet .

ACl: . TXT "Username<O> <?FACO! ?FAC" ?FACR> <0>" ;Set ACl to OWR .

;Open an 1/0 packet for the terminal.

CON: .BlK ?lBlT

. lOC CON + ?lSTI

. WORD ?ICRF!?RTDS!?OFIO

. lOC CON + ?IMRS

;Allocate enough space for
;packet .

;File specifications.
;Change format to data-sensitive
;records and open for input and
; output.

;Physical block size (in

4-20 Licensed Material - Property of Data General Corporation 093-000335

· WORD -1

.LOC CON + ?IBAD

. DWORD ITEXT*2

.LOC CON+?IRCL

. WORD 120 .

.LOC CON + ?IFNP

. DWORD CONS*2

.LOC CON+?IDEL

. DWORD -1

. LOC CON + ?IBL T

;bytes).
;Default to 2 Kbytes.

; Set byte pOinter to ,-ecord 110
;buffer.

;Record length is 120
; characters.

;Set byte pOinter to pathname.

; Del1mi ter table addrl!ss .
; Use default del1mi te,'s: null,
;NEW LINE, form feed. and
;carriage return .

;End of packet.

; Filename , message, and buffer.

CONS: .TXT "@CONSOLE" ;Use generic nale.

ITEXT: .TXT "Type filename of file you want to create. "

BUF: . BLK SO. ; Allocate enough spacl!! for
;buffer.

TMES: .TXT "created with ACL of WSR.~12~"

. NOLDC 0

. END FILCREA ;End of FILCREA program .

End of Chapter

093-000335 Licensed Material - Property of Data Gene'ral Corporation 4-21

Chapter !;
Performing Input/Output (I/O)

The system calls that you use to perform Input/Output are

?ALLOCATE
?ASSIGN
?BLKIO
?CLOSE
?CRUDA
?DEASSIGN
?FLOCK
?FUNLOCK
?GCHR
?GCLOSE
?GDLM
?GECHR
?GOPEN
?GPOS
?GTRUNCATE
?INTWT
?KINTR
?KIOFF
?KION
?KWAIT
?LABEL
?ODIS
?OEBL
?OPEN
?PRDB/?PWRB
?RDB/?WRB
?RDUDA
?READ
?RELEASE
?SCHR
?SDLM
?SECHR
?SEND
?SPOS
?STOM
?TRUNCATE
?UPDATE
?WRITE
?WRUDA

093-000335

Allocate disk blocks.
Assign a device to a process for record I/O.
Perform block I/O.
Close a file previously opened for record I/O.
Create a user data area (UDA).
Deassign a character device.
Lock or return the lock status of a file element.
Unlock a file element.
Get the characteristics of a c:haracter device.
Close a file previously opened for block I/O.
Get a delimiter table.
Get extended characteristics of character device.
Open a file for block I/O.
Get the file pointer position.
Truncate a disk file (block I/O).
Define a terminal interrupt task.
Enable interrupts to virtual t'erminals.
Disable interrupts to virtual terminals.
Reenable interrupts to virtuall terminals.
Define and enable an interrupt task for virtual terminals.
Create a label for a magnetk~ tape.
Disable terminal interrupts.
Enable console interrupts.
Open a device for record I/O.
Perform physical block I/O.
Perform block I/O.
Read a user data area (UDA).
Read a record for record I/O.
Release an initialized logical disk (LD).
Set the characteristics of a character device.
Set delimiter table.
Set extended characteristics of a character device.
Send a message to an opera tor.
Set the position of the file pointer.
Set the time-out value for a device.
Truncate a disk file or magnetic tape file (record I/O).
Flush file descriptor information.
Write a record for record I/O.
Write a user data area (UDA).

Licensed Material - Property of Data Gelneral Corporation 5-1

This chapter describes how to perform file I/O. It describes how AOS/VS stores and
accesses files, and the steps that you take to perform file I/O. The chapter then describes
the various types of I/O - record, block, and physical block I/O - and it describes how
to perform I/O on various types of files and devices.

File Structure Under the AOS/VS Operating System
AOS/VS stores files (data) in physical units called blocks. In general, there are two
methods of accessing these files:

• Block I/O

• Record I/O

Block I/O system calls allow you to directly access the blocks in which AOS/VS stores
your files. Blocks vary in size from device to device. Consequently, when you access a file
using a block I/O system call, you must specify the block size, the starting block number,
and exactly how many blocks you want to transfer.

Record I/O system calls allow you to indirectly access the blocks in which your files are
stored. When you issue a record I/O system call, AOS/VS sees the file as a collection of
logical units called records. Then, AOS /VS selects the correct file and records based on
the record type that you specified when you created the file. The record type defines the
format of a file's records. AOS/VS uses this information along with other parameters,
such as the file's pathname, to associate physical blocks on a device with a certain file
and its records.

Channels
File I/O, which includes both block I/O and record I/O, takes place across paths called
channels. When you issue a system call to open a file, AOS/VS assigns the file a channel
and a unique channel number to identify that channel. The ?LOCHN mnemonic represents
the lowest possible channel number and the ?HICHN mnemonic represents the highest
possible channel number.

To disassociate a channel number from a file, close the channel. When you close a channel,
it becomes unavailable for further file I/O. AOS/VS assigns a new channel number every
time you reopen the file.

5-2 Licensed Material - Property of Data General Corporation 093-000335

File I/O Operation Sequence
The sequence of operations, and the system calls that you use to perform these operations
for record and block I/O, are as follows.

Operation
1. Open the file.

2. Read/Write
to the file.

3. Close the file.

Record 1/0 Call
?OPEN

?READ / ?WRITE

?CLOSE

Block 110 Call
?GOPEN

?RDB/?WRB or ?BLKIO

?GCLOSE

Many file I/O system calls require a packet of file spedfications. In general, the ?OPEN,
?READ, ?WRITE, and ?CLOSE system calls use similar specification packets, as do the
?GOPEN, ?RDB, ?WRB, and ?GCLOSE system calls .. However, some packet offsets and
masks apply to only certain system calls. For example:, the exclusive open option applies
to the ?OPEN system call, but not to the ?READ, ?'WRITE, or ?CLOSE system calls.
At various points in the file I/O cycle, you can change certain information in the file
specification packet.

You can open a file repeatedly without issuing a ?CLOSE system call after each ?OPEN
system call. AOS /VS maintains an open count for each ?OPEN system call and closes
the file only when the open count equals O.

The creation option in the ?OPEN packet allows you to simultaneously create and open
certain file types. Table 5-1 lists the file types you can create with the creation option.
If you accept the default file type when you select the creation option, AOS/VS will create
the new file as a user data file (type ?FUDF). You can use user data files for storing
text, data, and variables. User data files are not executable program files.

Unless you have exclusively opened a file (an option available in the ?OPEN packet),
more than one process with Write or Read access <:an update any reocrd in the file
simultaneously.

By issuing the ?UPDA TE system call, you can guarantee the integrity of all previous
?WRITE system calls issued against a file if the system crashes while that file is still
open. The ?UPDATE system call flushes memory-resident file descriptor information to
disk. However, the ?UPDATE system call does not write a file's data to disk, just its file
descriptor information. This file descriptor information includes the file's UDA.

093-000335 Licensed Material - Property of Data General Corporation 5-3

Table 5-1. File Types You Can Create with the lOPEN System
Call

File Type

?FUDF

?FfXT

?FPRV

?FPRG

?FDIR

?FIPC

?FCPD

?FPIP

Meaning

User Data File

Text File

32-bit
Program File

16-bit
Program File

Disk Directory

IPC File

Control Point
Directory

Pipe File

Comments

This is the default file type. (To
take this default, set the right byte
of offset ?ISTO to 0.)

This type of file should contain
ASCII code.

This type of file is an executable
32-bit program file; it should con­
tain linked, executable code.

This type of file is an executable
16-bit program file; it should con­
tain linked, executable code.

If you use the ?OPEN system call
to create this type of file, you can
accept the default value for only
the following parameters: hash
frame size, maximum number of
index levels, and ACL.

This type of file directs AOS /VS
to create an IPC file or open an
existing IPC file to allow full­
duplex communications between
two processes.

Although you can use the ?OPEN
system call to create a control point
directory, we recommend that you
use the ?CREA TE system call in­
stead.

A pipe file is a transient, byte­
oriented file that you can use to
transfer data between processes.

File Pointers
To manage repeated I/O sequences, AOS/VS maintains a separate file pointer for each
open channel. The file pointer keeps track of the character position for the next read or
write sequence on a file.

When you open a file, AOS/VS positions the file pointer, by default, to the first character
(byte) in the file. AOS/VS then moves the file pointer forward as it reads or writes each
record (or byte string). Three ways to override the default position of the file pointer are

5-4 Licensed Material - Property of Data General Corporation 093-000335

• Select the append option in the ?OPEN packet (?APND in offset ?ISTI).

This option moves the file pointer to the last byte in the file, which allows you to
append data with the ?WRITE system call.

• Manipulate the file pointer in the ?READ or ?WRITE packet during an I/O sequence.

• Issue the ?SPOS system call to reposition the file pointer without performing I/O.

The ?GPOS system call returns the current position of the file pointer. The ?TRUNCATE
system call deletes all data that follows the file pointer in a disk file, and writes two end­
of-file marks after the file pointer in a magnetic tape file.

Record 1/0
Record I/O is the process of reading or writing to filc!s that exist on a device, in logical
groupings called records. There are four types of records: dynamic-length, fixed-length,
data-sensitive, and variable-length records.

Dynamic-Length Records

When you read to or write from a file that contains dynamic-length records, you must
specify the length of each dynamic record in that file.

Fixed-Length Records
When you read to or write from a file that contains fixed-length records, you must specify
a record length that is common to every record in that file.

Data-Sensitive Records

When you read to or write from a file that contains data-sensitive records, you must specify
the maximum record length in offset ?IRCL of your I/O packet. AOS/VS then transfers
data until it either encounters a delimiter or reaches the maximum record length that you
specified. In the latter case, your I/O system call fails and returns ERLTL (line too long)
error code in ACO.

The default delimiters are NEW LINE, CR (carriage return), NULL, or FORM FEED.
You can override the default delimiters by specifying at 16-word delimiter table when you
open the file or by issuing the ?SDLM system call after you open the file. The ?GDLM
system call returns the delimiter table for a file.

Variable-Length Records
When you read to or write from a file that contains variable-length records, you must
specify the length of each record in a 4-byte ASCII header. Each record in a file can be
different length.

Block 1/0
Block I/O is the process of reading or writing to files. that exist on a device, in physical
units called blocks. The sizes of these blocks vary from device to device.

The ?GTRUNCATE system call allows you to reduce the size of a disk file that is
currently open for block I/O.

093-000335 Licensed Material - Property of Data General Corporation 5-5

The? ALLOCATE system call allocates blocks for specified data elements and zeros those
data elements that do not actually exist. You can use the ? ALLOCATE system call to
make sure that subsequent I/O will not cause a calling process to exceed its control point
directory's maximum size.

To perform block I/O on a file, you must know the number of blocks that you want to
transfer (block count), the starting block number, and the block length (number of bytes
per block). You specify this information in a block I/O packet. (For a description of the
block I/O packet structure, see the description of the ?RDB/?WRB and ?BLKIO system
calls in the AOS/VS and AOSjDVS System Call Dictionary.)

The ?RDB/?WRB and ?BLKIO calls are similar, however, the ?BLKIO system call
includes additional functionality that allows it to read the next allocated data element in
the file. ?RDB reads an element whether it is allocated or not. As a result, this ?BLKIO
option makes block reading very fast when you have long files with many unallocated
elements. (For examples of how this feature works, see the description of ?BLKIO in the
AOS/VS and AOS/DVS System Call Dictionary.)

Physical block lengths vary from device to device. To find the block length for a particular
device, refer to the Programmer's Reference Peripherals manual. The standard block length
for disks is 512 bytes. Magnetic tape block length is whatever length you specify when
you issue the ?GOPEN system call. You must specify an MCA unit's block length with
each read or write operation.

Reuse of Disk Blocks
AOS/VS prevents processes from reading any data that might remain on a previously used
- but currently unused - disk block.

When a process issues the ?ALLOCATE system call, AOS/VS writes zeros into every
block that it has not previously allocated; a file will never contain spurious data from a
file that had previously used one of its blocks.

Similarly, if a process issues a ?RDB system call to an open disk file and specifies that
it wants to read a block that AOS/VS has not allocated to that file, AOS/VS will return
a block of zeros. The specified block remains unallocated.

Physical Block 1/0
AOS/VS supports physical block I/O for disks and tapes. Physical block I/O is more
primitive than block I/O. To perform physical block I/O, you must issue either the system
calls ?PRDB (read physical blocks) and ?PWRB (write physical blocks) or the ?BLKIO
system call with the physical block I/O option.

Physical block I/O allows you to bypass the I/O retries that AOS/VS makes when it
encounters disk errors. You can also use the ?PRDB/?PWRB and ?BLKIO system calls
to check for bad blocks on a disk, or for problems with an I/O device. When AOS/VS
encounters a bad block (transfer error) while it is executing one of these system calls, it
takes the normal return, but flags the bad block and reports the reason for the error in
the packet. When a device error occurs during these system calls, AOS/VS aborts and
returns the device error code to the packet.

5-6 Licensed Material - Property of Data General Corporation 093-000335

Returning Lock Status
You can also use the ?FLOCK system call to return the lock status of a file or a file
element. If you set the ?FTCK parameter in the ?FL TYP offset of the packet, the ?FLOCK
system call will return the following status information:

• The type of lock (exclusive or shared).

• The 32-bit number identifying the locked element.

• The PID of the process that has locked the element.

If the element is not currently locked, the ?FLOCK system call will return a 0 in the
fields for the lock type and PID.

Unlocking Files and File Elements
To unlock a file or the elements in a file, the locking process must issue the ?FUNLOCK
system call. The process can unlock either

• Those elements for which it gives the 32-bit identification number of the first element
in a range of elements.

• All elements that it has locked through the channel that it specifies in the ?FLCHN
offset of the packet.

Only the process that has locked the file or file elements can issue the ?FUNLOCK system
call that releases them from their locks. Should a process terminate without having explicitly
released its locks, the AOS/VS lock manager will relea.se all locks that it granted to that
process.

Device Names
During system initialization, AOS/VS records the names of all available I/O devices in
its peripheral directory, :PER. Because the standard device names are not reserved words,
you must precede each one with the prefix @. As a pathname template, @ represents the
:PER directory; when you use @ as a filename prefix, AOS/VS recognizes the filename
as either a device name or a generic filename (we describe generic files in the next section).
Table 5-2 gives a complete list of the AOS/VS devices and their device names.

093-000335 Licensed Material - Property of Data GenElral Corporation 5-9

Name

lOP

@CONO

@CON2 through
@CONn

@CRA and
@CRA1

@DKBO through
@DKB6

@DPNO through
@DPN17

@LPB,
@LPB1 through
@LPB7

@LMT

@LFD

@MCA and
@MCA1

@MTnO through
@MTnI7

@PLA and
@PLA1

Table 5-2. AOS/VS Devices and Device Names

Device

Asynchronous line multiplexor (lAC, MCP1, or in an ATI).

System Console.

DASHER® display consoles or asynchronous communications lines 1
through n on Lines 0 through n-2 (for example, CON2 is on Line 0,
CON3 is on Line 1, etc.).

First and second card readers.

6063 or 6064 fixed-head disk unit 0 through 6.

Moving-head disk units 0 through 7 on the first controller, and 10
(octal) through 17 (octal) on the second controller.

Data channel line printers 0 through 17.

Labeled magnetic tape.

Labeled floppy diskette.

Multiprocessor communications adapter controllers (unit names).

Magnetic tape controller units 0 through 7 on the first controller, and
10 (octal) through 17 (octal) on the second controller.

First and second digital plotters.

Generic File Names
The peripheral directory (:PER) also contains generic filenames. Generic filenames are
names that refer to devices or files of a particular type, such as input files, output files,
and list files.

Generic filenames represent common classes of devices and files. By coding with generic
filenames, you can change the filenames associated with the generic names without recoding
the program. For example, you might code a program with the generic filename @LIST
to represent the list file. Then, before you execute the program, you can set the list file
to a specific filename.

5-10 Licensed Material - Property of Data General Corporation 093-000335

Table 5-3 lists the six generic filenames and the files that they represent. Like device
names, generic filenames require the @ prefix.

Table 5-3. Generic Filenames

Filename Refe'rs To

@CONSOLE Any interactive device associated with a process (usually a user terminal).

@LIST A mass output file.

@INPUT A command input file.

@OUTPUT Any output file.

@DATA Any mass input file.

@NULL A file that remains empty.

For an interactive process, your termninal usually serves as both the @INPUT and the
@OUTPUT file. @NULL is not a strict generic filc~name, in that you cannot associate
it with an actual pathname. When you write data to t.he @NULL file, AOS/VS does not
output the data to any other file or device. When you try to read the @NULL file,
AOS/VS returns an end-of-file condition.

When you create a process with the ?PROC system call, you can set any generic filename
except @NULL to a specific pathname. For example, you can set a process's @LIST file
to the following pathname:

:UDD:USERNAME:MYDIR:LPT

where

MYDIR is the current working directory.

LPT is the list file.

The ?PROC packet provides the following parameters for generic filename associations.

Offset Generic Filename

?PCON @CONSOLE

?PIFP @INPUT

?POFP @OUTPUT

?PLFP @LIST

?PDFP @DATA

The ?PROC packet also allows the ?PROC caller to pass its own generic filename
associations to a newly created son. (For more information on the ?PROC packet, see the
description of the ?PROC system call in the AOS/VS ami AOS/DVS System Call Dictionary.)

093-000335 Licensed Material - Property of Data General Corporation 5-11

Usually, AOS/VS copies the data it reads from the @INPUT file to the @OUTPUT
file. However, if @INPUT and @OUTPUT are both terminals, then the @INPUT function
echoes data to the @OUTPUT terminal. The generic filenames @INPUT, @OUTPUT,
and @LIST acquire all the characteristics of the devices associated with them. For example,
if you associate the generic @LIST file with the line printer, a separate listing prints each
time you open and close @LIST or any other file.

The @DATA file is similar to the @INPUT file, except that it does not copy data to
the @OUTPUT file.

Multiprocessor Communications Adapters
AOS/VS supports type 42006 Multiprocessor Communications Adapters (MCAs). The
I/O protocol that AOS/VS uses for these devices is the same MCA protocol that Data
General's AOS, RDOS, and RTOS operating systems use.

Each MCA enables two or more physical processors to communicate across a data channel.
Hardware links connect the MCA units. A single MCA can connect a single physical
processor to as many as 14 other processors. By adding a second MCA (MCA!), you can
connect another 15 processors.

Each MCA link consists of two devices: an MCAT, which transmits data from one processor
to another, and an MCAR, which receives the data. The MCA pathname takes the following
forms:

@MCAT:n
@MCAT1:n
@MCAR:n
@MCAR1:n

where n is the number of the MCA link, in the range from 0 through 15

The link number indicates which remote processor you are communicating with when your
local processor is linked to more than one remote processor.

Character Devices
Character devices are devices that perform I/O in bytes. CRT and hard-copy terminals
are typical character devices.

Character devices can operate in one of two modes: Binary mode or Text mode. Text
mode is the default, but you can specify Binary mode when you issue a ?READ or a
?WRITE system call against the device. When a character device is in binary mode,
AOS/VS recognizes only delimiters. Therefore, AOS/VS passes each byte of any other
character without interpretation.

When a character device is in Text mode, AOS/VS interprets each byte according to the
device's characteristics, or distinguishing features. These device characteristics include

• The line length of the output.

• Whether the device is ANSI standard or non-ANSI standard.

• Whether the device echoes characters.

• Whether the device uses hardware tab stops or form feeds.

5-12 Licensed Material - Property of Data General Corporation 093-000335

To qualify Text mode further, you can set the character device to the Page mode
characteristic. When a character device is in Page mod(~, AOS/VS automatically stops its
output at the line length (lines per page) you specify, or when it encounters a form feed
character.

To display the next page while the device is in Page mode, type the CTRL-Q terminal
control character. (See the "Terminal Format Control" section in this chapter for a
description of the terminal control characters.)

The ?GCHR and ?GECHR system calls return the current characteristics of a character
device and the extended characterstics of a character device, respectively. The ?SCHR
and ?SECHR system calls set or remove device characteristics or extended device char­
acteristics, respectively, depending on your input specifi,cations.

To define characteristics for a character device, you must set certain characteristic flags
in a five-word buffer in AC2 when you issue the ?SCHR system call or the ?SECHR
system call. Usually, you will set characteristic flags in the first three words of this buffer.
If you set characteristic flags in the fourth or fifth words (words 3 and 4), then you are
setting an extended characteristic.

The extended characteristics control XON /XOFF data now over terminal lines. They also
control characteristics such as baud rates for Intelligent Asynchronous Controllers (lACs).
For more information on these extended characteristics, see the description of the ?SECHR
system call in the AOS/VS and AOS/DVS System Call Dictionary.

The initial operator process (PIO 2) can override characteristics that were set during the
system-generation procedure. However, if you are not PlO 2, you can only set the modem
control and monitor ring indicator characteristics during the system-generation procedure.
(For more information on the system-generation procedure, refer to the How to Generate
and Run AOS/VS manual.)

The ?SENO system call allows you to pass a message from a process to a terminal without
opening and closing the terminal. This means that you can pass messages from real-time
processes without terminals to a system process, such as OP CLI.

Full-Duplex Modems
A full-duplex modem is a communications device that translates analog signals to digital
signals (and vice versa) over telephone lines. AOS/VS supports I/O over full-duplex modems,
which AOS/VS treats as character devices.

You must define modems and set the modem control characteristic (?CMOO) during the
AOS/VS system-generation procedure. You cannot set or remove this characteristic with
the ?SCHR system call.

AOS/VS supports both auto-answer modems and non-auto-answer modems. The following
sections describe the operating procedures for each modem type. Table 5-4 lists the flags
used in modem operation.

Table 5-4. Modem Flags

Flag Meaning

CD Carrier detect; if set, the communications line is conditioned for data transmissions.

DSR Dataset ready; if set, AOS/VS is connected to a communications line.

DTR Data terminal ready; if set, AOS/VS is ready to connect with a remote user.

RTS Request to send; if set, AOS/VS has made a request to send data.

093-000335 Licensed Material - Property of Data General Corporation 5-13

Auto-Answer Modems

The operating sequence for an auto-answer modem is as follows:

1. During modem initialization, both DTR and RTS are off, which indicates that the
modem is off.

2. Upon execution of the first ?OPEN system call, AOS/VS sets DTR and RTS, and
changes the modem status to on.

3. No I/O will take place until both DSR and CD are on, which indicates that the
modem is connected.

4. If DSR lapses during the I/O sequence, or if CD lapses for more than 5 seconds, the
I/O call terminates with an error return.

Non-Auto-Answer Modems

If you are receiving data over a non-auto-answer modem, and you are not PID 2 (which
can override characteristics set during the system-generation procedure), you can select the
monitor ring indicator characteristic during the system-generation procedure. This char­
acteristic appears as parameter ?CMRI in the second device characteristics word. (See the
descriptions of the ?GCHR and ?SCHR system calls in the AOS/VS and AOS/DVS
System Call Dictionary.) Like the ?CMRI characteristic, you can only set the ?CMOD
characteristic during the system-generation procedure, unless you are PIO 2.

AOS/VS uses the monitor ring indicator to detect incoming calls to a non-auto-answer
modem. If you select the ring-indicator option, AOS/VS begins monitoring the ring indicator
as soon as you open the local modem-controlled device. When a remote user places a call
to your device, the hardware signals a modem interrupt and sets the ring indicator.
AOS/VS then raises the OTR flag and sets a timer. If AOS/VS does not detect a DSR
signal and a valid carrier signal within 5 seconds of the modem interrupt, it posts a
disconnect against the line. When this occurs, you must close the modem-controlled device
and re-open it.

The operating sequence for non-auto-answer modems with the monitor ring indicator option
is as follows:

1. During modem initialization, both DTR and RTS are off, which indicates that the
modem is off.

2. Upon execution of the first ?OPEN system call to the modem-controlled device,
AOS/VS begins monitoring the ring indicator, provided you selected the ring-indicator
characteristic (?CMRI) during the system-generation procedure.

3. When a remote user places a call, the MV /Family hardware signals an interrupt for
the local modem and sets the ring indicator; AOS/VS then sets the OTR flag and
starts the ring-indicator timer.

5-14 Licensed Material - Property of Data General Corporation 093-000335

4. AOS /VS begins checking for a DSR signal and a CD signal; if these occur within 5
seconds of the modem interrupt, the modem is connl~cted; otherwise, the system posts
a disconnect against the line.

5. No I/O takes place until the modem is connected.

6. I/O terminates with an error return if the modem becomes disconnected during the
I/O sequence; this state occurs when either the DSR flag changes from on to off, or
the carrier signal lapses for longer than 5 seconds.

NOTE: If you have selected the ring-indicator option, you cannot use the communi­
cations line for manual dial-outs. To use the line for manual transmissions,
you must generate it again, without the ring-indicator option.

Card Readers
AOS /VS also recognizes card readers as character devices. The operating sequence for
card readers is as follows:

1. When you open a card reader, AOS/VS starts it for input. The card reader then reads
ahead as many cards as will fit in its ring buffer. AOS/VS does not restart the card
reader until there is room in the ring buffer for an entire card.

2. If the card reader is in Text mode when you issue the ?READ system call, AOS/VS
performs the Hollerith-to-ASCII conversion. If the card reader is not in Text mode,
AOS /VS does not convert Hollerith code to ASCII code.

3. If AOS/VS encounters a non-Hollerith card when you issue the ?READ system call,
it returns the file read error code ERFIL.

4. When AOS/VS reads a card that has all rows punched in column 1, it returns an
end-of-file condition.

5. AOS/VS assumes that all cards are at most 81 columns long. Because it does not
check column length on input, mark-sense card readers are compatible with AOS/VS.

6. If the card reader is in Binary mode, you can set the packed characteristic for its
input. This allows you to pack four 12-bit columns into three 16-bit words. Without
the packing option, AOS/VS right-justifies the 12 bits in the buffer and uses the 4
upper bits for the following octal status codes:

100000
040000
020000
010000

End of file.
Hopper empty or stack full.
Pick fail.
Read error.

7. If you set the trailing blanks characteristic (?CTSP), AOS/VS retains all trailing
blanks on the cards. If you omit this characteristic, AOS/VS discards all trailing
blanks and writes a NEW LINE character after title last character on each card -
this allows you to fit more cards into the ring buffer.

8. The no NEW LINE characteristic (?CNNL) dire:cts AOS/VS to ignore all NEW
LINE characters in each card.

Character Device Assignment
AOS /VS allows you to open a device for the exclusive use of one, and only one, process
by assigning the device to that process. You can do this explicitly by issuing the ? ASSIGN

093-000335 Licensed Material - Property of Data GenEtral Corporation 5-15

system call, or you can do this implicitly by opening the file. You can issue the? ASSIGN
system call only against a file that is not open.

If you assign a file with the ? ASSIGN system call, you must issue the ?DEASSIGN
system call to break the assignment. If you assign a device with the ?OPEN system call,
you can break the assignment by closing the device or by terminating the process. A
process can open a device more than once without breaking an ?OPEN system call
assignment; AOS/VS does not break the assignment until the last ?CLOSE system call
(when the ?OPEN system call count drops to 0).

Device assignment works somewhat differently for user terminals. All son processes can
share their father's terminal, even if the terminal was specifically assigned to the father.
However, only the most recently created son can actually control the terminal by issuing
?OPEN, ?CLOSE, ?ASSIGN, ?RELEASE, ?GCHR, ?GECHR, ?SCHR, and ?SECHR
system calls against it. The father process and all other sons can issue only ?READ
and/or ?WRITE system calls against an assigned terminal.

Line-Printer Format Control

When you write a file to a data channel line printer controlled by EXEC, you can tailor
the format of the output by creating a UDA for the file. The ?CRUDA system call creates
a UDA. The ?RDUDA and ?WRUDA system calls read and write UDA information,
respectively. Typically, you use UDAs to specify file formats, although you can use them
for other purposes.

In addition to the ?CRUDA system call, you can also use the AOS/VS Forms Control
Utility (FCU) to create UDAs for format specifications. To do this, you must perform
the following steps:

1. Create a file with the filename of the UDA that you want to create.

This file can contain format specifications or, if you want, it can be empty.

2. Execute FCU. (Refer to the Command Line Interpreter (CLI) User's Manual (AOS
and AOSjVS) for more information on FCU.)

3. Move the newly created UDAs to the :UTIL:FORMS directory so that EXEC can
access them.

If you want the contents of a particular UDA to override EXEC's default format speci­
fication, use the CLI switch /FORMS when you print the file on the line printer. If you
omit the /FORMS switch or if the file has no format specifications, AOS/VS uses the
current default EXEC format settings. (Refer to the Command Line Interpreter (eLI)
User's Manual (AOS and AOSjVS) for more information on the CLI switches.)

Terminal Format Control
Several control characters and control sequences allow you to control the output that
displays on your terminal.

A control character is any character that you type while you press the CTRL key at the
same time. By default, AOS/VS does not pass control characters to your program. However,
if you want to override this default, set Binary mode or type CTRL-P immediately before
you type a control character. This causes AOS/VS to pass the control character to your
program. Table 5-5 lists the control characters and what they do.

5-16 Licensed Material - Property of Data General Corporation 093-000335

Control
Character

CTRL-C

CTRL-D

CTRL-O

CTRL-P

CTRL-S

CTRL-Q

CTRL-U

CTRL-T

Table 5-5. Control Characters and! Their Functions.

Function

Begins a control sequence.

An end-of-file character; terminates the current read and directs AOS/VS to
return an end-of-file condition.

Suppresses output to your terminal until you type CTRL-O again. (If
AOS/VS detects a break condition, then its output resumes immediately.)

Signals AOS/VS to accept the next character as a literal, not as a control
character.

Freezes all output to your terminal, but does not discard it. (To disable
CTRL-S, type CTRL-Q.)

Disables CTRL-S; if the device is in Page mode, CTRL-Q displays the next
page.

Erases the current input line on your terminal.

Reserved for future use by Data General. (Currently, these control sequences
do nothing. However, if you CTRL-V precede either one with CTRL-P,
AOS/VS passes them to your program.)

A control sequence is a CTRL-C immediately followed by any control character from
CTRL-A through CTRL-Z. What happens when you type the second control character
depends on the internal state of the process with which the terminal is associated. If the
process has not explicitly redirected the control characte:r, then AOSjVS ignores the control
sequence and treats the second control character as it normally would. However,
AOSjVS ignores control sequences that do not have a. default action.

Table 5-6 lists the control sequences and what they do.

Table 5-6. Control Sequences and Their Functions

Control
Sequence Function

CTRL-C CTRL-A Generates a terminal interrupt (provided you used the ?INTWT
system call to define a terminal interrupt task - we describe the
?INTWT system call in the following section).

CTRL-C CTRL-8 Generates a terminal interrupt and aborts the current process.

CTRL-C CTRL-C Echoes the characters 1\ C 1\ C on the terminal, and empties your
type-ahead buffer. (This is useful when you want to revoke a command
you have typed ahead.)

CTRL-C CTRL-D Reserved for use by Data Gene:ral.

CTRL-C CTRL-E Generates a terminal interrupt, aborts the current process, and creates
a break file.

CRTL-C CTRL-F
through Reserved for use by Data Gene:ral.
CTRL-C CTRL-Z

093-000335 Licensed Material - Property of Data General Corporation 5-17

Defining, Enabling, and Disabling Terminal Interrupts
Before you can use a CR TL-C CTRL-A sequence as a terminal interrupt, you must define
an interrupt processing task. To define an interrupt processing task, you issue an ?INTWT
system call. The ?INTWT system call defines a task that monitors the terminal keyboard
for CTRL-C CTRL-A sequences. When AOS/VS detects a CTRL-C CTRL-A sequence,
it readies the interrupt processing task that you defined and passes control to the ?INTWT
system call's normal return. AOS/VS reenables terminal interrupts only when you reissue
either another ?INTWT system call, or when you issue ?OEBL system call.

By default, AOS/VS enables terminal interrupts when a program begins to execute. You
can issue the ?ODIS system call to override this default. You can also use the ?ODIS
system call to disable an interrupt that you previously enabled by issuing an ?OEBL,
?INTWT, or ?CHAIN system call.

Defining, Enabling, and Disabling Interrupts to Virtual Terminals

You can define, enable, and disable interrupts to virtual terminals. To enable virtual
terminals to handle interrupts as if they were real terminals, issue the ?KINTR system
call. Should you want the virtual terminal's process to handle interrupts through an interrupt
task that you specify, issue the ?KWAIT system call.

To disable interrupts to the virtual terminal's process, issue the ?KIOFF system call; to
reenable interrupts to the virtual terminal's process, issue the ?KION system call.

Using IPC Files as Communications Devices
In addition to the interprocess communications (IPC) procedures that we describe in
Chapter 8, you can use IPC files as a communications devices and perform I/O against
them. When you perform I/O against an IPC file, AOS/VS buffers the IPC messages in
first-inJfirst-out (FIFO) order. The sequence of operations for using an IPC file as a
communications device is as follows:

1. The calling process creates an IPC file entry with the ?OPEN creation option (bit
?OFCR in offset ?ISTI) and sets the file type to ?FIPC (the file type for IPC files).

2. AOS/VS issues a global ?IREC system call for the IPC entry, which indicates that
the entry is open. (Note that global ?[REC system calls issued from a particular ring
can receive only [PCs destined for that particular ring.) For more information on the
global ?IREC option, see Chapter 8.

3. The other process issues a complementary ?OPEN system call on the IPC entry.

4. AOS/VS responds with an ?ISEND system call to synchronize the two processes.

After AOS/VS performs these steps, either process can issue ?READ or ?WRITE system
calls through the established IPC file. When one of the processes closes the IPC entry or
terminates, the system sends the other process an end-of-file condition (error code EREOF)
when it tries another ?READ system call against that file.

When you perform I/O on an IPC entry, AOS/VS synchronizes all ?READ and ?WRITE
system calls. Thus, for a process to receive another process's termination message, it must
read it in the proper sequence. Otherwise, the process could repeatedly attempt to write
to the closed IPC entry with no results, because in that case, there is no error return.

Note that the process that creates the IPC file (by issuing the first ?OPEN system call)
owns the file.

5-18 Licensed Material - Property of Data General Corporation 093-000335

Transferring Data through a Pipe File

You can also transfer data through a pipe file. A pipe file is a special kind of disk file
that allows you to transfer data through a first in, first out (FIFO) queue of bytes that
more than one process can access. To write to the pipe file, a process appends bytes to
the tail of the queue. To read from a pipe file, a proc(~ss removes bytes from the head of
the queue. A pipe is the conceptual opposite of a stack, which operates on the last in,
first out (LIFO) principle.

In the Figure 5-1, let's say that Process A has placed the byte groups AI, A2, and A3
successively into a pipe and that Process B has remov(~d byte group Al from the pipe.

Most commonly, a pipe is two-ended: a least one process has opened the pipe for reading,
and at least one process has opened the pipe for writing. However, a pipe can become
one-ended under the following conditions:

• All processes that have opened the pipe for reading: have closed it, while at least one
process currently has the pipe open for writing.

• All processes that have opened the pipe for writing have closed it, while at least one
process currently has the pipe open for reading.

Because a pipe is a vehicle for interprocess communications - it joins the output stream
of a process to the input stream of another process - it is a transient entity. Once all of
the processes that are reading or writing to a pipe have closed their respective ends,
AOS/VS deletes the pipe.

Boundry Conditions in Pipes

While the the number of bytes that a pipe contains can vary, a pipe has a fixed length
and it can hold only so many bytes. When a pipe becomes empty or full, a boundry
condition can exist. The boundry conditions, and the default actions that the AOS/VS
system takes, are as follows.

Tail of Pipe
(Write End)

10-03274

093-000335

/ ;71
I Byte Group A3 V

Figure 5-1. Diagram of a Pipe File.

Licensed Material - Property of Data GenEtral Corporation

Head of Pipe
(Read End)

5-19

Boundry Condition

Attempt to read from an
empty, one-ended pipe.

Attempt to write to a
full, one-ended pipe.

Attempt to read from an
empty, two-ended pipe.

Attempt to write to an
full, two-ended pipe.

Creating a Pipe

Result

AOS/VS returns error code EREOF (end of file), provided
that you have opened the write end of the pipe at least
once.

AOS/VS returns error code ERPFL (pipe is full), provided
that you have opened the read end of the pipe at least
once.

Because at least one other process has opened the write
end of the pipe, AOS/VS pends the reading process until
another process writes into the pipe.

If all of the writing processes close their end of the pipe
without writing into it, AOS /VS will return error code
EREOF as above.

Because at least one process has opened the read end of
a pipe, AOS/VS pends the writing process until another
process reads from the pipe.

If all of the reading processes close the pipe without having
read from it, AOS/VS will return error code ERPFL as
above.

You can create a pipe with either the ?CREA TE or ?OPEN system calls. You can also
create a pipe with the CLI command

CREATE/TYPE=PIP filename

If you create a pipe with either the CREATE CLI command or the ?CREATE system
call, the length of the pipe will be two pages (4096. bytes) and the pending action of
processes using that pipe will be as we described previously.

If you supply the pipe extension packet, you can create the pipe with the ?OPEN system
call. In the ?OPEN system call, you can specify both the length and the pending action
of the processes that use the pipe.

Specifying the Pipe Length

In the ?OPEN system call, you can specify a pipe length of 1 to 16 pages (from 2048.
to 32768. bytes). If you specify a byte length that is not divisible by 2048. (one page),
the system rounds the pipe length up to the nearest page.

5-20 Licensed Material - Property of Data General Corporation 093·000335

Specifying the Pending Action

In the ?PIPD offset of the extension packet, you can specify one of the following pending
actions.

Offset Value Pending Action Specified

?PALW

?PNVR

?PTWO

A process a/ways pends when trying to read from an empty pipe or write
to a full pipe, regardless of whether the pipe is one- or two-ended.

A process never pends when trying to read an empty pipe or write to a
full pipe, regardless of whether the pipe is one- or two-ended.

AOS/VS returns error code EREOF if trying to read, error code ERPFL
if trying to write.

The default - a process pends when trying to read an empty pipe or
write to a full pipe, but only when the pipe is two-ended.

When the pipe is one-ended, AOS/VS returns error code EREOF when
trying to read, error code ERPFL if trying to write.

Opening a Pipe for I/O
To open an existing pipe for I/O, you must use the ?OPEN system call.

The ?OPEN system call opens only one end of the pipe. To open the head (read end) of
the pipe, you set the input bit (?OFIN) of the ?OPEN packet. To open the tail (write
end) of the pipe, set the output bit (?OFOT) of the pipe.

If you try to open the pipe for both reading and writing (?OFIO), or for shared I/O
(?SHOP), the system returns the error code ERIOO (illegal open option for file type).
The system ignores all other extensions to the ?OPEN packet (with the exception of the
pipe and field translation extensions).

Reading and Writing to Pipes
To read and write to a pipe, you use the ?READ and ?WRITE system calls, respectively.
You need only include the pipe extension to the ?READ and ?WRITE packets when you
want to specify the pending action of the processes reading or writing to the pipe. With
the exception of the pipe and field translation extensions, the system ignores all other
extensions to the ?READ and ?WRITE packets.

A pipe is byte-oriented; if you try to read or write to a pipe with record type ?R TVB
(variable block, variable record), the system will return error code ERRFM (illegal record
format).

Closing or Deleting a Pipe
To close or delete a pipe, you can use the ?CLOSE or ?DELETE system calls, respectively.
These system calls do not require any pipe-specific arguments.

093-000335 Licensed Material - Property of Data General Corporation 5-21

Controlling Access to a Pipe
A pipe is a disk file; you can control acces to the pipe through the pipe's ACL (access
control list). To open a pipe, a process must have both Read and Write access to the pipe.

You can change a pipe's ACLs by issuing either of the following system calls:

Resets the pipe file's ACL. ?SACL

?RENAME Changes the pipe file's name and, optionally, resets the pipe file's
ACL.

These system calls also do not require any pipe-specific arguments.

Invalid System Calls
Because a pipe is a transient, byte-oriented file, the system returns the error code ERIFT
(illegal file type) if you issue any of the following system calls against a pipe:

?ALLOCATE

?ESFF

?GCLOSE

?GOPEN

?GPOS

?GTRUNCATE

?PRDB/?PWRB

?RDB/?WRB

?RECREATE

?RPAGE

?SATR

?SCLOSE

?SOPEN

?SOPPF

?SPAGE

?TRUNCATE

Allocate disk blocks.

Flush shared pages to disk.

Close a file open for block I/O.

Open a file for block I/O.

Get file position.

Truncate a file for block I/O.

Perform physical block I/O.

Perform block I/O.

Recreate a file.

Release a shared page.

Set or remove the permanence attribute for a file.

Close a shared file.

Open a shared file.

Open a protected shared file.

Read in a shared page.

Truncate a file opened for record I/O.

In addition, issuing the ?SPOS system call (set file position) results in a no--op.

5-22 Licensed Material - Property of Data General Corporation 093-000335

Performing 1/0 to Labeled Magnetic Tapes
A labeled magnetic tape contains both user data and information about that data - the
latter in the form of system and user labels. Labeled magnetic tapes provide the following
advantages over unlabeled magnetic tapes:

• ANSI-standard and IBM formats, which enable you to use a labeled magnetic tape on
another operating system.

• A naming facility, so you can reference your tape file by name rather than by tape
number.

• Volume identifiers (volids), so that a logical file can span several physical tape reels.

• Detailed information about when and how much I/O iis actually performed for a particular
device.

You can use either the CLI LABEL utility or the ?LABEL system call to create labels
for a magnetic tape. After you complete the labeling procedures, you can create files on
the tape.

Labeling Formats
AOS/VS supports two primary labeling formats: ANSI format (Levels 1, 2, or 3), which
uses the ASCII character set, and IBM format (Levell or 2), which uses the EBCDIC
character set. This allows you to select a format and labeling level suitable for use on
another operating system. The formats and levels diffe:r in the number of files allowed in
a volume set, the allowable record types, the types of labels, and the contents of the labels.
Table 5-7 defines the number of files and record types allowed for each label format and
level.

093-000335

Table 5-7. Label Formats and Levels: I:iles per Volume Set,
Record Types ...

Specification Format Level

N Single file, single volume ANSI 1, 2, 3
o. IBM 1, 2

0 Single file, multiple volume ANSI 1, 2, 3
f IBM 1, 2

F Multiple file, single volume ANSI 2, 3
i IBM 1, 2
I
e Multiple file, multiple volume ANSI 2, 3
s IBM 1, 2

Fixed-length ANSI 1, 2, 3
R IBM 1, 2
e
c Variable-length ANSI 3
0 IBM 1, 2
r
d Variable-length spanning blocks IBM 2

T Undefined-length IBM 1, 2
y
P Data-sensitive NjA NjA
e
s Dynamic NjA NjA

Licensed Material - Property of Data General Corporation 5-23

If you do not set any flags in offset ?IRES of the ?OPEN packet, AOS/VS assumes that
you want to use labeled tapes in AOS format. However, if you want to use labeled tapes
in ANSI or IBM format, you must set one of the following flags in offset ?IRES:

• Set ?OANS to use labeled tapes in ANSI format.

• Set ?OIBM to use labeled tapes in IBM format.

AOS/VS does not write the data in EBCDIC. To do this, you must select the field
translation packet when you issue the ?READ or the ?WRITE system call.

The labeling level that you select should be compatible with the label support of the
operating system on which you will use the tape. ANSI Level 3 and IBM Level 2 are the
default levels. However, you can select a lower level within the ?LABEL system call packet,
or within the ?OPEN system call packet extension for labeled tapes.

If you select a lower level before writing to the tape, AOS/VS will record less information
about your data in the labels. If you select a lower level before reading from the tape,
AOS/VS ignores some of the information in the labels. Because AOS/VS can read a tape
to a lower level than you specify (for example, AOS/VS can read an ANSI Levell tape
even if you specify it to be an ANSI Level 3 tape), you should default to the highest
level.

Label Types

There are four types of labels:

• Volume labels

These labels identify the volume (reel) of magnetic tape; they occur only at the start
of each volume.

• File header labels

These labels identify the file and its characteristics; they occur before every file on a
labeled tape. If the file spans volumes, each file section starts with file header labels.

• End-of-file labels

These labels identify the file and its characteristics; they occur after every file on a
labeled tape.

• End-of-volume labels

These labels identify the file and its characteristics; these occur at the end of a volume
of tape to indicate that the file spans volumes.

Figure 5-2 shows how AOS/VS writes labels and data to a labeled tape.

Each type of label contains one or more individual labels. Some labels are necessary and
must be present, or AOS/VS returns an error. Other labels are used if present, but are
not required, and some are permitted but are not used. ("Permitted" labels do not cause
errors; AOS/VS ignores the information in them.) Table 5-8 lists the different types of
labels for the various formats and levels.

5-24 Licensed Material - Property of Data General Corporation 093·000335

Single File,
Single Volume

Reel 1

VOL

HDR

'\.'\.'\.'\.'\.'\.'\.'\.'\.

· · ·

File

Multiple Files,
Single Volume

Reel 1

VOL

HDR

HDR

File B

10·03275

093-000335

Single File, MUltiple Volumes

~Reel -----~~

VOL

HDR

'\.'\.'\.'\.'\.'-'\.'\.'\.

File
(first

section)

Reel 2

VOL

HDR

"\:'\.'\.'\.'\.'\.'\.'\.'\.

File
(second
section)

Reel 3

VOL

HDR

'\.'\.'\.'\.'\.'\.'\.'\.'\.

File
(last

section)

aaa

KEY:

Multiple Files, Multiple Volumes

~Ree11 ~-----
Reel 2

VOL VOL

HDR HDR

'\.'\.'\.'\.'\.'\.'\.'\.'\.

File B
(last

section)

HDR HDR

File B
(first

section)

File C
(first

section)

VIOL
HDR
EOF
EOV

"""

Volume labels

Header labels
End-of-file labels
End-of-volume labels
Tape mark; separates data (Two consecutive
tape marks represent an end-of-tape mark.)

Figure 5-2. Labels and Data on a Labeled Magnetic Tape

Licensed Material - Property of Data Ge"eral Corporation

Reel 3

VOL

HDR

'\.'\.'\."'-"'-"'-"'-"'-"'-

File C
(last

section)

HDR

File 0

5-25

Table 5-8. Types of Labels

Labels ANSI(1) ANSI(2)

Volume Labels:

VOLI (Volume 1) N
UVLl-9 (User Volumes 1 - 9) P

File Header Labels:

HDRI (Header 1) N
HDR2 (Header 2) P
HDR3-9 (Headers P
UHLI-9 (User Headers I -9) P

End-of-File Labels:

EOFI (End of File 1) N

EOF2 (End of File 2) P

EOF3-9 (End of Files 3 - 9) P

UTLl-9 (User Trailers I - 9) P

End-of-Volume Labels:

EOV I * (End of Volume I) N

EOV2* (End of Volume 2) P

EOV3-9* (End of Vols 3 - 9) P

UTLI-9 (User Trailers 1 - 9) P

KEY: Necessary N
U
P

Used if present, but not required
Permitted, but not used

N
P

N
P
P
U

N

P

P

U

N

P

P

U

ANSI(3)

N
P

N
U
P
U

N

U

P

U

N

U

P

U

IBM(1)

N
P

N
P
P
U

N

P

P

U

N

P

P

U

* End-of-volume labels are necessary only if the file spans reels

Volume Labels

IBM(2)

N
P

N
U
P
U

N

U

P

U

N

U

P

U

As Table 5-9 indicates, each labeled tape volume must begin with a volume I label (VOLl)
of 80 bytes (characters). Table 5-10 lists the required contents of the VOLI labels. The
system supplies the characters in quotation marks (for example, "VOLI ").

The volid, or tape volume identifier, must consist of up to six characters from the following
character set:

• Alphabetic characters A through Z, uppercase only

• Numerals 0 through 9

• Special characters ! ' % () * + , - . / ; < > = ?

The volid is part of the pathname you use to refer to a labeled tape file.

The Access field, which is used for ANSI tapes, defines the users allowed to access the
tape. You must use a blank space character (ASCII 40) in this field. Otherwise,
AOS /VS does not allow access to the volume. The space character allows anyone access
to the volume.

5-26 Licensed Material - Property of Data General Corporation 093-000335

Table 5-9. Contents of VOL 1 Volume Labels

Byte Position ANSI(1) ANSI(2) ANSI(3) IBM(1) IBM(2)

01-04 "VOL1" "VOL1" "VOL1" "VOL1" "VOL1"

05-10 Volid Volid Volid Volid Volid

11 Access Access Access "0" "0"

12-37 Blank Blank Blank Blank Blank

38-41 Owner Owner Owner Blank Blank
name name name

42-51 Owner Owner Owner Owner Owner
name name name name

52-79 Blank Blank Blank Blank Blank

80 Version Version Version Blank Blank
number number number

The optional Owner Name field identifies the owner of the volume. AOSjVS ignores this
field when you reference a file on the volume. The default value for this field is a blank
space.

The Version Number field specifies the ANSI label format (version) you want for labeled
tape processing. This field must contain I, 2, or 3 if you intend to read the tape.
AOSjVS uses version number 3 when you write to the tape.

If you use the ANSI label format, you can follow the VOLI label with as many as nine
optional user volume labels (UVLs) to record additionall data about all files on the volume.
Note that you cannot use UVLs for tapes that are in IBM format.

Each UVL can contain up to 76 bytes of data. Bytes 1 through 3 contain the character
string "UVL", which AOSjVS supplies. AOSjVS numbers UVLs consecutively from I
through 9. Byte 4 contains the label number.

Table 5-10 lists the contents of a UVL.

Table 5-10. Contents of User Volume Labels (UVLs)

Byte Position ANSI(1) ANSI(2) ANSI(3)

01-03 "UVL" "UVL" "UVL"

04 Label number Label number Label number

05-80 User data User data User data

Header 1 Labels
A Header 1 (HDRI) label of 80 bytes must follow the VOL1 label, regardless of the
tape's format or labeling level. Table 5-11 describes the contents of HDRI labels.
AOSjVS supplies the characters in quotation marks (for example, "HDR1 ").

093-000335 Licensed Material - Property of Data General Corporation 5-27

AOS/VS assigns a sequence number to each file on a labeled tape volume set. If the file
spans volumes, AOS /VS divides the file into sections and assigns each section a section
number. AOS/VS uses the File Section Number and File Sequence Number fields, and
a third field, Block Count, for error detection, as follows:

• File Section Number.

The File Section Number indicates which section of the file AOS/VS is currently
processing. AOS /VS checks this field to to see if the volume contains the proper file
section so that AOS/VS can process the file section in the correct order.

• File Sequence Number.

The File Sequence Number indicates the order of the files in the volume set. An
incorrect sequence number means that you have mounted the wrong volume.

• Block Count.

The block count indicates the number of blocks written to the file; if the block number
on the end-of-file (EOF) or end-of-volume (EOV) label is not the number actually read,
a block may have been skipped.

Table 5-11. Contents of HDR1 File Header Labels

Byte
Position ANSI(1) ANSI(2) ANSI(3) IBM(1) IBM(2)

01--04 "HORl" "HORl" "HORl" "HORl" "HORl"

05-21 Filename Filename Filename Filename Filename

22-27 File 10 File 10 File 10 File 10 File 10
set set set set set

28-31 File File File File File
section section section section section
number number number number number

32-35 File File File File File
sequence sequence sequence sequence sequence
number number number number number

36-39 "0001" "0001" "0001" Blank· Blank·

40-41 "00" "00" "00" Blank· Blank·

42-47 "00000" "00000" Creation Creation Creation
date date date

48-53 Expiration Expiration Expiration Expiration Expiration
date date date date date

54 " " (blank Access Access Access Access
space
character)

55-60 Block Block Block Block Block
count count count count count

61-73 System 10 System 10 System 10 System 10 System 10

74-80 Blank Blank Blank Blank Blank

• For IBM levels 1 and 2, Bytes 36 through 41 contain information that AOS/VS does
not use during processing.

5-28 Licensed Material - Property of Data General Corporation 093-000335

The Expiration Date field prevents AOS/VS from overwriting the data on a labeled tape
before the specified date. The default expiration date is 90 days after the tape's creation
date.

The Access field (like the Access field in the VOL1 label) defines the users allowed to
access the tape. For ANSI format, the default for this field is a blank space character
(ASCII 40). For IBM format, the default is O. This gives all users access to the data. Be
sure to use the proper default value. If you use another character in this field, AOS /VS
assumes that additional access privileges are required, and will not allow access to the
tape.

AOS/VS checks the following fields to see that the file on the tape matches the file you
requested for I/O.

• File Set Identifier.

The File Set Identifier field identifies the file set. (A file set is a group of files that
occupies one or more volumes.) AOS/VS checks the File Set Identifier to see that the
newly mounted volume belongs to the file set. By default, the File Set Identifier is the
volid (volume identifier) or the first volume in the HIe set.

• Filename.

The Filename field identifies the file you want to process. There is no default value for
this field.

• Generation Number.

The Generation Number field indicates the file's gc::neration. (The default generation
number is 0001.) A file can appear on a tape more than once, if each occurrence has
a different generation number. This is useful for recording changes to a file.

• Version Number.

The Version Number field indicates which version of a certain file generation you are
referencing. (The default version number is 00.) Only one version of a file's generation
can appear on a tape.

Header 2 Labels
AOS/VS allows additional header labels (HDR2 and HDR3 through 9), but these are not
required. In fact, AOS/VS uses only Header 2 labels (HDR2), if present, or the ANSI
Level 3 and IBM Level 2 formats; it ignores header 3 through 9 (HDR3-9) for all formats
and levels.

If you do use HDR2 labels, they must contain the information shown in Table 5-12.
AOS/VS enters the characters in quotation marks (for example, "HDR2").

093-000335 Licensed Material - Property of Data Gen4itral Corporation 5-29

Table 5-12. Contents of HDR2 File Header Labels

Byte Position ANSI(3) IBM(2)

01-{)4 "HDR2" "HDR2"

05 Record type Record type

06-10 Block length Block length

11-15 Record length Record length

16-38 Blank Blank*

39 Blank Block attribute

40-50 Blank Blank*

51-52 Buffer offset Blank*

53-80 Blank Blank*

* For IBM Level 2, Bytes 40 through 80 contain information
that AOS/VS does not use during processing.

The HDR2 labels describe the record type, record length, and block length of the data.
The ?OPEN packet conveys this information to AOS/VS. The fields on the HDR2 labels
are as follows:

• Record Format.

The Record Format field is dynamic, fixed-length, data-sensitive, or variable length.
The record format field must match the specification in offset ?ISTI of the ?OPEN
packet. You cannot default this value if you intend to write to the tape. If you intend
to read the tape and there is no HDR2 label, the record type defaults to fixed-length.

• Block Attribute.

The Block Attribute field states whether the records are blocked (several records per
physical block), unblocked (only one record per block), or spanned (a record occupies
two or more consecutive blocks). AOS/VS writes all records in blocked format. (You
can specify spanned for variable-length records with the special variable-block record
type, ?RTVB.)

• Block Length.

The Block Length field states the maximum length of each physical block on the tape;
offset ?IMRS in the ?OPEN packet governs this value. If you choose the ?IMRS
default (-1), AOS/VS uses 2048 bytes as the block length when it is writing, and the
value of the HDR2 field when it is reading.

• Record Length.

The Record Length field states the maximum length of each record; offset ?IRCL in
the ?OPEN packet conveys this value. If you choose the ?IRCL default (-1),
AOS/VS uses 210 as the record length when it is writing, and this value in the HDR2
field when it is reading.

• Buffer Offset.

The Buffer Offset field states the number of non-data bytes at the start of each physical
block. AOS /VS ignores this field.

5-30 Licensed Material - Property of Data General Corporation 093-000335

User Header and User Trailer Labels
In addition to file header labels and file trailer labels (end-of-file, end-of-volume), you can
define user header and user trailer labels to supply further information about a labeled
tape file. AOS/VS reads or writes these labels via the ?OPEN packet extension for labeled
tapes. AOS/VS does not record these user-defined labels in the system labels.

Table 5-13 defines the contents of user header and user trailer labels. Notice that these
labels have the same format as UVLs, except that byt(:s 1 through 3 contain the required
strings "UHL" or "UTL", as appropriate.

Table 5-13. Contents of UHL and UTL User Labels

Byte
Position ANSI(2) ANSI(3) IBM(l) IBM(2)

01-03 "UHL" or "UHL" or "'UHL" or "UHL" or
"UTL" 'UTL" 'UTL" 'UTL"

04 Label number Label number Label number Label number

05-80 User data User data User data User data

End-of-Volume 1, End-of-File 1 Labels
End-of-volume 1 (EOVl) and end-of-file 1 (EOFl) labels have the same format as HDR1
labels, except that bytes 1 through 4 contain either "EOV1" or "EOF1", as appropriate.
(See Table 5-11, shown earlier, for the format.)

End-of-Volume 2, End-of-File 2 Labels
End-of-volume 2 (EOV2) and end-of-file 2 (EOF2) labels have the same format as HDR2
labels, except that bytes 1 through 4 contain either "EOV2" or "EOF2", as appropriate.
(See Table 5-12, shown earlier, for the format.)

File 1/0 on Labeled Magnetic Tapes
To use labeled tapes for file I/O, you must be logged on under the EXEC utility, either
in batch or at a terminal. You cannot issue I/O system calls against a labeled tape from
the system console, because the operator process (PID 2) is not a son of EXEC. The OP
username must mount all labeled tapes, and the CLI command CONTROL @EXEC
OPERATOR ON must be in effect. This command signals EXEC that the operator is
available to mount the tapes.

093-000335 Licensed Material - Property of Data Gerleral Corporation 5-31

There are two ways to mount a labeled tape: explicitly, by issuing the CLI MOUNT
command; or implicitly, by issuing the ?OPEN system call. The CLI MOUNT command
syntax is

MOUNT / VOLID = volid linkname operator-message

where

linkname is the name of the link entry associated with the tape's filename.

operator-message is a text string, which usually instructs the operator to mount the
tape.

volid is the 6-character volume identifier (See "Volume Labels" for the
volid character set).

The CLI MOUNT command creates links for both labeled and unlabeled tapes. When
you issue the CLI MOUNT command against a labeled tape, EXEC passes the message
string to the operator and creates a link entry for the filename in your initial working
directory.

The link resolves to @LMT:volid when you open, read, write, or close that tape volume.
Note that EXEC creates the link entry in your initial working directory, not in the directory
from which you issued the CLI MOUNT command.

When you perform primitive I/O or issue CLI commands against the labeled tape volume,
you can substitute the tape's filename for @LMT:volid. After you read or write to a tape
file that you opened with the CLI MOUNT command, use the CLI DISMOUNT command
to tell the operator to remove the tape from the tape drive.

You can also mount a labeled tape with the CLI DUMP command, or any CLI command
that accesses @LMT:volid. When you use this method, EXEC checks to see if the tape
is already mounted. If it is not, EXEC directs the operator to mount it. The syntax of
the CLI DUMP command is

DUMP @LMT:volid:filename

Each time you issue the CLI DUMP command, EXEC directs the operator to mount, and
then dismount the tape. Thus, the CLI MOUNT command is usually the more efficient
method.

5-32 Licensed Material - Property of Data General Corporation 093-000335

If you mount the labeled tape with the ?OPEN syste:m call, offset ?IFNP points to the
name of the tape volume, which must be in the following form:

@LMT:volid:filename

AOS/VS does not create a link when you use this method, but it does tell the operator
to mount the labeled tape volume specified in the pathname. When you close that tape
file with the ?CLOSE system call, AOS/VS directs the operator to dismount the labeled
tape volume.

Mounting a labeled tape explicitly with the CLI MOUNT command is the most efficient
way to perform I/O on more than one labeled tape file, because AOS/VS does not need
to rewind and reposition the tape for each I/O sequence or direct the operator to mount
and dismount the tape for each ?OPEN and ?CLOSE system call. However, the ?OPEN
system call is useful because it gives you the option of creating and opening the tape file
at the same time.

When you read or write to a labeled tape, refer to the tape by one of the following
pathnames

@LMT:volid:filename

where

@LMT is the generic filename for a labeled tape.

volid is the volume identifier number.

filename is the name of the file you wish to access.

-OR-

:UDD:username:linkname:filename

where

UDD is the name of the user directory.

username is your username.

linkname is the name of the link entry created by EXEC when the tape was mounted.

filename is the name of the tape file.

You do not need to cite a specific tape unit number for either of these formats. Use the
second format if your current working directory is not :UDD:username.

EXEC creates the LMT entry and assigns it file type ?FGLT, the file type for labeled
tapes. The filename you choose must consist of at least 1 and not more than 17 characters
from the same character set you used for volid.

Because not all characters in this set conform to the character set for filenames, you cannot
pass all labeled tape filenames through the CLI. (Instead, you must write your own
programs, using the I/O system calls, to perform I/O on these labeled tapes.)

093'()()()335 Licensed Material - Property of Data General Corporation 5-33

File 1/0 on Unlabeled Magnetic Tapes
To use a magnetic tape unit, you must first open it. To do this, specify the number of
the tape unit and the position of the file on the tape (its file number) in the following
form:

@MTBx:y

where

x is the number of the tape unit.

y is the file number.

Magnetic tape files are numbered sequentially, starting with O. Thus, the pathname
@MTBO:2 specifies the third file on tape unit O. If you do not specify a file number,
AOS/VS automatically opens the first file (file 0) on the tape.

If you use block I/O system calls to access a magnetic tape, you can specify the file
number after you issue ?RDB or ?WRB system calls against the tape.

If you issue the CLI command MOUNT to signal the operator to mount a magnetic tape,
use the linkname you used in the MOUNT command when you perform I/O against the
file. For example, if you issue the following CLI command, you would be using the linkname
TAPEI to open, read, write, or close that file

MOUNT TAPE1 operator_message

In this case, AOS/VS would find TAPEI in your initial working directory.

File 1/0 Sample Programs
The following program, RITE, opens the terminal and the disk file FILE. Then, RITE
asks you to type lines of text at your terminal keyboard, and writes each line to FILE.
When you type RD, RITE reads the lines back from FILE and displays them on your
terminal screen.

RITE uses ?OPEN, ?READ, ?WRITE, and ?SPOS system calls .
. TITLE RITE
.ENT RITE
.NREL

;Open terminal (@CONSOLE) and file for input and output.

RITE: ?OPEN CON ;Open terminal (CON) for 1/0.
WBR ERROR ;Report error and quit.
?OPEN FILE ;Open or create disk file

;named FILE.
WBR ERROR ;Quit.

;lr1te greet1ng and put byte p01nter to 1/0 buffer in packet.

?WRITE CON ;D1splay message on terminal.
WBR ERROR ;?WRITE error return.
XLEFB 0,BUF*2 ;Get byte pOinter to 1/0

;buffer.
XISTA 0, CON + ?IBAD ;Put in 1/0 packet.

5-34 Licensed Material - Property of Data General Corporation 093-000335

;Read line, check for terminator, and then write to file.
NLDAI 'RD' ,0 ;Put RD terminator in ACO.

LOOP: ?READ CON :Read a line.
WBR ERROR :Quit.

XNLDA 1,BUF :Get first word of buffer.
WSNE 0,1 ;Did user type RD?
WBR SPOS ;Yes. Do ?SPOS.

?WRITE FILE ;No. Write line to FJ[LE.
WBR ERROR ;Quit.
WBR LOOP ;Get next line frOi lIser.

;Set position at beginning of file.

SPOS: NLDAI 0,1 ;Get 0 in AC1.
XWSTA 1, FILE + ?IRNH ; Put in record mJllber word.
XNLDA 2, FILE + ?ISTI ; Get file's speci ficcltions .
WMOV 2,0 ;Save old specificaUons in

;ACO.
WIORI ?I PST ,2 ;Add ?IPST specification.
XNSTA 2, FILE + ?ISTI ; Put in file speci fic:ations .

?SPOS FILE ;Position at beginning of
;FILE.

WBR ERROR ;Quit.
XNSTA O,FILE+?ISTI ; Restore old speci fic:ations .

:Read lines back from FILE and display on terlinal.

LOOP1: ?READ FILE :Read from FILE into buffer.
WBR EOF ; Try to handle the er'ror.

?WRITE CON ;Display line on terminal.
WBR ERROR ;Quit.

WBR LOOP1 ;Read/write another line.

EOF: NLDAI EREOF,2 ; Error code for end-clf-file
;(EOF) is EREOF.

WSEQ 0,2 ;Was it an EOF?
WBR ERROR ;No. Quit.

;Close the file.

CLOSE: ?CLOSE CON ;Close terminal.
WBR ERROR ;Quit.

?CLOSE FILE ;Close FILE.
WBR ERROR ;Quit.
WSUB 2,2 ;Set flags for normal return.
WBR BYE ;Take good return.

093·000335 Licensed Material - Property of Data Genoral Corporation 5-35

;Process error andlor return here.

ERROR: fLDAI ?RFECI?RFCFI?RFER,2

BYE: ?RETURN
WBR ERROR

;Open and liD packet for terminal.

CON: .BLK ?IBLT

. LOC

. WORD

.LOC

. WORD

.LOC

. DWORD

.LOC

. WORD

. LOC

. DWORD

. LOC

. DWORD

CON+?ISTI
?ICRFI?RTDSI?OFIO

CON+?IMRS
-1

CON+?IBAD
ITEXT*2

CON+?IRCL
120 .

CON+?IFNP
CONS*2

CON+?IDEL
-1

. LOC CON + ?IBL T

; Filename , buffer, and messages.

CONS: .TXT "@CONSOLE"

BUF: .BLK 60.

;Error flags: Error code is
;in ACO (?RFEC), message is in
;CLI format (?RFCF), and
;caller should handle this as
;an error (?RFER).

;Return to CLI.
;?RETURN error return

;Allocate enough space for
; packet.

;File specifications .
;Change format to
;data-sensitive records and
;open for input and output.

;Default physical block size
;to 2 [bytes.

;Set byte pOinter to record
;I10 buffer.

;Record length is 120
; characters.

;Set byte pOinter to pathname .

;Deliliter table address .
;Use default deliliters: nUll,
;NEW LINE, fOri feed, and
;carriage return (default is
;-1) .
;End of packet.

;Use generic nale.

;Allocate enough space for
;buffer.

ITEXT: .TXT"I write lines to file FILE. Type RD[NL] to read lines
back and stop.~12~"

.NOLOC 0 ;ResUie listing all.

;?OPEN and 1/0 packet for FILE. You can omit those entries that you
;Iant to set to O.

5-36 Licensed Material - Property of Data General Corporation 093-000335

FILE: .BLK ?IBLT ;Allocate enough space for
; packet.

.LOC FILE+?ICH

. WORD 0 ;AOS/YS assigns channel
;number.

.LOC FILE + ?ISTI ;File specifications .

. WORD ?OFCRI?OFCE!?ICRF!?RTDSI?OFIO ;Delete file and then
;recreate it (?OFCR!?OFCE).
;change fonmat (?ICRF) to
;data-sensitive records
; (?RDTS). and open for input
;and output (?OFIO).

.LOC FILE+?ISTO

. WORD 0 ;Default to ?FUDF. user data
;file.

.LOC FILE+?IMRS

. WORD -1 ;Default physical block size
;to 2 Kbytes.

.LOC FILE+?IBAD ;Byte pOinter to record I/O

. DWORD BUF*2 ;buffer.

.LOC FILE + ?IRES ; Densi ty lOde (for !Iagnetic
;tapes only).

. WORD 0 ;Default it.

.LOC FILE+?IRCL

. WORD 120. ;Record length is 120
; characters.

.LOC FILE + ?IRLR ;NUlber of bytes transferred.

. WORD 0 ;Only ?READ and ?WRITE use
;this.

.LOC FILE + ?IRNW ; Reserved .

. WORD 0 ;Set to O.

.LOC FILE + ?IRNH ;Record nUlber.

. DWORD 0 ;Only ?READ and ?WRITE use
;this.

. LOC FILE+?IFNP ;Set byte pOinter to pathnale .

. DWORD FNAtE*2

. LOC FILE + ?I DEL ;Delimiter table address .

. DWORD -1 ;Use default delimiters: nUll .
; NEW LINE. fOnl fee'd. and
; carriage ~return (dlefaul t is
;-1).

093-000335 Licensed Material - Property of Data G.Elneral Corporation 5-37

. LOC FILE + ?IBL T ;End of packet.

FNAME: .TXT "FILE" ;Disk filename.

. END RITE ;End of RITE program .

Block 1/0 Sample Program
The block I/O sample program, DLIST lists all filenames in a directory and prints them
on the line printer. DLIST uses the CLI ?GTMES mechanism (see Chapter 11) to get
the directory name as well as using ?GOPEN to open the directory. Also, DLIST uses
the ?OPEN, ?READ/?WRITE, ?GNFN, and ?SEND system calls. To execute DLIST,
type the following.

X program_name directory_name

. TITLE DLIST

.ENT DLIST

.NREL

;Get the directory name, open it, and open the line printer queue.

DLIST: ?GTMES CLIMSG ;Get directory name.
WBR ERROR ;?GTMES error return.
LLEFB O,DIRNAME*2 ;Get byte pOinter to directory

;n.e.
NLDAI -1,1 ;Specify that AOS/YS assign

;channel number for ?GOPEN.

?GOPEN DIR ;Open the directory.
WBR ERROR ;?GOPEN error return.

?OPEN LINEP ;Open the line printer queue.

WBR ERROR ;?OPEN error return.

;Use ?GNFN to get next name and write to line printer.

XNLDA 1,DIR+?ICH ;Keep channel number in AC1.

NEXT: ?GNFN GNAME ;Put filename in ?GNFN buffer.
WBR EOF ;?GNFN error return.

?WRITE LINEP ;Send contents of ?GNFN
;buffer (filename) to line
;printer as output.

WBR ERROR ;?WRITE error return.
XLEFB 2,NL*2 ;Get address of NEW LINE

; character.
XWSTA 2, LINEP + ?IBAD ;Put address of NEW LINE

;character in line printer
;buffer.

?WRITE LINEP ;Send contents of buffer
;(address of NEW LINE
;character) to line printer
;as output.

5-38 Licensed Material - Property of Data General Corporation 093-000335

WBR ERROR ; ?WRITE error return.
XLEFB 2,FNAME*2 ; Get byte pOinter tIl filename

;buffer.
XWSTA 2, LINEP + ?IBAD ;Restore buffer address.
WBR NEXT ;Get another filenmDe.

EOF: NLDAI EREOF,2 ;Is error code EREOF
; (end-of-file)?

WSEQ 0,2 ;Yes. Skip this instruction.
WBR ERROR ;No. Try to handle the error.

;F1nished with filenames. Get ?SEND parameters and issue ?SEND.

XLEFB O,CONS*2 ;Set byte pOinter to terminal name.
XLEFS 1,TMSG*2 ;Set byte pOinter to ?SEND message.
WLDAI (CLIMSG-TMSG)*2!1S22,2 ;Message length and byte

?SEND
WBR ERROR
WSUB 2,2

WBR BYE

;pointer flag.

; Send message to ter"llinal.
;?SEND error return ..
;Done. Set flags for ?SEND
;normal return.
; Goodbye.

ERROR: NLDAI ?RFECI?RFCF!?RFER,2 ;Error flags: Error code is in
; ACO (?RFEC). Ilessa~le IS In

BYE: ?RETURN
WBR ERROR

Nl: . TXT "<12>"

; CLI forat (?RFCF)" and
;should handle this as an
;error (?RFER).

;Return to CLI.
; ?RETURN error retur'n

;Put each name on a new line.

;?SEND terminal name and message. A .NOLOe 1 follows.

CONS: .TXT "@CONSOLE" ;Use generic name.

TMSG: .TXT "All filenalles written to line printer. Bye,"
. NOLOC 0 ;ResUile listing all ..

;?GTMES packet to get directory name from CLI.

CLIMSG: . BLK ?GTLN ; Allocate enough spclce for
;packet.

. LOC CLIMSG + ?GREQ ;Request type .

. WORD ?GARG ;Put argUEnt in ?GBES only.

.LOC CLIMSG + ?GNIM

. WORD 1 ; Argument 1 is direc:tory name
; argument 0 is progl-am nalle).

093-000335 Licensed Material - Property of Data General Corporation 5-39

.LOC CLIMSG + ?GRES ;Set byte pOinter to receive
; buffer .

. DWORD DIRNAME*2 ;Set byte pOinter to directory
;name buffer (DIRNAME).

.LOC CLIMSG + GTLN ;End of packet.

DIRNAME: .BLK 50. ;Directory name buffer.

;?GOPEN packet (needed for directory).

DIR: .BLK ?OPLT ;Allocate enough space for
; packet.

.LOC DIR+?OPLT ;End of packet.

;?GNFN packet to get next filename.

GNAME: .BLK ?NFLN ;Allocate enough space for
; packet.

.LOC GNAME + ?NFKY ;AOS/VS uses this after first
;call.

. DWORD 0 ;Set to 0 for first call .

.LOC GNAME + ?NFNM

. DWORD FNAME*2 ;Set byte pOinter to filename
;receive buffer.

.LOC GNAME + ?NFTP

. DWORD -1 ;There is no teIPlate (default
;is -1).

. LOC GNAME + ?NFLN ;End of packet .

FNAME: .BLK 16. ;Area of receive filenames.

;?OPEN and I/O packet for 11ne-printer output file.

LINEP: .BLK

5-40

.LOC

. WORD

. LOC

. WORD

.LOC

. WORD

?IBLT

FILE+?ICH
o
FILE+?ISTI
?ICRF!?RTDS!?OFOT

FILE+?ISTO
o

;Allocate enough space for
; packet.

;AOS/VS assigns channel number.
;File specificat10ns .
;Change format (?ICRF) to
;data-sensitive records
; (?ROTS) , and open for input
;and output (?OFIO).

;Default file type to ?FUDF,
;user data file.

Licensed Material - Property of Data General Corporation 093-000335

·lOC FILE + ?IMRS
. WORD -1

.lOC FILE+?IBAD

. DWORD FNAME*2

.LOC FILE + ?IRES

. WORD 0

.lOC FILE + ?IRCl

. WORD 136 .

.LOC FIlE+?IRLR

. WORD 0

.lOC FILE + ?IRNW

. WORD 0

.lOC FILE+?IRNH

. DWORD 0

.LOC FILE+?IFNP

. DWORD LPTNM*2

.LOC FIlE+?IDEl

. DWORD -1

. LOC FILE + ?IBl T

lPTNM: .TXT "alPT"

. END DlIST

;Default physical block size
;to 2 Kbytes.

; Set Byte painter tOI record
;110 buffer.

;Density mode (for magnetic
; tapes only).
;Default to Density mode set
;during VSGEN procedure.

;Record length is 136
; characters.

;NUlber of bytes transferred.
;Only ?READ and ?WRITE use
;this.

; Reserved .
;Set to O.

;Record nu.ber.
;Only ?READ and ?WRITE use
;this.

; Set byte painter tOI pathn.e.

;Deli.iter table address.
;Use default delllliters: null,
; NEW LINE, fOnl feedl, and
; carriage return (de!faul t is
;-1) .

;End of packet.

;Printer queue filename.

;End of DlIST progra •.

Pipe file Sample Program (fragment)
This program fragment creates and opens a pipe (PIPEFILE), and writes a record into
the pipe .

. TITlE OPIPE

.ENT OPIPE

.NREl
; This progral, in file PIPE--PROG.SR, creates
; p1pe file "PIPEFIlE" and places a leSS age
; in it.

093-000335 Licensed Material - Property of Data General Corporation 5-41

OPIPE: WSUB 0.0 ;Zero out ACO
WSUB 1.1 ;Zero out AC1
?OPEN IOPU ;Open the pipe
WBR ERROR ;Report error to caller

NlDU ?OFOT!?RTDS.O ;Get new flags into ?ISTI word
XNSTA O.IOPU+?ISTI ;and store into packet
?WRITE ;Write to pipe
WBR ERROR

?ClOSE IOPU ;Close pipe file
WBR ERROR

WSUB 2.2
WBR BYE ;Take normal return to caller

ERROR: WlDU ?RFEC!?RFCF!?RFER.2 ;Error flags: Error code is in
;ACO (?RFEC). message is in ClI
;format (?RFCF). and caller should
;handle this as an error (?RFER).

BYE: ?RETURN
WBR ERROR

IOPU:
.BlK ?IBlT
.lOC IOPU+?ICH ; Channel mJlber
. WORD 0

.lOC IOPU + ?ISTI ;Flag word

. WORD ?OFCRI?OFCEI?OFOT!?RTDS ;Create pipe. open for
; output. data-sensitive
;record forat

.lOC IOPU+?ISTO ;Specify pipe file type

. WORD ?FPIP

.lOC IOPU + ?IMRS ;Pipe size

. WORD -1 ;Default length (4096.)

.lOC IOPU + ?IBAD ;BP -~ (1/0 buffer)

. DWORD WBUF*2

.lOC IOPU + ?IRES ; Reserved

. WORD 0

.lOC IOPU + ?IRCl ;Record length

. WORD 136 .

.lOC IOPU + ?IRlR ;# bytes transferred

. WORD 0

.lOC IOPU+ ?IRNW ; Reserved
. WORD 0

5-42 Licensed Material - Property of Data General Corporation 093-000335

.lOC IOPKT+?IRNH ;Record #

. DWORD 0

.lOC IOPKT+?IFNP ;BP -~ (filename)

. DWORD FNAME*2

.LOC IOPKT + ?I DEL ;A(delimiter table)

. DWORD -1 ;Default table

.lOC IOPKT+?EPIP ;A(pipe extension)

. DWORD 1S0+PIPEPKT ;Set validity bit also

PIPEPKT:
.lOC PIPEPKT + ?PIRV ;Packet revision #

. WORD ?PKRO ; Revision

.LOC PIPEPKT + ?PIRS ; Reserved

. WORD 0

.lOC PIPEPKT + ?PIFG ;F1ags word

. DWORD ?PNVR ;Never pend

.lOC PIPEPKT + ?PITI ; Reserved

. WORD 0

.LOC PIPEPKT + ?PIPD ; Reserved

. DWORD 0

FNAME:
. TXT "PIPEFIlE" ;Na.e of file

,WBUF:
. BlK 136 . ;110 buffer
.lOC WBUF
.TXT "This is record 1 of 1. <12~"

.END OPIPE

End of Chapter

093·000335 Licensed Material - Property of Data G«tneral Corporation 5-43

Chapter 6
Windowing

You use the following system calls to support windowing applications:

?WINDOW Create or manipulate a window; return information about a
window.

?PTRDEVICE Control pointer device I/O and pointer appearance.
?GRAPHICS Manipulate information in graphics windows.

Each of these system calls is multifunctional.

093-000335 Licensed Material - Property of Data Genleral Corporation 6-1

On certain terminals, AOS/VS supports windowing. This chapter describes AOS/VS
windowing and the system calls you can use to support windowing applications.

What Is Windowing~
Windowing lets you view and run multiple processes simultaneously on a single terminal.
Each process runs independently within its own window.

Under AOS/VS, a window is a rectangular portion of a physical screen that has been
attached to a virtual terminal. (A virtual terminal is the illusion of a terminal, created
by software. Other software products also make use of virtual terminals; usually, each
product has its own software and its own special type of virtual terminal. We discuss the
windowing virtual terminal in more detail below.) Usually, the window has a border that
separates it from the rest of the screen. Within the window border is the virtual terminal,
which usually has been passed to a process.

A windowing terminal can display multiple windows simultaneously, each of which is
attached to a separate virtual terminal. Figure 6-1 shows a physical terminal with two
windows on it. In this figure, each window has been attached to a separate virtual terminal,
which has been passed to a separate application program. Each program performs I/O
independently on its own virtual terminal, just as if that terminal were a real physical
terminal. AOS/VS manages the I/O among the competing virtual terminals on each
physical terminal.

Windowing Terminals
AOS/VS supports windowing on pixel-mapped terminals attached to DS series workstations
that run the GIS II graphics instruction set.

During system initialization, AOS/VS creates a terminal (console) file in the :PER directory
for each pixel-mapped terminal attached to the system Uust as it does for normal terminals}.
Terminal files for pixel-mapped terminals have names of the format "@PMAPn", where
n is a unique integer that identifies the terminal. Pixel-mapped terminal files are also
distinguishable from regular terminal files because they have the ?BMDEV (bit-mapped
device) characteristic set.

You can perform only a limited set of system calls directly on a pixel-mapped terminal.
They are

? ASSIGN Assign a device to a process.

?DEASSIGN Remove the channel assignment to a device.

?GCHR Get device characteristics.

?GECHR Get extended device characteristics.

?SCHR Set device characteristics.

?SECHR Set extended device characteristics.

In addition, you can use the ?WINDOW call, function code ?WIN_CREATE_WINDOW,
to create a window on that terminal. Once a window exists on the terminal, you can
communicate with that window just as you would communicate with a normal terminal.

6-2 Licensed Material - Property of Data General Corporation 093-000335

10-03278

093-000335

1 WIndow 21

AOS/VS Window Manager Software

Virtual Terminal
1

Application
Program 1

Virtual Terminal
2

Application
Program 2

(The physical terminal
displays the windows, each of
which displays the contents
of its virtual terminal)

(AOS/VS manages the I/O
between the virtual and
physical terminals)

(Virtual terminals give
each application the
illusion that it has an
entire physical terminal
to itself)

Figure 6-1. Multiple Windows on a Terminal

Licensed Material - Property of Data Genleral Corporation 6-3

Window Pathnames
Every window has a unique window path name in the form

@PMAPn:windowname

where

@PMAPn is the name of the pixel-mapped terminal that contains the window.

windowname is the name of the window.

When you create a window, you give it a name that is unique among windows on that
terminal. The window name can be up to 31 characters long; restrictions on window names
are identical to those for filenames.

Referring to a Window
When you issue windowing system calls, you can specify the target window by one of the
following.

Pathname

Window ID

The pathname consists of the terminal name plus the window name.
(Note that there is some file system overhead involved in resolving a
pathname.)

When you create a window, AOS/VS returns the window's ID number.

Channel number When you ?OPEN a window, AOS/VS returns the window's channel
number.

The windowing system calls are ?WINDOW, ?GRAPHICS, and ?PTRDEVICE; we
describe these calls later in this chapter. Most functions of these calls let you refer to the
window through its pathname, ID, or channel number; a few require the window pathname.

Nonwindowing system calls treat windows as terminals; when you issue a nonwindowing
system call on a window, refer to the window using either its path name or channel number
(whichever is appropriate to the call). For example, when you issue the ?OPEN call to
open a window, use the window pathname Gust as you would use @CONxx when opening
a terminal). When issuing a ?READ or ?WRITE call to perform I/O on a window, use
the window's channel number, just as you would for a terminal.

If a window is passed to a son process as the input, output, data, or console file, then the
son process can refer to that window using the generic filenames @INPUT, @OUTPUT,
@DATA, or @CONSOLE, respectively.

The Window Title

A window may also have a window title, which is a character string that's associated with
the window, and can be displayed in the window's border. The window title is primarily
used to tell the user what is running in the window. Your program cannot use a window
title to refer to a window.

Window Types
There are two types of windows: character windows and graphics windows.

A character window is a window that has a virtual terminal similar to a D460 terminal.
That is, the screen inside a character window looks and acts like the screen of a D460,
both to the application program and to the user. A process running in a character window

6-4 Licensed Material - Property of Data General Corporation 093-000335

does not need to be aware that it's running in a window instead of on a real D460; most
programs that can run on a D460 terminal can run unchanged in a character window.
(The virtual terminal has its own model ID. Since the virtual terminal does not support
D460 local functions, such as compressed display and smooth scrolling, your program may
want to check the model ID before attempting to use such functions. For a complete
description of a character window's virtual terminal, sec! the section in this chapter entitled
"Sending Output to a Character Window".)

In general, you perform I/O on character windows just as you would to any terminal
(using the ?OPEN, ?READ, ?WRITE, and ?CLOSE calls).

A graphics window is a window specially designed to support high-performance graphics.
While running in a windowing environment, your graphics program can write to the screen
using graphics instructions, and receive input from th,e keyboard and the pointer device.
Unlike a character window, the virtual terminal attached to a graphics window does not
resemble any existing terminal. Therefore, to run in a graphics window, most existing
programs need to be modified somewhat.

To get input from graphics windows, you can use ordinary ?OPEN and ?READ calls;
however, your application must echo keyboard input itself, since AOS/VS cannot write
characters to a graphics window.

To open a window for graphics output, you must use the ?GRAPHICS call; you cannot
use the ?OPEN call. To write output to a graphics window, you must use the GIS II
graphics instruction set; you cannot issue a ?WRITE call to a graphics window.

For details on graphics windows, see the section in this chapter entitled "Sending Output
to a Graphics Window".

Window Characteristics
In general, you can treat windows like special terminals.

• For nonwindowing system calls, the ownership and a.ccess control rules for windows are
identical to those for terminals. Exceptions for windowing system calls are noted later,
when we describe each system call.

• The steps for communicating with a window are similar to those for communicating
with a terminal (assign, open, read/write, and then close and remove its channel
assignment.) We describe the details under "Setting Up Windows" below.

• Unlike terminals, windows have a Permanence attribute just as files do. You cannot
delete a window that has Permanence on. To set the Permanence attribute of a window
on or off, use the ?WINJERMANENCE_ON or ?WIN_PERMANENCE_OFF
function code of ?WINDOW.

View Ports and Scan Ports
In AOS/VS windowing, a window on the physical screen can display part or all of the
data that's currently on the virtual terminal, as shown in Figure 6-2.

In Figure 6-2, the physical screen contains a window with the title "CLI." Inside this
window is the portion of the physical screen that has been attached to a virtual terminal;
that portion of the screen is called the view port. The view port does not include the
window's border or title.

The view port is attached to a rectangular section of the virtual screen; this section of the
virtual screen is called the scan port. The view port (on the physical screen) displays only

093-000335 Licensed Material - Property of Data Genleral Corporation 6-5

Physical Screen Virtual Screen

Window
Title __ eLi

Window
Border

IO-()3300

Scan Port

View Port

Figure 6-2. The View Port and the Scan Port

the data contained within the scan port (on the virtual screen). In Figure 6-2, the scan
port contains only a subset of the data that's actually on the virtual screen; likewise, the
view port shows only that data.

Using the View and Scan Ports to Change a Window
Your program can change the location or size of a window, or scroll data in a window,
by altering its view or scan ports. (Use the ?WINDOW call, function code
?WIN_DEFINEJORTS, which we describe later.)

To move the window on the physical screen, you change the coordinates of the origin
(upper left corner) of the view port.

To show a different part of the virtual screen, you change the coordinates of the scan
port's origin. Different data will then appear in the view port.

To change the size of the window on the physical screen, you change the width and/or
height of the scan port (on the virtual screen). The size of the view port will automatically
change to match that of the scan port.

You can perform more than one change at a time.

6-6 Licensed Material - Property of Data General Corporation 093-000335

Window Overlap
When there is more than one window on a physical screen, the windows may overlap each
other. When this happens, the front window covers all or part of the data in the view
port(s) of the window(s) behind it. Figure 6-3 depicts a physical screen with two windows
overlapping, and shows each window's respective virtual screen.

Physical Screen Virtual Screen 1

! ~
/ , / ,

eLI

FED

I~ " ~

'-

/- 1'\

Physical Screen 2

\. ~

10-03301

Figure 6-3. Overlapping J1Vindows

093-000335 Licensed Material - Property of Data General Corporation 6-7

Window Priorities
AOS/VS assigns a unique window priority to each of the windows on a physical screen.
The window priority determines the front-to-back order of the windows: where windows
overlap, the window with the higher priority appears in front of any window(s) with lower
priority. Figure 6-4 represents a screen on which several windows overlap. We show each
window's priority so that you can see how window priority determines which windows
appear in front.

Notice that when windows do not overlap, window priority does not affect how the window
appears on the screen. Thus, in the example above, the window with the lowest priority,
Window 7, is completely unobscured, while Window 2 (the second-highest priority window)
is partially covered by Window 1.

1

2

1
15

4

I 61

10-03277

Figure 6-4. Window Priorities

6-8 Licensed Material - Property of Data General Corporation 093·000335

Unlike block I/O, physical block I/O has

• No retries.

If a physical block transfer fails, AOS/VS does not try to read or write the block(s)
again. (This is different from block I/O in which AOS/VS retries the block read or
block write.)

• No ECC corrections.

If data errors occur during a physical block transfer, AOS/VS completes as much of
the transfer as possible, and takes the normal return from the system call.

?PRDB/?PRWB and ?BLKIO with the physical block read option work in conjunction
with the assembly language block status instructions DIA, DIB, and DIC. (For details on
the syntax and function of these instructions and the: error-correction codes for devices,
refer to the Programmer's Reference Peripherals manual.)

Modified Sector I/O
AOS/VS supports modified sector I/O to disks that support the hardware feature (354-
and 592-megabyte "DPJ" disks). To perform modified sector I/O, the disk file must be
opened using the appropriate options with the ?GOPEN call. You can only perform modified
sector I/O by issuing the ?BLKIO call with the physical block I/O option set.

You use modified sector I/O to transfer only the disk blocks that have been modified.
Modified sector I/O transfers both the modified disk blocks and a bit map of the modified
blocks. For more detail on modified sector I/O functionality, refer to the Programmer's
Reference Series: Models 6236/6237 and 6239/6240 Disk Subsystems manual.

Controlling file Access Through the AOS/VS Lock
Manager

The AOS/VS system allows cooperating processes to control read or write access to whole
files, or to one or more file elements, by locking them. The cooperating processes determine
the file elements that can be locked by

• Giving each file element an identifying 32-bit number.

• Specifying the data objects to which each of the i.dentifying 32-bit numbers refer. A
file element can represent any data object.

By locking files and file elements, cooperating process(~s can control access - and prevent
interprocess collision - when reading or writing to critical data objects, such as large
databases. The cooperating processes cannot lock genc:ric files or IPC-type files.

To lock a file or file elements, a process must issue the ?FLOCK system call. The ?FLOCK
system call requests a lock from the AOS/VS lock manager. If the lock manager grants
the lock request - we describe later why it mayor may not - the process can then read
or write to the file or file elements. When the process no longer needs access to the file
or file elements, it can issue the ?FUNLOCK system call to release the lock.

093-000335 Licensed Material - Property of Data Gelneral Corporation 5-7

A process can request one of two types of locks:

Exclusive lock Allows only the locking process to write to the file or file elements.

Shared lock Allows all processes to read the file or file elements; no cooperating process
can write to the locked file or file elements.

The process requesting the lock can specify whether it wants to lock the whole file or one
or more elements in the file. The AOS/VS lock manager allows a process to lock a file
element under the following conditions.

Lock Status
of File Element

Unlocked

Shared lock

Exclusive lock

Exclusive Lock
Allowed

Yes

No

No

Shared Lock
Allowed

Yes

Yes

No

The AOS/VS lock manager will allow you to lock a whole file only when there are no
locked elements in the file. The AOS /VS lock manager will not allow you to lock a
directory.

In the ?FLOCK system call, you can also specify what to do if the file or file elements
are already locked. If the file or file elements are locked, ?FLOCK can

• Return an error.

• Wait for the release of the file or file elements by the process that has currently locked
them.

If there are multiple processes waiting for a lock to be released, the AOS/VS lock
manager will give them their locks in FIFO (first in, first out) order.

To lock a file, or the elements in a file, the file must be open; any process that has
sufficient privileges to open the file can lock the file or its elements. In the ? FLCHN
offset of the ?FLOCK packet, you must give the channel number of the open file.

If more than one process has opened the file, or a single process opened it multiple times,
you can give anyone of the file's channel numbers in the ?FLOCK packet. The
AOS jVS lock manager maintains the lock status of the file and its elements independently
of the file's channel numbers: regardless of which channel number you give in the ?FLOCK
packet, the lock status of the file and its elements are the same.

If a process task closes a channel, the AOS/VS lock manager will release all locks that
used that channel. The AOS/VS lock manager will also return an error to any calling
task in the same process that has a pending ?FLOCK system call that uses that channel.

5-8 Licensed Material - Property of Data General Corporation 093-000335

Window Groups
A window group is a collection of windows that AOSjVS maintains at consecutive window
priorities. Every window belongs to a window group, even if it is the only window in that
group. Figure 6-5 shows how the windows in Figure 6-4 might be grouped.

Windows in a group can appear anywhere on the physical screen and can overlap each
other or the windows in other groups.

Each group of windows can be considered to have a priority relative to other groups. Since
Group A's windows have window priorities of 1 and 2, its windows will appear in front
of windows in all the other groups. Likewise, each of Group C's windows (4, 5, and 6)
have higher priorities than Group D's window (7), so Group C can obscure Group D.
Since none of Group C's windows have priorities higher than 4, Groups A and B (windows
1, 2, and 3) will appear in front of Group C.

When you create a window (using the ?Vv"INDOW call, function code
?WIN_CREA TE_ WINDOW), you specify whether you want it to join an existing group,
or become the first window in a new group.

Windows in a group can all belong to a single process, or one or more windows in a group
can belong to different processes. A single process can own windows that belong to different
groups.

_,~. __ Group 0 (Window 7)

:=t=3'--- Group C (Window 4, 5 and 6)

~ ____________ Group B (Window 3)

1----------- Group A (Windows 1 and 2)

10-03278

Figure 6-5. Grouping Windows

093-000335 Licensed Material - Property of Data General Corporation 6-9

Changing Window and Group Priorities
You can alter a window's priority, relative to other windows in its group, by using two
functions of the ?WINDOW call. Issuing ?WINDOW with the
?WIN_UPFRONT_ WINDOW function code brings a window to the front of its group
(making it the highest priority). Issuing ?WINDOW with function code
?WIN_OUTBACL WINDOW sends a window to the back of its group (making it the
lowest priority). If the window is the only member of its group, these calls have no effect.

To bring a group of windows to the front of the screen (making it the highest priority,
relative to other groups), issue the ?WINDOW call, function code
?WIN_UPFRONT_GROUP. To send a group behind other groups on the screen (making
it the lowest priority), use the function code ?WIN_OUTBACLGROUP. If there is only
one group of windows on the physical terminal, these calls have no effect.

Changing Window and Group Visibility
Your program can determine whether or not a window is visible to the user. When you
hide a window, it is invisible to the user, and cannot receive user input. However, you can
still perform most windowing operations on a hidden window. Hiding a window does not
affect its window priority.

To make a particular window invisible to the user, issue ?WINDOW with function code
?WIN_HIDE_WINDOW; to make a hidden window reappear, issue ?WINDOW with
function code ?WIN_UNHIDE_ WINDOW.

You can also hide an entire group of windows; to do so, issue ?WINDOW with function
code ?WIN_HIDE_GROUP. To make a hidden group visible again, issue ?WINDOW
with function code ?WIN_UNHIDE_GROUP.

Rules for Window/Group Visibility

AOS/VS uses the following set of rules to determine window and group visibility.

• When you hide an individual window, it remains invisible, regardless of the state of its
group.

• When you make an individual window visible again (?WIN_UNHIDE_ WINDOW),
that window reappears unless its group is hidden.

• When you hide a window group, every window in that group becomes invisible.

• When you make a group visible again (?WIN_UNHIDE_GROUP), its windows
reappear, except for those that are still hidden individually.

The Active Group
Although multiple groups of windows can appear on the screen at once, only one group
at a time can be the active group. The active group is the highest priority group that has
at least one visible window. The active group receives all keyboard and relevant pointer
input (see the uGetting Input From a Window" section, later in this chapter, for more
details). Windows in the active group are in the foreground (they aren't obscured by
windows of other groups); however, windows in the active group can overlap other windows
in that group.

Only the active group can receive input from the user. However, all groups on the screen
compete for system resources according to the priorities of the processes involved. This

6-10 Licensed Material - Property of Data General Corporation 093-000335

means that a process whose window is not in the activl;: group can still perform calculations,
get input from files, and write to its window.

AOS/VS changes the appearance of windows to show whether or not they belong to the
active group. The borders of windows in the activ(! group are thick; borders on other
windows are thin. For windows with intelligent borders, border symbols and elevators appear
only on windows in the active group.

When Should You Group Windows~
Grouping windows is useful when you want -several windows to be treated as a set.
AOS/VS provides a menu-driven user interface program, DG/VIEW, which lets users
manipulate windows on the screen (we describe DG/VIEW later). With DG/VIEW, users
can make a group of windows the active group; howc~ver, they cannot change the priority
of windows within a group. Users can also hide groups (make them invisible) and suspend
them, but cannot perform these actions on individual windows.

You should put windows in the same group if you want the user to make them active,
visible, or invisible at the same time. For example, suppose you have two associated windows:
one window displays a list of objects, and the other window displays a list of actions you
can perform on those objects. You would probably want DG /VIEW to treat the two
windows as a group: if the user hides one of the windows, the other should also disappear,
since in this case neither window is much use without the other.

Setting Up a Window
To set up a window so that you can manipulate it (move, size, etc.) or perform I/O to
it, you must perform the following sequence of operations.

1. Create the window.

2. Assign the window to a process.

3. Adjust the window's appearance and priority, and make it visible to the user.

4. Open the window for I/O.

We explain each step in detail below.

Creating a Window
To create a window on a terminal, issue the ?WINDOW system call, function code
?WIN_CREATE_ WINDOW.

In order to create a window, you must have either control access to the physical terminal
(that is, be able to issue a ?SECHR call), or control access to an existing window on that
terminal. In the main ?WINDOW packet, you specify the terminal or window to which
you have access. The process differs slightly depending on which you specify.

Specifying a Physical Terminal

If you have control access to a physical terminal, you can create windows on that terminal
by specifying the terminal's path name in the main ?'W'INDOW packet. Each window you
create using this method will begin a new window group; you cannot use this method to
add a new window to an existing group.

093-000335 Licensed Material - Property of Data General Corporation 6-11

In the ?WIN_CREATL WINDOW subpacket, you must indicate

• That you are specifying a physical terminal in the main packet.

• That the new window will begin a new group.

• A name for the new window (the name forms part of the window pathname).

Specifying an Existing Window

If you have control access to an existing window on a terminal, you can create windows
on that terminal by specifying the existing window's pathname, channel number or window
ID in the main ?WINDOW packet. When you create a window using this method, the
new window can either begin a new window group, or it can join the group of the existing
window you specified.

In the ?WIN_CREATE_ WINDOW subpacket, you must indicate

• That you are specifying a window in the main packet.

• Whether you want the new window to begin a new group or join the existing window's
group.

• A name for the new window (the name forms part of the window pathname).

Optional lWIN_CREATLWINDOW Information

In the ?WIN_CREA TE_ WINDOW subpacket, you can also specify

• The type of window you are creating (character or graphics).

• The pixel depth (number of bits per pixel), for graphics windows only.

• The size of the virtual terminal for the window you are creating.

• The window title (which appears in the window border).

• The size of the window's input buffer.

AOS/VS creates the window according to your specifications in the
?WIN_CREA TE_ WINDOW subpacket, and returns the window ID of the newly created
window.

Assigning a Window to a Process
When you create a window, ?WIN_CREATE_WINDOW automatically assigns the new
window to your process.

To assign an existing window to your process, load ACO with a byte pointer to the window
pathname, and issue the ?ASSIGN call.

To assign an existing window to a new process, issue the ?PROC call from the process
running in that window, and pass the window to the new process as that process's
@CONSOLE file. This creates a new process, and assigns the window to the newly created
process.

When you pass a window to a son process as that process's @CONSOLE file, AOS/VS
saves certain window characteristics. When the son process terminates, AOS /VS restores
the window to its previous state, and returns it to the parent process.

6-12 Licensed Material - Property of Data General Corporation 093-000335

AOS /VS saves the following window characteristics.

• Window title.

• Whether or not the window is visible.

• Whether or not the window is suspended.

• Whether or not the keyboard is enabled for this window.

• The set of pointer events you have asked to receive for this window.

• How far the pointer device must move before AOS/VS reports it.

• The shape of the pointer, and whether or not it is visible.

• The color/grey settings in the palette (for graphics windows only).

• User interface parameters, such as the type of border you are using.

After you assign a window to a process, that process can use windowing system calls to
manipulate the window. For example, the process can move the window, resize it, or
customize its appearance. (For more information, see thl~ section "Manipulating a Window"
later in this chapter.)

Adjusting the Priority of a Newly Created Window

When you create a window, AOS/VS gives it the highest window priority within its group.
If you don't want the new window to have the highest priority within its group, use the
?WIN_UPFRONT_ WINDOW and ?WIN_OUTBACIC. WINDOW functions of ?WIN­
DOW to adjust the window hierarchy within that group.

For example, if you want the new window to have the lowest priority, you would use the
?WIN_OUTBACIC. WINDOW function to send that window to the back of its group.
To make the new window second in priority, use the ?WIN_UPFRONT_ WINDOW
function to make another window the highest priority in that group.

Adjusting the Appearance of a Newly Created Window

A newly created window is still hidden; it is not visible to the user. This allows you to
change the window's appearance before you display it. AOS/VS creates each window with
a default position, size, and border type that may nor may not be appropriate to your
application.

You can issue the ?WINDOW call, function code ?\VIN_DEFINE_PORTS, to change:

• The window's position on the terminal.

• The size of the view port.

• The position of the scan port on the virtual screen (what data appears).

You can issue the ?WINDOW call, function code ?WIN-.SET_USER-INTERFACE, to
determine:

• The border type (line, title, intelligent, or none).

093-000335 Licensed Material - Property of Data Genleral Corporation 6-13

• For intelligent borders, whether or not to maintain scrolling elevators.

• Whether or not the user is allowed to move, resize, or scroll the window.

• Whether or not the user can move the window borders off the screen.

Making a Window Visible
After you create a window, adjust its window priority, and determine its appearance on
the screen, you are ready to make it visible to the user. To do so, issue the ?WINDOW
call with function code ?WIN_UNHIDLWINDOW. AOS/VS then makes the window
visible in its current position.

Opening a Channel to a Window
After you open a window, you can write to it, read from it, and manipulate it via windowing
system calls. The user can also manipulate it via DG/VIEW commands.

The process for opening I/O channels differs for graphics and character windows. We
explain each process below.

Opening a Character Window
To open a character window for I/O, issue a ?OPEN call, just as you would for a physical
terminal, and specify the window's pathname. AOS /VS returns the channel number of the
window. You can perform I/O over this channel as you would any I/O channel. You can
also use the channel number to specify the window when issuing windowing system calls.

Like a terminal, a window can have multiple I/O channels open to it; just issue multiple
?OPEN calls.

For more detail on I/O to windows, see the "Getting Input From a Window" section later
in this chapter.

Opening a Craphics Window
To open a graphics window for input, issue a ?OPEN call and specify the window's
pathname. AOS /VS returns a channel number; you can issue ?READ calls to get input
from this channel. (Your program must perform any keystroke echoing; AOS /VS cannot
write characters to a graphics window). For more detail on getting input from a graphics
window, see the "Getting Input From a Window" section later in this chapter.

To open a graphics window for output, issue a ?GRAPHICS call, function code
?GRAPH_OPEN_WINDOW_PIXELMAP. AOS/VS returns a pixel map ID, which you
can use when sending graphics output to the window. You cannot issue ?WRITE calls to
a graphics window; to write to a graphics window, you must use the GIS II graphics
instructions.

You can have more than one pixel map ID open to a single graphics window; just issue
?GRAPH_OPEN_ WINDOW JIXELMAP multiple times.

For more detail on I/O to graphics windows, see the "Sending Output to a Graphics
Window" section.

Manipulating a Window
Once a window exists and has been assigned to a process, both that process and the human
user can manipulate the window. Manipulating a window means changing the window itself

6-14 Licensed Material - Property of Data General Corporation 093-000335

- for example, changing its size, or its position on the screen. This differs from performing
I/O on a window, in which information enters the window's input buffer or appears on
the window's virtual screen without affecting the window itself.

How Does a Process Manipulate Window:s~
A process manipulates windows by issuing the ?WINDOW system call. You can use the
?WINDOW system call to manipulate individual windows or groups of windows, and to
create or list windows on a physical terminal.

You can perform the following ?WINDOW functions IOn a single window.

Function Code

?WIN_DELETE_ WINDOW

?WIN_DEFINE_PORTS

?WIN_UPFRONT_ WINDOW

?WIN_OUTBACIL WINDOW

?WIN_HIDE_ WINDOW

?WIN_UNHIDE_ WINDOW

?WIN3USPEND_ WINDOW

?WIN_UNSUSPEND_ WINDOW

?WIN_ENABLE_KEYBOARD

?WIN_DISABLE_KEYBOARD

?WINJERMANENCE_ON

?WIN_PERMANENCE_OFF

?WIN3ET_USER-INTERFACE

?WIN_GET_USER-INTERFACE

?WIN3ET_ TITLE

?WIN_GET_TITLE

?WIN_GET_ WINDOW _NAME

?WIN_GET_ WINDOW _ID

?WIN_ WINDOW 3TATUS

What U Lets You Do

Delete a window.

Move or resize the view or scan port.

Make a window the highest priority in its
group.

Make a window the lowest priority in its
group.

Make a window invisible to the user.

Make a hidden window visible again.

Suspend output to a window.

Allow output to a suspended window.

Allow keyboard input to a window.

Prevent keyboard input from going to a
window.

Set the permanence attribute on for a win­
dow.

Set the permanence attribute off for a win­
dow.

Set the user interface for a window.

Return the status of a window's interface.

Set the title of a window.

Return the title of a window.

Return the window name of a window.

Return the window ID of a window.

Return the status of a window.

You can perform the following ?WINDOW functions on a group of windows.

093-000335 Licensed Material - Property of Data Gent.ral Corporation 6-15

Function Code

?WIN_OUTBACK-GROUP

?WIN_UNHIDlLGROUP

?WIN-SUSPEND_GROUP

What It Lets You Do

Make a group the highest priority among
groups.

Make a group the lowest priority among
groups.

Make a group invisible to the user.

Make a hidden group visible again.

Suspend output to a group.

Allow output to a suspended group.

Return the window IDs of all windows in
a group.

You can perform the following ?WINDOW functions on a physical terminal.

Function Code What It Lets You Do

?WIN_CREATlL WINDOW Create a new window.

?WIN_RETURN_CONSOLE_ WINDOWS Return the window IDs of all windows on
a terminal.

How Does the User Manipulate Windows'l
Your program can create, manipulate, and delete windows by issuing windowing system
calls. However, a user sitting at a terminal can't just issue system calls from the keyboard.
To allow the user to run programs in windows and to manipulate the windows on a
terminal, Data General provides the DG jVIEW windowing interface program.

The system manager can specify DGjVIEW as a user's initial program. Then, when the
user logs on to the system, DG jVIEW displays a menu of programs. The user can start
any or all of the listed programs, and can also edit the menu to add or remove programs.

When the user starts a program under DGjVIEW, that program runs as a son process
of DG jVIEW. The program still has control over all its windows, but DG jVIEW allows
the user limited control over the windows as well. Table 6-1 lists the actions that users
can perform with DG jVIEW's menu-driven interface.

Table 6-1. Actions Users Can Perform with DG/VIEW

User-Visible Action What It Really Does

Start an application in a window. Creates a window; passes it to a process.

Scroll data within a window. Changes the scan port's origin.

Move a window on the screen. Changes the view port's origin.

Change the size of a window. Changes the scan port's size.

Expand a window to its full size. Changes scan port size to largest allowable size (virtual
terminal size, or an arbitrary size specified by the
program in a DG/VIEW information file.)

(continued)

6-16 Licensed Material- Property of Data General Corporation 093-000335

Table 6-1. Actions Users Can Perform with DC/VIEW

User-Visible Action What It Really Does

Return a window to previous size. Returns scan port size to previous size.

Make an application invisible. Hide the group of windows belonging to an application.

Cut a block of data from a window. Remove a rectangular block of ASCII data from a
window.

Copy data from a window. Copies a rectangular block of ASCII data from a
window.

Paste data to a window. Inserts a block of ASCII data into the window's input
data stream.

Get help on a window's contents. Invokes the DG /VIEW help system.

Suspend and hide an application. Hides and suspends output to the group of windows
belonging to a process.

Switch to an application. Makes the group of windows belonging to a process
the active group.

Switch to next application. Makes the group of windows with the next highest
priority the activc~ group.

Exit from an application. Terminates a process, closes its window, removes its
channel assignment and deletes the window.

Exit from DG /VIEW. Terminates all processes running as sons of DG/VIEW;
closes their windows, removes their channel assign-
ments and deletes. their windows. Then, terminates the
user's DG /VIEVl process.

(concluded)

Note that a user cannot explicitly create or delete a window. In addition, although the
user can control the relative priorities of groups of windows (via "Switch"), only the
applications can determine the front-to-back arrangement of windows within groups.

Your program can control some aspects of the user interface using the ?WINDOW call,
function code ?WIN3ET_USElL.INTERFACE. For example, you can determine whether
the user is allowed to move or resize a particular window, and you can set the border
type (line, title, or intelligent) for a particular window.

For more details on the DG /VIEW user interface, see Using DG/VIEW

Getting Input from a Window
The user can send input to your application in either of two ways: by pressing keys on
the keyboard, or by manipulating the pointer device. Both methods send data to the current
window's input buffer.

AOS /VS inserts keyboard input into a window's input data stream as the user types on
the keyboard. The keyboard cursor indicates which window is receiving keyboard input
(typically, input is inserted at the cursor position, but your application can specify otherwise).
The cursor cannot move outside of the current window, and is under the control of both

093-000335 Licensed Material - Property of Data GElneral Corporation 6-17

the application and the user. There is only one keyboard cursor on the screen; it can
appear only within a window in the currently active group.

AOS/VS inserts pointer device input into a window's input data stream as the user
manipulates a pointer device (such as a mouse or a light pen). The pointer device controls
a pointer on the screen. There is only one pointer for the entire screen; it is completely
under the user's control (the application cannot affect its position). When the user moves
the pointer, or presses a button on the pointer device, AOS/VS generates a 16-byte sequence
called a pointer event, and inserts this sequence into the input data stream. Each pointer
event sequence tells you the type of action that took place, and gives the screen coordinates
at which it occurred.

Opening a Window for Input
Before a process can receive input from a window, you must open a channel to that window.
To open a window for input, issue a ?OPEN call and give the window's pathname;
AOS/VS returns a channel number. For character windows, you can use this channel
number for both input and output.

For graphics windows, you can use the channel number only to receive input. The channel
number lets you receive both keyboard input and pointer events. (You cannot use a channel
number to send output to a graphics window; all output to a graphics window is in the
form of graphics instructions that you perform on a pixel map.)

NOTE: AOS/VS does not echo keystroke input to a graphics window. If you want the
user's keystrokes to appear on the screen, your application must use graphics
instructions to write the characters on the window's pixel map.

The Input Buffer
Every window has its own input buffer, just as a terminal does. When a window receives
input data from the keyboard or the pointer device, AOS/VS inserts the data into the
window's input data stream. From the data stream, the data enters the window's input
buffer, where it remains until a process issues a ?READ call. The ?READ call removes
data from the buffer in the order in which the data arrived.

Your application can read data from a window's input buffer at any time, as long as there
is still data in the buffer (and as long as your process has access to that window).

When you create a window, you can specify the size of the input buffer. If you are planning
to use pointer device input in a window, you may want to specify a larger buffer size,
since pointer events can quickly fill a small buffer.

Input Focus
AOS /VS only sends data to the input buffers of windows in the currently active group.
Within that group, one window at a time can receive keyboard input; also, one window
at a time can receive pointer input. The input focus is the window whose input buffer is
receiving new input.

AOS/VS determines the input focus based on window priority and visibility. There can
be two input foci: one for keyboard events and one for pointer events.

Input Focus for Keyboard Input
AOS/VS sends keyboard input to the input buffer of one window at a time within the
currently active group.

6-18 Licensed Material - Property of Data General Corporation 093-000335

To be eligible to receive keyboard input, a window must be visible, be in the active group,
and have keyboard input enabled (the default is to have keyboard input enabled).
AOS /VS sends keyboard input to the highest priority eligible window in the currently
active group.

If no windows in the active group are eligible to receive keyboard input, any keyboard
input is ignored.

A process can control which window receives keyboard input by changing the priority or
visibility of windows, or by enabling and disabling keyboard input for certain windows.

Input Focus for Pointer Events

AOS/VS sends pointer device input to the input buffer of one window at a time within
the currently active group.

To be eligible to receive pointer device input, a window must be visible and in the active
group, and you must have issued the ?PTRDEVICE call (function code
?PTRDEV -BET_EVENTS) for that window. This call tells AOS/VS which pointer events
are relevant for that window; the default is for a window not to receive any pointer events.

AOS/VS sends pointer events to the input buffer of the window that currently contains
the pointer. The pointer must be within the window's view port. As the pointer moves
from window to window, AOS/VS changes the input focus for pointer device input.

If the pointer is not in an eligible window, pointer events are ignored.

A process can control which window receives pointer events by changing the visibility of
windows, or by enabling and disabling pointer events for certain windows.

For example, if you wanted to allow pointer device input to go to only one window in a
group, you could disable pointer events· for all other windows in the group (via
?PTRDEVICE, function code ?PTRDEV _SET_EVENTS). Or, you could allow some types
of pointer events (for example, button presses and releases) for certain windows, but not
for others.

Controlling Input from the Keyboard
Your application can move the keyboard cursor from window to window (within a group)
by changing the keyboard input focus. Within a window, you can control the position of
the cursor by issuing cursor control commands, just a.s you would on a nonwindowing
terminal.

If the input focus will rotate among several windows in a group, you may want those
windows to remain eligible for keyboard input. To make a particular window the keyboard
input focus, issue ?WINDOW with function code ?WIN __ UPFRONT_WINDOW (to make
that window the highest priority in its group). This approach also ensures that the entire
window is visible while the user is entering input from the keyboard.

Sometimes, you may want to change the front-to-back order of windows in a group without
affecting the keyboard input focus. To keep the keyboard input focus in a particular
window, regardless of the window's priority, you should disable keyboard input for all
windows except that window.

Two functions of ?WINDOW let you disable and re-enable keyboard input to a window.
When you create a window, the default is for keyboard input to be enabled. To disable
input to a window, issue ?WINDOW with function code ?WIN_DISABLE_KEYBOARD,

093-000335 Licensed Material - Property of Data General Corporation 6-19

and specify that window in the main ?WINDOW packet. To re-enable keyboard input for
a window, issue ?WINDOW with function code ?WIN-ENABLLKEYBOARD; again,
specify that window in the main ?WINDOW packet.

Controlling and Interpreting Input from a Pointer Device
A process cannot move the pointer from window to window as it can the keyboard cursor.
The pointer is completely under the user's control: the input focus for pointer events
changes as the user moves the pointer from window to window.

However, for each window, you can specify which pointer events you want to receive. For
example, you could ask to be notified only when the user presses a .button on the pointer
device, or only when the user moves the pointer device. This gives you some measure of
control over the input focus: if you don't want a window to receive any pointer device
input, you can tell AOS/VS not to send it any pointer events at all.

You use the ?PTRDEVICE system call to control and interpret pointer device input.
?PTRDEVICE provides the following functions.

Function Code

?PTRDEV-BET_EVENTS

?PTRDEV-BET-DELTA

?PTRDEV-BET-POINTER

?PTRDEV_GET-PTR-STATUS

What It Lets You Do

Specify what events you want to receive.

Specify how far the pointer device must move before
AOS /VS sends you a movement event.

Return information about the last event performed
on the pointer device.

Specify the shape of the pointer; enable/disable the
pointer in a window.

Return the status of the pointer device.

Specifying the Pointer Events You Want

By default, a window does not receive any pointer events at all. To receive pointer events,
you must issue ?PTRDEVICE, function code ?PTRDEV-BET_EVENTS, and specify the
events you want by setting the appropriate flags in the ?PTRDEV -BET_EVENTS.EVT
offset. The flags are

Parameter Pointer Event You Will Receive

?PTRDEV-BET-EVTS.EVTS.MOVEMENT Movement event

?PTRDEV -BET_EVTS.EVTS.BTN_DOWN Button down event

Button up event ?PTRDEV -BET -EVTS.EVTS.BTN_UP

?PTRDEV -BET_EVTS.EVTS. WINDOW Window events (lets you receive the
following four types of events:

Enter window event
Exit window event
Window activation event
Window deactivation event)

?PTRDEV -BET_EVTS.EVTS.DBL_CLICK Double-click event

6-20 Licensed Material - Property of Data General Corporation 093-000335

Once you ask to receive a particular pointer event, AOS/VS inserts information in the
window's input stream whenever the event occurs, and that window is eligible to become
the input focus for pointer events.

Below, we explain each type of pointer event in detail.

Movement Event - A movement event is a 16·-byte pointer event sequence that
describes a pointer movement. AOS/VS inserts movement events in a window's input
stream if you ask to receive movement events for this window, and if any of the following
actions occur.

• The pointer moves within the window.

• A window event (enter, exit, activate, or deactivate window) occurs, and you did not
ask to receive window events.

The pointer event's 16-byte sequence tells you the location of the pointer at the time
AOS /VS generated the event.

By default, if you have requested movement events, AOS /VS sends you a pointer event
as often as possible (whenever the pointer moves at all). If you don't want to be notified
that often, you can specify how far the pointer must move before AOS/VS tells you about
it (issue ?PTRDEVICE with function code ?PTRDEV_~ET_DELTA).

Button Down Event - A button down event is a 16-byte pointer event sequence
that describes a button press. AOS/VS inserts a button down event in a window's input
stream if you ask to receive button down events for this window, and if the user presses
a button on the pointer device while the pointer is within the window.

The pointer event's 16-byte sequence tells you which button was pressed, and the location
of the pointer at the time.

NOTE: If you ask to receive button down events, you must also set flags in offset
?PTRDEV-SET_EVTS.BTNS to indicate which button(s) you are interested in.
AOS/VS will then send you all button down events that involve the button(s)
you indicate.

Button Up Event - A button up event is a 16--byte pointer event sequence that
describes a button release. AOS/VS inserts a button up event in a window's input stream
if you ask to receive button up events for this window, and if the user releases a button
on the pointer device while the pointer is within the window.

The pointer event's 16-byte sequence tells you which button was released, and the location
of the pointer at the time.

NOTE: If you ask to receive button up events, you must also set flags in offset
?PTRDEV -SET_EVTS.BTNS to indicate which button(s) you are interested in.
AOS/VS will then send you all button up ev(~nts that involve the button(s) you
indicate.

Window Events - A window event is a 16-byte pointer event sequence that describes
window activation and deactivation. If you ask to be se:nt window events, AOS/VS sends
you the following four events as they occur.

Event

Enter window

093-000335

Meaning

The window has become the pointer input focus because the pointer
has entered the window by crossing its edge.

Licensed Material - Property of Data General Corporation 6-21

Exit window The window is no longer the pointer input focus because the pointer
has left the window by crossing its edge.

Activate window The window has become the pointer input focus, but the pointer has
not moved. This might happen if you brought this window or its group
to the front. It might also happen if you hid or suspended the currently
active window or group, and this window or its, group were the next
in priority. (If the window becomes active, but the pointer is not
within it, AOS/VS will not generate an event.)

Deactivate window This window is no longer the pointer input focus, but the pointer has
not moved. This might happen if you brought another window or
group to the front, or if you hid or suspended this window or its
group.

The pointer event's 16-byte sequence tells you the location of the pointer at the time of
the event.

Double-Click Event - A double-click event is a 16-byte pointer event sequence that
describes a button double-click. AOS/VS inserts a double-click event in a window's input
stream if you ask to receive double-click events for this window, and if the user double­
clicks (presses and releases twice quickly) a button on the pointer device while the pointer
is within the window.

The pointer event's 16-byte sequence tells you which button was clicked, and the location
of the pointer at the time.

NOTE: If you ask to receive button down events, you must also set flags in offset
?PTRDEV ~ET_EVTS.BTNS to indicate which button(s) you are interested in.
AOS/VS will then send you all button down events that involve the button(s)
you indicate.

Pointer Event Format

AOS /VS inserts pointer events into a window's input stream just as it inserts keystrokes.
You can then read these pointer events just as you would read normal keystrokes, by
issuing the ?READ system call. Each pointer event is a printable 16-byte sequence in the
following format.

<036> < 157> <event> <button> <X-coordinate> <V-coordinate>

Where

<036><157> is the header sequence, which identifies the beginning of a pointer
event.

<event> is an ASCII value that indicates which event occurred. It can be one
of the following eight values.

<060> - movement event

<061> - button down event

<062> - button up event

<063> - enter window event

<064> - exit window event

6-22 licensed Material - Property of Data General Corporation 093-000335

<065> - window activation event

<066> - window deactivation event

<067> - double-click event

<button> is an ASCII value that indicates which button was involved in a button
up, button down, or double-click ev(mt. It can be one of the following
four values.

<060> - the event was not a button up, button down, or
double-click event

<061> - Button 1

<062> - Button 2

<063> - Button 3

<X-coordinate> is a set of six ASCII values. It specifies the X coordinate of the pointer
at the time of the event. Every pointer event includes an X coordinate.

<V-coordinate> is a set of six ASCII values. It specifies the Y coordinate of the pointer
at the time of the event. Every pointer event includes a Y coordinate.

AOS/VS translates the X and Y coordinates into printable ASCII characters by separating
each 32-bit coordinate into five groups of 6 bits each, with 2 bits left over (a total of six
groups). AOS/VS then adds an octal 060 to each group (to ensure that each character
is printable). The resulting 6-byte sequence becomes part of the pointer event.

For example, suppose the pointer is at the location (500., 1000.); in octal, this is (764,
1750). The 32-bit representation of these coordinates is

X: 00 000000 000000 000000 000111 110100
Y: 00 000000 000000 000000 001111 101000

AOS/VS then adds octal 060 to each group of bits to (!nsure printability. This results in
the following octal values.

X: <060>
Y: <060>

<060>
<060>

<060>
<060>

<060>
<060>

<067>
<077>

<144>
<130>

These values become part of the pointer event's 16-byt(~ sequence.

Translating Coordinate Values into Real Coordinates - In order to get the
numerical coordinates of the pointer's location, you must translate backwards from the six
ASCII values. To do so, perform the following steps for each coordinate you want to
translate.

1. Allocate a 32-bit memory location for the coordinalce.

2. Subtract octal 060 from each of the 6 bytes that make up the coordinate.

3. Construct a 32-bit coordinate value by concatenating the low-order 2 bits of the first
byte with the low-order 6 bits of each of the other 5 bytes.

4. Store the resulting value in the previously allocated memory location.

After performing these steps for both the X and the Y coordinate values, the result will
be a pair of numerical graphics coordinates that describe the position of the pointer.

093-000335 Licensed Material - Property of Data Genenll Corporation 6-23

Coordinates of the Pointer Location

AOS/VS gives you the coordinates of the pointer in pixel units. The coordinates are relative
to the upper left corner of the virtual terminal. (Note that the upper left corner of the
virtual terminal is not necessarily the same as the upper left corner of the window. If the
window is smaller than the virtual terminal, its origin may differ.)

If you are using a character window, you'll have to convert the pixel coordinates to character
coordinates in order to figure out what character row and column the pointer is on. To
do so, divide the pixel coordinate by the number of pixels in a character's width or height.
(To find out how many pixels there are in a character, issue a ?WINDOW call with
function code?WIN_ WINDOW ~TATUS. This returns the scan port size in characters
and the view port size in pixels. You then divide the view port size by the scan port size
to get the number of pixels per character.)

Getting Pointer Event Information
Once you have requested a set of pointer events for a particular window, AOS/VS inserts
events into the window's input buffer as they occur. There are three ways you can get
pointer event information from the buffer.

• Issue a ?READ call on the window, and scan the characters the ?READ call returns.

• Issue a ?READ call on the window, and specify that you want pointer events to act
as delimiters. The ?READ will then terminate when a pointer event occurs.

• Issue the ?PTRDEVICE call with function code ?PTRDEV _LAST_EVENT for in­
formation on the last event that occurred in the window.

Scanning for Pointer Events
One way to get pointer event information is simply to issue a ?READ call on the window's
input buffer (specify the window's I/O channel number). AOS/VS returns the contents
of the window's input buffer. You must then scan the contents of the buffer, character
by character, for the characters <036><157> - the header characters that identify a
pointer event. The 14 characters following the header sequence make up the rest of the
event.

Pointer Events as Delimiters
You can request that AOS/VS treat pointer events as delimiters (much as you can for
function keys). To receive pointer events as delimiters

1. Issue the ?SECHR (Set Extended Characteristics) call; set the ?TRPE (Terminate
?READs on Pointer Events) characteristic bit in the fifth characteristic word.

2. Issue a data-sensitive ?READ call. Supply an extended screen management packet in
addition to the ?READ packet.

When the ?READ call terminates

1. Examine the bit ?ESPE in offset ?ESSE in the screen management packet. If the bit
?ESPE is set, the ?READ call terminated because a pointer event occurred.

2. If the data-sensitive ?READ terminated due to a pointer event, the last 16 characters
in your ?READ buffer will be the 16-byte pointer event sequence.

The Last Pointer Event
You can get information about the most recent pointer event for a window by issuing the
?PTRDEVICE call with function code ?PTRDEV_LAST_EVENT. AOS/VS returns the
following information in the subpacket.

6-24 Licensed Material - Property of Data General Corporation 093-000335

• The current location of the pointer (X and Y coordinates, in pixels).

• The number of the button (if the last pointer event involved a button).

• The type of event that just took place.

Controlling the Appearance of the Pointer

Although a process cannot control the location of the pointer, it can control how the pointer
appears when it's within the process's window. You can choose from four different pointer
shapes, and you can enable or disable the pointer in your window. (Your choices do not
affect the pointer when it is in another application's window, or when it is not in any
window.)

By default, AOSjVS determines the shape of the pointer. To change the pointer shape,
issue ?PTRDEVICE with function code ?PTRDEV __ SET_POINTER. You can choose
from the following pointer shapes.

• Arrow

• Pointing finger

• Small cross-hair

• Full-screen cross-hair

Getting Information About the Pointer [)evice

You can request information about the current state of the pointer device in a particular
window by issuing ?PTRDEVICE with function code ?PTRDEV_GET_PTR-STATUS.
AOSjVS returns the following information.

• The number of pixels the pointer will traverse along the X axis before AOSjVS reports
a movement event.

• The number of pixels the pointer will traverse along the Y axis before AOSjVS reports
a movement event.

• The events you have requested for this window.

• The button(s} to which button-related events will apply.

• The current pointer type for this window.

• Whether or not you have enabled the pointer in this window.

Suspending Output to a Window
Your program can suspend output to a window, so that AOSjVS pends output requests
to that window. However, a suspended window can stilll appear on the screen, and you can
still perform most windowing operations on a suspended window. Suspending a window
does not affect its window priority.

To suspend output to a particular window, issue ?WINDOW with function code
?WIN_SUSPEND_ WINDOW. To resume output to a suspended window, issue
?WINDOW with function code ?WIN_UNSUSPEND_ WINDOW.

093-000335 Licensed Material - Property of Data General Corporation 6-25

You can also suspend output to an entire group of windows; to do so, issue ?WINDOW
with function code ?WIN~USPEND_GROUP. To resume output to a suspended group
of windows, issue ?WINDOW with function code ?WIN_UNSUSPEND_GROUP.

AOS/VS uses the following set of rules to determine the suspension of windows and groups.

• When you suspend an individual window, it remains suspended, regardless of the state
of its group.

• When you resume output to an individual window (?WIN_UNSUSPEND_WINDOW),
that window resumes processing unless its group is suspended.

• When you suspend a window group, every window in that group becomes suspended.

• When you resume output to a group (?WIN_UNSUSPEND_GROUP), its windows
resume processing, except for windows that are still suspended individually.

Sending Output to a Character Window
Sending output to a character window is much like sending output to a character-oriented
terminal. This is because a character window's virtual terminal is a software emulation of
a D460 terminal. You can write to its virtual screen using ?WRITE, just as you would
with a real D460 terminal. You can also use D460 commands, D460 character sets, user­
definable character sets, and D460 graphics commands.

Although a character window's virtual terminal is similar to a D460 terminal, there are
a few D460 commands that are not supported in character windows. Because of this, the
virtual terminal has its own model ID.

Model ID
The model ID of a character window's virtual terminal is different from the normal D460
model ID. This lets your program tell whether it is running on a real D460 or in a
character window. When you issue the D460 command "Read Model ID" or the ANSI
command "Read Terminal Configuration," AOS/VS returns one of the following model
IDs.

< 120> The virtual terminal is a D460 emulation that does not support the blink attribute.
(AOS/VS uses this model ID when the D460 emulation is running on a pixel­
mapped terminal that does not support the blink attribute; for example, a
monochrome terminal with a pixel depth of 1.)

< 121 > The virtual terminal is a D460 emulation that supports the blink attribute.

Initial State
When you first create a character window, or after you reset it, the virtual terminal has
the following characteristics.

7-bit/8-bit mode:

Margins:

6-26

The initial setting corresponds to that of a physical D460 with DIP
switch settings in DG 8-bit operating mode. AOS/VS immediately
issues a Select 7/8-Bit Mode command to put the virtual terminal
into 7-bit mode. You can then use the Select 7/8-Bit Mode
command to switch back and forth between 7- and 8-bit mode.

Left margin is set to column o.
Right margin is set to column 79, or to the rightmost column if
the virtual terminal is less than 80 columns wide.

Licensed Material - Property of Data General Corporation 093-000335

Display screen: The virtual screen is cleared.

Keyboard cursor: The keyboard cursor is a reverse video block at the upper left corner
of the virtual screen.

Character sets: The primary character set is U.S. ASCII.

User-defined character sets are cleared.

Line drawing pattern is set to s.olid.

D460 "window": The horizontal D460 "window" s(~ttings are cleared (the entire virtual
screen is one D460 "window").

Screen roll: Enabled.

Character blinking: Enabled (except on monochroml~ terminals).

Character attributes: Off.

Character protection: Disabled.

DC Mode Restrictions
When the virtual terminal is in DG mode, commands such as Write Screen Address work
only on row and column positions from 0 to 255. (This is because such commands use
only one byte'S worth of information.) If you create a window with a virtual terminal that
has more than 255 rows or columns, you must use other commands (such as Cursor Right)
to work with row and column positions beyond 255. \¥hen the terminal is operating in
ANSI mode, commands work on any row and column position.

Unsupported Commands
Character windows support all D460 functions as described in the DASHER ® D410 and
D460 Display Terminals User's Manual, with the following exceptions.

Function

Printer commands

Description

Character windows do not support a local printer. D460 printer
commands return a CTRL-F, just as they do on a real D460 terminal
when there is no local printer. D460 printer commands are

Form Bit Dump
Print Form
Print Pass Through On
Print Pass Through Off
Print Window
Window Bit Dump
Media Copy (ANSI)

Compressed spacing Character windows support only normal character spacing. The fol-

093-000335

lowing spacing commands are ignored:

Select Compressed Spacing
Select Normal Spacing
Set Parameters (ANSI): the character spacing
parameter has no effect.

Licensed Material - Property of Data Gemtral Corporation 6-27

Variable scrolling Character windows support only the "jump" scroll rate. The following
scroll rate commands are ignored:

Set Scroll Rate
Set Parameters (ANSI): the variable scroll
rate parameter has no effect.

Horizontal scrolling Character windows support only vertical scrolling. The following
horizontal scrolling commands are ignored:

Local mode

XON/XOFF

Scroll Right
Scroll Left
Show Columns
Read Horizontal Scroll Offset
Horizontal Scroll Enable
Horizontal Scroll Disable
Set/Reset Mode (ANSI): horizontal scroll enable/disable has no
effect.

Character windows do not have an "off line" or "local" mode; they
are always "on line."

Character windows do not support the XON/XOFF protocol when
operating in either DG or ANSI mode. This affects the XON and
XOFF commands in ANSI mode.

Sending Output to a Graphics Window
Sending output to a graphics window is different from sending output to a character
window. This is because a graphics window's virtual terminal is a virtual graphics device
(unlike a character window, whose virtual terminal is a software emulation of a character
device).

Just as you might design a program to run on a particular graphics terminal, you may
want to tailor your program so that it can run on a virtual graphics device. Your program
could then perform full graphics functions while running in a complete windowing envi­
ronment.

In order to run successfully on a virtual graphics device, your program must use the
GIS II (Graphics Instruction Set II) instructions and the ?GRAPHICS system call. You
will use the ?GRAPHICS call to open and close the graphics window. You'll use GIS II
instructions to perform specific graphics operations, such as drawing lines.

Data General offers graphics packages that are built on GIS II. You can use these packages
(DG/GI and GKS) instead of issuing GIS II instructions directly.

How Do Graphics Windows Differ From Character W.indows~
Character windows and graphics windows both consist of a virtual terminal within a window
border. The difference between the two is in the type of virtual terminal.

For character windows, the virtual terminal is a software emulation of a D460 terminal,
which supports character I/O and D460-level graphics. To an application program, a
character window looks much like a D460 terminal. This means that most programs that
run on a D460 terminal can run in a character window.

For graphics windows, the virtual terminal is a virtual graphics device - a virtual pixel
map graphics terminal that supports graphics operations. To an application program, a

6-28 Licensed Material - Property of Data General Corporation 093-000335

graphics window looks exactly like a physical pixel map terminal. However, unlike a physical
terminal, a virtual graphics device is inside a window which can be manipulated by an
application or a user.

Every window, character or graphics, has the following attributes:

• A virtual terminal (part or all of which appears on the physical screen, surrounded by
an optional border, with an optional title).

• A window name (you assign a window name when you create the window).

• A window pathname (@PMAPn:windowname) you can use to refer to the window.

• A window ID number (AOS/VS returns the ID number when you create the window).

• An input buffer that can receive input from the keyboard and the pointing device, and
that you can read from by issuing a ?READ call.

• A channel number to the window's I/O channel (AOS/VS returns the channel number
when you do a ?OPEN on the window). Input for the I/O channel comes from the
window's input buffer, which can receive keystrokes from the keyboard and pointer
events from the pointer device.

Table 6-2 compares character and graphics windows.

Table 6-2. Graphics Windows Versus Character Windows

Characteristic Craphics Window Character Window

Virtual terminal Resembles a pixel map terminal. Resembles a D460 terminal.

Virtual screen A pixel map array in memory on which you A character-oriented virtual
can execute graphics instructions. screen.

Open for input You issue the ?OPEN call. AOS/VS rc~turns You issue the ?OPEN call.
a channel number you can use for input only. AOS/VS returns a channel

number you can use for both
input and output.

Receive input You issue the ?READ call. You issue the ?READ call.

Echo keyboard You must perform keyboard echoing by writ- AOSjVS can perform key-
input on ?READ ing to the window's pixel map, using graphics board echoing on a ?READ

instructions. AOSjVS cannot echo keyboard call.
input on a ?READ call.

Close for input You issue the ?CLOSE call and specify the You issue the ?CLOSE call
channel number. This closes the window for and specify the channel num-
input only. ber. This closes the window

for both input and output.

Open for output You issue ?GRAPHICS with function code You issue the ?OPEN call.
?GRAPfLOPEN_ WINDOW _PIXELMAP. AOSjVS returns a channel
AOS/VS returns a pixel map ID you can use number you can use for both
for graphics output only. input and output.

(continues)

093-000335 Licensed Material - Property of Data Gel1leral Corporation 6-29

Table 6-2. Graphics Windows Versus Character Windows

Characteristic Graphics Window Character Window

Write output You write to the window's pixel map using You issue the ?WRITE call,
gra phics instructions. or D460 graphics commands.

Close for output You issue ?GRAPHICS with function code You issue the ?CLOSE call
?GRAPH_CLOSEJIXELMAP, and specify and specify the channel num-
the pixel map ID. This closes the window for ber. This closes the window
graphics output only. for both input and output.

(concluded)

Pixel Maps

A pixel map is a rectangular array of memory. Each entry in the array is a set of bits
that represents one pixel. The number of bits in each pixel is called the pixel depth; it
determines how many colors are available for that pixel map.

When you create a graphics window, AOS/VS creates a pixel map in memory that's
directly associated with the window. This pixel map is the graphics window's virtual screen.
If the graphics window is visible, some or all of the pixel map's contents appear on the
physical screen.

You can also create pixel maps that are not associated with a graphics window. Such pixel
maps will not be visible on the physical screen, but you can still execute GIS II instructions
and ?GRAPHICS functions on them. You might use such a pixel map to contain a font,
since you can quickly copy a section of that pixel map (such as a single character) to the
graphics window's pixel map.

You can create as many pixel maps in memory as you want. However, if you create too
many pixel maps, the system response time may suffer.

Two or more processes can share a graphics window's pixel map. To do so, each process
issues a ?GRAPHICS call with function code ?GRAPH_OPEN_ WINDOW JIXELMAP,
and supplies the graphics window's ID or pathname. AOS/VS returns a separate pixel
map ID for each ?GRAPH_OPEN_ WINDOW _PIXELMAP call. (There can be only
one channel at a time open to a memory pixel map.)

Working with Pixel Maps

The ?GRAPHICS call provides several functions you can use to work with pixel maps.
Each function has a separate function code you specify in the main ?GRAPHICS packet.
The functions are

Function Code

?GRAPH_OPEN_ WINDOW JIXELMAP

What It Lets You Do

Open a window's pixel map for graphics
I/O. You can open such pixel maps mul­
tiple times. (This function returns a pixel
map ID.)

?GRAPH_CREATE_MEMORY_PIXELMAP Create a pixel map in memory and open

6-30

it for graphics I/0. (This function re­
turns a pixel map ID.)

Licensed Material - Property of Data General Corporation 093-000335

?GRAPfLCLOSEJIXELMAP

?GRAPH_PIXELMAP ~TA TUS

Close a pixel map. (The pixel map can
belong to a graphics window, or it can
exist in memory only.)

When you close a memory-only pixel
map, AOSjVS automatically deletes it.

When you close a pixel map that belongs
to a graphics window, AOSjVS closes
only the channel to the pixel map ID
you s.pecify. If you opened that pixel map
multiple times, you must close each pixel
map ID separately.

(To delete a window's pixel map, you
must delete the window using the
?WINDOW call, function
?WIN_DELETE_ WINDOW.)

Get information about a pixel map.

As you can see, ?GRAPHICS provides functions you use to create, open, and close pixel
maps. (?GRAPHICS provides other functions for copying information between pixel maps
and disk files, working with palettes, and setting clip rectangles; we describe these functions
later in this chapter.)

Sending Output to a Pixel Map

To send output to a pixel map, you write to it using the GIS II instruction set. (You
cannot send character output to a pixel map using ?WRITE, as you can with a character
window.) You can use GIS II to write to any pixel map, whether it belongs to a graphics
window or exists only in memory.

To send output to a graphics window's pixel map, you must first open it for output by
issuing a ?GRAPHICS call with function code ?GRAPH_OPEN_WINDOWJIXELMAP.
This opens the window's pixel map and returns a pix.!l map ID, which you can treat as
a graphics output channel. Once you have a pixel map ID, you can use GIS II instructions
to send output to that pixel map.

You don't need to explicitly open a memory-only pixel map; when you create it (using
?GRAPHICS function ?GRAPfLCREATE_MEMORYJIXELMAP), AOSjVS auto­
matically opens it and returns a pixel map ID. You can then use that ID when you execute
GIS II instructions on that pixel map.

Working with Pixel Map Files

Using the ?GRAPHICS call in conjunction with assembly language instructions, you can
store the contents of a memory pixel map in a disk file, or read information from a file
into a memory pixel map.

The ?GRAPHICS call provides two functions that let you copy data between nonstandard
pixel map files and pixel maps in memory.

Function Code

093-000335

What It Lets You Do

Map an existing pixel map into your program's address
space. You can th€m use assembly language instructions
to move data from a pixel map file to the address
space.

Licensed Material - Property of Data General Corporation 6-31

?GRAPH-UNMAPJIXELMAP Map information from your program's address space
to an existing memory pixel map. You can then use
graphics instructions to edit the contents of the pixel
map.

Copying Data from a File to a Pixel Map - Follow these steps to copy information
from a pixel map file to a pixel map.

1. Create a destination pixel map and open it for graphics output. The destination pixel
map must be a memory pixel map, and should be large enough to contain the information
you are copying.

2. Issue the ?GRAPHICS call with function code ?GRAPHICS_MAP _PIXELMAP,
and specify the pixel map ID of the destination pixel map.

AOS/VS then maps the contents of the pixel map into your program's address space,
and returns the following information:

• A word pointer to the address space.

• Pertinent information about the pixel map in the address space (such as its size
and pixel depth).

3. You can now treat what's in your program's address space as an array of bits, rather
than a pixel map. You can use assembly language instructions (such as LOAD and
STORE) to move data from the disk to the address space.

CAUTION: After you map the pixel map into your program's address space, do not
use graphics instructions to write to it; the results are undefined.
Before using graphics instructions on that pixel map you must
issue a ?GRAPHICS call with function code
?GRAPHICS_UNMAP JIXELMAP.

4. When you have copied all the data you want, issue ?GRAPHICS with function code
?GRAPHICS_UNMAP JIXELMAP. AOS/VS then maps the contents of the address
space (which now includes information from your pixel map file) back into the memory
pixel map. The contents of your pixel map file are now in a memory pixel map, where
you can perform GIS II instructions on them.

CAUTION: Do not use assembly language instructions to edit the data in a pixel
map in memory; the results are undefined.

Figure 6-6 illustrates this process.

6-32 Licensed Material - Property of Data General Corporation 093-000335

1. Create and open Pixel map]
a memory pixel map. in memory

IO'()3302

""------

t
2. Issue 7GRAPHICS function

7GRAPHICS_MAP _PIXELMAP
to map the contents of

4. Issue 7GRAPHICS function
7GRAPHICS_UNMAP _PIXELMAP
to map the updated contents

the pixel map into your
program's address space

of the address space back
into the pixel map

Your program's
address space Copy of

pixel map's
contents

t
3. Transfer data from the file

to the address space using
assembly language instructions.

I

Disk file containing
pixel map data

Figure 6-6. Copying Data from a File to a Pixel Map.

Copying Data from a Pixel Map to a File - You can also use the ?GRAPHICS
call, in conjunction with assembly language instructions, to copy information from a pixel
map to a pixel map file. To do so, follow these steps.

1. The source pixel map must exist in memory and be open for graphics output.

2. Issue the ?GRAPHICS call with function code ?GRAPHICS_MAP_PIXELMAP,
and specify the pixel map ID of the source pixel map.

093·000335 Licensed Material - Property of Data Gen,eral Corporation 6-33

AOS/VS then maps the contents of the pixel map into your program's address space,
and returns the following information.

• A word pointer to the address space.

• Pertinent information about the pixel map in the address space (such as its size
and pixel depth).

3. You can now use assembly language instructions to move data from the address space
to your disk file, in whatever format you want.

4. When you have copied all the data you want, issue ?GRAPHICS with function code
?GRAPHICS_UNMAP JIXELMAP. AOS/VS then maps the contents of the address
space back into the memory pixel map, so that you can again perform graphics
instructions on that pixel map.

Figure 6-7 illustrates this process.

Palettes

Every pixel map has an associated palette. The palette lets you determine the colors you
will use for that pixel map.

Each pixel in the pixel map array is represented by a series of bits. The number of bits
for each pixel is the pixel depth. Thus, pixels in a pixel map with a depth of 4 would
each consist of 4 bits. The bits in each pixel can be turned on and off to make different
numbers, each of which can represent a different color. For example, a 4-bit pixel might
be set to 0000 to display green, 0001 to display yellow or 0010 to display bluish purple, and
so on.

You can define what colors you want each pixel value to represent. The palette is where
you store your definitions.

The Blink Clock

For each pixel value, a palette contains two color definitions. If the two colors are identical,
that pixel value displays a steady color. If the two colors for that pixel value differ, the
pixel value will blink between the two colors.

Every graphics board has a blink clock. The clock flips steadily back and forth between
two states, Phase 0 and Phase 1, at a predetermined time interval. During Phase 0 of the
blink clock, the graphics board uses the first color for that pixel value. It uses the second
color during Phase 1.

We explain how to use this feature in the section "Blending Steady/Blinking Colors" later
in this chapter.

Palette Format

A palette consists of a pair of arrays in memory. The first array is used when the blink
clock is in Phase 0; the second array is used during Phase 1.

The size of the arrays is determined by the pixel depth of the associated pixel map. Each
array contains an entry for each possible pixel value. (For example, if the pixel depth is
4, each array has 16 entries. In general, if the pixel depth is n, each array in the palette
has 2n entries.) Each entry in each array has a particular color associated with it. You
create the colors yourself, by blending different levels of red, green, and blue.

6-34 Licensed Material - Property of Data General Corporation 093-000335

1. The source pixel map
must be open for
graphics output.

Pixel map]
in memory

'--.---

t
2. Issue ?GRAPHICS function

?GRAPHICS_MAP _PIXELMAP

maps the contents of

4. Issue ?GRAPHICS function
?GRAPHICS_UNMAP _PIXELMAP

to return the contents of
the pixel map into your
program's address space.

the address space to the
pixel map.

Your program's
address space

10·03303

Copy of
pixel map's
contents

~
(3) Transfer data from tht:!

address space to the file
using assembly languCige instructions.

Disk file that will receive]
pixel map data

Figure 6-7. Copying Data from a Pixel Map to a File

Table 6-3 shows a sample palette whose pixel map has a pixel depth of 4. There are two
arrays in the palette, one for Phase 0 of the blink clock, the other for Phase 1. Each array
has 16 entries.

093·000335 Licensed Material - Property of Data General Corporation 6-35

Table 6-3 Sample Palette

Pixel Value Array 0 - Color Levels Array 1 - Color Levels

Red Green Blue Grey Red Green Blue Grey

0 (0000) full full full full full full full full

1 (0001) off off off off off off off off

2 (0010) off full off off off full off off

3 (0011) full off off off full off off off

4 (0100) off V2 ~ off off Y2 Y2 off

5 (0101) off full off off full off off off

14 (1110) off V2 Y2 off off full full off

15 (1111) ~ ~ full off ~ 1,4 full off

For each array, an entry consists of four 32-bit numbers, each of which represents the
level for a color. There are three colors: red, green, and blue. The relative amount of each
color you use determines the final color for that entry. (There is also a grey level, which
lets you set the brightness for a monochrome terminal.)

Blending Colors

To create a color on your screen, you combine the three primary colors (red, green, and
blue).

NOTE: Mixing colored light is different from mixing colored paints; the primary colors
for paints are red, yellow and blue. For example, to get yellow paint, you must
start with yellow; to get yellow light, you mix equal parts of red light and green
light.

To blend a color, you set each of the three color levels to determine how much of each
color will appear in the final color. Each color can have a value from 0 to 232 -1 (from
no bits set in the 32-bit number, to all bits set). The lowest color level, 0, turns that color
off completely; the highest level, 232 -1, turns that color to its brightest possible level. For
color levels in between, you must use binary fractions (set some, but not all, of the bits).

For example, to blend a pure, bright blue, you would set the first, second and fourth
numbers in the entry to off (0, to turn off the red, green and grey), and the third (blue)
to "full" (232 -1, 377777777778, or simply -1). The entry for that pixel value would then
consist of the following four 32-bit numbers.

o
(red)

o
(green)

377777777778
(blue)

o
(grey)

For a bright reddish purple, you would set green and grey to completely off (0), and set
blue and red to completely on (232 -1). The entry for that pixel value would then consist
of the following four 32-bit numbers.

377777777778
(red)

o
(green)

377777777778
(blue)

o
(grey)

Using Binary Fractions to Blend Colors - To create an in-between color level, in
which the color is neither fully on nor fully off, you must use a binary fraction. To do

6-36 Licensed Material - Property of Data General Corporation 093-000335

so, you set some, but not all, of the bits in the 32-bit number. You can think of the
32-bit number that represents the color level as a representation of a fraction between 0
and 1. When no bits are set, the number equals zero; with all bits set, the number is
almost equal to 1. The closer you get to 1, the brighter the color level. Figure 6-8 shows
the correspondence between the fraction from 0 to 1 and the 32-bit number from 0 to
232-1.

Using this correspondence, you can treat 232-1 as a representation of 1. To get the binary
representation of Y2, you could then follow the calculations below to get the result 200000000008

(a 32-bit number with the high-order bit set).

.! = .! X 1 = .! X 232 = 231

2 2 2
= 200000000008 = w~tIf1li~i.\tfk'hI!1ber

orGer tnt S'et.

The binary representation of ¥8 is a 32-bit number with the first three high-order bits set.

'2 = 2 X 1
8 8

= 2 X 232 = 7 X 229 = 3400000()000 = wb:~1libiiinM:mber
8 8 three 5ig\{-order bits set.

Thus, to produce a dim blue, you could set the blue level to "Y2," and all other colors to
"off." To produce a binary fraction equal to Y2, set the high-order bit to produce the
fraction Y2 (200000000008), The entry for that pixel value would then consist of the following
four 32-bit numbers.

o
(red)

o
(green)

200000000008

(blue)
o
(grey)

For a dim greenish blue, you might set blue to "Y2" (se:t the high-order bit) and green to
"1;4" (set the second highest bit to produce the fraction 1;4 (100000000008), The entry for
that pixel value would then consist of the following four 32-bit numbers.

o
(red)

100000000008

(green)
200000000008

(blue)
o
(grey)

For shades of grey, set all colors to the same level - completely on for white, completely
off for black. For example, to blend a light grey, you might set all color levels to "%"

Fraction: 0

32-Bit
Number:

10.03313

o

1/4 1/2 3/4

10000000000
8

20000000000
8

30000000000
8

37777777777
8

Figure 6-8. Correspondence Between Fraction and 32-Bit Number for Color Levels

093-000335 Licensed Material - Property of Data General Corporation 6-37

(set the first three bits to produce the fraction 'Vs (34000000000s). The entry for that pixel
value would then consist of the following four 32-bit numbers.

340000000008
(red)

340000000008
(green)

340000000008
(blue)

o
(grey)

The Grey Level - The grey level determines the brightness of the pixels on mono­
ochrome screens only. When you display a color on a color screen, the grey level is ignored.
This means that you can set up a palette so that it works on both monochrome and color
screens. For each pixel value, you set up both a color (blending red, blue and green) and
a grey level. When the palette is used on a color screen, the color appears. On a monochrome
screen, the color values are ignored and the grey level will be used instead.

On a monochrome screen, a grey level of "full" (232 -1, 377777777778 or simply -1) appears
as white; a grey level of "off' (0) appears as black. Levels in between range from near­
black to near-white.

Blending Steady IBlinking Colors

As we explained earlier, each palette contains two arrays. Array 0 determines the colors
during Phase 0 of the blink clock; Array 1 determines the colors during Phase l.

To get a blinking color, the entry in Array 0 must differ from its corresponding entry in
Array 1. Let's look at an example.

Suppose you want the pixel value 0010 to denote a color value that blinks from red to
green. For the third entry in the palette (the one for 0010), you could set the following
color levels. Note that the entry consists of four 32-bit numbers for Array 0 and four for
Array 1.

Array 0:

Array 1:

377777777778
(red)

o
(red)

o
(green)

377777777778
(green)

o
(blue)

o
(blue)

o
(grey)

o
(grey)

During Phase 0 of the blink clock, all pixels set to the value 0010 would appear bright
red. During Phase 1, all pixels set to 0010 would instead appear bright green.

If you don't want a particular pixel value to blink, make sure its corresponding entries in
Array 0 and Array 1 are identical.

For example, the following palette entry would produce a dim, steady aqua color, because
the color settings do not change from phase to phase of the blink clock.

Array 0: 0 100000000008 100000000008 0
(red) (green) (blue) (grey)

Array 1: 0 100000000008 100000000008 0
(red) (green) (blue) (grey)

Working with Palettes
The ?GRAPHICS call provides two functions you can use to work with palettes. Each
function has a separate function code you specify in the main ?GRAPHICS packet.

Function Code What It Lets You Do

?GRAPH_ WRITEr-PALETTE Write a set of contiguous entries to the palette associated
with a pixel map.

6-38 Licensed Material - Property of Data General Corporation 093-000335

?GRAPH_READJALETTE Read a set of contiguous entries from the palette asso­
ciated with a pixel map.

Both functions operate on any palette, whether it belongs to a memory-only pixel map or
to the pixel map associated with a graphics window.

Writing Entries to a Palette

To define the colors you want for particular pixel values, issue the ?GRAPHICS call with
function code ?GRAPH_ WRITEJ ALETTE. This call writes a series of contiguous entries
to a palette. To write to a palette, follow these steps.

1. Set up an array in memory for each array you want to write. You can write a set of
entries for the Phase 0 array, the Phase 1 array, or both. The size of the arrays
depends on the number of entries you want to write. Multiply the number of entries
by the size of each palette entry (?GRAPHJALETTE_LEN, which is always 4
double words). For example, if you want to write: 10 entries, each array would be
10 * 4 double words, or 40 double words per array. (If you are writing both arrays,
you must write the same number of entries for each array; the arrays must be the
same size.)

2. Issue the ?GRAPHICS call with function code ?GRAPH_WRITE_PALETTE. In
the subpacket, you specify

• Whether you want to write Array 0, Array 1, or both.

• The number of palette entries you want to writl~.

• The pixel map ID of the pixel map associated with the palette you want.

• The palette index at which you want to start writing.

• The addresses of the arrays you have stored in memory.

AOSjVS then copies the palette entries from the arrays in memory to the palette you
specified.

Reading Entries from a Palette

To get the palette values for an existing palette, issue the ?GRAPHICS call with function
code ?GRAPH_READJALETTE. This call copies a series of contiguous entries from
the palette. You can copy the Phase 0 array, the Phase;: 1 array, or both. To use this call,
follow these steps.

1. Allocate space in memory for each array you are c:opying. Each array needs as much
space as the number of entries you will copy multiplied by the size of each entry (4
double words). So, to copy 20 entries, you would allocate 80 double words for each
array.

2. Issue the ?GRAPHICS call with function code ?GRAPH_READJALETTE. You
specify

• Whether you are copying Array 0, Array 1, or both.

• The pixel map ID of the pixel map associated with the palette you want.

• The palette index at which you want to start r'eading.

093·000335 Licensed Material - Property of Data General Corporation 6-39

• The number of palette entries you want to read.

• The addresses of the arrays you have stored in memory.

AOSjVS then copies the entries from the palette you specified to the arrays in memory.

Copying Information from a Disk File to a Palette
To copy palette information from a disk file to a palette

1. Read the disk file into memory using asse~bly language instructions. The file should
be an array or arrays in palette format (as described above).

2. Issue ?GRAPHICS with function code ?GRAPH_WRITILPALETTE, and supply
the addresses of the arrays in memory (the ones you just read from disk). Supply
other information as described in the section "Writing Entries to a Palette" above.

AOSjVS then copies the information from the array(s) in memory to the palette you
specify.

Copying Information from a Palette to a Disk File
To copy information from a palette to a disk file

1. Issue ?GRAPHICS, function ?GRAPH_READJALETTE; supply information as
described in the section Reading Entries from a Palette above.

2. Write the information from memory into a disk file using assembly language instructions.

Clip Rectangles
AOS jVS lets you specify a rectangular section of a pixel map as a clip rectangle. When
a clip rectangle is in effect, you can still specify any location on the pixel map as an
argument to a graphics instruction. However, any changes affect only the portion of the
pixel map within the rectangle.

For example, suppose you want to protect a drawing while a user types a label for it. You
want to let the user edit the portion of the pixel map that will contain the label, but you
don't want the user to be able to alter the rest of the pixel map. A clip rectangle can
restrict changes to the rectangular area that will contain the label.

To manipulate a clip rectangle on a pixel map, use the ?GRAPHICS call, function code
?GRAPlLSET_CLIP-RECTANGLE. There can be only one clip rectangle per pixel
map.

When you issue the call, you specify

• Whether you are enabling or disabling the clip rectangle. You can enable and disable
the same rectangle as many times as you want. This lets you leave the rectangle in
place while you are not using it.

When you enable the clip rectangle, changes are possible only to the area within the
rectangle.

When you disable the clip rectangle, it is left in place but no longer protects the
pixel map from changes.

• The position of the clip rectangle on the pixel map.

• The size of the clip rectangle.

6-40 Licensed Material - Property of Data General Corporation 093-000335

When You're Done with a Window
When you have finished with a window and want to get rid of it, you first close the
window and then delete it.

Closing a Window
Before you delete a window, you must close all channels you have opened to that window.

To close a regular I/O channel (a channel created with the ?OPEN system call), issue
the ?CLOSE call and specify the channel number. AOS/VS then releases that channel
number. If you have opened several I/O channels to that window, you must issue a separate
?CLOSE call for each channel.

To close a graphics window's pixel map 10 (which you can think of as a "graphics output
channel"), issue the ?GRAPHICS call with function code ?GRAPH_CLOSEJIXELMAP,
and specify the pixel map 10. If you have opened s~::veral pixel map IDs to that window,
you must issue a separate ?GRAPH_CLOSE PIXELMAP call for each channel.

After you close a window, you can still issue ?OPEN (or
?GRAPH_OPEN_WINDOWJIXELMAP) to open new channels to the window.

Deleting a Window
After you close all channels and pixel map IDs for a window, you can delete the window.
To do so, issue the ?WINDOW call with function code ?WIN_DELETE_WINDOW.
This marks the window for deletion, and automatically removes its channel assignment. If
the window is not assigned to any other processes, itt goes away. If it is still assigned to
other processes, the window is marked for deletion; the window name doesn't disappear
(unlike files marked for deletion). When the window's last process terminates, or relinquishes
its channel number, the window finally goes away.

End of Cha pte:r

093-000335 Licensed Material - Property of Data General Corporation 6-41

Chapter 7
Initiating and Managing Tasks

You use the following system calls to initiate and manage tasks:

?DFRSCH
?DQTSK
?DRSCH
?ERSCH
?IDGOTO
?IDKIL
?IDPRI
?IDRDY
?IDSTAT
?IDSUS
?IFPU
?IQTSK
?KILAD
?KILL
?MYTID
?PRI
?PRKIL
?PRRDY
?PRSUS
?REC
?RECNW
?SUS
?TASK
?TIDSTAT

?TLOCK
?TRCON
?TUNLOCK

?UIDSTAT
?WDELAY
?XMT
?XMTW

093-000335

Disable scheduling and indic:ate prior state of scheduling.
Remove a task or tasks from a queue.
Disable task scheduling.
Enable task scheduling.
Redirect a task.
Terminate a task specified by its TID.
Change the priority of a task specified by its TID.
Ready a task specified by it.s TID.
Return a task statistic flag. (l6-bit processes only)
Suspend a task specified by its TID.
Initialize the floating-point status registers.
Create a queued task manager (for ?TASK queuing).
Define a termination-processing routine for a task.
Terminate the calling task.
Return the TID of the calling task.
Change the priority of the (:alling task.
Terminate all tasks of a given priority.
Ready all tasks of a given priority.
Suspend all tasks of a given priority.
Receive an intertask message.
Receive an intertask message without waiting.
Suspend the calling task.
Initiate one or more tasks.
Return the status of a task specified by its TID. (32-bit
processes only)
Protect a task from being redirected.
Read a task message from a process terminal.
Revoke redirection protection for the current task in the
current ring.
Return the status of a task and an unambiguous identifier.
Suspend a task for a specified time.
Transmit an intertask message.
Transmit an intertask message and wait for its receipt.

Licensed Material - Property of Data Ge.neral Corporation 7-1

This chapter describes what a task is, how to create a task, and how to manage a
multitasking environment.

What Is a Task"
A task is a path through a process that can only execute code within the bounds of the
address space that AOS/VS allocates to its process.

Each process consists of one or more tasks, which execute asynchronously (at different
times). You can design your program so that several tasks execute a single re-entrant
sequence of instructions, or so that two or more of the tasks execute separate, distinct
instruction paths.

A task is the basic element of a process. When you first create a process, it is a single­
task program. However, you can initiate other tasks from that process. These tasks exist
either for the life of the process, or until you terminate them.

The Advantages of Multitasking
If you have used high-level languages such as BASIC or FORTRAN, you are familiar
with single-task programs. Single-task programs display one path that connects all branches
of logic, no matter how complex. Multitasking, which allows you to execute up to 32 tasks
within a single process, gives you greater flexibility when writing complex programs.
Specifically, multitasking gives you the following advantages:

• Parallelism

Multitasking is a straightforward way to handle complex parallel events within one
program; for example, it is useful for time-out and alarm routines, and overlapped
I/O. Multitasking gives a program the flexibility to respond to external asynchronous
events.

• Efficiency

While one task is suspended, perhaps on an I/O operation, another task can be executing.
Each task has a priority level, and AOS/VS schedules tasks based on their relative
priorities. The AOS /VS multitasking scheduling facility provides efficient CPU and
memory use, especially in an environment with heavy memory contention and devices
of varying speeds.

You can design your multitasking program so that several tasks execute one re-entrant
instruction sequence, or you can create a different instruction path for each task.

AOS/VS Task Protection
AOS /VS prevents tasks executing in an outer ring from interfering with tasks executing
critical inner-ring code paths. AOS/VS protects tasks from interference through two
mechanisms: ring maximization and ring specification.

Ring Maximization
Under the ring maximization mechanism, AOS/VS considers a task that is executing in
a user ring to be less privileged than those tasks executing in lower user rings.

AOS/VS uses the ring-maximization mechanism when it validates user-supplied channels,
word pointers, or byte pointers for all system calls. Consequently, a process cannot pass a

7-2 Licensed Material - Property of Data General Corporation 093-000335

channel as input to a system call that it has issued from a higher ring than the system
call that opened the channel. Also, system calls issued from one user ring cannot pass as
input pointers to lower-ring memory locations.

The ring-maximization mechanism parallels the hierarchical protection scheme of the
MV -series memory-management hardware.

Ring Specification
The ring-specification mechanism protects tasks executing in one user ring from interference
by tasks executing in other user rings. The connection-management facility and the IPC
facility use the ring-specification mechanism in the following ways:

• The connection-management facility considers connections to be between pairs of process
identifier (PID) Iring tandems.

• The IPC facility now requires a ring field as well as a PID and a local port number
field as part of each global port.

All IPC messages are sent to specific rings within a destination process. Within the
destination process, only tasks that issue IPC re(~eive request system calls from the
specified ring can receive IPC messages sent to that ring. In this way, interprocess
communications paths are secured from both malidous and accidental interference by
tasks issuing IPC receive requests from other rings within the same process.

Task Identifiers and Priority Numbers
When you create a task, you should assign it a task identifier (TID) in the range from
1 through 32. In addition to providing a simple way for you to keep track of each task's
actions, several system calls require a TID as input.

If you do not assign each task a TID, AOS /VS assigns the initial task TID 1, but assumes
that every other task is TID O. Although permissible, this is not advisable. Tasks that
share TID 0 cannot issue ?IDSTAT, ?IDPRI, ?IDRDY, ?IDSUS, and ?TIDSTAT system
calls.

In addition to the TIDs that you supply, AOS/VS assigns a unique TID to each task in
the system. Therefore, even though each initial task is TID 1 within its own process, it
also has a unique TID. This system-assigned unique TID allows you to index into multiple­
task databases.

To find out what the unique TID for a particular task is, issue the ?UIDSTAT system
call. The ?UIDST A T system call returns the unique TID and the contents of the task's
status word.

Priority numbers are values AOS/VS uses to determine the order in which tasks execute.
Priority numbers range from 0 (the highest priority) through 255 (the lowest priority).
AOS/VS assigns the initial task (TID 1) priority 0, the highest priority.

To find out the priority and TID of a calling task, issue the ?MYTID system call. If you
want to use system calls that require a TID or priority level as an input parameter, you
can use the ?MYTID system call to get this information.

Task Initiation
The Link utility lets you specify the maximum number of tasks in a process, up to a limit
of 32 tasks. Each process is initialized when AOS/VS begins to execute that process's
initial task. To initiate other tasks, any executing task can issue the ?T ASK system call.

093-000335 Licensed Material - Property of Data General Corporation 7-3

The ?T ASK system call requires a packet. This packet allows you to specify several
characteristics for the new task, including its TID and its priority.

You can influence task scheduling by assigning a priority level to a task. If you do not
assign a priority, AOS/VS assigns the new task the same priority level as the calling task
(the task that issued the ?TASK system call).

You can use the ?TASK system call to initiate one or more tasks immediately, or you
can use it to initiate a task at a later time. Therefore, there are two versions of the ?T ASK
packet:

• The standard packet, which initiates a task.

• The extended packet, which initiates a task at a particular time and at particular
intervals. This is called queued task creation.

When you issue a ?T ASK system call that specifies a starting PC within Ring 7,
AOS/VS passes control to the ?UTSK task-initiation routine, which places the address of
a task-kill routine in AC3, and then returns control to the ?TASK system call. (?UTSK
is in the user runtime library URT32.LB.)

You can tailor a task-initiation routine to your own application. For example, you may
want to assign system resources to each newly initiated task. To use a tailored task­
initiation routine, you must assign the new routine the label ?UTSK, and then link it with
your progam. If you do not do this, AOS/VS passes control to the default ?UTSK routine,
which immediately returns control to the ?T ASK system call. In addition, if your tailored
?UTSK task-initiation routine pushes anything onto the stack, it must also pop it off the
stack before exiting from the routine. Otherwise, if it leaves anything on the stack, the
calling task might not return to the proper address in your program.

To abort the ?TASK system call while your ?UTSK task-initiation routine is executing,
load ACO with an error code and return to the address in AC3 (the address of the task­
initiation error return). If you do not want to abort the ?TASK system call, increment
the value of AC3 by 1 and return to the address in AC3 (the address of the task initiation
normal return). This not only causes the ?UTSK task-initiation routine to return successfully,
but also causes the ?T ASK system call to continue normally.

To use the queued task creation option, you must use the extended ?TASK packet, and
you must issue the ?IQTSK system call before you issue the ?TASK system call. The
?IQTSK system call creates an additional task, the queued task manager, which handles
the initiation queue. (The queued task manager is one of the 32 possible tasks in your
program.) The ?DQTSK system call removes one or more ?TASK packets from the queued
task manager's initiation queue.

Allocating a Task's Stack Space and Defining the Stack
Every task that uses the AOS/VS system calls must have a unique stack. A stack is a
block of consecutive memory locations that AOS/VS sets aside for task-specific information.

The stack works by a push-down/pop-up mechanism; that is, you store information by
pushing it onto the stack, and retrieve information by popping it off the stack. The
Principles of Operation 32-Bit ECLIPSE® Systems manual explains stacks in detail and
describes the assembly language instructions for the push and pop functions.

The Link utility allocates the stack for the initial task when you link your program. By
default, Link sets up a stack of 60 words for the initial task. You can specify an alternate
size by using the appropriate function switch in the Link command line.

7-4 Licensed Material - Property of Data General Corporation 093-000335

You must allocate stack space and define the stacks for all other tasks within the ?T ASK
packet(s). The stack parameters in the ?TASK packet include the stack base, or starting
address of the stack, the stack size, and the address of the stack fault handler.

The stack fault handler is a routine that takes control when there is a stack fault. You
can define your own stack fault handler or you can use the AOS/VS default stack fault
handler. To specify the default stack fault handler, set the stack fault handler parameter
to -1.

A stack base value of -1 means that you will allocate the stack at a later time (that is,
after task initiation). If you choose this option, you m.ust allocate the stack before the
newly initiated task issues any system calls. You must allocate a stack of at least 30
double words (60 words).

Inner-Ring Stacks
A task that tries to enter an inner ring via an LCALL instruction cannot succeed unless
there is a 32-bit stack (called a wide stack) already defined in the target ring for that
task. When you load a segment image into an inner ring, inner-ring stacks must be
initialized for all tasks that may want to enter that ring. This section describes the rules
that govern the inner-ring stack initialization that AOS/VS performs when you issue the
?RINGLD system call. (For information on loading a program file into a specific ring,
see the description of the ?RINGLD system call in Chapter 3.)

Every process begins executing in Ring 7. You can speci.fy the Ring 7 stack for the initial
task of the process either when you link or after the initial task begins to execute.

The ?RINGLD system call initializes inner-ring wide stacks on behalf of all possible tasks
in an inner ring. You can specify the size of these initial stacks at one of the following
times:

• When you compile your program.

To do this, the compiler initializes locations 20 through 27 (the wide-stack parameters)
of the process image. Then, at ?RINGLD time, AOS/VS partitions the region delimited
by the stack base and the stack limit into separate stacks of equal size for all of the
tasks in the process.

• When you link your program into a program file.

To do this, you must specify the following in your Link command line:

ISTACK=n

where n = (number of tasks) • (stack size per task)

The Link utility allocates n words at the end of your unshared area. At ?RINGLD
time, AOS /VS partitions this n-word region into separate stacks for each task in the
process. Although n can be as few as 12 double words, we recommend that you allocate
at least 60 double words per task for n.

If you specify the segment image's initial stack size when you link, AOS/VS uses that
size to override any stack size that you may have specified at compile time.

When you link an inner-ring segment image, you should also specify a value for the
IT ASKS = switch. The number that you choose must be greater than or equal to the
number of possible tasks specified for the (Ring 7) process image. (Note that a general­
purpose local server should be linked for 32 tasks.)

093-000335 Licensed Material - Property of Data Gene'ral Corporation 7-5

When you issue ?RINGLD, AOS/VS performs the following steps:

1. AOS /VS loads the segment image into the inner ring for which it was linked.

2. AOS /VS initializes wide stacks in the specified ring for all tasks of the process.

AOS/VS gets the size of the total available stack region from locations 20 through
27 (the wide-stack parameters) of the ring. Then, AOS/VS divides the region into
equal-sized wide stacks for each possible task in the process. The size of each stack
is the size that was implicitly set at either compile or Link time.

AOS /VS initializes inner-ring stacks through the following steps:

1. AOS/VS sets the frame pointer, the stack pointer, and the stack base to the start of
the task's stack region.

2. AOS/VS sets the stack limit to the end of the stack region minus two frames.

3. AOS/VS sets the stack overflow handler address to the address that you specified in
Page 0 of the segment image.

It is possible to force AOS /VS to initialize a single common inner-ring stack for all tasks
in the process. To do this, set the stack pointer within the segment image so that it contains
the same value as the stack limit. Then, at ?RINGLD time, AOS/VS initializes all the
stacks within the inner ring so that they have the same stack pointer, frame pointer, stack
base, and stack limit.

?T ASK system calls can be issued from any loaded user ring. If a task in an inner ring
issues a ?TASK system call, it can initiate a task in that ring or in any higher, loaded
user ring. It can specify new wide-stack parameters for the new task. Offsets ?DSTB,
?DSFLT, and ?DSSZ of the ?TASK packet allow the caller to initialize new stack
parameters for the task in the ring specified by the new task's initial PC (offset ?DPC).

The ?TASK system call causes AOS/VS to reset the wide stacks for the new task in all
user rings lower than the ring specified in ?DPC. AOS/VS resets wide stacks by resetting
the stack pointer and the frame pointer to the stack base. This ensures that tasks can
reuse the same stack sequentially several times in a ?TASK/?KILL/?TASK/?KILL
sequence.

Once a new task has been initiated, it is free to allocate a new wide stack for itself at
any time. However, it is the responsibility of the task to recycle the old wide-stack memory,
if the process wishes to reuse the memory.

Task Scheduling
AOS/VS schedules tasks according to a strict priority scheduling algorithm applied at the
task level.

After a process's initial task begins to execute under AOS/VS, you can change its task
priority at any time by issuing either the ?PRI or the ?IDPRI system call.

To change a process's own priority, you can issue the ?PRIPR system call. However, if
you want to change the priority of another process, the calling process must be in
Superprocess mode.

Tasks pass through several different states while a process is executing. A task passes from
the inactive to the active state when you initiate it with the ?TASK system call. After a
task is active, it can become ready or suspended. Figure 7-1 illustrates the task states and
the system calls that affect them.

7-6 Licen8ed Material - Property of Data General Corporation 093-000335

RTN,1KILL

• ?TASK Active Task Scheduler Acting Inactive
Ready Executing

?IDRDY 11DSUS
1PRRDY 1PRSUS 1SUS

1XMT 11DSUS
1PRSUS

1REC
?XMlW

~ Active
Suspended

ID-03279

Figure 7-1. Task States

AOS /VS reschedules tasks under the following circumst.ances:

• When the task that is executing becomes suspended.

• When a suspended task of a higher priority than th4~ task that is currently executing
becomes ready to run.

• When there is more than one highest priority-level task that is ready to run and a
round-robin interval has elapsed. (You specify the round-robin interval during the system­
generation procedure.)

Disabling Task Scheduling
To disable task scheduling, you can issue either the ?DRSCH system call, which does not
return an indication of the prior state of scheduling, or you can issue the ?DFRSCH
system call, which does. These system calls disrupt the entire multitasking environment
- you should only issue them if you are certain that you need to disable task scheduling.

To re-enable scheduling after you have disabled it with a ?DRSCH or a ?DFRSCH system
call, issue ?ERSCH. (For more information on the ?DRSCH and the ?DFRSCH system
calls, see the Locking and Unlocking Critical Regions section later in this chapter.)

Task Suspension
Several different events, including some system calls, will suspend an active task. The task
will then remain suspended until the event that caused the suspension completes, or until
the suspended task is readied by either AOS/VS or by another task (we describe how to
ready a task in the next section.)

To explicitly suspend a task, issue one of the following, system calls: ?SUS, ?IDSUS, or
?PRSUS. Certain other system calls suspend the calling task while they perform their
functions. System calls of this kind include the I/O system calls ?READ and ?WRITE,
system calls to acquire system resources, and system calls that depend on another task's
response, such as the ?XMTW and ?REC system calls.

093-000335 Licensed Material - Property of Data Genelral Corporation 7-7

While tasks compete for all system resources, only ready tasks can compete for the CPU.
A task is ready if it is not waiting for some event to complete (that is, suspend). If a
task is not ready, then it is suspended.

A task becomes suspended when it

• Issues an explicit request to suspend itself or another task within the same process (via
the ?IDSUS and ?SUS system calls).

• Issues an explicit request to wait for a message from another task within the same
process (via the ?REC and ?XMTW system calls).

• Issues most system calls. A system call is usually a request to use some system resource.

If every task in a process is suspended, then that process is blocked. To block a process
(that is, suspend every task), you must issue the ?BLKPR system call. When you have
explicitly blocked a process with the ?BLKPR system call, you must issue the ?UBLPR
system call to unblock that process.

Task Readying
Tasks become ready when

• A task that was suspended by a ?BLKPR system call against its process is explicitly
unblocked by the ?UBLPR system call (the task must not have been suspended for any
other reason).

The ?BLKPR and ?UBLPR system calls work together; the ?UBLPR system call can
only unblock processes that were blocked by the ?BLKPR system call.

• A task issues an ?IDRDY or a ?PRRDY system call to explicitly ready another task.
The ?IDRDY system call readies a task of a given TID, and the ?PRRDY system call
readies all tasks of a given priority.

The task that is being readied must have been previously suspended by a ?SUS, ?IDSUS,
or ?PRSUS system call. The task that you are readying must belong to the same process
as the task from which you issue the ?IDRDY system call.

• A message for which the task was explicitly requested to wait (through the ?IREC
system call) becomes available. In this case, the task only becomes ready when the
message is from another task within the same process.

• A system resource becomes available after an implicit wait for that system resource
during a system call.

• A task issues a system call that terminates (?IDKIL or ?PRKIL) or redirects (?IDGOTO)
a suspended task.

NOTE: Before AOSjVS executes the system call, it automatically readies the target task.

Redirecting a Task
To redirect a task's activity without killing it, you must issue the ?IDGOTO system call.
The ?IDGOTO system call stops the task's current activity (or readies the task, if the
task was suspended), and then directs the task to a new location. The task begins executing
at the new location as soon as it regains control of the CPU. The task's priority remains
the same.

7-8 Licensed Material - Property of Data General Corporation 093-000335

Typically, you use ?IDGOTO to interrupt a task after a CTRL-C CTRL-A terminal
interrupt sequence. (A CTRL-C CTRL-A sequence interrupts terminal output. For details
about this function, see the description of ?IDGOTO in Chapter 13.)

Protecting Inner-Ring Tasks from Redirection
In general, you should not allow tasks executing in outer rings to redirect tasks executing
in inner rings. However, task redirection is a common method of responding to external
events. In fact, typing a CTRL-C CTRL-A terminal interrupt sequence frequently causes
an ?IDGOTO system call to perform task redirection on the main task(s) of a process.

To prevent the unwanted redirection of a task, you can use the ?TLOCK and ?TUNLOCK
system calls to control whether a task can be redirected by a task-redirection system call.
(The task-redirection system calls are ?IDGOTO, ?IDKIL, ?PRKIL, ?IDSUS, and ?PRSUS.)

The ?TLOCK system call allows a task that is executing in an inner ring to lock itself
against task-redirection system calls issued by another task that is executing in either the
same ring or a higher ring. The ?TUNLOCK system call unlocks a previously locked task.

A task can issue a ?TLOCK system call to protect itself from being redirected by any
task that is in a higher ring or, optionally, in the same ring. The AOS/VS ring-maximization
mechanism determines which task can redirect another task: It ensures that a task can
redirect a lower-ring task to only an address within the ring that contains the task issuing
the task-redirection system call. For example, a ring 7 task can redirect a ring 4 task, but
only to a ring 7 address.

If a task issues a task-redirection system call, but the task it wants to redirect (the target
task) is locked, the calling task waits until the target task issues enough ?TUNLOCK
system calls to unlock the ring in which the calling task resides.

If a task issues a ?PRKIL or a ?PRSUS system call whose input priority specifies more
than one protected task, AOS/VS makes a note of all tasks of that priority when the
?PRKIL or ?PRSUS system call occurred. If the redin~cting task must wait because one
or more target tasks are locked, the task will only wait until all the noted locked tasks
issue enough ?TUNLOCK system calls to allow the redirection to occur. If a redirecting
task specifies more than one task, the redirections may occur separately (depending on
whether one or more of the target tasks are locked). However, in this case, the task­
redirection system call will not complete until all the sp1ecified tasks have been redirected.

As input to the ?TLOCK system call, you can specify a double-word mailbox in AC2, if
you want AOS /VS to inform your protected task when another task is trying to redirect
it. AOS/VS will set a nonzero flag in this mailbox if another task's redirection request is
waiting.

To protect a task from being redirected by another task within the same ring, set the
?TMYRING flag in ACO when you issue the ?TLOCK system call.

If a task in an inner ring is redirected to a higher ring, then AOS/VS resets the stack
pointer and frame pointer for each affected inner ring to the stack base of that ring on
behalf of all loaded user rings that are less than or equal to the redirected higher ring.
This means that if a task in Ring 5 is redirected to Ring 7, AOS /VS resets the task's
stack and frame pointers for Rings 5 and 6.

093-000335 Licensed Material - Property of Data Genelral Corporation 7-9

Terminating a Task
You can terminate a task explicitly or implicitly. To explicitly terminate a task, issue one
of the following system calls:

?IDKIL Terminates a task of a specified TID.

?PRKIL Terminates all tasks of a specified priority.

?KILL Terminates the calling task.

To terminate a task implicitly, begin the new task with a WSSVS or WSSVR (wide-save)
instruction, and end it with a WRTN (wide-return) instruction. As AOS/VS executes the
initial wide-save instruction, it saves the contents of AC3 as the return address for the
task. At this point, AC3 contains the address of the task-terminating routine (which you
placed in AC3 during task initiation). When AOS/VS executes the WRTN, it passes
control to the return address in AC3; that is, the task-terminating routine.

Because terminating a task does not guarantee an orderly release of its user-related resources,
you may want to define a termination-processing routine for this purpose (for example, to
close the task's currently open channels).

Defining Termination-Processing Routines
You can define either a unique termination-processing routine for each task, or a general
termination-processing routine for all tasks within a process.

After you initiate a task, you can define a unique termination-processing routine for that
task by issuing the ?KILAD system call. When you terminate that task with either the
?IDKIL or ?PRKIL system calls, AOS/VS will invoke the termination-processing routine
that you specified.

If you define a general kill-processing routine, you must assign the routine the label ?UKIL
and link it with your program.

You can use both ?KILAD and user-defined ?UKIL termination-processing routines within
the same program.

If there is no user-defined ?UKIL routine to terminate a task, AOS/VS uses the dummy
?UKIL routine in URT32.LB. This routine returns control to AOS/VS, which then
terminates the task. AOS/VS only invokes ?UKIL termination processing on behalf of
tasks that initiated processing within Ring 7 (tasks for which initial pes are Ring 7
addresses) .

Detecting Task Creation and Termination
A local server often needs to maintain accurate task-specific databases. To keep those task­
specific databases accurate, the local server must be able to keep track of when the process
creates and terminates tasks.

AOS/VS keeps track of tasks through the use of unique storage position (USP) pointers.
All active tasks have distinct USP pointers associated with Rings 4 through 6. Tasks within
32-bit processes also have a USP pointer associated with Ring 7. A double-word pointer
at location ?USP within a ring specifies the USP pointer for a given task within the ring.
The USP pointer allows tasks to keep track of task-specific databases associated with a
particular ring.

7-10 Liceneed Material - Property of Data General Corporation 093-000335

When a process issues a ?TASK system call to create a task, AOS/VS initializes all the
USP pointers associated with that task to zero. When a customer issues LCALL to enter
a local server, the local server can examine the USP pointer to that inner ring. The local
server can interpret a zero USP pointer to mean that this is the task's first visit to the
local server. In this case, the local server can initialize any task-specific databases for that
initially entering task.

AOS/VS uniquely identifies every task within a proce$S to aid in identifying task-specific
databases with their tasks. The ?UIDST A T system call returns the unique TID associated
with a given task.

When a task terminates, AOS/VS serially invokes a ?UKIL postprocessor for each loaded
user ring whose ring number is less than or equal to the ring specified by the task's initial
PC. Local servers can use the ?UKIL postprocessor to update or deallocate task-specific
databases, as appropriate. The ?UKIL routine should not issue system calls.

Several ?UKIL postprocessors (one per ring) can be associated with a process. However,
only one ?UTSK postprocessor can be associated with a process. AOS/VS only invokes a
?UTSK postprocessor on behalf of tasks that are to 1>4:: executed in Ring 7. The ?UTSK
postprocessor must reside in Ring 7.

Terminal-to-Task Communication
AOS/VS allows you to pass a message from your terminal to individual tasks in a
multitasking environment.

The ?TRCON system call creates a message-manage:ment system task on your behalf,
which parses each message from you and transmits that message to the proper calling
task.

Task-to-Task Commu.nication
AOS /VS provides an intertask communications facility that you can use to synchronize
tasks or pass messages among them. The following systc::m calls allow tasks to communicate
with one another:

?XMT Transmits an intertask message.

?XMTW Transmits an intertask message and awaits its reception.

?REC Receives an intertask message; suspends the:: ?REC caller if there is no message
currently available.

?RECNW Receives an intertask message; does not suspend the ?REC caller if there is
no message currently available.

Tasks deposit messages in and retrieve them from 32-biit locations called mailboxes. Before
you send a message with an ?XMT or an ?XMTW system call, you must initialize the
appropriate mailbox to O.

Timing is a factor for both the ?XMTW and the ?REC system call. If a sending task
issues an ?XMTW system call before another task issues a complementary receive,
AOS /VS suspends the sender until the receive occurs. Likewise, if a task issues an ?REC
system call against an empty mailbox (the sender has not transmitted the message yet),
AOS /VS suspends the receiver until the transmission occurs.

093-000335 Licensed Material - Property of Data Gelleral Corporation 7-11

The ?XMT and ?RECNW system calls maintain the calling task in the ready state,
regardless of the timing of the transmit and receive sequence. If a task issues an ?RECNW
system call against an empty mailbox, the system call fails, and AOS /VS returns an error
code to ACO.

You can use the ?XMT and ?XMTW system calls to broadcast a message; that is, to
send the message to all tasks currently waiting for the message. If you do not select the
broadcast option and more than one task is waiting for the message, AOS /VS sends the
message to the receiver with the highest priority.

Locking and Unlocking a Critical Region
You can use the intertask communications system calls to lock or unlock a critical region.
A critical region is a procedure or database that all tasks share, but that is available to
only one task at a time. To protect a critical region, you must define a mailbox to
synchronize task execution within the critical region. A task gains control of a critical
region by issuing a successful receive against that mailbox. The procedure for locking and
unlocking a critical region is as follows:

• First, a task initializes the locking facility, either by setting the mailbox to a nonzero
value or by issuing the ?XMT system call without broadcast from the initializing task
to the mailbox. (The ?XMT system call message may specify the address of the critical
region.)

• Second, a task locks (gains exclusive control of) the critical region by issuing an ?REC
system call against the mailbox. AOS/VS suspends other tasks that issue subsequent
?REC system calls against the mailbox.

Once a task has locked a critical region, it remains locked until the task issues another
?XMT system call to unlock it. If more than one task is waiting for control of a critical
region (that is, more than one task was suspended by a ?REC system call to the mailbox),
the second ?XMT system call readies the highest priority receiver, which then gains control
of the critical region.

You can also lock a critical region implicitly by issuing a ?DRSCH system call, which
disables all task scheduling in the calling process, or a ?DFRSCH system call, which not
only disables all task scheduling in the calling process, but also returns an indication of
the prior state of scheduling. If you use a ?DRSCH or a ?DFRSCH system call to lock
a critical region, you should use a ?ERSCH system call to unlock it. However, ?DRSCH
and ?DFRSCH system calls can be dangerous because they disable all multitask scheduling
for the calling process.

Unless absolutely necessary, you should avoid using the ?DRSCH and the ?DFRSCH
system calls. Although there may be times when you need to issue one of these system
calls, such as to control a race condition between two'tasks that are competing for the
same critical region, you must use them with discretion. Disabling task scheduling, even
briefly, can disrupt the entire multitasking environment.

The ?ERSCH system call re-enables multitask scheduling for the calling process.

7-12 Licensed Material - Property of Data General Corporation 093-000335

MV-Family Floating-Point Registers
The MY-Family hardware has five registers that allow you to manipulate floating-point
numbers:

• Four floating-point registers, FACO, FACl, FAC2, and FAC3.

• One floating-point status register, FPSR, which records information about the current
state of the MY/Family floating-point processor.

Before you can use any of the MY/Family floating-point instructions from a task, you
must issue ?IFPU to initialize the floating-point status register. To obtain accurate results
for floating-point arithmetic, you must do this even for single-task programs.

Multitasking Sample Programs
The initial task of the following program, NEWTSK, creates a new task that has a priority
of 1 and a TID of 2. The initial task opens the terminal, creates the new task, announces
its termination, gets its priority, and terminates itself. Then, the new task takes control,
writes a message, and returns to the CLI. (The last task cannot terminate itself with a
?IDKIL system call.)

NEWTSK uses the ?TASK, ?MYTID, and ?IDKIL system calls .

. TITLE NEWTSK

.ENT NEWTSK

.TSK 2

;Open terminal (CON), create a new task, and kill self.

NEWTSK: ?OPEN
WBR

?TASK

WBR
?WRITE

WBR
?MYTID

WBR
WMOV
?lDKIL
18R

CON
ERROR

TPKT

ERROR
CON

ERROR

ERROR
0,1

ERROR

;Open terminal (CON) for liD.
;?OPEN error return.

;Create new task, TI[I 2, with
;priority of 1.
;?TASK error return.
;D1splay termination message
;on terminal.
;?WRITE error return.
;6et TID in ACO and priority
;in AC1.
;?MYTID error return.
;Move TID into AC1
;and die.
;?IDKIL error return.

;New task is now the only task.

NTSK: XLEFB
XWSTA
?WRITE
WBR
WSlE
WBR

093-000335

0,NMSG*2
0, CON + ?lBAD

;Get byte pOinter to lessage.
;Put IIessage in liD packet.
;Display message on terminal.
;?WRITE error return.

CON
ERROR
2,2
BYE

; Set AC2 for normal r'eturn.
;60 and return.

Licensed Material - Property of Data Genural Corporation 7-13

;Error handler.

ERROR: NLDAI ?RFECI?RFCFI?RFER,2

BYE: ?RETURN
WBR ERROR

;?OPEN and I/O packet for tenl1nal.

CON: .BLK ?IBLT

.LOC CON + ?ISTI

. WORD ?ICRF I ?RTDS I ?OFIO

.LOC CON+?I~S

. WORD -1

.LOC CON+?IBAD

. DWORD ITEXT*2

.LOC CON+?IRCL

. WORD 120 .

.LOC CON + ?IFNP

. DWORD CONS*2

.LOC CON + ?I DEL

. DWORD -1

. LOC CON +?IBL T

;Error flags: Error code is in
;ACO (?RFEC), .essage is in
;CLI fOnlat (?RFCF), and caller
;should handle this as an error
; (?RFER) .

;Return to CLI.
;?RETURN error return.

;Allocate enough space for
;packet.
;F1le specifications.
;Change fonaat to data-sensitive
;records and open for
;1nput and output.

;Default physical block size
;to 2 K bytes.

;Set byte pointer to record
;I10 buffer.

;Record length is 120
;characters.

;Set byte pOinter to pathn8le.

; Delm ter table address. .
;USe default de11l1ters: null,
;NEW LINE, fOnl feed, and
;carriage return (default is
;-1) .

;End of packet.

;F1lenale and lessages. A .NOLOC 1 follows.

CONS: .TXT MOCONSOLE" ;USe generic nale.

ITEXT: . TXT MI'. the default task. I have opened the terlinal and
I'. about to ?IDKIL .yself.~12;>"

NMSG: . TXT M I '. the new task. I • about to ?RETURN. ~ 12;> "

.NOLOC 0

7-14 Licensed Material - Property of Data General Corporation

;?TASK packet for nel task.

TPKT: .BLK ?DSLTH ;Allocate enough space for the
;standard packet.

.LOC TPKT+?DLNK

. WORD 1 ;Set to 1 for standard packet.

.LOC TPKT+?DLNL ; Reserved .

. WORD 0 ;Set to O.

.LOC TPKT + ?DLNKB ;Reserved.

. DWORD 0 ;Set to O.

.LOC TPKT + ?DPRI

. WORD 1 ;Ass1gn priority 1 to the nel
;task (default is 0, Ihich
;ass1gns the nel task the same
;pr1or1ty as the caller).

.LOC TPKT+?DID

. WORD 2 ;Ass1gn TID 2 to the nel
;task (default is 0, Ih1ch
;does not assign a TID to
;the nel task).

.LOC TPKT+ ?DPC

. DWORD NTSK ;Task's starting address is
;NTSK.

.LOC TPKT+ ?DAC2

. DWORD 0 ;There is no message for the
;nel task.

.LOC TPKT+ ?DSTB

. DWORD STACK ;Stack base address is STACK.

. LOC TPKT + ?DSFL T ;Stack fault handler address .

. WORD -1 ;Use default stack fault
;handler in URT32.lB (default
;1s -1).

.LOC TPKT+?DSSZ

. DWORD 60 . ; Stack size is 60 .'ords.

.LOC TPKT + ?DFLGS ;Task flag lord.

. WORD 0 ;Set to O .

. LOC TPKT+ ?DRES ;Reserved .

. WORD 0 ;Set to O .

.LOC TPKT + ?DNlIt

. WORD 1 ;Create one task .

. LOC TPKT + ?DSL TH ;End of packet .

STACK: .BLK 60. ;60-lord stack for nel task.

. END NEWTSK ; End of NEWTSK pro~lram.

Licensed Material - Property of Data G,eneral Corporation 7-15

The following program, BOOMER, is a fast, two-task copy program that uses ?IXMT
and ?REC system calls to synchronize ?READ and ?WRITE system calls. BOOMER
copies an existing input file to an output file.

BOOMER uses the ?TASK, ?XMTW, ?REC, ?KILL, ?IXMT, ?READ, and ?WRITE
system calls.

. TITLE BOOtER

.ENT BOOMER

.TSK 2

.NREL 1
;In1t1al task uses ?GTMES to get output f1lename (second argUlent) and
;opens 1t. Repeats ?GTMES to get input filename (first argument) and
;opens it. Creates output taSk.

BOOMER: ?GTtES GPKT ;Get 1nput filename.
WBR ERROR ;?GTMES error return.
LLEFB 0,FNAME*2 ;Get byte address of filename

;that ?GTMES returns.
LWSTA 0, INPUT + ?IFNP ;Put 1n input 1/0 packet.

?OPEN INPUT ;Open INPUT f1le.
WBR ERROR ;?OPEN error return.
NLDAI 1,0 ;Get 1 1n ACO.
LNSTA 0, GPKT + ?GNlit ;Specify argument 1.

?GTMES GPKT ;Get output filen8le.
WBR ERROR ;?GTMES error return.
LLEFB 0,FNAtE*2 ;Get byte address of f1len8le

;that ?GTMES returns.
LWSTA 0, OUTPUT + ?IFNP ;Put in output 1/0 packet.

?OPEN OUTPUT ;Open OUTPUT f1le.
WBR ERROR ;?OPEN error return.

?TASK TPKT ;Create output task.
WBR ERROR ;?TASK error return.

;Loop reads 1nto BUF1, tranSiits it to output taSk, reads into BUF2,
;and transmits 1t to output task. Message for output task 1s buffer
;address.

READER: ?READ
WBR
LLEF
LWLDA

7-16

?XMTW
WBR

INPUT
ERROR
o ,MAILBOX
1 , INPUT + ?IBAD

ERROR

;Read buffer from INPUT file.
;?READ error return.
;Get lessage address.
;Message is buffer address.

;Wake up output task.
;?XMTW error return.

Licensed Material - Property of Data General Corporation 093-000335

;Swap buffer byte pOinters for next read.

LLEFB
LLEFB
WSNE
MY
LWSTA

WBR

0,BUF1*2
2, BUF2*2
1,2
0,2
2, INPUT + ?lBAD

READER

;Get byte pOinter to I~UF1.

;Get byte pOinter to BUF2.
;Was BUF1 used for last read?
;No. Make BUF1 current buffer.
; Yes. Put byte pointel~ to
; current buffer into :lnput
;packet.
; Read into current bu'ffer,

;On end-of-file cond1t10n, get nUiber of characters to read fl~om input
;packet and make this number the buffer length for the last ?:cMT.

EOF?: NLDAI EREOF,1

WSEQ 0,1
WBR ERROR
LLEF O,MAILBOX
LWLDA 1, INPUT + ?lBAD

WMOY 1.2
NLDAI -1.3
WLSH 3.2

LNLDA 3.INPUT+?lRLR

LWSTA 3.-2,2

?XMTW
WBR ERROR

?KILL

ERROR: WLDAI ?RFECI?RFCFI?RFER,2

?RET~N

WBR ERROR

;Was error code"end-o'f-file"
; (EREOF)?
;Yes.
; No. Try to handle thl! error.
; Get address of lllessa!Je.
;Message is byte pOinter to
;buffer.
; Copy to AC2 for indelcing.
;Put -1 in AC3.
;Make byte p01nter to buffer
;a word pOinter.
;Get nUliber of characters read
;frOll input I/O packet.
;Make buffer length (J~C2-2)

;the nu.ber of characters
;read.

;Send last buffer.
;?XMTW error return.

;Input is done; output task
;will return to CLI.

;Error handler.

; Error flags: Error cl)de is in
;ACO (?RFEC), lessage is in
;CLI forut (?RFCF). lind caller
;should handle this a$ an error
; (?RFER).

;Return to CLI.
;?RETURN error return.

;Output task does the writing:

093-000336 Licensed Material - Property of Data General Corporation 7-17

WRITER: LLEF 0, MAILBOX
?REC
WBR ERROR
LWSTA 1, OUTPUT + ?IBAD

WMOV 1,2
NLDAI -1,3
WLSH 3,2

XWLDA 0,-2,2

LNSTA 0, OUTPUT + ?IRCL

?WRITE OUTPUT
WBR ERROR
WLDAI BUFLGTH,1
WSNE 0,1

WBR WRITER
WSlE 2,2

?RETURN
WBR ERROR

;Get lessage address.
;Wait for lessage.
;?REC error return.
;Got lessage, which las byte
;pointer to buffer. Put in
;I10 packet.
;Copy to AC2 for indexing.
;Put -1 in AC3.
;Make byte pOinter into lord
;pointer.
;Get buffer length left by
;input task (original length,
;unless task hit end of file).

;Make this IaxiIUI receive
;length in liD packet.

;Write buffer to OUTPUT file.
;?WRITE error return.
;Get original buffer length.
;ls current buffer length sale
;as original buffer length?
;Yes. Get another buffer.
;No. Done. Set for nOrlal
; return.

;Return to CLI.
;?RETURN error return.

;Buffers, message, packets in unshared code .

. NREL

;Buffer declarations.

BUFLGTH = 16384.
BUFLGTH

BUF1: .BLK (BUFLGTH+1)/2
BUFLGTH

BUF2: .BLK (BUFLGTH + 1) 12

MAILBOX: 0

;Need to change only this
;for residual characters after
;end of file.
;Size of BUF1
;for residual characters after
;end of file.
;Size of BUF2.

;Mailbox for lessage.

;?GTMES packet to get input and output filenames.

GPKT: .BLK ?GTLN

. LOC GPKT + ?GREQ

. WORD ?GARG

;Allocate enough space for
;packet .

;Request type.
;Put argUient 1n ?GRES only .

7-18 Licensed Material - Property of Data General Corporation 093-000335

.LOC GPKT + ?GO

. WORD 2 ;ArgUient 2 is input filen8le.

.LOC GPKT+ ?GRES

. DWORD FNAME*2 ;Set byte pOinter to receive
;buffer.

.LOC GPKT+ ?GTLN ;End of packet.

;?OPEN and liD packet for input task.

INPUT: .BU: ?IBLT ;Allocate enough space for
;packet.

.LOC INPUT + ?ISTI ;File specifications.

. WORD ?ICRFI ?RTDYI ?OFIN ;Change fOrlat to dynamic-length
;records and open for input
;only.

.LOC INPUT + ?ItlfiS

. WORD -1 ;Default physical block size
;to 2 Kbytes.

.LOC INPUT + ?IBAD

. DWORD BlIF1*2 ;Set byte pOinter to record
;110 buffer.

.LOC INPUT + ?IRCL

. WORD BUFLGTH ;Record length is BlFLGTH.

.LOC INPUT + ?IRlR

. WORD 0 ;Set to 0 (used by ?RIEAD and
;?WRITE only).

.LOC INPUT+?IFNP

. DWORD FNAME*2 ;Set byte pOinter to Ipathn8le.

.LOC INPUT + ?I DEL

. DWORD -1 ; Use default delilli telrs: nUll,
;NEW LINE, fOnl feed, and
; carriage return (def,8ul t is
;-1).

. LOC INPUT + ?IBLT ;End of packet .

;?TASK packet for output task (.tnilUl packet).

TPKT: .BlK ?DSLTH ; Allocate enough spac,e for the
;standard packet.

.LOC TPKT+?DlNK

. WORD 1 ;Set to 1 for standard packet.

licensed Material - Property of Data Genelral Corporation 7-19

.lOC TPKT+?oLNl ;Reserved .

. WORD 0 ;Set to O.

.lOC TPKT + ?olNKB ; Reserved

.oWORo 0 ;Set to O.

.lOC TPKT + ?oPRI

. WORD 1 ;Assign priority 1 to the new
;task (default is 0, which
;assigns the new task the same
;priority as the caller).

.lOC TPKT+?oIo

. WORD 2 ;Assign TID 2 to the new
;task (default is 0, which
;does not assign a TID to
;the new task).

.lOC TPKT+ ?oPC

.oWORo WRITER ;Task's starting address is
;WRITER.

.lOC TPKT+?oAC2

.oWORo 0 ;There is no message for the
;new task.

.lOC TPKT+?oSTB

. oWORo STACK ;Stack base address is STACK .

.lOC TPKT + ?oSFl T

. WORD -1 ;Use default stack fault
;handler in URT32.lB (default
;is -1).

.lOC TPKT+ ?oSSZ

. oWORo 60 . ;Stack size is 60 words.

. lOC TPKT + ?oFlGS ;Task flag word .

. WORD 0 ;Set to o .

. LOC TPKT+ ?oRES ;Reserved .

. WORD 0 ;Set to O .

.lOC TPKT + ?oNlit

. WORD 1 ;Create one task .

. lOC TPU+?oSlTH ;End of packet .

;?OPEN and 1/0 packet for output task.

OUTPUT: . BLK ?IBlT ;Allocate enough space for
;packet.

. lOC OUTPUT + ?ISTI ;File specifications .

. WORD ?OFCRI?OFCE!?ICRF!?RToY!?OFIO ;oelete file, recreate
;file, change format to
;dynamic-Iength records, and
;open for input and output.

7-20 Licensed Material - Property of Data General Corporation 093-000335

.lOC OUTPUT + ?IMRS ;Physical block size (in bytes) .

. WORD -1 ;Block size is 2 Kbytes
;default is -1).

.lOC OUTPUT + ?IBAD

. DWORD BUF1*2 ;Set byte pOinter to record
; 110 buffer.

.lOC OUTPUT + ?IRCl

. WORD BUFlGTH ;Record length is BUFlGTH.

.lOC OUTPUT + ?IRlR

. WORD 0 ;AOS/VS returns characters
;transferred (used by ?READ
;and ?WRITE only).

.lOC OUTPUT + ?IFNP

. DWORD FNAME*2 ;Set byte pOinter to pathname.

.lOC OUTPUT + ?IDEl

. DWORD -1 ;Use default delimiters: null,
;NEW lINE, form feed, and
;carriage return (default is
;-1).

.lOC OUTPUT + ?IBl T ;End of packet.

FNAME: .BlK (?MXPl +1)12 ;Filename buffer. System
;11mit for nUiber of
;characters.

STACK: .BlK 60. ;60-word task stack.

. END BOOMER ;End of BOOMER program .

End of Chapter

093-000335 Licensed Material - Property of Data General Corporation 7-21

Chapter 8
Using the Interprocess

Communications (IPC) Facility

You can use the following system calls to perform interprocess communications:

?GCPN Return the global port number of the target process's terminal.
?GPORT Return the PID associated with 3. global port number.
?ILKUP Return a global port number.
?IMERGE Modify a ring field within a global port number.
?IREC Receive an IPC message.
?ISEND Send an IPC message.
?ISPLIT Find the owner of a port (including its ring number).
?IS.R Send and then receive an IPC m4~ssage.
?TPORT Translate a local port number to its global equivalent.

093-000335 Licensed Material - Property of Data Gel1eral Corporation 8-1

This chapter describes how to use the Interprocess Communications (lPC) Facility, through
which processes can communicate with each other. Using the IPC Facility, you can

• Transmit variable-length free-form messages from one process to another.

• Synchronize processes during execution.

You can use the IPC facility to pass arguments from a father process to a son process
and return the results to the father before the son terminates. If there is a delay between
the father's receive request and the son's message, AOS/VS pends the father process until
the son ~I:ocess responds, thereby synchronizing the two processes. AOS/VS uses the IPC
facility to send messages to father processes to notify them of their sons' terminations.

The following primitive system calls allow you to send and/or receive IPC messages:

?ISEND

?IREC

?IS.R

Sends an IPC message.

Receives an IPC message.

Sends and then receives an IPC message.

For each of these system calls, you ni'ust supply a header (packet) that includes the origin
and destination of the message, its length, its address, and other information about the
connection.

During each IPC transmission, portions of the sender's header overwrite portions of the
receiver's header. In fact, some transmissions consist solely of passing header information
from the sender to the receiver.

To use the primitive IPC system calls, ?ISEND and ?IS.R, the calling process must have
privilege ?PVIP, which is one of the optional privileges you can specify when you create
a process with the ?PROC system call.

If the calling process does not have the ?PVIP privilege, it must use the IPC facility as
a standard peripheral device, which it can then access by device-independent I/O techniques.
(See Chapter 5 for information on how to do this.) Also, you can use the connection­
management facility, which'is described in Chapter 8, to establish communications between
processes. (Note that if a process is a declared customer under the connection-management
facility, it does not need the ?PVIP privilege to issue the ?IS.R system call.)

Sending Messages Between IPe Ports
AOS/VS sends IPC messages between ports. Ports are full-duplex communications paths
that a process identifies by port numbers. There are two types of port numbers:

• Local port numbers

Local port numbers are values that the IPC caller (either the sender or the receiver)
defines to identify its own ports.

• Global port numbers

Global port numbers uniquely identify each port currently in use system wide. Global
port numbers are made up of a process's PID, its local port number, and its ring number.
When a process refers to its local port in an IPC system call, AOS /VS translates the
local port number to its global equivalent. The ?TPORT system call performs this
translation.

8-2 Licensed Material - Property of Data General Corporation 093-000335

When a process sends an IPC message, it defines a local port number for the connection,
and then it specifies that port number and the destination's global port number in the IPC
header. The receiving process issues a complementary receive system call and, like the
sender, defines its own local port number and specifies the sender's global port number.
If the port specifications on both ends match (including the target ring), AOSjVS sends
the message.

Only a specific task in the target ring can receive the [PC message; it is very important
that you specify the target ring. This prevents a task in one ring from intercepting a
message intended for a task that is executing in another ring.

A process must use a global port number to refer to another process's port. However,
because global port numbers depend on the system environment, they frequently change
during subsequent process execution. To circumvent this problem, potential IPC users can
issue the ?CREA TE system call to create IPC files, which serve as ports. Then, these
same users can define the local port numbers before they issue IPC system calls. As
AOSjVS executes the ?CREATE system call, it translates the local port numbers into
global port numbers. Potential senders and receivers cam then issue ?ILKUP system calls
against the IPC file to determine its global port number.

When you issue the ?CREATE system call to creat~: an IPC file, AOSjVS saves the
number of the ring from which the system call was issued in the new IPC file. The global
port number, which ?ILKUP returns, incorporates this same ring number. AOSjVS
interprets all global port numbers as containing ring fields.

The ?ISEND and ?IS.R system calls interpret ring fields (within global port numbers) as
follows:

Offset ?IDPH (the global port number) must always contain a valid user ring number.
The ring number specifies the ring to which the message will be sent. However, the
caller must have appropriate privileges to send a message to that ring within that
particular process.

The ?IREC system call interprets ring fields (within global port numbers) as follows:

Offset ?IOPH (the global port number) can contain either a valid user ring number or
a zero ring number. A nonzero ring number indicates that ?IREC returns a message
only from sends issued from the specified origin ring within the specified origin process.
A zero ring number indicates that ?IREC will return a message from any ring within
the specified origin process that sends a message dc~stined for the ?IREC caller's ring.
(You can use the ?IMERGE system call to construct a global port number with a zero
ring field.)

When you include ring fields as part of global port numbers, the ?IREC port-matching
rules are affected in that if the receiver specifies a nonzero ring field in an otherwise zero
global header, a ring-specific global receive takes prec:edence after explicit matches.

To identify the PID that is associated with a particular global port number, you must
issue the ?GPORT system call. Conversely, if you know the name of the PID of a terminal's
associated process, you can identify its terminal port number by issuing the ?GCPN system
call.

The ?ISPLIT system call extracts the ring field from a global port number, while the
?IMERGE system call permits both 16- and 32-bit users to modify the ring field within
a global port number.

093-000335 Licensed Material - Property of Data Ge'neral Corporation 8-3

Typical IPe System Call Sequence

The following steps describe a typical IPC sequence:

1. The sending process uses the ?CREATE system call to create an IPC file entry (type
?FIPC) in its working directory. This file entry serves as the origin port for the
message. (See Chapter 4 for a description of the ?CREATE system call.)

2. The sending process issues the ?ISEND system call and specifies the following in the
header: its own local port number, the receiver's global port number, the length and
address of the message buffer, and (optionally) system and user flags.

3. (optional) The receiving process issues the ?ILKUP system call to determine the
sender's global port number.

4. The receiving process issues the ?IREC system call and specifies the following in the
?IREC header: its own local port number, the sender's global port number, and
(optionally) user flags.

While the sequence above assumes that the sender issues the ?ISEND system call before
the receiver issues the complementary ?IREC system call, the send and receive system
calls need not be sequential. If there is no outstanding message for a receiver, AOS/VS
either suspends the receiving task until you issue the ?ISEND system call, or returns an
error (an option in the ?IREC headers). Similarly, if there is no ?IREC system call for
an ?ISEND system call, AOS/VS either stores the message in the memory buffers or
returns an error to the sender (an option in the ?ISEND header).

Send and Receive Headers

The ?ISEND and ?IREC headers consist of ?IPLTH words. The ?IS.R header is similar
to the ?ISEND header, except that it contains an extension for receive information, because
the ?IS.R system call performs both send and receive functions. The ?IS.R header consists
of ?IPRLTH words. Figure 8-1 shows the structures of the IPC headers, and Table 8-1
describes each header offset.

As Table 8-1 shows, the sender specifies the receiver's global port number in offset ?IDPH.
When AOS /VS transmits the message, it translates this value to a local port number for
the receiver and places it in offset ?IDPN of the receive header.

Similarly, the receiver specifies the sender's global port number in offset ?IOPH.
AOS/VS translates this to a local port number during the transmission and records it in
offset ?IOPN in the send header.

Offset ?IL TH in the send header contains the length of the IPC message, and offset
?IPTR points to the start of the message in the sender's logical address space. Within the
receive header, these same offsets describe the size of the receive buffer and its starting
address, respectively. AOS/VS copies the contents of these offsets from the send header
to the receive header during the transmission.

If you set ?ILTH to 0 in the send header, you can use offset ?IPTR to send data directly
to the header, rather than to a buffer. However, you must set up both the send and receive
headers in advance.

8-4 Licensed Material - Property of Data General Corporation 093-000335

/ISEND HEADER

o 15 16 I 31

11SFL System flags I Us;er flags ?IUFL

11DPH Destination port number

110PN Origin port number I Message I.!ngth (in words) ?JLTH

11PTR Message buffer address

11PL TH packet length

11REC HEADER

o 15
I

16 31

11SFL System flags I User flags ?IUFL

110PH Destination port number

11DPN Origin port number I Message IEtngth (in words) ?ILTH

11PTR Message buffer address

11PL TH packet length

1IS.R HEADER

o 15 16 31
I

11SFL System flags I US4!H' flags ?IUFL

11DPH Destination port number

110PN Origin port number 1 Message length (in words) ?ILTH

11PTR Message buffer address

11RSV Reserved (Set to 0.) I Receive buffer length ?IRLT

11RPT Address of receive buffer

71PRL TH packet length

Figure 8-1 Structure of IPC Send and Receive Headers

Liceneed Material - Property of Data Gener.al Corporation 8-5

\

Table 8-1. Contents of IPC Send and Receive Headers

Offset Contents Offset Contents

?ISFL System flags. ?ISFL System flags.
?lUFL User flags. ?lUFL User flags (copied from send

header).
?IDPH Destination port number. ?IOPH Origin port number.
(double (double
word) word)

?IOPN Origin port number. ?lDPN Destination port number
(translated from send
header).

?lLTH Length of message in ?lLTH Length of message buffer words
words. (copied from send header) .

• ?lPTR Address of message Buffer. ?IPTR Address of message buffer.
(double (double
word) word)

?IS.R Ex-
tension

?lRSV Reserved. (Set to 0.)

?IRLT Length of the receive
buffer.

?IRPT Address of receive buffer.
(double
word)

There is no default unless otherwise specified.

System and User Flags
In addition to the origin, destination, and message parameters, the headers for the ?ISEND
and ?IREC system calls contain a system flag word (?ISFL) and a user flag word (?IUFL).
Table 8-2 describes the optional contents of ?ISFL in the ?ISEND and ?IREC headers.

Table 8-2. Contents of System Flag Word (Offset ?lSFL)

Flag Description Flag Description

?lFSTM Loop the message (send the ?lFRFM Receive a looped message
message back to the sender.) (sent by this process to

itself).

?IFNSP Do not buffer the message; sig- ?I FSOV Buffer the message if the
nal an error if there is no ready receive buffer is small.
receiver.

?lFBNK Signal an error if there is no
spooled message for this
receiver.

?IFRING Contains the sender's ring
field (returned by
AOSjVS).

?lFPR Indicates .PR file type of
sender: 0 if sender is a 32-bit
process; 1 if sender is a 16-bit
process (returned by
AOSjVS).

8-6 Licensed Material - Property of Data General Corporation 093-000335

A process can loop a message (send a message to itsC!lf). To do this, the process must
perform the following steps:

1. Set bit ?IFSTM in the ?ISEND header.

2. Issue an ?ISEND system call.

3. Set bit ?IFRFM in the ?IREC header.

4. Issue an ? IREC system call.

Usually, a process loops a message for testing purposes. A processor does not need to
specify the origin and destination ports in the headers for a looped message.

Bit ?IFNSP in the ?ISEND header directs AOS/VS to signal an error if there is no
outstanding receiver for the sender's message.

Within the ?IREC headers, bit ?IFSOV directs AOS/VS to store the IPC message in the
memory buffers if the receive buffer is too small to accommodate it. If the receiver does
not set this bit and the receive buffer is too small, AOS /VS transmits as much of the
message as possible and discards the overflow.

A receiver can set bit ?IFNBK to direct AOS/VS to return an error if there is no
outstanding message for it. Otherwise, AOS/VS suspends the receiving task until a message
is sent to the receiving process.

Bits ?IFRING and ?IFPR in the receive header provide the receiver with information
about the sending process, such as the sender's ring fil~ld (?IFRING) and program type
(?IFPR). AOS/VS controls these flag bits; the receiving process cannot set them.

User Flag Word
The user flag word, offset ?IUFL, serves two purposes:

• AOS jVS copies the contents of offset ?IUFL from the send header to the receive header
during a transmission. Therefore, if senders and receivers set up the two headers properly,
they can use offset ?IUFL to pass information.

• AOSjVS uses offset ?IUFL to pass termination and obituary message information when
a process terminates or breaks a connection with another process.

Process Termination ~~essages
When AOS/VS terminates a process, it uses the IPC fadlity to send a termination message
to the father process of the terminated process. AOS/VS terminates a process when

• The process issues a ?RETURN system call.

• A superior process, a process with the Superprocess privilege, or the process itself issues
a ?TERM system call.

• The process encounters a user trap.

To receive the termination message, the father proce8s must have previously issued the
?IREC system call and set offsets ?IOPH in the ?IREC header to global port number
?SPTM. The ?SPTM port is the predefined origin port for termination messages.

When a process terminates, AOS /VS writes information about the terminated process into
the ?IUFL offset of the father process's ?IREC header. For some process terminations,

093-000335 Licensed Material - Property of Data General Corporation 8-7

AOS/VS sends only the information in the ?IUFL offset; for most processes, AOS/VS
sends a full termination message. We describe the format of these termination messages
in the sections to follow.

Figure 8-2 shows the structure of the ?IUFL offset.

10-03281

o
7RETURN

Flags

4 5

Termination
Field

7 8

Process 10

Figure 8-2. Structure of the ?IUFL Offset

15

Bits 0 through 4 in the ?IUFL offset contain ?RETURN flags. AOS/VS either writes a
?RETURN flag that describes the reason for the termination into this field, or it sets the
field to zero. We describe the conditions under which AOS/VS performs these actions in
the sections to follow.

Bits 5 through 7 in the ?IUFL offset contain the termination field. In the termination
field, AOS/VS either writes a code that indicates the reason for the termination, or in
the case of the ?TEXT termination code, points to an extended termination code that
describes the reason for the termination. This extended termination code is always in the
first word of the termination message. We describe the termination codes that AOS/VS
writes to the ?IUFL offset in Table 8-3.

Table 8-3. Process Termination Codes in Offset UUFL for 'lIREC and USEND
Headers

Code

?TSELF

?TRAP

?TCIN

?TAOS

?TBCX

?TCCX

?TSUP

?TEXT

8-8

Meaning

Either a 16-bit process terminated itself with a ?TERM or a ?RETURN
system call or a 32-bit process terminated itself with a ?RETURN system
call.

A user trap terminated a 16-bit process; the IPC message describes this trap.

An abort terminal interrupt (CTRL-C CTRL-B sequence) terminated a
process.

AOS jVS terminated a process because of an error; offset ?IPTR in the IPC
header contains the error code.

A process broke a connection that was established via the connection­
management system calls. (See Chapter 9 for information on the
connection-management facility.)

The connection still exists, but the process chained. (See Chapter 9 for
information on the connection-management facility.)

A superior process terminated the process with a ?TERM system call.

An extended termination code; the extended code appears in the first word
of the IPC message.

A termination code of ?TEXT in the ?IUFL offset indicates that the actual
termination code is a right-justified 16-bit code in the first word of the
termination message.

We list the extended termination codes when we describe the termination
messages in the sections to follow.

Licensed Material - Property of Data General Corporation 093-000335

If the father process is a PIO-size type A process, bits 8 through 15 of the ?IUFL offset
contain the PIO of the terminated process. We describe the relationship between termination
messages and a process's PIO-size type in the following sections.

Termination Message Formats and Process PID-Size Types
The format of a termination message depends on the PIO-size type of process to which
AOS/VS sends the message. A process can be one of three PIO-size types:

PID-Size Type Description (PID-type)

A A executing smallPIO program - can run only within the PIO range
of 1-256.

B An executing hybrid program - can run only within the PIO range of
1-256, but can create son processes running outside of that range.

C An executing anyPIO program - can run under any PIO.

The format of the termination message that AOS/VS sends to an type A process differs
from that which AOS/VS sends to a type B or C process. The format of the message can
also differ depending on whether the terminated process or the father process is a 32-bit
or 16-bit process.

Consequently, if you convert a smallPIO program into a hybrid or anyPIO program (we
describe how to do this in Chapter 3), you may have to modify that program so that it
can read the termination messages that AOS/VS sends to it. We describe the termination
message formats for each process type in the following sections.

Termination Message Format for PID-Size~ Type Band C Processes
If a 32- or 16-bit process terminates and its father process is a PIO-size type B or C
process, AOS/VS

• Writes zeros into the PIO field of the ?IUFL offset.

• Sets the termination field in the ?IUFL offset to the ?TEXT code.

• Writes the appropriate extended termination code in the first word of the termination
message.

• Table 8-4 lists these termination codes.

Code

?XT16T

?XTR16

?XTCIN

?XTSUP

?XTAOS

XTBCX

?XTCCX

?XTABR

?XT32T

?XTR32

093-000335

Table 8-4. Extended Termination Messages

Meaning

A 16-bit process has terminated itself by issuing a ?RETURN or ?TERM
system call.

A user trap terminated a 16-bit process.

An abort terminal interrupt (CTRL-C CTRL-B sequence terminated a
process.

A superior process terminated a process ..

AOS/VS terminated the process because of an error; the ?IPTR offset in
the IPC header contains the error code.

A process broke a connection that you t~stablished through the connection­
management system calls (for information on the connection-management
system calls, see Chapter 9).

A connection still exists, but the process chained.

Sent to a server process by a task within a customer process that has
terminated.

A 32-bit process has terminated itself.

A user trap has terminated a 32-bit process.

Licensed Material - Property of Data General Corporation 8-9

The format of the termination messages that AOS/VS sends to type Band C processes
is always the same, regardless of the reason for termination; however, the information that
AOS/VS includes in the messages differs depending on the reason for termination. We
describe the information that AOS/VS returns for each type of process termination below.

Table 8-5 describes the format for termination messages that AOS/VS sends to type B
and C processes.

Table 8-5. Termination Message Format for PID-Size Type Band C Processes.

Word Contents

0 Extended termination code.

1 Packet revision number.

2 Reserved.

3 PIO of terminated process.

4 through 13 Reserved.

14 and 15 Contents of ACO.

Only valid when a user trap terminated the process. High order bits (word
14) undefined when the terminated process is a 16-bit process.

16 and 17 Contents of ACl.

Only valid when a user trap terminated the process. High order bits (word
16) undefined when the terminated process is a 16-bit process.

18 and 19 Contents of AC2.

Only valid when a user trap terminated the process. High order bits (word
18) undefined when the terminated process is a 16-bit process.

20 and 21 Contents of AC3.

Only valid when a user trap terminated the process. High order bits (word
20) undefined when the terminated process is a 16-bit process.

22 Bit 0, carry; bits 2 through 15, program counter (high-order bits).

Only valid when a user trap terminated the process. This word undefined
when terminated process is a 16-bit process.

23 Program counter (low-order bits).

Only valid when a user trap terminated the process.

24 and 25 Elapsed time since process creation (in seconds).

26 and 27 Processor time used (in milliseconds).

28 and 29 Number of blocks read or written.

30 and 31 Page usage over processor time (page/seconds).

32 and 33 Number of page faults since process creation.

34 and 35 Number of page faults (no disk I/O).

36 through 43 Reserved.

44 Trap code.

Only valid if a user trap terminated the process. To describe the trap,
AOS /VS sets the bits in word 44 as follows:

(continues)

8-10 Licensed Material - Property of Data General Corporation 093-000335

Table 8-5. Termination Message Format for PID-Size Type Band C Processes.

Word

44(Cont)

45

46 through n

Contents

Bit 0=0 Trap occurred while control was in the user context.

Bit 0= 1 Trap occurred while control was in the operating system.

Bit 3= 1

Bit 4= 1

Bit 5= 1

Bit 6= 1

Bit 7= 1

Bit 8= 1

Bit 9= 1

Bit 10= 1

Bit 12= 1

Bit 13= 1

Bit 14= 1

Bit 15= 1

A node time-out occurred. (This is a hardware error.)

Process tried to execute a privileged instruction.

Process tried to return to an inner ring from a subroutine
call. (This is a violation of the ring structure.)

Process tried to issue a subroutine call to an outer ring. (This
is a violation of the ring structure.)

Gate protection error. (This. is a violation of the ring structure.)

Process tried to reference an address in an inner ring. (This
is a violation of the ring structure.)

Process tried to read a read-protected page.

Process tried to execute data in an execute-protected area.

Process tried to write into a write-protected area.

Memory map validity error. (The process tried to refer to an
address outside the user o:mtext.)

A defer error. (The process tried to use more than 16 levels
of indirection in an address reference.)

Process tried to issue a machine-level I/O instruction without
issuing the ?DEBL system call. (See Chapter 13.)

Length of message passed (optional) by terminated process to father
process.

Set to zero when

• A process terminates itself with a ,?RETURN or ?TERM system call
without passing a message to its father process.

• The extended termination code is ?XTCIN (terminated by abort ter-
minal interrupt) or ?XTSUP (terminated by superior process).

Message area.

Words 46 and 47 contain a default me:isage, which consists of the contents
of the ?IPTR offset of the IPC header. A terminating process can use
the ?IPTR offset to pass a message to its father process.

Following the default message, the ffit~ssage area contains any additional
message that the terminated process passes to its father process.
AOSjVS gives gives the length of this additional message in word 45. If
there is no additional message, AOSjVS sets word 45 to zero.

(concl uded)

Termination with a lRETURN System Call

If a type B or C process terminates itself with a ?RETURN system call, AOS jVS places
a ?RETURN code in the ?RETURN field of the ?IUFL header. We list these codes in
Table 8-6.

093-000335 Licensed Material - Property of Data Gen.~ral Corporation 8-11

Table 8-6. lRETURN Codes.

Code Meaning

?RFCF The termination message is in CLI format (the CLI is the father).

?RFEC ACO contains the error code.

?RFWA A warning condition caused the termination.

?RFER An error condition caused the termination.

?RFAB An abort condition caused the termination.

If the terminated process's father process is the CLI, then AOS /VS writes the ?RFCF
code into the ?RETURN field. The CLI in turn displays the system error message that
corresponds to the error code in ACO, and any additional messages that the terminated
process specified in the ? RETURN system call.

If the terminated process's father is not the CLI, AOS/VS writes the ?RFEC, ?RFW A,
?RFER, or ?RF AB code into the ?RETURN field for whatever interpretation the father
and son processes previously agreed.

Specifying the Termination Message Format that a Process
Receives
To ensure that a process will always receive termination messages in the format that we
described for type Band C processes - future revisions of AOS/VS may modify the
format of the termination message - you can issue the ?TMSG system call. In the
?TMSG system call, you specify the termination message format that we described for
PID-size type Band C processes with the ?TM6 termination message code.

32-Bit Termination Messages for PID-Size Type A Processes
When a 32-bit process terminates and its father is a PID-size type A process, AOS/VS

• Sets the ?RETURN flags field in the ?IUFL offset to zero.

• Writes the ?TEXT code to the termination field in the ?IUFL offset.

• Writes the appropriate extended termination code (?T32T or ?TR32) in the first word
of the termination message.

If the process terminated on a ?RETURN or a ?TERM system call - not a user trap
- AOS/VS sends the termination message that we describe in Table 8-7.

Table 8-7. 32-Bit Termination Message to PID-Size Type A Processes.

Word Contents

0 ?T32T

Extended termination code for 32-bit self-termination.

1 Length of message sent by terminating process to its father process.

2 and 3 Error code (optional).

Specified by the terminated process when issuing a ?RETURN system call.

4 First word of message sent by the terminated process to its father process
(optional).

Specified by the terminated process when issuing a ?RETURN system call.

8-12 Licensed Material - Property of Data General Corporation 093-000335

If the process terminated because of a user trap, AOSjVS sends a termination message
in the format that we describe in Table 8-8.

Table 8-8. Format of Termination Message Sent Ito a PID-Type A Process on a
32-Bit Process User Triilp.

Word

o

1 and 2

3 and 4

5 and 6

7 and 8

9

10

11

Contents

?TR32

Extended termination code for a 32-bit user trap.

ACO contents at time of trap.

ACI contents at time of trap.

AC2 contents at time of trap.

AC3 contents at time of trap.

Bit 0, carry; bits 1 through 15, high-order bits of program counter.

Low-order bits of program counter.

To describe the trap, AOS/VS sets the bits in word 11 as follows:

Bit 0=0 Trap occurred while control was in the user context.

Bit 0= 1 Trap occurred while control was in the operating system.

Bit 3=1

Bit 4=1

Bit 5=1

Bit 6= 1

Bit 7= 1

Bit 8= 1

Bit 9= 1

Bit 10= 1

Bit 12= 1

Bit 13= 1

Bit 14= 1

Bit 15= 1

A node time-out occurred. (This is a hardware error.)

Process tried to execute a privileged instruction.

Process tried to return to an inner ring from a subroutine call.
(This is a violation of the ring structure.)

Process tried to issue a subrollltine call to an outer ring. (This is
a violation of the ring structure.)

Gate protection error. (This is a violation of the ring structure.)

Process tried to reference an alddress in an inner ring. (This is a
violation of the ring structure.)

Process tried to read a read-protected page.

Process tried to execute data itn an execute-protected area.

Process tried to write into a write-protected area.

Memory map validity error. (The process tried to refer to an
address outside the user context.)

A defer error. (The process tried to use more than 16 levels of
indirection in an address reference.)

Process tried to issue a machine-level I/O instruction without
issuing the ?DEBL system call. (See Chapter 13.)

Termination Messages for PID-Type A Processes - 16-Bit Sons
When a 16-bit process terminates by issuing a ?RETURN system call and its father is
a type A process, AOSjVS

• Returns flag ?TSELF to the termination field in offset ?IUFL.

• Copies one or more of the codes listed in Table 8-9 to ?RETURN field of the ?IUFL
offset.

093-000335 Licensed Material - Property of Data General Corporation 8-13

Table 8-9. ?RETURN Codes.

Code Meaning

?RFCF The termination message is in CLI format (the CLI is the father).
?RFEC ACO contains the error code.
?RFWA A warning condition caused the termination.
?RFER An error condition caused the termination.

?RFAB An abort condition caused the termination.

If the terminated process's father process is the CLI, then AOS/VS writes the ?RFCF
code in~o the ?RETURN field. The CLI in turn displays the system error message that
corresponds to the error code in ACO, and any additional messages that the terminated
process specified in the ?RETURN system call.

If the terminated process's father process is not the CLI, AOS/VS writes the codes ?RFEC,
?RFW A, ?RFER, or ?RF AB to the ?RETURN field for whatever interpretation the father
and son processes previously agreed on.

When a 16-bit process terminates itself with a ?TERM system call, AOS/VS returns
either the termination message specified by the process, or, if the process did not specify
a message, one of the termination codes. AOSjVS sends the termination message directly
to the father's receive buffer. It sends the termination code to the ?IUFL termination field
in the father's receive buffer, and writes zeros into the ?RETURN field.

If the 16-bit process terminated because of a user trap, AOS/VS sets the father's ?IUFL
termination field to ?TRAP, and sends the father one of the six-word termination messages
listed in Table 8-10.

Table 8-10. Termination Message Format for 16-Bit Process User Traps.

Word Contents

0 ACO contents at time of trap.

1 ACI contents at time of trap.

2 AC2 contents at time of trap.

3 AC3 contents at time of trap.

4 Bit 0, carry; Bits 1 through 15, program counter value.

5 To describe the trap, AOS/VS sets the bits in word 5 as follows:

Bit 0=0 Trap occurred while control was in the user context.

Bit 0= 1 Trap occurred while control was in the operating system.

Bit 12= 1 Process tried to write into a write-protected area.

Bit 13= 1 Memory map validity error. (The process tried to refer to an address
outside the user context.)

Bit 14= 1 A defer error. (The process tried to use more than 16 levels of
indirection in an address reference.)

Bit 15= 1 Process tried to issue a machine-level I/O instruction without issuing
the ?DEBL system call. (See Chapter 10.)

If the 16-bit process terminated because of an abort terminal interrupt (a CTRL-C
CTRL-B sequence) or a ?TERM system call issued by a superior process, AOS/VS returns
the proper code to the father's ?IUFL termination field (?TCIN or ?TSUP), but does not
send a message.

8-14 Licensed Material - Property of Data General Corporation 093-000335

10-03282

'lISEND and 'lIREC System Call Logic
The flowcharts in Figures 8-3 and 8-4 show the sequence of operations for the ?ISEND
and ?IREC system calls, respectively.

Spool the message

Figure 8-3. ?ISEND Logic Flowchart

093-000335 Licensed Material - Property of Data GEmeral Corporation 8-15

No

Yes

Do "move message"

No

10-03283

Figure 8-4. ? fREe Logic Flowchart

8-16 Licensed Material - Property of Data General Corporation 093-000335

Sample IPC Programs

The following programs, SPEAK and HEAR, illustrate interprocess communications with
the IPC system calls ?ILKUP, ?IREC, and ?ISEND.

Program SPEAK uses routine SON (see the Processe:s and Memory Sample Programs) to
execute program HEAR. HEAR issues an ?IREC system call to receive a message from
SPEAK. Then, SPEAK issues ?IS END to send the m(~ssage to HEAR. HEAR and SPEAK
both use the ?ILKUP system call to discover the other's port number.

The HEAR Program

;Open terminal (CON) for input and output. (See Chapter Ei for more
ooformation on ?OPEN.)

HEAR: ?OPEN CON
WBR . ERROR

mod ?WRITE CON

WBR . ERROR

§art the SON process to run SPEAK.PR.

XLEFB O,SPEAK*2
XJSR @.SON

; Open terminal (COlO for 110.
;Report error and quit .

;Display message Oil terminal screen
; (byte pOinter is already in
; 110 packet).
; ?WRITE error retur'n .

; Get byte pOinter 1to filenalle.
;SON creates process.

;SPEAK is running. Create IPC entry for receive.

XLEFB O,PORTR*2 ;Set byte pointer to port name.
?CREATE IPCEN ; Create IPC entry f)ORTR.
WBR . ERROR ;?CREATE error return .
XLEFB O,MES1*2 ;Set byte pointer to lllessage.
XWSTA O,CON?lBAD ;Put in I/O packet.
?WRITE CON ;Write lieS sage to terminal.
WBR . ERROR ;Try to handle the error .

;See if SPEAK's entry and its ports have been created.

GETOP: XLEFB O,PORTS*2 ;Set byte pOinter to port name.
?lLKUP ; Get port nlJlber fr'om At 1.
WBR TEST ;Try to handle the error.
XLEFB O,MES2*2 ;Get byte pOinter.
XWSTA 0, CON + ?lBAD ;Put in I/O packet.

093-000335 Licensed Material - Property of Data GEtneral Corporation 8-17

?WRITE CON ;Oisplay success message on
;terminal screen.

WBR . ERROR ;Try to handle the error.
XWSTA 1,RHOR+?lOPH ;Put origin port number in

;record header (note wide
; storage) .

NLOAI 1,0 ; Generate 1.
XNSTA ORHOR + ?lOPN ;Put destination port 1 in

;record header (note narrow
;storage).

?lREC RHOR ;Receive SPEAK message.
WBR . ERROR ;?IREC error message .
XLEFB 1, MSBUF*2 ;Message received. Get byte

;pointer to message buffer.
WLOAI ?RFCF!100. ,2 ;Put flag and 100 words for

;message in AC2.

?RETURN ;Return to CLI with message.
WBR . ERROR ;Try to handle the error.

;?ILKUP error. Check for error code ERFOE (file does not exist) and
;delay if present.

TEST: WLOU ERFOE,1 ;Put ERFOE number in AC1.
WSEQ 0,1 ;Skip if error code is ERFOE.
WBR . ERROR ;Try to handle the error .
XLEFB 1,MES3*2 ;Get byte pOinter to message.
XWSTA o , CON + ?lBAO ;Put in liD packet.

?WRITE CON ;Oisplay lessage on terminal.
WBR . ERROR ;Try to handle the error .
WLOU 5000. ,0 ;5 seconds.

?WDELAY ;Wait for 5 seconds.
WBR . ERROR ;Try to handle the error .
WBR GETOP ;00 ?ILKUP again.

;Error instruction, byte pOinter, filename, and port name.

.ERROR: XJMP ERROR ;To error handler.

. SON: SON ;To subroutine SON .

SPEAK: . TXT "SPEAK.PR" ;Filename of program .

PORTR: . TXT "PORTR" ;Name of receive port .

PORTS: ; .TXT "PORTS" ;Name of send port.

;?OPEN and liD packet for terminal.

CON: .BLK ?lBLT ;Allocate enough space for
;packet.

.LOC CON + ?lSTI ;File specifications.

8-18 Licensed Material - Property of Data General Corporation 093-000335

. WORD ?ICRF!?RTDS!?OFIO

.LOC CON + ?IMRS

. WORD -1

.LOC CON+?IBAD

. DWORD MES*2

.LOC CON+?IRCL

. WORD 120 .

.LOC CON + ?IFNP

. DWORD CONS*2

.LOC CON + ?I DEL

. DWORD -1

. LOC CON + ?IBLT

;Change format to
;data-sensitive records and
; open for input andl output.

;Physical block size is 2
;Kbytes.

; Set byte pOinter to record 110
;buffer.

; Record length is ~120

; characters.

;Set byte pOinter to pathname.

; Delimi ter table acldress .
; Use default delimi.ters: null,
; NEW LINE, form fet~d, and
; carriage return (clef ault is
;-1).
;End of packet .

; Filename , buffer, messages. A .NOlOC 1 follows.

CONS: .TXT "@CONSOLE" ;Use generic name.

MES: . TXT "From HEAR--I have opened the terlinal and I am ready
to call SON.<12>"

MES1: .TXT "From HEAR--I am back from SON. SPEAK is running. <12>
I created an I PC entry. < 12> "

MES2: .TXT "From HEAR--Have ?ILKUPed the IPC port entry. < 12>"

MES3: . TXT "From HEAR--?ILKUP error . I will wait and then try
again. <12>"

.NOLOC 0

;Header for IPC entry.

IPCEN: .LOC IPCEN+ ?CFTYP
. WORD ?FIPC ; IPC file.

.LOC IPCEN + ?CPOR

. WORD 1 ;Port number is 1.

.LOC IPCEN + ?CTIM

. DWORD -1 ;Use default current time.

.LOC IPCEN + ?CACP

. DWORD -1 ;Use default current ACL .

093-000335 Licensed Material - Property of Data General Corporation 8-19

;?IREC Receive header RHDR.

RHDR: .LOC RHDR+?ISFL
. WORD 0

.LOC RHDR+ ?IUFL

. WORD 0

.LOC RHDR+?IOPH

. DWORD 0

.LOC RHDR+?IDPN

. WORD 0

.LOC RHDR+ ?ILTH

. WORD 100 .

.LOC RHDR+ ?IPTR

. DWORD MSBUF

.LOC RHDR+?PLTH

MSBUF: . BLK 101.

;Error handler.

ERROR: WLDAI ?RFEC!?RFCF!?RFER.2

?RETURN
WBR ERROR

. END HEAR

;There are no system flags.

;There are no user flags.

;AOS/VS returns origin port
;nWlber here.

;AOS/VS returns destination
;port number here.

;Message buffer is 100 words.

;Message buffer address.

;End of ?IREC header.

;Message buffer .

;Error flags: Error code is
;in ACO (?RFEC). message is in
;CLI format (?RFCF). and
;caller should handle this as
;an error (?RFER).

;Return to CLI.
;?RETURN error return.

;End of HEAR program .

8-20 Licensed Material - Property of Data General Corporation 093-000335

The SPEAK Program
The following program, SPEAK, sends an IPC message! to another process. Then, SPEAK
terminates itself. SPEAK's origin port name is PORTS; its destination port name is
PORTR.

. TITLE SPEAK

.ENT SPEAK

.NREL

;Create and IPC entry port named PORTS.

SPEAK: XLEFB 0,PORTS*2
?CREATE IPCEN
WBR . ERROR

;Set byte pointer to port name.
;Create an IPC port.
; Try to handle the error.

;See if PORTR, the receive port, has been created.

GETNM: XLEFB 0,PORTR*2 ;Set byte pOinter to port name.
?ILKUP ; Put port nUlllber in JlC1.
WBR TEST ;Ooes the port exist?
XWSTA 1, SHOR + ?IOPH ; Yes. Put port mJDber- in send

;header.
NLOAI 1,0 ;No. Generate 1.
XNSTA O,SHOR+?IOPN ;Put destination port: 1 in

;send header (narrow storage).
?I SEND SHOR ;Send SPEAK lessage.
WBR . ERROR ; Try to handle the er"ror .

;The .essage has been sent. Wait for other process to receive message
;before terminating yourself.

?WLOAI 10000.,0
?WDELAY
WBR . ERROR
NLOAI -1,0
WSUB 2,2

;10 seconds.
;Wait for 10 seconds.
; Try to handle the er'ror.
;Get -1 to terminate yourself.
; There is no IPC llless;age to
;the father.

?TERM ; Terminate.
WBR . ERROR ; Try to handle the error.

;?ILKUP error. Check to see whether the error code is ERONE (Does Not
;Exist). If the error code is ERONE, wait.

TEST: WLOAI ERFOE,1 ;Put error code nUiber in AC1.
WSEQ 0,1 ;Was error code ERFOE?
WBR . ERROR ; No . Try to handle thle error .
WLOAI 5000. ,0 ;5 seconds.
?WDElAY ; Yes. Wait for 5 seco,nds.
WBR . ERROR ;Try to handle the error .
WBR GETNM ;00 ?ILKUP again.

093-000335 Licensed Material - Property of Data General Corporation 8-21

;Error instructions, pOinter, filenames, and port names .

. ERROR: XJMP ERROR ;To error handler.

PORTS: .TXT "PORTS" ;Name of send port .

PORTR: . TXT "PORTR" ;Name of receive port.

;Header for IPC entry.

IPCEN: .LOC IPCEN + ?CFTYP
. WORD ?FIPC ; IPC file.

.LOC IPCEN + ?CPOR

. WORD 1 ;Port number is 1.

.LOC IPCEN + ?CTIM

. DWORD -1 ;Default to current time.

.LOC IPCEN + ?CACP

. DWORD -1 ;Default to current ACL .

;?ISEND send header SHDR.

SHDR: .LOC SHDR+?ISFL
. WORD 0 ;There are no system flags .

.LOC SHDR+ ?IUFL

. WORD 0 ;There are no user flags.

.LOC SHDR+ ?IDPH

. DWORD 0 ;AOS/YS returns destination

.LOC SHDR+ ?IOPN

. WORD 0 ;AOS/YS returns origin
;port number here.

.LOC SHDR+ ?ILTH

. WORD 100 . ;Message buffer is 100 words.

.LOC SHDR+?IPTR

. DWORD MSBUF ;Message buffer address.

. LOC SHDR+?PLTH ;End of ?ISEND header .

8-22 Licensed Material - Property of Data General Corporation 093-000335

;Message that we want to send. A .NOLOC 1 follows.

MSBUF: .TXT "Hello. This is your son speaking. As you read <12>
these words. I am terminating and so are you. <12>

. NOLOC 0

;Error handler.

ERROR: WLDAI ?RFEC!?RFCF!?RFER.2

?RETURN
WBR ERROR

. END SPEAK

;Resume listing everything.

;Error flags: Error code is
; in ACO (?RFEC), message is in
;CLI format (?RFCF). and
; caller should handll~ this as
;an error (?RFER).
; Return to eLI.
;?RETURN error return.

;End of SPEAK progr~n.

End of Chapter

093-000335 Licensed Material - Property of Data Gen4:tral Corporation 8-23

Chapter 9
Creating and Managing Process

Connections

You can use the following system calls to create and manage process connections:

?CON Become a customer of a specified server.
?CTERM Terminate a customer process.
?DCON Break a connection (disconnect) in Ring 7.
?DRCON Break a connection (disconnect) in a specified ring.
?MBFC Move bytes from a customer's buffer.
?MBTC Move bytes to a customer's buffer.
?PCNX Pass a connection from one serv,er to another in Ring 7.
?PRCNX Pass a connection from one serv,er to another in a specified ring.
?RESIGN Resign as a server.
?SER VE Become a server process.
?SIGNL Signal another task.
?SIGWT Signal another task and then wa.it for a signal.
?VCUST Verify a customer in Ring 7.
?VRCUST Verify a customer in a specified ring.
?WTSIG Wait for a signal from another ltask or process.

093-000335 Licensed Material - Property of Data Gel1eral Corporation 9-1

This chapter describes how to create and manage customer/server relationships - called
connections - between processes.

Why Use Process Connectionsl
When you create a customer/server relationship between processes, you can use the server
process to perform certain functions on behalf of its customer processes. Typically, a server
process performs general routines that customer processes can access. For example, you
can create a server process to build files or perform I/O.

Connection management allows servers to move bytes to and from their customers' buffers.

Creating a Process Connection
To make a connection between two processes you must specify one process to be the server
process and the other to be the customer process. To specify the server and customer
processes, issue

• The ?SER VE system call to specify the calling process to be the server process.

• The ?CON system call to specify the customer and establish the logical connection
between the customer and an existing server.

Figure 9-1 shows a server process with connections to three customer processes.

10-03284

Process A

?CON
(Becomes a

customer
of A)

?CON
(Becomes a

customer
of A)

Issues ?SERVE to

become a server

?CON
(Becomes a

customer
of A)

Figure 9-1. Model Customer/Server Configuration

AOS/VS maintains a connection table, which manages exchanges between customers and
servers. When a customer makes a connection (via the ?CON system call) with a declared
server, AOS/VS writes an entry in the connection table that specifies the PID of the
server, the PID of the customer, and the customer's ring field. Each ?CON system call
generates one connection-table entry.

A process can act as a server for other processes and can also act as a customer of other
servers as long as it issues the appropriate number of ?SERVE and ?CON system calls.
A process that acts as both a server and a customer is called a multilevel connection.
Figure 9-2 shows a multilevel connection, where process A is the server of processes B,
C, and D, and a customer of process X. Multilevel connections let you set up intermediate
servers for some functions, and one or more superior servers for other functions.

9-2 Licensed Material - Property of Data General Corporation 093·000335

10·03285

Process X

Process A

t----"'"""'!~ Issues ?SERVE to
become a server

Issues ?CON (to
t------ll~ connect with X)

~----------,-----------~ and ?SERVE

Process B. C.

- and 0 issue ?CON
(to connect with
Process A)

Figure 9-2. Multilevel Customer/Server ConfiguraClOn

Creating a Double Process Connection

You can also make a double connection between two processes. A double connection allows
each process to act as either the customer or the servt:r of the other, depending on the
action to be performed. As Figure 9-3 illustrates, a doubll~ connection requires two ?SER VE
system calls and two ?CON system calls. AOS/VS cn~ates two connection-table entries,
one for each ?CON system call.

Process A

?SERVE

?CON

(Becomes customer of B)

~----------?CON

Process B

'__ _______ --' (Becomes customer of A)

10·03286

Figure 9-3. Double Connection

The Server Process

?SERVE

Once a process has server status (established with the ,?,SERVE system call), it can issue
the following system calls:

?CTERM

?MBFC

?MBTC

093·000335

Terminates a customer.

Moves bytes from a customer's buffer.

Moves bytes to a customer's buffer.

Licensed Material - Property of Data General Corporation 9-3

?PCNX

?PRCNX

?RESIGN

?VCUST

?VRCUST

Passes a connection from one server to another in Ring 7.

Passes a connection from one server to another in a specified ring.

Resigns as a server.

Verifies a customer in Ring 7.

Verifies a customer in a specified ring.

The ?CTERM system call terminates a customer process. The ?RESIGN system call
signals AOS/VS that the caller has resigned as a server.

The ?MBTC and ?MBFC system calls allow the server to move bytes to or from a
customer's logical address space. However, before AOS/VS executes either of these system
calls, it checks the connection table to make sure that there is a valid connection between
the two processes, and that the customer's buffer is in the ring defined at connect time,
which must be in the caller's ring or in a higher ring. Also, there must be enough space
at the destination for the data to reside entirely within the specified destination ring.

The ?PCNX system call passes a customer/server connection from one server to another
in Ring 7 and directs AOS/VS to revise the connection-table entry accordingly. The
?PRCNX system call is similar to the ?PCNX system call, except the ?PRCNX system
call is not restricted to Ring 7. Both the ?PCNX and the ?PRCNX system calls are useful
for passing a valid customer from a dispatching server to a specialized server process.

The ?VCUST system call determines whether a target process in Ring 7 is a customer of
the ?VCUST caller. The ?VRCUST system call is similar to the ?VCUST system call,
except the ?VRCUST target process need not be in Ring 7. If the ?VCUST or the
?VRCUST target process is not a customer, AOS/VS takes the error return and passes
error code ERCDE to ACO. If the connection between the two has been broken, the system
call fails on error code ERCBK.

Typically, server processes communicate with their customers via the IPC system calls
?SEND, ?IREC, and ?IS.R. However, they can also use the fast interprocess communication
system calls, ?SIGNL, ?WTSIG, and ?SIGWT, to communicate with their customers.
(See the Fast Interprocess Synchronization section in this chapter for more information on
the ?SIGNL, ?WTSIG, and ?SIGWT system calls.)

Terminating Process Connections
AOS/VS breaks the customer/server connection when a process traps or when the process
issues one of the following calls:

?CTERM

?DCON

?DRCON

?RESIGN

?TERM

Terminates a customer (a server-only system call).

Breaks a connection in Ring 7.

Breaks a connection in a specified ring.

Resigns as a server (a server-only system call).

Terminates a process (self-terminates).

Notice that the ?CTERM system call is a server-only system call. The ?DCON, ?DRCON,
and ?TERM system calls are available to both servers and customers. (See Chapter 3 for
information on terminating processes with the ?TERM system call.)

9-4 Licensed Material - Property of Data General Corporation 093-000335

When AOSjVS detects a broken connection, it sets a f1ag bit in the appropriate connection
table entry. For AOSjVS to actually clear the entry, however, it must receive disconnects
from both the customer and the server. For example,. a customer could issue a ?DCON
system call to break its connection with the server, but the PIDs of both processes will
remain in the connection table until the server issues a ?DCON, ?RESIGN, or ?TERM
(self-termination) system call.

You should issue disconnects from both processes as soon as a connection has served its
purpose. This keeps the connection-table entries within the maximum range and allows
AOS jVS to reassign the PIDs. (The maximum number of connections allowed under
AOSjVS is revision dependent.)

Obituary Messages at Disconnection
When a customer or server process disconnects, AOSjVS sends the other process an obituary
message. An obituary message is a zero-length IPC message (an IPC header, essentially).
A customer can suppress the obituary message by setting bit ?COBIT in ACI when it
issues the ?CON system call.

To receive an obituary message, a process must issue the ?IREC system call; it must
specify 0 and ?SPTM in ?IREC offsets ?IOPH and ?IOPL, respectively (origin port), and
o in offset ?IDPN (destination port). AOSjVS returns the obituary message as termination
code ?TBCX in offset ?IUFL of the ?IREC header.

Obituary Message Formats
The format of the obituary message that AOSjVS sends differs depending on the type of
process receiving the obituary message. AOS jVS sends obituary messages in a different
format to A-type processes (executing smallPID programs) than it does to B- or C-type
processes (executing hybrid or anyPID programs, respectively).

To A-type processes, AOSjVS sends obituary messages that give

• The PID of the disconnected process in the second word of the obituary message (bits
8 through 15 of the ? IUFL offset).

• The connection bit map in the last word of the obituary message (for 32-bit processes
- bits 8 through 15 of the ?ILPN offset; for 16-bilt processes - bits 8 through 15 of
the ?IPTR offset).

To B- or C-type processes, which require a larger J>ID field, AOSjVS sends obituary
messages that give

• The PID of the disconnected process in the last word of of the obituary message (for
32-bit processes - all 16 bits of the ?ILPN offset:; for 16-bit processes - all 16 bits
of the ?IPTR offset).

• The connection bit map in second word of the obitlllary message (bits 8 through 15 of
the ? IUFL offset).

093-000335 Licensed Material - Property of Data General Corporation 9-5

Inner-Ring Connection Management
Segment images that are loaded into different user rings within the sample process often
have very different aims and identities. Consequently, the connection-management facility
identifies all connections as being between ordered pairs of PID/ring-within-PID tandems
(called PID/ring tandems). A ring within a process can be connected as a customer (and/
or as a server) with mUltiple rings that are within another process or processes.

Although multiple ?CON system calls that connect the same ordered pairs of PID/ring
tandems are legal, they will result in only a single connection. However, connections between
rings that are within the same process are illegal.

For a server, the privilege to move bytes to and from a customer is limited to only those
rings in the customer that are higher than or equal to the lowest ring that issued a ?CON
system call to create a connection to the server. Every IPC message (obituary message,
chain, etc.) issued by the connection-management facility, is sent to the ring from which
the ?CON or ?SER VE system call was issued. The system flag word of the IPC header
holds a field, ?IFRING, that contains the ring number of the segment image that caused
the system to generate the message.

If a server is concurrently connected to multiple rings within the customer, AOS/VS
indicates the status of those connections with a single IPC message. This prevents the race
conditions that might occur if AOS /VS issued multiple messages.

For 32-bit receivers, flag bits are returned in the ?IPTL word of the IPC header. For
16-bit receivers (that is, tasks in Ring 7 of a 16-bit process), the flag bits are returned
in the ?IPTR word of the IPC header. The flag bits include both a single explicit disconnect
flag and a bit map that contains the connection status of the various inner rings.

The explicit disconnect flag expands the information that the connection broken (?TBCX)
termination message contains when it is going to a server on a customer process termination.
If the explicit disconnect bit is set in the connection broken termination message, then one
of the rings of the customer process issued a ?DCON or a ?DRCON system call to break
the connection. If the explicit disconnect bit is not set, then one of the following caused
the broken connection:

• A customer process terminated.

• A customer process chained, but it did not have a connection in its Ring 7.

A connection broken (?TBVC) rather than a customer chained (?TCCX) termination
message describes this special case of a customer process chain, but it is also valid for
a server process chain. All other types of process chain events cause customer chained
messages (?TCCX), because Rings 4 through 6 are unloaded when Ring 7 chains.
(Effectively, Rings 4 through 6 terminate on a Ring 7 chain.)

The meaning of individual bits within the bit map depends upon the type of event being
signaled:

• When a customer is chained, bits set in the bit map indicate which rings were connected
before the chain. In this case, AOS/VS automatically preserves the connections to Ring
7 and 3, providing they existed before the chain.

• When a connection is broken, if the explicit disconnect bit is set, then the bits set in
the bit map indicate rings to which there are remaining connections. If the explicit
disconnect bit is clear, then the bits set in the bit map indicate which rings were
connected before the termination or chain.

9-6 Licensed Material - Property of Data General Corporation 093-000335

The following parameters characterize the bit flags:

Parameter Meaning

?CXMBM Word mask that allows you to extract both the explicit disconnect flag and
the connection bit map.

?CXMED Bit mask for the explicit disconnect flag.

?CXBBMO Bit position of the explict disconect flag. (The explicit disconnect flag im­
mediately precedes the connection bit map portion of the ?IPTL or ?IPTR
word.)

?CXBBMO + N defines the position of the bit that corresponds to Ring N
within the bit map. (Rings 1 through 7 are mapped in the bit map.) You
can point to the explicit disconnect bit as if it were the first bit in the bit
map (that is, N = 0).

?CXBVED Position of the explicit disconnect bit within the extracted word.

Fast Interprocess Synchronization
Frequently, identical local servers loaded into different processes will use a common shared
memory file for global synchronization. AOSjVS includes a fast interprocess sychronization
facility that common local servers can use to pend and unpend tasks, depending on the
state of databases in that shared memory.

The fast interprocess synchronization mechanism, which uses the ?SIGNL, ?WTSIG, and
?SIGWT system calls, provides you with another way of synchronizing processes. Unlike
the IPC system calls, the fast interprocess synchronization system calls do not move any
data. Instead, they allow a task within a process to send and receive task-specific signals
to and from the same or another process. Because: they do not move data, ?SIGNL,
?WTSIG and ?SIGWT are very fast, and they require very little system overhead.

When a task issues a ?SIGNL or a ?SIGWT system call, the target does not have to be
waiting to receive the signal. Instead, AOSjVS remembers the task-specific target. A
subsequent ?WTSIG or ?SIGWT system call issued by the target task causes the target
task to proceed immediately. A ?WTSIG system call, however, will pend the caller if a
signal for the task is not outstanding.

Unlike the IPC system call ?IS.R, the ?SIGWT system call does not force the calling
task to wait for a signal from the same task that it signaled. Any signal that specifies the
pended task will wake up that task.

No privileges are necessary to issue the ?SIGNL, TWTSIG, or ?SIGWT system calls.

End of Chapter

093-000335 Licensed Material - Property of Data l:ieneral Corporation 9-7

Chapter 10
Managing a Multiprocessor

Environment

You can use the following system calls to manage a multiprocessor environment:

? JPINIT Initialize a job processor.
?JPMOV Move a job processor from one logic:al processor to another.
? JPREL Release a job processor from the system.
?JPSTAT Get status information on a single job processor, or on all job

processors.
?SYSPRV Enable, disable, or get status of System Manager mode, Superprocess

mode, or Superuser mode.

093-000335 Licensed Material - Property of Data Gen.ltral Corporation 10-1

This chapter describes how to manage a multiprocessor system. It describes the processor
configuration that you get when you initialize the AOS/VS system. It also describes how
to initialize and release processors from the system, and how to reconfigure the processor
configura tion.

Processor Configuration after AOS/VS System
Initialization

When you initialize the AOS/VS system, you initialize a single default processor, called
the mother processor. If your computer has other processors, you can then initialize these
processors, called child processors.

The AOS/VS system processes run on only the mother processor. All other processes can
run on both the mother and child processors.

At system initialization, AOS/VS attaches the mother processor, which is a job (physical)
processor, to a single default logical processor. A logical processor is a scheduling ar­
rangement: it specifies the way in which the job processors attached to it are to schedule
processes. The default logical processor specifies standard scheduling: when an attached
job processor becomes free, that processor runs the highest priority, ready process.

After system initialization, you can initialize any child processor on the system and attach
it to the default logical processor (for more information, see the "Initializing a Job Processor"
section in this chapter).

If you enable class scheduling, which we describe how to do in the next chapter, you can
create other logical processors. You can use these logical processors to schedule processes
differently from the default logical processor.

To identify the physical processors on the system, the hardware returns an ID number,
called a JPID, to AOS/VS at system initialization. The mother processor will usually have
a JPID of 0; a child processor will, in turn, have a JPID of 1 through 15.

Similarly, AOS/VS identifies each logical processor on the system by giving it an ID
number, called an LPID. The default logical processor always has an LPID of o. (See
Figure 10--1.)

10-2 Licensed Material - Property of Data General Corporation 093-000335

10-03314

LPID 0

Default Logical Processor

JPID 0

Mother Processor
(Initialized)

JPID 1

Child Processor

(Not Initialized)

Figure 10-1 Processor Configuration after AOS/VS System Initialization

Entering System Manager Mode

To issue the system calls that initialize and release job processors, the calling process must
be in System Manager mode. To put a process into System Manager mode, you must
have the System Manager privilege in your user prof He. If you pass this privilege on to
your son processes, the son processes can turn System Manager mode on by issuing the
?SYSPR V system call. Once in System Manager model' a process can initialize or release
job processors from the system.

Initializing a Job Processor

To initialize a job processor, issue the ? JPINIT system call. The ? JPINIT system call
attaches the job processor to a logical processor that you specify and, optionally, loads a
microcode file into the job processor. If the job processor has a some characteristic that
makes it different from other processors - for example, it has a floating-point processor
and the others do not - you will need to load a specific microcode file into it. After you
attach the job processor to the logical processor, the logical processor begins scheduling
processes to run on it.

To specify the job processor that you want to initialize, and the logical processor to which
you want to attach it, you include each processor's ID (JPID and LPID) in the system
call packet.

093-000335 Licensed Material - Property of Data GenEtral Corporation 10-3

Specifying a Microcode File

The ? JPINIT system call allows you to either use the microcode that is currently in the
job processor (loaded at system generation or by an earlier ? JPINIT system call), or to
load a microcode file that you specify into the job processor. If you choose to load another
microcode file into the job processor, that file can be

• A microcode file that you specify.

• A standard microcode file - the system determines which microcode file to load based
on the model number of the job processor.

Attaching a Job Processor to Another Logical Processor
If you have enabled class scheduling and created another logical processor, you can attach
a job processor to that logical processor by

• Attaching an inactive job processor to the logical processor when you initialize it
(described above).

• Moving an active job processor from one logical processor to another.

To move a job processor from one logical processor to another, issue the ?JPMOV system
call. After you move a job processor, it begins to schedule processes according to the new
logical processor's scheduling arrangement.

To specify the job processor that you want to move, and the logical processor to which
you want to attach it, you must include each processor's ID (JPID and LPID) in the
system call packet.

The ? JPMOV system call also allows you to set a bit that prevents you from moving a
job processor when it is the only job processor attached to the logical processor. If you
set this bit, the system will return an error when you try to move the only job processor
attached to the logical processor. If you do not set this bit, the system will move the job
processor, creating an unattached, or orphaned logical processor. If class scheduling is
enabled, those processes that receive processor time solely through this logical processor
will then be unable to run.

Releasing a Job Processor from the AOS/VS System
To release a job processor from the AOS/VS system, and disable it from further processing,
issue the ? JPREL system call. The system will remove the job processor from its logical
processor, making the job processor inactive.

When you issue the ? JPREL system call, the system returns an error under the following
conditions:

• The job processor that you specify (through its JPID) is not active (uninitialized).

• The job processor that you specify is running a vital system task, such as performing
disk I/O, servicing the file system, and so on.

Like the ?JPMOV system call, the ?JPREL system call allows you to set a bit that prevents
you from releasing a job processor when it is the only job processor attached to the logical
processor. If you set this bit, the system will return an error should you try to release the
only job processor attached to the logical processor. Again, if you do not set this bit, the

10-4 Licensed Material - Property of Data General Corporation 093-000335

system will release the job processor, creating an unattac:hed, or orphaned logical processor.
If class scheduling is enabled, any processes that receive processor time through this logical
processor exclusively will then be unable to run.

End of Chapter

093-000335 Licensed Material - Property of Data General Corporation 10-5

Chapter -11
Creating and Managing a Class

Scheduling Environment

You can use the following system calls to create: and manage a class scheduling
environment

?CLASS
?CLSTAT
?CMATRIX
?CLSCHED
?LPCLASS

?LPCREA
?LPDELE
?LPSTAT
?SYSPRV

093-000335

Get or set class IDs and names.
Return status of class scheduling.
Get or set class scheduling mat.rix.
Enable or disable class scheduling.
Get or set class assignments and the process interval for a logical
processor.
Create a logical processor.
Delete a logical processor.
Get status information on a logical processor.
Enter, leave, or get the status of System Manager mode, Super­
process mode, or Superuser mode.

Licensed Material - Property of Data Gelneral Corporation 11-1

This chapter describes how to create and manage a class scheduling environment. It
describes what a class is and why you might want to use class scheduling on your system.
It then describes how to create and manage a class scheduling environment.

What Is a Classl
A class is a set of processes for which you want special scheduling treatment. Usually,
this treatment involves allocating a percentage of processor time to these processes.

When you create a process, AOS/VS assigns that process to a class. The class to which
AOS/VS assigns a process depends on the process's user locality and program locality.
A process receives its user locality from your user profile, which specifies both a default
user locality, and any other user localities to which you can assign a process. A process
receives its program locality, which you specify using the selective preamble editor (SPRED),
from the header of its program file.

A process's user and program localities are its locality pair. You can use the system calls
that we describe later in this chapter to specify which locality pairs run under each class.

User and Program Localities

You can define classes using up to 16 user and program localities, which range from 0
through 15.

Let's say you want a class for privileged users and that you want all processes of user
locality 1 to run in this class. You could create this class so that the locality table, or
class matrix, looks as shown in Figure 11-1.

0

1

U 2
s 3
e 4
r

5

6

L 7

0 8
c 9
a

10

11

t 12

y 13

14

15

10-03317

11-2

0

Program Locality

2 3 4 5 6 7 B 9 10 11 12 13 14 15

Figure 11-1. A Class for Privileged Users

Licensed Material - Property of Data General Corporation

Privileged. users

(Class 10 = 1)

093-000335

After creating the Privileged. users class, you could then allocate a specific amount of
processor time to that class, say 40 percent.

A user process can then join this class by assuming a user locality of 1. (The program
locality doesn't matter, since the class is defined in all 16 program localities. The determining
factor is the user, not the program.) To start a user"s process in the privileged class, the
system manager can run PREDITOR on the user's profile and specify a default user
locality of 1. Or, the system manager can have the user start in another class and allow
that user to join the privileged class by changing their locality to 1.

Why Use Class Scheduling'l
Class scheduling gives you more control over processor usage than you ordinarily have
under standard scheduling. Using class scheduling, you can tailor process scheduling to
better fit your system's processing needs.

What Is Standard Scheduling~

If class scheduling is not enabled - by default, it is not - the system uses standard
scheduling. Under standard scheduling, when a proc(~ssor becomes free, the system runs
the highest priority, ready process. This process can then use the processor for a subslice
period (32 milliseconds, usually). The system will wait until the end of the subslice period
to reschedule, unless

• The process encounters a blocking event.

• Another higher priority process becomes ready.

Again, the system will run the highest priority, ready process. This process may be the
same process that just ran or another process.

Under standard scheduling, processes receive one of two types of scheduling: round-robin
or heuristic scheduling.

Under round-robin scheduling, the system tries to give each process of the same priority
an equal amount of time. A process that uses a lot of processor time isn't penalized.

Under heuristic scheduling, the system may reduce a process's internal priority, based on
its behavior. The system penalizes a process that uses a lot of processor time - relative
to other, more interactive processes of the same priority.

The kind of scheduling that a process receives depends on its group. The priority of the
process (range 0 to 511) determines which group it's in (for more information on priority
groups, see Chapter 3). The system schedules the process groups as follows:

• Group 2 processes receive heuristic scheduling (penalized for heavy processor demand).
Within any group 2 priority level, the system favors interactive processes. Noninteractive
(compute-bound) processes get reduced internal priority. Heuristic favoring often gives
interactive processes better response time than they'd get under round-robin scheduling.
By default, all user processes (and their sons) are group 2 processes.

• Group 1 and group 3 processes receive round-robin scheduling. Compute-bound processes
in these groups aren't penalized; however, the response time of interactive processes with
the same priority may be slower. A process's interna.l priority doesn't change, regardless
of the amount of processor time it has consumed.

093-000335 Licensed Material - Property of Data General Corporation 11-3

Why Use Standard Schedulingl
Standard scheduling is meant for general-purpose systems. Since, by default, processes start
in group 2, standard scheduling favors highly interactive timesharing processes over compute­
bound processes. But this interactive bias can be overcome, if you want to give user
processes a priority that makes them group 1 or group 3 processes. Standard scheduling
also allows high priority processes (like the PMGR) to get all the time they need without
penalty.

Compute-bound processes of the same priority also tend to get equal amounts of processor
time, regardless of group. This works well in situations where you want to treat compute­
bound processes equally.

Why Use Class Schedulingl
Standard scheduling, based on priority only, has two limitations.

The first limitation of standard scheduling is that you can't give one compute-bound process
preference over another without starving the lower priority process.

If you want to give one compute-bound process preference over others, and you give it
higher priority, the process can consume all available processor time. AOS/VS gives control
to the highest priority, ready process, so when the process is ready, AOS/VS will give it
control. If the process is always ready (as it will be if it is always computing and doing
little I/O), then it will get all available processor time. AOS/VS will give it subslice after
subslice, while lower priority processes get no time.

For example, say two compute-bound processes are running at priority 5. Each process
will get approximately 50 percent of the available processor time. If you change the priority
of one process to 4 (a higher priority), it will get about 100 percent of available time
while the other gets no time. Standard scheduling provides no middle ground between even
distribution (here, 50/50) and monopoly (here, 100/0).

The second limitation of standard scheduling appears when you give compute-bound processes
a lower priority than interactive ones (you might do this to give users faster response
time). With lower priority, the compute-bound processes would get no time - there's no
way to give them even a tiny percentage of time. Thus compute-bound jobs might take
hours or even days to complete.

For example, say a system has 60 timesharing users (which represent interactive processes)
and two batch streams (which represent compute-bound processes). By default, the batch
streams get a lower priority than the user processes. This increases the turnaround time
of each batch job and increases the number of jobs stacked on the queue. Batch processing
can occur at night - but for those jobs that require daily turnaround, this isn't acceptable.
Standard scheduling offers no good solution to this problem.

With classes, you can specify the percentage of time for processes in a class. AOS/VS
will then try to give that class the specified amount of processor time. This overcomes
both limitations above.

As an additional benefit, you can force processes to run in a specific class, whether they
are compute bound (batch) or interactive (user). Class scheduling extends your control
over standard scheduling.

Entering System Manager Mode
To issue the system calls that enable and manage class scheduling, the calling process
must be in System Manager mode. To put a process into System Manager mode, you

11-4 Licensed Material - Property of Data General Corporation 093-000335

must first have the System Manager privilege in your user profile. You can then turn on
System Manager mode by issuing the ?SYSPRV systt:m call. Once in System Manager
mode, you can issue any of the class-scheduling system calls.

Enabling Class Scheduling
To enable class scheduling, you issue the ?CLSCHED system call. If you have not yet
specified the classes that you want on the system, or the way in which you want to schedule
them (we describe how to do this later in the chapter) the ?CLSCHED system call will
enable the system's default class-scheduling arrangement.

Under the default class-scheduling arrangement, all processes are in the same class, to
which the system gives 100 percent of the available processor time. When a processor
becomes ready, the system gives control of that processor to the highest priority, ready
process. The default class-scheduling arrangement is effectively the same as standard
scheduling. However, class scheduling - even under the default scheduling arrangement
- requires some additional system overhead.

Disabling Class Scheduling
You can disable class scheduling at any time by issuing a second, complementary ?CLSCHED
system call. When you disable class scheduling, the system continues to maintain the classes
and scheduling arrangements that you previously specified. You can modify these class
scheduling specifications - even though class scheduling is not enabled - by issuing other
class scheduling system calls. When you issue another ?CLSCHED system call, the system
will enable class scheduling with any modifications that you have made.

Getting the Status of Class Scheduling
You can also use the ?CLSCHED system call to find out if class scheduling is or is not
enabled. To do this, you must set the Get word in the ?CLSCHED system call packet.

Class Scheduling Arrangements -- Logical Processors
The AOS/VS system allows you to create logical processors, which are class-scheduling
arrangements. A logical processor, which allocates pro(:essor time between several classes
(usually), is only active when it is attached to a job processor (physical processor).

At system startup, AOS/VS attaches a default logical processor (LPID 0) to the mother
processor (JPID 0, usually). If your computer has multiple processors, you can also attach
these processors to the default logical processor. When anyone of these attached processes
becomes free, it runs the highest priority, ready process. (We describe how to attach job
processors to logical processors in Chapter 10.)

In addition to the default class, the AOS/VS system allows you to create up to 16 classes,
and to create up to 16 logical processors to schedule these classes. You then can move a
job processor from one logical processor to another. This allows you to activate different
scheduling arrangements (logical processors) for differe:nt environments - perhaps based
on time of day.

For example, Figure 11-2 shows one application of class scheduling using two logical
processors and only one job processor.

Figure 11-2 shows a logical processor that favors the default and privileged classes
(interactive users) during the working day, and another logical processor that favors batch
jobs at night.

093-000335 Licensed Material - Property of Data GenEtral Corporation 11-5

Daytime Routine 8:00 a.m. to 5:00 p.m.

LPID 0 LPID 1

Default.class 40% Default.class 10%
Privileged. users 40% Privileged. users 30%
Batch.jobs 20% Batch.jobs 60%

JPID 0

Daytime Routine 8:00 a.m. to 5:00 p.m.

LPID 0 LPID 1

Default.class 40% Default.class 10%

Privileged. users 40% Privileged. users 30%

Batch. jobs 20% Batch.jobs 60%

JPID 0

10-03315

Figure 11-2. Using Different Logical Processors with One Job Processor

11-6 Licensed Material - Property of Data General Corporation 093-000335

With two job processors, there's even more flexibility. Figure 11-3 shows an application
similar to that in Figure 11-2, but with two job processors.

Figure 11-3 shows two job processors connected to logical processor LPID 0 during the
day - providing maximum processing power for LPID O. At night, one of the job processors
is moved to another logical processor - giving the processes in classes on both logical
processors computing time.

Creating and Changing Process Classes
To create process classes - the first step in creating class scheduling arrangements - or
to change one or more existing classes, issue the ?CLASS system call.

The ?CLASS system call creates classes by allowing you to specify which of the class ID
values, which range from 0 to 15, are valid.

If you set the Get word in the ?CLASS system call packet, the system will return a list
of valid class IDs.

Assigning Classes to User and Program Lo.calities
After you have specified which of the 16 classes are vallid, you can use the ?CMATRIX
system call to assign those classes to user and program localities in the class locality
matrix. The class locality matrix, of which there is an example in Figure 11-1, is a 16
by 16 table with 256 cells, in which user and program locality values range from 0 to 15.

You can also use the ?CMA TRIX system call to read the current class assignments in
the table.

Modifying the Class Locality Matrix
If you change the class locality matrix, the changes that you make will not effect· the class
membership of any existing process. However, any new process will get its class membership
from the newly modified class-scheduling matrix.

If, after having changed the class scheduling matrix, it becomes necessary to change the
class membership of an existing process, you can change the process's user locality to that
of a different class by issuing the ?LOCAITY system call.

Adding and Deleting Classes
You can add and delete valid class IDs by issuing the ?CLASS system call. However, the
system will not delete a class, but return an error, under the following conditions:

• The class appears in the class-scheduling matrix.

• The class is class 0, the default class.

Creating and Managing Logi4:al Processors
To create a logical processor, you issue the ?LPCREA system call. The system will then
create the logical processor and return its LPID to you .. You can then specify the class
assignments for that logical processor and, if you want to activate the logical processor,
connect a job processor to it.

093-000335 Licensed Material - Property of Data General Corporation 11-7

Daytime Routine 8:00 8.m. to 5:00 p.m.

LPID 0 LPID 1

Default. class 40% Default.class 10%
Privileged. users 40% Privileged. users 30%
Batch. jobs 20% Batch.jobs 60%

JPID 0 JPID 1

Nighttime Routine 5:00 p.m. to 8:00 a.m.

LPID 0 LPID 1

Default.class 40% Default.class 10%
Privileged. users 40% Privileged. users 30%

Batch.jobs 20% Batch.jobs 60%

JPID 0 JPID 1

10·03318

Figure 11-3. Using Different Logical Processors with Two Job Processors

11-8 Licensed Material - Property of Data General Corporation 093·000335

Specifying Class Assignments for the Logical Processor
To specify the class assignments for a logical processor, which determine the process classes
in the scheduling arrangement and how much time each class gets, issue the ?LPCLASS
system call.

The ?LPCLASS system call allows you to include up to 16 classes in the logical processor's
scheduling arrangement. You can schedule these classes as

• Primary Classes, for which you specify a percentag(~ of processor time. If the primary
class has processes ready to run, it can use up to th(~ percentage of processor time that
you specify.

• Secondary Classes, which use any remaining time not used by the primary classes.
Secondary classes compete for processor time by levC!l - the first secondary class that
you specify in the ?LPCLASS call has a higher priority than the next secondary class,
the second a higher priority than the third, and so on.

A process's class type - primary or secondary - can affect the amount of processor time
that the process gets. For example, when a processor becomes free, the highest priority,
ready process gets control, unless

• The process belongs to a primary class that has consumed its percentage and another
primary-class process is ready.

• The process belongs to a secondary class and a higher-level secondary class or a primary
class is ready.

In either of the previous cases, the process can't get time regardless of its priority.

For a primary class example, take the class Privileged.users, shown in earlier figures. The
processes in this class are user processes, so assume they're scheduled heuristically. Normally,
heuristic scheduling penalizes processes that use a lot of processor time. But these user
processes belong to a primary class allotted 40 percent of processor time. So, these users
will be allowed to use up to 40 percent if they can possibly use it. They will get faster
response time at the expense of other processes (but if these privileged processes can't use
the time, it will be given to other primary- or seconda.ry-class processes).

Or, say there are two compute-bound processes to run. You want one process to get twice
as much time as the other. Without classes (the limitation described above), you couldn't
do this. With classes, you need only set up a primary class for each process (perhaps
defined by program locality); then allot the preferred class twice the percentage of processor
time as the other. For example - depending on the importance of these processes - you
could give the preferred process class 75 percent, and the other process class 25 percent.

Specifying the User Process Interval
The system enforces class percentages over a constant interval, measured in tenths of
seconds, which you specify in the ?LPCLASS system call. At the end of each interval,
AOS/VS reinitializes the percentages, regardless of how much time each class has used.

The default interval is 4 seconds. In the 75/25 arrang(~ment that we described previously,
for 4 seconds AOS /VS would enforce a 75 percent limit on one class and a 25 percent
limit on the other class. If one class reaches its limit, its processes become ineligible until
the next interval.

The default interval of 4 seconds is a good general-purpose value. But if you have a class
with interactive processes (like users in text editors) that tends to exhaust its percentage,

093-000335 Licensed Material - Property of Data General Corporation 11-9

all the class's processes may appear blocked for a second or so during each interval. You
can eliminate such delays in service by specifying a shorter interval, such as 1 or 2 seconds.

The system also reinitializes the class percentages (freeing classes that consumed their
percentages) when the connected job processor(s) become idle. This allows primary-class
processes that have exhausted their class percentage to run if no other primary-class process
wants time.

Specifying Primary Class Percentages
When the sum of the class percentages that you have specified equals 100 percent, the
system allows each class to use up to its percentage. Generally, we suggest that you
maintain a sum of 100 percent - not less, not more - for primary classes on any logical
processor. A sum of less than 100 percent may result in needless scheduling overhead; a
sum of more than 100 percent may result in some classes using all of the processor time,
starving others.

One exception to the sum 100 percent rule involves high priority server processes, such as
EXEC, CEO®, XODIACTM, INFOS® II, and so on. If you create a class that includes
these server processes, the total percentage for that logical procesor can exceed 100 percent.

For example, you could give the server class 100 percent, and other class a total of 80
percent. This allows the server processes to get as much time as they need. While servers
typically don't use a lot of processor time, and will not ordinarily use much of the 100
percent, if they need the time, they can get it. However, you'd still need to give the server
processes high priority, since you want them to get processor time first from among the
classes that have time remaining.

Within primary classes whose percentage limit hasn't been reached, AOS/VS uses standard
scheduling, as described above. AOS/VS also uses standard scheduling in logical processors
for which class scheduling hasn't been enabled.

Generally, classes and logical processors are most useful when you want to deal with one
or more exceptional processes. You can leave unexceptional processes alone, as part of the
default class (Default.class) supplied with AOS/VS.

Getting Class Scheduling Information
You can use the ?LPCLASS system call to find out which classes are running on a logical
processor. If you set the Get word in the system call packet, the ?LPCLASS system call
will return information on the classes in that logical processor's scheduling arrangement.

Deleting a Logical Processor
If you want to delete a logical processor - remove it from the AOS /VS system - issue
the ?LPDELE system call.

The system does not allow you to delete a logical processor that has a job processor
connected to it. To delete a connected logical processor, you must release the job processor(s)
from the logical processor before you can issue the ?LPDELE system call. We describe
how to attach and release job processors in Chapter 10.

Getting Logical Processor Status
The ?LPST AT system call allows you to get general information about the logical processors
on the system, or information on a particular logical processor. Specifically, the ?LPSTAT
system call returns

11-10 Licensed Material - Property of Data General Corporation 093-000335

• The number of logical processors that are currently on the system and their LPIDs.

• The number of job processors attached to a specific logical processor that you specify
and the JPIDs of the job processors.

End of Chapter

093-000335 Licensed Material - Property of Data Garleral Corporation 11-11

Chapter ·12
Using and Managing A OS jVS System

Resources

The system calls that you can use to manage AOS/VS system resources are

?BNAME Get host location of a process or queue.
?CDA Y Convert a scalar date value.
?CTOD Convert a scalar time valllle.
?ENQUE Queue a file entry.
?ERMSG Read the error message rille.
?EXEC Request a service from EXEC.
?FDA Y Convert the date to a scalar value.
?FEDFUNC Interface to AOS/VS Fih~ Editor (FED) utility.
?FTOD Convert the time of day t.o a scalar value.
?GDAY Get the current date.
?GHRZ Get the frequency of the system clock.
?GSID Get the system identifier.
?GTNAM Return symbol closest in value to specified input value.
?GTOD Get the time of day.
?GTSVL Get the value of a user symbol.
?ITIME Return the AOS/VS-format internal time.
?LOGCALLS Log system calls.
?LOGEV Enter an event in the system log file.
?PROFILE Create, delete, rename, read, or modify a system profile.
?SDAY Set the system calendar.
?SINFO Get selected information about the current operating system.
?STOD Set the system clock.

093-000335 Licensed Material - Property of Data General Corporation 12-1

This chapter describes how to use and manage various resources of the AOS/VS system.
For example, this chapter describes how to set the system's calendar and clock, and how
to get the time and date from the clock. It describes how to request service from the
system's EXEC utility, how to manage the system's user profiles, how to use and update
the system's error message file, how to update the system's log file, and so on.

Using the System's Clock and Calendar
AOS/VS maintains a 24-hour clock and a calendar. During the system-generation procedure,
you can set the clock to anyone of several real-time frequencies.

Depending on your application, you may need to know the real-time frequency of the
system clock while your program is executing. The ?GHRZ system call returns this
information to ACO as a code in the range from 0 through 4. Each digit of the code
corresponds to a specific frequency.

The system clock expresses the current time in seconds, minutes, and hours; the values for
seconds and minutes range from 0 through 59, and the value for the hour ranges from 0
(midnight) through 23 (11 p.m.). You can issue the ?ITIME system call to get an
AOS/VS-format time-stamp.

The system calendar expresses the current date as day, month, and year. To determine
the year, the system calendar subtracts the base year 1900 from the current year and
converts the result to octal. The notation for 1980, for example, is 120 octal.

The system calls ?STOD and ?SDAY set the system clock and calendar, respectively. The
?GTOD and ?GDAY system calls return the current time and date, respectively.

In some cases, such as in the ?FSTAT packet, AOS/VS returns the time and/or date as
a scalar value. In scalar notation, the current time equals the number of biseconds that
have elapsed since midnight. The date equals the number of days that have elapsed since
31 December 1967. The ?CTOD system call converts a scalar time to seconds, minutes,
and hours. The ?CDA Y system call converts a scalar date to month, day, and year. To
convert time and date back to scalar values, issue the ?FTOD and ?FDA Y system calls,
respectively.

Using the EXEC Utility
In general, the EXEC utility manages queues and magnetic tape units. Because the EXEC
utility can perform many functions for you, you must issue the ?EXEC system call to tell
it what to do. Specifically, the ?EXEC system call directs the EXEC utility to perform
one of the following functions on behalf of a calling process:

• Assign or deassign a logical name to a tape unit or an uninitialized disk that you want
to treat as a whole unit (i.e., a non-LD disk) and issue an operator mount or dismount
message.

• Mount labeled or unlabeled magnetic tapes.

• Dismount labeled or unlabeled magnetic tapes.

• Place a request into a queue.

• Hold, unhold, or cancel a queue request.

• Provide an report on the status of the EXEC utility.

12-2 Licensed Material - Property of Data General Corporation 093-000335

The ?EXEC system call requires a packet: To direct lthe EXEC utility to perform one of
these functions, you must specify in offset ?XRFNC (the first offset) what you want the
EXEC utility to do. Although each function requires a unique packet, the ?XRFNC offset
is common to all packets.

If your system is not running the EXEC utility, you can still queue files for spooled output
by issuing the ?ENQUE system call.

Using the File Editor (I:ED) Utility
Using the ?FEDFUNC system call, you can direct the File Editor (FED) utility to perform
one of the following functions for the calling process:

• Change the radix.

• Open a symbol table file.

• Evaluate a FED string.

The ?FEDFUNC system call requires a unique packet for each function. You must define
the function you want the FED utility to perform for you in the first offset, ?FRFNC,
which is common to all of the call's packets.

Accessing Symbol Tables
The ?GTNAM, system call lets you refer to the system-defined symbol table (.ST) file
without knowing its contents. This means that if you do not know the symbol for a particular
value, you can issue the ?GTNAM system call to search the .ST file for the symbol that
is closest in value to the value you supplied in ACO. The ?GTSVL system call is similar
to the ?GTNAM system call, but it allows you to refer to 'a particular program's user­
defined .ST file without knowing its contents, instead of the system-defined .ST file.

Managing User Pl'ofiles
The AOS/VS system allows you to create, delete, modify, and examine user profiles by
issuing the ?PROFILE system call. To issue the ?PROFILE system call, the calling process
must have the Superuser privilege and be in Superuse:r mode.

When you issue the ?PROFILE system call, you can perform one of the following functions:

Function

CREATE

DELETE

RENAME

INITIATE ACCESS

093-000335

Mnemonic

?PFCRE

?PFDEL

?PFREN

?PFIAC

Use
Create a profile and associate a username
with it.

Delete a profile and its associated user­
name.

Rename the profile by associating a new
username with the profile.

Initiat~~ access to an existing profile. This
function must precede the next two func­
tions: READ FIELD and UPDATE FIELD.

Licensed Material - Property of Data General Corporation 12-3

Function Mnemonic

READ FIELD ?PFRDF

UPDATE FIELD ?PFUFD

TERMINATE ACCESS ?PFTAC

Use

Return the contents of one or more fields
in a profile.

Change the contents of one or more fields
in a profile.

Terminate access to an existing profile. This
function closes the profile to further READ
FIELD and UPDATE FIELDfunctions un­
til you issue the next INITIATE ACCESS
function.

Reading and Updating the Error Message File (ERMES)

The system file ERMES contains all the error codes, their corresponding mnemonics, and
their text messages. There are 20000 (octal) groups of error codes for AOS/VS (including
user programs). Data General Corporation reserves code groups 0 through 77 (octal) and
200 through 7777 (octal) for the system. You can define the remaining groups, numbered
100 through 177 (octal) and 10000 through 17777 (octal).

The error codes are 32-bit unsigned values. Each error code contains two fields: a group
field, and an error code field. If an error occurs when a system call is executing,
AOS/VS returns the error code value to ACO. Each error is associated with a unique text
string.

The ?ERMSG system call returns the text string associated with a particular error code.
Before you issue the ?ERMSG system call, you must specify the error code in ACO.

To add error codes to the ERMES file, you must obtain its source version, allocate an
unused code group (or add to an existing code group), and insert your own series of codes
and descriptive messages. You can also create a new error message file that is structured
like ERMES, but has different contents.

Writing to the System Log File

AOS/VS maintains a special accounting file, :SYSLOG, with the special file type ?FLOG.
You can log messages into :SYSLOG. The ?LOGEV system call accesses this file. The
?LOGEV system call writes an event code and, optionally, a message to the log file. A
process must be in Superuser mode to issue the ?LOGEV system call.

For more information about the structure of the system log file, see Appendix A in this
book.

Getting System, Process, and Queue Locations

If your system is part of a network and you need to find out on which system you are
running, you can issue the ?GSID system call. To determine the location of a process or
queue - whether it is on the local host or a remote host - issue the ?BNAME system
call.

12-4 Licensed Material - Property of Data General Corporation 093-000335

Getting the System's Revision Number
Between each major release, AOS/VS may undergo several revisions. Therefore, it is
important to know your system's revision number and its memory configuration. The
?SINFO system call allows you to get this information.

End of Chapter

093-000335 Licensed Material - Property of Data General Corporation 12-5

Chapter 13
Supporting User Devices

You use the following system calls to support user devices:

?DDIS Disable access to all devices.
?DEBL Enable access to all devices.
?IDEF Define a user device.
?IMSG Receive an interrupt message.
?IRMV Remove a user device.
?IXIT Exit from an interrupt service routine.
?IXMT Send an interrupt message.
?LEFD Disable LEF mode.
?LEFE Enable LEF mode.
?LEFS Return the current LEF mode status.
?STMAP Set the data channel map.

093-000335 Licensed Material - Property of Data General Corporation 13-1

This chapter describes how to define user devices to the AOS/VS system, and how to
enable them.

Because AOS /VS supports a wide variety of user devices, such as magnetic tape drives,
disk drives, and line printers, you usually define these devices during the system-generation
procedure. However, a process that has the ?PVDV privilege can define and enable devices
at program execution time. For more information on defining devices at system generation,
see How to Generate and Run AOS/VS.

The devices that you define and enable during the system-generation procedure are system­
defined devices. The devices that a process with the ?PVDV privilege defines and enables
at execution time are user-defined devices.

This chapter describes the system calls that allow you to use both system- and user-defined
devices.

AOS/VS supports a maximum of 64 system-defined and/or user-defined devices per I/O
controller (lOC). You can use any device code in the range from 1 through 63, as long
as you do not use codes that are already in use. (AOS/VS reserves many device codes
for its own use.)

To introduce a user-defined device to AOS/VS at execution time, you must issue the
?IDEF system call. As input to the ?IDEF system call, you must supply:

• A device code for the new device.

• The address of the device control table (DCT) you defined for the new device.

The DCT specifies the address of the user-defined device's interrupt service routine. Each
device has an interrupt service routine that AOS/VS uses to handle the interrupts that
the device sends. See Figure 13-1.

The DCT is ?UDLN words long. Note that AOS/VS returns most of the DCT parameters
as output to the ?IDEF system call. However, you must perform the following steps:

1. Supply the address of the interrupt service routine (offset ?UDVIS).

2. Supply the address of the power-failure/auto-restart routine or, if you do not want to
use such a routine, -1 (offset ?UDDRS).

3. Provide the interrupt service mask (offset ?UDVMS).

To remove a user device, issue the ?IRMV system call.

13-2 Licensed Material - Property of Data General Corporation 093-000335

llDEF System Call Requirements
To issue the ?IDEF system call, a process must be resident. Additionally, all memory used
by the interrupt service routine and the power-failurejauto-restart routine must also be
resident in memory. Consequently, before a process can issue the ?IDEF system call, the
process must

1. Issue the ?CTYPE system call to ensure that it its a resident process.

2. Issue the ?WIRE system call to wire the following into memory:

• The interrupt service routine.

• The power-failurejauto-restart routine.

• All memory that the interrupt service and power-failurejauto-restart routines access.

• The user stack.

3. Issue the ?AWIRE system call to wire the AOSjVS Agent's code for the ?IXMT
system call into memory. (We describe the ?IX~vlT system call, which transmits an
interrupt message, later in this chapter.

o 15 16 31

7UDVMX Pointer to system database for task that issues ?IMSG

7UDVIS Address of interrupt service routine

?UDVBX Mailbox for message sent via ?IXMT and ?IMSG

Address of user-defined power-failure/auto-restart
routine or -1 ?UDDRS

1UDVMS Interrupt service mask I Reserved (Set to -1.) ?UDRS

?UDLN =DCT length

10-03287

Figure 13-1. Device Control Table (DCT)

093-000335 Licensed Material - Property of Data General Corporation 13-3

llDEF System Call Options
When you issue the ?IDEF system call, you can select any of the following options:

• Burst multiplexor (BMC) I/O.

• Data channel (DCH) map A.

• DCH map B through P.

• Neither BMC nor DCH I/O.

You can select either burst multiplexor (BMC) I/O or data channel (DCH) I/O for a
user-defined device. by selecting certain options when you issue the ?IDEF system call. (In
general, your choice depends on the device's design.)

If you want to use the BMC map or the DCH maps (B through P), you must use an
extended map table. However, you can define (issue the ?IDEF system call against) a
device that is on DCH map A without using an extended map table. To do this, you must
specify that you do not want to use the extended map table in the accumulators when
you issue the ?IDEF system call. This option, does not allow you to specify the first
acceptable map slot. Instead, you can only specify how many map slots your application
needs.

However, if you do not want to use either DCH or BMC I/O, you do not have to use
the extended map table; you must specify this option in the accumulators when you issue
the ?IDEF system call.

BMC I/O requires program control only at the beginning of each block transfer. Conse­
quently, BMC I/O is generally faster than DCH I/O. Typically, the BMC rate is about
half the memory rate, although the exact transfer rate varies from implementation to
implementation. (Not all user-defined devices have BMC hardware).

If you use the extended form of ?IDEF, you can select specific DCH or BMC map slots.
Each DCH map consists of 32 map slots, numbered 0 through 37 (octal). The BMC map
consists of 1024 map slots, numbered 0 through 1777 (octal).

Each map slot (DCH and BMC) addresses lK memory words. The hardware uses these
map slots to map data from the device to memory during data transfers.

To select a particular DCH map or the BMC option, you must perform the following
steps:

1. Set up a map definition table in your logical address space. (Figure 13-2 shows the
structure of a map definition table and its entries. See Table 13-1 for a detailed
description of the contents of each map definition table entry.

2. Issue the ?IDEF system call.

13-4 Licensed Material - Property of Data General Corporation 093-000335

Word - First Acceptable Map

Slot.

Offset Contents

?UDID The format is

[Map specifier] +

[First acceptable slot]

Word 1

Entry 1
Word 2

Word 1
Entry 2

Word 2

Word 1
Entry 3

Word 2

Word 1
Entry 4

Word 2

Word 1
Entry 5

Word 2

Word 1

Entry 6
Word 2

Word 1

Entry 7
Word 2

Word 1
Entry 8

(max.)· Word 2

If there are fewer than eight
two-word entries, the first
word following the last valid
entry must be -1.

10-03320

The following are
sample entries:

?UDDC +10
?UDDB +2

?UDBM +322

(See Table 13-1.)

Figure 13-2. Structure of Map Definition Table

093-000335 Licensed Material - Property of Data Genef'al Corporation

I

\

13-5

Table 13-1. Contents of Map Definition Table Entry

Offset

?UDID

Offset

?UDNS

Word 1 - First Acceptable Map Slot

Contents

The format is

[Map specifier] +
[First accepta­
ble slot]

The following are
sample entries:

?UDDC+IO
?UDDB+2
?UDBM+322

Comments

Map specifier must be one of the following:

?UDBM, which selects the BMC map.
?UDDA, which selects the DCH A map.
?UDDB, which selects the DCH B map.
?UDDC, which selects the DCH C map.
?UDDD, which selects the DCH D map.

?UDDP, which selects the DCH P map.

First acceptable slot must be

• From 0 through 1777 (octal) if your
map specifier is ?UDBM.

• From 0 through 37 (octal) if your map
specifier is ?UDDA, ?UDDB, ?UDDC,
and so on through ?UDDP.

AOSjVS allocates the first contiguous
group of slots on the map, starting with
the first acceptable slot on the map that
you selected. Then, AOS jVS returns to
you the first slot that it allocated in ?UDID.

Word 2 - Number of Map Slots Requested

Contents

Number of map
slots requested in
range from 1
through 40 (octal)

Comments

The sum of the first acceptable slot plus
the number of slots cannot be larger than
the size of the map that you requested;
that is, 40 (octal) for DCH or 2000 (octal)
for BMC.

NOTE: If AOSjVS cannot allocate all entries, then it does not allocate any
entries.

When you issue the ?IDEF system call, AOS/VS allocates - but does not initialize -
map slots. To initialize these map slots, you must issue the ?STMAP system call.

If you issued the ?IDEF system call with the DCH Map-A-Only option, then you can
issue only one ?STMAP system call to initialize the map slots allocated on DCH map A.
However, if you issued the ?IDEF system call with the Extended-Map-Table option, you
can issue more than one ?STMAP system call. Each ?STMAP system call, in turn,
initializes a different group of map slots. (The map definition table entries define each
group of map slots.)

When you issue the ?STMAP system call, you can initialize part of a group of map slots
that is defined in a map definition table entry. For example, if entry 2 has allocated 10
map slots on the BMC, a ?STMAP system call only initializes 5 of the 10 map slots.

(For a detailed description of BMC I/0, DCH I/O, and the DCH maps, see the Principles
of Operation 32-Bit ECLIPSE® Systems manual.)

13-6 Licensed Material - Property of Data General Corporation 093-000335

User Interrupt Service
To define a user device to AOS/VS, you must issue the ?IDEF system call. Each device,
such as a disk, is programmed to do a particular job. When a device starts doing its job,
the processor and AOS/VS ignore that device. As soon as the device completes its job, it
signals the processor that it is done. This signal is called an interrupt.

When the processor detects an interrupt, it stops doing whatever it is doing, so that it can
service the interrupt. Servicing an interrupt means that AOS/VS passes control to the
appropriate interrupt service routine. To do this, AOS/VS must pass a vector through the
interrupt vector table, which is a hardware-defined index.

The interrupt vector table contains an entry for each device. Each entry points to a DCT,
which contains the address of the interrupt service routine that will service a particular
interrupt.

The ?IDEF system call directs AOS/VS to build a DCT and enter it in the interrupt
vector table. Conversely, the ?IRMV system call clears the device's DCT entry from the
interrupt vector table.

The device's DCT also contains the current interrupt service mask. The current interrupt
service mask is a value that specifies the devices that can interrupt the user-defined device.

Before AOS/VS transfers control to an interrupt service routine, it performs the following
steps:

1. Loads AC2 with the address of the interrupting device's DCT.

2. Loads ACO with the current interrupt service mask.

3. Takes the current interrupt service mask and inclusively ORs it with the interrupt
service mask in the DCT.

4. Saves the current load effective address (LEF) state. LEF mode is processor state that
allows AOS/VS to correctly interpret LEF instructions. (See the "LEF Mode" section
in this chapter for more information.)

5. Turns LEF mode off.

The inclusive-OR operation establishes which devices, if any, can interrupt the interrupt
service routine that is currently executing. AOS/VS restores LEF mode when you issue
an ?IXIT system call to dismiss your interrupt.

A process in an interrupt service routine can issue only three system calls:

• ?IXMT, which sends a message to a task outside the interrupt service routine.

• ?SIGNL, which signals a task within your own or another process.

• ?IXIT, which exits from an interrupt service routine.

AOS /VS does not save the state of the MV /Family floating-point registers when a process
enters an interrupt service routine. If necessary (for c;:xample, if you want to use floating­
point instructions), you can save the state of the floating-point registers when the interrupt
service routine receives control and restore that state before you issue the ?IXIT system
call.

093-000335 Licensed Material - Property of Data General Corporation 13-7

User Stacks
Each user task has its own user stack. A user stack is a data structure to which the
contents of certain Page 0 hardware locations point. The contents of these hardware
locations are called stack pointers. Whenever a task runs, AOS/VS must first load that
task's stack pointers into hardware locations octal 20 through 26. This allows the task to
use its stack.

When a user-defined device interrupt handler receives control at interrupt level, the stack
that AOS/VS loads into the Ring 7 hardware registers is the stack of the last user task
that was running. AOS/VS does not set up a stack for your interrupt service routine.
Consequently, you must define a stack for the interrupt service routine. Both ?IXMT
system call, which sends an interrupt message, and the ?IXIT system call, which exits
from the interrupt service routine, require a stack.

Communicating from an Interrupt Service Routine
Multitasking halts when a device interrupt occurs. However, an interrupt service routine
can communicate with an outside task by issuing the ?IXMT system call. The ?IXMT
system call transmits a message of up to 32 bits from the interrupt routine to a specific
receiving task outside the sending routine. There is a location in the system OCT that
serves as a mailbox for the message. The external task receives the message by issuing a
?IMSG system call against the OCT associated with the interrupt routine.

You can issue ?IXMT and ?IMSG system calls in any order. If the ?IMSG system call
occurs before the ?IXMT system call, AOS/VS suspends the receiving task until the
?IXMT system call occurs. If the ?IXMT system call occurs first, AOS/VS posts the
message in the mailbox until the receiving task issues the ?IMSG system call.

You cannot use the ?IXMT system call to broadcast a message.

Defining and Using Devices on More than One
1/0 Channel

Some MV /Family computers support more than one I/O channel. When you run
AOS/VS on these computers, you can define user devices that use I/O channels other
than the default I/O channel (channel 0). To define a user device that uses an alternate
I/O channel, you must use a three-digit device code to reference that device in the ?IOEF
system call. In the three-digit code, the first digit gives the channel number; the last two
digits give the code for the user device. For example, a device code of 124 references a
user device that uses channell and has a device code of 24.

To perform I/O to a device that runs on an alternate channel, you must use the PIO
instruction. Unlike the NOVA I/O instructions, in which you can use only two digit device
codes, the PIO instruction allows you to use three-digit device codes. For reasons that we
described above, you must use a three-digit device code to reference devices on an alternate
channel. For more information on the PIO instruction, see the Principles of Operation
manual for your computer.

13-8 Licensed Material - Property of Data General Corporation 093-000335

Enabling and Disabling Access to All Devices
Processes can issue I/O instructions from their tasks to all system and user devices. When
a process issues a ?DEBL system call, AOS/VS enables device I/O and disables LEF
mode, which allows tasks within the calling process to issue I/O instructions. Note that
the I/O enable and LEF mode states are process wide, and therefore, affect all tasks.

The ?DEBL and ?DDIS system calls work in parallel with the LEF mode system calls
?LEFE, ?LEFD, and ?LEFS. Table 13-2 summarizes the functions of the LEF mode and
device access calls. (See the LEF Mode section in this chapter for more.)

Table 13-2. LEF Mode and Device Access System Call
Functions Summalry

System Call Fundion

?DEBL Enables I/O; disables LEF mode.

?DDIS Disables I/O; but does not re-enable LEF mode.

?LEFE Enables LEF mode; disables I/O.

?LEFD Disables LEF mode; but does not enable I/O.

?LEFS Returns the current LEF mode status.

No device I/O can occur while the processor is in LEF mode, because LEF instructions
and I/O instructions use the same bit patterns. Similarly, when LEF mode is disabled,
AOS/VS executes LEF instructions as if they were I/O instructions. The deciding factor
for executing LEF and I/O instructions is the state of the processor; that is, whether it
is in LEF mode or I/O mode.

NOTE: If a user task accesses a system device that AOS/VS is currently using, the
results could be catastrophic - you should take care to ensure that user tasks
never access system devices.

Re-enabling LEF Mode
The ?DDIS system call, which disables I/O mode, dOles not automatically re-enable LEF
mode. To disable I/O mode and re-enable LEF mode" you must issue the ?LEFE system
call. Also, the ?LEFD system call, which disables LEF mode, does not automatically re­
enable I/O mode. To perform these two functions, you must issue the ?DEBL system call.

093-000335 Licensed Material - Property of Data General Corporation 13-9

LEF Mode
LEF mode (load-effective-address mode) is the processor state that protects the I/O devices
from unauthorized access. I/O instructions and LEF instructions use the same bit patterns.
AOS/VS decides how to interpret these instructions by checking the LEF mode state and
the state of the complementary I/O mode.

LEF mode and I/O mode are mutually exclusive. When the processor is in LEF mode,
all I/O instructions execute as LEF instructions; therefore, I/O cannot take place in this
state. Conversely, the processor must be in LEF mode to execute LEF instructions properly.

AOS/VS provides the following system calls to check and alter LEF mode:

?LEFD Disables LEF mode.

?LEFE Enables LEF mode.

?LEFS Returns the current LEF mode status.

Each process begins with LEF mode enabled. AOS/VS disables LEF mode when a process
enters a user device routine, and restores LEF mode when the process exits from that
routine.

The Power-Failure/ Auto-Restart Routine
If you give the address of a power-failure/auto-restart routine in the ?IDEF system call
- provided you have the necessary battery backup hardware - AOS/VS will call that
routine after a power failure.

The DCT extension (offset ?UDDRS) points to a power-failure/auto-restart routine. When
a power failure occurs, AOS/VS transfers control to the auto-restart routine, with the
DCT address in AC2, and the current system mask in ACO.

AOS/VS checks to see if there are any user-defined devices that have associated power­
failure/restart routines if auto-restart is enabled. (For more information on enabling auto­
restart, see How to Generate and Run AOS/VS).

When running a power-failure/auto-restart routine, AOS/VS disables interrupts. The power­
failure/auto-restart routine should not enable interrupts. After a power failure, the states
of both the devices and the data channel map are undetermined - enabling interrupts
before the power-failure/auto-restart routine has finished could produce unexpected results.

End of Chapter

13-10 Licensed Material - Property of Data General Corporation 093-000335

Chapter 14
Supporting Binary Synchronous

Communications (BSC)

You use the following system calls to support binary synchronous communications
(BSC):

?SDBL
?SDPOL
?SDRT
?SEBL
?SERT
?SGES
?SRCV
?SSND

093-000335

Disable a BSC line.
Define a polling list or a poll address/select address pair.
Disable a relative terminal.
Enable a BSC line.
Re-enable a relative terminal.
Get BSC error statistics.
Receive data or a control sequence over a BSC line.
Send data or a control sequence over a BSC line.

Licensed Material - Property of Data G'Emeral Corporation 14-1

AOS/VS supports binary synchronous communications (BSC) over dedicated or switched
communications lines. This chapter describes the system calls that you use to support BSC
communications; it assumes that you are familiar with BSC protocol and the rules governing
BSC.

To understand this chapter, you should be familiar with the following terms:

• Station.

A station is the origin (sender) or destination (receiver) of data over a BSC line.

• Dedicated communications line.

A dedicated communications line continuously connects two or more stations, regardless
of the amount of time the line is actually in use. This type of line is dedicated to
serving specific local and remote stations.

• Switched communications line.

A switched communications line is one on which you use dialing procedures to establish
a connection between the local and remote stations.

BSC Concepts
Before you use any of the BSC system calls, make sure that your system manager or
operator has created a GSMGR (global synchronous manager) process. This process
acquaints AOS/VS with the synchronous communications hardware that you specified
during the system-generation dialog. If this process does not exist, any BSC system calls
you issue will cause an error return. For information on creating the GSMGR process,
see How to Generate and Run AOS/VS.

AOS/VS recognizes each BSC line by the device name, SLNx, where x represents the
line number. When you enable a BSe line (with the ?SEBL system call), you must supply
the SLN designator with the correct line number. However, it is not necessary to specify
whether the enabled line is dedicated or switched.

AOS/VS assigns a channel number to each enabled BSC line and returns this value in
the ?SEBL packet. Unlike disk files, you cannot open a BSC line on more than one
channel.

To send data over an enabled BSC line, a station issues the ?SSND system call. To receive
data, a station issues the ?SRCV system call. BSC protocol distinguishes between Send
Initial and Send Continue system calls, and between Receive Initial and Receive Continue
system calls. A system call is an Initial system call if it opens a communications session.

The ?SSND and ?SRCV system calls depend upon timing and upon the interaction of
the sending and receiving stations. When AOS/VS encounters timing errors or inappropriate
responses to the ?SSND and ?SRCV system calls, it begins error-recovery procedures. You
must view these error-recovery procedures in the context of the send and receive system
calls. (See the "BSC Error-Recovery Procedures" section in this chapter.)

To disable a BSC line, issue the ?SDBL system call.

14-2 Licensed Material - Property of Data General Corporation 093-000335

BSC Line Configurations
There are two types of BSC line configurations:

• Point-ta-point.

On a point-to-point line, each station bids for the line; that is, asks to use it. Only two
stations can be on a point-to-point line.

• Multipoint (also called Multidrop).

On a multipoint line, stations do not bid for the line. Instead, one station (called the
control station) has complete control over the activities of the other stations (called the
tributary stations) on the line. Therefore, no contention occurs between stations. Usually,
a multipoint line connects one local station with more than one remote station. However,
it can connect as few as two stations.

If both stations on a point-to-point line bid for the line at the same time, the line is under
contention. Contention occurs when one point-to-point station bids for a line and the other
station, in response, also bids for the line. When you ~mable a point-to-point line, you must
designate your computer as either the primary station or the secondary station. AOSjVS
favors the primary station over the secondary station in the following way when contention
occurs:

• If your station is the primary station, AOSjVS automatically follows your bid with
another bid sequence. The secondary station should acknowledge this additional bid
sequence.

• If your station is the secondary station, AOSjVS gives you an error return. To receive
the primary station's bid sequence, you must issue an ?SRCV Receive Initial system
call.

Unlike the secondary stations on a point-to-point line, the tributary stations on a mUltipoint
line are completely subservient to the control station. The following restrictions apply to
tributary stations:

• Tributary stations can only send data to and receive data from the control station.

• A particular tributary station can send or receivle data over the line only when the
control station specifically requests that it do so.

• Tributary stations cannot communicate directly with one another.

When you enable a BSC line with the ?SEBL system call, you must specify whether it
is a point-to-point line or a multipoint line. Also, you must use the ?SEBL system call to
specify whether your station is a primary station, a secondary station, a control station,
or a tributary station.

Figure 14-1 shows the difference between a point-to-point line configuration and a multipoint
line configuration.

093-000335 Licensed Material - Property of Data General Corporation 14-3

Point-to-Point Communications Line

_____ A ____ ~I~~--------------------~·~I ____ B ____ ~
Station A
(Primary)

Multipoint Communications Line

D

Control Station D

10-03288

Station B
(Secondary)

Tributary Stations E, F, and G

Figure 14-1. Point-to-Point/Muitipoint Line Configurations

Multipoint Line Selection and Polling
To manage the activity on a multipoint line, the control station performs two operations:

• Polls.
This means that the control station contacts its tributary stations to see if any of them
has data to send to it. There are two types of polls: general and specific.

In a general poll, the control station contacts each of its tributaries in round-robin
fashion, and accepts the first positive response.

In a specific poll, the control station contacts a single tributary to solicit data.

• Selects.
The control station selects by contacting a specific tributary to see if it is ready to
receive data from the control station.

Each tributary station on a multipoint line must have two unique identifiers for polling
and selecting to occur: a poll address and a select address. If your computer is a tributary
station, you must define its poll address and select address by issuing the ?SDPOL system
call.

If your computer is a control station, you must issue the ?SDPOL system call before
polling or selecting to define a polling list. A polling list is a series of contiguous words
that contains each tributary station's poll address and device address. The device address
points to the peripheral device from which the control station will request data when it
polls that tributary.

14-4 Licensed Material - Property of Data General Corporation 093-000335

To perform polling, a control station issues the ?SRCV system call to specify whether the
system call is a Receive Initial or a Receive Continue sys.tem call and whether the operation
is general polling or specific polling.

In its first general poll, the control station starts with the poll and device address entry
at the top of the polling list (the lowest relative terminal number), and sends this entry
down the BSC line. Each tributary station recognizes its own poll address; it responds to
the poll only if the entry matches its poll address. If the poll address sent by the control
station does not match a tributary station's poll address, the tributary station ignores it.

A general poll ends when a tributary station responds to its poll address by sending data
to the control station. If there is no response to a particular poll address entry, the control
station continues to poll until it reaches the end of the polling list. At that point,
AOS/VS takes the error return from the control station's ?SRCV system call, and passes
error code EREPL (end of polling list) to ACO.

As we mentioned, general polling is a round-robin operation. This means that when a
general poll ends in a positive response, the next general poll begins with the next relative
terminal on the polling list (that is, the tributary station immediately following the previous
respondent). Specific polling, that is, polling one and only one tributary station, is a way
to break out of the round-robin method of general pollilng.

Relative Terminals
AOS/VS assigns a relative terminal number to each tributary station, based on that station's
position on the polling list.

The first time you enable a multipoint line (with the ?SEBL system call) and define its
polling list (with the ?SDPOL system call), AOS/VS enables all relative terminals on the
list for polling. To disable a relative terminal without n~defining the polling list, issue the
?SDRT system call. To re-enable a relative terminal, issue the ?SERT system call.

When you disable a relative terminal, it does not affect the corresponding tributary station;
it simply means that the control station ignores that tributary station when it performs
general polling, until you subsequently re-enable the relative terminal or define a new
polling list.

BSC Protocol
The logic behind data transmissions over a BSe line is BSe protocol. Briefly, BSe protocol
is a set of rules governing

• The initialization of communications over a BSe lim:.

• The orderly exchange of data over a BSe line.

• The termination of communications over a BSC line ..

These objectives are accomplished in part by the protocol's data-link control characters,
which are synchronization characters that both the stmding and the receiving stations
recognize. Data transmissions over a BSe line typically consist of text, header information
(optional), and data-link control characters, which delimit various portions of the data
block and control its transmission.

093·000335 Licensed Material - Property of Data General Corporation 14-5

None of the BSC system calls require data-link control characters as input. AOSjVS
provides the required control characters when you send text or header information over a
BSC line, and removes them when you receive the information. However, because several
of the system call descriptions refer to the data-link control characters, Table 14-1 defines
the control characters that chapter.

Table 14-1. BSC Protocol Data-Link Control Characters (DLCC)

Character Description

ACKO Affirmative Acknowledgment
ACKI Positive replies, sent in alternating sequence, to indicate that the receiver

has accepted the previous block without error, and is ready to accept the
next block of the transmission. ACKO is also a positive response to a line
bid (ENQ) for a point-to-point line and to a selection sequence on a
multipoint line.

BCC Block Check Character
A value generated by the transmitting station and sent with each data
block to validate the block's contents. The receiving station generates its
own BCC. If the two values match, the block is accepted as error-free.
A BCC follows every ITB, ETB, and ETX character. If you transmit in
the ASCII code set, the BCC is a longitudinal redundancy check (LRC).
For the EBCDIC code set, the BCC is a cyclical redundancy check
(CRC).

DLE Data-Link Escape

The first character in a two-character sequence used to signal the beginning
or end of Transparent Text mode. The sequence DLE STX signals the
beginning of Transparent Text mode. The sequence DLE ETB or DLE
ETX signals the end of Transparent Text mode. For more information
on Transparent Text mode, see the the description following this table.

DLE EOT Data-Link Escape, End-of-Transmission

Signals a line disconnect for a switched line. The sending or receiving
station usually transmits this sequence when all message exchanges are
finished.

ENQ Enquiry

Sent by a station on a point-to-point line to bid for the line (for transmission
of data). Sent by the control station on a multipoint line to signal the
end of a polling or selecting sequence.

A transmitting station can also send ENQ to ask the receiver to repeat
a response if the original response was garbled or not received when
expected.

EOT End-of-Transmission

Signals the end of a message transmiSSion (consisting of one or more
separately transmitted data blocks), and resets the receiving station.

On a multipoint line, a polled station sends an EOT to indicate that it
has nothing to send back to the control station.

EOT can also serve as an abort signal to indicate a system or transmission
malfunction.

ETB End-of-Transmission Block

(continues)

14-6 Licensed Material - Property of Data General Corporation 093-000335

Table 14-1. BSC Protocol Data-Link Control Characters (DLCC)

Character

ETX

ITB

NAK

RVI

SOH

STX

SYN

TID

WACK

093-000335

Descr:iption

End-of-Text

Signal the end of a data block that began with an SOH or an STX. Both
the ETB and the ETX characters reverse the direction of the transmission.
When a station receives an ETB or an ETX, it replies with a control character
that indicates its status (that is, ACKO, ACKI, NAK, WACK, or RVI).

An ETB terminates every text block except the last. An ETX implies an end­
of-file condition; thus, it terminates thl~ last block of text in a message.

End-of-Intermediate-Transmission Block

Separates records within a block and/or delimits field boundaries for error I

checking. ITB does not reverse the direction of the transmission.

Negative Acknowledgment

Sent by the receiving station to indicate that it is not ready to receive, or to
request that an erroneous block be transmitted again.

Reverse Interrupt

A positive response used instead of ACKO or ACKI; signals that the receiver
must interrupt the transmission to send the transmitting station a high-priority
message.

The transmitting station treats an RVI as a positive acknowledgment and, in
response, transmits all the data that prevents it from becoming a receiving
station. The transmitting station can perform more than one block transmission
to empty all its buffers.

On a multipoint line, a control station can send an RVI after it receives data
from a tributary station, to indicate that it wants to communicate with a
different tributary station.

Start of Header

Signals the start of header information {ancillary information within a block).

Start of Text

Signals the beginning of the text (and terminates the header information).

Synchronization Character

Establishes and maintains character synchronization; also serves as filler in
the absence of data or control characters. Each transmission must begin with
at least two contiguous SYN characters.

Temporary Text Delay

A two-character sequence that consists of STX ENQ, which the transmitting
station sends to retain the line without immediately sending data. The receiving
station responds with a NAK. The TTD/NAK sequence can repeat, if the
transmitter needs additional delays.

Wait-Before-Transmit Positive Acknowledgment

A positive acknowledgment that the receiver sends; signals that the receiver
is temporarily unable to receive. (A receiver can send WACK as a response
to a line bid on a point-to-point line or a selection sequence on a multipoint
line, or as a response to data.) A receiving station can send more than one
WACK until it is ready to receive. The transmitting station can respond with
ENQ, EDT, or DLE EDT.

(concl uded)

Licensed Material - Property of Data Ge'neral Corporation 14-7

Note that BSC protocol supports Transparent Text mode. Transparent Text mode causes
AOS/VS to treat most control characters as bit patterns without control significance. The
exceptions are OLE STX, which signals the beginning of Transparent Text mode, and
OLE ETB or OLE ETX, which signal the end of Transparent Text mode. If you are
sending data that may match the bit patterns of the control characters, you should send
it in Transparent Text mode.

BSC Error-Recovery Procedures
When AOS/VS receives an inappropriate response to an ?SSNO or ?SRCV system call,
or does not receive a response within the time-out interval that you specify in offset ?STOV,
it enters its BSC error-recovery procedures. The error-recovery procedures differ, depending
on which operation was underway when the error occurred. In addition, AOS/VS's action
within each recovery procedure depends on the cause of the error.

In most cases, AOS /VS responds to a BSC error by trying the particular procedure again,
repeatedly if necessary, until its retry count is exhausted. The retry count is a system­
maintained variable, which you cannot control.

Table 14-2 describes the error-recovery procedures for the various types of send and receive
system calls.

Table 14-2. BSC Error-Recovery Procedures

Call Type AOS/VS Action

Send Initial

Time-out NAK or Resend ENQ, unless retry count exceeded. If retry count exceeded,
inappropriate take error return to ?SSND system call. (Possible errors in ACO are
response ERTOF, ERNAK, ERUNI.)

ENQ If calling station is the primary, resend ENQ. If calling station is
the secondary, take error return to ?SSND system call. (Error in
ACO is ERCTN.)

Send Continue

Time-out or Send ENQ, unless retry count exceeded. If retry count exceeded, take
ina ppri pria te error return to ?SSND system call. (Possible errors in ACO are
response ERTOF, ERUNI.)

NAK Resend data, unless retry count exceeded. If retry count exceeded,
take error return to ?SSND system call. (Error in ACO is ERNAK.)

Receive Initial
(point-to-point
and multipoint
tributary station)

Time-out or Retry receive initial, unless retry count exceeded. Take error return
ina ppropriate to ?SRCV system call. (Possible errors in ACO are ERTOF, ERUNI.)
response

(continues)

14-8 Licensed Material - Property of Data General Corporation 093-000335

Table 14-2. VSC Error-Recovery Procedures

Call Type AOS/'VS Action

Receive Continue

Time-out or If retry count exceeded, take error return to ?SRCV (possible errors
ina ppropria te in ACO are ERTOF, ERUNI). Otherwise, await ENQ from sender
response (assuming that the sender will issue a time-out and send an ENQ).

ENQ Resend last response and attempt receive continue, unless retry count
exceeded. If retry count exceeded, take error return to ?SRCV system
call. (Error in ACO is ERENQ.)

CRC (block check) Send negative acknowledgement (NAK) and error attempt receive
error continue unless retry count exc(~eded. If retry count exceeded, take

error return to ?SRCV system call. (Error in ACO is ERCRC.)

Receive Initial
(multipoint control
station)

Time-out or Retry receive initial, unless retry count for particular relative terminal
ina ppropria te exceeded. If retry count exceededl, take error return to ?SRCV system
response call (Possible errors in ACO are ERTOF, ERUNI.)

EOT If a polled terminal responds with EOT, step to the next relative
terminal on the polling list and continue polling. If end of the polling
list is reached, take error return to ?SRCV system call. (Error in
ACO is EREPL.)

(concluded)

To get BSC error-recovery statistics, issue the ?SGES system call. The ?SGES system
call returns the number of block-check errors, the number of time-outs, and the total
number of negative acknowledgment (NAK) characters received in response to send op­
erations.

Bse Implementation
Figures 14-2 through 14-8 illustrate how AOS/VS implements BSC protocol using the
BSC system calls. Before you read this section, refer to the system call descriptions for
the ?SEBL, ?SSND, and ?SRCV system calls in tht:: System Call Dictionary (AOS/VS
and AOS/DVS), and to the definitions of the BSC data-link control characters in Table
14-1.

Remember, you cannot issue a send initial system call from a multipoint tributary station,
and that Receive Continue system calls from multipoint stations and from point-to-point
stations are identical.

You will notice that each figure has three columns. The first column represents the system
calls that you issue, with their normal and error returns. The second column illustrates
AOS/VS's actions, and the third column shows the remote station's actions.

093-000335 Licensed Material - Property of Data General Corporation 14-9

User Task

Data

?SSNO Initial

Error Return

Normal Return

10-03289

AOS/VS

t
RT
Error

Recovery

Retry

Error

Recovery

SYN ,.
ENQ

PAD

t
Tim~out

I
SYN

[OLE]

STX

SOH

TEXT

[OLE]

ETX

ETB

CRC

CRC

PAD

Time-out

I
NAK

,

Figure 14-2. ?SSND System Call, Initial, Point-ta-Point

14-10 Licensed Material - Property of Data General Corporation

Remote Site

Inapp.

EOT

OLE EOT

Inapp. ,

I
RVI

EOT

OLE/EOT

093-000335

SYN

[OLE]

STX

SOH

TEXT

[OLE]

ETX

ETB

CRC

CRC

P1D

ACK

ACKO

ACK1

User Task

Data

?SSNO Continue

AOS/VS

Retry

Error

Recovery

Remote Site

1
SYN

[OLE]

STX

SOH

TEXT

[OLE]

ETX

ETB

CRC

CRC

PAD

I NAK

Time-out JJ
Inapp.

RVI ACKO

EOT ACK1

OLE/EOT
SYN

[OLE]

STX

SOH
TEXT

[OLE]

ETX
ETB

CRC

CRC
PAD

Error Return ~ ___________________________ -L.. __ ~

Normal Return -.if------------------.----------------'

IO'()3290

Figure 14-3. ?SSND System Call, Continue, Point-to-Point

093-000335 Licensed Material - Property of Data General Corporation 14-11

User Task

7SRCV Initial

7SRCV Initial

Error Return

7SRCV Continue

7SRCV Continue

Error Return

7SRCV Continue

Normal Return

AOS/VS

~l ;"Wait
Bid

!
-

""IIi :

Retry

I
Error

Recovery

ACKO

ACK1

ENQ

NAK

!
Error

Recovery

Time-out

Time-out

It

Remote Site

SYN

Inappropriate

Inapp.

ENQ

r

RVI

EaT

OLE/EaT

CRC

Error

Figure 14-4. ? SRCV System Call, Initial and Continue, Point-to-Point

14-12 Licensed Material - Property of Data General Corporation

Bid

SYN

ENQ

SY N
:

[OL E]
TX

H

XT
E]
B

TX
C

C

S

SO

TE

[OL
ET

E

CR

CR

093-000335

User Task

Data

?SSNO Initial

Error Return

?SSNO Continue

Error Return

AOS/VS
(Control Station)

r TimjOut

Error
Recovery

• IIIIE

SYN

[OLE]

STX
SOH

TEXT
[OLE]

ETX
ETB

CRC

CRC

~

Error
Recovery

-
,

NAK

R I

Remote Site
(Tributary)

RVI
EDT

OLE/EDT

Inapp.

ACKO

SYN

[OLE]
STX

SOH

TEXT

[OLE]
ETX

ETB
CRC
CRC

Ina

ACKO

ACK1

Normal Return -1IIIE1f------------------------------------'

10·03292

Figure 14-5. ?SSND System Call, Multipoint Control Station

093-000335 Licensed Material - Property of Data General Corporation 14-13

User Task
AOS/VS

(Control Station)

7SRCV Initial ------------il.-I\ Poll Operation

+

Error Return

Normal Return

?SRCV Continue

Error Return

Re\try
Timrut

Error
Recovery

t
ACKO
ACK1

NAK
RVI

NAK

Error

Recovery

Time-out

Remote Site
(Tributary)

EOT

,

ENQ

Inapp.

RVI
EOT

OLE/EOT

Inapp.

Error

SYN

[OLE]
STX

SOH

TEXT

[OLE]
ETB
ETX

CRC

CRC

I

SYN

[OLE]
STX

SOH
TEXT

[OLE]
ETB

ETX
eRC
eRe

Normal Return _ ... __.-------------------------------J+

10·03293

Figure 14-6. ?SRCV System Call, Multipoint Control Station

14-14 Licensed Material - Property of Data General Corporation 093-000335

User Task

?SRCV Initial

AOS/VS
(Control Station:1

----------~ Wait for Poll or I
Select Address

I
Time-out

SYN

Inapp.

I ery

~ 1
I

Error Recovery I

R t

Error Return

?SPLR Set
to 1

Normal Return

?SSLR Set
to 1

NOTE: Use ?SRCV continue if the station was selected; use ?SSND
if the station was polled.

10·03294

Remote Site
(Tributary)

SYN

Poll
Address

Seq.

ENQ

;

Select
Address

Seq.

ENQ

Figure 14-7. ?SRCV System Call, Multipoint Tributary Station

093-000335 Licensed Material - Property of Data General Corporation 14-15

User Task AOS/VS Remote Site

?SEBL ----------r-----l.~ Assert Data

j
Terminal Ready

Error Return

N'JI'mal Return

10-03295

14-16

Time-out

(wait for

dataset ready)

1-+------ Dataset Ready Asserted

Figure 14-8. ?SEBL System Call, Point-to-Point

End of Chapter

Licensed Material - Property of Data General Corporation 093-000335

Chapter 15
Managing 16-Bit Processes

You use the following system calls to manage 16-bit processes:

?DELAY
?GCRB
?IDSTAT
?IESS
?IHIST
?KCALL
?OVEX
?OVKIL
?OVLOD
?OVREL
?RCALL
?RCHAIN
?SERMSG
?UNWIND
?WALKBACK

093-000335

Suspend a 16-bit task for a specified interval.
Get the base of the current resource.
Return task status word.
Initialize an extended state save (ESS) area.
Start a histogram for a 16-bit process.
Keep the calling resource and acquire a new resource.
Release an overlay and return.
Exit from n overlay and terminate the calling task.
Load and go to an overlay.
Release an overlay area.
Release one resource and acquire a new one.
Chain to a new procedure.
Return text for associated error code.
Unwind the stack and restore the previous environment.
Return information about previous frames in the stack.

Licensed Material - Property of Data GeRl~ral Corporation 15-1

This chapter describes how to manage 16-bit processes under AOSjVS. AOSjVS allows
you to execute 16-bit programs in addition to 32-bit programs. These can be programs
you developed under AOSjVS or under the Advanced Operating System (AOS); in the
latter case, you must relink to execute the programs under AOSjVS. In some cases,
reassembling or recompiling AOS programs may also be necessary.

Memory Modification with Disk Images
Sixteen-bit programs have a more restricted address space than 32-bit programs (32K
words or less). Therefore, to augment a 16-bit process's logical address space, you must
call in shared or unshared overlays. There are two types of system calls for this purpose:
resource system calls, which automatically load and release overlay procedures, and primitive
overlay system calls.

Most 16-bit applications use the resource system calls, because they simplify resource
management. These system calls let you postpone the decision to include the resources in
your root program or in one or more overlay areas until link time.

The primitive overlay system calls give you greater control of overlays, but to use them,
you must be willing to explicitly load, release, and control overlays.

Using Overlays
Overlays are useful in a small logical address space because they allow you to reuse the
same portion of memory, called an overlay area, for different portions of code. In general,
at link time, you define two or more overlays for each overlay area. The Link utility
classifies the elements of a 16-bit program into two resource types:

• The root, which is the memory-resident portion of the program.

• Overlays.

Link reserves space in the .PR file for overlays, but diverts the actual overlay code to an
overlay (.OL) file. As your program calls overlays during execution, AOSjVS reads them
from the overlay areas in the .OL file to the designated overlay areas in memory.

You can define as many as 63 overlay areas per program. Each overlay area can accom­
modate a maximum of 511 separate overlays. An overlay area can consist of either shared
or unshared overlays, but not both. Link builds shared overlay areas in multiples of 1 K
words and builds unshared overlays in multiples of 256 words.

Normally, the basic size of an overlay area equals the size of its largest overlay, plus any
padding Link provides to fill out the area to a multiple of lK or 256 words. As a result,
AOSjVS reads only one overlay into the overlay area at that time. (See Figure 15-1.)

You can increase an overlay area to a multiple of its basic size at link time. This results
in a total overlay area that can simultaneously accommodate more than one overlay of
the basic size. During execution, AOSjVS can place these overlays into any of the basic
areas within the total overlay area.

Therefore, overlays destined for a multiple-overlay area must be position-independent; that
is, you must write them so that all internal procedure references are relative to some point
in the same overlay. Figure 15-2 shows an overlay area with a total size that is double
its basic size.

As Figure 15-2 shows, doubling the basic size of the overlay area in memory allows
AOSjVS to simultaneously read in two overlays of the basic size (Overlay 0 and Overlay

15-2 Licensed Material - Property of Data General Corporation 093·000335

Memory .OL File

Overlay 0

Overlay { Overlay 1 Overlay
Area Area 0

Overlay 2

(Overlay Area 1)

• • •

10·03296

Figure 15-1. Basic Overlay Area Equals Size of Largest Overlay

Memory .OL FilE!

Overlay 0

1
Overlay 1 Overlay

Overlay Area 0
Area

Overlay 2

(Overlay ArEta 1)

• • •

10-03297

Figure 15-2. Multiple Overlay Area (Total Area = Basic Size * 2)

2). Note that AOS/VS could also fit both Overlay 1 (which is smaller than the basic
size) and Overlay 2, or both Overlay 0 and Overlay 1 in the total overlay area.

Usually, you use special overlay designators to define object modules as overlays in the
Link command line. Link assigns a number to each overlay area and to each of the overlays
that make up that overlay area. Link bases these numbers on the order in which the
overlay areas and the individual overlays appear in thl! Link command line.

093-000335 Licensed Material - Property of Data Genleral Corporation 15-3

For example, to link six object modules, A, B, C, D, E, and F, to form the program file
A.PR, the command line is

X LINK A B !*e D!E F*!

The overlay designators (1*, !, and *!) define one overlay area (Overlay Area 0) with two
distinct overlays: modules C and D make up Overlay 0, while modules E and F make up
Overlay 1.

You can use the pseudo-ops .ENTO and .EXTN to refer symbolically to overlay areas
and overlays. (For more information on .ENTO and .EXTN, refer to the AOS/VS
Macroassembler Reference Manual. Also, for more information on how Link handles
overlays, refer to the AOS/VS Link and Library File Editor (LFE) User's Manual.)

Resource System Calls
AOS/VS provides access to overlays and other procedures through a generalized procedure/
system call mechanism implemented by the ?RCALL, ?KCALL, and ?RCHAIN system
calls. You must define the procedure you want to call with the .PENT (procedure entry)
pseudo--op. For the ?RCALL and ?KCALL system calls, the calling procedure must begin
with an ?RSAVE macro instruction and end with RTN. (The ?RCHAIN caller must
begin with ?RSAVE. Only the last procedure in the chain should end with a RTN.)

The ?RCALL system call releases the calling resource, and then loads the new resource.
Because the calling resource is released on an ?RCALL, you can load the new resource
into the caller's memory area.

AOS/VS preserves the state of the ?RCALL caller so that it can reload the caller, if
necessary, after it executes the new procedure.

The ?KCALL system call loads a new resource and transfers control to its entry point.
Unlike the ?RCALL system call, the ?KCALL system call does not release the calling
resource. You must use the ?KCALL system call carefully - the indiscriminate use of
the ?KCALL system call can result in a resource deadlock.

A resource deadlock occurs when every task that requires overlays is suspended waiting
for overlay areas to become available. (If the overlays have issued ?KCALL system calls,
AOS/VS cannot release their overlay areas.) A resource deadlock can occur if an overlay
issues a ?KCALL system call that loads another overlay to the same basic (non-multiple)
overlay area. To load procedures, we recommend that you use the ?RCALL system call
instead of the ?KCALL system call to load procedures.

The ?RCHAIN system call releases the calling resource and acquires the new resource
before it leaves the calling procedure. Typically, you use the ?RCHAIN system call to
join resources that you split into small sequential pieces. Only procedures within resources
that you have loaded with the ?RCALL or ?KCALL system call can issue the ?RCHAIN
system call.

The ?RCHAIN system call allows you to chain from an a procedure that you have loaded
with an ?RCALL or ?KCALL system call to a new procedure. After AOS/VS executes
the new procedure, it returns control to the original procedure, not to the ?RCHAIN caller.

Link resolves each resource system call and, if necessary, binds the appropriate resource
handler routines into the program file. These routines, which are part of the runtime library
URT16.LB, load the called procedures as they are needed at execution time.

If a resource deadlock or error occurs while AOS /VS is executing a resource system call,
it transfers control to an error-processing module with the entry ?BOMB. Unless you write

15-4 Licensed Material - Property of Data General Corporation 093-000335

your own error-handling routine with a ?BOMB entry, AOS/VS uses the default routine
in URTI6.LB. The default routine terminates the calling process and passes the appropriate
error code to the caller's father.

If you use your own ?BOMB routine, AOS/VS transfers control to that routine, and
supplies the following error-handling information:

• An error code in A CO.

• The procedure descriptor entry in ACl.

• The fault address on the stack.

Procedure Entries

Usually, you pass procedure entries as arguments to the resource system calls; for example,
?RCALL procedure entry. As an alternative, you can pass procedure entry descriptors on
the stack. AOS /VS then pops the procedure entry descriptor off the stack before you
execute the resource system call.

The .PTARG pseudo-op translates the name of a procedure to a procedure entry descriptor.
Figure 15-3 shows a sample ?RCALL sequence that uses the descriptor method.

NAME: .PTARG FIRST

LOA O,NANE
PSH 0,0

LOA 0,ARG1
LOA 1,ARG2
LOA 2,ARG3
?RCALL

;Oefine a procedure entry
;descriptor for FIRST.

;Load ACO with the descriptor.
;Push the descriptor onto the
;stack.
;Pass ARG1,
; ARG2 , and
;ARG3 to FIRST.
;Pop procedure entry descriptor
;off the staCk, release calling
; resource, and acquire resource
;that contains FIRST.

Figure 15-3. Passing a Procedure Entry Descriptor via the Stack

Alternate Return from Resources

After AOS/VS executes a new procedure, it returns control to the word that immediately
follows the resource system call. To return control to the second word after the resource
system call, issue the following instruction sequence from the calling procedure:

ISZ ?ORTN,3
RTN

The first statement (lSZ ?ORTN,3) increments the caller's return address. The RTN
instruction returns to the incremented address.

093·000335 Licensed Material - Property of Data Generlll Corporation 15-5

(Also
New FP)

New SP

70ACO

70AC1

?OAC2

70FP

70RIN ..

7VRTN

7DESC

?TMP

..

Caller's ACO

Caller's AC1

Caller's AC2

Caller's frame pointer

I
Old PC

Old Carry (program counter)

First reserved word

Second reserved word

Temp 1

Temp 2

Temp 3

Temp 4

Key: 7URIN =caller's carry and return address.
FP = stack frame pointer.
SP = stack pointer.

10-03299

}

Caller's
Return
Block

Virtual
Return
Information

Called
Procedure's
Temporary
Area

Figure 15-4. Resource System Call Stack after ? RSA VE System Call

System Management of Resource System Calls
The ?RCALL, ?KCALL, and ?RCHAIN system calls require two extra words on the
user stack. These words must be located between the caller's return block and the called
procedure's temporary variables. Do not alter these words, because AOS/VS uses them to
store information from the called procedure_

The ?RSA VE macro instruction reserves these two extra words_ Therefore, all procedures
that issue ?RCALL or ?KCALL system calls must begin with an ?RSA VE instruction
and end with a RTN instruction. Every procedure that the ?RCHAIN system call acquired
must also begin with an- ?RSA VE instruction, but only the last procedure in the chain
should end with R TN.

Figure 15-4 shows the contents of the stack after the execution of an ?RSA VE instruction.
Figure 15-4 also lists the parametric names of the stack locations. Note that these parameters

15-6 Licensed Material - Property of Data General Corporation 093-000335

apply to the stack for 16-bit programs, not the stalck for 32-bit programs. The user
parameter file, PARUI6, defines these and the other 16-bit parameters. For more infor­
mation on stacks. refer to the appropriate "Principles of Operation" manual for your Data
General computer.

Runtime Relocatability Requirements
If they are part of multiple overlay areas, the overlays you call with the ?RCALL,
?KCALL, and ?RCHAIN system calls must be position-independent, because AOSjVS
may reload them into different portions of the overlay area after it executes the resource
system call.

Moreover, overlays within multiple areas must be runtime relocatable to issue ?RCALL
system calls. This means that you cannot issue any asse:mbly language reference to a fixed
address before the ?RCALL system call, because the address could be invalid when the
calling overlay is reloaded. The ECLIPSE instructions subject to this restriction are JSR,
EJSR, LEF, ELEF, PSHJ, POPJ, XOP, and PSHR. Figure 15-5 shows a JSR instruction
whose return value will be invalid if the procedure that issues the ?RCALL system call
is reloaded into a different memory area.

C:

A:

JSR A

?RSAVE

?RCALL B

RTN

;JUIP to Subroutine A.
; Return address is C + 1.

;Save the return address of C.

Release C, acquire B, and go to
;target procedure in B.

;Return to C + 1.

Figure 15-5. Invalid Return Address from ? RCALL System Call

The return address from the ?RCALL system call in Figure 15-5 is C+ 1, which is the
first word that follows the JSR A instruction. The return address will be invalid, however,
if AOS jVS relocated procedure A after it executed procedure B. If procedure A issued a
?KCALL system call to B instead, the return would be valid, because the ?KCALL system
call keeps the calling resource (A) before it acquires the: new resource and transfers control
to its correct entry point (B).

093-000335 Licensed Material - Property of Data Genl!tral Corporation 15-7

Primitive Overlay System Calls
As an alternative to the resource system calls, you can use the primitive overlay system
calls, ?OVLOD, ?OVREL, ?OVEX, and ?OVKIL, to call and release overlays. These
system calls give you greater control over the overlay environment, but require you to
explicitly load and release the overlays. Because the resource system calls manage overlays
automatically, you should use them rather than using the primitive overlay system calls.

To use the primitive overlay system calls, you must define each overlay with the .ENTO
(overlay entry) pseudo-op. The system maintains an overlay use count (OUC) for every
memory-resident overlay. The OUC specifies the number of tasks currently using the
overlay. When the OUC value reaches 0, the overlay area is freed for use by another
overlay.

As long as any task is using an overlay (that is, OUC is not 0), no other overlay can be
loaded into the same basic overlay area. This is true even if another high-priority task
issues an overlay load request in the meantime. If the overlay area is a multiple of its
basic size, however, another task can use any free basic area in the total area.

The ?OVLOD system call loads an overlay and passes control either to the beginning of
that overlay or to some offset ~ithin it. In addition, your input to the ?OVLOD system
call determines whether the loading is conditional or unconditional.

If you specify unconditional loading, AOSjVS loads the overlay that you request, even if
it is already resident. If you specify conditional loading, AOSjVS first checks whether the
target overlay is already in the overlay area. If it is, AOSjVS does not load the overlay,
but simply increments the overlay's OUC. If the overlay is not resident, AOSjVS loads
it into the overlay area and sets its OUC to 1.

To release an overlay that was loaded with the ?OVLOD system call, you must use one
of the following release system calls:

• ?OVREL

The ?OVREL system call decrements the overlay's OUC and frees the overlay area if
the OUC equals O. Note that you cannot issue ?OVREL from the overlay you want
to release. Instead, issue ?OVREL from some point outside that overlay.

• ?OVEX

The ?OVEX system call decrements the overlay's OUC, frees the overlay area if the
OUC equals 0 and transfers control to a specific nonoverlay address. You can use the
?OVEX system call to return from a subroutine within an overlay.

• ?OVKIL

The ?OVKIL system call decrements the overlay's OUC, releases the overlay area if
the OUC equals 0 and kills the calling task.

15-8 Licensed Material - Property of Data General Corporation 093-000335

Extended State Sa~'e Area
AOS/VS allows each 16-bit process to set up an extended state save area (ESS) for each
task in the unshared portion of the logical address spa1ce. The ESS area holds task-specific
information, such as the value of the program counter and its carry bit, and the current
contents of the accumulators. However, you can use the ESS area to store any information
you feel is relevant to a task.

Before you can use an ESS area, you must initialize it with the ?IESS system call. Input
to the ?IESS system call includes the starting address of the ESS (in the unshared area
of your logical address space), and a pointer to a block of page 0 locations in your logical
address space. When AOS/VS schedules a 16-bit tas.k, it copies the ESS information to
the designated page 0 area. When rescheduling occurs, AOS/VS transfers the ESS infor­
mation back to the ESS block in the unshared area of your logical address space.

End of Chapter

093-000335 Licensed Material - Property of Data GEtneral Corporation 15-9

Appendix A
System Log Record Format

This appendix describes the format of the system log (SYSLOG) file, into which both
AOS/VS and privileged processes can write records that log the occurrence of certain
events.

Each record in the SYSLOG file contains an event code that identifies the event that it
is logging. The event code can be either one of the standard AOS/VS event codes, or a
special event code that AOS /VS allows you to define: within your programs.

To write a record into the SYSLOG file, a process must issue the ?LOGEV system call;
to issue the ?LOGEV call, the process must have Superuser mode turned on.

This appendix lists the standard AOS/VS event codc::s and what they represent. It also
describes the format of the records that log these events.

Reporting the Contents of t:he SYSLOG File
You can report the contents of the SYSLOG file by either using the CLI REPORT
command, or by writing a program that reads and reports on the contents of the SYSLOG
file.

If you use the CLI REPORT command, it will report on only those records that contain
the standard AOS /VS event codes. Since you define the meaning of any special event
codes, and specify the contents of the records that describe those events, the REPORT
command cannot report on the events you log with tbose records.

If you have defined special event codes and you want to read and report on the records
that contain them, or if you want to report on only certain standard AOS/VS events, you
must write a program to do so.

Reading the SYSLOG File
To read the SYSLOG file, you should open it for dynamic reads. You can declare an
integer*2 array for the record header using a 0 base (e.g., in FORTRAN 77, INTEGER*2
HEADER(O:7)). This allows you to use the O-base subscripts that we show. You can also
declare an integer*2 array for each different record l,ength, less 8 elements. At runtime,
you can read the header array, check the length from words 0 and 1. Then, if the record
has information other than the header, you can read the remainder of the record into the
array of its length. Then, in the header array, you can check word 5 for the message code.
If this is a code you want, you can break down the header and array, and format them
for output, and then read the next record. If you don't care about the code, you can simply
read the next record.

You can get the record length from the two-word length descriptor by - in FORTRAN
77 - equivalencing element 0 of the descriptor to a 4-byte integer.

Most record formats have a specific length. Formats for events like process creations and
file opens, however, don't have a specific length. Instead, their length varies with the length

093-000335 Licensed Material - Property of Data General Corporation A-1

of the username and/or pathname stored in them. These flexible format records are recorded
only when logging was turned on with /DET AIL= FULL. The flexible record lengths help
conserve disk space (since otherwise every record would have to be as long as the longest
one - and these events occur quite often). The only records with flexible length are

• Process events. These include process creation (code 910), chaining to another process
(917), and loading a program into a ring (ring load, ?RINGLD system call, 916).

• File access events. Events with flexible-length records are file create (code 929); file
open (code 920); file delete (code 924), file rename (codes 938 and 942); initialize LDU
(code 937); release LDU (code 928); change file ACL (codes 939 and 943); read user
data area, UDA (code 925); and write UDA (code 926).

In each of these flexible length records - as in all records - the record length appears
in the first two 16-bit words in each record.

Record Header Format
Figure A-I shows the header that begins each log record. The sixth 16-bit word in the
header is the event code. In this and the following figures, all subscript/offsets and event
codes are decimal. In the records themselves, all numeric values are octal.

o

2

Record
header:

3
always
words 4

5

6

7

10-03321

A-2

I-

,,,

1

Record

length

Date (number of days
since 1/1/68, inclusive)

Time (number of seconds
since midnight)

Event code

Reserved

Pad (null) or caller's PID

Message, if any.
Length of

message varies

-
~ This is the actual length;

it may include word entries
after the message itself.

~ This explains meaning, and
often structure, of the record.

'""

J

Figure A-i. Log Record Header

Licensed Material - Property of Data General Corporation 093-000335

SYSLOG Record Formats
The SYSLOG file stores the following standard record types. AOS jVS writes these records
into the SYSLOG file; however, AOSjVS writes those record types for which we note
"Error Log" into the system's error log file.

Table A-I summarizes all record types by event code, including their record length. Records
with length noted as 0 consist only of the header.

Figure A-2 describes records that are longer than the header. The SYSLOG file stores
numeric values in octal and ASCII characters as ASCII. 'Where padding is needed, SYSLOG
uses nulls (ASCII 000). The symbol # means "number."

Event codes 900-999 and 1200-1299 are logged only when system logging was turned on
with the jDETAIL= FULL switch. Do not use codes 900-999 and 1200-1299 for your
special event codes.

Table A-1. SYSLOG Event Codes and Record Lengths

Event Code Meaning Message
(decimal) Length

(Words 8
through n)

0 Unused

1 SYSLOG logging turned on (see also error 0
code 901.

2 SYSLOG logging turned off (see also error 8 through 1016
code 901. (varies).

3 Process termination. 24

4 Device error - Error log. 32

5 Pad record (padding only). 8 through 148
(varies).

6 Unused by MV /Family processors. 3

7 Power failure - Error log. 3

8 AOS/VS and log file revision (follows logging 4
started record, 1).

40 Power restored - Error log. 0

41 Fatal AOS/VS error - Error log. 33

42 AOS/VS hang - Error log. 0

43 Single-bit ERCC error, MY /4000 - Error 16
log.

44 Multibit ERCC errors, MY / 4000 - Error 16
log.

093-000335 Licensed Material - Property of Data General Corporation A-3

Table A-l. SYSLOC; Event Codes and Record Lengths

Event Code Meaning Message
(decimal) Length

(Words 8
through n)

45 ERCC Sniff I/O errors, MV /4000 - Error 16
log.

73 SCP reset (not recorded). 0

74 SCP request completed (not recorded). 0

75 Host-SCP error (not recorded). 0

76 Host-SCP buffer full error - Error log. 0

77 SCP time-out - Error log. 0

78 SCP interface degrade - Error log. 0

79 SCP-request-to-host error - Error log. 0

80 SCP buffer not cleared - Error log. 0

81 Host-request-to-SCP error - Error log. 0

96 SCP logging enabled - Error log. 0

97 SCP logging disabled - Error log. 0

98 Main processor halt - Error log. 0

99 BOOT issued (MV /8000) - Error log. 0

100 Power failure - Error log. 0

101 Power restore - Error log. 0

102 Air flow fault - Error log. 0

103 Overtemp fault (not recorded). 0

104 Transfer to battery backup - Error log. 0

105 Reserved. -

106 ERCC error, MV /8000 and MV / 6000 - 16
Error log.

107 Microsequencer parity error - Error log. 0

108 System cache parity error - Error log. 0

109 Cache to Bank controller parity error - Error 0
log.

A-4 licensed Material - Property of Data General Corporation 093-000335

Table A-1. SYSLOG Event Codes and Record Lengths

Event Code Meaning Message
(decimal) Length

(Words 8
through n)

110 IOC bus parity error - Error log. 0

111 S-bus timeout - Error log. 0

112 S-bus parity error - Error log. 0

113 Operating system error (unused). 0

114 Diskette log error (MV /8000). 0

115 Infinite protection fault - Error log. 0

116 Infinite page fault - Error log. 0

117 Instruction cache enabled - Error log. 0

118 Instruction cache disabled - Error llog. 0

119 Reserved. -

120 Reserved. -

121 System reset (not recorded). 0

122 ATU accelerator enabled - Error log. 0

123 ATU accelerator disabled - Error log. 0

125 XEQ DTOS command (MV /8000). 0

126 Bad return from DTOS (MV /8000). 0

127 HALT command (MV /8000) - Error log. 0

128 CONTINUE command (MV /8000) -- Error 0
log.

129 START command (MV /8000) - Error log. 0

130 INIT command (MV /8000) - Error log. 0

131 Bank controller ERCC report disable- Error 0
log.

132 Good return from DTOS (MV /8000). 0

133 Hard interrupt (not recorded). 0

901 Reserved. 0

910 Process created. Varies

093-000335 Licensed Material - Property of Data General Corporation A-5

Table A-l. SYSLOG Event Codes and Record Lengths

Event Code Meaning Message
(decimal) Length

(Words 8
through n)

911 Reserved. 0

912 Process terminated by superior process. 4

913 Superuser turned on or off. 4

914 Superprocess turned on or off. 4

915 Access devices turned on or off (?IO EF turns 4
on; ?IRMV turns off).

916 Process loaded program into ring (used Varies
?RINGLO system call).

917 Process chained to another process. Varies

918 PMGR assigned a console to a process. 5

919 PMGR revoked a process's console assign- S
ment.

920 File opened. Varies

921 Reserved. -

922 File closed. 4

923 Reserved. -

924 File deleted, access by pathname see also error Varies
code 931).

925 File user data area (UDA) read, access by Varies
pathname (also see 932).

926 File UOA written, access by pathname (also Varies
see 933).

927 File UDA created, access by pathname (see Varies
also error code 934).

928 Logical disk unit (LOU) released, access by Varies
pathnname.

929 File created, access by pathname. Varies

930 Reserved. -

931 File deleted, access by channel number. 4

A-6 Licensed Material - Property of Data General Corporation 093-000335

Table A-1. SYSLOG Event Codes and Record Lengths

Event Code Meaning Message
(decimal) Length

(Words 8
through n)

932 File user data area (UDA) read, access by 4
channel number.

933 File UDA written, access by channel number. 4

934 File UDA created, access by channel number. 4

935 Reserved. -

936 Reserved. -

937 Logical disk unit (LDU) initialized. Varies

938 File renamed, access by pathname (~;ee also Varies
error code 942)

939 File ACL changed, access by pathname (see Varies
also error code 943)

940 Reserved. -

941 Reserved. -

942 File renamed, access by channel number. Varies

943 File ACL changed, access by channel number. Varies

944 Reserved. -

945 Shared file opened, first open. Varies

946 Shared file opened, subsequent open. 7

947 Permit access to protected file call (used to 9
modify shared file) occurred.

948 Job processor initialized (? JPINIT system call 17
issued).

949 Job processor released (? JPREL system call 17
issued).

950 Job processor moved to another logical pro- 17
cessor (? JPMO system call issued).

951 Job processor status requested (? JPSTA T sys- 17
tern call issued).

093-000335 Licensed Material - Property of Data Genel~al Corporation A-7

Table A-l. SYSLOC Event Codes and Record Lengths

Event Code Meaning Message
(decimal) Length

(Words 8
through n)

952 Logical processor created (?LPCREA system 17
call issued).

953 Logical processor deleted (?LPDELE system 17
call issued).

954 Logical processor status requested (?LPSTAT 17
system call issued).

955 Class assignments requested or set 17
(?LPCLASS system call issued).

956 Class IDs requested or set (?CLASS system 17
call issued).

957 Class scheduling matrix requested or set 17
(?CMATRIX system call issued).

958 Class scheduling status requested (?CLSTAT 17
system call issued).

959 Class scheduling enabled or disabled 17
(?CLSCHED system call issued).

960 Process's user locality changed (?LOCALITY 17
system call issued).

961 ?MIRROR system call issued successfully. 17

962 ?MIRROR system call issued unsuccessfully. 17

963 LOU mirror image released by system. 17

964 System Manager privilege (SYSMGR) turned 17
on or off.

1023 UPSC power supply fault. 25

1024 Console connect time. 25

1025 Unit mount time. 25

1026 Privileged user logon. 9

1027 Pages printed. 25

1028 Reserved. -

1029 Reserved. -

1030 RMA accounting. 12

A-a Licensed Material - Property of Data General Corporation 093-000335

Table A-l. SYSLOG Event Codes 4lnd Record Lengths

Event Code Meaning Message
(decimal) Length

(Words 8
through n)

1031 Reserved. -

1064 FT A accounting. 21

1065 General event (LOGEVENT). Varies

1066 DG/SNA accounting. 21

1067 X.25 Accounting. 38

1068 X.25 Error. 14

1069 Message Transfer Service (MTA) accounting. 47

1200 Reserved. 0

1201 Reserved. 0

1211 Labeled medium (tape) mounted. 28

1212 Labeled medium (tape) dismounted. 28

1213 User logon. 26

1214 File printed. 154

1215 Invalid logon attempt. 25

1220 User profile created. 17

1221 User profile deleted. 17

1222 User profile renamed. 33

1223 User profile opened (e.g., by EXEC when a 17
user starts to log on).

1224 User profile read (follows event o:xle 1223). 18

1225 User profile written to (follows event 1223). 18

1226 User profile closed (follows event 1223). 17

1227 Reserved. -

1228 Reserved. -

1229 LOCK-CLI locked or unlocked. -

NOTE: Codes 900-999 and 1200-1299 are logged only if loggling was enabled with / DETAIL = FULL.

093-000335 Licensed Material - Property of Data General Corporation A-9

Word

8

23
24

25
26

27
28

29
30

31

Word

8

9

10

11

12

39

10-03322

Code 3

Username,
process name

(in ASCII,
32 characters,

16 words)

Elapsed time,
seconds (octal)

CPU time,
seconds

I/O
blocks

Page
seconds

Code 4

Device code

Unit #

Status

Retry count

Extended
device
status

Word

8

9

10

Word

8

9
10

11

Word

8

9
10

11
12

13

14
15

16
17

18

19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40

Code 7

Date reported

Time
Reported

Code 8

AOS/VS system
Revision #

Log Format
Revision #

Code 41

Address of
panic caller

Panic subroutine
return temporary

Panic save
AC2 temporary

Narrow temporary

Panic
code

Value #1
(ACO)

Value #2
(AC1)

Value #3
(AC2)

Value #4
(AC3)

Value #5

Value #6

Value #7

Value #8

Stack
pointer

Frame
pointer

Stack
limit

Stack
base

Word

8

9

10

11

12

Word

8

9

10

11

Word

8

9

10

11

12

13

14

21
22

n

Code 43, 44, or 45

Code (43, 44, or 45)

Cause (CPU, I/O
access, sniff, other)

Physical page # 1

Double word on
module

Syndrome bits

Code 106

ERCC code

Module #

Plane #

Bit #

Code 910 (process
created)

Error code if
any (Note 1)

0

Privilege bits
(?PROC format)

0

New PID

Username, in ASCII,
16 characters,

8 words

Program CPR)
file pathname in ASCII,
or terminated by null

Figure A-2_ Log Record Codes, Events, and Message Lengths, Excluding Header (continues)

A-10 Licensed Material - Property of Data General Corporation 093-000335

Word Code 912
(process terminated)

8 Error code if

9
any (Note 1)

10
Target Plo

11

Word Code 913, 914, 915
(Super mode activity)

8 Error code if
9 any (Note 1)

10 ~--------------~ n (0 means no
change, 1 means off,

11~ ___ 2 __ m_e_a_n_s_o_n_) __ ~

Word Code 916 (?RINGLo)

8

9
10

11

12

n

Error code if
any (Note 1)

0

Ring number

Program (.PR)
file path name

loaded, in ASCII,
terminated by null

Word Code 917 (chain)

8 Error code if
any (Note 1)

9~ ______________ ~

10 Program (.PR)
file pathname,

in ASCII, terminated
by null n~ ______________ ~

10·03322

Codes 918,919
(Assign/revoke assignment

Word of terminal by PMGR)

8

9
10

11

Word

8

9

10

11

12

n

Error Code, if any.

Plo of process
receiving/losing

terminal assignment.

Device code of lAC
or system console.

Secondary code
(terminal line #).

Code 920
(file opened)

Error code if
any (Note 1)

Flag word
(Note 2)

Channel number

Pathname, in ASCII,
terminated by null

Codes 922, 931, 932, ~.33,
and 934 (file accessed by

Word channel number)

8 Error code if

9 any (Note 1)

10 Flag word
(Note 2)

11 Channel number

Codes 924, 925, 926, ~.27,
928, 929 (file deleted, UIDA

accessed, LOU released,
Word file created)

8

9
10

11

n

Error code if
any (Note 1)

Flag word
(Note 2)

Pathname, in ASCII,
terminated by null

(for code 927,
path name is the

LOU name)

Word

8

9

10

11

n

n + 1

n +m

Word

8

9

10

11

n + 1

n +m

Word

8

9

10

11

n + 1

n +m

Code 937
(LOU initialized)

Error code if
any (Note 1)

Flag word
(Note 2)

Disk unit name(s) in
LOU (e.g., @oPJ10),
in ASCII, separated

by null (if more
than one), ends
with two nulls.

LOU name, in ASCII,
terminated by null

Code 938
(file renamed)

Error code if
any (Note 1)

Flag word
(Note 2)

New filename, in
ASCII, terminated

by null

Original pathname,
in ASCII, terminated

by null

Code 939
(file ACL changed)

Error code if
any (Note 1)

Flag word
(Note 2)

New ACL in call
?SACL format:

user, null, value,
user, null, value,

and so on (user is
the username, in

ASCII; value is the
access value,

explained in Note 3);
a null terminates

the ACL.

Pathname, in ASCII,
terminated by null.

Figure A-2. Log Record Codes, Events, and Message Lengths, Excluding Header (continued)

093-000335 Licensed Material - Property of Data Genernl Corporation A-11

Word

8

9
10

11

12

n

Code 942
(file renamed by

channel #)

Error code if
any (Note 1)

Flag word
(Note 2)

Channel number

New filename, in
ASCII, terminated

by null

Code 943
(file ACL changed by

Word channel #)

8

9
10

11

12

n

Error code if
any (Note 1)

Flag word
(Note 2)

Channel number

New ACL in call
?SACL format, as

described in
939 above;

ends with a null.

Code 945 (shared file
Word opened, first open)

8

9
10

11

12

13

14

15

ID.03322

Error code if
any (Note 1)

Flag word
(Note 2)

Channel number

File
identifier

Caller's ring

Pathname, in
ASCII, terminated

by null

Code 946
(shared file opened,

Word subsequent open)

8

9
10

11

12

13

14

Error code if
any (Note 1)

Flag word
(Note 2)

Channel number

File
identifier

Caller's ring

Code 947
(permitted access to,

Word protected word file)

8

9

10

11

12

13

14

15

Word

10

11

12

17

Word

8

Error code if
any (Note 1)

ACL value
(Note 3)

File
identifier

Caller's ring

Target ring

Target PID

Codes 948
through 960

Error code, if any.

Reserved.

Code 1023

UPSC power supply
fault code

Word Code 1024 or 1025

8

15
16

31

32

Word

8

15
16

31

32

Username
(in ASCII, 16

characters,
8 words)

Device name

(in ASCII,
32 characters,

16 words)

Minutes used

Code 1027

Username
(in ASCII, 16

characters,
8 words)

Device name
(in ASCII, 32

characters,
16 words)

Pages printed

Figure A-2. Log Record Codes, Events, and Message Lengths, Excluding Header (continued)

A-12 Licensed Material - Property of Data General Corporation 093-000335

Word

8

9

10

11

18
19
20

21
22
22

23

Word

8

15

16

17

18

10-03322

Code 1030

Remote host 10

Virtual Circuit # 1

AOS/VS error code

Username
(in ASCII, 16

characters,
8 words)

Not used

Connect time

Request count

Code 1031

Username
(in ASCII, 16

characters,
8 words)

Remote host #

Virtual Circuit # 1

Termination code

Word

8

9

10

11

18
19
20

21
22

23

24

25
26

27
28

29
30

31
32

33

Word

8

31

Code 1064

Remote host 10

Virtual Circuit #

AOS/VS error code

Username

(in ASCII, 16
characters,

8 words)

Not used

Connect time

Service type

I/O block coun1t

of packets sent

of packets received

of bytes sent

of bytes received

Code 1065

Message (in
ASCII, padded

to multiple
of 8, max is

48 characters,
24 words)

Word

8

9

10
11

12
13

14
15

16
17

18
19

20
21

29

Word

8

15

16

17

18

19

20

35
36

43
44
45

46

47

48
49
50

51

Code 1066

Logical unit
(LU) address

Time LU closed

Time LU opened

of request
units received

of bytes received

of Request
units sent

of bytes sent

SNA customer

name (username:
processname,

in ASCII.
18 characters,

9 words)

Code 1067

Linkname
(in ASCII, 16

characters,
8 words)

Channel #

Virtual Circuit #

Connect type

Reason code

Username:
processname

(in ASCII, 32
characters,
16 words)

Connection
address (in ASCII,

15 characters,
8 words)

Connect time

of packets sent

of packets received

of bytes sent

of bytes received

Figure A-2. Log Record Codes, Events, and Message Lengths, Excluding Header (continued)

093-000335 licensed Material - Property of Data General Corporation A-13

Word

8

15

16

17

18

19

20

21

Code 1068

linkname
(in ASCII, 16

characters,
8 words)

Channel #

Virtual Circuit #

Flag word

XODIAC error code

Diagnostic error
code

AOSjVS error code

Code 1069
Word (MTA Accounting)

8

9

10

11

18

19
20

21
22

23

24

25
26

27
28

29
30

31
32

33
34

47

10·03322

Remote host 10

Virtual Circuit 10

Error Code

Username
(16 characters)

Reserved

Connect time

Service type

I/O block count

of packets sent

of packets received

of bytes sent

of bytes received

Reserved (14 words).

Word

8

9

10

17

18

33
34

36

Word

8

9

10

17

18

33
34

Codes 1211 and 1212
(labeled medium

mounted and
dismounted)

Error code if
any (Note 1)

Username (in
ASCII, 16
characters,

8 words)

Device name
(in ASCII, 32

characters,
16 words)

Volume 10
(volid), 6

characters,
3 words

Code 1213
(user log on)

Error code if
any (Note 1)

Username (in
ASCII, 16
characters,

8 words)

Console name
(in ASCII, 32

characters,
16 words)

Privileges
(7PROFILE call

format)

Word

8

9

10

17

18

33
34

35

162

Word

8

9

10

17

18

33

Code 1214
(file printed)

Error code if
any (Note 1)

Username (in
ASCII, 16
characters,

8 words)

Device name
(in ASCII, 32

characters,
16 words)

of pages
printed

Pathname of
file (in

ASCII,256
characters,
128 words)

Code 12 15 (invalid
log on attempt)

Error code if
any (Note 1)

Username (in
ASCII, 16
characters,

8 words)

Console name
(in ASCII, 32

characters,
16 words)

Codes 1220, 1221, 1223,
and 1226 (user profile

created, deleted,
Word opened, and closed)

8

9

10

25

Error code if
any (Note 1)

~----------------~
Profile name
(in ASCII, 32
characters, 16

words; terminated
by null)

~----------------~

Figure A-2. Log Record Codes, Events, and Message Lengths, Excluding Header (continued)

A-14 Licensed Material - Property of Data General Corporation 093-000335

Word

8

9

10

25
26

41

Code 1222 (USER
profile renamed)

Error code if
any (Note 1)

Original
profile name
(in ASCII, 32
characters, 16

words; terminated
by null)

New profile
name (in ASCII,

32 characters,
16 words)

Word

8

9

10

25
26

27

Codes 1224 and 12:25
(user profile, field

read or written)

Error code if
any (Note 1)

profile name
(in ASCII, 32
characters, 16

words; terminated
by null)

Field number
in descriptior

packet (?profile
call format)

Code 1229 (locCLI
Word locked or unlocked.)

8

9

10

11

Error code if
any (Note 1)

~--------------~

n (0 means no
change, 1 means

unlocked, 2 means
locked')

Note 1. If an error occurred on this event, the AOS/VS error cl:>de is stored, right­
justified, in these two 16-bit words (this 32-bit doublE~ word). For example, the
the value 242 (octal) in this double word means the user's access was rejected a
EXECUTE ACCESS DENIED error message. If no error occurred on the event,
the value of the double word is O.

Note 2.

Note 3.

10·03322

The flag word normally contains 0, unless something oxtraordinary happened to
prevent the complete record from being written (for e):ample, a hard error on
disk). the error code field within the record will probably not show an error,
since it records things like user access privilege errors. The flag word codes
(numeric values) are

040000 Pathname field not available. This means a problem (like a hard error on disk,
also shown in ERROR-LOG) prevented the entire pathname from being recorded. It
can also occur on an attempt to initialize an LOU if the user lacked E access to
the PER entry for the unit.

020000 This means the first variable field was incomplete (perhaps)
for the same reasons as flag code 40000). The first variable
field occurs only in records with codes 9~17, 938, 939,
942, and 943 (LOU initialize, file rename, and ACL change).

010000 This means that one or more fixed fields (like channel number) were not
available. It can happen on ?OPEN or ?SOPPF if the path name resolution fails.

The file ACL value is a composite of the value of bit s.ettings. The structure of
log records longer than 8 words is as follows:

Bit

"----..... "y""---"'/"--------.y------""
~g~ ~g~

Thus OWARE access has the value 37, WARE 17, ABE 7, RE 3, and E 1.

Figure A-2. Log Record Codes, Events, and Message Lengths, Excluding Header (concluded)

093-000335 Licensed Material - Property of Data Gtmeral Corporation A-15

Anatomy of a System Log File Record

An easy way to examine a system log file is to use the DISPLAY utility. You can apply
the /DECIMAL switch to get a decimal display. Figure A-3 shows both an octal and
decimal display of a logfile. You can get similar displays via X DISPLAY :SYSLOG and
X DISPLAY/DECIMAL :SYSLOG.

o 000000 000010 011635 000000 101443 000001 000000 000000
10 000000 000040 011635 000000 101475 000003 000000 000000
20 047520 035060 030063 000000 000000 000000 000000 000000
30 000000 000000 000000 000000 000000 000000 000000 000000
40 000000 000002 000000 000320 000000 000011 000000 000012

400 000000 000050 011635 000000 102146 002001 000000 000000
410 045101 041513 000000 000000 000000 000000 000000 000000
420 046524 041060 000000 000000 000000 000000 000000 000000
430 000000 000000 000000 000000 000000 000000 000000 000000
440 000003 000000 000000 000000 000000 000000 000000 000001

••.•••.•• # ••••••

OP:003

... (..... f
JACK
MTBO

1410 000000 000020011635000000 120060 002051 000000 000000 0.)
1420 051165 067156 064556 063440 051145 073040 031056 030060 Running Rev 2.00
1430 000000 000020 011635 000000 120102 002051 000000 000000 B.)
1440 046117 043505 053105 047124 020114 064566 062563 020441 LOGE VENT Lives!

0 0 8 5021 0 33571 1 0 0 •••.••••• # •••••.

8 0 32 5021 0 33597 3 0 0
16 20304 14896 12339 0 0 0 0 0 OP:003
24 0 0 0 0 0 0 0 0
32 0 2 0 208 0 9 0 10

256 0 40 5021 0 33894 1025 0 0 . .. (..... f
264 19009 17227 0 0 0 0 0 0 JACK ...•..•.••..
272 19796 16944 0 0 0 0 0 0 MTBO
280 0 0 0 0 0 0 0 0
288 3 0 0 0 0 0 0 1

776 0 16 5021 0 41008 1065 0 0 0.)
784 21109 28270 26990 26400 21093 30240 12846 12336 Running Rev 2.00
792 0 16 5021 0 41026 1065 0 0 B.)
800 19535 18245 22085 20052 8268 26998 25971 8481 LOGE VENT Lives!!

Figure A-3. An Octal and Decimal DISPLAY of a System Log File

The first record starts with number 0 in both the octal and decimal display. The second
word in this record appears as 000010 in the octal display, 8 in the decimal display. This
word tells the length. For this record it is 10 octal (8) words. The code, in the fifth word
of the record, is 1. From Figure A-2, you can tell that code 1 means that system logging
was on.

Figure A-4 shows a breakdown of the first record in octal and decimal.

A-16 Licensed Material - Property of Data General Corporation 093-000335

0 000000 000010 011635 000000 101443 000001 000000 000000 #
'-----v---" '-y---J ------------- '-y---J '-----.."...--' "----v----"'

Location
Record ASCII

in
length Date Time Code Filler translation

file (. means none)
r--A--.. ~ r--A--.. ~ ~ ~

0 0 8 5021 0 33571 1 0 0 #

Figure A-4. Octal and Decimal Versions of a SYSLOG Record

The second record starts at location 10 octal (8). It is 40 octal (32) words long. The code
in the fifth word is 3, which means that the record is a process termination message. The
ASCII appears in the field off to the right (this fielld is not in the record, but is a
convenience supplied by DISPLAY). Looking at the fields of this record, you can see (in
the last line) the elapsed time, processor time, I/O blocks, and page-seconds.

The third record shown appears later on in the file. It has a record length of 50 octal
(40). The fifth word, 2001 octal (1025), describes it as a unit mount. Again, you can see
the ASCII off to the right. JACK used the mounted tape for 3 minutes.

The fourth and fifth records appear still later in the file. Each is 24 octal (16) words
long. The fifth word in each header is 2051 (1065). This means it is an event record,
written by the LOGEVENT command. Once more, you can see the ASCII on the right.

The report that the REPORT program would generate from this log file would have a lot
of columnar information, and its numbers would be d(~cimal - as shown in the earlier
REPORT figures.

End of Appendix

093-000335 Licensed Material - Property of Data General Corporation A-17

Glossary

A-type process
A process that has a PID between 1 and 255. This process can't execute any program
if PIDs 1-255 are in use. Error conditions may result if a process with a PID over
255 tries to communicate with an A-type proc(~ss. A is the PID-size type of all
processes before AOS/VS revision 7.00 (except the CLI and EXEC).

anyPID program
A program that can run at any PID up to the maximum specified at VSGEN. The
system will run it above 255 if possible. An anyPID program's program file has been
edited with the SPRED editor and its PID-size type made anyPID.

AOS/DVS
Advanced Operating System/Distributed Virtual System, DG's 32-bit operating system
for distributed computing.

B-type process
A B-type process has a PID between 1 and 255. It can't run if PIDs 1-255 are in
use, but it can create and communicate with a process of any PID-size type. Most
DG programs, including the CLI and EXEC, run as B-type processes. By default,
the CLI run for each user is a B-type process. Thus, by default, a user CLI must
run in the range the range 1-255 but can execute any PID-type program. Most
processes from programs supplied with AOS/VS are B-type processes.

Block I/O
One of two input/output modes in which you can access a file. Information is transferred
in 512-byte disk blocks, magnetic tape blocks, M:CA blocks.

AOS/VS always performs I/O in block units, whether you employ block or record
I/O.

Block length
The number of bytes per block. (See also, Block.)

Break file
A status file in which AOS/VS, under certain conditions, saves the state of a terminated
process.

C-type process
A C-type process has a PID above 255 or below 255, depending on what PIDs are
free. A C-type process can execute any PID-size type program. But error conditions
may arise after it executes a smallPID program (since the father process has a PID
the son can't understand).

Character device
A device that performs I/O in byte units. CRT terminals and hard-copy terminals
are typical character devices.

093-000335 Licensed Material - Property of Data GE,neral Corporation Glossary-1

Child processor
A job processor (physical processor) other than the primary (mother) processor. Mother
and child processors exist only in computers with more than one job processor. (See
also, mother processor.)

Class
A set of processes that receive special scheduling treatment.

CLI
See Command line interpreter (CLI).

Command line interpreter (CLI)
A utility that is the main interface between you and the system. The CLI accepts
your command lines and (among other functions) translates this input into commands
for other utilities, or into commands that directly perform functions such as file
maintenance.

Compute-bound process
A process that - within a given interval - issues many processor instructions. These
instructions might involve computations, or data comparisons and sorts. Conversely, a
process that demands more I/O than processor attention is I/O bound. Multiple job
processors (and classes and logical processors) are most efficient when a system runs
compute-bound (not I/0 bound) processes.

Connection table
A table in which AOS /VS writes an entry to manage exchanges between customers
and servers.

Control character
A keyboard character that you type while you press the CTRL key.

Control point directory (CPD)
A directory in an LO that contains two variables: CS, the amount of space currently
allocated; and MS, the maximum amount of space available in the directory. CPOs
allow you to control the system's disk space allocation.

Control sequence
A CTRL-C followed by any control character. (See also, Control character.)

CPD
See Control point directory (CPD).

Critical region
A procedure or database shared by all tasks, but available to only one task at a time.

CS (current space)
The amount of space currently allocated in a CPO. (See also, Control point directory
(CPD).)

Data-link control character
A synchronization character recognized by both sending and receiving BSC stations.

Data-sensitive record type
A record type whose records consist of character strings terminated by one of the
default delimiters, NEW LINE, carriage return, null, or form feed, or terminated by
a user-defined delimiter.

Glossary-2 Licensed Material - Property of Data General Corporation 093-000335

Dedicated line
A communications line that continuously connects. two or more stations, regardless of
the amount of time the line is actually in use.

Dedicated pages
Memory pages that AOSjVS reserves for specific; purposes, including physical pages
occupied by the resident portion of the operating system and pages wired to a resident
process.

Demand paging
Moving logical pages from the disk to memory as a process refers to (demands) those
pages.

Device
A hardware peripheral component; each type of device has unique operating charac­
teristics. Devices are either character-oriented (stmd or receive single bytes of data)
or block-oriented (send or receive data in multibyte blocks).

Device independence
The ability of a process to communicate with a device without regard to the unique
nature of the device.

Directory
A file that catalogs files and allows qualified users to access them. Directories are
connected in a structure that resembles an invc;:rted tree. On this tree, the lower
directories are inferior to the higher directories. Each directory contains an entry for
any directory that is immediately inferior to itself.

Directory entry
A unit of information contained in a directory; a directory can contain multiple entries.
A common type of entry is that which lists certain information about a file in the
directory. Examples of other types of entries are IPC entries and links. (See also, File
status.)

Disk
A magnetic recording medium (for example, disk pack, disk cartridge, diskette, fixed­
head disk).

Disk address
The location of a block on a disk. (See also, Disk block.)

Disk block
The smallest allocatable unit of disk memory, standardized as 512 bytes.

Disk controller
A mechanism that directs the operator of one or more disk units. A program can
direct the operation of a disk controller.

Disk controller name
The name of a disk controller, consisting of three letters and possibly one decimal
digit; for example, DPE and OPEL

Disk drive
See Disk unit.

Disk unit
A mechanism that physically reads from and writes to disk.

093-000335 Licensed Material - Property of Data G4!tneral Corporation Glossary-3

Dis k unit name
The name of a disk unit, consisting of the name of a disk controller followed by a
decimal digit; for example, OPEO and OPEIO.

Dormant state
One of four task states, in which a task exists that has not yet been initiated (made
known to the operating system) or that has terminated execution.

Double connection
A connection in which each process can act as either the customer or the server of
the other, depending on the action to be performed.

Dynamic record type
A record type in which you specify the record length when you read or write.

Eligible process
A process that has been allocated main memory, which allows it to compete for control
of the processor with other such processes, based on its proces type and its priority.
(This is one of three process states.)

Error code
A 32-bit unsigned value that AOSjVS returns in ACO to indicate an exceptional
condition. (This exceptional condition mayor may not indicate an actual error.) Each
error code has a text string associated with it. (See the description of the ?ERMSG
system call for information on getting the text string associated with a particular error
code.)

Exceptional condition code
See Error code.

Executable file
A binary memory-image file that you can read into main memory from a peripheral
storage device for exection; a program that can run.

Executable task

File

A task that has control of a processor. Only one task at a time can be executing.
(This is one of four task states.)

A collection of related data treated as a unit. A file can contain up to 2**32 bytes
of data. Disk and magnetic tape can contain one or more files.

File element
The basic unit of storage in the AOS jVS disk file organization. Each file element
consists of one or more contiguous blocks. You specify file element size when a file
is first created. If a file grows, it grows in units of the file element size.

File status
A collection of information about each file. This information includes the file size,
time of creation, and other details.

File system
See Hierarchical file system.

Glossary-4 Licensed Material - Property of Data General Corporation 093-000335

Filename
An alphanumeric file identifier. All filenames in a single directory must be unique,
and each can contain no more than 31 characters.

Fixed-length record type
A record type in which you specify a predefined, c:ommon record length.

Form name
The name of a file in the :UTIL:FORMS directory, which was created with the CLI
Forms Control Utility (FCU). The form name must contain from 1 through 31 legal
filename characters.

Gate
An entry point to code in an inner ring.

Global port number
A number made up of a port's PIO, ring numbc;:r, and local port number, which
uniquely identifies that port system-wide.

Global server
A separate process that performs functions on behalf of a customer process. (The
servers that are described in Chapter 9 are global servers.)

Hierarchical file system
The inverted tree structure in which AOS /VS organizes files and directories. The
highest directory in the hierarchy is the system root, which points to inferior directories;
these, in turn, point to inferior directories. Any process with proper privileges can
access any file within any directory.

High-order bits
The 16 most significant bits in a 32-bit value; that is, Bits 0 through 15.

Histogram
A data array that provides a global view of processor activity.

Hybrid program
A program that cannot run if PIOs 1-255 are in use, like a smallPIO program. A
hybrid program, however, can communicate with processes with PI Os above 255. A
hybrid program's program file has been edited with the SPREO editor and its PIO­
size type made hybrid. Most programs shipped with AOS/VS Revision 7.00 are hybrid
programs.

Image
See LDU image.

Index
A single block that lists the address of each file element.

Ineligible process
An process that has not been allocated main memory, but in all other ways is ready
to run. (This is one of three process states.)

Initial task
The first task that executes in a process. AOS/VS assigns the initial task TIO 1,
priority O.

Interprocess communication facility (IPC)
A generalized AOS/VS facility that sends free-format messages of any length between
any two processes. IPC messages are sent between ports. (See also, Port.)

093·000335 Licensed Material - Property of Data GenE,ral Corporation Glossary-5

IPC
See Interprocess communication facility (IPC).

Job processor
A hardware entity that computes and interprets program instructions. The term includes
and extends the standard definition of central processing unit (CPU). When
AOS/VS starts up, it recognizes only the default processor, JPO. If your computer
has more than one job processor, you must initialize the additional job processors. In
a system with multiple job processors, the default processor, JPO, is called the mother.
Each additional processor is called a child.

Jobname
A name that identifies a batch job. A jobname must contain from 1 through 31 legal
filename characters.

JPID

K

The ID number that AOS/VS uses to identify job processors.

An abbreviation for the decimal number 1024. Thus, 32 Kbytes of memory are 32,768
bytes.

Kernel
The part of the operating system that contains device drivers, system parameter tables,
and other things. It talks to the hardware, PMGR, and - through the Agent - to
users.

Keyword switch

LD

A two-part switch of the following form: /keyword=value. For example, /L=filename
is a keyword switch.

See Logical disk (LD).

LDU image
If two LDUs have the same name but different LDU unique IDs, they are said to
be images of each other. An image may be synchronized (data is the same) or
unsynchronized (data is different). (See also, mirroring).

LDU unique ID
The LDU unique ID is a six-character field in the Disk Information Block (DIB) you
create with the Disk Formatter. The system and system utilities can tell from the
LDU unique ID whether the LDU can be part of a mirrored LDU.

LEF mode
The CPU state that protects the system's I/O devices from unauthorized access.
I/O instructions and LEF instructions use the same bit patterns. AOS/VS determines
how to interpret these instructions by checking the state of LEF mode and the state
of I/O mode. (LEF mode and I/O mode are mutually exclusive states.)

Link entry
A file that contains a pathname to another file.

Link-to-link reference
A link entry that is another link entry.

Load effective address mode
See LEF mode.

Glossary-6 Licensed Material - Property of Data General Corporation 093-000335

Local root
A single directory that acts as the foundation for a directory structure on a logical
disk.

Local server
A server that shares the same logical address space as its customer. (Local servers
can be loaded into the inner rings of your process.)

Locality
A number, or group of numbers, that determines the class of a process. There are
two kinds of locality: user locality, (defined by PREDITOR in a user profile), and
program locality (defined in a program file preamble by the SPRED utility).

Locality of reference
Clustering instructions and data by writing code in modular pieces.

Logical address space
The entire range of locations that a process can address. A process's user-visible logical
address space can be up to 512 Mbytes for each ring.

Logical context
The total pages available to you (the user), including shared, unshared, and unused
pages.

Logical disk (LD)
One or more physical disk units that you want to consider as a single logical unit.

Logical disk address
The location of a logical block on a logical disk. The address must include a disk
pointer and a disk address to access the block.

Logical disk mirroring
See mirroring.

Logical disk name
The filename of a logical disk's root directory.

Logical processor
A special scheduling arrangement that allocates processor time to - usually - several
process classes. You can create up to 16 logical processors.

Low-order bits
The 16 least significant bits in a 32-bit value; that is, Bits 16 through 31.

LP
See logical processor.

LPID
The ID number by which AOSjVS identifies a logical processor.

LRU chain
A list of released shared pages arranged in least recently used (LRU) order.

Main memory (physical)
Core or semiconductor storage, which contains computer instructions or data.

Master LD
A logical disk (LD) whose root becomes the system root (identified by a colon (:)).
You must select the master LD.

093-000335 Licensed Material - Property of Data GElneral Corporation Glossary-?

MCA
See Multiprocessor communications adaptor (MCA).

Mirroring
Mirroring (also called logical disk mirroring) means having the operating system
maintain two logically identical LDU images. (Mirroring implemented through the
disk controller is also called hardware mirroring.) Mirrored LDUs provide high data
availability since the system can continue to function on one image if the other image
is taken out of service (as for backup) or if there is a hard disk error.

Modem
A communications device that translates analog signals to digital signals, and vice
versa, over telephone lines.

Mother processor
The default job processor, JPO. If your computer has other job processors, each one
is called a child processor.

MS (maximum space)
The maximum amount of space avilable in a CPo. (See also, Control point directory
(CPD).)

Multidrop line
See Multipoint line.

Multilevel connection
A process that acts as both a server and a customer in a customer/server relationship.

Multipoint line
One of the two types of BSC line configurations (the other type is point-to-point).
There is no contention between stations on a multipoint line.

Multiprocessor communications adaptor (MeA)
A device that permits communication between two Data General processors using the
processors's data channels.

Multiprogramming
The ability to run an arbitrary number of independent processes. The system allocates
its resources among these processes based on their priorities, types, or certain software
events.

Multitasking process
A process in which more than one task is currently active.

Obituary message
A zero-length IPC message that is sent to a process when a customer or a server
disconnects. (Obituary messages use the IPC system calls.) (See also, Obituary notice.)

Obituary notice
A signal that is sent when a customer or a server disconnects. (Obituary notices use
the ?SIGNL, ?WTSIG, and SIGWT system calls.) (See also, Obituary message.)

Object code
Code, consisting of 32-bit instruction words and data words, which has been assembled
or compiled from a source code file but not yet bound with other modules by the
Link utility to make an executable program.

Glossary-8 Licensed Material - Property of Data General Corporation 093·000335

Object code file
A file containing object code, usually created by the Macroassembler or one of several
high-level language compilers and having a filename! ending in ".OB."

Overlay
A portion of a larger program that can be brought into main memory when it is
needed (for only 16-bit processes).

Overlay area
A fixed-length storage area in a program in which different overlays can be read at
different times while a program is executing (for only 16-bit processes).

Packet
A group of words in your address space that AOS/VS uses to get your input
specifications and/or return output values. Many system calls require a packet.

Page
Memory storage area of 2 Kbytes (2048 bytes), starting on a 2 Kbyte boundary.

Page fault
A reference to a page that is not currently in the working set.

Parameter packet
See Packet.

Parametric code
Code in which system call packet offsets are cited by their mnemonic names, regardless
of how the offsets are ordered in the packet figures.

Pathname
A name that identifies the location of a file within the system's files. A pathname
may be a filename, or an optional list of directories followed by the file's name.

Physical disk
Same as disk.

PID
See Process identifier (PID).

PID 2
The initial operator process. (See also, Process identifier (PID).)

PID/ring tandem
Process identifier (PID)/ring-within-PID ordered pair. The connection management
facility uses PID Iring tandems to identify all connections.

Point-ta-point line
One of the two types of BSC line configurations (the other type is multipoint). Each
station must bid for a point-to-point line.

Polling list

Port

A series of contiguous words that contains each nsc tributary's poll address and
device address.

A data path to or from a process. The IPC facility sends messages between ports,
which are full-duplex and can therefore send and receive data simultaneously. Each
port is assigned a unique number (see also, Interprocess communication facility (IPC).)

093-000335 Licensed Material - Property of Data Geneml Corporation Glossary-9

Port numbers
The identification mechanism that allows two processes to send and receive messages
via the IPC facility. The system maintains a directory of process numbers and associated
port numbers.

Pre-emptible process
A process that the scheduler treats as a high-priority swappable process. (See also,
Swappable process.)

Priority numbers
Values in the range from 0 (the highest priority) to 255 (the lowest priority) that
determine the order in which tasks or processes execute.

Process
An executing set of instructions.

Process identifier (PID)
A number from 1 through 32 that you assign to identify each process.

Process name
A character string consisting of a username and a simple process name, with a colon
(:) separating the two elements. AOSjVS uses process names and PIDs to identify
each process.

Process priority
One of the factors that governs how the system allocates CPU time to a process.
More than one process can have the same priority. (See also, Priority number.)

Process state
One of the factors that AOSjVS considers to determine the order in which it executes
processes.

Process type
Process type governs when and for how long a process acquires main memory. The
three process types are: resident, pre-emptible, and swappable.

Program
The current executable contents of a process's address space. A program contains the
code paths executed by tasks. A process contains only one program at any given time;
but during the execution of a process the current program may change many times.

Program file
A segment image linked for anyone ring. (See also, Segment image.)

Resident process
A process that always remains in memory somewhere. (See also, Swappable process
and Pre-emptible process.)

Ring
A physical barrier separating 512-Mbyte segments of main memory. AOSjVS protects
system and sensitive user data by enforcing ring crossing protocols.

Ring maximization
A protection scheme in which AOSjVS considers a task that is executing in a user
ring to be less privileged than another task that is executing in a lower user ring.
AOSjVS uses ring maximization to validate user-supplied channels, word pointers, or
byte pointers for system calls. (See also, Ring specification.)

Glossary-10 Licensed Material - Property of Data General Corporation 093-000335

Ring specification
A protection scheme in which AOS/VS protects tasks executing in one user ring from
interference by tasks executing in any other user rings. The connection management
and IPC facilities use ring specification as their protection scheme.

Root process
The most superior process in the system hierarchy. All system processes and the initial
process are sons of the root process.

Scalar notation
A time or date notation in which the current time equals the number of biseconds
that have elapsed since midnight, and in which the date equal the number of days
that have elapsed since 31 December 1967.

Search list
A list of directories that AOS/VS searches if it fails to find a specified file in your
working directory. Each process has its own search list.

Segment
One of eight independent 512-Mbyte units connected by strict protocols that make
up your logical address space. (See also, Logical address space.)

Segment image
A .PR file that AOS/VS has made part of a process's logical address space. (A
segment image is a static entity.)

Shared library
See Shared routine facility.

Shared page
A page in your logical address space that more than one process can access. Shared
pages are usually write-protected to prevent overwriting.

Shared routine facility
The facility whereby AOS/VS implicitly calls one:: or more library routines on disk
into main memory areas in page increments; proct::sses share these.

smallPID program
A program that cannot run if PIDs 1-255 are in llse. Sma lIPID is the PID-size type
of all programs before AOS/VS Revision 7.00 (except the CLI and EXEC, which
were hybrid in Revision 6.00). The Link program creates programs of smallPID-size
by default.

Source code
Code, consisting of byte-packed words of ASCII c:haracters, which can be converted
by an assembler or compiler into object code. Usually, you compose source code.

Source code file
A file that contains source code. Usually you USI~ the CLI or a text editor under
AOS/VS to create source code.

Spooling
A method of storing information on disk temporarily for later processing. AOS/VS
uses spooling when processes (which run fast) havc~ to use slow devices, like printers.
(Spooling stands for Simultaneous Peripheral Operation On Line.)

Stack
A block of consecutive memory locations set aside for task-specific information. Every
task that uses system calls must have a unique stack. (See also, Wide stack.)

093-000335 Licensed Material - Property of Data GenEtral Corporation Glossary-11

Stack base
The starting address of a stack.

Stack fault handler
A routine that gains control when there is a stack error.

Station
The origin (sender) or destination (receiver) of data over a BSC line.

Swappable process
A process that is swapped into memory and written out to disk at the discretion of
the scheduler. Swappable processes have the lowest priority of the three process types;
they acquire memory only after the scheduler has satisfied all resident and pre-emptible
processes.

Swapping
A procedure whereby AOS/VS writes a process out to disk, and then reassigns the
main memory occupied by that process to another process that is waiting to run. This
procedure is invisible to the process.

Switched line
A communications line on which you use a dialing procedure to establish a connection
between local and remote stations.

System call
A request to the operating system to act on your behalf.

System generation
The process of tailoring AOS/VS to the particular hardware configuration and ap­
plication environment at your installation.

Task
A path through a process. A task is an asynchronously controllable entity to which
the processor is allocated for a specific time. A task can only execute code within the
bounds of the address space allocated to its process.

Task call
See System call.

Task control block (TCB)
A block of data maintained by AOS/VS that contains a memory image of the processor
registers and other context data for each task.

Task identifier (TID)
A user-specified number in the range from 1 through 32 that identifies a task within
a particular process. (See also, Unique task identifier (TID).)

Task priority
Governs which is the executing task within a process. The executing task is always
the highest priority task ready to run in the process with control of the central processor.

Task states
A task in a process exists in one of four states: dormant, ready, suspended, or executing.

TCB
See Task control block (TCB).

Glossary-12 Licensed Material - Property of Data General Corporation 093-000335

Template
Certain charaters to be matched, plus one or morc;! expansion operator characters that
allow specified parts of the template to accept any character as legal.

Tick
A real-time clock pulse.

TID
See Task identifier (TID).

Time-out value
The length of time AOS jVS will wait for a response from the target device before
it takes an error return or begins error-recovery procedures. The shortest possible time­
out value is 2 seconds.

Timesharing
A mUltiprogramming scheme in which processes share the processor on a timed basis;
that is, a process takes control of the processor for a unit of time called a time slice.
When this time slice expires, control goes to the next process that is waiting. Con­
sequently, no process monopolizes the processor.

Trapping
Encountering a hardware fault.

Undedicated pages
Pages that AOSjVS can assign to a process as it requires them.

Unique task identifier (TID)
A system-assigned number that uniquely identifies each task, system-wide. (See also,
Task identifier (TID).)

Unshared page
A page in your logical address space that only one process can access. Unshared pages
cannot be write-protected.

Unused page
A page in your logical address space that is neither shared nor unshared. (See Chapter
3 for information on the relationships among shared, unshared, and unused pages.)

Variable-length record type
A record type whose records have a 4-byte ASCII header that specifies their byte
length. Files that contains records of varying lengths have the variable-length record
type.

Wide stack
A 32-bit stack. (See also, Stack.)

093-000335 Licensed Material - Property of Data General Corporation Glossary-13

Wired pages
Pages that are permanently bound to the working set.

Word
A 32-bit (2-byte) location of memory.

Working directory
A process's reference point in the overall directory structure and its starting point for
file access. Any directory can be a working directory, as long as you have proper
access to it.

Working set
The subset of each process's logical address space that is memory resident. The working
set of a process changes in size and content as the process references pages and then
stops referencing them.

End of Glossary

Glossary-14 Licensed Material - Property of Data General Corporation 093-000335

Index

A

Aborting process and generating terminal interrupt with
CTRL-C CTRL-B, 5-17

Aborting ?TASK while ?UTSK task-initiation routine
is executing, 7-4 (See also, Tasks.)

Accepting next character as literal with CTRL-P, 5-17
(See also, Control characters.)

Access,
Controls on file, 4-11 ff
Coordinating, to common resource, 2-9
Permitting to protected shared file (See ?PMTPF

system call.)
Privileges (See Access privileges.)
Shared (See Shared access.)

Access control list (ACL), 2-9, 4-14ff
Changing default with ?DACL, 4-14
Definition of, 4-14
Examining default with ?DACL, 4-14
Getting with ?GACL, 4-14
Setting default with ?DACL, 4-14
Setting for files or directories with ?SACL, 4-14
Templates, 4-15f

Asterisk (*), 4-15
Plus sign (+), 4-15
Minus sign (-), 4-15

Access control specifications (See Access control list
(ACL).)

Access field (ANSI-standard labeled magnetic tapes),
5-27 (See also, Labeled magnetic tape.)

Access privileges, 2-10, 4-llff (See also, File access.)
File, 2-10
Append (?FACA), 4-12ff
Execute (?FACE), 4-13f
Owner (?FACO), 4-12ff
Read (?FACR), 4-13f
Write (?FACW), 4-12ff

Accessing
all devices, 13-9f (See also, User device support.)
directories, 4-6f
files, 4-11 ff (See also, File access and Access

privileges.)
Accounting file, :SYSLOG, 12-4

ACKO (positive acknowledgment), 14-6, (See also,
Data-link control characters (DLCC).)

Acknowledgments,
Ne~~tiv(: (See Negative acknowledgments.)
PosItIve (See Positive acknowledgments.)

ACL (access control list) (See Access control list (ACL).)
Address of file elements, 4-2
Address space,

Logical (See Logical address space.)
Virtual, 2-8, 3-2f

Illustration of, 2-8
Advantages of multitasking, 7-2
? ALLOCATE system call, 5-1, 5-6
Allocating

blocks for specific data elements, 5-6 (See a/so, Disk
bloc:ks.)

disk blo<~ks, 5-1 (See also, Disk blocks.)
stack space, 7-5f (See a/so, Stacks.)

Alternate J:"eturn from resource system calls, 15-5
ANSI-standard

format, 5-23ff
terminals (See also, Consoles.)

AOS operating system,
Format labeled magnetic tapes, 5-23ff
Program files (file type ?FPRG), 4-5, 5-4 (See a/so,

Program files.)
AOS jVS operating system,

Establishing interface between unsupported device and
(See ?IDEF system call.)

File structure, 4-1
Program files (file type ?FPRV), 4-5ff, 5-4 (See also,

Program files.)
Task-protection, 7-2f (See a/so, Tasks.)

Append (?FACA) access, 4-12ff
Append option, 4-11
Array, extl~rnal gate, 3-21
Array structure for 16-bit processes (See ?IHIST system

call.)
Assembly language instructions,

DIA, 5-7
DIB, 5-7
DIC, 5-7

?ASSIGN system call, 5-1, 5-15f

093-000335 Licensed Material - Property of Data General Corporation Index-1

Assigning
device to process for record I/O, 5-1 (See a/so, Record

input/output (I/O).)
son higher priority, 3-14 (See a/so, Processes.)
Superprocess mode, 3-16 (See a/so, Processes.)
Superuser mode, 3-15 (See a/so, Processes.)

Assignment, breaking file's channel (See a/so, Consoles.)
Asterisk (*) template, 4-15 (See a/so, Access control

list (ACL).)
At sign (@) pathname prefix, 4-10, 5-11 (See a/so,

Pathnames.)
Attribute, permanence (See Permanence attribute.)
Attributes transferred to new program by ?CHAIN,

3-21
Auto-answer modems, 5-14 (See a/so, Modems

(full-duplex).)
Auto-restart/power-failure routine, 13-2, 13-10

Bad blocks, 5-6
BASIC, 7-2

B

Basic overlay area, illustration of, 15-3 (See a/so, Sixteen­
bit processes.)

Batch process information (See ? LOGE V system call.)
BCC (block check character). 14-6 (See a/so, Data­

link control characters (DLCC).)
Beginning control sequence with CTRL-C, 5-17 (See

a/so, Control characters.)
Bias factors, 3-7
Binary mode, 5-15f
Binary synchronous communications (BSC), Chapter 9

Concepts, 14-2
Definition of terms, 14-2

Dedicated communications line, 14-2
Station, 14-2
Switched communications line, 14-2

Disabling line with ?SDBL, 14-2
Enabling line with ?SEBL, 14-2
Error-recovery procedures, 14-2, 14-8f
Error-recovery statistics, 14-9
Illustration of point-to-point/multipoint line

configuration, 14-4
Implementation, 14-9ff
Line configurations, 14-3

Multipoint, 14-3f
Point-to-point, 14-3

Protocol, 14-1 14-5ff
Receiving data or control sequences over lines with

?SRCV, 14-3
Sending data over enabled line with ?SSND, 14-2
Sending text over line, 14-7

Binding pages to working set (See ?WIRE system call.)

Bit masks for ACL specifications, 4-14 (See a/so, Access
control list (ACL).)

?FACA,4-14
?FACE, 4-14
?FACO,4-14
?FACR,4-14
?FACW, 4-14
Combining (See ?CREATE system call, ?DACL

system call, or ?SACL system call.)
Bits, Flag, 9-5
?BLKIO system call, 5-3
?BLKPR system call, 3-1, 3-16f, 7-8 (See a/so, Blocking

Processes.)
Block, time (See ?CREATE system call, Time block.)
Block check (CRC) error, 14-6 (See a/so, Binary

synchronous communications (BSC), Error-recovery
procedures.)

Block check character (BCC) (See Data-link control
characters (DLCC).)

Block count, 5-6
Block input/output (I/O), 5-2f, 5-5f (See a/so, File

input/output (I/O).)
Definition of, 5-5
Differences between physical block I/O and, 5-7
Physical (See Physical block input/output (I/O).)

Blocking processes, 3-16f (See a/so, ?BLKPR system
call.)

Definition of blocked process, 7-8
Voluntarily, 3-16
When it occurs, 3-16f

?BNAME system call, 12-4
?BOMB routine, 15-4f
Break files, 3-19f

Contents, 3-19f
Creating after terminating process with ?BRKFL

(See ?BRKFL system call.)
Creating for every process trap, 3-20
Creating for specified user ring, 3-20
Default pathname of, 3-20
Enabling (See ?ENBRK system call and ?MDUMP

system call.)
Examining, 3-20
Terminating processes and creating, 3-19f

?BRKFL system call, 3-1, 3-20 (See a/so, Break files.)
Broadcasting messages with ?XMT and ?XMTW,

7-12
BSC (binary synchronous communications) line (See

Binary synchronous communications (BSC).)
Buffer, emptying type-ahead and echoing "'C"'C on

console with CTRL-C CTRL-C, 5-17 (See a/so,
Control sequences.)

Burst multiplexor (BMC) I/O ?IDEF option, 13-4f
Burst multiplexor channel (BMC) ?IDEF option (See

?IDEF system call.)
Bypassing retries for disk errors, 5-7

Index-2 Licensed Material - Property of Data General Corporation 093-000335

Bytes,
Moving from customer's buffer, 9-3
Moving to customer's buffer, 9-3

C

Calendar, system (See System calendar.)
Calling process,

Getting full process name of, 3-17 (See a/so, ?PNAME
system call.)

Getting pathname of, 3-17 (See a/so, ?GNAME
system call.)

Getting PID of with ?PNAME, 3-17 (See a/so,
?PNAME system call .)

Calls,
Receive continue (See Receive continue calls.)
Receive initial (See Receive initial calls.)
Send continue (See Send continue calls.)
Send initial (See Send initial calls.)

Card readers, 5-15 (See a/so, Character devices.)
Carriage control, file type of FORTRAN, 4-7
Causes of process trapping, 3-18f (See a/so, Processes.)
CD modem flag, 5-13
?CGNAM system call, 4-9
?CHAIN system call, 3-21

Attributes transferred to new program, 3-21
Linking programs together with, 3-21

Chaining customer processes, 9-6
Chain, LRU (least recently used), 2-7
Changing

number of unshared memory pages (See ?MEMI
system call and see a/so, Pages.)

process priority, 3-5ff
process type with ?CTYPE system call, 3-16
radix using FED utility (See ?FEDFUNC system

call.)
state of another process with Superprocess mode,

3-16 (See a/so, Processes.)
working directory, 4-8 (See a/so, Working directory.)

Channel numbers (See Channels.)
Channels, 5-2, 14-2

Data (See Data channels.)
Definition of, 5-2
Disassociating channel number from file, 5-2
Numbers, 14-2

Character devices, 4-2, 5-12ff
Card readers, 5-15f
Characteristics of, 5-12f

Defining, 5-13
Getting, 5-13
Overriding, 5-13
Terminals 4-2

Definition of, 5-12
Extended characteristics of, 5-13
Text mode, 5-12f

Characteristics,
Character device (See Character devices.)
Extended character device (See Character devices.)

Characteristics words (See a/so, Character devices.)
?CMOD (modem control), 5-14
?CMRI (monitor ring indicator), 5-14
?CNNL, 5-15
?CTSP (blanks control), 5-15

Characters,
Accepting as literal with CTRL-P, 5-17 (See a/so,

Control characters.)
Control (See Control characters.)
Data-li.nk control, 14-5ff (See a/so, Data-link control

characters (DLCC).)
Checking process creation parameters, steps AOS/VS

takes, 3-14 (See a/so, Processes.)
Checkpointing shared memory pages, 2-10 (See a/so,

Pagc::s.)
CLASP (Class Assignment and Scheduling Package),

3-7
Classes, 3-7

Adding, 11-7
Assigning processes user and program localities for,

11-7
Deleting, 11-7
Description of, 11-2
Modifying locality matrix of, 11-7
Primary, 3-7f, 11-9
Second.ary, 3-7f, 11-9

Class scbeduling, 3-7ff
Disabling, 11-5
Enabling, 11-5
Status of, 3-18, 11-5

?CLASS system call, 11-7
Clearing, setting, or examining default ACL with

?DACL, 4-14 (See a/so, Access control list (ACL).)
.CLI files, 4-7
CLI, 4-2, 5-13

DISMOUNT command, 5-32
DUMP command, 5-32

Syntax, 5-32
INITIALIZE command, 4-16
LABEL utility, 5-22
MOUNT command, 5-32

Syntax, 5-32
Clock, System (See System clock.)
Clock/calendar system calls, 12-2

?CTOD, 12-2
?FDAY, 12-2
?FTOD, 12-2
?GDAY, 12-2
?GHRZ, 12-2
?GTOlD, 12-2
?ITIME, 12-2

093-000336 Licensed Material - Property of Data Geneml Corporation Index-3

?SDAY, 12-2
?STOD, 12-2

?CLOSE system call, 5-1, 5-3
?CLSCHED system call, 11-5
?CMATRIX system call, 11-7
?COBIT bit, 9-5
Code,

16-bit process termination, 8-13f (See also,
Interprocess communications (lPC) facility.)

Error (See Error codes.)
Colon (:) pathname prefix, 4-8 (See also, Pathnames.)
Combining bit masks for ACL specifications (See

?CREATE system call, ?DACL system call, or
?SACL system call .)

Command, CLI INITIALIZE, 4-16
Common local servers, using to pend/unpend tasks (See

Fast interprocess synchronization.)
Common resource, Coordinating access to, 2-9
Communicating

across data channel, 5-12
between terminal and task, 7-11 (See also, Tasks.)
between tasks, 7-11f (See also, Tasks.)
from interrupt service routine, 13-8 (See also, User

device support.)
with customer via IPC system calls, 9-4 (See also,

Connection-management facility and Binary
synchronous communications (BSC).)

Communications facility, intertask, 6-11f (See also,
Tasks.)

Communications lines,
Dedicated, 14-1
File type of synchronous, 4-6
Switched, 14-1

Communications paths, full-duplex, 8-2 (See also,
Modems.)

Communications unit, file type of multiprocessor, 4-6
?CON system call, 9-1ff, 9-6
Concepts, .

Binary synchronous communications (BSC), 14-2 (See
also, Binary synchronous communications (BSC).)

File input/output (I/O), 5-2ff (See also, File
input/output (I/O).)

Overlays, 15-2ff
Tasks and multitasking, 7-2 (See also, Tasks.)

Conditions,
Page-fault, 2-5
Race, 7-12, 9-6

Conditions under which AOS /VS blocks processes,
3-16

Conditions under which AOS/VS unblocks processes,
3-17

Configuration, illustration of model customer/server,
9-2 (See also, Connection-management facility.)

Configurations, line, 14-3ff (See also, Binary synchronous
communications (BSC).)

@CONn, 5-10 (See also, Devices.)
Connecting two or more stations (See Dedicated

communications line .)
Connection (See also, Connection-management facility.)

Creating, 9-2ff
Establishing between customer and existing server,

9-2
Passing to another server in any ring with ?PRCNX,

9-4
Passing to another server in Ring 7 with ?PCNX,

9-4
Terminating, 9-4

Connection table, 9-2, 9-4f
Clearing entry from, 9-5

Connection-management facility, Chapter 9
Chaining customer processes, 9-6
Creating connections, 9-2ff
Description of, 9-1
Double connections, 9-3
Identifying connections in inner rings, 9-6
Inner-ring connection management, 9-6ff
Managing exchanges between customers and servers,

9-2
Moving bytes to/from customer's logical address space

with ?MBTC or ?MBFC, 9-3
Multilevel connections, 9-2f
Obituary messages, 9-5
Passing customer/server connection to another server

in Ring 7 with ?PCNX, 9-4
Passing customer/server connection to another server

with ?PRCNX, 9-4
Server process, 9-3f
Server-only system call (?CTERM), 9-3
Signaling server resignation with ?RESIGN, 9-4
Status of inner-ring connections, 9-6

Terminating connections, 9-5
Terminating customer processes with ?CTERM,

9-4
Console (file type), 4-6
Console control characters (See Control characters.)
Console control sequences (See Control sequences.)
Console format control, 5-16
@CONSOLE generic filename, 5-11f (See also, Generic

files.)
Console input line, erasing with CTRL-U, 5-17 (See

also, Control characters.)
Defining task to handle,
Generating and aborting process with CTRL-C

CTRL-B, 5-17 (See also, Control sequences.)
Generating with CTRL-C CTRL-A, 5-17 (See also,

Control sequences.)

Index-4 Licensed Material - Property of Data General Corporation 093-000335

Console output,
Emptying type-ahead buffer and echoing "'c"'c with

CTRL-C CTRL-C, 5-17 (See a/so, Control
sequences.)

Freezing with CTRL-S, 5-17 (See a/so, Control
characters.)

Suppressing with CTRL-O, 5-17 (See a/so, Control
characters.)

Console-to-task communication, 7-11 (See a/so, Tasks.)
Consoles,

CRT display, 5-12f
Relative, 14-5
relative (See Relative consoles.)

Contention,
Memory, 3-2
Definition of line, 14-3

Contents,
Break file, 3-19f
IPC send and receive headers, 8-4f
Parameter packets (See Packet contents.)
System flag word (offset ?ISFL) , 8-5f
VOLI volume labels, 5-27

Context,
Logical, 2-1 f
Memory, Illustration of, 2-11

Context-management system calls, 2-10 (See individual
system call entries for additional references.)

Contiguous disk blocks, definition of, 4-2
Control,

Console format, 5-16f
File type of FORTRAN carriage, 4-6
Line-printer format, 5-16
Passing to new process (See ?CHAIN system call.)

Control characters, 5-17
Accepting next character as literal with CTRL-P,

5-17
Beginning control sequence with CTRL-C, 5-17 (See

a/so, Control sequences.)
CTRL-C, 5-17
CTRL-D, 5-17
CTRL-O, 5-17
CTRL-P, 5-17
CTRL-Q, 5-17
CTRL-S, 5-17
CTRL-T, 5-17
CTRL-U, 5-17
CTRL-V, 5-17
Data-link (See Data-link control characters (DLCC).)
Definition of, 5-17
Disabling CTRL-S with CTRL-Q, 5-17
Erasing current console input line with CTRL-U,

5-17
Freezing console output with CTRL-S, 5-17
Function, 5-17

Suppressing console output with CTRL-O, 5-17
Terminating current read with end-of-file using

CTRL-D, 5-17
Control list, access (See Access control list (ACL).)

Control point directories (CPDs), 4-16ff
Current space (CS), 4-16f
File type ?FCPD, 4-6, 5-5
Maximum space (MS), 4-16f

Control sequences, 5-17
Control station, 14-4f (See a/so, Binary synchronous

communications (BSC).)
Controllers,

Magnetic tape, 5-10 (See a/so, Devices.)
Multipro(:essor communications adapter (MCA),

5-10 (See a/so, Devices.)
Conventions, filename, 4-7f
Coordina ting

access to common resource, 2-9
shared-file update, 2-10

Count,
Overlay use, 15-8
Use (See Use Count.)

CPD (control point directory) (see Control point
directories.)

?CPMAX system call, 4-1
@CRA, 5-10 (See a/so, Devices.)
@CRA1, 5-10 (See a/so, Devices.)
CRC (bloc:k check) error, 14-6 (See a/so, Binary

synchronous communications (BSC).)
?CREATE system call, 4-lf, 4-11f, 8-3
Creating

break fik~s after terminating processes, 3-19f (See
?BRKFL system call.)

break fih$ for every process trap, 3-19f
break fih~s of specified user ring, 3-20
connections, 9-2ff
directories, 4-4
files (See File creation and management.)
IPC files with ?CREATE, 8-3 (See a/so, Interprocess

communications (lPC) facility.)
link entries, 4-11
processes" 3-13ff
search list with ?SLIST, 4-7
son prOCt:sses, 3-13ff
unlimited number of sons, 3-14

Creation and termination detection (tasks), 7-10f (See
a/so, Tasks.)

Creation options, file, 5-4
Creation parameters,

Process, 3-14
Steps AOS/VS takes to check process, 3-14f

Critical regions, locking/unlocking, 7-12 (See a/so,
Tasks.)

Crossing from outer ring to inner ring, 3-21
CRT consoles (See Consoles.)

093-000335 Licensed Material - Property of Data General C:orporation Index-5

?CRUDA system call, 5-1, 5-16
CS (current space), 4-16f (See a/so, Control point

directories (CPDs).)
?CTERM system call, 9-4 (See a/so, Disconnect system

calls.)
?CTOD system call, 12-2
CTRL key, 5-20
CTRL-C control character, 5-17 (See a/so, Control

characters.)
CTRL-C CTRL-A control sequence, 5-17, (See a/so,

Control sequences.)
CTRL-C CTRL-B control sequence, 5-17, 7-11, 7-13

(See a/so, Control sequences.)
CTRL-C CTRL-C control sequence, 5-17 (See a/so,

Control sequences.)
CTRL-C CTRL-D .control sequence, 5-17 (See a/so,

Control sequences.)
CTRL-D control character, 5-17 (See a/so, Control

characters.)
CTRL-O control character, 5-17 (See a/so, Control

characters.)
CTRL-P control character, 5-17f (See a/so, Control

characters.)
CTRL-Q control character, 5-13, 5-17 (See a/so, Control

characters.)
CTRL-S control character, 5-17 (See a/so, Control

characters.)
Disabling with CTRL-Q, 5-17
Enabling console line to recognize, 5-14
Ena bling console line to send, 5-14

CTRL-T control character, 5-17 (See a/so, Control
characters.)

CTRL-U control character, 5-17 (See a/so, Control
characters.)

CTRL-V control character, 5-17 (See a/so, Control
characters.)

?CTYPE system call, 3-16
Current number of undedicated pages, Returning (See

G MEM system call.)
Current search list, examining with ?GLIST, 4-7 (See

a/so, Search list.)
Current working directory (See Working directory.)
Customer,

Establishing logical connection between existing server
and, 9-2

Managing exchanges between server and, 9-2
Servers concurrently connected to multiple rings within,

9-6
Communicating with via IPC system calls, 9-5

Customer processes,
Chaining, 9-6
Defining, 9-2
Terminating with ?CTERM, 9-4

Customer / server connection,
Passing to another customer in Ring 7 with ?PCNX,

9-4
Passing to another customer with ?PRCNX, 9-4

Customer /server relationship, process termination
messages in, 8-7ff (See a/so, Connection­
management facility.)

D

?DACL system call, 4-14
?DADID system call, 3-13
Data,

Deleting following file pointer, 5-5
Receiving over BSC lines with ?SRCV, 14-2 (See

a/so, Binary synchronous communications (BSC).)
Sending over BSC lines with ?SSND, 14-2 (See

a/so, Binary synchronous communications (BSC).)
Data channel (DCH) map, 13-4ff

?IDEF option, 13-4
Data channel line printers, 5-16 (See a/so, Character

devices.)
Data files,

File type of system, 4-5
File type of user, 4-5

@DATA generic filename, 5-11f (See a/so, Generic
files.)

Data-link control characters (DLCC), 14-6ff (See a/so,
Binary synchronous communications (BSC).)

ACKO (affirmative acknowledgment), 14-6
ACKI (affirmative acknowledgment), 14-6
BCC (block check character), 14-6
DLE (data-link escape), 14-6
DLE EOT (data-link escape, end of transmission),

14-6
ENQ (enquiry), 14-6, 14-8
EOT (end of transmission), 14-6, 14-9
ETB (end-of-transmission block), 14-6
ETX (end of text), 14-7
ITB (end-of-intermediate-transmission block), 14-7
NAK (negative acknowledgment), 14-7f
RVI (reverse interrupt), :4-7
SOH (start of header), 14-7
STX (start of text), 14-7
SYN (synchronization character), 14-7
TTD (temporary text delay), 14-7

WACK (wait-before-transmitting positive
acknowledgment), 14-7

Data-link escape, end-of-transmission (DLE EOT) ,
14-6

Data-link escape (DLE), 14-6, (See a/so, Data-link
control characters (DLCC).)

Data-sensitive records, 5-5
?DCON system call, 9-4
DCT (device control table) (See Device control table

(DCT).)

Index-6 Licensed Material - Property of Data General Corporation 093-000335

?DDIS system call, 13-9
Deadlock, resource, 15-4
?DEASSIGN system call, 5-1, 5-16
?DEBL system call, 13-9
Decreasing or increasing number of unshared pages in

Ring 7, 2-11 (See ?MEMI system call.)
Decrementing use count and releasing shared page (See

RPAGE system call.)
Dedicated communications line, 14-2 (See a/so, Binary

synchronous communications (BSC).)
Dedicated memory pages, 2-10 (See a/so, Pages.)
Default pathname of break files, 3-20 (See a/so, Break

files.)
Default user ring, 2-4
Defining

access control list (ACL) with ?CREATE, 4-11
characteristics of character device, 5-15f
customer process, 9-2
partitions in NREL memory with .PART

pseudo-op, 2-9
server process, 9-2
shared area with assembly language pseudo-ops,

2-9
stacks, 7-5f (See a/so, Stacks.)
system devices during system-generation procedure,

13-2
unique termination-processing routine with ?KILAD,

7-10
user devices, 3-14
user devices with ?PVDV, 13-2

Definition table, map (See Map definition table.)
Definitions (See Glossary for additional definitions.)

Access control list (ACL) , 4-14
Block input/output (I/O), 5-5
Blocks, 5-2
Channels, 5-2
Character devices, 5-12
Contention, 14-3
Contiguous disk blocks, 4-2
Control characters, 5-17
Control sequences, 5-17
Dedicated communications line, 14-1
Directories, 4-4 f
Double connection, 9-3
File elements, 4-2f
File input/output (I/O), 5-2
Filenames, 4-7
Files, 4-2f
Global port numbers, 8-2
Index levels, 4-2f
Labeled magnetic tapes, 5-23ff
Link entries, 4-10f
Local port numbers, 8-2
Logical address space, 2-2
Logical disks (LDs), 4-15f

Memory-management terms, 2-2f
M ultilev,el connection, 9-2f
Pathnames, 4-8f
Physical block input/output (I/O), 5-6f
PID / ring tandems, 9-6
Polling, 14-4 f
Primary station, 14-3
Processes, 3-2
Programs, 3-2
Record input/output (I/O), 5-5
Search lists, 4-8
Secondary station, 14-3
Segments, 2-2
Selecting, 14-5
Shared pages, 2-2
Station, 14-2
Switched communications line, 14-2
Tasks, 3-2
U nshared pages, 2-2
Unused page, 2-2
Working directory, 4-6f
Working set, 2-2

?DELETE system call, 4-11
Deleting data following file pointer with ?TRUNCATE,

5-5
Deleting (and creating) link entries, 4-11 (See a/so,

Link c::ntries.)
Demand paging, 2-5
Description of file input/output (I/O) sample programs,

5-2 (See a/so, File input/output (I/O).) Descriptor,
procedure entry (See Procedure entry descriptor.)

Detecting task creation and termination, 7-10 (See a/so,
Tasks.)

Device codes, 13-2
Device control table (DCT), 13-3, 13-7f, 13-10

Illustraltion of, 13-3
Length of (?UDLN), 13-2

Device I/O, 13-9 (See a/so, Input/output (I/O).)
Device int(~rrupt, 13-8
Device names, 5-9f (See a/so, Devices.)
Devices, 4--2, 5-10

Accessing all, 13-9 (See a/so, User device support.)
Assigning to processes for record I/O, 5-1 (See a/so,

Record input/output (I/O).)
Character, 4-2, 5-12ff (See a/so, Character devices.)
Communications (See Communications device.)
Defining and accessing user, 3-40
Input/output (I/O), 4-10, 5-2
Multifille, 4-2
N ames of, 5-9f

@CONn, 5-10
@CRA, 5-10
@CRAl, 5-10
@DKBn, 5-10
lOP, 5-10

093-000335 Licensed Material - Property of Data General Corporation Index-?

@LMT, 5-10
@LPB, 5-10
@LPBn, 5-10
@MCA, 5-10
@MCA1, 5-10
@MTBn, 5-10
@PLA, 5-10
@PLA1, 5-10
@SLNx, 14-2

System, 4-10
User (See User devices.)
User-defined, 13-2

?DFRSCH system call, 7-1, 7-7, 7-12
DIA assembly language instruction, 578
Dialogue, system-generation, 4-2
DIB assembly language instruction, 5-7
DIC assembly language instruction, 5-7
Differences between

?GRNAME and ?GNAME, 4-12
fast interprocess communication and IPC, 9-7
physical block I/O and block I/O, 5-7f (See a/so,

Block input/output (I/O).)
Different usernames, creating sons with, 3-14
?DIR system call, 4-1
Directories, 4-4f, 4-7f

Accessing, 4-7f
Changing working, 4-8
Control point (See Control point directory (CPD).)
Creating, 4-4
Definition of, 4-4
Entries, 4-4
File type of control point, 4-6
File type of disk, 4-6
File type of spoolable peripheral, 4-6
Illustration of

control point, 4-20
directory structure, 4-11
sample directory tree, 4-5
Information (See ?FSTAT system call.)
Levels, 4-17
Names, 4-4
Peripheral (See Peripheral directory (:PER).)
Root, 4-10
Setting access control list (ACL) with ?SACL,

4-15
Working, 4-7, 4-10

Disabling
and enabling access to all devices, 13-9 (See a/so,

User device support.)
BSC line with ?SDBL, 14-2 (See a/so, Binary

synchronous communications (BSC).)
CTRL-S with CTRL-Q, 5-17 (See a/so, Control

characters.)
task scheduling with ?DRSCH, 7-7, 7-12

Disassociating channel number from file, 5-3

Disconnect flag, explicit (See Explicit disconnect flag.)
Disk blocks, 4-2, 4-19, 5-2

Allocating, 5-1
Allocating for specific data elements, 5-6
Bad, 5-6
Contiguous, 4-2
Definition of, 5-2

Disk bootstraps, 4-4
Disk directory file (file type ?FDIR), 4-6, 5-4
Disk drives, 13-2 (See a/so, User device support.)
Disk errors, bypassing retries for, 5-6
Disk file structures, 4-2ff
Disk files, 4-4
Disk images, memory modification with, 15-2
Disk space, 4-2

Controlling, 4-19f
How AOS/VS allocates, 4-2

Disk units, 5-10 (See a/so, Devices.)
File type, 4-6

Disks,
File type of logical, 4-6
Flushing shared file memory pages to (See ?ESFF

system call.)
Logical (See Logical disks (LDs).)
Moving logical pages on demand to memory from

(See Demand paging.)
Reducing size while using block I/O, 5-5

DISMOUNT command (CLI), 5-32
Dismounting

labeled magnetic tapes with the CLI DISMOUNT
command, 5-32

Display consoles, 5-10 (See a/so, Devices.)
Displaying next page in page mode, 5-13
@DKBn, 5-10 (See a/so, Devices.)
DLCC (data-link control characters) (See Data-link

control characters (DLCC).)
DLE (data-link escape), 14-6 (See a/so, Data-link control

characters (DLCC).)
DLE EOT (data-link escape, end-of-transmission),

14-6 (See a/so, Data-link control characters
(DLCC).)

Double connection, definition of, 9-3
?DPC offset (?TASK system call), 7-6
?DQTSK system call, 7-1
?DRCON system call, 9-4
?DRSCH system call, 7-1, 7-7, 7-12
?DSFLT offset (?TASK system call), 7-6
DSR data set (modem) flag, 5-13f
?DSSZ offset (?TASK system call), 7-6
?DSTB offset (?TASK system call), 7-6
DTR modem flag, 5-13f
Dump, memory, 3-19f
DUMP command (CLI), 5-32

Syntax of, 5-32

Index-8 Licensed Material - Property of Data General Corporation 093-000335

Dumping
memory image from specified ring to file (See

?MDUMP system call.)
particular ring with ?MDUMP, 3-19

Dynamic-length records, 5-5

E

ECC (error-correction code), 5-7
Echoing C C on console and emptying type-ahead

buffer with CTRL-C CTRL-C, 5-17 (See a/so,
Control sequences.)

Editors, text, 4-2
EJSR instruction, 15-7
ELEF instruction, 15-7
Elements,

Allocating blocks for specific data, 5-6
Illustration of file growth stages with file, 4-3
Keeping track of file, 4-2
Specifying size of file, 4-2

Enabled BSC line, sending data over, 14-2
?ENBRK system call, 3-20
End-of-file character, terminating current read with

?CTRL-D, 5-17 (See a/so, Control characters.)
End-of-file labels (See Labels.)
End-of-intermediate-transmission block (ITB), 14-7
End-of-text (ETX) , 14-7
End-of-transmission (EOT) , 14-6
End-of-transmission block (ETB), 14-6
End-of-volume labels (See Labels.)
ENQ (enquiry), 14-6
?ENQUE system call, 12-3
Enquiry (ENQ), 14-6
.ENT pseudo-op, 3-21
.ENTO (overlay error) pseudo-op, 15-4
Entries,

Directory, 4-4
File (See File entries.)
File type of IPC port, 4-6
File type of queue, 4-6
Link, 4-12f (See a/so, Link entries.)
Procedure, 15-5

Entry descriptor, procedure (See Procedure entry
descriptor.) EOT (end-of-transmission), 14-6

Equal sign (=) pathname prefix, 4-10 (See a/so,
Pathnames.)

Erasing current console input line with CTRL-U, 5-17
(See a/so, Control characters.)

ERMES file, 12-4
?ERMSG system call, 12-4
Error, CRC (block check), 14-6 (See a/so, Binary

synchronous communications (BSC).)
Error codes, 12-4 (See a/so, Appendix A.)

Getting text associated with, 12-4

Error message file, 12-4
Error-correction code (ECC), 5-7
Error-recovery procedures, binary synchronous

communications (BSC), 14-8f (See a/so, Binary
synchronous communications (BSC).)

Error-recovery statistics, getting BSC, 14-9 (See a/so,
Binary synchronous communications (BSC).)

Errors, disk (See Disk errors.)
?ERSCH system call, 7-1, 7-7, 7-12
?ESFF system call, 2-12
ESS (extc~nded state save) area (See Extended state

save (ESS) area.)
Establishing

connection between local and remote stations, 14-2
interfa·ce between AOS /VS and unsupported device

(See ?IDEF system call.)
logical connection between customer and existing

server, 9-2
new sh:ared partition size (See ?SSHPT system call.)

ETB (end-of-transmission block), 14-6
ETX (end-of-text), 14-7
Examining

break files, 3-19f (See a/so, Break files.)
current search list with ?GLIST, 4-8
default ACL with ?DACL, 4-15 (See a/so, Access

control list (ACL).)
Exchanges between customers and servers, managing,

9-2
Exclusive Open option, 5-3
?EXEC system call, 12-2
EXEC utillity, 5-16, 5-32f, 12-6

Functions, 12-2
Interfa.ce to, 12-2

Execute (?FACE) access, 4-13ff
Execute-protection status, 3-18
Execution, scheduling another process for with

?RESCHED, 3-9 (See ?RESCHED system call.)
Existing server, establishing logical connection between

customer and, 9-2 (See a/so, Connection­
management facility.)

Explicit disconnect flag, 9-6f
Bit position, 9-7

?EXPO system call, 3-18
Extended characteristics of character device (See a/so,

Character devices.)
Extended state save (ESS) area, 15-9
External l~ate array, 3-21
.EXTG pseudo-op, 3-21
.EXTN p:seudo-op, 15-4
Extracting ring field from global port number, 8-3 (See

a/so, Interprocess communications (IPC) facility.)

093-000335 Licensed Material - Property of Data General Corporation Index-9

F

?FACA (Append) access, 4-14ff (See a/so, Access
control list (ACL).)

?FACE (Execute) access, 4-14ff (See a/so, Access
control list (ACL).)

?FACO (Owner) access, 4-14ff, 4-17 (See a/so, Access
control list (ACL).)

?FACR (Read) access, 4-14ff (See a/so, Access control
list (ACL).)

?FACW (Write) access, 4-14ff (See a/so, Access control
list (ACL).)

Fast interprocess communications (See Fast interprocess
synchronization.)

Fast interprocess synchronization, 9-7 (See a/so,
Interprocess communications (lPC) facility.)

Differences between IPC and, 9-7
?FCON file type, 4-6
?FCPD file type (control point directory file), 4-5,

5-4
? FCRA file type, 4-6
?FDAY system call, 12-2
?FDIR file type (disk directory file), 4-5, 5-4
? FD KU file type, 4-6
FED (file editor) utility (See File editor (FED) utility.)
?FEDFUNC system call, 12-3
? FFCC file type, 4-6
? FG FN file type, 4-6
?FGLT file type, 4-6, 5-33
Field,

Access (ANSI-standard labeled magnetic tapes),
5-27

Owner Name (labeled magnetic tapes), 5-27
Ring, 6-5
Version Number (labeled magnetic tapes), 5-27

File access, 4-11 f
Methods for file input/output (I/O), 5-2
Privileges (See Access privileges.)

File creation and management, Chapter 4
Sample programs, 4-18ff

File editor (FED) utility, 12-3 (See a/so, ?FEDFUNC
system call.)

Functions, 12-3
Interfacing to with ?FEDFUNC, 12-3

File elements,
Address, 4-2
Definition of, 4-2
Illustration of file growth stages, 4-3
Keeping track of, 4-2
Specifying size of, 4-2, 5-7

File information (See ?FSTAT system call.)
File input/output (I/O), 4-2, Chapter 5

Operation sequence, 5-3

Concepts, 5-2ff
Definition of, 5-2
File access methods, 5-3

Block I/O, 5-3 (See a/so, Block input/output
(I/O).)

Record I/O, 5-3 (See a/so, Record input/output
(I/O).)

Labeled magnetic tapes, 5-23ff (See a/so, Labeled
magnetic tapes.)

Operation sequence, 5-3ff
Sample programs, 5-34
Unlabeled magnetic tapes, 5-34 (See a/so, Magnetic

tapes.)
File pointer, 5-4f

Deleting following data with ?TRUNCATE, 5-5
Getting position of with ?GPOS, 5-5
Positioning with ?SPOS, 5-5

File structures,
AOS/VS, 4-2
Disk, 4-2ff

File trailer labels (See Labels.)
File types, 4-5f

A OS program file, 4-5
AOS/VS program file, 4-5
Card reader, 4-6
Control point directory (CPD), 4-5
Created with ?OPEN, 5-4
Creating sons of different program, 3-14
Data channel line printer, 4-6
Disk unit, 4-6
?FCON, 4-6
?FCPD (control point directory file), 4-5, 5-4
?FCRA,4-6
?FDIR (disk directory file), 4-5, 5-4
?FDKU, 4-6
?FFCC, 4-6
?FGFN, 4-6
?FGLT, 4-6, 5-33
?FIPC (IPC file), 4-6, 5-4, 8-4
?FLNK,4-5
?FLPU, 4-6
?FMCU, 4-6
?FMTF,4-6
?FMTU, 4-6
?FNCC, 4-6
?FOCC, 4-6
FORTRAN carriage control, 4-6
?FPCC, 4-6
?FPLA, 4-6
?FPIP, 4-5
?FPRG (AOS program file), 4-5, 5-5
?FPRV (AOS/VS program file), 4-5, 5-5
?FSDF,4-5
?FSTF, 4-5
?FSYN, 4-6

Index-10 Licensed Material - Property of Data General Corporation 093·000335

?FTXT (text file), 4-5, 5-5
?FUDF (user data file), 4-5, 5-5
?FUNX (VSjUNIX file), 4-5
?FUPF, 4-5
Generic filename, 4-6
Generic labeled tape, 4-6
IPC port entry, 4-6
Link file, 4-5
List of, 4-5f
Logical disk, 4-6
Magnetic tape file, 4-6
Magnetic tape unit, 4-6
Multiprocessor communications unit, 4-6
Plotter, 4-6
Pipe, 4-5
Queue entry, 4-6
Spoolable peripheral directory, 4-6
Symbol table file, 4-5
Synchronous communications line, 4-6
System data file, 4-5
Terminal (hard-copy or video display), 4-6
Text file, 4-5
User data file, 4-5
User profile file, 4-5
VSjUNIX, 4-5

File's requirements for indexes, 4-4
File-pointer position,

Setting with ?SPOS, 5-6
Filenames, 4-7f

Conventions, 4-7f
Definition of, 4-7
Generic, 5-9, 5-11 f

File type, 4-6
Getting .PR for ring (See ?RNGPR system call.)
Legal characters for use in, 4-7
Valid characters, 3-10

Files,
AOS program (See File types.)
AOSjVS program (See File types.)
Assembly language source (.SR), 4-7
Break, 3-19f (See a/so, Break files.)
CLI macro (.CLI), 4-7
Control point directory (See File types.)
Definition of, 4-2
Disassociating channel number from, 5-3
Disk, 4-4 (See also, Disk files.)
Disk directory (See File types.)
Dumping memory image from specified ring to (See

?MDUMP system call.)
Enabling break (See ?ENBRK system call.)
Error message (ERMES), 12-4
File type of AOS program, 4-5
File type of AOSjVS program, 4-5
File type of disk unit, 4-6
File type of generic labeled tape, 4-6

File typ<: of Link, 4-5
File typ<: of logical disk, 4-6
File typt: of symbol table, 4-5
File typt: of system data, 4-5
File typ<: of text, 4-5
File typt: of user data, 4-5
File typt: of user profile, 4-5
Generic, 5-11f (See a/so, Generic files.)
Getting pathnames of with ?GNAME, 4-9ff
IPC (See File types.)
Library (.LB), 4-7
Linking object modules to form program, 15-3f
Loading into specific rings with ?RINGLD, 3-21
Locking elements of, 5-7ff
Object (.OB), 4-7

Protected shared, 2-9f (See a/so, ?SOPPF system
call.)

Program (.PR), 4-7, 15-2 (See also, Program file.)
Protected shared, 2-9f, 3-21

Opening, 2-9f (See a/so, ?SOPPF system call.)
Permitting access to protected shared (See ?PMTPF

system call.)
Sample creation and management programs, 4-18ff
Setting a.ccess control list (ACL) with ?SACL, 4-14
Status, 3-17f
Symbol table (.ST)(See Symbol table file.)
System log (See System log file.)
Temporary (.TMP), 4-7
Text (Se'e File types.)

First opene:r, 2-9
Fixed-length records, 5-8
Flag bits, 9-7

Inner-ring connection management, 9-6
Flag word, user, 8-8
Flags,

Explicit disconnect (See Explicit disconnect flag.)
?IFBNK, 8-5
?IFNSP, 8-5
?I FPR, 8-5
?IFRFM:, 8-5
?IFRING, 8-5
?IFSOV1, 8-5
?IFSTM, 8-5
?OANS (?IRES offset of ?OPEN), 5-24
?OIBM (?IRES offset of ?OPEN), 5-24
?TMYRlNG (?TLOCK system call), 7-9
System and user (lPC) , 8-6ff

?FLCHN offset, 5-9
?FLDU (logical disk) file type, 4-6
? FLNK file type, 4-5
Floating-point status registers, 13-7

Initializing with ?IFPU, 7-13
?FLOCK system call, 5-7ff
?FLOG file type, 12-4
?FLPU file: type, 4-6

093-000335 licen8ed Material - Property of Data General Gorporation Index-11

Flushing shared file memory pages to disk with ?ESFF,
2-12 (See a/so, ?ESFF system call.)

?FMCU file type, 4-6
? FMTF file type, 4-6
? FMTU file type, 4-6
?FNCC file type, 4-6
? FOCC file type, 4-6
Forcing AOS /VS to initialize common inner-ring stack,

7-5f (See a/so, Inner rings.)
Format control for line printers, 5-19
Formats,

ANSI-standard, 5-22, 5-28, 5-31f
Controlling console, 5-19
IBM, 5-22, 5-3lf
Illustration of event logging, A-Iff
Specifying file, 5-19
Tailored line-printer output, 5-19

/FORMS switch, CLI, 5-1
FORTRAN, 7-2
FORTRAN carriage control (file type), 4-6
?FPCC file type, 4-6
?FPIP file type, 5-4
?FPLA file type, 4-6
?FPRG file type (AOS program file), 4-5, 5-5
?FPRV file type (AOS/VS program file), 4-5, 5-5
?FQUE file type, 4-6
Frame pointer, 7-5f
Freezing console output with CTRL-S, 5-20 (See a/so,

Control characters.)
?FSDF file type, 4-5
?FSPR file type, 4-6
?FSTAT system call, 4-1
? FSTF file type, 4-5
?FSYN file type, 4-6
?FrOD system call, 12-2
?FrXT file type (text file), 4-5, 5-5
?FUDF file type (user data file), 4-5, 5-5
Full process name, 3-10

Getting, 3-17 (See a/so, ?PNAME system call.)
Full-duplex communications paths, 8-2
Full-duplex modems, 5-15ff (See a/so, Modems (full­

duplex).)
Function of control characters, 5-20 (See a/so, Control

characters.)
?FUNLOCK system call, 5-7ff
?FUPF file type, 4-5

?GACL system call, 4-14
Gate array, external, 3-21

c

?GCHR system call, 5-1, 5-14, 5-16, 5-18
?GCLOSE system call, 5-1, 5-4
?GCPN system call, 8-3
?GDA Y system call, 12-2
?GECHR system call, 5-1, 5-14, 5-18

Generating
console interrupt and aborting process with

CTRL-C CTRL-B, 5-21 (See also, Control se­
quences.)

console interrupt with CTRL-C CTRL-A, 5-21
(See a/so, Control sequences.)

histograms with ?WHIST, 3-17
Generic files, 5-11 f

File type, 4-:5f
Filenames, 4-7, 5-9, 5-llf

@CONSOLE, 5-11f
@DATA, 5-11f
@INPUT, 5-11f
@NULL, 5-11 f
@OUTPUT, 5-1lf

?PROC packet parameters for, 5-12
Sample pathname, 5-11

Getting
access control list (ACL) with ?GACL, 4-14
BSC error-recovery statistics, 14-9 (See a/so, Binary

- synchronous communications (BSC).)
characteristics of character device, 5-14
current file pointer position with ?GPOS, 5-6
full process name with ?PNAME, 3-17
pathnames of files with ?GNAME, 4-10
PID of father process with ?DADID, 3-8 (See a/so,

?DADID system call.
.PR filename for ring (See ?RNGPR system call.)
process name (See ?PNAME system call.)
process runtime statistics (See ?RUNTM system call.)
status information for process (See ?PROC system

call.)
text string associated with particular error code,

12-4
?G HRZ system call, 12-2
?GLINK system call, 4-1, 4-11
?GLIST system call, 4-7
Global port numbers, 8-2ff (See a/so, Interprocess com-

munications (IPC) facility.)
Definition of, 8-2
Extracting ring field from, 8-3
Identifying PID associated with (with ?GPORT),

8-3
Interpreting ring fields within, 8-3
Modifying ring field within, 8-3

Global synchronous manager (GSMGR) process, 14-2
?G MEM system call, 2-1
?GNAME system call, 4-9
?GNFN system call, 4-1
?GOPEN system call, 5-1, 5-4, 5-7
?GPORT system call, 8-3
?GPOS system call, 5-1, 5-6
Grant, Access, 2-9f
?GRAPHICS system call, 6-28ff
?GSHPT system call, 2-1, 2-12

Index-12 Licensed Material - Property of Data General Corporation 093-000335

?GSID system call, 12-4
GSMGR (global synchronous manager) process, 14-2
?GTNAM system call, 12-3
?GTOD system call, 12-2
?GTRUNCATE system call, 5-1, 5-7
?GTSVL system call, 12-3
?GUNM system call, 3-1

H

Handler, stack fault, 7-5 (See a/so, Stacks.)
Hardware errors, 3-18f
Hardware protection rings, 2-3 (See a/so, Rings.)
Header 1 labels, 5-29ff
Header 2 labels, 5-30f
Headers,

?IREC (See ?IREC system call.)
?IS.R (See ?IS.R system call.)
?ISEND (See ?ISEND system call.)
Hierarchy,
Illustration of process, 3-9

System, 3-9
Histograms,

Generating with ?WHIST, 3-17 (See a/so, ?WHIST
system call .)

Terminating with ?KHIST, 3-18 (See a/so, ?KHIST
system call.)

Updated, 3-17
Host identifier (host ID),

Translating virtual PID into PID and, 3-13
Translating with PID into virtual PID, 3-13

I

IBM format, 5-22, 5-28, 5-31f
?IDEF system call, 13-lff

Options, 13-4f
Burst multiplexor channel (BMC), 13-4f
Data channel (DCH) maps A through D, 13-6

Identifiers,
Process, 3-10f
System (See System identifier.)
Task, 7-3
Volume, 5-22

Identifying
connections in inner rings, 9-6
PID associated with global port number (with

?GPORT), 8-3 (See a/so, Global port numbers.)
system with ?GSID, 12-4

?IDGOTO system call, 7-1, 7 -8f
?IDKIL system call, 7-1, 7-10
?IDPH offset, 7-3, 7-5ff
?IDPN offset, 7-5ff, 9-5
?IDPRI system call, 7-3, 7-6
?IDRDY system call, 7-3, 7-7

?IDSTAT system call, 7-3
?IDSUS system call, 7-3, 7-8
?IESS sysl:em call, 15-9
?IFBNK flag, 8-5
?IFNSP flag, 8-5
?IFPR flag, 8-5
? IFPU system call, 7-13
?IFRFM flag, 8-5
?IFRING flag, 8-5
?IFSOV flag, 8-5
?IFSTM flag, 8-5
?ILKUP system call, 8-3
?IL TH offset, 8-5
Image,

Memory (See Memory image.)
Segment (See Segment image.)

?IMERGE system call, 8-3
?IMSG system call, 13-8
Inclusive-OR operation, 13-7
Increasing or decreasing number of unshared pages in

Ring 7, 2-11 (See ?MEMI system call.)
Incrementing use count and reading shared page (See

?SPAGE system call.)
Indexes,

Definition of, 4-2
File's requirements for, 4-4

Indicator, m.onitor ring, 5-16f
Influencing task scheduling, 7-6 (See a/so, Tasks.)
Informa tion,

Directory (See ?FSTAT system call.)
File (See ?FSTAT system call.)
File desc:riptor, 5-6
Process, 3-17f (See a/so, ?PROC system call.)
Queue, 12-3
System, 12-1 ff
User console or batch process (See ?LOGEV system

call.)
?INIT system call, 4-16
Initial (op~:rator) process (PID 2), 5-14, 5-16
Initial stacks, specifying size of, 7-4f (See a/so, Stacks.)
INITIALIZE command (CLI), 4-16
Initializing floating-point status register with ?IFPU,

7-13
Initiating tasks, 7-3f (See a/so, Tasks .)
Inner rings, 3-21f

Identifying connections in, 9-6
Servers, 2-9f, 7-16
Stacks, 7-5f

Forcing AOS/VS to initialize common, 7-6
Task-redirection protection for, 7-9 (See a/so, Tasks.)
Use of, 2-4

093-000335 Licensed Material - Property of Data General Corporation Index-13

Inner-ring connection management, 9-6ff
Flag bits, 9-7

?CXBBMO, 9-7
?CXBVED, 9-7
?CXMBM, 9-7
?CXMED, 9-7

Identifying connections in inner rings, 9-6
@INPUT generic filename, 5-11 f (See a/so, Generic

Files.)
Input line, erasing from console with CTRL-U, 5-20

(See a/so, Control characters.)
Assigning device to process for record, 5-1
Block, 5-2f, 5-6f

Definition of, 5-6
System calls, 5-3

Concepts of file, 5-2ff
Data channel (See Data channel ?IDEF option.)
Device, 13-9
Devices, 5-2
Differences between physical block I/O and block

I/O, 5-7f (See a/so, Block input/output (I/O).)
File (See File input/output (I/O).)
Managing character I/O with PMGR, 3-8
Operation sequence for file, 5-4ff
Physical block, 5-2, 5-7f (See a/so, Physical block

I/O.)
Record, 5-8f (See a/so, Record input/output (I/O).)

System calls, 5-3
Instructions, Assembly language

DIA, 5-8
DIB, 5-8
DIC, 5-8
EJSR, 15-7
ELEF, 15-7
JSR, 15-7
LCALL,7-16
LEF, 15-7
POPJ, 15-7
PSHJ, 15-7
PSHR, 15-7
RTN, 15-5f
XOP, 15-7

Interfaces,
Establishing between AOS/VS and unsupported

device (See ?IDEF system call.)
Utility, 12-4

Interpreting ring fields (within global port number) with
?IREC, 8-3 (See a/so, Global port numbers.)

Interprocess communications (IPC) facility, 8-1,
Chapter 8,

Connection status messages, 9-6 (See a/so,
Connection-management facility.)

Contents of send and receive headers, 8-4ff
Contents of system flag word, 8-6f

Creating files with ?CREA TE, 8-3
Differences between fast interprocess synchronization

and, 9-7
File type ?FIPC, 5-5
Files, creating with ?CREATE, 8-3
Illustration of user flag word structure, 8-8
Looping messages, 8-7
Messages, 8-4f
Packets, 8-2
Port entry file type, 4-5
Process termination messages in customer/server

relationship, 8-7ff (See a/so, Connection­
management facility.)

Sample programs, 8-17ff
Send and receive headers, 8-4ff
Contents of, 8-5

Sending messages between ports, 8-2ff
Structure of send and receive headers, 8-6
System and user flags, 8-6ff
System calls, 8-1

Communicating with customer via, 9-4
Typical system call sequence, 8-4f
User flag word, 8-8
Using as communications device, 5-2lf
Interprocess synchronization, fast, 9-8f (See a/so, Fast

interprocess synchronization.)
Interrupt service mask, 13-2
Interrupt service routines, 13-7

Interrupt vector table, 13-7
Interrupts,

Console (See Console interrupts.)
Device, 13-8
Generating and aborting process with CTRL-C

CTRL-B, 5-21 (See a/so, Control sequences.)
Generating CTRL-C CTRL-A, 5-21 (See a/so,

Control sequences.)
Reverse (See Reverse interrupt (RVI).)

Intertask communications facility, 7-11f (See a/so,
Tasks.)

Introducing user-defined devices to AOS /VS at exe­
cution time, 13-2

Invalid return address from ?RCALL, illustration of,
15-6

?IOPH offset, 8-3ff, 9-5
?IOPL offset, 9-5
?IOPN offset, 8-4ff
IPC (interprocess communications) facility (See Inter­

process communications (IPC) facility.)
?IPLTH (length of ?ISEND and ?IREC headers),

8-5
?IPRLTH (length of ?IS.R header), 8-5
?IPTL word, 9-6
?IQTSK system call, 7-1, 7-4
?IREC system call, 5-21, 8-3ff, 9-5

Header, 8-5f

Index-14 Licensed Material - Property of Data General Corporation 093-000335

?IRES offset, 5-24
?IRMV system call, 13-1
?IS.R system call, 8-lff, 8-4, 9-4

Header, 8-5f
?ISEND system call, 8-lff, 8-4, (See also, Interprocess

communications (IPC) facility.)
Header, 8-5ff

?ISFL offset, 8-5f
?ISPLIT system call, 8-1, 8-3
ITB (end-of-intermediate-transmission block), 14-7 (See

also, Data-link control characters (DLCC).)
?ITIME system call, 12-2
?IUFL offset, 8-8ff, 8-11f, 9-5

Process termination codes for ?IREC and ?ISEND
headers, 8-11 f

?IXIT system call, 13-7

J
Job processors,

Attaching to logical processors, 10-4
Description of, 10-2
Initializing, 10-3
Releasing from the system, 10-4f
Specifying microcode files for, 10-4

JPID, 10-2, 11-5
?JPINIT system call, 10-3
?JPMOV system call, 10-4
? JPREL system call, 10-4
? JPST A T system call, 10-4
JSR instruction, 15-7

K

?KCALL system call, 15-4, 15-7
Keeping track of file elements, 4-2
Key, CTRL, 5-17
?KHIST system call, 3-18
?KILAD system call, 7-10
?KILL system call, 7-10

L

?LABEL system call, 5-1, 5-23f
Label types for labeled magnetic tapes, 5-24ff
Labeled magnetic tapes, 5-23ff (See also, Devices.)

Advantages of, 5-23
ANSI format, 5-23
AOS format, 5-23
Definition of, 5-23
File I/O on, 5-31
Formats, 5-23
IBM format, 5-23
Label types, 5-24ff (See also, Labels.)
Labeling levels, 5-23
Mounting explicitly with CLI MOUNT command,

5-32f
Mounting implicitly with ?OPEN system call, 5-32f

.LB files, 4-7 (See also, Files.)
LD (See Logical disks (LDs.)
Least recently used (LRU) chain (See LRU chain.)
LEF (load-effective address) mode (See Load-effective

address (LEF) mode.)
?LEFD system call, 13-9 (See also, Load-effective

address (LEF) mode.)
?LEFE system call, 13-9 (See also, Load-effective

address (LEF) mode.)
?LEFS system call, 13-9 (See also, Load-effective

address (LEF) mode.)
Legal filename characters, 4-7
Length of ?ISEND and ?IREC headers (?IPLTH),

8-4
Length of blocks, 5-6
Library files, 4-7 (See also, Files.)
Limit, stack, 7-4f
Line confilgurations, binary synchronous communica­

tions (BSC), 14-3ff (See also, Binary synchronous
communications (BSC).)

Line printters, 13-1 (See also, User device support.)
Data channel, 5-16
File typ,e of data channel, 4-6
Format control, 5-16
Tailoring output format, 5-16

Line selecltion and polling, multipoint, 14-4ff
Lines,

Dedicatc:d communications, 14-2
Enabling binary synchronous communications (BSC),

14-2 (See also, Binary synchronous communi­
cations (BSC).)

File typte of synchronous communications, 4-6
Sending data over enabled BSC, 14-2
Switched communications, 14-2

Link entrites, 4-10f
Creating and deleting with ?CREATE and

?DELETE, 4-11
Definition of, 4-10
Finding out what a link entry represents, 4-10

Link files (file type), 4-5
Link utility, 2-9,
Link-to-link references, 4-10f, 15-2ff
Linking

object modules to form program file, 15-3f
programs together with ?CHAIN, 3-21

List, search (See Search list.)
@LIST gc:neric file, 5-11f (See also, Generic files.)
Lists,

Access (;ontrol (See Access control list (ACL).)
Polling {See Polling.)
Search (See Search list.)

Literal, accepting next character as with CTRL-P,
5-17 (See also, Control characters.)

@LMT, 5-10, 5-32f (See also, Devices.)

093-000336 Licensed Material - Property of Data General Corporation Index-15

Load-effective address (LEF) mode, 13-9
Instructions, 15-7

Loading program files into specific rings with ?RINGLD,
3-21 (See a/so, ?RINGLD system call.)

Local port numbers,
Definition of, 8-2 (See a/so, Interprocess communi­

cations (lPC) facility.)
Translating to global equivalent with ?TPORT, 8-2

Local root, 4-16f
Local servers, 2-9

Using common local servers to pend/unpend tasks
(See Fast interprocess synchronization.)

Locality,
Program, 3-7, 11-2
User, 3-7f, 11-2

Locality pairs, 3-7
Lock manager, 5-7ff
Locking file elements, 5-7ff
Locking process, 5-9
Locking/unlocking critical regions, 7-12 (See a/so,

Tasks.)
Locks,

Exclusive, 5-8
Releasing, 5-9
Shared, 5-8

Log file, system (See System log file.)
?LOGEV system call, 12-4
Logging messages into system log file with ?LOGEV,

12-4
Logic,

?IREC system call, flowchart, 8-16
?ISEND system call, flowchart, 8-15

Logical address, validating with ?V ALAD, 2-10
Logical address space, 2-2, 2-8, 3-2f

Definition of, 2-2
Moving bytes to/from customer's, 9-3
Sixteen-bit programs, 15-2

Logical connection between customer and existing server,
establishing, 9-2 (See a/so, Connection- manage­
ment facility.)

Logical context, 2-2f
Logical disks (LDs), 4-16f

Definition of, 4-16
File type, 4-6
Illustration of initialization, 4-17
Master, 4-16
Releasing with ?RELEASE, 4-16
Root, 4-15

Logical processors, 11-5
Creating, 11-7
Deleting, 11-10
Getting status of, 11-10
Specifying class assignments for, 11-9
Specifying percentages for, 11-10

Looping IPC messages, 8-3
Lower rings, stopping from being ringloaded (See

?RNGST system call.)
?LOCALITY system call, 11-7
?LPCLASS system call, 11-9
?LPCREA system call, 11-7
?LPDELE system call, 11-10
?LPSTAT system call, 11-10
LPID, 10-2, 11-5
@LPB, 5-10 (See a/so, Devices.)
LRU (least recently used) chain, 2-7

M

Macroassembler (MASM) (See MASM (macroassem­
bIer).)

Magnetic tape drives (See Magnetic tape units.)
Magnetic tape units, 13-2 (See a/so, User device

support.)
Magnetic tape units, managing with EXEC utility,

12-2f
Magnetic tapes, 5-2

Controllers, 5-10 (See a/so, Devices.)
File type of, 4-6f
File type of generic labeled, 4-6
Labeled, 5-10, 5-23ff (See a/so, Labeled magnetic

tapes and Devices .)
Opening magnetic tape unit for use with, 5-31ff

Mailboxes, 7-12 (See a/so, Tasks.)
Maintaining and creating files, Chapter 4
Manager, queued task, 7-4 (See a/so, Tasks and Queued

tasks.)
Managing

and creating files, sample programs, 4-18ff (See a/so,
Files.)

customer /server connections, Chapter 8 (See a/so,
Connection-management facility.)

exchanges between customers and servers, 9-2
queues and magnetic tape units with EXEC utility,

12-2f
Map slots, 13-6
Mask, interrupt service, 13-2
MASM (macroassembler), 2-9
Master logical disks (LDs), 4-16
Maximum space (MS), 4-16f (See a/so, Control point

directories (CPDs).)
?MBFC system call (See ?MBFC/?MBTC system

call .)
?MBFC/?MBTC system call, 9-1, 9-3
?MBTC system call (See ?MBFC/?MBTC system call.)
?MBTC/?MBFC system call (See ?MBFC/?MBTC

system call.
@MCA, 5-10 (See a/so, Devices.)

Index-16 Licensed Material - Property of Data General Corporation 093·000335

MCA (Multiprocessor communications adapter) (See
Multiprocessor communications adapters (MCAs).)

@MCAl, 5-10 (See a/so, Devices.)
Mechanisms, protection (See Protection mechanisms.)
?MEM system call, 2-1, 2-12
?MEMI system call, 2-1, 2-11f
Memory, Chapter 2, 3-4f

Illustration of working sets in, 2-8
Moving logical pages on demand from disk to (See

Demand paging.)
NREL (normal relocatable), Defining partitions in,

2-9
Memory and process sample programs, 3-22ff
Memory contention, 3-2
Memory dumps, 3-19
Memory management, Chapter 2

Allocation of, 2-11
Definition of terms, 2-2f
Logical address space, 2-2 (See a/so, Logical address

space.)
Logical context, 2-2 (See a/so, Logical context.)
Shared page, 2-2 (See a/so, Shared page .)
System calls, 2-1

?ESFF, 2-1
?GMEM,2-1
?GSHPT, 2-1
?LMAP, 2-1
?MEM, 2-1
?MEMI, 2-1
?PMTPF, 2-1
?RPAGE,2-1
?SCLOSE, 2-1
?SOPEN, 2-1
?SOPPF, 2-1
?SPAGE, 2-1
?SSHPT, 2-1

Unshared page, 2-2 (See a/so, Unshared page.)
Unused page, 2-2 (See a/so, Unused page.)
Validating access privileges to, 2-10
Working set, 2-2, 2-5 (See a/so, Working set.)
Zeroing on allocation, 2-11

Memory modification with disk images, 15-2
Memory organization, Chapter 2
Memory parameters, saving state of, 3-19f
Memory-resident processes, 3-4
Messages,

16-bit process termination, 8-9
32-bit process termination, 8-9ff
?TRAP termination for 16-bit processes, 8-13f
Broadcasting with ?XMT and ?XMTW, 7-11
Error (See Error Codes.)
Interrupt service (See Interrupt service messages.)

IPC, 8-2ff, 9-5 (See a/so, Interprocess communica­
tions (IPC facility.)

Sending between IPC ports, 8-2ff
Sending IPC to itself, 8-7

IPC connection status, 9-5 (See a/so, Connection­
management facility.)

Looping IPC, 8-7
Obituary, 9-5

Receiving with ?IREC, 9-5
Passing from terminal to individual tasks, 7 -11

(See a/so, Tasks.)
Process termination in customer/server relationship,

8-91'f
Minus sign (-) template, 4-15 (See a/so, Access control

list (ACL).)
Modems (full-duplex), 5-13ff

Auto-answer, 5-14
Operating sequence, 5-14

Flags, 5··13ff
CD, 5-13ff
DSR, 5-13ff
DTR, 5-13ff
RTS, 5-113ff

Non-auto-answer, 5-14
Operating sequence, 5-14f

Modes,
Binary, 5-12
LEF (load effective address), 13-7, 13-9
Page, 5-12
Superprocess (See Superprocess mode.)
Superus(~r (See Superuser mode.)
Transparent text, 14-8

Modification of memory with disk images, 15-2
Modified pages, Flushing to disk, 2-10
Modified s.ector I/O, 5-7
Modifying ring field within global port number, 8-3

(See a/so, Interprocess communications (lPC)
facility.)

Monitor ring indicator, 5-15
MOUNT ,command (CLI), 5-32

Syntax of, 5-32
Mounting labeled magnetic tapes

explicitly with CLI MOUNT command, 5-32f
implicitly with ?OPEN system call, 5-32f
with CLI DUMP command, 5-32

Moving
bytes to/from customer's logical address space with

?MBTC and ?MBFC, 9-3
logical pages from disk to memory on demand (See

Demand paging.)
MS (maximum space), 4-16f (See a/so, Control point

directories (CPDs).)
@MTBn, 5-10 (See a/so, Devices.)

093-000335 Licensed Material - Property of Data General Corporation Index-17

Multifile devices, 4-2
Disks, 4-2
Magnetic tape, 4-2

Multilevel connection, definition of, 9-2f
Multiple overlay area, illustration of, 15-3 (See a/so,

Sixteen-bit processes.) . .
Multiple rings, servers concurrently connected to wlthm

customer, 9-6
Multiplexor, Asynchronous Line, 5-10 (See a/so,

Devices.)
Multipoint lines, selection and polling, 1~-4ff
Multipoint/point-to-point line configuratIOns, Illustra-

tion of, 14-4
Multiprocessor communications adapters (MCAs), 5-12
Multiprocessor communications unit (file type), 4-6
Multitasking, Chapter 6

Advantages of, 7-2
Sample programs, 7-13ff

MV /8000 floating-point registers, 7-13
?MYTID system call, 7-3

N

NAK (negative acknowledgment), 14-7f (See a/so,
Data-link control characters (DLCC).)

Names,
Device, 5-9f (See a/so, Devices.)
Directory, 4-4
Full process, 3-10
Getting process (See ?PNAME system call.)
Illustration of process, 3-10f

Negative acknowledgment (NAK), 14-7f (See a/so,
Data-link control characters (DLCC).)

New access control list (ACL), setting with ?SACL
(See Access control list (ACL).)

Next character, accepting as literal with CTRL-P,
5-17 (See a/so, Control characters.)

Non-auto-answer modems, 5-14
Operating sequence, 5-14

NREL (nonrelocatable) memory, 2-9
.NREL pseudo-op, 2-9 .
@NULL generic filename, 5-11 (See a/so, GenerIc

files.)
Number of undedicated pages, Returning (See ?GMEM

system call.)
Number of unshared memory pages, Changing (See

?MEMI system call.)
Numbers,

Interpreting ring fields within global port, 8-3 (See
a/so, Interprocess communications (IPC)
facility.)

Process priority, 3-5
Ring, 8-2f
Task Priority, 7-3

o
.OB files, 4-7 (See a/so, Files.)
Obituary messages, 9-5

PID-size type A processes, 9-5
PID-size type Band C processes, 9-5
Receiving with ?IREC, 9-5
Suppressing with bit ?COBIT, 9-5

Object files, 4-7 (See a/so, Files.)
Object modules, linking to form program file, 15-3f
.OL (overlay) file, 15-2
?OPEN system call, 5-1, 5-3ff, 5-21, 5-32f

File types you can create with, 5-4
Opener, first, 2-9
Opening

files for shared access, 2-7 (See a/so, ?OPEN system
call.)

IPC ports for calling proce~s with ?ISE~~ (See
Interprocess communicatIons (lPC) faCIlIty.)

magnetic tape unit, 5-32
protected shared files, 2-9ff (See a/so, ?SOPPF

system call.)
shared files, 2-9 (See a/so, ?SOPEN system call.)
symbol table file using FED utility (See ?FEDFUNC

system call.)
Operating sequence for

Auto-answer modems, 5-14
Non-auto-answer modems, 5-14

Operation, inclusive-OR, 13-7
Operation sequence for file input/output (I/O), 5-3ff
Organization of memory, Chapter 2
Outer ring to inner ring, crossing from, 3-21
Output,

Freezing to console with CTRL-S, 5-17 (See a/so,
Control characters.)

Suppressing console with CTRL-O, 5-17 (See a/so,
Control characters.)

Tailoring format of line-printer, 5-16f
Output, spooled (See Spooled output.) .
@OUTPUT generic filename, 5-1lf (See a/so, GenerIc

files.)
Overlays,

Concepts of, 15-2ff
.OL file, 15-2
Primitive overlay system calls, 15-2, 15-8 (See

individual system call entries for additional
references.)

?OVEX, 15-8
?OVKIL, 15-8
?OVLOD, 15-8
?OVREL, 15-8

Index-18 Licensed Material - Property of Data General Corporation 093-000335

Runtime relocatability requirements, 15-7
Use count (OUC), 15-8 (See a/so, Overlay use count

(OUC).)
Overriding characteristics of character device, 5-12
?OVEX system call, 15-8
?OVKIL system call, 15-8
?OVLOD system call, 15-8
?OVREL system call, 15-8
Owner (?FACO) access, 4-12ff
Owner Name field (labeled magnetic tapes), 5-27

p

Page mode, Displaying next page in, 5-12
Page-fault condition, 3-2
Pages,

Changing number of unshared memory (See ?MEMI
system call.)

Flushing to disk shared file memory (See ?ESFF
system call.)

Memory, 2-7f
Dedicated, 2-10
Shared, 2-2, 2-7f

Checkpointing, 2-10
Illustration of, 2-8

Undedicated, 2-10
Unshared, 2-2, 2-7f
Unused, 2-11

Moving from disk to memory on demand (See
Demand paging.)

Permanently binding to working set (See ?WIRE
system call.)

Releasing permanently wired (See ?UNWIRE system
call.)

Releasing shared and decrementing use counts (See
?RPAGE system call.)

Returning current number of undedicated (See
?GMEM system call.)

Shared (See Shared pages.)
Wired (See Wired pages.)
Write-protected, 2-2

Paging, Demand, 2-5
Palletes, for pixel maps, 6-34ff
Parameters,

Listing current unshared memory (See ?MEM system
call.)

Process creation, 3-13
Saving the state of memory, 3-19f
Steps AOS /VS takes to check process creation, 3-14
Working-set (See Working set.)

.PART pseudo-op, 2-9

Partition,
Establishing size of new shared (See ?SSHPT system

call.)
Listing current size of shared (See ?GSHPT system

call.)
Shared (See Shared partitions.)

Passing
Customer / server connection to another server in Ring

7 with ?PCNX, 9-4
Customer / server connection to another server with

?PRCNX, 9-4
Messages from terminals to individual tasks, 7-11

(See a/so, Tasks.)
Procedure entry descriptor via the stack, Illustration

of, 15-5
Superprocess privilege to sons, 3-14
Superuser privilege to sons, 3-14

Pathname:s, 4-8ff
Colon (:) prefix, 4-8
Default break files, 3-19f
Definition of, 4-8
Equal sign (=) prefix, 4-9
Generic: file sample, 5-11
Getting complete with ?GNAME, 4-9f
Multiprocessor communications adapters (MCAs),

5-1
Prefixes of, 4-8f
Uparrow ("') prefix, 4-8

Paths, eXI~cution (See Execution path.)
Paths, full-duplex communications, 8-2
?PBRK bit, 3-19
?PCNX system call, 9-4
Pending/unpending tasks via common local servers (See

Fast interprocess synchronization.)
Performing block I/O on
Peripheral manager (PMGR), 3-9
Permanence attribute, 4-15

Setting or removing for file or directory with ?SA TR,
4-15

Permanently binding pages to working set (See ?WIRE
system call.)

Permitting access to protected shared files (See ?PMTPF
system call.)

Physical block input/output (I/O), 5-6f
Definition of, 5-6
Differences between block I/O and, 5-7

PID (See Process identifiers (PIDs).)
PID-related restrictions, 3-11
PID/ring tandems, 2-9 (See a/so, Process identifiers

(PIDs).)
Definition of, 9-6

PID-size type, processes, 3-11
Changing, 3-12

093-000335 Licensed Material - Property of Data Genernl Corporation Index-19

Pipe files, 5-19ff
Boundry conditions in, 5-19
Creating, 5-20
Closing, 5-21
Controlling access to, 5-21
Deleting, 5-21
Invalid system calls to, 5-22
Opening for I/O, 5-21
Reading from, 5-21
Sample program, 5-41
Specifying length of, 5-20
Specifying pending action for, 5-21
Writing to, 5-21

Pixel maps, 6-30ff
@PLA, 5-10 (See a/so, Devices.)
Plotters, 5-10 (See a/so, Devices.)

File type, 4-6
Plus sign (+) template, 4-15 (See a/so, Access control

list (ACL).)
PMGR (See Peripheral manager (PMGR).)
?PMTPF system call, 2-1, -2-9f, 2-12
?PNAME system call, 3-17
Point-to-point stations (See ?SRCV system call and

?SSND system call.)
Point-to-point/multipoint line configurations, Illustra­

tion of, 14-4
Pointer,

File, 5-4f
Frame, 7-6
Stack, 7-5

Pointer events, 6-20ff
Polling,

Definition of, 14-4f
General poll, 14-5f
Multipoint line selection and, 14-4ff
Specific poll, 14-5f

POP J instruction, 15-7
Port numbers, (See a/so, Interprocess communications

(IPC) facility.)
Extracting ring field from global, 8-3
Identifying PID associated with global, 8-3
Interpreting ring fields within global, 8-3
Local, 8-2
Modifying ring field within global, 8-3
Translating from local to global with ?TPORT, 8-2

Ports, (See a/so, Interprocess communiations (IPC)
facility.)

Global, 8-2ff (See a/so, Global port numbers.)
Local, 8-5, 8-2ff (See a/so, Local port numbers.)
Opening IPC with ?ISEND (See ?ISEND system

call and Interprocess communications (IPC)
facility.)

Sending messages between IPC, 8-2ff

Position of file pointer (See a/so, File pointer.)
Changing, 5-5
Getting current, 5-5

Postprocessors,
?UKIL, 7-11
?UTSK, 7-11

Power-failure/auto-restart routine, 13-2, 13-10
?PPCR offset, 3-15
?PPRV offset, 3-5 (See a/so, ?PROC system call.)
.PR files, 4-7, 15-2 (See a/so, Files.)

Getting name of for ring (See ?RNGPR system call.)
?PRCNX system call, 9-4
?PRDB/?PRWB system calls, 5-1
Pre-emptible processes, 3-4f
Prefixes,

At sign (@), 5-9, 5-11
Pathname, 4-8f

Prepaging at fault time, 2-5
Preventing lower rings from being ringloaded (See

?RNGST system call.)
Previously wired pages, releasing (See ?UNWIRE

system call.)
?PRI system call, 7-6
Primary station, definition of, 14-3
Printers, data channel line, 5-10 (See a/so, Devices.)
Priorities,

Assigning sons higher, 3-14
Changing process with ?PRIPR, 3-14 (See a/so,

?PRIPR system call.)
Priority numbers, 7-3

Process, 3-5f
System mapping of, 3-6

?PRIPR system call, 3-6
Privileges, of processes, 3-14
?PRKIL system call, 7-10
?PROC system call, 3-13ff
Procedure entries, 15-5

Passing descriptor via stack, 15-5
Translating procedure name to descriptor, 15-5

Procedure entry descriptor,
Passing via stack, 15-5
Translating procedure name to, 15-5

Procedure name, translating to procedure entry
descriptor, 15-5

Procedures,
Error-recovery (See Error-recovery procedures.)
System-generation, 4-2, 14-2, 13-2

Process, aborting and generating console interrupt with
CTRL-C CTRL-B, 5-17 (See a/so, Control
sequences.)

Process, operator (See Operator process.)
Process and memory sample programs, 3-22ff
Process blocking, 3-16

Index-20 Licensed Material - Property of Data General Corporation 093-000336

Process creation parameters, 3-14
Process creation parameters, steps AOS /VS takes to

check, 3-14f
Process hierarchy, illustration of, 3-9
Process identifier (PID), 3-10f

Getting calling process's with ?PNAME, 3-17
Getting username associated with, 3-17
PID / ring tandems, 7-3

Definition of, 9-6
Virtual (See VPID.)

Process information, 3-17f
Process name,

Full, 3-10f
Getting calling process's, 3-17 (See a/so, ?PNAME

system call.)
Process priorities, changing with ?PRIPR, 3-6 (See a/so,

?PRIPR system call.)
Process priority numbers, 3-5ff
Process privileges, 3-14ff
Process runtime statistics, getting (See ?RUNTM

system call.)
Process scheduling, 3-5ff

Class, 11-4 ff
Standard, 3-5ff, 11-3f

Process termination, 3-18
Process termination codes in offset ?IUFL (for ?IREC

and ?ISEND headers), 8-8f, 9-5 (See a/so, Inter­
process communications (IPC) facility.)

?T32T extended code, 8-9
?T ABR extended code, 8-9
?T AOS code, 8-8
?TBCX code, 8-8, 9-5
?TCCX code, 8-8 , 9-5
?TCIN code, 8-8, 8-13
?TEXT code, 8-8, 8-15f
?TR32 extended code, 8-9
?TSELF code, 8-8

Process termination messages in customer/server
relationship, 8-7ff

Process trapping, 8-10f, 8-14
Process tree, 3-9
Process types, 3-4

Changing, 3-6 (See ?CTYPE system call.)
Creating sons with any, 3-14

Process-management system calls, 3-1
Processes,

Blocking 3-16f (See ?BLKPR system call.)
Chaining customer, 9-6
Changing

priority of other (See ?PRIPR system call.)
priority of self, 3-6
process type, 3-6
state with Superprocess privilege, 3-15f

Conditions under which AOS /VS blocks, 3-16

Conditions under which AOS/VS unblocks, 3-16
Creating, 3-13ff
Creating son, 3-13ff
Defining customer, 9-2
Defining server, 9-2
Definition of, 3-2
Getting

name of (See ?PNAME system call.)
runtime statistics on (See ?RUNTM system call.)
status information for (See ?PROC system call.)

Memory-resident (See Resident processes.)
Passing control to new (See ?CHAIN system call.)
Pre-emptible, 3-4
Reasons for termination of, 3-18f
Rescheduling with ?RESCHED, 3-9
Resident, 3-4 (See Resident processes.)
Scheduling another for execution (See ?RESCHED

system call.)
Scheduling, Process 3-5
Server, 9-3f
Sixteen-bit (See Sixteen-bit processes.)
Spanning rings, 3-2lf
Swappable, 3-4
Terminating and creating break files, 3-19f (See a/so,

?BRKFL system call.)
Terminating customer, 9-4
Termination messages for

16-bit, 8-14
32-bit, 8-10f

Types OIf, 3-4
Pre-emptible (See Pre-emptible processes.)
Resident (See Resident processes.)
Swappable (See Swappable processes.)

Processors,
Child, 10-2
Job, 10·2
Logical., 10-2
Mother, 10-2
Physical, 10-2

?PROFILE system call, 12-3
Profile file, file type of user, 4-5
Program files, 4-7, 5-4, 15-2 (See a/so, Files.)

Creating sons of different type, 3-14
File type of AOS (?FPRV), 4-6
File type of AOS/VS (?FPRG), 4-6
Linking object modules to form, 15-3f
Loading into specific rings with ?RINGLD, 3-21 (See

a/so, ?RINGLD system call.)
Types of, 4-6

Programs,
Definitilon of, 3-2
Linking together with ?CHAIN, 3-21
Loading unshared address space of, 2-5f
Sample (See Sample programs.)

093-000335 Licensed Material - Property of Data Generell Corporation Index-21

Protected shared files, 2-9f
Opening, 2-9f (See a/so, ?SOPPF system call.)
Permitting access to, 2-9f (See a/so, PMTPF system

call.)
Protection, Inner-ring task-redirection, 7-9 (See a/so,

Tasks.)
Protection mechanisms, 2-3
Protection rings, Hardware, 2-3 (See a/so, Rings.)
Protection of tasks, 7-2f (See a/so, Tasks.)

Ring maximization, 7-2f (See a/so, Tasks.)
Ring specification, 7-3 (See a/so, Tasks.)

Protocol,
Binary synchronous communications (BSC), 14-5ff

(See a/so, Binary
synchronous communications (BSC).)
Multiprocessor communications adapters (MCAs),

5-12f
?PRRDY system call, 7-1, 7-7f
?PRSUS system call, 7-1, 7-7f
?PRWB system call, See ?PRDB/?PRWB system call
Pseudo-ops,

Defining shared area with, 2-9
.ENTO (overlay entry), 15-4, 15-10
.EXTG, 3-21
.EXTN, 15-4
.NREL,2-9
.PART,2-9
.PTARG, 15-5

PSHJ instruction, 15-7
PSHR instruction, 15-7
?PST A T system call, 3-17
.PTARG pseudo-op, 15-5
?PTRDEVICE system call, 6-20
?PVDV privilege, 3-14, 13-1
?PVEX privilege, 3-14
?PVIP privilege, 3-14, 8-2
?PVPC privilege, 3-14f
?PVPR privilege, 3-14
?PVSP privilege, 3-14
?PVSU privilege, 3-14
?PVTY privilege, 3-14
?PVUI privilege, 3-14
?PVWM privilege, 3-14
?PVWS privilege, 3-14
?PWRB system call, 5-1 (See a/so, ?PRDB/?PWRB

system call.)

Q

Queue entry (file type), 4-5
Queued task creation option, 7-4 (See a/so, Tasks.)
Queued task manager, 7-4 (See a/so, Tasks.)
Queues, managing with EXEC util.ity, 12-2f
Queuing files for spooled output wIth ?ENQUE, 12-3

R

Race condition, between tasks 7-12, 9-6
Radix, changing using FED utility (See ?FEDFUNC

system call.)
?RCALL system call, 15-4ff, 15-8
?RCHAIN system call, 15-4, 15-7
?RDB/?WRB system calls, 5-1, 5-3
?RDUDA/?WRUDA system call, 5-1, 5-16
Re-enabling task scheduling, 7-6f (See a/so, Tasks)
Read, terminating with end-of-file character usmg

CTRL-D, 5-17 (See a/so, Control characters.)
Read (?FACR) access, 4-13f
?READ system call, 5-1, 5-3
Readers,

Card, 5-15 (See a/so, Devices.)
File type of card, 4-6

Reading
shared page and incrementing use count (See ?SPAGE

system call.)
Readying tasks, 7-8 (See a/so, Tasks.)
Reasons for process termination, 3-18f
?REC system call, 7-1, 7-11f, 7-17f
Receive and send IPC headers, 8-4ff (See a/so,

Interprocess communications (lPC) facility.)
Structure of, 8-5

Receiving
data or control sequences over BSC lines with ?SRC':',

14-2 (See a/so, Binary synchronous commum­
cations (BSC).)

obituary messages with ?IREC, 9-5
?REC system call, 7-11
?RECNW system call, 7-12
Record formats, for SYSLOG file, A-3ff
Record input/output (I/O), 5-5

Assigning device to process for, 5-1
Definition of, 5-5
Record types, 5-5f

Data-sensitive, 5-5
Dynamic-length, 5-5
Fixed-length, 5-5
Variable-length, 5-5

System calls, 5-3
Records, 5-3

Data-sensitive, 5-5
Dynamic-length, 5-5
Fixed-length, 5-5
Variable-length, 5-5

?RECREA TE system call, 4-1
Redirecting tasks, 7-8f (See a/so, Tasks.)
Redirection protection, inner-ring task, 7-9 (See a/so,

Tasks.)
Reducing disk size, 5-6

Index-22 Licensed Material - Property of Data General Corporation 093·000335

References, link-to-link, 4-10
Regions, locking/unlocking critical, 7-12 (See a/so,

Tasks.)
Registers,

Floating-point, 13-7
Initializing floating-point status, 7-13

Relative terminals, 14-6
?RELEASE system call, 4-1, 4-16, 5-1
Releasing

logical disks (LDs) with ?RELEASE, 4-16
previously wired pages (See ?UNWIRE system call.)

Relocatability, requirements for runtime, 15-7
Remote host, determining references to from pathname,

1-493f
?RENAME system call, 4-1, 4-7
Renaming

files with ?RENAME, 4-7
system log file, see System log file.

Requirements for
indexes by file, 4-4
runtime relocatability, 15-7
volume identifier, 5-23

?RESCHED system call, 3-9
Rescheduling tasks, 7-7 (See a/so, Tasks.)
Resident processes, 3-4
?RESIGN system call, 9-4f
Resigna tion, signaling server, 9-4
Resource deadlock, 15-4
Resource system calls, 15-2, 15-4f

Alternate return from, 15-5
Illustration of stack after ?RSA VE, 15-6

Retries for disk errors, bypassing, 5-7
?RETURN system call, 8-12ff
Returning current number of undedicated pages (See

?G MEM system call.)
Reverse interrupt (RVI), 14-7 (See a/so, Data-link

control characters (DLCC).)
?RFAB code, 8-14
?RFCF code, 8-14
?RFEC code, 8-14
?RFER code, 8-14
?RFWA code, 8-14
Ring 0, 2-3
Ring 4, 7-9
Ring 6, 7-9
Ring 7, 7-9
Ring field, 7-5 (See a/so, Interprocess communications

(IPC) facility.)
Extracting from global port number, 8-3
Interpreting with ?IREC, 8-3
Modifying within global port number, 8-3

Ring indicator, monitor, 5-14f
Ring number, 8-2f
Ring structure, illustration of, 2-3

Ring-maximization protection scheme, 7-2f (See a/so,.
Tasks.)

Ring-specification protection scheme, 7-3 (See a/so"
Tasks.)

?RINGLD system call, 3-21, 7-6 (See a/so, ?RNGST
systc~m call.)

AOS/VS actions in response to, 7-6
Ringload, stopping lower rings from a (See ?RNGST

systc~m call.)
Rings,

Creating break files of specified user, 3-20
Crossing from outer to inner, 3-21
Defaullt user (Ring 7), 2-4
Dumping memory image to file from specified with

?JMDUMP, 3-19
Getting .PR filename for (See ?RNGPR system call.)
Hardware protection, 2-3
Illustration of segments and their, 2-3
Inner (See Inner rings.)
PID / ring tandems, 7-3
Processes spanning, 3-21 f
Stopping lower from being ringloaded (See ?RNGST

system call.)
Structure of, 2-3ff
System, 2-3
Targelt, 8-3
User, 2-4

?RNGPR system call, 3-21
?RNGST system call, 3-21
Root directory, 4-9
Roots,

Local, 4-16
Logical disk (LD), 4-17
System, 3-9, 4-17

Routines,
?BO~[B 15-4f
Communicating from interrupt service, 13-8
Interrupt service (See Interrupt service routines.)
Power-failure/auto-restart, 13-2, 13-9
?UKIL termination-processing, 7-11
?UTSK task-initiation, 7-11 (See a/so, Tasks.)

?RP AGE system call, 2-1, 2-7, 2-12
?RSA VE system call, 15-4, 15-6
RTN instruction, 15-4F
Runtime: relocatability requirements, 15-7
?RUNTM system call, 3-17
RVI (reverse interrupt), 14-7 (See a/so, Data-link con­

trol characters (DLCC).)

S

?SACL system call, 4-14
Sample directory tree, illustration of, 4-4
Sample process tree, illustration of, 3-9

093·000335 Licensed Material - Property of Data GenEtral Corporation Index-23

Sample programs,
File creation and management, 4-18ff
File input/output (I/O)
IPC, 8-17ff
Multitasking, 7-2
Process and memory, 3-22ff

?SA TR system call, 4-1
Save area, extended state, 15-9
Saving the state of memory parameters and tables,

3-19f
Scheduling,

Disabling task, 7-7
Process, 3-5
Re-enabling task, 7-7 (See a/so, Tasks.)
Task, 7-6f (See a/so, Tasks.)

?SCHR system call, 5-1, 5-13
?SCLOSE system call, 2-1, 2-9, 2-12
SCP (System Control Processor), 5-10 (See a/so,

Devices.)
?SDA Y system call, 12-2
?SDBL system call, 14-2
?SDLM system call, 5-1
?SDPOL system call, 14-5
?SDRT /?SERT system call, 14-5
Search list, 4-7

Creating with ?SLIST, 4-7
Definition of, 4-7
Examining current with ?GLIST, 4-7

?SEBL system call, 14-2, 14-5, 14-16
?SECHR system call, 5-1, 5-16
Secondary station, definition of, 14-3
Segments, 2-3ff

Definition of, 2-3
Illustration of with their protection rings, 2-3

Selecting, definition of, 14-4
Selection and polling, multipoint line, 14-4ff
Send and receive headers,

Contents of IPC, 8-6
Structure of IPC, 8-5

?SEND system call, 5-1, 9-4
Sending

data or control sequences over BSC lines with ?SSND,
14-2 (See a/so, Binary synchronous communi­
cations (BSC).)

IPC messages to itself, 8-7f
messages between IPC ports, 8-2ff
text over BSC line, 14-6

Sequences,
Typical IPC system call, 8-4 (See a/so, Interprocess

communications (IPC) facility.)
?SERT system call (See ?SDRT /?SERT system call.)
?SER VE system call, 9-1 ff, 9-6
Server process, 9-3f

Defining, 9-2

Server-only system call (?CTERM), 9-4
Servers,

Establishing logical connection between customer and
existing, 9-2

Inner-ring, 2-9f
Local, 2-9
Managing exchanges between customers and, 9-2
Signaling resignation with ?RESIGN, 9-4f

Servers concurrently connected to multiple rings within
customer, 9-6

Service, user interrupt, 13-7
Set, working (See Working set.)
Setting

access control list (ACL) for files or directories with
?SACL, 4-14 (See a/so, Access control list
(ACL).)

clearing, or examining default ACL with ?DACL,
4-14 (See a/so, Access control list (ACL).)

permanence attribute for file or directory with ?SATR,
4-15

Shared access, opening files for, 2-9 (See a/so, ?OPEN
system call and Shared files.)

Shared area, Defining with assembly language pseudo­
ops, 2-9

Shared files,
Closing (See ?SCLOSE system call.)
Flushing memory pages to disk (See ?ESFF system

call.)
Opening, 2-9 (See a/so, ?SOPEN system call.)
Protected, 2-9f
Opening, 2-9f (See a/so, SOPPF system call.)
Permitting access to (See PMTPF system call.)

Shared pages, 2-2, 2-7f, 2-11
Definition of, 2-2
Illustration of, 2-11
Reading and incrementing use count for (See ?SPAGE

system call.)
Releasing and decrementing use count for (See

?RPAGE system call.)
Ways to use, 2-7

Shared partitions,
Signaling

server resignation with ?RESIGN, 9-4f
with fast interprocess communication system call,

9-7 -
?SIGNL system call, 9-1, 9-4, 9-7
?SIGWT system call, 9-1, 9-7
Simple process name, 3-10

Index-24 Licensed Material - Property of Data General Corporation 093-000335

Sixteen-bit processes, Chapter 12
Illustration of basic overlay area, 15-3
Illustration of mUltiple overlay area, 15-3
Illustration of passing a procedure entry descriptor

via the stack, 15-5
Linking object modules to form program files, 15-3f
Memory modification with disk images, 15-2
Overlays (See Overlays.)
Primitive overlay system calls (See Overlays.)
Resource system calls,

Size,

?DELAY, 15-1
?GCRB, 15-1
?IDSTAT, 15-1
?IESS, 15-1
?IHIST, 15-1
?KCALL, 15-1
?OVEX, 15-1
?OVKIL, 15-1
?OVLOD, 15-1
?OVREL, 15-1
?RCALL, 15-1
?RCHAIN, 15-1
?SERMSG, 15-1
?UNWIND, 15-1
?W ALKBACK, 15-1

Shared partition,
Establishing new (See ?SSHPT system call.)
Listing (See ?GSHPT system call.)

Specifying file-element, 4-2
Specifying initial stack, 7-4f (See also. Stacks.)
Working set, 3-2

?SLIST system call, 4-7
@SLNx device name, 14-2
Slots, map, 13-6 (See also, Map slots.)
Software modularity, 2-4
SOH (start-of-header), 14-7 (See also, Data-link control

characters.)
Sons,

Assigning higher priority to than father, 3-14
Creating unlimited number of, 3-14
Creating with any process type, 3-14
Creating with different program file types, 3-14
Creating with different usernames, 3-14
Defining working-set parameters for, 3-14
Passing Superprocess privileges to, 3-16
Passing Superuser privileges to, 3-15

?SOPEN system call, 2-1, 2-7, 2-12
?SOPPF system call, 2-1, 2-9f, 2-12
Source code, 4-7
Source files, assembly language, 4-7 (See also, Files.)

Space,
Allocating stack, 7-4f (See also, Stacks.)
Current (CS), 4-16f (See also, Control point direc-

tories (CPDs).)
Disk, ~~-2 (See also, Disk space.)
Logicall address, 3-2f
Maximum (MS), 4-16f (See also, Control point

directories (CPDs).)
?SPAGE system call, 2-1, 2-7, 2-12
Spanning rings, processes, 3-21 f
Specifications, ACL (See Access control list (ACL).)
Specifying

file-element size, 4-2
size of initial stacks, 7-4f (See also, Stacks.)

Spoolable peripheral directory (file type), 4-6
Spooled output, queuing files for, 12-3
?SPAGE system call, 2-7
?SPOS system call, 5-1, 5-5
?SPTM global port number (predefined origin port for

obituary messages), 9-5
.SR files, 4-7 (See also, Files.)
?SRCV system call, 14-2, 14-12, 14-14f
?SSHPT system call, 2-1, 2-7, 2-12
?SSND system call, 14-2, 14-11, 14-13

Timing errors, 14-2
Stack fau.lt handler, 7-5f (See also, Stacks.)
Stacks,

Allocating space, 7-4f
Defining, 7-5f
Forcing AOS/VS to initialize common inner-ring,

7-5f
Inner-rltng, 7 -5f
Limits, 7-5
Pointer, 7-6
Specifying size of initial, 7-4f
Stack fault handler, 7-5
User, 13-8, 15-5
Wide (32 bits), 7-6

?ST AL offset,
Start of header (SOH), 14-7 (See also, Data-link

control characters (DLCC).)
Start of text (STX), 14-7 (See also, Data-link contro]

characters (DLCC).)
States,

Of tasks, 7-7
Process (See Process states.)

Stations, 14-2
Control, 14-4f
Primary (See Primary station.)
Secondary (See Secondary station.)
Tributary (See Tributary station.)
Connecting two or more (See Dedicated communi­

cat.ions line, 14-2
Statistics, getting BSC error-recovery, 14-9 (See a/so,

Binary synchronous communications (BSC).)

093-000335 Licensed Material - Property of Data Genera II Corporation Index-25

Status,
Execute-protection, 3-18 (See also, ?EXPO system

call.)
LEF mode (See Load-effective address (LEF) mode.)

Status register, floating-point, 7-19
Steps AOS/VS takes to check process creation param-

eter, 3-14
?STMAP system call, 13-1, 13-6
?STOD system call, 12-2
?STOM system call, 5-1
Stopping lower rings from being ringloaded (See

?RNGST system call.)
Strings, specifications (See Specifictions strings.)
Structure,

AOS/VS file, 4-1
Array (See Array structure.)
Disk file, 4-2ff
IPC send and receive headers, 8-5
Map definition table, 13-5f
Offset ?IUFL, 8-8
Ring, 2-3ff

STX (start of text), 14-7
Superprocess mode, 3-15f

Assigning privilege, 3-16
Changing state of another process with, 3-16
Examining, entering, or leaving (See ?SUPROC sys-

tem call.)
Passing privilege to sons, 3-16
Privilege of turning on, 3-14

Superuser mode, 3-15f
Examining, entering, or leaving (See ?SUSER system

call.)
Passing privilege to sons, 3-15
Privilege of turning on, 3-14

Suppressing
console output with CTRL-O, 5-17 (See also, Control

characters.)
obituary messages with bit ?COBIT, 9-5

?SUPROC system call, 3-16
?SUS system call, 7-1, 7-11 ff
?SUSER system call, 3-15
Suspended tasks, 7-10 (See also, Tasks.)
Suspending tasks for specific time with ?WDELAY,

7-12 (See also, Tasks.)
Swap files, variable 2-6f
Swappable processes, 3-4f
Switched communications lines, 14-2
Symbol table (.ST) file, 12-3

Accessing with ?GTNAM and ?GTSVL, 12-3
File type, 4-5
Opening using FED utility (See ?FEDFUNC system

call.)
System-defined, 12-3
User-defined, 12-3

Symbols, 12-3

SYN (synchronization character), 14-7
Synchronization, fast interprocess (See Fast interprocess

synchroniza tion.)
Synchronization character (SYN), 14-7
Synchronous communications line (file type), 4-6
Syntax,

CLI DUMP command, 5-32
CLI MOUNT command, 5-32

:SYSLOG system log file, 12-4 (See also, System log
file.)

Event codes in, A-3ff
Logging events to, 12-4
Reading contents of, A-I
Records,

Formats, A-3ff
Headers, A-2ff
Lengths, A -3 ff

System,
Identifying with ?GSID, 12-4
Operating (See Operating system.)

System calls
Block input/output (I/O), 5-5
Clock/calendar, 12-2
Connection-management, 9-1 (See also, Connection-

management facility.)
File input/output (I/O), 5-1
Memory-management, 2-10
Primitive overlays (See Overlays.)
Privilege to issue IPC, 3-14
Record input/output (I/O), 5-5
Resource, 15-1 ff
Server-only (?CTERM), 9-4
Sixteen-bit processes, 15-1
Typical IPC sequence, 8-4 (See also, Interprocess

communications (IPC) facility.)
System Control Processor (SCP), 5-10 (See also,

Devices.)
System data file (file type), 4-5
System flag word (offset ?ISFL), contents of, 8-6
System hierarchy, 3-9
System information, 12-1ff
System log file, :SYSLOG, 12-4

Logging messages into with ?LOGEV, 12-4
System rings, 2-4 (See also, Rings.)
System root, 3-9
System-generation procedure, 4-2, 7-10, 14-2, 13-2

T

?T32T extended code, 8-8 (See also, Process termination
codes in offset ?IUFL.)

Tables,
Connection (See Connection table.)
Interrupt vector (See Interrupt vector table.)
Map definition (See Map definition table.)
Structure of map definition, 13-5

Index-26 Licensed Material - Property of Data General Corporation 093-000335

Tailoring
?UTSK task-initiation routine, 7-6f (See a/sO', Tasks.)
format of line-printer output, 5-16

Tandem, PID/ring (See PID/ring tandem.)
?T AOS code, 8-8 (See a/sO', Process termination codes

in offset ?IUFL.)
Tape files, file type of generic labeled, 4-6
Tape unit, file type of magnetic, 4-6
Tapes (See a/sO', Magnetic tapes .)

Controllers for labeled magnetic, 5-10 (See a/sO',
Devices.)

Controllers for unlabeled magnetic, 5-10 (See a/sO',
Devices.)

File type of magnetic, 4-6
Labeled magnetic, 5-10 (See a/sO', Devices.)
Magnetic (See Magnetic Tapes.)

Target ring, 8-3
Task identifier (TID), 7-5, 7-15f
Task scheduling,

Disabling, 7-11 (See a/sO', Tasks.)
Re-enabling, 7-11 (See a/sO', Tasks.)

Task states, Illustration of, 7-11 (See a/sO', Tasks.)
?TASK system call, 7-1, 7-6f, 7-9, 7-17

Aborting while ?UTSK is executing, 7-6 (See a/sO',
Tasks.)

Task-initiation routine (?UTSK), 7-6f (See a/sO', Tasks.)
Task-management system calls, 7-lf (See individual

system call entries for additional references.)
?DFRSCH, 7-1
?DQTSK,7-1
?DRSCH, 7-1
?ERSCH, 7-1
?IDGOTO, 7-1
?IDKIL, 7-1
?IDPRI, 7-1
?IDRDY, 7-1
?IDSTAT, 7-1
?IDSUS, 7-1
?IFPU, 7-1
?IQTSK, 7-1
?KILAD, 7-1
?KILL, 7-1
?MYTID, 7-1
?PRI, 7-1
?PRKIL, 7-1
?PRRDY, 7-1
?PRSUS, 7-1
?REC, 7-1
?RECNW, 7-1
?SUS, 7-1
?TASK,7-1
?TIDSTAT, 7-1
?TLOCK, 7-1
?TRCON, 7-1
?TUNLOCK, 7-1

?UIDSTAT, 7-1
?WDELA Y, 7-2
?XMT,7-2
?XMTW, 7-2

Task-redirection protection for inner rings, 7-13ff (See
a/so, Tasks.)

Task-termination routine, ?UKIL (See Kill-processing
routines.)

Task-to-task communication, 7-17f (See a/sO', Tasks.)
Tasks, Chapter 6

Aborting ?TASK while ?UTSK is executing, 7-6
Circumstances under which AOS/VS reschedules,

7-10
Concepts, 7-3
Console-to-task communication, 7-17
Definition of, 3-2
Detecting termination and creation of, 7-16
Disabhng scheduling with ?DRSCH, 7-11, 7-18f
Illustration of states, 7-11
Influencing scheduling, 7-6
Initial, 7-6
Initiating, 7-6
Inner-ring task-redirection protection, 7-13ff
Locking/ unlocking critical regions, 7 -18f
Protection schemes, 7-4f (See a/sO', Tasks.)
Ring maximization, 7-4
Ring specification, 7-4f
Queued task creation option, 7-7
Queued task manager, 7-7
Re-enabling previously disabled scheduling, 7-11
Ready, 7-12
Readying, 7-12f (See a/sO', Tasks.)
Redirecting, 7-13
Schedu.ling, 7-1 Of
Suspended, 7-10, 7-12
Suspending for specified time with ?WDELAY,

7-12
Tailoring ?UTSK task-initiation routine to your

appication, 7-6
Task-to-task communication, 7-17f
Terminating, 7-15
Using common local servers to pend/unpend (See

Fast interprocess synchronization.)
?TBCX termination code, 8-8, 9-6 (See a/sO', Process

termination codes in offset ?IUFL.)
?TCCX code, 8-8, 9-6 (See a/sO', Process termination

codes in offset ?IUFL.)
?TCIN code, 8-8, 8-13 (See Process termination codes

in offset ?IUFL.)
Templates,

ACL, 4-15 (See a/so, Access control list (ACL).)
Path name, 5-9

Temporary files, 4-9 (See a/sO', Files.)
Temporary text delay (TTD), 14-7
?TERM system call, 8-7ff, 9-4

093-000335 Licensed Material - Property of Data General Corporation Index-27

Terminals, 5-10 (See also, Consoles.)
Terminal files, 4-6
Terminating

connections, 9-4
current read with end-of-file character using

CTRL-D, 5-17 (See also, Control characters.)
customer processes with ?CTERM, 9-4 (See also,

?CTERM system call.)
histograms with ?KHIST, 3-18 (See also, ?KHIST

system call.)
process and creating break file, 3-19f (See also,

?BRKFL system call.)
processes, 3-2f
tasks, 7-15 (See also, Tasks.)

Termination and creation detection (tasks), 7-16 (See
also, Tasks.)

Termination code ?TEXT, 8-8, (See also, Process
termination codes in offset ?IUFL.)

Termination codes for 16-bit processes, 8-12 (See
Interprocess communications (IPC) facility.)

?RFAB code, 8-14
?RFCF code, 8-14
?RFEC code, 8-14
?RFER code, 8-14
?RFWA code, 8-14

Termination codes in offset ?IUFL for ?IREC and
?ISEND headers, process (See Process termination
codes in offset ?IUFL.)

Termination messages, 9-5 (See also, Process termi-
nation codes in offset ?IUFL.)

?TBVC, 9-7
16-bit processes, 8-14
32-bit processes, 8-10ff

Terms, Definition of memory-management, 2-2f
?TEXT code termination messages sent on 32-bit proc­

ess user trap, 8-8, (See also, Process termination
codes in offset ?IUFL.)

Text editors, 4-2
Text files (file type ?FTXT), 4-5, 5-4
Text mode, transparent, 14-8
Text string associated with particular error code, 12-4
Thirty-two-bit processes, termination messages for,

8-9ff
?TIDSTAT system call, 7-1, 7-5
Timing errors (?SSND system call), 14-2
?TLOCK system call, 7-1, 7-14
.TMP files, 4-7 (See also, Files.)
?TMYRING flag (?TLOCK system call), 7-14
?TPLN termination message length (32-bit processes),

8-8
?TPORT system call, 8-2f
?TR32 extended code, 8-12 (See also, Process termi­

nation codes in offset ?IUFL.)

Transferring attributes to new program with ?CHAIN,
3-13

Translating
host ID and PID into virtual PID with ?GVPID,

4-13
local port number to global equivalent with ?TPORT,

8-2 (See also, Interprocess communications (lPC)
facility.)

procedure name to procedure entry descriptor, 15-5
virtual PID into host ID and PID with ?TPID, 3-13

Transparent text mode, 14-8
Trap,

Creating break files for every process, 3-19
Process (See Process trapping.)

?TRAP termination messages for 16-bit processes,
8-14

?TRCON system call, 7-1, 7-17
Tree,

Illustration of sample directory, 4-4
Process, 3-9

Tributary station, 14-3f
?TRUNCATE system call, 5-1, 5-5
?TSELF code, 8-8 (See also, Process termination codes

in offset ?IUFL.)
?TSUP, 8-8
TTD (temporary text delay), 14-8
?TUNLOCK system call, 7-1, 7-14
Type, creating sons with any process, 3-14
Type-ahead buffer, emptying an echoing "'C"C on

console with CTRL-C CTRL-C, 5-17 (See also,
Control sequences.)

Types,
Changing process, 3-6 (See ?CTYPE system call.)
File access, 4-11£ (See also, Access privileges.)
File, 4-5f
Process, 3-4
Program file, 4-5

Typical IPC system call sequence, 8-4f (See also,
Interprocess communications (lPC) facility.)

U

UDA (user data area) (See User data area (UDA).)
?UDDRS offset, 13-2, 13-10
?UDLN device control table (DCT) length, 13-2
?UDRS offset, 13-2
?UDVBX offset, 13-2
?UDVIS offset, 13-2
?UDVMS offset, 13-2
?UDVMX offset, 13-2
?UIDSTAT system call, 7-1, 7-5, 7-16
?UKIL termination-processing routine, 7-15f (See also,

Termination-processing routines.)
Undedicated pages, 2-10

Returning current number of (See ?GMEM system
call.)

Index-28 Licensed Material - Property of Data General Corporation 093-000335

Unique kill-processing routine, defining with ?KILAD,
7-15

Unique Storage Position (USP) pointers, 7-16
Units,

Disk, 5-10 (See also, Devices.)
File type of disk, 4-5
File type of magnetic tape, 4-6
File type of multiprocessor communications, 4-6
Floating-point (See Floating-point unit.)

Unlabeled magnetic tapes (See Magnetic tapes.)
Unlocking/locking critical regions, 7-18f (See a/so,

Tasks.)
Unpending/pending tasks via common local servers (See

Fast interprocess synchronization.)
Unshared memory pages, 2-2, 2-7f (See a/so, Unshared

pages.)
Unsupported device, establishing interface between

AOS/VS operating system and (See ?IDEF system
call.)

Unused pages, 2-2, 2-11
?UNWIRE system call, 3-5
Uparrow () pathname prefix, 4-8 (See a/so,

Pathnames.)
?UPDATE system call, 5-1, 5-3
Updating histograms, 3-17
URT32.LB user runtime library, 7-6, 7-15
Use count,

Overlay, 15-8
Reading shared page and incrementing (See ?SPAGE

system call.)
Releasing shared page and decrementing (See

?RPAGE system call.)
User and system flags (lPC) , 8-6ff
User console or batch process information (See

?LOGEV system call.)
User data files, 4-5

File type ?FUDF, 4-5, 5-4
User device support, Chapter 10 (See a/so, User

devices.)
Communicating from interrupt service routine, 13-8
Defining system devices, 13-1
Enabling and disabling access to all devices, 13-9
Illustration of device control table (OCT), 13-3
Introducing devices to AOS/VS at execution time,

13-2,
User devices,

Disk drives, 13-1
Line printers, 13-1
Magnetic tape drives, 13-1
Multiple channels, using on, 13-8

User flag word (offset ?IUFL), 8-7 (See a/so, Inter­
process communications (IPC) facility.)

Illustration of structure of, 8-8
User interrupt service, 13-7
User process interval, specifying, 11-9

User processes, 3-9
User profile file (file type), 4-5
User profiles, managing, 12-3
User rings, 2-3f (See a/so, Rings.)

Creating break files of specified, 3-20
User stacks, 13-8, 15-5
User trailer labels (See Labels.)
User traps, 8-11, 8-14
User volume labels, 5-26f (See Labels.)
Utilities, 4-2

CLI LABEL, 5-23
EXEC (See EXEC utility.)
FCU (forms control), 5-16
File editor (FED) (See File editor (FED) utility call.)
Interfaces to, 12-2f
Link, 2-9, 15-3f

Utility interfaces, 12-2f
UTL (usl~r trailer labels) (See Labels.)
?UTSK task-initiation routine, 7-4 (See a/so, Tasks.)
UVL (us1er volume labels) (See Labels.)

V

Valid filename characters, 3-10
Valid pathname prefixes, 4-8
Variable-length records, 5-5
?VCUST system call, 9-4
Virtual address space, 2-5

Illustration of, 2-8
Virtual PIO, 3-13

Forming from host ID and PID with ?GVPID, 3-13
Transla.ting into host ID and PIO with ?TPID, 3-13

VPIO, 3-13
Volid (Se'e Volume identifier.)
Volume identifiers, 5-23

Requimments for, 5-23
Volume labels,

Contents of, 5-26
Contents of VOL1, 5-27

?VRCUST system call, 9-4

W

WACK (wait-before-transmit positive acknowledg­
ment), 14-7

Wait-before-transmit positive acknowledgment (WACK),
14-7

Ways to use shared memory pages, 2-7f
?WHIST system call, 3-17f
Wide sta(:k (32 bits), 7-6
?WINOOW system call, 6-1ff
Windowing,

Terminals, 6-2f
What is it? 6-2

093-000336 Licensed Material - Property of Data General Corporation Index-29

Windows,
Adjusting the appearance of, 6-13f
Assigning to a process, 6-12f
Character, 6-26
Characteristics, 6-5
Closing for I/O, 6-41
Deleting, 6-41
Getting input from, 6-17ff
Groups, 6-9f
Manipulating, 6-14 ff
Opening for I/O,
Pa thnames, 6-4
Priorities, 6-8
Title, 6-4
Types, 6-4f

?WIRE system call, 2-10, 3-5
Word, User flag, 8-7,
Words copied to break file, 3-19f
Working directory, 4-6

Changing, 4-7
Definition of, 4-6

Working set, 2-2, 2-5, 3-2
Adjusting the size, 3-4
Defining parameters for sons, 3-10
Illustration of, 2-8
Permanently binding pages to (See ?WIRE system

call.)

?WRB system call, 5-1, 5-3, 5-6 (See a/so,
?RDB/?WRB system calls.)

?WRITE system call, 5-1, 5-3, 5-6 (See a/so,
?READ/?WRITE system calls.)

Write-protected pages, 2-2
?WRUDA system call, 5-1, 5-16, (See a/so,

?RDUDA/?WRUDA system call.)
?WTSIG system call, 9-1, 9-4, 9-7

X

?XFDUN mount function (See ?EXEC system call.)
?XFML T mount function (See ?EXEC system call.)
?XFMUN mount function (See ?EXEC system call.)
?XFXML mount function (See ?EXEC system call.)
?XFXUN mount function (See ?EXEC system call.)
?XMT system call, 7-1lf
?XMTW system call, 7-1lf
XOP instruction, 15-7

Index-30 Licensed Material - Property of Data General Corporation 093-000335

1111~~lIlllllll~III~II~IIIIIIII~1
Data Ceneral Corporation, Westboro, MA 01580 093-000335-01

