

wid
lad i ;,JA
oS T
=
s
bl ************************************** |
| * : *
™ * SECRETS OF SYSTEM PERFORMANCE hal
* *
- * UNDER * |
* b Lk
) * AOS *
s * R Ll *
* By Ron A. Fitch = *
*******7k‘*‘*"‘A""If**;‘t****"k‘*******;*‘***‘*i******‘:j
Copyr1ght (C) 1986 1987 Innovat1ve Data Syst
Pub11shed by Innovat1ve Data Pres
i ; This manualvméjf: “ feé in. who1e or 1njj§'
g | or transmitted b ; ﬁe]ectron1c or oth
: wise) without ‘Qressedewr1tten con<ent of
~copyright owne 1 ;‘;ye;Data'SJStemsﬁ
, hereby grant pe ~;boo<‘rev1ewers to qt
i ! small segments ur of reviewing th1s}
ol - only. Any o e conStjtptes‘fraudk‘ﬁ
il Note: Unles rwise noted, any references in
this to AOSWATCHER, or "the
7 Watch also app]y to the DESKWAT,HER‘
. Perf Monitdﬁ:as we11 Lo i

6-ser-¥i
Loded we o n styged

M} ‘ANCL o~ ')# ‘ 7‘27 + OWAFE

’acﬂyé}(&mﬂwf;‘ |
WUWWJ%& /m@ M ufmm

9‘ /Qe (Mu /va/a M aée’ ZM,«%@ ik
éfj" M Duw/t.eq,;
g ﬂi_ﬁ‘f’——-—- 0
9/»» gHbiT oL ,3” oo
@,%w TN b S“IJ S“(? (i’j 6(>
|) {i& ﬂ@%i:(swAP >w/\f’ (fg [- ;Q

g,gm 6 va i WZ/M i 1
‘T«“ﬁ"d? A o o= oty ey Aok

+ ,-ﬂ— R ey

Pfef

Intﬁoduction‘to Systeﬁyperf

Table of Contents

Aos Memory Management .:;;ﬂ{...

Memory Manageme
Ldg1ca1 Vs. Phy
Map Unit Compon

Address Translati
- Logical to PhyS“f‘
- Page Sharing under
Hardware Memory M
What is Memory
The Four Condi
How to Detect
The Causes of
Finding Memory

The Free Memor

- ‘Addin. Me

OVMCH and CANCI
Finding Memoryﬁ
Speculation wl ol
The Purpose of Preem

Preemption vs.
Preemption RuI
Preemption Rul
Technical Indi
Resolving Memo

sical Address Space el b e bl d o LB
ents) ddll ‘ L i s
‘The MAP Status Regi
;The LEF Mode Bit ...
‘The User and Data C
‘The 8086 MAP
The Four Types of
= Validity P*‘
- I/O Dev1ce;

Protect
tect1on

* e
oooooo

;‘Y{ent1on?.; ,g;L.
“]fent1oan...;r‘“

ace to the Performance Manualcveninunn. o i

ormance e Intr@-lf
Nt BASTCS (e eeeeinnvuiiieabibisai, 1-1

oooooocco‘ao'ooo

e o o @

ooooooooooo

AOS Process Scheduling

ooooooooooooooooooooooooooooo

Process BasSiCS.ieeeueinee tonrensnnoroneancnnansnns 2-1
- Process Scheduling Basicscciiiiiinnnnnnenen 2=-2
= TAiMEe=STCeS iiiiiiivnecnsvnsososnsoonssssssasssasnss 2-3
- Time-Slices and Process Behaviorceeveeecee 2=-3 -
- Process Behavior vs. PNQF (Deagram)ceees we 2-=4
- Process Behavior vs. Time-Slice Length 2-5
- Time-Slice Computationcc0veu I R Ak
- PCN Recalculation (Table) ...eveeeenreennnnnannans 2-6
- PCN Recalculation Tables (Table)c.ccucunn e 2-=7
- Priority‘Weight Table (WPRI) .o ieneeieecnnoocsns - 2-7
- The Ready Eligible Queue (RELQ)coiuienn.. 2-8
- Altering the Process Scheduling Algorithm 2-8
- "Fooling" the Schedulerciiiiiiiennnananss 2-8
- Plugging the System Tuning Tablesiievuuuenenn 2-9 .
- Plugging the Weighted Priority Table 2-9
- Plugging the PCN Recalculation Tables 2-10

- Recalculation Table Working Example (Diagram) 2-11

= SUMMArY tuueeeeeecososssososssssossacsssssssssssasss 2-12
The GhOSt ProCesSS cuiieeeeoeoonsescassssessansssosss

- Basic Theoryccceeeoencocs S e ae e ae e e e e e ke araie 80 3-1
- The Ghost in Detail ...ivevrecnecnaaanns R A R 3-2
- User <=---> Ghost Interface O BTN 3-2
- Gh.st =-=-> System Call Interfacececevvennn. 3-2
- Ghost <-=--> PMGR Interfacecccec.. T A A, 3-3
- Ghost =-=-> System Scheduler Interfacecvveu. 3-4
- Debug - Dedit - Sysdmp LOQIC ...ivvevesecnsnnnsas 3-4 .

- Ghost Summarycciceeiieranss e K I T 3-4

7o
i

ey

The Disk Worldeeiiiniivennnan 13 0 S O G TR A S A

Drives and Controller P AR S N R 1 4-1
- File Placement Guidlines PR SR e P I A 4-1 -
- Directories and CPD's Wisteinlatols e s e aae blee 4-2
- General Disk Overhead 5 S S e biele 4-3
- Shrinking Directory-Space R R B P AR | .
= BIRUP S Sou s aoi i s e L R R GO (g 4-4
- Compressing D1rector1es Manua]]y B0 GRS S I 4-5
- A Third Possibility 0 O GNP 4-6
- Hash Frame Size...... N d e ele 14055 NS SRS S 4-7
- How the Hashing A]gor1thm Works b i iivieianin,. 4-7
- Hashing Algorithm Example (D1agram)\..; 4-7

Large vs. Small Frame Sizes......... e e e b

Hash Frame Size too Small (D1agram)”‘
Hash Frame Size too Large (Diagrai
Filenames and Filename Length

The effects of File E]ement Size .4

File Index Levels R B FOR ORI SNEARE S S R R e S
The LDU Bitmap
Bitmap Relative Sizes ke
Finding the Bitmap (D1agram) g
Disk Compressioneeeeeoenn Wie i
Disk Fragmentation - D1sk Compress103
Searchlists and Performance S e e
Mak1ng use of :PER g
:PER Basics .;.,...;.;,.I L

IPC Files 1in :PER ...;..;.......;;
Disk Tracing ..iv.ocioiddiido s, ool i
File Index Block L1nkage (Diagram).
The DDE's Defined 3

- FNB's ..,....L..;r.;......;‘ i

= FAC' s v hadiiaadt, IR 2

- FLB's *...,.L..;..;..;;;;

= FUD'S ol aiohe i el s e il
The Disk Information B]ock (DIB)
Finding the "ROOT" DDB'S R
Locating the D1rectory RIB ..., ARG
Filename Hashing and FNB Locat1ng b
Locating the FIB 3N SRR F g
Locating the Next - level D1rectory, ‘
Locating "FILE1" din Util ;
‘Finding the FIB for "FILEL".....

Disktracing Sumnary Po1nts Wl g

5. The Preditor and System Performanceeeeeeeceas
- Group 3 Priviedgescovvueann e e e e e e . 5-1
- Superprocess and Superuser P § 4
- Change UsSernameceeeeceseocoesoosessons 5-3
- Access Devices and Use IPCccevvveeee.. 5-4
- Group 2 Privledgescoeeeisoonccsacosoassasosasoss b=4
- Change TYPE cioveecovacsasessasssncasosssssss D=5
- Memory [S71z€] toiieieieeennecnnannasossnnssoas 5-5
- Priority & Change Priority ...eeeeeeeeeeaneas 5-6
= Number of SONS ..o eiiereeieeeeneannncacnnanas 5-6
- Create without BToCck ..ccvieeesoennencannnans 5-7
- Become INFO .coveveeecooorancasononnasonnacoens 5-7
- Disk Quota R L P T A I 5-7
Max Qpriority ...cieieiniiiieiniennnenannanns 5-7
- Group 1 Priviedgescoivviiiiiiiiiiinnennnn, 5-8
= IATETAl IPC FIde cveeiidiieiovineinsesossnsns 5-8
-~ Usernameicioeeeenncssconenssssscsscannnss 5-9
= Programciiciiiiiitnsccacttreistccsantennn 5-9
- Change Passwordccoecoecocoss e e e e 5-9
- Preditor Summaryccc00c0eens N e e e e e e 5-10
6. Improving System Performance P A O P S S
- Configuration and AOSGENcitiitioienonsasans 6-1
- Operational Parametersc.coecieveecnnancanns 6-1
- Operational Procedurescecececccocosaccsoans 6-1
- Performance TipS coeeeeesecseceacsoesooasesocnonnnns 6-2
- Additional Memorycco.. A T 6-3
- Interleaving Memoryceeeeoaas I I I U N - 6-3
- Terminal Considerationsccceeeeeenncons aie a 6-3
- Terminal Characteristics ...iceeeeeennens eee. 6=3
- Baud Rate ..ieviereoeusncsossessansacsssnssans 6-4
- Adding a DCU Processor or an IOPc.cco0s 6-4
- The Realtime Clock (RTC) .ceverveenernoocnasanas w.. 6-5
- Cache Buffer COUNtveeeeeeornnsaneacannas e.. 6-5
= PAatChing OTMIN tiitiieneeereennenennnenneanannnnns 6-6
- Additional Disks and Controllersceeeeeencocs 6-6
- Searchlists (ieuieeerooeeesseecoocesenossssnasassss 6-6
- Directory Structures weieel koo sieie e sd als e USRI 6-7
- Filenames and File-Basics s e e e e 6-7
- Bitmap and Overlay Areacceeveseooecnscnocses 6-7
- I/0 Buffer S1zeS t.eieieenreoonnnnoosnons ST FIRY "6-8
- Disk COmMPressionoieseonesneeeccsscansssnsans 6-9
- Desktop Configuration Points Celn 8idie e Y e e e e e 6 6-10
- Desktop Disk Drives ...iiveeeeeeecsosoncsaconnasas 6-11
- The Desktop Disk Controller Exposed ...ceevococons 6-11
- SUmMmMary ...cccc00000 e @ ae e he e e e s e s b e iy eas e eees 6-12
Appendix A - Bibliographyc.iiuieiiirenereniiannnnnans A-1
quendix B - Disk Control block Structures B-1
GlO0SSAIrY v ieteoeensssooscasnsoneatossnsosnonnasan G]ossary 1
Index

... Index-1

Preface

|
\

This manua] has come about after severa] years of "suffer-
ing" with mediocre A0S performance and watching others suffer.
As a result of teaching many A0S Internal Structures and AOS
System Management courses, it became very clear to me that too
many AQOS installations don t achieve near]y the optimum perfor-
mance available from their A0S system. This is a tragedy because

din my mind AO0S! is probab]y one of the best all- around operat1ng

systems extant in the mini world today

So, in response to the numerous requests to provide “inside
information" concerning AOS performance and its 1mprovement “this
manual has been produced to keep you people quiet. Now, wh11e
this material is meant to be used in conjunction w1th the Desk-
watcher and Aoswatcher utilities, I trust that for those of you
w1thout this software your needs w111 neverthe1ess be sat1sf1ed
Ut111t1es aside, I simply cannot supply a]] the answers. I would
however Tike to provoke you into doing a little research on your
own as the need arises; and, I would Tove hearing about your
resu]ts I will be happy to cons1der pass1ng your f1nd1ngsla]0ng‘
in future revisions of this Performance manua] FmIE S

, On a different note, regarding this manual exposing
information", what you will discover is that most of 1
called "inside information" 1s actua]]y very public
obvious. Despite the obvious nature of this data, do

yourself for not having figured it out before; some ime:
are overlooked because they are so obv1ous

A side note should be made here which is that th1s mater1a1
is intended for a Sysgen'able A0S system and not necessarwly a
Desktop Pregen System. While most of the material will probab]y
apply to a Pre-gen system, no guarantees are made‘1n‘th1s
respect; el ‘ b

This manual was originally conceived in the Spring of 1985
and was published as: "Secrets of Desktop Performance under
A0S. It has been updated under this new title to accommodate‘rew
f1nd1nga Special consideration in Chapter 6 has been given to -
deal with issues concerning the Desktop, obviating the need for
separate manuals., | SRR

|

;

Many thanks are due for the creation of this manuscript; too
numerous to mention here. Special recognition however should be
given to William Wilson, founder of Innovative Data Systems and
Innovative Press, and Wa1t Howard of Sam-Walt Productions. It 1is
through their keen 1ns1ght support and generosity that I have
been able to develop the original Deskwatcher and Aoswatcher
System Performance Mon1tors while at the same time cbnduct1ng the
research leading to the generat1on of this manual.

| |
B L
So, relax, unblock your mind and be ready for a few "aha's"
to pop up a]ong the way. i I[f you have .any interest in improving
the performance of your desktop AOS system, the time spent
reading this material w111 be well worth your 1nvestment.‘

Good Tluck and.Happy Tweaking!

|
|
| |

P]ayf% Submitted,
e |

Ron Fitch ' PR

Redondo Beach (Calif. = July 1986 1

ey

Introduction
Chapter 0

What is System Performan

Dealing with System Performance is one
aspects of Computer System Management; es
with Desktop Generation Systems.

System or an M/600.

1ook1ng
need to understand wha
To assist us 1n‘th1s def1n1t$o

Now in order to spend‘t1me
issues, we first
really is.

Luckily,

Performance follows the samej“]aws", whether

H

few of the acknow]edged‘ "masters" on the
famous Harry Katzan, Jr.; William S. Dav?s
sity; and Liba Svobodova of | M I.T.

works are 1in the b1b11ography

Svobodova says, ".. 1oose1y def1nedL

involved".
like,
a more prec1se def1n1t1on

the person[s] 0f course,
from a system;

He then offers

effectiveness with which the resources of the Computer Syst'
utilized toward meet1ng the obJect1ves of‘the software s

According to Harry Katzan

function of: thruput,
"reliability" to the above .
these four functions in a moment
clear a d1st1nct1on with you:

Performance and System appropr1ateness

Before

L
_ i _ o
Performance isn't the on]y factor

system appropr1qteness is- just as

mance has become emasculated, overr1d1ng
prominent 1ssuqs A system may posses|
character1st1csn yet 1f it
before it, all the performance
make any d1fference |

i

1mproven

|
t

Performance can be broken down
- Imd1v1dua1 Appﬂ1cat1ons
o Overall System Effectiveness

Intro-1

fame‘j

i i

o
I

|

\

System Performance"

the degree to which a Computer System meets the expectat1ons)
people may demand tooymf‘
compute me the nat1ona1 debt

L

System Performance 1s q,j
measure of how efficiently a Computer System operateS‘ i
response time and avaﬁ]ab111ty Davis
11st of functions. I will e
I\do however,
the d1fference betwe

N

1n§choosing‘a'
important; m
Unfortunately, thanks to clever salesmen and SE s, System P
other more [initi
xcellent perfornn

nappropr1atf to the task(s
t

n

controllin

at System Perforf‘"t
t System Perforn

, I have turned
j name]y

subJect
from Miami
References

performanc

if not |

in the w0r

1nto two distinctﬁyufjw

in 5 m1nut

ys1

re?
of the most important
pecially when dealing

g System
_you are on a pesktop

Un
to‘

e“ Ti‘::
e is

{

1

Usually when we discuss System Performance we examine the
second viewpoint; whereas, users of application programs usually
concern themselves with the first viewpoint. In reality, what we
need is to effect a compromise between user applications and
overall system performance. Although that 1is the goal of this
manual, we will naturally be focusing more on the issue of
overall
system performance because it 1is 1less understood. In certain

respects, improving individual application performance requires

nothing more than common sense or intimate application knowledge.

Be forewarned, there may be a nasty catch to performance
improvement. Axiom 2 of "Fitchmouse's Laws of Computer Dynamics"
states: "Improving System Performance in one area is often done
at the expense of performance in another area - like the pollu-

% tion caused by pesticides". Don't necessarily take this too .

| seriously. It is meant only as food for thought.
| ‘) ,

The Functions of System Performance

Now then, let's define the functions of System Perfor-

mance. Remember, the components of System Performance are:
Thruput, Response Time, Availability and Reliability.

Thruput

We can define Thruput aS the total volume of work performed by a
system in a given period of time. It is a good measure of the
efficiency of the Computer System.

Response Time

The most useful definition for response time that I can think of
is: The time between when a user makes a request for data and
when the system actually responds. '

Availability

Availability is probably best defined as a system's ability to
service requests for information with no delay other than that
generated by the response time. Availability is a measure of a
Computer's effectiveness to the user(s).

Reliability

|
|
|
»
|

Reliability is the quarantee that the Computer System will be
available when needed to process data. In the long run, reli-
ability is the most important measure of system effectiveness,
whereas the other three aspects of System Performance are more
important in the short-term. When cash is tight, we tend to back
off on the frequency and quality of Hardware/Software support and
maintenance. This dis actually gambling in favor of immediate,
short-term survival rather than consider the "big picture".

Intro-2

|

Divisions of System Performance

. Under A0S, we can actually represent the four functions in a
different way. This manual covers the 6 main divisions of System
Performance in an AOS environment. Brief]y,speaking they are:

- Hardware Configuration and Add-ons

- Memory Management and Process Swapp1ng

- Process Scheduling and Management

- I1/0 and [more importantly] the D1sk WOr1d
- Altering Process Privileges

- The GHOST Context in conJunct1on w1th PMGR

Note:The order of the above 6 items is not necessar11y meant
to be suggestive of their re]at1ve importance.
example, that I discuss Hardware confwguraf1on last

of tr1v1a1,~

spect‘

this manua] is not to imply that it
concern. In fact, it may be the most impb
of System Performance. 3

Performance Overlap

As a additional point, don't be surpriseddﬁo se
in performance improvement methods. -At times, 1mprov
ance via one technique may 1mpact the system in othe

saw in Axiom 2 of Fitchmouse's Laws of Computer Dyna‘ﬁ?dj;\

be afraid to experiment. After all, exper1menta
System Performance is all about. ~

In general, things we can do to impfove Systemﬂ
include:’ S TR i

- System Configuration (AOSGEN)

o Operation Management policies in the user‘edy‘
- Proper selection of Hardware and Add -on devi

- Altering the System Load i

L= Rewriting inefficient software or (1f the%
not available) altering its runtime 1mp]en‘

adjusting such parameters as:
’ - Process Priority

- Process Residency

- System Process Load

Intro-3

=

r;anﬁka

For

As a side note (that seems to fit nowhere else in this
manual so I'11 originate it here), it is important to understand
the order in which processing is handled on an A0S system.
Generally speaking, the Processing Priority Order is: Hardware,
System Software, Application Software, Benefitted User (human).
Specifically, the order is:

- Hardware Instruction Cycles

- Hardware Interrupts

- Interrupt Service Routines

- System Call process1ng/comp1et1on

- Process/Task Scheduling

- Application code directly benef1tt1ng the user

So, with some of the basic definitions out of the way, let's
get on to the specifics. Before diving in however, I recommend
that you spend some time "meditating" on the points discussed
thus far. I can guarantee you that there 1is more here in these
four pages than [initially] meets the eye.

Having done that, then hold your breath, and away we go.....

Intro-4

T

i

-

|

e e % e e e e e e de e e e e e e ok ke e ke ok vk ok o g ok ok ok ok ok ok ke ke ke ke ke ok ek ke kkk ok

Chapter 1
A0S Memory Management

% % S ¥ Ok F
* % % % % *

w
e

b

L.

[&n

L "
=

.

Memory Management wunder AOS

= Introduction

Memory 1is the most important system resources, with the Disk
world running a close second. Yet while being the most important
resource, it is the one most poorly utilized. If you want to

j really make a difference in System Performance, you need to have
a thorough understanding of memory management theory under AOS

™ and then put it to use! A11 the theories in the world are

worthless 1if they are nol exploited to their fullest potential.

) The Basics

In order to discuss Memory Management, we need to first
» clear up some basic concepts concerning the subject. Let's start
with a few simple ones.

i Although Eclipse systems are essentially word-based machines
(a word being 16 bits, 2 bytes), A0S is a page-oriented Operating
System (a page being 1,024 words - 2000 Octal). The Kernel of
A0S occupies the lowest physical memory of the machine, while the
Dynamic portions of AOS (GVMEM) and user processes occupy the
remaining memory.

Logical .vs. Physical Address Space

. Under A0S, each process is allowed a logical address space

up to 32kw; A0S has similar restrictions. A process's Logical

Address will always be the same (unless changed by the program

code), while the corresponding Physical Addresses are subject to

e change at anytime; especially if the process ends up being
swapped to disk.

. _ Because the hardware supports only a 15-bit program counter
i (PC), the highest addressable memory Tlocation 1is Logical 77777

octal. In order to address all the physical memory (which
5 requires an address length of 20 bits), the Logical Addresses
must be translated into Physical Addresses.

1-1

Address translation is accomplished with ease by the MAP
(Memory Allocation and Protection) or MMPU (Memory Map and
Protection Unit); an dintegral part of every Eclipse machine
intended -for A0S use. Generally speaking, this translation unit
(herein referred to as "The Map") consists of 2 or 4 user maps -
A & B, or A,B,C,D - and four Data Channel maps - A,B,C,D - of
which only A & B are utilized by A0OS. For the Model 10 Desktop,
there is also an 8086 Map to address up to 512k of memory.

Diagram 1-1 below outlines the Logical to Physical address

translation process which is detailed in the section:

A0S

Loaded | by A0S

A

| ; .
15 Bit P.C. p A _____.l 20 Bit Addr

P

Diagram 1-1
Address Translation Overview

1-2

e

-

MAP Unit

Components

Diagram 1-2 dillustrates the MAP Unit pomponedts, however
this can be misleading. The MAP Unit is not exactly a "unit"
it. is a collection of micro-code/ routines that come

per se'
together functionally as a "unit". The

MAP unit s an integral

part of the system hardware design; unlike other systems.

The high]ight§;of the MAP Unit are:

Integratés‘the 8086 with ?hé;éystemi(DG/IO ﬁesktop only)

i
!
|

<« MSR Violation Bits

::;>——User‘Programs Maps

::;»——-Data Channel Maps

- Performs Address Trans]atiod
< Implementé the various'Hardware Protection ﬁeatures
Lef Mode Bit ————m | Lef
MSR Status Bits — S-b <MSR> V-b
. User A User ﬁb
Usgr C User D
| Dc#an A Dchan B
Dchan ¢ Dchan D
8086 Map |

Protection Logiqé

Diagram 1-2

Block Diagram of the MAP Unit

1-3°

Map Status Register - MSR

‘'The Map Status Register (MSR) is a 16 bit register used to
set and interrogate the MAP status. Setting the MAP status is
used, to [programmatically] enable a user map, a data channel map,
or on the Model 10 Desktop, the 8086 map. The status register
allows the protection features to be enabled. Reading the [so-
called] S-bits (of the MSR) is done by the Interrupt World in
order to remember “"who" (ie. which user map) was in control. of
the CPU (ie. enabled) when the interrupt sequence occurred. -This
~way we are guaranteed that we can reschedule to the correct user
process with the least amount of difficulty.

The Map Violation bits are interrogated in order to deter-
mine the reason for a MAP protection -fault (often called a Map
Trap, a Protection Fault, or just a. Trap). When a Protection
Fault occurs, the hardware disables the map, updates the MSR and
finally jumps to the AOS Map Protection Fault Handler. This
Fault Handler reads back the Map Status Register to determine
"who" faulted and why. If AOS (under Map B) should trap, a
System Panic will usually occur,

The "official" A0S response to a user trap is to terminate
the "offending" process with an IPC message sent back to the
father process indicating the cause of the trap and the contents
of all relevant hardware registers. AO0S creates a-.Brk file in
the process's current directory as well. For program detected
errors, a breakfile can be created with ?BRKFL system call.

The LEF Mode Bit

This bit (in the MSR) indicates that LEF instruction mode is
enabled. With LEF mode enabled, all machine I/0 instruction
codes will be interpreted as [single-word] LEF dinstructions.
Under A0S, LEF mode is enabled for the user by default. It can
be manipulated directly via the ?LEFE/?LEFD system calls and
interrogated with the ?LEFS System Call. These calls are
described in the A0S Programmers Reference manual.

1-4

The User 'and Data Channel Maps

Each User or Data Channel map contains 32 registers, better
known as "slots". One slot corresponds to 1Kw of Logical Address
space. A slot contains the physical page address for the memory
corresponding to the logical page address. AO0S loads the slots
for User Map A every time it dispatches to a User Process. When
referencing its.own Virtual Memory (GVMEM), AOS Toads and enables
User Map B. User Maps C & D (if they exist in the CPU) are not
used by AOS. Only one user map may be enabled at a time.

If all user maps are disabled, the machine is said to be
running in unmapped mode. Although unmapped, AOS can always map
its 31st page to any physical page in memory as needed (using the
Map Spvr Block 31 feature of the hardware) 1in order. to access
user code and control blocks.

Data.Channel maps are enabled by the A0S device driver logic
before I/0 to a DMA-type device is actually started. This allows
the DMA device (disk or tape) to perform I/0 to/from any page in
memory concurrent with program execution. A Data Channel map can
be enabled concurrent with a User Map.

The 8086 Map

The 8086 Map is used in conjunction with the 8086 processor
on the Model 10 Desktop only. This MAP 1is not used by AO0S. It
contains 512 "slots"; one for each page of memory currently
available to the 8086 processor. This map is invoked if the user
run the MS-DOS or CP/M-86 Operating Systems on the Model 10.

The Four types of Prdtection Faults
A Protection Fault will take one of four forms:

- Validity Protect

- Device I/0 Protect)

- Indirect Address [loop] Protect
- Memory page Write Protect ‘

1-5

Validity Protect

A Validity Trap occurs when program code attempts to ref-
erence a Logical Page for which there is no corresponding Phys-
ical Page. This can occur in programs that have not declared
their full 32kw address space as being in use, and then attempt.
to reference one of those undeclared Logical Pages. Validity
Protect is enabled by virtue of enabling a User or Data Channel
.Map. 3 .

1/0 Device Protect

An I/0 Trap occurs when program code attempts a hardware I/0
instruction with I/0 Device Protection enabled. Under A0S, I/0
Protection is enabled by default for every user process. To dis-
able I/0 Device Protection, the user program must issue a ?IDEF
or ?DEBL System Call. A0S will respond by clearing the Device
Protection Bit in the Map Status Register. Use of the ?IDEF &
?DEBL calls require the Access Devices profile privilege.

Indirect Address (Defer) Protect

An Indirect [address] Protection Fault occurs when the
hardware encounters the 16th indirect [address] reference in a
single instruction cycle. The assumption is made by the hardware
that we are [for all intensive purposes] in a hardware indirect
address loop. Without this protection feature, the hardware
would loop endlessly attempting to resolve the effective address.

This would not be a problem except that the interrupt bus is
not interrogated until the end of an instruction cycle; a cycle
which in this case would never end. A0S defaults this protection
feature-to on and offers no system facility to disable it. In
the unlikely event that it should ever need to be disabled, that
will need to be done by the user program itself. It will first
need device access in order to issue the Load Map Status I/0
instruction (which allows disabling of the "defer" protect mode.)

i
1
i
i : |

Memoriﬁﬂrite Protection i

2

A Write Protection Fault occurs when the-user program
attempts to modify write protected memory. AOS write protects
all shared-code pages to prevent runaway code from accidentally
modifying itself. Unshared pages of memory are never write
protected by AOS. : ' ~

H

1-6

Theory

Address‘ Trans?ation

As overviewed

earlier, Addrbss Translation is the ,process of

“trans]ating? 15 bfit "lLogical" Addresses into 20 bit "Physical"

Addresses. The eas
process is to break
5 Bits & 10 ?its.

\
?

B

iest way to understand the address translation
the Program Counter (PC) into two bit=-groups:

5

Bits | 10 Bits

|
|
|

In.5 bits we can r

In 10 bits we|can r

By the time a

. }
eference a number 0-31 (32 Pages per procéss).

eference a nuhber 0-1023 (1024 words per ?age)

User Programgis in execution, the A>Map will

have been loaded and enabled. As memory is reference by the

program, addréss tr

ans]at1on will occur on each reference.
| . : y

E

What th \MAP does is to break each Logical Memory'Address

(the phys1ca]\page
Bits with the 10 bi
a full 20 b1¢ addr
memory on the mach1

\
T

|
r
|
|
|
\

- down into its two components 5 Bits (the map slot #) and 10 Bits

offset) It then replaces the high-order 5
t content of the addressed map slot giving us
less., In 20 bits we can address any word of
ne. This is 111ustrated in Diagram 1-3,

}Logicé] Address o
5 Bits 10 Bits 15 Bit Address -
| MAP Unit .
. ‘ 'S
Page 0 : | V
Page 1 . k L
Page 2 ; —
P | 10 Bits |v|w|
|
Remaining ; "
{ Slots } ; L
{ | }
{ Yy -
] =

Phy§ica] Page#| Word Offset ; 20 Bit Address

| 1 i 10 11 20

| 'Diagram 1- 3 | ' R
Logicaﬂ to Physical Address Translation

8
I

|

]

e

Page-Sharing under AOS

Thanks to the design of the MAP (diagramed on the previous
page), the sharing of pages is a simple thing to do. Pages can
be shared within a process or across process boundaries; allowing
read and write access (based on what the page will be used for).

Page-sharing can be implicit (defined by MASM or Compiler
directive statements) or it can be explicitly requested by the
program logic with the ?SOPEN/?SPAGE/?RPAGE System Calls in AOS.
Implicit shared pages allow shared-code and are alwazs write-
protected by AOS This is to prevent assembler 1anguage code
and/or “runaway" code from modifying itself; which would defeat
the re-entrant and recursive properties that are ava11able from
writing in shared-code. More information on page sharing appears
at the end of this chapter

Page sharing occurs when two or more map slots pownt to the
same physical page. It is quite permissible for two processes to
address the same physical page; even po1nt1ng to it via different
]ogica1 page addresses. An example of page sharing is deta11ed
in Diagram 1-4 on the next page.| It is this capability t at is
the power behind the shared page mechanism of the MAP. =

Once shared pages are declared to A0S, the Processzsef
takes over ensuring that the "A" map 1is loaded just pr

continuing process execution. Should a process chan ﬁts
address space by direct I/0 instructions to the MAP, thef? ocess
Scheduler will have no way of knowing that this has oc

When it comes time to restart the process after an I/0

or reschedule, it will reload the "A" Map from the Prooes
(PTABLE), reverting the logical address space to 1its p
state before the MAP I/0 instructions were executed. Of
the MAP state can be altered with the interrupts disabl
this brings in a host of new problems. ' : R

l Page sharing is a powerful facility that can assist us
greatly in the management of mem ry. However, if it is improp-
erly used, it can actually waste more space than it saves. Poor
memory management will also negatively impact overall system
performance. This is caused by A0S being forced to spend a
significant amounts of time keeping the memory resource in
order. With poor management in effect, this problem could become
self-defeating; additional memory content1on being created whhle
try1ng to resolve earlier memory anagement prob]ems.

| ! _
Page sharing is a powerful facility. Use it wisely. ki

E |
|

1-9

Physical Memory

nnn
Pid 16 . nnn Pid 22
Process Table < Process Table
203
: - 305
Log. Page 5 —— \
306 -~ :
Log. Page 6 ' Log. Page 8
Log. Page 9
404
Log. ﬁage 31 . 405 Log. ﬁage 31
Map Slots . 662 Map Slots
773

Diagram 1-4
An Example of Page Sharing

1-10

Hardware Memory Management Summary

As you can see, Memory Management .is partially a hardware
function controlled by the AOS Operating System. This marriage

of Hardware functionality and Operating System control makes for

the greatest thruput for this kind of system design. And, in
addition to this functionality, AOS has a set of Memory Manage-
ment algorithms providing even greater control over the memory
resource. :

_ Additionally for you slick Assembler language programmers,
you can make use of User Maps C & D (if 'they exist on you
hardware) by reading the CPU technical reference manuals and
experimenting with the MAP unit. Be prepared to accidentally
“crash" the system the first few times out until you get the
kinks out of your logic. Luckily, the crash will probably not be
serious. A simple ESD or fixup run and you will be back in
business. This kind of experimentation is encouraged. Who knows
what you will dream up as a result; maybe an improved System
Performance monitor.....

As was pointed out earlier, memory is the most precious
system resource. In the "real world" the demands on memory are
often more than the system has pages to satisfy those demands.
On less sophisticated systems such as the DG/1 Laptop, when the
program requirements exceed the available machine memory;the
program takes an error and terminates. MS-DO0S, due to its some-
what primitive design, is incapable of reso1v1ng the problem.
Fortunately, under AQOS there are a number of ways to resolve the
problem of inadequate memory. In order to take advantage of
these algorithms however, we need to understand what Memory

~Contention is, as well as what causes it.

1-11

=

What is Memory Contehtion?

Memory Contention under AQS is a situation where there are
more requests for memory than the Operaging System can satisfy by r
allocating pages from the Free Memory Chain (FMCHN).

o

If the memory request is made bb a user program or the
Ghost, that request will always be in multiples of pages. If the-
request is made by AQS internally, it ;ou]d bq for an amount of
memory as small as 8 words or as large as 1024, Memory segments
that are less than a page in length are known to A0S -as Chunks.

The Four Conditions of Memory Contention

|
| : (B
L i I3

T‘ H

In an A0S env1ronment there are 4 conq1t1ons of Memory ”
Contention: Light, Medium, Heavy and Cn1t1ca]' (The 4th term is
my own). These 1evels a]ong with AOS‘S reso]ut1on for them are
detailed in Diagram 1-5 below. The details on memory resolution
appear later in this chapter' Unfamiliar terms can be found in
the glossary and will be def1ned/deta11ed 1ater

i
|

Memory Condition Condx.] AO0S's Response to the Membry Contention

Condition 0 None> Aos obtains a freé page frdm FMCHN "

Condition 1 Lighk Aos obtains’memorj from OVMCH and .CANCH

> | ;
Condition 2 Medium | Process are swapped off of the BLKQ

w

Condition Heavy Processes are swapped off the RELQ {

S

Condition Critical} Swap-aborts start occurring !

Diagram 1-5
Conditions of Memory Contention

1-12

How to Detect Memory Contention

As AOS enters Memory Contention, it becomes increasingly
evident to the users on the system. By the time they get around
to complaining about it however, the system may be deep into
heavy contention, or even at the critical stage. At this level,
the only way out may be to do a system shutdown and start over.
If no steps are then .-taken to resolve the problem, you are most
assured that the problem will return.

i The way to deal with Memory Contention is to spot and handle
it before it becomes a big issue. Like heart disease, you need

to know the warning signs. The signs pointing to Memory Conten-
tion are: ‘

- Overall machine activity slows down or develops a jerky
“"feel ", : :

= Program load time increases significantly.

= The MEMIN Screens of Aoswatcher indicate that memory

“thrashing" 1is occurring. (Thrashing is a state where

memory 1is actively being shuffled between the user
~processes and A0S).

- PED and Aoswatcher screens indicate that processes have
been swapped to disk. :

- The DSTATS screen of Aoswatcher indicates that the’
Avg. Seek distance has suddenly and. dramatically
increased. _ | :

- The DSTATS screen of Aoswatchef indicates that the num-
ber of disk read requests have significantly increased.

- The DSTATS screen of Aoswatcher indicates an increase
in the number of disk write requests; probably from
writing swapped processes to disk.

- The MEMIN screen of Deskwatcher shows that swap-aborts
are occurring.

- An A0S System Deadlock.

Each of the above points will be addressed near the. end of
this chapter when we take a look at what can be done to improve
the Memory Management scene under AO0S. Stay Tuned.....

1-13

The Causes of Memory Contention

Thus far, we have looked at the warning signs of Memory
Contention. Now, let's examine the different elements contrib-
uting to Memory Contention. I will just 1ist them here. Later
we can spend some time looking at their implications separately,
and if necessary, in conjunction with other related items.

The apparent causes of Memory Contention are:

(1) Not enough Physical Memory.

(2) Too many processes on the system.

(3) Too many Resident and/or Preemptible Processes.

(4) Processes over-extending their address space via
?SSHPT and/or ?MEMI System calls.

(5) Programs doing too many/frequent ?SPAGE calls and not
ba]anqing them with ?RPAGE calls.

(6) Inadequate use of shared-code in user programs.

(7) Unnécessary,devices specified. during AOSGEN and/or
their buffers have been declared too large.

(8) Sync buffers gen'ed and those lines are not used.

(9) Too many Cache Buffers in the system, and/or poor
utilization of those buffers.

(10) Buffer size is too large during Dump/Load

(11) Program buffering scheme(s) allocating too many
buffers, or buffers that are too large, or both.

(12) Too many batch streams active.

(13) Too many [short-term] demands being made of EXEC
forcing its address space to grow. (As of Release 7.0,
0P is no longer notified of this via console messages.)

To understand how and why these aspects can impact System
Performance, we need to look more closely at the more visible
Memory Management structures designed into AO0S. This is by no
means an exhaustive study, but it offers enough information to
assist you later in understanding how to remedy your system's
Memory Contention problems.

Let's begin by examining how AOS Obtains a page of memory.

1-14

Fm

el

Finding Memory Pages - General

When A0S needs to obtain a full page of memory, it looks to
the Memory Management Chains in the following order:

- The Free Memory Page Chain (FMCHN)
5 The Overlay Memory Page Chain (OVMCH)
- The Shared-Page Candidate Chain (CANCH)
If A0S cannot obtain a page from one of these chains, then

processes will have to be swapped to disk in order to free up the
required memory.

The Free Memory Chain

| The Free Memory Chain (FMCHN) is where pages of memory are
relinquished to when no longer needed by the system. Pages are
‘taken from FMCHN during Memory Contention Condition 0. Events
‘that will contribute pages to the FMCHN are:

- . Process Terminations

- A process reducing the size of its address space via
the ?MEMI and ?SSHPT system calls.

- A0S recombining internal memory "chunks" to make up a
full page of memory. ’ :

OVMCH and CANCH Chains

A0S maintains two groups of page chains for disk overlays no
longer in use (OVMCH) and Shared Pages with a zero use count
(CANCH). Both sets of chains are maintained in LRU order: pages
that haven't been used for the longest period of time are made
available to the page request routines first; ie. in FIFO order.

As of AOS release 5.0, these chains (as well as some of the
process queues) were expanded into regions: 0,1,2. The idea is
to determine the "age" of a page and place it on the appropriate
region chain. Pages attached to Region 0 have been around the
longest amount of time and are therefore available first. Pages
1iving on Region 2 are relatively brand new and are used as a
last resort. = '

1-15

In theory, when A0S needs a page and the FMCHN is empty, the .
next check is made to: OVMCH-Region 0, CANCH-Region -0, ‘ S
OVMCH-Region 1, CANCH-Region 1, followed by an examination of '
Region 2 for these chains. I say in theory because all indica- S
tions (from reading the Memory Management program code) are that
Region 2 is not actually used. Any answers Data General?

Finding Memory Pages - Detail

When A0S needs a free page of memory and none are available
on the FMCHN, we then enter into Memory Contention. System
Performance suffers in direct proportion to the level of Memory L
Contention. For purposes of discussion, I consider pulling a
free page from FMCHN to be Memory Contention Level 0. Ll

To reiterate, A0S to obtain a pdge of memory (for whatever
reason) looks in the following areas:

Contention Level 0 = FMCHN

-
Contention Level 1 - OVMCH (Region 0) {
: - CANCH (Region 0) '

. T

Contention Level 2 - Swap process(es) from MBLKQ (Region 0) y
- Swap process(es) from BLKQ (Region 0) -

Contention Level 3 = OVMCH (Region 1) =
- CANCH (Region 1) (

Contention Level 4 - Swap process(es) from MBLKQ (Region 1) p
- Swap process(es) from BLKQ (Region 1) \

Contention Level 5 = Swap process(es) from RELQ ”

Prior to Release 5.0, we emptied the OVMCH and CANCH chains
before resorting to swapping processes out. As of release 5.0 e
this philosophy has been changed somewhat, as can be seen from
the above 1list of Memory Contention Levels.

Speculation

As mentioned earlier Region 2 although present in the system
is not being utilized at this time. Logic would dictate that .if
it is ever idncorporated into AOS Memory Management, that it will e
be accessed before Condition Level 5. We- only want to swap
processes off of RELQ as a last resort. '

1-16

The Purpose of Preemption

As we enter deeper into Memory Contention, processes begin
to swap. Another term for process swapping is known as preemp-
tion. As pointed out earlier, when Memory Contention is so bad
that we have to start preempting processes, System Performance
begins to suffer drastically.

Although preemption does impact System Performance, its goal,
is actually to improve performance in the long run. This purpose
will hold true until enough demands are made on the memory
resource to force the machine into Heavy and Critical Memory
Contention. At these levels, preemption serves to keep the
machine away from "system-deadlock".

, Preemption is accomplished by removing blocked processes
from memory one at a time until the desired memory segment is
pieced together from the pages released to FMCHN as the process-
(es) are swapped to disk. Preemption begins in the condition of
Medium Memory Contention, attempting to return the machine to a
state of Light Contention. Selected for preemption are the old-
eSt processes on the MBLKQ and the BLKQ (starting with Region 0) .

-Preemption vs. Swap-Abort

The only condition worse than preemption is know as a
swap[-in] abort. A swap-abort is where AOS begins -to swap a
process back into memory (requiring substantial system overhead)
only to find out that another process code-path within A0S has
stolen some or all of the memory just freed, or the process
targeted for swap-in has been blocked again. Swap-aborts essen-
tially mean the system is doing a lot of extra work for nothing.

Preemption Rules

In order to preempt a process, we need to examine a couple
of parameters with regard to the process "requesting" the preemp-
tion vs. the process to be preempted (otherwise known as the
target process). The main parameters to consider are a process's
type and its PNQF (see Chapter 2). For example, a requesting
process can never force a superior process type to swap (Ex: a
swappable process attempting to preempt a preemptible process).
To understand the preemption rules, refer to Diagram 1-6.

1-17

TARGET PROTCESS "
Rl R s
R
e
q | R Never Always Always .
u
e w
s
t -
0 TB
r P Never or Always
TLP : i
P L
r .
:
e S Never TB TLP i
3
s —
.

R= Resident P= Preemptible S= Swappable
TB= Target Process is Blocked

TLP= Target Process has lower PNQF ' o i

Diagram' 1-6
Preemption Rules

. il
1-18 = :

Technical Indications of Memory Contention

While researching this chapter of the book, I decided to set
up an experiment that would allow me to really observe what
happens when A0S 1is deep in the throes of heavy memory conten-
tion. To do this, I removed one of the 256kw memory boards from
my Model 10 Desktop; reducing the memory from 640kw down to a
mere 384kw. (For a system with as much activity on it as my
Desktop, 384kw is a mere fragment of memory.) Next, I initiated
about 20 processes; most of them compute-bound memory hogs, as
well as a single process (appropriately named Glutton.Pr) spec-
ially designed to steal huge amounts of memory away from the AOS
Memory Pool; I requested 200kw for the experiment. Monitoring
the system with the Qeskwatcher and PED utilities produced
interesting observations. ,

\
|
i
i
|

F1rst off, the number of Swappable processes in core was
constant]y in a state of f]ux ranging anywhere from 15 to 19.
That swapping was- occurring in the mach1ne was also evident by
watching the "flicker" of the SPU Led's and listening to the
chatter of the winchester disk. 'Within about 8 minutes, the
number of swap-ins climbed drast1ca11y to 1,000+ - I knew then
(snicker.) that A0S was hav1ng d1ff1cu1ty :

Another visible effect of the Memory Contention was that the
average seek distance for the disk rose dramatically. Normally,
50 - 70 cylinders was the average seek on this system. But now,
the average was sitting at 149! This means that at t1mes it was
probably even as high as 200+ cylinders. ‘

A final experiment increased the memory requirements of
Glutton.PR to nearly 300kw. In this experiment, it took an
average of 35 seconds to load and begin execution of a program
about 14kw (usually PED or Deskwatcher). A few times when this
experiment was tried, AOS would end up in a perpetual memory
contention; otherwise known as a "System Deadlock". ‘

Perpetual memory contention is where process preemption
creates a "rippling" effect and is never really resolved. At
such times, AOS spends over 95% of the machine's time resched-
uling processes and attempting to resolve the memory contention
caused by the rescheduling; ad-nauseam. The only way out of this

extreme situation seems to be with an emergency shutdown (ESD);

unless you have a high pr1or1ty resident process available to
terminate the offena1ng' process(es

N

The above experiments were chosen as they simulate real

| world s1tpat1ons Only when properly identified can problems be

solved.

|
| 1-19

Adding Memory

Resolving Memory Contention

How to resolve Memory Content1on depends - on the predom1nate
level of Memory Contention being experienced. There are a number |

of obvious solutions however that are useful to know. Let'sitakef

a look at them. 1

|
[i
R

il

|
|
i

Process Overload

In-a large percentage of c%ﬁes, Memory Contention can be

easily resolved by adding additioha] memory. Typically, add1ng

memory will take a machine that. 'in heavy or critical conten-

tion and return it to light or med1um contention. Unfortunately,

some user software is designed to‘gobb1e up as much memory as is

available, making this solution on]y a temporary one. ;
- H

|

Although this solution can be a costly one in terms of

dollars, in the long run it may actually be cheaper and less of a

hassle than spending potentially hundreds of person-hours work1ng
out other solutions. If adding memory doesn't seem to help; or,
if you are already "max'ed out" memory-wise, then other solutions

are necessary.] ' ' |

'Memory contention problems on your system may be caused by

forcing too many processes ‘to run pn the system. Using the ?.CLI

macro, PED and/or the Aoswatcher! process screens may establish
that there too many processes on the system or that a number of
the processes are making excessive memory demands. A]though in
theory A0S supports up to 64 processes, in actual pract1ce the
number 1is much less. | GE |
[|
\ i |
In the case of too many proc skes, take a process 1nventory
and be certain that you can just fy every process being on the
system and of its process type. Remember although a process may
be blocked, its very existence in 'the process tree (swapped or
not), p]aces demands on the AOQOS memory space. This 1is because
for every process on the system, AOS is internally maintaining a
96. word ' Process Table (Ptable) Wong with a 100. word Ptab]e
extender used when the process is resident. Ptable and Extender
space is allocated in page multjiples. If pid fragmentation
exists, A0S may be us1ng only & portion of several allocated
Ptable pages j

% 1-20

g)

Resident/Preemptible Processes

Reducing process size can on]y be accomp11shed by a compe-

tent System Programmer. Programs written in High-Level languages
typ1ca11y require approximately 35% more memory space than those
written in assembly language. Having a programmer “t1ghten"

sloppy code can dramatically enhance System Performance if that
program (as well as others 1like it) is frequently ut111zed by
several users at a time. More on this later.

| . |

Although marking a process as Resident or Preemptible can
initially improve 1its own performance, too many Resident and/or
Preemptible processes can force AOS 1into a memory deadlock,
requiring at minimum an ESD to resolve it. . !

]

|
A process should only be declared Resident if one |of the
following conditions exist in the program code: ‘ |

- It contains User Device Driver-code.

= It utilizes the [undocumented] ?SPY, ?PCREATE, || E
?PRELEASE or ?PMAP System Calls. s ¥ |

<% It addresses memory pages phys1ca11y
- It uses the following System Calls: él

’ ?AMAP, ?DEBL, ?HIST, ?IDEF, ?IMSG, ?IXHIST, ?IXIT,
?IXMT, ?STMAP Sl £

St It is an IPC-driven communications board driver]
(such as the PMGR) o

|
A process shou1d be dec]ared Preempt1b1e only when yqu want
it to possess a high process pr1or1ty but don't require resident
propert1es Preemptible processes 'are swapped only under condit-
ions of heavy memor.y. content1on| ' Process types are exp]dred in
Chapter 2. - Process Scheduling. P‘ |
\ 1t
|

Batch Strpams : | ' |

| \ |

Batch streams allow processes to run unattended and are
handy for doing program comp11es/assemb11es/11nks while editing
other source code. Unfortunately, batch streams can take an
additional chunk out of the system memory pool; specifically
during program development cyclels., If a batch stream invokes a
compile, Link, Aosgen or some other utility, memory demands are

increased by the batch stream as |[well as the ut111ty program.
. |
i

1-21
| i

|
L
: B

A batch stream merely running CLI commands typically .
requires very little memory space because the CLI dis written i
predominantly 1in shared-code. Usually, one batch stream is -

sufficient, with two being a good upper limit.

Process ' Address Space Declaration

Early on in this chapter we looked at the ramifications: of
processes that are declared with too large an address space.
That a process is "hogging" memory is not always evident how= r
ever. At runtime, a process may elect to extend its address
space via ?SSHPT, ?MEMI or undocumented Desktop ?Pxxx calls
(which are not limited to just the Desktop). PED and the Aos-

watcher process screens will shed some light on this problem. .
| : L
Using the Aoswatcher Memory Information Screen (MEMIN), this ik
address space extension may also show up as an excessive amount L
of User Memory being utilized. Some processes may temporarily
increase their shared memory size (?MEMI) or the Shared Partition -
size (?SSHPT) - which could suddenly force the system into memory
contention - only to release that memory shortly thereafter. : b
. _ | _
Processes using Shared Page I/0 (?SPAGE) are often a source L
of memory contention. Shared page I/0 is meant to be utilized —
when several processes require shared access to disk file(s). e
Typically however, programmers often utilize shared page I/0 to
circumvent the process 32kw address space limitation. I have o
done this by creating a multiple-page dummy file, using the o
Shared Pages (containing the empty blocks) to declare large '
arrays at runtime. When used in this manner, Shared Page T
efficiency data (as reported by Aoswatcher) may be of little
value. ‘ SR
Although Shared Page I/0 requests may not be excessive, o
another problem caused by ?SPAGE occurs from a process reading in
a large number of shared pages and then not releasing (?RPAGE) .
those pages when finished with them. This can be observed as a
large quantity of Shared Pages in use by the system. Inefficient =
Shared Page usage can cause excessive Disk I/0 in addition to s
‘contributing to memory contention.
m
| 1-22 ‘
|

Using Shared-code

Writing user software in shared-code is an excellent way to
reduce memory requirements on the system, relieving the Memory
Contention somewhat. Writing in shared-code of course assumes
that several users will be running the software simultaneously.
If not, the time and expense to write in shared-code becomgs a
complete waste of time and effort.

Shared-code assures that the shared pages of the program
physica]]y exist only once in memory, as long as the same .PR
file 1is executed by al] users of the program. If several copies
of the .PR file exist, they will not all share the same code.

The shar1ng of code is based completely on the pathname to the
.PR file.

A classic example of shared-code is of course the CLI. A
process running CLI normally utilizes 18 shared pages and only 3
unshared pages (although Pid 2 OP:CLI seems to be an exception).
CLI users typically require only 3 pages from the memory pool.

As a final note, shared-code DOES have a slight 1liability.
The LINKer starts the shared-code partition on a page boundary
which could waste nearly a whole page of memory per process if
the program is poorly planned. Multiply that by, say, 20 users
and you have a significant chunk of memory being wasted.

Sometimes all it takes is 20kw to throw the machine into memory
contention.

More information on writing with shared-code can be found in
the various DG programming reference manuals, as well as the
LINK/LFE reference manual. These are listed in the bibliography.

AOSGEN Solutions

Learning the ins and outs of AOSGEN can make a significant
difference in your system's performance. - To fully understand
what is available from AOSGEN, [re-]read chapters 3 & 4 of the
"How to Load and Generate...." manual thoroughly. It will be.
time well spent. : [

On Desktop systems, many sites choose to run the Pre-Gen
version of AOS instead of the Sysgen version; usually because
~they don't understand Aosgen. I have yet to meet someone who
understood AOSGEN and chose a Pre-Gen AOS system anyway. "It dis
just not logical", said Mr. Spock. !

1-23

With AOSGEN, the most common mistakes you will make are:

- Including unnecessary devices in the .Sy file or

declaring their buffer sizes too large.
- Including Sync Buffers when no sync lines are used.
- Specifying too many cache buffers.

Solution?:

To begin with, never gen' devices that you don't need.
Nothing 1is accomplished by doing that; unless you know of some
off-beat programming trick that I don't..... When you do include
a device, choose the buffer sizes carefully. For example, output
devices rarely require an input buffer so this can be set to two

bytes (1 word); the minimum requirement. Reverse the scenario

for input-only devices.

If your system doesn't use sync lines (most systems don't),
you can probably Aosgen this parameter to its default of one
.l i ne .'!".".'

If you have "core to burn", gen'ing in all 128 Cache Buffers
can significantly speed the system disk I/0. On systems with
tighter memory pools, this speed comes at the expense of Memory
. Contention, which of course can result in added disk I/0 to the
- SWAP.SWAP file. So, while there may be slightly faster I/0, the

number of R/W requests may increase due to process swapping. -

Dump/Load and Program Buffering

When doing Dumps and Loads, it is often desirable to use the

maximum buffer size available for the device. Doing this will

not only speed the I/0 but will also allow more data to be packed

onto media such as magtape; if that's what you're dumping to.

The liability of large buffer sizes during Dump/Load is that
it can force memory contention. I did an experiment to prove
this out. On my Desktop, the buffered devices include: 2 Floppy
drives, A Cartridge tape and a Streaming Magtape; not to mention,
the two Winchester disks themselves.

In my experiment, I proc'ed Glutton.Pr at 256kw and then
initiated a series of 6 processes all doing Dumps, Loads and
Moves with a Buffer size of 8192 (4 pages per buffer). It was
interesting to watch the impact of 1losing only 24 pages. The
‘system dropped immediately into Medium Memory Contention. With
Glutton.PR set at 400kw, the system would vacillate between
Medium and Heavy Memory Contention. , ’

1-24

With user programs, the same buffering problems exist, ex-

cept that things can be worse because user-written software can

define [potentially] an unlimited number of buffers, all at 8192.
I recommend allowing a variable number of buffers switch select-
able at program load or run time. The program could be designed
to specify many large buffers and buffer sizes during the system
slack -periods, ut111z1ng memory=-efficient buffer1ng during peak
operation periods.

Swapfile Placement

As we've already seen, process swapping is. an undesirable
side-effect of Memory Content1on that happens from time-to-time.
Because swapping involves I1/0, it-: in our best interests to
speed that I/0 as much as‘possible, There is a myth that placing
SWAP.SWAP on a head- -per- -track disk will improve its performance.
Unfortunately, those disks have a considerably slower data transﬁ
fer rate. So 1nstead the opposite effect actually occurs. ‘

SWAP.SWAP 1is a eontiguous file, meaning that all of the disk

~blocks for the file reside physically contiguous on the disk.

When allocating SWAP.SWAP if the current file size requested is
less than or equal to the existing SWAP. SWAP, the existing file
is reused or shrunk (freeing up disk blocks). If the requested
space is 1larger than the existing SNAP SWAP file, contiguous sp-
ace is found by scanning the Bit Mapl 1] for the requested number

i

of contiguous blocks,. If the required contiguous blocks are

|

found, the system comes up normally; otherwise, a FATAL SYSTEM
ERROR occurs. The only time you can "force" a location for

- SWAP.SWAP 1is during system installation or a subsequent disk

compression. And even then, it's a little b1t tr1cky

~When the system is first booted,‘the SWAP. SWAP f11e 1&
installed just prior to asking the "Initial Load?" quest1on:
This puts the SNAP.SWAP file near the "front" of the disk. Once
the remaining software is loaded onto the disk, this may not be
an advantageous 1ocat1on as the seek d1stance from those files to
the SWAP.SWAP may be rather large.

To minimize seek time, you will want to place the swapfile
near the files most commonly accessed by the system. To do this,
the operating system needs to be "fooled" into placing the swap-
file approx1mate1y where you want it. Once you understand the
way in which A0S allocates Swapfile space, this becomes a
relatively easy process. - |

1) See Chapter 4 for Bit-Map details.
| 1-25

SWAP.SWAP Specifications

SWAP.SWAP is a contiguous file, meaning that all of the disk
blocks for the file reside physically contiguous on the disk.
When allocating SWAP.SWAP if the current file size requested is
less than or equal to the existing SWAP.SWAP, the existing file
1s reused or shrunk (freeing up disk blocks). If the requested
space is 1arger than the ex1st1ng SWAP.SWAP, contiguous space 1is
found by scanning the Bit Map[l] for the requested number of con-
tiguous blocks. If the required contiguous blocks are found, the
old SWAP.SWAP is deleted and a new Swapfile is created from these
blocks. Otherwise a System Error occurs and AOS terminates.

Force-Allocating SWAP.SWAP

| ‘Armed with the above data and technical information about
| your disk, it becomes relatively easy to "force" SWAP.SWAP to a
new 1ocat1on

5 1% The first step is to override default specs (during System

: Insta]lat1on) allocating a swapfile purposely under-sized. Next,
perform the Initial System Load. When you get the CLI prompt,
create a dummy file with an element size big enough to "gobble

SWAP SWAP file to start.

|

| un" all the disk blocks up to the point where you wish the “new".
| _

\

} - Now, shutdown AOS, reboot and override default specs (if
| necessary), setting the swapfile to its new (probably original
default) size. Voila! AO0S is forced to create the new Swapfile
in the "middle" of the LDU. As a final step, delete the dummy
file and load your remaining files. They will install "around"

the new SWAP.SWAP.

The above procedure has made quite a difference on many a
system. You may not be able to eliminate the swapping caused by
heavy Memory Contention, but you can reduce its impact. Moni-
toring the average seek distance on the swapping drive will tell
you how good a cholice was made for the swapfile location.

Memory Contention Summary

As we have seen, memory contention has many causes and there
are many cures. A]though we have delved deeply into memory man-
agement, there is still much to be learned. Aoswatching the

-memory management can make all the difference in the world.

1) See Chapter 4 for Bit-Map details.
1-26

i)

&

e 5k e e s o e 3k 3 3k ok e ok 3 vk o ok ok g % gk e sk ke ek e gk Sk e sk e e sk ek e ek e de sk e ke ek

Chapter 2
A0S Process Scheduling

* % ok % ¥ %
* % & b o %

b

Processes and Process Scﬁedu]ing Theory

i
-
I

|
Process Scheduling is at once fascinating in addition to
being a very complex issue. Before Me can adequately delve into
this topic however, we need to first review some "basics" about
processes under AOQS. ‘ ? :

{

!
‘ ‘

Process Basics ‘ ' !
|

A0S dis Multi-Process, Multi-task 0perat1pg System supporting
up to 64 processes. Per the glossary, a ocess 1is simp]y an
address space that contains code and data. ‘A process is not a
program; a Process "houses" a program. I know this is nit-pick-
ing on the definitions, and, it helps to eTiminate a confusion
that will probably cause problems later. : |

‘Technically speak1ng,‘there are?hctua]ﬁy 65 pids. The 65th
pid is Pid 0, used by A0S itself. It should cOme as no surprise
that Pids 1 & 2 are reserved for PMGR and OP:CLI respectively.
What is sometimes overlooked is that Pids 1 & 2 can actually be
any program you like, as long as the programs are‘named PMGR. PR
and CLI.PR respect1ve1y This of;course does require some
thought and doing, but it is possible. Before attempt1ng a feat
like this however, you had better be well versed in AOS 1nterna1
or you are sure to make a mess of th1ngsr

i
{ i \
| |

Processes can be of three types: Res1dent Preempt1b1e, or
Swappable. Resident Process .share a pr1or1ty structure with
Preemptible's jand will never be swapped to disk. Preempt1b1e
processes are the final candidates for swapping if AOS enters
into heavy memory content1on They run at a higher pr1or1ty than
Swappable processes Most processes are type swappab]e. They
are the first candidates for swapp1ng to. d1sk and run at a
Scheduler-derived pr1or1ty based upon their past and current.
behavior, as well as their projected behav1or and [user] ass1gmed
priority. |

Processes that interact directly with the system devices via
Assembler language I/I dinstructions must be resident, as are
processes that utilize histogramming and/or the undocumented ?Spy
System call. System Calls that demand process res1dency are
detailed in the AOS Programmer's reference manual. As described
in Chapter 1, too many resident processes can force A0S into
memory "deadlock", requiring an Emergency Shutdown (Esd) - so
System Manager s beware'

The purpose of declaring a process Preemptible is to give it
a high process -and memory priority. Unfortunately, there is no e
way to give a preemptible process a lower priority than one that
is swappable; as can be ‘done under recent releases of A0S/Vs.

-

For both Resident and Preemptible processes, should they go =
Compute-bound, they will tend to dominate the system, or at least
lock out all the swappable processes; so again, beware! i

Swappable processes are unique in that their performance is : —
constantly being "monitored" by the process scheduler and their
actual priority is altered based upon process behavior. More on =
this later. . :

o
Process Scheduling Basics -

Under A0S, processes are scheduled for CPU time based upon -
what 1is known as their PNQF (Prior Enqueueing Factor). The -
process with the lowest PNQF which is also ready will be given
control of the CPU for a specified period of time. e

For Resident and Preemptible processes, the PNQF is none \
other than the user assigned priority 1 - 255. So in effect, the
“"father" controls the PNQF of these processes. For Swappable -
processes however, the procedure is quite different. :

Because most processes are swappable, it makes sense to have -
the Process Scheduler compute the PNQF rather than to have it
assigned by the wuser "himself". You see, having a static
priority for a process throughout its 1life is not a very good g
idea because it fails to take into account what the process is '
actually doing. A high priority cpu-bound process could easily oo
dominate the system, creating a system deadlock or some such -
problem; whereas, a low priority process predominantly I/0-bound, "
might never run at all. e

The AQOS solution to this problem is- to allow processes to
run on a time-slice, basis.adjusting the process PNQF based upon
its past behavior and other factors. The goal of this computa- o

tion is to reward I/0-bound processes with a lower PNQF and to
penalize compute-bound processes by -increasing their PNQF.
Thanks to an intimate relationship with the dinterrupt world, the
Process Scheduler 1is capable of dynamically altering a process's e

" PNQF as it gravitates towards I/0 dependency or becomes more CPU-
bound. A0S keeps track of process's behavior by adjusting its
Timeslice Exponent (Tx). ‘

2-2

For purposes of Scheduling evaluation, the Scheduler assumes
a process to be in one of four states: : .

- Console I/0 Bound (most desirable) Tx =1
- 1/0 Bound - to non console-type devices

- Awaiting an IPC completion
(other than to PMGR)

- Compute=-bound (]east‘desirable) Tx

n
o

Time-Slices

Earlier, I mentioned that swappable processes are time-

sliced, but I haven't really given a definition of what a time-

slice is. Under most multi-process systems, a time-slice is
simply an amount of cpu time given to a process for execut1on
If a process uses all the time allotted to it, f1ne. If not, the
time-slice remaining is voluntarily re11nqu1shed and the process
will have to wait for another slice of time in order to continue
execution. For Resident and Preempt1b1e processes, th1s defini-
tion is also accurate. |

For Swappable Processes under A0S, this definition is
modified somewhat. Here, a time-slice is simply a "yardst1ck"
(or measuring device) used to more precisely determ1ne a proc-
ess's behavior. v

Time-slices and Process Behavior

The AOS Scheduler will always give a process as much <cpu
time as it needs. How often the process 1is actually scheduled
however 1is determined by its behavior, as I described earlier,
In order to make the schedu11ng a1gor1thm work smoothly, AOS

~utilizes the P.I.T. (Programmable Interval Timer) to d]Tocate,cpu

time to a process. Unlike the Real Time Clock (RTC) which can
interrupt on]y at fixed intervals (specified during AOSGEN), the
P.I.T. can be "programmed" to interrupt at intervals as short as
100 microseconds and as long as 65.536 seconds. ‘

Resident and Preemptible processes because of their priority
are given a time-slice of 2.048 seconds. If they are still ready
to run, then they will be given another 2.048 second slice of
time until they all eventually block for some reason; which will
relinquish control to the highest priority, ready, swappable
process. ‘

2-3

When a Swappable process first begins execution, A0S assumes
it to be I/0 bound and therefore allocates a small time-slice.
Time-slices are doled out a sub-slice at a time. (A sub-slice

being 32 ms.) At the end of a sub-slice, the tasks within the
process are rescheduled.

If the process should use up its time-slice without block-
ing, the scheduler assumes the process is becoming more compute-
bound, raising its PNQF and upping its time-slice amount to the
next power of 2. Likewise, if a process blocks before using its
time-slice, it is assumed to be heading more towards I/0 depend-
ency and is given a lower PNQF and a smaller time-slice.

If a process loses control of the CPU due to an interrupt

and/or a higher priority ready process, before schedu11ng the new
process A0S saves the remainder of the current process's t1me-
s11ce so that the process can be proper]y restarted later.

The re]at1onsh1p between process behav1or priority and
time-slice is illustrated in Diagrams 2-1la and 2~ lb '

High
P
N
Q 1
5 |
F 1 |
Low ‘ >
: ‘ K
} ‘ 1/0 <-Behavior=-> CPU |

i Bound Bound |

|

|

: . l

Diagram 2-1la. t 1

Process Behavior vs. Process PN?F

2-4

—n

-

Timé-st%ce Computation

S
o
O .
—

Bound j Bound

7.048 i
| Sec. m
| e
| S
| 1
i
132 ms. e : |
H o LT/0 <-Behavior-> CPU

1 ? Diagram 2-1b.
i . Process Behavior vs. Time-slice Length

The actual time-slice value for a process is computed as:

o o T
Ts =2 * Ss

Wheré: | 1
| Tx is the Time-slice Exponent (1 - 6)
| _ Ss is a fixed amount of time (32 ms.)

Each time a Swappable process becomes more compute-bound,
the Tx is!' incremented by 1, allocating a larger time-slice. 1In
case of a Priority 1 compute-bound process with a Tx of 6, the
scheduler doubles the time-slice from a standard 2.048 seconds to
4.0%6. Remember however, that a time-slice is actually used a
sub-slice at a time. Therefore, a swappable process will

dominate the CPU for no more than 32 ms.

2-5

PNQF Computation1

]
|
|

}
{
1
\

|
: For Res1dent and Rreempt1b1e processes, the PNQF is simply
the ass1gned pr1or1ty for the process. For Swappable processes,
the PNQF is computed v1a the fo]]ow1ng formula:) |
| |
‘ |
PNQF = 180 + PCN + PRI | |

Where: ;

PCN 'is the Process Characteristic Number which is
computed based wupon values taken from Steady-
State table (PCNSS), the Event=-Count table
(PCNEC), and the Reaction=Rate table (PCNRR)
{otherWisé known as the PCN Recalculation Tables.

| \

WPRI is the s]ot contents of the Weighted Pr1or1ty
Table. gh1s table |is indexed by the user- ass1gned

procegs riority 1 2,3)

|
]
|
|
\
\

The computed PCN‘ws that part of the PNQF which truly
reflects the past behaV1or of the process The PCN begins with
the Steady- Stape value for a process's current behavior level and
is incremented by the Reaction-Rate for that behavior level. The

~Event-Count table determines how long we will allow a process to

remain at a g1Wen behav1or level before being dropped to the next

lower level. “ 5 i oy | , 1

It could be said that the PCN is a process's explanation for
why it is now‘unb1ocked Every time a process unblocks or runs
out its time-slice, the PCN is recalculated.

- | ,

Table 2- 2 details the PCN Recalculation, formulas, and Table

2-3 declares t%e contents of the PCN Reqa]cu}ation tables.

ey

Current PCN New

PCN

PCN < old PCN | The next lowest PCNSS value

PCN = old PCN | 01d

PCN

PCN > old PCN

01d PCN + PCNRR

and Ts. expired

PCN > old PCN | The next highest PCNSS value

‘Table . 2-2
PCN Recalculation

Unblocking Event PCNSS' PCNEC
Behavior Level : ‘

Console I/0 f 4 3
Non-Console I/0 | 13 1 3
:) I
IPC (non PMGR) 16. 2 3
Compute Bound . 22. 1 %
i
Table 2-4 B

Recalculation Table System default values

2-7

Priority Weight Table (WPRI)

The Priority Weight Table is a table that. allows the user-
assigned priority to take precedence over the PCN calculation in
the scheduling algorithm. This 1is done by giving the priority
some "weight" in the PNQF computation. This table 1is indexed by
the swappable process's assigned priority. As it is designed,
this table simply contains the values 1,2,3 at the corresponding
offsets. If the values in this table are made larger than values
calculated from the PCN Recalculation tables, then the user-
assigned priority can be made to dominate over the PCN calcula-.
tions with regard to determining a process's actual PNQF.

The Ready Eligible Queue (RELQ)

Internal to A0S 1is a queue known as RELQ; the Ready,
Eligible Queue. This queue maintained by the Core Manager and
the Process Scheduler, is a linked 1ist of all Ready/Eligible
processes and is ordered by PNQF.

“When it comes time to run a process, the A0S Process
Scheduler starts at the front of RELQ looking for the first Ready
process to be found. As the PNQF for a process changes, its
position on RELQ will be shifted accordingly.

Altering the Process Scheduling Algorithm

Thus far we've examined how process scheduling is accomp-
lished by AOS and how it relates to user assigned priority. It's
also useful to be able to alter these algorithms from time to
time. Unfortunately, for Resident and Preemptible processes
there 1is nothing that can be done to affect the process sched-
uling outside of assigning different process priorities. A word
of caution here: avoid running Resident and Preemptible processes
at Priority 1. At priority 1 they will be competing with the
PMGR for cpu time and that could negatively impact -system
performance; specifically with regard to console 1/0.

For swappable process there are two kinds of changes that
will affect the scheduling algorithm:
(1) Program changes altering the % of cpu time to I/0 time

(2) Plugging the System Tuning Tables

2-8

I

=

"Fooling" the Scheduler

experimentation will be in order.

Plugging the System Tuning Tables

Through programming changes you can change the execution
flow of the user programs and/or install routines that perform
"dummy" I/0-type System Calls. Such calls can be made in order
to "fool" the scheduler into "thinking" that the process is
becoming more I/0 bound, thereby lowering its PNQF. On faster
CPU's this occurs naturally as a function of increased cpu speed.

As an experiment, I took a heavily,compute-bound program and
installed-an I/0 routine that was called at various points in the
computational loops. This I/0 routine simply requests AOS to
read the same block of a 1 element shared file that had been open
exclusively for this purpose. This I1/0 request indicates to | the

Scheduler that we are gravitating towards I/0 dependency, when in

fact this is not true at all. Because the request 1s‘tp a
frequently accessed shared file, no physical disk I/0 is ever
performed - the block being core-resident in a shared-page =~ the

[so-called] I/0 taking a negligible amount of time.

The characteristics of each program are usually signifi-
cantly different. Frequently, a process's characteristics will
have to do with what other processes are running in tandem at the
time. In order to make this kind of technigque work, some

method however 1is that it is officially not supported bw;M

Patching the System Tuning Tables offers an excellent way to
alter the Scheduling a]gorithm A potent1a1 drawback towth1s

General, even though it seems to work rather well,

A system tuning facility has been "wired" dinto AQOS for |
although it 1is undocumented and therefore probably unsupporte
Data General. Currently, these tables can only be plugged usi
the System Tuning screen of Aoswatcher or by patch1ng the
System.Sy file (as ment1oned above) with the Disk Editor,
(horror of horrors).

2-9

When Deskwatcher was being developed, the ?TUNE System Call
(the key to System Tuning) was tested thoroughly and found to be
workable with the WPRI table and the PCN Recalculation Tables.
(There is another aspect of this call which doesn't seem to work
and 1is therefore not currently used in Deskwatcher or Aos-
watcher) . l *
| | |

With Deskwatcher/Aoswatcher utilities, you can alter the
above-mentioned tables as the needs of your system d1ctate As
the process load on the system varies throughout the day, you may
wish to alter these parameters from time-to-time. If you find a
setting that seems to work most of the time, you might want to
"patch" these tables permanently in the .SY f11e and re1nsta11
the system as necessary.

A word of warning is that patch1ng the SY‘f11e m1ght leave

you wide-open for unsupportability from Data Geweral It is best
to check with your DG Systems Eng1neer to get alrecommendation on

how to do this and still insure supportab111ty Talk with a

number of DG S/E's has indicated that this is probably not a big
issue if the patch is properly app11ed The table names to be
-patched are: WPRI, PCNSS, PCNEN, PCNRR respectwve]y " They can
all be addressed by those labels using the D1sk Ed1tor (DEDIT)
and the .ST file produced during AOSGEN. \

Plugging the Weighted Priority Table

The only valid reason I can think of for ever patching the

Priority Weight Table is to force the user-assigned priorities

(1,2,3) to take precedenc over the behavior derived aspects of
the schedu11ng algorithm. To accomplish this, you want to plug
values into-this table th@t exceed the largest value calculable
with PCN Recalculation Tables. This largest. value is computed
from the compute-bound offset of these tables as: ’

Max-Value = PCNSS + (PCNRR * PCNEN)

On my AOS System, I have chosen: 100, 200, 300 for priorities
1,2,3 respectively.

2-10

Plugging the PCN Recalculation Tables

When plugging the PCN Recalculation Tables you must be
careful to insure that the values plugged into each of the three
tables exhibit a proper relationship with the figures 1in the
other tables. To help you select the "appropriate" values to
“plug" into .the PCN Recalculation Tables, a few tips are in
order.

As described in Table 2-3, process behavior can be broken
into four groups (or levels if that makes more sense). The
Steady~-State values (PCNSS) declare the start of each behavior
level, while the Event Counts (PCNEC) define the length of each
group/level. The Reaction-Rate entries give the incremental
value for each iteration of the Scheduling algorithm as a process
is measured to be more compute-bound. This value declares how
quickly we will drop to the next behavior level. '

The most important thing to understand about these tables is
that their values are all relative to each other; specific values
have no meaning. In order to intelligently plug these tables
permanently, you will need to first experiment these values using
the System Tuning Screen of Aoswatcher. :

To assist in this experiment, remember _that the PCNSS value
(for all but the Console I/0 behavior- levelll) is computed as:

(PCNEC * PCNRR) + PCNSS
(values taken from the previous level)

A working example is probably in order here. I will use the
Recalculation Tables from my own Desktop A0S system as an example
of how these tables might be -set. _

This system is used predominantly in the following areas:
1) System software development; 2) Full CEO; 3) Manuscript
writing and general word processing (using a non-DG Word-proces-
sor); 4) Various computer games from Pacman, Chess and Adventure
to Startrek and a Stratego board of my own design.

Once the tuning screen was designed into my then "personal"
copy of Deskwatcher, I saw instantly that the default values for
the PCN Recalculation Tables (shown in Table 2-3) chosen by the
designers of A0S were inadequate for a system being utilized in
the way mine was. Some experimentation (and admittedly guess
work as well), brought me to the values described in Table 2-4,.

1) This should always begin with a value of 1; unless you
wish to insert a new scheduling structure. :

2-11

Unblocking Event PCNSS PCNEC PCNRR
Behavior Level - o bl

Console 1I/0 : 1 6 3 ©

Non-Console I/0 _ 23 4 3 -

‘IPC (non PMGR) ‘ 37 2 ' 3

Compute Bound 45 10 3 i
Table 2-4 e

Recalculation Table working example
(A11 values 1in Octal)

From studying Table 2-4, several things should be evident: -

1) Console I/0 and Compute-bound processes are. given the "
most and careful attention.

2) IPC-bound processes being more rare are therefore given e
only minimal attention. An Event-Count of 2 allows for

~one ?ISEND/?IREC sequence or a ?IS.R call to- be -

executed before dropping to the next behavior level.

3) A diagramatical representation of the above table-might (
be an hourglass figure that is flared at the bottom

somewhat more than at the top. This means that we ask o
AOS to evaluate Interactive vs. Non-Interactive ‘
processes in a similar way, although Scheduling is a !

little more precise when dealing with non-interactive

.
processes.

4) The Reaction Rate Table values are the same as the
System Default. This makes plugging the Tables easier. al

Summary

As you can see, Process Scheduling is a rather complex issue
and you haven't heard the half of it. Looking into the internal
structures of AOS you will run into Ghosts and Daemons and the -
Interrupt World, to name a few of the other components. Throw in
multi-tasking and you really have a mess on your ‘hands.

Unlike other areas of pérformance , altering the Scheduling
Algorithm is one of the easiest ways- to effect an improvement.
Be ye' not afraid to experiment a Tittle. You may be in for -
quite a surprise...... ' : ‘
. ’ {5
2-12
i

ke e o e %k e % e de ke e e e e e % e e e gk ke vk ke vk ke ke e ok e ok ok ok ke e ke ke ke ek ok ek ek

Chapter 3
The "GHOST" Process

* ok % % % *
* %k %k ok % *

i3 ******************************f****************

P

i

F

(S|

k

E

FED

The Ghost Context

Basic Theory

With most users, little is known about the Ghost context and
yet it plays a vital role in matters of System Performance.
Although minute detail 1is unnecessary, a rudimentary understand-
ing of the Ghost will offer some valuable insight into- the ways
of AO0S. For system programmers, knowledge of the Ghost can
result in more effective programm1ng, especially where I/0 is
concerned.

To begin with, the User Process is often referred to as the
Primary Context; whereas the Ghost 1is frequently referred to as
the Secondary Context. A good analogy concerning the Ghost is to
see it as an alter-ego of the User Process instead of a separate
process such as PMGR. The Ghost is wholly contained in GHOST.PR
and GHOST.OL and lives in the root directory.

Basically, the Ghost is nothing more than a parallel
extension of User Address Space sharing Task Control Blocks
(TCB's) with the Primary Context when "it" is in control. An
adten in shared-code This shared-code guarantees that there is
only one physical copy of the code occupying memory; although
there will be numerous "1og1ca1" copies present (one. "logical"
Ghost per process). This "initial" Ghost is created as a
Secondary Context of Pid 2, OP:CLI
during final stages of boot1ng the system (before the initial CLI
prompt). Its code is loaded from GHOST.PR starting the process.

Due to the design of the hardware MAP, the maximum protess
logical address space is 32kw. Due to this construct, each
process has 32kw available for each Context, Primary alogical"
copies present (one "logical" Ghost per process). This Winithal*
Ghost is created ‘as 'a Secondary Context of Pid 2, OP:CLI
during final stages of booting the system (before the initial CLI
prompt). Its code is loaded from GHOST.PR starting the process.

Due to the design of the hardware MAP, the maximum process

logical address space is 32kw. Due to this construct, each
process has 32kw available for each Context, Primary aail

The Ghost has five main functions:

(1) An interface to/from the User Prbcess

(2) A System Call Ihterface

(3) A PMGR Interface to handle Programmed I1/0 (PIO)

(4) Logic to handle the Debugger, Dedit & Sysdmp functions

3-1

(5) An interface to the System Scheduler for the Resched-
uling of tasks within the Primary Context

Let's look at these functions in greater detail.

User <=--=> Ghost Interface

In order to off-load A0S, the Ghost pre-processes many of
the system calls. This 1is the interface between the task-level
of the User Processndle Programmed I/0 (PIO)

(4) Logic to handle the Debugger, Dedit & Sysdmp functions

(5) An interface to the System Scheduler for the Resched-
uling of tasks within the Primary Context

Let's look at these functions in greater detail.

User <--==> Ghost Interface

In order to off-load A0S, the Ghost pre=-processes many of
the system calls. This 1is the interface between the task-level
of the User Process .and the Operating System. Regardless of
which Tlogic in the system actually processes the system calls,
they all start off at the Ghost level through this interface.

Assumming that no pre-processing of the System Call is
required, the Ghost simply handles the required "bookkeeping" and
passes the request to the AQS Kernel. If no post=-processing is
required, the System Scheduler will eventually give control of
the system back to the User Task to continue its operation. The
User Task never talks directly to A0S, and A0S System Call never
directly responds to or dispatches a User Task.

Ghost ---> System Call Interface

When a ?System call is placed by the User Process,écontro]
is first transferred to the Ghost Context. Some of these calls

are in actuality Ghost calls, meaning that they are pre-processed-

by the Ghost before being queued to the A0S System Call Proces-
sor. ?Read/?Write and ?Proc/?Chain are examples of pre-processed
calls. '

3-2

There are several advantages to having the Ghost handle this
pre-processing. One advantage is that the AOS Kernel is off~
loaded and the User Process is more accurately charged for the
CPU time it utilizes. Another advantage is that because the
Ghost Context is an alter-eqgo of the User Context, it [poten-
tially] has easier access to the User Program address space
facilitating page sharing in order to move data to/from the Ghost
Buffers and user space, as well as maintaining the user .Task
Control Blocks.

An example of this pre-processing occurs in a data-sensitive
read from the disk. Let's assume the Primary Context issues a
?Read system call requesting 200 bytes of data from an open file
named Zippy. The Ghost will intercept the call and request AQ0S
to read the [physical] disk block (512 bytes which contains our
requested 200 bytes) into one of the Ghost buffers in unshared
memory. After the read is finished, Ghost unpacks the requested
200 bytes into user address space. The AOS Kernel sees only the
start of the direct block I/0 request into the Ghost buffer.

Ghost <---> PMGR Interface

To simplify PIO transfers (which are already slow enough as
it is), the Ghost has a direct 1ine to PMGR via "secret" IPC
ports. For the most part, the AOS Kernel is not involved in the
data transfer to/from the console-type devices. To enhance
things further, PMGR has available two undocumented System Calls:
?MBTU and ?MBFU. This allows console data to be passed directly
between PMGR and the Primary Context without Ghost intervention.
(To use ?MBFU/?MBTU a process must have the PMGR Privilege)

In a way similar to the Ghost =-=--> AOS interface, the Ghost
handles pre~processing and post-processing of ?Read and ?Write
System Calls while PMGR (in conjunction with the A0S Interrupt
World) handles the actual I/0 transfers.

One of the obvious reasons that PI0O devices are slower than
data channel devices (aside from the data channel speed) is
because of this IPC protocol between PMGR and the Ghost.

The main reason why IPC privilege is not recommended for
users is because they could then attempt bogus IPC calls to
PMGR's (undocumented) control ports thereby crashing the system
or triggering unusual or flaky PIO device operation.

3-3

Ghost ---> System Scheduler Interface

Debug - Dedit - Sysdmp Logic

The Ghost has the option of requesting task rescheduling for
the Primary or Secondary Contexts. It invokes this privilege
mainly after post-processing System calls. Without this mechan-
ism, post-processing of System Calls would have the liability of
violating the A0S scheduling algorithm; thereby defeating a

portion of the Ghost's purpose. This could unfavorably impact
System Performance. ' -

- Because the Debugger and Disk Editor (Dedit) are often
required by many users simultaneously, they have been written

~into the Ghost 1libraries making them common| to all user proces-=
~ses. And, if you take a closer look, the&e_uti]ities all share

|
Ghost Summary ;[

the same command and operation format aking the Ghost the
obvious choice for the placement of this cope

\
|
|
|

i
|
J

4 = L i
So as you can see, the Ghost does indeed play an important

!(a]beit invisible) role in matters of System Performance. (After
-all, why do think we call it the Ghost?) 'Although this role is

~overlooked.

|
|
i

|
!
|

an indirect one, it is nevertheless important and should not be
i ' L

And of courﬁe, the presehce of the G%ést tends to explain

where some of the memory pages are "disappearing" to. More

information on locating "lost" memory phges is described 1in

Chapter 1 - Memory Management.

Haﬁpy Hdunting!.....

y

|

| | |
1 |
\

&%
x

X X K K K ¥

2
x

L &
XX

1

4

Chapter
The Disk World

1 ke ode ade ode s oo b o

1o ke ok oo ok e b ke ok

EEXEKXEKXKEEELXKXERELEEXKEERXKEKXKK

|
|
|
|

e 9k 5k v 2k 3 % v ok vk 3k o 2k e ke e e e 3k ok vk Tk ke v ok e vk ok vk ok ok vk ok e ok ek ke ke ok

X kK X K ¥k X

E R B T i e Rk R R R

]

B

£ 4

3

J &

W0 kS R 3RS R4 R4 B3 ESE 4

v
.

Disk World Performance Guidelines

When it comes to System Performance, disk seek time 1is
always the problem. Luckily, there are a number of things that
we can do to remedy the situation. This includes: careful file
placement, effective directory utilization, choosing filenames
and hash frame sizes carefully, and even being conscious of the
importance of declaring proper searchlists. Each idea by itself
may not generate all that spectacular of results, but used in
conjunction with one another can be very powerful. Let's take a
look what these methods and facilities can do for us.

Drives and Controllers

When configuring multiple disks on the system, you need to
look at the issue of multiple disks and/or multiple controllers.
Frequently, when a shop attempts to resolve their disk utili-
zation problems, the only solution considered is to add addit-
ional disks to the system. All too often however, this does not
fully produce the expected results; usually for one simple
reason, controller interference becomes so heavy that the
advantage of an additional disk (or disks) is somewhat negated.

Controller interference is where I/0 to a selected disk
drive must be queued to the I/0 world (ie. stalled) because the
controller is currently handling an I/0 request to another drive.
on the same controller. While we can usually perform concurrent
seeks on a controller, only one block transfer may occur at a
time. This is usually because the controller chip(s) contain
only one set of sector buffers. Therefore, file placement
becomes quite a crucial issue. L | i

Although often relatively expensive (compared to disk
drives), adding additional controllers to a system can dramat-
ically improve system performance. Many installations needing
only two disk drives often place each on a separate controller in
order to maximize I1/0 speed. If speed (and not drive capacity)
is the issue, it makes sense to invest in faster disks/control-
lers even though they may be limited in capacity. To get both
speed and capacity, you must pay the price. Using the Dstats
screen of Aoswatcher will help you determine whether adding
another controller is needed or (after having been installed) was
worth the investment.

File Placement Guidelines

Aside from adding another disk drive to the system (if not
already done), file placement becomes ‘a very important dissue.
The idea of file placement is to physically place commonly
accessed files as close together as possible, thereby minimizing
drive seek time. This should be done starting with system
installation; waiting until later will only complicate matters.

4-1

For example, on my desktop system I loaded all of my writing
and programming material onto the disk only after the disk had
been reorganized. = You see, after the initial system instal-
lation, files on the disk are not in what I call "user-oriented"
order, Once the System Installation was complete and tested, I
dumped the directories and files in "proper" order onto a ‘tape in
order that the disk could be [re-]organized into file access
order; thereby improving performance when loaded back onto the
disk. ‘ ‘

Essentially what was required was to perform two system
installations; except that in the second installation I loaded
the files from my backup tape rather than file 7 of the release
tape. The advantage in doing this is that the disk is now loaded
in my order, not in release tape order. Some time was required
to plan this selective dump, but it was well worth the effort in
terms of improved System Performance.

In general, files that are never modified (such as .Pr and
.01 files) should be loaded near the front of the disk and
constantly changing files (such as word processing text files and
fluctuating databases) should be placed near the [so=-called] end
of the disk. Placing potentially wupdatable files near the
beginning of the disk forces them to be spread out towards the
end of the disk as the additions are made to it over time. This
forces rather lengthy disk seeks when bouncing from the front to
the back of the file and vice versa. Application programs
referencing these files will suffer greatly and will impact all
other processing as well due to the massive disk seeks required
to access the newly added blocks.

Directories and CPD's

Although file organization can improve System Performance'y

(not too mention making it easier to find things), I see so many
disks in which files are just scattered about. Proper disk
“organization is essential; even more so on the Desktop when you
consider that we are working with a "crippled" disk to begin
with. If your disks are poorly organized, you won't reall

notice how bad things are until after you put some order into the

chaos. At least then you'll have organized chaos.

Under AQ0S, directories and control=-point directories (here-
in called CPD's) are the key to file organization. To fully
utilize directories and CPD's we need to draw a distinction
between these two aspects of the same thing. (Say what?)

4-2

Essentially, directories and CPD's function the same except
that CPD's allow you to restrict the amount of space used by a
particular group of files. The CPD max-size is simply a ceiling
on the amount of space available to that file group. AOS does
not actually allocate that amount of disk space (as does RDOS
with 1its equivalent Partitions). Other than the CPD max-size,
the only other real advantage to a CPD that comes to mind is the
ability to determine the space used/remaining for a given file
group. This allows you to get an "eye" for how much space a
given group of files is actually "costing" the disk. :

Directories incur overhead in the form of invisible disk
space taken up by Directory Data Blocks (DDB's). DDB's house a
number of "invisible" directory structures known as Directory
Data Elements (DDE's). There are 5 kinds of DDE's: File Infor-
mation Blocks (FIB's), File Name Blocks (FNB's), File Link Blocks
(FLB's), File User Data areas (FUD's) and File Access Control
blocks (FAC's). These internal structures will be fully explored
later in this chapter. : i

General'Disk Overhead

Having discussed directory basics, let's put this stuff to
use by talking about disk organization in general and what it can
accomplish towards dimproving system performance. -

i |

Most A0S disks I have seen are usually a mess organi;ation-
ally. One only has to do a Filestatus on the Root d1rectory or
:UTIL to bear that one out. When I Took in the Root directory of
most systems, I find an incredible morass of files; everyth1ng
from .PR's and .SR's to backup files and people's persona] letter
texts. On one system I looked at, the Root d1rectory wou]d have
been a gold mine for the local gossip co]umn1st ‘

Directories are about file classification. Granted theﬁe is
some overhead associated with using directory structures, but the
organization afforded 1is well worth the investment of time and
space. The major directories on the system that are candidate
for re-organization are the Root and :UTIL.

For example, on my system we created a directory :MACROS and
moved all system related .CLI files there. This helped to clean
up :UTIL and the CEO-directories considerably. Likewise, I
organized most of the files in :UTIL into sub-directories to make
things easier to find. As for the Root d1rectory, I moved files
such as +.St onto a diskette LDU as they aren't normally needed
unless you are installing program patches.

As we shall see later, directory organization makes for
faster filename look-up due to the nature of the hashing algo-
rithm. I can't encourage directory organization enough; and yet,
you will probably ignore this advice completely. I hope not.

4-3

Shrinking Directory-space Overhead

.| A characteristic of the A0S internal directory structure is
that it grows (if necessary) but it never shrinks. Like disk
fragmentation, DDB's can also fragment as files are added and
deleted; in much the same way as the overall disk space. The
haﬁh frame size (as we shall see) can affect directory space
utilization to some degree but is not a cure-all; especially in
an "active" directory.

Just like the disk drives, directories need their space
compressed as well. There are two ways to accomplish this:
! .
« 1 - Fixup

P2 Manual Compression

FIXUP

~ The FIXUP wutilities support the shrink-directory-files
feature. This feature de-allocates DDB's that no longer contain
active DDE's; the net effect being lesser directory overhead.
Until AOS release 7.0, this was a selectable option. Currently,
it \is no longer selectable. At times, I find this undesirable.

. To remedy this situation I keep a copy of Release 6 FIXUP
resident in :UTIL for the times when FIXUP becomes necessary (due
to'a system crash) and I want to keep the unused directory space
allocated. Should the system crash while I am in the process of
reloading directory structures, I want the allocated directory
space to remain in order that it be reused when I restart the
Load process.

If all disks are declared by DFMTR as system disks
(containing at least a minimum AOS configuration), you can shrink
both disks by booting each disk alternately, running FIXUP on the
"other" drives. !

4-4

Compressing Directories Manually

On an individual basis, directories can be compressed
manually via the CLI. Although not a perfect solution, manual
compression will not only free up directory space, but it also
increases the chance of the Directory Data Blocks being localized
in a contiguous area. At this time, it might also be a good idea
to check the appropriateness of the hash frame size for the
directory. Manual compression is best accomplished via DUMP/LOAD
or MOVE; although the MOVE option does have some potential side-
effects. ' ‘ : :

The formula for manual compression is to Dump or Move the
files out of the target directory, delete the directory (freeing
up all the allocated Directory Data Blocks), recreate the -
directory structure, and finally, Move or Load all the files back
into the directory.

Here's an example:
DIR Pathname of Target Directory

DUMP @MTCO:0 #
-(Qr - |
‘MOVE Somewhere_Else

- w o e

DIR Parent Directory
DEL Target Directory i
CRE/DIR/HASH=nn/MAXS=nnnn Target_Directory

e e e o e

LOAD @eMTCO:0
=0r- i
DIR Somewhere_else_Directory

MOVE Pathname_of;Target_Directory

The one possible drawback of using the move command is in
moving the target directory files somewhere else on the same
disk. In the process of reducing DDB overhead for a single
directory, you may force fragmentation on the disk as a whole.
Use the MOVE command only to another drive (which may force
fragmentation there instead). Or, if you have a desktop system,
create a diskette LDU and temporarily move the files onto it. A
diskette can also be used as a sequential dump device; just like
diskettes 4 - 17 of the AOS release media.

If the directory is frequently accessed, you can use Aos-
watcher to check the average seek distance for any noticeable
improvement in performance. Otherwise, use the Disktrace to
locate the DDB's. The DDB's will of course graphically disclose
the results.

Third Possibility

Now there is a third method useful for compressing directory
space, which is known as disk compression. Although more time
consuming than the methods described sp far, it is a far more
precise mechanism. This is discussed later on in this chapter.

A side note here 1is that when doing a compression dump, if
the purpose is to shrink the directory files, be sure to dump the
contents of the directories, recreating the directory structure,
rather than dumping the directories themselves.

4-6

Hash Frame Size

How the Hashing Algor1thn Works

Unlike data files, a dirictory dbes not have a file element-
size per se'. Instead, we use what is known as the Hash Frame
Size to control d1rectory eff1c1ency, as well as theas it's

~efficiency. Like database structures, hash values should be

prime #'s in order to fully utilize the disk space, and like
database structures, filename hashing can rD being a kind of
database. Hash Frame Size is the value that determines the
initial (and subsequent) d1sk space requ1rements of a directory
or CPD as well as it's effnc1ency Like database structures,
hash values should be prime #'s in order to fully utilize the
disk space, and like database structures, filename hashing can
result in synonym prob]emS‘ hav1ng a f11ename resolve to the same

"home" location a]ong w1th numerous other filenames.

!} |
| b |
5] |
|

|
\

. !
Filename "hash1ng s1mp1y cons1sts of adding up the ascii
representation of all the characters in a given filename,
dividing by the Hash Frame S1ze taking the remainder from that
division and using it as a b1ock offset in "the Directory Data
Blocks (DDB's). Diagram 4-1 illustrates this algorithm. Once a
DDB is found, a scan of that block is made looking for an FNB
that matches the filename. If the FNB is not found, A0S scans
the Directory Overflow Blocks until the FNB is e1ther found or
the chain of Directory Overflow Blocks for that hash value is
exhausted. As we shall see later, once located, the FNB points
us to the FIB, and that points to the file. d1sk blocks themsel-
ves. Later, we 11 discuss the System Performance 1mp11cat1ons in
choos1ng a proper ~hash value.

"FILENAME" with a Hash Frame Size of 7 computes as: ‘

<106>
<111>
<114>
<105>
<116>
<101>
<115>
<105>

MTP>ZM ="M

7 | 1105 remainder=3 | Home Location is Block #3

122- (ignored)

"Diagram 4-1
Hashing ATgorithm Example

4-7

Large vs. Small Frame Sizes

Although a small Hash Frame Size is economical in terms of
~disk space, if the directory has a large. number of files in it,
System Performance can suffer. This is because there are fewer
directory blocks in which to hash a -given filename amongst.
Therefore, the chances of overflowing a given filename's home
location (block) are much greater, resulting in Directory
Overflow Blocks. These overflow blocks will of course [poten-
tially] require additional disk accesses to locate a given File
Name Block (FNB) - See Diagram 4-2a. -If too large a Hash Frame
Size is chosen, there will be little or no Directory Overflow
Blocks, and many of the allocated directory blocks will be empty.

A large Hash Frame Size may improve System Performance
somewhat, but at the expense of wasted disk space. By comparing
Diagrams 4-2a and 4-2b, the contrast between Large and Small Hash
Frame Size should become readily apparent.

Home Overflow Overflow
Location Block Block
fnb fnb fnb .
Hash 0 -] —| - e
fnb ; fnb
Home Overflow
Location Block
fnb - fnb
Hash 1 -l- -|—
fnb fnb

Diagram 4-2a

Hash Frame Size tpo Small

4-8

g

Home

Home Home
Location Location Location
fnb : _
Hash 0 -—[-— Hash 1 et Hash 2 | —
fnb frib
Home 'Home Home
Location Location Location
-fnb fnb
Hash 3 -—|-— Hash 4 Hash 5 —-]-—
. fnb fnb

Diagram 4-2b
Hash Frame S1ze too Large

A good rule of thumb for chooSing a directory's Hash Frame
Size is the following formula:

~H.F.S. = (# of Files in Directory) / 20

This formula attempts to encourage a rather even distribution
of filenames amongst the Directory Data Blocks, although it may
not always be the optimum formula. Filenames can affect system
performance. They are not necessarily a trivial concern.

At any rate, as you can see, directories and CPD's are
important to System Performance, and the Hash Frame Size is the
key to insuring that they function in the most efficient manner
possible. |

Filenames and Filename Length

Suprisingly, proper choice of disk filenames can play an
significant role. in the improvement of -system performance.
However, because meaningful filenames also serve as documentation,
we never consider the performance impact of choosing such file-
names. '

To begin with, filenames. (with any extension) optimally

- should be less than 12 characters in length. This is because the
filename will fit completely within one File Name Block (FNB),
reducing directory overhead.

-

4-9

The 1importance of filename choice is of course due to the
nature of the hashing algorithm itself. Axiom 10 of Fitchmouse's P

Laws of Computer Dynamics states: "Chosen filenames will always
hash to the same "home" Directory Data Block forcing directory -
overflow blocks to be created". In other words, filename choices
are frequently not in line with the hashing algorithm resulting "

in DDB's that overflow, while other DDB's remain empty.

With the Disktrace facility of Aoswatcher you can run e
filenames through the hashing algorithm to determine what their
“home" location will be. If too many filenames hash to the same
“home" location, you may elect to change some of the filenames.

On a particular system I helped design, we used this
method. As it turned out, the hash value we chose was perfect
with regards to DDB efficiency and poor as far as the hashing e
algorithm went. After installing the database files and such, we
noticed that 3 of the DDB's had a string of overflow blocks
“attached", while a number of the remaining DDB's were still
empty. Because the user's never accessed files by their name
(the software did that), our solution was to rename the files
giving them names 1like: FILEOQO12, FILE224, FILE969 etc. Although
the names were not as easily recognizable as they were before, we -
did end up with the most efficient structure possible,

The effects of File Element=-size

File element-size can significantly affect system perfor-
mance and yet is a concept not understood well by the average ,
user. To alleviate the problem of users not understanding its .
effects, I usually include file element changes in macros so that
users will not have to be concerned about this important feature L
while at the same time -being gquaranteed that it is properly
implemented. :

e

A file's element size is simply the number of contiguous b
disk blocks that will be allocated for the file each time it }
requests additional space. This space 1is technically called a e
File Data Element. <Choosing the appropriate element size is e
important. You should be aware that file space allocation .is a ;
time consuming task; especially on a large disk thét is rela- oo

tively full. !
Therefore, if a chosen file element-size is too small, !
System Performance degradation will result. This is caused by =
the system needing to frequently allocate small amounts of disk C
space as the file increases in size. |- . i

4-10 | ‘ B

‘Likewise, 1if the element-size is too big, unnecessary disk

SDace will be wasted and this 1is not reported in the Filestatus

command. So 1if you are having trouble in getting file sizes to
add up to the [reportedly] used CPD space, it is probably due to
allocated and yet unused disk blocks from files with too large an
e]ement size.

'Earlier, I discussed the importance of directory organiza-
tion. Now I want to go one step further and talk more about file
element~sizes with regards to Macros and HELP files. These two
k1nds of . files are often less than 4 blocks in length 'and yet
this is the file element-size usually chosen (if for no other
reasbn than by default). On my system, because there are
hundreds of HELP files and macros (each wasting 2 - 3 blocks from
too]arge a file element-size), until I shrunk the element-size
to be in accord with the part1cu]ar file, we were wasting over
700 d1sk blocks. To resolve this problem I wrote a macro to
convert file element-sizes. Although it 1is rather complex, the
essent1a1 statements appear below: ’

‘RENAME Filename<,.Xyzzy>
‘CREATE/Type=type~ of-Xyzzy-fi]e/Elem=nn Filename
'COPY/A Filename<,.Xyzzy>
iDELETE Filename.Xyzzy

Forcing the Element-Size

i As a rem1nder the C1i and programs ut111z1ng the ?Create
System Call default ‘the element-size to 1. This of course can be
quite a problem when using utilities (such as word processors and
compilers) that don't allow you to declare a file's element-
size. A simple solution to this (although it may not work with
all utilities) is to create the file via C1i specifying the
element~-size before invoking ‘the utility program. The program
will then use the existing file rather than creating a new one.
Additionally, some utilities (such as Masm) have a switch to
allow a larger File~-Data-Element on its created files.

An example might look something like:

CREATE/ELEMENTSIZE=32 PROG_LIST_FILE

LIST PROG_LIST_FILE

XEQ/L USER_PROG

LIST/G _

QPR PROG_LIST_FILE _
0f course the above commands could be made into a macro
for the sake of simplicity. ‘

4-11

' figures 1in dramatically.

| \
A work1ng examp]e of the‘effects of file element-size is
deta11ed in the example be]ow To create this example we ran a
persona11ty analysis program. severa] times varying the element-
size of the output f11e from 1 to 32. The results are rather
impressive: |

| i
Element | © User H A]loéatjon Total" Allocation
size I[/o's I/0's I/0's Overhead
1 | 5860 5860 11720 | 100 %
4 . 5860 2930 8790 50 %
16 5860 z(}33‘ R 6600 | .12.5 %
32 5860 | %57 ~ e23o 6.2 %

| -
|
|

the gboye f1gures, a file's element-size

In order to eliminate any variables
interfering with the mépsurements being taken, we modified the
program so that at the\end of each run rather than terminating,
it would loop back to the beg1nn1ng and wait for operator
intervention. This e11m1nated the possibility of program load
I/o0 interfering with the measurements Also, because AQS buffers
disk data (meaning no actua1\d1sk I/0 is performed if the block
is currently core~ res1dént) we USed four identical copies of the

same file, opening them prior to the main execut1on path of the
program.

|
|
|
As you can see fro%

\
o
|

4-12

File Index Levels

In addition to the FDE, overhea

"index blocks generated for a file Tlarger
"Element -in length. 'For files with more than one FDE, a Random
Index Block (RIB) structure 1is created by AOS.

used to point to FDE's (for the first 128 FDE's)
restricts us

level of RIB which points to 128 FDE's.

d is

A0S

than

incurred -from the
File Data

one

These RIBS are

or to another

to a

maximum of 2 index levels which allows a maximum of 16,384 FDE's
allowing a

per file. Each pointer in a RIB is 2

words

long

maximum of 128 RIB/FDE pointers per Random Index Block.

Although these index blocks are invisible to the user, they
le access considerably.
of what a file with and

do take up disk space and can slow the fi
Let's look at a couple of -examples

without RIB structure might look 1like. In these examples, assume
a File Element Size of 4. The File Information Block is where
the Filestatus information is kept.
| :
- One FDE Present
File ; .
Information |- Blk 0|Blk 1|Blk 2|Blk 3
Block . -
1 - 128 FDE's Present }
RIB 0 4 ‘
File B1k 0-3;‘—:—-">- Blk 0|Bl1k 1|Blk 2{Bl1k 3| FDE #1
Information o + :
Block B1k 4-7y-f——i- Blk 4Blk 5|Blk 6|Blk 7| FDE #2
j |
{ 1
{ '}

Diagrém 24-3
Effects of FileﬁElement Size

]

4-13

The LDU Bitmap

The Bitmap 1is an invisible "file" structure that exists on
each and every disk-type device on the system. It is created by
the DFMTR utility. Essentially, the Bitmap is used to keep track
of all the free and used disk blocks on a given physical disk
unit. The Bitmap keeps track of only the "visible space" on an
LDU; 1ie. the logical disk addresses. The initial 10 blocks on
- each physical unit are always assummed to be in use and are
therefore never recorded in the Bitmap.

With the Aoswatcher utility, we can examine the bijtmap of
each LDU and quickly determine whether or not fragmentation

exists. What you are looking for is large groups of 'l' Bits or
'0' Bits. This indicates little to no fragmentation.

The following segment from a bitmap display is a good‘
example of a disk with 1ittle fragmentation:

2000 177777 177777 177777 177777 177777 177777 177777 177777

* k%

6000 000000 000000 000000 000000 000000 000000 000000 000000

A segment from the same area on a fragmented disk might look
like: :

2000 176534 055360 146357 055555 177777 177777 106573 177777
2010 056543 177777 177777 000000 176534 036253 177777 000000

In the above examples, each group of octal digits represents
16 disk blocks, with each octal digit in a number group represen-
ting 3 disk blocks (excepting Bit 0). The rule of thumb is: if
the bit corresponding to a disk block is a zero, then the block
is available for use; if it is a one, then the block is in use,

For example, if the number group in a Bitmap display were:
136527 (1 011 110 101 010 111 in Binary)
Then blocks 0,2,3,4,5,7,9,11,13,14,15 of this group are in

use and blocks 1,6,8,10,12 are available for use.

The Bitmap occupies several disk blocks based upon the size
of the disk. Each block of the Bitmap represents 4096 disk
blocks on the LDU. Diagram 4-3 compares the Bitmap size to th
total disk size for the 3 available disk sizes. ’

4-14

Disk Size # of Blocks ‘Bitmap Size (Blocks)

15mb . . 35968 | 8
38mp 74767 - 19

70mb . 135904 35

Example of Relative Bitmap Sizes

Finding the Bitmap

Using the Aoswatcher utility, it is easy to find the Bitmap
for a given disk. The first step is of course to open the disk
unit for block display. The Bitmap is pointed to by the Disk
Information Block (Physical Block 3) as shown 1in Diagram 4-4.
Details on this block appear in the upcoming section on Disk .
Tracing. . '

DIB
IBBAH -
37/40 —Pp 177777 | 102340 | 06513 |
IBBAL .
Block 3

Diagram 4-4
Locating the Bitmap

To find the Bitmap, first display the DIB using the disk~
trace command: BL 3. At offset 0037 (IBBAH/IBBAL) is a 2~
Word logical block address of the first block of the Bitmap.
Blocks of the Bitmap are contiguous so it 1is easy to locate the
remaining segments.

4-15

Disk Compression RN

As files are created, deleted and modified, the disk will
begin to fragment. The greater the activity of th1s kind, the
quicker fragmentation will begin to occur. The main 1nd1&ator of
disk fragmentation is that access times begin to increase;and the
performance of the machine slowly degrades. Quite freauently;
the gradient is so slight as to not be noticed. You simply
settle in to the new (slightly slower) speed and are unaware of
the'problem until the response time really gets drast1c then
it's already too late = someth1ng must be done!

|
A0S doesn't support any form of disk compression per se'y
and for good reason. The internal disk structure (as we shall
see) is way too complex to be "squashed" in a safe manner, so it
must be done via a Dump/Load. Although" this, requ1res‘carefu1
planning and a decent amount of time to accomp11sh 1t 1s we]]
worth the 1nvestment |

As time goes by, it is probably a wisefthing to dump and
reload the disk(s) in directory/access sequence, effect1ng
compression., The time spent per1od1ca11y ‘doing this will be
repa1d with a smoother, faster running system. How often to do
this is based purely on the amount of file creating, de]et1ng and
appending being done on a given disk LDU. Frequent file addit-
ions will dictate that the disk be compressed more frequently.

4-16

1t1es ~
Aoswatcher
V'DEDIT 2-(
¢‘Deskwatcher
‘f".G]utton Pr
~ PED 1-13,
. 6-04
Tiam S,:Davis

163 B3 EIEZOE 3

Disk Fragmentation - Disk Compression

In the following diagrams you will be able to watch the
BITMAP of an LDU as blocks are added, deleted and compressed.
From these diagrams, the problems caused by disk fragmentation
should become evident. !

Physical Block: 000412 ; :

000 177777 177777 177777 177777 177777 177777 177777 177777
010 0000000 000000 000000 000000 000000 000000 000000 000000
020 000040 000000 000000 000000 000000 000000 000000 000000
030 000000'000000 000000 000000 000000 000000 000000 -000000

d*kk k%

060 177777 177777 177777 177777 177777 177777 177777 177771

%* % % %k %k

370 177777:177777'177777 177777 177777 177777 177777 177777

D1agram 4-5a
B]ank Disk - Except In1t1al Files

This is the way the bitmap nofma11y looks after you format.a disk
and install the initial system files. Notice that virtually no
block fragmentat1on exists.

Physical Block: 000412 - '

000 177777 177777 177777 177777 177777 177777 177777 177777
010 173777 177777 177777 177777 177777 177777 1777717 177777
020 177777 177777 177777 177777 177777 177777 1777717 177777
030 177774 000000 000000 000000 000000 000000 000000 000000
040 000000 000000 000000 000000 000000 000000 000000 000OOO
050 000000 000000 000000 000000 000377 177777 177777 177777
060 177777 177777 177777 177777 177777 177777 177777 177777

*kkk*k

370 177777 177777 177777 177777 177777 177777 177777 177777

Diagram 4-5b
Disk after Files have been Loaded

After files have been loaded, notice that we still have virtually
no disk fragmentation. AOS obtains disk blocks on a per-cylinder
basis when ever possible, loading the disk from front (low block
addresses) to back' (high block addresses). For comparison,
running with this disk gives us an average seek distance of 49
Cylinders.

4-17

Physical Block: 000412 : _

000 177777 177777 177777 177777 177777 177777 177777 1777717
010 176020 141747 177740 000004 007770 003775 004000 002002
020 103677 177741 160000 000760 101777 177777 177763 160767
030 137777 101776 007777 173774 005770 077607 177700 034037
040 003777 100077 177777 177746 177777 177757 177770 000000
050 037607 140060 177377 004077 102377 177777 177777 177777
060 177777 177777 177777 177777 177777 177777 177777 177777

¥ % % % %

370 177777 177777 177777 177777 177777 177777 177777 177777

_ Diagram 4-5c _
Disk after Files have been Added and Deleted

As files are added, appended to and deleted, the disk begins to
fragment. Obtaining contiguous space (for Tlarge FDE's) becomes
somewhat difficult now. As a file.is appended, it's blocks will
physically exist all over the disk. This of course increases
disk seek time, impacting System Performance. Running with this
disk gives us an average seek distance of 85 Cylinders.

Physical Block: 000412 : :

000 177777 177777 177777 177777 177777 177777 177777 177777
010 176777 177777 177777 177777 177777 177777 177777 17177717
020 177777 177777 177777 177777 177777 177777 177777 177777
030 177777 177777 177777 177777 177777 177777 177777 1717777
040 002000 100740-000044 000004 140000 000050 000000 0O000OO
050 000200 040020 002200 004010 003377 177777 177777 177777
060 177777 177777 177777 177777 177777 177777 177777 177777

% d % Je %

370 177777 177777 177777 177777 177777 177777 177777 177777

Diagram 4-5d
More Files Added - Fragmentation is somewhat Hidden

As we place greater storage demands on the disk, A0S will fill up-

the fragmented "holes" in LDU, making it appear as though there
is no fragmentation at all. 0f course, the performance will
continue to degrade as the average seek distance climbs higher
and higher. Running with this disk gives us an average seek
distance of 109 Cylinders. :

4-18

o

liig

o

Physical Block: 00412

000 177777 177777

010 000000 000000
020 000040 000000
030 000000 000000

. kkkkk

060 177777 177777

* k% %%k

370 177777 177777

177777
000000
000000
000000

177777
177777

1777177
000000
000000
000000

177777

177777

177777
000000
000000
000000

177777

1777717

D1agram 4- 5e

D1sk Unloaded - Most Blocks

Unloading the Disk

course improves the average seek distance significantly.

with this 'disk again gives wus an average seek distance of 49
Cylinders. : :
Physical Block: 000412 ; ‘ :
000 177777 177777 177777 177777 177777 177777 177777 177777
010 173777 177777 177777 177777 177777 177777 177777 177777
020. 177777 177777 177777 177777 177777 177777 1777717 177777
030 177774 000000 000000 000000 000000 000000 000000 000000
040 000000 000000 000000 000000 000000 000000 000000 000000
050 000000 000000 000000 000000 000377 177777 177777 177777
060 177777 177777 177777 177777 177777 1777177 1777771 177777
hkkkk - ! ; :
370 177777 177777 117777 177777 177777 -177777 177777 177777
‘ Diagram 4-5f

Files Have been Reloaded - Blocks‘Compressed

Based on the above diagrams, it is worth reiterating that
over a period of time Disk Fragmentaion becomes Somewhat
Displaying the Bitmap no longer brings it to Tlight.

the fragmentation

177777
000000
000000
000000
177777

177777

Freed

177777
000000
000000
000000

177777

177777

177777
000000
000000
000000

177777
177777

in File order frees up the blocks and of

you will
- process performance and the

Running with this disk

Cylinders; rather

need to
average seek
gives us

4-19°

the disk.

Running

“hidden".
To detect
measure other areas such as
distance on
an average seek distance of 63
impressive compared- to 85 and 109.

Searthlists and Performance | '

. ol | 4
1

|

Ehs @Mtc0, @Conl, @Lpt eta

| Search1ists can dramatically impact system performance and
therefore should be examjned closely. Because searéh11sts can be

defined by any user, it|is possible for that user to contribute

to System Performance [improvement. Likewise, careless use of
earchlists by that same user can cause unfaVorablejimpact on the
system. R ' -
i |

d ‘ ; \
There are two things to keep in mind concerniné search]ists-

that the d1rectqr1es with the most frequent1y accessed

1

|

j - If possible, order directories in your search11sts)
| files occur f1kst in the searchlist.

| - Keep the numbqr of directories on your séarch1ist to a
- minimum. E ,

1 |

1

Searchlist shou]d‘rare1y have more than 4 d1rector1es on
hem, and even that is éerss1ve (0f course, as I write this,
my search11st has exactly 4 directories on it.) Through the use
f macros, searchlists can be pushed along with the Cl1i Environ-
ent, set to your spec1fﬁc needs at the moment and then restored
via a C1i POP command. ;Another point to note is that the

‘Per1phera1 Directory (:Per) never needs to be on a searchlist

because it files are easily referenced via the "@" prefix; such

b : .
Search]1sts are sweet'and simple, yet they can be deadly

gif they are mis-used.

| |
' V
=
i i
i

4-20

Making Use of :PER

. For the most part people seem to know very 1ijttle about the
:PER directory other than the fact that it is a necessity. I
call :PER a transient directory because "files" tend to come and
go. Typically, they last as long as the current system remains
up and running. : '

:PER Basics

:PER 1is.a directory designed to house only device entries
and IPC files Although technically speaking any file can live in
this directory, unnecessary files will significantly slow the
file search algorithm. For the most part, the peripheral
directory is intended for System use only =~ keep user related
files out! The only exception to this rule - IPC Files - will be
discussed later.

When A0S needs to locate a device, it is a simple matter to
locate :PER and scan the Directory Data Blocks for the FNB.
Devices are written into :PER during the initial system boot
stages, while the Queue entries are created later by EXEC. An
entry is created for every controller configured into the system
via AOSGEN. Because the system has no real way of knowing the
‘number of devices present on a controller, a device is written
into :PER for every possible possible device on that controller,
whether it physically exists or not. This ends up putting
unnecessary file names in :PER, which I order deleted during
execution of the UP macro. For example, I've gen'ed in MTC and

- MTC1 controllers for my Desktop. At boot time, AOS writes device
names for MTCO thru MTC7, and MTC10 thru MTC17. Only device
names for MTCO and MTC10 are actually needed. The rest I delete.

IPC Files in :PER

Because the peripheral directory is easily referenced (using
the "@"), it makes sense to place IPC Files there, EXEC of
course has it's IPC files there as does CEO.

On my Desktop I designed a CEQO Secretary process to simplify
remote mail checking. To keep in tune with my desire for simpli=-
city, the Server Process creates its IPC file 1in :PER. The
Become Infos privilege allows this to occur. (See Chapter 5) To
"talk" to the CEO Secretary, I need just issue the CLI command:
Control @Secretary Mail?

It couldn't be any easier........

4

21

Disk Tracing

: To wrap up our discussions on the Disk world, I want to
discuss disk tracing and then actually trace a disk (actua]1y a
diskette, because it is smaller). In order to trace a disk, we
need to first review some of the directory structures cdvered
earlier in this chapter and then explore these items in greater
detail.

In order properly trace a disk, we need to first understand
the relationship between the 5 File Data Elements (FDE's). . This
is illustrated in Diagram 4-6.

FIB
fnb > 4-
< FNB IDP
FLB or FAC IDP .
FAc | 4—— ¢) L—p [Fs
{ } |
FuD 1IDP
{ } L—)p | Fup
{ }
Diagram 4-6

File Tndex BTock Llnkage

As you can see in the above diagram, the File Information
Block (FIB) is really the central control block for the file. It
is located by fo11ow1ng the 1ink from the File Name Block (FNB).
Once located, the FIB is used to keep track of a file's reference
and status 1nformat1on

As a side note, 1ssU1ng the CLI F/S command simply lists the
FNB entries for a given d1rectory, F/AS forces an additional disk
access to pick up the FIB for the "assorted" information.

A11 DDE's are linked via an Intra-Directory-Pointer (IDP).
The IDP is broken into two segmants: 1) Relative DDB# within the
directory; 2) Nugget # within the DDB.

DDB # . Nugget #

0 10 11 15

4-22

[

i

The DDEfs_Defined

"insivible directory space (DDB's) is utilized by the 5
kinds of DDE's described earlier. Alothough the various tYPES OF
DDE's differ significantly, the first two offsets are always the
same: 3 ‘

- Offset 0 - DDE Type (L. Byte) and Word Lenght (R. Byte)
- Offset 1 - IDP to FIB !

There is actually a 6th DDE: the FUI - or File Unique ID - for
LDU's It functions just 1ike an FNB so is not given any special
attention here. ‘

FNB's

|
An FNB is a Type 1 DDE used to hold a filename. It is made
up of one or more nuggets (3 max. per filename). In the initial
nugget, we can hold up to 12 characters. In order to conserve
disk space, filenames should idelly be 12 characters or Tless.

Type=1 Length
IDP to FIB
" F ' " I
n L 1] E
u N " A
'Il M " E
<0>

An FAC is'used to hold the acced control

is made up of one or more nuggets.

e no FAC is assigned.
bits 11 - 15 of the FIB Status word.

4-23

information for a
If the ACL
In this case the ACL byte

Type=2 Length ACL BYTE
IDP to FIB 0 W
"U *S Bit 3 4
IIE IIR
"1 <0>
<ACL> "U
"S. IIE
"R II2
<0> <ACL>

FLB's

The FLB exists on1y for files.” The Bulk of its nugget
space is used to point to the resolution filename. Because it is
a link file, there is no FAC, the FLB takes its place. ‘

Typé=4 Length

IDP to FIB

IIP IIA
IIT "H .
IIN IIA
|IM llE
<0>

FUD's

When a File User Data Area is created, it resides in the FUD
occupying 17 nuggets. Although the UDA is only 128 words, the
FUD is 136 words in length. Once created (via ?CRUDA), the UDA
can not be deleted. It can only be accesssed via ?WRUDA and
?RDUDA system calls. : E

Type=5 | Length

IDP to FIB

Link Words
Not Used!
{ User Data }
{ S }
4-24

F

F

The Disk Information Block (DIB)

In order to trace a disk, we need an entry point for that
disk. This gate 1is known as therun the filename through the
hashing algorithm to locate the FIB for that directory. That in

~turn will point us to the DDB's for the directory. Once found,

we can again run ted in the "Root" Directory DDB's are the FNB's
for the files and the first-level of directories on the LDU.

To locate the files within a directory, we need to run the
filename through the hashing algorithm to locate the FIB for that
directory. That in turn will point us to the DDB's for the

"directory. Once found, we can again run the hashing algorithm to
_locate the FNB for the 2nd level of directory. We can continue

this, ad-finitum, until we bottom out in the directory structure.

The DIB is not exactly a file per se', as it not pointed at
by a Filename Block (FNB), although it does point to an FNB (the
LDU name). In the latter portion of the Disk Information Block
yo% can see the pointers to key system areas, including: The
Bitmap, The SYSBOOT, The System Overlay Area, and the Installed
Sysitem, A

Round1ng out the DIB is what is known as the "funny FIB" (it
doesn't seem so hilarious to me). The difference between the
"Funny" FIB and a regular FIB is that the "Funny" FIB does not
conta1n the first 6 FIB words. :

~Finding the “ROOT" DDB's

The most difficult aspect of tracing a disk is 1in finding
the "Root" Directory DDB's. Once this pointer is found, disk
tracing is a repetitive snap, until you cross LDU boundaries (in
the case of grafted LDU's); then you need to start over.

The Disktrace facility of the Watcher utilities not only
allows us to conveniently display the Disk Information Block, but
is designed to run the hashing algorithm, cOmpute the IDP's and
examine the the DDB's/DDE's, as well as a file's data blocks.
First off, we need to d1sp1ay the disk's DIB with the Disktrace
Command: Block 3. :

At Offset 17 - 6 (ie. 11) of the "Funny" FIB (remember, it
is 6 words less than a "standard" FIB), we find the 2-Word value
FIFAH/FIFAL - the F1rst Logical Address (all addresses are
logical except for the "invisible space" at the "front" of the
disk). This double-word is fixed at offset 0061/0062, so it is
easily found. This address points to the first RIB of the "Root"
directory for that disk. Now, all we need to do is run the
hashing algorithm on the desired file to locate its DDB and we
are in business. Diagram 4-7a (on the next page) highlights the
key-words of the DIB for our purposes. :

4-25

- Physical Block: 000003

000
010
020
030
040
050
060
070
100
‘110
120

000003
000002
000000
000000
000412
000000
000001
001107
000000
000000
000000

*ickckk

370

000000

Locating the

050115
000011
000000
000000
000000
000013

000000
000050
000000
000000
000000
000007

000000 000200

000000

000000
000000
000000

000000

000000
000000
000000
000000

000000

030462
000010
000000
000000
000000
000000
000403
000000
000000
000001
000000

000000

032063
000000
000000
000176
000000
000000
000001
000000
000000
000000
000000

000000

Diagram 4-7&

000000
001310
000000
000000
000000
000000
000000
000000
000000
000000
000000

000000

000001
000000
000000
000177
000000
011000
000022
000000
000000
000000
000000

000000

\
|

The Disk Information Block

Directory RIB

display mode to Logical

To find the directory RIB, we need to first change the block
and display the first logical block.

000001 .

(DIB)

90 ecesccsccc00 00
ooooooooooooooo
oooooooooooooooo
oooooooooooooooo

00 eo0 0000 e0000e e
oooooooooooooooo
................

oooooooooooooooo

oooooooooooooooo

This is done with the following Disktrace Commands:

Mode

Block

Logica
200

Logical Block: 000200
000 000000 000000 000000 000000 000000 000000 000000 000202
010 000000 000000 000000 000000 000000 000000 000000 000204
020 000000 000203 000000 000000 000000 000000 000000 000000
030 000000 000000 000000 000000 000000 000000 000000 000000

Tkkikk

370 000000 000000 000000 000000 000000 000000 000000 000000

i

Diagfam 4-7b

The "ROOT™ Directory RIB

4-26

oooooooooooooooo

oooooooooooooooo

oooooooooooooooo

oooooooooooooooo

cccccccccccccccc

Filename Hashing and FNB Locating

Having found the directory RIB (Logical Block 200), now we
need to "hash" the filename to determine the RIB offset the the
DDB. For simplicity, let's look for the directory called "UTIL".
Using Disktrace, we enter the Command: Hash UTIL/7
(I chose a H.F.S. of 7 based on DIB offset 52).

Disktrace responds:

Hash Value is: 000003 ‘
Double the Hash Value (ie. RIB Displacement): 000006

Mow lets display that block with Disktrace Command:
Block 202 ‘

Diagram 4-7c gives us the results. At offset 0011 (underlined)
is the IDP the FIB for the directory. Once we find The FIB we
can locate the DDB's for UTIL. ; 5

Logical Block: 000202

000 000000 000000 000000 000000 000000 000000 000000 000000 .veeeweeeanonns
010 000410 000345 052524 044514 000000 000000 000000 000000UTIL........
020 000000 0O0OOODO 000000 000000 000000 000000 000000 000000 weveeeeweenn PN

*kkkk

370 000000 000000 000000 000000 000000 000000 000000 000000 ...eeeseeeeen...

= e Diagram 4-7c
DDB containing the "UTIL" FNB

Locating the FIB

The FIB is located by running the IDP formula. and finding
the DDB containing the FIB. Again let's utilize the services of
Disktrace with the Command: : ’ '

IDP 345
Disktrace responds:

Relitive Block #: 000007

Rib Offset to Block: 000016
Data Element #: 000005

offset in Block to DDE: 000050

DDB # 7 in the RIB (Block 200) points us to Blotk 204.

4-27

Logical Block: 000204

000

000000 000000

*dkkkk

050
- 060
070
100
110
120
130

000000 000000

000007 000000

000205 000403
000000 000000
001010 000345
000000 000345
000000 000000

*kkkk

370

000000 000000

000000

000000
000000
000000
000000
047520
047520
000000

000000

000000

000000
000000
000000
000015
000037
000037
000000

000000

000000

000000
011000
015054
000000
022053
022053
000000

000000

Diagram 4-7d

000000

000000
000000
067002
005670
000017
000000
000000

000000

000000

000000
000001
015055
000000
000000
000000
000000

000000

DDB containing the "UTIL"

Locating the next-level Directory RIB

000000 ..cevevnnnennn e

000000 c.veevencnnnnnns
000000 +.oeeeevcncennnne

000000 +.oveeeccacnncns
0000000P..$+......
0000000P....o0venne .
000000 ...cvvvuevunenns '

000000 PRI S

FIB

Now that we have found the FIB. for the UTIL directory,
offset 0017/0020 - First Logical Address - (underlined in Diagram
4-7d) will point us to the directory RIB shown in Diagram 4-7e.
From here on out it becomes pretty academic.

Logical Block: 000205 ‘
000 000000 000000 000000 000214 000000 000220 000000 000206 ...cceveveeennns
010 000000 000212 000000 000216 000000 000000 000000 000210 S
020 000000 000207 000000 000000 000000 0000CO 000000 000000 ¢'vevewveceenonns
030 000000 000000 000000 000000 000000 000000 000000 00000Q e waies e

*kikkk

370 000000 000000 OOOOOO 000000 000000 000000 000000 000000 +...eeeeeeesnn..

Locating "FILE1l" in UTIL

The "UTIL™ Directory RIB

Now that we've found the DDB's for UTIL,

called "FILEL1l".

Command: HASH

Diagram 4-7e

let's locate a file

Using the HASH command of Disktrace we get:

FILE

Deskwatcher response:

Hash Value is: 000001
Double the Hash Value (ie.

1/7

RIB Displacement): 000002

DDB #1 in the RIB of course points us to Block 214.

4-28

Logical Block: 000214
000 000000 000000 000000 000000 000000 000000
010 000410 000354 043111 046105 030400 000000

00000 000000

370 000000 000000 000000 000000 000000 000000

!

| Diagram 4 Z;T 2

. DDB containing the LE1" FNB
! | |

Finding the FIB for "FILEL1"

_Re]at1ve Block #: 000007

|
.
|

Having located th FNB, let's take the IDP

Diagram 4-7f) land run it through the Disktrace IDP formula with

the Command: o
| IDP 354

Deskwafcher responds:

Rib Offset to Block: 000016
Data Element #L 000014 '
Offset - 1n B]ock to DDE: 000140 i

|
I
|
|
i
l
\
|
\

|
i

0

000000 000000
020 000000 000000 000000 000000 000000 000000 000000 000000

0

00000 000000

oooooooooooooooo

oooooooooooooooo

oooooooooooooooo

(underlined in

DDB # 7 in the RIB (Block 205) points ug to Block 210 At Offset

0140, we will of course find the FIB for FILEL.

At Offset 017/020 in the FIB (0157/015‘) we will

find the first

logical block address of the file. Because there are no RIB's in

this file (FIB Offset FIIDX (0021) - Left Byte

Byte would have a 1,7 or 3 as its value.
Displaying t

=2

is 0), we know
~that this block is the data Block. [If there were RIB(s), this

e Data Block (215) shows us that we have in fact

found a macro file. Closer inspection will disclose the fact
that I simply copied one of the Deskwatcher macro files as FILEL.

4-29

Logical Block: 000210

000

010 -

020
030
040

050
060

070
100
110
120
130
140
150
160
170

*hkikk

000000

001440

000000
001440
000000
000211
000000

000000
000141
000000
000003
000000
000000 000366
001010 000341
001440 000201
000000
000003
000000
000347
000041
000000 000000
000215 000003
000000 000000

000213
000000
001010

000000
000346
000000
000000
000000
022122
022122
000353
000000
000000 -
000000
022122
000360
000000
000000
000000

000000
000000
000000
000000
000000
047516
047516
000000
000000
000000
000000
047516
000000
000000
000000
000000

000000
015055
000405
015055
000000
000037
000037
015055
000535
015055
000000
000037
015055
000377
015055
000000

000000
066603
000000
066773
000000
000000
000000
066614
000000
066775
000000
000000
066561
000000
066776
000000

000000 000000
000000 001104
000001 000000
015055 066773
000000 000000

000000 000000
000022 000000

000000 001104

000001 000000

015055 066775
000000 000000

000000 000000

000000 001104
000001 000000
015055 066776
000000 000000

(Contents unimportant for this Example) =-=--

370 000000 000000 000000 000000 000000 000000 000000 000000

DoB

Logical Block: 000215

- 000

010
1020
030
.040
050
060
070
100
110
120
130
140
150
160
170
200

*kkkk

370

041557 066555
022461 022400
071550 020104
067555 066545
066167 073563
020163 062554
072012 050165
070012 051545
056412 050162
066057 050162
053541 072143
020072 042145
071553 057567
067457 022460
020516 062561
036445 030445
000000 000000

000000000000

062556
064563
062554
067164
020141
062543
071550
060440
067543
064557
064145
071553
060564
027445
026045
055441
000000

000000

Diagram 4-7g

containing the "FILE1" FIB

072012
020164
060571
020057
020120
072145
005120
035120
027504
071075
071057
073541
061550
027501
030445
042556
000000

000000

041557
064145
020126
005151
064544
062012
071157
062562
062546
030460
051145
072143
062562
072564
026135
062135
000000

000000

066555
020122
060554
062075
020164
041557

066560

026133
027511
027516
071551
064145
027520
067537
027504

005120

000000

000000

062556 072040
062546 071145

072545 005103

067040 060554
067440 061145
066555 062556
072040 050157
020523 062541
067543 027502
060555 062475
062145 067164
071072 042145
071151 067146
041046 005133
062554 060571
067560 005000
000000 000000

000000 000000

Diagram 4-7h

First Data Block for FILEL

4-30

oooooooooooooooo

Y DT -m....0
enneaom .o,

$RON.

$RON........
......... ‘m.l..D
......... Jeeovas
......... -M..=Mm
S LISRON. ...l
P N -mg...D
oMo,

oooooooooooooooo

oooooooooooooooo

Comment .Comment.
%1%.1s.the.Refre
sh.Delay.Value.C
omment./Pid=n.al
lows.a.Pid.to.be
.selected.Commen
t.Push.Prompt.Po
p.Sea.:Per'[!Sea
].Proc/Def/Ioc/B
1/Prior=10/Name=
Watcher/Resident
.:Deskwatcher:De
sk_watcher/Prinf
0/%0/%/Auto B&.[
INeq'%1%']/Delay
=%1%['End].Pop..

oooooooooooooooo

oooooooooooooooo

Disktracing Summary Points

« Disk tracing 1is a powerful method for monitoring the AQS
disk structure internally to see what is really going on. With
Disktrace, virtually nothing on the disk is left "invisible".

Using the examples and text from this chapter, as well as
the Control Block breakdown in Appendix B, you should be able to
get the "scoop" on disk efficiency of your AOS system. If you
want a more detailed look, an A0S Internals course is available
from Innovative Data Systems. Or, bring me "in-house" for a day
an we can "trace" your system together. As with any skill, disk
tracing requires patience and practice. Go for it.

4-31

|

hkkhkhkkhkhkhkhkkhkhkhhkhkhkhkhkhkrkkhkkkhhkkhkhhkhkhkhkhkkikrdkhkhhkhrhrd

Chapter 5
The Preditor and System Performance

* % % OF F *
* o & ok ok %

dkhkhhkkkhkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkkkhkhkkkkhhkhkkkhhkhhhhkhkihdkk

The Preditor and User Privileges

Although only partially related to System Performance,
granting process privileges carefully can insure that no user
dominates the system or has access to resources that could
compromise system integrity. An example of privileges that could
potentially comprise the system are of course Superprocess and
Superuser,

At this point, I will assume that you have read the chapter
pertaining to the Preditor utility and process privileges in the

"How to Generate and Run....." reference manual, and w111 proceed
here based on that assumption.

As a general rule, we can break the privileges down into the
following three groups: : ‘ -

Group 1 - Privileges that affect the initial 1ogqn and
simplify/enhance environment setup for the user

Group 2 - Privileges that allow the user to 1nd1rect1y
~impact the system environment and often System'
Performance.

Group 3 - Privileges that allow the user to d1rect1y 1mpa¢t
: system performance and operation.

Let's look at these in the order of importance to tﬁe
system. : ‘ ‘

=== Group 3 Privileges ---

The 1list of privileges that offer direct system impact and
are thereby labeled "dangerous" are:

- Superprocess‘ - Access Devﬁces
- Superuser - Use IPC

- Change Username

5-1

- Superocess and Superuser -

Superprocess and Superuser are obviously "dangerous"
privileges to be handing out and yet in visits to many A0S shops,
I find this privilege granted freely. In most cases, these
" privileges are hardly warranted.

As a case in point, the need for Superuser can be nearly
eliminated by setting up Access Control Lists thoroughly and
accurately. Granted ACL's are expensive in terms of disk space,
but if security is an issue , ACL's are the only way to go.

I remember working with a small group some years ago where
the issue of "shall we, or shall we not grant all staff members
Superuser” was debated heatedly for weeks. In this particular
group however, there was an emotional issue at stake which
overrode concerns for system security and integrity. Because
this was predominantly an R&D group, those demanding uncondi-
tional "Super" privileges won out. :

If system integrity is ever an issue, I vote in favor of
extensive Access Control Lists, giving Superuser privilege to no
one except a password protected (System-manager-type) Username to
be used only in the event of an "emergency". The investment of
the time and effort required to set this up is well worth your
while. You won't fully appreciate it until the first delete
command with a "+" or "#" template is averted.

A similar condition exists with regard to the Superprocess
privilege. With this privilege you can terminate any process on
the system, including PID 2: OP-CLI, which is of course indirect
suicide. In addition to termination, you can block/unblock any
process as well as change the priority and process type. These
kinds of things might be necessary on a system-wide basis for a
system manager and occas1ona11y a system programmer, but hardly
for the typical user. .

The critical system processes are: PMGR, OP-CLI, EXEC and
INFOS (not to mention the CEOQO Server Processes in the event you
run under CEQ). Changes in the parameters of these processes by
unknowledgable users could severely impact system performance as
well as system integrity. .

5-2

Like Superuser,

. users that have an actual
parameters.

in the use of the knowledge

let's take a

! Now,
‘ privileges.

less "dangerous"
- Change Username -

This pr1v11ege a]lows you
username of your choice.

- could be very undesirable.

system.
y proc a

A For example, I can

bl directories and control batch
of my software development work.

have to walk quite a distance to get to the 0P consoT
“become"”
difficulty (while reta1n1ng\my process privileges) to

- "unlock™"™ it. I can also

o user in fixing the problem.

look at the 1ess cr1t1ca1

With this
L get around not having Superuser by proc'
username of a user having the ACL access,

A posﬁtive aspect of this privilege is in use on my Desk
I have written a macro called Become that
son CLI of another username
problems and alter performance parameters

= System Tuning Screen of Aosyatcher‘requires the 0P username).

Become OP and
commands to restart failed print jobs,
streams to

5-3

to Proc a son process

w1t
pr1v11ege available, you
ing yourself up wit

and of

course t

allows me
ndle‘sys
Invok1ng

to ha
(Ex:

in order.

i
issue Control
DIR into "OP Access On
improve system thru
Without this privilege. I\wo

a user that is exper

assist

this privilege should be given only to those

need to alter critical
To qualify as such a user,
in th1s manua]

system runt1me
you should be fu]]y adept

but neyérthe-

h a
can
h a
his

top
to
tem.

the

BExec

'lyll:
put
uld

and

ing
hat

- Access Devices and USe IPC -

These privileges allow what I ‘call "hacker -access" because
with these capabilities, a competent programmer/"hacker" could
get into the system and Titerally gain entire access to all
system resources, including the internals of the AOS operating
system itself. ' ; .

~Armed with IPC privilege and intimate knowledge of PMGR
internals. (taught in DG education courses), one could gain access
to PMGR's control ports and either alter terminal operational
parameters significantly, or "crash" PMGR altogether (and thereby
the system) if bad control parameters are passed. :

: In the case of Access Devices, a good programmer with
knowledge of MMPU I/0 instructions and AQS internals could
read/write any word of memory, grant illegal privileges, impact
the operating system's performance or (more 1likely) force AOS
into its Panic routines. '

So, it should be rather evident that these are all dangerous
privileges and should be restricted only to those that really
have a need - and this is pretty rare.

| S 1

|

-=- Group 2 Privileges ---
. These privileges can indirectly impact system performance,
although normally they cannot compromise system integrity; and,
there are a few exceptions to this rule. The group 2 1list is
rather extensive.

' The liﬁt of privileges that méke up Group 2 are:

Cﬁange Priority Use Consale
Change Type | Use Batch
U&iimited Soés Use Modem
Nmeer of Sons Use Virtual Console
"Cﬁeate without Block Access local Devices Remotely
Mémory [size] Become Infos
Pﬁiority Max Qpriority
~ Disk Quota
|
g
: 5-4

Use ConSole, Use Batch, Use Modem, Use Virtual Console and
Access Local Devices Remotely are more or less' convenience
privileges, although they can generate system ‘impact.

For example, the use of batch privileges gives the user the
opportunity to queue up more processes after the max. son Timit
has been reached, thereby averting that restriction to some
degree. :

Console access can impact a predominantly batch environment
by allowing unauthorized users access to the few consoles that
may be available. In the case of virtual console access, remote
logon becomes available opening the door to "hacker" access. The
same goes for accessing devices remotely.

The remainder of Group 2 privileges allow (to some degree)
system performance to be impacted. Let's look at these privil-
eges more closely. :

- Change Type -

The Change Type privilege allows a process to make itself
Preemptible or Resident, thereby enabling higher Memory and/or
Process priority. This can force A0S into Memory Contention,
thereby impairing System Performance. As a reminder, the default
process type is swappable, allowing the AOS Scheduler and Core
Manager to control System Performance based upon process beha-
vior. If too many resident processes are proc'ed, a memory
"deadlock" can occur, thereby "crashing" the system. % :

- Memory [size] -

Along with "Change Type", the Memory [size] parameter can

~affect Memory Management Performance. Rarely have I seen this

parameter set to anything other than 32 and this -could be a
mistake. Recognize that some software is written to extend its
unshared memory space (with the ?MEMI system call) to the maximum
available enabling it to run faster; at the expense of other
processes on the system (and of course eventually at its own
expense). Therefore, it is wise to set this figure no higher
than absolutely necessary. O0f course, when in doubt as to what
program(s) the user(s) will run, set the memory to 32 pages
allowing the largest possible program size. :

- Priority & Change Priority -

These privilege declare the initial process priority at
logon and then declare whether or not a process can raise its
priority higher than its initial [assigned] priority. A process
can always lower its priority, but I have never seen that
happen! ~ ~

You know the old law: give a process an inch and it will
take a mile? Well, stated another way: given the choice, nearly
all users will run at Priority 1. If they are Resident or Pre-
emptible as-well, then they will be competing with such processes
as PMGR and this could cause REAL problems.

Remember, Priority Structure is one of the ways you can
control System Performance . Make use of this privilege wisely.

- Number of Sons -

This privileges puts a ceiling on the number of son proces-
ses a given user can create. Obviously, the more sons on the
system the poorer the performance will be. As a general rule,
unlimited sons are rarely needed -in the typical user environment.

As I write this manual I am also Beta-testing the Desk-
watcher System Performance analyzer. With the unlimited sons
privilege, I am able to proc 25 - 40 dummy processes to measure
system load and A0S performance. Normally however, 3 sons is a
good limit. With 3 sons available, I can be editing a source
file under SED (Son #1), break out to the CLI (Son #2), and bring
up the current version of Deskwatcher (Son #3) in order to test
one of its features. When I have completed my test, I can
terminate Deskwatcher, and return back to my editing session to
make the source-code changes needed to enhance the software.

A good rule of thumb is to keep the son limit down to a
workable minimum; especially if you run software that tends to
proc son processes on the fly. However, if you institute too
strict a policy on son processes, you will have more user com-
plaints than you care to handle. There is almost nothing worse
than incurring the wrath of the user base; especially in a
Desktop Environment. ;

5-6

'.- Create Without Block - : ,

. ‘

On many systems, memory{is not a problem, but active process
are. If this is your scene, then create without block is a quick
and dirty solution. Without this privilege a user can then only
have one active process. The memory will still be impacted by
the existence of this process, but at least the process scheduler
will be given a break. | ' :

- Become Infos -

This privilege is misleading in that it simply grants the
user process the privilege to create IPC files in the :PER
directory, and that's all. The value of this privilege is that
it can simplify IPC file look=-up for other processes and has the
disadvantage of increasing the directory search overhead of
:PER. (Discussed 1in Chapter 4) Because this directory is freg-
uently accessed by the system, performance will suffer if too
many IPC files reside in :PER - ! |

- Disk Quota -

Because this parameter controls the UDD cpd maximum size, it
can indirectly affect System Performance. Only if the! user
attempts to fill up the allocated CPD space will a Tlarge disk
quota be a problem. Remember, this value simply sets the CPD
maximum. It does not actually allocate the disk blocks. R

The most important consideration here is the overall disk
space utilized, not the CPD size limits. It is worth reiterating
however that if the allocated disk space exceeds 80% of the
available disk blocks, then System Performance will begin to
suffer drastically. ' ‘ :

- Max Qpriority - | 3
i ((

This figure limits the max Qpriority on batch jobs and is

therefore of use to the system manager in controlling batchgqueue

utilization. Proper use of the Qpriority setting can favor batch

processing for certain users, enhancing their productivity.

v

5-7

-=-- Group 1 Privileges =---

Most of the Group 1 "privileges" are not br1v11eges per se',
but instead are environment directives describing the initial

operating environment of the user or are of documentation use to

the system manager.

The Five Group 1 directives are:
Username Initial IPC File
Change Password Program

User Comﬁent

- Initial IPC File -

When a program is invoked at logon, a file can be passed to
it in order to get it started; this is called the IPC (or Initial
Process Communication) file. A restriction on this file is that
it can be only one block in Tlength, but this causes no hardship
to astute programmers and System Managers.

If the initial program is the CLI (as it usually is), then
this file is usually a "logon macro" used to get the user enviro-
nment setup and give such information as the "local system news"

and possibly describe current system activity. Under CLI, this .

file is often not big enough to handle all the logon requirements
of a given user. The way around this is to have the initial
logon macro simply be an invocation of a second macro which can
be of any length. '

In my case logon occurs via a set of 4 macros totaling
approximately 3800 bytes and is invoked by initial IPC file
:Staff:$Ron:Logon.C1i which has ‘one command in it: $Logon; this
being the first of 4 macros: $Logon, $Logonl, $Logon2, $Logon3.
In most dinstallations I've visited, the initial IPC file is
rarely used to its full potential.

|

] |
On a properly %designed" system, choice of Usernames is no
trivial matter. Remember, Access Control Lists are enforced
based upon user name. That makes selection of Usernames a
potentially critical item if system security is an issue.

"= Username -

For example, on my desktop machine, any username preceded by
a "$" denotes System Programmer or System Manager status. A
username followed by a ".Staff" 1n61cates a corporate staff
member, giving additional access to pr1v11eged mail and CEO. A
username followed by ".Vip" indicates preferent1a1 status, but no
"super" privileges $nd access to sta#f mail or CEO. A1l other
"low-life's" simply use their name to logon.

- Program - | |

Normally, when users log onto the system they are‘brought up .-
under the Command Line Interpreter (CLI), but this is not always
a desirable case. To begin with, under CLI a user can do things
that would impact the system and/or go into directories that
might potentially put the system at risk. Another possibility fis
that the CLI is actua]ly too complicated for the user; a case not
all that unheard of. Therefore, you can actua]]y br1ng a user up
under a]most any program

Some cases of not bringing up the user under CLI might be in
the case of a predominantly CEO shop or a shop that runs a
reservation system most of the time. In these cases you simply
bring the user up directly under this software and when they
terminate the program they will be logged off. In one educa-
tional institution I spent some time at, beginning programmers
were brought up under Extended Basic when they logged on to the
system and those desiring access to the "games directory" 1logged
on with a username of "Games.Vip" and were brought up under a
menu-driven program designed to allow them to select the game
they wished to play.

- Change Password -

The change password privilege is useful for keeping the
computer game interesting. I will at times change my password
when my mood changes to add spice to life. I also change my CLI
prompt from time to time for the same reason. Never is there a
dull moment at Innovative Data Systems. :

5-9

=== Preditor Summary ---

To sum up this discussion on the profile and privileges, I
want to remind you that assigning process privileges IS an area
that you have direct control over. Other areas concerning system
performance may require specialized knowledge, but controlling
process privileges is something most anyone can do at almost
anytime. It is up to you whether you avail yourself of this
capability or not. : ’

5-10

E

e

G

-

* . » . _ *
* o *
* Chapter 6 ' *
Hardware Configuration and System Performance
* *
* *

kdkhkkhhkkFkhkhkhkhkhkkhkhkhkhkkkhkhkhkkhkkhkhhkkhhkhkhkkhkhkhkhkhkkkhkhkhrk

-

o

S S L et e L e i e ,

Improving System Performance

Thus far in this book we have covered a number of different
aspects of A0S system performance, although in many cases things
haven't been exactly spelled out. The purpose of this chapter is
to offer some additional insight and recap some of what has been
stated earlier. Bear with me if I seem to be repeating myself.

Performance improvement can be broken down into three major
segments which although different, are integrally related:

- Hardware Configuration and Aosgen parameters
- Operational Parameters

- Operational Procedures

Configuration and AOSGEN

Configuration and Aosgen often go hand-in-hand and can make
a significant difference in the performance of your AQOS System.
Configuration is simply selecting the proper devices and hardware
options for your system. Normally, configuration precedes the
Aosgen stage, but not always.

Aosgen is the step wherein you tailor the operating system
to fit the configuration of your hardware. Normally this follows
. the configuration step. You can of course choose to purposely
“over-gen'" your system in anticipation of devices to soon be
added. Doing this eliminates the need for re-gen'ing in the
future when these devices are actually added. The drawback to
this is of course that extra memory will be needed by the
operating system; even though it is not being used. o

Operational :-Parameters

Operational parameters are separate from configuration and
Aosgen in that they are pretty much independent of the two.
Operational parameters include such things as ACL's,-file element

~size, searchlist changes and the like.

Operational Procedures

Operational procedures can often make a noticeable differ-
~ence in the performance of the system. Such procedures include:
Disk Compression, "Job" Scheduling and System Process Load.

Below

Performance Tips

is a list of'things you can do to .improve syskem

performance at the Configuration, Aosgen and Operational’ param-

eters leve
of those a

1. The following pages detail what you can do in each
reas to enhance performance ! !

Add additional Memory '] |

|
i
|

On older machfnes, be sure the memory is interleaved
Increase the cache buffer count

Patch the OTMIN location to keep AOS ovérlays resident
for longer periods of time S

Add additional Disks and/or Controllers

Use a BMC when you have more than one disk controller
Keep searchlists small and identical

Use + temp]ate on Acl's or eliminate Acl's aitogethér
Keepvdire;tory depths minimal |

Optimize hash frame sizes on directories .

'AKeep filenames under 12 characters

Choose large file element-sizes to reduce fi”

e-indexing

Make continuously used fiies‘contiguous

Place Bitmap and Overlay area in the middle%of the LDU
used area to reduce the seek distance for thét drive

Make I/0 buffer s1zes as 1argé aé possib]eito reduce
I1/0 requests ?

Occasionally compress‘your disks

1
|
i

Install a 'DCU when using more thani8 terminals

Cut the baud rate to 4800 on non- DCU machines with many
console lines ; |

Gen the RTC at the lowest frequenc} possible
Utilize batch processes for compute=-bound jobs; non-

interactive processes significantly hog cpu time,
Using batch forces these jobs to s1ngle -thread. '

6-2

Additional Memory

Adding additional memory boards/cards will most always
improve system performance. In years past, this was not always
an economical move. Now days with declining memory prices,

adding physical memory is a very practical thing to do.

Terminal Cbnsiderations

Interleaving Memory %

On old AOQS mach1nes,‘the memory boards were not idinter-
leaved. This would tend to slow down the memory reference
cycles. Then, an 1nnovat1ve announcement from Data General was
that memory boards could be 4-way interleaved, speeding memory

access by about 4X. . The newer Eclipse CPU's are already inter-

~leaved and need no such change. If you are uncertain whether or

not your memory is interleaved, contact your field engineer.

-(no pun intended). If terminals. are operating 'inefficiently

Although many things contribute directly to system perform
ance, terminal operation is in a way the most "visible" to user

I te v 1

PMGR will indirectly suffer. Being that PMGR is a residen
priority 1 process, should it run inefficiently, it could indire
ctly impact process performance on the rest of the system.

Three things should be given consideration when setting up
terminals on an AQS system: i

- Terminal Characteristics
- Baud Rate
= Use of a DCU device

Terminal Characteristics

Terminal characteristics can make or break a system from the
psychological standpoint of users. It is important to read the
reference manual(s) for your terminal(s), as well as the AOSGEN.
section of the "How to Load and Generate" manual to be sure that
everything is 1in sync. ’

Some years ago, I was part of a research prOJect to deter-
mine what people like/disliked with regards to using a terminal.
Unfortunately, it is a h1gh1y subjective topic, often dependent
upon the app11cat1on software driving the terminals themselves.
However, it is best to be alert to people's reaction to: beeping,
high1ighted fields, field placement, redundancy of data on the
screens (or lack there of), how much data is one each screen and
what the baud rate is. Maybe someday, I will write a whole book
on this topic alone. N

6-3

Baud .Rate

Baud rate can have quite an 1impact on system performance;
especially on a system with more than 8 terminals. There is a
tendency to run the baud rate-as high as possible. Although
screen [/0 speed is seemingly enhanced, the system is easily
bogged down trying to supply large amounts of data to several
terminals in a timely fashion. Remember: the CPU can only
process data so fast.

It is important to ask yourself whether or not the users
really need to run at 9600 baud. Quite often 4800 baud is more
than. sufficient. 0On screens with "small" menus or screens where
just a few fields are plugged in, 2400 baud may even suffice. '

It is worthwhile looking at the application software (if you
have the source code available) for different ways to enhance the
screen [/0. For example, it is common practice to access all the
needed data and THEN toss out the screen. A more effective
approach would be to access some of the data, put it on the
screen. While the user is studying the first part of the screen
data, the software can be accessing the second (and subsequent)
pieces of data; updating the screen. Overall, the amount of CPU

time will idincrease some with this method, but the thruput will

improve as a result. The additional processing steps will be
done while other terminal screens are receiving their data.

The above method DOES require planning and possibly some.

investigation into psychological effects of "overlayed" screens,
" but it is well worth the investment. After all, what good is a
system if the user's refuse to utilize it? :

Adding a DCU Processor or an IOQP .

On non-Desktop systems a DCU process can be added to enhance
terminal performance. There are two types of DCU facilities: the
DCU-50 and the DCU-200. The DCU~50 speeds terminal I/0 in
general and the DCU=-200 places most of the PMGR functionality
into the DCU processor off-loading the central processor - the
resident PMGR (called the Wart) 1is invoked ONLY when the DCU is
incapable of handling a required function; and this is rather
seldom.

The M/600 system comes equipped with an IOP (or I/0 Proces-
sor) and is an option on the C/350 pracessor. Essentially, the
I0P is a super=-intelligent DCU, running in conjunction with
IOPMGR as the PID 1 process. Its purpose is to enhance the
interrupt handling of slow-speed [/o0. devices (eg. consoles,
printers).

6-4

F

=

The Real-time Clock (RTC)

A0S runs best when the Real time Clock is gen'ed at the
lowest frequency possibly. Higher clock frequencies generate .
more 1interrupts per second s]ow1ng the system down. For example,
a 10 hertz clock generates 10 interrupts per second; a 100 hertz
clock generates 100 1nterrupts per second; a 1, 000 hertz clock
generates a 1,000 interrupts per second. Un1ess your software
really needs 100 or 1,000 hertz timing accuracy, it is best to
choose a 10 hertz clock speed

Cache Buffer Count

Adding extra cache buffers via AOSGEN can make quiteja
difference 1in system performance Use of the word "cache" here
is in a ‘way a mis-nomer. The word Cache usually refers to faster
memory, which these buffers aren't. A0S cache buffers get their

name s1mp1y because they are core-resident. To understand why
cache buffers make a difference, I researched AO0S's block I/O0
algorithm scheme and found the answer. When a block request is
made of AQOS the following’ checks are made: '

- The block has just been read into a System Buffer

- The block has been recently BLM'ed into a Cache Buffer

- The I/0 for the block is -currently in progress

- The block needs to be read (the request is queued)

The greater number of cache buffers available to the system,
the greater chance of the block already being core-resident.
‘Remember, one of the axioms of the A0S I/0 world is that physical
disk I/0 is done ONLY as a last resort. Considering that the
full 128 buffers require only 32kw of memory, it is well worth
'the investment of gen'ing in the maximum. If the loss of 32kw
\greatly impacts the memory management of your system, then you
are probably overdue for extra memory to be added anyway. Using
\the Watcher's Memory Information screen will help po1nt this out
\

To demonstrate the cache buffer improvement, I added a new
IOSTATS screen to Watcher utilities (now available in Release
3.0). This screen displays (amongst other things) the percent of
logical vs. physical I/0 requests and the percentage of I/0 wait.
Figure 6-1 demonstrates the effects of increasing the number of
cache buffers. A visible manifestation of -increasing the cache
buffers is that-program load time 1is significantly reduced. As
you can see, using cache buffers is an inexpensive way to enhance
disk I/0 performance. ’ f : ‘

Before permanently changing the cache buffer count (via
AOSGEN), first re-boot the system overridding default specs,
specifying a larger number of cache buffers. When you find the
right number for your system, then and only then re-gen the
system.

6-5

Patching OTMIN

There is a memory location internal to AOS called OTMIN.

This .location specifies how long A0S will keep system overlays

- memory-resident. By default it is set to 74 (octal) - 5 sec- P

onds. If you have a sufficient amount of memory, it might be.

worthwhile to patch this to a much larger value; say 5 minutes.
The following commands demonstrate how this is done:

e

X Dedit/s¥0perating_system_nahe,ST Operating_system_name;SY
+ OTMIN: 00074 + 454 ' | .
+ Bye

This change is "officially" unsupported by Data General but
has been known to work for over 6 years and seems to be "harm-
less" to the rest of the operating system. If memory is tight,
this patch may trigger memory contention. If you re-gen the i
system, you will of course have to re-apply the patch. Needless
to say, make a backup of your .SY file be-4 applying the patch.

. : | j

Additional Disks and Controllers ' .

Additional disks and controllers will most always improve
system performance. This topic is well covered in Chapter 4 so I
will not repeat myself here. Desktop considerations will be
discussed at the end of this chapter. o

Searchlists A | | !

Although they are rather useful, searchlists can de quite)
expensive in terms of system performance. The longer the search- T
list, the more disk accesses that will be required in the event

of a non-existent file, only to come up short. A -few points are -
worth noting: ‘ ‘ '

- Keep no more than 3 directories on your searchlist

- Do not put :PER on the searchlist; instead reference | -
that directory with the "@" prefix ’
- Keep the same directories on your searchlist as other

users. That reduces the A0S internal memory space e
required to hold the searchlist.

Directory Structures

Directories allow you to logically subdivide your disks so
that files can be more easily found. Most systems have poor
organization of their disks. Directories are not used enough.
Yet on the other hand, other systems are over-directoried.
Directories do have their place, however they also need to be
contro]led properly. e : Fe

While many directories are useful, it ik w1se to keep the
d1rectory depths as shallow as poss1b]e.~ Nested d1rector1es
result in lengthy pathnames to get to inferior directories. This
inevitably slows the system down because the super1or d1rectory
structures must first be scanned. This scanning requ1res time to
read the directory blocks and a p]ace to ho]d th1s 1nforma ion
(A0S memory). i b ’

1
=~
‘"C;ZIL ‘Z -

Choosing ‘a proper Hash frame size (as we saw 1n chapte5q
will of course lend itself to more efficient d1rectory~s ‘
tures. Likewise, making directories into CPD's allow
mon1tor how much space is being utilized by a g1ven set%c‘

Filenames and File-basics

With f11es, there are a number of th1ngs worth
The information in this section has been - d1scussequj
but is worth summarizing here. The things to be;:
are: T

- Keep1ng filenames under 12 characters w11P
one file data element (FDE) worth of
directory structure. i

- Choosing large file element- s1zes;l‘fE :
amount of indexing within that file structure
In fact, making the file contiguous i

(e, e]ement -size = file size) w111 e11m1nate a‘ﬁ
levels for that file. : e

- Using + Acl's will e11m1nate the FAC DDE for that
file. In fact, Aos-gen'ing out Ac]'ﬂ;a1together (if
they are not absolutely needed) will also 1mprovef
performance. R

Bitmap and Overlay Area

Placement of the Bitmap and [system] Overlay area can make a
significant difference in AQOS performance. Ideally, these struc-
tures should be placed in the middle of other common]y‘used‘
files. This will tend to minimize head movement on those
drives. By default DFMTR chooses a location about 3/8 s ofﬂthe3
way into the LDU. s O T .

6-7

~1/0 Buffer Sizes

Carefully choosing I/0 buffer sizes can easily affect
performance of the system, or at least the application of which
those buffers are a part.

In general, the rule for I/0 buffer sizes is to make them as
"~ big as possible. This will allow the individual application to -
run more efficiently. Needless to say, there is a tradeoff
" between large buffer sizes and overall system performance.
Making buffers too large will improve the performance of the _
individual application, although often at the expense of overall -
system performance. This is something to be considered.

With the Watcher utilities, using Screen #5 (Disk Statis- Lo
tics) we can monitor the ratio of controller I/0 requests to
actual blocks read/written. If the ratio of reads/writes to
requests is very high, then overall the buffering schemes are :
probably rather efficient. A low ratio indicates that small "
buffering is causing additional I/0 requests. I/0 requests of L
course not only involve the device time, but include A0S Ghost
and internal processing as well. On an I/0 bound machine, this. N
becomes very noticeable rather quickly.

Increasing the application program buffer size(s) will most
surely improve performance, up to a point. Another possibility ,
is to multi-task the I/0 routines in the program, having a ‘ b
separate task handle the [/0 for each file. This gets a little
tricky to write, but can really improve the I/0 speed of a given =
application. Likewise, using Shared Page (SPAGE) I/0 can dramat-
ically improve an application's performance. :

. . ‘) . . L

For large files, increasing the file element size will
~decrease the number of transparent RIB accesses and therefore b
reduce the number of read requests to the disk. h
]
o
S
(%
6-8 -

| | | |
| .

Disk Compression[l]

i A
| As time goes by,| disk drives tend to become rather frag-
mented, the disk blocks being scattered alll lover the Ldu.
' system performance to be| impacted due to

Fragmented disks caused
the increased seek time on the disk drive.

’ The solution to dfsk fragmentation 1is to compress the disk
drives from time. Disk compression consists f dumping your
disk(s) 1in directory and/or access order, reformatt1ng the disk
and reloading the data. This tends to reduce or eliminate the
disk fragmentation, thereby reducing the seek’t1me Although
time consuming, disk compress1on is well worth the investment.

The question of cqurse arises as to when it is necessary to
do a compression. The best place to go for answers is to the
bitmap to the disk itself. If you are experiencing mild fragme-

ntation, you will see a "ragged" bitmap. As di#k fragmentation
continues to get worse, the "holes" in the bit?a will be filled
and the disk will decebt1ve1y look un- fragmented Therefore,

examine your b1tmap from time to time and a]sp ‘keep an eye out
for disk "chatter" and the system slowing down; two signs of disk
fragmentation. With the Watcher ut111t1es,zyou can not ‘only
examine the Bttmap, but,you can produce a hard copy listing of it
for your documentat1on needs. Lo

On my Desktop, I typically compress thé:disk(s) every 3
months or so. Doing this usually improves the slipping system
performance by about 25% On a Desktop, that isi significant and
therefore well wnrth the time taken. The process can be auto-
mated with macros that run uynder batch while ydU'are of f doing

work on other dr1ves | : ;;
1 ! ! .

As a s1de po1nt Wd1sk compression can oftqn have quite an

impact on drive busy amd controller 1nterferen9e;statist1cs. As
the seek t1mé decreases " the drive and controﬂ]er will be busy

for shorter per1ods of t1me E
| | o

|
|
|
|
|
| | |
| |
j |

‘
! i

1) For more 1nformat1on on compression, consult my
‘ articles in the June, Sept. and Oct. 1986 issues of
; data base month]y magazine,

6-9

_Desktop Configufation Points

We can't even begin to discuss System Performance without
looking at the issue of proper hardware configuration. * Spending
vast amounts of time dealing with System Performance is worthless
if the hardware is under=-configured. So briefly, I want to
approach this- from a number of different angles.

Let's use as an example the system that this manual is being
written on. - This Desktop is a Model 10sp with: 1240kb, a 38mb
Winchester drive, a 4 Line Usam, a tape cartridge drive for
medium-volume backups a Cipher 100 1600 BPI reel tape running off

of an ICI DMT1l tape controller, two 5 1/4" floppy diskettes for.

writing text backup, a logic expansion chassis (for future
“secret" projects), a second console, a letter quality printer, a
dot-matrix printer (soon to become a line printer) running on an
ICI DLP1 buffered parallel interface card, and a Signalman
300/1200 Baud modem. It could be argued that we have overdone
ourselves and yet I tend to disagree. Adding a second disk drive
several months ago made a significant difference in the perfor-
mance of the system. ‘

First off in order to run at all, A0S requires at least 1
hard disk, and a second drive is recommended. The initial desktop
systems were configured with only 15 mb. disk drives and yet AOQS

installation alone requires approx. 13,500 disk blocks - close to
1/3 of a single disk. Even with two drives, space is very

limited.

Luckily, since the initial release of the desktop, a
38mb. and 78mb drives have been added and 120mb. drives are
reportedly now available as well. . Unfortunately, hardware design
of the desktop allows only one disk controller with a maximum of
two drives on that controller. Therefore, it is recommended that
you include the largest affordable drives to begin with; because
you can't configure different drive types on the same controller.

In general, additional disk drives - if properly utilized -
will significantly enhance system performance. This becomes even
more significant in the desktop environment due to the limited
drive capacity and the 2 bit data bus on the micro-I/o card.

On any system, disk seek ‘time is always the problem.
Therefore, two drives along .with proper file placement can
dramatically enhance system performance. In a single drive
configuration, file placement becomes an important issue as was
pointed out in Chapter 4. ‘

6-10

Desktop Disk Drive§

- 0On the Desktop we are severely limited to our disk choices.
Ignoring the diskette drives, we are limited to one disk control-
ler supporting only 2 disks. In most respects, the Desktop
systems resemble the S-10, S$S-20, S-30 series except that the
Desktops have been endowed with a "crippled" disk controller and,
data~bus.

~The winchester controller has been designed with 7 sector
interleaving and small hardware buffering which slows the disk
considerably. Additionally, the CPU has been designed with a
2-bit data-bus. Although this is probably adequate for character
devices, it is disastrous for block devices. A 2-bit data-bus
means that 8 memory fetches are required to bring a single word
of data into memory. In the case of a disk block, 2,048 fetches
are needed to complete the data transfer.

If you would like an in-depth understanding of the desktop
disks, I recommend reading the Disk Technical reference manual.
It is loaded with a host of "internal" information and therefore
makes little sense to repeat it here. The manual 1is available
from the DG TIPS department and is well worth the investment.
What follows is a summary of the main points addressed in that
manual, although this-is hardly conclusive.

The Desktop Disk Controller Exposed

After just a few short pages into the disk technical
reference manual I began to understand what the disk bottleneck
is all about. Although I can .get no verification from DG on
this, the following explanation seems to be accurate.

The disk controller is sector buffered to allowed data
transfers to/from the controller buffer and drive at 625kb/sec.
Unfortunately, the Data channel speed is a mere 146kb for reading
and 171kb for writing. The need for sector interleaving becomes
very clear: the disk needs a "brake" mechanism so as not to
overrun the data channel. This inept data channel speed seems to
be a nasty side-effect of using a 2-bit data bus, instead of the
usual 16 bits, or at least 8 bits. Figure 6-2 illustrates this.
When compared to the Mv/4000-DC (3.0 mb./sec) and especially the
1ittle "Bulldog" Mv/2000-DC (8 mb./sec no less!), it becomes
pretty clear that the desktop's disk performance was no accident.

For my system, while deciding upon.the appropriate configu-
ration for our Desktop, we opted to install a single 38 mb. drive

.over two 15 mb. units. Although there are advantages to using

two disk drives instead of one, we needed the extra space, and
the 38's are faster drives. Besides, if we needed to upgrade for
more space, we would have to trade in our whole disk sub-system
to eventually take advantage of the 38's speed.

6-11

|
|
|
B

| ; . . . X
Tﬁe % of Busy and % of Interfered Requests give us an

accurate idea of how much time A0S 1is "twiddling its thumbs"
wa1t1ng to begin a disk request. This is overhead above and
beyond the Disk I/0 timings. The timing figures you read in the
‘reference manuals assume an ideal scene wherein the program is
staggeﬁing its I/0 requests so precisely that it never makes a
requeit while the drive or the controller is off handling a
prev1ous I/O transfer. : '

thh a single disk sub- system, our Desktop was experiencing
. about a 30% Busy figure to the disk drive. This means nearly 1/3
of the time a request was made to the disk, there were one or
more r?quests already on the I/0 queue for that drive.

| . . -
The disk controller can only process one data transfer at a
time - serially - although each drive can seek independently.
The other requests have to be placed on the A0S '1/0 wait queue.
The Average-Q-length * Average~I/0-request-time (6.2 ms
computed from the disk tech. reference) gives us an idea of how
much time is being wasted waiting for the disk. Add to this:
Average-Seek- Distance (in cylinders) * Cylinder-seek-time (per
cylinder) and all of a sudden these "storybook" figures become
unbelievably real and painfully slow. At least without a second
drive on the system, there can be no interfered requests.

‘When we added a second drive, these figures changed signifi-
cantly. To begin with, the % of Busy dropped to approximately
16% for drive DPNO and was about 8% for drive DPNl, yet both
drives were experiencing controller interference of about 5% of
the time. Controller interference means that although the
requested drive itself was not busy, the controller is tied up
~with a data transfer to the other drive. When we piled four
users on the system, the % of Interfered Requests jumped to a
whopp1ng 40% - 45% for both disks. This was from word proces-
sing, assembling programs in a batch stream and running CEOQ, all
concurrently

Although the Avg. seek distance was now a mere 52 cylinders
for Dpn0 (down from 94 cylinders), and 23 cylinders for DPN1l, the
system bottle-necked somewhat due to the controller interfer-
ence. 'A faster controller (such as that on the MV/4000-DC even)
would make a HUGE difference here.

‘Summary

Although the Desktop disk drives are indeed crippled, the
desktop systems nevertheless represent some of the faster, mare
efficient desktops in the computer marketplace today. And, they
are an excellent gateway into the world of A0S. They should not
be overlooked. |

6-12

! . .
e e e e e e e Je v e T de v s Fe e e d Fe e e ok e e e e ok e e ke de st e sk e ek ke ke ke ok

e

Appendicies
Appendix A --- Appendix B

R S
* O kX F

kkkkkkkhkkkhkhkhkkhkhkhkhkhkhkhkhkhkhkkkkkkhkkhkhkhkhhkhkkhkhhhkihikx

E

®

4

£

=

El

Reccommended Reading

- Advanced Operating System (AOS) Prdgrammer's'Manua1
by Data General - 093-000120

- How to Load and Generate Your AQOS System
by Data General - 093-000217

- Programmer's Reference Manual Ecllpse -Line Computers
by Data General - 014-000626

= - 16-Bit Real-Time Eclipse Assembly Language Programming
by Data General - 014-000688

- Advéncea Operating System (AOS) Link/LFE User's Manual
by Data General - 093-000254

i - Advanced Operating System (AOS) Macro Aésembler Reference Manual
by Data General - 093-000192 ' '

- Advanced Operating System (A0S) CLI User's Manua]
by Data General - 093-000122

i Learning to Use your Advanced Operating System
by Data General - 069-000018

- Appendix A---1

- Model 10 and 10/SP Computer Systems Technical Reference

by Data General - 014-000766 =
- Model 20 and 30 Computer Systems Technical Reference
by Data General - 014-000767 -
o
. . b
‘- Model 6271 Disk Subsystem Technical Reference :
by Data General - 014-000768 ‘ _ =
- Cartridge Tape Subsystem Technical Reference ‘N
by Data General - 014-000752 b
. .
= I/0 and'Interqufag Technical Reference :
by Data General - 014-000774 L
- Using AOS on Desktop Generation Systems ™
by Data General - 069-000058 g : : e
- - Operating Systems: A Pragmatic Approach ,
- by Harry Katzan Kr. =--- Van Nostrand Reinhold Company . -
Lo
- Operating Systems: A Systematfc View - Al
by William Davis --- Addison-Wesley Publishing Company b
- Computer Performance Measurement and Evaluation Methods: —
Analysis and Applications
by Liba Svobodova --- Elsevier Computer Science Library -
. Bidid
-
ECLIPSE and Desktop Generation are Trademarks and Registered Trademarks -
of Data General Corporation. Deskwatcher and Aoswatcher are Trademarks ‘
of Innovative Data Systems. . i
Appendix A---2 ;ﬂ
Pﬂj
e
-

Reccommended Reading

Chapter 1
A)

Chapter 4

Series - Eclipse Line Computers
014-000626-02 (1980)

Programmer's Reference
The Generic "Blue -Book":

- Appendix I '
= Pp. 3-31 to 3-41

Model 10 and 10/Sp Computer Systems - Techn1ca1 Reference
Manual 014-000766 [1ly

- Pp.. 1= 41 to 1-61
- Pp. 4-6 to 4-7, 4-9, 4-20 to 4- 27
- Chapter 5

Model 20 . and|30 Computer Systems - Technical Reference
Manual 014 000767

- Pp. 1-29 to 1-46
- Pp. 4-3 to 4-5,4-11,
- Chapter 5

4-24 to 4-32

A)

Model 10 and 10/Sp Computer Systems Techn1ca1 Reference
Manual 014-000766 [1]

2-28 to 2-60 |
4-10 to 4-12 |
4-14 to 4-16 |

- Pp.
- Pp.
- Pp.

Model 20 and 30 Computer Systems - Techn1ca1 Reference

Manual 014-000767

- Pp. 4-33 to 4-38 L
- Chapter 7 :

1(Sect1on 4 is very techn1ca1 but is worth read1ng to p1ckup the data

that is understandab]e)

|

Appendix A=--=3]

4

01
02

03
04

06
07
10
10
10
11
12
13
14

15

16
17
20
21
22
23
24
25
26
27
30
31

32
13
34

Appendix B --- Disk Control Blocks

'File Information Block Layout

FINLP
FIACL
FILBP
FIUID
FITCH
FITCL

e we we Ve wo wo

Pointer to first FNB -(IDP)
Pointer to FAC (IDP)

Pointer to FLB (Link Only - IDP)
Unique ID

File Creation Time (Hi)
File Creation Time (Lo)

; FISTS TO:FIIDR comprise the "Funny Fib"

FISTS
FITYP
FICPS
FIHFS

- FIDCU
FIFW1
FIFW2
FIEFH
FIEFL
FIDFH
FIDFL
FIFAH
FIFAL
FIIDX
FIIDR
FIFUD
FITAH
FITAL

FITMH
FITML
FIFW3
FIFCB

Me we Wwe Ve Ve Ve WS Ve W WS Ve VWO Ve WS WS WS WE WS Ve Ue W W

.
b

; === For CPD Entries

FICSH .
FICSL :
FIMSH :

File Status :
File Type (R. Byte) and Format (L. Byte)

File Control Parameters :

Hash Frame Size (Directories) ;
Device Code (L. Byte) Unit # (R. Byte)
Future EOF Extension

Future EOF Extension
Last Logical Byte - for EOF (Hi)
Last Logical Byte - for EOF (Lo)

Data Element Size (Hi)
Data Element Size (Lo)
First Logical Address (Hi)

First Logical Address (Lo)

Current/Max Index Levels L/R

Count of inferior directories
Pointer to FUD
Time Last Accessed (Hi)

Time Last Accessed (Lo)

Time Last Modified (Hi)

Time Last Modified (Lo)

FCB Address Extension
Virtual FCB Address or (0)

Current Size (Hi)
Current Size (Lo)
Max Size (Hi)

Appendix B---1

Disk Information

Block Layout -

IBREV
IBTYP
IBSTS
IBIDH
IBIDM
IBIDL .
IBSNP
IBNPU
IBNHD
IBNST
IBNCY
IBVIS
IBNBH
IBNBL
IBBTH
IBBTL
IBBUI

IBLDF
IBNMH
IBNML
IBACH
IBACL
IBBAH
IBBAL
IBSBH
IBSBL
IBSSB
IBOAH
IBOAL
~ IBOAS
IBFBP

IBCSH
[BCSL
IBMSH
IBMSL

IBLEN=71

Ve Ve Ve VWO WO WO WS WE WS WO VO VWO . Ve WS Ve WE Ve

We Ve WE W VS WS WO WE VS WO WE Ve WO W

wo we wo we

DIsk. System and File System Rev.

Disk Unit Type

Status Word (Per Unit Flags)
LDU Unique ID (High)

LDU Unique ID (Middle)

LDU Unique ID (Low)

Sequence # of the PU in the LDU
Number of PU's in the LDU
Number of Heads

Numbert of Sectors per Track
Number of Cylinders

Start Disk Addr.. of Disk Space

Number of Visible Disk Blocks (Hi
Number of Visible Disk Blocks (Lo

Phys. Addr of Bad Block Table (Hi

Phys. Addr of Bad Block Table (Lo

10 Word Unique ID for N.C.

LD Flags

Disk Address of Name Block (Hi)
Disk Address of Name Block (Lo)
Disk Address of ACL Block (Hi)
Disk Address of ACL Block (Lo)
Disk Address of Bitmap (Hi)
Disk Address of Bitmap (Lo)
System Bootstrap Address (Hi)
System Bootstrap Address (Lo)
Size of System Bootstrap Area
Address of QOverlay Area (Hi)
Address of Overlay Area: (Lo)
Size of Overlay Area

IDP to FIB of Installed System

Current Size of LD (Hi)
Current Size of LD (Lo)

‘Max Size of LD (Hi)

Max Size of LD (Lo)
Length of DIB

Appendix B---2

Associated:
Space

BLKQ:

CANCH:

Chunk:

Context:

Disassocia-:
ted Space

DMA:

D.0.B.:

FAC:

FDE:

|

GLOSSARY

A0S memory residing 1in the lowest 32Kw of the machine.
Also known as GSMEM, accessing this memory does not require
use of the MAP.

The Process queue within A0S os implicitly blocked hrocesses.

Otherwise known as the candidate chain, CANCH is a chain of
all freed cache buffers. = The A0S disk world scans this
chain looking for disk blocks (elimenating physical disk
1/0) and the Core Manager looks here in order to allocate .

pages during light memory contention.

|

A segment of memory within the AOS context. A chunk can be??

as small as 8 words or as large as 1,024.

An address somewhere in the A0S environment. It may be user |
space (the Primary Context), the Ghost (Secbndary Context),

or. the operating system (the AOS context).

Another name for A0S GVMEM. In other word%, memory space
that is not associated with the core-resident Kernel of A0S. -

Direct Memory Access - a characteristic of most Data Channel
devices. §

Directory Overflow Block. An extra disk block enqueued to
the directory when a "home" block overflows with FNB's.
This is a sign of too many files 1in the directory or a
poorly chosen hash frame size.

File Access Control Block. Actually a variable length

 DDE, the FAC is allocated to hold ACL information for a

given file. It is pointed to by the FIB IDP. '

File Data Element. A control bfock on the disk associated
with file information. There are fijve kinds of DDE's:
FAC's, FIB's, FLB's, FNB's and FUD's.

Glossary-1

FIB:

F.I.F.0:

FLB:
FNB:

FUD:

GSMEM:

GVMEM:

LDU:

L.I.F.0.:

MAP:

MBLKQ:

MMPU :

Nugget:

File Information Block. A fixed length DDE on the used to
hold the Filestatus information of a given file. It is
pointed to by the FNB IDP and has IDP's to the other DDE's
assoc1ated with the file.

An acronym meanin First In First Out as distinct from L.I.F.O.

File Link Block. Avariable Tlength DDE use to hold the
destination file pathname on a link entry.

File Name Block. A variable length DDE used to hold the
file name. It contains an IDP to the FIB.

File User Data area. A fixed-length DDE created when as the
file UDA. It is created with the ?CRUDA system ca11 and
accessed via the ?RDUDA/?WRUDA system calls.

General System Memory. A memory pool within the core- res1dent

KERNEL of AOS - also known as Associated Space.

General Virtual Memory. A memory pool within the AOS
internal virtual memory area - also known as disassociated

space. This memory is accessed by MAP B.

Logical Disk Unit. One or more Physical disks [cbm

An acronym meanin Last In First Qut as distinct from F.I.F.0.

The Memory Allocation and Protection unit of the hardware.

It is sometimes called the MMPU.

This an AOS internal queue of processes that have been
explicitly blocked via the ?BLKPR system call.

The Memory Map and Protection Unit of the hardware. It is
sometimes just called the MAP.

An “5nvisib1e" segment of disk space 8 words in 1ength used
to create DDE's. DDE's are often composed of several
contiguous nuggets.

Glossary-2

OVMCH:

P.I.0.:

© RELQ:

RIB:

Root:

The AOS internal chain of system over]ay pages no Tonger in

use by system call code. This chain is examined by the Core
Manager dur1ng 1ight memory cqntent1on

| | |

1
Programmed I1/0. 1/0 that is Under direct control of the CPU
rather than being handled comq]ete]y by dev1ce contr011er

1

The chain of Ready Eligble Processes This chain resides in
A0S Associated space. ‘ , ~ | .

Random Index Block

The System's Root directory. ?This is the initial directory
in the directory tree. 5

Glossary=-3

7

Lo

b

Index

Performance Manual

.ST FILE 2-10 ,

.SY FILE 1-24, 2-10, 6-06

:PER 4-20, 4-21, 5-07, 6-06
a transient directory 4-21
IPC files 4-21, 5-07

:UTIL 4-03, 4-04

2AMAP 1-21
?BRKFL 1-04
2CHAIN 2-03
?DEBL 1-06, 1-21
PHIST 1-21 -
?IDEF 1-06, 1-21
2IMSG 1-21

?IREC 2-12

2IS.R 2-12
2ISEND 2-12
2IXHIST 1-21
2IXIT 1-21

2IXMT 1-21
PLEFD 1-04

PLEFE 1-04

?LEFS 1-04, 2-04
?MBFU 2-04

IMBTU 2-04

IMEMI 1-14, 1-15, 1-22, 5-05
?PCREATE 1-21

?PMAP 1-21
?PRELEASE 1-21
?PROC 2-03

?READ 2-03, 2-04

?SPAGE 1-09, 1-14, 1-22
?SPY 1-21, 2-01

?SSHPT 1-14, 1-15, 1-22
?STMAP 1-21

?TUNE 2-10

?WRITE 2-03, 2-04
"Funny" FIB 4-25
"Invisible space" 4-25

- Access control lists 5-02, 5-09
Accéess devices 1-06, 5-01, 504
Access local devices 5-04, 5-05
Acl 5-02, 5-03, 6-01, 6-02, 6-07
Adventure 2-11 ‘

Index-1

A0S _ |

ESD | 1-11, 1-19, 1-21, 2-01 |

EXEC_ 1-14, 4-21, 5-02, 5- 03 | a

GHOST 1-12, 2-01, 2-03-->2- os 4-03, 6-08
Kernel 1-01, 2-03, 2-04 | :
memory pool 1-19, 1-21, 1-23; 2-01 !
multi-process 2-01, 2-03]
multi-task .2-01, 6-08 -
OP:CLI 1-23, 2-01 i
OTMIN 6-02, 6-06 i
Pid 1 6-04

Pid 2 1-23, 2-01, 5-02 ‘

PMGR 1-21, 2-01, 2-03, 2-04 \2 07, 2-08, 2-12,

' 4-03, 5-02, 5-04, 506 5 03, 6-04 1o -
. sysfem over]ay area 4-25, 6-02, 6-07

AOSGEN1 -14, 1-21, 1-23, 1-24, 2-03, 2-10, 4-03, 4-21,
‘ ‘-01-->6 03 6-05 | , ;
145 alled system 4-25 i |
LDU| 1-27, 4-14, 4-16-->4-18, 4 25, 4-3, 4-6, 6-02,
| 6-07, 6-09 | i
pno‘rammab]e interval timer 2-03
Real-time Clock 2-03, 6-05 |
release tape 4-02
root directory 2-01, 4-03
RTC! 2-03, 6-02, 6-05 :
system installation 1-26, 1-27, 4-01, 4-02
Aoswatcher i, iii, 1-13, 1-20, 1-22, 2-09->2-11,
.| - 4-10, 4-13, 5-03 |
CﬂilPr 2-01 :
Disktrace 4-06, 4-10, 4-25, 4-31
MEMIN 1-13, 1-22 ‘ :
Average §eek d1stance 1-13, 1-19, 1-26, 1-27, 4-06,
; | 4-17-->4-19, 6-02, 6-12

|
Batch ;obs 5-07
Batch qtreams 1-14, 1-21, 5-03
Become | Infos 4-21, 5-04, 5-07

B1tmap‘ ? 4-15, 4-17, 4-19, 4-25, 6-02, 6-07, 6-09
BLKQ , 1-16, 1-17 '
Block #3 (DIB) 4-07, 4-15, 4-25

L
Bmc 6-0?
Buffers |1-14, 1-24, 6-02, 6-05

Index-2

s

CANCH 1-12, 1-15, 1-16
Cartridge tape 1-24

CEO 2-11, 4-03, 4-21, 5-02, 5-09, 6-12
CE0 secretary 4-21 :

Change password 5-08, 5-09
Change priority 5-04, 5-06
Change type 5-04, 5-05

Change username 5-01, 5-03

Chess 2-11 ‘
cli.Ppr 2-01 ; ‘ e

Compute-bound 1-19, 2-02-->2-05, 2-09-->2-12, 5-05, |
' 6-02, 6-04 L b

Consoles 5-05, 6-04 :
Controller interference 4-01, 6-09, 6-12
Core Manager 2-08, 5-05

cp/M 1-05
CPD's 4-02, 4-03, 4-09, 6-07
Create without block 5-04, 5-07

‘DCU 6-02-->6-04 : ; 1 Nl e
Deadlock 1-13, 1-17, 1-19, 1-21, 2-01, 2-02, 5-05
Debugger . 2-03, 2-05 AL e
DEDIT 2-03, 2-05, 2-09, 2-10, 6-06

Desktop i, iii, 1-02-->1-05, 1-19, 1‘22—-?1%24,~2%iill
- 4-02, 4-21, 5-03, 5-06, 5-09, 6-04, 6-06,
6-09-->6-12 : | Wa i

Deskwatcher i, iii, 1-13, 1-19, 2-10, 2-11, 4-06,
4-15, 5-06 o it o
Disktrace 4-06, 4-10, 4-25, 4-31
LDU 1-27, 4-03, 4-06, 4-14, 4-16-->4-18, 4-25,
6-07, 6-09 RARE

MEMIN 1-13, 1-22

DFMTR 4-04, 6-07
system overlay area 4-25

Directories 4-02-->4-06, 4-09, 4-20, 4-25,‘5403,:5609;‘5”
6-02, 6-06, 6-07 RS L
Directory utilization 4-01

Disk compression 1-26, 4-06, 4-16,'4-17, 5-01;;6709;23
Disk quota 5-04, 5-07 , | RinE

Index-3

Disk World
:MACROS 4-
"Funny" FIB
“invisible

03
4-25 [
space" 4-25

access control lists . 5-02, 5-09

acl 5-02,
additional
average see

block 4-03,
bmc 6-02

buffer size
cache buffe
cache buffe
compression
contiguous

controller
cpd max-siz
CPD's. 4-02

DDB's 4-03
DDE's 4-03
DFMTR 4-04
DIB 4-15,

directories

directory d
directory d
directory o
directory s
disk compre
disk fragme
disk inform
disk organi
disk quota
disk statis
Disktrace
dump 1-14,
element 4-
FAC 4-03,
FDE 4-13,
FIB 4-03

5-03, 6-01, 6-02, 6-07
disks 4-01, 6-02, 6-06

k distance 1-13, 1-19, 1-26,
4-172->4-19,
bitmap 4-14, 4-15, 4-17, 4-19, 4-25,

4-07, 4-15, 4-25

s 1-24, 1-26, 6-02, 6-08 -

r 6-02, 6-05
rs 1-14, 1-24, 6-05
dump 4-06

files 1-27, 4-05, 4-10,

4-15, 4-18, 6-02,

6-07
interference 4-01, 6-09, 6-12
e 4-03 ‘
, 4-03, 4-09, 6-07

, 4-04, 4-06, 4-07, 4-10,

, 4-04, 4-25
, 6-07
4-25

6-02, 6-06, 6-07

ata blocks 4-03, 4-05, 4-07,

ata elements 4-03

4-25

verflow blocks 4-07, 4-08, 4-10

pace utilization 4-04

ssion 1-26, 4-06, 4-16;

4-17, 6

ntation 4-04, 4-16, 4-17, 4-19,

ation block 4-15, 4-25
zation 4-02, 4-03
5-04, 5-07
tics 6-08
4-06, 4-10, 4-25, 4-31 .
1-24, 4-02, 4-05, 4-06,
10, 4-13, 6-07
6-07
4-18, 6-07

I
1
|
i
i
1
i

FIFAH 4-25

FIFAL 4-25 , ‘
file access control block
t-size 4-07, 4-10-->4-13

file elemen
file inform
file link b
file name b
file placem
file space

file user d
filename le

]

ation blocks 4-03
locks 4-03

locks 4-03

ent 4-01, 6-10
allocation 4-10
ata areas 4-03
ngth 4-09

Index-4

i
|
|
Ii

4-16

s 4-03

1-27,
6-02, 6-12
6-02, 6-07, 6-09

-01
6

4-06,

4-02-->4-06, 4-09, 4-20, 4-25, 5-03,

-09

4-09, 4-21

6-09

5-09,

filenames 4-01, 4-07, 4-09, 4-10, 6-02, 6-07
fixup 1-11, 4-04 '

FLB 4-03 , :

FNB 4-03, 4-07-->4-09, 4-21, 4-25

hash frame size 4-04, 4-05, 4-07-->4-09, 6-07
hashing algorithm 4-03, 4-07, 4-10, 4-25

help files 4-11

1/0 1-22
IBBAH 4-15
IBBAL 4-15

installed system 4-25

invisible disk space 4-03 _

load 1-06, 1-13, 1-14, 1-19, 1-23, 1-24, 1-26, 1-27,
2-03, 2-10, 4-02-->4-06, 4-12, 4-16, 5-06, 6-01,
6-03, 6-05

macros 4-03, 4-10, 4-11, 4-20, 5-08, 6-09

max-size 4-03

meaningful filenames 4-09

multiple controllers 4-01

multiple disks 4-01

obtaining contiguous space 4-18

peripheral directory 4-20, 4-21

random index block (RIB) 4-13, 4-25, 6-08

root directory 2-01, 4-03

searchlists 4-01, 4-20, 6-02, 6-06

seek time 1-26, 4-01, 4-18, 6-09, 6-10

SWAP.SWAP 1-24, 1-26, 1-27

swap-aborts 1-12, 1-13, 1-17

swapfile 1-26, 1-27 '

swapping 1-17, 1-24, 1-26, 4-03

SYSBOOT 4-25 _

system installation 1-26, 1-27, 4-01, 4-02

system overlay area 4-25 :

Disktrace 4-06, 4-10, 4-25, 4-31

Eclipse :

M/600 4-01, 6-04

ESD 1-11, 1-19, 1-21, 2-01
EXEC 1-14, 4-21, 5-02, 5-03

FIB 4-03, 4-07, 4-25
FIFAH 4-25
FIFAL 4-25

File placement 4-01, 6-10
Filename length 4-09
Fitchmouse's Laws 4-02, 4-03, 4-10

FIXUP 1-11, 4-04
FMCHN 1-12, 1-15-->1-17

Index-5

GHOST 1-12, 2-01, 2-03-->2-05, 4-03, 6-08
' alter-ego 2-01, 2-04 :
debugger 2-03, 2-05 :
DEDIT 2-03,.2-05, 2-09, 2-10, 6-06
ghost buffers 2-04 ;
ghost context 2-01, 2-03, 2-04, 4-03.
ghost libraries 2-05 ;
primary context 2-01, 2-03, 2-04
secondary context 2-01
Sysdmp 2-03, 2-05
system call interface 2-03
system call post-processing 2-03-->2-05
: system call pre-processing 2-03, 2-04
Ghost.Pr 2-01 _
GVMEM 1-01, 1-05

Hacker access 5-04
Hardware
8086 Map 1-02, 1-04, 1-05
data channel devices 2-04
Desktop i, iii, Intro-1-2, 21, 1-02-->1-05, 1-19,
1-22-->1-24, 2-11, 5-03, 5-06, 5-09, 6-04, 6-06,
6-09-->6-12
Eclipse 1-01, 1-02, 6-03
‘M/600 4-01, 6-04 = ,
- MAP 1-02-->1-07, 1-09, 1-11, 1=27, 2-01
Map Status Renister 1-04, 1-06
MSR 1-04 ‘
P.I.T 2-03
-pio devices 2-04
programmable interval timer 2-03
real time clock 2-03, 6-05
RTC 2-03, 6-02, 6-05° ,
Hardware configuration 4-03, 6-01, 6-10
Harry Katzan, Jdr. Intro-1 ‘
Hash frame size 4-04, 4-05, 4-07-->4-09, 6-07
Hashing algorithm 4-03, 4-07, 4-10, 4-25
Help files 4-11

- I/0 World :
access devices 1-06, 5-01, 5-04
access local devices 5-04, 5-05
baud rate 6-02-->6-04
buffer sizes 1-24, 1-26, 6-02, 6-08
consoles 5-05, 6-04 :
controller interference 4-01, 6-09, 6-12 ,
DCU 6-02-->6-04 :
Dump 1-24, 4-02, 4-05, 4-06, 4-16, 4-1-->4-14
hash frame size 4-04, 4-05, 4-07-->4-09, 6-07
I/0 1-22
I0OP 6-04
IOPMGR 6-04

Index-6 -

Load 1-06, 1-13, 1-14, 1-19, 1-23, 1-24, 1-26, 1-27,
: . 2-03, 2-10, 4-05, 4-12, 4-16, 5-06, 6-01, 6-03,
’ 6-05 : i ' :
: PIO 2-03, 2-04
‘ printers 6-04
4 .~ SPAGE 1-09, 1-14, 1-22, 6-08
‘ "terminal characteristics 6-03

- ~ Wart 6-04
,! IBBAH 4-15

IBBAL 4-15

: Initial IPC file 5-08
4 Installed system 4-25

™ INSTL ;

installed system 4-25

' ' Sysboot 4-25

. Interrupt World 1-04, 2-02, 2-04, 2-12

, ; 1/0 instructions 1-09
d b interrupts disabled 1-09
R ‘ P.I.T 2-03 !
-, ; RTC 2-03, 6-02, 6-05
j . I0P 6-04 /
‘ - IOPMGR 6-04
- - IpC 1-04, 1-21, 2-03, 2-04, 2-07, 2-12, 4-21, 5-01,

5-04, 5-07, 5-08

i ~ Kernel 1-01, 2-03, 2-04
b ' Liba Svobodova Intro-1
4 - Logon macro 5-08

! Logon.cli 5-08

Macros 4-03, 4-10, 4-11, 4-20, 5-08, 6-09
; Become C11 5-03
‘‘‘‘‘ = 1ogon cli 5-08

o !Map Unit
j ‘ data channel maps 1-02, 1-05
. j load map status 1-06 G
' logical address space 1-01, 1-05, 1-09, 2-01

MAP 1-02-->1-07, 1-09, 1-11, 1-27, 2-01
map spvr block 31 1-05

1 Map Status Register (MSR) 1-04, 1-06
i map trap 1-04, 1-06.
? memory a110cat1on and protect1on 1-02
memory management 1-01, 1-09, 1-11, 1-13-->1-16, 1-27,
: 2-05, 4-03, 5-05, 6-05

§ | MSR 1-04
- : program counter 1-01, 1-07
; protection fault 1-04-->1-06
] : trap 1-04, 1-06

Index=-7

Max qpriority 5-04, 5-

MBLKQ 1-16,

Meaningful filenames 4-

1-17

07
9

Memory [size] 5-04, 5-05
Memory Contention 1-09, 1-11-=>1-17, 1-19-->1-24, 1-26,
: 1-27, 2-01, 5-05, 6-06 -
contention 1-17, 1- 19, 1 -21, 1-24, 1-27, 2-01
swapfile 1-26, 1-27 o '
thruput 1-11, 4-01, 4-02, 5-03, 6-04
Memory Management , ,
- additional memory 1-09, 1-20, 6-02, 6-03
address translation 1- 02, 1-03, 1-07
AOSGEN 1-14, 1-21, 1-23, 1-24, 2-03, 2-10, 4-03,
4-21, 6-01-->6-03, 6-05
- BLKQ 1-12, 1-16, 1-17
cache buffers 1-14, 1-24, 6-02, 6-05
CANCH 1-12, 1-15, i-16 -
chunks 1-12, 1-15 el U
contention 1-17, 1-19, 1-21, 1-24, 1-27, 2-01
contention level 1-16
deadlock 1-13, 1-19, 2-02]
FMCHN 1-12, 1-15-->1-17 ;
free memory chain 1-12, 1-15.
GVMEM 1-01, 1-05
I/0 1-22 ' |
languages 1-21 |
logical address (d1sk) 4-25, 8 o
logical address space 1-01, 1-05, 1-09, 2-01
LRU 1-15 "~ §
“MAP 1-02-->1-07, 1-09, 1-11, 1-27, 2-01
map spvr block 1-05, 4-31
map status register 1-04, 1-06
MBLKQ 1-09 - ;
memory allocation and protection 1-02 |
memory contention 1-09, 1-11-->1-17, 1- 19-->1 24,
1-26, 1-27, 2-01,/ 5-05, 6-06 |
memory management 1-01, 1-09, 1-11,31-13-->1~16, 1-27,
2-05, 5-05, 6-05 | g |
memory pool 1-19, 1-21, 1-23, 2-01 |
‘ |
Index-8

mode 1-04

MSR 1-04 :

OVMCH 1-12, 1-15, 1-16

page sharing 1-09, 2-04

physical address 1-01, 1-02°
physical memory 1-01, 1-14, 6-03
preemption "~ 1-17-->1-19

program counter 1-01, 1-07
protection fault 1-04-->1-06

RELQ 1-12, 1-16, 2-08

shared pages 1-09, 1-15, 1-22, 1-23
shared-code 1-06, 1-09, 1-14, 1-22, 1-23, 2-01
SWAP.SWAP 1-24, 1-26, 1-27
swap-aborts 1-12, 1-13, 1-17
swapfile 1-26, 4-127

trap 1-04, 1-06

Unshared pages 5-01, 5-04

Non-AQS Systems

Cp/M-86 1-05

DG/1 1-11

MS-DOS 1-05, 1-11
Number of sons 5-04, 5-06

Op:CLI' 1-23, 2-01

‘OTMIN 6-02, 6-06

Pacmahv 2-11 .

PCN 2-06-->2-08, 2-10, 2-11
PCNEC 2-06, 2-07, 2-11, 2-12
PCNRR 2-06. 2-07. 2-10-->2-12
PCNSS 2-06. 2-07. 2-10-->2-12
PED 1-13, 1-19, 1-20, 1-22

Peripheral directory (:PER) 4-20, 4-21

PMGR 1-21, 2-01, 2-03, 2-04, 2-07, 2-08, 2-12, 4-03, 5-6204,

06, 6-03, 6-04
PMGR privilege 2-04
Pmgr.Pr 2-01

Index-9

s-n

Preditor. ,
access devices 1-06, 5-01, 5-04
access local devices 5-04, 5-05
become Infos 4-21, 5-04, 5-07
change password 5-08, 5-09
change priority 5-04, 5-06
change type 5-04, 5-05 :
change username 5-01, 5-03
create without block 5-04, 5-07
disk quota 5-04, 5-07
initial IPC file . 5-08
IPC privilege 2-04, 5-04
max qpriority 5-04, 5-07
memory [size] 5-04, 5-05
number of sons 5-04, 5-06
superprocess 5-01, 5-02
superuser 5-01-->5-03
unlimited sons 5-04, 5-06

~use batch 5-04, 5-05

use console 5-04, 5-05
use IPC 5-01, 5-04
use modem 5-08
use virtual console 5-04, 5-05
user comment 5-08 :

Primary context 2-01, 2-03, 2-04
Printers 6-04

Process privileges

access devices 1-06, 5-01, 5-04.

access local devices 5-04, 5-05
Group 1 5-01, 5-08

Group 2 5-01, 5-04, 5-05

Group 3 5-01 : :

Process privleges
become Infos 4-21, 5-04, 5-07
change priority 5-04, 5-06
change type 5-04, 5-05
change username 5-01, 5-03
create without block 5-04, 5-07
disk quota 5-04, 5-07
max gpriority 5-04, 5-07
memory [size] 5-04, 5-05
number of sons 5-04, 5-06
superprocess 5-01, 5-02
superuser 5-01-->5-03
unlimited sons 5-04, 5-06
use batch 5-04, 5-05
use console 5-04, 5-05
use IPC 5-01, 5-04
use modem 5-08
use virtual console 5-04, 5-05

Index-10

o 'JH

|
|
1

Process schedu11ng
compute bound
core manager
cpu time
cpu-bopnd
deadlock 1-13,
I1/0-bound 2-02
PCN 2-06-->2-08, 2-1
PCN Recalculation 2-
PCNEC 2-06, 2-07, 2-
PCNRR 2-06, 2-07, 2-
PCNSS 2-06, 2-07, 2-
| PMGR Interface 2-03,
; PNQF 1-17, 1-18, 2-0
1 PNQF computation 2-0

Priority Weight Table

1-21,
5-05,

2-02
1-19,

| Process Scheduler 1-09, 2-02,
| 1-20

process table 1-09,
programmable interval
ptable 1-09, 1-20
reaction-rate 2-06,
RELQ 1-12, 1-16,
reschedule 1-04,

sub-slice 2-04, \
system tuning tab1es*
t1me slice 2-02-->2-
timeslice exponent 2-
WPRI 2-06, 2-08, ‘2 1
Processes
assigned priority 2-
behavior
cpu time
1/0-bound 2-02 .
interactive 2-12
non-interactive 2-12
Pid 1 6-04 |
Pid 2 1-23, 2-01, 5-
preemptible 1-14, 1-
; 2-08, 5-
1-19, 1-21,
4-04, 5-02,
1-01, 1-02,
1-16-->1-24,
4-02-->4-04,
5-05, 5- 06
6-09,
1-01,
1-19,
2-09, 4-
6-08, 6-

2- 01-->2 04

priority

process

program

2-08, 5-
2-01-->2-04,

2-0
’ 1-0
scheduling algorithm
2-05 .

2-02-->2-05,

1-04-->1-07,

2-01, 4-03
6-04
05

.2-08|,

2-08, 2-12,

6-02, 6-04

2-02

0, 2-11
06-->2-08,
11, 2-12
10-->2-12
10-->2+-12
2-04 |
2, 2-04,
8 |

2-10, 2-11

2-06, 2-08, 2-09
2-10

2-08,

2-08,
5-07
timer 2-03
2-11

8

9
2-03,

2-05, 2-08-->2-12

2-08, 2-09
06 :

02
0

-02, 2-06, 2-08

2 L
11, 5-05
0

01, 2-
1
8, 6-02, 6-04

2
2

02
17, 1-18,
05
2-01
5-04,

1-21,

->2-06,
5-05,

2-08, 4-03
5-06,
1-09,
2-01-->2-06,
4-19, 4-21,

5-08, 5-10,

2-10,
6-03
1-12, 1-15,

2-08-->2-1
5-01-->5-03
6-01, 6-03,

1-26,
4-06,
5-07,

>1-07
1-23,
4-11

1-09,
1-24,
, 4-12,

1-11-->1-14,
1-26, 2-01,
5-05, 5-08,

2-04,
5-09,

Iniex-ll

2-01-->2-03, 2‘

. I
I
|

1-16.

l
e,]
6- -04,

\
é 08,
6- 05

resident 1-14, 1-18-->1-21, 2-01-->2-03, 2-06, 2-08,
. 2-09, 4-04, 4-12, 5-05, 5-06, 6-02-->6-06

sub-slice 2-04, 2-05 ' : ‘ ’

swappable 1-17-->1-19, 2-01-->2-06, 2-08, 5-05

time-slice 2-02-->2-06 :

‘timeslice exponent 2-02

Protection Faults o
... Device I/0 Protect 1-05
Validity Protect 1-05, 1-06
write protect 1-05

Random Index Block (RIB) 4-13, 4-25, 6-08

Reference Manuals
A0S Programmers Reference manual 1-04
How to Load and Generate 1-23, 6-03

RELQ 1-12, 1-16, 2-08 '
Rescheduling 1-19, 2-03, 2-05
RTC 2-03, 6-02, 6-05

Searchlists 4-01, 4-20, 6-02, 6-06
“number of directories 4-20

Secondary context 2-01
ghost context 2-01, 2-03, 2-04, 4-03

Seek time 1-26, 4-01, 4518; 6-09, 6-10

Software ~

AOSGEN 1-14, 1-21, 1-23, 1-24, 2-03, 2-10, 4-03, 4-21,
6-01-->6-03, 6-05 :

Aoswatcher i, iii, 1-13, 1-20, 1-22, 2-09-->2-11,

4-10, 4-14, 5-03

CEO 2-11, 4-03, 4-21, 5-02, 5-09, 6-12

CEO0 secretary 4-21 ~

Chess.Pr 2-11

CP/M 1-05 ‘

Debugger 2-03, 2-05 A

DEDIT 2-03, 2-05, 2-09, 2-10, 6-06 ,

Deskwatcher . i, iii, 1-13, 1-19, 2-10, 2-11, 4-06, 4-

; i 15, 5-06 : v

DFMTR 4-04, 6-07 .

Disktrace 4-06, 4-10, 4-25, 4-31

extended basic 5-09°

fixup -1-11, 4-04 :

Glutton.Pr 1-19, 1-24

MS-D0OS 1-05, 1-11

Pacman.Pr. 2-11 :

Ped.Pr- 1-13, 1-19, 1-20, 1-22

Startrek.Pr 2-11

Stratego.Pr 2-11

Sysdmp.Pr 2-03, 2-05

Index-12

SPAGE 1-09, 1-14, 1-22, 6-08

|
Startrek 2-11
Stratego 2-11

Sﬁperprocess 5-01, 5-02
S?peruser 5-01-->5-Q3
S%SBOOT 4-25

S§sdmpk 2-03

System Calls 1-04, 1-09, 1-14, 1-15, 1-21, 2-01,
| 2-03-->2-05, 2-09 | |

2AMAP 1-21

'~ ?BRKFL 1-04

~ ?CHAIN 2-03

. ?DEBL '1-06, 1-21

© ?HIST 1-21
] - ?IDEF 1-06, 1-21
| . ?2IMSG 1-21 '
v . ?IREC 2-12

. ?IS.R 2-12

?ISEND 2-12
?2IXHIST 1-21

2IXIT 1-21
2IXMT 1-21
PLEFD 1-04
?LEFE 1-04
?LEFS 2-04
?MBFU 2-04
IMBTU 2-04

?MEMI 1-14, 1-15, 1-22, 5-05
?PCREATE 1-21

?PMAP 1-21
d ?PRELEASE 1-21
| ~ ?PROC 2-03
™ .~ ?READ 2-03, 2-04

L ?SPAGE 1-09, 1-14, 1-22
, ?SSHPT 1-14, 1-15, 1-22

: System installation 1-26, 1-27, 4-01, 4-02
e : System overlay area 4-25

Index-13

System Perform

- ~-baud rate

Task contro1'b1ocks

1-21, 2-01, 2-05,
4-18, 4-20, 5-01, 5-02,
: 5-10, 6-01-->6-06, 6-08--
ac] 5-02, 5-03, 6-01, 6-02, 6-07
additional disks 4-01, 6-02, 6-06
additional memory 1-09, 1-20, 6-02
availability 4-01, 4-02
6-02-->6-04
cache buffers 1-14, 1-24, 6-02, 6-
directories 4-02-->4-06, 4-09,
'5-09, 6-02, 6-06, 6-07
directory data blocks
disk compression
divisions of system performance 4-
hardware configuration 4-03, 6-01,
job scheduling 6-01
operation management
operational parameters 5-04,
operational procedures 6-01
performance overlap 4-03
processing priority order
reliability 4-01, 4-02
response time 4-01, 4-02, 4-16 :
searchlists 4-01, 4-20, 6-02, 6-06
system load 1-27; 4-03, 5-06
terminal characteristics 6-03

2-08,

4-03
6-01,

4-04

2-01, 2-04
Time 2-01-->2-04, 2-08, 6-02, 6-04
Unlimited sons 5-04, 5-06
Unshared pages 1-06, 1-23
Use batch 5-04, 5-05
Use console 5-04, 5-05
Use IPC 5-01, 5-04
Use modem 5-04, 5-05, 5-08
Use virtual console 5-04, 5-05
User comment 5-08
User context 2-04
Username .Staff 5-09

Username .Vip 5-09

Index-14

ance iii, 1-01, 1-09, 1-11, 1-14, 1-16, 1-17,

4-01-->4-03, 4-07-->4-10,
5-04, 5-05, 5-06, 5-07,
>6-10 '

, 6-03
05 :

4-20, 4-25, 5-03,

03
6-10°

6-02

4-03, 4-05, 4-07, 4-09, 4-21
1-26, 4-06, 4-16, 4-17, 6-01, 6-09

,
"
,
‘
;
,,
i
W

