AOS/VS File
S ystem Internals

zd\&%‘;\%gg‘]

¢vDataGeneral

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN
WHOLE OR IN PART WITHOUT DGC PRIOR WRITTEN APPROV-
AL.

DGC reserves the right to make changes in specifications and other
information contained in this document without prior notice, and the
reader should in all cases consult DGC to determine whether any such
changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT-
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRIT-
TEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CON-
TAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED
TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE
OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE
A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC
License Agreement which governs its use.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE,
ENTERPRISE, INFOS, MANAP, microNOVA, NOVA, PRESENT,
PROXI, SUPERNOVA, SWAT, ECLIPSE MV/4000, ECLIPSE
MV/6000, and ECLIPSE MV/8000 are U.S. registered trademarks of
Data General Corporation. AZ-TEXT, COMPUCALC, DG/L, DATA
GENERAL/Dne, ECLIPSE MV/10000, GW/4000, GDC/1000, GENAP,
MV/UX, REV-UP, TRENDVIEW, DEFINE, SLATE, microECLIPSE,
BusiPEN, BuisGEN, BusiTEXT, and XODIAC are U.S. trademarks of
Data General Corporation.

Copyright © Data General Corporation, 1987
Rev. 01, May 1987
All Rights Reserved

IMPORTANT NOTICE

I UNDERSTAND THAT INFORMATION AND MATERIAL PRESENTED
IN THE VSINTERNALS MANUAL MAY BE SPECIFIC TO A PARTICULAR
REVISION OF THE PRODUCT. CONSEQUENTLY USER PROGRAMS OR
SYSTEMS BASED ON THIS INFORMATION AND MATERIAL MAY BE
REVISION-LOCKED AND MAY NOT FUNCTION PROPERLY WITH
PRIOR OR FUTURE REVISIONS OF THE PRODUCT. THEREFORE DATA
GENERAL MAKES NO REPRESENTATIONS AS TO THE UTILITY OF
THIS INFORMATION AND MATERIAL BEYOND THE CURRENT REVI-
SION LEVEL WHICH IS THE SUBJECT OF THIS MANUAL. ANY USE
THEREOF TO YOU OR YOUR COMPANY IS AT YOUR OWN RISK.
DATA GENERAL DISCLAIMS ANY LIABILITY ARISING FROM ANY
SUCH SITUATIONS AND I AND MY COMPANY HOLD DATA GENERAL
HARMLESS THEREFROM.

AOS/VS File
System Internals

[ed\ggﬂ\?,%?‘]

(v DataGeneral

Table of Contents

Chapter 1 - On-Disk File System

1.1 Definitions 1-1
1.1.1 Physical Disk Unit (PU) 1-1
1.1.2 Logical Disk Unit (LDU) 1-2
1.1.3 LDU-PU Relationship 1-3
1.1.4 Logical Disk Addressing 1-3

1.2 Invisible Disk Space Structure 1-5
1.2.1 Disk Boot (DSKBT) 1-5
1.2.2 Bad Block Table (BBT) 1-6
1.2.3 Disk Information Block (DIB) 1-6

1.3 Visible Disk Space Structure 1-10

1.4 AOS/VS Files 1-13
1.4.1 What is a File? 1-13
1.4.2 File Logical Addressing 1-13
1.4.3 File Indexing 1-14
1.4.4 Summary 1-16

1.5 Directory File Structure 1-17
1.5.1 What is a Directory? 1-17
1.5.2 Directory Data Blocks (DDBs) 1-18
1.5.3 DDB Components: Directory Data Elements (DDE) 1-18
1.5.4 File Name Block (FNB) 1-20
1.5.5 File Information Block (FIB) 1-21
1.5.6 File Access Control Block (FAC) 1-27
1.5.7 File Link Block (FLB) 1-28
1.5.8 File UDA Block (FUB) 1-29
1.5.9 Directory Bit Map 1-30
1.5.10 AOS/VS Directory Structure; The Global Picture 1-31

1.6 Locating File Contents 1-35

Chapter 2 - Directory File Management

2.1 Overview 2-1

2.2 Directory Management Databases 2-2

2.3 DDB Allocation/Deallocation Operations 2-4
2.3.1 JELLO.P: DDB Allocation and DDE Creation 2-4

2.3.2 JELUDA.P: DDB Allocation and FUD Creation 2-8

2.3.3 REDEL: DDB Deallocation and DDE Release 2-9

2

4

2.3.4 RAID: Read a Directory Data Element 2-1
2.4 Directory Management Services 2-1
2.4.1 Pathname Resolution Services 2-14
2.4.2 File Creation Services 2-28
2.4.3 File Deletion Services 2-36

Chapter 3 - File Management

3.1 Overview 3-1
3.2 File Control Block 3-3
3.2.1 FCB Parameters Definitions 3-3
3.2.2 FCB Creation/Destruction 3-10
3.2.3 FCB Operations: Get File Control Block (GFCB) 3-11
3.2.4 FCB Operations: Release File Control Block
(RFCB) 3-11
3.2.5 FCB Operations: Keep File Control Block
(KFCB.P) 3-12
3.3 Channel Control Block (CCB) 3-15
3.3.1 CCB Requests 3-15
3.3.2 CCB Parameters Definitions 3-16
3.3.3 CCB Creation/Destruction 3-26
3.3.4 CCB Operations: OFAULT.P 3-28

Licensed Material iii Property of Data General

3.3.5 CCB Operations: Generate CCB Address (GENCCBAD) 3-31
3.3.6 CCB Operations: DFAULT.P & RUCCB.P 3-32
3.3.7 CCB Operations: Kill Channel Control Block

(KCCB.P) 3-32
3.4 File Management Services 3-37
3.4.1 (System) Read in a Block: BLKIN 3-37
3.4.2 Enqueue Channel Control Block Request (NQCCB) 3-41
3.4.3 File Open Services 3-45
3.4.4 File Close Services 3-51
3.4.5 Logical Disk I/O Interface Services 3-54
3.5 Shared Protected Files 3-59
3.6 Access Control Privileges 3-62
3.7 C2 Logging 3-65
Chapter 4 - CCB Request Management
4.1 Overview 4-1
4.2 1I/0 Control Block (IOCB) 4-3
4.2.1 Definition 4-3
4.2.2 IOCB Scheduling 4-3
4.2.3 IOCB Processing: Flow of Control 4-6
4.2.4 1IOCB Parameter Definitions 4-7
4.2.5 1I0CB Static Parameters 4-8
4.2.6 IOCB Pending Mechanism (and Associated
Parameters) 4-8
4.2.7 1I0OCB Dynamic Request-Specific Parameters 4-11
4.2.8 1IOCB Global Locations 4-15
4.3 CCB Request Pre-Processing 4-16
4.4 File EOF Considerations 4-17
4.5 File Index Optimization 4-20
4.5.1 Methodology 4-20
4.5.2 Routines 4-22
4.6 CCB Request Command Processing 4-28
4.6.1 CBRED: Read Command Processing 4-28
4.6.2 CBWRI: Write Command Processing 4-34
4.6.3 CBALL: Allocate Command Processing 4-34
4.6.4 CBSYB: Read System Buffer Command Processing 4-35
4.6.5 CBDEL: Delete File Command Processing 4-37
4.6.6 CBTRN1l: Truncate Command Processing (Part 1) 4-42
4.6.7 CBTRN2: Truncate Command Processing (Part 2) 4-42
4.7 CCB Request Post-Processing 4-43
Chapter 5 - Buffer Management
5.1 Overview 5-1
5.2 System Buffer Parameter Definitions 5-3
5.3 System Buffer Allocation 5-3
5.4 Locking the Buffer LRU (BFLRU.W) 5-4
5.5 System Buffer Manipulation 5-5
5.6 Emergency Shutdown (ESD) and System Buffers 5-13
5.7 Buffer Management Global Variables 5-14
5.8 Assigning System Buffers (ASBUF/BLASB) 5-15
5.9 Enqueuing Buffer Headers for Disk I/0 (NQBHR/NQBHR1) 5-19
5.10 Pending on Buffer Header I/0 Completion (BWAIT) 5-26
5.11 Releasing System Buffer Headers 5-27
5.12 System Buffer Header Post-Processing 5-30
5.13 Physical Disk User Read/Write Services 5-31

Licensed Material iv Property of Data General

Chapter 6 - Logical Disk Unit (LDU) Management 6-1
6.1 Overview 6-1
6.2 Logical Unit Control Block (LCB) Parameter Definitions 6-2
6.3 Unit Definition Block (UDB) Parameter Definitions 6-5
6.4 LDU Initialization 6-7

6.4.1 Special Case: Master LDU Initialization 6-14
6.5 LDU Release 6-15
6.6 Bit Map FCB Parameter Definitions 6-21
6.7 The LDU Bit Map 6-22
6.8 LDU Disk Block Allocation (Withdraw Blocks) 6-23
6.9 LDU Disk Block DeAllocation (Deposit Blocks) 6-26
6.10 Bad Block Remapping 6-28
6.11 Mirroring Functionality 6-31
6.11.1 Terminology 6-31
6.11.2 LDU Mirroring and the System Environment 6-32
6.11.3 Mirroring and Performance Implications 6-33
6.11.4 Functional Overview of Logical Disk Mirroring 6-34
6.12 Mirroring Internals 6-36
6.12.1 Internal Mirroring Databases 6-36
6.12.2 Running Mirror Requests 6-41

Chapter 7 - Unit Management 7-1
7.1 Overview 7-1
7.2 Unit Parameters Redefinitions 7-3
7.3 Opening Unit Files 7-5
7.3.1 Opening Magnetic Tape Units (MTUs) 7-6

7.3.2 Opening Multiprocessor Communications Adaptors

(MCus) 7-8

7.3.3 Opening Line Printer Units (LPUs) 7-10

7.3.4 Opening Disk Units (DKUs) 7-11

7.4 Closing Unit Files 7-14

7.5 Unit I/0 Interface Services 7-16

7.6 Enqueuing Unit I/0 (UIOENQ) 7-21
7.7 Enqueuing Unit CCB Requests to Magnetic Tape Units

(MQCCB) 7-24

7.8 Enqueuing Unit CCB Requests to MCA Units (MCACB) 7-28
7.9 Enqueuing Unit CCB Requests to Line Printer Units

(LPBIO) 7-31

7.10 Unit I/0O Request Post-Processing 7-35

Chapter 8 - File Lock Management 8-1
8.1 Introduction to File Locking 8-1
8.2 File Lock Management Databases 8-2

Licensed Material v Property of Data General

Introduction

The AOS/VS Revision 7.50 File System constitutes a major
component of the operating system. The primary function of the
File System is to provide for access to and internal management
of a hierarchical file structure on logical disk units. The
File System is responsible for servicing all A0OS/VS file and
logical disk related operations, plus I/0 operations on block
devices (disks, magnetic tapes, MCAs, and line printers). This
covers a great deal of ground due to the substantial number of
AOS/VS file types and the enormous quantity of possible
operations. This manual discusses in full detail the
functionality and implementation of the most important File
System operations.

Architecturally, the upper boundary of the File System as
described in this manual includes block I/0 and file/directory
management, but not the device-independent or process-specific
services of the AGENT. The lower boundary of the File System
includes buffer and unit management, but not device drivers.

System utilities related to the File System include disk,
magnetic tape, and system bootstrap programs, as well as DFMTR,
FIXUP, INSTL, PCOPY, and MSCOPY. These utilities are not
described in detail.

The File System makes numerous services available to external
operating system components. A "service" is a subroutine which
acts as an interface into the File System and which performs a
specific request. For example, Process Management uses File
System services to accomplish swapfile, pagefile, and IPC
spoolfile I/0; System Initialization invokes File System
services to initialize :BOTH, the swap and page disk; Host
Management calls upon the File System to read system microcode
files. The File System often invokes its own services as well.
Similarly, other operating system components provide services to
the File System. For example, the File System frequently
invokes Memory Management services to request a chunk of system
memory for database allocation, and Entity Management services
to pend control blocks.

This manual presents the A0OS/VS Revision 7.50 File System as a
collection of individual subcomponents. The functionality,
databases, services, and operations relative to each component
are discussed in full detail. As a whole, presentation of the
File System has generally taken a top-down approach, beginning
with the high-level topics and ending with low-level topics.
Each separate section, however, has been drafted in the most
logical format in order to make a clear presentation. The File
System subcomponents, ordered by section as they appear in this
manual, are the following:

1) Disk-Based File System Databases
2) Directory Management
3) File Management
4) CCB Request Management
5) Buffer Management
6) Logical Disk Unit (LDU) Management
Licensed Material vii Property of Data General

7) Unit Management
8) File Lock Management

AOS/ VS 7 .50
Memory Entity Process Host
Management Management Management Management

/\ /\ /\ /\

|| (services) || (services) || (services) ||

\/ \/ \/ \/
Disk-Based Databases Directory Management
File Management CCB Request Management

*%** AOS/VS 7.50 FILE SYSTEM **%*

Buffer Management LDU Management
Unit Management File Lock Management

JpP System Call System
Management Processor Init.

i i s ! - General
Licensed Material viii Property of Data

1 On-Disk File System
1.1 Definitions
1.1.1 Physical Disk Unit (PU)

A physical disk unit consists of one physical disk in a single
disk drive. The physical disk, as understood by AO0S/VS disk
drivers for the purpose of addressing, is divided into the
following fundamental components: sectors, tracks, cylinders,
and heads. The SECTOR on Data General disk units contains a
3-byte address header, a 512-byte data field and a 4-byte
checkword. AOS/VS only recognizes the 512-byte field of the
sector, which is commonly referred to as the "disk block." The
other seven bytes composing the sector are controller specific.
The sector is the smallest addressable unit on a disk. A TRACK
consists of all the adjacent sectors on the same disk plate
surface, which are of equal distance from the center of the
plate. It is a circle made up of sectors. A CYLINDER consists
of the set of tracks, one from each disk plate surface, which
are of equal distance from the center of their respective
plates. The number of cylinders per disk is equal to the number
of tracks per plate. A HEAD is a small device that actually
transfers bits of data to the disk. There is one head per disk
plate surface on disk drives manufactured by Data General; all
disk heads are colinear.

The above information is static in the Disk Information Block
(DIB) of each physical unit. The AOS/VS file system only
recognizes physical block addresses, not drive addresses. The
disk drives must use sector, track, cylinder and head
information to convert physical addresses into disk drive
addresses that the controller will understand in order for
effective data transfers.

DG Model 6161 Disk Storage Unit Characteristics

Bytes/Sector 512 (for all drives)
Sectors/Track 35 (varies between drives)
Cylinders 823 (varies between drives)

Heads (Tracks/Cylinder) 10 (varies between drives)

(computing from above values yields ...)

Bytes/Track 17,920
Bytes/Cylinder 179,200
Bytes/Disk 147,481,600 (147 Megabytes)

The disk controller references disk blocks with a sector,
cylinder and head (surface) address. The first physical disk
block begins at sector 0, cylinder O, head 0. The physical
layout of sectors varies for different disk models. As far as
AOS/VS is concerned, sectors are logically contiguous.

Licensed Material 1-1 Property of Data General

1.1.2 Logical Disk Unit (LDU)

A logical disk is an association of physical disks, which
creates the illusory effect of a single, contiguously
addressable unit. The purpose of LDU support is to allow an
extended disk address space. This concept is similar to that of
virtual memory; the user is led to believe that there is
unlimited space on one disk. The reality is that the AOS/VS
Disk Formatter (DFMTR) constructs a string of 1 to 8 physical
disks "linked together" to form one logical disk. The maximum
space possible for an LDU to hold is 2**32 blocks, or 4.3
Gigablocks.

The functions of LDU management can be summarized as follows:

1) To provide a contiguous array of logical disk blocks,
which span one or more physical disks and which hide disk
blocks used for LDU management ("invisible space"),

2) To provide bad block remapping for logical disk blocks,
which preserves the contiguous array of logical blocks in
spite of isolated bad sectors,

3) To maintain the allocation status of each logical disk
block and status of the LDU as a whole.

LDU management is performed not only by the AOS/VS file system
and drivers, but also by indispensable system utilities:

1) DFMTR - "concatenates" physical units to create an LDU.
Analyzes disk surface for bad blocks.
Sets up logical disk management databases.

2) INSTL - copies disk and system bootstraps to disk.
Copies AOS/VS default system to disk.

3) FIXUP - frees up allocated but unused disk blocks.
Rebuilds directories after system crashes.

4) PCOPY/MSCOPY - copies an entire LDU to media of either
the same or different type.

A logical disk can be grafted onto a directory with the ?INIT
system call (CLI INIT command). The AOS/VS file type ?FLDU is
actually a directory type file. The LDU name, specified by the
user at DFMTR time, becomes the name of the directory. A
subordinate directory hierarchy may already exist. Initialized
LDUs are control point directories. Current and maximum space
limitations are maintained like regular CPDs, except when the
LDU is released, the space data is flushed to the Disk
Information Block (DIB, described later) instead of the File
Information Block (FIB). The master LDU (the root directory) is
automatically initialized by AOS/VS during system
initialization.

Licensed Material 1-2 Property of Data General

An "uninitialized" LDU is merely a set of physical units. 1In
fact, it is not really a logical disk unit at all. Each unit
defined in the LDU must be opened and accessed independently.
When the disk unit is opened as a file, the user knows only of
physical disk blocks. Physical block I/0 is the only user
interface. The concept of file I/0O exists only on initialized
LDUs.

1.1.3 LDU - PU Relationship

Physical units in an LDU may be on the same controller (DPFO and
DPFl) or on different controllers (DPFO and DPF10). They may be
of different types (DPFO and DPJO). Only an LDU built with a
602 MB disk cannot include other disk models. An LDU may be
composed of more than one physical unit, but one physical unit
may not be divided into more than one LDU (AOS/VS 7.50). There
may be a minimum of one physical unit per LDU and a maximum of
eight.

Mirrored LDUs are composed of at least two physical units.
Hardware mirroring is effective only when mirroring LDU images
that exist at identical physical block addresses of physical
disks on the same controller. This implies that one controller
contains at least two physical units, one for the primary image
and one for the secondary image. Furthermore, these two
physical units are mirror images of each other.

Most disk blocks of an LDU are available for use by system
users; however, A0S/VS reserves the first 8 blocks exclusively
for physical disk information. These blocks are called the
"invisible space" since they are effectively unknown to the
user. The remaining disk blocks are called the "visible space."
The system also reserves several blocks in visible space for LDU
specific information (see Section 1.3).

1.1.4 Logical Disk Addressing

Since the first 8 physical blocks of an LDU are always reserved
and cannot be accessed by the user, the user need not be aware
of these blocks when accessing logical disk data. Therefore,
the concept of logical disk addressing exists. Logical disk
addresses, beginning with 0 and ending with n, correspond to the
sequential blocks in the visible space portion of an LDU. Since
the invisible space of each PU in an LDU consists of 8. blocks,
logical address 0 corresponds to physical address 8. Invisible
space cannot be accessed by the user on LDU type files; however,
invisible disk blocks can be accessed on PUs open as separate
unit files (?GOPEN @DPF20). The following example compares
physical and logical addresses in an LDU (assume units of equal
size). Substituting n with a simple whole number, such as 100,
may help to clarify.

Licensed Material 1-3 Property of Data General

Multiple Unit LDU

Unit 1 Unit 2 (Unit 3)
i INVISIBLE VISIBLE INVISIBLE VISIBLE e
Physical '|O 7|8 n||n+l n+8|n+9 2n cee
address
Logical
address 0 n-8 n-7 2(n-8) eee

.

hhkkkkkhkkhkkkkhkhkkkhhkkhkhkkhkhkhkkhkhhkkhhkhkhkhhkkhkhhkhkkhkdhkkhhhkhkhkkkkhkhhkkk

* INVISIBLE * INVISIBLE * INVISIBLE * INVISIBLE * .
* * * * * .
* PHY O * PHY 1 * PHY 2 * PHY 3 * .
* * * * * .
hkhkkkhkkkhkkhkhkkhkkhkhkkkhkhkhkkhhkhkkhkhhkhkkhkhkhkkhkkkkhkhkhkhkhkhkkhkhkhkkhkkkkkkkkkkk .
* LOG 288041 * * INVISIBLE * .
* * Unit O * * v
* PHY 288049 * * PHY 4 *
* * Model 6060 Disk * *
kkkkkkkkkkkkkk kkhkkkkkkkkkkikkkk
* . * * INVISIBLE *
* . * * *
*) * * PHY 5 *
* * * *
hhkkhkkkhkkhkkkhkkhkhkhkkhkhkhkkhkkhkhkkhkhkhkkhkhkhkkkkhkhkkhkkhkhkkkkkkkkhkkkkkkkk
* LOG 1 * LOG O * INVISIBLE * INVISIBLE *
* * * * *
* PHY 9 * PHY 8 * PHY 7 * PHY 6 *
* * * * *

khkkhkkhkkkkkhkkhkkhkhkhhhhkhkhhkkhkkhkkhkkhkkhkkhkhhkhhhkhhhkhhkhkkkhkkhkkhhhhkkkkkkkx

.

khkkkkkkkkhkkhkkhkkhkkhkhhhkkkkkkkhkkhkkhkhkhkkhkhkhkhkhhhhhkhkhkhkkhkkkhkhkkkhhhkkxkkkkx

* INVISIBLE * INVISIBLE * INVISIBLE * INVISIBLE * .
* * * * *
* PHY 288050 * PHY 288051 * PHY 288052 * PHY 288053 * .
* * * * *
kkhkkkkkkkhkkkhkkhkkkhkkhkkhkkhkhkhkkhkhkhkkkhkkkhkkkkhkkhkkhkkhkkhkhkikkkkhkhkkkkhkkkkkkkx .
* LOG 576083 * * INVISIBLE * .
* * Unit 1 * * .
* PHY 576099 * * PHY 288054 * .
* * Model 6060 Disk * * .
kkhkkhkkkkkkhkikkkkkk kkhkkkkkikkkkkkkkxk v
* . * * INVISIBLE *
* . * * *
* . * * PHY 288055 *
* * * *

e T T T T T P T T LT
* LOG 288041 * LOG 288040 * INVISIBLE * INVISIBLE *

* * * * *
* PHY 288059 * PHY 288058 * PHY 288057 * PHY 288056 *
* * * * *

Ihkkkhhhhkhhhhkhhhkhkhkhkhkhrkhhhhhhhhhkhhkhkkkkkkkkhkhrhkhhhxx
Licensed Material 1-4 Property of Data General

1.2 Invisible Disk Space Structure

The invisible space of physical disk units is described as
follows:

0 DRIVER: Reads block 1 into memory.

1.2.1 Disk Boot (DSKBT)

Physical block 0 consists of two parts: code to read in DSKBT
(found in physical block 1) and a small disk driver. The code
to read in DSKBT along with a disk-specific driver is written to
block 0 by the A0OS/VS Installer (INSTL). When the "BOOT

device code" command is executed from the System Control
Processor (SCP-CLI), a ROM on the controller specified by the
device code is activated, which loads low memory with the
contents of physical block 0 and begins instruction execution at
location 0377. Location 0377 contains a "JIMP" instruction to
the code that will read the actual DSKBT from block 1 into the
next available memory location (0400). After block 1 is read
into memory, flow of control is passed to the first location of
block 1.

The purpose of DSKBT is to load SYSBOOT into main memory. Since
DSKBT is not sophisticated enough to bring in an entire
operating system, it reads and starts an intermediary program
(SYSBOOT). First, DSKBT must read the DIB into main memory to
obtain the starting logical disk address of SYSBOOT. Then it
reads SYSBOOT into main memory (locations 0 - 075777). This is
accomplished by first copying the code that will read in SYSBOOT
to location 077000 and then executing it. All lower memory is
then overwritten with SYSBOOT code. When SYSBOOT is completely
in main memory, DSKBT simply jumps into SYSBOOT code beginning
at location 2. Subsequently, SYSBOOT reads in either the
installed or a user supplied AOS/VS system file and system
initialization is on its way.

DSKBT, SYSBOOT and the installed A0S/VS system will only be
found on physical unit 0 of an LDU.

Licensed Material 1-5 Property of Data General

1.2.2 Bad Block Table (BBT)

The BBT is found in physical block 2 of the physical unit. The
table lists the physical addresses of bad disk blocks and the
address of the contiguous remap area (in visible space). The
DFMTR scans the disk for bad blocks and initializes the data in
the BBT. There is a one-to-one mapping between the bad blocks
listed in the BBT and the good data for that block in the remap
area. Since the BBT is exactly 256. words long, the maximum
number of bad blocks on any disk (except 602 MB disks) is 128.
Words 0-3 of the BBT are reserved, therefore this actually
reduces the number of permissible bad blocks to 126. When an
LDU is initialized, the BBT of each physical unit is read in and
maintained memory resident for as long as the LDU remains
initialized into the system. Its memory address is found in the
UDB at offset UDBBT.W. The BBT is set up as follows:

Offset BAD BLOCK TABLE (BBT)
;gég;_ 0o Number of bad blocks on PU.
BBRAH.W 1 Physical disk address of remap area.| ---—-————-—-———--———- \
BBRAS 3 Size of remap area (blocks). REMAP AREA
BBBBD 4 Physical address of bad block 1. ====) Block 1 data.
6 Physical address of bad block 2. ====> Block 2 data.
2n+é Physical address of bad block n. ====> Block n data.

1.2.3 Disk Information Block (DIB)

The DIB is found in physical block 3 of the physical unit. The
DIB contains both PU and LDU information. The primary purpose
of the DIB is to provide LDU Management services with
fundamental LDU information. The DIB is created and initialized
by DFMTR. The most important functions of the DIB are the
following:

1) Identifies the physical unit type and links it into the
LDU.

2) Stores essential LDU information, such as LDU
initialization status; PU sequence numbers; the logical
disk address of LDU name block, ACL block and LDU Bit
Map; visible/invisible space data; ADEX area data;
mirroring statistics.

3) Holds LDU directory characteristics, such as the
initialized directory's file type (?FLDU), hashframesize
(7), data element size (1), and logical disk address of
the root directory's first index block.

4) Holds system initialization and runtime information, such
as the logical disk address of the system bootstrap
(SYSBOOT) and the AO0S/VS overlay area. It also holds a
pointer to the AO0S/VS installed system file.

Licensed Material 1-6 Property of Data General

The following diagram illustrates a compact representation of
data found in DIB. (Note: Parameters to access the DIB on word
boundaries are defined in PARFS.SR.)

OFFSET DISK INFORMATION BLOCK (DIB)

IBREV 0 File system revision number.

IBTYP 1 Disk Unit Type

IBSTS 2 Status word. Always 0 and not used.

IBIDH 3 LDU Unique ID (high)

IBIDM 4 LDU Unique ID (middle)

IBIDL 5 LDU Unique ID (low)

IBSNP 6 Sequence Number of PU in LDU. Between 1 and 8.
IBNPU 7 Number of physical units in this LDU. Max of 8.
IBNHD 10 Number of heads on this PU.

IBNST 11 Number of sectors per track on this PU.

IBNCY 12 Number of cylinders on this PU.

IBVIS 13 Phys disk addr of start of visible space = 8.

IBNBH.W 14 Number of visible disk blocks on this PU.
IBBTH.W 16 Phys disk addr of Bad Block Table. Always 2.
IBUID 20 10. unused words.

IBLDF 32 LDU flags.

NEXT 13. OFFSETS VALID ONLY ON UNIT O OF LDU!!!

IBNMH.W 33 Logical Disk Address (LDA) of Name Block.
IBACH.W 35 LDA of Access Control Block.

IBBAH.W 37 LDA of LDU Bit Map.

IBSBH.W 41 LDA of System Bootstrap.

IBSSB 43 Size of System bootstrap (in blocks).
IBOAH.W 44 LDA of Overlay area.

IBOAS 46 Size of overlay area (in blocks).

IBFBP 47 Pointer (IDP) to FIB of installed system.

NEXT FCOML (13.) WORDS CONSTITUTE THE FUNNY FIB
OF THE LDU. SEE SECTION 1.4.4 FOR MORE.

IBFFB 50 Start of the Funny FIB.
51 File type. Initted to ?FLDU (013).
52 Hash Frame Size (7).
53 Extension for EOF in future. (Max now 32 bits)
55 Number of bytes in file. 1Initted to O.
57 Data element size. Initted to 1.
61 First Logical Address.
63 Current/Maximum index levels. Initted to <0><3>.
64 Count of inferior directories. 1Initted to O.

IBCSH.W 65 Current block size of LDU. Dynamically updated.
IBMSH.W 67 Maximum block size of LDU. Initted by DFMTR.
IBDMN 71 User-defined microcode filename.

IBASZ 112 Size of ADES area (in blocks). Initted by DFMTR.
IBBMS 113 LDU Bit Map size (in blocks). Initted by DFMTR.

IBDAT.W 114 Date last mirrored.
IBTOD.W 116 Time last mirrored.
IBLDI 120 Last mirrored LDU ID.
IBMST 123 Mirror state.

IBLDL 124 Beginning of LDU list. (List of PUs in LDU)
IBMLL 164 Beginning of Mirrored LDU list. (PUs in mirror).

IBLEN 224 Length of DIB.

Licensed Material 1-7 Property of Data General

The valid AOS/VS disk file system revision numbers are:
SCREV (5) - Any disk with an allocated ADEX area.
Support of co-resident ADEX began in AOS/VS
6.00.

SCPRV (3) - Any disk, except KISMET II, without an ADEX area.
SCKRV (4) - KISMET I1I type disks without an ADEX area.

If the IBREV fields of all the PUs in an LDU do not match, a
partial DFMTR will abort. If IBREV contains an invalid file
system revision number, LDU initialization will fail.

The disk unit type is a two-letter, ASCII representation of the
disk type. For example, IBTYP contains "PJ" if the disk is an
ARGUS II (i.e., DPJ type) and "PF" if the disk is a ZEBRA (i.e.,
DPF type).

The LDU flags, defined as bit masks, for offset IBLDF are:
IBSIN (1BO) - Logical disk initialized.
IBSBI (1Bl1l) - SYSBOOT has been installed.
IBKS2 (1B2) - KISMET I1II LDU. (Special handling.)
IBDMC (1B3) - User has defined default microcode filename.
IBFXR (1B4) - FIXUP recommended on this LDU. Set at LDU release.
IBAOD (1B5) - ADEX area has been installed.
IBMIR (1B6) - Disk is part of a mirrored set of images.
IBSIP (1B7) - Mirror synchronization in progress.
IBLDU (1B8) - IBLDL and IBMLL both exist.

Two fields of the DIB, the FIB pointer to the installed system
and the LDU's first file address (undefined parameter in the
Funny FIB), are not DFMTR's area of concern. DFMTR initializes
these locations to 0. If the LDU is to be a system disk, INSTL
will take care of allocating the root directory's first index
block and storing its address in the DIB. INSTL will also
allocate the necessary directory data blocks and 400. extra disk
blocks (default) for the installed system. INSTL will create a
FIB for the installed system and place its pointer (IDP) in the
root directory and in the LDU's DIB. SYSBOOT will be able to
access the installed system file via the DIB. On the other
hand, if the LDU is not selected to be a system disk, IBFBP will
be left 0 forever, and the LDU's first address will remain O
until the first file is created in the root directory.

Finally, the last 64. words of the DIB are a listing of the LDU
and a listing of its mirror LDU (if one exists). The eight
disks of the LDU will be followed by the eight disks of the
mirror LDU. If no mirror exists, the second list will be filled
with -1. There are four words for each disk in the LDU. The
first three words are the disk type and unit number (e.g.,
DPF10); the fourth word is the device code. This table is used
by LDU initialization code to validate the LDU configuration,

Licensed Material 1-8 Property of Data General

mirroring configurations, and to set up the PU-LDU relationship
in in-core databases (LCB, UDB). An illustration of the
concepts follows:

0 D P
1 F 1
2 0 <0>
3 027

There are 10. more words in physical block 3, which are placed
outside of the structured DIB (as defined by IBLEN), but hold
information on the co-resident ADEX area. IBAIN, the ADEX
installed word, is initialized to O by DFMTR even if there was
an ADEX area allocated. The actual diagnostics are not
installed now, only the area is allocated (in the last block of
the disk). When the ADEX diagnostics are installed, this value
will become non-zero. The ADEX reserved area in physical block
3 is defined as follows:

OFFSET (PHYSICAL BLOCK 3)

IBADS 365 Beginning of ADEX reserved area.

IBPAH.W 374 Physical disk address of ADEX area

IBAIN 376 ADEX installed word. Initted to 0O by DFMTR.
IBAEN 377 End of ADEX reserved area.

The following illustrates the actual disk representation of the
DIB. The disk type is DPM, a floppy disk, created as a
single-unit LDU.

00 000003 050115 000000 041514 040523 051400 000001 000001
10 000002 000011 000050 000010 000000 001310 000000 000002
20 000000 000000 000000 000000 000000 000000 000000 000000
30 000000 000000 000000 000000 000176 000000 000177 000000
40 000412 000000 000000 000000 000000 000000 000000 000000
50 000003 000013 000007 000000 000000 000000 011000 000000
60 000001 000000 000200 000403 000003 000000 000512 000000
70 001107 000000 000000 000000 000000 000000 000000 000000
100 000000 000000 000000 000000 000000 000000 000000 000000

Licensed Material 1-9 Property of Data General

1.3 Visible Disk Space Structure

Several AOS/VS system databases are kept in the visible portion
of the disk. These areas are allocated dynamically by either
the disk formatter or the installer.

The bad block remap area, whose address is found in the BBT, is
the area to which bad disk blocks are remapped. There is a
remap area on each PU. The DFMTR sets up this area and hammers
the address into physical block 2.

The LDU name block and the LDU access control block are only
valid on the first PU of the LDU. The name specified in the
name block becomes the directory name of the LDU type file when
an LDU is initialized and grafted onto the AOS/VS directory
hierarchy. The ACL in the access control block becomes its ACL.
The DFMTR allocates these areas on the disk and stores their
logical addresses in the DIB.

The bit map indicates which logical disk blocks have or have not
been allocated. A set (1) bit means the block is allocated and
is not free. There is one bit map per LDU and its location is
set up by DFMTR. Since there are 4096 bits in a disk block, the
number of blocks in the LDU bit map is calculated by applying
the following equation:

num bit map blocks = total num log disk blocks / 4096.

One of the DFMTR options is to designate the LDU as a system
disk. If this option is selected, the DFMTR allocates 124.
blocks (31K words) for SYSBOOT and stores the logical address in
the DIB. INSTL will read the DIB to get this address and
finally install SYSBOOT into this area. If the LDU is to be a
system disk, the DFMTR also allocates space for the installed
system. The default size is 400. blocks, but this can easily be
changed in one DFMTR session. The logical address of this area
is also stored in the DIB.

The installed system is a file that resides in the root
directory (:) but has no name. When INSTL installs a system, it
creates a FIB in the first general-purpose DDB of the root
directory (see Section 1.4). The FIB will contain the first
file address of the installed system. 1In order to access the
FIB, INSTL must save its intra-directory pointer (IDP, see
Section 1.4) in the DIB.

The co-resident ADEX area is part of neither invisible nor
visible space! Locations within the ADEX area are referenced by
physical address. They are not incorporated into the logical
addressing scheme of the LDU. The contiguous ADEX area is
allocated by the DFMTR at the end of the first physical unit.
Its physical address is stored in location IBPAH.W (374) of the
DIB.

The remaining blocks of visible space are free for allocation.

The allocation of the first free block, which becomes the first
file address (index block) of the LDU, is discussed in Section

1.2.3. The LDU is ready for general use by all AOS/VS users.

Licensed Material 1-10 Property of Data General

The following diagram summarizes all of the structures
presented.

SCP-CLI> B 27 --->

DSKBT BBT DIB (unused)
(PHY blks 0,1) (PHY blk 2) (PHY blk 3) (PHY blks 4-7)
-=>| =-—--- > # bad blks
————— .« ————- lda of remap +
————— o =m—=—- area +
————— e mmm—— |, + +
————— . —===-- remap size + +
————— e mm——— + + +
----- o —==m- lda of + + +
————— o« =—=—= bad block O + + + +
————— e oo o mmm———]|————————————— + + + +
. " + + + + +
+ + + + +
. T+ 4+ + 4+
c e s e o o o & o o = o o + + + + +
. + + + + +
. System Bootstrap (SYSBOOT) + + + + +
. <-4+ + + + +
=->| =-=---- e D==——- + + + +
————— . ==——- + + + +
————— . === + + + +
----- . o o o o o o]le o === + + + +
————— . —_————— + + + +
————— . ———— + + + +
————— . ————— + + + +
————— . . —_————— + + + +
. + + + +
+ + + +
. + + + +
e o o o o o o o o o o o o o o o o o o o + + + +
. + + + +
. AOS/VS System File + + + +
. {-==+ + + +
-] —=—-—— - + + +
----- . ————- + + +
----- o ==——- + + +
————— . e o o o o o] o m=m=—- + + +
————— . ———— + + +
————— . ———— + + +
————— . ————— + + +
----- . ———— + + +
----- . -——— + + +
----- . . —_———— + + +
+ + +
+ + +
+ + +
+ + +
+

+ +
Licensed Material 1-11 Property of Data General

System Overlay Area

LDU Bit Map

One

block

blocks

bit

for

in

per

all

LDU.

Licensed Material

Root Directory

High Index Block

R R R A I

T R T R R T 2E TE T T ik T T T T S A S . -

Property of Data General

1.4 AOS/VS Files
1.4.1 What is a File?

A file is a collection of logically addressable disk blocks that
contain data. The n blocks of file "FOO" are logically numbered
0 - (n-1) and are not necessarily contiguous. File blocks are
allocated in groups of contiguous chunks called data elements.

A data element is the minimum number of contiguous disk blocks
allocated or deallocated on any file I/0 request. This number
is represented by a file's data element size (elementsize). A
file's default elementsize is a gennable system parameter.

VSGEN defaults this value to 4, but accepts any wvalid
elementsize (1 or any multiple of 4).

Data elements of the same disk file may begin at logical
addresses on one physical unit of the LDU and end at a logical
address on the following physical unit. Since the purpose of
the LDU and logical addressing is to consolidate all the valid
addresses on each physical unit, AOS/VS must support this
feature.

1.4.2 File Logical Addressing

Disk files are created with a null starting address and contain
no data. The first write to a file causes its first data
element to be allocated, and the file's starting address becomes
the logical disk address of the file's block 0. This address is
stored in the File Information Block (described in Section
1.5.5). If the elementsize of file FOO is 4, then the first
write to FOO will cause AOS/VS to allocate 4 contiguous disk
blocks (2048. bytes), logically numbered 0-3. If FOO's
elementsize were 1000., 1000. contiguous disk blocks (512000.
bytes) would be allocated. VSGEN sets the default elementsize
to 4.

File FOO
Elementsize = 4

Data Element O
Beginning
of file ---> Relative (file)
Block O

Relative (file)
Block 1

Relative (file)
Block 2

Relative (file)
Block 3

End of file

Licensed Material 1-13 Property of Data General

When the first data element of a file is full, another must be
allocated. However, since logical file addressing implies that
contiguous allocation of all a file's disk blocks is not a
requirement, a pointer to the new data element must be created.
Furthermore, the AOS/VS file system must know that the second
data element holds the next sequence of logically numbered disk
blocks in the file. This goal is accomplished by forcing the
file to undergo a structural transformation; the file grows an
index level.

1.4.3 File Indexing

Indexing occurs when the first data element becomes filled and
another must be allocated. At this stage, an index block will
be allocated, and the first file address will become the logical
disk address of the new index block. The index block will
sequentially point to data elements 0 - n. If the first file
address points to an index block, this index block is called the
"high index block."

The index block is divided into 128 double-word slots, each of
which contains the logical disk address of another data element.
In a one-index level file, the first double word contains the
logical disk address of element O. The 128th double word
contains the logical disk address element 127. If file FOO has
elementsize 4, a total of 512. disk blocks (262,144 bytes) can
fit in index level 1.

The following diagram illustrates one-level indexing in a file
of elementsize 4.

File FOO
Elementsize=4
One Level Indexing

Level 1 Index Block Data Elements
DWORD
Offset
0 LDA of data ==============)»| Blocks 0 -3
element O
1 LDA of data ==============)>| Blocks 4 - 7
element 1
127. LDA of data ==============>| Blocks 508-511.
element 127.

Licensed Material 1-14 Property of Data General

If a file is one index level deep and grows such that the index
block becomes full, the file must grow another index level. The
original index block remains unaltered, but the next index block
will be allocated to point to the newest data element that would
not fit in the single index level format. But where is the
pointer to the new index block found?

The logical disk addresses of each first-level index block are
stored sequentially in yet another index block, called the
second-level index block. Its logical disk address becomes the
file's first address. This scheme allows for effective and
efficient support of file block logical addressing.

The following diagram illustrates two-level indexing in a disk
file with data element size 4. There is enough space to hold
33,554,432 bytes of data!

File FOO
Elementsize=4
Two Level Indexing

Level 1 Data
Index Blocks Elements
Level 2
Index Block /==>| LDA element 0 |===>| Blks 0-3
/
LDA of level 1 |==/ :
Index Block
LDA element 127 |===>| Blks 508-511
LDA of level 1
Index Block
LDA of level 1
Index Block /==>| LDA elem 16256 |[===>| 65024-65027
/
LDA of level 1 |==/ :
Index Block
LDA elem 16383 |[===>]| 65532-65535

Licensed Material 1-15 Property of Data General

AOS/VS supports a minimum of O and a maximum of 3 file index
levels. Only databases of enormous size may grow to three index
levels. You can calculate that three-level indexing would allow
for a maximum of 128 cubed data elements. Multiply this result
by 4 to get the number of blocks, and again by 512. to get the
number of bytes. This result is equal to 2**32, perfect for
accommodating a file's maximum achievable byte length in the
32-bit field that AOS/VS provides. AOS/VS has reserved a field
in the File Information Block for an EOF byte extension in the
case of four-level indexing support.

1.4.4 Summary

The reader should now comprehend the basic structure of a file.
There are many different AOS/VS file types, most of which
contain independent data in the presented format. There are
certain AOS/VS files, such as IPC type files, which do not
require data elements, but whose essential information is
maintained in its parent directory's databases. Nevertheless,
one major issue remains unexplained. How does AOS/VS know where
to find a file's starting logical disk address? This question
can be answered by understanding the A0S/VS directory structure,
presented in Section 1.5.

Licensed Material 1-16 Property of Data General

1.5 Directory File Structure
1.5.1 What is a Directory?

The directory file is a special AO0S/VS file. The wvalid AOS/VS
directory file types are, as defined in PARU.32.SR:

1) ?FCPD, Control Point Directory
2) ?FLDU, Logical Disk Unit

3) ?FDIR, Directory

4) ?FMTV, Mag Tape Volume

From a user's perspective, directories contain files of any
AOS/VS file type, including subordinate directories. From an
operating system's point of view, directories contain these
files' "administrative" information. Disk data files, per se,
consist solely of index blocks and actual data, while
directories hold the files' characteristics (filename, ACL, 1link
resolution pathnames, permanence, elementsize, creation time,
starting address of data, etc.). All data retrieved by the CLI
FILESTATUS command (?FSTAT) is maintained in the file's parent
directory. Some files, such as IPC type files, do not actually
contain data, but a directory entry for the file must be present
in order to access it. For the A0OS/VS file system to facilitate
file access most efficiently, the directory file structure has
some special features that differ from most other A0S/VS files.
One important feature is a directory's fixed elementsize of 1,
regardless of the default element size of other files. Whenever
a data element is allocated to a directory file, this is the
equivalent to the allocation of a single data block. Other
unique characteristics will be logically presented throughout
this chapter.

Only AOS/VS understands and has the ability to manipulate
directory data. Directory file I/O is implicit and initiated by
the operating system; other file I/0 is explicit and initiated
by the user.

All disk file I/O is valid only when the LDU is initialized.

Otherwise, directory hierarchies and file structures are not
interpreted, and only straight, physical block I/0 is possible.

Licensed Material 1-17 Property of Data General

1.5.2 Directory Data Blocks (DDBs)

A Directory Data Block (DDB) is simply one disk block that holds
directory specific data. Each individual data block in a
directory can be referred to as a DDB. All DDBs begin with a
standard 8 word header. The first 2 header words contain a
forward and backward 1link to other DDBs. The rest of the DDB
holds directory specific data. The following diagram outlines
the general DDB structure:

Offset DIRECTORY DATA BLOCK

DENLB O Forward 1link to next DDB
(relative block number)

DELLB 1 Back l1link to next DDB
(relative block number)

2 Not used, zero filled

8 Directory specific data

127 Directory specific data

1.5.3 DDB Components: Directory Data Elements (DDE)

Directory Data Elements (DDEs) are the basic building blocks of
a DDB. DDEs consist of one or more contiguous nuggets: a
chunk of 8 words. There are five types of DDEs, each of which
contains different directory specific information. A file's
DDEs maintain the essential parameters utilized by the file
system for file access and control.

DDE TYPES
Symbol Type code Description Mnemonic
DEFNB 1 File name block FNB
DEFAC 2 File Access Control FAC
DEFIB 3 File Information Block FIB
DEFLB 4 File Link Block FLB
DEFUD 5 File User Data FUD
DEFUI 6 File Unique ID (unused) FUI

Licensed Material 1-18 Property of Data General

DDEs are linked to each other by means of intra-directory
pointers (IDP). Each DDE contains one or more IDPs to 1link
other DDEs related to the same file. The 16-bit IDP is composed
of two fields:

1) the relative block number in the directory file that
holds the desired DDE; and

2) the nugget number in the block.

IDP FORMAT
Relative block number Nugget
in directory file number
Bit 0 10 11 15

The relative block number field is 11 bits long, imposing a
maximum of 2048 possible DDBs per directory. It also prohibits
directories from exceeding two levels of indexing. Although
this format imposes a limit on the number of files that will fit
in a directory, it still provides enough space to hold the FNBs
and FIBs of over 10,000 files.

The nugget number is used to calculate the offset into the
referenced DDB. This field is multiplied by 8 (nugget length)
to yield the offset. Since there are 256. words in the DDB, and
the first 8. words of the DDB are reserved for the header, a
total of 31. nuggets fit in a DDB. The common structure of all
DDEs is displayed in the following diagram:

COMMON DDE STRUCTURE

{--- Begin on
WORD O DDE type DDE 1length nugget
boundary
1 |IDP to another DDE of same file
2
DATA End on
nugget
n {--- boundary

An example of an IDP would be the octal value "0345". The
relative block number in the directory is 07, and the nugget
number in that block is 05 (offset 050). IDPs are essentially
pointers to directory data elements.

Licensed Material 1-19 Property of Data General

1.5.4 File Name Block (FNB)

The FNB is the DDE that holds a file's name (filename). The FNB
is created and initialized at file creation and deleted at file
deletion. There is one FNB per file, but many FNBs fit in one
DDB. One DDB is dedicated to holding all the FNBs (and only
FNBs) of files with the same hash value. The HASH VALUE of a
file is calculated by taking the modulus of the sum of the ASCII
values of each of its characters divided by the directory's
hashframesize. Execute the following simple steps to calculate
a file's hash value:

1. Sum the ASCII values of the characters in the filename.
2. Divide by hashframesize.
3. The remainder is the file's hash wvalue.

A directory's HASHFRAMESIZE (HFS) is ideally equivalent to the
number of DDBs that contain all the FNBs of the directory. For
AOS/VS, the best general-purpose hashframesize is 7; hence the
default directory hashframesize is 7. Hashframesize is a
parameter in ?CREATE, but not in ?INIT, implying that the
hashframesize of ?FDIR and ?FCPD type files can be any valid
size, while that of LDUs is always 7. The maximum hashframesize
is 255.

The hash value of :PMGR.PR can be calculated easily. The
hashframesize of the master root LDU always defaults to 7.

1) "p"=80. "M"=77. "G"=71. "R"=82. "."=46. "P"=80. "R"=82.
Sum is 518.

2) 518./7 = 74. remainder O.
3) The hash value of PMGR.PR is O.

If there are so many files with the same hash value that one DDB
is not sufficient to hold them all, another DDB is allocated and
linked to the original DDB, forming an FNB CHAIN. No ordering
of FNB entries is attempted within a DDB; the FNB chain is
searched sequentially until a filename match is encountered.

All directory and file I/0O operations must read FNBs in
sequential order to find the file on disk. Only two user
interfaces, ?GNAME and ?GNFN, access exclusively the file's FNB
and no other DDE of the file. ?RENAME must access the FIB as
well as the FNB to store the pointer to the renamed file's new
FNB. All other directory management interfaces access the file's
FNBs, but continue on to read the FIB.

Licensed Material 1-20 Property of Data General

The following diagram illustrates the FNB of PMGR.PR and its
actual disk representation in the DDB. Note that by breaking
down the IDP (only hypothetical here), the FIB can be found in
relative block 023 of the directory file at offset 0210
(021#%010).

OFFSET FILE NAME BLOCK
DETAS O DEFNB (1) 8. (010)
FNNAM 1 IDP to FIB (01161)
2 "P" IIM"
"G“ "R"
” . " "Pll
"Rll <O>
7 - -

DISK REPRESENTATION OF PMGR.PR FNB

000 000000 000000 000000 000000 000000 000000 000000 000000
010 000410 001161 050115 043522 027120 051000 000000 000000
020 (next FNB)

1.5.5 File Information Block (FIB)

The FIB is the DDE that holds most of the file's
"administrative" characteristics. Some of these relate to
general file status information (creation time/date), while
others are necessary for the I/0 world's knowledge (permanence,
data element size). The latter characteristics, which make up
the subcomponent called the Funny FIB, are read into main memory
objects (i.e., the File Control Block) when a file is opened.
This information is maintained, managed, and perhaps altered
during file I/O operations until the file is closed or a 7UPDATE
request is made. Consequently, the FIB is flushed back to disk.

Like the FNB, the FIB is created and initialized at file
creation and deleted at file deletion. When a file is not yet
open, the FIB pointer (IDP) is always found in the FNB. Any
file operation involving pathname resolution first must find the
file entry in the directory by matching the desired filename
with an FNB's contents; then, the FIB is accessed via the IDP in
the FNB.

FIBs can be either 020 or 040 words long, depending on the file
type. A FIB of 020 words is called a short FIB. Link files
have short FIBs because all the relevant information can be
found in the first 020 words; the remainder of the FIB would not
be used. When a link file is accessed, AOS/VS need only obtain
its resolution pathname, the parameter for which is located at
offset FILBP (2).

Licensed Material 1-21 Property of Data General

A FIB of 040 words is called either a full-length FIB or an
extended length FIB. The "normal" or full-length FIB is
actually FIBLT (032) words long in AOS/VS 7.50. The extended
length FIB, which contains the current and maximum lengths of
control point directories, is LFIBL (036) words long. Since the
length of all DDEs must fall on a nugget boundary, the resulting
length for both variations is 040 words.

The following diagram illustrates the general format of the FIB
and the actual disk representation of the FIB of PMGR.PR in
the DDB.

OFFSET FILE INFORMATION BLOCK (FIB)
DETAS 0 DDE type (bits 0-7) and length (bits 8-15).
FINLP 1 IDP to FNB.
FIACL 2 IDP to FAC, if not 1link file (or O if no ACL).
FILBP 2 IDP to FLB, only if 1link file.
FIUID 3 FIB Unique ID. Always O.
FITCH.W 4 File Creation Time.

Here starts the "Funny FIB."
FISTS 6 Status (Bits 0-10). Universal ACL (bits 11-15).
FITYP 7 File Type (Bits 8-15): if disk file.
FIHFS 10 Hash Frame Size: directory file.
FICPS 10 File Control Parameters: generic file index.
FICPS 10 File Control Parameters: fixed record length.
FIDCU 10 Dev Code (Bits 0-7), Unit num (Bits 8-15): unit.
FIFW1l/ 11 Extension for EOF in future.

FIFW2

FIEFH.W 13 Number of bytes in file (byte EOF).

FIDFH.W 15 Data element size. Set at file creation.
FIFAH.W 17 First Logical Address. Zero if null file.

FIIDX 21 Current (bits 0-7), max (bits 8-15) index levels
FIIDR 22 Count of inferior directories (dir type files).

This is the end of the Funny FIB.

FIFUD 23 IDP to FUD (0 if no UDA).

FITAH.W 24 Time Last Accessed.

FITMH.W 26 Time Last Modified.

FIFCB.W 30 FCB address (or zero if file not open).

FICSH.W 32 Current size (blocks): control point dir file.
FIMSH.W 34 Maximum size:(blocks): control point dir file.

Licensed Material 1-22 Property of Data General

When a file is opened, the Funny FIB is copied into a common
area in the FCB. This file system object remains resident in
main memory for as long as the file is open. The Funny FIB
contains the file-specific parameters that can change throughout
the file's open life or that are absolutely indispensable for
file I/0. These dynamic Funny FIB parameters are not modified
directly in the FIB, but in the common area in the FCB. When
File Management requests that the FIB be flushed (file last
close, update FIB request), the Funny FIB is written back out to
disk. The following status word bits are set in the FCB when
the file is opened; they appear set in the FIB (offset FISTS)
when flushed to disk. (Obviously, if the file is closed, some
of the bits will NEVER be set!)

FBTPX (0) = Task pended on system-initiated exclusive open.
FBMDB (1) = File modified. 1Indicates that FIB must be flushed.
FBSXO (2) = System-initiated exclusive open.
FBPRM (5) = File is permanent. Set/reset by ?SATR.
FBDLE (6) = Delete file on last close.
FBFDB (7) = File has a UDA. Set when UDA created.
FBFLB (8) = Flush Funny FIB in FCB to FIB on disk.
This bit is set when file modified, and sometimes
even if a chance it will be modified, such as
on ALL write requests!
FBOEX (9) = File exclusively opened. Set by exclusive open.
FBIOP (10)= File has I/O in progress.

The last five bits of the FISTS word holds the file's universal
ACL. The universal ACL holds the access control privileges
allowed to all users. Since the ACL of many files, especially
system files, does not incorporate any username, but consists
only of a "+" template, the universal ACL feature was
implemented to reduce overhead during I/O processing. Refer to
Section 3.6 for more details.

The file type is also a parameter in the FIB (FITYP). This is
set at file creation time and is checked on numerous occasions
by AOS/VS to validate general file and I/0 operations on
specific file types. For example, ?GLINK is only valid for 1link
type files; ?READ is not a valid user request for directory type
files. The following pages list AOS/VS file types.

Licensed Material 1-23 Property of Data General

AOS/VS SYSTEM FILE TYPES

00000000000 ?2FLNK LINK FILE
00000000001 ?FSDF SYSTEM DATA FILE
00000000002 ?FMTF MAG TAPE FILE
00000000003 ?FGFN GENERIC FILE NAME

DIRECTORY TYPE FILES

00000000012 ?FDIR DISK DIRECTORY

00000000013 ?2FLDU LD ROOT DIRECTORY
00000000014 ?2FCPD CONTROL POINT DIRECTORY
00000000015 ?2FMTV MAG TAPE VOLUME - not used
00000000016 ?FMDR RESERVED FOR RT32
00000000017 ?FGNR RESERVED FOR RT32

UNIT TYPE FILES

00000000024 ?FDKU DISK UNIT

00000000025 ?FMCU MULTIPROCESSOR COMMUNICATIONS UNIT
00000000026 ?FMTU MAG TAPE UNIT

00000000027 : ?FLPU DATA CHANNEL LINE PRINTER
00000000030 ?FLPD DATA CHANNEL LP2 UNIT

00000000031 ?FLPE DATA CHANNEL LINE PRINTER (LASER)
00000000032 ?FPGN RESERVED FOR RT32

IPC FILE TYPES

00000000036 ?2FIPC IPC PORT ENTRY
00000000040 ?2FSPR SPOOLABLE PERIPHERAL
00000000041 ?FQUE EXEC'S QUEUES

00000000042 ?FGLT LABELED TAPE

00000000043 ?FGLM LABELED MEDIA
00000000044 ?FTRA TAPE READER

00000000045 ?FCRA CARD READER

00000000052 ?FTPA TAPE PUNCH

00000000053 ?FPLA DIGITAL PLOTTER
00000000054 ?FLPA PIO LINE PRINTER
00000000055 ?FLPC LP2 LINE PRINTER(PLOTTER)
00000000061 ?FCON CONSOLE (HARDCOPY OR CRT)

NETWORK TYPE FILES

00000000063 ?FREM REMOTE HOST - REMA ACCESS
00000000064 ?FHST REMOTE HOST - X25 SVC ACCESS
00000000065 ?FNPN NETWORK PROCESS NAME
00000000066 ?2FPVC REMOTE HOST - X25 PVC ACCESS
00000000074 ?FSYN SYNC LINE

Licensed Material 1-24 Property of Data General

DG TYPE FILES

00000000100 ?FUDF USER DATA FILE

00000000101 ?FPRG PROGRAM FILE

00000000102 ?FUPF USER PROFILE FILE

00000000103 ?2FSTF SYMBOL TABLE FILE

00000000104 ?FTXT TEXT FILE

00000000105 ?FLOG SYSTEM LOG FILE (ACCOUNTING FILE)
00000000106 ?FNCC FORTRAN CARRIAGE CONTROL FILE
00000000107 ?FLCC FORTRAN CARRIAGE CONTROL FILE
00000000110 ?FFCC FORTRAN CARRIAGE CONTROL FILE
00000000111 ?2FOCC FORTRAN CARRIAGE CONTROL FILE
00000000112 ?FPRV AOS/VS PROGRAM FILE

00000000113 ?2FWRD WORD PROCESSING

00000000114 ?FAFI APL FILE

00000000115 ?FAWS APL WORKSPACE FILE

00000000116 ?FBCI BASIC CORE IMAGE FILE
00000000117 ?FDCF DEVICE CONFIGURATION FILE (NET)
00000000120 ?FLCF LINK CONFIGURATION FILE (NET)
00000000121 ?FLUG LOGICAL UNIT GROUP FILE (SNA)
00000000127 ?FUNX VS/UNIX FILE

00000000130 ?FBBS BUSINESS BASIC SYMBOL FILE
00000000131 ?FVLF BUSINESS BASIC VOLUME LABEL FILE
00000000132 ?FDBF BUSINESS BASIC DATA BASE FILE

CEO FILE TYPES

00000000133 ?FGKM DG GRAPHICS KERNAL METAFILE
00000000134 ?FVDM VIRTUAL DEVICE METAFILE
00000000135 ?FNAP NAPLPS STANDARD GRAPH FILE
00000000136 ?FTRV TRENDVIEW COMMAND FILE
00000000137 ?FSPD SPREADSHEET FILE
00000000140 ?FQRY PRESENT QUERY MACRO
00000000141 ?FDTB PHD DATA TABLE

00000000142 ?FFMT PHD FORMAT FILE
00000000143 ?FWPT TEXT INTERCHANGE FORMAT
00000000144 ?FDIF DATA INTERCHANGE FORMAT
00000000145 ?FVIF VOICE IMAGE FILE
00000000146 ?2FIMG FACSIMILE IMAGE
00000000147 ?FPRF PRINT READY FILE

MORE FILES TYPES

00000000150 ?FPIP PIPE FILE

00000000151 ?FTTX TELETEX FILE
00000000152 ?FDXF RESERVED FOR DXA
00000000153 ?FDXR RESERVED FOR DXA
00000000154 ?2FCWP CEO WORD PROCESSOR FILE

Licensed Material 1-25 Property of Data General

The file's data element size is a static parameter set at file
creation time. It is used by CCB Request Management to
determine how many blocks to read on a single request. The
hashframesize (if a directory type file), the file control
parameters (fixed record I/O or generic files), and device
code/unit number (unit file) are static and set at file creation
time as well.

There is a 32-bit parameter in the Funny FIB, which contains the
byte length of a file (FIEFH.W). This field is initialized to O
at file creation and is updated by I/0 management as the file
grows. The maximum file length is 2**32 bytes, or about 4.3
Gigabytes. The Funny FIB, however, contains a reserved field in
the case of future four-level indexing support (FIFW1l).

File I/O management checks the current/maximum index level field
(FIIDX) to determine whether or not the file will grow beyond
its maximum valid capacity. FIIDX is initialized at file
creation to O current index levels and a potential maximum of 3.
The count of inferior directories, FIIDR, is valid for directory
type files only. This parameter is initialized to O at file
creation and is incremented for each inferior directory created.
File Deletion Services inspects this parameter before deleting a
directory, because on a user request there is a restriction

that a directory cannot be deleted if any of its entries are
directories.

Perhaps the most important parameter in the Funny FIB is the
starting file address (FIFAH.W). This field contains the
logical disk address of the start of the file. If the file is
null, this field will contain 0. Furthermore, unit (non-disk)
files, IPC files and generic files do not care about this field,
since they do not contain physical data on disk. Unit file
types even take the liberty of redefining this field. If the
file is not null, its first block may be either a data element
or an index block. Whichever it may be, the only way the file
system can access the beginning of a file's data is through this
offset of the file's FIB, located in the file's parent
directory!

Files that do not contain actual data on disk may need to
utilize the FIB in a non-standard manner. For example, the IPC
mechanism does not function through disk I/0 operations. An IPC
file is really just the definition of a system global port
number. I/0 to IPC files is initiated wvia ?ISEND and ?IREC
system calls. The ?ILKUP system call calls upon directory
management to verify the existence of the IPC file in a given
directory by reading the FNB. Subsequently, it reads the FIB to
retrieve the global port number. The AOS/VS file system
accounts for this phenomenon by redefining some FIB parameters.

FIB PARAMETER REDEFINITIONS FOR IPC FILES

FIPHI 013 Global port number (high): IPC files
FIPLO 014 Global port number (low): IPC files

Licensed Material 1-26 Property of Data General

Here are some unit management redefinitions:

FIB PARAMETER REDEFINITIONS FOR MAG TAPE UNIT FILES

FILFL 013 Logical EOT File

FILBL 014 Logical EOT Block
FIFIL 015 Current File Number
FIBLK 016 Current Block Number
FIOBL 017 01d Block Count

FIOB2 020 Second 01d Block Count

The following illustrates the disk representation of a
possible FIB for PMGR.PR. Notice that it is located at offset
0210 of the DDB, as its IDP in its FNB (previous section)
indicated.

DISK REPRESENTATION OF PMGR.PR FIB

000 000022 000007 000000 000000 000000 000000 000000 000000
* %%k

210 001440 000005 001165 000000 010465 063137 000003 000101
220 000000 000000 000000 000000 104000 000000 000004 000000
230 006274 000403 000000 000000 010664 062776 010664 074612
240 000000 000000 000000 000000 000000 000000 000000 000000
250 (next DDE)

1.5.6 File Access Control Block (FAC)

The FAC, whose IDP is found in the FIB, is the DDE that holds a
file's non-universal ACL. For example, if the file's ACL were
"USERNAME, OWARE +,RE", "USERNAME,OWARE" would be stored in the
FAC, but "+,RE" would be stored in offset FISTS of the FIB. 1If
the ACL were only "+,RE", no FAC would be allocated. Since
access privileges cannot efficiently be represented by the ASCII
values of "OWARE", five standard bit positions have been
defined:

APOWN (013)
APWRT (014)
APAPN (015)
APRED (016)
APEXC (017)

Owner access
Write access
Append access
Read access
Execute access

The direct user interface to a file's FAC is through the
?GACL and ?SACL system calls, which get and set the file's ACL,
respectively. Whenever access privilege checking is done, an
FAC must be accessed (if it exists).

Licensed Material 1-27 Property of Data General

The following diagram illustrates a possible FAC of PMGR.PR and
its actual disk representation in the DDB. Inspection of PMGR's
FIB will allow the complete ACL to be established:

"OP,OWARE +,RE." Refer to Section 3.6 for more details.

OFFSET FILE ACCESS CONTROL BLOCK
DETAS O DEFAC (2) | 8. (010)
FAFIB 1 IDP to FIB (01161)

FAACL 2 "Oll IIPII
<0> <037>
<0> -

7 - -

DISK REPRESENTATION OF PMGR.PR FAC

000 000000 000000 000000 000000 000000 000000 000000 000000
*kk

250 001010 001161 047520 000037 000000 000000 000000 000000
260 (next DDE)

1.5.7 File Link Block (FLB)

The FLB is the DDE that contains the resolution pathname of a
link type file. The FLB is accessed through an IDP stored in
the file's FIB (offset FILBP). The FLB is created at file
creation and deleted at file deletion.

Link files have no ACL; AOS/VS translates the 1link filename into
its resolution pathname, and the ACL of the latter is checked
against the caller's access privileges. Therefore, the FLB IDP
in the FIB (FILBP) is defined at the same offset as the FAC IDP
(FIACL). If the file being accessed is a l1ink file, offset 2 of
the FIB contains the IDP to its FLB; if the file is of any other
type, offset 2 contains the IDP to its FAC.

The direct user interface to a 1link file's FLB is through the
?GLINK system call, which retrieves its contents. Virtually all
other system and user interfaces with FLBs occur whenever a link
file is encountered during pathname resolution.

Licensed Material 1-28 Property of Data General

The following diagram illustrates the FLB of a file with a
resolution pathname :SYSGEN:AOSVS_7.54.PR and an actual disk
representation in the DDB.

OFFSET FILE LINK BLOCK

DETAS O DEFLB (4) | 16. (020)

FLFIB 1 IDP to FIB (0365)

FLLCN 2 ([":" "s"
"Y" llS"
lIGIl “E"
"N" " : L
IIA" "0“
"S“ "V"
lls" "—“
ll7" " . "
"5" Il4ll
" . " "P"
"R" <0>

017 - -

DISK REPRESENTATION OF FIB AND FLB IN DDB

DDB: GO0 000000 000000 0OOOO0OO 000000 000000 000000 000000 000000

FIB: 010 001420 001001 000343 000000 010465 063227 000003 000112
020 000000 000000 000000 000005 034000 000000 000004 000000

FLB: 030 002020 000341 035123 054523 043505 047072 040517 051526
040 051537 033456 032464 027120 051000 000000 000000 000000
050 (next DDE)

1.5.8 File UDA Block (FUD)

The FUD is the DDE that holds a file's user data area (UDA).
UDAs are exactly 128. words long and can consist of any binary
data. Any file except link files can have a UDA. The FUD IDP
is found in the FIB (offset FIFUD). Since UDAs take up more
than one half of a disk block of space, only one FUD can fit in
a DDB. AOS/VS allocates a new DDB whenever a new UDA is to be
created. However, a FUD may not be the only DDE in the DDB.

A UDA is created via the ?CRUDA system call interface. The UDA
can be read by issuing the ?RDUDA system call and written by
issuing ?WRUDA. Once a UDA has been created, it cannot be
deleted until the entire file is deleted.

Licensed Material 1-29 Property of Data General

Suppose you created a UDA for :PMGR.PR that said, "SECRET

MESSAGE." The following diagram illustrates how it would look.

OFFSET FILE UDA BLOCK

DETAS 0 DEFUD (5) | 136. (0210)

FUFIB 1 IDP to FIB (01161)

FUFFL 2 FUD Forward Link: always O.

FUFBL 3 FUD Backward Link: always O.

FUUDA 4 " S " " E n
”n C " " R ”n
" E " n T ”
" " "M n
" E " " S "
" S ” ” A"
”" G 11 " E "
<0> <0>

0210 |<0O> <0>

DISK REPRESENTATION OF PMGR.PR FUD

000 000000 000000 000000 000000 000000 000000 000000 000000
010 002610 001161 000000 000000 051505 041522 042524 020115
020 042523 051501 043505 000000 000000 000000 000000 000000
030 000000 000000 000000 000000 000000 000000 000000 000000
%% %

220 000000 000000 000000 000000 000000 000000 000000 000000
230 (next DDE)

1.5.9 Directory Bit Map

One block in every directory is dedicated to holding the
Directory Bit Map. The first 2048. bits of the bit map block
(128. words) monitor the size of the directory by maintaining a
record of which DDBs are allocated and which are free. A one
bit means that the relative block number corresponding to that
bit position has been allocated. When a new DDB must be
allocated from disk, the directory bit map is searched for a
zero bit. If a zero bit is found, it is set and the block is
allocated to the directory as a DDB. It can now be filled

with DDEs.

DDBs are allocated neither randomly nor sequentially. DDBs for
FNBs are allocated in every fourth word of the bit map, starting
at word 0. This means that FNB DDBs are allocated as relative
blocks 0-15, 64- 79, 128-143, etc. However, the first HFS
blocks (0 through HFS-1) of the directory are always reserved
for FNB DDBs, even if hashframesize is 1! Each of the FNBs
created in the first HFS-1 blocks are called ROOT FNBs because
the DDB in which they are contained is the first FNB DDB for its

hash value. If a file is created whose FNB overflows the root
Licensed Material 1-30 Property of Data General

FNB DDB, another DDB is allocated (still exclusively for FNBs of
the same hash value). The "overflow" FNBs are called
NON-ROOT FNBs.

The first general-purpose DDB (used for FIBs, FACs, FLBs and

FUDs) always immediately follows the last root FNB DDB. It is
always allocated in relative block HFS. For example, if HFS is
equal to 7, the first general-purpose DDB is allocated in relative
block 7. This block, called the FIB ROOT, marks the beginning

of the FIB CHAIN. All remaining general-purpose DDBs allocated

in this directory will be linked to the FIB root.

The directory bit map always corresponds to relative block
number HFS+1, the DDB following the FIB root. The bit map block
and the FIB root block are exceptions to the rule that FNB DDBs
are reserved for relative block numbers 0-15. If HFS is greater
than 15., the rule is not broken.

1.5.10 AOS/VS Directory Structure: The Global Picture

The previous sections have described the basic concepts and
building blocks of a directory in great detail. This section
will tie all these individual pieces together to present the
complete, structured format of the AO0S/VS directory file.

Directories are always at least one index level deep. Due to
the intricate structure of directory files, the DDB allocation
mechanism, and the standard elementsize of 1, it is impossible
for a directory to exist with less than one level of indexing.
Files are created with no data and a null starting address; this
is true for directory files as well. However, upon the first
file creation, the minimum number of directory blocks created is
3: one for the FNB DDB, one for the FIB DDB, one for the
directory bit map. Considering the elementsize of 1, one level
indexing will naturally take shape. It is important to remember
that the 16-bit format of the IDP 1limits the directory's size to
2048. blocks and two levels of indexing.

The layout of the DDBs in a directory can best be understood by
illustration. The following diagrams display the format of a
one-index level directory. Two diagrams are presented: one of a
directory with hashframesize 7 to exhibit DDB utilization
within the first 16 relative blocks, and the other of a
directory with hashframesize 16. The DDBs separated with double
lines fall on bit map word boundaries.

Licensed Material 1-31 Property of Data General

AOS/VS Directory File Structure: Hashframesize = 7

Relative
Block Num
0 Root FNB DDB, hash value O
1 Root FNB DDB, hash wvalue 1
HFS-1 Root FNB DDB, hash value HFS-1
(6)
HFS FIB root, First General
(7) Purpose DDB
HFS+1 Directory Bit Map
(8)
HFS+2 NOT USED, NOT ALLOCATED
(9)
HFS+3 Non-root FNB DDB
(10)
HFS+4 Non-root FNB DDB
(11)
16. General purpose DDB
17. General purpose DDB
64. Non-root FNB DDB
80. General purpose DDB
127. General purpose DDB
Licensed Material 1-32

DDB
Links
[F
N
| B
C
H
A
I
N
S
- F
1
B
C
H
A
I
(=) N
{====-- /
{mmmmm e /
G T T ———— /

Property of Data General

AOS/VS Directory File Structure: Hashframesize = 16.

Relative DDB
Block Num Links

0 Root FNB DDB, hash value 0

F

N

1 Root FNB DDB, hash value 1 B

. C

. H

. A

. I
HFS-1 Root FNB DDB, hash wvalue HFS-1 N
(15) S

HFS FIB root,
(16) First General-purpose DDB

HFS+1 Directory Bit Map

(17)
HFS+2 NOT USED, NOT ALLOCATED
(18)
HFS+3 General Purpose DDB ===/
(19)
HFS+4 General Purpose DDB {====/
(20)
64. Non-root FNB DDB {mm e /
65. Non-root FNB DDB e /

80. General purpose DDB

127. General purpose DDB

Licensed Material 1-33 Property of Data General

Remember that the word 0 of the directory bit map is reserved
for FNB DDBs. The root FIB DDB is always located in relative
block number HFS. However, the relative block number of the
next general-purpose DDB depends on the directory's
hashframesize.

Finally, the following picture summarizes the connections
between DDEs of all types, as well as the A0S/VS directory
structure as a whole. Beginning with the DIB (physical block 3)
of the logical disk unit, where the starting address of the root
directory is located, the illustration shows the logical
traversal of the directory hierarchy.

| MASTER LDU DISK INFORMATION BLOCK I

NIk

\/
START OF MASTER ROOT DIRECTORY (:) I
\IY
\/
====>
FNB |[<{========) F || FAC
I {====
B I
{=z=======) ====)
FUD FLB
\||/
\/

BEGINNING OF FILE:

Licensed Material 1-34 Property of Data General

1.6 Locating File Contents

Logical and physical disk addressing, directory structures, file
structures, and indexing have been presented in previous
sections. You should now understand the A0OS/VS physical disk
structure enough to be able to traverse the directory hierarchy
and locate any disk file beginning with the root directory. The
purpose of this section is to clarify any confusion in this
regard, by demonstrating how traversing the directory hierarchy
is done. Beginning with the physical block 3 (the DIB), the
systematic procedure of locating the contents of a disk file on
the logical disk will be explained. The final diagram will mark
each step in the procedure to render "the big picture." For the
sake of simplicity, all directories in this example are only one
index level deep.

LOCATING FILE :UTIL:XHELP.CLI

(1) Find the root directory's first address.
Remember that the DIB contains a series of common offsets
within a FIB, the Funny FIB. This area holds essential
status information for the LDU and is only valid on the
first PU of the LDU. Offset 61 of the DIB (IBFFB + 011)
contains the logical address of the LDU directory's high
index block. If the LDU is the master root (:), offset 61
points to the system root directory.

(2) Find the FNB in which UTIL resides.
Since the hash wvalue of "UTIL" is 3, "UTIL" is found in
relative block 3 of the root directory (if it exists, of
course).

(3) Scan the FNB for "UTIL."
If it is not found, check the forward link word in the DDB
for the next DDB of the FNB chain. If it is 0O, then :UTIL
does not exist. Otherwise, scan the next DDB in the FNB
chain until either the filenames are exhausted or "UTIL" is
found. Once it is found, retrieve and break down the IDP
to its FIB.

(4) Find the FIB for "UTIL."
The IDP to the FIB is 0345. This breaks down to the FIB's
relative block number (7) in the first 11 bits and its
nugget offset (5) in the DDB. Since the relative block
number is 7, examine offset 14. (016) of the root's index
block, which holds the logical disk address of the desired
DDB. Then, since 5 * 8 (nugget size) = 40. (050), the
beginning of the FIB is found at offset 050 of the DDB.

(5) Find the starting logical address of :UTIL and go to it.
This address is located at offset FIFAH.W of the FIB.

(6) Find the FNB for "XHELP.CLI."
Its hash wvalue is 3.

Licensed Material 1-35 Property of Data General

(7) Scan the FNB for "XHELP.CLI."

(8) Find the FIB for "XHELP.CLI."
The IDP breaks down to relative block number 026 and
DDB offset 0110.

(9) Find the starting logical address of :UTIL:XHELP.CLI.
Examine its contents!

Master Root LDU's DIB: Physical Block 3

00 000003 050115 000000 041514 040523 051400 000001 000001
10 000002 000011 000050 000010 000000 001310 000000 000002
20 000000 000000 000000 000000 000000 000000 000000 000000
30 000000 000000 000000 000000 000176 000000 000177 000000
40 000412 000000 000000 000000 000000 000000 000000 000000
50 000003 000013 000007 000000 000000 000000 011000 000000
/=| 60 000001 000000 000200 000403 000003 000000 000512 000000
70 001107 000000 000000 000000 000000 000000 000000 000000

100 000000 000000 000000 000000 000000 000000 000000 000000
* % %k

\=======> (1) Start of root directory: LOG BLK 200

/=| 00 000000 000360 000000 000357 000000 000000 000000 000201
10 000000 000000 000000 000000 000000 000000 000000 000203
20 000000 000202 000000 000000 000000 000000 000000 000000

\=======> (2) DDB of FNBs with Hash Value 3: LOG BLK 0201

00 000000 000000 000000 000000 000000 000000 000000 000000

* % (3)

/=| 40 000410 000345 052524 044514 000000 CO0OO0O0O 000000 000000
gttt "I""L" <0><0> <0><0> <0><0> <0><0>

50 000410 001115 044105 046120 000000 000000 000000 000000
"H""E" "L""P" <0><0> <0><0> <0><0> <0><0>

60 000410 001121 044517 050115 043522 027123 052000 000000

llIll"Oll "P""M" IIG""R" II.IIIIPII IIR"<O> <O><O>
* %%

Licensed Material 1-36 Property of Data General

(4) Root Dir Relative Block 7: LOG BLK 0203

00 000000 000000 000000 000000 000000 000000 000000 000000
% %k

50 001440 000005 000351 000000 011763 043624 000003 000014
60 000000 000000 000000 000000 031000 000000 000001 000000
=| 70 000255 000403 000005 000000 013617 043427 013617 043427
100 000000 000000 000000 000153 000002 044760 000000 000000

110 001010 000345 047520 000037 000000 000000 000000 000000
* %Kk

\=======) (5) Start of :UTIL: LOG BLK 0255

/=| 00 000000 000235 000000 000343 000000 000272 000000 000527
10 000000 000727 000000 000463 000000 000350 000000 000240
20 000000 000237 000000 000000 000000 000000 000000 000000
30 000000 000000 000000 000000 000000 000000 000000 000000
40 000000 000262 000000 000267 000000 000460 000000 000267
50 000000 000244 000000 000466 000000 000400 000000 000623
60 000000 000357 000000 000464 000000 000434 000000 000410
70 000000 000635 000000 000636 000000 000242 000000 000000

100 000000 000000 000000 000000 000000 000000 000000 000000

\=======> (6) DDBs of FNBs with Hash Value 3: LOG BLK 0527

00 000000 000000 000000 000000 000000 000000 000000 000000

140 000000 001305 050123 054523 042522 046505 051456 047502

IIP" "S" "Y""S" IIEII IIR" "Mll "Ell "s" "." "O" "B"

150 000000 001331 051503 047515 027120 051000 000000 000000
(7) "Sll"c" "O"IIMII II.IIIIPII IIR"<O> <O><O> <O><O>

/=1160 000410 001311 054110 042514 050056 041514 044400 000000
IIX""H" "EIIIIL" "Pllll." "C""Lll I|III<O> <O><o>

170 000000 001345 043103 052456 050122 000000 000000 000000
"FUUCT "yttt "P"U"R" <0><0> <0><0> <0><0>

*k%k

Licensed Material 1-37 Property of Data General

(8) :UTIL Dir Relative Block 026: LOG BLK 0400

00 000000 000000 000000 000000 000000 000000 000000 000000
* %k

/=110 001440 000005 000351 000000 011763 043624 000003 000014
120 000000 000000 000000 000000 031000 000000 000001 000000
130 000672 000403 000005 000000 013617 043427 013617 043427
140 000000 000000 000000 000153 000002 044760 000000 000000

150 001010 000345 047520 000037 000000 000000 000000 000000
* %k

\=======) (9) Data Element O of :UTIL:XHELP.CLI, LOG BLK 0672

00 055441 062561 072541 066054 022460 027445 026135 005040
10 020133 020545 070565 060554 026054 022461 022535 005040
20 020040 020133 020545 070565 060554 026054 061557 066555
30 062556 072135 020130 044105 046120 020167 064564 064157
40 072564 020141 071147 072555 062556 072163 005011 004440
50 020040 020040 020154 064563 072040 067546 020145 074145
60 061440 064145 066160 020164 067560 064543 071412 020040
70 020040 055441 062556 062135 005012 020040 064145 066160
100 020052 042530 042503 005040 020133 020545 066163 062535
110 005040 020040 020133 020545 070565 060554 026054 061557

350 061557 066555 062556 072040 043151 071163 072040 071545
360 062440 064546 020164 064145 020141 071147 020151 071440
370 072556 065556 067567 067054 020157 071040 060440 067157
400 067055 072556 064561 072545 020141 061142 071145 073151

1220 022460 056045 020045 030445 005133 020545 067144 056412

Licensed Material 1-38 Property of Data General

2 Directory File Management
2.1 Overview

The AO0S/VS directory file is physically structured like any
other data file. Directory file I/O0 is performed by requesting
the same general file system services that operate on any disk
data file. The conceptual design of a directory file, however,
differs from that of other files in its assumption of the
contents of specific data blocks and its strictly observed
ordering of these blocks. The previous chapter introduced the
particular information maintained and manipulated by directory
files as well as a blueprint of the internal disk structure of a
directory. This chapter will present the internals of directory
file management in relation to its interface with other
subcomponents of the file system, other large components of the
operating system, and the user process.

Directory file management of directory data blocks and elements
relies upon allocation and deallocation operations, provided at
the lowest level of directory file management, to build the
file's internal structure with consistent integrity. External
modules call upon these operations not only to access, but to
create, delete and modify the contents of the directory as well.
The calling modules are responsible for filling in the space
with the appropriate directory data (DDEs). Finally, these
calling modules actually constitute file system services, which
are accessed either implicitly by a user process (via a system
call) or explicitly by some external system path.

The user interface to any operating system service is, by
definition, a system call. When a user creates a UDA via the
?CRUDA system call, the system invoked service, CRUDA.P,
allocates a new directory data block, links the DDB into the FIB
chain, modifies the directory bit map to reflect the new DDB,
and creates a DDE of type FUD. UDAs form part of directories
and "UDA I/O" is a subcomponent of directory management.

The system interface to directory management services is very
straightforward. Any AOS/VS component desiring a directory
management service simply sets up some accumulators and makes a
subroutine call. For example, while a user-initiated request
will pass through the AGENT, run through system call processing
code, and ultimately jump through the system call dispatch table
(MCCT.W), the system directly requests service via an "LJSR
service" instruction. The latter interface usually requires
more knowledge of the ramifications surrounding the request,
such as database locking or buffer header management
implications. Although the effect of the service is the same,
the system's entry point always differs from the user's (system
call) entry point.

All AOS/VS components use file system services. "File" implies
"disk," and how can an operating system exist without a disk?
File system services, and all operating system services in
general, have been designed with easy, clean interface
mechanisms for universal access.

Licensed Material 2-1 Property of Data General

2.2 Directory Management Databases

Directory Management services are directly related to the
on-disk databases as they create, delete and modify them as the
particular service prescribes. Nevertheless, there are various
other databases more closely associated with the file I/O
subcomponent of data management. These databases are accessed
and utilized by directory management services when the file on
which a service is to be performed is currently open. The two
major "extraneous" objects are the Channel Control Block (CCB)
and the File Control Block (FCB).

There are two CCB types: system CCBs and user CCBs. The main
purpose of a CCB is to hold essential data that File Management
and CCB Request Management use when servicing disk I/0 requests.
A unique system CCB is allocated from main system memory each
and every time that AOS/VS implicitly opens a file, that is,
without direction from the user. For example, when a user
issues a ?CREATE system call on :DIR1:DIR2:FILE, the file system
must open DIR1 in order to find DIR2, and open DIR2 in order to
create the FNB/FIB pair for FILE. System CCBs are allocated for
both DIR1 and DIR2 when they are opened and deallocated when
they are closed; AOS/VS uses the CCBs to initiate I/0O on the
files. A user CCB is created for FILE in the user process' ring
1 and is used during ?READ and ?WRITE processing to initiate
user I/0. Certain directory file management services must know
about system CCBs.

An FCB is allocated from main system memory when a file is

opened for the first time. The FCB is released when the file is
closed for the last time. There is only one FCB for any given
open file. The FCB contains a common area with the FIB called
the Funny FIB (see Section 1.4.5). Depending upon the requested
service, the relevant parameters will be changed in the FCB when
the file is opened and flushed to the FIB when the file is closed.
If the file is not open when the request is made, the FIB will

be read into memory from disk, and later flushed if it was
modified. The system CCB points to the FCB.

Licensed Material 2-2 Property of Data General

The FCB points to subordinate objects as well. One such
pertinent object is the Control Point Block (CPB). The CPB
contains a common area with the FIB which holds essential
control point directory space information. If the file is open,
the data will be retrieved/modified in the CPB and flushed to
the FIB when the file is closed. If the file is not open when
the service request is made, the same data in the FIB will be
accessed. Since the CPB deals exclusively with directory
management, it will be fully illustrated here:

Offset Control Point Block (CPB)

CPCPB.W 0 Parent directory CPB address.
Contains -1 if LDU root directory.

CPCSH.W 2 Current size of CPD.

CPMSH.W 4 Maximum size of CPD.

CPBLT 6 Length of CPB.

Since the FCB exists only when a file is open, the same is true
for the CPB. Furthermore, if a file three directory levels deep
is opened, AOS/VS must perform system opens on the superior
directory files to do directory I/0. AO0S/VS keeps the superior
directory files open until the lowest level file is closed.

This implies that FCBs and CPBs of the superior directories must
be resident. The parent directory CPB address is needed because
if the space in the lowest level directory changes, the space in
the superior hierarchy changes as well. This space modification
must be propagated up the hierarchy, and the CPBs of the
superior directories are accessed via CPCPB.W. Current and
maximum space requirements of open files are maintained in
CPCSH.W and CPMSH.W.

Licensed Material 2-3 Property of Data General

2.3 DDB Allocation/Deallocation Operations

DDBs are physically allocated when AOS/VS performs an I/0
request on a specified directory block. When a DDE is to be
created, the DDB must be searched for enough free space to
accommodate the DDE. For instance, when A0OS/VS allocates a FIB,
it must determine in which DDB to place it and where in the DDB
to fit it. The execution of the ?CREATE system call adds a new
file to a directory, which implies the potential allocation of
new DDBs and the creation of a new FNB and FIB.

It is not the responsibility of ?CREATE code to perform these
allocation operations, or the responsibility of ?DELETE code to
perform DDB/DDE deallocation operations within its own code
path. The A0OS/VS file system provides modules that handle these
procedures. These modules are named JELLO.P, JELUDA.P and
REDEL. JELLO.P performs the operation of allocating DDBs (if
necessary) and creating the input type of DDE (except FUD).
JELUDA.P performs the operation of allocating a new DDB for a
FUD. Both of these operations allocate the free DDE, but let
the calling module appropriately fill it in. REDEL releases
(frees up) a DDE.

2.3.1 JELLO.P: DDB Allocation and DDE Creation

JELLO.P performs the operation of allocating space in existing
DDBs for a desired directory data element (except for DDE type
FUD). JELLO.P searches the directory data blocks for enough
space and reserves the space for the caller. If there is not
sufficient space in any DDB for the new DDE, another DDB will be
allocated and linked into the directory. JELLO.P passes back
the address of the new DDE for the caller to fill it in
appropriately.

The external modules that use the provisions of JELLO.P are:

Calling Module Reason

CREATE.P Allocate FNB at file creation time.
CREATE.P Allocate FIB at file creation time.
CLINK.P Allocate short FIB for l1link file.
CLINK.P Allocate FLB for 1link file.
SACL.P/DOACL.P Allocate FAC for file.

RENAME. P Allocate FNB for renamed filename.

Licensed Material 2-4 Property of Data General

The inputs and outputs of JELLO.P are standard for all the
calling modules:

Variable Input Output

ACO Starting relative blk DDB buffer header
num to begin search. address.

ACl Size in nuggets of Unchanged.

desired DDE.

AC2 Parent CCB address. DDE address.

A typical calling sequence follows:

XNLDA O,HASHV, 3 ; SEARCH FROM FIB ROOT
XNLDA 1,DDESZ,3 ;DDE SIZE TO ALLOCATE
XWLDA 2,PCCB.W,3 ; PARENT CCB ADDR FROM STACK
LJSR JELLO.P ;ALLOCATE A FIB

WBR JERR ;HOW CAN JELLO BE BAD?
XWSTA O,DDBBH.W, 3 ; SAVE DDB BUFFER HEADER ADDR
XWSTA 2,FIBP.W,3 ;SAVE NEW FIB ADDR

If the DDE to be allocated is of type FNB, the starting DDB
relative block number will resolve to the hash value of the
file (the beginning of the FNB chain). If the DDE to be
allocated is of type FIB, FAC or FLB, the starting DDB will be
relative block number HFS (the FIB root). FUDs are not
allocated by the JELLO.P operation.

The starting block number to search and the size in nuggets is
sufficient to allocate the space for any valid DDE type. After
all, FIBs can be either 2 or 4 nuggets long (020 or 040 words)
and FLBs can be as long as 248. words. The caller need only
request a specific DDE length. The parent CCB address is
necessary for disk I/0.

JELLO.P returns the buffer header address of the DDB containing
the new DDE. The caller must release and flush the system
buffer (RELF) so that it will be immediately written to disk.
The address of the DDE is also returned.

Licensed Material 2-5 Property of Data General

The following is the C-based pseudo-code algorithm that
describes the JELLO.P operation:

#define NUGGET SIZE 8
JELLO.P (start blk, DDE len, CCB_addr, /* inputs */
*DDB_bh addr_out, *DDE_addr out) /* outputs */

kkhkkhkkkkkhkhkhkhkhkhkkhkkhkkhkikkkhkXkhikihhhhhkhkhkkhkhkkhkkikikhkhkikhhhkhkhkhkhkhkhkikiikkkkkkkk

/

* Call BLKIN to read in starting block to search. *
* Relative block number is supplied in the parent dir CCB.*
* BLKIN will allocate the block from disk (and store its *
* logical disk address in the directory's index block) if *
* the DDB had not been previously allocated. This case *
* will occur if the DDE is the first FNB for its hash *
* *

value.
KAKKAKKIKAXRKIARIKKARKAR KA KA KA K AR KAk KAk A ARk khkhkkkkhhkkkhx /

DDB _rel blk num = CCB_addr->CBDBL;
DDB bh addr = BLKIN (CCB_addr);
DDB addr = DDB _bh addr->BQADR.W;

/**

* Search for the desired free space. *
**/

DDE_addr = DDB_addr + NUGGET SIZE;

while (! end of DDB)

{
if (space available >= DDE len)
{
if (BLKIN allocated new DDB)
{
set _bit (dir_bit map, DDB rel blk num);
RELM (dir bit map bh addr);
3
DDB_bh addr_out = DDB_bh addr; / Store */
DDE_addr out = DDE_addr; / outputs. */
return; /* Return. */
3
else

DDE addr = DDE addr + NUGGET_ SIZE;

/**

* If the end of the DDB is reached without finding *
* enough space, read in the next DDB on the chain, *

* if it exists. If not, the loop terminates anyway.*
**/

if (end of DDB) && (DDB_addr->DENLB != 0)
{
CCB_addr->CBDBL = DDB_addr->DENLB;
DDB_bh_addr = BLKIN (CCB_addr);
DDB addr = DDB bh addr->BQADR.W;
DDE_addr = DDB_addr + NUGGET SIZE;
}

}

Licensed Material 2-6 Property of Data General

/***

* Search the bit map for a free DDB slot. BLKIN will *

* allocate and read it in. *
e LTIy

DDB rel blk num search (dir bit map);
CCB addr->CBDBL DDB rel blk _num;
new_DDB_bh_addr = BLKIN (CCB_addr),

new DDB addr = new DDB bh addr->BQADR.W;

DDE addr = new DDB_addr + NUGGET SIZE;

/***
* Link new DDB into directory structure. *
* FNB DDBs get linked to the end of its FNB chain. *

* General purpose DDBS get linked right after FIB root!*
***/

if (FNB_DDB)
{
DDB addr->DENLB = new DDB addr;

new DDB addr->DELLB = DDB_addr;
}

else

/***

* Link in new DDB after FIB root. *
* Read FIB root and its forward link DDB. *
* (The BLKINs are skipped here to avoid complexity) *
* Then 1link the new DDB in between. *

***/

FIB root_ addr->DENLB = new DDB_ addr;
new DDB_addr->DELLB = FIB root addr;

FIB root flink addr->DELLB = new DDB addr;
new DDB addr->DENLB =FIB root flink addr;
}

/**

* Set corresponding bit in bit map now. It wasn't set *
* before because there could have been errors reading *

* in the new DDB. Finally, return with output values. *
R L e Ly

set bit (dir_bit map, DDB rel blk num);
RELM (dir bit _map_ bh addr),

DDB_bh_addr out = new DDB bh addr; / Store */
DDE addr out = DDE addr, / outputs. */
return; /* Return. */

Licensed Material 2-7 Property of Data General

2.3.2 JELUDA.P: DDB Allocation and FUD Creation

JELUDA.P performs the operation of allocating new DDBs for DDE
type FUD. JELUDA.P searches the directory bit map for a free

DDB to hold the FUD. Since UDAs are 128. words long, the FUD has
a 4 word header and the DDB has an 8. word header; a new DDB is
allocated for each JELUDA.P request. However, the DDB is free
for other types of DDEs after the initial FUD. JELUDA.P passes
back the address of the FUD for the caller to fill it in.

The calling sequence to request the operation performed by
JELUDA.P is "LJSR JELUDA.P". The only external module that
makes this call is CRUDA.P. The input and output values in the
accumulators are the same as those of a JELLO.P request (see
Section 2.3.1).

Since the FUD is really just another DDE, the JELUDA.P algorithm
is a subset of JELLO.P. The primary difference between FUD and
other DDE type creation is that a new DDB is ALWAYS allocated
for FUDs.

JELUDA.P (start blk, DDE len, CCB_addr, /* inputs */
*DDB bh addr . new, *DDE addr new) /* outputs */
{

/**

* Search the bit map for an free general purpose DDB slot.*

* BLKIN will allocate and read in the DDB. *
**/

DDB rel blk num

_rel blk : search (dir bit map);
CCB_addr->CBDBL

DDB rel blk num;

new DDB bh addr = BLKIN (CCB_addr);
new DDB addr new DDB bh addr->BQADR.W;
DDE_addr = new DDB addr + NUGGET SIZE;

/**

Link new DDB into directory structure by making it the *
second DDB in the FIB chain (first after FIB root). *
Set corresponding bit in bit map now. It wasn't set *
before because there could have been errors reading in *

*

the new DDB. Finally, return with output values.
kkkkkhkkkhhkhkkkhhhhkkkhhhkkkhhhkkhhhhkkkhhkkkkkkkkkkkkkkk /

* ok ok Ok Ok

link in new DDB(); /* See JELLO.P */

set bit (dir bit map, DDB_rel blk num);
RELM (dir_ bit ~map_bh addr),

DDB_bh_ addr out = new DDB_bh addr; / Store */
DDE addr out = DDE addr, / outputs. */
return; /* Return. */

Licensed Material 2-8 Property of Data General

2.3.3 REDEL: DDB Deallocation and DDE Release

REDEL performs the operation of releasing the space occupied by
a DDE. If the DDB holding the DDE becomes empty, it is unlinked
from its current chain and the directory bit map is updated to
show that the block is free. REDEL does not deallocate the
block from the LDU bit map; the block remains unusable to the
outside world. 1Its logical disk address is not deleted from the
directory index block that points to it. So when another
directory I/0 operation requests the allocation of that same
relative block number, the DDB will "still" be available. In
other words, the LDU still believes that the block is allocated,
so the only directory operations will be the reading in of the
block from disk and the resetting of the bit in the directory
bit map, marking the block as allocated. This saves time by
avoiding extra disk block allocation procedure overhead.
Incidentally, if the DDB is never reallocated by the directory
and continues to be marked as "in use" by the LDU bit map, a run
of FIXUP will clear the relative block number from the
appropriate offset in the directory index block and clear the
bit corresponding to the logical disk block in the LDU bit map.

The calling sequence to request the operation performed by REDEL
is "LJSR REDEL". The external modules that make this call are
the following:

Calling Module Reason

CREATE.P Release FNB DDE on error condition.
DELETE.P Release FNB/FIB/FUD/FAC/FNB.

CLINK.P Release FNB/FIB/FLB on error cond.
SACL.P/DOACL.P Release o0ld FAC before allocating new.
RENAME. P Release FNB of renamed file.

The inputs and outputs of REDEL are standard for all the calling
modules:

Variable Input Output

ACO Parent CCB address. Unchanged.

AC1 DDB buffer header Unchanged.
address.

AC2 DDE address. Unchanged.

Licensed Material 2-9 Property of Data General

The DDB containing the DDE has already been read in by the
caller. 1Its buffer header address must be passed to REDEL so
the modified DDB can be flushed to disk (RELF) before the caller
regains control.

The first word at the DDE address is the DDE's DETAS offset,
which contains the type and length of the DDE. REDEL indicates
that the DDE is free by zeroing out word O of each nugget that
composes the DDE. JELLO.P checks only word O of a nugget to
determine whether or not it is free; words 1 through 7 can be
garbage.

Finally, the parent directory's CCB address is needed for disk
I/0 operations. There are no pertinent values to return.

The following is the C-based pseudo-code algorithm that
describes the REDEL operation:

#define NUGGET SIZE 8

REDEL (CCB_addr, DDB bh addr, DDE addr,,,) /* no output */

/**

* Clear out all nuggets belonging to DDE. *

* The size of the DDE is found in its DETAS offset. *
**/

nuggets = (DDE_addr->DETAS & 0377) / NUGGET_ SIZE;
while (nuggets--)

DDE addr->DETAS = O;
DDE addr += NUGGET SIZE;
3

/**

* Check to see if the DDB is now empty. *
* Do this by checking word 0 of each nugget for a 0 value.*

* If the DDB is not empty, all the work is done. *
R T T LT

DDB_addr = DDB_bh addr->BQADR.W; /* Top of DDB */
nugget ptr = DDB_addr + NUGGET SIZE; /* First DDE */

while (! end of DDB)
{
if (nugget ptr->DETAS != 0)
{

RELF (DDB_bh addr);
return;

}
nugget ptr += NUGGET SIZE;
}

Licensed Material 2-10 Property of Data General

/**
DDB is empty.

If the DDB is not an anchor DDB, i.e. a root FNB/FIB
DDB, unlink it from the DDB chain.

Do this by reading in the previous DDB and the next DDB

(if it exists) and updating their 1link words.
**/

% % %k % X
* %k % X %

DDB rel blk num = DDB_bh addr->BQDBN;

if (DDB_rel blk num > hashframesize) /* Anchor DDB? */
{ /* No */
CCB_addr->CBDBL = DDB_addr->DELLB; /* Read prev DDB*/
prev_DDB bh addr = BLKIN (CCB_addr);
prev_DDB addr = prev_DDB_bh_ addr->BQADR.W;

if (DDB addr->DENLB == 0) /* Last DDB? */
{ - /* Yes, zero prev */
prev_DDB addr->DENLB = O; /* DDB forward ptr */
} /*¥ to unlink DDB. */
else /* Not last DDB. * /
{ /* Read next DDB. */

CCB_addr->CBDBL = DDB addr->DENLB;
next DDB bh addr = BLKIN (CCB_addr);
next DDB addr = next DDB bh_ addr->BQADR.W;

/* Unlink the DDB: reset prev/next DDB pointers */
prev_DDB addr->DENLB = DDB_ addr->DENLB;
next DDB_addr->DELLB = DDB_addr->DELLB;
}
}

/**

* Whether unlinked or not, DDB is still empty.

* The bit in the directory bit map corresponding to the
* DDB's relative block number must be reset now.

* The bit map should be released modified since it was
*

changed.
**/

* % % % %

clear bit (dir bit map, DDB rel blk num);
RELM (dir bit map bh addr);

/**

* Buffer Managament service RELF flushes the modified DDB *

* to disk. *
**/

RELF (DDB_bh_addr);
return;

Licensed Material 2-11 Property of Data General

2.3.4 RAID: Read a Directory Data Element

RAID is a Directory Management operation called by various File
Management code paths that reads in a specific directory data
element from a directory. For example, when RESLV.P wishes to
read in a file's FIB, whose IDP it retrieved from the FNB, it
calls RAID to accomplish the task. When RDUDA.P must read in
the requested UDA, it calls RAID to read in the FIB, retrieves
the FUD pointer from the FIB, and finally calls RAID to read in
the FUD. The operation is simplistic. It just calls BLKIN, a
File Management service, to read in the DDB which contains the
DDE and calculates the requested DDE address.

The calling sequence to RAID is "LJSR RAID". The inputs and
outputs of RAID are standard for all modules that use this
operation:

Variable Input Output

ACO IDP to desired DDE. Unchanged.

ACl DDE type requested. DDB buffer header
address.

AC2 Parent CCB address. DDE address.

The relative directory block number is coded into the IDP, so
RAID simply extracts it and calls BLKIN to read it in. The
buffer header address must be returned to the caller, who is
responsible for releasing the buffer. The DDE address is
returned since that is what the caller requested.

Licensed Material 2-12 Property of Data General

The following is the C-based pseudo-code algorithm that
describes the RAID operation:

RAID (DDE _IDP, DDE type, PCCB_addr, /* Inputs */
*DDB_BH addr, *DDE_addr) /* Outputs */
{

/**

* Shift IDP to get relative block number in directory. *

* Store it in the CCB and read in the block. *
**/

DDB _blk num = DDE IDP >> 5;
PCCB_addr->CBDBH.W = DDB_blk num;

DDB BH addr = BLKIN (PCCB_addr);
DDB_addr = DDB_BH addr->BQADR.W;

/**

* Ensure that the DDB just read in is really a DDB by *

* checking that the forward/back links are within range. *
**/

if (DDB_addr->DENLB < 0) (DDB_addr->DENBL > 2047.) ||
(DDB_addr->DELLB < 0) (DDB_addr->DELLL > 2047.)
call PNIC (6031); /* Invalid DDB */
}
/**
* Get the DDE address from the offset field of the IDP. *

* If the type read does not match the type request, panic. *
**/

DDE addr = DDB_addr + (DDE _IDP & OFFSET MASK) * NUGGET SIZE;

if (get DDE type (DDE addr->DETAS) != DDE_ type)

{

call PNIC (6032); /* Invalid DDE */

}
/**
* If the DDE size is not a multiple of 8 (nugget size), *

* probably not a valid DDB or DDE. So, blow up the world. *
**/

if (get DDE size (DDE_addr->DETAS) != multiple of NUGGETSIZE)
{
call PNIC (6014); /* Invalid DDE */
}
/**
* DDE OK. Parameters already stored for caller. Bye. *

**/

return;

} /* end of RAID */

Licensed Material 2-13 Property of Data General

2.4 Directory Management Services
2.4.1 Pathname Resolution Services

File Resolution Services performs the function of resolving an
input pathname, which may contain multiple filenames separated
by colons and which may be pre-pended with a valid prefix.
Pathname "resolution" covers much more than merely checking for
the existence of each file supplied in the pathname. In order
for the file system to determine if a filename is present in a
directory, the directory must be opened (implying that a system
CCB and FCB must be created) and the FNB chain in which the file
would be found must be searched. If the file is found, its FIB
must be read. If the file is not the last file in the pathname,
its starting address must be obtained, it must be opened,
searched, etc., until the last filename of the pathname is
reached. All files previous to the last filename must be
directories. Depending upon the variant of resolution service
that was requested, some specific action will be taken. The
most basic and common variant of resolution services, RESLV.P,
is called by system call processing modules whose input is a
file pathname.

There are five File Resolution Services variants. Each variant
and a functional description of the service it provides is
listed below:

Variant Function

RESLV.P Search for the existence of the files
named in the input pathname.

WRSLV.P Same as RESLV.P, except the last file
in the pathname must not exist.
DRSLV.P Same as RESLV.P, except the last file
in the pathname must be a directory.
GRSLV.P Same as RESLV.P, except special handling
for ?GNAME call. Uses current searchlist.
RRSLV.P Same as RESLV.P, except special handling
for ?GFNAME call. Uses input PID's
searchlist.

Licensed Material 2-14 Property of Data General

The inputs to all variants of resolution services are standard.
The caller supplies the required information in the accumulators
as follows:

Variable Input Output

ACO Byte address of file Depends on variant.
pathname.

ACl Input switches. Depends on variant.

AC2 Address flag (bit 0), Depends on variant.

Address of initial
search directory CCB.

"OAC4" Not used. Depends on variant.

"OACS" Not used. Depends on variant.

The input contents of ACO is always a byte pointer to the
pathname of the file to be resolved. The pathname will be in
user space if input to a system call. The pathname will be in
system space if the input pathname was generated by the system
(breakfile creation, system initialization calls). Bit O of AC2
must be set if the pathname is already in system space.

The input switches are passed in ACl. These bits represent
options that will be considered in resolving the pathname. The
input switches corresponding to the following bits are:

Bit O) Set: do not resolve 1links occurring in pathname.
Reset: resolve 1links occurring in pathname.

Bit 1) Set: return O in OAC5 if pathname has prefix "Q@".
Reset: do not alter the contents of OACS5.

Bit 27) Set: if a non-directory argument is found in the
pathname during GRSLV.P, it must be a console.
Reset: non-directory pathname arguments need not be
a console.

Bit 30) Set: if directory access denied error, check for
complete C2 logging and record pathname of
dir with error and the address of buffer
passed back in AC2 on error return.

Reset: do not check for complete logging.

Bit 31) Set: do not apply search rules.
Reset: apply search rules.

Licensed Material 2-15 Property of Data General

Sometimes the caller may not wish to resolve links. The CLI
selects this option when it makes the ?FSTAT system call.

Notice that when doing a "FILESTATUS" from CLI with a 1link
filename embedded in the pathname, a "File does not exist" error
will be produced even if the file exists!

Some code paths must know whether or not the input pathname
contained a prefix. For example, if the user supplies the
pathname for a breakfile either via ?BRKFL, ?MDUMP or ?TERM, and
the destination directory is @ (:PER), the breakfile creation
will be aborted if the file already exists. The caller of
WRSLV.P in this case must check for this condition.

There is a special feature of ?GNAME that permits the system
call to verify the existence of a console device on the input
pathname. ?GNAME will call GRSLV.P with bit 27 of ACl set, and
the file type of the first non-directory filename in the
pathname will be verified for a console type file. This feature
is provided for AOS/VS windowing support.

If C2 logging is enabled on the system, access violations will
be logged. If bit 30 of ACl is set, complete logging will be
done if "Directory access denied" errors are incurred during
pathname resolution.

Search rules are applied if the caller's searchlist is to be
used in finding the file. For example, search rules are applied
when ?CRUDA utilizes RESLV.P to resolve the input pathname and
ultimately create the file's UDA. If RESLV.P does not find the
file in the caller's current working directory, the searchlist
CCBs in the caller's process table extender will be accessed,
and the desired file searched for in each of those directories.
Search rules are not applied, for example, on file deletion.

Finally, the initial search directory CCB address may be
supplied in AC2. If the caller wishes the initial search
directory to default to the current working directory, AC2 is
zeroed out.

The values returned to callers of Resolution Services routines
depend upon the requested variant. There are potentially more
than three values to return. Callers must provide for two extra
stack variables, called OAC4.W and OAC5.W, which are pushed on
the stack before the LJIJSR to RESLV.P (or variant). This stack
space provides two double words reserved for output values to be
returned to the caller (if necessary).

Licensed Material 2-16 Property of Data General

In order to fully comprehend the reasoning of returning specific
outputs, you should be familiar with the modules that request
the services, which are called primarily from modules contained
within the data management component of AOS/VS (i.e., the file
system). There are, however, external components that make use
of the services. The following tables list the modules that
call each separate variant and the returned output values that
the callers will use.

External requesting modules of RESLV.P

Caller Effect

CRUDA.P These system call services require that
DELETE.P the caller supply a pathname on which a
FSTAT.P desired function is to be performed.
GACL.P They all call RESLV.P to resolve the
GLINK.P input pathname.

GTACP.P
ILKUP.P
LINK.P
OPEN.P
RDUDA.P
RENAME. P
RNAME.P
SACL.P
SATR.P
WRUDA.P

Variable Output (input pathname not JUST a prefix)
ACO FIB pointer (IDP) of last file in pathname.
ACl FNB pointer (IDP) of last file in pathname.
AC2 Parent directory CCB pointer.

"OAC4" File number (if unit file) or -1.

"OACH" O (if prefix is "@") or unchanged.

Variable Output (input pathname JUST a prefix)

ACO Byte pointer to end of pathname + 1.

AC1 0.

AC2 Directory's CCB pointer.

"OAC4" -1.

"OACS5" O (if prefix is "@") or unchanged.

Licensed Material 2-17 Property of Data General

RESLV.P is called by code paths that implement system calls
with inputs that include a file pathname. Each filename in the
pathname is validated for existence and valid file type,
including the last file. For example, if RESLV.P ever comes
across a file of type ?FMDR that is valid only under RT32, a
system panic (code 6023) will be forced. Each file in the
pathname that is not the last file must be a valid directory
type file. The last file may be any valid AOS/VS file type.

Since resolution of the last filename is the purpose of this
service, the caller will require either the file's FNB or its
FIB, or both. The IDPs are passed back so the caller can decide
which DDE to read in. RENAME.P calls RESLV.P to request the FNB
and FIB pointers of the existing filename. It must read in the
file's FNB (later to delete it) and its FIB (to adjust the
existing FNB pointexr to the FNB of the new filename). On the
other hand, SACL.P only needs the FIB to access the FAC; the FNB
pointer is not used. The parent CCB address is used by all
callers of Resolution Services for access to the parent
directory's databases and to initiate directory I/0; the FNB of
any file resides in its parent directory.

The special case of the pathname consisting solely of a prefix
(", "onw, o nommn_om=nw o "@") does not necessitate the output of
the same values as the case of the pathname consisting of
filename characters. A prefix must resolve to a directory type
file; therefore, the directory's CCB is an adequate parameter to
return. The CCB already contains the FIB IDP (CBFIB), and the
directory's FNB is accessible through the FIB. OAC5 will be set
to 0 if the prefix is "@", since BRKFL.P needs to know this
information (see WRSLV.P).

A typical calling sequence to RESLV.P is illustrated by the
following call from ILKUP.P:

WSuB 1,1 ; APPLY SEARCH RULES
WSUB 2,2 ; PATHNAME IN USER SPACE
WPSH 1,2 ; MAKE ROOM FOR OAC4,5
XWLDA 0, TACO.W,?2 ; GET THE USER'S ACO
LJSR RESLV.P ; RESOLVE THE PATHNAME
WRTN ; ERROR IN CERWD OF CB
WNEZ 1 PATHNAME JUST PREFIX?

WBR DIERR
XWSTA 2,PCCB.W,3
NLDAI DEFIB,1
XJSR RAID

WBR BERR

YES - IT CAN'T BE IPC FILE
REMEMBER THE PARENT DIR

FIB = ELEMENT TYPE REQUESTED
READ IN THE FIB

RATS!

Ne Ne NP Ne No N

Licensed Material 2-18 Property of Data General

External requesting modules of WRSLV.P

Caller Effect
BRKFL.P Resolve pathname of breakfile to create.
CREATE.P Resolve pathname of file to create.
RENAME. P Resolve pathname of new filename.
Variable Output
ACO Hash value of the last filename.
AC1 Namespace address containing last filename.
AC2 Parent directory CCB pointer.

"OAC4" Byte length of last filename, or host id.
"OACH" 0 (if prefix is "@") or unchanged.

The WRSLV.P variant of Resolution Services is called when the
last filename of the supplied pathname does not exist. This
implies that the caller plans to create the file, which is
indeed the reason that WRSLV.P is chosen. CREATE.P, RENAME.P
and BRKFL.P utilize this service to verify the validity of the
directory in which the new file is to be created and to acquire
essential information leading to the file's creation.

Although BRKFL.P calls BCREATE.P, which calls WRSLV.P, BRKFL.P
must "pre-resolve" the breakfile name; if the breakfile name
already exists, it must be deleted and re-created. Furthermore,
since BRKFL.P does not want to delete any file in :PER, the
preliminary call to WRSLV.P prevents this condition from
arising. BRKFL.P will check the returned value in OAC5 for O,
which would indicate that the parent directory of the existing
file is :PER. If this is true, no breakfile will be created.

WRSLV.P returns parameters that the caller will need to create a
file. The caller uses the hash value as input to JELLO.P when
creating the FNB. The namespace, a buffer in system memory
containing the last filename in the pathname, is used to fill in
the FNB. The filename length is used as an FNB parameter as
well. As usual, the parent CCB address is always passed back.

Licensed Material 2-19 Property of Data General

Incidentally, WRSLV.P returns the host id of a file in the
pathname that is of type ?FREM, along with error code "Remote
resource reference made."

External requesting modules of DRSLV.P

Caller Effect

CPMAX.P Resolves CPD directory pathname.

DRLSE.P Resolves input LDU pathname.

GFTLDU.P Resolves directory name to graft initted
LDU onto.

MIRROR.P Resolves input LDU pathname.

PROC2.P Resolves initial process working directory.

SINIT1 Resolves :PER and :NET directories to
save their system CCB addresses.

SLIST.P Resolves input searchlist directory.

Variable Output

ACO Byte pointer to end of pathname + 1.

AC1 Unchanged.

AC2 Directory's CCB pointer.

"OAC4" Unchanged.

"OACS5" Unchanged.

DRSLV.P is called when the last filename in the pathname is a
directory. The purpose of this call is actually to create
and/or retrieve the system CCB address of the directory, i.e.,
open the directory. For example, system initialization must
call DRSLV.P to create system CCBs for both :PER and :NET,
storing them on the return in PERCID.W and NETCID.W,
respectively. DRLSE.P requests the system CCB of the input
directory (LDU) to retrieve the system CCB that was created on
the LDU's initialization. The return value in ACO is not used
by any of DRSLV.P's callers. The two double words, OAC4 and
OAC5, need not be pushed before calls to DRSLV.P, since they are
neither accessed nor altered.

External requesting modules of GRSLV.P

Caller Effect
GNAME.P Resolves input pathname.
LINK.P Resolves pathname found in file's FLB.

Licensed Material Property of Data General

External requesting modules of RRSLV.P

Caller Effect

GNAME. P Resolves input pathname.

LINK.P Resolves pathname found in file's FLB.

Variable Output

ACO FIB IDP to last disk file in pathname.

AC1l FNB IDP to last disk file in pathname.

AC2 Parent directory CCB pointer.

"OAC4" Address of namespace (if unit file), or -1.
If last file's type is ?FREM, return host id.

"OACS" Num unused bytes in namespace, or unchanged

GRSLV.P is the customized resolve for the ?GNAME system call,
and RRSLV.P is the customized resolve for the similar ?GFNAME
call. While ?GNAME resolves the whole pathname (resolving
links) given an input pathname and the caller's searchlist,
?GFNAME does the same using the searchlist of the PID of one of
its customers (the caller must be a server).

GRSLV.P searches for the existence of the files named in the
pathname. If any file in the pathname is a physical or logical
unit, a network type file (except ?FREM) or a peripheral console
device, GRSLV.P passes back the remaining files of the pathname.
These files are unverified, accessible through the namespace
pointer in OAC4. If bit 27 is set in ACl, the first
Non-directory filename's file type is assumed to be type ?FCON,
and an error is returned if it is not ("Non-directory argument
in pathname"). This feature is used by AOS/VS windowing calls
to retrieve and verify the console filename from a pathname. If
the input pathname contains a network file of type ?FREM and it
is not the last file, the host id will be returned along with
the error "Illegal host specification." The AGENT will act upon
this condition and deflect the call to RMA if the host
specification is indeed legal. If there are no errors, the last
verified disk file's FNB and FIB pointers and its parent CCB
address are returned. The namespace length is a constant 128.
words; if the remaining number of bytes in the pathname do not
occupy 128. words, the number of unused bytes in the namespace
is returned in OACS5.

Licensed Material 2-21 Property of Data General

RRSLV.P works the same way as GRSLV.P, except that it treats all
network files as logical unit or console files. There is no
exception for ?FREM type files.

Observe the following CLI command lines and outputs:

)PATHNAME :LINK TO DIRX:FILE
:DIRX:FILE

)PATHNAME :UTIL:XHELP.CLI:OH NO
Warning: Non-directory argument in pathname

)PATHNAME :PER:MTB0O:0:1:2:THIS:IS:UNVERIFIED
:PER:MTB0:0:1:2:THIS:IS:UNVERIFIED

JPATHNAME :NET:RMA:NPN:FILES:UNVERIFIED
:NET:RMA:NPN:FILES:UNVERIFIED

Since RESLV.P is called most frequently, its C-based pseudo-code
algorithm will be illustrated here.

RESLV.P (*pathname, input switches, OAC2.W,
*FIB_IDP, *FNB IDP, *PCCB_addr, *file num, *pref flag)

/**

* Initialization. *

* Init file num to -1. Extract info from aflag. *
R e T T e T e T Ly

*file num = -1;

*PCCB_addr = OAC2.W & 017777777777;
pathname in system = OAC2.W & 020000000000;

/**

* If pathname is in user space, map it to system space. *
* If the pathname spans a page boundary, use the dynamic *
* logical slots to map the two logical pages contiguously. *

* If the pathname falls on one page only, fault and pin it. *
**/

if (!pathname in system)
{
RMAPU (num wds to map, (int *) pathname, CC.W->CPTAD.W);
if (error)
return (Invalid word pointer);
}

Licensed Material 2-22 Property of Data General

/**

* Check initial search directory CCB.

* If none specified, determine what it should be and

* temporarily set the parent CCB address to return.

* The initial working dir is located in the process table
*

extender. *
**/

* % %k %

TOP:
WDIRCCB _addr = CC.W->CPTAD.W->PEXTN.W->PWCCB.W;

if (*PCCB_addr == 0)

{
prefix found = TRUE; /* Assume prefix */
switch (prefix = *pathname++) {
case 'Q@': /* Start with :PER */
*pref flag = O;
*PCCB_addr = PERCID.W;
break;
case '“': /* Up dir hierarchy*/
*PCCB_addr = WDIRCCB_addr->CBPCB.W;
while (*pathname++ == '7"'")
*PCCB_addr = *PCCB_addr->CBPCB.W;
break;
case ':': /* Start with root */
*PCCB_addr = RTCCB;
break;
case '="': /* = means working dir¥*/
*PCCB_addr = WDIRCCB_addr;
break;
case default: /* Default working dir*/
*PCCB_addr = WDIRCCB_ addr;
prefix found = FALSE; /* Whoops - no prefix */
}
}
/**
* Return now if pathname ONLY a prefix. *
* The return values for this case differ from the typical *
* case of more than just a prefix. See inputs/outputs above.*
* Release the user pages from the DLS as well. *

**/

if (prefix found && end of pathname())

{
*OACO.W = pathname;
*OAC1l.W = O;

if (!pathname in system)
UNMAP (num wds mapped, O, (int *) pathname);
return;

}

Licensed Material 2-23 Property of Data General

/**

* Allocate namespace where isolated files in the pathname *

* will be saved. Then resolve pathname. *
AKXk hAhAIIIkkXk kXA X XA XA A KA R R Ak hhhhhkkkkkkkkkkkkkhhhkkkkk*x /

namespace ptr = GSMRS (FNSSZ);

while (!end of pathname())
ﬁ**
* This while loop checks for the existence and the
validity of each file in the pathname. Directory
files in the pathname will essentially be opened by
the system, manifested by the creation of an FCB and
system CCB. Non-directory files will be tested for
legality with various criteria. Upon input to this
loop, *PCCB_addr actually points to the current dir,
but will later become the parent dir pointer of the

last file in the pathname, a returned parameter.
**/

* % X %k X X % X
* % O ¥ % 3k %k %

*

/**

* Check: execute access to directory allowed. *
**/

if (error = ESTAC.P (PCCB_addr, &ACL privs))
return (error);

if (ACL privs & execute access) == 0)
return (directory access denied);

/**

* Copy (next) filename in pathname to namespace and *

* check for invalid characters. *
KA KKK KKK KKKKKKAKKKKKKARKK KKK KKK KKK K KKK KKK K KRR K KKK K /

namespace = namespace ptr;
while (legal filename char(*pathname))
*namespace++ = *pathname++;

if (*(namespace-1) == ':' || legal pathname terminator())
*namespace++ = NULL

else
return (illegal filename character);

/**

* Find the filename in the directory.

The LOOKUP.P operation searches the FNB chain in
which this file would be found. It returns the FNB
and FIB pointers if the file is found.

If found, read in the file's FIB to proceed. *
**/

* % % %
* % ¥ %

Licensed Material 2-24 Property of Data General

if (error = LOOKUP.P (hash value(*namespace_ptr),
(int *) namespace, *PCCB_addr,
&FIB_IDP, &FNB_IDP))
return (file not found);

if (error = RAID (FIB_IDP, DEFIB, *PCCB_addr,&FIB bh addr)
return (error);

FIB addr = FIB_bh addr->BQADR.W;

/**

* Check file types.

Link files must be resolved by LINK.P. We chain to
LINK.P, who will do this work. This is done if the
resolve links switch was set on input ACLl.

LINK.P returns with the new PCCB_addr! *
**/

* % % X
% % X X

if (FIB_addr->FITYP == link type)
if (input switches & NRESLNK) && (!end of pathname)
chain (LINK.P);
else
break; /* done */

/**

* If end of pathname, RESLV.P is done! *

* All return parameters have already been obtained. *
**/

if (!end of pathname())

{

/***
* RESLV.P resolves ?FHST files (via NRSLV.P). *
* Only DRSLV/RRSVL resolves other network types. *
* By the way, ?GNAME does a DRSVL! *

***/

if (FIB_addr—>FITYP == ?FHST)
chain (NRSLV.P);

/***

* Examine the pathname to get the unit file number. *

* This will mark the end of the pathname. *
***/

else if (FIB_addr->FITYP == unit type)
*file num = get file number (pathname);

Licensed Material 2-25 Property of Data General

/***

* Normally, middle of pathname files are dirs. *
* AOS/VS will OPEN the directory. *
* Basically, create an FCB if not already open, slam*
* its address into the FIB, and release the FIB.

* The parent CCB use count will be incremented with *
* the creation of a new FCB (a "son"). The file *
* open count (FCB_addr->FBOPN) is not incremented, *
* but the system CCB addr will indicate the system *
*

"implicitly" has the file open. *
***/

else if (FIB addr->FITYP == directory type)
{
FFCB (*PCCB_addr, FIB IDP, &FCB addr); /* Get FCB */
if (FIB_addr->FIFCB.W == 0)
{
FIB addr->FIFCB.W = FCB_addr;
RELM (FIB bh addr); /* Rel FIB modified */
}
else
RELB (FIB bh addr); /* Rel FIB unmodified */

T L
* Create a system CCB if it does not already exist. *

* When done, update the current parent CCB pointer *
* and return to the top of the while loop to cont. *
* and open the next filename in the pathname. *
* The parent CCB use count must be incremented since*
* a new son CCB was created and POINTS TO IT! *
*

The use count is decr when the son CCB released. *
***/

if ((SCCB_addr=FCB_addr->FBSCB.W) == 0)
{
/* No system CCB: create it, lock it, init it */
SCCB_addr = GSMRS (CCBLT);
CLOCK (SCCB_addr);

SCCB_addr->CBFCB.W = FCB_addr;
SCCB_addr->CBPCB.W = PCCB_addr;
FCB_addr->FBSCB.W = SCCB_addr;
SCCB_addr->CBUID = FCB_addr->FBUID;
PCCB_addr->CBUSC = 1;
}

else

/* Dir already open, CCB exists. Just lock it */
CLOCK (SCCB addr);

/***

* Unlock current parent CCB. *

* Update the PCCB_addr to point to the current dir. *
***/

CULCK (PCCB_addr);
PCCB_addr = SCCB_addr;
3

else
Licensed Material 2-26 Property of Data General

/**

* ILLEGAL FILE TYPE FOUND WITHIN PATHNAME! *
* If search rules, get next searchlist CCB and *
* start all over. Else, error out. *

**/

if (input switches & search rules)

{
*PCCB_addr = get next searchlist CCB():;

if (*PCCB_addr == 0) /* No more */
return (Non-directory argument in pathname);
else
{ /* Look in new dir! */
KCCB.P (0ld PCCB _addr); /* Release old CCB */
CLOCK (*PCCB_addr); /* Lock up new CCB */
goto TOP; /* Go to stage 1 */
3
}
else
/* No search rules ... no directory */
return (Non-directory argument in path);
Y /* if */

} /* while */

/***

* DONE! *
* We have resolved the pathname. The FNB/FIB pointers *
* have been set by LOOKUP.P, and RESLV.P has already *
* taken care of the rest. Let the caller do as it wishes *
* with the data. *

***/

RSMEM (FNSSX, namespace ptr);
RELB (FIB bh addr);
if (aflag == 0)
UNMAP (num wds mapped, O, (int *) pathname);

return;

Licensed Material 2-27 Property of Data General

2.4.2 File Creation Services

File Creation Services performs the function of creating a file,
specifically, of creating a unique FNB and a FIB in the file's
parent directory. If an ACL is provided, a FAC will be created.
If the file is of type 1link, an FLB will be created. Since
there are numerous FIB parameters redefined for various file
types, the FIB contents will vary.

There are five variations of File Creation Services. Each
variant is accessed through a specific entry point. The
different types of "creates" and their functionality are the
following:

Variant Function

CREATE.P Create a file for a user.

Implementation of the ?CREATE system call.
ICREATE.P Create a file for the system.

VCREATE.P Create an LDU entry in a directory.
BCREATE.P Create a breakfile.

PCREATE.P Create per process swap/page files.

External requesting modules of CREATE.P

Caller Effect
User ?CREATE - Create a file.
SINIT1 Create :BOTH:SWAP and :BOTH:PAGE links if

:BOTH LDU hosts SWAP and PAGE directories

SINIT1 Create actual SWAP and PAGE directories.

Note: ICREATE.P is not designed to create links; system
initialization must call CREATE.P to accomplish this. CREATE.P
is called instead of ICREATE.P to create the SWAP and PAGE
directories because a maximum CPD size must be specified;
ICREATE.P cannot do this for CPD types.

Licensed Material 2-28 Property of Data General

External requesting modules of ICREATE.P

Caller Effect

SINIT1 Create :PER and :NET directories

SINIT1 Create @CONSOLE; generic files; unit files;
¢:PROC:HIF, :PROC:PIF, :PROC:IPS.00003
file (IPC spool file for CLIBT); Q@LFD.

Note: :PER and :PROC are always deleted and re-created.
ICREATE.P is always called to create :NET during system
initialization; however, if an error code is returned, the code
is assumed to be ERFAE, "File already exists."

External requesting modules of VCREATE.P

Caller Effect

XINIT.P Graft LDU entry into directory hierarchy
during disk initialization.

External requesting modules of BCREATE.P

Caller Effect

BRKFL.P Create a breakfile.

External requesting modules of PCREATE.P

Caller Effect

SWAPFILES Create per process page file.
Create per process swap file.

Licensed Material 2-29 Property of Data General

Most Directory and File Management system calls run the risk of
pending on I/0O completion. CREATE.P and its variants are not
exceptions. The callers of file creation services must be
running on a control block or a daemon so that state save data
may be stored safely. System initialization creates a primary
control block for its own use and allocates a dummy TCB in order
to issue standard system calls that may pend, including
CREATE.P. Errors incurred during processing will be returned to
the caller in ACO.

The ?CREATE system call, accessed via the CREATE.P entry point,
must transfer packet data from the caller's address space to
system space. This is done with a WBLM instruction. However,
it is entirely possible that an access violation could occur and
cause a trap. CREATE.P handles this potential danger by
establishing its own fault handler, CTRP, whose address is
stored in the control block at offset CBFEH.W, before touching
memory in the caller's address space. If a fault occurs,
control will be transferred to CTRP, the error condition will be
analyzed, and CREATE.P will decide what course of action to
follow. If the trap code indicates that the control block is
still valid, the error code will be returned to the caller. If
the control block is invalid, but the error condition is a
memory restart, the call will be restarted. However, if the
control block is invalid and the trap code is not a restart, it
means that the hardware has detected some unknown protection
violation, and CREATE.P will panic the system with panic code
7304. This is general system call handling and will not be
repeated in the following sections.

The input values to each create variant are dependent upon the
variant being called. These parameter differences are screened
and arranged so that the flow of control can continue at a
common point for all variants. The most common service
requested is that of CREATE.P, presented here in algorithm form.

The inputs and outputs of CREATE.P are listed below. TAC n
refers to accumulator n in the calling TCB.

Variable Input Output

TACO.W Byte address of file Unchanged.
pathname in user space

TACl.W Not used. Unchanged.

TAC2.W Address of packet. Unchanged.

Licensed Material 2-30 Property of Data General

If CREATE.P is being accessed by a user process, the standard
system call interface is the calling sequence. The only other
component that makes use of CREATE.P is system initialization.
A typical implementation follows:

XWLDA 2, TCBAD.W,3 ;RETRIEVE TCB ADDR
XLEF 0, LNKPK ; PACKET ADDRESS
XWSTA 0, TAC2.W,2 ;SET UP PACKET ADDRESS FOR CALL
LLEFB 0,PGNAM*2,0 ;BP TO :PAGE
XWSTA 0, TACO.W,?2 ;SET UP PATHNAME FOR CALL
LJSR CREATE.P ; CREATE LINK TO :BOTH:PAGE
WBR PRINTERR ; PRINT THE ERROR CODE

CREATE.P is the only variant that takes a packet as an input
parameter. The user supplies the required information for file
creation in the create packet, which is moved into system space
and subsequently extracted as needed. When the file is finally
created, there is nothing pertinent to return to the caller,
except a successful or failure status value. The following is
the C-based pseudo-code algorithm that describes the CREATE.P
service:

CREATE.P (*pathname,,b *caller pkt) /* No outputs */
{
/**
* Move caller's CREATE.P packet to system space. *
* AOS/VS does this with a WBLM instruction. If the caller *
* supplied a time block, it is also moved to system space. *

**/

wblm (caller pkt, &sys pkt, pkt len);

/**

* Check validity and resolve pathname.

If the file type is illegal, that is, not within the
file range or not found in the LFTBL (legal file table),
return the error. Otherwise, check for the presence of
each dir supplied in the pathname by calling WRSLV.P.

The parent CCB is needed to access the parent dir's FCB! *
**/

* % % %k *
* % ok ¥ %

if (sys_pkt->cftyp < ?SMIN) || (sys pkt->cftyp > ?SMAX) ||
(check bit (LFTBL_ addr, sys pkt->cftyp))
return (illegal file type error);

call WRSLV.P (pathname, switches, a flag,
&hash val, &filename, &PCCB_addr);

Licensed Material 2-31 Property of Data General

/**
* Check directory access. *
* Caller must have write or append access to create the file.*

* Then, more validity checking is done. *
KEKKKKKKKKKKRKKARKKARKKARKKARKKAKRKKRRK KKK KXRKKARKK KRR K KKK K KKK /

call ESTAC.P (PCCB_addr, &ACL privs);

if (ACL privs & (write access | append access) == 0)
return (directory access denied);

/* Must create network files in :NET */
if (network type file && (PCCB_addr != NETCID.W)
return (illegal dir name specification);

/* Cannot exceed max dir depth, currently 8 */
PFCB_addr = PCCB_addr->CBFCB.W;
if (PFCB_addr->FBLVL == SCLVL)

return (max dir tree depth exceeded);

/**

* 11! CREATE AN FNB IN THE PARENT DIRECTORY !!!. *

* The only error can be insufficient room in directory. *
kkkkkhkkkhkkkkhkhhhhkhhhhhkkkkhh kXXX I A XXX KKK XXX KKIKKXXRKAK KKK K /

call JELLO.P (hash val, filename, PCCB_addr,
&FNB_bh addr, &FNB_ addr);

if (error) return (insufficient room in dir);

/**

* Fill in the DETAS word and move the filename into the FNB. *

* The FIB must be created before its pointer is stored. *
**/

FNB addr->DETAS = (DEFNB << 8) + strlen(filename) + 2;
call round up to next nugget multiple (FNB_addr->DETAS);

wblm (&filename, &FNB addr->FNNAM, strlen(filename);

/**

* Let Link Services create the FIB and FLB. Chain away! *
KAKKKIKKKIIKIIIIIRIKAKRKKAKK KKK KKK KXKKK KKK KKK KKK KKXRK KKK KKK /

if (link type file)
chain (CLINK.P);

/**

* 11! CREATE A FIB IN THE PARENT DIRECTORY !!! *
* The FIB contents depend upon file type. *
* No error conditions will arise after FIB allocation. *

**/

call JELLO.P (hash val, filename, PFCB_addr->FBHFS,
&FIB bh addr,&FIB addr);

if (error) return (insufficient room in dir);

Licensed Material 2-32 Property of Data General

switch (sys pkt->cftyp) {
case IPC FILE TYPE:

/**

* Fill in the global port number. *
**/

FIB addr->DETAS FDETAS; /* Full length FIB */
FIB addr->FIPHI = pid;

FIB addr->FIPHL ring and local port:;

break;

case GENERIC FILE TYPE:

/**

* The generic file indices are as follows: *

* 1=Q@INPUT, 2=@OUTPUT, 3=Q@LIST, 4=@DATA, 5=@NULL *
R e e S s e S L

FIB addr->FICPS = generic_file index;
break;

case UNIT FILE TYPE:

/**

* Fill in the unit's device code and number. *
* Fill in mag tape redefs if mag tape unit. %
* Units have no starting address at creation. *

**/

FIB addr->FIDCU = (device code << 8) + unit number;

if (sys_pkt->cftyp = ?FMTU)
init tape redef params in FIB (FIB addr);

FIB _addr->FISTS = O;
FIB_addr->FIFAH.W
FIB addr->FIFCB.W
break;

0
0

~e “o

case DIRECTORY TYPE FILE:

/**

* Fill in directory-related FIB parameters. *
**/

FIB addr->FIMSH.W = sys pKkt->cmsh; /* Max space */
FIB addr->FICSH.W = O; /* Curr space */
FIB addr->FIHFS = sys_pkt->chfs; /* HFS */
FIB addr->FIIDX = SCMIL; /* Max index lev */
FIB addr->FIDFH.W = 1; /* elementsize=1 */

/* Time last accessed */
FIB addr->FITAH.W =

_((sys_pkt—>CTIM == -1) ? system time : user time);

Licensed Material 2-33 Property of Data General

/* Time last modified */
FIB addr->FITMH.W =

((sys_pkt->CTIM == -1) ? system time : user time);
FIB addr->FIFUD = 0; /* Init the */
FIB addr->FIEFH.W = O; /* rest to */
FIB addr->FIFWl = 0; /* zippo. */
FIB addr->FIFW2 = 0;
FIB_addr->FIIDR = 0;
FIB addr->FISTS = O;
FIB addr->FIFAH.W = O;

break;

case default:

/**

* For all other file types, fill in the FIB with *

* values supplied in the packet, or init field to 0. *
**/

FIB addr->FICPS
FIB addr->FIIDX
FIB addr->FIDFH.W

sys pkt->FICPS;
sys pkt->cmil;
sys_pkt->cdel;

/* Time last accessed */
FIB addr->FITAH.W =
((sys_pkt->CTIM == -1) ? system time : user time);

/* Time last modified */
FIB addr->FITMH.W =

"~ ((sys_pkt->CTIM == -1) ? system time : user time);

FIB addr->FIFUD = 0;

FIB addr->FIEFH.W = O;

FIB addr->FIFWl = 0;

FIB addr->FIFW2 = O;

FIB_addr->FIIDR = 0;

FIB addr->FISTS = 0;

FIB addr->FIFAH.W = O;

}

/**
* Fill in other FIB offsets. *
* If a time block was specified in the packet, use the time *
* gpecified. Otherwise, use the current system time. *

**/

/* Creation time */
FIB addr->FITCH.W =
((sys_pkt->CTIM == -1) ? system time : user time);

FIB addr->FITYP
FIB addr->FIACL
FIB addr->FIUID

sys_pkt->cftyp’
0
0;

Licensed Material 2-34 Property of Data General

/**

* Nearing the end. *

* Fill in FNB pointer in the FIB, and FIB pointer in the FNB.*
L e

FIB_addr->FINLP
FNB_addr->FNFIB

convert to idp (FNB_addr);
convert to idp (FIB addr);

/**

* Flush the completed FNB and FIB to disk. *
* This causes the parent dir to be modified, so set the mod *
* bit in its FCB. This will cause its Funny FIB to be *
* flushed when the file is closed. *

**/

RELF (FNB_bh addr); /* Bye Bye FNB */
RELF (FIB bh addr); /* Bye Bye FIB */

set bit (PFCB_addr, BFBMD);

if (DIRECTORY_TYPE_FILE)
PFCB_addr->FBIDR += 1; /* Count a new inferior dir. */

JRxKkkkkkkkkhkhhkkhkhhkhhkhhkhhhhhhhkhhkhkkhkhhrkhhkhkhkhhxkhxhkkk
* MOSTLY DONE! *

* The FAC pointer was initted to 0 without even a check for *
* ACL specification. The DOACL.P variant of Access Control *
* Services is chained to. The ISACL.P service could have *
* been used instead, but VS chose this approach. An FAC will%*
* be allocated if more than a universal ACL is specified. *

**/

chain (DOACL.P);

Licensed Material 2-35 Property of Data General

2.4.3 File Deletion Services

File Deletion Services represents the functional opposite of
File Creation Services. File deletion services deletes a file's
FNB and FIB directory data elements in its parent directory.

The FAC or FLB will be deleted as well. If a UDA was created
for the file, the FUD will also be released. The REDEL
operation will be called to accomplish standard DDE deletion.

File deletion encompasses more than interaction with directory
data elements. Most files are associated with data elements,
which must be deallocated from disk. File creation is not
concerned with data element allocation; CCB Request Management
allocates the data elements on I/0 requests. File deletion,
however, must take responsibility for deleting all of a file's
data, including the index blocks that build the file's physical
structure. Fortunately, the I/0 world deallocates both data
elements and index blocks upon request. File Deletion Services
need only make one DELFIL ("DELete FILe") request to CCB Request
Management to delete a file's data. Consequently, the file's
first address will again be O.

Although directories are files just like any other data file,
their deletion is more complex. The contents of a directory are
its DDEs, which hold information about the files residing in the
directory, including their filenames. All DDEs plus the data
housed by each file must be deleted. This implies that a simple
?DELETE could become a recursive operation traversing the
directory tree from top to bottom. If this were allowed, a CLI
DELETE (which does a ?DELETE) could wipe out entire directory
hierarchies, a dangerous consequence for such a simple, common
operation. AOS/VS stipulates that user directory deletes are
possible only if none of the directory's subordinate files are
directories. This forces only one recursive level within the
DELETE operation: that of each of the mandatory non-directory
files in the directory. (CLI parses the "#" template supplied
in "DELETE" commands and subsequently makes the required number
of ?DELETE system calls to service the user's request. "#" is
not a ?DELETE parameter!) System initiated deletes do provide
the option of relentless deletion of ALL files in an input
directory.

Another interesting feature of Deletion Services is that if a
file is open and a delete file request is made, only the file's
FNB will be deleted, creating the illusion that the file is
gone. In reality the FIB, FAC, FUD and all data elements remain
allocated and intact in the directory until the file's FCB open
count reaches zero (last close). This explains why the
execution of a program file will not be aborted if the .PR file
is "deleted" during execution. The file's physical structure
and all its data is still accessible from disk by processes
which already have the file open. Further opens of the file are
not possible, since the filename no longer appears in the
directory.

Licensed Material 2-36 Property of Data General

There are four variants of File Deletion Services. Each variant
is accessed through a specific entry point. The different types
of deletion services and a functional description of each
follows:

Variant Function

DELETE.P Delete a file for a user.
Implementation of ?DELETE system call.

IDELETE.P Delete a file for the system.
Internal file delete.

UDELETE.P Delete a file for the system, on behalf
of the user.

VDELETE.P Delete an LDU entry from its parent dir.

CLDEL.P Delete a file marked for "delete on last
close."

External requesting modules of DELETE.P

Caller Effect
User ?DELETE - Delete the file.
DOACL.P Delete the file being created.

The user issues a ?DELETE, which passes through the system call
processor and enters the system call code at DELETE.P. DOACL.P
is a service chained to from CREATE.P (after the FNB and FIB
have been created) to allocate the FAC and establish a file's
ACL. If the ACL is invalid, the previously created DDEs must be
deleted. This is done via a request to DELETE.P.

External requesting modules of IDELETE.P

Caller Effect
BRKFL.P Delete breakfile on error condition.
SDOWN.P Delete :PER and :PROC.

SINIT1 Delete :PER and :PROC before recreation.

Delete :SWAP and :PAGE before recreation.
Delete invalid files in :SWAP and :PAGE

ALLSW.P Delete a PID's swap file on ?PROC.
DALSW Delete a PID's swap file on ?TERM.
PSWIPE.P Delete all unopened swap and page files.

Licensed Material 2-37 Property of Data General

IDELETE.P is an internal ?DELETE. The necessary parameters are
passed in the system accumulators rather than in the user
packet. The system requests IDELETE.P service when it decides
to delete a file. BRKFL.P utilizes IDELETE.P to delete the
breakfile if an error condition arises after its creation.
SDOWN.P calls IDELETE.P to delete the :PER and :PROC directories
on system shutdown. System initialization makes the call as
well in case system shutdown did not run to completion (or did
not run at all). One option of the IDELETE.P call is to delete
all files in a directory, whether or not they are directory
files and regardless of access privileges and permanence.
System initialization also calls IDELETE.P to delete files in
:SWAP and :PAGE that are not in the correct format for the
directory (e.g., SWAP.00099).

Process management (ALLSW.P) makes use of IDELETE.P by deleting
a new PID's swap file on ?PROC if the file is hot (already
exclusively open) and the new swapfile is a non-default size.
DALSW calls IDELETE.P to delete a PID's swap file on ?TERM if it
was created with a non-default size. Normally, swap files are
left exclusively opened on process termination to avoid the
overhead of closing on ?TERM and reopening on ?PROC. Finally,
PSWIPE.P calls IDELETE.P for each unopened swapfile in :SWAP and
pagefile in :PAGE when an error is returned from a swapfile I/O
request. The error condition assumes that there is a potential
fatal condition, since there is no reason for the I/0 to fail.
The call to PSWIPE.P attempts to free up disk space in :SWAP and
:PAGE in case the I/O error was due to insufficient space, and
the original I/O request is retried. If the second request
fails, AOS/VS will panic with code 14413.

External requesting modules of UDELETE.P

Caller Effect

BRKFL.P Delete the existing filename with which
a breakfile is to be created.

UDELETE.P is called only by BRKFL.P when a breakfile name is
specified by the user in a ?BRKFL, ?MDUMP or ?TERM/BREAKFILE
system call and the filename already exists. UDELETE.P is
exactly the same as IDELETE.P, except that UDELETE.P will not
delete the file if access is denied or permanence is set.

Licensed Material 2-38 Property of Data General

External requesting modules of VDELETE.P

Caller Effect

DRLSE.P Delete the LDU entry from its parent dir.

VDELETE.P is called to from LDU release code to delete the
FNB/FIB/FAC from the parent directory.

External requesting modules of CLDEL.P

Caller [Effect

CLOSE.P Delete the file just closed which was
marked for "delete on last close."

CLOSE.P calls CLDEL.P to "really" delete the file when the FCB
open count of a file marked for "delete on last close"
reaches zero.

The input values to file deletion services are similar for all
variants. An explanation of any variant algorithm should
provide a clear understanding of the file deletion mechanism.
The system internal delete service, IDELETE.P, is presented
here in algorithm form.

Inputs and outputs of IDELETE.P:

Variable Input Output

ACO Byte address of file Unchanged.
pathname in sys space.

ACl1 Options flag. Unchanged.

AC2 Not used. Unchanged.

ACl is zeroed if checking for permanence and access rights is to
be done. Also, if the file to be deleted is a directory, and
there are inferior directories as well, the directory will not
be deleted. ACl is loaded with one if all these checks are to
be ignored.

LLEFB 0, PERNM*2,0 ;Byte pointer to ":PER"
NLDAI 1,1 :Ignore validity checks
LJSR IDELETE.P :Adios

WBR ERRTN

Licensed Material 2-39 Property of Data General

IDELETE.P (*pathname, options flag)
{

/**

* Resolve pathname of file to delete. *
* Returned are the FIB/FNB IDPs and parent dir CCB address. *

* If options flag=0, make sure all access checking done. *
************;***/

aflag = SYSTEM SPACE BIT;
if (options flag == 0)
options flag = all validity checks bits;

call RESLV.P (pathname, input switches, aflag,
&FIB IDP, &FNB_IDP, &PCCB_addr, &duml, &dum2)

/**
* If specified, check ACLs. *
* If caller has owner access to the file OR write access to *
* the file's parent directory, the file can be deleted. *

* Errors from ACL services returned in CERWD of the CB. *
**/

if (options flag & check ACL)
{
/* Check caller's access to the file to be deleted */
call PESTAC.P (FIB _IDP, username, PCCB_addr, &ACL privs);

if (!(ACL privs & owner_access))

{

/* Check caller's access to the directory */
call ESTAC.P (PCCB_addr, &ACL privs);

if (!(ACL privs & write access))

{
return (error);
}
}
T e e e T T
* Access allowed; read in the file's FNB and FIB. *

**/

call RAID (FIB_IDP, DEFIB, PCCB addr, &FIB bh addr);
call RAID (FNB_IDP, DEFNB, PCCB addr, &FNB_bh addr);

/**

* If specified, check permanence in FIB. *

* Delete the file, even if permanent, if caller so specified.*
kkkkkkkkkkkkkkkhkhkhkhhhkkkkkhhhhkkkhhkkhkhkhhhkkkkkkkxkkkhkxkkkkk /

if (options flag & check permanence)

{
if (FIB_addr->FISTS & permanence bit)
return (cannot delete permanent file);

}

Licensed Material 2-40 Property of Data General

Ve e T e s
* Check if the directory and all its files should be deleted.*

* If there is no FCB, the file is closed and can be deleted. *
* If there is an FCB (file open), no inferior dirs and the *
* system CCB use count is 0, it will be deleted. *
* *
* Notice that directory deletion will be attempted if *
* the delete ALL files in dir option is selected, even if the*
* dir is open (it will be marked for delete on last close *
* later). Decrement the count of inferior dirs in the *

* parent CCB now. *

**/

if (FIB_addr->FITYP == directory type)

{
if (!(options flag & delete ALL files in dir))

if (FIB addr->FIFCB.W != 0)
if (FIB_addr->FIFCB.W->FBIDR != 0)
return (Directory delete error)
else if (FIB_addr->FIFCB.W->FBSCB.W->CBUSC != 0)
return (Directory in use error);

}

PCCB_addr->CBFCB.W->FBIDR -= 1;
}

/* Must ?RELEASE LDU type directories (VDELETE.P) */
else if (FIB_addr—)FITYP == ?FLDU)
return (Directory delete error);

/**

* Delete checks out. Delete the file's FNB! *
e e e L L T T LY

call REDEL (PCCB_addr, FNB bh addr, FNB addr);
FIB addr->FINLP = O;

/**

* If the file is open, mark if for delete on last close. *
* The file will be deleted (CLDEL.P) when the FCB open count *
* reaches O. *

**/

if (FCB_addr->FBOPN > 0)

{
set bit (FCB addr, BFDBL);

RELM (FIB bh addr);
return;

}

Licensed Material 2-41 Property of Data General

/**

* If the file to delete is a dir, delete the files in it. *
* File Deletion Services basically implements this as a *
* recursive IDELETE.P for all the files. *
* See the code for more details (AOS/VS module: DE2.SR) *
e T LY
if (FIB_addr->FITYP == directory type)
{

for (each file in the directory)
call IDELETE.P (filename, options flag=1);

}
/**
* Enqueue the request to delete the file's data elements. *
* This is done by putting a "DELETE FILE" command in the CCB *
* flag word and "enqueuing the CCB." See Section 3.3. *
* The file will be null after this call and its DDEs in the *
* parent directory can be released! *

**/

PCCB_addr->CBFLG = CBDEL;
call NQCCB (PCCB_addr); /* Delete file data */

if (FUD_IPD = FIB addr->FIFUD) /* Delete FUD */
{
call RAID (FUD_IDP, DEFUD, PCCB_addr, &FUD _bh addr);
call REDEL (PCCB_addr, FUD bh addr, FUD addr);

}
if (FIB_addr->FITYP == ?FLNK) /* Delete FLB */
{
if (FLB_IDP = FIB addr->FINLP)
{
call RAID (FLB_IDP, DEFLB, PCCB_addr, &FLB bh addr);
call REDEL (PCCB_addr, FLB bh addr, FLB addr);
3
}
else
if (FAC_IDP = FIB addr->FIACL) /* Delete FAC */
{
call RAID (FAC_IDP, DEFAC, PCCB addr, &FAC bh addr);
call REDEL (PCCB_addr, FAC bh addr, FAC addr);
}
if (FIB_IDP = FIB addr->FIACL) /* Delete FIB */
{

call RAID (FIB_IDP, DEFIB, PCCB_addr, &FIB bh addr);
call REDEL (PCCB_addr, FIB bh addr, FIB addr);

}

/**

* DONE! *
**/

return;

}

Licensed Material 2-42 Property of Data General

3 File Management

3.1 Overview

File Management provides both the user and system components
with an interface to lower level I/0. There are two primary
functions of File Management services:

1) to build and maintain file-specific databases,
2) to process and initiate user and system I/0 requests.

The two main file-specific databases are the File Control Block

(FCB) and the Channel Control Block (CCB). These databases hold
dynamic information relating to the state of an open file and to
the state of the current I/0 request on that file, respectively.
File Management is responsible for allocating, initializing, and
releasing these databases when files are opened and closed.

The mere existence of these databases, which correspond to a
unique file, advises AOS/VS that certain sections of disk-based
data are vulnerable to modification (files are open). When a
process is terminated, its open files must be closed and
modified files, whose buffers may still be in memory, must be
flushed to disk. The user CCBs and the files' FCBs must be
retrieved and possibly deallocated. Likewise, when A0S/VS shuts
down (either normally or after a panic), modified buffers must
be flushed to disk and open files must be closed. The system
shutdown routine prints out the occurrence of these procedures
on the master console ("Flushing buffers" and "Open file
processing").

File Management services further initialize the databases with
I/0-related parameters before making an I/O request. After a
file is opened, either for read only or write access, some type
of I/0 is usually requested. The FCB and CCB (mostly the
latter) provide the specific data necessary to run an I/0
request. Most "customers" of File Management services run on
control blocks, because they run the risk of pending awaiting
I/0 completion. However, some services do not pend even though
an I/0 request is enqueued. Each particular service is designed
to manage its callers' control blocks and process tables in
either case.

There are few direct user interfaces to file management
services. They are:

1) file opens, e.g., ?0PEN, 7?GOPEN, ?SOPEN

2) file closes, e.g., ?CLOSE, ?GCLOSE, ?SCLOSE
3) file I/0 requests, e.g., ?RDB, ?WRB, ?PRDB, ?PWRB, ?BLKIO

Licensed Material 3-1 Property of Data General

The system has access to these as well as I/0 initiation
services, which are invoked either by the authoritative decision
of another system component or by a file system component

on behalf of the user. For example, NQCCB is a service that
creates, initializes and schedules an I/0 request, and alerts
the disk manager to run the request on behalf of a user process.
The RDB.P (implements ?RDB) service calls NQCCB. NQCRQ is a
generic ring O interface service that implements a similar
procedure; the request is made by the system without explicit
user direction. The RDUST.P service (reads .PR file UST) calls
NQCRQ.

File management services can be learned by understanding the
purpose and contents of the most important databases. Once this
knowledge is incorporated, comprehension of the specific
services will follow. This chapter introduces high-level, File
Management concepts and provides excellent insight into
lower-level CCB Request and Buffer Management services.

Licensed Material 3-2 Property of Data General

3.2 File Control Block (FCB)
3.2.1 FCB Parameter Definitions

As explained in Section 2.2, system main memory is allocated

for FCB creation and destruction. An FCB is created when a file
is opened for the first time and destroyed when the file is
closed for the last time. There is only one FCB for any given
open file, whether opened by the user or by the system. Hence,
the FCB contains common data regardless of how the file is
opened. Some parameters remain static throughout the life of
the FCB, such as the file's parent directory CCB pointer and its
depth in the directory hierarchy, indicating fixed properties of
the file. Most parameters are dynamic, such as the file open
count and file status word, monitoring the changing state of the
file. The following diagram briefly describes each of the FCB
parameters.

Licensed Material 3-3 Property of Data General

Offset File Control Block (FCB)

FBLCB.W 0 Logical Unit Control Block (LCB) address.
FBBLP.W 2 FCB Buffer List Queue Descriptor Pointer (head).
4 FCB Buffer List Queue Descriptor (tail).

Here starts the FUNNY FIB.

FBSTS 6 Status (Bits 0-10), Universal ACL (Bits 11-15).

FBTYP 7 File Format (Bits 0-7), File Type (Bits 8-15).

FBHFS 10 Hash Frame Size: if directory type file

FBCPS 10 File Control Parameters: Index if generic file.
Record length if file open for fixed length I/O.

FBDCU 10 Device Code (Bits 0-7), Unit number (Bits 8-15).

FBFW1 11 Extension for EOF in future. (Now 32-bit max)

FBEFH.W 13 Number of bytes in file (byte EOF).

FBDFH.W 15 Data element size. Set at file creation.

FBFAH.W 17 File First Logical Address. Zero if null file.
FBIDX 21 Current (Bits 0-7), max (Bits 8-15) index levels.
FBIDR 22 Count of inferior directories (dir type files).

This is the end of the Funny FIB.

FBOPN 23 File Open Count.

FBUID 24 FCB Unique ID.
FBPDP.W 25 Parent Directory CCB Pointer.
FBFIB 27 FIB Intra-Directory Pointer (IDP).

FBCMP.W 30 FCB Shared Page Header Queue Descriptor.

FBSCB.W 34 System CCB Pointer.

FBUNDC 36 Unit number (Bits 0-7), device code (Bits 8-15).
FBLOCK 37 FCB Lock Word.

FBWTC 40 IOCB waiter count on this FCB.

FBLVL 41 Depth of file in directory hierarchy.

FBCPB.W 42 Control Point Block (CPB) pointer.

FBUDB.W 44 UDB address if the file Unicorn LPU or MTU type.
FBST2 46 Shared protected file status word.

FBFOP 47 Pid and Ring of first opener of ?SOPPFed file.
FBPPB.W 50 PPB chain queue descriptor (head).

FBPPBB.W 52 PPB chain queue descriptor (tail).

FBLMB.W 54 Lock Management Block pointer.

FCBLT 56 Length of FCB.

Licensed Material 3-4 Property of Data General

The LCB address of the LDU on which the file resides must be
stored in the FCB. CCB Request Management determines the
correct logical unit to enqueue requests by examining this
field. The LCB points to the unit definition block (UDB) 1list,
which describes each of the units in the LDU. Ultimately, the
disk driver will enqueue the request to the proper physical
unit.

Buffer headers found on the FCB buffer list queue (FBBLP.W)
represent directory data blocks, directory bit map blocks, file
blocks from system-initiated I/0 (IPC spoolfile, HIF file and PIF
file blocks), or all file index blocks. When CCB Request
Management reads in a single data block ("read system buffer" CCB
command) or an index block (during index level traversal) into a
system buffer, the buffer header is enqueued to the FCB. The
logical disk address of the blocks are stored in the buffer
header. The relative block number is stored in the buffer header
for "read system buffer" data blocks, but the same field (BQDBN)
is filled with -1 for index blocks to distinguish them from data
blocks. Data blocks read or written during all other CCB command
processing (all user I/0) are not enqueued to the FCB buffer list
because the buffer header is not a system buffer header (see
Section 4.2.7).

Before file blocks are read from disk, the FCB buffer list queue
is searched for a match on the desired logical disk address. If
the block is found, no disk I/O request need be made. This
minimizes the number of enqueued disk requests and interrupt
service time, and improves general system performance. When the
last close on the file occurs, the buffer headers are moved to
the LCB cache buffer list queue. When the file is deleted, the
buffer headers are removed from either the FCB or LCB buffer
lists. See CCB Request Management and Buffer Management for
more specific details.

FBBLP.W ---> BH <===> BH <===> BH <===> BH <===)> BH <===)> -1

The Funny FIB on disk is copied into the FCB Funny FIB common
area on the first file open. Throughout the open 1life of the
file, the Funny FIB parameters are maintained in the FCB. This
is a logically comprehensible operation. If this implementation
were not chosen, the FIB would either have to be maintained
somewhere else in main memory while the file was open (probably
with a word pointer in the FCB), or it would have to be
read/modified/written to disk upon any change. The latter
approach would not be feasible since the extra disk I/0 overhead
is not necessary. The former approach has been implemented, in
effect, by reading the most dynamic portion of the FIB directly
into the FCB.

The file open count (FBOPN) is a dynamic parameter initialized
to 1 on the first file open. File Open Services increments the
count for each successive open on the file. When the count
reaches 0O, the FCB buffers as well as the Funny FIB portion of
the FCB will be flushed to disk and the FCB will be destroyed.

Licensed Material 3-5 Property of Data General

The FCB unique ID (FBUID) is a static parameter initialized to
the value of the AOS/VS global variable IFCB. IFCB is
initialized to 1 and is incremented each time the wvalue is
assigned to a new FCB. The purpose of FBUID is to verify the
FCB/CCB association of the same file. The CCB unique ID (CBUID)
is assigned the value of the file's FBUID. When a channel
request is made, the file's FCB and CCB must be retrieved. Once
they are both in the hands of the caller, a sanity check is made
on their unique IDs. If they do not match, AOS/VS will panic
with code 6034.

The parent directory of any file is the directory in which the
file resides. The parent directory of :UTIL is the root (:).
The parent directory CCB address of an open file is stored in
FBPDP.W. Since the file's FNB, FIB and FAC are situated in the
directory data blocks of its parent directory, this field is
essential for I/0 to be accomplished. Furthermore, the file's
FIB pointer (IDP) is found in the FCB as well (FBFIB). As a
result, Resolution Services return both the parent directory CCB
address and the FIB pointer of the filename being resolved.

The master root is the only "orphan" directory. The parent
directory fields in the root FCB and CCB are zeroed. Certain
operations are illegal on the root directory, such as deleting
it! The root directory FCB and CCB are identified by this zero
value, and a simple check in DELETE.P signals that someone is
attempting to delete the root. Moreover, any operation that
requires modifying the parent directory, such as set ACL or
RENAME, is illegal for the root. Since the root directory's FIB
type information lives in the DIB, such operations are allowed
only by the DFMTR utility program.

If a file is being opened by Resolution Services, both an FCB and
a system CCB must be created. The FCB is created first, followed
by the system CCB. The system CCB address of the same file is
stored in the FCB at offset FBSCB.W. When this happens, the file
open count (FBOPN) is not incremented, but the indication that
the file is "implicitly" open is through the non-zero value at
FBSCB.W. If the file is being opened by the system via some
internal open call (IOPEN.P, XEOPEN.P, etc.), a system CCB is
allocated from GSMEM, but FBSCB.W is not filled in, and FBOPN is
incremented. See CCB Creation/Destruction for more details.

The parent/son/system CCB structure links together the FCB/CCB
chain, from the root directory down through the hierarchy to the
last file opened in the pathname. This enables Close Services
to systematically access and destroy all system FCBs/CCBs that
were created in order to open the file. Resolution Services
establishes this chain when opening the files in a given
pathname on system FCBs/CCBs. When the system explicitly opens
a file on a system CCB, it will be the lowest CCB in the chain.
The following diagram outlines the open FCB/CCB chain that
exists for file :A:B:C when file C is opened by a user.

Licensed Material 3-6 Property of Data General

CBFCB.W

DIR ROOT DIR CCB ============) ROOT DIR FCB
. (RTCCB) <============
FBSCB.W
/\ /\
CBPCB.W II | | FBPDP.W
\====mmmmm e mmm o \\
\\
CBFCB.W
DIR DIR A SYSTEM CCB ============) DIR A FCB
A ------ <============
FBSCB.W
/\ /\
CBPCB.W II | FBPDP.W
\m==mmmmmm e m oo m o \\
\\
CBFCB.W
DIR DIR B SYSTEM CCB ============) DIR B FCB
B —————— <============
FBSCB.W
/\ /\
CBPCB.W || || FBPDP.W
\=mmmm o \\
\\
CBFCB.W
FILE FILE C USER CCB s===========) FILE C FCB
C -

When shared file pages are read into a process' working set, a
shared page header (SPH) is allocated and enqueued to the FCB
Shared Page Header Queue whose queue descriptor is at offset
FBCMP.W. The SPH holds data associating the shared memory page
with its logical disk location. The FCB SPH queue is traversed
when an operation on all the file's SPHs must be done, such as
?ESFF or ?SCLOSE. The SPH is linked to the appropriate system
shared page hash chain as well. The system SPH hash chains are
searched for specific SPH access. (Refer to Shared Memory
Management for more on SPHs.)

A new feature of AOS/VS 7.00 is File Locking. File locking
provides a mechanism in which cooperating processes are able to
communicate by pre-defining a series of file elements and
requesting either exclusive or shared access to these elements.
Exclusive file locking can be used to prevent cooperating
processes from accessing the same object at the same time
(mutual exclusion within a critical region). Shared file
locking can be used to give several processes simultaneous
access to an object, but prevent another process exclusive

Licensed Material 3-7 Property of Data General

access. Users access file locking features via the
?FLOCK/?FUNLOCK system calls. When file locking is activated on
a file, a Lock Management Block (LMB) is created, and its
address is stored in the FCB at offset FBLMB.W.

The FCB has a lock word (FBLOCK) in which three lock bits are
defined. The lock bits are:

Bit position Bit position Function

in FBLOCK in FCB

FBTRAN (0) BFBTRAN FCB transition lock
FBCMPLK (1) BFBCMPLK FCB SPH Queue lock
FBLMBB (2) BFBLIP FCB LMB in use lock

The FCB transition lock is acquired when the FCB buffer list is
to be accessed, e.g., when a buffer header must be enqueued or
dequeued. The FCB transition lock has been implemented in
AOS/VS 7.50 due to multiprocessor considerations. In previous
revisions there was never a danger of the FCB buffer list queue
being accessed by simultaneously executing code paths. The
multiprocessor environment forces queues to be locked when
elements are searched, enqueued, dequeued or modified in order
to preserve the integrity of the linked list. By definition,
transition locks are "short-term locks" and can therefore be
implemented as spin locks.

The SPH Queue lock is acquired when the FCB SPH Queue is to be
accessed. The LMB in use lock is acquired when any
?FLOCK/?FUNLOCK operation is in progress within the operating
system. Each of these locks is a spin lock, acquired by calling
one of the standard AOS/VS spin lock routines. For example,
with the following assembly code sequence:

NLDAI BFBTRAN, 1 ;Lock bit offset from
XWLDA 2,FCB_addr,3 ; the FCB.
XPSHJ FXLOCK ;Get the spin lock.

The IOCB waiter count (FBWTC) is initialized to 0 and
incremented by CCB Request Management when the I/0 in progress
bit (FBIOP) is already set and an IOCB is enqueued with

another disk request on the same file. When IOCB requests
complete, this field is checked for a non-zero value. If it is
non-zero, the next waiting IOCB ready to run will be readied and
FBWTC is decremented by 1. (There can be multiple waiters!)

Licensed Material 3-8 Property of Data General

The depth of a file in the directory hierarchy, relative to the
root LDU on which the file resides, is maintained in bits 8-15 of
FCB_addr->FBLVL. This is called the file's "local" level. The
deepest local level at which a file can exist is 8 (system
parameter SCLVL). Hence, file :1:2:3:4:5:6:7:8:9 is an
impossibility if none of the subordinate files of the pathname
are LDUs. The depth of a file in the directory hierarchy,
relative to the system root LDU, is maintained in bits 0-7 of
FCB_addr->FBLVL. This is called the file's "global" level. The
deepest global level is 255. This parameter is set by File Open
Services or LDU initialization.

The control point block (CPB) address is stored in the FCB at
offset FBCPB.W. The CPB contains parameters indicating the
CPD's current and maximum space availability. System memory is
allocated for a CPB when a control point directory (CPD) is
opened, and maintained in memory until the file is closed for
the last time. The function of the CPB is analogous to that of
the Funny FIB (in the FCB). The CPB is described in Directory
Management Databases, Section 2.2.

Certain unit files require the presence of a Unit Definition
Block (UDB) to realize unit I/O. Unicorn type line printers and
magnetic tape units are such files. The UDB address is stored
in the unit file's FCB at offset FBUDB.W. Non-Unicorn line
printers and MCAs require only a buffer header, which is stored
in its CCB (CBBHR.W). Disks opened as unit files also require a
UDB, but it is linked to the LCB. The device code and unit
number of all unit files are stored in the FCB at offset FBDCU.

The FCB maintains shared protected file information. When a
file is opened for shared protective access (?SOPPF), bit O
(FBPFO) is set in the second FCB status word, FBST2. Since no
subsequent openers are permitted more access rights to the file
than the first opener, the first opener's access privileges are
stored in bits 11-15 of FBST2. Subsequent openers of shared
protective files must be customers of the first opener, if they
wish to open the file. They must explicitly be granted
permission to access the file as well. The ?PMTPF system call
enables the first opener to specify distinct, privileged PIDs
permitted to open the file, as well as the access rights to be
granted. The file access information established by the first
file opener for another PID is stored in a separate Protected
File Permission Block (PPB), which is linked to the FCB through
the queue descriptor found at offset FBPPB.W. Only the first
file opener can successfully issue ?PMTPF against its customers.
?PMTPF prevents unauthorized callers from successfully creating
PPBs by comparing the caller's PID and ring with the PID and
ring of the first opener, stored in the FCB at offset FBFOP when
the file was ?SOPPFed. There is no special FCB lock bit for
FBPPB.W because the parent CCB remains locked during all queue
instructions.

Licensed Material 3-9 Property of Data General

There are several file types for which FCBs are not created even
though they are open. Generic files (?FGFN) are resolved in the
AGENT. Opening QRLIST actually results in opening its resolution
filename, thus creating an FCB for the latter. IPC file
(?LIPC-?HIPC) FIBs contain the global port number associated
with the IPC file. IPC file opens consist of user CCB creation
and user retrieval of the global port number. No FCB is needed
for IPC Management to send and receive messages. EXEC Queue
files (?FQUE) files do not need FCBs either because they are
handled by the AGENT.

3.2.2 FCB Creation/Destruction

Since the FCB length is only 46 words, File Management does not
allocate small chunks of random system memory for each
individual FCB. Instead, whole system pages are dynamically
allocated and reserved for the exclusive use of FCBs. These
pages are called FCB pages. The total number of FCBs that fit
on one page is easily calculated:

PAGESIZE/FBBLT = 1024./46. = 22.

Associated with each FCB page is an FCB page descriptor. The
FCB page descriptors are linked through the global queue
descriptor FCBCH.W and describe the contents of the FCB page.
These descriptors provide a quick mechanism for Emergency
Shutdown (ESD) to locate open files, all of which must be closed.
The following diagram illustrates the FCB page descriptor:

Offset FCB Page Descriptor
E&;;ETW 0 Forward 1link.

CMSBL.W 2 Backward link.

CMFBK 4 Physical page number of FCB page.

CMFCN 5 Number of FCBs in use on:this FCB page.
CMBMW.W 6 FCB page bit map word.

CMFLN 10 Length of FCB Page Descriptor.

When an FCB needs to be created, offset CMBMW.W of the first FCB
Page Descriptor is examined. Each bit in CMBMW.W corresponds to
the FCB whose offset into the FCB page is the bit position
multiplied by the FCB length. A set bit (1) in CMBMW.W
represents a free FCB. Since the maximum number of FCBs that
fit on the page is 22, any set bit between O and 21 indicates a
free FCB. If there are no free FCBs (no FCB Page Descriptors
left), a page along with an FCB Page Descriptor will be
allocated from general system memory. The FCB Page Descriptor
will be initialized and enqueued to FCBCH.W, and FCB memory will
then be available.

Licensed Material 3-10 Property of Data General

The following global variables used by File Management are
associated with FCBs:

Global Function
FCBCH.W FCB Chain Queue Descriptor
FCBCN Number of FCBs currently in use
FCBMX Max number of FCBs in use since boot
IFCB FCB Unique ID counter

3.2.3 FCB Operations: Get File Control Block (GFCB)

GFCB performs the operation of searching FCBCH.W and finding a
free FCB. There are no inputs to GFCB. The only output,
returned in AC2, is the new FCB address. There are only two
callers of this operation:

Caller Function

FFCB If the file is open, returns the FCB addr
(from FIFCB.W in FIB) to the caller. 1If
file is not open, calls GFCB to create
the FCB and then initialize its fields.

LNKLCB.P Calls GFCB to create an FCB for an LDU
being initialized (among other things).

FFCB is called by DELETE.P to create an FCB when deleting a file
that was not open, by GOPEN.P to create an FCB when a file is
being opened, and by RESLV.P to create FCBs (associated with
system CCBs) when resolving pathnames.

3.2.4 FCB Operations: Release File Control Block (RFCB)

RFCB performs the operation of destroying FCBs and returning
them to the pool of free FCBs on the FCB page. The
corresponding bit in the bit map word of the FCB Page Descriptor
will be cleared. If the last FCB on the page is freed, the FCB
page will be deallocated and returned to system memory. The
only input to RFCB is the FCB address in AC2. The callers of
RFCB are the following:

Caller Function

FFCB On error, must destroy the FCB it created.

XINIT.P On error, must destroy the FCB it created.

DRLSE.P Destroys FCB on LDU release.

CLOSE.P Destroys FCB on last file close.

DELETE.P Destroys the FCB it created to delete a
file that was not previously open.

Licensed Material 3-11 Property of Data General

3.2.5 FCB Operations: Kill File Control Block (KFCB.P)

KFCB.P is the operation called after user CCBs are destroyed,
i.e., the file is being closed. Therefore, the FCB open count
must be decremented. If the open count reaches zero, KFCB.P
releases all memory resources tied in with the FCB, including
system buffers and allocated memory for databases, and finally
destroys the FCB. System CCBs are destroyed by KCCB.P, which is
followed by execution of KFCB.P code. AOS/VS is written in
assembly language, in which it is easy to LJMP from CCB specific
code to FCB specific code and vice versa. The implementation of
KFCB.P and KCCB.P contains overlapping code accessed via LJMPs.
This algorithmic code cannot do the same, because so much of the
KFCB.P code is duplicated in KCCB.P. The concept of FCB/CCB
destruction will be clear.

The inputs to KFCB.P include the MCA 1link number and DCT (if MCA
being closed) and the FCB address (always). The callers of
KFCB.P are the following:

Caller Function
GOPEN.P On error, must destroy the FCB it created.
SOPPF.P On error, must destroy the FCB it created.
UNIT.P On error, must destroy the FCB it created.
ESFCB Destroys FCBs of open files on ESD.
CLOSE.P Destroys FCB of file on last close.

KFCB.P (MCA 1link num, MCA DCT addr, FCB addr);

/**

* Write an EOF to the MCA device if the MCA is being closed. *
e T T e s T ey

if (FCB_addr->FBTYP == ?FMCA)
call MCACLS (MCA 1link num, MCA DCT addr);

/**

* KFCB.P is called right after the user CCB was destroyed.
This routine assumes that the child CCB was just released,
but RUCCB.P does not decrement the CBUSC. It is done here
because sometimes the caller of RUCCB.P will not want it
done (when called on error return BEFORE parent CCB

stored). *
**/

* % % % %
X% % % %

PCCB_addr = FCB_addr->FBPDP.W;

if (PCCB_addr)
{
call CLOCK (CCB_addr); /* Lock parent CCB */
PCCB_addr->CBUSC -= 1; /* One less CCB son*/
}

Licensed Material 3-12 Property of Data General

/**

* If the file was opened on ?SOPPF and is now being closed *

* by the first opener, tear down the PPBs on the FCB now. *
**/

if (get bit (FCB _addr, BFBPF)) && first opener)

{

FCB_addr->FBFOP = O;

call PCLOCK; /* Lock CNXTB */

call TDPPBL.P; /* Tear down PPB 1list */

call PCUNLCK; /* Unlock CNXTB */

}
JxxFkkkkkkkkkkhhhkkkkhhhhkkkhhhhkkkhhhhhkrhhhhkkkhhhkkkhhhkkkkk

* File being closed; decrement file open count. *

If file still open, check if the Funny FIB must be flushed.*
This part of the code is only called when a user CCB was *
released. If the file is a directory, users only have
read access, and the Funny FIB will not have changed.

In all other cases it may have, so release the buffer
modified. The file is still open, so the data need not be
actually flushed now. It will be flushed either at last
close or when someone attempts to assign this modified
system buffer. Then unlock parent CCB and return. (CCB

gone, FCB not) *
**/

%% X % % % % X % F
%%k X O 3k X %

if (--FCB_addr->FBOPN != 0) /* Is file still open? */
{
if (FCB_addr—)FBTYP I= DIRECTORY_TYPEnFILE) /* YES */
{

call RAID (FCB_addr->FBFIB, DEFIB, PCCB_addr,
&FIB BH, &FIB addr);
/* Read FIB */

call UPFIB (FIB addr, FCB_addr); /* Update it */
call RELM (FIB BH); /* Will be flushed */
}

if (PCCB_addr != 0)
call CULCK (PCCB_addr);

return;

}

/**

* Last opener is closing file. Clean up the FCB. *
* RELBF: Release buffers on FCB buffer list and enqueue them *
* to the LCB cache buffer list. *

* RELSP.P: Release shared pages on FCB. *
**/

call RELBF (FCB addr):; /* Release FCB buffers */
if (FCB_addr->FBCMP.W != -1) /* and shared pages if */
call RELSP.P (FCB _addr); /* there were any. */

Licensed Material 3-13 Property of Data General

/**

* If the file was marked for delete on last close, delete it *
* now! Then jump to KCCB to release the system CCB/FCB *

* hierarchy above. *
**/

if (get bit(FCB_ addr->BFBDL))
{
call CLDEL.P (FCB_addr->FBFIB, PCCB addr, FCB addr);
goto KCCB.P (PCCB addr);
}

/* If unit type file, do unit independent operations */
if (FCB_addr->FBTYP == UNIT TYPE FILE)
call UCLOSE.P;

P e e e T
* Read in the FIB, update it with the modified data from the *
* FCB's Funny FIB and flush it out to disk NOW. Flush now *

* (RELF) because no other users have file open. *
**/

call RAID (FCB_addr->FBFIB, DEFIB, PCCB_addr,
&FIB _BH, &FIB addr);

FIB addr->FIFCB = O;
call UPFIB (FIB addr, FCB addr);
call RELF (FIB BH);

/**

* Almost done.

Release CPB memory. Destroy the FCB!

Then decrement the parent dir CCB use count. If there are
still users, just unlock it and return. If it becomes O,

it can be released (by KCCB.P). *
**/

* % % %
* % ¥ ¥

call RSMEM (FCB addr->FBCPB.W, CPBLT); /* Release CPB mem */

call RFCB (FCB addr); /* Annihilate FCB */

if (--PCCB_addr->CBUSC) /* One less FCB son */
{ /* PCCB use count 02%*/
call CULCK (PCCB_addr); /* No, unlock it, */
return; /* leave hierarchy. */
}

goto KCCB.P; /* Yes, release it */

} /* end of KFCB.P */

Licensed Material 3-14 Property of Data General

3.3 Channel Control Block (CCB)
3.3.1 CCB Requests

There is a unique CCB created for each file opener. If AOS/VS
opens the file, a CCB is allocated from general system main
memory. The system can open a file in two ways:

1) implicitly, in resolution services while resolving a
pathname, or

2) explicitly, when making special internal open calls,
such as for per process page, swap and IPC spool files.

A CCB created by an implicit open is called a "system CCB." A
CCB created by an explicit open is called an "internal CCB."
The differences between them are discussed more thoroughly in
CCB Creation/Destruction.

If a user opens the file, a "user CCB" is created in ring 1 of
the process' logical address space. Since multiple processes
can have the same file opened simultaneously and request
different size data transfers from different points in the file,
each CCB serves the purpose of storing the necessary data to
service individual I/O requests.

Since all disk I/0 requests involve driver intervention with the
physical disk controller and interrupt service, requestors must
pend. The CCB contains a pointer to the caller's process table
and TCB so that the correct task can be unpended upon data
transfer completion. The actual procedure that AOS/VS follows
when initiating a logical disk I/0 request includes "enqueuing a
CCB request." This terminology implies that the CCB is the
database representative of unique I/0 request data. Often in
AOS/VS code and throughout this manual, "enqueuing a CCB" will
be substituted as an understood abbreviation for "enqueuing a
CCB request."

There are six types of CCB requests. Each one can be made
either on behalf of the user (system call interface) or by
choice of the operation system (i.e., read in swapfile, read a
FIB). File Management provides services that implement the
system calls to issue CCB requests on behalf of the user. File
Management also provides services that issue CCB requests for
other components of the operating system. The following

table 1lists the available CCB request types, and the request
type stored into the CCB command word before the request is
enqueued.

Licensed Material 3-15 Property of Data General

Request CCB Function

Type Command

Read CBRED (0) Vanilla read from a file
Read Sys CBSYB (3) Read one file block into a
Buffer system buffer
Write CBWRI (1) Vanilla write to a file

Allocate CBALL (5) Allocate file blocks

Delete CBDEL (2) Delete a file
File

Truncate CBTRN1 (4)| Truncate a file to a specified
File CBTRN2 (6)| byte EOF (implemented in 2 parts)

3.3.2 CCB Parameters Definitions

The following diagram summarizes the significance of each field
in the CCB.

Offset Channel Control Block (CCB)
CBQLK.W O Global Wait List Queue (CCBWQ.W) forward link.
CBFCB.W 2 FCB address. See Section 3.2.1.

CBNBK 4 Number of blocks to transfer.

CBPTA.W 5 Process Table or Control Block address.

CBIAH.W 7 These three offsets are used by
CBXIA.W 11 CCB Request Management for file
CBIBN 13 index level traversal.

CBPCB.W 14 Parent directory CCB pointer.

CBFIB 16 FIB IDP (in parent directory).

CBDBH.W 17 Last block byte count (Bits 0-8).

Relative disk block number in file (Bits 9-31).

CBUAD.W 21 User data buffer logical address.
CBSTS 23 | CCB Status Word, File ACL, Unit Type.
CBFLG 24 CCB Flag and Command Word.

CBTCB.W 25 User TCB or Control Block address (to unpend).

CBUID 27 CCB unique ID.

CBUPD.W 30 CCB Post Processor address.

CBNPG 32 Number of referenced user pages in user buffer.
CBUSC 32 CCB Use Count: redefinition for dir type files!
CBPRI 33 CCB request priority. Equal to process PNQF.

CBFAB.W 34 First Allocated Block read after "hole" in file.
(For Read Next Allocated Elem option with ?BLKIO)
CBOIBN 36 Not used.

CBLOCK 37 CCB lock word.

CCBLT 40 Length of CCB.

Licensed Material 3-16 Property of Data General

In order for CCB Request Management to service a logical disk I/O
request (also referred to as a CCB request), an I/O Control Block
(IOCB) must be allocated from the IOCB.DB database pool. If no
IOCB is available, the requesting CCB is enqueued to the global
CCB wait queue CCBWQ.W in priority (PNQF) order. The CCB is
linked through offset CBQLK.W. When a request completes and its
IOCB becomes free, the first waiting (i.e., highest priority) CCB
is dequeued and assigned the available IOCB for the I/O request
to begin. Global variable CCWC holds a count of the number of
CCBs currently on CCBWQ.W, and CCMX holds the maximum number of
CCBs on CCBWQ.W since system boot.

CCB Request Management schedules I/0O requests on the basis of
the caller's priority enqueue factor (PNQF) found in the
caller's process table. Hence, the caller's PNQF is stored in
the CCB at offset CBPRI. The caller's process table is
initially located by the I/0 requestor through the active
control block at CC.W. Since the main objective of CCB post
processing is to unpend task control blocks (TCBs) or control
blocks (CBs) that are pended awaiting I/0O completion, the
requestor's process table address is stored in the CCB at offset
CBPTA.W. The TCB address is stored at CCB offset (CBTCB.W) if
the very last operation to be performed by the requesting code
path is that of enqueuing the request. For example, once RDB.P
and WRB.P (?RDB/?WRB implementation code) initialize the CCB
parameters and enqueue the I/0 request, there will be no more
system processing to be done upon I/0 completion. In that case,
the control block can be released (system call effectively
completes), but the calling user TCB remains pended until the
I/0 completes. The CB address is stored at the same CCB offset
if the requesting path must return to system code to complete
processing (all other cases). This is illustrated in the CCB
Read/Write request algorithms in Section 3.4.5.

The routine that unpends CBs and TCBs awaiting I/0 completion is
called the CCB Post Processor. The Post Processor is saved in
the CCB (offset CBUPD.W) by the requesting service before
enqueuing the CCB to the I/0 world. It is called from CCB
Request Management when the I/O request is complete. There are
five flavors of CCB Post Processors because different requests
require slightly different operations. This is clearly
exemplified by the fact that a TCB is pended for user read/write
requests, while a CB is pended for user delete requests. Read
system buffer requests necessitate the transfer of the system
data address to the caller, a special feature accomplished in
the CCB Post Processor. A 7?BLKIO request may specify the Read
Next Allocated element option for which yet another CCB Post
Processor is designated. All versions return any required data
to the user packet. The following table outlines the various
CCB Post Processor routines. See Section 4.5 for more detail.

Licensed Material 3-17 Property of Data General

CCB Post Function
Processor
PPCUS Post Processor for user read/write/allocate
and physical read/write requests.
PPCUB Post Processor for user ?BLKIO requests.
PPCSY Post Processor for system read/write,
all delete/truncate requests.
PPCSR Post Processor for shared read requests.
PPCBI Post Processor for the "Read System
Buffer" request. Issued only by AOS/VS.

The caller of CCB requests must initialize certain other CCB
parameters with the request specifications. If the caller is a
user (making a system call), these specifications are retrieved
by AOS/VS from the user packet. Read, write and allocate block
requests must set the number of blocks to be transferred in
CBNBK. CCB Request Management decrements this count by n each
time it enqueues a buffer header to transfer n number of blocks.
When the I/O0 request is complete, this field is null. Delete
and truncate requests set CBNBK to 0O, since these operations do
not require use of this field.

Offset CBDBH.W is composed of two separate fields. Bits 0-8
hold the last block byte count. On write operations, this field
specifies the number of bytes in the last data block to
transfer. For example, to transfer 768 bytes of data, CBNBK is
set to 2 and the last block byte count to 256. On a read
operation, CCB Request Management fills in this field when the
data transfer completes. Bits 9-31 of CBDBH.W specify the
logical data block in the file where the transfer begins.
Delete requests do not actually involve disk-to-user data
transfers, but file deletion begins from block 0. This field
contains 0 if the CCB command is CBDEL. Truncate requests work
similarly.

Offset CBUAD.W holds the buffer address to which data will be
transferred (on a read), or from which data will be transferred
(on a write). Users specify this address in the system call
packet. When the system requests that a system buffer be read,
the buffer header address assigned by Buffer Management, is
stored here.

Licensed Material 3-18 Property of Data General

The disk controller transfers data directly to the location
specified by the caller. If the data transfer request is
initiated by the system, the data buffer address will be in

ring O, always resident and mapped logical to physical. If the
request is issued by the user, there is the strong possibility
that the user buffer will not be resident when the transfer is
taking place. Therefore, user buffer must be faulted and pinned
before the disk request is enqueued, and unpinned after the
request completes. The number of pages spanned by the buffer is
stored in the CCB at offset CBNPG.

Finally, the type of disk request must be specified in the CCB.
The CCB command (request type) is stored at offset CBFLG in bits
13-15. The valid CCB commands were described previously in
Section 3.3.1. Bits 0-7 correspond to the rings in the caller's
address space in which a shared read has been done (?SPAGE).
Bits 8 and 9 are defined as follows:

CBPIO (8)
CBFWE (9)

Physical I/0 Bit (set at open)
Write access to file bit (set at open)

Bits 10. through 12. are undefined.

Three CCB fields are used by CCB Request Management during IOCB
processing to facilitate the I/0 procedure by eliminating
unnecessary index block retrieval and examination. Although
index blocks of all files are enqueued to the FCB buffer 1list
when they are read in from disk, traversal of this queue on
subsequent requests may sometimes be bypassed by saving the
logical disk addresses and the offsets into index blocks in the
CCB of the last requestor.

Consider the following situation in which data block 6 is
requested from file FOO, whose elementsize is equal to 4. As
CCB Request Management processes the request, the logical disk
address of the data element, as well as the offset into the
first-level index block, are saved in the CCB. Suppose that the
caller then makes a subsequent request for data block 7. Since
this request will access the same data element as the previous
request (offset into first-level index block matches), the index
block need not be read. Furthermore, the logical disk address
of the data element is already available in the CCB and can be
read immediately, without CCB Request Management touching an
index block. Two- and three-level indexed files use CCB
parameters to a greater extent to further expedite the data
transfer by "skipping over" the same index blocks read in on the
previous data transfer. However, the lowest-level index block
will always be read in or found on the FCB buffer list queue in
files with index levels greater than 1. This entire process is
called INDEX LEVEL OPTIMIZATION. The pertinent CCB parameters
are used as follows, relevant to the last disk I/0 request on
the file.

Licensed Material 3-19 Property of Data General

CCB 1 index 2 index 3 index
Parameter level levels levels
CBIAH.W LDA data LDA level 1 LDA level 1
element index block index block
CBXIA.W Not used Not used LDA level 2
index block
CBIBN Offset into Offset into Offset into
level 1 level 2 level 3/2
index block index block index block

Word offset CBIBN, which contains the index block offset
accessed on the last request, is actually divided into two
fields. Bits 8-15 contain the logical offset (range 0-127) of
either the level 1 or level 2 index block. If the file is a
three-level file, bits 0-7 contain the logical offset of the
level 3 index block. Otherwise, bits 0-7 are zero. This entire
"index level matching" procedure will be explained further in
CCB Request Management.

The file's parent directory CCB pointer and its FIB
intra-directory pointer must be stored in the CCB as well.
are initialized at file open time at CCB offsets CBPCB.W and
CBFIB, respectively. The parent CCB is needed for any I/O on
the file's various associated directory data elements (e.g.,
for access control 1list).

They

FAC

The CCB status word, CBSTS, is used for several purposes.

If the file is a unit type file, bits 11-15 contain the unit
type. The unit type is accessed by Unit Management as an

index into pre- and post-processing dispatch tables. Unit CCBs
maintain individual unit I/0 request data, so the CCB is the
appropriate database in which to store the unit type. The CCB
definitions for unit types are the following:

CUTMT (0) = Magnetic Tape Unit
CUTMC (1) = MCA Unit

CULPB (2) = Line Printer Unit
CULPD (3) = LP2 Printer

CULPE (4) = Laser Printer

Licensed Material 3-20 Property of Data General

Disk units opened separately as unit type files (not LDUs) are
treated as a single unit LDU with no invisible space. "Physical
disk I/0" is done instead of "unit I/0." For this reason, there
is no disk unit type defined in the CCB. If the file is a disk
file, bits 11-15 contain the access privileges allowed the
caller, which are extracted from the file's ACL (FAC). Bits
0-10. of CBSTS have the following definitions:

CCB Function
Status Bit

CBUNT (0) Unit type CCB (no disk units).
Set on open of unit type files.

CBERB (1) Error occurred..
Set during IOCB processing if error occurs.
Error code saved in CCB offset CBERR.

CBFSH (4) File is shared. Set on shared open of file.

CHSHB (5) I/0 request is shared.
Set prior to enqueuing shared I/0O request.

CBRNA (6) Read Next Allocated block request (disks only)
Set prior to enqueuing RNA request (?BLKIO).

CBSAF (7) ?WRB with ?SAFM option request (Mag Tapes).
Set prior to enqueuing unit I/0 request.

CBMIO (8) Modified sector I/0O (disks only).
Set prior to enqueuing mod sector I/O
(?BLKIO).

CBEOV (8) Enable VFU load (Line Printers).
Set prior to enqueuing I/O to LPU types.

CBPEB (9) Peripheral type CCB.
Set on open of generic/IPC type files.

CBIFF (10)| Inhibit initial form feed (Line Printers).
Set prior to enqueuing I/O to LPU types.

CBFNS (10)| File number set (Mag tapes).
Set prior to enqueuing I/0 to mag tape
and MCA.

The CCB unique ID (offset CBUID) is set with the same wvalue as
the file's FCB unique ID (offset FBUID). When a disk I/O
request is made, the CBUID is compared to FBUID of the same
file. If the unique IDs do not match, AO0OS/VS will panic with
code 6034. The IDs should always match! Inconsistent unique
IDs usually mean that either the CCB or FCB memory has been
corrupted, the causes of which can possibly be discovered
through analysis of the system's memory dump.

Licensed Material 3-21 Property of Data General

There is one circumstance in which multiple file openers use the
same CCB for a file: when the file opener is the system opening
a directory type file in Resolution Services. If 20 processes
open :UTIL:FILE, each process maintains a unique CCB for FILE in
ring 1 of its address space, but the system keeps only one copy
of the system CCB for UTIL. A count of the number of objects
using the system CCB is maintained in a redefined CCB parameter
for directory files. This parameter is the CCB use count,
CBUSC. Since the number of blocks specified for any directory
file I/0 request is 1, CBUSC replaces CBNBK. The CCB use count
is incremented when it becomes the parent of a new FCB,
specifically, when FBPDP.W of a subordinate file in the
directory is set with the CCB address. The CCB use count is
incremented again when it becomes the parent of the CCB of the
same file, specifically, when CBPCB of the subordinate file is
set. This implies that the use count indicates the number of
objects, not processes, that literally point to the system CCB.
See the following illustration.

:UTIL system CCB

CBUSC = CBUSC + 2

/\ /\
|

CBPCB.W || FBPDP.W

User CCB of ============) FCB of :UTIL:FILE
:UTIL:FILE

Licensed Material 3-22 Property of Data General

Finally, like numerous other AOS/VS static databases, the CCB is
locked during certain critical region operations. The CCB lock
word in which four lock bits are defined is CBLOCK. The lock
bits are:

Bit position Bit position Function

in CBLOCK in CCB
CBTRAN (0O) BFBTRAN CCB transition lock
CBLKB (1) BCBLK CCB vanilla 1lock
CBTPB (2) BCBPL CCB lock waiter bit
CBFLB (3) BCBFL CCB fault 1lock

File Management provides four CCB locking services that
uniformly acquire locks properly and call the execute pending
mechanism if the lock is already held. The standard system CCB
locking services are the following:

CCB Lock Function
Service
CLOCK/ Lock/Unlock a system CCB.
CULCK Path will pend if lock already held.
UCLOCK/ Lock/Unlock a user CCB.
UCULCK Returns "Simultaneous requests on same

channel”" if lock already held.

PGCBLK/ Lock/Unlock a page file (system) CCB.
PGCULK Path will pend if lock already held.

FCLOCK/ Lock/Unlock a CCB when during a page
FCULCK fault on the file. Path will pend if

lock already held.

Some code paths do not use these services, but attempt to set a
lock themselves. Such situations are acceptable when a
specific, immediate action must be taken if the lock is not
available. For example, RDB.P returns "simultaneous request on
same channel" if the vanilla lock is set (user CCB); RESLV.P
simply sets the bit when initializing a newly created system
CCB.

Licensed Material 3-23 Property of Data General

The main purpose of the CCB transition lock is to gain exclusive
access to the CCB for a very short time. The transition lock is
a spin lock, which is always acquired before setting either the
vanilla (long-term) CCB lock or the CCB fault lock. This
imperative action is taken by all of the CCB locking services.
Once the desired lock is held, the transition lock will be
released. It is important to note that a code path, which has
acquired the transition lock, never pends. Another code path
attempting to gain access to the same lock will spin and
potentially hang the system by hogging the CPU. The CCB
transition lock will be released before pending.

The CCB wvanilla (or pend) lock is acquired when the calling code
path must perform extensive operations on the CCB and/or if the
caller runs the risk of pending. For example, system CCBs of
directory type files must be locked especially when the use
count (CBUSC) is modified. When Resolution Services resolve a
pathname, the system CCB of each directory is locked. The use
count is incremented to indicate to Close Services that the file
is still in use (FCB cannot be destroyed, file cannot be
deleted); the CCB is later unlocked when the next file in the
pathname (its son) is opened.

All CCBs are locked before the CCB request is enqueued for I/0
and remain locked during the I/O processing. In most cases, the
caller is responsible for unlocking the CCB after the I/O
completes. The exceptions are user logical disk read and write
requests. Since no further system processing is necessary when
these requests complete (caller's control block has even been
released already), the CCB Post Processor conveniently unlocks
the CCB.

The CCB fault lock is a special lock used by Memory Management
when a page must be faulted in from the file. FCLOCK must first
acquire the CCB vanilla lock before setting the fault lock and
then hold both locks until the page fault is over. This is to
prevent code paths that do NOT call CLOCK or UCLOCK, but set
BCBLK explicitly, from accessing a CCB with a page fault in
progress. In fact, when CLOCK acquires the vanilla lock, it
sanity checks to verify that the fault lock is not set. If it
is, a panic 6355 will occur.

If any cf the CCB locking services attempt to acquire a lock
that is currently held, the control block will be pended via a
call to the Process Management service MPEND. Before this
occurs, the CCB pend bit must be set. This will indicate to the
CCB unlocking services that at least one waiter exists for a CCB
lock. The unlocking service will clear BCBPL and call UNPEND
with the CCB address as a pend key upon releasing the 1lock,
which will place all pended waiters for the CCB on ELQUE. The
next control block to be scheduled will then successfully
acquire the desired lock.

Licensed Material 3-24 Property of Data General

All of the CCB locking/unlocking services are concise. Observe
how CLOCK is implemented:

CLOCK (CCB_address); /* Input - addr of CCB to lock */

{

TOP:
/**
* Get CCB transition lock. *
* This is done by calling the base level transition (spin) *
* lock service BSLOCK. Spin until lock is free. *

**/

call BSLOCK (CCB_addr, BCBTRAN);

/**

* If ESD is running, the system is being shut down.

* Many files are probably open. ESD calls CLOCK as

* standard practice for acquiring the vanilla lock to

* manipulate the CCB. If it is already locked, clear all
*

other locks and "give" ESD the 1lock. *
**/

* % % %

if (ESD running)

{
clear bit (CCB_addr, BCBTRAN); /* Clear transition */
set bit (CCB_addr, BCBLK); /* Give ESD vanilla */
clear bit (CCB_addr, BCBPL); /*¥ I say no waiters */
clear bit (CCB_addr, BCBFL); /* I say no faulters */
return; /* ESD will be happy */
}
/***
* Use atomic instruction to attempt locking the CCB. *

***/

if (check bit (CCB_addr, BCBLK))

/***
* Vanilla lock is already set. *

* Set lock waiter bit and pend until woken up by some *

* CCB unlock service. Then try for vanilla lock again. *
***/

Licensed Material 3-25 Property of Data General

set bit (CCB_addr, BCBPL);
call MPEND (BCBTRAN, CCB_addr);
goto TOP;

}

else

/***

* Good. The WSZBO set the vanilla lock bit! *
* Now check the fault bit, which should not be set. *
* If it is, panic. *

***/

clear bit (CCB_addr, BCBTRAN); /* Release trans lock */

if (check bit (CCB_addr, BCBFL)
call PANIC (6355);

return; /* CCB locked: return */

}

3.3.3 CCB Creation/Destruction

System and internal CCBs are allocated directly from general
system memory (GSMEM) either "implicitly" by Resolution Services
or "explictly" by File Open Services.

When Resolution Services creates a CCB, the file is always a
directory type file, and the CCB is used exclusively by
Resolution Services when resolving pathnames. More importantly,
it is used to keep track of the number of openers of subordinate
files in the directory. Furthermore, the system CCB pointer in
the FCB WILL contain the CCB address of this implicitly opened
file, and the file open count in the FCB will NOT be
incremented.

When Open Services creates an internal CCB, explicitly for the
system via an internal open call (IOPEN.P, XEOPEN.P, etc.), the
procedure implies that the system is '‘actually acting as a user.
However, since the AOS/VS kernel exists only in ring 0, so must
the CCB. The system CCB pointer in the FCB will NOT contain the
CCB address of this explicitly opened file, and the file open
count in the FCB WILL be incremented. The latter procedure is
followed for user CCBs created in Open Services as well. Files
opened explicitly by the system are swapfiles, pagefiles,
breakfiles, program files, and IPC spool files.

Licensed Material 3-26 Property of Data General

Although user CCBs are handled in the same way, allocation of
user CCBs is not as straightforward as direct memory allocation
from GSMEM. Since a process may be swapped out during memory
contention, user CCB pages must be allocated and mapped to the
swappable portion of the process address space. AOS/VS chooses
to map these pages contiguously to a fixed ring 1 address
beginning at the global entry point CCBTAB, whose value is
02000100000. File Management always attempts to allocate CCBs
on resident pages first.

The maximum number of CCBs that fit on a page is:
PAGESIZE/CCBLT = 1024./32. = 32. CCB/page.

The maximum number of channels available to a user is 256., one
of which the local PMGR always uses. A CHANNEL is simply a
number that provides File Management with a means of quick and
easy access to the CCB associated with a given file opener. The
operation that converts a channel number into a user CCB
address, GENCCBAD, will be discussed later. The total number of
user CCB pages possible is then 8. The process table extender
keeps track of the total number of user CCBs in use (open files)
for a process. Eight words beginning at process table extender
offset PUCCBS contain the number of CCBs in each user CCB page:

PEXTN->PUCCBS[0]
PEXTN->PUCCBS[1]
PEXTN->PUCCBS[2]
PEXTN->PUCCBS[3]
PEXTN->PUCCBS[4]
PEXTN->PUCCBS[5]
PEXTN->PUCCBS[6]
PEXTN->PUCCBS[7]

number of CCBs in use on user CCB page
number of CCBs in use on user CCB page
number of CCBs in use on user CCB page
number of CCBs in use on user CCB page
number of CCBs in use on user CCB page
number of CCBs in use on user CCB page
number of CCBs in use on user CCB page
number of CCBs in use on user CCB page

NoOooabdkwNhHEO

A channel number corresponding to the relative location of the
opened file's CCB is assigned and returned to the calling
process for subsequent reference to the file. For instance, the
first user CCB is created at CCBTAB and assigned channel number
0. The next CCB is created at CCBTAB + CCBLT and assigned
channel number 1. PEXTN->PUCCBS[0O] will contain 2, the number
of CCBs in use on CCB page 0. (The first file opened by any
user process will never be assigned a channel number of O
because the local PMGR assigns channel 33. to open PMGR.SF,
causing CCB page 1 to become resident. OFAULT.P will
consequently assign the next 31. CCBs from page 1 before
assigning CCBs from CCB page 0. See Section 3.3.4.)

Now is a good time to explain the terminology of CCB creation
and destruction. User CCBs are not allocated; their pages are
allocated. System and internal CCBs are not allocated; their
memory is allocated. Therefore, databases such as CCBs and FCBs
are actually "created" and "destroyed" within blocks of system
memory. The terminology of "allocating" and "releasing"
databases is used quite loosely throughout AOS/VS code and
comments. This manual attempts to clarify this distinction.

Licensed Material 3-27 Property of Data General

3.3.4 CCB Operations: OFAULT.P

The File Management operation that allocates user CCB pages,
creates the CCBs, and assigns channel numbers is called
OFAULT.P. OFAULT.P is called only from File Open Services,
namely SOPPF.P and GOPEN.P, which must create user CCBs. The
caller may wish OFAULT.P to assign a channel number dynamically,
or to assign a specific channel number. The new CCB address
will be returned. Following is the C-based algorithm that
illustrates the AOS/VS implementation of OFAULT.P.

#define CCBPERPG 32 /* = 1024./CCBLT */
#define SCNCCBPG 7 /* Num CCB pages */
/* Input: specific chan num to assign or -1 for system assign */
/* Output: assigned channel number, CCB address */

OFAULT.P (chin, *chout, *CCB_addr)
{

/**

* Create a user CCB. Determine type of request. *
**/

if (chin != -1) /* Static channel request !!! */

/***

* Given the channel number, generate the user CCB address.*

* Fault and pin the CCB so page remains resident. *
***/

call GENCCBAD (chin, CCB_addr);
call FLTPIN (CCB_addr);

/***

* Test CCB wvalidity. *
* If CCB locked, another request is in progress. Error *

* out! The WSZBO sets the CCB lock bit if not set before. *
***/

if (WSZBO (CCB_addr, BCBLK)) /* Sim reqgs? */
{ /* Yup */
call UNPIN (CCB_addr); /* Adios */
return (simultaneous requests on same channel);
3

/***

* If the process table address is non-zero, the channel is%*

* already in use. Error out! *
***/

if (CCB_addr->CBPTA.W != 0) /* Channel in use? */
{
clear bit (CCB_addr, BCBLK); /* Yup */
call UNPIN (CCB_addr); /* Bye */
return (channel in use);
}

Licensed Material 3-28 Property of Data General

/***

* CCB valid. Calculate CCB page number and bump the count*
* of CCBs in use for this CCB page in the PTBL extender. *
* Then ready it for caller by zeroing it out and initting *

* it locked. *
***/

CCB_page = chin/CCBPERPG; /* Compute CCB page num */
PEXTN->PUCCBS [CCB_page] += 1; /* Bump num CCBs on page*/
zero (CCB_addr, CCBLT); /* Clear out the CCB */
set bit (CCB_addr, BCBLK); /* Init it locked */
return; /* DONE for static req */
}

else /* dynamic channel request !!! */

/***
* Each CCB page is checked for free CCB. *
* Passl = resident CCB pages are checked for free CCBs. *

* Pass2 = no resident CCB pages; new pages are allocated. *
***/

for (pass = 1; pass <= 2; pass++)
for (CCB _page = 0; CCB_page < SCNCCBPG; CCB_page++)
{
/* Any free CCBs on this page? */
if (PEXTN->PUCCBS [CCB_page] < CCBPERPG);

/**
* CCB logical page addr begins at CCBTAB. Shift *
* the CCB page to the left of the offset field. *
* Adding them gives log start of CCB page. *

* (Residency check done via LPHY instruction) *
kkkkkkkkkkkhkkkxxhrkkkhhhhhh kA kA XX XXX XXXk k*kkkk k% /

CCB_page la = CCBTAB + (CCB_page << 10.);
if (resident (CCB page la) [| (pass == 2))

/**

* If passl, page is resident. FLTPIN pins it. *
* If pass2, page may or may not be resident. *

* Fault and pin it. *
AKKKKKKKKKKKKKIKKXK KKK KXKKXKKXKKXRKARKARKAXRK KKK KKK /

call FLTPIN (CCB _page la);

Licensed Material 3-29 Property of Data General

/**

* Check each CCB in page (ccbip) to make sure it *
is not in use. If it is not, clear it, set the*
vanilla lock (to indicate channel in use),
bump the CCB in use count for the page in *
PEXTN, and calculate and return the channel *
number. *
The caller will unpin the CCB page! *
If no free CCBs are found in the page, unpin *
*
*

it and search next page!
Xkkkkkkkkkkkkkkxkkkkhkhhhkkkkhkxxrkkkkhhkhkkkkkkxx /

¥ % %k % ¥ % % %

for (ccbip = 0; ccbip < CCBPERPG; ccbip++)

{
CCB_addr = CCB_page_la + (ccbip * CCBLT);

if (!bit_already set (CCB_addr, BCBLK) &&
(CCB_addr->CBPTA.W == 0))
{

/* Channel Not In Use! Grab The CCB! */
set bit (CCB_addr, BCBLK);
CCBS_in use = PEXTN->PUCCBS [CCB_page]++;
*chout = (CCB_page * CCBPERPG) +

CCBS in use;
return; -
}

} /*end of for */

/**

* No free CCBs on this page. *

* Unpin the page and search the next page. *
kkkkkkkkkkhkkkkkkkkkkkhhhhkkkkhxkkkkkkkkhkhkkkkkxx /

/* No free CCBs on this page. Release it */
call UNPIN (CCB page 1la);

} /* end of if resident */
} /* end of if above that */
} /* end of inner for *y
} /* end of outermost for */

/**

* Pass 1 and 2 done and no free CCBs found. *

* This means the hog has exhausted all 255. channels! *
KhKKKK KKK KKK KKK KXRKKXXKKXRKARKK KKK KXKKKXKRK KKK KKK KKK /

return (no free channels); /* Tell user he is a hog */

} /* end of else */
} /* end of OFAULT.P */

Licensed Material 3-30 Property of Data General

3.3.5 CCB Operations: Generate CCB address (GENCCBAD)

The File Management operation that calculates a ring 1 user CCB
address from a channel number is called GENCCBAD. GENCCBAD is
called by OFAULT.P when a specific channel is requested on a
file open. It is called by the DFAULT operation to calculate
the CCB address of an input channel number on behalf of a system
call servicing a user request. GENCCBAD is called by Memory
Management to retrieve the CCB address of a shared file whose
channel number is found in a shared page's control directory
entry (CDE).

Since channel numbers are assigned in the same order that user
CCBs are created, the address calculation is a simple operation.
The base address in ring 1 where user CCBs are found is CCBTAB.
The CCB page number multiplied by the size of a page, 02000
words (shifted left 10.), added to CCBTAB yields the logical
address start of the CCB page. The number of the CCB in the
page multiplied by the CCB length gives the offset into the page
of the desired CCB.

The sole input to the GENCCBAD is the channel number and the
sole output is its logical ring 1 address. GENCCBAD assumes
that the process whose CCB address is being found is currently
mapped. The following algorithm illustrates GENCCBAD.

GENCCBAD (channel num, *CCB_addr)

/**

* Get the CCB page and the number of the CCB in the page. *
* Concretely, if the channel number is 48, 48/32 = 1 rem 16. *
* The CCB page is 1, the CCB is the 16th one in page. *

**/

CCB_page = channel num / CCBPERPG;
CCB_in page = channel num % CCBPERPG;

/**

* Calculate the CCB address and return it. *
* If the channel number if 48, the CCB address is: *
* 02000100000 + 02000 + 01000 = 02000103000 *

**/
*CCB_addr= CCBTAB + (CCB_page << 10.) + (CCB_in page * CCBLT);

return;

}

Licensed Material 3-31 Property of Data General

3.3.6 CCB Operations: DFAULT and RUCCB.P.

The File Management operation that returns the ring 1 user CCB
address given a channel number is called DFAULT. This

operation is called from every File Management system call
operation whose input from the user is an open channel number.
The channel number is translated into the corresponding user CCB
address via a call to GENCCBAD, and the CCB process table offset
is verified for a non-zero value, indicating the user indeed has
the channel open. Some system calls retrieve the CCB address
from DFAULT and prepare and enqueue the returned CCB for user
I/0, e.g., ?RDB, ?2GTRUNC. Other system calls use the returned
CCB address only to access the parent directory CCB and initiate
I/0 on the parent directory, e.g., ?RENAME, ?CPMAX.

The File Management operation that destroys a user CCB is called
RUCCB.P, Release User CCB. RUCCB.P simply takes the input
channel number, generates the user CCB address via a call to
GENCCBAD, and marks the CCB as free (not in use) by clearing the
vanilla lock bit (BCBLK) and zeroing the process table offset
(CBPTA.W). In addition, the CCBs in use count for the CCB page,
beginning at offset PUCCBS in the process table extender, must
be decremented. After the user CCB is released, the caller will
request KFCB.P service. This initiates the chain reaction that
destroys the chain of system CCBs/FCBs, which must remain open
from the root directory down to the file opened on the user CCB.
RUCCB.P is called by GCLOSE.P, and by open services on errors
occurring after the user CCB's creation.

3.3.7 CCB Operations: Kill Channel Control Block (KCCB.P)

KCCB.P is the operation called to destroy system CCBs when a
file is being closed. KCCB.P is called from those modules that
create system CCBs and must close them. KCCB.P destroys the
CCB, then checks the associated FCB open count. If it is zero,
the FCB will be destroyed. Moreover, the parent CCB of this
hierarchical level is checked for a zero use count. If there
are no more users, it will be released as well. KCCB.P will
loop, working its way through the directory hierarchy,
destroying all system CCBs and FCBs (if CBUSC is 0) until it
gets to the root. Of course, the root CCB can only be destroyed
at system shutdown.

Licensed Material 3-32 Property of Data General

This operation does not "call" KFCB.P to destroy FCBs, but
executes overlapping assembly code common to both KCCB.P and
KFCB.P. Consequently, some algorithmic code is duplicated from
KFCB.P in the following illustration of KCCB.P. The only input
to KCCB.P is the system CCB address (which must be locked upon
entry).

KCCB.P (CCB_addr);

/**

* The use count has already been decremented. If it is still*

* in use, it cannot be destroyed. Just unlock it and return.*
**/

if (CCB_addr->CBUSC != 0)

{
call CULCK (CCB_addr);
return;
}
/**
* If there are no more users of the CCB, destroy it and *

* release its memory. Procedure: lock the parent, decrement *
* the parent CCB use count (one less son), unpend any waiters*
* on the CCB lock, and finally deallocate it. There can be *
* only one situation in which a control block can be pended *
* awaiting a lock when the use count is 0: resolution *
* services. See the note following the algorithm! *

**/

Licensed Material 3-33 Property of Data General

KCCB_LOOP:

PCCB_addr = CCB_addr->CBPCB.W; /* Save parent CCB addr*/
FCB_addr = CCB_addr->CBFCB.W; /* Save FCB addr */
call CLOCK (PCCB_addr):; /* Lock parent CCB to */
PCCB_addr->CBUSC -= 1; /* decr use count (CCB */

/* to be destroyed!) */
if check bit (CCB addr, BCBPL)

call UNPEND (CCB_addr); /* Unpend any waiters */

/* before ... */

call RSMEM (CCB_addr, CBBLT); /* CCB IS RELEASED! */
FCB_addr->FBSCB.W = O; /* No more system CCB */
if (FCB_addr->FBOPN != 0) /* Check FCB open count*/
{ /* File is still open */
call CULCK (PCCB_addr); /* Unlock parent CCB */
return; /* Rest of hierarchy */

3 /* stays open for now. */

/**

* Last opener is closing file. Clean up the FCB. *

* Release buffers on FCB buffer list. *

* Release shared pages on FCB. *

* KFCB.P ALSO FOLLOWS THIS CODE PATH! *
L e L e e e Ty
call RELBF (FCB_addr); /* Release FCB buffers */
if (FCB_addr->FBCMP.W != -1) /* and shared pages if */
call RELSP.P (FCB _addr); /* there were any. */

/**

* If the file was marked for delete on last close, delete it *
* now! Then jump to KCCB to release the system CCB/FCB *

* hierarchy above. *
kkdkkkdkhkhkhk ok hkkkkkkkkkkhkkkk kA RARKRARARKR KR KR KR KR KR KR KR Kk /

if check bit (FCB_addr,BFBDL)
{
call CLDEL.P (FCB addr->FBFIB, PCCB addr, FCB addr);
goto KCCB_LOOP;

}

/* If unit type file, do unit-specific operations */
if (FCB_addr->FBTYP == UNIT_ TYPE FILE)
call UCLOSE.P;

Licensed Material 3-34 Property of Data General

/**

* Read in the FIB, update it with the modified data from the *
* FCB's Funny FIB and flush it out to disk NOW. Flushed now *

* (RELF) because no other users have file open. *
R T R T e e e e T

call RAID (FCB addr->FBFIB, DEFIB, PCCB addr,
&FIB BH, &FIB addr);

FIB_addr->FIFCB = 0;
call UPFIB (FIB_addr, FCB_addr);
call RELF (FIB BH);

/**

* Almost done. *

* Release CPB memory. Destroy the FCB! *
**/

call RSMEM (FCB_addr->FBCPB.W, CPBLT); /* Release CPB mem */
call RFCB (FCB_addr); /* Annihilate FCB */

/**

* Now decrement the parent dir CCB use count.

If still users, just unlock it and return.

If not more users, it can be released (by KCCB.P), which
will execute this entire routine again, and possibly
destroy all open CCBs/FCBs open in the pathname, up to the

root. *
**/

* % % k%
¥ % % % *

if (--PCCB_addr->CBUSC) /* One less FCB son */
{ /* PCCB use count 0?2%*/
call CULCK (PCCB_addr); /* No, unlock it, */
return; /* leave hierarchy. */

}
CCB_addr = PCCB_addr; /* Yes, make parent */
goto KCCB_LOOP; /* current CCB and */
/* destroy it. */

} /* end of KCCB.P */

There is one condition in which the system CCB use count (CBUSC)
may be O when another CB is pended awaiting the release of the
CCB lock. KCCB.P is called to release a system CCB once the
caller has finished using it. Callers lock the CCB, decrement
the use count (if they had incremented it) and call KCCB.P.
KCCB.P checks the use count. If it is non-zero, the CCB is just
unlocked. If it is O, the CCB memory will be deallocated and
its pointer in the FCB (still there) will be cleared. However,
before making the call to RSMEM, KCCB.P calls UNPEND to unpend
waiters of the CCB lock. It would seem possible, then, for the
waiter to be awoken, the CCB will become<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>