
AOS/VS File
System Internals

t. Data General
[~l

053-001002-01

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN
WHOLE OR IN PART WITHOUT DGC PRIOR WRITTEN APPROV­
AL.

DGC reserves the right to make changes in specifications and other
information contained in this document without prior notice, and the
reader should in all cases consult DGC to determine whether any such
changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT­
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRIT­
TEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CON­
T AINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED
TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE
OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE
A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC
License Agreement which governs its use.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE,
ENTERPRISE, INFOS, MANAP, microNOV A, NOVA, PRESENT,
PROXI, SUPERNOVA, SWAT, ECLIPSE MV/4000, ECLIPSE
MV/6000, and ECLIPSE MV/8000 are U.S. registered trademarks of
Data General Corporation. A.Z-TEXT, COMPUCALC, DG/L, DATA
GENERAL/One, ECLIPSE MV/lOOOO, GW/4000, GDC/lOOO, GENAP,
MV/UX, REV-UP, TRENDVIEW, DEFINE, SLATE, microECLIPSE,
BusiPEN, BuisGEN, BusiTEXT, and XODIAC are U.S. trademarks of
Data General Corporation.

Copyright © Data General Corporation, 1987
Rev. 01, May 1987
All Rights Reserved

IMPORTANT NOTICE

I UNDERSTAND THAT INFORMATION AND MATERIAL PRESENTED
IN THE VS INTERNALS MANUAL MAY BE SPECIFIC TO A PARTICULAR
REVISION OF FIE PRODUCT. CONSEQUENTLY USER PROGRAMS OR
SYSTEMS BASED ON THIS INFORMATION AND MATERIAL MAY BE
REVISION-LOCKED AND MAY NOT FUNCTION PROPERLY WITH
PRIOR OR FUTURE REVISIONS OF THE PRODUCT. THEREFORE DATA
GENERAL MAKES NO REPRESENTATIONS AS TO THE UTILITY OF
THIS INFORMATION AND MATERIAL BEYOND THE CURRENT REVI­
SION LEVEL WHICH IS THE SUBJECT OF THIS MANUAL. ANY USE
THEREOF TO YOU OR YOUR COMPANY IS AT YOUR OWN RISK.
DATA GENERAL DISCLAIMS ANY LIABILITY ARISING FROM ANY
SUCH SITUATIONS AND I AND MY COMPANY HOLD DATA GENERAL
HARMLESS THEREFROM.

Aoslvs File
System Internals

t. DataGeneral 053-001002-01

Chapter
1.1

1.2

1.3
1.4

1.5

1.6

Chapter
2.1
2.2
2.3

2.4

Chapter
3.1
3.2

3.3

Table of Contents

1 - On-Disk File System
Definitions
1.1.1 Physical Disk Unit (PU)
1.1.2 Logical Disk Unit (LDU)
1.1.3 LDU-PU Relationship
1.1.4 Logical Disk Addressing
Invisible Disk Space Structure
1.2.1 Disk Boot (DSKBT)
1.2.2 Bad Block Table (BBT)
1.2.3 Disk Information Block (DIB)
Vi~ible Disk Space Structure
AOS/VS Files
1.4.1 What is a File?
1.4.2 File Logical Addressing
1.4.3 File Indexing
1.4.4 Summary
Directory File Structure
1.5.1 What is a Directory?
1.5.2 Directory Data Blocks (DDBs)
1.5.3 DDB Components: Directory Data Elements (DDE)
1.5.4 File Name Block (FNB)
1.5.5 File Information Block (FIB)
1.5.6 File Access Control Block (FAC)
1.5.7 File Link Block (FLB)
1.5.8 File UDA Block (FUB)
1.5.9 Directory Bit Map
1.5.10 AOS/VS Directory Structure; The Global Picture
Locating File Contents

2 - Directory File Management
Overview
Directory Management Databases
DDB Allocation/Deallocation Operations
2.3.1 JELLO.P: DDB Allocation and DDE Creation
2.3.2 JELUDA.P: DDB Allocation and FUD Creation
2.3.3 REDEL: DDB Deallocation and DDE Release
2.3.4 RAID: Read a Directory Data Element
Directory Management Services
2.4.1 Pathname Resolution Services
2.4.2 File Creation Services
2.4.3 File Deletion Services

3 - File Management
Overview
File Control Block
3.2.1 FCB Parameters Definitions
3.2.2 FCB Creation/Destruction
3.2.3 FCB Operations: Get File Control Block (GFCB)
3.2.4 FCB Operations: Release File Control Block

(RFCB)
3.2.5 FCB Operations: Keep File Control Block

(KFCB.P)
Channel Control Block (CCB)
3.3.1 CCB Requests
3.3.2 CCB Parameters Definitions
3.3.3 CCB Creation/Destruction
3.3.4 CCB Operations: OFAULT.P

1-1
1-1
1-2
1-3
1-3
1-5
1-5
1-6
1-6

1-10
1-13
1-13
1-13
1-14
1-16
1-17
1-17
1-18
1-18
1-20
1-21
1-27
1-28
1-29
1-30
1-31
1-35

2-1
2-2
2-4
2-4
2-8
2-9

2-12
2-14
2-14
2-28
2-36

3-1
3-3
3-3

3-10
3-11

3-11

3-12
3-15
3-15
3-16
3-26
3-28

Licensed Material iii Property of Data General

3.3.5 CCB Operations: Generate CCB Address (GENCCBAD) 3-31
3.3.6 CCB Operations: DFAULT.P & RUCCB.P 3-32
3.3.7 CCB Operations: Kill Channel Control Block

(KCCB.P) 3-32
3.4 File Management Services 3-37

3.4.1 (System) Read in a Block: BLKIN 3-37
3.4.2 Enqueue Channel Control Block Request (NQCCB) 3-41
3.4.3 File Open Services 3-45
3.4.4 File Close Services 3-51
3.4.5 Logical Disk I/O Interface Services 3-54

3.5 Shared Protected Files 3-59
3.6 Access Control Privileges 3-62
3.7 C2 Logging 3-65

Chapter
4.1
4.2

4 - CCB Request Management
Overview

4.3
4.4
4.5

4.6

4.7

Chapter
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

I/O Control Block (IOCB)
4.2.1 Definition
4.2.2 IOCB Scheduling
4.2.3 IOCB Processing: Flow of Control
4.2.4 IOCB Parameter Definitions
4.2.5 IOCB Static Parameters
4.2.6 IOCB Pending Mechanism (and Associated

Parameters)
4.2.7 IOCB Dynamic Request-Specific Parameters
4.2.8 IOCB Global Locations
CCB Request Pre-Processing
File EOF Considerations
File Index Optimization
4.5.1 Methodology
4.5.2 Routines
CCB Request Command Processing
4.6.1 CBRED: Read Command Processing
4.6.2 CBWRI: Write Command Processing
4.6.3 CBALL: Allocate Command Processing
4.6.4 CBSYB: Read System Buffer Command Processing
4.6.5 CBDEL: Delete File Command Processing
4.6.6 CBTRNl: Truncate Command Processing (Part 1)
4.6.7 CBTRN2: Truncate Command Processing (Part 2)
CCB Request Post-Processing

5 - Buffer Management
Overview
System Buffer Parameter Definitions
System Buffer Allocation
Locking the Buffer LRU (BFLRU.W)
System Buffer Manipulation
Emergency Shutdown (ESD) and System Buffers
Buffer Management Global Variables
Assigning System Buffers (ASBUF/BLASB)
Enqueuing Buffer Headers for Disk I/O (NQBHR/NQBHRl)
Pending on Buffer Header I/O Completion (BWAIT)
Releasing System Buffer Headers
System Buffer Header Post-Processing
Physical Disk User Read/Write Services

4-1
4-3
4-3
4-3
4-6
4-7
4-8

4-8
4-11
4-15
4-16
4-17
4-20
4-20
4-22
4-28
4-28
4-34
4-34
4-35
4-37
4-42
4-42
4-43

5-1
5-3
5-3
5-4
5-5

5-13
5-14
5-15
5-19
5-26
5-27
5-30
5-31

Licensed Material iv Property of Data General

Chapter
6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12

Chapter
7.1
7.2
7.3

7.4
7.5
7.6
7.7

7.8
7.9

7.10

6 - Logical Disk Unit (LDU) Management
Overview
Logical Unit Control Block (LCB) Parameter Definitions
Unit Definition Block (UDB) Parameter Definitions
LDU Initialization
6.4.1 Special Case: Master LDU Initialization
LDU Release
Bit Map FCB Parameter Definitions
The LDU Bit Map
LDU Disk Block Allocation (Withdraw Blocks)
LDU Disk Block DeAllocation (Deposit Blocks)
Bad Block Remapping
Mirroring Functionality
6.11.1 Terminology
6.11.2 LDU Mirroring and the System Environment
6.11.3 Mirroring and Performance Implications
6.11.4 Functional Overview of Logical Disk Mirroring
Mirroring Internals
6.12.1 Internal Mirroring Databases
6.12.2 Running Mirror Requests

7 - Unit Management
Overview
Unit Parameters Redefinitions
Opening Unit Files
7.3.1 Opening Magnetic Tape Units (MTUs)
7.3.2 Opening Multiprocessor Communications Adaptors

(MCUs)
7.3.3 Opening Line Printer Units (LPUs)
7.3.4 Opening Disk Units (DKUs)
Closing Unit Files
Unit I/O Interface Services
Enqueuing Unit I/O (UIOENQ)
Enqueuing Unit CCB Requests to Magnetic Tape Units
(MQCCB)
Enqueuing Unit CCB Requests to MCA Units (MCACB)
Enqueuing Unit CCB Requests to Line Printer Units
(LPBIO)
Unit I/O Request Post-Processing

Chapter 8 - File Lock Management
8.1 Introduction to File Locking
8.2 File Lock Management Databases

6-1
6-1
6-2
6-5
6-7

6-14
6-15
6-21
6-22
6-23
6-26
6-28
6-31
6-31
6-32
6-33
6-34
6-36
6-36
6-41

7-1
7-1
7-3
7-5
7-6

7-8
7-10
7-11
7-14
7-16
7-21

7-24
7-28

7-31
7-35

8-1
8-1
8-2

Licensed Material v Property of Data General

Introduction

The AOS/VS Revision 7.50 File System constitutes a major
component of the operating system. The primary function of the
File System is to provide for access to and internal management
of a hierarchical file structure on logical disk units. The
File System is responsible for servicing all AOS/VS file and
logical disk related operations, plus I/O operations on block
devices (disks, magnetic tapes, MCAs, and line printers). This
covers a great deal of ground due to the substantial number of
AOS/VS file types and the enormous quantity of possible
operations. This manual discusses in full detail the
functionality and implementation of the most important File
System operations.

Architecturally, the upper boundary of the File System as
described in this manual includes block I/O and file/directory
management, but not the device-independent or process-specific
services of the AGENT. The lower boundary of the File System
includes buffer and unit management, but not device drivers.

System utilities related to the File System include disk,
magnetic tape, and system bootstrap programs, as well as DFMTR,
FIXUP, INSTL, PCOPY, and MSCOPY. These utilities are not
described in detail.

The File System makes numerous services available to external
operating system components. A "service" is a subroutine which
acts as an interface into the File System and which performs a
specific request. For example, Process Management uses File
System services to accomplish swapfile, pagefile, and IPC
spoolfile I/O; System Initialization invokes File System
services to initialize :BOTH, the swap and page disk; Host
Management calls upon the File System to read system microcode
files. The File System often invokes its own services as well.
Similarly, other operating system components provide services to
the File System. For example, the File System frequently
invokes Memory Management services to request a chunk of system
memory for database allocation, and Entity Management services
to pend control blocks.

This manual presents the AOS/VS Revision 7.50 File System as a
collection of individual sUbcomponents. The functionality,
databases, services, and operations relative to each component
are discussed in full detail. As a whole, presentation of the
File System has generally taken a top-down approach, beginning
with the high-level topics and ending with low-level topics.
Each separate section, however, has been drafted in the most
logical format in order to make a clear presentation. The File
System subcomponents, ordered by section as they appear in this
manual, are the following:

1) Disk-Based File System Databases
2) Directory Management
3) File Management
4) CCB Request Management
5) Buffer Management
6) Logical Disk Unit (LDU) Management

Licensed Material vii Property of Data General

7) Unit Management
8) File Lock Management

Memory
Management

A 0 S / V S

Entity
Management

7 • 5 0

Process
Management

Host
Management

/\ /\
I I (services) I I
\/ \/

/\
(services) I I

/\
(services) I I

Disk-Based Databases
File Management

\/ \/

Directory Management
CCB Request Management

*** AOS/VS 7.50 FILE SYSTEM ***

Buffer Management
Unit Management

LDU Management
File Lock Management

/\
II
\/

/\
(services) I I

/\
(services) I I

JP
Management

Licensed Material

\/

System Call
Processor

/\

\/

AGENT

User Process

viii

\/

System
Init.

Property of Data General

lOn-Disk File System

1.1 Definitions

1.1.1 Physical Disk Unit (PU)

A physical disk unit consists of one physical disk in a single
disk drive. The physical disk, as understood by AOS/VS disk
drivers for the purpose of addressing, is divided into the
following fundamental components: sectors, tracks, cylinders,
and heads. The SECTOR on Data General disk units contains a
3-byte address header, a 512-byte data field and a 4-byte
checkword. AOS/VS only recognizes the 512-byte field of the
sector, which is commonly referred to as the "disk block." The
other seven bytes composing the sector are controller specific.
The sector is the smallest addressable unit on a disk. A TRACK
consists of all the adjacent sectors on the same disk plate
surface, which are of equal distance from the center of the
plate. It is a circle made up of sectors. A CYLINDER consists
of the set of tracks, one from each disk plate surface, which
are of equal distance from the center of their respective
plates. The number of cylinders per disk is equal to the number
of tracks per plate. A HEAD is a small device that actually
transfers bits of data to the disk. There is one head per disk
plate surface on disk drives manufactured by Data General; all
disk heads are colinear.

The above information is static in the Disk Information Block
(DIB) of each physical unit. The AOS/VS file system only
recognizes physical block addresses, not drive addresses. The
disk drives must use sector, track, cylinder and head
information to convert physical addresses into disk drive
addresses that the controller will understand in order for
effective data transfers.

DG Model 6161 Disk Storage Unit Characteristics

Bytes/Sector
Sectors/Track
Cylinders
Heads (Tracks/Cylinder)

512
35

823
10

(for all drives)
(varies between drives)
(varies between drives)
(varies between drives)

(computing from above values yields •••)

Bytes/Track
Bytes/Cylinder
Bytes/Disk

17,920
179,200

147,481,600 (147 Megabytes)

The disk controller references disk blocks with a sector,
cylinder and head (surface) address. The first physical disk
block begins at sector 0, cylinder 0, head O. The physical
layout of sectors varies for different disk models. As far as
AOS/VS is concerned, sectors are logically contiguous.

Licensed Material 1-1 Property of Data General

1.1.2 Logical Oisk Unit (LOU)

A logical disk is an association of physical disks, which
creates the illusory effect of a single, contiguously
addressable unit. The purpose of LOU support is to allow an
extended disk address space. This concept is similar to that of
virtual memory; the user is led to believe that there is
unlimited space on one disk. The reality is that the AOSjVS
Oisk Formatter (OFMTR) constructs a string of 1 to 8 physical
disks "linked together" to form one logical disk. The maximum
space possible for an LOU to hold is 2**32 blocks, or 4.3
Gigablocks.

The functions of LOU management can be summarized as follows:

1) To provide a contiguous array of logical disk blocks,
which span one or more physical disks and which hide disk
blocks used for LDU management ("invisible space"),

2) To provide bad block remapping for logical disk blocks,
which preserves the contiguous array of logical blocks in
spite of isolated bad sectors,

3) To maintain the allocation status of each logical disk
block and status of the LOU as a whole.

LOU management is performed not only by the AOSjVS file system
and drivers, but also by indispensable system utilities:

1) OFMTR - "concatenates" physical units to create an LOU.
Analyzes disk surface for bad blocks.
Sets up logical disk management databases.

2) INSTL - copies disk and system bootstraps to disk.
Copies AOSjVS default system to disk.

3) FIXUP - frees up allocated but unused disk blocks.
Rebuilds directories after system crashes.

4) PCOPYjMSCOPY - copies an entire LOU to media of either
the same or different type.

A logical disk can be grafted onto a directory with the ?INIT
system call (CLI INIT command). The AOSjVS file type ?FLOU is
actually a directory type file. The LOU name, specified by the
user at OFMTR time, becomes the name of the directory. A
subordinate directory hierarchy may already exist. Initialized
LOUs are control point directories. Current and maximum space
limitations are maintained like regular CPDs, except when the
LDU is released, the space data is flushed to the Oisk
Information Block (OIB, described later) instead of the File
Information Block (FIB). The master LOU (the root directory) is
automatically initialized by AOSjVS during system
initialization.

Licensed Material 1-2 Property of Data General

An "uninitialized" LDU is merely a set of physical units. In
fact, it is not really a logical disk unit at all. Each unit
defined in the LDU must be opened and accessed independently.
When the disk unit is opened as a file, the user knows only of
physical disk blocks. Physical block I/O is the only user
interface. The concept of file I/O exists only on initialized
LDUs.

1.1.3 LDU - PU Relationship

Physical units in an LDU may be on the same controller (DPFO and
DPF1) or on different controllers (DPFO and DPF10). They may be
of different types (DPFO and DPJO). Only an LDU built with a
602 MB disk cannot include other disk models. An LDU may be
composed of more than one physical unit, but one physical unit
may not be divided into more than one LDU (AOS/VS 7.50). There
may be a minimum of one physical unit per LDU and a maximum of
eight.

Mirrored LDUs are composed of at least two physical units.
Hardware mirroring is effective only when mirroring LDU images
that exist at identical physical block addresses of physical
disks on the same controller. This implies that one controller
contains at least two physical units, one for the primary image
and one for the secondary image. Furthermore, these two
physical units are mirror images of each other.

Most disk blocks of an LDU are available for use by system
users; however, AOS/VS reserves the first 8 blocks exclusively
for physical disk information. These blocks are called the
"invisible space" since they are effectively unknown to the
user. The remaining disk blocks are called the "visible space."
The system also reserves several blocks in visible space for LDU
specific information (see Section 1.3).

1.1.4 Logical Disk Addressing

Since the first 8 physical blocks of an LDU are always reserved
and cannot be accessed by the user, the user need not be aware
of these blocks when accessing logical disk data. Therefore,
the concept of logical disk addressing exists. Logical disk
addresses, beginning with 0 and ending with n, correspond to the
sequential blocks in the visible space portion of an LDU. Since
the invisible space of each PU in an LDU consists of 8. blocks,
logical address 0 corresponds to physical address 8. Invisible
space cannot be accessed by the user on LDU type files; however,
invisible disk blocks can be accessed on PUs open as separate
unit files (?GOPEN @DPF20). The following example compares
physical and logical addresses in an LDU (assume units of equal
size). Substituting n with a simple whole number, such as 100,
may help to clarify.

Licensed Material 1-3 Property of Data General

Multiple Unit LDU

Unit 1 Unit 2 (Unit 3)
========================= ========================= ==========

I
INVISIBLE VISIBLE INVISIBLE VISIBLE .

Physical
address

I 10 7 8 n n+1 n+8 n+9 2n

Logical
address 0 n-8 n-7 2(n-8)

* INVISIBLE * INVISIBLE * INVISIBLE * INVISIBLE *
* *
* PHY 0 * PHY 1
* *

* * PHY 2
*

* * PHY 3
*

*
*
* ***

* LOG 288041 * * INVISIBLE *

· ..
· ..

· ..

* * Unit 0 * * v
* PHY 288049 * * PHY 4 *
* * Model 6060 Disk * *
************** **************
* * * INVISIBLE *
* * * *
* * * PHY 5 *
* * * *

* LOG 1 * LOG 0 * INVISIBLE * INVISIBLE *
* * * PHY 9 * PHY 8
* *

* * PHY 7
*

* * PHY 6
*

*
*
* ***

* INVISIBLE * INVISIBLE * INVISIBLE * INVISIBLE *
* * * * * * PHY 288050 * PHY 288051 * PHY 288052 * PHY 288053 *
* * * * *

* LOG 576083 * * INVISIBLE *
* * Unit 1 * *
* PHY 576099 * * PHY 288054 *
* * Model 6060 Disk * *
************** **************
* * * INVISIBLE *
* * * *
* * * PHY 288055 *
* * * *

* LOG 288041 * LOG 288040 * INVISIBLE * INVISIBLE *
* * * * *
* PHY 288059 * PHY 288058 * PHY 288057 * PHY 288056 *
* * * * *

v

Licensed Material 1-4 Property of Data General

1.2 Invisible Disk Space Structure

The invisible space of physical disk units is described as
follows:

o DRIVER: Reads block 1 into memory.

1 DSKBT: Reads system bootstrap.

2 Bad Block Table (BBT)

3 Disk Information Block (DIB)

4 UNUSED

7 1 ______________________________ _

1.2.1 Disk Boot (DSKBT)

Physical block 0 consists of two parts: code to read in DSKBT
(found in physical block 1) and a small disk driver. The code
to read in DSKBT along with a disk-specific driver is written to
block 0 by the AOS/VS Installer (INSTL). When the "BOOT
device code" command is executed from the System Control
Processor (SCP-CLI), a ROM on the controller specified by the
device code is activated, which loads low memory with the
contents of physical block 0 and begins instruction execution at
location 0377. Location 0377 contains a "JMP" instruction to
the code that will read the actual DSKBT from block 1 into the
next available memory location (0400). After block 1 is read
into memory, flow of control is passed to the first location of
block 1.

The purpose of DSKBT is to load SYSBOOT into main memory. Since
DSKBT is not sophisticated enough to bring in an entire
operating system, it reads and starts an intermediary program
(SYSBOOT). First, DSKBT must read the DIB into main memory to
obtain the starting logical disk address of SYSBOOT. Then it
reads SYSBOOT into main memory (locations 0 - 075777). This is
accomplished by first copying the code that will read in SYSBOOT
to location 077000 and then executing it. All lower memory is
then overwritten with SYSBOOT code. When SYSBOOT is completely
in main memory, DSKBT simply jumps into SYSBOOT code beginning
at location 2. Subsequently, SYSBOOT reads in either the
installed or a user supplied AOS/VS system file and system
initialization is on its way.

DSKBT, SYSBOOT and the installed AOS/VS system will only be
found on physical unit 0 of an LDU.

Licensed Material 1-5 Property of Data General

1.2.2 Bad Block Table (BBT)

The BBT is found in physical block 2 of the physical unit. The
table lists the physical addresses of bad disk blocks and the
address of the contiguous remap area (in visible space). The
DFMTR scans the disk for bad blocks and initializes the data in
the BBT. There is a one-to-one mapping between the bad blocks
listed in the BBT and the good data for that block in the remap
area. Since the BBT is exactly 256. words long, the maximum
number of bad blocks on any disk (except 602 MB disks) is 128.
Words 0-3 of the BBT are reserved, therefore this actually
reduces the number of permissible bad blocks to 126. When an
LDU is initialized, the BBT of each physical unit is read in and
maintained memory resident for as long as the LDU remains
initialized into the system. Its memory address is found in the
UDB at offset UDBBT.W. The BBT is set up as follows:

Offset BAD BLOCK TABLE (BBT)

BBNBB 0 Number of bad blocks on PU.

BBRAH.W 1 Physical disk address of remap area. ---------------\
I

BBRAS 3 Size of remap area (blocks). REMAP AREA

BBBBD 4 Physical address of bad block 1. ====> Block 1 data.

6 Physical address of bad block 2. ====> Block 2 data.

2n+2 Physical address of bad block n. ====> Block n data.

1.2.3 Disk Information Block (DIB)

The DIB is found in physical block 3 of the physical unit. The
DIB contains both PU and LDU information. The primary purpose
of the DIB is to provide LDU Management services with
fundamental LDU information. The DIB is created and initialized
by DFMTR. The most important functions of the DIB are the
following:

1) Identifies the physical unit type and links it into the
LDU.

2) Stores essential LDU information, such as LDU
initialization status; PU sequence numbers; the logical
disk address of LDU name block, ACL block and LDU Bit
Map; visible/invisible space data; ADEX area data;
mirroring statistics.

3) Holds LDU directory characteristics, such as the
initialized directory's file type (?FLDU), hashframesize
(7), data element size (1), and logical disk address of
the root directory's first index block.

4) Holds system initialization and runtime information, such
as the logical disk address of the system bootstrap
(SYSBOOT) and the AOS/VS overlay area. It also holds a
pointer to the AOS/VS installed system file.

Licensed Material 1-6 Property of Data General

The following diagram illustrates a compact representation of
data found in DIB. (Note: Parameters to access the DIB on word
boundaries are defined in PARFS.SR.)

OFFSET

IBREV 0
IBTYP 1
lBSTS 2

IBIDH 3
IBIDM 4
IBIDL 5

IBSNP 6
IBNPU 7
IBNHD 10
IBNST 11
IBNCY 12
IBVIS 13
IBNBH.W 14
IBBTH.W 16
IBUID 20
IBLDF 32

IBNMH.W 33
IBACH.W 35
IBBAH.W 37
IBSBH.W 41
IBSSB 43
IBOAH.W 44
IBOAS 46
IBFBP 47

IBFFB 50
51
52
53
55
57
61
63
64

IBCSH.W 65
IBMSH.W 67
IBDMN 71
IBASZ 112
IBBMS 113

IBDAT.W 114
IBTOD.W 116
IBLDI 120
IBMST 123

IBLDL 124
IBMLL 164

IBLEN 224

Licensed Material

DISK INFORMATION BLOCK (DIB)

File system reV1S1on number.
Disk Unit Type
Status word. Always o and not used.

LDU Unique ID (high)
LDU Unique ID (middle)
LDU Unique ID (low)

Sequence Number of PU in LDU. Between 1 and 8.
Number of physical units in this LDU. Max of 8.
Number of heads on this PU.
Number of sectors per track on this PU.
Number of cylinders on this PU.
Phys disk addr of start of visible space 8.
Number of visible disk blocks on this PU.
Phys disk addr of Bad Block Table. Always 2.
10. unused words.
LDU flags.

NEXT 13. OFFSETS VALID ONLY ON UNIT 0 OF LDU!!!

Logical Disk Address (LDA) of Name Block.
LDA of Access Control Block.
LDA of LDU Bit Map.
LDA of System Bootstrap.
Size of System bootstrap (in blocks).
LDA of Overlay area.
Size of overlay area (in blocks).
Pointer (IDP) to FIB of installed system.

NEXT FCOML (13.) WORDS CONSTITUTE THE FUNNY FIB
OF THE LDU. SEE SECTION 1.4.4 FOR MORE.

Start of the Funny FIB.
File type. Initted to ?FLDU (013).
Hash Frame Size (7).
Extension for EOF in future. (Max now 32 bits)
Number of bytes in file. Initted to O.
Data element size. Initted to 1.
First Logical Address.
Current/Maximum index levels. Initted to <0><3>.
Count of inferior directories. Initted to O.

Current block size of LDU. Dynamically updated.
Maximum block size of LDU. Initted by DFMTR.
User-defined microcode filename.
Size of ADES area (in blocks). Initted by DFMTR.
LDU Bit Map size (in blocks). Initted by DFMTR.

Date last mirrored.
Time last mirrored.
Last mirrored LDU ID.
Mirror state.

Beginning of LDU list. (List of PUs in LDU)
Beginning of Mirrored LDU list. (PUs in mirror).

Length of DIB.

1-7 Property of Data General

The valid AOS/VS disk file system revision numbers are:
SCREV (5) - Any disk with an allocated ADEX area.

Support of co-resident ADEX began in AOS/VS
6.00.

SCPRV (3) - Any disk, except KISMET II, without an ADEX area.
SCKRV (4) - KISMET II type disks without an ADEX area.

If the IBREV fields of all the PUs in an LDU do not match, a
partial DFMTR will abort. If IBREV contains an invalid file
system revision number, LDU initialization will fail.

The disk unit type is a two-letter, ASCII representation of the
disk type. For example, IBTYP contains HPJ" if the disk is an
ARGUS II (i.e., DPJ type) and "PF" if the disk is a ZEBRA (i.e.,
DPF type).

The LDU flags, defined as bit masks, for offset IBLDF are:
IBSIN (lBO) - Logical disk initialized.
IBSBI (lB1) - SYSBOOT has been installed.
IBKS2 (lB2) - KISMET II LDU. (Special handling.)
IBDMC (lB3) - User has defined default microcode filename.
IBFXR (lB4) - FIXUP recommended on this LDU. Set at LDU release.
IBAOD (lB5) - ADEX area has been installed.
IBMIR (lB6) - Disk is part of a mirrored set of images.
IBSIP (lB7) - Mirror synchronization in progress.
IBLDU (lB8) - IBLDL and IBMLL both exist.

Two fields of the DIB, the FIB pointer to the installed system
and the LDU's first file address (undefined parameter in the
Funny FIB), are not DFMTR's area of concern. DFMTR initializes
these locations to O. If the LDU is to be a system disk, INSTL
will take care of allocating the root directory's first index
block and storing its address in the DIB. INSTL will also
allocate the necessary directory data blocks and 400. extra disk
blocks (default) for the installed system. INSTL will create a
FIB for the installed system and place its pointer (IDP) in the
root directory and in the LDU's DIB. SYSBOOT will be able to
access the installed system file via the DIB. On the other
hand, if the LDU is not selected to be a system disk, IBFBP will
be left 0 forever, and the LDU's first address will remain 0
until the first file is created in the root directory.

Finally, the last 64. words of the DIB are a listing of the LDU
and a listing of its mirror LDU (if one exists). The eight
disks of the LDU will be followed by the eight disks of the
mirror LDU. If no mirror exists, the second list will be filled
with -1. There are four words for each disk in the LDU. The
first three words are the disk type and unit number (e.g.,
DPF10); the fourth word is the device code. This table is used
by LDU initialization code to validate the LDU configuration,

Licensed Material 1-8 Property of Data General

mirroring configurations, and to set up the PU-LDU relationship
in in-core databases (LCB, UDB). An illustration of the
concepts follows:

o D P

1 F 1

2 0 <0>

3 027

There are 10. more words in physical block 3, which are placed
outside of the structured DIB (as defined by IBLEN), but hold
information on the co-resident ADEX area. IBAIN, the ADEX
installed word, is initialized to 0 by DFMTR even if there was
an ADEX area allocated. The actual diagnostics are not
installed now, only the area is allocated (in the last block of
the disk). When the ADEX diagnostics are installed, this value
will become non-zero. The ADEX reserved area in physical block
3 is defined as follows:

OFFSET

IBADS
IBPAH.W
IBAIN
IBAEN

365
374
376
377

(PHYSICAL BLOCK 3)

Beginning of ADEX reserved area.
Physical disk address of ADEX area
ADEX installed word. Initted to 0 by DFMTR.
End of ADEX reserved area.

The following illustrates the actual disk representation of the
DIB. The disk type is DPM, a floppy disk, created as a
single-unit LDU.

00 000003 050115 000000 041514 040523 051400 000001 000001
10 000002 000011 000050 000010 000000 001310 000000 000002
20 000000 000000 000000 000000 000000 000000 000000 000000
30 000000 000000 000000 000000 000176 000000 000177 000000
40 000412 000000 000000 000000 000000 000000 000000 000000
50 000003 000013 000007 000000 000000 000000 011000 000000
60 000001 000000 000200 000403 000003 000000 000512 000000
70 001107 000000 000000 000000 000000 000000 000000 000000

100 000000 000000 000000 000000 000000 000000 000000 000000

Licensed Material 1-9 Property of Data General

1.3 Visible Disk Space Structure

Several AOS/VS system databases are kept in the visible portion
of the disk. These areas are allocated dynamically by either
the disk formatter or the installer.

The bad block remap area, whose address is found in the BBT, is
the area to which bad disk blocks are remapped. There is a
remap area on each PU. The DFMTR sets up this area and hammers
the address into physical block 2.

The LDU name block and the LDU access control block are only
valid on the first PU of the LDU. The name specified in the
name block becomes the directory name of the LDU type file when
an LDU is initialized and grafted onto the AOS/VS directory
hierarchy. The ACL in the access control block becomes its ACL.
The DFMTR allocates these areas on the disk and stores their
logical addresses in the DIB.

The bit map indicates which logical disk blocks have or have not
been allocated. A set (1) bit means the block is allocated and
is not free. There is one bit map per LDU and its location is
set up by DFMTR. Since there are 4096 bits in a disk block, the
number of blocks in the LDU bit map is calculated by applying
the following equation:

One of the DFMTR options is to designate the LDU as a system
disk. If this option is selected, the DFMTR allocates 124.
blocks (31K words) for SYSBOOT and stores the logical address in
the DIB. INSTL will read the DIB to get this address and
finally install SYSBOOT into this area. If the LDU is to be a
system disk, the DFMTR also allocates space for the installed
system. The default size is 400. blocks, but this can easily be
changed in one DFMTR session. The logical address of this area
is also stored in the DIB.

The installed system is a file that resides in the root
directory (:) but has no name. When INSTL installs a system, it
creates a FIB in the first general-purpose DDB of the root
directory (see Section 1.4). The FIB will contain the first
file address of the installed system. In order to access the
FIB, INSTL must save its intra-directory pointer (IDP, see
Section 1.4) in the DIB.

The co-resident ADEX area is part of neither invisible nor
visible space! Locations within the ADEX area are referenced by
physical address. They are not incorporated into the logical
addressing scheme of the LDU. The contiguous ADEX area is
allocated by the DFMTR at the end of the first physical unit.
Its physical address is stored in location IBPAH.W (374) of the
DIB.

The remaining blocks of visible space are free for allocation.
The allocation of the first free block, which becomes the first
file address (index block) of the LDU, is discussed in Section
1.2.3. The LDU is ready for general use by all AOS/VS users.

Licensed Material 1-10 Property of Data General

The following diagram summarizes all of the structures
presented.

SCP-CLI> B 27 --->

DSKBT BBT DIB (unused)

(PHY blks 0,1) (PHY blk 2) (PHY blk 3) (PHY blks 4-7)

--> ----- .>----- # bad blks
----- ----- -------------· ----- · ----- Ida of remap
----- · ----- area
----- ----- -------------· ----- · ----- remap size
----- ----- -------------· ----- · ----- Ida of
----- · ----- bad block 0
----- ----- -------------. . . · .

" .

System Bootstrap (SYSBOOT)

-> .>-----

AOS/VS System File

+
+
+ +
+ +
+ + +
+ + +
+ + + +
+ + + +
+ + + + +
+ + + + + - - - - -
+ + + + +
+ + + + +
+ + + + +
+ + + + +

<-+ + + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

<---+ + + +
,-------------.---------------~--~------~ -> ----- .>----- + + +

Licensed Material

----- + + +

1-11

+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +

Property of Data General

+ + +
System Overlay Area + + +

,-------------~--------------~----------~<-----+ + +

LDU Bit Map

One bit

block for

blocks in

Licensed Material

----- + +

per

all

LDU.

Root Directory

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

<-------+ +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

High Index Block +
<---------+ ,----------------r

1-12 Property of Data General

1.4 AOS/VS Files

1.4.1 What is a File?

A file is a collection of logically addressable disk blocks that
contain data. The n blocks of file "FOO" are logically numbered
o - (n-1) and are not necessarily contiguous. File blocks are
allocated in groups of contiguous chunks called data elements.
A data element is the minimum number of contiguous disk blocks
allocated or deallocated on any file I/O request. This number
is represented by a file's data element size (elementsize). A
file's default elementsize is a gennable system parameter.
VSGEN defaults this value to 4, but accepts any valid
elementsize (lor any multiple of 4).

Data elements of the same disk file may begin at logical
addresses on one physical unit of the LDU and end at a logical
address on the following physical unit. Since the purpose of
the LDU and logical addressing is to consolidate all the valid
addresses on each physical unit, AOS/VS must support this
feature.

1.4.2 File Logical Addressing

Disk files are created with a null starting address and contain
no data. The first write to a file causes its first data
element to be allocated, and the file's starting address becomes
the logical disk address of the file's block O. This address is
stored in the File Information Block (described in Section
1.5.5). If the elementsize of file FOO is 4, then the first
write to FOO will cause AOS/VS to allocate 4 contiguous disk
blocks (2048. bytes), logically numbered 0-3. If FOO's
elementsize were 1000., 1000. contiguous disk blocks (512000.
bytes) would be allocated. VSGEN sets the default elementsize
to 4.

File FOO
Elementsize = 4

Data Element 0
Beginning
of file ---> Relative (file)

Block 0

Relative (file)
Block 1

Relative (file)
Block 2

Relative (file)
Block 3

End of file

Licensed Material 1-13 Property of Data General

When the first data element of a file is full, another must be
allocated. However, since logical file addressing implies that
contiguous allocation of all a file's disk blocks is not a
requirement, a pointer to the new data element must be created.
Furthermore, the AOSjVS file system must know that the second
data element holds the next sequence of logically numbered disk
blocks in the file. This goal is accomplished by forcing the
file to undergo a structural transformation; the file grows an
index level.

1.4.3 File Indexing

Indexing occurs when the first data element becomes filled and
another must be allocated. At this stage, an index block will
be allocated, and the first file address will become the logical
disk address of the new index block. The index block will
sequentially point to data elements 0 - n. If the first file
address points to an index block, this index block is called the
"high index block."

The index block is divided into 128 double-word slots, each of
which contains the logical disk address of another data element.
In a one-index level file, the first double word contains the
logical disk address of element O. The 128th double word
contains the logical disk address element 127. If file FOO has
elementsize 4, a total of 512. disk blocks (262,144 bytes) can
fit in index level 1.

The following diagram illustrates one-level indexing in a file
of elementsize 4.

File FOO
Elementsize=4

One Level Indexing

Level 1 Index Block Oata Elements
OWORO
Offset

o

1

127.

LOA of data
element 0

LOA of data
element 1

·
·
· ·

LOA of data
element 127.

Licensed Material

==============>I __ B_l_o_c_k_s ____ 0 ___ -__ 3_

==============>I __ B_1_o_c_k_s ____ 4 ___ -__ 7_

==============>1 Blocks 508-511·1

1-14 Property of Data General

If a file is one index level deep and grows such that the index
block becomes full, the file must grow another index level. The
original index block remains unaltered, but the next index block
will be allocated to point to the newest data element that would
not fit in the single index level format. But where is the
pointer to the new index block found?

The logical disk addresses of each first-level index block are
stored sequentially in yet another index block, called the
second-level index block. Its logical disk address becomes the
file's first address. This scheme allows for effective and
efficient support of file block logical addressing.

The following diagram illustrates two-level indexing in a disk
file with data element size 4. There is enough space to hold
33,554,432 bytes of data!

Level 2
Index Block

LDA of level
Index Block

LDA of level
Index Block

. .
LDA of level
Index Block

LDA of level
Index Block

1

1

1

1

Licensed Material

/
==/

/
==/

File FOO
Elementsize=4

Two Level Indexing

/==>

/==>

Level 1
Index Blocks

LDA element 0

· ·
LDA element 127

LDA elem 16256

· ·
LDA elem 16383

1-15

===>1

Data
Elements

Blks 0-3

===>1 Blks 508- 511 1

===>1 __ 6_50_2_4_-_6_5_0_2_7_

===>1 __ 6_55_3_2_-_6_5_5_3_5_

Property of Data General

AOS/VS supports a minimum of 0 and a maximum of 3 file index
levels. Only databases of enormous size may grow to three index
levels. You can calculate that three-level indexing would allow
for a maximum of 128 cubed data elements. Multiply this result
by 4 to get the number of blocks, and again by 512. to get the
number of bytes. This result is equal to 2**32, perfect for
accommodating a file's maximum achievable byte length in the
32-bit field that AOS/VS provides. AOS/VS has reserved a field
in the File Information Block for an EOF byte extension in the
case of four-level indexing support.

1.4.4 Summary

The reader should now comprehend the basic structure of a file.
There are many different AOS/VS file types, most of which
contain independent data in the presented format. There are
certain AOS/VS files, such as IPC type files, which do not
require data elements, but whose essential information is
maintained in its parent directory's databases. Nevertheless,
one major issue remains unexplained. How does AOS/VS know where
to find a file's starting logical disk address? This question
can be answered by understanding the AOS/VS directory structure,
presented in Section 1.5.

Licensed Material 1-16 Property of Data General

1.5 Directory File structure

1.5.1 What is a Directory?

The directory file is a special AOS/VS file. The valid AOS/VS
directory file types are, as defined in PARU.32.SR:

1) ?FCPD, Control Point Directory
2) ?FLDU, Logical Disk Unit
3) ?FDIR, Directory
4) ?FMTV, Mag Tape Volume

From a user's perspective, directories contain files of any
AOS/VS file type, including subordinate directories. From an
operating system's point of view, directories contain these
files' "administrative" information. Disk data files, per se,
consist solely of index blocks and actual data, while
directories hold the files' characteristics (filename, ACL, link
resolution pathnames, permanence, elementsize, creation time,
starting address of data, etc.). All data retrieved by the CLI
FILESTATUS command (?FSTAT) is maintained in the file's parent
directory. Some files, such as IPC type files, do not actually
contain data, but a directory entry for the file must be present
in order to access it. For the AOS/VS file system to facilitate
file access most efficiently, the directory file structure has
some special features that differ from most other AOS/VS files.
One important feature is a directory's fixed elementsize of 1,
regardless of the default element size of other files. Whenever
a data element is allocated to a directory file, this is the
equivalent to the allocation of a single data block. Other
unique characteristics will be logically presented throughout
this chapter.

Only AOS/VS understands and has the ability to manipulate
directory data. Directory file I/O is implicit and initiated by
the operating system; other file I/O is explicit and initiated
by the user.

All disk file I/O is valid only when the LDU is initialized.
Otherwise, directory hierarchies and file structures are not
interpreted, and only straight, physical block I/O is possible.

Licensed Material 1-17 Property of Data General

1.5.2 Directory Data Blocks (DDBs)

A Directory Data Block (DDB) is simply one disk block that holds
directory specific data. Each individual data block in a
directory can be referred to as a DDB. All DDBs begin with a
standard 8 word header. The first 2 header words contain a
forward and backward link to other DDBs. The rest of the DDB
holds directory specific data. The following diagram outlines
the general DDB structure:

Offset DIRECTORY DATA BLOCK

DENLB 0 Forward link to next DDB
(relative block number)

-
DELLB 1 Back link to next DDB

(relative block number)

2 Not used, zero filled

8 Directory specific data

.

.
127 Directory specific data

1.5.3 DDB Components: Directory Data Elements (DDE)

Directory Data Elements (DDEs) are the basic building blocks of
a DDB. DDEs consist of one or more contiguous nuggets: a
chunk of 8 words. There are five types of DDEs, each of which
contains different directory specific information. A file's
DDEs maintain the essential parameters utilized by the file
system for file access and control.

DDE TYPES

Symbol Type code Description Mnemonic
======== =========== ======================== ==========

DEFNB 1 File name block FNB
DEFAC 2 File Access Control FAC
DE FIB 3 File Information Block FIB
DEFLB 4 File Link Block FLB
DEFUD 5 File User Data FUD
DEFUI 6 File Unique ID (unused) FUI

Licensed Material 1-18 Property of Data General

DDEs are linked to each other by means of intra-directory
pointers (IDP). Each DDE contains one or more IDPs to link
other DDEs related to the same file. The l6-bit IDP is composed
of two fields:

1) the relative block number in the directory file that
holds the desired DDE; and

2) the nugget number in the block.

Bit o

IDP FORMAT

Relative block number
in directory file

10 11

Nugget
number

15

The relative block number field is 11 bits long, imposing a
maximum of 2048 possible DDBs per directory. It also prohibits
directories from exceeding two levels of indexing. Although
this format imposes a limit on the number of files that will fit
in a directory, it still provides enough space to hold the FNBs
and FIBs of over 10,000 files.

The nugget number is used to calculate the offset into the
referenced DDB. This field is multiplied by 8 (nugget length)
to yield the offset. Since there are 256. words in the DDB, and
the first 8. words of the DDB are reserved for the header, a
total of 31. nuggets fit in a DDB. The common structure of all
DDEs is displayed in the following diagram:

COMMON DDE STRUCTURE
<--- Begin on

WORD 0 DDE type 1 DDE length nugget
boundary

1 IDP to another DDE of same file

2
D A T A End on

nugget
n <--- boundary

An example of an IDP would be the octal value "0345". The
relative block number in the directory is 07, and the nugget
number in that block is 05 (offset 050). IDPs are essentially
pointers to directory data elements.

Licensed Material 1-19 Property of Data General

1.5.4 File Name Block (FNB)

The FNB is the DDE that holds a file's name (filename). The FNB
is created and initialized at file creation and deleted at file
deletion. There is one FNB per file, but many FNBs fit in one
DDB. One DDB is dedicated to holding all the FNBs (and only
FNBs) of files with the same hash value. The HASH VALUE of a
file is calculated by taking the modulus of the sum of the ASCII
values of each of its characters divided by the directory's
hashframesize. Execute the following simple steps to calculate
a file's hash value:

1. Sum the ASCII values of the characters in the filename.
2. Divide by hashframesize.
3. The remainder is the file's hash value.

A directory's HASHFRAMESIZE (HFS) is ideally equivalent to the
number of DDBs that contain all the FNBs of the directory. For
AOS/VS, the best general-purpose hashframesize is 7; hence the
default directory hashframesize is 7. Hashframesize is a
parameter in ?CREATE, but not in ?INIT, implying that the
hashframesize of ?FDIR and ?FCPD type files can be any valid
size, while that of LDUs is always 7. The maximum hashframesize
is 255.

The hash value of :PMGR.PR can be calculated easily. The
hashframesize of the master root LDU always defaults to 7.

1) "p"=80. "M"=77. "G"=71. "R"=82. "."=46. "p"=80. "R"=82.
Sum is 518.

2) 518./7 = 74. remainder O.

3) The hash value of PMGR.PR is O.

If there are so many files with the same hash value that one DDB
is not sufficient to hold them all, another DDB is allocated and
linked to the original DDB, forming an FNB CHAIN. No ordering
of FNB entries is attempted within a DDB; the FNB chain is
searched sequentially until a filename match is encountered.

All directory and file I/O operations must read FNBs in
sequential order to find the file on disk. Only two user
interfaces, ?GNAME and ?GNFN, access exclusively the file's FNB
and no other DDE of the file. ?RENAME must access the FIB as
well as the FNB to store the pointer to the renamed file's new
FNB. All other directory management interfaces access the file's
FNBs, but continue on to read the FIB.

Licensed Material 1-20 Property of Data General

The following diagram illustrates the FNB of PMGR.PR and its
actual disk representation in the DDB. Note that by breaking
down the IDP (only hypothetical here), the FIB can be found in
relative block 023 of the directory file at offset 0210
(021*010).

OFFSET FILE NAME BLOCK

DETAS 0 DEFNB (1) I 8. (010)

FNNAM 1 IDP to FIB (01161)

2 "P" "M"
"G" "R"
" " "P" .
"R" <0>

7

DISK REPRESENTATION OF PMGR.PR FNB

000 000000 000000 000000 000000 000000 000000 000000 000000
010 000410 001161 050115 043522 027120 051000 000000 000000
020 (next FNB)

1.5.5 File Information Block (FIB)

The FIB is the DDE that holds most of the file's
"administrative" characteristics. Some of these relate to
general file status information (creation time/date), while
others are necessary for the I/O world's knowledge (permanence,
data element size). The latter characteristics, which make up
the SUbcomponent called the Funny FIB, are read into main memory
objects (i.e., the File Control Block) when a file is opened.
This information is maintained, managed, and perhaps altered
during file I/O operations until the file is closed or a ?UPDATE
request is made. Consequently, the FIB is flushed back to disk.

Like the FNB, the FIB is created and initialized at file
creation and deleted at file deletion. When a file is not yet
open, the FIB pointer (IDP) is always found in the FNB. Any
file operation involving pathname resolution first must find the
file entry in the directory by matching the desired filename
with an FNB's contents; then, the FIB is accessed via the IDP in
the FNB.

FIBs can be either 020 or 040 words long, depending on the file
type. A FIB of 020 words is called a short FIB. Link files
have short FIBs because all the relevant information can be
found in the first 020 words; the remainder of the FIB would not
be used. When a link file is accessed, AOS/VS need only obtain
its resolution pathname, the parameter for which is located at
offset FILBP (2).

Licensed Material 1-21 Property of Data General

A FIB of 040 words is called either a full-length FIB or an
extended length FIB. The "normal" or full-length FIB is
actually FIBLT (032) words long in AOSjVS 7.50. The extended
length FIB, which contains the current and maximum lengths of
control point directories, is LFIBL (036) words long. Since the
length of all DDEs must fallon a nugget boundary, the resulting
length for both variations is 040 words.

The following diagram illustrates the general format of the FIB
and the actual disk representation of the FIB of PMGR.PR in
the DDB.

OFFSET

DETAS

FINLP
FIACL
FILBP
FlUID
FITCH.W

FISTS
FITYP
FIHFS
FICPS
FICPS
FIDCU
FIFW1j

FIFW2
FIEFH.W
FIDFH.W
FIFAH.W
FIIDX
FIIDR

FIFUD
FITAH.W
FITMH.W
FIFCB.W

FICSH.W
FIMSH.W

0

1
2
2
3
4

6
7

10
10
10
10
11

13
15
17
21
22

23
24
26
30

32
34

FILE INFORMATION BLOCK (FIB)

DDE type (bits 0-7) and length (bits 8-15).

IDP to FNB.
IDP to FAC, if not link file (or 0 if no ACL).
IDP to FLB, only if link file.
FIB Unique ID. Always O.
File Creation Time.

Here starts the "Funny FIB."

Status (Bits 0-10). Universal ACL (bits 11-15).
File Type (Bits 8-15): if disk file.
Hash Frame Size: directory file.
File Control Parameters: generic file index.
File Control Parameters: fixed record length.
Dev Code (Bits 0-7), Unit num (Bits 8-15): unit.
Extension for EOF in future.

Number of bytes in file (byte EOF).
Data element size. Set at file creation.
First Logical Address. Zero if null file.
Current (bits 0-7), max (bits 8-15) index levels
Count of inferior directories (dir type files).

This is the end of the Funny FIB.

IDP to FUD (0 if no UDA).
Time Last Accessed.
Time Last Modified.
FCB address (or zero if file not open).

Current size (blocks): control point dir file.
Maximum size:(blocks): control point dir file.

Licensed Material 1-22 Property of Data General

When a file is opened, the Funny FIB is copied into a common
area in the FCB. This file system object remains resident in
main memory for as long as the file is open. The Funny FIB
contains the file-specific parameters that can change throughout
the file's open life or that are absolutely indispensable for
file I/O. These dynamic Funny FIB parameters are not modified
directly in the FIB, but in the common area in the FCB. When
File Management requests that the FIB be flushed (file last
close, update FIB request), the Funny FIB is written back out to
disk. The following status word bits are set in the FCB when
the file is opened; they appear set in the FIB (offset FISTS)
when flushed to disk. (Obviously, if the file is closed, some
of the bits will NEVER be set!)

FBTPX (0)
FBMDB (1)
FBSXO (2)
FBPRM (5)
FBDLE (6)
FBFDB (7)
FBFLB (8)

=
=
=
=
=

Task pended on system-initiated exclusive open.
File modified. Indicates that FIB must be flushed.
System-initiated exclusive open.
File is permanent. Set/reset by ?SATR.
Delete file on last close.
File has a UDA. Set when UDA created.
Flush Funny FIB in FCB to FIB on disk.
This bit is set when file modified, and sometimes
even if a chance it will be modified, such as
on ALL write requests!

FBOEX (9) = File exclusively opened. Set by exclusive open.
FBIOP (10)= File has I/O in progress.

The last five bits of the FISTS word holds the file's universal
ACL. The universal ACL holds the access control privileges
allowed to all users. Since the ACL of many files, especially
system files, does not incorporate any username, but consists
only of a "+" template, the universal ACL feature was
implemented to reduce overhead during I/O processing. Refer to
Section 3.6 for more details.

The file type is also a parameter in the FIB (FITYP). This is
set at file creation time and is checked on numerous occasions
by AOS/VS to validate general file and I/O operations on
specific file types. For example, ?GLINK is only valid for link
type files; ?READ is not a valid user request for directory type
files. The following pages list AOS/VS file types.

Licensed Material 1-23 Property of Data General

AOS/VS SYSTEM FILE TYPES

00000000000
00000000001
00000000002
00000000003

00000000012
00000000013
00000000014
00000000015
00000000016
00000000017

00000000024
00000000025
00000000026
00000000027
00000000030
00000000031
00000000032

00000000036
00000000040
00000000041
00000000042
00000000043
00000000044
00000000045
00000000052
00000000053
00000000054
00000000055

00000000061

00000000063
00000000064
00000000065
00000000066
00000000074

Licensed Material

?FLNK
?FSDF
?FMTF
?FGFN

LINK FILE
SYSTEM DATA FILE
MAG TAPE FILE
GENERIC FILE NAME

DIRECTORY TYPE FILES

?FDIR
?FLDU
?FCPD
?FMTV
?FMDR
?FGNR

DISK DIRECTORY
LD ROOT DIRECTORY
CONTROL POINT DIRECTORY
MAG TAPE VOLUME - not used
RESERVED FOR RT32
RESERVED FOR RT32

UNIT TYPE FILES

?FDKU
?FMCU
?FMTU
?FLPU
?FLPD
?FLPE
?FPGN

DISK UNIT
MULTIPROCESSOR COMMUNICATIONS UNIT
MAG TAPE UNIT
DATA CHANNEL LINE PRINTER
DATA CHANNEL LP2 UNIT
DATA CHANNEL LINE PRINTER (LASER)
RESERVED FOR RT32

IPC FILE TYPES

?FIPC
?FSPR
?FQUE
?FGLT
?FGLM
?FTRA
?FCRA
?FTPA
?FPLA
?FLPA
?FLPC

?FCON

IPC PORT ENTRY
SPOOLABLE PERIPHERAL
EXEC'S QUEUES
LABELED TAPE
LABELED MEDIA
TAPE READER
CARD READER
TAPE PUNCH
DIGITAL PLOTTER
PIO LINE PRINTER
LP2 LINE PRINTER(PLOTTER)

CONSOLE (HARDCOPY OR CRT)

NETWORK TYPE FILES

?FREM
?FHST
?FNPN
?FPVC
?FSYN

REMOTE HOST - REMA ACCESS
REMOTE HOST - X25 SVC ACCESS
NETWORK PROCESS NAME
REMOTE HOST - X25 PVC ACCESS
SYNC LINE

1-24 Property of Data General

00000000100
00000000101
00000000102
00000000103
00000000104
00000000105
00000000106
00000000107
00000000110
00000000111
00000000112
00000000113
00000000114
00000000115
00000000116
00000000117
00000000120
00000000121
00000000127
00000000130
00000000131
00000000132

00000000133
00000000134
00000000135
00000000136
00000000137
00000000140
00000000141
00000000142
00000000143
00000000144
00000000145
00000000146
00000000147

00000000150
00000000151
00000000152
00000000153
00000000154

Licensed Material

DG TYPE FILES

?FUDF
?FPRG
?FUPF
?FSTF
?FTXT
?FLOG
?FNCC
?FLCC
?FFCC
?FOCC
?FPRV
?FWRD
?FAFI
?FAWS
?FBCI
?FDCF
?FLCF
?FLUG
?FUNX
?FBBS
?FVLF
?FDBF

USER DATA FILE
PROGRAM FILE
USER PROFILE FILE
SYMBOL TABLE FILE
TEXT FILE
SYSTEM LOG FILE (ACCOUNTING FILE)
FORTRAN CARRIAGE CONTROL FILE
FORTRAN CARRIAGE CONTROL FILE
FORTRAN CARRIAGE CONTROL FILE
FORTRAN CARRIAGE CONTROL FILE
AOSjVS PROGRAM FILE
WORD PROCESSING
APL FILE
APL WORKSPACE FILE
BASIC CORE IMAGE FILE
DEVICE CONFIGURATION FILE (NET)
LINK CONFIGURATION FILE (NET)
LOGICAL UNIT GROUP FILE (SNA)
VSjUNIX FILE
BUSINESS BASIC SYMBOL FILE
BUSINESS BASIC VOLUME LABEL FILE
BUSINESS BASIC DATA BASE FILE

CEO FILE TYPES

?FGKM
?FVDM
?FNAP
?FTRV
?FSPD
?FQRY
?FDTB
?FFMT
?FWPT
?FDIF
?FVIF
?FIMG
?FPRF

DG GRAPHICS KERNAL METAFILE
VIRTUAL DEVICE METAFILE
NAPLPS STANDARD GRAPH FILE
TRENDVIEW COMMAND FILE
SPREADSHEET FILE
PRESENT QUERY MACRO
PHD DATA TABLE
PHD FORMAT FILE
TEXT INTERCHANGE FORMAT
DATA INTERCHANGE FORMAT
VOICE IMAGE FILE
FACSIMILE IMAGE
PRINT READY FILE

MORE FILES TYPES

?FPIP
?FTTX
?FDXF
?FDXR
?FCWP

PIPE FILE
TELETEX FILE
RESERVED FOR DXA
RESERVED FOR DXA
CEO WORD PROCESSOR FILE

1-25 Property of Data General

The file's data element size is a static parameter set at file
creation time. It is used by CCB Request Management to
determine how many blocks to read on a single request. The
hashframesize (if a directory type file), the file control
parameters (fixed record I/O or generic files), and device
code/unit number (unit file) are static and set at file creation
time as well.

There is a 32-bit parameter in the Funny FIB, which contains the
byte length of a file (FIEFH.W). This field is initialized to 0
at file creation and is updated by I/O management as the file
grows. The maximum file length is 2**32 bytes, or about 4.3
Gigabytes. The Funny FIB, however, contains a reserved field in
the case of future four-level indexing support (FIFWl).

File I/O management checks the current/maximum index level field
(FIIDX) to determine whether or not the file will grow beyond
its maximum valid capacity. FIIDX is initialized at file
creation to 0 current index levels and a potential maximum of 3.
The count of inferior directories, FIIDR, is valid for directory
type files only. This parameter is initialized to 0 at file
creation and is incremented for each inferior directory created.
File Deletion Services inspects this parameter before deleting a
directory, because on a user request there is a restriction
that a directory cannot be deleted if any of its entries are
directories.

Perhaps the most important parameter in the Funny FIB is the
starting file address (FIFAH.W). This field contains the
logical disk address of the start of the file. If the file is
null, this field will contain O. Furthermore, unit (non-disk)
files, IPC files and generic files do not care about this field,
since they do not contain physical data on disk. Unit file
types even take the liberty of redefining this field. If the
file is not null, its first block may be either a data element
or an index block. Whichever it may be, the only way the file
system can access the beginning of a file's data is through this
offset of the file's FIB, located in the file's parent
directory!

Files that do not contain actual data on disk may need to
utilize the FIB in a non-standard manner. For example, the IPC
mechanism does not function through disk I/O operations. An IPC
file is really just the definition of a system global port
number. I/O to IPC files is initiated via ?ISEND and ?IREC
system calls. The ?ILKUP system call calls upon directory
management to verify the existence of the IPC file in a given
directory by reading the FNB. Subsequently, it reads the FIB to
retrieve the global port number. The AOS/VS file system
accounts for this phenomenon by redefining some FIB parameters.

FIPHI
FIPLO

013
014

FIB PARAMETER REDEFINITIONS FOR IPC FILES

Global port number (high): IPC files
Global port number (low): IPC files

Licensed Material 1-26 Property of Data General

Here are some unit management redefinitions:

FIB PARAMETER REDEFINITIONS FOR MAG TAPE UNIT FILES

FILFL
FILBL
FIFIL
FIBLK
FIOBL
FIOB2

013
014
015
016
017
020

Logical EOT File
Logical EOT Block
Current File Number
Current Block Number
Old Block Count
Second Old Block Count

The following illustrates the disk representation of a
possible FIB for PMGR.PR. Notice that it is located at offset
0210 of the DDB, as its IDP in its FNB (previous section)
indicated.

DISK REPRESENTATION OF PMGR.PR FIB

000 000022 000007 000000 000000 000000 000000 000000 000000

210 001440 000005 001165 000000 010465 063137 000003 000101
220 000000 000000 000000 000000 104000 000000 000004 000000
230 006274 000403 000000 000000 010664 062776 010664 074612
240 000000 000000 000000 000000 000000 000000 000000 000000
250 (next DDE)

1.5.6 File Access Control Block (FAC)

The FAC, whose IDP is found in the FIB, is the DDE that holds a
file's non-universal ACL. For example, if the file's ACL were
"USERNAME,OWARE +,RE", "USERNAME,OWARE" would be stored in the
FAC, but "+,RE" would be stored in offset FISTS of the FIB. If
the ACL were only "+,RE", no FAC would be allocated. Since
access privileges cannot efficiently be represented by the ASCII
values of "OWARE", five standard bit positions have been
defined:

APOWN (013) = Owner access
APWRT (014) = Write access
APAPN (015) = Append access
APRED (016) = Read access
APEXC (017) = Execute access

The direct user interface to a file's FAC is through the
?GACL and ?SACL system calls, which get and set the file's ACL,
respectively. Whenever access privilege checking is done, an
FAC must be accessed (if it exists).

Licensed Material 1-27 Property of Data General

The following diagram illustrates a possible FAC of PMGR.PR and
its actual disk representation in the DDB. Inspection of PMGR's
FIB will allow the complete ACL to be established:
"OP,OWARE +,RE." Refer to Section 3.6 for more details.

OFFSET FILE ACCESS CONTROL BLOCK

DETAS a DEFAC (2) 8. (010)

FAFIB 1 lOP to FIB (01161)

FAACL 2 "0" "P"
<0> <037>
<0>

7

DISK REPRESENTATION OF PMGR.PR FAC

000 000000 000000 000000 000000 000000 000000 000000 000000

250 001010 001161 047520 000037 000000 000000 000000 000000
260 (next DDE)

1.5.7 File Link Block (FLB)

The FLB is the OOE that contains the resolution pathname of a
link type file. The FLB is accessed through an lOP stored in
the file's FIB (offset FILBP). The FLB is created at file
creation and deleted at file deletion.

Link files have no ACL; AOS/VS translates the link filename into
its resolution pathname, and the ACL of the latter is checked
against the caller's access privileges. Therefore, the FLB IDP
in the FIB (FILBP) is defined at the same offset as the FAC lOP
(FIACL). If the file being accessed is a link file, offset 2 of
the FIB contains the IDP to its FLB; if the file is of any other
type, offset 2 contains the lOP to its FAC.

The direct user interface to a link file's FLB is through the
?GLINK system call, which retrieves its contents. Virtually all
other system and user interfaces with FLBs occur whenever a link
file is encountered during pathname resolution.

Licensed Material 1-28 Property of Data General

The following diagram illustrates the FLB of a file with a
resolution pathname :SYSGEN:AOSVS_7.54.PR and an actual disk
representation in the DDB.

OFFSET FILE LINK BLOCK

DETAS 0 DEFLB (4) I 16. (020)

FLFIB 1 IDP to FIB (0365)

FLLCN 2 " ... "S" .
fly" "S"
"G" "E"
"N" 11 •• , .
"A" "0"
"S •• "V"
"S" " " -" " "7" .
"5" "4"
" " "p" .
"R" <0>
- -
- -

017 - -

DISK REPRESENTATION OF FIB AND FLB IN DDB

DDB: 000 000000 000000 000000 000000 000000 000000 000000 000000
FIB: 010 001420 001001 000343 000000 010465 063227 000003 000112

020 000000 000000 000000 000005 034000 000000 000004 000000
FLB: 030 002020 000341 035123 054523 043505 047072 040517 051526

040 051537 033456 032464 027120 051000 000000 000000 000000
050 (next DDE)

1.5.8 File UDA Block (FUD)

The FUD is the DDE that holds a file's user data area (UDA).
UDAs are exactly 128. words long and can consist of any binary
data. Any file except link files can have a UDA. The FUD IDP
is found in the FIB (offset FIFUD). Since UDAs take up more
than one half of a disk block of space, only one FUD can fit in
a DDB. AOS/VS allocates a new DDB whenever a new UDA is to be
created. However, a FUD may not be the only DDE in the DDB.

A UDA is created via the ?CRUDA system call interface. The UDA
can be read by issuing the ?RDUDA system call and written by
issuing ?WRUDA. Once a UDA has been created, it cannot be
deleted until the entire file is deleted.

Licensed Material 1-29 Property of Data General

Suppose you created a UDA for :PMGR.PR that said, "SECRET
MESSAGE." The following diagram illustrates how it would look.

000
010
020
030

220
230

OFFSET

DETAS a

FUFIB 1

FUFFL 2
FUFBL 3

FUUDA 4

0210

FILE UDA BLOCK

DEFUD (5) I 136. (0210)

IDP to FIB (01161)

FUD Forward Link: always O.
FUD Backward Link: always O.

S" "E"
C" "R"
E" "T"

" "M"
E" "S"
S" "A"
G" "E"

<0> <0>
.

<0> <0>

DISK REPRESENTATION OF PMGR.PR FUD

000000 000000 000000 000000 000000 000000 000000
002610 001161 000000 000000 051505 041522 042524
042523 051501 043505 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000

000000 000000 000000 000000 000000 000000 000000
(next DDE)

1.5.9 Directory Bit Map

000000
020115
000000
000000

000000

One block in every directory is dedicated to holding the
Directory Bit Map. The first 2048. bits of the bit map block
(128. words) monitor the size of the directory by maintaining a
record of which DDBs are allocated and which are free. A one
bit means that the relative block number corresponding to that
bit position has been allocated. When a new DDB must be
allocated from disk, the directory bit map is searched for a
zero bit. If a zero bit is found, it is set and the block is
allocated to the directory as a DDB. It can now be filled
with DDEs.

DDBs are allocated neither randomly nor sequentially. DDBs for
FNBs are allocated in every fourth word of the bit map, starting
at word O. This means that FNB DDBs are allocated as relative
blocks 0-15, 64- 79, 128-143, etc. However, the first HFS
blocks (0 through HFS-1) of the directory are always reserved
for FNB DDBs, even if hashframesize is I! Each of the FNBs
created in the first HFS-1 blocks are called ROOT FNBs because
the DDB in which they are contained is the first FNB DDB for its
hash value. If a file is created whose FNB overflows the root

Licensed Material 1-30 Property of Data General

FNB DDB, another DDB is allocated (still exclusively for FNBs of
the same hash value). The "overflow" FNBs are called
NON-ROOT FNBs.

The first general-purpose DDB (used for FIBs, FACs, FLBs and
FUDs) always immediately follows the last root FNB DDB. It is
always allocated in relative block HFS. For example, if HFS is
equal to 7, the first general-purpose DDB is allocated in relative
block 7. This block, called the FIB ROOT, marks the beginning
of the FIB CHAIN. All remaining general-purpose DDBs allocated
in this directory will be linked to the FIB root.

The directory bit map always corresponds to relative block
number HFS+l, the DDB following the FIB root. The bit map block
and the FIB root block are exceptions to the rule that FNB DDBs
are reserved for relative block numbers 0-15. If HFS is greater
than 15., the rule is not broken.

1.5.10 AOS/VS Directory structure: The Global Picture

The previous sections have described the basic concepts and
building blocks of a directory in great detail. This section
will tie all these individual pieces together to present the
complete, structured format of the AOS/VS directory file.

Directories are always at least one index level deep. Due to
the intricate structure of directory files, the DDB allocation
mechanism, and the standard elementsize of 1, it is impossible
for a directory to exist with less than one level of indexing.
Files are created with no data and a null starting address; this
is true for directory files as well. However, upon the first
file creation, the minimum number of directory blocks created is
3: one for the FNB DDB, one for the FIB DDB, one for the
directory bit map. Considering the elementsize of 1, one level
indexing will naturally take shape. It is important to remember
that the 16-bit format of the IDP limits the directory's size to
2048. blocks and two levels of indexing.

The layout of the DDBs in a directory can best be understood by
illustration. The following diagrams display the format of a
one-index level directory. Two diagrams are presented: one of a
directory with hashframesize 7 to exhibit DDB utilization
within the first 16 relative blocks, and the other of a
directory with hashframesize 16. The DDBs separated with double
lines fallon bit map word boundaries.

Licensed Material 1-31 Property of Data General

AOS/VS Directory File structure: Hashframesize = 7

Relative
Block Num

o

1

HFS-l
(6)

HFS
(7)

HFS+l
(8)

HFS+2
(9)

HFS+3
(10)

HFS+4
(11)

16.

17.

64.

80.

127.

Root FNB DDB, hash value 0

Root FNB DDB, hash value 1

Root FNB DDB, hash value HFS-l

FIB root, First General
Purpose DDB

Directory Bit Map

NOT USED, NOT ALLOCATED

Non-root FNB DDB

Non-root FNB DDB

:
:

===============================

General purpose DDB

General purpose DDB

:
:

===============================

Non-root FNB DDB

:
:

===============================
General purpose DDB

· · · ·
General purpose DDB

Licensed Material 1-32

DDB
Links

F
N
B

C
H
A
I
N
S

F
I
B

C
H
A
I

<----/ N

<------/

<------------/

I
<------------/

Property of Data General

AOS/VS Directory File structure: Hashframesize = 16.

Relative
Block Num

o

1

HFS-1
(15)

HFS
(16)

HFS+1
(17)

HFS+2
(18)

HFS+3
(19)

HFS+4
(2Q)

64.

65.

80.

127.

Root FNB DDB, hash value 0

Root FNB DDB, hash value I

Root FNB DDB, hash value HFS-I

===============================
FIB root,
First General-purpose DDB

Directory Bit Map

NOT USED, NOT ALLOCATED

General Purpose DDB

General Purpose DDB

· · :
===============================
Non-root FNB DDB

Non-root FNB DDB

:
· · ===============================

General purpose DDB

:
· ·

General purpose DDB

Licensed Material 1-33

DDB
Links

<----/

I
<----/

I . .

<-----------/

<-------------/

F
N
B

C
H
A
I
N
S

Property of Data General

Remember that the word 0 of the directory bit map is reserved
for FNB DDBs. The root FIB DDB is always located in relative
block number HFS. However, the relative block number of the
next general-purpose DDB depends on the directory's
hashframesize.

Finally, the following picture summarizes the connections
between DDEs of all types, as well as the AOS/VS directory
structure as a whole. Beginning with the DIB (physical block 3)
of the logical disk unit, where the starting address of the root
directory is located, the illustration shows the logical
traversal of the directory hierarchy.

MASTER LDU DISK INFORMATION BLOCK

START OF MASTER ROOT DIRECTORY (:)

~FNB <--------> 1-=-1 --------

G<--------> --------
FUD

F
I
B

BEGINNING OF FILE:

Licensed Material 1-34

====>B II FAC
<====

II
====>\::1

I~I

Property of Data General

1.6 Locating File Contents

Logical and physical disk addressing, directory structures, file
structures, and indexing have been presented in previous
sections. You should now understand the AOS/VS physical disk
structure enough to be able to traverse the directory hierarchy
and locate any disk file beginning with the root directory. The
purpose of this section is to clarify any confusion in this
regard, by demonstrating how traversing the directory hierarchy
is done. Beginning with the physical block 3 (the DIB), the
systematic procedure of locating the contents of a disk file on
the logical disk will be explained. The final diagram will mark
each step in the procedure to render "the big picture." For the
sake of simplicity, all directories in this example are only one
index level deep.

LOCATING FILE :UTIL:XHELP.CLI

(1) Find the root directory's first address.
Remember that the DIB contains a series of common offsets
within a FIB, the Funny FIB. This area holds essential
status information for the LDU and is only valid on the
first PU of the LDU. Offset 61 of the DIB (IBFFB + 011)
contains the logical address of the LDU directory's high
index block. If the LDU is the master root (:), offset 61
points to the system root directory.

(2) Find the FNB in which UTIL resides.
Since the hash value of "UTIL" is 3, "UTIL" is found in
relative block 3 of the root directory (if it exists, of
course) •

(3) Scan the FNB for "UTIL."
If it is not found, check the forward link word in the DDB
for the next DDB of the FNB chain. If it is 0, then :UTIL
does not exist. Otherwise, scan the next DDB in the FNB
chain until either the filenames are exhausted or "UTIL" is
found. Once it is found, retrieve and break down the IDP
to its FIB.

(4) Find the FIB for "UTIL."
The IDP to the FIB is 0345. This breaks down to the FIB's
relative block number (7) in the first 11 bits and its
nugget offset (5) in the DDB. Since the relative block
number is 7, examine offset 14. (016) of the root's index
block, which holds the logical disk address of the desired
DDB. Then, since 5 * 8 (nugget size) = 40. (050), the
beginning of the FIB is found at offset 050 of the DDB.

(5) Find the starting logical address of :UTIL and go to it.
This address is located at offset FIFAH.W of the FIB.

(6) Find the FNB for "XHELP.CLI."
Its hash value is 3.

Licensed Material 1-35 Property of Data General

(7) Scan the FNB for "XHELP.CLI."

(8) Find the FIB for "XHELP.CLI."
The IDP breaks down to relative block number 026 and
DDB offset 0110.

(9) Find the starting logical address of :UTIL:XHELP.CLI.
Examine its contents!

Master Root LDU's DIB: Physical Block 3

00 000003 050115 000000 041514 040523 051400 000001 000001
10 000002 000011 000050 000010 000000 001310 000000 000002
20 000000 000000 000000 000000 000000 000000 000000 000000
30 000000 000000 000000 000000 000176 000000 000177 000000
40 000412 000000 000000 000000 000000 000000 000000 000000
50 000003 000013 000007 000000 000000 000000 011000 000000

/= 60 000001 000000 000200 000403 000003 000000 000512 000000
70 001107 000000 000000 000000 000000 000000 000000 000000

100 000000 000000 000000 000000 000000 000000 000000 000000

\=======> (1) Start of root directory: LOG BLK 200

/= 00 000000 000360 000000 000357 000000 000000 000000 000201
10 000000 000000 000000 000000 000000 000000 000000 000203
20 000000 000202 000000 000000 000000 000000 000000 000000

\=======> (2) DDB of FNBs with Hash Value 3: LOG BLK 0201

00 000000 000000 000000 000000 000000 000000 000000 000000
** (3)

/= 40 000410 000345 052524 044514 000000 000000 000000 000000
"U""T" "I""L" <0><0> <0><0> <0><0> <0><0>

50 000410 001115 044105 046120 000000 000000 000000 000000
"H""E" "L""P" <0><0> <0><0> <0><0> <0><0>

60 000410 001121 044517 050115 043522 027123 052000 000000
"1""0" "P""M" "G""R" ".""P" "R"<O> <0><0>

\=======>

Licensed Material 1-36 Property of Data General

(4) Root Dir Relative Block 7: LOG BLK 0203

00 000000 000000 000000 000000 000000 000000 000000 000000

50 001440 000005 000351 000000 011763 043624 000003 000014
60 000000 000000 000000 000000 031000 000000 000001 000000

= 70 000255 000403 000005 000000 013617 043427 013617 043427
100 000000 000000 000000 000153 000002 044760 000000 000000
110 001010 000345 047520 000037 000000 000000 000000 000000

\=======> (5) start of :UTIL: LOG BLK 0255

/= 00 000000 000235 000000 000343 000000 000272 000000 000527
10 000000 000727 000000 000463 000000 000350 000000 000240
20 000000 000237 000000 000000 000000 000000 000000 000000
30 000000 000000 000000 000000 000000 000000 000000 000000
40 000000 000262 000000 000267 000000 000460 000000 000267
50 000000 000244 000000 000466 000000 000400 000000 000623
60 000000 000357 000000 000464 000000 000434 000000 000410
70 000000 000635 000000 000636 000000 000242 000000 000000

100 000000 000000 000000 000000 000000 000000 000000 000000

\=======> (6) DDBs of FNBs with Hash Value 3: LOG BLK 0527

00 000000 000000 000000 000000 000000 000000 000000 000000

140 000000 001305 050123 054523 042522 046505 051456 047502

"p""S" "Y""S" "E""R" "M""E" "S""." "O""B"
150 000000 001331 051503 047515 027120 051000 000000 000000

(7) "S""C" "O""M" " .""P" "R"<O> <0><0> <0><0>
/= 160 000410 001311 054110 042514 050056 041514 044400 000000

"X""H" "E""L" "P""." "C""L" "I"<O> <0><0>
170 000000 001345 043103 052456 050122 000000 000000 000000

"F""C" "U""." "P""R" <0><0> <0><0> <0><0>

\ -------> -------

Licensed Material 1-37 Property of Data General

(8) :UTIL Dir Relative Block 026: LOG BLK 0400

00 000000 000000 000000 000000 000000 000000 000000 000000

/= 110 001440 000005 000351 000000 011763 043624 000003 000014
120 000000 000000 000000 000000 031000 000000 000001 000000
130 000672 000403 000005 000000 013617 043427 013617 043427
140 000000 000000 000000 000153 000002 044760 000000 000000
150 001010 000345 047520 000037 000000 000000 000000 000000

\=======> (9) Data Element 0 of :UTIL:XHELP.CLI, LOG BLK 0672

00 055441 062561 072541 066054 022460 027445 026135 005040
10 020133 020545 070565 060554 026054 022461 022535 005040
20 020040 020133 020545 070565 060554 026054 061557 066555
30 062556 072135 020130 044105 046120 020167 064564 064157
40 072564 020141 071147 072555 062556 072163 005011 004440
50 020040 020040 020154 064563 072040 067546 020145 074145
60 061440 064145 066160 020164 067560 064543 071412 020040
70 020040 055441 062556 062135 005012 020040 064145 066160

100 020052 042530 042503 005040 020133 020545 066163 062535
110 005040 020040 020133 020545 070565 060554 026054 061557

350 061557 066555 062556 072040 043151 071163 072040 071545
360 062440 064546 020164 064145 020141 071147 020151 071440
370 072556 065556 067567 067054 020157 071040 060440 067157
400 067055 072556 064561 072545 020141 061142 071145 073151

1220 022460 056045 020045 030445 005133 020545 067144 056412

Licensed Material 1-38 Property of Data General

2 Directory File Management

2.1 Overview

The AOS/VS directory file is physically structured like any
other data file. Directory file I/O is performed by requesting
the same general file system services that operate on any disk
data file. The conceptual design of a directory file, however,
differs from that of other files in its assumption of the
contents of specific data blocks and its strictly observed
ordering of these blocks. The previous chapter introduced the
particular information maintained and manipulated by directory
files as well as a blueprint of the internal disk structure of a
directory. This chapter will present the internals of directory
file management in relation to its interface with other
sUbcomponents of the file system, other large components of the
operating system, and the user process.

Directory file management of directory data blocks and elements
relies upon allocation and deal location operations, provided at
the lowest level of directory file management, to build the
file's internal structure with consistent integrity. External
modules call upon these operations not only to access, but to
create, delete and modify the contents of the directory as well.
The calling modules are responsible for filling in the space
with the appropriate directory data (DDEs). Finally, these
calling modules actually constitute file system services, which
are accessed either implicitly by a user process (via a system
call) or explicitly by some external system path.

The user interface to any operating system service is, by
definition, a system call. When a user creates a UDA via the
?CRUDA system call, the system invoked service, CRUDA.P,
allocates a new directory data block, links the DDB into the FIB
chain, modifies the directory bit map to reflect the new DDB,
and creates a DDE of type FUD. UDAs form part of directories
and "UDA I/O" is a sUbcomponent of directory management.

The system interface to directory management services is very
straightforward. Any AOS/VS component desiring a directory
management service simply sets up some accumulators and makes a
subroutine call. For example, while a user-initiated request
will pass through the AGENT, run through system call processing
code, and ultimately jump through the system call dispatch table
(MCCT.W), the system directly requests service via an "LJSR
service" instruction. The latter interface usually requires
more knowledge of the ramifications surrounding the request,
such as database locking or buffer header management
implications. Although the effect of the service is the same,
the system's entry point always differs from the user's (system
call) entry point.

All AOS/VS components use file system services. "File" implies
"disk," and how can an operating system exist without a disk?
File system services, and all operating system services in
general, have been designed with easy, clean interface
mechanisms for universal access.

Licensed Material 2-1 Property of Data General

2.2 Directory Management Databases

Directory Management services are directly related to the
on-disk databases as they create, delete and modify them as the
particular service prescribes. Nevertheless, there are various
other databases more closely associated with the file I/O
sUbcomponent of data management. These databases are accessed
and utilized by directory management services when the file on
which a service is to be performed is currently open. The two
major "extraneous" objects are the Channel Control Block (CCB)
and the File Control Block (FeB).

There are two CCB types: system CCBs and user CCBs. The main
purpose of a CCB is to hold essential data that File Management
and CCB Request Management use when servicing disk I/O requests.
A unique system CCB is allocated from main system memory each
and every time that AOS/VS implicitly opens a file, that is,
without direction from the user. For example, when a user
issues a ?CREATE system calIon :DIRI:DIR2:FILE, the file system
must open DIR1 in order to find DIR2, and open DIR2 in order to
create the FNB/FIB pair for FILE. System CCBs are allocated for
both DIR1 and DIR2 when they are opened and deallocated when
they are closed; AOS/VS uses the CCBs to initiate I/O on the
files. A user CCB is created for FILE in the user process' ring
1 and is used during ?READ and ?WRITE processing to initiate
user I/O. Certain directory file management services must know
about system CCBs.

An FCB is allocated from main system memory when a file is
opened for the first time. The FCB is released when the file is
closed for the last time. There is only one FCB for any given
open file. The FCB contains a common area with the FIB called
the Funny FIB (see Section 1.4.5). Depending upon the requested
service, the relevant parameters will be changed in the FCB when
the file is opened and flushed to the FIB when the file is closed.
If the file is not open when the request is made, the FIB will
be read into memory from disk, and later flushed if it was
modified. The system CCB points to the FCB.

Licensed Material 2-2 Property of Data General

The FCB points to subordinate objects as well. One such
pertinent object is the Control Point Block (CPB). The CPB
contains a common area with the FIB which holds essential
control point directory space information. If the file is open,
the data will be retrieved/modified in the CPB and flushed to
the FIB when the file is closed. If the file is not open when
the service request is made, the same data in the FIB will be
accessed. Since the CPB deals exclusively with directory
management, it will be fully illustrated here:

Offset Control Point Block (CPB)

CPCPB.W 0 Parent directory CPB address.

Contains -1 if LDU root directory.

CPCSH.W 2 Current size of CPD.

CPMSH.W 4 Maximum size of CPD.

CPBLT 6 Length of CPB.

Since the FCB exists only when a file is open, the same is true
for the CPB. Furthermore, if a file three directory levels deep
is opened, AOS/VS must perform system opens on the superior
directory files to do directory I/O. AOS/VS keeps the superior
directory files open until the lowest level file is closed.
This implies that FCBs and CPBs of the superior directories must
be resident. The parent directory CPB address is needed because
if the space in the lowest level directory changes, the space in
the superior hierarchy changes as well. This space modification
must be propagated up the hierarchy, and the CPBs of the
superior directories are accessed via CPCPB.W. Current and
maximum space requirements of open files are maintained in
CPCSH.W and CPMSH.W.

Licensed Material 2-3 Property of Data General

2.3 DDB Allocation/Deallocation Operations

DDBs are physically allocated when AOS/VS performs an I/O
request on a specified directory block. When a DDE is to be
created, the DDB must be searched for enough free space to
accommodate the DDE. For instance, when AOS/VS allocates a FIB,
it must determine in which DDB to place it and where in the DDB
to fit it. The execution of the ?CREATE system call adds a new
file to a directory, which implies the potential allocation of
new DDBs and the creation of a new FNB and FIB.

It is not the responsibility of ?CREATE code to perform these
allocation operations, or the responsibility of ?DELETE code to
perform DDB/DDE deal location operations within its own code
path. The AOS/VS file system provides modules that handle these
procedures. These modules are named JELLO.P, JELUDA.P and
REDEL. JELLO.P performs the operation of allocating DDBs (if
necessary) and creating the input type of DDE (except FUD).
JELUDA.P performs the operation of allocating a new DDB for a
FUD. Both of these operations allocate the free DDE, but let
the calling module appropriately fill it in. REDEL releases
(frees up) a DDE.

2.3.1 JELLO.P: DDB Allocation and DDE Creation

JELLO.P performs the operation of allocating space in existing
DDBs for a desired directory data element (except for DDE type
FUD). JELLO.P searches the directory data blocks for enough
space and reserves the space for the caller. If there is not
sufficient space in any DDB for the new DDE, another DDB will be
allocated and linked into the directory. JELLO.P passes back
the address of the new DDE for the caller to fill it in
appropriately.

The external modules that use the provisions of JELLO.P are:

Calling Module Reason

CREATE.P Allocate FNB at file creation time.
CREATE.P Allocate FIB at file creation time.
CLINK.P Allocate short FIB for link file.
CLINK.P Allocate FLB for link file.
SACL.P/DOACL.P Allocate FAC for file.
RENAME.P Allocate FNB for renamed filename.

Licensed Material 2-4 Property of Data General

The inputs and outputs of JELLO.P are standard for all the
calling modules:

Variable Input Output

ACO Starting relative blk DDB buffer header
num to begin search. address.

ACI Size in nuggets of Unchanged.
desired DDE.

AC2 Parent CCB address. DDE address.

A typical calling sequence follows:

XNLDA 0,HASHV,3 ;SEARCH FROM FIB ROOT
XNLDA 1,DDESZ,3 ;DDE SIZE TO ALLOCATE
XWLDA 2,PCCB.W,3 ;PARENT CCB ADDR FROM STACK
LJSR JELLO.P ;ALLOCATE A FIB

WBR JERR ;HOW CAN JELLO BE BAD?

XWSTA 0,DDBBH.W,3 ; SAVE DDB BUFFER HEADER ADDR
XWSTA 2,FIBP.W,3 ; SAVE NEW FIB ADDR

If the DDE to be allocated is of type FNB, the starting DDB
relative block number will resolve to the hash value of the
file (the beginning of the FNB chain). If the DDE to be
allocated is of type FIB, FAC or FLB, the starting DDB will be
relative block number HFS (the FIB root). FUDs are not
allocated by the JELLO.P operation.

The starting block number to search and the size in nuggets is
sufficient to allocate the space for any valid DDE type. After
all, FIBs can be either 2 or 4 nuggets long (020 or 040 words)
and FLBs can be as long as 248. words. The caller need only
request a specific DDE length. The parent CCB address is
necessary for disk I/O.

JELLO.P returns the buffer header address of the DDB containing
the new DDE. The caller must release and flush the system
buffer (RELF) so that it will be immediately written to disk.
The address of the DDE is also returned.

Licensed Material 2-5 Property of Data General

The following is the C-based pseudo-code algorithm that
describes the JELLO.P operation:

#define NUGGET SIZE 8
JELLO.P (start-blk, DDE len, CCB addr,

*DDB_bh_addr_out,*DDE_addr_out)
/* inputs */
/* outputs */

{
/**
* Call BLKIN to read in starting block to search. *
* Relative block number is supplied in the parent dir CCB.*
* BLKIN will allocate the block from disk (and store its *
* logical disk address in the directory's index block) if *
* the DDB had not been previously allocated. This case *
* will occur if the DDE is the first FNB for its hash *
* value. *
**/

DDB reI blk num = CCB addr->CBDBL;
DDB-bh addr-= BLKIN (CCB addr);
DDB=addr = DDB_bh_addr->BQADR.W;

/**
* Search for the desired free space. *
**/

DDE addr = DDB addr + NUGGET SIZE;

while (! end_of_DDB)
{
if (space available >= DDE_Ien)

{ -

if (BLKIN allocated new DDB)
{- --

set bit (dir bit map, DDB reI blk num);
RELM (dir bit map bh addr);
} - - --

*DDB bh addr out = DDB bh addr;
*DDE-addr out = DDE=addr;
return;
}

else
DDE_addr = DDE_addr + NUGGET_SIZE;

/* Store */
/* outputs. */
/* Return. */

/**
* If the end of the DDB is reached without finding *
* enough space, read in the next DDB on the chain, *
* if it exists. If not, the loop terminates anyway.*
**/

if (end of DDB) && (DDB_addr->DENLB != 0)
{ --

}

CCB addr->CBDBL = DDB addr->DENLB;
DDB-bh addr = BLKIN (CCB addr);
DDB-addr = DDB bh addr->BQADR.W;
DDE-addr = DDB-addr + NUGGET SIZE;
} -

Licensed Material 2-6 Property of Data General

}

/***
* Search the bit map for a free DDB slot. BLKIN will *
* allocate and read it in. *
***/

DDB reI blk num = search (dir bit map);
CCB-addr->CBDBL = DDB reI blk-num;
new DDB bh addr = BLKIN (eCB addr);
new DDB addr = new_DDB_bh_addr->BQADR.W;

DOE addr = new_DDB_addr + NUGGET_SIZE;

/***
* Link new DDB into directory structure. *
* FNB DDBs get linked to the end of its FNB chain. *
* General purpose DDBS get linked right after FIB root!*
***/

if (FNB DDB)
{ -
DDB addr->DENLB = new DDB addr;
new DDB addr->DELLB = DDB_addr;
}

else
{
/***

* Link in new DDB after FIB root. *
* Read FIB root and its forward link DDB. *
* (The BLKINs are skipped here to avoid complexity) *
* Then link the new DDB in between. *
***/

FIB root addr->DENLB = new DDB addr;
new DDB_addr->DELLB = FIB_root=addr;

FIB root flink addr->DELLB = new DDB addr;
new-DDB addr->DENLB =FIB root flInk addr;
} - - -

/**
* Set corresponding bit in bit map now. It wasn't set *
* before because there could have been errors reading *
* in the new DDB. Finally, return with output values. *
**/

set bit (dir bit map, DDB reI blk num);
RELM (dir_bit_map_bh_addr); - -

*DDB bh addr out = new_DDB_bh addr;
= ODE addr; *DDE-addr out

return;

/* Store */
/* outputs. */
/* Return. */

Licensed Material 2-7 Property of Data General

2.3.2 JELUDA.P: DDB Allocation and FUD Creation

JELUDA.P performs the operation of allocating new DDBs for DDE
type FUD. JELUDA.P searches the directory bit map for a free
DDB to hold the FUD. Since UDAs are 128. words long, the FUD has
a 4 word header and the DDB has an 8. word header; a new DDB is
allocated for each JELUDA.P request. However, the DDB is free
for other types of DDEs after the initial FUD. JELUDA.P passes
back the address of the FUD for the caller to fill it in.

The calling sequence to request the operation performed by
JELUDA.P is "LJSR JELUDA.P". The only external module that
makes this call is CRUDA.P. The input and output values in the
accumulators are the same as those of a JELLO.P request (see
Section 2.3.1).

Since the FUD is really just another DDE, the JELUDA.P algorithm
is a subset of JELLO.P. The primary difference between FUD and
other DDE type creation is that a new DDB is ALWAYS allocated
for FUDs.

JELUDA.P (start blk, DDE len, CCB addr,
*DDB_bh_addr_new,*DDE_addr_new)

{

/* inputs */
/* outputs */

/**
* Search the bit map for an free general purpose DDB slot.*
* BLKIN will allocate and read in the DDB. *
**/

DDB reI blk num
- - -

CCB addr->CBDBL

new DDB bh addr
- --

new DDB addr - -
DDE addr

= search (dir_bit_map);
= DDB reI blk num;

= BLKIN (CCB_addr);
= new DDB bh addr->BQADR.W;
= new-DDB-addr + NUGGET SIZE; - -

/**
* Link new DDB into directory structure by making it the *
* second DDB in the FIB chain (first after FIB root). *
* Set corresponding bit in bit map now. It wasn't set *
* before because there could have been errors reading in *
* the new DDB. Finally, return with output values. *
**/

}

set bit (dir bit map, DDB reI blk_num);
RELM (dir_bit_map_bh_addr);

*DDB bh addr out = new DDB bh addr;
*DDE-addr out - -

= DDE addr;
return;

/* See JELLO.P */

/* Store */
/* outputs. */
/* Return. */

Licensed Material 2-8 Property of Data General

2.3.3 REDEL: DDB Deallocation and DDE Release

REDEL performs the operation of releasing the space occupied by
a DDE. If the DDB holding the DDE becomes empty, it is unlinked
from its current chain and the directory bit map is updated to
show that the block is free. REDEL does not deallocate the
block from the LDU bit map; the block remains unusable to the
outside world. Its logical disk address is not deleted from the
directory index block that points to it. So when another
directory I/O operation requests the allocation of that same
relative block number, the DDB will "still" be available. In
other words, the LDU still believes that the block is allocated,
so the only directory operations will be the reading in of the
block from disk and the resetting of the bit in the directory
bit map, marking the block as allocated. This saves time by
avoiding extra disk block allocation procedure overhead.
Incidentally, if the DDB is never reallocated by the directory
and continues to be marked as "in use" by the LDU bit map, a run
of FIXUP will clear the relative block number from the
appropriate offset in the directory index block and clear the
bit corresponding to the logical disk block in the LDU bit map.

The calling sequence to request the operation performed by REDEL
is "LJSR REDEL". The external modules that make this call are
the following:

Calling Module

CREATE.P
DELETE.P
CLINK.P
SACL.P/DOACL.P
RENAME.P

Reason

Release FNB DDE on error condition.
Release FNB/FIB/FUD/FAC/FNB.
Release FNB/FIB/FLB on error condo
Release old FAC before allocating new.
Release FNB of renamed file.

The inputs and outputs of REDEL are standard for all the calling
modules:

Variable Input Output

ACO Parent CCB address. Unchanged.

ACl DDB buffer header Unchanged.
address.

AC2 DDE address. Unchanged.

Licensed Material 2-9 Property of Data General

The DDB containing the DDE has already been read in by the
caller. Its buffer header address must be passed to REDEL so
the modified DDB can be flushed to disk (RELF) before the caller
regains control.

The first word at the DDE address is the DDE's DETAS offset,
which contains the type and length of the DDE. REDEL indicates
that the DDE is free by zeroing out word 0 of each nugget that
composes the DDE. JELLO.P checks only word 0 of a nugget to
determine whether or not it is free; words 1 through 7 can be
garbage.

Finally, the parent directory's CCB address is needed for disk
I/O operations. There are no pertinent values to return.

The following is the C-based pseudo-code algorithm that
describes the REDEL operation:

#define NUGGET SIZE 8

REDEL (CCB addr, DDB bh addr, DDE_addr",) /* no output */ { - - -

/**
* Clear out all nuggets belonging to DDE. *
* The size of the DDE is found in its DETAS offset. *
**/

nuggets = (DDE addr->DETAS & 0377) / NUGGET SIZE;
while (nuggets~-)

{
DDE addr->DETAS = 0;
DDE addr += NUGGET SIZE;
} -

/**
* Check to see if the DDB is now empty. *
* Do this by checking word 0 of each nugget for a 0 value.*
* If the DDB is not empty, all the work is done. *
**/

DDB addr = DDB bh addr->BQADR.W;
nugget_ptr = DOB addr + NUGGET SIZE;

while (! end_of_DDB)
{
if (nugget ptr->DETAS != 0)

{ -
RELF (DDB_bh_addr);
return;
}

nugget ptr += NUGGET SIZE;
} -

Licensed Material 2-10

/* Top of DDB */
/* First DDE */

Property of Data General

/**
* DDB is empty. *
* If the DDB is not an anchor DDB, i.e. a root FNB/FIB *
* DDB, unlink it from the DDB chain. *
* Do this by reading in the previous DDB and the next DDB *
* (if it exists) and updating their link words. *
**/

DDB reI blk num = DDB bh addr->BQDBN;

if (DDB reI blk_num > hashframesize) /* Anchor DDB? */
{ /* No */
CCB addr->CBDBL = DDB addr->DELLB; /* Read prev DDB*/
prev DDB bh addr = BLKIN (CCB addr);
prev=DDB=addr = prev_DDB_bh_addr->BQADR.W;

if (DDB addr->DENLB == 0)
{

/* Last DDB? */
/* Yes, zero prev */
/* DDB forward ptr */
/* to unlink DDB. */

prev DDB addr->DENLB = 0;
} - -

else /* Not last DDB. */

}

{ /* Read next DDB. */
CCB addr->CBDBL = DDB addr->DENLB;
next DDB bh addr = BLKIN (CCB addr);
next-DDB-addr = next_DDB_bh_addr->BQADR.W;

/* Unlink the DDB: reset prev/next DDB pointers */
prev_DDB_addr->DENLB = DDB addr->DENLB;
next DDB addr->DELLB = DDB addr->DELLB;
}

/**
* Whether unlinked or not, DDB is still empty. *
* The bit in the directory bit map corresponding to the *
* DDB's relative block number must be reset now. *
* The bit map should be released modified since it was *
* changed. *
**/

clear bit (dir bit map, DDB reI blk num);
RELM Cdir_bit_map_bh_addr);- - -

/**
* Buffer Managament service RELF flushes the modified DDB *
* to disk. *
**/

}

RELF (DDB_bh_addr);
return;

Licensed Material 2-11 Property of Data General

2.3.4 RAID: Read a Directory Data Element

RAID is a Directory Management operation called by various File
Management code paths that reads in a specific directory data
element from a directory. For example, when RESLV.P wishes to
read in a file's FIB, whose IDP it retrieved from the FNB, it
calls RAID to accomplish the task. When RDUDA.P must read in
the requested UDA, it calls RAID to read in the FIB, retrieves
the FUD pointer from the FIB, and finally calls RAID to read in
the FUD. The operation is simplistic. It just calls BLKIN, a
File Management service, to read in the DDB which contains the
DDE and calculates the requested DDE address.

The calling sequence to RAID is "LJSR RAID". The inputs and
outputs of RAID are standard for all modules that use this
operation:

Variable Input Output

ACO IDP to desired DDE. Unchanged.

AC1 DDE type requested. DDB buffer header
address.

AC2 Parent CCB address. DDE address.

The relative directory block number is coded into the IDP, so
RAID simply extracts it and calls BLKIN to read it in. The
buffer header address must be returned to the caller, who is
responsible for releasing the buffer. The DDE address is
returned since that is what the caller requested.

Licensed Material 2-12 Property of Data General

The following is the C-based pseudo-code algorithm that
describes the RAID operation:

RAID (DDE IDP, DDE type, PCCB addr,
*DDB_BH_addr~ *DDE_addr)

/* Inputs */
/* Outputs */

{
/**

* Shift IDP to get relative block number in directory. *
* Store it in the CCB and read in the block. *
**/

DDB blk num = DDE IDP » 5;
PCCB addr->CBDBH.W = DDB blk num;

DDB BH addr = BLKIN (PCCB addr);
DDB=addr = DDB_BH_addr->BQADR.W;

/**
* Ensure that the DDB just read in is really a DDB by *
* checking that the forward/back links are within range. *
**/

if (DDB addr->DENLB < 00)) I I
(DDB-addr->DELLB <
{ -

call PNIC (6031);
}

(DDB addr->DENBL > 2047.) I I
(DDB=addr->DELLL > 2047.)

/* Invalid DDB */

/**
* Get the DDE address from the offset field of the IDP. *
* If the type read does not match the type request, panic. *
**/

DDE addr = DDB addr + (DDE IDP & OFFSET MASK) * NUGGET SIZE;
if (get DDE type (DDE addr~>DETAS) != DDE type) { - - -

call PNIC (6032);
}

/* Invalid DDE */

/**
* If the DDE size is not a multiple of 8 (nugget size), *
* probably not a valid DDB or DDE. So, blow up the world. *
**/

if (get DDE size (DDE addr->DETAS) != mu1tiple_of_NUGGETSIZE)
{ - - -

call PNIC (6014);
}

/* Invalid DDE */

/**
* DDE OK. Parameters already stored for caller. Bye. *
**/

return;

} /* end of RAID */

Licensed Material 2-13 Property of Data General

2.4 Directory Management Services

2.4.1 Pathname Resolution Services

File Resolution Services performs the function of resolving an
input pathname, which may contain multiple filenames separated
by colons and which may be pre-pended with a valid prefix.
Pathname "resolution" covers much more than merely checking for
the existence of each file supplied in the pathname. In order
for the file system to determine if a filename is present in a
directory, the directory must be opened (implying that a system
CCB and FCB must be created) and the FNB chain in which the file
would be found must be searched. If the file is found, its FIB
must be read. If the file is not the last file in the pathname,
its starting address must be obtained, it must be opened,
searched, etc., until the last filename of the pathname is
reached. All files previous to the last filename must be
directories. Depending upon the variant of resolution service
that was requested, some specific action will be taken. The
most basic and common variant of resolution services, RESLV.P,
is called by system call processing modules whose input is a
file pathname.

There are five File Resolution Services variants. Each variant
and a functional description of the service it provides is
listed below:

Variant Function

RESLV.P Search for the existence of the files
named in the input pathname.

WRSLV.P Same as RESLV.P, except the last file
in the pathname must not exist.

DRSLV.P Same as RESLV.P, except the last file
in the pathname must be a directory.

GRSLV.P Same as RESLV.P, except special handling
for ?GNAME call. Uses current searchlist.

RRSLV.P Same as RESLV.P, except special handling
for ?GFNAME call. Uses input PID's
searchlist.

Licensed Material 2-14 Property of Data General

The inputs to all variants of resolution services are standard.
The caller supplies the required information in the accumulators
as follows:

Variable Input Output

ACO Byte address of file Depends on variant.
pathname.

AC1 Input switches. Depends on variant.

AC2 Address flag (bit 0) , Depends on variant.
Address of initial
search directory CCB.

"OAC4" Not used. Depends on variant.

"OAC5" Not used. Depends on variant.

The input contents of ACO is always a byte pointer to the
pathname of the file to be resolved. The pathname will be in
user space if input to a system call. The pathname will be in
system space if the input pathname was generated by the system
(breakfile creation, system initialization calls). Bit 0 of AC2
must be set if the pathname is already in system space.

The input switches are passed in AC1. These bits represent
options that will be considered in resolving the pathname. The
input switches corresponding to the following bits are:

Bit 0) Set: do not resolve links occurring in pathname.
Reset: resolve links occurring in pathname.

Bit 1) Set: return 0 in OAC5 if pathname has prefix "@".
Reset: do not alter the contents of OAC5.

Bit 27) Set: if a non-directory argument is found in the
pathname during GRSLV.P, it must be a console.

Reset: non-directory pathname arguments need not be
a console.

Bit 30) Set: if directory access denied error, check for
complete C2 logging and record pathname of
dir with error and the address of buffer
passed back in AC2 on error return.

Reset: do not check for complete logging.

Bit 31) Set: do not apply search rules.
Reset: apply search rules.

Licensed Material 2-15 Property of Data General

Sometimes the caller may not wish to resolve links. The CLI
selects this option when it makes the ?FSTAT system call.
Notice that when doing a "FILESTATUS" from CLI with a link
filename embedded in the pathname, a "File does not exist" error
will be produced even if the file exists!

Some code paths must know whether or not the input pathname
contained a prefix. For example, if the user supplies the
pathname for a breakfile either via ?BRKFL, ?MDUMP or ?TERM, and
the destination directory is @ (:PER), the breakfile creation
will be aborted if the file already exists. The caller of
WRSLV.P in this case must check for this condition.

There is a special feature of ?GNAME that permits the system
call to verify the existence of a console device on the input
pathname. ?GNAME will call GRSLV.P with bit 27 of ACI set, and
the file type of the first non-directory filename in the
pathname will be verified for a console type file. This feature
is provided for AOS/VS windowing support.

If C2 logging is enabled on the system, access violations will
be logged. If bit 30 of ACI is set, complete logging will be
done if "Directory access denied" errors are incurred during
pathname resolution.

Search rules are applied if the caller's searchlist is to be
used in finding the file. For example, search rules are applied
when ?CRUDA utilizes RESLV.P to resolve the input pathname and
ultimately create the file's UDA. If RESLV.P does not find the
file in the caller's current working directory, the searchlist
CCBs in the caller's process table extender will be accessed,
and the desired file searched for in each of those directories.
Search rules are not applied, for example, on file deletion.

Finally, the initial search directory CCB address may be
supplied in AC2. If the caller wishes the initial search
directory to default to the current working directory, AC2 is
zeroed out.

The values returned to callers of Resolution Services routines
depend upon the requested variant. There are potentially more
than three values to return. Callers must provide for two extra
stack variables, called OAC4.W and OAC5.W, which are pushed on
the stack before the LJSR to RESLV.P (or variant). This stack
space provides two double words reserved for output values to be
returned to the caller (if necessary).

Licensed Material 2-16 Property of Data General

In order to fully comprehend the reasoning of returning specific
outputs, you should be familiar with the modules that request
the services, which are called primarily from modules contained
within the data management component of AOSjVS (i.e., the file
system). There are, however, external components that make use
of the services. The following tables list the modules that
call each separate variant and the returned output values that
the callers will use.

Licens

External requesting modules of RESLV.P

Caller

CRUDA.P
DELETE.P
FSTAT.P
GACL.P
GLINK.P
GTACP.P
ILKUP.P
LINK.P
OPEN.P
RDUDA.P
RENAME.P
RNAME.P
SACL.P
SATR.P
WRUDA.P

Variable

ACO

ACI

AC2

"OAC4"

"OAC5"

Variable

ACO

ACI

AC2

"OAC4"

"OAC5"

ed Material

Effect

These system call services require that
the caller supply a pathname on which a
desired function is to be performed.
They all call RESLV.P to resolve the
input pathname.

Output (input pathname not JUST a prefix)

FIB pointer (IDP) of last file in pathname.

FNB pointer (IDP) of last file in pathname.

Parent directory CCB pointer.

File number (if unit file) or -l.

0 (if prefix is "@") or unchanged.

Output (input pathname JUST a prefix)

Byte pointer to end of pathname + l.

O.

Directory's CCB pointer.

-1.

0 (if prefix is "@") or unchanged.

2 17 - Pro p ert y of Data Ge neral

RESLV.P is called by code paths that implement system calls
with inputs that include a file pathname. Each filename in the
pathname is validated for existence and valid file type,
including the last file. For example, if RESLV.P ever comes
across a file of type ?FMDR that is valid only under RT32, a
system panic (code 6023) will be forced. Each file in the
pathname that is not the last file must be a valid directory
type file. The last file may be any valid AOS/VS file type.

Since resolution of the last filename is the purpose of this
service, the caller will require either the file's FNB or its
FIB, or both. The IDPs are passed back so the caller can decide
which DDE to read in. RENAME.P calls RESLV.P to request the FNB
and FIB pointers of the existing filename. It must read in the
file's FNB (later to delete it) and its FIB (to adjust the
existing FNB pointer to the FNB of the new filename). On the
other hand, SA8L.P only needs the FIB to access the FAC; the FNB
pointer is not used. The parent CCB address is used by all
callers of Resolution Services for access to the parent
directory's databases and to initiate directory I/O; the FNB of
any file resides in its parent directory.

The special case of the pathname consisting solely of a prefix
(":", "-", "---", "=", "@") does not necessitate the output of
the same values as the case of the pathname consisting of
filename characters. A prefix must resolve to a directory type
file; therefore, the directory's CCB is an adequate parameter to
return. The CCB already contains the FIB IDP (CBFIB), and the
directory's FNB is accessible through the FIB. OAC5 will be set
to 0 if the prefix is "@", since BRKFL.P needs to know this
information (see WRSLV.P).

A typical calling sequence to RESLV.P is illustrated by the
following call from ILKUP.P:

WSUB 1,1 ; APPLY SEARCH RULES
WSUB 2,2 ; PATHNAME IN USER SPACE
WPSH 1,2 · MAKE ROOM FOR OAC4,5 ,
XWLDA 0,TACO.W,2 · GET THE USER'S ACO ,
LJSR RESLV.P · RESOLVE THE PATHNAME ,

WRTN · ERROR IN CERWD OF CB ,

WNEZ 1 · PATHNAME JUST PREFIX? ,
WBR DIERR · YES - IT CAN'T BE IPC FILE ,
XWSTA 2,PCCB.W,3 · REMEMBER THE PARENT DIR ,
NLDAI DEFIB,1 · FIB = ELEMENT TYPE REQUESTED ,
XJSR RAID · READ IN THE FIB ,

WBR BERR · RATS! ,

Licensed Material 2-18 Property of Data General

External requesting modules of WRSLV.P

Caller Effect

BRKFL.P Resolve pathname of breakfile to create.

CREATE.P Resolve pathname of file to create.

RENAME.P Resolve pathname of new filename.

Variable Output

ACO Hash value of the last filename.

ACI Namespace address containing last filename.

AC2 Parent directory CCB pointer.

"OAC4" Byte length of last filename, or host id.

"OAC5" 0 (if prefix is "@") or unchanged.

The WRSLV.P variant of Resolution Services is called when the
last filename of the supplied pathname does not exist. This
implies that the caller plans to create the file, which is
indeed the reason that WRSLV.P is chosen. CREATE.P, RENAME.P
and BRKFL.P utilize this service to verify the validity of the
directory in which the new file is to be created and to acquire
essential information leading to the file's creation.

Although BRKFL.P calls BCREATE.P, which calls WRSLV.P, BRKFL.P
must "pre-resolve" the breakfile name; if the breakfile name
already exists, it must be deleted and re-created. Furthermore,
since BRKFL.P does not want to delete any file in :PER, the
preliminary call to WRSLV.P prevents this condition from
arising. BRKFL.P will check the returned value in OAC5 for 0,
which would indicate that the parent directory of the existing
file is :PER. If this is true, no breakfile will be created.

WRSLV.P returns parameters that the caller will need to create a
file. The caller uses the hash value as input to JELLO.P when
creating the FNB. The namespace, a buffer in system memory
containing the last filename in the pathname, is used to fill in
the FNB. The filename length is used as an FNB parameter as
well. As usual, the parent CCB address is always passed back.

Licensed Material 2-19 Property of Data General

Incidentally, WRSLV.P returns the host id of a file in the
pathname that is of type ?FREM, along with error code "Remote
resource reference made."

Caller

CPMAX.P
DRLSE.P
GFTLDU.P

MIRROR.P
PROC2.P
SINITI

SLIST.P

Variable

ACO

ACI

AC2

"OAC4"

"OAC5"

External requesting modules of DRSLV.P

Effect

Resolves CPD directory pathname.
Resolves input LDU pathname.
Resolves directory name to graft initted
LDU onto.
Resolves input LDU pathname.
Resolves initial process working directory.
Resolves :PER and :NET directories to
save their system CCB addresses.
Resolves input searchlist directory.

Output

Byte pointer to end of pathname + 1.

Unchanged.

Directory's CCB pointer.

Unchanged.

Unchanged.

DRSLV.P is called when the last filename in the pathname is a
directory. The purpose of this call is actually to create
and/or retrieve the system CCB address of the directory, i.e.,
open the directory. For example, system initialization must
call DRSLV.P to create system CCBs for both :PER and :NET,
storing them on the return in PERCID.W and NETCID.W,
respectively. DRLSE.P requests th~ system CCB of the input
directory (LDU) to retrieve the system CCB that was created on
the LDU's initialization. The return value in ACO is not used
by any of DRSLV.P's callers. The two double words, OAC4 and
OAC5, need not be pushed before calls to DRSLV.P, since they are
neither accessed nor altered.

External requesting modules of GRSLV.P

Caller Effect

GNAME.P Resolves input pathname.
LINK.P Resolves pathname found in file's FLB.

Licensed Material 2-20 Property of Data General

External requesting modules of RRSLV.P

Caller Effect

GNAME.P Resolves input pathname.
LINK.P Resolves pathname found in file's FLB.

Variable Output

ACO FIB IDP to last disk file in pathname.

ACI FNB IDP to last disk file in pathname.

AC2 Parent directory CCB pointer.

"OAC4" Address of namespace (if unit file) , or -l.
If last file's type is ?FREM, return host ide

"OAC5" Num unused bytes in namespace, or unchanged

GRSLV.P is the customized resolve for the ?GNAME system call,
and RRSLV.P is the customized resolve for the similar ?GFNAME
call. While ?GNAME resolves the whole pathname (resolving
links) given an input pathname and the caller's searchlist,
?GFNAME does the same using the searchlist of the PID of one of
its customers (the caller must be a server).

GRSLV.P searches for the existence of the files named in the
pathname. If any file in the pathname is a physical or logical
unit, a network type file (except ?FREM) or a peripheral console
device, GRSLV.P passes back the remaining files of the pathname.
These files are unverified, accessible through the namespace
pointer in OAC4. If bit 27 is set in AC1, the first
Non-directory filename's file type is assumed to be type ?FCON,
and an error is returned if it is not ("Non-directory argument
in pathname"). This feature is used by AOS/VS windowing calls
to retrieve and verify the console filename from a pathname. If
the input pathname contains a network file of type ?FREM and it
is not the last file, the host id will be returned along with
the error "Illegal host specification." The AGENT will act upon
this condition and deflect the call to RMA if the host
specification is indeed legal. If there are no errors, the last
verified disk file's FNB and FIB pointers and its parent CCB
address are returned. The namespace length is a constant 128.
words; if the remaining number of bytes in the pathname do not
occupy 128. words, the number of unused bytes in the namespace
is returned in OAC5.

Licensed Material 2-21 Property of Data General

RRSLV.P works the same way as GRSLV.P, except that it treats all
network files as logical unit or console files. There is no
exception for ?FREM type files.

Observe the following CLI command lines and outputs:

)PATHNAME :LINK_TO_DIRX:FILE
:DIRX:FILE

)PATHNAME :UTIL:XHELP.CLI:OH_NO
Warning: Non-directory argument in pathname

)PATHNAME :PER:MTBO:0:l:2:THIS:IS:UNVERIFIED
:PER:MTBO:0:l:2:THIS:IS:UNVERIFIED

)PATHNAME :NET:RMA:NPN:FILES:UNVERIFIED
:NET:RMA:NPN:FILES:UNVERIFIED

Since RESLV.P is called most frequently, its C-based pseudo-code
algorithm will be illustrated here.

RESLV.P (*pathname, input switches, OAC2.W,
*FIB_IDP, *FNB_IDP, *PCCB_addr, *file_num, *pref_flag)

{
/**

* Initialization. *
* Init file num to -1. Extract info from aflag. *
**/

*file num = -1;

*PCCB addr = OAC2.W & 017777777777;
pathname_in_system = OAC2.W & 020000000000;

/**
* If pathname is in user space, map it to system space. *
* If the pathname spans a page boundary, use the dynamic *
* logical slots to map the two logical pages contiguously. *
* If the pathname falls on one page only, fault and pin it. *
**/

if (!pathname in system)
{ - -
RMAPU (num wds to map, (int *) pathname, CC.W->CPTAD.W);
if (error)- - -

return (Invalid_word_pointer);
}

Licensed Material 2-22 Property of Data General

/**
* Check initial search directory CCB. *
* If none specified, determine what it should be and *
* temporarily set the parent CCB address to return. *
* The initial working dir is located in the process table *
* extender. *
**/

TOP:
WDIRCCB addr = CC.W->CPTAD.W->PEXTN.W->PWCCB.W;

if (*PCCB addr -- 0)
{ -

prefix found = TRUE;
sWitch-(prefix = *pathname++) {

case '@':
*pref flag = 0;
*PCCB-addr = PERCID.W;
break;

/* Assume prefix */

/* start with :PER */

case '~': /* Up dir hierarchy*/
*PCCB addr = WDIRCCB addr->CBPCB.W;
while-(*pathname++ =~ '~')

*PCCB addr = *PCCB addr->CBPCB.W;
break;

case ' . , . . . /* Start with root */
*PCCB addr = RTCCB;
break;

case ' - , . - . /* = means working dir*/
*PCCB addr = WDIRCCB addr; -
break;

case default: /* Default working dir*/
*PCCB addr = WDIRCCB addr;
prefix found = FALSE; /* Whoops - no prefix */ -

}
}

/**
* Return now if pathname ONLY a prefix. *
* The return values for this case differ from the typical *
* case of more than just a prefix. See inputs/outputs above.*
* Release the user pages from the DLS as well. *
**/

if (prefix found && end of pathname(»
{- - -
*OACO.W = pathname;
*OACl.W = 0;
if (!pathname in system)

UNMAP (num=wds_mapped,O,(int *) pathname);
return;
}

Licensed Material 2-23 Property of Data General

/**
* Allocate namespace where isolated files in the pathname *
* will be saved. Then resolve pathname. *
**/

namespace_ptr = GSMRS (FNSSZ);

while (!end of pathname(»
{ - -

/**
* This while loop checks for the existence and the *
* validity of each file in the pathname. Directory *
* files in the pathname will essentially be opened by *
* the system, manifested by the creation of an FCB and *
* system CCB. Non-directory files will be tested for *
* legality with various criteria. Upon input to this *
* loop, *PCCB addr actually points to the current dir, *
* but will later become the parent dir pointer of the *
* last file in the pathname, a returned parameter. *
**/

/**
* Check: execute access to directory allowed. *
**/

if (error = ESTAC.P (PCCB addr, &ACL_privs»
return (error);

if (ACL privs & execute access) == 0)
return (directory_access_denied);

/**
* Copy (next) filename in pathname to namespace and *
* check for invalid characters. *
**/

namespace = namespace ptr;
while (legal filename-char(*pathname»

*namespace++ = *pathname++;

if (*(namespace-l) == ':' I I legal_pathname terminator(»
*namespace++ = NULL

else
return (illegal filename_character);

/**
* Find the filename in the directory. *
* The LOOKUP.P operation searches the FNB chain in *
* which this file would be found. It returns the FNB *
* and FIB pointers if the file is found. *
* If found, read in the file's FIB to proceed. *
**/

Licensed Material 2-24 Property of Data General

if (error = LOOKUP.P (hash value(*namespace ptr),
(int-*) namespace, *PCCB addr,
&FIB IDP, &FNB IDP» -

return (file_not_found); -

if (error = RAID (FIB IDP, DEFIB, *PCCB_addr,&FIB_bh_addr)
return (error); -

/**
* Check file types. *
* Link files must be resolved by LINK.P. We chain to *
* LINK.P, who will do this work. This is done if the *
* resolve links switch was set on input ACI. *
* LINK.P returns with the new PCCB addr! *
**/

if (FIB addr-)FITYP == link type)
if (Input switches & NRESLNK) && (!end_of_pathname)

chain (LINK.P);
else

break; /* done */

/**
* If end of pathname, RESLV.P is done! *
* All return parameters have already been obtained. *
**/

if (!end of pathname(»
{ --
/***

* RESLV.P resolves ?FHST files (via NRSLV.P). *
* Only DRSLV/RRSVL resolves other network types. *
* By the way, ?GNAME does a DRSVL! *
***/

if (FIB addr-)FITYP == ?FHST)
chain (NRSLV.P);

/***
* Examine the pathname to get the unit file number. *
* This will mark the end of the pathname. *
***/

else if (FIB addr-)FITYP == unit type)
*file num-= get_file_number (pathname);

Licensed Material 2-25 Property of Data General

/***
* Normally, middle of pathname files are dirs. *
* AOS/VS will OPEN the directory. *
* Basically, create an FCB if not already open, slam*
* its address into the FIB, and release the FIB. *
* The parent CCB use count will be incremented with *
* the creation of a new FCB (a "son"). The file *
* open count (FCB addr->FBOPN) is not incremented, *
* but the system CCB addr will indicate the system *
* "implicitly" has the file open. *
***/

else if (FIB addr->FITYP == directory_type)
{
FFCB (*PCCB_addr, FIB_IDP, &FCB_addr); /* Get FCB */

if (FIB addr->FIFCB.W == 0)
{
FIB addr->FIFCB.W = FCB addr;
RELM (FIB_bh_addr); /* ReI FIB modified */
}

else
RELB (FIB_bh_addr); /* ReI FIB unmodified */

/***
* Create a system CCB if it does not already exist. *
* When done, update the current parent CCB pointer *
* and return to the top of the while loop to cant. *
* and open the next filename in the pathname. *
* The parent CCB use count must be incremented since*
* a new son CCB was created and POINTS TO IT! *
* The use count is decr when the son CCB released. *
***/

if «SCCB addr=FCB addr->FBSCB.W) == 0)
{ -

/* No system CCB: create it, lock it, init it */
SCCB addr = GSMRS (CCBLT);
CLOCK (SCCB_addr);
SCCB addr->CBFCB.W = FCB addr;
SCCB addr->CBPCB.W PCCB addr;
FCB addr->FBSCB.W = SCCB addr;
SCCB addr->CBUID = FCB addr->FBUID;
PCCB addr->CBUSC = 1;
}

else
/* Dir already open, CCB exists. Just lock it */
CLOCK (SCCB_addr);

/***
* Unlock current parent CCB. *
* Update the PCCB addr to point to the current dir. *
***/

CULCK (PCCB_addr);
PCCB addr = SCCB addr;
}

else
Licensed Material 2-26 Property of Data General

}

/**
* ILLEGAL FILE TYPE FOUND WITHIN PATHNAME! *
* If search rules, get next searchlist CCB and *
* start allover. Else, error out. *
**/

if (input switches & search rules)
{- -
*PCCB_addr = get_next_searchlist_CCB();

if (*PCCB addr == 0) /* No more */
return-(Non-directory_argument_in_pathname);

else

}
else

{
KCCB.P (old PCCB addr);
CLOCK (*PCCB_addr);
goto TOP;
}

/* Look in new dir!
/* Release old CCB
/* Lock up new CCB
/* Go to stage 1

/* No search rules ... no directory */
return (Non-directory_argument_in_path);

} /* if */
} /* while */

*/
*/
*/
*/

/***
* DONE! *
* We have resolved the pathname. The FNB/FIB pointers *
* have been set by LOOKUP.P, and RESLV.P has already *
* taken care of the rest. Let the caller do as it wishes *
* with the data. *
***/

RSMEM (FNSSX, namespace ptr);
RELB (FIB bh addr); -
if (aflag-==-O)

UNMAP (num_wds_mapped, 0, (int *) pathname);

return;

Licensed Material 2-27 Property of Data General

2.4.2 File Creation Services

File Creation Services performs the function of creating a file,
specifically, of creating a unique FNB and a FIB in the file's
parent directory. If an ACL is provided, a FAC will be created.
If the file is of type link, an FLB will be created. Since
there are numerous FIB parameters redefined for various file
types, the FIB contents will vary.

There are five variations of File Creation Services.
variant is accessed through a specific entry point.
different types of "creates" and their functionality
following:

Each
The
are the

Variant Function

CREATE.P Create a file for a user.
Implementation of the ?CREATE system call.

ICREATE.P Create a file for the system.
VCREATE.P Create an LOU entry in a directory.
BCREATE.P Create a breakfile.
PCREATE.P Create per process swap/page files.

External requesting modules of CREATE.P

Caller Effect

User ?CREATE - Create a file.

SINITl Create :BOTH:SWAP and :BOTH:PAGE links if
:BOTH LOU hosts SWAP and PAGE directories

SINITl Create actual SWAP and PAGE directories.

Note: ICREATE.P is not designed to c~eate links; system
initialization must call CREATE.P to accomplish this. CREATE.P
is called instead of ICREATE.P to create the SWAP and PAGE
directories because a maximum CPO size must be specified;
ICREATE.P cannot do this for CPO types.

Licensed Material 2-28 Property of Oata General

External requesting modules of ICREATE.P

Caller Effect

SINITI Create :PER and :NET directories

SINITI Create @CONSOLE; generic files; unit files;
:PROC:HIF, :PROC:PIF, :PROC:IPS.OOOO3
file (IPC spool file for CLIBT); @LFD.

Note: :PER and :PROC are always deleted and re-created.
ICREATE.P is always called to create :NET during system
initialization; however, if an error code is returned, the code
is assumed to be ERFAE, "File already exists."

Caller

XINIT.P

Caller

BRKFL.P

Caller

External requesting modules of VCREATE.P

Effect

Graft LDU entry into directory hierarchy
during disk initialization.

External requesting modules of BCREATE.P

Effect

Create a breakfile.

External requesting modules of PCREATE.P

Effect

SWAPFILES Create per process page file.
Create per process swap file.

Licensed Material 2-29 Property of Data General

Most Directory and File Management system calls run the risk of
pending on I/O completion. CREATE.P and its variants are not
exceptions. The callers of file creation services must be
running on a control block or a daemon so that state save data
may be stored safely. System initialization creates a primary
control block for its own use and allocates a dummy TCB in order
to issue standard system calls that may pend, including
CREATE.P. Errors incurred during processing will be returned to
the caller in ACO.

The ?CREATE system call, accessed via the CREATE.P entry point,
must transfer packet data from the caller's address space to
system space. This is done with a WBLM instruction. However,
it is entirely possible that an access violation could occur and
cause a trap. CREATE.P handles this potential danger by
establishing its own fault handler, CTRP, whose address is
stored in the control block at offset CBFEH.W, before touching
memory in the caller's address space. If a fault occurs,
control will be transferred to CTRP, the error condition will be
analyzed, and CREATE.P will decide what course of action to
follow. If the trap code indicates that the control block is
still valid, the error code will be returned to the caller. If
the control block is invalid, but the error condition is a
memory restart, the call will be restarted. However, if the
control block is invalid and the trap code is not a restart, it
means that the hardware has detected some unknown protection
violation, and CREATE.P will panic the system with panic code
7304. This is general system call handling and will not be
repeated in the following sections.

The input values to each create variant are dependent upon the
variant being called. These parameter differences are screened
and arranged so that the flow of control can continue at a
common point for all variants. The most common service
requested is that of CREATE.P, presented here in algorithm form.

The inputs and outputs of CREATE.P are listed below. TAC n
refers to accumulator n in the calling TCB.

Variable Input Output

TACO.W Byte address of file Unchanged.
pathname in user space

TACl.W Not used. Unchanged.

TAC2.W Address of packet. Unchanged.

Licensed Material 2-30 Property of Data General

If CREATE.P is being accessed by a user process, the standard
system call interface is the calling sequence. The only other
component that makes use of CREATE.P is system initialization.
A typical implementation follows:

;RETRIEVE TCB ADDR
;PACKET ADDRESS

XWLDA
XLEF
XWSTA
LLEFB
XWSTA
LJSR

2,TCBAD.W,3
O,LNKPK
0,TAC2.W,2
0, PGNAM*2, 0
0,TACO.W,2
CREATE.P
PRINTERR

;SET UP PACKET ADDRESS FOR CALL
;BP TO :PAGE

WBR

;SET UP PATHNAME FOR CALL
;CREATE LINK TO :BOTH:PAGE
;PRINT THE ERROR CODE

CREATE.P is the only variant that takes a packet as an input
parameter. The user supplies the required information for file
creation in the create packet, which is moved into system space
and subsequently extracted as needed. When the file is finally
created, there is nothing pertinent to return to the caller,
except a successful or failure status value. The following is
the C-based pseudo-code algorithm that describes the CREATE.P
service:

CREATE.P (*pathname,,*caller_pkt)
{

/* No outputs */

/**
* Move caller's CREATE.P packet to system space. *
* AOS/VS does this with a WBLM instruction. If the caller *
* supplied a time block, it is also moved to system space. *
**/

wblm (caller_pkt, &sys_pkt, pkt len);

/**
* Check validity and resolve pathname. *
* If the file type is illegal, that is, not within the *
* file range or not found in the LFTBL (legal file table), *
* return the error. Otherwise, check for the presence of *
* each dir supplied in the pathname by calling WRSLV.P. *
* The parent CCB is needed to access the parent dir's FCB! *
**/

if (sys_pkt->cftyp < ?SMIN) I I (sys_pkt->cftyp > ?SMAX) I I
(check_bit (LFTBL_addr, sys pkt->cftyp))
return (illegal file type error);

call WRSLV.P (pathname, switches, a_flag,
&hash_val, &filename, &PCCB addr);

Licensed Material 2-31 Property of Data General

/**
* Check directory access. *
* Caller must have write or append access to create the file.*
* Then, more validity checking is done. *
**/

call ESTAC.P (PCCB_addr, &ACL_privs);

if (ACL_privs & (write_access I append_access) -- 0)
return (directory_access_denied);

/* Must create network files in :NET */
if (network type file && (PCCB addr != NETCID.W)

return (illegal_dir_name_specification);

/* Cannot exceed max dir depth, currently 8 */
PFCB addr = PCCB addr->CBFCB.W;
if (PFCB addr->FBLVL == SCLVL)

return (max_dir_tree_depth_exceeded);

/**
* I!! CREATE AN FNB IN THE PARENT DIRECTORY!!!. *
* The only error can be insufficient room in directory. *
**/

call JELLO.P (hash val, filename, PCCB addr,
&FNB=bh_addr,&FNB_addr);-

if (error) return (insufficient_room_in_dir);

/**
* Fill in the DETAS word and move the. filename into the FNB. *
* The FIB must be created before its pointer is stored. *
**/

FNB addr->DETAS = (DEFNB « 8) + strlen(filename) + 2;
call round_up_to_next_nugget_multiple (FNB_addr->DETAS);

wblm (&filename, &FNB_addr->FNNAM, strlen(filename);

/**
* Let Link Services create the FIB and FLB. Chain away! *
**/

if (link type file)
chain-(CLINK.P);

/**
* !1! CREATE A FIB IN THE PARENT DIRECTORY!!! *
* The FIB contents depend upon file type. *
* No error conditions will arise after FIB allocation. *
**/

call JELLO.P (hash val, filename, PFCB addr->FBHFS,
- &FIB_bh_addr,&FIB=addr);

if (error) return (insufficient_room_in_dir);

Licensed Material 2-32 Property of Data General

switch (sys pkt->cftyp) {
case IPC-FILE TYPE:

/**
* Fill in the global port number. *
**/

FIB addr->DETAS =
FIB-addr->FIPHI =
FIB-addr->FIPHL =
break;

FDETAS; /* Full length FIB */
pid;
ring_and_local_port;

case GENERIC FILE TYPE:

/**
* The generic file indices are as follows: *
* l=@INPUT, 2=@OUTPUT, 3=@LIST, 4=@DATA, 5=@NULL *
**/

FIB addr->FICPS = generic_file_index;
break;

case UNIT FILE TYPE:

/**
* Fill in the unit's device code and number. *
* Fill in mag tape redefs if mag tape unit. *
* Units have no starting address at creation. *
**/

FIB_addr->FIDCU = (device_code « 8) + unit number;

if (sys pkt->cftyp = ?FMTU)
init=tape_redef_params_in_FIB (FIB_addr);

FIB addr->FISTS = 0;
FIB-addr->FIFAH.W = 0;
FIB addr->FIFCB.W = 0;
break;

case DIRECTORY TYPE FILE:

/**
* Fill in directory-related FIB parameters. *
**/

FIB addr->FIMSH.W = sys_pkt->cmsh; -
FIB addr->FICSH.W = 0; -
FIB addr->FIHFS = sys_pkt->chfs; -
FIB addr->FIIDX = SCMIL;

-
FIB addr->FIDFH.W = 1;

/* Time last accessed */
FIB addr->FITAH.W =

/* Max space */
/* Curr space */

/* HFS */
/* Max index lev */
/* elementsize=l */

«sys_pkt->CTIM == -1) ? system_time user_time);

Licensed Material 2-33 Property of Data General

/* Time last modified */
FIB addr->FITMH.W =

«sys_pkt->CTIM -- -1)

FIB addr->FIFUD = 0; -
FIB addr->FIEFH.W = 0; -
FIB addr->FIFW1 = 0; -
FIB addr->FIFW2 = 0;

-
FIB addr->FIIDR = 0; -
FIB addr->FISTS = 0; -
FIB addr->FIFAH.W = 0;
break;

case default:

? system_time . user_time); .
/* Init the */
/* rest to */
/* zippo. */

/**
* For all other file types, fill in the FIB with *
* values supplied in the packet, or init field to O. *
**/

FIB addr->FICPS
FIB-addr->FIIDX
FIB-addr->FIDFH.W

= sys_pkt->FICPS;
= sys_pkt->cmil;
= sys_pkt->cdel;

/* Time last accessed */
FIB addr->FITAH.W =

«sys_pkt->CTIM == -1) ? system_time

/* Time last modified */
FIB addr->FITMH.W =

«sys_pkt->CTIM -- -1) ? system_time user_time);

FIB addr->FIFUD = 0; -
FIB addr->FIEFH.W = 0; -
FIB addr->FIFW1 = 0; -
FIB addr->FIFW2 = 0; -
FIB addr->FIIDR = 0; -
FIB addr->FISTS = 0; -
FIB addr->FIFAH.W = 0;

}

/**
* Fill in other FIB offsets. *
* If a time block was specified in the packet, use the time *
* specified. Otherwise, use the current system time. *
**/

/* Creation time */
FIB addr->FITCH.W =

«sys_pkt->CTIM == -1) ? system_time

FIB addr->FITYP = sys pkt->cftyp;
FIB addr->FIACL = 0; -
FIB-addr->FIUID = 0;

Licensed Material 2-34

user_time);

Property of Data General

/**
* Nearing the end. *
* Fill in FNB pointer in the FIB, and FIB pointer in the FNB.*
**/

FIB addr->FINLP = convert to idp (FNB addr);
FNB-addr->FNFIB = convert=to=idp (FIB=addr);

/**
* Flush the completed FNB and FIB to disk. *
* This causes the parent dir to be modified, so set the mod *
* bit in its FCB. This will cause its Funny FIB to be *
* flushed when the file is closed. *
**/

RELF (FNB bh addr);
RELF (FIB bh addr);

/* Bye Bye FNB */
/* Bye Bye FIB */

set_bit (PFCB_addr, BFBMD);

if (DIRECTORY TYPE FILE)
PFCB_addr->FBIDR += 1; /* Count a new inferior dire */

/**
* MOSTLY DONE! *
* The FAC pointer was initted to 0 without even a check for *
* ACL specification. The DOACL.P variant of Access Control *
* Services is chained to. The ISACL.P service could have *
* been used instead, but VS chose this approach. An FAC will*
* be allocated if more than a universal ACL is specified. *
**/

chain (DOACL.P);

}

Licensed Material 2-35 Property of Data General

2.4.3 File Deletion Services

File Deletion Services represents the functional opposite of
File Creation Services. File deletion services deletes a file's
FNB and FIB directory data elements in its parent directory.
The FAC or FLB will be deleted as well. If a UDA was created
for the file, the FUD will also be released. The REDEL
operation will be called to accomplish standard DDE deletion.

File deletion encompasses more than interaction with directory
data elements. Most files are associated with data elements,
which must be deallocated from disk. File creation is not
concerned with data element allocation; CCB Request Management
allocates the data elements on I/O requests. File deletion,
however, must take responsibility for deleting all of a file's
data, including the index blocks that build the file's physical
structure. Fortunately, the I/O world deal locates both data
elements and index blocks upon request. File Deletion Services
need only make one DELFIL ("DELete FILe") request to CCB Request
Management to delete a file's data. Consequently, the file's
first address will again be O.

Although directories are files just like any other data file,
their deletion is more complex. The contents of a directory are
its DDEs, which hold information about the files residing in the
directory, including their filenames. All DDEs plus the data
housed by each file must be deleted. This implies that a simple
?DELETE could become a recursive operation traversing the
directory tree from top to bottom. If this were allowed, a CLI
DELETE (which does a ?DELETE) could wipe out entire directory
hierarchies, a dangerous consequence for such a simple, common
operation. AOS/VS stipulates that user directory deletes are
possible only if none of the directory's subordinate files are
directories. This forces only one recursive level within the
DELETE operation: that of each of the mandatory non-directory
files in the directory. (CLI parses the "I" template supplied
in "DELETE" commands and subsequently makes the required number
of ?DELETE system calls to service the user's request. "I" is
not a ?DELETE parameter!) System initiated deletes do provide
the option of relentless deletion of ALL files in an input
directory.

Another interesting feature of Deletion Services is that if a
file is open and a delete file request is made, only the file's
FNB will be deleted, creating the illusion that the file is
gone. In reality the FIB, FAC, FUD and all data elements remain
allocated and intact in the directory until the file's FCB open
count reaches zero (last close). This explains why the
execution of a program file will not be aborted if the .PR file
is "deleted" during execution. The file's physical structure
and all its data is still accessible from disk by processes
which already have the file open. Further opens of the file are
not possible, since the filename no longer appears in the
directory.

Licensed Material 2-36 Property of Data General

There are four variants of File Deletion Services. Each variant
is accessed through a specific entry point. The different types
of deletion services and a functional description of each
follows:

Variant

DELETE.P

IDELETE.P

UDELETE.P

VDELETE.P

CLDEL.P

Function

Delete a file for a user.
Implementation of ?DELETE system call.

Delete a file for the system.
Internal file delete.

Delete a file for the system, on behalf
of the user.

Delete an LDU entry from its parent dire

Delete a file marked for "delete on last
close."

External requesting modules of DELETE.P

Caller Effect

User ?DELETE - Delete the file.

DOACL.P Delete the file being created.

The user issues a ?DELETE, which passes through the system call
processor and enters the system call code at DELETE.P. DOACL.P
is a service chained to from CREATE.P (after the FNB and FIB
have been created) to allocate the FAC and establish a file's
ACL. If the ACL is invalid, the previously created DDEs must be
deleted. This is done via a request to DELETE.P.

External requesting modules of IDELETE.P

Caller Effect

BRKFL.P Delete breakfile on error condition.

SDOWN.P Delete :PER and :PROC.

SINITl Delete :PER and :PROC before recreation.
Delete : SWAP and :PAGE before recreation.
Delete invalid files in : SWAP and : PAGE

ALLSW.P Delete a PID's swap file on ?PROC.
DALSW Delete a PID's swap file on ?TERM.
PSWIPE.P Delete all unopened swap and page files.

Licensed Material 2-37 Property of Data General

IDELETE.P is an internal ?DELETE. The necessary parameters are
passed in the system accumulators rather than in the user
packet. The system requests IDELETE.P service when it decides
to delete a file. BRKFL.P utilizes IDELETE.P to delete the
breakfile if an error condition arises after its creation.
SDOWN.P calls IDELETE.P to delete the :PER and :PROC directories
on system shutdown. System initialization makes the call as
well in case system shutdown did not run to completion (or did
not run at all). One option of the IDELETE.P call is to delete
all files in a directory, whether or not they are directory
files and regardless of access privileges and permanence.
System initialization also calls IDELETE.P to delete files in
:SWAP and :PAGE that are not in the correct format for the
directory (e.g., SWAP.00099).

Process management (ALLSW.P) makes use of IDELETE.P by deleting
a new PID's swap file on ?PROC if the file is hot (already
exclusively open) and the new swapfile is a non-default size.
DALSW calls IDELETE.P to delete a PID's swap file on ?TERM if it
was created with a non-default size. Normally, swap files are
left exclusively opened on process termination to avoid the
overhead of closing on ?TERM and reopening on ?PROC. Finally,
PSWIPE.P calls IDELETE.P for each unopened swapfile in :SWAP and
pagefile in :PAGE when an error is returned from a swapfile I/O
request. The error condition assumes that there is a potential
fatal condition, since there is no reason for the I/O to fail.
The call to PSWIPE.P attempts to free up disk space in :SWAP and
:PAGE in case the I/O error was due to insufficient space, and
the original I/O request is retried. If the second request
fails, AOS/VS will panic with code 14413.

External requesting modules of UDELETE.P

Caller Effect

BRKFL.P Delete the existing filename with which
a breakfile is to be created.

UDELETE.P is called only by BRKFL.P when a breakfile name is
specified by the user in a ?BRKFL, ?MDUMP or ?TERM/BREAKFILE
system call and the filename already exists. UDELETE.P is
exactly the same as IDELETE.P, except that UDELETE.P will not
delete the file if access is denied or permanence is set.

Licensed Material 2-38 Property of Data General

External requesting modules of VDELETE.P

Caller Effect

DRLSE.P Delete the LDU entry from its parent dir.

VDELETE.P is called to from LDU release code to delete the
FNB/FIB/FAC from the parent directory.

External requesting modules of CLDEL.P

Caller

CLOSE.P

Effect

Delete the file just closed which was
marked for "delete on last close."

CLOSE.P calls CLDEL.P to "really" delete the file when the FCB
open count of a file marked for "delete on last close"
reaches zero.

The input values to file deletion services are similar for all
variants. An explanation of any variant algorithm should
provide a clear understanding of the file deletion mechanism.
The system internal delete service, IDELETE.P, is presented
here in algorithm form.

Inputs and outputs of IDELETE.P:

Variable Input Output

ACO Byte address of file Unchanged.
pathname in sys space.

ACI Options flag. Unchanged.

AC2 Not used. Unchanged.

ACI is zeroed if checking for permanence and access rights is to
be done. Also, if the file to be deleted is a directory, and
there are inferior directories as well, the directory will not
be deleted. ACI is loaded with one if all these checks are to
be ignored.

Licensed Material

LLEFB
NLDAI
LJSR

WBR

O,PERNM*2,O
1,1
IDELETE.P
ERRTN

2-39

;Byte pointer to ":PER"
:Ignore validity checks
:Adios

Property of Data General

IDELETE.P (*pathname, options_flag)
{

/**
* Resolve pathname of file to delete. *
* Returned are the FIB/FNB IDPs and parent dir CCB address. *
* If options flag=O, make sure all access checking done. *
**/

aflag = SYSTEM SPACE BIT;
if (options flag == 0)

options_flag = all_validity_checks_bits;

call RESLV.P (pathname, input switches, aflag,
&FIB_IDP, &FNB_IDP, &PCCB_addr, &duml, &dum2)

/**
* If specified, check ACLs. *
* If caller has owner access to the file OR write access to *
* the file's parent directory, the file can be deleted. *
* Errors from ACL services returned in CERWD of the CB. *
**/

if (options flag & check ACL)
{ - -
/* Check caller's access to the file to be deleted */
call PESTAC.P (FIB_IDP, username, PCCB_addr, &ACL_privs);

if (!(ACL privs & owner access»
{- -

/* Check caller's access to the directory */
call ESTAC.P (PCCB_addr, &ACL_privs);

if (!(ACL privs & write access»
{- -

return (error);
}

}

/**
* Access allowed; read in the fLle's FNB and FIB. *
**/

call RAID (FIB IDP, DEFIB, PCCB_addr, &FIB bh addr);
call RAID (FNB=IDP, DEFNB, PCCB_addr, &FNB=bh=addr);

/**
* If specified, check permanence in FIB. *
* Delete the file, even if permanent, if caller so specified.*
**/

if (options flag & check permanence)
{ - -

if (FIB addr->FISTS & permanence bit)
return (cannot_delete_permanent_file);

}

Licensed Material 2-40 Property of Data General

/**
* Check if the directory and all its files should be deleted.*
* If there is no FCB, the file is closed and can be deleted. *
* If there is an FCB (file open), no inferior dirs and the *
* system CCB use count is 0, it will be deleted. *

* *
* Notice that directory deletion will be attempted if *
* the delete ALL files in dir option is selected, even if the*
* dir is open (it will-be-marked for delete on last close *
* later). Decrement the count of inferior dirs in the *
* parent CCB now. *
**/

if (FIB addr->FITYP ==
{ -

directory_type)

if (!(options flag &
{ -

delete ALL files in_dir»

if (FIB addr->FIFCB.W != 0)
if (FIB addr->FIFCB.W->FBIDR != 0)

return (Directory delete error)
else if (FIB addr->FIFCB.W->FBSCB.W->CBUSC != 0)

return (DIrectory_in_use_error);
}

PCCB addr->CBFCB.W->FBIDR -= 1;
}

/* Must ?RELEASE LDU type directories (VDELETE.P) */
else if (FIB addr->FITYP == ?FLDU)

return (Directory_delete_error);

/**
* Delete checks out. Delete the file's FNB! *
**/

call REDEL (PCCB addr, FNB_bh_addr, FNB_addr);
FIB_addr->FINLP ~ 0;

/**
* If the file is open, mark if for delete on last close. *
* The file will be deleted (CLDEL.P) when the FCB open count *
* reaches O. *
**/

if (FCB addr->FBOPN > 0)
{ -

set bit (FCB addr, BFDBL);
RELM (FIB bh-addr);
return; - -
}

Licensed Material 2-41 Property of Data General

/**
* If the file to delete is a dir, delete the files in it. *
* File Deletion Services basically implements this as a *
* recursive IDELETE.P for all the files. *
* See the code for more details (AOS/VS module: DE2.SR) *
**/

if (FIB addr->FITYP == directory type)
{ - -
for (each file in the directory)

call IDELETE.P (filename, options_flag=1);
}

/**
* Enqueue the request to delete the file's data elements. *
* This is done by putting a "DELETE FILE" command in the CCB *
* flag word and "enqueuing the CCB." See Section 3.3. *
* The file will be null after this call and its DDEs in the *
* parent directory can be released! *
**/

PCCB addr->CBFLG = CBDEL;
call-NQCCB (PCCB_addr); /* Delete file data */

if (FUD IPD = FIB_addr->FIFUD)
{ -

/* Delete FUD

call RAID (FUD IDP, DEFUD, PCCB addr, &FUD bh addr);
call REDEL (PCCB_addr, FUD_bh_addr, FUD_addr);
}

if (FIB addr->FITYP == ?FLNK)
{ -

if (FLB IDP = FIB addr->FINLP)
{- -

/* Delete FLB

*/

*/

call RAID (FLB IDP, DEFLB, PCCB addr, &FLB bh addr);
call REDEL (PCCB_addr, FLB_bh_addr, FLB_addr);
}

}
else

if (FAC IDP = FIB addr->FIACL) /* Delete FAC */
{- -
call RAID (FAC IDP, DEFAC, PCCB addr, &FAC bh addr);
call REDEL (PCCB_addr, FAC_bh_addr, FAC_addr);
}

if (FIB IDP = FIB_addr->FIACL)
{ -

/* Delete FIB

call RAID (FIB IDP, DEFIB, PCCB addr, &FIB bh addr);
call REDEL (PCCB_addr, FIB_bh_addr, FIB_addr);
}

*/

/**
* DONE! *
**/

return;

}

Licensed Material 2-42 Property of Data General

3 File Management

3. I Overview

File Management provides both the user and system components
with an interface to lower level I/O. There are two primary
functions of File Management services:

1) to build and maintain file-specific databases,
2) to process and initiate user and system I/O requests.

The two main file-specific databases are the File Control Block
(FCB) and the Channel Control Block (CCB). These databases hold
dynamic information relating to the state of an open file and to
the state of the current I/O request on that file, respectively.
File Management is responsible for allocating, initializing, and
releasing these databases when files are opened and closed.

The mere existence of these databases, which correspond to a
unique file, advises AOS/VS that certain sections of disk-based
data are vulnerable to modification (files are open). When a
process is terminated, its open files must be closed and
modified files, whose buffers may still be in memory, must be
flushed to disk. The user CCBs and the files' FCBs must be
retrieved and possibly deallocated. Likewise, when AOS/VS shuts
down (either normally or after a panic), modified buffers must
be flushed to disk and open files must be closed. The system
shutdown routine prints out the occurrence of these procedures
on the master console ("Flushing buffers" and "Open file
processing") •

File Management services further initialize the databases with
I/O-related parameters before making an I/O request. After a
file is opened, either for read only or write access, some type
of I/O is usually requested. The FCB and CCB (mostly the
latter) provide the specific data necessary to run an I/O
request. Most "customers" of File Management services run on
control blocks, because they run the risk of pending awaiting
I/O completion. However, some services do not pend even though
an I/O request is enqueued. Each particular service is designed
to manage its callers' control blocks and process tables in
either case.

There are few direct user interfaces to file management
services. They are:

1) file opens, e.g., ?OPEN, ?GOPEN, ?SOPEN
2) file closes, e.g., ?CLOSE, ?GCLOSE, ?SCLOSE
3) file I/O requests, e.g., ?RDB, ?WRB, ?PRDB, ?PWRB, ?BLKIO

Licensed Material 3-1 Property of Data General

The system has access to these as well as I/O initiation
services, which are invoked either by the authoritative decision
of another system component or by a file system component
on behalf of the user. For example, NQCCB is a service that
creates, initializes and schedules an I/O request, and alerts
the disk manager to run the request on behalf of a user process.
The RDB.P (implements ?RDB) service calls NQCCB. NQCRQ is a
generic ring 0 interface service that implements a similar
procedure; the request is made by the system without explicit
user direction. The RDUST.P service (reads .PR file UST) calls
NQCRQ.

File management services can be learned by understanding the
purpose and contents of the most important databases. Once this
knowledge is incorporated, comprehension of the specific
services will follow. This chapter introduces high-level, File
Management concepts and provides excellent insight into
lower-level CCB Request and Buffer Management services.

Licensed Material 3-2 Property of Data General

3.2 File Control Block (FCB)

3.2.1 FCB Parameter Definitions

As explained in Section 2.2, system main memory is allocated
for FCB creation and destruction. An FCB is created when a file
is opened for the first time and destroyed when the file is
closed for the last time. There is only one FCB for any given
open file, whether opened by the user or by the system. Hence,
the FCB contains common data regardless of how the file is
opened. Some parameters remain static throughout the life of
the FCB, such as the file's parent directory CCB pointer and its
depth in the directory hierarchy, indicating fixed properties of
the file. Most parameters are dynamic, such as the file open
count and file status word, monitoring the changing state of the
file. The following diagram briefly describes each of the FCB
parameters.

Licensed Material 3-3 Property of Data General

Offset

FBLCB.W
FBBLP.W

FBSTS
FBTYP

FBHFS
FBCPS

FBDCU

FBFWI
FBEFH.W
FBDFH.W
FBFAH.W
FBIDX
FBIDR

FBOPN
FBUID
FBPDP.W
FBFIB
FBCMP.W
FBSCB.W
FBUNDC

FBLOCK

FBWTC
FBLVL
FBCPB.W

FBUDB.W

FBST2
FBFOP
FBPPB.W

FBPPBB.W

FBLMB.W

FCBLT

o
2
4

6
7

10
10

10

11
13
15
17
21
22

23
24
25
27
30
34
36

37

40
41
42

44

46
47
50

52

54

File Control Block (FCB)

Logical Unit Control Block (LCB) address.
FCB Buffer List Queue Descriptor Pointer (head).
FCB Buffer List Queue Descriptor (tail).

Here starts the FUNNY FIB.

status (Bits 0-10), Universal ACL (Bits 11-15).
File Format (Bits 0-7), File Type (Bits 8-15).

Hash Frame Size: if directory type file
File Control Parameters: Index if generic file.
Record length if file open for fixed length I/O.
Device Code (Bits 0-7), Unit number (Bits 8-15).

Extension for EOF in future. (Now 32-bit max)
Number of bytes in file (byte EOF).
Data element size. Set at file creation.
File First Logical Address. Zero if null file.
Current (Bits 0-7), max (Bits 8-15) index levels.
Count of inferior directories (dir type files).

This is the end of the Funny FIB.

File Open Count.
FCB Unique ID.
Parent Directory CCB Pointer.
FIB Intra-Directory Pointer (IDP).
FCB Shared Page Header Queue Descriptor.
System CCB Pointer.
Unit number (Bits 0-7), device code (Bits 8-15).

FCB Lock Word.

IOCB waiter count on this FCB.
Depth of file in directory hierarchy.
Control Point Block (CPB) pointer.

UDB address if the file Unicorn LPU or MTU type.

Shared protected file status word.
Pid and Ring of first opener of ?SOPPFed file.
PPB chain queue descriptor (head).

PPB chain queue descriptor (tail).

Lock Management Block pointer.

56 Length of FCB.

Licensed Material 3-4 Property of Data General

The LCB address of the LDU on which the file resides must be
stored in the FCB. CCB Request Management determines the
correct logical unit to enqueue requests by examining this
field. The LCB points to the unit definition block (UDB) list,
which describes each of the units in the LDU. Ultimately, the
disk driver will enqueue the request to the proper physical
unit.

Buffer headers found on the FCB buffer list queue (FBBLP.W)
represent directory data blocks, directory bit map blocks, file
blocks from system-initiated I/O (IPC spoolfile, HIF file and PIF
file blocks), or all file index blocks. When CCB Request
Management reads in a single data block ("read system buffer" CCB
command) or an index block (during index level traversal) into a
system buffer, the buffer header is enqueued to the FeB. The
logical disk address of the blocks are stored in the buffer
header. The relative block number is stored in the buffer header
for "read system buffer" data blocks, but the same field (BQDBN)
is filled with -1 for index blocks to distinguish them from data
blocks. Data blocks read or written during all other CCB command
processing (all user I/O) are not enqueued to the FCB buffer list
because the buffer header is not a system buffer header (see
Section 4.2.7).

Before file blocks are read from disk, the FCB buffer list queue
is searched for a match on the desired logical disk address. If
the block is found, no disk I/O request need be made. This
minimizes the number of enqueued disk requests and interrupt
service time, and improves general system performance. When the
last close on the file occurs, the buffer headers are moved to
the LCB cache buffer list queue. When the file is deleted, the
buffer headers are removed from either the FCB or LCB buffer
lists. See CCB Request Management and Buffer Management for
more specific details.

FBBLP.W ---> BH <===> BH <===> BH <===> BH <===> BH <===> -1

The Funny FIB on disk is copied into the FeB Funny FIB common
area on the first file open. Throughout the open life of the
file, the Funny FIB parameters are maintained in the FeB. This
is a logically comprehensible operation. If this implementation
were not chosen, the FIB would either have to be maintained
somewhere else in main memory while the file was open (probably
with a word pointer in the FCB), or it would have to be
read/modified/written to disk upon any change. The latter
approach would not be feasible since the extra disk I/O overhead
is not necessary. The former approach has been implemented, in
effect, by reading the most dynamic portion of the FIB directly
into the FCB.

The file open count (FBOPN) is a dynamic parameter initialized
to 1 on the first file open. File Open Services increments the
count for each successive open on the file. When the count
reaches 0, the FeB buffers as well as the Funny FIB portion of
the FCB will be flushed to disk and the FeB will be destroyed.

Licensed Material 3-5 Property of Data General

The FCB unique ID (FBUID) is a static parameter initialized to
the value of the AOS/VS global variable IFCB. IFCB is
initialized to 1 and is incremented each time the value is
assigned to a new FCB. The purpose of FBUID is to verify the
FCB/CCB association of the same file. The CCB unique ID (CBUID)
is assigned the value of the file's FBUID. When a channel
request is made, the file's FCB and CCB must be retrieved. Once
they are both in the hands of the caller, a sanity check is made
on their unique IDs. If they do not match, AOS/VS will panic
with code 6034.

The parent directory of any file is the directory in which the
file resides. The parent directory of :UTIL is the root (:).
The parent directory CCB address of an open file is stored in
FBPDP.W. Since the file's FNB, FIB and FAC are situated in the
directory data blocks of its parent directory, this field is
essential for I/O to be accomplished. Furthermore, the file's
FIB pointer (IDP) is found in the FCB as well (FBFIB). As a
result, Resolution Services return both the parent directory CCB
address and the FIB pointer of the filename being resolved.

The master root is the only "orphan" directory. The parent
directory fields in the root FCB and CCB are zeroed. Certain
operations are illegal on the root directory, such as deleting
it! The root directory FCB and CCB are identified by this zero
value, and a simple check in DELETE.P signals that someone is
attempting to delete the root. Moreover, any operation that
requires modifying the parent directory, such as set ACL or
RENAME, is illegal for the root. Since the root directory's FIB
type information lives in the DIB, such operations are allowed
only by the DFMTR utility program.

If a file is being opened by Resolution Services, both an FCB and
a system CCB must be created. The FCB is created first, followed
by the system CCB. The system CCB address of the same file is
stored in the FCB at offset FBSCB.W. When this happens, the file
open count (FBOPN) is not incremented, but the indication that
the file is "implicitly" open is through the non-zero value at
FBSCB.W. If the file is being opened by the system via some
internal open call (IOPEN.P, XEOPEN~P, etc.), a system CCB is
allocated from GSMEM, but FBSCB.W is not filled in, and FBOPN is
incremented. See CCB Creation/Destruction for more details.

The parent/son/system CCB structure links together the FCB/CCB
chain, from the root directory down through the hierarchy to the
last file opened in the pathname. This enables Close Services
to systematically access and destroy all system FCBs/CCBs that
were created in order to open the file. Resolution Services
establishes this chain when opening the files in a given
pathname on system FCBs/CCBs. When the system explicitly opens
a file on a system CCB, it will be the lowest CCB in the chain.
The following diagram outlines the open FCB/CCB chain that
exists for file :A:B:C when file C is opened by a user.

Licensed Material 3-6 Property of Data General

DIR ROOT DIR CCB
(RTCCB)

/\ /\

CBFCB.W
============>
<============

FBSCB.W

ROOT DIR FCB

CBPCB.W
II

II FBPDP.W

DIR
A

DIR
B

FILE
C

\---------------------------\\
CBFCB.W

~------\\--------~
DIR A SYSTEM CCB ============>

<============
DIR A FCB

FBSCB.W

/\ /\
CBPCB.W II II FBPDP.W

\---------------------------\\
CBFCB.W

~------\\----------~
DIR B SYSTEM CCB ============>

<============
DIR B FCB

FBSCB.W

/\ /\
CBPCB.W II II FBPDP.W

\---------------------------\\
CBFCB.W

~------\\----------~
FILE C USER CCB ============> FILE C FCB

When shared file pages are read into a process' working set, a
shared page header (SPH) is allocated and enqueued to the FCB
Shared Page Header Queue whose queue descriptor is at offset
FBCMP.W. The SPH holds data associating the shared memory page
with its logical disk location. The FCB SPH queue is traversed
when an operation on all the file's SPHs must be done, such as
?ESFF or ?SCLOSE. The SPH is linked to the appropriate system
shared page hash chain as well. The system SPH hash chains are
searched for specific SPH access. (Refer to Shared Memory
Management for more on SPHs.)

A new feature of AOS/VS 7.00 is File Locking. File locking
provides a mechanism in which cooperating processes are able to
communicate by pre-defining a series of file elements and
requesting either exclusive or shared access to these elements.
Exclusive file locking can be used to prevent cooperating
processes from accessing the same object at the same time
(mutual exclusion within a critical region). Shared file
locking can be used to give several processes simultaneous
access to an object, but prevent another process exclusive

Licensed Material 3-7 Property of Data General

access. Users access file locking features via the
?FLOCK/?FUNLOCK system calls. When file locking is activated on
a file, a Lock Management Block (LMB) is created, and its
address is stored in the FCB at offset FBLMB.W.

The FCB has a lock word (FBLOCK) in which three lock bits are
defined. The lock bits are:

Bit position Bit position Function
in FBLOCK in FCB

FBTRAN (0) BFBTRAN FCB transition lock

FBCMPLK (1) BFBCMPLK FCB SPH Queue lock

FBLMBB (2) BFBLIP FCB LMB in use lock

The FCB transition lock is acquired when the FCB buffer list is
to be accessed, e.g., when a buffer header must be enqueued or
dequeued. The FCB transition lock has been implemented in
AOS/VS 7.50 due to multiprocessor considerations. In previous
revisions there was never a danger of the FCB buffer list queue
being accessed by simultaneously executing code paths. The
multiprocessor environment forces queues to be locked when
elements are searched, enqueued, dequeued or modified in order
to preserve the integrity of the linked list. By definition,
transition locks are "short-term locks" and can therefore be
implemented as spin locks.

The SPH Queue lock is acquired when the FCB SPH Queue is to be
accessed. The LMB in use lock is acquired when any
?FLOCK/?FUNLOCK operation is in progress within the operating
system. Each of these locks is a spin lock, acquired by calling
one of the standard AOS/VS spin lock routines. For example,
with the following assembly code sequence:

NLDAI
XWLDA
XPSHJ

BFBTRAN,l
2, FCB_addr,3
FXLOCK

;Lock bit offset from
; the FCB.
;Get the spin lock.

The IOCB waiter count (FBWTC) is initialized to 0 and
incremented by CCB Request Management when the I/O in progress
bit (FBIOP) is already set and an IOCB is enqueued with
another disk request on the same file. When IOCB requests
complete, this field is checked for a non-zero value. If it is
non-zero, the next waiting IOCB ready to run will be readied and
FBWTC is decremented by 1. (There can be multiple waiters!)

Licensed Material 3-8 Property of Data General

The depth of a file in the directory hierarchy, relative to the
root LDU on which the file resides, is maintained in bits 8-15 of
FCB addr->FBLVL. This is called the file's "local" level. The
deepest local level at which a file can exist is 8 (system
parameter SCLVL). Hence, file :1:2:3:4:5:6:7:8:9 is an
impossibility if none of the subordinate files of the pathname
are LDUs. The depth of a file in the directory hierarchy,
relative to the system root LDU, is maintained in bits 0-7 of
FCB addr->FBLVL. This is called the file's "global" level. The
deepest global level is 255. This parameter is set by File Open
Services or LDU initialization.

The control point block (CPB) address is stored in the FCB at
offset FBCPB.W. The CPB contains parameters indicating the
CPD's current and maximum space availability. System memory is
allocated for a CPB when a control point directory (CPD) is
opened, and maintained in memory until the file is closed for
the last time. The function of the CPB is analogous to that of
the Funny FIB (in the FCB). The CPB is described in Directory
Management Databases, Section 2.2.

Certain unit files require the presence of a Unit Definition
Block (UDB) to realize unit I/O. Unicorn type line printers and
magnetic tape units are such files. The UDB address is stored
in the unit file's FCB at offset FBUDB.W. Non-Unicorn line
printers and MCAs require only a buffer header, which is stored
in its CCB (CBBHR.W). Disks opened as unit files also require a
UDB, but it is linked to the LCB. The device code and unit
number of all unit files are stored in the FCB at offset FBDCU.

The FCB maintains shared protected file information. When a
file is opened for shared protective access (?SOPPF), bit 0
(FBPFO) is set in the second FCB status word, FBST2. Since no
subsequent openers are permitted more access rights to the file
than the first opener, the first opener's access privileges are
stored in bits 11-15 of FBST2. Subsequent openers of shared
protective files must be customers of the first opener, if they
wish to open the file. They must explicitly be granted
permission to access the file as well. The ?PMTPF system call
enables the first opener to specify distinct, privileged PIDs
permitted to open the file, as well as the access rights to be
granted. The file access information established by the first
file opener for another PID is stored in a separate Protected
File Permission Block (PPB), which is linked to the FCB through
the queue descriptor found at offset FBPPB.W. Only the first
file opener can successfully issue ?PMTPF against its customers.
?PMTPF prevents unauthorized callers from successfully creating
PPBs by comparing the caller's PID and ring with the PID and
ring of the first opener, stored in the FCB at offset FBFOP when
the file was ?SOPPFed. There is no special FCB lock bit for
FBPPB.W because the parent CCB remains locked during all queue
instructions.

Licensed Material 3-9 Property of Data General

There are several file types for which FCBs are not created even
though they are open. Generic files (?FGFN) are resolved in the
AGENT. Opening @LIST actually results in opening its resolution
filename, thus creating an FCB for the latter. IPC file
(?LIPC-?HIPC) FIBs contain the global port number associated
with the IPC file. IPC file opens consist of user CCB creation
and user retrieval of the global port number. No FCB is needed
for IPC Management to send and receive messages. EXEC Queue
files (?FQUE) files do not need FCBs either because they are
handled by the AGENT.

3.2.2 FCB Creation/Destruction

Since the FCB length is only 46 words, File Management does not
allocate small chunks of random system memory for each
individual FCB. Instead, whole system pages are dynamically
allocated and reserved for the exclusive use of FCBs. These
pages are called FCB pages. The total number of FCBs that fit
on one page is easily calculated:

PAGESIZE/FBBLT = 1024./46. = 22.

Associated with each FCB page is an FCB page descriptor. The
FCB page descriptors are linked through the global queue
descriptor FCBCH.W and describe the contents of the FCB page.
These descriptors provide a quick mechanism for Emergency
Shutdown (ESD) to locate open files, all of which must be closed.
The following diagram illustrates the FCB page descriptor:

Offset FCB Page Descriptor

CMSFL.W 0 Forward link.

CMSBL.W 2 Backward link.

CMFBK 4 Physical page number of FCB page.

CMFCN 5 Number of FCBs in use on· this FCB page.

CMBMW.W 6 FCB page bit map word.

CMFLN 10 Length of FCB Page Descr1ptor.

When an FCB needs to be created, offset CMBMW.W of the first FCB
Page Descriptor is examined. Each bit in CMBMW.W corresponds to
the FCB whose offset into the FCB page is the bit position
multiplied by the FCB length. A set bit (1) in CMBMW.W
represents a free FCB. Since the maximum number of FCBs that
fit on the page is 22, any set bit between 0 and 21 indicates a
free FCB. If there are no free FCBs (no FCB Page Descriptors
left), a page along with an FCB Page Descriptor will be
allocated from general system memory. The FCB Page Descriptor
will be initialized and enqueued to FCBCH.W, and FeB memory will
then be available.

Licensed Material 3-10 Property of Data General

The following global variables used by File Management are
associated with FCBs:

Global Function

FCBCH.W FCB Chain Queue Descriptor

FCBCN Number of FCBs currently in use

FCBMX Max number of FCBs in use since boot

IFCB FCB Unique ID counter

3.2.3 FCB Operations: Get File Control Block (GFCB)

GFCB performs the operation of searching FCBCH.W and finding a
free FCB. There are no inputs to GFCB. The only output,
returned in AC2, is the new FCB address. There are only two
callers of this operation:

Caller Function

FFCB If the file is open, returns the FCB addr
(from FIFCB.W in FIB) to the caller. If
file is not open, calls GFCB to create
the FCB and then initialize its fields.

LNKLCB.P Calls GFCB to create an FCB for an LDU
being initialized (among other things).

FFCB is called by DELETE.P to create an FCB when deleting a file
that was not open, by GOPEN.P to create an FCB when a file is
being opened, and by RESLV.P to create FCBs (associated with
system CCBs) when resolving pathnames.

3.2.4 FCB Operations: Release File Control Block (RFCB)

RFCB performs the operation of destroying FCBs and returning
them to the pool of free FCBs on the FCB page. The
corresponding bit in the bit map word of the FCB Page Descrlptor
will be cleared. If the last FCB on the page is freed, the FCB
page will be deallocated and returned to system memory. The
only input to RFCB is the FCB address in AC2. The callers of
RFCB are the following:

Caller Function

FFCB On error, must destroy the FCB it created.
XINIT.P On error, must destroy the FCB it created.
DRLSE.P Destroys FCB on LDU release.
CLOSE.P Destroys FCB on last file close.
DELETE.P Destroys the FCB it created to delete a

fi,le that was not previously open.
Licensed Material 3-11 Property of Data General

3.2.5 FCB Operations: Kill File Control Block (KFCB.P)

KFCB.P is the operation called after user CCBs are destroyed,
i.e., the file is being closed. Therefore, the FCB open count
must be decremented. If the open count reaches zero, KFCB.P
releases all memory resources tied in with the FCB, including
system buffers and allocated memory for databases, and finally
destroys the FCB. System CCBs are destroyed by KCCB.P, which is
followed by execution of KFCB.P code. AOS/VS is written in
assembly language, in which it is easy to LJMP from CCB specific
code to FCB specific code and vice versa. The implementation of
KFCB.P and KCCB.P contains overlapping code accessed via LJMPs.
This algorithmic code cannot do the same, because so much of the
KFCB.P code is duplicated in KCCB.P. The concept of FCB/CCB
destruction will be clear.

The inputs to KFCB.P include the MCA link number and DCT (if MCA
being closed) and the FCB address (always). The callers of
KFCB.P are the following:

Caller Function

GOPEN.P On error, must destroy the FCB it created.
SOPPF.P On error, must destroy the FCB it created.
UNIT.P On error, must destroy the FCB it created.
ESFCB Destroys FCBs of open files on ESD.
CLOSE.P Destroys FCB of file on last close.

KFCB.P (MCA link num, MCA DCT addr, FCB addr);
{ - - - - -

/**
* Write an EOF to the MCA device if the MCA is being closed. *
**/

if (FCB addr->FBTYP == ?FMCA)
call-MCACLS (MCA_link_num, MCA_DCT_addr);

/**
* KFCB.P is called right after the user CCB was destroyed. *
* This routine assumes that the child CCB was just released, *
* but RUCCB.P does not decrement the CBUSC. It is done here *
* because sometimes the caller of RUCCB.P will not want it *
* done (when called on error return BEFORE parent CCB *
* stored). *
**/

PCCB addr = FCB addr->FBPDP.W;
if (PCCB addr) -

{ -

call CLOCK (CCB_addr);
PCCB addr->CBUSC -= 1;
}

Licensed Material 3-12

/* Lock parent CCB */
/* One less CCB son*/

Property of Data General

/**
* If the file was opened on ?SOPPF and is now being closed *
* by the first opener, tear down the PPBs on the FCB now. *
**/

if (get bit (FCB addr, BFBPF»
{- -

FCB addr->FBFOP = 0;
call PCLOCK;
call TDPPBL.P;
call PCUNLCK;
}

&& first_opener)

/* Lock CNXTB */
/* Tear down PPB list */

/* Unlock CNXTB */

/**
* File being closed; decrement file open count. *
* If file still open, check if the Funny FIB must be flushed.*
* This part of the code is only called when a user CCB was *
* released. If the file is a directory, users only have *
* read access, and the Funny FIB will not have changed. *
* In all other cases it may have, so release the buffer *
* modified. The file is still open, so the data need not be *
* actually flushed now. It will be flushed either at last *
* close or when someone attempts to assign this modified *
* system buffer. Then unlock parent CCB and return. (CCB *
* gone, FCB not) *
**/

if (--FCB addr->FBOPN != 0)
{ -

/* Is file still open? */

if (FCB addr->FBTYP != DIRECTORY TYPE_FILE)
{ - -

/* YES */

call RAID (FCB_addr->FBFIB, DEFIB, PCCB_addr,
&FIB_BH, &FIB_addr);

call UPFIB (FIB addr, FCB_addr);
call RELM (FIB_BH);

/* Read FIB */
/* Update it */

/* Will be flushed */
}

if (PCCB_addr != 0)
call CULCK (PCCB_addr);

return;
}

/**
* Last opener is closing file. Clean up the FCB. *
* RELBF: Release buffers on FCB buffer list and enqueue them *
* to the LCB cache buffer list. *
* RELSP.P: Release shared pages on FCB. *
**/

call RELBF (FCB addr);
if (FCB addr->FBCMP.W != -1)

call-RELSP.P (FCB addr);

Licensed Material 3-13

/* Release FCB buffers */
/* and shared pages if */
/* there were any. */

Property of Data General

/**
* If the file was marked for delete on last close, delete it *
* now! Then jump to KCCB to release the system CCB/FCB *
* hierarchy above. *
**/

if (get bit(FCB addr->BFBDL»
{- -

call CLDEL.P (FCB_addr->FBFIB, PCCB_addr, FCB_addr);
goto KCCB.P (PCCB_addr);
}

/* If unit type file, do unit independent operations */
if (FCB_addr->FBTYP -- UNIT_TYPE_FILE)

call UCLOSE.P;

/**
* Read in the FIB, update it with the modified data from the *
* FCB's Funny FIB and flush it out to disk NOW. Flush now *
* (RELF) because no other users have file open. *
**/

call RAID (FCB_addr-)FBFIB, DEFIB, PCCB addr,
&FIB_BH, &FIB_addr);

FIB_addr->FIFCB = 0;
call UPFIB (FIB addr, FCB_addr);
call RELF (FIB_BH);

/**
* Almost done. *
* Release CPB memory. Destroy the FCB! *
* Then decrement the parent dir CCB use count. If there are *
* still users, just unlock it and return. If it becomes 0, *
* it can be released (by KCCB.P). *
**/

call RSMEM (FCB addr->FBCPB.W, CPBLT);
call RFCB (FCB_addr);

if (--PCCB addr->CBUSC)
{ -
call CULCR (PCCB_addr);
return;
}

goto KCCB.P;

} /* end of KFCB.P */

Licensed Material 3-14

/* Release CPB mem */
/* Annihilate FCB */

/* One less FCB son */
/* PCCB use count O?*/
/* No, unlock it, */
/* leave hierarchy. */

/* Yes, release it */

Property of Data General

3.3 Channel Control Block (CCB)

3.3.1 CCB Requests

There is a unique CCB created for each file opener. If AOS/VS
opens the file, a CCB is allocated from general system main
memory. The system can open a file in two ways:

1) implicitly, in resolution services while resolving a
pathname, or

2) explicitly, when making special internal open calls,
such as for per process page, swap and IPC spool files.

A CCB created by an implicit open is called a "system CCB." A
CCB created by an explicit open is called an "internal CCB."
The differences between them are discussed more thoroughly in
CCB Creation/Destruction.

If a user opens the file, a "user CCB" is created in ring 1 of
the process' logical address space. Since multiple processes
can have the same file opened simultaneously and request
different size data transfers from different points in the file,
each CCB serves the purpose of storing the necessary data to
service individual I/O requests.

Since all disk I/O requests involve driver intervention with the
physical disk controller and interrupt service, requestors must
pend. The CCB contains a pointer to the caller's process table
and TCB so that the correct task can be unpended upon data
transfer completion. The actual procedure that AOS/VS follows
when initiating a logical disk I/O request includes "enqueuing a
CCB request." This terminology implies that the CCB is the
database representative of unique I/O request data. Often in
AOS/VS code and throughout this manual, "enqueuing a CCB" will
be substituted as an understood abbreviation for "enqueuing a
CCB request."

There are six types of CCB requests. Each one can be made
either on behalf of the user (system call interface) or by
choice of the operation system (i.e., read in swapfile, read a
FIB). File Management provides services that implement the
system calls to issue CCB requests on behalf of the user. File
Management also provides services that issue CCB requests for
other components of the operating system. The following
table lists the available CCB request types, and the request
type stored into the CCB command word before the request is
enqueued.

Licensed Material 3-15 Property of Data General

Request CCB Function
Type Command

Read CBRED (0) Vanilla read from a file

Read Sys CBSYB (3) Read one file block into a
Buffer system buffer

Write CBWRI (1) Vanilla write to a file

Allocate CBALL (5) Allocate file blocks

Delete CBDEL (2) Delete a file
File

Truncate CBTRNl (4) Truncate a file to a specified
File CBTRN2 (6) byte EOF (implemented in 2 parts)

3.3.2 CCB Parameters Definitions

The following diagram summarizes the significance of each field
in the CCB.

Offset

CBQLK.W
CBFCB.W
CBNBK

CBPTA.W

CBI~H.W

CBXIA.W
CBIBN

CBPCB.W
CBFIB
CBDBH.W

CBUAD.W
CBSTS
CBFLG

CBTCB.W

CBUID
CBUPD.W
CBNPG
CBUSC
CBPRI

CBFAB.W

CBOIBN

CBLOCK

0
2
4

5

7
11
13

14
16
17

21
23
24

25

27
30
32
32
33

34

36

37

Channel Control Block (CCB)

Global Wait List Queue (CCBWQ.W) forward link.
FCB address. See Section 3.2.1.
Number of blocks to transfer.

Process Table or Control Block address.

These three offsets are used by
CCB Request Management for file
index level traversal.

Parent directory CCB pointer.
FIB IDP (in parent directory).
Last block byte count (Bits 0-8).
Relative disk block number in file (Bits 9-31).

User data buffer logical address.
CCB Status Word, File ACL, Unit Type.
CCB Flag and Command Word.

User TCB or Control Block address (to unpend).

CCB unique ID.
CCB Post Processor address.
Number of referenced user pages in user buffer.
CCB Use Count: redefinition for dir type files!
CCB request priority. Equal to process PNQF.

First Allocated Block read after "hole" in file.
(For Read Next Allocated Elem option with ?BLKIO)
Not used.

CCB lock word.

CCBLT 40 Length of CCB.

Licensed Material 3-16 Property of Data General

In order for CCB Request Management to service a logical disk I/O
request (also referred to as a CCB request), an I/O Control Block
(IOCB) must be allocated from the IOCB.DB database pool. If no
IOCB is available, the requesting CCB is enqueued to the global
CCB wait queue CCBWQ.W in priority (PNQF) order. The CCB is
linked through offset CBQLK.W. When a request completes and its
IOCB becomes free, the first waiting (i.e., highest priority) CCB
is dequeued and assigned the available IOCB for the I/O request
to begin. Global variable CCWC holds a count of the number of
CCBs currently on CCBWQ.W, and CCMX holds the maximum number of
CCBs on CCBWQ.W since system boot.

CCB Request Management schedules I/O requests on the basis of
the caller's priority enqueue factor (PNQF) found in the
caller's process table. Hence, the caller's PNQF is stored in
the CCB at offset CBPRI. The caller's process table is
initially located by the I/O requestor through the active
control block at CC.W. Since the main objective of CCB post
processing is to unpend task control blocks (TCBs) or control
blocks (CBs) that are pended awaiting I/O completion, the
requestor's process table address is stored in the CCB at offset
CBPTA.W. The TCB address is stored at CCB offset (CBTCB.W) if
the very last operation to be performed by the requesting code
path is that of enqueuing the request. For example, once RDB.P
and WRB.P (?RDB/?WRB implementation code) initialize the CCB
parameters and enqueue the I/O request, there will be no more
system processing to be done upon I/O completion. In that case,
the control block can be released (system call effectively
completes), but the calling user TCB remains pended until the
I/O completes. The CB address is stored at the same CCB offset
if the requesting path must return to system code to complete
processing (all other cases). This is illustrated in the CCB
Read/Write request algorithms in Section 3.4.5.

The routine that unpends CBs and TCBs awaiting I/O completion is
called the CCB Post Processor. The Post Processor is saved in
the CCB (offset CBUPD.W) by the requesting service before
enqueuing the CCB to the I/O world. It is called from CCB
Request Management when the I/O request is complete. There are
five flavors of CCB Post Processors because different requests
require slightly different operations. This is clearly
exemplified by the fact that a TCB is pended for user read/write
requests, while a CB is pended for user delete requests. Read
system buffer requests necessitate the transfer of the system
data address to the caller, a special feature accomplished in
the CCB Post Processor. A ?BLKIO request may specify the Read
Next Allocated element option for which yet another CCB Post
Processor is designated. All versions return any required data
to the user packet. The following table outlines the various
CCB Post Processor routines. See Section 4.5 for more detail.

Licensed Material 3-17 Property of Data General

CCB Post Function
Processor

PPCUS Post Processor for user read/write/allocate
and physical read/write requests.

PPCUB Post Processor for user ?BLKIO requests.

PPCSY Post Processor for system read/write,
all delete/truncate requests.

PPCSR Post Processor for shared read requests.

PPCBI Post Processor for the "Read System
Buffer" request. Issued only by AOS/VS.

The caller of CCB requests must initialize certain other CCB
parameters with the request specifications. If the caller is a
user (making a system call), these specifications are retrieved
by AOS/VS from the user packet. Read, write and allocate block
requests must set the number of blocks to be transferred in
CBNBK. CCB Request Management decrements this count by n each
time it enqueues a buffer header to transfer n number of blocks.
When the I/O request is complete, this field is null. Delete
and truncate requests set CBNBK to 0, since these operations do
not require use of this field.

Offset CBDBH.W is composed of two separate fields. Bits 0-8
hold the last block byte count. On write operations, this field
specifies the number of bytes in the last data block to
transfer. For example, to transfer 768 bytes of data, CBNBK is
set to 2 and the last block byte count to 256. On a read
operation, CCB Request Management fills in this field when the
data transfer completes. Bits 9-31 of CBDBH.W specify the
logical data block in the file wh~re the transfer begins.
Delete requests do not actually involve disk-to-user data
transfers, but file deletion begins from block O. This field
contains 0 if the CCB command is CBDEL. Truncate requests work
similarly.

Offset CBUAD.W holds the buffer address to which data will be
transferred (on a read), or from which data will be transferred
(on a write). Users specify this address in the system call
packet. When the system requests that a system buffer be read,
the buffer header address assigned by Buffer Management, is
stored here.

Licensed Material 3-18 Property of Data General

The disk controller transfers data directly to the location
specified by the caller. If the data transfer request is
initiated by the system, the data buffer address will be in
ring 0, always resident and mapped logical to physical. If the
request is issued by the user, there is the strong possibility
that the user buffer will not be resident when the transfer is
taking place. Therefore, user buffer must be faulted and pinned
before the disk request is enqueued, and unpinned after the
request completes. The number of pages spanned by the buffer is
stored in the CCB at offset CBNPG.

Finally, the type of disk request must be specified in the CCB.
The CCB command (request type) is stored at offset CBFLG in bits
13-15. The valid CCB commands were described previously in
Section 3.3.1. Bits 0-7 correspond to the rings in the caller's
address space in which a shared read has been done (?SPAGE).
Bits 8 and 9 are defined as follows:

CBPIO (8) = Physical I/O Bit (set at open)
CBFWE (9) = Write access to file bit (set at open)

Bits 10. through 12. are undefined.

Three CCB fields are used by CCB Request Management during IOCB
processing to facilitate the I/O procedure by eliminating
unnecessary index block retrieval and examination. Although
index blocks of all files are enqueued to the FCB buffer list
when they are read in from disk, traversal of this queue on
subsequent requests may sometimes be bypassed by saving the
logical disk addresses and the offsets into index blocks in the
CCB of the last requestor.

Consider the following situation in which data block 6 is
requested from file FOO, whose elementsize is equal to 4. As
CCB Request Management processes the request, the logical disk
address of the data element, as well as the offset into the
first-level index block, are saved in the CCB. Suppose that the
caller then makes a subsequent request for data block 7. Since
this request will access the same data element as the previous
request (offset into first-level index block matches), the index
block need not be read. Furthermore, the logical disk address
of the data element is already available in the CCB and can be
read immediately, without CCB Request Management touching an
index block. Two- and three-level indexed files use CCB
parameters to a greater extent to further expedite the data
transfer by "skipping over" the same index blocks read in on the
previous data transfer. However, the lowest-level index block
will always be read in or found on the FCB buffer list queue in
files with index levels greater than 1. This entire process is
called INDEX LEVEL OPTIMIZATION. The pertinent CCB parameters
are used as follows, relevant to the last disk I/O request on
the file.

Licensed Material 3-19 Property of Data General

CCB 1 index 2 index 3 index
Parameter level levels levels

CBIAH.W LDA data LDA level 1 LDA level 1
element index block index block

CBXIA.W Not used Not used LDA level 2
index block

CBIBN Offset into Offset into Offset into
level 1 level 2 level 3/2
index block index block index block

Word offset CBIBN, which contains the index block offset
accessed on the last request, is actually divided into two
fields. Bits 8-15 contain the logical offset (range 0-127) of
either the level 1 or level 2 index block. If the file is a
three-level file, bits 0-7 contain the logical offset of the
level 3 index block. Otherwise, bits 0-7 are zero. This entire
"index level matching" procedure will be explained further in
CCB Request Management.

The file's parent directory CCB pointer and its FIB
intra-directory pointer must be stored in the CCB as well. They
are initialized at file open time at CCB offsets CBPCB.W and
CBFIB, respectively. The parent CCB is needed for any I/O on
the file's various associated directory data elements (e.g., FAC
for access control list).

The CCB status word, CBSTS, is used for several purposes.
If the file is a unit type file, bits 11-15 contain the unit
type. The unit type is accessed by Unit Management as an
index into pre- and post-processing dispatch tables. Unit CCBs
maintain individual unit I/O request data, so the CCB is the
appropriate database in which to store the unit type. The CCB
definitions for unit types are the following:

CUTMT (0) = Magnetic Tape Unit
CUTMC (1) = MCA Unit
CULPB (2) = Line Printer Unit
CULPD (3) = LP2 Printer
CULPE (4) = Laser Printer

Licensed Material 3-20 Property of Data General

Disk units opened separately as unit type files (not LDUs) are
treated as a single unit LDU with no invisible space. "Physical
disk I/O" is done instead of "unit I/O." For this reason, there
is no disk unit type defined in the CCB. If the file is a disk
file, bits 11-15 contain the access privileges allowed the
caller, which are extracted from the file's ACL (FAC). Bits
0-10. of CBSTS have the following definitions:

CCB Function
status Bit

CBUNT (0) Unit type CCB (no disk units).
Set on open of unit type files.

CBERB (1) Error occurred.

CBFSH (4)

Set during IOCB processing if error occurs.
Error code saved in CCB offset CBERR.

File is shared. Set on shared open of file.

CHSHB (5) I/O request is shared.
Set prior to enqueuing shared I/O request.

CBRNA (6) Read Next Allocated block request (disks only)
Set prior to enqueuing RNA request (?BLKIO).

CBSAF (7) ?WRB with ?SAFM option request (Mag Tapes).
Set prior to enqueuing unit I/O request.

CBMIO (8) Modified sector I/O (disks only).
Set prior to enqueuing mod sector I/O
(?BLKIO).

CBEOV (8) Enable VFU load (Line Printers).
Set prior to enqueuing I/O to LPU types.

CBPEB (9) Peripheral type CCB.
Set on open of generic/IPC type files.

CBIFF (10) Inhibit initial form feed (Line Printers).
Set prior to enqueuing I/O to LPU types.

CBFNS (10) File number set (Mag tapes).
Set prior to enqueuing I/O to mag tape
and MCA.

The CCB unique ID (offset CBUID) is set with the same value as
the file's FCB unique ID (offset FBUID). When a disk I/O
request is made, the CBUID is compared to FBUID of the same
file. If the unique IDs do not match, AOS/VS will panic with
code 6034. The IDs should always match! Inconsistent unique
IDs usually mean that either the CCB or FCB memory has been
corrupted, the causes of which can possibly be discovered
through analysis of the system's memory dump.

Licensed Material 3-21 Property of Data General

There is one circumstance in which multiple file openers use the
same CCB for a file: when the file opener is the system opening
a directory type file in Resolution Services. If 20 processes
open :UTIL:FILE, each process maintains a unique CCB for FILE in
ring 1 of its address space, but the system keeps only one copy
of the system CCB for UTIL. A count of the number of objects
using the system CCB is maintained in a redefined CCB parameter
for directory files. This parameter is the CCB use count,
CBUSC. Since the number of blocks specified for any directory
file I/O request is 1, CBUSC replaces CBNBK. The CCB use count
is incremented when it becomes the parent of a new FCB,
specifically, when FBPDP.W of a subordinate file in the
directory is set with the CCB address. The CCB use count is
incremented again when it becomes the parent of the CCB of the
same file, specifically, when CBPCB of the subordinate file is
set. This implies that the use count indicates the number of
objects, not processes, that literally point to the system CCB.
See the following illustration.

:UTIL system CCB

CBUSC = CBUSC + 2

/\ /\
CBPCB.W

II
I I FBPDP.W

User CCB of
:UTIL:FILE

Licensed Material

\---------------------------\\

CBFCB.W
~------\\----------~

============> FCB of :UTIL:FILE

3-22 Property of Data General

Finally, like numerous other AOS/VS static databases, the CCB is
locked during certain critical region operations. The CCB lock
word in which four lock bits are defined is CBLOCK. The lock
bits are:

Bit position Bit position Function
in CBLOCK in CCB

CBTRAN (0) BFBTRAN CCB transition lock

CBLKB (I) BCBLK CCB vanilla lock

CBTPB (2) BCBPL CCB lock waiter bit

CBFLB (3) BCBFL CCB fault lock

File Management provides four CCB locking services that
uniformly acquire locks properly and call the execute pending
mechanism if the lock is already held. The standard system CCB
locking services are the following:

CCB Lock
Service

CLOCK/
CULCK

UCLOCK/
UCULCK

PGCBLK/
PGCULK

FCLOCK/
FCULCK

Function

Lock/Unlock a system CCB.
Path will pend if lock already held.

Lock/Unlock a user CCB.
Returns "Simultaneous requests on same
channel" if lock already held.

Lock/Unlock a page file (system) CCB.
Path will pend if lock already held.

Lock/Unlock a CCB when during a page
fault on the file. Path will pend if
lock already held.

Some code paths do not use these services, but attempt to set a
lock themselves. Such situations are acceptable when a
specific, immediate action must be taken if the lock is not
available. For example, RDB.P returns "simultaneous request on
same channel" if the vanilla lock is set (user CCB); RESLV.P
simply sets the bit when initializing a newly created system
CCB.

Licensed Material 3-23 Property of Data General

The main purpose of the CCB transition lock is to gain exclusive
access to the CCB for a very short time. The transition lock is
a spin lock, which is always acquired before setting either the
vanilla (long-term) CCB lock or the CCB fault lock. This
imperative action is taken by all of the CCB locking services.
Once the desired lock is held, the transition lock will be
released. It is important to note that a code path, which has
acquired the transition lock, never pends. Another code path
attempting to gain access to the same lock will spin and
potentially hang the system by hogging the CPU. The CCB
transition lock will be released before pending.

The CCB vanilla (or pend) lock is acquired when the calling code
path must perform extensive operations on the CCB and/or if the
caller runs the risk of pending. For example, system CCBs of
directory type files must be locked especially when the use
count (CBUSC) is modified. When Resolution Services resolve a
pathname, the system CCB of each directory is locked. The use
count is incremented to indicate to Close Services that the file
is still in use (FCB cannot be destroyed, file cannot be
deleted); the CCB is later unlocked when the next file in the
pathname (its son) is opened.

All CCBs are locked before the CCB request is enqueued for I/O
and remain locked during the I/O processing. In most cases, the
caller is responsible for unlocking the CCB after the I/O
completes. The exceptions are user logical disk read and write
requests. Since no further system processing is necessary when
these requests complete (caller's control block has even been
released already), the CCB Post Processor conveniently unlocks
the CCB.

The CCB fault lock is a special lock used by Memory Management
when a page must be faulted in from the file. FCLOCK must first
acquire the CCB vanilla lock before setting the fault lock and
then hold both locks until the page fault is over. This is to
prevent code paths that do NOT call CLOCK or UCLOCK, but set
BCBLK explicitly, from accessing a CCB with a page fault in
progress. In fact, when CLOCK acquires the vanilla lock, it
sanity checks to verify that the fault lock is not set. If it
is, a panic 6355 will occur.

If any of the CCB locking services attempt to acquire a lock
that is currently held, the control block will be pended via a
call to the Process Management service MPEND. Before this
occurs, the CCB pend bit must be set. This will indicate to the
CCB unlocking services that at least one waiter exists for a CCB
lock. The unlocking service will clear BCBPL and call UNPEND
with the CCB address as a pend key upon releasing the lock,
which will place all pended waiters for the CCB on ELQUE. The
next control block to be scheduled will then successfully
acquire the desired lock.

Licensed Material 3-24 Property of Data General

All of the CCB locking/unlocking services are concise. Observe
how CLOCK is implemented:

CLOCK (CCB_address);
{

/* Input - addr of CCB to lock */

TOP:
/**
* Get CCB transition lock. *
* This is done by calling the base level transition (spin) *
* lock service BSLOCK. Spin until lock is free. *
**/

call BSLOCK (CCB_addr, BCBTRAN);

/**
* If ESD is running, the system is being shut down. *
* Many files are probably open. ESD calls CLOCK as *
* standard practice for acquiring the vanilla lock to *
* manipulate the CCB. If it is already locked, clear all *
* other locks and "give" ESD the lock. *
**/

if (ESD running)
{
clear bit (CCB addr, BCBTRAN); /* Clear transition */
set bit (CCB-addr, BCBLK); /* Give ESD vanilla */
clear bit (CCB-addr, BCBPL); /* I say no waiters */
clear bit (CCB=addr, BCBFL); /* I say no faulters */
return; /* ESD will be happy */
}

/***
* Use atomic instruction to attempt locking the CCB. *
***/

if (check bit (CCB_addr, BCBLK))
{

/***
* Vanilla lock is already set. *
* Set lock waiter bit and pend until woken up by some *
* CCB unlock service. Then try for vanilla lock again. *
***/

Licensed Material 3-25 Property of Data General

}

set bit (CCB addr, BCBPL);
call MPEND (BCBTRAN, CCB_addr);
goto TOP;
}

else
{

/***
* Good. The WSZBO set the vanilla lock bit! *
* Now check the fault bit, which should not be set. *
* If it is, panic. *
***/

clear_bit (CCB addr, BCBTRAN); /* Release trans lock */

if (check_bit (CCB addr, BCBFL)
call PANIC (6355);

return;
}

/* CCB locked: return */

3.3.3 CCB Creation/Destruction

System and internal CCBs are allocated directly from general
system memory (GSMEM) either "implicitly" by Resolution Services
or "explictly" by File Open Services.

When Resolution Services creates a CCB, the file is always a
directory type file, and the CCB is used exclusively by
Resolution Services when resolving pathnames. More importantly,
it is used to keep track of the number of openers of subordinate
files in the directory. Furthermore, the system CCB pointer in
the FCB WILL contain the CCB address of this implicitly opened
file, and the file open count in the FCB will NOT be
incremented.

When Open Services creates an internal CCB, explicitly for the
system via an internal open call (IOPEN.P, XEOPEN.P, etc.), the
procedure implies that the system is 'actually acting as a user.
However, since the AOS/VS kernel exists only in ring 0, so must
the CCB. The system CCB pointer in the FCB will NOT contain the
CCB address of this explicitly opened file, and the file open
count in the FCB WILL be incremented. The latter procedure is
followed for user CCBs created in Open Services as well. Files
opened explicitly by the system are swapfiles, pagefiles,
breakfiles, program files, and IPC spool files.

Licensed Material 3-26 Property of Data General

Although user CCBs are handled in the same way, allocation of
user CCBs is not as straightforward as direct memory allocation
from GSMEM. Since a process may be swapped out during memory
contention, user CCB pages must be allocated and mapped to the
swappable portion of the process address space. AOS/VS chooses
to map these pages contiguously to a fixed ring 1 address
beginning at the global entry point CCBTAB, whose value is
02000100000. File Management always attempts to allocate CCBs
on resident pages first.

The maximum number of CCBs that fit on a page is:

PAGESIZE/CCBLT = 1024./32. = 32. CCB/page.

The maximum number of channels available to a user is 256., one
of which the local PMGR always uses. A CHANNEL is simply a
number that provides File Management with a means of quick and
easy access to the CCB associated with a given file opener. The
operation that converts a channel number into a user CCB
address, GENCCBAD, will be discussed later. The total number of
user CCB pages possible is then 8. The process table extender
keeps track of the total number of user CCBs in use (open files)
for a process. Eight words beginning at process table extender
offset PUCCBS contain the number of CCBs in each user CCB page:

PEXTN->PUCCBS[O] = number of CCBs in use on user CCB page 0
PEXTN->PUCCBS[l] = number of CCBs in use on user CCB page 1
PEXTN->PUCCBS[2] = number of CCBs in use on user CCB page 2
PEXTN->PUCCBS[3] = number of CCBs in use on user CCB page 3
PEXTN->PUCCBS[4] number of CCBs in use on user CCB page 4
PEXTN->PUCCBS[5] = number of CCBs in use on user CCB page 5
PEXTN->PUCCBS[6] = number of CCBs in use on user CCB page 6
PEXTN->PUCCBS[7] = number of CCBs in use on user CCB page 7

A channel number corresponding to the relative location of the
opened file's CCB is assigned and returned to the calling
process for subsequent reference to the file. For instance, the
first user CCB is created at CCBTAB and assigned channel number
O. The next CCB is created at CCBTAB + CCBLT and assigned
channel number 1. PEXTN->PUCCBS[O] will contain 2, the number
of CCBs in use on CCB page O. (The first file opened by any
user process will never be assigned a channel number of 0
because the local PMGR assigns channel 33. to open PMGR.SF,
causing CCB page 1 to become resident. OFAULT.P will
consequently assign the next 31. CCBs from page 1 before
assigning CCBs from CCB page O. See Section 3.3.4.)

Now is a good time to explain the terminology of CCB creation
and destruction. User CCBs are not allocated; their pages are
allocated. System and internal CCBs are not allocated; their
memory is allocated. Therefore, databases such as CCBs and FCBs
are actually "created" and "destroyed" within blocks of system
memory. The terminology of "allocating" and "releasing"
databases is used quite loosely throughout AOS/VS code and
comments. This manual attempts to clarify this distinction.

Licensed Material 3-27 Property of Data General

3.3.4 CCB Operations: OFAULT.P

The File Management operation that allocates user CCB pages,
creates the CCBs, and assigns channel numbers is called
OFAULT.P. OFAULT.P is called only from File Open Services,
namely SOPPF.P and GOPEN.P, which must create user CCBs. The
caller may wish OFAULT.P to assign a channel number dynamically,
or to assign a specific channel number. The new CCB address
will be returned. Following is the C-based algorithm that
illustrates the AOS/VS implementation of OFAULT.P.

#define CCBPERPG 32
#define SCNCCBPG 7
/* Input: specific chan num
/* Output: assigned channel

/* = 1024./CCBLT
/* Num CCB pages

to assign or -1 for system assign
number, CCB address

OFAULT.P (chin, *chout, *CCB addr)
{ -

*/
*/
*/
*/

/**
* Create a user CCB. Determine type of request. *
**/

if (chin != -1)
{

/* Static channel request !1! */

/***
* Given the channel number, generate the user CCB address.*
* Fault and pin the CCB so page remains resident. *
***/

call GENCCBAD (chin, CCB addr);
call FLTPIN (CCB_addr); -

/***
* Test CCB validity. *
* If CCB locked, another request is in progress. Error *
* out! The WSZBO sets the CCB lock bit if not set before. *
***/

if (WSZBO (CCB addr, BCBLK» /* Sim reqs?
{- /* Yup
call UNPIN (CCB addr); /* Adios
return (simultaneous requests on same_channel);
} --

*/
*/
*/

/***
* If the process table address is non-zero, the channel is*
* already in use. Error out! *
***/

if (CCB addr-)CBPTA.W 1= 0)
{ -
clear bit (CCB addr, BCBLK);
call UNPIN (CCB addr);
return (channel-in use);
} - -

Licensed Material 3-28

/* Channel in use? */

/* Yup */
/* Bye */

Property of Data General

/***
* CCB valid. Calculate CCB page number and bump the count*
* of CCBs in use for this CCB page in the PTBL extender. *
* Then ready it for caller by zeroing it out and initting *
* it locked. *
***/

CCB page = chin/CCBPERPG;
PEXTN->PUCCBS [CCB_page] += 1;

/* Compute CCB page num */
/* Bump num CCBs on page*/

zero (CCB addr, CCBLT);
set bit (CCB_addr, BCBLK);
return;

/* Clear out the CCB */
/* Init it locked */
/* DONE for static req */

}

else /* dynamic channel request I!! */
{

1***
* Each CCB page is checked for free CCB. *
* Pass 1 = resident CCB pages are checked for free CCBs. *
* Pass2 = no resident CCB pages; new pages are allocated. *
***/

for (pass = 1; pass <= 2; pass++)
for (CCB_page = 0; CCB_page < SCNCCBPG; CCB_page++)

{
/* Any free CCBs on this page? */
if (PEXTN->PUCCBS [CCB_page] < CCBPERPG);

{
/**

* CCB logical page addr begins at CCBTAB. Shift *
* the CCB page to the left of the offset field. *
* Adding them gives log start of CCB page. *
* (Residency check done via LPHY instruction) *
**/

CCB page la = CCBTAB + (CCB page « 10.);
if (resident (CCB_page_la) TI (pass == 2))

{
/**

* If pass1, page is resident. FLTPIN pins it. *
* If pass2, page mayor may not be resident. *
* Fault and pin it. *
**/

Licensed Material 3-29 Property of Data General

/**
* Check each CCB in page (ccbip) to make sure it *
* is not in use. If it is not, clear it, set the*
* vanilla lock (to indicate channel in use), *
* bump the CCB in use count for the page in *
* PEXTN, and calculate and return the channel *
* number. *
* The caller will unpin the CCB page! *
* If no free CCBs are found in the page, unpin *
* it and search next page! *
**/

for (ccbip = 0; ccbip < CCBPERPG; ccbip++)
{
CCB_addr = CCB_page_Ia + (ccbip * CCBLT);

if (!bit already set (CCB addr, BCBLK) &&
(CCB-addr->CBPTA.W == 0»

{
/* Channel Not In Use! Grab The CCB! */
set bit (CCB addr, BCBLK);
CCBS in use ~ PEXTN->PUCCBS [CCB page]++;
*chout ~ (CCB_page * CCBPERPG) +-

CCBS in use;
return;
}

} /*end of for */

/**
* No free CCBs on this page. *
* Unpin the page and search the next page. *
**/

/* No free CCBs on this page. Release it */
call UNPIN (CCB_page_Ia);

} /* end of if resident */
} /* end of if above that */

} /* end of inner for *i
} /* end of outermost for */

/**
* Pass 1 and 2 done and no free CCBs found. *
* This means the hog has exhausted all 255. channels! *
**/

return (no_free_channels); /* Tell user he is a hog */

} /* end of else */
} /* end of OFAULT.P */

Licensed Material 3-30 Property of Data General

3.3.5 CCB Operations: Generate CCB address (GENCCBAD)

The File Management operation that calculates a ring 1 user CCB
address from a channel number is called GENCCBAD. GENCCBAD is
called by OFAULT.P when a specific channel is requested on a
file open. It is called by the DFAULT operation to calculate
the CCB address of an input channel number on behalf of a system
call servicing a user request. GENCCBAD is called by Memory
Management to retrieve the CCB address of a shared file whose
channel number is found in a shared page's control directory
entry (CDE).

Since channel numbers are assigned in the same order that user
CCBs are created, the address calculation is a simple operation.
The base address in ring 1 where user CCBs are found is CCBTAB.
The CCB page number multiplied by the size of a page, 02000
words (shifted left 10.), added to CCBTAB yields the logical
address start of the CCB page. The number of the CCB in the
page multiplied by the CCB length gives the offset into the page
of the desired CCB.

The sole input to the GENCCBAD is the channel number and the
sole output is its logical ring 1 address. GENCCBAD assumes
that the process whose CCB address is being found is currently
mapped. The following algorithm illustrates GENCCBAD.

GENCCBAD (channel num, *CCB addr)
{ --

/**
* Get the CCB page and the number of the CCB in the page. *
* Concretely, if the channel number is 48, 48/32 = 1 rem 16. *
* The CCB page is 1, the CCB is the 16th one in page. *
**/

CCB page = channel num / CCBPERPG;
CCB=in_page = channel_num % CCBPERPG;

/**

}

* Calculate the CCB address and return it. *
* If the channel number if 48, the CCB address is: *
* 02000100000 + 02000 + 01000 = 02000103000 *
**/

*CCB addr= CCBTAB + (CCB_page « 10.) + (CCB_in_page * CCBLT);
return;

Licensed Material 3-31 Property of Data General

3.3.6 CCB Operations: DFAULT and RUCCB.P.

The File Management operation that returns the ring 1 user CCB
address given a channel number is called DFAULT. This
operation is called from every File Management system call
operation whose input from the user is an open channel number.
The channel number is translated into the corresponding user CCB
address via a call to GENCCBAD, and the CCB process table offset
is verified for a non-zero value, indicating the user indeed has
the channel open. Some system calls retrieve the CCB address
from DFAULT and prepare and enqueue the returned CCB for user
I/O, e.g., ?RDB, ?GTRUNC. Other system calls use the returned
CCB address only to access the parent directory CCB and initiate
I/O on the parent directory, e.g., ?RENAME, ?CPMAX.

The File Management operation that destroys a user CCB is called
RUCCB.P, Release User CCB. RUCCB.P simply takes the input
channel number, generates the user CCB address via a call to
GENCCBAD, and marks the CCB as free (not in use) by clearing the
vanilla lock bit (BCBLK) and zeroing the process table offset
(CBPTA.W). In addition, the CCBs in use count for the CCB page,
beginning at offset PUCCBS in the process table extender, must
be decremented. After the user CCB is released, the caller will
request KFCB.P service. This initiates the chain reaction that
destroys the chain of system CCBs/FCBs, which must remain open
from the root directory down to the file opened on the user CCB.
RUCCB.P is called by GCLOSE.P, and by open services on errors
occurring after the user CCB's creation.

3.3.7 CCB Operations: Kill Channel Control Block (KCCB.P)

KCCB.P is the operation called to destroy system CCBs when a
file is being closed. KCCB.P is called from those modules that
create system CCBs and must close them. KCCB.P destroys the
CCB, then checks the associated FCB open count. If it is zero,
the FCB will be destroyed. Moreover, the parent CCB of this
hierarchical level is checked for a zero use count. If there
are no more users, it will be released as well. KCCB.P will
loop, working its way through the directory hierarchy,
destroying all system CCBs and FCBs (if CBUSC is 0) until it
gets to the root. Of course, the root CCB can only be destroyed
at system shutdown.

Licensed Material 3-32 Property of Data General

This operation does not "call" KFCB.P to destroy FCBs, but
executes overlapping assembly code common to both KCCB.P and
KFCB.P. Consequently, some algorithmic code is duplicated from
KFCB.P in the following illustration of KCCB.P. The only input
to KCCB.P is the system CCB address (which must be locked upon
entry) .

KCCB.P (CCB addr);
{ -

/**
* The use count has already been decremented. If it is still*
* in use, it cannot be destroyed. Just unlock it and return.*
**/

if (CCB addr->CBUSC != 0)
{ -

call CULCK (CCB_addr);
return;
}

/**
* If there are no more users of the CCB, destroy it and *
* release its memory. Procedure: lock the parent, decrement *
* the parent CCB use count (one less son), unpend any waiters*
* on the CCB lock, and finally deallocate it. There can be *
* only one situation in which a control block can be pended *
* awaiting a lock when the use count is 0: resolution *
* services. See the note following the algorithm! *
**/

Licensed Material 3-33 Property of Data General

KCCB LOOP:

PCCB addr = CCB addr-)CBPCB.W;
- -

FCB addr = CCB addr-)CBFCB.W;

call CLOCK (PCCB_addr);
PCCB addr-)CBUSC -= 1;

if check bit (CCB addr, BCBPL)
call UNPEND (CCB addr);

call RSMEM (CCB_addr, CBBLT);

FCB addr-)FBSCB.W = 0;
if (FCB addr-)FBOPN != 0)

{ -

call CULCK (PCCB addr);
return;
}

/*
/*

/*
/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*

Save parent CCB addr*/
Save FCB addr */

Lock parent CCB to */
decr use count (CCB */
to be destroyed!) */

Unpend any waiters */
before */
CCB IS RELEASED! */

No more system CCB */
Check FCB open count*/
File is still open */
Unlock parent CCB */
Rest of hierarchy */
stays open for now. */

/**
* Last opener is closing file. Clean up the FCB. *
* Release buffers on FCB buffer list. *
* Release shared pages on FCB. *
* KFCB.P ALSO FOLLOWS THIS CODE PATH! *
**/

call RELBF (FCB addr);
if (FCB addr-)FBCMP.W != -1)

call-RELSP.P (FCB_addr);

/* Release FCB buffers */
/* and shared pages if */
/* there were any. */

/**
* If the file was marked for delete on last close, delete it *
* now! Then jump to KCCB to release the system CCB/FCB *
* hierarchy above. *
**/

if check bit (FCB addr,BFBDL)
{- -
call CLDEL.P (FCB_addr-)FBFIB, PCCB_addr, FCB_addr);
go to KCCB LOOP;
}

/* If unit type file, do unit-specific operations */
if (FCB_addr-)FBTYP -- UNIT_TYPE_FILE)

call UCLOSE.P;

Licensed Material 3-34 Property of Data General

/**
* Read in the FIB, update it with the modified data from the *
* FCB's Funny FIB and flush it out to disk NOW. Flushed now *
* (RELF) because no other users have file open. *
**/

call RAID (FCB addr->FBFIB, DEFIB, PCCB_addr,
&FIB_BH, &FIB_addr);

FIB addr->FIFCB = 0;
call UPFIB (FIB addr, FCB_addr);
call RELF (FIB_BH);

/**
* Almost done. *
* Release CPB memory. Destroy the FCB! *
**/

call RSMEM (FCB addr->FBCPB.W, CPBLT);
call RFCB (FCB_addr);

/* Release CPB mem */
/* Annihilate FCB */

/**

}

* Now decrement the parent dir CCB use count. *
* If still users, just unlock it and return. *
* If not more users, it can be released (by KCCB.P), which *
* will execute this entire routine again, and possibly *
* destroy all open CCBs/FCBs open in the pathname, up to the *
* root. *
**/

if (--PCCB_addr->CBUSC) /* One less FCB son */
{ /* PCCB use count 07*/
call CULCK (PCCB_addr); /* No, unlock it, */
return; /* leave hierarchy. */
}

CCB addr = PCCB addr; /* Yes, make parent */
goto KCCB_LOOP;- /* current CCB and */

/* destroy it. */
/* end of KCCB.P */

There is one condition in which the system CCB use count (CBUSC)
may be 0 when another CB is pended awaiting the release of the
CCB lock. KCCB.P is called to release a system CCB once the
caller has finished using it. Callers lock the CCB, decrement
the use count (if they had incremented it) and call KCCB.P.
KCCB.P checks the use count. If it is non-zero, the CCB is just
unlocked. If it is 0, the CCB memory will be deallocated and
its pointer in the FCB (still there) will be cleared. However,
before making the call to RSMEM, KCCB.P calls UNPEND to unpend
waiters of the CCB lock. It would seem pOSSible, then, for the
waiter to be awoken, the CCB will become deallocated and its
address become invalid, and the waiter will have an invalid
address which may panic the system. AOS/VS is careful to avoid
this condition.

Licensed Material 3-35 Property of Data General

The waiters of system CCB locks, when the use count is 0, can
only be control blocks whose code paths are in Resolution
Services, which provide a special mechanism to protect against
the previously described potential panic situation. Any file
system request whose input is a pathname calls Resolution
Services to retrieve the system CCB. If the system CCB is
locked, Resolution Services waits for the lock.

Resolution Services protects against using a potentially bad CCB
address upon being unpended by checking the system CCB pointer in
the FCB. KCCB.P zeroes out FBSCP.W, so Resolution Services will
know that the system CCB it was awaiting has disappeared.
Usually when a CB is unpended when awaiting a lock, another
immediate attempt at acquiring the lock is made. However,
Resolution Services must FIRST check that the CCB is still valid,
because if it doesn't and the CCB was deallocated, the subsequent
attempt at checking the lock bit will probably result in ring 0
memory corruption.

Licensed Material 3-36 Property of Data General

3.4 File Management Services

3.4.1 (System) Read in a Block: BLKIN.

BLKIN and its variants, CBLKIN and BLKINW, are the File
Management services that read in one specific file block into a
system buffer. BLKIN also takes the liberty of searching the
FCB buffer list for the buffer header containing the data. This
may eliminate the need for actual disk I/O. If the buffer
header is not found, BLKIN will initiate the disk I/O and return
the buffer header address to the caller.

The caller of BLKIN mayor may not modify the data contained in
the system buffer returned. Either way, the buffer must be
released to the free buffer chain BFLRU.W when the caller is
done with it (if there are no more users and no waiters). If
the caller modifies the data, the buffer must either be released
modified or flushed immediately. If the caller does not modify
the data, the buffer will either be released normally or
destroyed. See Buffer Management for a description of these
actions.

The following are the variants of BLKIN:

Variant Function

BLKIN Read one block from a file into a system
buffer. Called by File Mgmt routines.

CBLKIN Read one block from a file into a system
buffer. Called by non File Mgmt routines.

BLKINW Search the FCB buffer list for the desired
block. Called by CCB Request Management.

File Management routines call BLKIN and need only supply the CCB
address of the file on which the I/O is to be performed. The
caller must store the desired block number at CCB offset
CBDBH.W. File Management routines use BLKIN to read directory
data blocks and the directory bit map for all directory
file I/O. The buffer headers for these blocks are enqueued to
the FCB buffer list until released.

External system components call CBLKIN and must supply both the
block number to read and the CCB address. Because File
Management assumes that external components need not be
concerned with CCB management, CBLKIN permits the caller to pass
the block number, which it kindly stores in the CCB. The buffer
headers for these "system" data blocks are enqueued to the FCB
buffer list until released.

CCB Request Management calls BLKINW simply to check if a
specific block is found on the FCB buffer list. If it is not,
BLKINW will not read in the block, since CCB Request Management
routines cannot call base level pending routines. An error

Licensed Material 3-37 Property of Data General

return from BLKINW will indicate that the block was not found in
memory. CCB Request Management will have to initiate the disk
I/O itself in order to correctly pend the IOCB. The callers of
BLKIN and CBLKIN are listed below:

Caller

JELLO.P

XINIT.P
DRLSE.P

DELETE.P

LOOKUP.P

Caller

IS.REC
ISEN2.P
CLNUP.P

CHIFE.P
DHIFE.P
HNAME.P

SPNAM.P

Callers of BLKIN

Effect

Reads the directory bit map when allocating
directory data blocks.

Reads in the DIB when initializing an LDU.
Reads in the DIB when releasing an LDU.

Reads in FIBs of all files subordinate to
the directory being deleted. All
subordinate files must be deleted as well.

Reads each FNB block to search for filename
(called by RESLV.P).

Callers of CBLKIN

Effect

IPC spoolfile I/O.
IPC spool file I/O.
IPC spoolfile I/O.

HIF file I/O (create HIF entry).
HIF file I/O (delete HIF entry).
HIF file I/O (get host name/id).

PIF file I/O (set process name).

The inputs and outputs of BLKIN/CBLKIN are the following:

Variable Input Output

ACO Not used. Unchanged.

ACl Block number (CBLKIN Unchanged.
only) .

AC2 CCB address. Buffer header
address.

Licensed Material 3-38 Property of Data General

Finally, the C-based algorithm for CBLKIN is illustrated below.
Notice that CBLKIN calls an even lower File Management service,
NQCRQ, to enqueue the CCB. Since the callers of BLKIN/CBLKIN
can be either external components or internal File Management
services, NQCCB is not called directly.

CBLKIN (reI blk num, CCB addr, *BH addr out)
{ - - - --

/**
* Ensure that the CCB is valid. *
* VALCID checks FBUID/CBUID match and panics with code 6032 *
* if they are not the same. Afterwards, get input relative *
* file block number and store in CCB. *
**/

call VALCID (CCB addr);
CCB addr-)CBDBL ~ reI blk_num;

/**
* Get the FCB address from the CCB and lock the FCB. *
* FCB locked to prevent other JPs from FCB access in search! *
* Then search FCB buffer list for the buffer header. The *
* search key is the relative block number. *
**/

FCB addr = CCB addr-)CBFCB.W;
call FXLOCK (FCB_addr, BFBTRAN);

BH addr = 0;
search (FCB_addr-)FBBLP.W, BQDBN, rel_blk_num, &BH_addr);

if (BH addr != 0) /* BH found! */
{ -

/**
* GREAT! BH found on FCB! *
* Search is over, so unlock FCB and (transition) lock BH.*
**/

clear bit (FCB addr, BFBTRAN);
call FXLOCK (BH_addr, BBQTRAN);

/* Unlock FCB */
/* Lock BH */

/***
* If no users/waiters on BH, it is on the LRU and *
* must be dequeued. Otherwise, not on LRU. *
***/

if (BH addr-)BQRQC.W == 0)
call DQBCN (BH_addr);

Licensed Material 3-39

/* BH waiters/users? */
/* No, deque from LRU */
/* Yes, is not on LRU */

Property of Data General

/***
* Flush BH if necessary. *
* If there is I/O currently in progress, BWAITS will *
* wait for the I/O to complete. We must bump the *
* waiter count first so the BH post processor will know *
* to unpend us. Upon return, we will have control of *
* the buffer, so bump the use count, unlock BlI and *
* return the BH address to the user. *
***/

BH_addr->BQWTC += 1; /* Bump wait count */
call BWAITS (BH_addr) ; /* while lOP on BH */
BH_addr->BQWTC -= 1; /* Decr when done. */

BH_addr->BQUSC += 1; /* We have the BH! */
clear bit (BH_addr, BBQTRAN) ; /* Unlock xlock */ -

BH addr out = BH_addr; / Return BH addr */
return; /* Return control */
}

else /* BH not found on FCB buffer list */
{

/**
* Buffer header not on FCB. *
* Must initiate I/O ourselves. We must call NQCRQ since *
* we are a system-wide service, and NQCRQ handles system *
* I/O requests. We build the packet and send it to *
* NQCRQ, which will do an NQCCB request and pend until *
* the I/O is complete. The CCB command that BLKIN *
* always uses is read system buffer. (The BH addr is *
* returned in CBUAD.W of the CCB by post processor.) *
**/

clear_bit (FCB_addr, BFBTRAN);

set up packet (nqcrq packet);
call NQCRQ (nqcrq_packet, CCB_addr);

*BH addr out = CCB addr->CBUAD.W.
return;
}

} /* end of CBLKIN */

Licensed Material 3-40

/* Done with FCB */

/* Do the I/O */

/* Return BH addr */
/* Return control */

Property of Data General

3.4.2 Enqueue Channel Control Block Request (NQCCB)

NQCCB is the File Management operation that creates and
initializes an I/O Control Block (IOCB), enqueues to the IOCB
scheduling queue IORUN.W, and wakes up the disk manager control
block to run a logical disk I/O request. IOCBs are enqueued to
IORUN.W; CCBs are not enqueued anywhere under normal
circumstances. If the system is operating under heavy memory
contention conditions and a free IOCB cannot be allocated from
the IOCB database pool, the CCB will actually be enqueued to the
CCB wait queue CCBWQ.W, until an IOCB becomes free.

There are no variants of NQCCB. It is one standard operation
custom-designed for all system call services that implement File
Management system calls that do I/O on behalf of the user. The
callers are the following system call services.

Caller

RDB.P
WRB.P

SPAGE.P

DELETE.P

GTRUNC.P

ALLO.P

NQCRQ

Callers of NQCCB

Effect

Enqueues read request, CCB command CBRED.
Enqueues write request, CCB command CBWRI.

Enqueues shared read request, CCB command
CBRED, sets bit CBSHB in CCB status word.

Enqueues delete file request, CCB command
CBDEL.

Enqueues truncate file request, CCB
commands CBTRNI and CBTRN2.

Enqueues allocate file blocks request,
CCB command CBALL.

Enqueues CCB request on behalf of a
"non" file system component.

NQCRQ, enqueue channel request, makes the NQCCB call for non
File Management components which, for reasons of organizational
design (modularity), are not permitted to modify the CCB request
parameters to such an extent. NQCRQ takes two inputs from the
system: a Channel ID (CID) and a packet address. The CID is the
title given to the CCB of a file opened by the system as if
the system were a user. For example, system initialization
opens the :HIF, :PIF and :PER files and keeps them open forever.
Swap files and page files are opened internally by the system as
well. Although the system opens these files and allocates
memory for CCBs, these CCBs are deemed channel identifiers. In
short, the CID is the requesting CCB address.

Licensed Material 3-41 Property of Data General

The NQCRQ packet, set up by the caller, usually on the stack,
contains exactly what the caller would have initialized the CCB
with had he been privileged to store the parameters. NQCRQ
moves the data from the packet into the CCB. Some special
processing is done, however. For example, if the core manager
task has called NQCRQ, the CCB is given the highest possible
priority (0). Also, the CCB post-processor address is not a
packet input, but NQCRQ determines the appropriate one based on
the type of request.

NQCRQ commands have been defined as well. These commands are
equivalent to their corresponding CCB commands, but a "CRQ"
prefix replaces the "CB" prefix in the command parameter
definition. After NQCRQ moves all the necessary information to
the CCB, the request is enqueued to CCB Request Management via
NQCCB. The following list of modules utilize the NQCRQ service.

NQCRQ Caller Effect
Command

CRQRED RDUST.P Read UST from .PR file.
JPMLOAD.P Read in microcode file.
RINGLD.P Read in user page o of .PR file.
READPR Read unshared pages from .PR file.
READPG Read pages from user pagefile.
SWAPIO Read from user swapfile.
IGHOST Read page 0 of AGENT.PR.

CRQSHRD READSH Read shared pages (.PRjdata file) .

CRQSYB BLKIN Read one block from a file into
a system buffer.

CRQWRI WRBRK.P Write to a breakfile.
SWAPIO Write to a user swapfile.
UNFIO Write to a user pagefile.

Since NQCRQ is just the system interface to NQCCB, only the
latter will be demonstrated algorithmically. The inputs and
outputs of NQCCB are the following:

Variable Input

ACO CCB Post Processor
address.

ACI Not used.

AC2 CCB address.

Licensed Material 3-42

Output

Unchanged.

Unchanged.

Unchanges.

Property of Data General

A typical calling sequence to NQCCB follows.

XLEF
XWLDA
XJSR
XJSR

O,PPCBI
2,CCBAD.W,3
NQCCB
CWAIT

;CCB post-processor (for CBSYB)
;Remember CCB addr from stack
;Enqueue the request
;Pend

CWAIT is the File Management operation, called after NQCCB
requests, which pends the caller via a call to MPEND. The CCB
post-processor will retrieve the requestor's CB from the CCB
(offset CBTCB.W), explicitly dequeue it from PELEMQ and make it
ready to run. If an error occurred during the request, the
error code will be stored at CCB offset CBERR. CCB bit offset
BCBER will be set as well. So, when the CB is unpended, either
the error return or the good return will be taken, depending
upon the state of BCBER.

Remember that the control blocks of ?RDB and ?WRB requests do
not pend, but the task control blocks pend. The AGENT takes
care of the TCB pending mechanism. However, File Management
must "fool" the system call processor into thinking that the
call has completed and the CB can be deallocated. This is done
by zeroing the TCB address in the CB, making it appear to be a
daemon instead of calling CWAIT. For example:

XLEF
XWLDA
XJSR
XWLDA
WSUB
XWSTA
XWADI
WRTN

O,PPCUB
2,CCBAD.W,3
NQCCB
2,CC.W
0,0
0,CATCB.W,2
1,ORTN.W,3

;CCB PP (for ?RDB/?WRB)
;Remember CCB addr from stack
;Enque the request
;Caller's CB
;Get ready to ...
; ... make CB a daemon
;Good return
;NOTHING ELSE TO DO!

Finally, the C-based algorithm, which describes this operation
in detail, is illustrated below.

NQCCB (CCB PP addr, CCB_addr)
{ - -

/**
* The CCB, if a user CCB, has a ring 1 address. Since the *
* user's PTBL may not be mapped, we will convert the log *
* ring 1 addr to a physical addr. Panic 6303 if error here! *
**/

if (error)
call PNIC (6303);

/**
* CCB OK. store passed CCB post processor address. *
* Clear the CCB error bit as well, as the call has not begun.*
**/

Licensed Material 3-43 Property of Data General

CCB addr-)CBUPD.W = CCB PP addr;
clear_bit (CCB_addr, BCBER);

/**
* Allocate an IOCB. *
* If there is not enough memory, enqueue the CCB to CCBWQ.W *
* where it will wait until another CCB request finishes and *
* returns its IOCB to the pool. CCBs are enqueued to *
* CCBWQ.W by order of priority. Caller can gain control now *
* and pend. *
**/

IOCB addr = 0;
call DBALLC (&IOCB.DB, &IOCB addr);

if (IOCB_addr == 0)
{
call BSLOCK (IOWLK.W, BPDTRAN);
enqueue (CCBWQ.W, CCB addr, CBPRI);
clear bit (&IOWLK.W, BPDTRAN);
return;
}

/* Enough memory?*/
/* NOOOOOOOOOOOO */
/* Lock CCBWQ.W */
/* CCB to CCBWQ */
/* Unlock CCBWQ */
/* Caller pends */

/**
* Do some accounting and initialize the IOCB for request! *
* IOAC = num currently active IOCBs. *
* IOMX = max num active IOCBs since boot. *
* Then enqueue the IOCB to IORUN by order of priority. *
**/

if (++IOAC) IOMX)
IOMX = IOAC;

IOCB addr-)IOCCB.W
IOCB addr-)IOFCB.W
IOCB addr-)IOSTW.W
IOCB addr-)IOSPC.W
IOCB addr-)IONLV
IOCB addr-)IOPRIO

= CCB addr;
= CCB addr->CBFCB.W;
= IORDY;
= &RUNRD;
= 0;
= CCB addr->CBPRI;

call XLOCK (IOCBLK.W, BPDTRAN);
enqueue (IORUN.W, IOCB addr, IOPRIO);
clear_bit (&IOCBLK.W, BPDTRAN);

/*
/*
/*
/*
/*
/*

/*
/*
/*

CCB phys addr */
FCB addr */
Status=ready */
Init start PC */
Clear fIg wrd */
Priority */

Lock IORUN.W */
Enque IOCB */
Unlock IORUN */

/**
* IOCB is now enqueued to IORUN.W. *
* Wake up the disk manager task, who will scan IORUN.W and *
* find, at least, this IOCB. The request will be off and *
* running while the caller is pended. *
**/

call DWAKE;
return;

} /* end of NQCCB */

Licensed Material 3-44

/* BUZZZZZZZZZZZ */
/* Caller calls */
/* CWAIT to pend.*/

Property of Data General

3.4.3 File Open Services

File Open Services performs the function of opening a file. This
service includes creating an FCB, if the file was not previously
open, and always creating a CCB, whether the request is from the
user or the system. The file's FIB must be read in from disk
and copied into the FCB where the data is maintained while the
file remains open. FCB and CCB parameters relevant to the
calling process and the type of open being performed are
initialized as well.

There are a number of variants provided in open services:

Variant

GOPEN.P
SOPEN.P
ROPEN.P
IOPEN.P

XIOPEN.P
EOPEN.P

XEOPEN.P

Caller

User

Caller

User

Function

Open a file for a user.
Open a file shared for a user.
Special AGENT open of a user file.
Internal system open of a file. The file
pathname is in system space.
Exclusive IOPEN.P.
Internal system open of a file. The file
pathname is in user space.
Exclusive EOPEN.P.

External requesting modules of GOPEN.P

Effect

?OPEN/?GOPEN - open a file. The AGENT
converts normal ?OPENs to ?GOPENs.

External requesting modules of SOPEN.P

Effect

?OPEN/?SOPEN - Open a file. The AGENT
converts ?OPENs with the ?SHOP bit set
to ?SOPENs

Licensed Material 3-45 Property of Data General

External requesting modules of IOPEN.P

Caller Effect

SINITI Open :PROC:PIF and :PROC:HIF files,
open :SWAP and :PAGE directories,
open IPC spool file for CLIBT, so it can
receive an IPC from the PMGR.

IGHOST.P Open AGENT.PR during ?PROC
PROC2.P Open IPC spool file of PID being proc'ed.
BRKFL.P Open breakfile.
LMCODE.P Open microcode file to load daughter JPs.

External requesting modules of XIOPEN.P

Caller Effect

OPENPU.P Open each physical unit in the LDU to be
initialized, if the name is in system
space (: BOTH ini t) •

ALLSW.P Open PID's swap and page files on proc.

External requesting modules of EOPEN.P

Caller Effect

PROPEN.P Open program file for ?PROC, ?CHAIN,
?RINGLD.

External requesting modules of XEOPEN.P

Caller Effect

OPENPU.P Open each physical unit in the LDU to be
initialized, if the name is in user
space (standard LDU init).

The input values to each Open Service variant depend upon the
variant called. The most common services requested are GOPEN.P
and IOPEN.P. One input to GOPEN.P and ROPEN.P is the user
packet, which is copied to the system stack. GOPEN.P must
establish a trap handler in the active control block before user
space is accessed to avoid a fatal error. The trap handler for
GOPEN.P is GTRP, which will return a "System call parameter
address error" if a protection violation occurs during the
"WBLM" of user data to system space.

Licensed Material 3-46 Property of Data General

GOPEN.P is the only service that allows the caller to open IPC
and generic files. The system has no reason to open these types
of file, and any IOPEN.P that attempts to do so will receive an
"Illegal file type" error.

Since IOPEN.P accomplishes essentially the same result as
GOPEN.P without accessing user data, the C-based algorithm for
the former will be described. IPC and generic file open code
paths, which are actally simpler and shorter than other file
type opens, will not be elaborated upon here. The inputs and
outputs of IOPEN.P are the following:

Variable Input Output

ACO Byte address of file Unchanged.
pathname in sys space.

ACI Logging flag. Unchanged.

AC2 Not used. System CCB address.

In addition to the most obvious required input (pathname of file
to open), a flag word is supplied to tell RESLV.P whether or not
it should check for C2 Logging. If the flag is set to 0, no
logging will be done; a negative value will direct RESLV.P to
check for "full" C2 logging, and a positive value will indicate
"complete" C2 logging. IOPEN.P always sets the logging flag to
O. The system will save the returned system CCB address,
depending on which file is opened. For example, when :PROC:PIF
is opened, its CCB address is stored in the global location
PIFCID.W. When :NET is opened, its CCB address is stored in
NETCID.W. This is how AOSjVS system shutdown code accesses
these CCBs in order to close the files. The calling sequence
from BRKFL.P to IOPEN.P is the following:

XWLDA
LJSR

WBR

WSUB
LJSR

WBR
XWSTA

0,NMPTR.W,3
BCREATE.P
BERR

1,1
IOPEN.P
BERR1
0,CCB.W,3

#define CKCOMLOG 02
#define CKPRCLOG 010

;Byte ptr to filename on stack
;Create the breakfile
;Bad create

;No checks for logging
;Open breakfile
;Bad open
;Save CCB on stack for later
;(it goes in PTBL extender)

#define IN SYSTEM SPACE 020000000000

Licensed Material 3-47 Property of Data General

IOPEN.P (*pathname, logging_flag, *CCB_addr_out)
{
/**

* This is an internal open; allocate system memory for a *
* system CCB. Note that although this is a "system CCB," the*
* system owns it as if it were a user. That is why its addr *
* will not be found in the FCB, and will have no use count. *
* GOPEN.P would call OFAULT.P to get a user CCB. *
**/

CCB_addr = RSMEM (CCBLT);

/**
* Init the CCB: locked and read system buffer command. *
* Set the switches for RESLV.P call. IOPEN.P always *
* indicates no log checking and search rules apply. *
* Then call RESLV.P to find the file. *
**/

set bit (CCB addr, BCBLK) ; /* Init CCB locked
CCB-addr->CBFLG = CBSYB; /* Read system buff

if (logging_flag < 0)
reslv switches = CKCOMLOG; /* Complete logging

else if (logging_flag > 0)
reslv switches = CKPRCLOG; /* Partial logging

else
reslv switches = 0; /* No logging

call RESLV.P (pathname, res Iv switches, IN SYSTEM SPACE,
&FIB IDP, &FNB_IDP, &PCCB_addr); -

*/
*/

*/

*/

*/

/**
* If FNB IDP is 0, only a prefix was input to RESLV.P and *
* since prefixes only point to dirs already open on system *
* CCBs, the CCB address of the DIR is returned in PCCB addr. *
**/

if (FNB IDP == 0) /* Pathname was just a prefix */
{ -

call CULCK (PCCB_addr): /* Unlock new CCB */
pref CCB addr = PCCB addr; /* Get "real" CCB */
PCCB-addr = PCCB addr->CBPCB.W; /* Get "real" parent*/
if (PCCB addr !=-O) /* If prefix not: */

call CLOCK (PCCB_addr); /* get CCB lock */
FCB addr = pref CCB addr->CBFCB.W; /* Save FCB addr */
} - -

/**
* File to open not just a prefix. *
* Got some file info. Get more. *
* Read the FIB. If the file type is either generic or IPC, *
* only GOPEN.P can perform the open, so return an error. *
**/

Licensed Material 3-48 Property of Data General

else
{
call RAID (FIB_IDP, DEFIB, PCCB addr,

&FIB_BH_addr, &FIB_addr);

if «FIB addr->FITYP -- IPC_TYPE_FILE) I I
(FIB-addr->FITYP -- ?FGFN»

{ - /* Before return, */
call RELB (FIB BH addr); /* release FIB BH,*/
call KCCB.P (CCB addr); /* destroy CCB. */
return (Illegal file type); /* OK to return. */
} - -

/**
* Have FFCB either create (if file not open) or return (if *
* file already open) an FeB address. If it is exclusively *
* open (BFBEO) or opened shared protected (BFBPF), cannot *
* open it for this caller. *
***/

call FFCB (PCCB_addr, FIB IDP, FIB_addr, &FCB_addr);

if (check bit(FCB addr, BFBEO) I I /*
check-bit(FCB-addr, BFBPF» /*

}

{ - -

call RELB (FIB_BH_addr);
call KCCB.P (CCB addr);
return (File exclusively opened);
} - -

Exclusive open or */
prot shared open? */
/* Yes! */
/* Release FIB BH.*/
/* Destroy CCB. */
/* Can return now.*/

/**
* Init the new CCB. *
* Bump the file open count in the FCB as well. *
**/

CCB addr->CBFCB = FCB addr; /* FCB addr */ - -
CCB addr->CBUID = FCB

-
addr->FBUID; /* FCB unique ID */

CCB addr->CBPCB.W = PCCB addr; /* Parent CCB addr*/
-

CCB addr->CBFIB = FIB
-

IDP; /* FIB pointer */
CCB addr->CBIBN = -1; /* No index levels*/ -
CCB addr->CBPTA.W = *CC.W->CPTAD.W /* PTBL addr */

FCB addr->FBOPN += 1; /* BUMP OPEN CNT! */

/**
* The parent CCB addr is 0 if the pathname was just prefix : *
* The root has no parent dir. IOPEN.P will not run into this*
* condition. So, bump the parent's use count (one more son) *
* and unlock it. If this is the first open, the FIB was *
* modified (in FFCB) when the FCB addr was stored at FIFCB.W,*
* so it must be released MODIFIED (RELM). *
* Note: this is IOPEN.P, so FBSCB.W will always be 0 because *
* IOPEN.P does not open directories (except for :SWAP and *
* :PAGE at system init which are closed immediately after). *
**/

Licensed Material 3-49 Property of Data General

if (PCCB addr != 0)
{ -

PCCB addr-)CBUSC += 1;
call-CULCK (PCCB_addr);

/* Bump parent CBUSC */
/* and let it go. */

if (FCB addr-)FBSCB.W != 0)
call RELB (FIB_BH_addr);

I I (FCB addr-)FBOPN == 1)
7* FIB not modified */

else
/* FIB modified */

}

/**
* Establish the caller's access privileges to the file. *
* ESTAC.P stores them in the CCB. However, users can only *
* open dirs and use the returned channel number as inputs to *
* system calls, such as ?GNFN. User I/O to directory type *
* files is a restriction. So, once it has been established *
* that the user is privileged to open the dir, give him NO *
* more access rights, causing any attempt to do I/O to fail. *
**/

call ESTAC.P (PCCB addr, &ACL privs);
if (error) return (error); -

if (FCB addr-)FBTYP == DIRECTORY TYPE)
CCB_addr-)CBSTS [ACL_bits] = 0;

if (FCB_addr-)FBTYP -- UNIT_TYPE)
call UNIT.P;

else
if (ACL privs & write access)

set_hit (CCB_addr,-BCBFWE);

/*
/*

/*
/*

/* ACL in CCB */
/* ERFAD, maybe? */

/* Users cannot */
/* do I/O to dirs*/

If unit, open */
unit specially */

Else set true */
write acc bit */

/**
* Finally, no more errors possible. *
* Return CCB addr to caller and unlock it. *
* GOPEN.P would have to UNPIN the CCB page here, but this is *
* IOPEN.P and the CCB is in ring O. *
**/

*CCB addr out = CCB addr;
clear bit-(CCB_addr~ BCBLK);
return;

} /* end of IOPEN.P */

Licensed Material 3-50 Property of Data General

3.4.4 File Close Services

File Close Services perform the function of closing a file.
Naturally, it performs operations exactly opposite to those of
File Open Services. The open CCB is always destroyed, whether
the request is from the user or the system. If the file open
count reaches zero on a file close, the Funny FIB in the FCB is
flushed to disk (back to the FIB) and the FCB is destroyed. The
heart of Close Services, KFCB.P and KCCB.P, perform the
fundamental close operations.

File Close Services provides corresponding variants to those of
File Open Services. They are the following:

Variant

GCLOSE.P
SCLOSE.P
RCLOSE.P
ICLOSE.P

ECLOSE.P

Caller

User

Caller

User

Caller

CLAUC.P

Function

Close a file for a user.
Close a shared file for a user.
Special AGENT close of a user file.
Internal system close of all user channels
of a process when the process terms.
Internal system close of a file open on a
system CCB.

External requesting modules of GCLOSE.P

Effect

?CLOSE/?GCLOSE - close a file. The AGENT
converts normal ?CLOSEs to ?GCLOSEs.

External requesting modules of SCLOSE.P

Effect

?CLOSE/?SCLOSE - close a file. The AGENT
converts ?CLOSEs of shared files to
?SCLOSEs.

External requesting modules of ICLOSE.P

Effect

Close all user channels (called by
RELMF.P) in process termination code when
cleaning up a process' address space.

Licensed Material 3-51 Property of Data General

External requesting modules of ECLOSE.P

Caller

SINITI

SDOWN.P

RELMF.P

MIRROR.P

ALLSW.P

PRCER.P

PSIBLD.P
LMCODE.P
WRBRK.P

Effect

Close :SWAP and :PAGE directories after
IOPEN.P was done to delete all the files
within them.

Close :PROC:PIF and :PROC:HIF files at
system shutdown.

Close program files (.PR) for all rings at
process termination.

Close each unit type file in the mirrored
LDU. Each unit in LDU is opened separately
to extract the DIB, then closed and linked
into the LDU structure.

Close old hot swap file when proc with a
swapfiles specified with non-default size.

Errors on proc: close swap/page files, IPC
spool file, and ring 7 .PR file.

Close hot swap/page file pools.
Close microcode file.
Close breakfile.

ECLOSE.P (instead of ICLOSE.P) is the logical opposite of
IOPEN.P, but this should be clear in the above charts. Since
ECLOSE.P is an internal call and requires only one input, the
internal CCB address of the file to be closed, this service will
be illustrated algorithmically. Moreover, ECLOSE.P is too
straightforward to be true. Refer to the KFCB.P and KCCB.P
operations to logically follow the actual code path.

ECLOSE.P (CCB_addr)
{

/* Input: CCB address; Output: none */

/**
* Validate the CCB (CBUID/FBUID match) to make sure it's *
* really a CCB and the correct CCB being released. *
* Then save the FCB address for later and release the system *
* CCB's memory. *
**/

call VALCID (CCB_addr);

FCB addr = CCB addr-)CBFCB.W;

call RSMEM (CCB_addr, CCBLT);

Licensed Material 3-52 Property of Data General

/**
* KFCB will decrement the file open count and check if * * the file remains open. If not, the FCB will be destroyed. *
* Then the rest of the hierarchy above this file will be *
* released as well if parent directory use counts reach O. * * See KFCB.P and KCCB.P now. *
**/

call KFCB.P (MCA_link_num, MCA_DCT_addr, FCB_addr);
return;

} /* end of ECLOSE.P */

Licensed Material 3-53 Property of Data General

3.4.5 Logical Disk I/O Interface Services

Since a logical disk structure implies a subordinate AOS/VS file
structure, logical disk I/O is accomplished by means of file
I/O. Therefore, the user is required to first open the desired
file and establish a channel number. The channel number along
with a packet of information describing the request
specifications become the arguments to the kernel implementation
of these system calls. The channel number provides access to
the CCB, where the request information contained in the packet
will be transferred. The File Management system call services
that will process this data and enqueue the logical disk
request are RDB.P and WRB.P. They are accessible either
directly via the system calls ?RDB and ?WRB, or indirectly
through the AGENT via the system calls ?READ and ?WRITE.

The essential request information that must be provided by the
user includes the first disk block number at which to begin the
transfer (?PRNH/?PRNL), the total number of blocks to transfer
(?PSTI), the number of bytes in the last disk block to transfer
(?PRCL), and the user buffer address to where the actual data
will be transferred (?PCAD.W). If the user wants 2049. bytes
transferred beginning at block 100. of file FOO, the packet
parameters would be initialized as follows:

?PRNH = 100.
?PSTI = 5
?PRCL = 1

Begin transfer at block 100.
Transfer 5 disk blocks.
But only one byte in block 5.

The ?RDB/?WRB control block does not pend after the logical disk
I/O is enqueued. Since the call to NQCCB is the very last
operation performed by these services, they are able to omit the
call to CWAIT after enqueuing the request because there would be
nothing to do (except return) when the request completed. Hence,
after the request is made, the ?RDB/?WRB call returns to the
system call processor, where the control block is released, and
the requesting TCB remains pended. The system call processor
knows to do this because RDB.P/WRBoP zeroes out the TCB address
in the control block before returning. The CCB post processor
unpends the TCB, whose address is stored at offset CBTCB.W of the
CCB, when the I/O request is comp+ete. The ?ALLOCATE system
call, which enqueues an "allocate disk blocks" CCB request,
implements the same mechanism. In all other CCB requests, the CB
address is stored at CBTCB.W.

Licensed Material 3-54 Property of Data General

There is another system call that allows users to make logical
disk I/O requests. The status word offset in the ?BLKIO packet
is used to describe the type of request desired, which can be
?RDB, ?WRB, ?PRDB or ?PWRB. ?BLKIO is functionally equivalent to
any of the system calls selected in the packet. However, other
special features are available as well. For example, suppose the
"Read Next Allocated Element" (RNA) is selected on a ?BLKIO/?RDB
request, and the data element of the input starting block is not
allocated on disk. This request will begin reading blocks at the
next allocated data element until the specified number of blocks
are read, a second unallocated data element is encountered, or an
end of file condition is reached. If a file is likely to have
"holes" (unallocated data elements) in it, such as PRY file
created by LINK with a large number of reserved, shared pages, an
RNA request could be helpful. The following example illustrates
how an RNA request works:

Element 0 Element 1

Block 0 4
-------- --------

1 5
-------- --------

2 6 data
-------- --------

3 7 data

Element 2 Element 3

8 12
-------- --------

9 13
-------- --------

10 14 data
-------- --------

11 15
EOF.

If the first block number to read is 0, and the total number of
blocks to read is 15, RNA would begin reading at block 4. This
is because blocks 0-3 have never been written to; data element 0
has not been allocated. Since the next element is the second
unallocated element encountered, the request terminates after
reading the four blocks in data element 1 (two of which have not
been allocated, but null blocks are returned). If even one
block contained data in element 2, the request would have read
all remaining blocks after block 4 and terminated normally. RNA
only skips over unallocated data elements that occur prior to
the first data transfer; otherwise, the read terminates.

?BLKIO provides two additional features: Modified sector I/O
and disk controller status information requests, which are
available when used in conjunction with physical I/O.

Licensed Material 3-55 Property of Data General

The RDB.P/WRB.P services are presented in the C-based algorithm
below. Data manipulation, validity checking, specific unit type
dispatching (RDB.P/WRB.P are interfaces to Unit I/O Management,
as well), request enqueuing, and CB/TCB management are
illustrated and discussed. The calling process' input
accumulators are represented by parameters in the TCB. The
inputs and outputs to RDB.P/WRB.P are the following:

Variable Input

TACO.W Not used.

TAC1.W Channel number.

TAC2.W Address of packet.

#define SCDCG 0144

RDB.P/WRB.P (TAC1.W, TAC2.W)
{

Output

Undefined.

Number of bytes
actually transferred.

Unchanged.

/***
* This is a system call with a packet. *
* Get the necessary data into system space. *
***/

channel num = TAC1.W;
caller pkt = TAC2.W
wblm (caller_pkt, &sys_pkt, pkt len);

/***
* Find the (user) CCB for the input channel. *
* DFAULT.P returns error code n CERWD of control block, *
* which the system call processor will interpret. *
***/

PTBL addr = *CC.W->CPTAD.W;
call-DFAULT.P (channel num, PTBL addr, &CCB_addr);

if (error) return; - - /* Error code in CERWD */

/***
* Got the CCB. Do validity checking. *
* All error returns now must unpin the CCB page (which *
* DFAULT.P pinned!) and return 0 bytes transferred before *
* returning errors. *
***/

/* Store num blks to xfer. Error out on null request. */
if «CCB addr->CBNBK = sys_pkt->PSTI & 0377) == 0)

{ -

Licensed Material 3-56 Property of Data General

call UNPIN (CCB addr, PTBL addr);
TACl.W = 0; - -
return (Invalid system call parameter);
} - --

/* Must be a valid block count.
if (sys pkt->PRNH.W & 037740000000 1= 0)

{ -
call UNPIN (CCB addr, PTBL addr);
TACl.W = 0; - -
return (Invalid_system_call_parameter);
}

/* CCB must not be locked already.
if (get bit (CCB_addr, BCBLK»

{ -
call UNPIN (CCB addr, PTBL addr);
TACl.W = 0; - -
return (Simultaneous_requests_on_same_channel);
}

/* Cannot be peripheral type CCB (?FGFN, IPC file)
if (CCB addr->CBSTS & BCBPE»

{ -
call UNPIN (CCB addr, PTBL addr);
TACl.W = 0; - -
return (Wrong I/O type for OPEN type);
} - - - - -

*/

*/

*/

/* CCB/FCB unique IDs must match. Panic 6034 if not!!! */
call VALCID (CCB_addr);

/***
* CCB/Request A-OK so far. Init the CCB some more. *
***/

TCB addr = *CC.W->CATCB.W /* Save TCB addr */
CCB-addr->CBTCB.W = TCB addr; /* TCB addr to CCB */
CCB-addr->CBPTA.W = PTBL addr; /* and PTBL addr */
CCB addr->CBUAD.W = sys_pkt->PCAD.W /* and buffer addr */

if (TCB_addr->TSYS.W -- ?RDB) /* If ?RDB, CCB */
CCB addr->CBFLG = CBRED; /* read command; */

else /* if ?WRB, CCB */
CCB addr->CBFLG = CBWRI; /* write command. */

/***
* If this is a unit CCB, let the correct unit I/O handler *
* finish the request. The unit type is stored in bits *
* 11-15 of the CCB status word, and is used as an index *
* in the LDSP (long dispatch) instruction. *
***/

if (CCB addr->CBSTS & BCBUN)
{ -

dispatch to unit handler (CCB_addr->CBSTS & CUMSK);
} - - -

Licensed Material 3-57 Property of Data General

/***
* Check requestor's access to the file. *
* User opens of dir files were given NO access privileges *
* when the file was opened. Only AOS/VS, specifically, *
* Resolution Services, can perform directory file I/O. *
* Return accurate error messages on access denial. *
***/

if (TCB addr->TSYS.W = ?RDB) /* ?RDB ? */
if (! CCB addr->CBSTS & read access) /* Yes, read accs? */

{ /* Nope */
if (CCB addr->CBFCB.W->FBTYP = DIRECTORY_TYPE)

return (Illegal file type) ;
- /* Dir error mess */

else
return (Read_access denied) ; /* Other err mess */ -

}

if (TCB addr->TSYS.W = ?WRB) /* ?WDB ? */
if (! CCB addr->CBSTS & write access)/* Yes, writ accs? */

{ /* Nope */
if (CCB addr->CBFCB.W->FBTYP = DIRECTORY TYPE)

return (Illegal file_type); /* Dir-error mess */
else

return (Write access denied) ; /* Other err mess */ - -
}

/***
* Access allowed. Store disk block number and last block *
* byte count in the CCB. *
***/

CCB_addr->CBDBH.W = sys_pkt->PRNH.W I (sys_pkt->PRCL « 23.);

/***
* DMTST: verifies all referenced user I/O pages valid, *
* and if so, faults and pins them. *
* CHRG: charges caller for I/O and checks if time slice *
* will be up during this call. *
***/

call DMTST (CCB addr->CBNBK * 512., CCB addr);
call CHRG (SCDCG, CCB_addr->CBNBK, CCB_addr);

/***
* Finally, ENQUEUE the CCB request!!! *
* Then, since there is no more to do here, there is no *
* point in keeping the CB around. Tell the system call *
* processor the CB can be freed. The post-processor, PPCUS*
* will unpend the TCB, unpin user buffer pages, and return*
* any data to the caller's packet when the I/O is *
* complete. *
***/

call NQCCB (PPCUS, CCB_addr);

*CC.W->CATCB.W = 0;
return;

} /* end of RDB.P/WRB.P */
Licensed Material 3-58

/* Enqueue request */

/* Poof! CB=daemon */
/* End of RDB/WRB! */

Property of Data General

3.5 Shared Protected Files

The shared protected file services provided by File Management
work in conjunction with Connection Management to allow a server
process to grant customer processes controlled access privileges
to a shared file. The user interface to this service is via the
?SOPPF and ?PMTPF system calls. The AOS/VS 7.50 File Management
routines that implement this service are SOPPF.P and PMTPF.P.

SOPPF.P is the service called to open a shared protected file.
Callers of SOPPF.P may request to be the first shared protected
file opener. If the file is already open, the caller will be
refused access permission. Otherwise, the file is opened
(shared), and a protected file ID is returned. Once the file is
opened with ?SOPPF, it can only be opened by subsequent ?SOPPFs;
?SOPPF is effectively the same as an exclusive open unless the
first opener grants subsequent openers open privileges.

The first opener explicitly grants subsequent openers the right
to open the file via the ?PMTPF (PerMiT Protected File access)
system call. ?PMTPF enables the first opener to specify
distinct, privileged PIDs permitted to open the file as well as
the access rights to be granted. The file access information
established by the first file opener for another PID is stored
in a Protected File Permission Block (PPB) for that PID. The
PPB parameter definitions are the following:

Offset Protected File Permission Block (PPB)

PPBFW.W 0 PPB forward link.
PPBBK.W 2 PPB backward link.

PPBFO 4 First opener PID (bits 4-15) and Ring (bits 1-3).
PPBPID 5 PID of permittee.

PPBFCB.W 6 FCB address.

PPBR3 10 Permitted access for ring 3.
PPBR4 11 Permitted access for ring 4.
PPBR5 12 Permitted access for ring 5.
PPBR6 13 Permitted access for ring 6.
PPBR7 14 Permitted access for ring 7.
PPBEV 15 Unused.

PPBLN 16 Length of PPB.

Certain FCB fields relate to shared protected files as well.
The relevant parameter definitions are the following:

Offset

FBST2 46
FBFOP 47
FBPPB.W 50
FBPPBB.W 52

FCB Fields involving Shared Protected Files

Shared protected file status word.
Pid and Ring of first opener of ?SOPPFed file.
PPB chain queue descriptor (head).
PPB chain queue descriptor (tail).

Licensed Material 3-59 Property of Data General

The PPB establishes the access privileges for a specified
process ID and ring. These access privileges will be additional
privileges that the subsequent opener may not already possess.
The queue descriptor that links the chain of PPBs for a shared
protected opened file is FCB addr->FBPPB.W (head pointer) and
FCB addr->FBPPBB.W (tail pointer). The first opener must issue
a separate ?PMTPF for each process/ring tandem for which access
rights are being established. Although only one PPB holds the
access rights to all rings, individual ?PMTPFs must be issued to
set the access rights for each ring.

Before access privileges are given to subsequent openers,
PMTPF.P must ensure that the first opener is a server and the
specified PID is a customer of that server. PMTPF.P scans the
connection table (CNXTB.W) to verify that a connection exists
between the caller's PID/ring and the target PID/ring. The
Connection Management service CSFIND.P provides this interface.
This stumbling block provides yet another measure of security in
the protected shared file mechanism. (The exception to this
rule is in the case of PMGR.PR, which opens :PMGR:PMGR.SF with
?SOPPF and grants the local PMGR in ring 3 read/write access to
the file. Peripheral Manager connections are implicit.)

When the Connection Management validations are complete, the
additional access rights to the customer process may be
established. PMTPF.P allocates a PPB from the PPB database pool
PPBLN.DB (if no PPB exists for the specified PID) and enqueues
it to the head of FCB addr->FBPPB.W. (There is no special FCB
lock bit for FBPPB.W because the parent CCB remains locked
during the queue instructions.)

The access rights given by the first file opener to each ring of
a customer PID are stored in the PPB along with the PID number.
PMPTF.P does not permit the caller to issue subsequent openers
access privileges other than its own. Therefore,
FCB addr->FBST2, which holds the access rights of the first
opener, is "ANDed" with additional access privileges being
offered. The bit positions corresponding to access privileges
in FCB addr->FBST2 and PPB addr->PPBRn are the following:

FBPOA (013) - Owner access
FBPWA (014) - Write access
FBPAA (015) - Append access
FBPRA (016) - Read access
FBPEA (017) - Execute access

Only the first file opener may issue ?PMTPF. PMTPF.P validates
this by comparing the first opener's PID/ring in FCB addr->FBFOP
with the caller's PID and ring. If a process other than the
file first opener attempts to issue ?PMTPF, an "Invalid
protected file ID" error is returned.

The first file opener may issue subsequent ?PMTPF calls to
modify privileges granted to a specific PID/ring. This may be
done to either add or revoke access privileges. If, as a
result, the access privileges for all rings are null, PMTPF.P
deal locates the PPB for that PID. Even if the customer has its
own ACL access to the file, the initial ?PMTPF must grant
non-null access privileges in order to allow the customer to
open the file.
Licensed Material 3-60 Property of Data General

Now, when subsequent processes attempt to ?SOPPF a file, the
following conditions must hold true:

1) a valid protected file ID is passed;
2) a PPB exists for the calling PID; and,
3) the calling PID/ring has access to the file.

SOPPF.P first checks the input protected file ID. When the
first opener opened the file, SOPPF.P did not generate a random
protected file ID, but wittingly assigned it the address of the
file's FCB. For subsequent openers SOPPF.P scans each FCB page
for an FCB address that matches the protected file ID. If a
match is found and the FCB address is valid (it is marked in use
in the FCB page header bit map word, CMBMW.W, and there is a
first opener), the protected file ID is assumed to be correct
and valid. This FCB address is saved at CCB addr->CBFCB.W.
This approach has been implemented because there is no other way
of verifying that the input protected file ID indeed points to
an FCB.

Next, SOPPF.P scans the PPB chain on FCB addr->FBPPB.W for the
caller's PID. Then, the access privileges for the caller's
current ring are retrieved from the PPB, which replace the
caller's original access privileges in CCB addr->CBSTS. The
result must give at least read or write access; otherwise, "File
access denied" results. Because the newly granted access
privileges replace the caller's original access privileges,
rather than supplement, not even superusers may access a file
being managed with ?SOPPF/?PMTPF.

Grants of access to subsequent openers can be revoked by the
following first opener actions: breaking the connection, either
explicitly (?DRCON) or implicitly (?RESIGN as a server), or by
terminating the customer process (?CTERM). The PPB corresponding
to the affected PID is dequeued from FCB_addr->FBPPB.W and
deallocated, effectively revoking access. When the subsequent
opener closes the file, further attempts to reopen it will be
unsuccessful. If the first opener closes the file or terminates,
all PPBs on FCB addr->FBPPB.W will be deallocated. No further
?SOPPFs are possible until the last subsequent opener closes the
file. This is because the first opener opens the file
exclusively.

The shared protected file feature under AOS/VS 7.50 provides a
measure of file access security. A server process can regulate
exactly which processes are permitted access to a file. For
example, the Peripheral Manager (PMGR) issues ?SOPPF to open
:PMGR:PMGR.SF at global PMGR initialization. The PMGR issues
?PMTPF to grant read/write access to the local PMGR in ring 3 of
all processes at process initialization. The local PMGR makes a
request to the global PMGR, who in turn issues the ?PMTPF and
returns the protected file ID (via an IPC). This mechanism makes
it impossible for any user process to open :PMGR:PMGR.SF without
permission from the PMGR.

Licensed Material 3-61 Property of Data General

3.6 Access Control Privileges

Associated with all AOS/VS file types (except link files) is an
Access Control List (ACL). The ACL is used to define users'
access rights to files. The ACL consists of a string of
usernames and the access control privileges prescribed to each.
The string of usernames may contain valid templates (e.g., +, -,
*). A typical ACL looks like this:

MATT,OWARE X.PUB, $+, +,RE

The string portion of the ACL is stored on disk in the File
Access Control (FAC) block. The pointer to the FAC is found at
FIB addr->FIFAC. The universal ACL is the access that is
permitted to all usernames. That is, any privileges that are
common among all names in the ACL string, including the "+"
template, form the universal ACL. If there are no common
privileges, there is no universal ACL. The universal ACL is
stored in bits 11.-15. of FIB addr->FISTS. Consider the
following examples:

ACL: MATT,OWARE X.PUB, $+, +,RE
FIB addr->FIFAC: MATT,OWARE X.PUB, $+, +,RE
FIB-addr->FISTS: <NULL>

ACL: MO,OWARE CURLY, WARE LARRY,ARE +,RE
FIB addr->FIFAC: MO,OWARE CURLY,WARE LARRY,ARE
FIB-addr->FISTS: RE

ACL: +,OWARE
FIB addr->FIFAC:
FIB addr->FISTS: OWARE

There may be a slight performance improvement if only a
universal ACL is established because further disk I/O to read
the FAC may be eliminated. However, Directory Management
realizes this possibility and therefore tries to allocate the
FAC in the same disk block as the FIB. Establishing only a
universal ACL does economize disk space, although a miniscule
amount.

When a process accesses a disk file for any reason, the access
control privileges for the calling process' username must first
be determined. Directory Management isolates the username from
the process table extender (PXTN addr->PUNM) and reads in the
FAC (if it exists). The ACL in the FAC is examined from left to
right for a match with the username. Upon encountering a match,
the access control privileges assigned to the username (and/or
template) in the ACL become the access rights of the calling
process to the file. If there is no match in the string, the
universal ACL privileges are assigned to the process. If there
is no universal ACL, the calling process is denied file access.
The access control privileges are stored in the CCB at
CCB addr->CBSTS. Virtually all user file access requires the
creation of either a user or a system CCB.

Licensed Material 3-62 Property of Data General

AOS/VS 7.50 has provided the following ACL-related services:

1) SACL.P - sets the ACL to a file (?SACL).
2) ISACL.P - AOS/VS internal ?SACL
3) DOACL.P - called from CREATE.P, sets the ACL to a file.
4) GACL.P - returns the ACL of a file (?GACL).

5) ESTAC.P - sets a user's access control privileges
to a specified file.

6) PESTAC.P - returns a user's access control privileges
to a specified file.

SACL.P writes the input ACL of the specified file to the FIB
and FAC (if a string is present in the ACL). If the calling
process has write access to the file's parent directory, the
caller may modify the ACL in any of the directory's subordinate
files (at that hierarchical level). If the calling process does
not have write access to the directory, it must have owner
access to the specific file being referenced. GACL.P retrieves
the ACL of the specified file by reading in the FIB and the FAC
(if it exists).

ESTAC.P is called by all File System sUbcomponents to set the
access control privileges for a process (user) which attempts to
access a file. The access control privileges are set in the
file's CCB (CCB addr->CBSTS). Once the privileges are stored in
memory, they are accessed via the CCB until the file is closed.
PESTAC.P is also called by the File System to retrieve the
access control privileges for a process (user). The returned
privileges are tested for the type of access being requested.
Below are the bit positions in CCB addr->CBSTS that represent
the AOS/VS 7.50 access control privileges:

Licensed Material

APOWN (013) - Owner access
APWRT (014) - Write access
APAPN (015) - Append access
APRED (016) - Read access
APEXC (017) - Execute access

3-63 Property of Data General

The ACL management of LOU type files functions slightly
differently from other file types. The ACL of an LOU is
specified by the system manager during a DFMTR session. An ACL
block is allocated in the visible space of the LOU. When the
disk is initialized, the ACL block is read to retrieve the ACL.
VCREATE.P, called by LOU Initialization to graft the LDU into
the existing directory hierarchy, allocates a FAC to which the
ACL is written. The ACL of LDUs may be changed while they are
initialized, which causes the FAC to be modified. However, when
the LOU is released, the FAC is not written back to the ACL
block. Therefore, when the LOU is re-initialized, it retains
the original ACL specified in the ACL block.

The exception to this rule is the system root directory. Its
ACL is always "+,E" despite what is found in its ACL block.
Furthermore, its ACL may never be changed.

Licensed Material 3-64 Property of Data General

3.7 C2 Logging

C2 security class event logging is a function of Host
Management. However, C2 events are found in many different
operating system components. The AOS/VS 7.50 File System events
that constitute security-relevant information necessary to
obtain a C2 rating, as defined by the Department of Defense
Trusted Computer System Evaluation Criteria, December 1985, are
the following:

C2 Security Class File System Events

Code

920
922
924
925
926
927
928
929
931
932
933
934
937
938
939
942
943
945
946
947

Symbol

LOPENCODE
LCLOSCODE
LDELPCODE
LRUDACODE
LWUDACODE
LCUDACODE
LRELPCODE
LCREPCODE
LDELCCODE
LUDARCODE
LUDAWCODE
LUDACCODE
LINITCODE
LRENPCODE
LACLPCODE
LRENCCODE
LACLCCODE
LSOPNCODE
LSSOPCODE
LPACCCODE

Licensed Material

File open
File close

Event

File delete (by pathname)
File UDA read (by pathname)
File UDA write (by pathname)
File UDA create (by pathname)
Logical disk unit release
File create (by pathname)
File delete (by channel)
File UDA read (by channel)
File UDA write (by channel)
File UDA create (by channel)
Logical disk unit initialization
File rename (by pathname)
File ACL change (by pathname)
File rename (by channel)
File ACL change (by channel)
Shared prot file, first open
Shared prot file, subsequent open
Permit access to shared prot file

3-65 Property of Data General

4 CCB Request Management

4.1 Overview

CCB Request Management is the intermediary file system component
between File Management and Buffer Management. File Management
initiates CCB requests. Request-specific information is
gathered from the caller and stored in the CCB, which is
"enqueued" by File Management to CCB Request Management. CCB
Request Management grabs the CCB and ultimately becomes
responsible for setting up a buffer header that contains the
logical disk address of the data: essential information that the
controller needs in order to execute the data transfer. The
complicated and tedious procedure of calculating the logical
disk address of the data involves traversing the file's index
level structure. Finally, the buffer header is passed to Buffer
Management where the physical unit(s) of the LDU containing the
data is determined, and the request is enqueued to the
appropriate Unit Definition Block (UDB).

Calculating the logical disk address is not a trivial task. The
logical disk address of a data block in files with zero levels
of indexing is simply the starting file address (found in the
FIB) plus the relative data block number. If the file has two
levels of indexing, the high index block must be read, the
correct offset into it must be calculated, the low level index
block must be read, the offset into it must be calculated, and
finally the data element must be read. Index block I/O alone
can lead to an enormous amount of preliminary I/O before the
actual data transfer is enqueued. CCB Request Management
implements an index level optimization scheme, which facilitates
the finding of index blocks and decreases the number of total
requests to the controller. This optimization alleviates what
could be a heavy performance hit to the entire system. Both CCB
and IOCB parameters are utilized to hold index level traversal
data during processing.

All CCB requests are passed to CCB Request Management. However,
actual disk data is not always passed back. Read, write, and
read-system-buffer requests always involve an explicit data
transfer. Allocate blocks, delete file and truncate file
requests to modify the file structure in accordance with the
request. However, the caller is not expecting any data in
return. In all cases, an IOCB is necessary to enqueue disk I/O.

In summary, CCB Request Management interacts with File
Management and Buffer Management in servicing logical disk
requests. Logical disk I/O requestors specify the file block
number and the number of total blocks to transfer. File
Management stores this in the CCB. A CCB Request (NQCCB) is
made to CCB Request Management, and the requestor's CB (or TCB)
is pended. CCB Request Management converts the input CCB
request specifications to a logical disk address, allocates an
IOCB to store index level information used in determining the
logical disk address of the data, and enqueues a buffer header

Licensed Material 4-1 Property of Data General

to Buffer Management. Buffer Management calculates the physical
disk address of the disk location of the data and enqueues the
buffer header(s) to the appropriate unit. Finally, the disk
driver takes control, and the physical transfer will take place.
When the disk controller interrupts the host, the data transfer
will be complete. The buffer header post-processor unpends the
waiting IOCB, which in turn decides whether to unpend the
requestor's CB (or TCB) or to enqueue another buffer header.
The following diagram summarizes the relationships among the
components involved with CCB Request Management.

File
Management

CCB Request
Management

============== ============================

CCB ---> CCB ---> IOCB ---> BH --->
(pends) (pends)

CCB (--- (--- CCB (--- IOCB (--- BH
(unpended) (unpended)

Licensed Material 4-2

Buffer
Management

==============

BH ---> disk
await intrpt

INTERRUPT!!!

BH (--- disk

Property of Data General

4.2 I/O Control Block (IOCB)

4.2.1 Definition

The most common use of the term "control block" pertains to the
database that saves the state information of a code path that
may pend. For example, a system control block (CB) saves
process information during system call processing. Similarly,
an I/O control block (IOCB) is merely a "control block" that
saves the data that CCB Request Management uses when calculating
the logical disk address of an I/O request. Since the code path
pends at least once during CCB request processing, this object
is necessary.

4.2.2 IOCB Scheduling

IOCB pending implies that IOCBs are schedulable entities, which
indeed is the case. File Management provides the NQCCB service,
which allocates an IOCB and enqueues it to the active IOCB
queue, IORUN.W, in the order of the requesting process' priority
enqueue factor. The Disk Manager Task, a system task which is
always found at the top of ELQUE, searches for ready IOCBs on
IORUN.W and runs (or resumes) each I/O request. Therefore,
following the IOCB enqueue, NQCCB must ready the Disk Manager
Task control block and force a reschedule, so that the I/O
request will be serviced "instantaneously." The Disk Manager
Task CB is defined at the global label DMTSK and begins
execution at location RUNLC1. The routine (called by NQCCB) to
"wake up" the Disk Manager Task is called DWAKE.

DWAKE
{

/* No inputs, no outputs */

/**
* Check the status of the Disk Manager Task control block. *
* If the "NOT READY TO RUN" bit is set, the DMTSK is *
* currently not running, so clear the bit, which will make *
* it ready to run. Also set the reschedule bit in the mother*
* processor PPCB, which is the only JP that runs DMTSK. *
**/

call XLOCK (DMTSK, BPTRAN) ; /* Get DMTSK trans lock */

if (check_bit (DMTSK, BPSRY)) /* DMTSK ready to run? */
{ /* NOT YET! */

clear bit (DMTSK, BPSRY) ; /* Make it ready to run */
set bit (MPPCB.W, BPRSCH) ; /* Force reschedule on */

} /* mother JP only */

Licensed Material 4-3 Property of Data General

/**
* Indicate that the Disk Manager Task was "woken up" by *
* setting DMFLG. This flag is checked by the DM Task just *
* before it pends itself to see if DWAKE was called while it *
* was already active. The DM Task will not exit if the *
* flag becomes set, but will restart at the top of its *
* scheduling loop (and will find something to do). *
**/

DMFLG = -1;
clear bit (DMTSK, BPTRAN);
return;

} /* end of DWAKE */

/* Indicate the DWAKE called */
/* Release transition lock */
/* Next guy to be rescheduled*/
/* on mother proc is DM Task */

AOS/VS 7.50 imposes the restriction that only the mother JP
enqueue buffer headers to I/O controllers. Furthermore, only
the mother processor handles I/O interrupts. These restrictions
apply to all devices, including logical disks, physical disks,
unit devices and user defined devices. Such file system
restrictions presently exist because AOS/VS was originally
designed to be a uniprocessor operating system. Multiprocessor
support requires extensive utilization of locks (critical
regions) and full concurrency control. Furthermore, the
reliability of the AOS/VS 7.50 file system is extremely high.
At this time, the present file system's strength, stability, and
reliability are not sacrificed.

Since the Disk Manager Task branches to the CCB Request
Management code that ultimately enqueues a buffer header to the
appropriate logical disk unit, it must already be running on the
mother processor. It would be unacceptably inefficient to allow
the Disk Manager Task to run on an arbitrary JP, have the buffer
header enqueued to the buffer header wait queue BHWQ.W, and wake
up yet another special task on the mother to enqueue the buffer
header.

Several system components that do not necessarily run on the
mother processor attempt to enqueue a buffer header directly to a
UDB (e.g., flushing a modified shared page to disk). Therefore,
there must exist both an intermediary mechanism of informing the
mother that some daughter JP wants to make a buffer header
request, and a system task that actually enqueues the buffer
header. The intermediary mechanisms are special, global queue
descriptors to which buffer headers are temporarily enqueued
before the mother can access them and enqueue them to their
respective devices. There are three of these queues in the
AOS/VS 7.50 file system:

1) BHWQ.W - Buffer Header Wait Queue.
2) UIOQUE.W - Unit I/O Queue
3) UPPRC.W - Unit I/O Post-Processing Queue

Licensed Material 4-4 Property of Data General

Daughter JPs enqueue disk destined buffer headers to BHWQ.W and
unit destined buffer headers to UIOQUE.W. Since a system task
that always runs on the mother processor is the Disk Manager
Task, it takes responsibility for removing buffer headers from
these queues and for enqueuing them where they really belong.
After the daughter JP enqueues a buffer header to BHWQ.W or
UIOQUE.W, it calls DWAKE to signal that the Disk Manager Task has
work to do.

Buffer headers are enqueued to UPPRC.W by the mother processor if
the unit I/O post-processor is called from interrupt level. In
order to simplify MP memory management, unit I/O post processing
is done at base level in AOS/VS 7.50. Since the Disk Manager
Task runs at base level, this scheme has been implemented.

The general functions of the Disk Manager Task have now been
presented. Here they are summarized in the order they are
executed by the Disk Manager Task.

RUNLC: (loop of the following)

(1) Dequeue unit I/O buffer headers from UIOQUE.W and
enqueue them to the correct unit device.

(2) Dequeue unit I/O buffer headers from UPPRC.W and
dispatch to the correct unit post processor.

(3) Dequeue disk I/O buffer headers from BHWQ.W and call
NQBHR to enqueue them to the correct UDB.

(4) Search IORUN.W from head to tail for "READY TO RUN"
IOCBs and run them. Control is transferred to CCB
request processing code via an XJMP instruction. When
an IOCB pends or the request completes, control is
transferred back to the top of the RUNLC loop in the
same way. The majority of CCB Request Management
concerns the running of IOCBs.

(5) If a call to DWAKE comes through during this session,
repeat this session (steps 1-4). Otherwise, pend and
jump back to the top of the AOS/VS scheduler (SMONO).

DWAKE always sets a global flag, DMFLG, to -1. The Disk Manager
Task always clears this flag at the top of the RUNLC loop. The
DM Task rechecks the flag just before it pends. If the flag was
set to -1, it indicates that DWAKE was called while the DM Task
was executing. There was either a buffer header enqueued to one
of the intermediary queues or an IOCB enqueued to IORUN.W.

Licensed Material 4-5 Property of Data General

Whatever the case, the DM Task must then jump to the top of the
RUNLC loop and repeat its entire procedure, because the request
mayor may not already have been serviced. For example, if the
DMTSK was only up to step (2) when File CCB Request Management
enqueued a new IOCB and set DMFLG to -1, the IOCB would be run
on the first pass. However, the DMTSK had no way of knowing who
called DWAKE or for what reason, so it must make another pass
regardless of when DMFLG is set. If the flag is still 0 just
before the DM Task is about to pend, CCB Request Management
services were not requested. The DM Task can set the "NOT READY
TO RUN" bit and transfer control back to the top of the
scheduler.

4.2.3 IOCB Processing: Flow of Control

When an IOCB is run for the first time, control is transferred
to the starting PC, which NQCCB initializes in the IOCB. The
IOCB remains active (on IORUN.W) until the caller's request is
complete. A very high-level view of the systematic steps of CCB
Request Management (IOCB Processing), to be discussed later in
detail, is outlined below.

I. Disk Manager Task
A. Select IOCB from IORUN.W
B. Run IOCB

II. CCB Request Pre-Processing
A. Initialize IOCB given request specifications in CCB.
B. Command Dispatch

1. Read Blocks
2. Write Blocks
3. Allocate Blocks
4. Read System Buffer
5. Delete File
6. Truncate file (part 1 and 2)

III. CCB Command Processing
A. Check EOF Considerations
B. Index level optimization work
C. Index level traversal
D. Enqueue buffer header(s) for disk I/O
E. Pend awaiting disk I/O completion

IV. CCB Request Post-Processing
A. Unpend requestor's CB or TCB
B. Deallocate IOCB
C. Done, jump back to Disk Manager Task

It is important to note that "CCB Request Management" refers to
this layer of the AOS/VS File System component. CCB Request
Pre-Processing, CCB Command Processing, and CCB Request Post
Processing each refer to individual sections within CCB Request
Management. The above outline will be followed as closely as
possible throughout the course of this chapter.

Licensed Material 4-6 Property of Data General

4.2.4 IOCB Parameter Definitions

The following illustration of IOCB offsets and detailed
descriptions of their significance will explain a great number
of previously unexplained CCB Request Management concepts and
design theory.

Offset

IOFWD.W 0
IOBAK.W 2

IOCCB.W 4
IOSTW.W 6
IOSPC.W 10

IOSLO.W 12
IOSL1.W 14
IOSL2.W 16
IOSL3.W 20
IOSL4.W 22

IOSBH.W 24
IOSTK 24

IOICB.W 24
IOBFL.W 24
IOBBL.W 26
IOFFL.W 30
IOFBL.W 32
IOQLK.W 34
IOADR.W 36
lOST 40
IONBL 41
IOMAP.W 42
IOUPD.W 44
IODAH.W 46
IOPPL.W 50
IODDP.W 51

IOTPC 60
IOREH.W 61
IOQHI.W 63
IOERR 65
IOIXH.W 66
IONLV 70
IODEH.W 71
IODT1.W 73
IODT2.W 75

IOLBC 77
IORBC.W 100

IOFCB.W 102
IOBFA.W 104
IOPRIO 106
IOTBK 107
IODSA.W 110

I/O Control Block (IOCB)

IORUN.W Forward link.
IORUN.W Backward link.

Requestor's CCB address.
IOCB status or wait key when
Saved Pc.

Return address of save level
Return address of save level
Return address of save level
Return address of save level
Return address of save level

IOCB pended.

O.
1.
2.
3.
4.

Start of IOCB self-contained Buffer Header •..
Start of IOCB DELETE pseudo-frame (see 4.6.4)

The address of this IOCB.
Buffer I,RU Queue Descriptor (head pointer).
Buffer LRU Queue Descriptor (tail pointer).
FCB Buffer List Queue Descriptor (head ptr).
FCB Buffer List Queue Descriptor (tail ptr).
Driver enqueue link word.
User buffer address to which data is transferred.
IOCB BH status word.
Number of blocks to transfer.
Process table address of requestor.
IOCB BH post-processor address.
Logical disk address of data.
UPPRC.W link (not used).
IOCB Delete Data Block pseudo-frame pointer.
(see Section 4.6.4)

End self-contained IOCB Buffer Header

Num of index levels left to traverse (negated).
Offset into data element of the data.
Data element number of the data.
IOCB error word.
Indexing (double)word.
IOCB Flags and number of index levels.
Data element size of file.
IOCB temporary variable 1.
IOCB temporary variable 2.

Last block correction count.
Running byte count.

FCB address of requestor.
Buffer header address of read system buffer BH.
Priority of this CCB request.
Number of blocks to transfer (same as IONBL).
Logical disk address of data (same as IODAH.W).

IOLTH 112 Length of IOCB.

Licensed Material 4-7 Property of Data General

4.2.5 IOCB Static Parameters

NQCCB is the service that provides the interface between the
File Management layer and the CCB Request Management layer in
the logical disk I/O request procedure. NQCCB allocates an IOCB
and initializes it with certain static data, relevant to the
calling process, that the IOCB will need to reference during the
course of CCB command processing. It also enqueues the IOCB to
IORUN.W. The requestor's CCB address (offset IOCCB.W) is
acquired during CCB Request Pre-Processing to extract the
request-specific information as defined by the user. It is
accessed during other phases of CCB Request Management whenever
the CCB needs to be referenced or modified, which is especially
common during index level traversal. NQCCB was careful to
convert the logical CCB address to a physical address, since the
referenced ring 1 user CCB would probably not be mapped.
(DFAULT pinned it, so it is sure to be in memory!)

NQCCB stores the logical ring 0 FCB address (offset IOFCB.W),
since the FCB I/O-in-progress bit must be set when the IOCB
request "offica11y" begins (when DM Task schedules the IOCB to
run). The caller's process table is saved (offset IOMAP.W) for
use by the disk driver when assigning map slots for the physical
data transfer (routine SWAMP).

4.2.6 IOCB Pending Mechanism (and Associated Parameters)

The IOCB status word indicates to the Disk Manager Task that the
IOCB is either ready to run or pended. Before the IOCB is
enqueued to IORUN.W, NQCCB initializes its status word (offset
IOSTW.W) to "READY TO RUN". The Disk Manager Task will search
for this status when deciding which IOCBs to run. Any other
status means that the IOCB is pended awaiting some event. The
following constitute valid IOCB status values:

IORDY (1) = IOCB ready to run
IOBWT (2) = IOCB waiting for any buffer header
BH addr = IOCB waiting on a specific buffer header
FCB addr = IOCB waiting on FCB I/O-in-progress completion
IOBMW (3) = IOCB waiting on the Bit Map FCB Global lock
IOWWT (5) = IOCB waiting on the Bit Map FCB Withdraw lock

When CCB Request Management must assign a system buffer header
either for a read system buffer request or to read in a file
index block and there are no buffers available, the IOCB must
pend. It uses the IOBWT status as a pend key. When any buffer
header is freed, Buffer Management will first attempt to assign
it to any waiting IOCBs (before base level waiters).

When CCB Request Management enqueues a buffer header, it must
await I/O completion. But, the buffer header post-processor
must know which IOCB to unpend when the I/O completes. CCB
Request Management stores the specific buffer header address in
IOSTW.W so Buffer Management will be able to unpend the correct
IOCB.

Licensed Material 4-8 Property of Data General

The FCB address is used as a pend key when the IOCB must pend
during CCB Request Pre-Processing if file I/O is already in
progress. This means that if there is already another request
in progress on the same file at (or beyond) the CCB Request
Management layer, the IOCB must pend awaiting its predecessor's
completion.

The Bit Map FCB locks are needed to ensure that only one IOCB
allocates (withdraw from the LDU bit map) or deal locates
(deposit to the LDU bit map) disk blocks at a time. If the IOCB
cannot get the Global Bit Map FCB lock to acquire exclusive
access to the Bit Map FCB, it sets IOBMW and pends. If the IOCB
cannot get the Withdraw lock, which must be set to withdraw disk
blocks, it sets IOWWT and pends. The Global lock is acquired
for disk block deposits and the Withdraw lock is acquired for
disk block withdraws.

Now is an opportune time to introduce the IOCB pending
mechanism. IOCBs do not pend as control blocks or task control
blocks pend. A special pending implementation was designed
because IOCBs are not system tasks scheduled independently by
the AOS/VS main scheduler. They have neither a mapped context
nor use of a stack. This implies that all "stack" data be saved
within the IOCB, including return addresses of subroutine calls.
When an IOCB must pend to await disk I/O completion, a free
buffer header, or one of the FCB Bit Map locks, the status word
is filled in with the appropriate "pend key," and the address to
resume processing is stored in the IOCB (offset IOSPC.W - "saved
PC"). Then, since CCB Request Management is temporarily
finished with this IOCB, it jumps back to the RUNLC loop of the
Disk Manager Task to allow continued processing of IOCBs on the
queue. When the IOCB is unpended (a match occurs when the
unpend routine checks IOSTW.W), the status is changed to IORDY
and DWAKE is called to summon the Disk Manager Task, which will
resume processing the IOCB.

NQCCB intializes the "saved PC" IOSPC.W to the starting address
of IOCB processing represented by the label RUNRD. When the
Disk Manager Task "runs" an IOCB, it actually does an XJMP
indirect through offset IOSPC.W of the IOCB!

XJMP @IOSPC.W,3 ;Run or resume IOCB processing.

It makes no difference whether the IOCB is running for the first
time or whether it was just unpended and is resuming its
processing; the PC is always saved in IOSPC.W. The Disk Manager
Task is only concerned about IOCBs with a "READY TO RUN" status.

Licensed Material 4-9 Property of Data General

Due to the reasons mentioned, the system stack is off limits to
all CCB Request Management routines that may pend. CCB Request
Management easily compensates for stack data storage by
allocating a large database, the IOCB, for storage of the
pertinent information that needs to be saved throughout the
request. However, since WSSVR instructions cannot be used by
any subroutines that may pend, an alternative method must be
devised. The IOCB reserves five save levels for return
addresses. Each subroutine, instead of issuing a WSSVR, saves
the return address from AC3 into one of the save levels in the
IOCB. Each subroutine must always use the same save level in
order for there to be consistency within all of CCB Request
Management code. Furthermore, no subroutine with designated
save level n may call a subroutine which uses the same save
level. storage of return addresses into static save levels is
hard-coded into each routine. The save level offsets in the IOCB
and the subroutines that use them are defined as follows:

Save CCB Request Management Subroutines
Level that use save levels

IOSLO.W RDDEL, WRDEL, RDSYB, DELFIL, TRNCF1,
TRNCF2, IFWAIT

IOSL1.W CLDSK, INDEX

IOSL2.W CLREM, CLDEL, CLRELE, MBLKN, LBLKN

IOSL3.W IASBU, LASBU, IBLKW, IBWAIT

IOSL4.W GROW, GROFL, RNA

An example of how RDDEL (Read Data Element operation) interfaces
with subroutine INDEX (traverse file's index levels) is

RDDEL:

INDEX:

WINC
XWSTA

XJSR
WBR

WADI
XWSTA

XJMP

Licensed Material

3,3
3,IOSLO.W,2

INDEX
.IDXER

2,3
3,IOSLl.W,2

@IOSLl.W, 2

;Assume normal return
;Save return address

;Loop through index levels
; Error

;Assume normal return
;Save return address

; Return

4-10 Property of Data General

4.2.7 IOCB Dynamic Request-Specific Parameters

Before CCB Request Management can begin processing the CCB
command, the request specifications are moved from the CCB to
the IOCB. These are the first operations done by CCB Request
Management before command processing begins. The data element
size is extracted from the FCB and moved to IOCB offset IODEH.W.
The starting block number of the data specified in CBDBH.W is
translated into data element number and offset into the data
element. The conversion is done by dividing the starting block
number by the elementsize:

data element number = CCB addr->CBDBH.W / IOCB addr->IODEH.W
offset into element = CCB addr->CBDBH.W % IOCB addr->IODEH.W

The quotient is the data element number, which is stored at IOCB
offset IOQHI.W. The remainder is the block offset into the data
element, which is stored at IOCB offset IOREH.W. The offset
appellations refer directly to the mathematical division:
"Quotient (HIgh)" and "REmainder (High)", respectively. CCB
Request Management uses this information to determine how many
buffer headers will need to be enqueued to service the request.
This is because A SEPARATE BUFFER HEADER MUST BE ENQUEUED FOR
EACH DATA ELEMENT! Disk blocks within data elements are
logically contiguous, and Buffer Management transfers only
logically contiguous blocks per single buffer header request.
Logically contiguous data elements within a file do not
necessarily have logically contiguous disk addresses; therefore,
another buffer header must be enqueued. (Buffer Management may
break up CCB Request Management's buffer header request into
several requests for reasons such as encountering remapped bad
blocks during the transfer, the data element spanning a unit
boundary, and lack of a sufficient number of map slots to
complete the transfer in one shot.)

Another piece of data that will be used during command
processing while index level traversal is taking place is the
current number of index levels at the start of the request,
saved in bits 8-15 of IOCB offset IONLV. Index level
optimization routines and EOF extension routines need to check
and possibly modify this field. One complementary field, IOTPC,
contains a count of the number of index levels left to be
traversed. Offset IOIXH.W contains the offset into each of the
index blocks in the following format:

Bits
Bits
Bits
Bits

0-7 = 0
8-15 = offset into highest index block (denoted Xl)
16-23 = offset into middle index block (denoted X2)
24-31 = offset into lowest index block (denoted X3)

In addition to holding the number of index levels in the file,
offset IONVL contains two flag bits:

lORNA (0) = Phase I/II RNA Request Bit
IOTRAN (1) = IOCB Transition Lock Bit

Licensed Material 4-11 Property of Data General

Before an RNA (Read Next Allocated element) request actually
reads a block of data, it is said to be in Phase I. The request
remains in Phase I until the first file block is transferred.
The block can either be the first block requested or the first
block of the next allocated element following the requested
(unallocated) block. After the first block is transferred, CCB
Request Management sets bit lORNA to indicate the RNA request
has entered Phase II. This means that the next time an
unallocated data element is encountered before the request is
complete, the request will be terminated prematurely. The IOCB
transition lock is defined in AOS/VS 7.50, but not used.

When the caller of BLKIN or RAID requests that a specific block
be read into a system buffer, CCB Request Management must assign
a system buffer, which contains a predefined ring 0 data
address. The buffer header address is temporarily stored in
IOCB offset IOBFA.W and later passed back to the caller, which
is responsible for releasing it. In this way the caller can
modify the file by releasing the buffer and flushing its
modified contents to disk.

User read/write request data transfers are done directly to/from
the physical memory page(s) containing the specified data
address. Nevertheless, Buffer Management must have a buffer
header to enqueue to the device's UDB, where the disk driver
world will find it and effectuate the physical data transfer. A
system buffer header cannot be temporarily assigned and released
by CCB Request Management for a number of reasons. First of
all, if a system buffer header were assigned for every user
request, the buffer pool may be exhausted too often, causing too
many IOCBs to be pended and a very slow system. Secondly, it
would introduce an intermediate level in the procedure: disk->
system -> user. The data would have to be copied from system
space to user space explicitly. Thirdly, user requests often
specify more than one block of data. A system buffer header
points to an area of only one block. A huge number of buffer
headers might have to be enqueued to satisfy the request. CCB
Request processing must be fast, so the data must be transferred
directly from the disk to the user page. This leaves a very
significant question unanswered: Where does the buffer header
come from?

A section of the IOCB itself is defined as the buffer header for
user read/write requests. The IOCB buffer header begins at
offset IOSBH.W. The offsets following IOSBH.W must exactly
match the corresponding system buffer header offsets. CCB
Request Management will pass the address of IOCB_addr->IOSBH.W
to Buffer Management, which will assume it is just an ordinary
buffer header. Even though CCB Request Management indexes it
with IOCB parameters (e.g., IOADR.W), Buffer Management indexes
it with buffer header parameters (e.g., BQADR.W). A list of CCB
commands and the buffer headers each enqueues to Buffer
Management to satisfy the request should be of benefit. Note
that ALL commands use system buffer headers to read in index
blocks, but this usage is not listed.

Licensed Material 4-12 Property of Data General

CCB
Command

CBRED

CBWRI

CBALL

CBSYB

CBDEL
CBTRN1
CBTRN2

Buffer Header Usage

IOCB Buffer Header. Caller either user
via NQCCB or system via NQCRQ.

IOCB Buffer Header. Caller either user
via NQCCB or system via NQCRQ.

IOCB Buffer Header. Caller always user.

System Buffer Header. Caller always
system via BLKIN/CBLKIN.

No buffer header as no data transfer is
requested.

The IOCB buffer header is initialized and updated during the
command processing phase before being passed to Buffer
Management. For example, as described above, the number of
blocks that can be transferred with one buffer header request
must be less than or equal to the file's elementsize. If the
user's request crosses an element boundary, CCB Request
Management must break down the request into several buffer header
requests. The number of blocks to transfer on any individual
buffer header request is stored at IOCB offset IONBL. This value
must be copied to offset IOTBK as well, because Buffer Management
destroys IONBL, which is part of the IOCB buffer header. If
blocks then remain to be transferred, the number of remaining
blocks is stored at CCB offset CBNBK. When CBNBK reaches 0, CCB
Request Management knows the request is complete.

Consider a write request of four blocks to file FOO. The
request is to file blocks 2-5, and FOO has a data elementsize of
4. Two buffer header requests must be made to Buffer Management
because blocks 2 and 3 are in data element 0, and blocks 4 and 5
are in data element 1.

Request Specifications: IOCB addr->IONBL = 4
CCB addr->CBNBK = 4

First Buffer Header:

Second Buffer Header:

Licensed Material

IOCB addr->IODAH.W = (Ida of block 2)
IOCB-addr->IONBL = 2

CCB-addr->CBNBK = 2

IOCB addr->IODAH.W = (Ida of block 4)
IOCB-addr->IONBL = 2

CCB-addr->CBNBK = 0

4-13 Property of Data General

The logical disk address of the first block to be transferred
must be calculated as well. It is stored at IOCB offset
IODAH.W. This is done by traversing the file's index structure
until the logical disk address is found in the correct index
block. For unshared read and truncate requests, the file block
number of the data must occur within the file, or an EOF error
will be returned. Shared read, write, and allocate requests
will grow the file before transferring data if the specified
block lies after the current EOF. The logical disk address to
begin file deletion is the file's first address, obtained from
the FIB. The logical disk address must be copied to offset
IODSA.W as well, because Buffer Management destroys IODAH.W,
which is part of the IOCB buffer header. Index level
optimization and traversal will be discussed in Section 4.5.

The user data address is stored at IOCB offset IOADR.W. The
disk driver will transfer the data to this address. File
Management (RDB.P/WRB.P) pinned these pages to eliminate the
possibility of the page getting stolen and the data channel
transfer destroying the contents of the wrong page. BQADR.W in
the system buffer header is set up at system initialization.

Since the disk controller must know whether to read or write
data, the CCB command is stored in the IOCB buffer header at
offset lOST. This is the buffer header status word, which
includes the command type. Bits QTIO (Vanilla I/O) and QTNAB
(not a system buffer) are always set for read, write and
allocate requests. See Buffer Management for the rest of the
status word definitions.

The IOCB buffer header offsets must map to the system buffer
offsets, but some may not be pertinent to the IOCB. For example,
only system buffers are enqueued to the buffer LRU and the FCB
buffer list queues. Buffer header queue links must be defined in
the IOCB even though they are not used. The buffer LRU forward
link pointer is, therefore, redefined to contain the address of
the IOCB. The redefinition parameter is IOICB.W. The system
buffer header also defines a corresponding field, BQIOC.W, for
this handshaking purpose. The IOCB buffer header post processor
checks this field in order to unpend the IOCB awaiting I/O
completion. This post-processing routine is RESTR, which is
stored by CCB Request Management at IOCB offset IOUPD.W. Another
label, RSTRB, is defined at the same address as RESTR, and is
referenced as the read system buffer command post-processor.
When the disk controller interrupts the host, signalling request
completion, RESTR is called from the disk driver interrupt
service routine, stored in *IOCB addr->IOUPD.W. The IOCB address
is obtained from the IOCB buffer-header, and the IOCB status is
made ready. The post-processor wakes up (unpends) the Disk
Manager Task so that IOCB processing will continue. It is
important to note that this procedure is performed at interrupt
level, so there will not be a reschedule until the interrupt
is dismissed.

Licensed Material 4-14 Property of Data General

When user read/write requests complete, CCB Request Post­
Processing calls the CCB Post-Processor, which must return to
the user task the actual number of bytes transferred. The count
of the number of bytes transferred is incremented each time a
buffer header request completes. This running byte count is
stored at IOCB offset IORBC.W. If an entire block was not
transferred, IORBC.W rounds up the number of bytes to the next
block multiple anyway. This poses no problem for unshared read
requests, which must always read a fixed number of blocks, and
the whole request must fall within the file. However, shared
read and write requests may reference blocks outside the file's
EOF. CCB Request Management will grow the file and satisfy the
request without an error.

The number of bytes in the last block NOT transferred must be
saved, since the entire last block may not have transferred.
This last block byte correction is saved at IOCB offset IOLBC.W.
The CCB Post-Processor subtracts IOLBC.W from IORBC.W to render
the number of bytes actually transferred. The final value is
returned to the user in TACl.W.

If an error occurs during IOCB processing, the error code is
temporarily stored at offset IOERR until it can be moved over to
the CCB where the caller will be able to act upon it.

4.2.8 IOCB Global Locations

Global Significance
Location

IOCB.DB IOCB Database Pool

IORUN.W IOCB Scheduling Queue head pointer
IOTAIL.W IOCB Scheduling Queue tail pointer
IOCBLK.W IORUN.W VSMP Generic Queue Lock Word

IOCBP.W Pointer to active IOCB
IOAC Number of IOCBs currently on IORUN.'W
IOMX Max number of IOCBs on IORUN.W since boot

Licensed Material 4-15 Property of Data General

4.3 CCB Request Pre-Processing

After an IOCB is allocated and initialized with static
parameters by NQCCB, the Disk Manager Task schedules the IOCB
and execution begins at address RUNRD. CCB request
Pre-Processing consists of initializing some IOCB parameters and
setting up the request specifications as described in Section
4.2.7. The parameters which must be initialized are:

IOCB addr-)IOERR
~

IOCB addr-)IORBC.W
~

IOCB addr-)IOLBC

IOCB addr-)IODEH.W
~

IOCB addr-)IONVL
~

IOCB addr-)IOQHI.W
~

IOCB addr-)IOREH.W

IOCB addr-)IONBL

CCB addr-)CBNBK

= 0 No error yet.
= 0 No running byte count yet.
= 0 No last block correction yet.

= data element size.
= number of index levels.
= beginning data element number.
= block offset into data element.

= number of blocks in element to read,
write, allocate. Always set to 0
for delete and truncate requests.

= total number of blocks left to read,
write, allocate before the request is
satisfied. Delete and truncate do not
use this field.

These parameters are derived from the input CCB parameters. The
data will be converted to a lower level, which Buffer Management
and the disk drivers will understand. For instance, Buffer
Management only understands logical disk addresses, and drivers
only understand physical disk addresses. Finally, the CCB
command is extracted, and a call to the command processing
routine is performed.

One further test must be done. There must be no other CCB
request currently in progress on the same file when a CCB
request begins processing. This status is flagged by setting
the I/O-in-progress bit in the FCB (FBIOP). If the bit is
already set during CCB Request Pre-Processing, the IOCB must
pend on this status until some other request completes. The FCB
waiter count (FBWTC) is incremented as well. When the request
that originally set FBIOP completes, CCB Request Post Processing
checks FBWTC and unpends the first IOCB pended on this status.

Licensed Material 4-16 Property of Data General

4.4 File EOF Considerations

CCB Request Command Processing must ascertain the validity of
the specified file blocks to be transferred in the request.
Unshared read requests may reference data only within the file's
boundaries. If the requestor attempts to access a block beyond
the file EOF, the request is truncated. Shared read requests
may reference unallocated blocks beyond the file EOF. If the
requestor has write access to the file, index blocks and the
specified data blocks (elements) will be allocated, and the file
EOF will be extended. In some cases the number of index levels
will grow, which requires extensive file structure modifications
and FCB parameter updating. A block of zeroes will be returned
to the requestor's buffer. Write requests are similar; the
transfer is in the opposite direction.

CCB Request Processing provides routines that check for the
above conditions and mOdify the request specifications and/or
file structure accordingly. The four routines are:

a) CEFNU - Check EOF (No Update)
b) CKEOF - Check EOF (and modify it if necessary)
c) GROFL - Grow File (Index Levels only)
d) GROW - Grow File (Index/Data Blocks)

CEFNU is the first subroutine called upon entering CCB read and
write command processing. CEFNU truncates non-privileged
requests that reference data beyond the file EOF. The purpose
of this call is solely to truncate the request length. The
criteria for truncation are:

1) Truncate all unshared reads if any of the specified
blocks to transfer lie beyond the file EOF.

2) Truncate shared read requests if the requestor does not
have write access to the file.

3) Truncate shared read requests and write requests to the
maximum possible 32-bit EOF if any of the specified
blocks to transfer lie beyond the maximum possible EOF.

The number of blocks to transfer on the current buffer header
request, IOCB addr->IONBL, is decremented so that the last block
transferred is the EOF block. The number of blocks left to
transfer in the entire request, CCB addr->CBNBK, is set to zero.
The request is effectively complete-after the next data
transfer. CEFNU does not update the EOF; this is done by CKEOF
when the last data transfer completes.

Licensed Material 4-17 Property of Data General

Although read system buffer requests can extend the EOF, CEFNU
is not called because only the system issues the CBSYB CCB
Command; ring 0 assumes write access.

CKEOF is the complemetary routine to CEFNU. CKEOF is called by
those requests that possibly modified the file EOF in order for
the EOF extension to be updated in the FCB Funny FIB. CKEOF is
called even if a new data element was not added because a new
file block could be allocated beyond the EOF, but within the
last data element.

GROFL is the routine that adds index levels to a file if a
shared read, write, or read system buffer request will cause the
number of index levels to grow. If the condition

Q < 2 ** (7*L), where Q = data element number,
L = current index level,

holds true, the current number of index levels is sufficient.
Otherwise, one or more index levels must be added. For example,
a one index level file holds a maximum of

2 ** (7 * 1) = 128

pointers to data elements. If Q = 129, a two index level file
must be built. GROFL calls WDBCK to withdraw one block from the
LDU free block pool and converts the block into the high index
block of the file, i.e., the file first address
(FCB addr->FBFAH.W). The new index level is reflected in the
FCB Funny FIB as well (FCB addr->FBIDX++). The flush bit is set
in the Funny FIB (BFBFL) so this modification will be updated in
the FIB when the file is closed. Offset 0 of the new index
block is filled with the logical disk address of the old high
index block, which is now the low (level 1) block. Below is a
graphic representation of what happens when a 1 index level file
becomes a 2 index level file.

FCB

FBFAH.W
= 0625

FBIDX = 1

FCB

FBFAH.W
= 0700

FBIDX = 2

===>

===>

Licensed Material

Level 1
Index Block

Level 2
Index Block

0625

o

======> DE 0
======> DE 1

======> DE 126.
======> DE 127.

===>

Level 1
Index Block

===> DE 0
===> DE 1

===> DE 126.
===> DE 127.

4-18 Property of Data General

GROW is a separate routine that allocates data elements as well
as index blocks, either before or after the file EOF. GROFL
must be called previous to GROW. In the previous example, if a
write request to element 128 were made to a 1-index level file,
GROFL would first add an index level. Subsequently, GROW would
allocate a new level 1 index block whose pointer would be stored
at offset 1 of the level 2 index block. GROW would then
allocate data element 128 and store its pointer at offset 0 of
new level 1 index block. This point is clearly illustrated
below.

FeB

FBFAH.W
= 0700

FBIDX = 2

===>

Licensed Material

Level 2
Index Block

0625

0635

o

===>

===>

Level I
Index Blocks

===> DE 0
===> DE 1

===> DE 126.
===> DE 127.

,-------.-===> DE 128.

4-19 Property of Data General

4.5 File Index Optimization

4.5.1 Methodology

The AOS/VS File System component employs an index optimization
scheme in order to reduce the number of total disk I/O requests.
The CCB contains the logical disk address of the index block(s)
read in the previous request, as well as the offsets into those
blocks. The IOCB is initialized to contain the offsets into the
one, two, or three level index blocks that the current request
will reference. Beginning with the highest index block, if
certain current request index block offsets match the previous
request's index block offsets, one or two index block reads can
be skipped. However, a buffer header must always be enqueued to
read the requested data element. This optimization helps to
relieve the bottleneck of a "slow disk" when there are many disk
requests in the queue.

The CCB fields used in index level optimization are CBIAH.W,
CBXIA.W and CBIBN. On each I/O request, CCB Request Management
updates these fields to contain the following:

CCB 1 index 2 index 3 index
Parameter level levels levels

CBIAH.W LDA data LOA level 1 LOA level 1
element index block index block

CBXIA.W Not used Not used LOA level 2
index block

CBIBN Offset into Offset into Offset into
level 1 level 2 level 3/2
index block index block index block

The IOCB fields used in index level optimization are IOIXH.W
and IOTPC. IOIXH.W is set up in the following format:

Bits 0-7 = 0
Bits 8-15 = offset into level 3 (highest) index block (Xl)
Bits 16-23 = offset into level 2 (middle) index block (X2)
Bits 24-31 = offset into level I (lowest) index block (X3)

The (doubleword) offset into the level 3 index block (in the
range 0 - 127.) is represented by the symbol Xl. The offset
into the level 3 index block is represented by the symbol X2.
The offset into the level 1 index block is represented by the
symbol X3. Therefore, IOIXH.W can be represented as follows:

IOIXH.W = <0><0><0><X3> for a I-index level file
IOIXH.W = <0><0><X2><X3> for a 2-index level file
IOIXH.W = <0><X1><X2><X3> for a 3-index level file

Licensed Material 4-20 Property of Data General

It is trivial to extract these values from the data element
number in IOQHI.W. Each index block contains 128. (2 to the
seventh power) pointers to either subordinate index blocks or
data elements. Thus, if the data element number is 129. (0201),
which can be represented in bit notation as 01 0000001, the
offset into the low index block is 1 and the offset into the
middle index block is 1.

Consider the following situation in which data block 4 is
requested from file FOO, whose elementsize is equal to 4.
Assume thatFOO is one index level deep and this is the first
I/O request to the file on this channel. When processing
reaches CCB Request Management, all index optimization offsets
will indicate that no previous I/O has yet occurred on the
channel (initialized with -1). The one and only high index
block will be read in and its buffer header enqueued to the FCB.
The offset into it that references the data element (offset 1)
is saved at CCB offset CBIBN. Next, the data element will be
read in and its logical disk address saved at CCB offset
CBIAH.W. Now suppose that the caller makes a subsequent request
for data block 5. Since this request will access the same data
element as the previous request, the index block need not be
read. This fact is determined by comparing values at IOIXH.W
and CBIBN which are equal, indicating the same index block
offset match. Furthermore, the logical disk address of the data
element is already available in the CCB and can be read
immediately, without CCB Request Management touching an index
block.

Two and three level indexed files utilize CCB parameters to a
greater extent to further expedite the data transfer by
"skipping over" the same index blocks read in on the previous
data transfer. However, the lowest level index block will
always be read in (or found on the FCB buffer list queue) in
files with index level greater than 1.

Consider the following example. If a read request were made on
file FOO (elementsize 4), which referenced block 5120. (element
1280), the high index block would be read in, the offset into it
(offset 10.) would be saved at CBIBN, and its logical disk
address would be saved at CBIAH.W. A subsequent request to
block 5121. would register a match between CBIBN and X2 in
IOIXH.W, the offset into the level two index block. The logical
disk address of the appropriate level 1 index block is then
retrieved from CBIAH.W. Since this is the lowest level index
block and the file is greater than one index level deep, the
block must be referenced. Thanks to the FCB buffer list, still
no disk I/O should take place to read the level 1 index block
because it should be found on the queue. The previous request

Licensed Material 4-21 Property of Data General

put it there. The offset into it, which references the correct
data element, is extracted from IOIXH.W. The logical disk
address of the data element is then retrieved, and the buffer
header to read the element is enqueued. This example should
prove the great value of both the index level optimization
mechanism and the FCB buffer list.

Index level optimization does some statistical record-keeping.
The following global counter variables are incremented each time
a CBIBN/IOIXH.W match occurs at a specific index level:

X3MAT.W - Number of matches at index level I ("X3 match")
X2MAT.W - Number of matches at index level 2 ("X2 match")
XIMAT.W - Number of matches at index level 3 ("Xl match")

4.5.2 Routines

There are three CCB Request Management routines associated with
index level optimization. They are called by CCB Command
Processing to determine whether or not index levels must be
traversed.

PARSQ sets up the IOCB index optimization offsets for the
current request and compares them with the CCB offsets relating
to the previous request. If a match occurs, the "match return"
is taken.

MATCH is called to determine whether the PARSQ match occurred at
data level or at index level. If a a data level match occurred,
the data element is read in. If a non-data level match occurred
(IOTPC 1= 0), there is still at least one index level that must
be traversed.

INDEX is the routine which traverses index levels. Its input
argument is the logical disk address of the highest index block
at which to begin the downward structural penetration. INDEX
returns the logical disk address of the desired data element,
which will subsequently be read in. A demonstration of the
usage of these routines is exhibited in Section 4.6.1; however,
they are sketched out algorithmically below as well.

Licensed Material 4-22 Property of Data General

/**
* PARSQ: Index Optimization Subroutine. *
* Output: TRUE if a match occurred between the index block *
* offset referenced in the previous request and that ref'ed *
* in the current request. A match means that at least one *
* index block will not have to be read in and index level *
* traversal can be shortened or skipped all together. *
**/

PARSQ (*match found);
{ -
/**

* Assume no match will be found for now. *
* Init number of index levels to traverse to current number
* of index levels in the file (negation thereof).

*
*

* A file not indexed is a file not traversed. *
**/

*match found = FALSE;
IOCB_addr->IOTPC = -(IOCB_addr->IONLV & 0377)

if (IOCB addr->IOTPC == 0)
return;

/**
* Set up IOIXH.W. *
**/

IOCB addr->IOIXH.W = IOCB addr->IOQHI.W & 000000000177;
IOCB-addr->IOIXH.W 1=_ (IOCB addr->IOQHI.W & 000000037600)«1;
IOCB addr->IOIXH.W (IOCB=addr->IOQHI.W & 000007740000)«2;

/**
* One index level optimization. *
* If CBIBN and IOIXH.W match, the data element being ref'ed *
* on this request is the same as the last request. There is *
* no need to read in the index block again. Increment the *
* index level counter IOTPC to indicate one less level of *
* indexing necessary. Return match found true. *
* If no match, CBIBN must be updated with THIS request's X3! *
**/

if (IOCB addr->IOTPC = -1)
{ -

if (CCB addr->CBIBN -- IOCB
{ -
X3MAT.W += 1;
IOCB addr->IOTPC += 1;
*match found = TRUE;
return;
}

else
{

/*
/*

addr->IOIXH.W)/*
/*
/*
/*
/*

1 idx Ivl? */
Yes */

Elem match?*/
Yes */

Bump global*/
Got a data */
level match*/

/* No Match! */

CCB addr->CBIBN = IOCB addr->IOIXH.W;
return;

/* Reset CBIBN*/
/* No matched */

}
}

Licensed Material 4-23 Property of Data General

/**
* THREE index level optimization. *
* Three index level must be done before two because we must *"
* begin at the highest index block. *
* First, shift IOIXH.W to get <O><O><X1><X2>. X3 not needed.*
* If an Xl match, bump the global count and indicate one less*
* level of indexing in the traversal. We cannot return yet *
* because level 2 must be checked first. If level 2 finds a *
* match also, that's two index blocks eliminated! *
* If no match, must update CBIBN and take no match return. *
**/

IOCB addr->IOIXH.W »= 8;
if (rOCB addr->IOTPC == -3)

{ -

if «CCB addr->CBIBN » 8) -­
{ -

X1MAT.W += 1;
IOCB addr->IOTPC += 1;
x1match = TRUE;
}

else
{

(IOCB_addr->IOIXH.W » 8»

/* Bump glob count */
/* Level 3 done! */
/* Boolean for later*/

CCB addr->CBIBN = IOCB addr->IOIXH.W;
return;

/* No Match! */
/* Reset CBIBN*/
/* No matched */

}
}

/**
* Two index level optimization. *
* If CBIBN and IOIXH.W match, X2 (and maybe Xl from above *
* as well) is the same for the previous and this request. *
* The middle level index block will not be read. Do the *
* accounting and take the match return. *
* If no X2 match, we still might be a 3 level file that had *
* an Xl match. If so, take the match return. If not, take *
* the no match return. In either case, CBIBN must be updated*
* because the X2 offset it now different. *
**/

if (CCB addr->CBIBN -- IOCB_addr->IOIXH.W)
{ -
X2MAT.W += 1;
IOCB addr->IOTPC += 1;
*match found = TRUE;
return;
}

/* X2 match? */
/* Yes */
/* Bump global*/
/* To level 1 */
/* with match!*/

else /* NO X2 Match! */
{
CCB addr->CBIBN = IOCB_addr->IOIXH.W; /* Fix CBIBN */

if (x1match)
{
*match found = TRUE;
return;
}

else
return;

}

} /* end of PARSQ */
Licensed Material 4-24

/* Prev X2 match?*/
/* Yes */
/* So take match */
/* return. */

/* Else, no */
/* match found. */

Property of Data General

/**
* MATCH: Determine the match type flagged by PARSQ and *
* return the logical disk address of either the data element *
* to read (if data level match) or the index block at which *
* to begin traversal (other match). *
* For clean presentation of this algorithm and its dependency*
* with RDDEL (Section 4.6.1), also return a flag indicating*
* whether the match was a data level match. *
**/

MATCH (*lda," *at data level)
{ - -

/**
* If at data level (no index levels left to traverse), *
* return the logical disk address of the data element. IOTPC *
* is 0 only if the file is one index level deep. *
**/

if (IOCB addr->IOTPC == 0)
{ -

*at data level = TRUE;
*lda = CCB_addr->CBIAH.W;
return;
}

/**
* If there was an X2 match (only one level left to traverse) *
* return the logical disk address of the level one index *
* block at which to start traversal. *
**/

if (IOCB addr->IOTPC == -1)
{ -

*at data level = FALSE;
*lda = CCB addr->CBIAH.W;
return; -
}

/**
* There was only an Xl "match. *
* Return the logical disk address of the level 2 index block *
* found at CCB offset CBXIA.W. *
**/

*at data level = FALSE;
*lda = CCB_addr->CBXIA.W;

} /* end of MATCH */

/**
* INDEX: Traverse index levels. *
* Input: Log disk addr of index block at which to start. *
* Output: Log disk addr of data element. *
* hole = TRUE if a zero is encountered in any index *
* block, signifying a "hole" in the file. All reqs *
* return nulls, but shared reads reqs and write reqs *
* later fill up the hole by allocating new blocks. *
* If hole is true, Ida data element goes undefined. *
**/

Licensed Material 4-25 Property of Data General

INDEX (Ida index block, *lda data element, *hole)
{ - - --
/**

* Initialize variables. *
**/

hole = FALSE;
next Ida = Ida index block;

/**
* This loop traverses index levels. *
* It exits when IOTPC reaches 0 (at data level). *
* First, get the Ida of the current block to read at IODAH.W *
* where LBLKN needs it. At first, it is an index block. *
* After first loop pass, either data element or index block. *
**/

while (TRUE)
{

IOCB addr->IODAH.W = next Ida;

/**
* If at data level, then return the data element Ida. *
* If the file is 1 or less index levels, store the Ida *
* of the data element of this transfer in CBIAH.W. *
* This may be used next time during optimization. *
**/

if (IOCB addr->IOTPC == 0)
{ -
*lda data element = next Ida;
if «IOCB-addr->IONLV & 0377) <= 1)

CCB addr->CBIAH.W = next Ida;
return;
}

/**
* If at level 1 (IOTPC == -1), save the level 1 index *
* block Ida in CBIAH.W. If at level 2 or 3, save the *
* level 2 index block in CBXIA.W. *
**/

if (IOCB_addr->IOTPC == -1)
CCB addr->CBIAH.W = next Ida;

else
CCB addr->CBXIA.W = next Ida;

/**
* LBLKN: checks FCB buffer list for index block. If not *
* found, searches the LCB cache buffer list. Both queues*
* are searched by logical disk address. If the index *
* block is not found, it is read in from disk. The IOCB *
* will pend during the I/O. The pend key is the BH addr.*
**/

call LBLKN (next_Ida, &BH_addr);

/**
* LDCADR: returns the Ida at the proper offset in the *
* index block just read in. The offset is in IOIXH.W. *
**/

Licensed Material 4-26 Property of Data General

call LDCADR (next_Ida);

/**
* If the retrieved Ida is 0, there is a hole in the file.*
* The caller will take care of this case (specific action*
* depends on the caller). *
**/

if (next Ida == 0)
{ -
hole = TRUE;
return;
}

/**
* Made it through an index level. *
* Indicate one less to traverse by bumping IOTPC. *
* Then release the index block buffer (not modified). *
* Next Ida now contains either the data element address *
* (which will be returned) or another index block *
* address (for which the loop's procedure will repeat). *
**/

IOCB addr->IOTPC += 1;
call-RELB (BH_addr);

} /* end of while */
} /* end of INDEX */

Licensed Material 4-27 Property of Data General

4.6 CCB Request Command Processing

The CCB Request Pre-Processing code branches to the appropriate
command processing routine. These routines are discussed in
this section. If an error occurs during processing, the CCB
error occurred bit (BCBER) is set. The CCB post-processor of
user read, write, and allocate requests examines this bit, and if
it is set, forces the caller of the CCB request to take the error
return. The error code is returned in IOCB offset IOERR. If no
error occurs during processing, the CCB post-processor unpends
the requestor normally.

4.6.1 CBRED: Read Command Processing

This command may be initiated by the user or by the system. If
the user issues a ?RDB system call, File Management translates
it into a CCB request with the CBRED CCB command and calls NQCCB
to enqueue the request to CCB Request Management. The data will
be transferred to the user's buffer. If the system wishes to
issue a read, the two global File Management interfaces are
BLKIN (reads one block into a system buffer) and NQCRQ (reads
one or more blocks into a ring 0 memory area). ?READ causes a
CCB request if the AGENT does not find the requested data in an
AGENT buffer. ?SPAGE may defer I/O until a page fault demands it.

There are two types of read requests: shared and unshared. The
only difference between unshared and shared reads at the CCB
Request Management level is that unshared read requests cannot
read data beyond the file's EOF; shared read requests will add
index levels to the file (if necessary), allocate the requested
data element (and any index structure necessary to logically
access it), and extend the file's EOF to satisfy the request.

CCB command processing of all read requests includes traversing
the file's index level structure until arriving at the data
element number specified in IOQHI.W. The index level
optimization algorithm is applied to avoid unnecessary reads of
index blocks. But, since the IOCB buffer header is used for user
requests, and the IOCB is deallocated when the request is
complete, these buffer headers are never enqueued to the FCB
buffer list; data elements for user requests are always read in
from disk. Only index blocks and file blocks requested by the
read system buffer command are enqueued to the FCB buffer list.

Licensed Material 4-28 Property of Data General

After a data element is successfully read, the number of blocks
left to read (CCB addr->CBNBK) is checked. If there are blocks
left to read, the-IOCB and CCB are updated and another element
is read. Remember, one buffer header reads no more than one
data element! When there are no more blocks left to read, the
request will be satisfied. CCB Request Post Processing will
call the CCB post-processor to unpend the pended requestor and
the IOCB will be deallocated (or assigned to a waiting CCB).

The following algorithm outlines the CCB Request Management read
request procedure. It may look complex at first glance, but the
comments are helpful. The algorithm is useful for three reasons.
First, it exhibits the actual internal implementation of what
happens when a data element is read. Second, it introduces the
EOF management and index level optimization routines, which were
discussed in Section 4.5. Third, the comments should provide
better insight into how reads work at this low level, i.e.,
exactly when and how an EOF error is detected and returned to the
caller.

RDDEL: /* READ A DATA ELEMENT */

/**
* CENFU: Checks if request must be truncated. *
* Always truncates request if beyond max 32-bit EOF. *
* If unshared read OR shared read with no write access, *
* truncates request if beyond EOF. *
**/

call CENFU; /* See Section 4.4. */

/**
* Null requests do nothing, so just a return is in order. *
* CENFU truncated unshared read requests beginning beyond *
* the file's EOF to null requests, with IOERR set to EREOF. *
* Same with shared read requests with no write access, if *
* beyond EOF. CCB Request Post Processing will move the *
* error from IOERR in the IOCB to CBERR in the CCB. *
**/

if (IOCB_addr->IONBL == 0)
goto CCB Request Post Processing;

Licensed Material 4-29 Property of Data General

/**
* If request is shared read, the file may need to grow. *
* GROFL: Adds index levels to the file if 1) the request is *
* beyond current EOF, 2) more index levels will be needed, *
* and 3) the requestor has write access to the file. *
* GROFL allocates only one new index block per level grown! *
* See Section 4.4. *
**/

if (shared read)
call GROFL;

/**
* PARSQ: Index level optimization routine. Sets IOCB/CCB *
* indexing parameters in accordance with this request. *
* If this request is close enough to the previous one such *
* that one or more index block reads may be omitted, "match" *
* will be set to true. (MATCH implies a match of IOCB index *
* optimization offsets with current request specifications.) *
* If no match, either index levels must be traversed or the *
* file exists with no data (it is null). *
**

call PARSQ (&match);

if (! match)
{

/***
* If the file is null (true here only if request is *
* within the first file element and read is shared), *
* first element must be allocated. WDCBK allocates one *
* data element and returns its address. CLDEL zeroes
* it, CKEOF extends the EOF, IMCLR zeroes out the
* waiting user's buffer. No disk I/O is necessary for
* the transfer. This data element will be done, so
* UPDATE will determine whether there are more data
* elements to be read.

*
*
*
*
*
*

if (FCB addr->FBFAH.W == 0)
{ -

call WDCBK (&FCB_addr->FBFAH.W);
call CLDEL;
call CKEOF;
call IMCLR (&CCB_addr->CBUAD.W);
go to UPDATE; /* Continue with request! */
}

/***
* The file is not null, so index levels must exist and *
* at least one index block must be read in (or found on *
* the FCB buffer list). In other words, we are NOT at *
* data level and must traverse the index structure to *
* find the logical disk address of the desired element. *
***/

else
at data level = FALSE;

Licensed Material 4-30 Property of Data General

/**
* If there was a match, either one index blocks has to be *
* read in, OR we are at data level. *
* MATCH: returns Ida of highest index block to read OR *
* returns Ida of data element to read. *
* If the Ida is that of an element, at data level is * - -
* set true. *
**/

if (match)
call MATCH (&log_disk_addr, &at_data_level);

/**
* If we are not at data level, INDEX will traverse the index *
* structure and returns the logical disk address of the data *
* element. If the data element was not allocated, shared *
* reads will allocate it and return zeroes to the requestor; *
* Unshared reads will just return zeroes. *
**/

if (! at data level)
{ - -

call INDEX (log disk addr, &lda data element,
&data_element_not_allocated);

if (data_element_not_allocated)
{

/***
* Shared read, data element not allocated. *
* Shared reads anticipated possible file growth by *
* adding new index levels if they would be needed, but *
* no new elements were allocated. They must be now! *
* *
* GROW allocates possible index blocks (GROFL only added*
* a level, maybe) and always the data element, CLDEL *
* zeroes it out, CKEOF updates the EOF (CEFNU just *
* checked it). No data transfer is done because we know*
* the new element is all null, so IMCLR zeroes out the *
* waiting user's buffer. *
***/

if (shared read)
{ /* Alloc index blks maybe. */
call GROW; /* Always alloc element! */
call CLDEL; /* Clear out data element. *
call CKEOF; /* Update EOF now. */

call IMCLR (&CCB_addr->CBUAD.W); /* 0 call buff */
goto UPDATE; /* Continue with request! */
}

/***
* Unshared read, data element not allocated. *
* The data element must already be within bounds, or *
* an EOF error would have been returned. Unshared *
* reads never allocate new data elements. If they are *
* not allocated already, then zeroes will be returned. *
* Again, no disk I/O is necessary. IMCLR just zeroe *
* out the waiting user's buffer. *
***/

Licensed Material 4-31 Property of Data General

if (unshared read)
{
call IMCLR (&CCB_addr->CBUAD.W); /* 0 call buff */
goto UPDATE; /* Continue with request! */
}

}

/**
* Ready to read the data element. *
* For shared reads, the EOF must be checked/extended if the *
* element was allocated beyond the EOF OR if a new block *
* was requested within the last element beyond the EOF. *
**/

if (shared read)
call CKEOF;

/**
* Set up the 10CB self-contained buffer header parameters. *
**/

10CB addr->IODAH.W
10CB-addr->10ICB
10CB addr->IOADR.W
10CB addr->IOST

if (RNA request)

= Ida data element; - -= 10CB addr;
= CCB addr->CBUAD.W;
= QTIO ! QTNAB;

10CB addr->IONLV = 10CB_addr->IONVL I 10RNM;

/**
* Enqueue the (IOCB self-contained) buffer header. *
* Setting 10STW.W to the buffer header address changes the *
* 10CB status to "not-ready-to-run". The contents becomes *
* the pend key, which the BH post-processor will check when *
* the I/O is complete. *
* After the NQBHR, control is passed back to the, DM Task. *
**/

10CB addr->IOSPC.W = &UPDATE; /* Save (return) PC */
10CB addr->IOSTW.W = 10CB addr->IOSBH.W; /* Start BH addr*/

call NQBHR (&RESTR, *LCBP.W, &IOCB_addr->IOSBH.W);

XJMP RUNLC; /* Back to DM Task! */

Licensed Material 4-32 Property of Data General

/**
* IOCB BH PP (RESTR) unpended the IOCB! *
* The elem has been transferred. Update IONBL and CBNBK (as *
* described in Section 4.2.7). If there is more to read, *
* repeat this procedure. If the request is complete, CCB *
* Request Post Processing will call the CCB post-processor *
* to wake up the requestor and the IOCB will be deallocated. *
**/

UPDATE:
if (CCB addr->CBNBK != 0)

{ -
/*
/*

More elems to read?
Yes!

IOCB_addr->IOQHI.W +=
IOCB addr->IOREH.W =

1; /* Next data element
0; /* First block in it.

/* If number of blocks
if (CCB addr->CBNBK <=

{ -

left to read <= elementsize

IOCB addr->IONBL =
CCB addr->CBNBK =
gote RDDEL;
}

IOCB addr->IODEH.W) -

CCB_addr->CBNBK; /*
0; /*

/*

/* Else read another whole data element
else

}

{
IOCB addr->IONBL = IOCB addr->IODEH.W;
CCB addr->CBNBK -= IOCB=addr->IONBL;
goto RDDEL;
}

This is the
last reqst.
READ ELEM!

*/
*/
*/
*/

*/

*/
*/
*/

*/

else /* No more elems to read*/
goto CCB Request Post Processing; /* Clean up. */

} /* end of RDDEL */

Licensed Material 4-33 Property of Data General

4.6.2 CBWRI: Write Command Processing

Write requests are extremely similar to shared read requests,
except that the data transfer takes place in the opposite
direction. Only the following differences may be noted:

1) If a non-allocated data element is the target of a write
request, the element is explicitly allocated. But, it
is zeroed out only if the write request does not cover all
blocks within the element. Otherwise, it is not zeroed
because the request data will overwrite the entire
element. Shared read requests allocate the element, but
since no data is to be written, it must always be zeroed
out.

2) Write requests always enqueue a buffer header to write to
newly allocated data elements. Shared read requests do
not enqueue disk I/O to read known nulls from newly
allocated elements; instead the caller's buffer is
explicitly zeroed out.

3) The status word in the IOCB buffer header (lOST) contains
both the vanilla I/O bit (QTIO) and the "not a system
buffer" bit (QTNAB), as well as the modified bit which
signals a WRITE request (QTMOD).

4) The modified bit is set in the FCB (BFBMD) on any
successful write.

4.6.3 CBALL: Allocate Command Processing

When CCB Request Pre-Processing dispatches on the CCB command,
allocate requests branch to the same command processing routine
as write requests. Since allocate requests really equate to
write requests of null data, the destination data elements are
merely allocated and cleared. The CCB command word (CBFLG) is
checked during processing to determine whether the request is
write or allocate, and the appropriate action is then taken.

Licensed Material 4-34 Property of Data General

4.6.4 CBSYB: Read System Buffer Command Processing

Read system buffer requests are made exclusively by the
BLKIN/CBLKIN service. The objective of read system buffer
command processing is to return to the caller a system buffer
containing the specified relative file block. Unlike multiple
file block reads, it is possible that absolutely no disk I/O
takes place. The buffer may already be enqueued to either the
FCB or LCB buffer lists. If it is found on the FCB buffer list,
which is searched by relative block number, the buffer's use
count (BH addr->BQUSC) is incremented and the buffer header
address is returned to the caller. That is the optimal
situation.

If the system buffer is not found on the FCB buffer list, it may
be enqueued to the LCB. The LCB cache buffer list is searched
by logical disk address. Therefore, the file's index structure
is traversed to obtain the requested block's logical disk
address, and the LCB cache buffer list is subsequently searched.
If the buffer is found on the LCB cache buffer list, it is moved
to the FCB buffer list and removed from the Buffer LRU. Its use
count is incremented as well. The buffer header address is then
returned to the caller. This situation is still preferred over
enqueuing yet another disk request to read the block.

The typical situation is that the buffer header is found on
neither queue. When a file is first opened, the FCB buffer list
is initialized to empty. In this case, a system buffer must be
assigned. If there are no buffers available, the IOCB must pend
with a status of IOBWT, waiting for any system buffer, until one
becomes free. Buffer Management will always assign freed buffer
headers to waiting IOCBs before base level waiters. When the
IOCB gets a system buffer, it is removed from the Buffer LRU and
enqueued to the FCB buffer list! Its use count is incremented
as well, until it is released. Finally, the buffer header is
enqueued to the device and the data on disk is read into the
buffer data address. The system buffer, not the self-contained
buffer header in the IOCB, is passed to Buffer Management
because CCB Request Post Processing deallocates the IOCB,
including the buffer header. The caller (i.e., BLKIN and CBLKIN)
is responsible for releasing the system buffer header. This
functionality provides a clean method of accessing and modifying
single data blocks on disk. For example, Disk Information
Blocks, Directory Data Blocks, LDU/directory bit map blocks, and
IPC spoolfile blocks are obtained in this way, modified, and
released either with a modified or flush status set in the buffer
header.

Read system buffer command processing is similar to shared read
requests in that the file grows index levels and allocates new
data elements if the request is beyond the current EOF. Only
the system makes read system buffer requests, and the system
always has write access to the file. Hence, the file can
"legally" be modified. As with shared read requests, the data
element is zeroed on disk. The ring 0 data block identified by
the system buffer header is zeroed out as well, instead of
performing wasteful and needless disk I/O.

Licensed Material 4-35 Property of Data General

By definition, only one block of one data element is read with
the read system buffer command. If the caller specifies more
than one block, i.e., IOCB addr-)IONBL != I and CCB addr-)CBNBK
!= 0, the system panics with code 6315. No IOCB/CCB parameter
updating is performed since only one buffer header is enqueued
to the device. As usual, CCB Request Post-Processing calls the
read system buffer command post processor, which wakes up the
pended requestor. Since the buffer is dynamically assigned, the
post-processor returns the assigned buffer header address to the
caller in the CCB (offset CBUAD.W).

Licensed Material 4-36 Property of Data General

4.6.5 CBDEL: Delete File Command Processing

The CCB delete command informs CCB Request Management that all
file index blocks and data elements must be deposited to the LDU
free disk block pool. After this has occurred, the file will
have no contents, so the resulting file first address in the FIB
must be zeroed. The index block and data element buffer headers
on the LCB cache buffer list must be destroyed as well, since
they will never be needed again.

File Deletion Services, which is at the Directory Management
layer, enqueues the CBDEL command to CCB Request Management
before deleting the file's directory data elements. If the
delete request comes through while the file is open, File
Deletion Services sets the FCB "delete on last close" bit
(FBDLE). File Close Services will call File Deletion Services
to "really" delete the file when the file open count reaches O.
If the delete request comes through while the file is not open,
File Deletion Services enqueues the delete request to CCB
Request Management immediately.

Files with no index levels are easily deleted. Only one data
element need be deposited to the LDU free disk block pool. This
is accomplished by the LDU Management services DEBLK and DEBKS.
The former deposits one block, while the latter deposits
multiple blocks. Since the LDU Bit Map maintains block
allocation information, LDU Management must read it into a
system buffer, modify it to reflect the deal location of disk
blocks, and release it (modified). Furthermore, LDU Management
realizes that LDU block withdrawal/deposit requests are made
exclusively fr.om CCB Request Management. Therefore, the system
stack is not used, and the IOCB pending mechanism is executed
(in contrast to base level CB pending).

Files with one or more index levels are deleted recursively.
One routine deletes all index blocks and data elements
subordinate to its caller. The miraculous routine, DELETE, is
first called with the address of the high level index block. It
is called recursively at each index level to delete all
subordinate disk blocks in the file's structure. As a result of
the recursion, the actual disk block deal location begins at the
lowest level data element (the byte EOF) and works upwards to
the index block. At the end of this section, the succint but
comprehensive algorithm will clearly illustrate this clever
implementation.

DELETE is no different from most other CCB Request Management
subroutines in that the system stack cannot be utilized.
Moreover, because it is recursive, the same save level cannot be
used to store the return address. Otherwise it would be
overwritten on each successive repetition. The return address
and other important delete-related data is stored in a redefined
area of the IOCB called the pseudo-stack. Upon each recursive
call to DELETE, a pseudo-frame, called a Delete Data Block, is
pushed on the pseudo-stack.

Licensed Material 4-37 Property of Data General

The pseudo-frame pointer at IOCB offset IODDP.W points to offset
o of the Data Delete Block corresponding to the present call to
DELETE. The pseudo-stack is redefined over the IOCB buffer
header area because no disk I/O requests requiring the use of
the IOCB buffer are enqueued during delete request processing.
Index blocks are read into system buffers. There is enough
space for three pseudo-frames, one for each call to DELETE at
each index level. The Data Delete Block is defined below.

Offset

DDSPC.W 0
DDBFA.W 2
DDLVL 4
DDTPC 5
DDSTP 6

DDBLT 7

Delete Data Block

Return address.
Buffer header address of last index block read.
Current index level.
Temporary counter.
Offset in index block at which to stop deleting.

Length of Delete Data Block

Before DELETE is called, the pseudo-frame pointer is initialized
to the beginning address of the pseudo-stack (IOCB offset
IOSTK). The frame is essentially already pushed when DELETE is
called. In fact, one of the arguments to DELETE is the
pseudo-frame pointer. DELETE stores the return address at
Delete Data Block offset DDSPC.W.

When DELETE must read in an index block, its buffer header
address is saved at offset DDBFA.W until it is released. Index
blocks are released and deposited into the LDU free disk block
pool after all subordinate disk blocks to it have been released
and deallocated.

DELETE is called for every index block in the file structure to
delete all blocks subordinate to it. If a two index level file
is being deleted, the level 2 index block contains a possible
128 pointers to level 1 index blocks. DELETE is called to
deallocate the level two index block, and recursively for each
level 1 index block pointed to by the parent index block.
DELETE remembers which offset of the current index block is
being deleted at Delete Data Block offset DDTPC. This counter
is initialized to the maximum number of pointers in an index
block and is decremented when the index block and all inferior
blocks have been deallocated. When DDTPC reaches 0, the current
index block can be deallocated itself.

When DELETE realizes that the current index level is 1, i.e.,
all subordinate blocks are data elements, no more recursive
calls to DELETE will be made. DELETE keeps track of the current
index level at offset DDLVL.

Licensed Material 4-38 Property of Data General

The DELETE routine is used by truncate requests as well as
delete requests. After all, a truncate is a de facto delete,
only to a lesser extent. Delete Data Block offset DDSTP
contains the index level offset at which to stop deal locating
inferior file blocks. Only truncate requests utilize this
field. Delete requests always slam a -1 here to signify that
the whole file is to be deleted.

DELETE is easily explained in theory, but quite involved at the
assembly language level. The following high level algorithm
should sufficiently illustrate the file block deletion
procedure. CCB Delete File Request processing begins at label
DELFIL. DELETE is called with the logical disk address of the
index block at which to begin deletion. DELFIL calls it with
the file first address (if the file is indexed).

/**
* DELFIL: CCB Delete File Command Processing. *
* Delete a file's contents. This includes all index blocks *
* and data elements. *
**/

DELFIL:
{

}

/**
* If the file is already null, nothing to do. *
**/

if (IOCB addr->IOFCB.W->FBFAH.W == 0)
goto-CCB Request Post Processing;

/**
* If no file indexing, deposit one and only data element. *
**/

if (IOCB addr->IONLV & 0377 == 0)
{ -

call DEBKS (IOCB_addr->IOFCB.W->FBFAH.W);
goto CCB Request Post Processing;
}

/**
* File is indexed. Call DELETE, which will end up *
* freeing all index blocks and data elements subordinate *
* to the highest index block. Afterwards, return the high *
* index block to the LDU free block pool. *
**/

call DELETE (IOCB addr->IOFCB.W->FBFAH.W);
call DEBLK (IOCB-addr->IOFCB.W->FBFAH.W);
goto CCB Request Post Processing;

/* ReI below */
/* ReI me */
/* Clean up */

Licensed Material 4-39 Property of Data General

/**
* DELETE: Return to the LDU free block pool all index blocks *
* and data elements pointed to by the index block whose *
* disk address is passed as an argument. *
* THIS ALGORITHM IS VERY HIGH LEVEL! *
**/

DELETE:
{

/**
* Check each offset in the index block. *
**/

if (DDBLK addr->DDLVL > 1)
{ -
for (offset = 127; offset> -1; offset--)

else

{
**
* If the index block is level 2 or 3, each non-null *
* offset points to a subordinate index block. Call *
* DELETE to deallocate each subordinate index block *
* and its subordinate blocks. Then DEBLK *
* deal locates the index block. *
**/

}

{

if (*(index block addr + offset*2) != 0)

}

{ --
call DELETE (*(index block addr + offset*2»;
call DEBLK (index_block_addr);
}

**
* If the index block is levell, each non-null *
* offset points to a data element. Call DEBKS to *
* deallocate each one. Then DEBLK (of the caller) *
* deal locates the index block. *
**/

for (offset = 127; offset> -1; offset--)
{

}

if (*(index block addr + elem*2) != 0)
call DEBKS-(*(index_block_addr + elem*2»;

}

} /* end of DELETE */

Licensed Material 4-40 Property of Data General

Consider the application of CCB Delete File Request Processing
to the two index level file below. DELFIL calls DELETE with the
address of index block (g). DELETE in turn recursively calls
itself for each of the level 1 index blocks, beginning with
index block (c). DELETE begins deal locating the blocks pointed
to by the index block's last offset, and works upwards until the
blocks pointed to by offset 0 are deallocated. Consequently,
element (a) would be deallocated first, then all those elements
between (a) and (b), and finally element (b). When index block
(c) is full of null pointers, it can be deallocated. When all
the index and data blocks pointed to by index block (g) are
deallocated, DELETE returns to DELFIL, where (g) is finally
deallocated. (The order of file block deal location in the
diagram is denoted by the ascending single letter
representations.)

Level 1 Data
Index Blocks Elements

Level 2
Index Block (f) (e)

(g) /==> Offset 0 ===>1 Elem 0
/

Offset 0 ==/

Offset 127. ===>1 Elem 127.
Offset 1

(d)

(c) (b)
Offset 126.

/==> Offset 0 ===>1 Elem 16256.
/

Offset 127. ==/ . .
Offset 127. ===>1 Elem 16383.

(a)

Licensed Material 4-41 Property of Data General

4.6.6 CBTRN1: Truncate Command Processing (part 1)

4.6.7 CBTRN2: Truncate Command Processing (part 2)

The CCB Truncate command must be performed in two parts. Base
level truncate system call processing enqueues two separate CCB
requests to accomplish file truncation. Part 1 processes the
bulk of the request by performing the following actions:

1) Clears the remaining data blocks in the same data element
following the new EOF,

2) Adds index blocks and a data element if the new EOF is
defined where there is a "hole" (unallocated data
element) in the file,

3) Deallocates all index blocks and data elements past the
new EOF.

Part 2 concludes truncate processing as follows:

1) Checks if file can shrink index levels. If so, the
logical disk address at offset 0 of the high index block
becomes the first file address. The high index block is
deallocated. The process is repeated until the number of
index levels is correct.

Separate CCB requests must be enqueued because base level
truncate processing must flush the modified index blocks (found
on the FCB buffer list) to disk. This must be done to force
consistency between the LDU bit map and the actual contents of
the index blocks. When both parts of the truncate request are
complete, the Funny FIB is flushed to disk to update the new
state of the file.

Licensed Material 4-42 Property of Data General

4.7 CCB Request Post-Processing

CCB Request post-processing begins immediately after command
processing is complete. The most significant event that CCB
Request post-processing initiates is the execution of the CCB
post-processor. NQCCB stored the address of the appropriate CCB
post-processor in the CCB when the request was enqueued. The
five CCB post-processors were outlined in Section 3.3.2. The
main objective of all CCB post-processors is to unpend the CB or
TCB awaiting request completion. The CCB post-processor returns
any data to the user packet as well. Below is the C-based
algorithm which outlines the user read, write and allocate CCB
post-processor, PPCUS.

PPCUS (IOCB_addr, CCB_addr)
{

/***
* Must map TCB to ring 0 to avoid faults. *
***/

call MAPUNW (CCB_addr->CBTCB.W, &TCB_addr);

/***
* If an error occurred during CCB Request processing, the *
* error bit is set and the error code is in CBERR. Decr *
* the user's return PC so he takes the error return, and *
* stuff him with the error code in ACO. *
***/

if (check bit (CCB addr, BCBER»
{- -
TCB addr->TPC.W -= 1;
TCB-addr->TACO.W = CCB_addr->CBERR;
}

/***
* Always return the number of bytes actually transferred. *
* Next, unmap the modified TCB. *
***/

TCB addr->TAC1.W = IOCB addr->IORBC.W - IOCB_addr->IOLBC;
call UNMAP (CCB_addr->CBTCB.W);

Licensed Material 4-43 Property of Data General

/***
* Hardware I/O bits must be set on the memory pages *
* affected by this request because BMC/data channel xfers *
* cannot mark the pages. It is done by the hardware on *
* memory reference instructions only. *
* *
* MUIOPGR: Set modified and referenced bits. The memory *
* page was modified and referenced when data was *
* read INTO it FROM disk. *
* MUIOPGW: Propagate modified bit, set referenced bit. *
* The memory page was only referenced when data *
* was read FROM memory TO disk. *
***/

switch (CCB addr->CBFLG)
{ -
case read_request:

call MUIOPGR;
break;

case write request:
call MUIOPGW;
break;

case allocate request:
do nothing();
break;

}

/* Mark I/O Page for Read */

/* Mark I/O Page for Write */

/***
* Unpin the data pages pinned for the data transfer. *
* This was done by the File Management system call code *
* before the CCB request was enqueued. *
***/

if (read request or write_request)
{ -

offset = 0;
while (CCB addr->CBNPG-- > 0)

{ -

}

call UNPIN (CCB addr->CBUAD.W +~ffset); /* Now unpin*/
offset += 02000; - /* each page*/
}

/***
* Unlock and unpin the user CCB. *
***/

call UCULCK (CCB addr);
call UNPIN (CCB=addr);

Licensed Material 4-44 Property of Data General

/***
* Unpend the TCB by resetting the TCB pend bit. *
* (The TCB is already wired when the pend bit is cleared!) *
* Then decrement the process' active system call count. *
***/

clear_bit (CCB addr->CBTCB.W->TSTAT.W, ?BTPN); /* Unpend */
/* T C B */

call DSQCT; /* Decr num of syscalls */

* Ready the process table and force a reschedule. *
* IWKUP.REL also must determine whether the current JP or *
* another will now run the process immediately, or if it *
* will remain on the current JP's ELQUE where it is. If *
* this CB/PTBL PNQF is higher than the current element on *
* the current JP, reschedule. Else, check the other JPs to *
* see if this CB/PTBL PNQF is higher than the current. If *
* so, cross interrupt the JP and force a reschedule. If *
* nothing can be done, just ready the CB/PTBL and keep it *
* "in line" on the current processor's ELQUE. *
***/

call IWKUP.REL;
return;

} /* end of PPCUS */

Licensed Material

/* Ready process, resch */
/* Return to CCB */
/* Post-processing. */

4-45 Property of Data General

In addition to calling the CCB post processor, CCB Request Post
Processing incorporates some other important functions
associated with the completion of the CCB Request. The CCB
Request Post Processing functions are listed below in the order
that they are executed:

1) Move error code from IOCB (IOERR) to CCB (CBERR).

2) Call CCB Post Processor.

3) Wake up IOCBs waiting on the file. The pend key is the
FCB address which CCB Request Pre-Processing stored if
I/O was already in progress on the file.

4) Dequeue IOCB from IORUN.W.

5) Either assign the IOCB to the first waiting CCB on
CCBWQ.W, initialize it, and enqueue it to IORUN.W; OR
return the IOCB to the IOCB database pool (IOCB.DB).

6) Return to the RUNLC loop of the Disk Manager Task.

Licensed Material 4-46 Property of Data General

5 Buffer Management

5.1 Overview

Buffer Management is the File System component that manages the
initial allocation, the temporary assignment and release, and
the status of system cache buffers. The word cache is usually
omitted when referring to system buffers in any other context
than when they are enqueued to the LCB Cache Buffer List. A
system buffer consists of 512. bytes of system (ring 0) memory,
a perfect fit for one disk block of data. Indeed, system
buffers are utilized by the File System or external components
for the purpose of cleanly retaining in memory the contents of a
specific data block of a file. The number of system buffers is
a gennable parameter selected when building an AOS/VS system.
The "CACHE [128]:" prompt during a VSGEN session refers to the
number of system [cache] buffers that system initialization
routines will allocate.

Associated with each system buffer is a buffer header. The
purpose of the buffer header is to hold low-level,
request-specific information, including the logical disk address
of the system buffer, the logical disk address of the disk-based
data, and the number of blocks to transfer. The buffer header
also maintains status information, such as the number of buffer
users and buffer waiters.

Buffer headers are ultimately "enqueued" for disk I/O. Before
this concept is explained, the reader should be familiar with
the LCB and UDB formats, described in LDU Management (Sections
6.2 and 6.3).

In order for a data transfer to take place, Buffer Management
must "enqueue" a buffer header to the appropriate physical unit.
The unit's buffer header request list is found at UDB offset
UDCRQ.W. Buffer Management calls upon the appropriate disk
driver to enqueue a buffer header to a specific UDB. The disk
driver initiates the data transfer by submitting Programmed I/O
commands to the disk controller. Therefore, the UDB ultimately
contains the data that the controller uses for the effective
physical transfer.

Licensed Material 5-1 Property of Data General

Buffer headers can be assigned by any system component that
reads disk-based data whose logical disk address is already
known. This is the major difference between why code paths
chose to make a direct buffer header request (known logical disk
address) or a CCB request (unknown logical disk address). The
caller must "assign" the buffer, set up the buffer header,
"enqueue" the buffer header (to the desired UDB), pend to await
the I/O completion, and finally "release" the buffer. Buffer
Management provides services to facilitate this procedure. The
following services will be discussed in detail throughout this
chapter.

1) ASBUF/BLASB - assign a system buffer

2) NQBHR/NQBHl - enqueue a system buffer

3) BWAIT - pend awaiting I/O completion

4) RELB/RELM/RELF/RELD - release a system buffer.

Licensed Material 5-2 Property of Data General

5.2 System Buffer Parameter Definitions

Offset

BQBFL.W
BQBBL.W

BQFFL.W
BQFBL.W

BQQLK.W
BQADR.W
BQST
BQNBK
BQMAP.W
BQUPD.W
BQLAH.W
BQPPL.W
BQDBN

BQFLGS
BQUDB.W
BQRBC.W
BQSBP.W
BQFCB.W
BQLCB.W
BQUSC
BQWTC

BQHLT

0
2

4
6

10
12
14
15
16
20
22
24
26

27
30
32
34
36
36
40
41

System Buffer Header (BH)

Buffer LRU (BFLRU.W) Forward Link.
Buffer LRU (BFLRU.W) Backward Link.

FCB/LCB Buffer List Forward Link.
FCB/LCB Buffer List Backward Link.

Driver enqueue link word.
Ring 0 buffer address to which data transferred.
BH status word.
Number of blocks to transfer.
Process table address of requestor.
BH post-processor address.
Logical disk address of data.
Unit I/O Post-Processing Chain (UPPRC.W) link.
Data Block Number.

BH Flags word.
Unit Definition Block (UDB) address.
Running Byte Count.
Status Block Pointer (for physical I/O).
FCB address (if BH on FCB Buffer List).
LCB address (if BH on LCB Cache Buffer List).
BH Use Count.
BH Waiter Count.

42 Length of BH.

5.3 System Buffer Allocation

System buffers and their buffer headers are allocated from GSMEM
at system initialization by subroutine BFALL. The booted system
file contains the number of buffers to allocate. If the system
manager chooses to override the default specs, system
initialization prompts for the number of system cache buffers.
This number must be greater than the maximum number of Group 1
and Group 2/3 control blocks, 96 in AOS/VS 7.50. The number
must not be greater than 1024. System buffer memory is never
deallocated.

Newly allocated buffer headers are enqueued to the Buffer Least
Recently Used (LRU) chain. The global queue descriptor is:

Licensed Material

BFLRU.W - head pointer
BTAIL.W - tail pointer.

5-3 Property of Data General

The buffer header allocation and initialization consists of the
following few steps:

BH addr = GSMEM (BQHLT); /* Alloc buff hdr mem */
BH=addr->BQADR.W = GSMEM (SCDBS) ; /* Alloc buff data mem*/

BH addr->BQDBN = -1; /* No data blk num yet*/
BH=addr->BQLAH.W = -1; /* No Ida yet */

BH addr->BQUSC = 0; /* No users yet */
BH-addr->BQWTC = 0; /* No waiters yet */
BH-addr->BQFLGS = 0; /* Clear flag bits */
BH=addr->BQST = 0; /* Clear status bits */

call ENQH (BFLRU.W, BH addr) ; /* Enqueue to LRU */ -

5.4 Locking the Buffer LRU (BFLRU.W)

Buffer queue management must ensure that queues are locked when
they are manipulated. The buffer LRU is locked for this purpose
when Buffer Management sets the generic queue lock bit, bit
offset QLOCK, from BFLRU.W. The lock is a spin lock set via a
call to BSLOCK.

The generic VSMP locking word for the buffer LRU is LKBLRU.W.
LKBLRU.W, as all global, generic locking words, is divided into
two separate words. Word 0 is referenced by the lock name
itself, and contains the following bit offsets:

BPDTRAN (0) - LKBLRU.W transition lock
BPDCHNG (3) - BFLRU.W rescan flag

Word 1 has a globally defined index offset, PDUSERS, which in
the case of LKBLRU.W, indicates the number of waiters for
buffers. It is incremented by the Buffer Management service
BLASB (assign system buffer) and by CCB Request Management when
a system buffer is requested, but one is not available.

XLEF
XNISZ
NOP

Licensed Material

2,LKBLRU.W
PDUSERS,2

;LRU lock word.
;Increment any buffer
; waiter count.

5-4 Property of Data General

The LKBLRU.W transition lock is acquired for checking the number
of buffer waiters and for checking the rescan flag. The rescan
flag is set by Buffer Management release system buffer routines
(RELB, RELM and RELD), which indicates to assign system buffer
routines (ASBUF/BLASB) that a buffer was freed. Below, a
portion of RELB illustrates this point.

RELB:

DONE:

XLEF
NLDAl
XPSHJ
NLDAl
WBTO
XNLDA
WSNE

WBR

XJSR
WRTN

NLDAl
XJSR

WBTZ
lNTEN
WRTN

2,LKBLRU.W
BPDTRAN,l
XLOCK
BPDCHNG,O
2,0
0,PDUSERS,2
0,0
DONE

LCBWU

SKBUF,O
UNPEND

2,1

5.5 System Buffer Manipulation

;LRU lock word.
;Transition lock bit.
;Get transition lock.
;Rescan flag (bit).
;Set rescan flag.
;Get buffer waiters.
;Are there any?
;No.

;Yes, unpend an lOCB.
;lOCB unpended. Return.
;No lOCBs were waiting!
;Base level pend key.
;Unpend base level waiters.

;Release transition lock.
;Enable interrupts.
;Buffer released!

A buffer remains on the buffer LRU as long as its use count is
zero. Whenever a system buffer is assigned, its use count is
incremented and it is dequeued from the buffer LRU. When CCB
Request Management assigns a buffer (for read system buffer
command), it is also dequeued from the LRU and its current
FCB/LCB buffer list (if it is on one) and then enqueued to the
new FCB buffer list. (The LCB cache buffer list forward and
backward links are defined by LCB parameters LBCLP.W and LBCLB.W,
respectively.) Base level assigners do not enqueue the buffer
header to the FCB/LCB buffer list, but enqueue it directly to the
disk unit via the Buffer Management services NQBHR/NQBHl. File
Management services dequeue buffers from the FCB and enqueue them
to the LCB cache buffer list upon the last file close. At
release, the buffer is enqueued to the LRU if its use count
reaches O. However, it is not removed from the FCB/LCB buffer
list, but must remain there so that the chain may be searched
even when the buffer is not in use. This explains why it is
possible for the buffer to be enqueued to both the LRU and the
FCB/LCB buffer list at the same time. When a file is deleted,
all of its buffers on the FCB/LCB buffer lists are invalidated
(BQDBN and BQLAH.W set to -1) and enqueued "fresh" to LRU.

Licensed Material 5-5 Property of Data General

The following sequence of events illustrates what happens to a
system buffer header used to read in a directory data block.

(1) System initialization. Buffer begins on buffer LRU.

BFLRU.W ===> BQBFL.W
BQFFL.W = -1
BQUSC = 0
BQDBN =-1

---> BH ---> BH ---> -1;

(2) Directory ANYDIR opened. BLKIN called to read in block 4.
Buffer dequeued from BFLRU.W and enqueued to FCB buffer
list during CCB Request Management processing of read
system buffer command.

BQBFL.W = -1
FCB B.L.===> BQFFL.W ---> BH ---> BH ---> -1;

BQUSC = 1
BQDBN = 4

(3) The buffer is released (RELB), but ANYDIR remains open.
The buffer remains on the FCB buffer list, but gets
enqueued to the BFLRU.W tail. (Assigned buffers are
removed from the head.) If another code path requests
ANYDIR block 4, it will be found on the FCB, eliminating
CCB Request Management's role of reading it in from disk.

BFLRU.W ===> BH ---> BH ---> I
/

/
FCB B.L.===> BQFFL.W

BQUSC
BQDBN

= 0
= 4

/

BQBFL.W I ---> -1;
/

---> BH ---> BH ---> -1;

(4) ANYDIR is closed. The buffer is moved from the FCB to the
LCB buffer list tail.

BFLRU.W ===> BH ---> BH ---> BQBFL.W ---) -1;
LCB B.L.===> BH ---) BH ---) BQFFL.W ---> -1;

BQUSC = 0
BQDBN = 4

Licensed Material 5-6 Property of Data General

There are now three possibilities that will determine the fate
of the buffer:

(5a) ANYDIR is reopened and block 4 is requested again (by
BLKIN). CCB Request Management will find the buffer on the
LCB cache buffer list and move it to the FCB buffer list.
The buffer will be dequeued from the LRU and its use count
will be incremented. We are now effectively back at step
(2) in this procedure.

BQBFL.W = -1
FCB B.L.===> BQFFL.W ---> BH ---> BH ---> -1;

BQUSC = 1
BQDBN = 4

(5b) ANYDIR is deleted. The buffer header remains on the LRU,
but dequeued from the LeB buffer list. This must be done
because the data for a non-existent file is useless. The
data block number and LDA it represented are invalidated.

BFLRU.W ===> BH ---> BH ---> BQBFL.W
BQFFL.W = -1
BQUSC = 0
BQDBN =-1

---> -1;

(5c) The buffer header reaches the head of the LRU and some code
path assigns it. The buffer is removed from all queues.
The caller of ASBUF/BLASB (assign BH) is responsible for
enqueuing the BH to the FCB buffer list. Only CCB Request
Management always does this. Other components do not.
When the buffer is released, it is re-enqueued to BFLRU.W.
(The illustration below shows the buffer header directly
after the call to ASBUF/BLASB.)

(Not enqueued to
anything!)

Licensed Material 5-7

BQBFL.W
BQFFL.W
BQUSC
BQDBN

= -1
= -1
= 1
= -1

Property of Data General

When a system buffer is enqueued to the FCB, the FCB address is
stored at BH offset BQFCB.W. When it is enqueued to the LCB,
the LCB address is stored at the same offset, but it is
referenced with the parameter BQLCB.W. Bit 0 is set in BQLCB.W
as well, which tells Buffer Management that the buffer header is
indeed enqueued to the LCB cache buffer list.

A trivial but extremely important point in the management of
system buffer headers cannot be overlooked. Buffer headers can
be enqueued to two separate queues simultaneously, implying that
two separate queue (double) words must exist for the forward and
backward links. When the buffer header is accessed via the
buffer LRU, whose forward link is offset 0, the remaining
offsets are accessed normally from the offset 0, the beginning
address of the buffer header. However, when the buffer header
is accessed via the FCB/LCB buffer list, whose forward link is
offset 4, the beginning address of the buffer header becomes
offset 4. Consequently, the parametric value of each offset
following BQFFL.W should actually be 4 less to be referenced
correctly from the "new" BH address. Buffer Management
implements this by subtracting the value of BQFFL.W (4) from
each offset when the BH address is retrieved from the FCB/LCB
buffer list (using ECLIPSE MV/Family queue instructions). For
example, when BLKIN searches a file's FCB buffer list for a
match on the relative data block number, the BH offset loaded
into AC3 before the NFSE queue instruction is:

NLDAI BQDBN-BQFFL.W,3 ;Offset from FCB forward
AGAIN: NFSE ;link to block num word.

WBR NOBUF ;Buffer not found.
WBR AGAIN ; Search interrupted.
WBR FOUND ;Buffer found

If the buffer header is found, the "real" buffer header address
is calculated and subsequently used:

FOUND: WNADI
WMOV

BQBFL.W-BQFFL.W,l
1,2

;Add 4 to BH addr
;and move to index reg.

The buffer use count is incremented by the occurrence of either
of two events: the BH is "assigned" or it is searched for and
found on the FCB/LCB buffer list. The use count cannot be
incremented if the buffer header is locked or there is I/O in
progress. If this is the case, the code path attempting to
"gain control" of the buffer must pend until the specific buffer
header becomes free. The pend key is the buffer header address
(for IOCBs and CBs). The waiter count at offset BQWTC must be
incremented as well. When the code path already using the
buffer releases it, the waiting code path will be unpended.

A special BH parameter, BQRTC.W, is a doubleword defined over
BQUSC and BQWTC. If BQRTC.W is 0, i.e., there are no users and
no waiters, this indicates that the buffer header is already
enqueued to the buffer LRU. Both ASBUF and BLKIN test BQRTC.W
to determine whether or not the system buffer should be dequeued
from BFLRU.W before incrementing the use count.

Licensed Material 5-8 Property of Data General

The data block number in the file to which the buffer data
corresponds is stored at BH offset BQDBN. This is filled in by
CCB Request Management when processing the read system buffer
command. The requested block number is input in the CCB and
simply transferred to the buffer header. Buffer Management does
not actually deal with block numbers, but with logical disk
addresses. The reasons for maintaining the data block number in
the buffer header are:

1) the FCB buffer list can be searched for specific
directory blocks by their relative block number, and

2) the block number is used in creating intra-directory
pointers (IDPs).

The logical disk address of the data is stored at BH offset
BQLAH.W before Buffer Management is called to enqueue the BH to
the appropriate UDB. CCB Request Management traverses a file's
index structure in order to fill in this field. Base level
callers must get the logical disk address elsewhere. For
instance, Process Management obtains the swapfile starting
logical address from the Funny FIB, and makes a direct buffer
header request (NQLDRQ). LDU Management gets the logical disk
addresses of the LDU Name and ACL blocks from the DIB of the
first unit. Before the buffer header is enqueued to the disk
unit, Buffer Management converts the logical address in the
buffer header to a physical address and stores it in the unit's
UDB.

System initialization allocates one block of memory for
each system buffer and stores its address at offset BQADR.W.
This address remains constant for the life of the running
system. The number of blocks to transfer, always 1, is stored
in BQNBK. There are, however, two other types of buffer headers
for which these fields change. The IOCB pseudo-buffer header
uses BQADR.W to hold the user address to which the disk-based
data will be transferred. BQNBK is a variable depending mostly
on the file's elementsize (CCB Request Management does not
transfer more than one element of data per buffer header). As
explained in Section 5.9, the Buffer Management service NQLDRQ
is used to transfer multiple blocks of data for the system, when
the logical disk address of the data is previously known.
NQLDRQ builds a buffer header on the stack and fills in BQADR.W
with the ring 0 address of a reserved area to receive the data,
and BQNBK with the number of blocks (512. byte chunks) to
transfer.

Buffer headers are enqueued to the UDB request queue (UDB offset
UDCRQ.W) of the disk unit on which the data resides through the
buffer header driver enqueue link word (BH offset BQQLK.W).
Buffer Management calls the driver's device start routine to
begin the data transfer. The specific disk driver is
responsible for removing buffer headers off the UDB and
transmitting the appropriate commands to the controller, which
will ultimately cause the data to be transferred from disk to
the memory location in BQADR.W.

Licensed Material 5-9 Property of Data General

When the disk driver completes the data transfer, the host is
interrupted, and the disk's interrupt service routine is
invoked. The interrupt service routine makes a call to the
buffer header post-processor, stored at BH offset BQUPD.W.
Since the I/O is complete and the code path that summoned Buffer
Management to enqueue the buffer header pended itself, the main
purpose of the buffer header post-processor is to notify the
waiter that the data transfer is finished. This is done by
unpending either the waiting CB or IOCB. The post-processor
must also unpend CBs or IOCBs, which did not enqueue the I/O,
but which are waiting on the particular buffer, perhaps because
it was found on the FCB chain with I/O-in-progress. When a
flush-buffer request is issued, the requestor enqueues the I/O
without pending afterwards. When the I/O completes, the
post-processor must decide which object, if any, gets control of
the buffer.

There are four separate buffer header post-processing routines.
See Section 5.10 for more.

BH Post Function
Processor

PPBSY General system buffer post-processor.

PPBMD System buffer post-processor for modified
buffers.

PPCPY Mirror bulk copy buffer header post
processor.

RESTR/ IOCB pseudo-buffer header post-processor.
RSTRB

Licensed Material 5-10 Property of Data General

The buffer header status word at offset BQST holds both general
status data and the BH request type. The buffer header status
bits as defined in PARFS.SR are the following:

BSMOD (0) = Buffer modified. Set by RELM. Buffer flushed to
disk when reassigned. Also signifies "write"
command.

BSIOP (1) = I/O in progress. Set by NQBHR/NQBH1.
BSMSI (2) = Modified sector I/O request.
BSERR (3) = 1 if error, otherwise O.
BSFLS (4) = Flush buffer on last release. Set by RELF.
BSCDR (5) Clear disk request. Tells controller to zero part

of the disk.
BSNAB (6) = Not a system buffer. Set if IOCB pseudo buffer

header or NQLDRQ stack buffer header.
BSPIO (7) = Physical I/O request.
BSLKB (8) = Buffer Header ("long term") lock bit. Set before BH

flushed, reset after. Potential users of this BH
pend until the lock is freed.

BSEOV (9) = Enable VFU load or override LEOT logic (LPU or MTU).

BSRT1 (11)= Request type bit O.
BSRT2 (12)= Request type bit 1.
BSRT3 (13)= Request type bit 2.
BSRT4 (14)= Request type bit 3.
BSRT5 (15)= Request type bit 4.

Buffer Management references these bit positions in various
ways. PARFS.SR contains two other parameter definitions for
different types of access. For example, bit position BSLKB (bit
8 in BQST) is usually referenced through another parameter,
BQLKB, whose value is the bit offset from the first address of
the buffer header. This method is useful in setting and
clearing this one bit:

NLDAI
XLEF
WBTZ

BQLKB,l
2,BH addr
2,1 -

The bit position can also be tested by masking it out of the
status word. Each bit position has a mask value defined as
well, e.g., QTLKB masks the long-term lock bit (000200).
Another option used for atomic test and set instructions
(WSKBO/WSKBZ/WSZBO) is the bit offset from bit 0 of ACO, which
is loaded with the status word. When BQST is loaded (narrow)
into ACO, it starts at bit 16. of the accumulator, so BSLKB is
defined as bit position BSLKB+16. Due to the multiplicity of
bit referencing possibilities, only the bit position within the
status word has been defined in this manual.

Licensed Material 5-11 Property of Data General

There are two types of buffer header requests: I/O and non-I/O
requests. The I/O request types are represented by the
following values in the buffer header status word request type
bits:

QTIO (0)
QTWRV (1)
QTWSW (2)
QTRMB (3)
QTMBC (4)

= Vanilla (read/write) I/O.
= Write verify (read after write).
= Write single word verify.
= Read with modified bit map.
= Mirrored bulk copy.

The non-I/O request types are represented by the following
values in the buffer header status word request type bits:

QTSTP (8) = stop drive (disk) or unload (mag tape).
QTSTS (9) = Get status.
QTREC (10)= Recalibrate (disk) or rewind (mag tape).
QTDLM (11)= Delete mirror.
QTHFM (12)= Set mirror to half mirror.
QTUSM (13)= Set mirror to unsynchronized.
QTSYM (14)= Set mirror to synchronized.
QTTYP (15)= Get unit type (for unicorn printer only).

There are three bits defined in the buffer header flag word at
offset BQFLGS:

BQTRAN (0) = Buffer header transition lock.
BQWAIT (1) = Base level specific BH waiter bit.
BQIOWT (2) = CCB Request Management (IOCB level) specific

BH waiter bit.

The buffer header transition lock is a short-term lock acquired
when quick operations must be done on the buffer header. For
example, when it is enqueued or dequeued from the buffer LRU, or
the use count must be tested, the transition lock is acquired
(via MP general spin lock routines FXLOCK, XLOCK, etc.).

If the buffer header must be accessed on a "long-term" basis,
the buffer header long term lock (BSLKB) is acquired. This is
done when the buffer is flushed to disk. Since the use count is
zero and it may be on the LRU, the long-term lock must be set to
prevent the buffer from being removed while the flush is in
progress. If a base level code path (not interrupt level or CCB
Request Management) finds that the buffer header is locked or
has I/O in progress and must wait for that buffer in particular,
the caller sets BQWAIT (BH bit offset BBQWAIT) and pends. This
is done in routine BWAIT. When CCB Request Management must wait
for a buffer header for the same reasons, it sets BQIOWT (BH bit
offset BBQIOWT) and pends. Separate bit pOinters are defined
because the buffer header is assigned to IOCB waiters before
base level waiters.

Licensed Material 5-12 Property of Data General

5.6 Emergency Shutdown (ESD) and System Buffers

When AOSjVS is shut down abnormally, the emergency shutdown
procedure is executed. ESD is executed by inputting a "START
50" command from SCP-CLI when a system panic occurs. ESD
accesses system buffers in three major phases:

1) during "File System Restart" processing,
2) during "Flushing Buffers" processing,
3) during "Open File Processing".

When the message "File System Restart" is printed on the
operator console, ESD is currently in progress. During this
phase, the buffer LRU chain is validated for consistency. If
any of the forward or backward links on BFLRU.W is invalid, ESD
forces panic 6016. If the number of queue entries on BFLRU.W
exceeds the internal count of buffer headers currently on the
queue (BUFCN), ESD forces panic 6017. After validation of
BFLRU.W, ESD removes all buffer headers queued to UDBs and
enqueues them to the tail of BFLRU.W. By the end of this phase
of ESD, all system buffers should be enqueued to the buffer LRU.

When the message "Flushing Buffers" appears on the operator
console, ESD begins examining buffer headers on BFLRU.W. If the
modified bit is set, ESD flushes the buffer to disk. Disk
requests that did not complete do not have the modified bit set,
so invalid data will not be flushed.

When the message "Open File Processing" appears on the operator
console, ESD begins closing all open files. First, ESD searches
through all FCB pages and saves the address of the FCB at the
deepest level in the system's directory hierarchy. The level of
the file within its LDU's directory hierarchy is found at
FCB addr->FBLVL. If the file is open on a system CCB (i.e.,
FCB-addr->FBSCB.W != 0), ESD calls upon KCCB.P in File Close
Services to close the file. If the file is not open on a system
CCB, ESD calls KFCB.P (to first decrement the file open count).
Remember that when Resolution Services opens a file on a system
CCB, the open count in the FCB is not incremented. If the file
level is 0, the file is actually an LDU, and ESD calls IRLSE.P
in LDU Management to release it. This procedure is repeated
until all files are closed. The last file to be closed is the
master root LDU, which marks the completion of ESD.

Licensed Material 5-13 Property of Data General

5.7 Buffer Management Global Variables

Global
Location

BFLRU.W
BTAIL.W
LKBLRU.W

BFMIN
BUFLO
BUFCN

NOBUFS

NQDBHRS

CACHOF

Licensed Material

Significance

Buffer LRU queue descriptor (head pointer).
Buffer LRU queue descriptor (tail pointer).
Buffer LRU lock word.

Total number of system buffers.
Smallest num buffers on BFLRU.W since boot.
Number of buffers currently on BFLRU.W.

Number of buffer assign attempts when no
buffers have been available on BFLRU.W.

Number of BHs currently enqueued to disk.

System buffer access on the LCB chain
always allowed, except at ESD. Set to -1
during ESD to disable cache buffer checks.

5-14 Property of Data General

5.8 Assigning System Buffers (ASBUF/BLASB)

In order for a system buffer header to be enqueued for I/O, the
requestor must gain control of it by "assigning" it. This
procedure involves removing a free buffer header from the buffer
LRU as well as from the FCB/LCB buffer list, invalidating the
buffer's contents (simply by clearing out the data block number
and logical disk address to which the data corresponds),
incrementing the use count, and returning the buffer header to
the caller.

There are two Buffer Management services that assign buffer
headers: ASBUF, the no-wait version that returns to the caller
immediately if no buffers are available; and BLASB, the wait
version that pends the calling CB until some code path releases
a buffer and it becomes free. CCB Request Management calls
ASBUF because of the special mechanism employed for pending
IOCBs. CCB Management does indeed pend the IOCB if no buffer is
available, but ASBUF must be the assignment interface because
BLASB only pends control blocks. LDU Management calls ASBUF
when pending would hang the system (master LDU initialization).
The following charts display the callers of these routines.

Caller

IASBU

MLDUI

RDBBT.P

Licensed Material

Callers of ASBUF

Effect

CCB Request Management routine to assign
system buffers for "read system buffer"
requestors and for index blocks.

Read and flush each unit's DIB.

Read LDU Bad Block Table.

5-15 Property of Data General

Caller

DPMIU

RDNAC.P

MIRROR.P

READDIB
WRITEDIB
UPDDIB

GETBITS

GETUDB.P

Callers of BLASB

Effect

Diskette unit initialization to recal
diskette and to detemine its density.

Read LDU Name Block and ACL Block.

Read the DIB of first unit in mirrored LDU.
Read in mirrored LDU Name Block.

Read DIB of units in mirrored LDU.
Write DIB of units in mirrored LDU.
Update DIB of units in mirrored LDU.

Read Mirror LDU Bit Map.

Delete mirror request if a mirror UDB
cannot be allocated.

The system buffer assignment services are straightforward. The
C-based algorithm for ASBUF is outlined below. ASBUF returns
the buffer header address that the caller now has possession of
and is responsible for releasing. If no free buffer is found,
ASBUF takes the error return.

Licensed Material 5-16 Property of Data General

ASBUF (*BH addr out, *found);
{ --
/**

* Assign a buffer to a base level caller. *
* The LRU must be locked when searching it. *
* The search is for any buffer header without the I/O in *
* progress and long-term lock bits set. *
**/

call BSLOCK (&BFLRU.W, QLOCK);

ASBEX: /* Label at which search begins */

call NFSAC (BFLRU.W, BQST, QTIOP+QTLKB, &BH_addr);

/**
* No buffer found. *
* If the rescan flag was set (by RELB, RELM, RELD), rescan *
* BFLRU.W. If not, record a failure statistic and notify *
* the caller that no buffer was assigned. *
**/

if (buffer not found)
{
call XLOCK (&LKBLRU.W, BPDTRAN);
if check bit (&LKBLRU.W, BPDCHNG)

{
clear_bit (&LKBLRU.W, BPDTRAN);
goto ASBEX;
}

else

}

{
clear bit (&LKBLRU.W, BPDTRAN);
clear bit (&BFLRU.W, QLOCK);

T~NOBUFS += 1;
*found = FALSE;
return;
}

/* Search failed. */

/* Get lock to check */
/* LRU rescan flag. */
/* Rescan flag set! */
/* Clear xlock and */
/* rescan BFLRU.W. */

/* Rescan flag */
/* NOT set. */
/* Clear LRU xlock. */
/* Clear search lock.*/
/* Buff failure stat.*/
/* Return not found */
/* status to caller. */

/**
* Found a buffer. Make sure it is free. *
* If there are users or waiters, or the long-term lock is *
* held (being flushed), it is not free to deal out. *
* So ASBUF restarts the search from the top. *
**/

call FXLOCK (BH_addr, BBQTRAN);

if «BH_addr->BQRQC.W != 0) I I
(check bit(BH addr->BQST,BSLKB»)

{ - -

clear bit (BH addr, BBQTRAN);
goto ASBEX; -
}

Licensed Material 5-17

/* Get BH trans lock */

/* Waiters + users?
/* Or BH locked?
/* You bet, sorry.
/* Clear trans lock
/* and rescan LRU.

*/
*/
*/
*/
*/

Property of Data General

/**
* Buffer is free, but was it modified? *
* Modified buffers must be flushed to disk before they can *
* be assigned. They were not flushed when released since the *
* data was maintained in memory. Modified buffers on the *
* LRU were released with RELM call. *
**/

if check bit (BH_addr->BQST, BSMOD) /* Free buffer mod? */ -
{ /* Yes sir. */
set bit (BH addr, BQLKB) ; /* Set flush lock. */
clear bit (BH addr->BBQTRAN); /* Clear trans lock. */
call FLBUF (BH_addr) ; /* Down the tubes, */
goto ASBEX; /* and restart scan. */
}

/**
* Finally, a free buffer header is available and assigned! *
* Bump the use count for the caller, make its status "ready",*
* and invalidate its old contents. *
**/

BH_addr->BQUSC += 1;
BH_addr->BQST = 0;
BH_addr->BQDBN = -1;
BH_addr->BQLAH.W= -1;

/* One user so far. */
/* Status = ready. */
/* No dbn yet. */
/* No Ida yet. */

/**
* BH in use, so it must be dequeued from the LRU. *
* ASBUF dequeues it from either the FCB or LCB buffer list *
* as well, since its contents are now invalid. It is *
* possible that the BH is on neither FCB/LCB list, but UNLBH *
* handles that case by ignoring it. *
**/

call DQBCN (BH_addr); /* Dequeue from LRU! */

if (BH addr->BQLCB.W & 020000000000)
call OFFLCB (BH_addr->BQLCB.W, BH addr); /* DQ from LCB */

else /* or */
call UNLBH (BH_addr->BQFCB.W, BH_addr); /* DQ from FCB */

/**
* Buffer assigned. *
* Clear the BH transition lock and the BFLRU.W search lock. *
* Return the BH address. *
**/

clear bit (BH addr, BBQTRAN);
clear-bit (&BFLRU.W, QLOCK);

*BH addr out = BH addr
*found = TRUE;
return;

} /* end of ASBUF */

Licensed Material 5-18

/* Clear BH xlock
/* Clear LRU lock

/* Return BH addr.

*/
*/

*/

/* That's all folks! */

Property of Data General

5.9 Enqueuing Buffer Headers for Disk I/O (NQBHR/NQBHl)

After a system buffer is assigned, it must be initialized. The
caller of ASBUF need only determine the logical disk address
(LDA) of the data to be accessed (BQLAH.W) and set the type of
request (BQST). The data address (BQADR.W) is calculated at
system initialization and remains static. The number of blocks
to transfer (BQNBK) for system buffers is always 1. CCB Request
Management must compute these values given the CCB input
parameters. The Buffer Management services that enqueue a
buffer header to a UDB are called NQBHR and NQBHl.

Both NQBHR and NQBHl enqueue
appropriate unit in the LDU.
be sent is determined by the
data.

an input buffer header to the
The unit to which the request must

logical disk address (LDA) of the

NQBHR determines the unit on which the logical address falls by
comparing BH addr->BQLAH.W with UDB addr->UDLAH.W on each unit
(beginning wIth the first). If the-logical disk address (LDA)
specified in the buffer header is less than the last logical
disk address on the unit, the data will be found on that unit.
The buffer header is enqueued to the UDB and the driver
initiates the I/O to the device. Since the LCB points to the
first unit in the LDU, its address becomes the input parameter
in ACI.

NQBHR is called when the unit on which the logical disk address
(LDA) of the request is unknown. There are essentially three
circumstances that necessitate this service.

1) Enqueue a general logical disk request
a. via CCB Request Management, called because the

requestor did not know the logical disk address of
the data.

b. via Buffer Management (NQLDRQ service), called
because the requestor already had the logical disk
address of the data.

2) Flush modified Buffer Headers to disk
a. from FCB Buffer List on file last close.
b. from FCB Buffer List on LDU release.
c. to service a RELF (release and flush) BH request.
d. to service a RELM (release modified) BH request

when a modified buffer is dequeued from the LRU
during ASBUF.

3) LDU initialization - Read Name Block and ACL Block.

In all the above cases, the logical disk address of the
requested data is already in the buffer header at offset
BH_addr->BQLAH.W when the NQBHR call is made. CCB Request
Management calculates it during file index level traversal. Any
valid buffer header to be flushed must already have the data
logical address stored within. LDU Management retrieves the LDU
Name and ACL Blocks' logical disk addresses (LDAs) from the
first unit's DIB. The only other case which warrants further
discussion is the Buffer Management service NQLDRQ.
Licensed Material 5-19 Property of Data General

NQLDRQ, eNQueue a Logical Disk ReQuest, is the Buffer Management
service that enqueues a buffer header for external, non-File
System components. The NQLDRQ : NQBHR relationship is analogous
to the NQCRQ : NQCCB relationship. For reasons of modularity,
NQLDRQ exists to provide a clean interface into the File System.
It relieves the external caller of the responsibility of
explicitly assigning, initializing and enqueuing a buffer
header.

There is one additional feature of NQLDRQ that makes its
existence essential. While a system buffer allows for a maximum
transfer of one disk block, NQLDRQ services buffer header
requests for multiple blocks of data. NQLDRQ accomplishes this
by NOT enqueuing a system buffer, but by allocating space for a
buffer header on the stack. The caller of NQLDRQ sets up a
packet with the buffer header request specifications (the only
argument). NQLDRQ moves the packet information, which includes
the address of a reserved ring 0 memory location and the number
of blocks to transfer, to the buffer header on the stack. NQLDRQ
invokes NQBHR to enqueue the buffer header to the appropriate UDB
and pends (calls BWAIT). Finally, when NQLDRQ is done, it exits
normally with a WRTN and the buffer header disappears with the
stack.

NQLDRQ is the buffer management equivalent of the File
Management NQCRQ service for [system] read and write requests.
Its calling routines are listed below. Note that although the
physical read/write block system call services are part of the
File System, they make use of the NQLDRQ's ability to transfer
multiple blocks to a memory address supplied by the caller.

Callers of NQLDRQ

Caller Reason

PRDB.P Physical I/O read block system call.
PWRB.P Physical I/O write block system call.

READSY Read a system non-resident page from the
overlay area on disk.

SWAPIO Swapfile I/O.

READ EXT Read process table extender from swapfile.
WRITEEXT Write process table extender to swapfile.

Licensed Material 5-20 Property of Data General

For I/O type requests, NQBH1 assumes the caller already knows
the unit on which the logical disk address (LDA) provided in the
buffer header falls. Therefore, no search for the proper unit
must be done. Instead of the LCB address, the UDB address is
input in AC1. The buffer header is enqueued directly to the
specified UDB. Non-I/O type requests do not require a logical
disk address (LDA), since the command in the status word is
sufficient information for the disk controller. NQBH1 is called
numerous times only by LDU Management and disk drivers to:

1) Read and write a physical unit's DIB,
2) Service unit recalibration requests (RECAL),
3) Service get unit status requests (GSTS).

Since only the mother processor is able to enqueue disk I/O (see
Section 4.2.2), NQBHR/NQBH1 must verify that the caller is
running on the mother JP before the buffer header is enqueued to
the UDB. If the mother JP is not running, the buffer header is
enqueued to the global buffer header wait queue, BHWQ.W, through
the BH driver enqueue link word, BH_addr->BQQLK.W. This offset
normally represents the BH link when it is enqueued to the UDB
for disk I/O, but it is used as the BHWQ.W link as well. Buffer
Management then unpends the Disk Manager Task (which ALWAYS runs
on the mother JP), who simply issues the NQBHR.

There is one important routine, not expanded in the NQBHR
pseudo-code, that deserves further explanation. STUNT, start
unit, is called by NQBHR when the request to be enqueued to the
UDB is the first on the UDB's BH request list, UDCRQ.W. Since
physical units understand only physical disk addresses, this
address must be calculated and stored in the UDB (UDDAH.W) along
with the number of blocks to transfer (UDNBK). Furthermore, if
the request runs off the end of physical unit, STUNT splits the
request over multiple units. This is done by putting the first
logical disk address (LDA) of the next unit in BQLAH.W and the
number of blocks for the second transfer in BQNBK. When the
disk interrupt service routine realizes that there are still
more blocks to transfer by checking BQNBK (really a special
case), it will enqueue the BH to the next unit (if it exists).
Following is an illustration of a multiple unit LDU and its
logical/physical address relationships:

phy=O
log=

UNIT 0
======

UDFAH.W = -010
UDLAH.W = 067

INV VISIBLE
SPACE SPACE

7 10
o

77
67

Licensed Material

UNIT 1
======

UDFAH.W = 060
UDLAH.W = 0157

INV
SPACE

VISIBLE
SPACE

100 107 110
70

5-21

177
157

UNIT 2
======

UDFAH.W = 0150
UDLAH.W 0247

INV
SPACE

VISIBLE
SPACE

200 207 210
160

277
247

Property of Data General

The physical address of a request is calculated by applying the
following formula:

UDB addr->UDDAH.W = BH_addr->BQLAH.W - UDB addr->UDFAH.W;

UDB addr->UDLAH.W is the unit's last logical disk address (LDA),
and UDB addr->UDFAH.W is the unit's first logical disk address
(LDA). -Notice that the first logical disk address compensates
for invisible space; it is simply 010 (invisible space blocks)
less than the first valid logical disk address on the unit. The
following examples serve as clarification. A request for
logical disk address 0 would translate into physical address 010
(0 - (-010» on unit O. A request for logical disk address 070
corresponds to physical address 010 (070 - 060) on unit 1. In
order to read/write the DIB in physical block 3, the logical
disk address of the request must be specified as -7, since -7 -
(-010) = 3. (LDU Management sometimes changes UDFAH.W to 0, so
the actual physical address of the DIB can be specified!)

The inputs and outputs of NQBHR/NQBH1, as well as the C-based
algorithm for NQBHR, are illustrated below.

Inputs/Outputs for NQBHR and NQBH1

Variable Input Output

ACO BH Post Processor UDB address.
address.

ACI LCB address (NQBHR). Unchanged.
UDB address (NQBH1).

AC2 BH address. Unchanged.

#define MKDSK 0517 /* Masks out all disk interrupts

NQBHR (BH pp addr, LCB_addr, BH_addr, &UDB_addr_out)
{ - -

*/

/**
* Set the BH post-processor address. *
* The pp is called from interrupt level to unpend CB or IOCB.*
**/

Licensed Material 5-22 Property of Data General

/**
* Enqueue the BH to BHWQ.W if the caller not running on the *
* mother JP. The Disk Manager Task will do the NQBHR! *
**/

if (!check_bit (&MYPPCB.W, BCPMST»
{

/* Mother processor? */
/* No. Let mom enque */
/* Lock BH. */ set bit (BH addr, BQLKB);

call XLOCK (&IOCBLK.W, BPDTRAN);
enqueue to tail (&BHWQ.W, BH addr,
clear_bIt (&IOCBLK.W, BPDTRAN);
call DWAKE;
return;
}

BH addr->BQQLK.W);

/* DMTSK will do it */

/**
* Set I/O-in-progress and clear error bit. *
* I/O-in-progress should NOT already be set! *
**/

if check bit (BH addr, BQTIO) /* I/O in progress? */
call PNIC (14050); /* YES? Fatal error */

else /* No, so set it . . . */
set bit (BH_addr, BQTIO); /* . . . now . */ -

clear bit (BH_addr, BQTER); /* No errors yet. */

/**
* Enqueue BH to the UDB on which the requested Ida falls. *
* Check each UDB on the LCB, starting with the first. *
* If the Ida is invalid, we will panic! */
**/

for (UDB_addr = LCB addr->LBUDP.W;
UDB addr 1= 0;
UDB addr = UDB_addr->UDUDL.W)

{
if (BH addr->BQLAH.W < UDB addr->UDLAH.W) /* Is LDA on */

{ - /* this UDB? */
/**
* Yes, Ida on this UDB. *
* Must mask out all disk interrupts, bump enq BH count *
* (global and UDB), and update disk metering stats if *
* metering is to be done (please see CODE for more). *
**/

call MASK (MKDSK);
NQDBHRS += 1;
UDB addr->UDCQL += 1;
do metering statistics;

Licensed Material 5-23

/* during I/O enque */
/* Global BH enq cnt */
/* UDB BH enq cnt */
/* Meter meter meter */

Property of Data General

/**
* If this is the first BH on the UDB request list, *
* make it the first request and start the phys unit. *
* STUNT and the start-up DCT routines start the *
* unit/controller and get the request underway. The *
* next time the host hears from this buffer header is *
* when the disk interrupts to signal I/O completion. *
* (STUNT explained above in this section.) *
**/

if (UDB addr->UDCQL == 1)
{ -

UDB addr->UDCRQ.W = BH addr;

call STUNT;

/* Only request */

call (UDB addr->DCT addr->DCSUP.W);
call (UDB-addr->DCT-addr->DCSTR.W);
}

/**
* Not first request to UDB. *
* Let the unit's enqueue routine do the work, since *
* enqueue algorithms are disk-specific. *
* On non-unicorn type disks (e.g., DPF), the unit/ *
* controller are already started, and the BH pp will *
* adjust UDDAH.W and UDCRQ.W to start the next BH req *
* on its way. Unicorn types (e.g., DPJ) must be know *
* about ALL new BHs when they are enqueued (NOW!). *
**/

else
{
call (UDB addr->DCT_addr->DCENQ.W);

if check bit (BH addr, BDUCN)
{- -

/* Unicorn dev? */
/* Yes */

call (UDB addr->DCT addr->DCSUP.W);
call (UDB-addr->DCT=addr->DCSTR.W);
}

}

/**
* BH enqueued and on its way. *
* "UNMASK" restores old interrupt mask to CMSK. *
* Send back the UDB address to caller, and we're done! *
**/

call UNMASK;

*UDB addr out =
return;

UDB_addr;

} /* end of big if */
} /* end of for */

Licensed Material 5-24 Property of Data General

/**
* If we exit the "for" loop, the logical disk addr requested *
* was greater than the last logical address on the LDU. *
* That is intolerable, so panic. *
**/

call PNIC (14047);

} /* end of NQBHR */

Licensed Material 5-25 Property of Data General

5.10 Pending on Buffer Header I/O Completion (BWAIT)

After the buffer header has been enqueued to the UDB by NQBHR,
the caller must await I/O completion. Buffer Management
provides a service to pend the waiting control block after
issuing NQBHR, NQBHl or NQLDRQ. This service is called BWAIT.

Since it is possible for the I/O to complete even before the
control block calls BWAIT, the l/O-in-progress bit and the BH
lock bit must be checked before the actual pend. If either bit
is set (I/O incomplete), BWAIT sets the waiting on this buffer
header bit (BBQWAIT) and calls the Process Management service
MPEND, which removes the CB from ELQUE and places it on
PELEMQ.W.

When I/O finally completes, the buffer header post processor
will unpend the CB, and BWAIT will pass control back to its
caller. The requested disk data is now accessible in memory
through the buffer header data address BH_addr->BQADR.W.

Licensed Material 5-26 Property of Data General

5.11 Releasing System Buffer Headers

After the caller of ASBUF/BLASB possesses the returned buffer
header address, the buffer is removed from the LRU and its use
count is incremented. It is the responsibility of the assigner
to undo these actions so the buffer will become free for general
system use. There are four Buffer Management services to
"release" (or free) system buffer headers.

Variant Function

RELB Vanilla release system buffer.

RELM Release system buffer and set modified bit.

RELF Release system buffer and flush it.

RELD Release system buffer and destroy contents.

After I/O completes on a system buffer and the data address
contains the requested disk block contents, the buffer user is
free to modify the buffer's contents. If the buffer user
decides not to modify the contents, the buffer is released
normally (RELB). Directory Management typically does this after
reading DDEs.

If the buffer user does modify the contents, the buffer can
either be released modified (RELM) or flushed immediately
(RELF). Directory bit map blocks are released modified. The
blocks will be found on the FCB buffer list and the modified
contents will remain in effect. The block is flushed before an
assigner attempts to use it and when the file (directory) is
closed. If the system crashes before the block is flushed to
disk, the FIXUP utility will correctly rebuild the directory.
Buffers are released to be flushed when the buffer contains data
that must be written to disk immediately. For instance, when a
file is created, the buffers containing the new FNB and FIB are
released flushed.

Buffers are "destroyed" (RELD) when their contents are no longer
valid. The most common case occurs during file delete and
truncate processing. The system buffers that hold deleted index
blocks are released and destroyed, since those index blocks will
never (and should never) be referenced again. LDU Management
destroys the buffer containing the DIB of a released LDU. The
driver of DPM type diskettes assigns a system buffer just to
make a quick recal request and read a block of data. When it's
finished, it does a RELD. Upon errors from NQBHR/NQBHl, buffers
are often released and destroyed. The buffer's content is
invalidated by filling the data block number (BQDBN) and logical
disk address (BQLAH.W) fields with -1.

The C-based algorithm for all Buffer Management buffer release
services is illustrated below. Since most of the code is
common, a case statement allows special pre-processing to be
done for the specific version called. The only input is the
buffer header address.

Licensed Material 5-27 Property of Data General

RELB (BH addr) /* In: BH address */
RELD (BH-addr) /* In: BH address */
RELF (BH-addr) /* In: BH address */
RELM (BH=addr) /* In: BH address */
{
/**

* RELEASE A SYSTEM BUFFER. *
**/

switch (release routine)
{

}

case RELF:
set bit (BH addr, BQTFL);
set-bit (BH=addr, BQTMD);
break;

case RELM:
set bit (BH_addr, BQTMD);
break;

case RELD:
call XLOCK (BH_addr, BBQTRAN);

BH addr->BQUSC -= 1;
if-(BH addr->BQUSC != 0)

call PNIC (14065);

if (BH addr->BQWTC.W != 0)
call PNIC (14112);

ENQH (&BFLRU.W, BH_addr);

BH addr->BQDBN = -1;
BH-addr->BQLAH.W = -1;
BH-addr->BQST
BH-addr->BQFLGS
break;

case RELB:
break;

= 0;
= 0;

/* RELEASE AND FLUSH */
/* Set BH flush bit */
/* and BH modified */

/* RELEASE MODIFIED */
/* Set BH modified */

/* RELEASE & DESTROY */
/* Get BH trans lock */

/* Decr use count. */
/* Use count better *
/* be 0 on RELD!!!!! */

/* There better be 0 */
/* waiters on RELD!! */

/* Enque to LRU head */

/* Invalidate file */
/* blk num and Ida. */
/* Clear status word */
/* Flags (trans lock)*/

/* RELEASE BUFFER */
/* Fall through ... */

/**
* Release common code (except for RELD). *
* If the buffer contents are not being invalidated (RELD), *
* decrement use count. If there are no waiters on this BH, *
* it can be enqueued to the LRU TAIL to give it most time to *
* be found on FCB/LCB. RELD was enqueued to the HEAD so it *
* will be the first one assigned, since its contents are no *
* longer valid. *
**/

Licensed Material 5-28 Property of Data General

if (release routine != RELD)
{
call FXLOCK (BH_addr, BBQTRAN);

if (--BH_addr->BQUSC == 0)
{
if (BH addr->BQWTC == 0)

/* Get BH trans lock */

call PENQT (&BFLRU.W, BH_addr);

/* Use count O? */
/* Yes. */
/* Any waiters? */
/* No - to LRU. */

}

/**
* If this is a RELF, BQTFL will be set, and the buffer will *
* be flushed. If the caller left the BH locked, the buffer *
* will be flushed. The bits will be turned off when the *
* flush completes by the BH post processor PPBMD. *
**/

if (check_bit (BH addr, BQTFL) II /* Is buffer to */
check bit (BH=addr, BQLKB)) /* be flushed? */

{ /* Yes. */
clear bit (BH addr, BBQTRAN); /* Clear xlock. */
call FLBUF (BH_addr); /* Flush it. */
return; /* All done! */
}

}

/**
* Common code. *
* Clear BH transition lock and get BFLRU.W transition lock. *
* If CCB Management was waiting for a BH to become free, *
* wake up one waiting IOCB before checking base level. *
* If no IOCBs waiting, wake up all base level waiters, who *
* will have to fight it out in ASBUF to get it. *
**/

clear bit (BH addr, BBQTRAN);
call XLOCK (&LKBLRU.W, BPDTRAN);

if (LKBLRU.W->PDUSERS != 0)
{
call LCBWU (&buffer_assigned);

if (! buffer assigned)
call UNPEND (SKBUF);

}

/*
/*

/*
/*
/*

/*
/*

Clear BH trans lock */
Get BFLRU trans lck */

Waiters for any BH? */
Yes. */
Try waking an IOCB. */

Was one waiting? */
No, unpend CBs. */

/**
* Done! *
**/

clear bit (&LKBLRU.W, BPDTRAN);
return;

} /* end of REL* */

Licensed Material 5-29

/* Release trans lock */
/* and back to caller. */

Property of Data General

5.12 System Buffer Header Post-Processing

Buffer header post-processing is called from (disk) interrupt
level by subroutine IODON. NQBHR/NQBH1 stored the address of
the appropriate BH post-processor in the BH when the request was
enqueued. The four BH post-processors were outlined in Section
5.5.5. As with the CCB post-processors, the main objective of
the BH post-processors is to unpend the CB or IOCB awaiting
request completion. Some buffer header management is done as
well. Since the most common routine is PPBSY, the generic
post-processor called when a general buffer header request is
made (from base level), it is illustrated algorithmically below.

PPBSY (BH_addr)
{

/***
* Get transition lock while modifying BH status. *
* I/O is complete, so clear the modified, I/O in progress, *
* flush and BH long-term lock bits. Leave the other status *
* bit alone, though. *
***/

call XLOCK (BH_addr, BBQTRAN);
BH_addr->BQST &= -l-QTMOD-QTIOP-QTFLS-QTLKB;

/***
* Now check if any CBs were waiting for this BH. *
* BWAIT, called after NQBHR for CBs to pend, sets BBQWAIT *
* and uses the BH address as the pend key. If the bit is *
* set, clear it and wake up the CB. *
***/

if check bit (BH_addr, BBQWAIT)
{
clear_bit (BH addr, BBQWAIT);
call UNPEND (BH_addr);
}

clear bit (BH_addr, BBQTRAN);
return;

} /* end of PPBSY */

Licensed Material 5-30

/* CB waiting on BH?*/
/* Yes. */
/* Clear waiting bit*/
/* And unpend CB. */

/* Clear trans lock */
/* and leave. */

Property of Data General

5.13 Physical Disk User Read/Write Services

A physical disk opened as such (not part of an LDU) is treated
as an enormous file of user accessible contiguous data. No
AOS/VS file structure is assumed to exist. The concept of
visible and invisible space is also invalid. As far as the
operating system is concerned, logical disk addressing is not
understood.

The system call services that initiate physical I/O are PRDB.P
(read) and PWRB.P (write). When physical I/O is performed, the
start address of the requested file is actually the first
physical address of the disk unit, block O. Since the desired
physical address is automatically available, a direct buffer
header request can be made. PRDB.P/PWRB.P use the Buffer
Management NQLDRQ service instead of NQBHl, because the FCB of
the disk unit contains only the LCB address, not the UDB
address. (In the case of a disk opened as a separate physical
unit, an LCB is allocated anyway, and the only unit's UDB is
enqueued to it.)

Below is the C-based algorithm for PRDB.W/PWRB.W.
input is the channel number in ACI and the packet
AC2. Much of the code is common with the logical
system call services RDB.P/WRB.P (Section 3.4.5).

#define SCDCG 0144

PRDB.P/PWRB.P (TACl.W, TAC2.W)
{

The user's
address in
disk I/O

/***
* This is a system call with a packet. *
* Get the necessary data into system space. *
***/

channel num = TACl.W;
caller pkt = TAC2.W
wblm (&Caller_pkt, &sys_pkt, pkt len);

/***
* Find the (user) CCB for the input channel. *
* DFAULT.P returns error code n CERWD of control block, *
* which the system call processor will understand. *
***/

PTBL addr = *CC.W->CPTAD.W;
call-DFAULT.P (channel num, PTBL addr, &CCB_addr);

if (error) return; - /* Error code in CERWD */

L~censed Material 5-31 Property of Data General

/***
* Got the CCB. Do validity checking. *
* All error returns now must unpin the CCB page (which *
* DFAULT.P pinned!) and return 0 bytes transferred before *
* returning errors. The first error return does this, the*
* rest are omitted to save space, BUT THE SAME IS DONE! *
***/

/* Store num blks to xfer. Error out on null request. */
if «CCB addr->CBNBK = sys_pkt->PSTI & 0377) == 0)

{ -
call UNPIN (CCB addr, PTBL addr);
TACl.W = 0;
return (Invalid_system_call_parameter);
}

/* Must be a valid block count.
if (sys pkt->PRNH.W & 037740000000 != 0)

return (Invalid_system_call_parameter);

/* CCB must not be locked already.
if (get bit (CCB addr, BCBLK»

return (Simultaneous_requests_on_same_channel);

/* Cannot be peripheral type CCB (?FGFN, IPC file)
if (CCB addr->CBSTS & BCBPE»

return (Wrong_I/O_type_for_OPEN_type);

*/

*/

*/

/* CCB/FCB unique IDs must match. Panic 6034 if not!!! */
call VALCID (CCB_addr);

/***
* CCB/Request A-OK so far. *
* Init the CCB some more. *
***/

TCB addr = *CC.W->CATCB.W
CCB addr->CBTCB.W = TCB addr;
CCB addr->CBPTA.W = PTBL addr;
CCB addr->CBUAD.W = sys_pkt->PCAD.W

if (TCB addr->SYSWD -- ?RDB)
CCB addr->CBFLG = CBRED;

else
CCB addr->CBFLG = CBWRI;

/* Save TCB addr */
/* TCB addr to CCB */
/* and PTBL addr */
/* and buffer addr */

/* If ?RDB, CCB */
/* read command; */
/* if ?WRB, CCB */
/* write command. */

/***
* If this is a unit CCB, let the correct unit I/O handler *
* finish it. Long Dispatch to the routine. The unit type*
* is stored in bits 11-15 of the CCB status word. *
***/

if (CCB addr->CBSTS & BCBUN)
{ -
dispatch to unit handler (CCB addr->CBSTS & CUMSK); } - - -

Licensed Material 5-32 Property of Data General

/***
* Check requestor's access to the file. *
* User opens of dir files were given NO access privileges *
* when the file was opened, as only AOS/VS, specifically, *
* resolution services, can perform directory file I/O. *
***/

if (TCB_addr->SYSWD = ?RDB) /* ?RDB ? */
if (! CCB addr->CBSTS & read access) /* Yes, read accs? */

{ /* Nope */
if (CCB addr->CBFCB.W->FBTYP = DIRECTORY_TYPE)

return (Illegal_file_type);
else

return (Read_access_denied);
}

if (TCB addr->SYSWD = ?WRB) /* ?WDB ? */
if (! CCB addr->CBSTS & write access)/* Yes, writ accs? */

{ /* Nope */
if (CCB addr->CBFCB.W->FBTYP = DIRECTORY_TYPE)

return (Illegal_file_type);
else

return (Write_access_denied);
}

/**
* Physical I/O only allowed on physical disk units! *
* Calculate that the request fits on the disk unit. *
* Since the CCB page was pinned by DFAULT.P, it must be *
* unpinned before the error return (steps omitted here). *
**/

if (CCB addr->CBFCB.W->FBTYP != ?FDKU)
return (Wrong_I/O_type_for_OPEN_type);

/* Phys disk? */
/* No, bad. */

final blk num = sys pkt->PRNH.W + CCB addr->CBNBK;
if (fInal-blk num >-FCB addr->FBDFH.W) /* Req fits? */

return-(End_of_file); /* No, bad. */

/**
* Since physical I/O calls NQLDRQ, a Buffer Management *
* service, the modified bit must be set here. This step is *
* not done in RDB.P/WRB.P because I/O Management sets it *
* when processing the CCB request. *
**/

if (TCB addr->SYSWD = ?PWRB)
set bit (FCB_addr, BFBMD);

Licensed Material 5-33 Property of Data General

/**
* MFLTPIN: check write access enabled on user pages of PIO *
* status block, and faults and pins them. *
* DMTST: validates, faults and pins user buffer pages. *
* CHRG: charges caller for I/O and makes time slice checks. *
**/

call MFLTPIN (BITO + PIBLT, caller pkt->PRBB, PTBL addr);
call DMTST (CCB addr->NBLK * 512.,-CCB addr);
call CHRG (SCDCG, CCB_addr->CBNBK, CCB-addr);

/**
* Enqueue Logical Disk Request: NQLDRQ. *
* The only argument is a packet, built here. NQLDRQ will *
* enqueue a buffer header to the unit's UDB to initiate I/O. *
* See preceding description of PIO for packet specifics. *
**/

set up packet (nqldrq packet);
call NQLDRQ (nqldrq_packet);

if (error)
TCB addr->SYSWD 1= PERB;

/* Ready packet */
/* and start I/O. */

/* Set TCB err bit */
/* if err occurred */

/**
* Data back to user. Release pinned pages. *
* Move PIO status blk to user packet. The buffer header PP *
* moved the status data to PIO_status_blk, a local address. *
* Then, unpin the pages of the user status block, the user *
* buffer (pinned by DMTST) and the CCB (pinned by DFAULT.P). *
**/

wblm (&PIO_status_blk, &caller_pkt->PRBB, PIBLT);

call MUNPIN (PIBLK, caller pkt->PRBB, PTBL addr);
call UNPIN (caller pkt->PCAD.W, PTBL addr);
call UNPIN (CCB_addr, PTBL_addr);

if (TCB_addr->SYSWD 1 PERB)
error return;

else
return;

} /* end of PRDB.W/PWRB.W */

Licensed Material 5-34

/* Error during PIO? */
/* Yes, code in TCB. */
/* No, */
/* Normal return. */

Property of Data General

6 Logical Disk Unit (LDU) Management

6.1 Overview

A logical disk is an association of physical disks that creates
the abstraction of a single, contiguously addressable unit.
This extended disk space support is maintained within the
operating system by the LDU Management layer of the File System.
The functions of LDU Management, each of which will be discussed
in detail in this section, can be summarized as follows:

1) To provide a contiguous array of logical disk blocks,
which span one or more physical disks and which hide
disk blocks used for LDU Management (invisible space);

2) To provide bad block remapping for logical disk blocks,
which preserves the contiguous array of logical blocks
in spite of isolated bad sectors;

3) To maintain the allocation status of each logical disk
block and the status of the LDU as a whole.

The concept of logical disk addressing is fundamental to LDU
Management. Logical disk addresses, beginning with 0 and ending
with n, correspond to the sequential blocks in the visible space
portion of an LDU. Since the invisible space of each PU in an
LDU consists of 8. reserved blocks, logical address 0
corresponds to physical address 8. The following diagram
illustrates the logical/physical disk address in an LDU
consisting of two physical units.

Logical Disk Unit

Unit 1 Unit 2
========================= =========================

Phys
Addr:

Log
Addr:

INVISIBLE

o

-8

Licensed Material

VISIBLE

7 8

o

INVISIBLE VISIBLE

n n+l n+8 n+9 2n

n-8 n-15. n-7 2(n-8)

6-1 Property of Data General

6.2 Logical Unit Control Block (LCB) Parameter Definitions

Offset

LBLBP.W 0
LBUDP.W 2
LBCLP.W 4
LBCLB.W 6
LBBML 10
LBWDL 11
LBSTS 12
LBTMI 13
LBMFC.W 14
LBMBF.W 16
LBRCB.W 20
LBCSH.W 22
LBMSH.W 24

Logical Unit Control Block (LCB)

LCB list pointer.
UDB Pointer (to first UDB in LDU).
LCB Cache Buffer List Queue Descriptor (head).
LCB Cache Buffer List Queue Descriptor (tail).
LDU Bit Map Lock.
LDU Bit Map Withdraw Lock.
LCB status word.
Temporary (not used).
LDU Bit Map FCB address.
LDU Bit Map FCB Buffer Header address.
LDU Root CCB address.
Current space on LDU.
Maximum space on LDU.

LBBLT 26 Length of LCB.

There is one LCB per logical disk unit. It holds information
relating to the LDU it represents. The LCB is allocated from
main system memory (GSMEM) and initialized by LDU
Initialization. Unit Management allocates an LCB when opening a
physical unit as well. Even though physical disk units opened
for physical I/O are NOT logical disk units, the LCB performs
the function of holding the necessary, single UDB of the unit.
Each LCB is enqueued to the tail of the global LCB chain, whose
head and pointers are found at AOS/VS global locations .MLCB and
.ELCB, respectively. The LCB is linked through offset
LCB addr->LBLBP.W.

One Unit Definition Block (UDB) is allocated for each physical
unit in the LDU. The UDBs are linked in unit sequential order
through offset LCB_addr->LBUDP.W. LDU Initialization sets up
this singly-linked list. When a logical disk request is made,
Buffer Management scans the list of UDBs to determine where to
enqueue the buffer header. The UDB is illustrated and explained
in detail in Section 6.3.

The LCB cache buffer list contains the system buffer headers
that had previously been on a file's FCB buffer list. They were
put on the LCB cache buffer list when the file was closed. (See
Buffer Management for more details.)

The LCB contains two LDU Bit Map lock words. Only CCB Request
Management withdraws and deposits disk blocks; therefore, only
CCB Request Management can access the LDU Bit Map.
LCB_addr->LBBML is the LCB Bit Map global lock. The LDU
withdraw and deposit operations must first acquire this
exclusive lock before withdrawing or depositing disk blocks in
the LDU Bit Map. This means that either a withdraw or a deposit
operation may be active at anyone time, but not both at the
same time. However, even if this lock is free, LDU withdraw
operations may not acquire it if the "withdraw lock" is held.

Licensed Material 6-2 Property of Data General

This field can contain the following legal values:

o = the lock is free
1 = blocks are being withdrawn

-1 = blocks are being deposited

If a withdraw or deposit operation attempts to acquire this lock
but finds that it is already held, the currently running IOCB
will be pended with pend key IOBMW. When the lock is freed,
IOCBs waiting on the lock are unpended. The LDU Management
routines that acquire the LDU Bit Map global lock are MWAIT (for
withdraw requests) and MSWAT (for deposit requests). This lock
is released by the CCB Request Management routine IOWU.

LCB addr->LBWDL is the "withdraw lock." CCB Request Management
Command processing for ?TRUNCATE (CCB commands CBTRNI and CBTRN2)
acquires this exclusive lock to prohibit any withdraws from the
Bit Map (i.e., to disallow any LDU disk block allocations). This
is because file truncation involves modifying index blocks whose
modified contents must be flushed to disk before they can be
withdrawn. Consider the following example: A request to
truncate a file at data element 65. is enqueued. CCB Request
Management deposits all file blocks past data element 65. and
zeroes out their corresponding pointers in the system buffer
holding the index block. The disk has not reflected the index
block modification yet. If, by chance, the system crashed before
the index block buffer was flushed to disk, and those previously
deposited blocks were since withdrawn (re-allocated), there would
be two pointers to the blocks: one in the index block and one
"somewhere" else. The withdraw lock eliminates this condition
from arising by prohibiting withdraws during file truncation.
Withdraws are not prohibited during delete processing because the
file's first address (in the FIB) is zeroed out, thus cutting off
all ties between the index blocks and the file's contents.

Two conditions must hold true in order for the Bit Map withdraw
lock to be set:

1) the Bit Map withdraw lock must be free, and

2) the Bit Map global lock must not be equal to 1, i.e., a
withdraw must not be in progress.

If either of the above conditions are true, the currently
running IOCB will pend with the pend key IOWWT. When the Bit
Map withdraw lock and the Bit Map global lock are freed, IOCB
lock waiters on the respective locks are unpended. The LDU
Management routines that acquire and release the LDU withdraw
lock are MWLCK and MWULK, respectively.

The Bit Map FCB address is stored at LCB addr->LBMFC.W by LDU
Initialization. When LDU Management reads bit map blocks into
system buffers, the buffer header address is temporarily saved
at LCB addr->LBMFB.W. These buffers are released modified and
flushed back to the bit map when the LDU released.

Licensed Material 6-3 Property of Data General

The LCB status word is found at LCB addr->LBSTS. The following
bit positions are defined:

LBFIX (0) = Must run FIXUP before re-initializing the LDU.
LBFUR (4) = FIXUP recommended on this LDU.
LBTRAN (5) = LCB transition lock.

LBFIX and LBFUR are set dynamically by File Management (in
routine FFCB) if an invalid FCB address is found in the FIB of
any file on the LDU. This indicates to LDU Release that FIXUP
must be run on the LDU and, if the system is releasing the disk
because it is shutting down, that an abnormal system shutdown
has occurred. (Refer to LDU Release for details.) The LCB
transition lock is acquired by Buffer Management operations that
search and modify the LCB cache buffer list.

The LCB holds storage for the LDU root CCB address at
LCB addr->LBRCB.W. Space specifications are kept in the LCB as
well. The current space available on the LDU is maintained at
LCB addr->LBCSH.W. The maximum space available, static and set
by LDU initialization, is found at LCB addr->LBMSH.W

Licensed Material 6-4 Property of Data General

6.3 Unit Definition Block (UDB) Parameter Definitions

Offset

UDDCT.W
UDUNT
UDCRQ.W
UDLAH.W

o
2
3
5

UDUDL.W 7
UDUDP.W 11

UDFAH.W 13
UDNBK 15
UDSTS 16

UDCYS 17
UDNSC 20
UDNHD 21

UDDAH.W 22

UDDOA 24
UDDOC 25
UDERC 26
UDERF 27
UDUNS 30
UDSTB 31
UDFLG 32
UDETY 33

UDBBT.W 34
UDRMH.W 36

UDINT 40
UDCQL 41
UDMET.W 42
UDEST 44
UDRTY 45

UDTBK 46

UDEOA 74
UDEOC 75
UDDIA 76
UDDTB 77

Unit Definition Block (UDB)

DCT address of this device.
Device unit number.
Unit Request list. Chain of enqueued BHs.
Unit Last Logical Address.

UDB Forward Logical Link.
UDB Forward Physical Link.

Unit start Address.
Number of blocks to transfer for next request.
UDB status word.

Cylinder size in sectors.
Number of sectors per track.
Number of disk heads.

Physical Disk Address of request data.

Driver-specific DOA word.
Driver-specific DOC word.
Error Counter.
Error Flags.
Driver-specific DIA/DIC words.
Driver-specific DIB word.
UDB Flag word.
Another error flag.

Bad Block Table address.
Physical disk address of data in Remap Area.

Controller inference flag.
Current Buffer Header Queue length.
Metering area address.
Device error logging words ...
Error status (bits 0-7), retry count (bits 8-15).

Number of blocks to transfer for this request.

DOC word on fatal error.
Cylinder number of fatal error.
DIA/DIC word on fatal error.
DIB word on fatal error.

UDBLT 100 Length of UDB.

Licensed Material 6-5 Property of Data General

One UDB is allocated from main memory (GSMEM) by Unit Management
for each open physical unit in the system. The UDB contains
unit specific data. It points to the device's Device Control
Table (DCT), which hOlds essential device-specific data. The
UDB is accessed and modified primarily by specific device
drivers. UDBs are allocated for non-disk units, such as
magnetic tapes, multiprocessor communications adaptors, and line
printers. For this reason, the parameter descriptions in the
diagram above will not be explained here; they have been and
will be presented separately by the operating system component
that uses the parameters.

When a physical unit is specified as part of an LOU, and the LOU
becomes initialized, the UDB is linked both to the DCT physical
unit llst (DCT addr->DCPUL.W) through UDB addr->UDUOP.W, and to
the LCB (LDB addr->LBUDP.W) through UDB addr->UDUDL.W. When a
physical unit is opened separately for physical I/O, the same
procedure is followed, despite the fact that the unit is not
part of an LDU. This mechanism allows for physical I/O service
routines to use the same Buffer Management services that enqueue
disk I/O. AOS/VS determines that any physical unit is opened
("Device in use") by searching for a UOB that describes the unit
on the DCT physical unit list.

Licensed Material 6-6 Property of Data General

6.4 LDU Initialization

A logical disk is created by the DFMTR utility. Physical and
logical disk unit information that ties the units together is
stored in physical block 3 (the DIB) of each unit. A newly
created LDU contains no directory sUb-structure; it consists
solely of itself, the LDU root directory. The result of LDU
initialization is the appearance of the LDU name in the existing
AOS/VS directory hierarchy, and the ability for system users to
"dir into" the LDU and perform (valid) file operations within
it.

LDU initialization is essentially equivalent to creating
directory data entries in the LDU's parent directory and then
"opening" the LDU. However, since one logical disk is not
necessarily limited by the boundaries of one physical disk, each
physical unit in the LDU must be "opened." File Open Services
does not provide a variant for LDU opens, but LDU Management
explicitly calls File Management routines to create the
databases necessary to initialize the LDU. The following
databases are allocated:

1) One FNB, FIB, and FAC for the LDU
2) One FCB for the LDU
3) One system CCB for the LDU
4) One LCB for the LDU
5) One UDB for each unit in the LDU

6) One MDB, if the LDU is mirrored
7) One MURB for each unit, if the LDU is mirrored
8) One mirror UDB for each unit, if the LDU is mirrored

The DIB of the first unit of the LDU contains the addresses of
the LDU name and ACL blocks. In order to make the LDU visible
to the user community, its name must be "grafted" onto a
specified directory (an option in the ?XINIT packet). This
operation is accomplished by creating an FNB entry in the
directory. Even though the LDU's in-core Funny FIB (in the FCB)
is flushed to the DIB upon release, a FIB entry must be created
in the directory to hold the universal ACL and to point to a
FAC. An LDU can be initialized by any user possessing write or
append access to the directory into which the LDU is to be
grafted and owner access to the LDU's root directory.

LDU Management calls GFCB to allocate an FCB and GSMEM to
allocate a system CCB for the LDU. The FCB contains the Funny
FIB, which was read in from the LDU's DIB. Since the
initialized LDU is accessible to the entire user community, not
exclusively to the process that issues the ?XINIT, a system CCB
must be allocated. LDU Management directly calls on the Memory
Management service GSMEM to allocate the memory. The system
(root) CCB is stored at LCB addr->LBRCB.W. The file open count,
FCB_addr->FBOPN is initialized to 0, and the system CCB pointer
contains the address of the root CCB.

Licensed Material 6-7 Property of Data General

One LCB is allocated for the LDU. The LCB contains the data
that LDU Management needs to remember with respect the LDU as a
whole. Although none of the individual disk unit files that
compose the LDU are accessible while the LDU is initialized, no
FCB/CCB pair exists for them. However, one UDB is allocated for
each. Unit Management provides a service, GTUDB.P, which
allocates a UDB. Unit Management links the UDB to the device's
DCT physical unit list (DCT addr->DCPUL.W). If a process
attempts to open a disk unit that is already open or is part of
an initialized LDU, its UDB will be found on DCT addr->DCPUL.W,
and a "Device in use" error will result. LDU Management links
the UDB to the LCB physical unit list, LCB addr->LBUDP.W. The
following diagram illustrates how these databases are linked
together for the LDU file:

CCB FCB LCB UDB

CBFCB.W ===> FBLCB.W ===> LBUDP.W ===> UDUDL.W ===> UDB
<------ FBSCB.W links

all UDBs
in LDU.

DCPUL.W ===> UDUDP.W ===> UDB
links
all UDBs
in DCT.

DCT

The FCB of any file contains the LCB address of the LDU on which
the file resides. When a user issues an I/O request, CCB
Management retrieves the LCB address from the FCB, and uses it
as a parameter to the Buffer Management routine that enqueues
the buffer header to the proper UDB (NQBHR).

The LDU initialization procedure is performed by the XINIT.P
service. XINIT.P is accessed by user processes via the ?XINIT
system call. XINIT.P provides support for initialization of
both mirrored and non-mirrored LDUs. Although AOS/VS 7.50
supports the ?INIT system call, DINIT.P (?INIT implementation)
actually translates the ?INIT system call packet into the valid
?XINIT system call packet, and subsequently calls XINIT.P.
?INIT can be used to initialized non-mirrored LDUs only.

The only variant of XINIT.P is IXINIT.P. System initialization
calls IDINIT.P (internal variant of DINIT.P) to initialize the
logical disk unit for the SWAP and PAGE directories, :BOTH.
IDINIT.P reformats the input packet and calls IXINIT.P to
perform the initialization operations. AOS/VS 7.50 does not
support mirroring on :BOTH; therefore, IDINIT.P is called
instead of IXINIT.P.

Licensed Material 6-8 Property of Data General

The C-based algorithm of the XINIT.P service is illustrated
below. Most of the primitive operations have not been
pseudo-coded; however, the comments provide detailed
descriptions of the internal sequence of events that occur
during LDU initialization. Read the comments! The only input
to XINIT.P is the system call packet address. Output values are
returned in the packet.

XINIT.P (*user pkt addr) /* Input: ?XINIT packet */
{ - -

/**
* XINIT.P: Initialize an LDU. First some preliminary stuff. *
**/

call move packet params to stack (user pkt addr, &pkt addr);
call move=pu_listl_to_stack (user_pu_lIstl~ &pu_listl);
call validate_packet_params;

/**
* Each unit in the LDU must be validated. One LCB for the *
* LDU must be allocated, and one UDB for each unit must be *
* allocated and linked to the LCB as well. The following *
* routine performs this and other necessary actions. *
* It is expanded in the pseudo-code following XINIT.P. *
**/

call validate units and allocate databases; - - - -

/**
* Done examining physical units in the LDU. *
* But, all the previous work must be repeated for the *
* second image list if a mirrored LDU is being initted! *
* Another LCB and UDB chain must be created for the *
* mirror image of the LDU being initted. *
* The above routine is called again to accomplish this. *
* (Stack data collected from the first image is saved so *
* stack can be modified by the second image's data.) *
**/

if (pkt addr->?XINIT PKT.COUNT == 2) /* Mirrored LDU? */
{- - /* Yes! */
call validate units and allocate databases; - --

/***
* Validate all kinds of mirror information to ensure that *
* these LDUs can indeed be mirrored. This routine is *
* expanded and explained in full detail in Section 6.12. *
***/

call validate_mirror_for LDU_init; /* Validate mirror */

} /* end of extra work for mirrored LDU */

Licensed Material 6-9 Property of Data General

/**
* Open the LDU and link the LCB into the system LCB chain. *
* *
* LNKLCB.P: Traverses UDB chain on LCB and sets each unit's*
* first/last logical addresses (UDB addr-)UDFAH,UDLAH.W).*
* Effectively "open" the LDU by allocating and initting *
* an FCB and a system CCB. A CPB is explicitly *
* allocated here as well. The local dir hierarchy level *
* of LDUs is 0 (FCB addr-)FBLVL). The DIB Funny FIB is *
* moved into the FCB Funny FIB area, and remains resident*
* until the LDU is released. The CCB use count is *
* initialized to 1. The system CCB address is stored at *
* LCB addr-)LBRCB.W, providing the LCB-)FCB-)CCB link. *
* Finally, the LCB is linked to the tail of the global *
* LCB chain (.ELCB). *
**/

call LNKLCB.P; /* This is a big job!
/* Almost done, now!

*/
*/

/**
* Read in the name and ACL blocks of the LDU. *
* RDNAC.P: Allocates memory for the LDU name and ACL, and *
* reads the name and ACL blocks into the area. Their *
* logical disk addresses were saved on the stack by *
* INITLD.P. *
**/

call RDNAC.P; /* Read LDU name/ACL blks */

/**
* Create an FNB/FIB for the LDU in the directory specified *
* in the caller's packet. *
* *
* GFTLDU.P: Graft LDU into the existing dir hierarchy. *
* Calls DRSLV.P to get the parent dir CCB address. *
* The parent CCB use count is incremented. *
* Calls VCREATE.P to create the FNB/FIB DDEs. The FCB *
* address is stored in the FIB! The caller must have *
* write or append access to the dir in which the LDU *
* is being initted. *
* Calls VSACL.P to create FAC and fill it with ACL. *
* Calls PESTAC.P to verify that caller has owner access *
* to the LDU's root directory. *
* Finally, calls CULCK.P to unlock the parent CCB, *
* which also FLUSHES THE FUNNY FIB, causing the "LDU *
* initialized" bit (IBSIN) in the DIB to get set! *
* (IBSIN was set by LNKLCB.P, but FCB was not flushed.) *
**/

call GFTLDU.P; /* LDU is initialized!!! */

Licensed Material 6-10 Property of Data General

/**
* If mirrored LDU, set time stamps in the MDB and move *
* the LDU name to the MDB (MDB addr->MDLDN). *
**/

call SET_START (MUNSYNC, MDWSR);
call move_LDU_name_to_MDB;

/* Set MDB time stamp*/
/* LDU name to MDB */

/**
* Finally, release any memory still allocated and return. *
* (RDNAC.P allocated memory for the LDU name and ACL, and *
* GTLCB.P allocated memory for the Funny FIB.) *
**/

call RSMEM (&LDU name block);
call RSMEM (&ACL-block);
call RSMEM (&Funny_FIB_block);

return;

} /* end of XINIT.P */

/* Formalities,
/* formalities,
/* formalities!

*/
*/
*/

/**
* This routine validates that each physical unit is indeed *
* a member of the LDU, and that each PU is valid. An LCB is *
* allocated for the LDU, and a UDB is allocated for each PU. *
* The BBT address is read and saved in the UDB, and all UDBs *
* are linked both through the LCB and through the DCT. *
**/

validate units and allocate databases(); { - - -

for (pu = 1; pu <= pu list1->?PUL PKT.COUNT; pu++)
{ --

/**
* Open physical unit. *
* OPENPU.P calls File Open Services XEOPEN.P to exclusively*
* open the PU. An FCB and (system) CCB is created. The *
* disk unit's DIB is also read in, via a call to BLKIN. *
* Only ?FDKU (disk unit) files can be initialized, else an *
* "Illegal device name type" error will be returned. The *
* caller must have execute access to the unit file, else *
* a "File access denied" error is returned. *
* An LCB is allocated temporarily, and later released. *
**/

call OPENPU.P; /* Open the physical unit */

/**
* Check disk format revision number. *
* The disk rev number is found at DIB addr->IBREV. *
* Valid revs are: *
* SCPRV (3) - Any disk, except KISMET II, no ADEX area. *
* SCKRV (4) - KISMET II disk, no ADEX area. *
* SCREV (5) - Any disk with an allocated ADEX area. *
**/

call CKREV.P; /* Check disk rev number */

Licensed Material 6-11 Property of Data General

/**
* Verify that the current state of the PU is valid to *
* ensure that the LDU can be initialized. *
* (The PU must actually be closed before returning errors.)*
**/

if (DIB addr->IBLDF & IBSIP != 0)
return (Cannot_init_LDU_with_sync_in_progress);

if (DIB addr->IBLDF & IBSIN != 0)
return (Cannot_init_LDU ___ Must run FIXUP);

/**
* Check the mirror state of the PU. *
* If the PU is not part of a mirror, verify that the caller*
* is not attempting to init a mirrored LDU by specifying 2 *
* image lists in the packet. If the PU is part of a *
* mirror, and the caller only specified one image list in *
* the packet, he must also specify the OVERRIDE option, or *
* he will get an "Incomplete mirror specified" error. If *
* the caller is attempting to init a mirrored LDU, the *
* mirror status in the DIB must show synchronized (MSYNC), *
* or he will get "Mirrored LDU is not synchronized" error. *
**/

call CKMIR; /* Check PU mirror state */

/**
* The following is only done for the first PU in the LDU! *

* *
* GTLCB.P: allocates an LCB for the LDU and inits it, *
* allocates a Bit Map FCB and inits it, *
* checks num of PUs in LDU is valid (DIB_addr->IBNPU *
* must be between 1 and 8). Also saves the DIB Funny *
* FIB in memory for later, when it is stored in the FCB. *

* *
* SETFX.P: sets the "FIXUP recommended on this LDU" bit in *
* the LCB and in the caller's packet if the IBFXR bit is *

set in the DIB flag word. The init will be successful,*
but the caller should release it and run FIXUP. *

*
*
* *
* For all other PUs, check that the LDU unique ID in the *
* DIB is equal to that of the first unit's unique ID, *
* (which was previously saved on the stack). *
* The unique ID is found at DIB addr->IBIDH,IBIDM,IBIDL. *
**/

if (pu -- 1)
{ /* For first PU in LDU ... */
call GTLCB.P; /* Get LCB, Bit Map FCB */
call SETFX.P; /* Test FIXUP bit in DIB */
}

else /* For all other PUs */
call CKLDI.P; /* Validate LDU IDs. */

Licensed Material 6-12 Property of Data General

/**
* Init the LCB and the Bit Map FCB. *
* INITLD.P: moves current/max space from DIB to LCB, where *
* it is maintained while the LDU is initted; inits Bit *
* Map FCB params to start free block search at beginning *
* of the LDU Bit Map. *
**/

call INITLD.P; /* Init LCB and BM FCB */

/**
* Release and flush the system buffer containing the DIB. *
* An error will signal that there were problems flushing *
* the DIB. For example, if the caller does not have write *
* access to the PU, an error will occur. Therefore, this *
* flush is an access validation as well. *
**/

call FLDIB.P; /* Flush DIB to disk */
if (error) /* Did it go? */

return (File_access_denied); /* No! Must assume ERFAD. */

/**
* Close the physical unit. *
* ECLOSE.P will perform the internal close of the PU that *
* OPENPU.P did earlier. The FCB and (system) CCB will *
* disappear. So will the LCB temporarily created by the *
* unit open. The close is done now because no more I/O *
* will be done to this PU. *
**/

call ECLOSE.P (CCB_addr); /* Close the PU now */

/**
* Get a UDB for the PU. *
* A UDB is allocated from GSMEM. If metering is enabled, *
* a metering area is allocated as well. The UDB is linked *
* to the DCT PU list (DCT addr->DCPUL.W). A call is made *
* to the disk init routine (DCT addr->DCTIU.W) to init the *
* UDB (head, cylinder, size info) and to load the data *
* channel map slots. A disk recalibration (RECAL) command *
* is issued to the drive as well. *
**/

call GDUDB.P; /* Allocate UDB, init unit*/

/**
* Read the Bad Block Table (phys addr in DIB). *
* If there are bad blocks, allocate one block of memory *
* and move the BBT data into the block. The BBT remains *
* resident for as long as the LDU is initialized. The *
* BBT pointer is stored at UDB addr->UDBBT.W. (There is *
* special handling for KISMET II type disks. The BBT is *
* accessed by two pointers in the DCT: DCBBl.W, DCBB2.W.) *
**/

call RDBBT.P; /* Read, save BBT in mem */

Licensed Material 6-13 Property of Data General

/**
* Link the UDB to the UDB list at LCB addr->LBUDP.W. *
* UDBs are linked in order of sequence number in the LDU. *
**/

call LNKUDB.P; /* Link UDB on LCB chain */

} /* end of for loop */
} /* end of validate units and allocate databases */

6.4.1 Special Case: Master LDU Initialization

System Initialization calls a special LDU Management service,
MLDUI, to initialize the system master root LDU. The basic LDU
initialization algorithm in MLDUI is identical to that of
XINIT.P, however, some subtle internal changes are evident.

One such difference is that there is no system call packet
associated with MLDUI. The physical unit list for the master
LDU is dynamically built by SYSBOOT. SYSBOOT moves this list to
the location in memory designated by AOS/VS label MLDTB. When
MLDUI is invoked, it has direct access to the physical unit list
required to boot the LDU. MLDUI validates these entries by
comparing them to the device names and unit numbers in the Unit
Table (UNTTB) that VSGEN built. If the master root is a
(synchronized) mirrored LDU, SYSBOOT moves the physical unit
list of the secondary image to the location in memory designated
by the label MLDMIRTB.

Another difference is the assigning of a system buffer to read
in the DIB. MLDUI must call ASBUF, the Buffer Management
service that assigns the caller a system buffer, but takes the
error return if no system buffer is available. XINIT.P calls
BLASB to assign the buffer, which pends the caller's CB if no
buffer is available. Although in the case of MLDUI the
occurrence of such an event is highly unlikely, MLDUI cannot
call BLASB, which would hang the system if a buffer could not be
assigned.

Finally, if the master root is being initialized, the system CCB
for the LDU is not allocated dynamically from GSMEM. The master
root CCB is always found at AOS/VS label RTCCB. Furthermore,
the master root has no parent directory. Therefore, the parent
directory CCB pointer in the LDU's CCB and FCB is O.

MLDUI takes the liberty of saving the master root LDU name at
the address pointed to by global label MLDPT.W. MLDUI prints
out the "Master LDU: ldu name" message to the operator console
as well.

Licensed Material 6-14 Property of Data General

6.5 LDU Release

When an LDU is initialized into the system, its root directory
and all subordinate directories are available for use by system
users (provided they have access privileges). The use count in
the system CCB is incremented whenever Resolution Services opens
the LDU, which occurs each time a file within the LDU is opened.
The LDU is visible to the user community until it is "released."

LDU Release is essentially equivalent to deleting the LDU's
directory data entries in its parent directory and then
"closing" the LDU. The LDU can be released only if the use
count in the system CCB is 1, the initial value stored by LDU
Initialization. LDU Release must deallocate the disk-based and
in-core databases that LDU Initialization allocated.

The FCB of any file contains the LCB address of the LDU on which
the file resides. Before an FCB is allocated, the FFCB File
Management operation checks to see if it already exists by
examining the FIB. If the FCB memory address stored in the FIB
(FIB_addr->FIFCB.W) is non-zero, the FCB is assumed to be
resident. However, File Management knows that there is the
slight possibility that the FCB may be invalid. For example, if
the system came down without closing the file and was rebooted
without running FIXUP over the LDU, an invalid FCB address would
be found in the FIB. Therefore, FFCB checks that the existent
FCB found at FIB addr->FIFCB.W is:

1) in ring 0
2) is a valid ring 0 address
3) matches the FIB pointer in the parent directory

If any of these conditions evaluates false, and FFCB was called
by File Deletion Services, FFCB will set the "FIXUP recommended
on this LDU" bit in the LCB. If any of these conditions
evaluates false, and FFCB was called by any other component,
FFCB will set the "Must run FIXUP on this LDU" bit in the LCB.
FIXUP is only recommended if the caller is File Deletion
Services because no FCB buffers will be flushed to disk. In
other cases, such as opens or closes, FCB buffers will later be
flushed to disk and possibly corrupt files.

When an LDU is released, various validation checks must be made
on the state of the LDU. For example, if the system is shutting
down, the bits set by FFCB will be checked and if they are set,
force an abnormal shutdown. LDU Release and File System
Shutdown code may set the following bit positions in global
location AOSBT. If AOS/VS System Shutdown detects that anyone
of these bits is set, it prints "Abnormal system shutdown" and
various FIXUP messages:

ABNUCB (0) - Use counts too high for at least one
root CCB.

ABNFOB (1) - Too many FCBs left when the Master Root
LDU is being released.

Licensed Material 6-15 Property of Data General

ABNBFA (2) Invalid FCB address found in FIB.

ABNNET (3) - Error occured from KCCB.P when releasing
:NET CID.

There are three variants of LDU Release. They are represented by
the following entry points:

Variant

DRLSE.P

IRLSE.P

IRLSNR

Function

Release an LDU for a user process.
Implementation of the ?RELEASE system call.

Internal release of an LDU.

Internal release of an LDU, but do not
release the LDU's FCB.

DRLSE.P is called by any user process to release a previously
initialized LDU. The only restriction is that the caller must
have write and execute access to the parent directory of the
LDU.

IRLSE.P is called by AOSjVS System Shutdown and Emergency
Shutdown code. Emergency Shutdown is run in two cases:

1) if the system panics, and
2) if the system manager issues the "START 50" command from

the SCP-CLI (on a halted system).

ESD must first close all files that are open (i.e., files with a
corresponding FCB). If the file type of a file to be closed is
?FLDU, ESD calls IRLSE.P to release the LDU instead of
KFCB.PjKCCB.P. The last file to be closed is the master root
LDU (:), and ESD calls IRLSE.P normally to release the LDU. ESD
never returns from IRLSE.P when the master LDU is released.

Normal system shutdown is run when PID 2 (the OP CLI)
terminates. Process Management checks for this condition, and
if PID 2 is indeed terminating, system shutdown begins. The
module that processes normal system shutdown is SDOWN.P. First,
all processes are terminated. As a result, all files which had
been opened by the processes are closed. Finally, SDOWN.P
traverses the global LCB chain (.MLCB) and releases all
initialized LDUs from the system. If the LDU's use count is 1,
all files in the LDU have been closed normally by SDOWN.P, and
the LDU can be released normally via a call to IRLSE.P. If the
LDU's use count is greater than one, one or more files remain
open, and the LDU is released abnormally through IRLSNR. This
variant of LDU Release does not release the FCB. Furthermore,
the "LDU is initialized" bit in the DIB is left set, prohibiting
the LDU from being initialized without having FIXUP run. A
global count of "abnormal" LDUs, NRFCB, is incremented, which
will force an abnormal system shutdown when the master root LDU
is released.

Licensed Material 6-16 Property of Data General

Release code has built-in tests to accommodate some special
conditions that must be checked if the master root LDU is being
released. If the releases of all the other LDUs in the system
had been successful, IRLSE.P prints "System shutdown" at the
operator console; otherwise, it prints "Abnormal system
shutdown." IRLSE.P prints FIXUP messages as well.

The only input to LDU Release code is the pathname of the LDU to
be released. The C-based pseudo-code algorithm of DRLSE.P
(including tests made by its variants) follows:

DRLSE.P (*pathname)
{

/* Input: BP to LDU pathname */

/**
* DRLSE.P: Release an LDU. *
* First retrieve the CCB of the LDU to be released. DRSLV.P *
* returns it LOCKED. *
* If the file is not of type LDU, it cannot be released. *
* If the use count is not 1 (initted value by XINIT.P), the *
* LDU is still in use and cannot be released. *
**/

call DRSLV.P (*pathname, NSERULES+CKCOMLOG, 0, CCB addr);

if (CCB addr-)CBFCB.W-)FBTYP 1-.- ?FLDU) /* Is this an LDU? */
return (Illegal_file_type); /* Nope. Sorry! */

if (CCB addr-)CBUSC 1-.- 1) /* Is LDU in use? */
return (LDU_in_use); /* Yup. Sorry! */

/**
* If the master root LDU is being released, check if the *
* "abnormal shutdown" bit should be set. If any other LDUs *
* were released through IRLSNR (abnormal release: release *
* LDU but do not release FCB), NRFCB was incremented. *
* Therefore, if FCBCN-NRFCB is not equal to 1, some other *
* LDU was released abnormally, and the "abnormal shutdown" *
* bit must be set so that ESD will print out the message. *
**/

if (CCB addr = RTCCB)
{ -

if ((FCBCN-NRFCB) != 1)
set bit (&AOSBT, ABNFOB);

}

/* Releasing Master LDU? */
/* Yes. */
/* All other LDUs rlsed */
/* released normally? NO!*/

/**
* If not releasing Master LDU (if DRLSE.P), the caller must *
* have write access to the LDU parent dir to release the LDU.*
* Then, the LDU file's DDEs (FNB, FIB, FAC) must be deleted *
* from its parent dir. NOTE: If Resolution Services tried *
* to access (lock) the LDU's CCB while we had it locked, the *
* caller must be unpended now. Resolution Services does not *
* try to get the lock again immediately, but rechecks the *
* existence of the filename (FNB) first. Since we have *
* just deleted it, the FNB will not be found and Resolution *
* Services will return ("File does not exist") to its caller.*
**/

Licensed Material 6-17 Property of Data General

else /* Not releasing */
{ /* Master LDU. */
call CLOCK (CCB_addr->CBPCB.W); /* Lock parent CCB. */

call ESTAC.P (CCB addr->CBPCB.W, &ACL_privs);
if (! ACL privs &-write access)

return (File access_denied);

call VDELETE.P (CCB_addr->CBFIB, CCB_addr->CBPCB.W);

if (check bit (CCB addr, BCBPL))
call UNPEND (CCB_addr);

}

/* Unpend waiters of */
/* CCB lock. */

/**
* Release the modified BHs on the FCB buffer list. *
* Release the modified BHs on the Bit Map FCB buffer list. *
**/

call RELBF (FCB addr);
call RELBF (LCB=addr->LBMFC.W);

/* Flush FCB and Bit */
/* Map FCB buffers */

/**
* Read the DIB (physical block 3 on first unit in LDU). *
* Update the DIB by moving (ECLIPSE/MV WBLM instruction) the *
* contents of the FCB Funny FIB to the DIB buffer. *
**/

call BLKIN (CCB addr, &DIB BH addr);
DIB addr = DIB_BH_addr->BQADR~W;

/* Read the DIB
/* Save DIB addr

wblm (DIB_addr->IBFFB, FCB_addr->FBSTS, FCOML);

*/
*/

/**
* If the "must run FIXUP" bit is NOT set in the LCB, clear *
* the "LDU is initialized" bit in the flag word. But, if the*
* "FIXUP is recommended" bit is set in the LCB, set it in the*
* DIB as well. Then update the space fields in the DIB. *
**/

if (!check bit (LCB addr, BLBFX))
{ - -

DIB addr->IBLDF = DIB addr->IBLDF & (-IBSIN-l);
if (check bit (LCB addr, BLBFR))

DIB addr~>IBLDF =-DIB addr->IBLDF I IBFXR;
}

DIB addr->IBCSH.W = FCB addr->FBCPB.W->CPCSH.W; /* Update */
DIB-addr->IBMSH.W = FCB-addr->FBCPB.W->CPMSH.W; /* space */

/**
* Flush the DIB. *
* For mirrored LDUs, UPDMIR.P is called to write the DIB of *
* each disk independently, since certain words in the DIB *
* must be unique for a mirrored LDU (LDU ID, other mir info).*
* For non-mirrored LDUs, set the modified bit in the buffer *
* header and call NQBH1 to write out the DIB. *
**/

Licensed Material 6-18 Property of Data General

if (check bit (LCB addr->LBUDP.W,BUDMIR)) /* Mirror LDU? */
{ - - /* Yes. */
call UPDMIR.P; /* Write DIBs. */
}

else
{ /* Not mirror! */
set bit (DIB BH addr, BQTMD); /* Write DIB. */
call NQBH1 (&PPBSY, LCB_addr->LBUDP.W, DIB_BH_addr);
call BWAIT;
}

/**
* Release the DIB buffer header. *
* Release the Bit Map FCB memory. *
* Release each UDB in the LDU. Release the CPB memory. *
**/

call RELD (DIB BH addr);
call RSMEM (LCB_addr->LBMFC.W, FCBLT);

for (each UDB in the LDU)
{
if (! check_bit (UDB addr, BUDMIR))

call RECAL (UDB addr);

call RLUDB.P (UDB_addr);
}

/*
/*

/*

/*
/*

/*

Release DIB BH */
Release BM FCB */

Release UDBs */

Recal PUs in */
non-mirrored LDU*/

Release the UDB */

call RSMEM (FCB_addr->FBCPB.W, CPBLT); /* Release the CPB */

/**
* Do not release the FCB if this release is an IRLSNR, or if *
* there was an error writing to the DIB. When the master *
* LDU is released, an abnormal shutdown condition will be *
* detected (FCBCN-NRFCB will not be equal to 1). *
* Otherwise, release the LDU's FCB. *
**/

if (IRLSNR I I error_writing_the_DIB)
do not release FCB;

else
call RFCB (FCB_addr);

/**
* If the Master LDU is being released, do the following: *
* clear the LCB chain, disable interrupts, print appropriate *
* messages to the operator console. Then continue with *
* system shutdown. *
**/

if (CCB addr = &RTCCB)
{ -

.MLCB.W = -1;

.ELCB.W = -1;

INTDS;

Licensed Material 6-19

/* Master LDU? */
/* Yes. */
/* Clear out global*/
/* LCB chain. */

/* Disable interpts*/

Property of Data General

if (AOSBT != 0)
{
print ("Abnormal system shutdown");
print fixup messages;
} - -

else
print ("System shutdown");

/* Abnormal shutdn?*/
/* Yes. */

/* No. */
/* Normal shutdown.*/

if (SHUTR == 0)
goto STOPl;

else

/* Did OP CLI trap? No, continue */
/* normal shutdown in module ESD.SR. */
/* Yes, panic the system with code */

goto SHUTPR; /* 10001, because the OP CLI has */
/* terminated abnormally. */

}

/**
* Not releasing Master LDU. *
* Save the FIXUP error code (from LCB) if one is to be *
* returned to the caller. *
* Then destroy buffers on the LCB cache buffer list, remove *
* the LCB from the global LCB chain (.MLCB), and release *
* the LCB memory. *
**/

saved error code = 0;
if (check bit (LCB addr,BLBFX) && !SHTDN)

saved error code ~ "Must run FIXUP on LDU";
else if-(check bit (LCB addr,BLBFR)-&&-!SHTDN

saved_error_code = "Fixup_recommended_on_LDU";

call CLRLCB (LCB addr); /* Clear LCB buffs */
call REMLV (LCB-addr); /* Remove LCB */
call RSMEM (LCB-addr, LBBLT) ; /* Release LCB mem */

if (mirrored LDU) /* If mirrored LDU,*/
call RELMDB.P; /* reI MDB, MURBs */

call RSMEM (CCB_addr, CBBLT) ; /* Release LDU's */
/* system CCB now. */

/**
* Finally, lock the parent CCB before decrementing its use *
* count twice: once for the LDU's released FCB, and once for *
* the LDU's released CCB. KCCBE.P unlocks the parent CCB *
* and releases the CCB hierarchy opened by DRSLV.P earlier *
* in this module. *
**/

call CLOCK (PCCB_addr);
PCCB addr->CBUSC -= 2;

/* Lock parent CCB */
/* Decr use count */

goto KCCBE.P (PCCB_addr, saved error_code); /* Good-bye! */

} /* end of DRLSE.P */

Licensed Material 6-20 Property of Data General

6.6 Bit Map FCB Parameter Definitions

There is one Bit Map FCB per LDU. Although this database is
officially called an FCB, it contains only a few common
parameters with a typical file's FCB, namely the LCB address
(FBLCB.W) and the Buffer List Pointer queue descriptor
(FBBLP.W). The Bit Map FCB is dynamically allocated from main
system memory (GSMEM) during LDU Initialization, and its pointer
is stored in the LCB at LCB addr->LBMFC.W. The Bit Map FCB
holds information used by the LDU Withdraw/Deposit Blocks
operations. The most important parameters will be discussed in
detail in the next section.

Offset

FBLCB.W 0
FBBLP.W 2
FBSTS 6
FBTNB.W 10

FBLTE 11
FBBTLS 12

FBLNAD.W 13

FBBTLF 15
FBNMB 16
FBLFAD.W 20

FBWLTS 21

FBFLG1 22

FBBLKD 23
FBBITD 24

FBTMP1.W 25

BMF1.W 27

BMFN.W 31

BMPRN.W 33
35
43

FBNBZN 44
FBNBZL 45

Bit Map File Control Block (Bit Map FCB)

LCB address.
Bit Map FCB Buffer List pointer.
Unused.
Total Number of disk blocks being requested.

Num blocks left in Bit Map from point of search.
Original bit position of the free block.

Logical disk address (Ida) of next Bit Map
block to read in.

Number of disk blocks left to find.
Total number of disk blocks in Bit Map.
First Logical Disk Address of Bit Map.

Count of doub1ewords (or bytes) in left in
current map block. If 0, the current block has
been exhausted and the next must be read in.

If 0, search for <= 14. blocks.
If -1, search for > than 14. blocks.

Relative block number in Bit Map of root block.
Root bit displacement.

Temporary variable for WDCBK only.

Lda of first Bit Map block where a single block
was found, or where n blocks were deposited.
Lda of first Bit map block where n blocks were
found, or where n blocks were deposited.
Number of blocks (> 1) last allocated.
Unused area.
Unused area.
Total number of zero bytes to be find (WDCBK).
Number of zero bytes left to be found (WDCBK).

(The rest of the space is unused.)

FCBLT 56 Length of Bit Map FCB.

Licensed Material 6-21 Property of Data General

6.7 The LDU Bit Map

The DFMTR utility allocates an LDU Bit Map when it creates a
logical disk. Each bit in the LDU Bit Map indicates whether a
corresponding logical disk block is free or in use. Bit 0 in
the Bit Map corresponds to logical block 0; bit 1 corresponds to
logical block 1; and so forth until the last logical disk
address in the LDU. A zero (reset) bit indicates that the disk
block is free; a one (set) bit indicates that the block is
already in use. If a disk block is free, it can be allocated by
setting the bit in the LDU Bit Map, thus "withdrawn" from the
Bit Map. If a disk block is in use, it can be freed by
resetting the bit in the LDU Bit Map, thus "deposited" to the
Bit Map. The "root block" is the Bit Map block that contains
the first 0 bit that satisfies the request. This terminology is
used throughout AOSjVS LDU Management code.

The primary concern of AOSjVS LDU Management is to keep disk
fragmentation to a minimum, even at the cost of increased Bit
Map search time. One way to keep a sparse disk as compact as
possible is to search the Bit Map from the beginning each time
disk blocks are to be allocated. This will take the space
closest to the beginning of the disk. However, as the disk
becomes more full, unnecessary and wasteful time will be spent
searching through Bit Map blocks that have no space available.
To address this problem, while retaining the desirable feature
of compacting new allocations to the beginning of the disk, the
Bit Map FCB is used to maintain variables that optimize LDU disk
block allocation.

BMFCB addr->BMF1.W contains the logical disk address of the Bit
Map block where the last single block was found, or where the
last blocks were deposited. Thus, the search for a withdraw
request of a single block begins at this block. If a free block
is found, BMF1.W remains unchanged. If a free block is not
found, each Bit Map block following BMF1.W is searched until the
block is found. Then, BMF1.W is updated to contain the logical
disk address of the new Bit Map block. When a single block is
deposited, BMF1.W is examined. If the receiving Bit Map block
occurs earlier in the Bit Map than BMF1.W, then BMF1.W is
updated to point to the earlier block. Otherwise, it remains
unchanged. BMF1.W is initialized to the logical disk address of
the first Bit Map block.

BMFCB_addr->BMFN.W contains the logical disk address of the Bit
Map block where the last block of size BMFCB addr->BMPRN.W was
withdrawn or deposited. The search for a withdraw request of n
blocks, in which n < BMPRN.W, begins at map block BMF1.W. If n
>= BMPRN.W, the search begins at BMFN.W. If the n blocks are
not found, each following Bit Map block is searched until the n
blocks are found. When the n blocks are allocated, BMFN.W is
updated with the logical disk address of the beginning map block
containing the n blocks (disk block allocation can cover
multiple map blocks) and BMPRN.W is changed to n, regardless of
the beginning point of the search. Therefore, BMPRN.W varies
depending on the size of withdraw requests. When n blocks are
deposited, the receiving Bit Map block is checked. If it occurs

Licensed Material 6-22 Property of Data General

in the same or a later block than BMFN.W, both BMFN.W and
BMPRN.W remain unchanged. If it occurs at or before BMF1.W,
both BMF1.W and BMFN.W are updated to point to the earlier
block, but BMPRN.W is untouched because the next withdraw
request search, regardless of its size, will begin at the same
Bit Map block. Finally, if the n blocks are deposited somewhere
between BMF1.W and BMFN.W, BMFN.W is reset back to BMF1.W, and
BMPRN.W is again untouched. BMFN.W is initialized to BMF1.W and
BMPRN.W is initialized to 1.

LDU Management reads Bit Map blocks into system buffers by
calling the CCB Request Management service MBLKN. This
specially provided service takes as an input the logical disk
address of the block to be read. MBLKN calls Buffer Management
(ASBUF) to assign a buffer. MBLKN then enqueues the buffer to
the Bit Map FCB Buffer List queue and reads the specified Bit
Map block into the buffer. Of course, the buffer may already be
enqueued to the Bit Map FCB Buffer List queue, in which case no
disk I/O would be necessary. The buffer header address is
returned to LDU Management disk block withdraw and deposit
routines. These routines release the system buffers modified
(RELM). The modified buffers remain enqueued to the Bit Map FCB
until the LDU it represents is released. This approach reduces
the amount of total disk I/O and still provides full
functionality.

6.8 LDU Disk Block Allocation (Withdraw Blocks)

There are two LDU Management operations that withdraw disk
blocks from the LDU Bit Map:

1) WDBLK: withdraws 1 disk block, and
2) WDCBK: withdraws n contiguous disk blocks (n > 1).

These operations are called by CCB Request Management command
processing routines. Upon being invoked, these operations must
save the return address of the caller in the IOCB at save level
1 (IOCB addr->IOSL1.W). Control is returned to the caller
through-an indirect jump through this location.

The number of blocks requested to be withdrawn for WDBLK is
always 1. These requests are made to allocate file index
blocks, data blocks in files with data element size 1, and
directory bit map blocks. The number of blocks requested to be
withdrawn for WDCBK is equivalent to the data element size of
the file for which disk blocks are being allocated. This value
is readily available from IOCB addr->IODEH.W.

LDU Bit Map withdraws are done in two parts. First, a string of
enough zero bits to satisfy the withdraw request must be located
in the Bit Map. Second, the bits must be set. The zero bits
cannot be set as soon as they are detected because LDU
Management must ensure that enough free contiguous blocks will
be found in the string first. Otherwise, too much inefficient
and messy bit manipulation would result. For example, consider
a withdraw request of 256. contiguous disk blocks. If only 250.
contiguous blocks were found, and the insufficient number of
zero bits spanned two map blocks, the first map block would have

Licensed Material 6-23 Property of Data General

to be read again and the bits reset. This algorithm would cause
unacceptable performance and undue confusion.

The LDU Bit Map is searched in two ways: bit by bit if the
withdraw request is between 1 and 14. blocks, or by byte if the
withdraw request is greater than 14. blocks. If the request is
for greater than 14. blocks, at least one full byte of zero bits
(beginning on a byte boundary) must be found in the Bit Map.
Therefore, the search for the specified number of blocks begins
on a byte boundary, and full bytes are checked for zero values.
If the request is for less than 14. blocks, it is possible that
one full byte of zeroes is not needed to satisfy the request.
Since the high seven bits of byte x are adjacent to the low seven
bits of byte x+l, the 14. contiguous disk blocks to which they
correspond could be allocated without filling up all 8 bits in
either byte. Therefore, the Bit Map search for less than 14.
blocks is done by bit. Each doubleword after the beginning
point of search is checked for the specified number of free bits.
When the bits are finally set (in part 2 of the withdraw
algorithm), bit map data is accessed in doubleword increments,
regardless of the number of blocks requested, because all
contiguous bits are already known.

The following diagram illustrates why one full byte is not
needed for disk block allocation requests of 14 or less blocks.
The sufficient number of zero bits can be found in bits 1-14 of a
word. Any larger request would require that either byte consist
of all zeroes. It is clear why LDU Management searches the Bit
Map by byte for requests larger than 14 blocks.

1 0 0 0 0 0 0 0 0 0 0 0 000 1
_1_1_1_1_1_1_1 __ 1_1_1_1_1_1_1-
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte x Byte x+l

Most withdraw requests are for less than 14 contiguous blocks if
the system parameter to create files with a default elementsize
of 4 is specified at VSGEN time. This is the case with most
AOS/VS systems. The Bit Map is searched sequentially from the
beginning point of search (BMFCB addr->BMFl.W or
BMFCB addr->BMFN.W) until the correct number of contiguous zero
bits are located or until Bit Map blocks are exhausted.

Licensed Material 6-24 Property of Data General

The algorithm for withdraw requests of greater than 14 blocks is
slightly more complicated. The algorithmic approach taken by
WDCBK can be expressed as follows:

WDCBK (IOCB_addr);
{
/***

* Lock the Bit Map. *
* Withdraw and deposit operations are exclusive. *
***/

call MWAIT;

/***
* Calculate the number of full bytes needed to find. *
* Subtract 7 from original request, so that after the total *
* number of 0 bytes are found, only 7 to 14 bits remain. *
* This remainder can be split across two bytes! *
* Then, calculate the number of extra bits needed to find. *
***/

BMFCB addr->FBNBZN = (BMFCB addr->FBTNB.W - 7) / 8;
extra bits needed = 7 + (BMFCB_addr->FBTNB.W % 8);

/***
* Search the Bit Map for enough contiguous zero bytes. *
* If a set bit is found, search restarts at next byte. *
* If Bit Map exhausted, not enough contiguous disk *
* blocks error is returned. *
* Note: Bit Map blocks are read into system buffers *
* (implicitly by "search") and enqueued to the FCB buffer *
* list when released. *
***/

if (BMFCB addr->FBNBZN >= BMFCB addr->BMPRN.W)
search (BMFCB addr->BMFN.W, bytes_needed, &exhausted)

else
search (BMFCB_addr->BMFl.W, bytes_needed, &exhausted)

if (exhausted)
{
error code = Not_enough_contiguous_disk_blocks;
call IOWU; /* Unlock BM, unpend waiters */
XJMP @(IOCB addr->IOSLl.W);/* Error return to CCB Mgmt. */
} -

/***
* Enough bytes found. Between 7 and 14 bits remain. *
* First check the doubleword previous to the root block. *
* If the extra bits are not found, check the address after *
* the last byte checked. (Implicitly, if the byte is the *
* last one in the map block, the NEXT map block would be *
* read in.) *
***/

Licensed Material 6-25 Property of Data General

backsearch (BMFCB addr->FBTMP1,
extra=bits_needed, &num_bits found);

if (num_bits found < extra bit needed)
search (LCE addr->LBMBF.W->BQADR.W + current displacement,

extra_bits_needed-num_bits found, &num_bits found);

/***
* Has the request been satisfied? *
* The bits before the first full byte and after the last *
* byte have been checked. If the extra bits have been *
* found, the requested number of free blocks can be *
* withdrawn from the bit map. So, set the bits! *
***/

if (num bits found == extra bits needed)
set the bits (BMFCB_addr->FBLNAD.W,

BMFCB addr->FBBITD,
BMFCB-addr->FBTNB.W);

else
continue search;

/* Found enough?*/
/* Start block */
/* Bit offset */
/* Num bits req */

/* Not enough! */
/* Keep searching */
~

/***
* Update Bit Map n-block pointers. *
* Unlock the Bit Map and wake up IOCB waiters. Return. *
***/

BMFCB addr->BMFN.W = BMFCB addr->FBLNAD.W;
BMFCB-addr->BMPRN.W BMFCE addr->FBTNB.W;

call IOWU; /* Unlock BM, unpend waiters */
XJMP @(++IOCB addr->IOSL1.W);/* Good return to CCB Mgmt. */

} /* end of WDCBK */

6.9 LDU Disk Block Deallocation (Deposit Blocks)

There are two LDU Management operations that deposit disk blocks
from the LDU Bit Map:

1) DEBLK: deposits 1 disk block, and
2) DEBKS: deposits n contiguous disk blocks (n > 1).

Like the withdraw operations, these operations are called by CCB
Request Management command processing routines. Since withdraws
and deposits are exclusive operations (the Bit Map global lock
is acquired during both), the return address of the DEBLK caller
is saved at the same IOCB save level as the WDBLK caller,
IOCB addr->IOSL1.W. Control is returned to the caller through
an indirect jump through this location.

Licensed Material 6-26 Property of Data General

The number of blocks requested to be deposited for DEBLK is
always 1. These requests are made to deallocate file index
blocks, data blocks in files with data element size 1, and
directory bit map blocks. The number of blocks request to be
withdrawn for DEBKS is equivalent to the data element size of
the file for which disk blocks are being deallocated. The data
element size is found at IOCB addr->IODEH.

The C-based algorithm for DEBKS is illustrated below. The
inputs are the logical disk address of the first block to
deposit, and the IOCB address.

#define BITS PER BLOCK 4096 - -
DEBKS (lda_first_block, IOCB_addr);
{
/***

* The LCB cache buffers of logical disk data (index blocks, *
* DDBs, bit map blocks) must be removed since the data will *
* become invalid when this operation completes. *
* The Bit Map lock must be acquired. *
***/

call DELLCB;

call MSWAT;

/* Buffer Mgmt service to */
/* remove BHs from LCB cache.*/
/* Acquire Bit Map glob lock.*/

/***
* Calculate the first relative Bit Map block to which the *
* first block to be deposited corresponds. *
* Then adjust the I-block and n-block pointers in the Bit *
* Map FCB. These conditions were discussed in Section 6.6. *
***/

BMFCB addr->FBLNAD.W = BMFCB addr->FBLFAD.W +
lda_first_block / BITS PER BLOCK;

/* This block falls before I-block pointer? */
if (BMFCB addr->FBLNAD.W < BMFCB addr->BMFI.W)

{ - /* Yes */
BMFCB_addr->BMFI.W = BMFCB addr->FBLNAD.W; /* New BMFl */
BMFCB addr->BMFN.W BMFCB addr->FBLNAD.W; /* New BMFN */
}

/* This block falls before n-block pointer (but after BMFl)?*/
if (BMFCB addr->FBLNAD.W < BMFCB addr->BMFN.W)

{ - /* Yes */
BMFCB addr->BMFN.W = BMFCB addr->BMFl.W; /* New BMFN */
}

/***
* The block falls after the current n-block pointer BMFN.W. *
* Neither pointer is adjusted because n is larger than *
* PMPRN.W. Anyway, now is the time to read the bit map and *
* reset the bits corresponding to the logical disk blocks *
* being deallocated. *
***/

Licensed Material 6-27 Property of Data General

reset the bits (BMFCB_addr->FBLNAD.W,
BMFCB_addr->FBBITD,
BMFCB_addr->FBTNB.W);

/* start block */
/* Bit offset */
/* Num bits req */

/***
* Time to go home. *
* Unpend the first IOCB waiting for the lock. Then return. *
***/

call IOWU; /* Unlock BM, unpend waiters */
XJMP @(++IOCB_addr->IOSLI.W);/* Good return to CCB Mgmt. */

} /* end of DEBKS */

6.10 Bad Block Remapping

The Bad Block Table (BBT) for Data General model disks, except on
Model 6214 (KISMET II) disks, resides in physical block 2 of each
physical unit, and is only one block in length. The address of
the BBT for KISMET II type disks is found in the DIB, and
occupies 4K bytes (8 disk blocks) of space. This larger BBT is
necessary because KISMET II type disks typically have an
abnormally high number of bad blocks. The remainder of this
section will assume non-KISMET II disks.

The BBT contains the physical disk addresses of up to 126.
"bad" blocks, sectors whose data cannot be transferred by the
disk controller. Each LDU can have a maximum of (126. *
number of physical units) bad blocks. Bad blocks are flagged by
the AOS/VS DFMTR utility, and their addresses are written to the
BBT. In addition, the DFMTR allocates a remap area on the
physical unit (in visible space), to which the data at the bad
block is remapped. There is a one-to-one mapping between the
bad blocks listed in the BBT and the good data for that block in
the remap area. The BBT is set up as follows:

Offset BAD BLOCK TABLE (BBT)

BBNBB 0 Number of bad blocks on PU.

BBRAH.W 1 Physical disk address of remap area.

BBRAS 3 Size of remap area (blocks) . REMAP AREA

BBBBD 4 Physical address of bad block l. ==> Bad blk 1 data

6 Physical address of bad block 2. ==> Bad blk 2 data

.
2n+2 1 Physical address of bad block n. 1==>1 Bad blk n data I

Licensed Material 6-28 Property of Data General

When an LDU is initialized, the BBT of each physical unit is
read in and maintained memory resident for as long as the LDU
remains initialized into the system. (Its memory address is
found at UDB addr->UDBBT.W.) Dynamic bad block remapping is not
supported under AOS/VS 7.50. If a bad block that is not listed
in the BBT is encountered by the disk driver, the particular
data transfer will be aborted, and a message will be sent to the
operator console. However, LDU Management provides a service to
the disk drivers, which checks the physical disk addresses
specified in a logical disk I/O request against those addresses
listed in the BBT. If a request is found to contain a bad block
listed in the BBT, its data in the remap area is accessed
instead. This service is called REMAP.

Before examining the BBT, REMAP divides it into segments of 32.
words. Since bad block addresses are written to the BBT
consecutively (in ascending order), the segment containing the
range of addresses to which the request corresponds is isolated.
The search for bad blocks begins at this offset in the BBT. On
the average this is faster than stepping through the BBT from
bad block 1 to the end.

The reason for dividing the BBT into segments rather than using
a binary search is the fact that I/O requests may be for more
than one block. This means that the BBT is not searched for an
exact match, but by the range of addresses specified by the
request. Therefore, a binary search of the BBT would be
inefficient and complicated.

The reason for choosing a segment size of 32. blocks is to
minimize the impact on non-6214 disks (non-KISMET types), whose
BBT's will typically involve only 1 or 2 segments. The
6214-type disks (KISMET types) allow a maximum bad block count
of 1022. A segment size of 32. is reasonable. (This section
assumes bad block remapping for non-KISMET type disks.)

Consider the following example. If the request specifications
were to write 4 blocks beginning at physical address 04300, and
the BBT flagged address 4301 at word offset 140. (segment 1),
the bad block would be found right away. Furthermore, each BBT
entry is compared only once to the first and last address of the
request (4300 <= BBT entry <= 4303); it is not checked against
all of the addresses (4300, 4301, 4302 and 4303). If the BBT
entry falls within the range, REMAP knows that the bad block is
part of the request.

Licensed Material 6-29 Property of Data General

If REMAP determines that there is a bad block within the disk
area specified by the request, REMAP must break down the
request, because only contiguous data can be transferred on one
I/O command to the controller. Continuing from the example
above, REMAP breaks down the single request into three separate
requests as follows:

Original
Request

UDB addr->UDNBK = 4
UDB addr->UDTBK = 4
UDB-addr->UDDAH.W =

UDB addr->UDRMH.W

Request
Part 1

3
1

04300

04300

Request
Part 2

2
1

04301

remap area addr
+ I7408~

Request
Part 3

o
2

04302

04302

Upon receiving the parameters of the original request, REMAP
examines the BBT and finds bad block 04301 at word offset 140.

first addr (04300) <= BBT entry 04301 <= last_addr (04303)

Since the bad block is not the first block to be transferred in
the request, all of the contiguous, "good" blocks previous to it
must be transferred first. REMAP modifies UDB addr->UDTBK such
that the number of blocks to be transferred for "Request, Part
1" is 1. REMAP returns the correct address to access in
UDB_addr->UDRMH.W, and from this location the disk driver
retrieves the actual physical address of the disk-based data.
Finally, upon returning from REMAP, the disk driver performs the
following subtraction to determine whether the request is to be
split up:

UDB addr->UDNBK = UDB addr->UDNBK - UDB addr->UDTBK.

In this example, UDB addr->UDNBK, the number of blocks remaining
to be transferred is-set to 3.

UDB addr->UDNBK is checked by the interrupt service routine, and
the-non-zero value will indicate that another request (of 3
blocks) must be enqueued. (A zero value indicates that the
request is complete, and the appropriate post-processor is
invoked.) Consequently, REMAP will be called again with the
updated physical disk address (UDB_addr->UDDAH.W == 04301).
REMAP will repeat the same procedure, and this time find that
the bad block address is the same as the first address of the
request. REMAP modifies the UDB fields again such that the
number of blocks to be transferred for "Request, Part 2" is 1.
The disk driver sets the number of block to be transferred next
time to 2. Since the bad block was found at BBT offset 140.,
the physical address of the bad block to be transferred is
actually found at physical address:

remap_area_addr + [(140. - 4)/2 * 256.]
= remap_area_addr + 17408.

If the block at physical address 04302 were bad also, two blocks
would be transferred in "Request, Part 2" beginning at the same
remap area address.

Licensed Material 6-30 Property of Data General

When "Request, Part 2" is complete, the disk driver will again
check UDB addr->UDNBK. Since "Request, Part 2" was not able to
complete the request because there were still two good blocks
left, "Request, Part 3" must be enqueued. REMAP is called and
determines that there are no more bad blocks in the request. It
sets UDB addr->UDTBK to 2 (the remaining number of blocks in the
request)~ The disk driver subtracts UDNBK-UDTBK, which yields a
zero result. Upon completion of "Request, Part 3," the
interrupt service routine will check UDNBK and realize that the
request is complete. Thus, the entire data transfer was
executed, even though the disk-based data contained a bad block.

It must be emphasized that all disks may encounter undetected
bad blocks during data transfers. If this happens, a hard error
will be reported to the operator console and to the process that
issued the I/O. As of AOS/VS 7.50, bad blocks are not remapped
dynamically. The user must run a partial format on the LDU to
declare the new bad block. DFMTR will enter this new block in
the BBT. It is a restriction that physical blocks 0 - 7 must be
good; they cannot be remapped.

6.11 Mirroring Functionality

6.11.1 Terminology

The reader must be familiar with the following terminology in
order to comprehend the AOS/VS Mirroring discussion in this
section. Some of the terms have already been presented in
previous sections; however, they have been provided again here
to consolidate the topic of mirroring.

MIRRORING - a method of maintaining two copies of the same data.
If one copy of the data is unavailable, it can still be accessed
from the other transparently to user applications.

LOGICAL DISK MIRRORING - a method of maintaining two or more
copies of the same LDU. If one LDU image becomes unavailable,
the LDU is still available on the remaining image. All LDU
images must have the same LDU name.

LDU IMAGE - When an LDU is mirrored, each copy of the LDU data
is called an image.

HARDWARE MIRRORING - mirroring functionality that is provided at
the disk controller level. Hardware mirroring is only effective
when mirroring LDU images that exist at identical physical block
addresses of physical disks on the same controller.

SYNCHRONIZED MIRROR - A mirror is synchrGnized when all data on
all images is identical. When in this state, all data is
written to all images but may be read from any image.

UNSYNCHRONIZED MIRROR - A mirror is unsynchronized when one data
image is not identical to the other. When in this state, all
data is written to all images, but data is only read from the
preferred image (as specified by the System Manager or user).

Licensed Material 6-31 Property of Data General

BROKEN MIRROR - A mirror is broken when one of the images
becomes unavailable. A mirror can be broken by the operating
system (in the case of a disk failure) or by the System
Manager/User (for backup reasons). All data can be read/written
only on the remaining image(s).

RESYNCHRONIZATION - The process used to transform an
unsynchronized mirror to a synchronized mirror. The
resynchronization insures that all data on all images is
identical prior to placing the mirror in a synchronized state.

OUT-OF-PHASE MIRROR - A mirror is out of phase when the image
selected by the operator/user as the preferred image is not the
most recent image.

6.11.2 LDU Mirroring and the System Environment

Logical disk mirroring is supported in AOS/VS 7.50. This
implementation requires hardware mirroring as provided by the
ARGUS family of disk sUbsystems. Mirroring is only supported
for the ARGUS family of disk drives with hardware mirroring
support. This support requires that mirrored units reside on
the same controller and that no more (or less) than two disks
exist in a mirror.

Logical disk mirroring does not require support from any
software products outside of those included in the operating
system product, except for those user applications that perform
?INIT/?RELEASE system calls. ?INIT does not support logical
disk mirroring; the new ?XINIT system call must be issued
instead. User applications must change if they intend to use
Logical Disk Mirroring functionality.

Logical disk mirroring has no specific hardware requirements
other than adequate disk storage for two LDU images. The
initial implementation of mirroring requires hardware mirroring
as provided by the ARGUS family of disk subsystems (6236 class).
This disk configuration must include at least one controller and
two disk units. The initial logical disk mirroring
implementation will not allow mirroring of more than two images
(limited by hardware mirroring). The design allows for more
images to be added in the future.

Licensed Material 6-32 Property of Data General

6.11.3 Mirroring and Performance Implications

Logical disk mirroring may improve performance when the ratio of
read to write operations is high. Since read operations can be
performed on any image, operations may be optimized so that data
is read from the image that can access the data fastest.

Performance may degrade when the ratio of reads to writes is
low. A write operation will complete only when the data has been
written to both images. The time needed to complete the write
operation includes seek and rotational latency for two disks
rather than one. The overall performance depends on data
placement on the physical disk and the read/write ratio.

Performance will also degrade when mirroring a high speed disk
with a slower speed disk. The aggregate performance for write
operations will slow down to the speed of the slower disk, and
thus will exhibit the performance of the slower write.

The performance of each write also depends on the request queue
length for the physical units containing each mirrored image.
If a mirrored write occurs on two images, and one of the images
resides on a "busy" disk, the write will not complete until the
busy disk has serviced the write request. Disk optimization
algorithms may need to be adjusted so that mirrored operations
have greater priority. This issue has not been thoroughly
analyzed.

Resynchronization of logical disk images also will degrade
performance. During resynchronization, all allocated blocks on
the "good" logical disk image must be copied to the "bad" image.
This I/O degrades performance of all applications using the LDU
that is being resynchronized.

Licensed Material 6-33 Property of Data General

6.11.4 Functional Overview of Logical Disk Mirroring

Logical disk mirroring allows the user to use identical logical
disk images as one LDU. When one of the images becomes
unavailable, the data is still available on the other logical
disk image. Since logical mirroring implies that both images
are logically equivalent copies of each other, all write
operations must occur to both logical images. However, read
operations may occur on either image, allowing the system to
retrieve the data from the image that can access the data most
rapidly.

Mirrored logical disks exist in a number of states. The states
of a logical mirror are as follows:

SYNCHRONIZED: When all images are complete mirrors of each
other. Data can be retrieved from any image,
but write operations must be performed to all
images.

BROKEN: A broken LDU exists when one of the images
becomes unavailable. All subsequent reads and
writes to the mirrored LDU go to the "good"
image(s) only.

UNSYNCHRONIZED: An unsynchronized LDU exists when the mirror has
been broken previously and one image must be
resynchronized. Writes will go to all images,
but reads may only come from the "good" image
until the mirror is synchronized again. The
"good" image is selected by the system
manager/user based on information provided by
the system.

In order to determine which state a mirror is in, a
synchronization method is required. A mirrored logical disk
created under AOS/VS 7.50 is considered synchronized when both
logical disk images have identical synchronization keys, time
stamps, and logical disk names. Additionally, identical bad
block tables are required. It is also a requirement that both
images have different LDU unique IDs.

The synchronization key is a 32-bit counter that is incremented
whenever a state change occurs. The synchronization key is only
incremented on one image when a mirrored LDU is initialized.
This approach is used so that after a power failure or system
panic, mirror inconsistencies can be detected. Effectively,
then, only synchronized mirrored images may be initialized as a

Licensed Material 6-34 Property of Data General

mirrored LOU. When it is initialized, the mirror state is
changed to "unsynchronized," and remains unsynchronized until
the LDU is released. If the images are identical, the mirror
state is changed back to "synchronized." The synchronization key
is incremented when any of the following events occurs:

- The mirrored LOU image is opened (one image only).
- The mirrored LOU image is closed.
- A file system utility (that performs writes) accesses

the mirrored LOU.
- The mirror is broken (the synchronization key on the

"good" LOU image is incremented)

The time stamp is a 64-bit value consisting of the time of day
and date as maintained in internal system format. The larger
value indicates the most recent time. Since stand-alone file
system utilities do not maintain time and date, this value is
not used by those utilities. The time stamp is incremented when
any of the following events occurs:

- The mirrored LOU image is closed.
- The mirror is broken (the time stamp on the "good" LOU

image is updated).

Resynchronization must be performed after the preferred LOU
image is initialized into the file system hierarchy. The
logical disk name of both images must be the same in order to
perform mirroring. The logical disk unique 10 of both images
must be different.

The bad block tables of both logical disk images must be
identical. If the bad block tables are not the same for both
logical disks, a partial format must be run over the mirrored
disk and the bad block tables must be merged. This is a
restriction of hardware mirroring.

The resynchronization process includes verifying the equivalence
of the bad block tables, establishing an "out of sync" mirror
relationship, copying the "good" disk to the "bad" disk, then
establishing a synchronized mirror relationship.

Licensed Material 6-35 Property of Data General

6.12 Mirroring Internals

6.12.1 Internal Mirroring Databases

The system task that performs all mirror functions runs on two
unique databases. Each mirrored LDU has one Mirror Descriptor
Block (MDB). All MDBs are linked to the global MDB chain,
MDBCHN.W. The MDB chain of Mirror Unit Request Blocks (MURB),
consists of one MURB for each physical disk unit in the LDU.
Each MURB represents a mirrored UDB, and the request running on
it. Normal I/O to a mirrored unit does not run on a MURB. Only
mirror state changes, and mirror synchronizations run on a MURB.
Only when an action on each MURB has completed does the action
get marked as completed in the MDB. Therefore, mirror state is
maintained in the MDB and is not necessarily equivalent to the
mirror state of each physical piece.

The MDB parameter definitions are described below:

Offset

MDLNK.W
MDSTATE
MDDAT.W
MDTOD.W
MDMST
MDLCB.W
MDID1
MDID2
MDLDN

MDMRB.W
MDNMRB
MDCMRB

MDBMU.W
MDFLG
MDERR
MDPTB.W
MDTCB.W

0
2
3
5
7

10
12
15
20

40
42
43

44
46
47
50
52

Mirror Descriptor Block (MDB)

MDBCHN.W forward link.
Current MDB state.
Date (sync record).
Time (sync record).
Mirror state (sync record).
LCB address for this mirror.
LDU unique ID for primary image.
LDU unique ID for secondary image.
LDU name.

MURB chain.
Number of MURBs on MURB chain.
Number of completed MURBs.

Bit Map UDB address.
MDB flag word.
Error word.
Process table address of ?MIRROR issuer.
User TCB address of ?MIRROR issuer.

MDLN 54 Length of MDB.

The MDB states stored at MDB addr->MDSTATE consist of the
following values:

MDIDL (0) - Idle
MDSDR (1) - Synchronize Disk Ready
MDSDP (2) - Synchronize Disk in Progress

MDBRM (3) - Break Mirror
MDDLM (4) - Delete Mirror
MDUSM (5) - Unsynchronize Mirror
MDSYM (6) - Synchronize Mirror
MDWSR (7) - Write Sync Record

Licensed Material 6-36 Property of Data General

The following bit positions are defined for the MDB flag word
MDB addr->MDFLG:

MDT RAN
MDDUC
MDABT
MDEDS
MDSWT
MDHDE
MDLTE
MDSTL
MDUTC
MDUPA
MDABR
MDABC

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)

(10)
(11)
(12)
(13)

- MP Lock
- Don't Unpend Caller
- Abort Sync Request
- Error During Sync
- Switch
- Hard Disk Error
- Log This Event when complete
- Event Ready to Log
- Unpend TCB
- Unpend Abort Request
- Request Aborted by Release of Disk
- Request Aborted by System Call

Licensed Material 6-37 Property of Data General

The parameter definitions for the MURB are described below:

Offset

MULNK.W 0
MUSTATE 2
MUUDB.W 3

MUMDB.W 5
MUSAD.W 7
MULAD.W 11
MUBAD.W 13
MUFAD.W 15
MUDSK.W 17
MUBMO.W 21
MUFLG 23
MUEBH 24

Mirrored Unit Request Block (MURB)

MURB chain forward link.
Current MURB state.
Mirror UDB address.

MDB address.
Current sync address.
Last sync address.
Bit Map buffer header address.
First Bit Map address.
Bit Map disk address.
Current Bit Map offset.
MURB flag word.
start of embedded buffer header.

MULN 60 Length of MURB.

The MURB states stored at MURB addr->MUSTATE consist of the
following values:

(0) - Idle
(1) - Synchronize Disk Ready

MUIDL
MUSDR
MUSDP (2) - Synchronize Disk in Progress

(3)
(4)
(5)
(6)
(7)

- Break Mirror
- Delete Mirror
- Unsynchronize Mirror
- Synchronize Mirror
- Write Sync Record

MUBRM
MUDLM
MUUSM
MUSYM
MUWSR
MUWSP (10) - Write Sync Record in Progress

The following bit positions are defined for the MURB flag word
MURB addr->MUFLG:

MUTRAN (0) - MP Lock bit
MUABT (1) - Abort Sync Request bit

Licensed Material 6-38 Property of Data General

For each mirrored LDU, there exists one MDB. All the MDBs
in the system are linked through the global MDB chain MDBCHN.W.
For each mirrored unit in the LDU, there exists one MURB. The
MURBs are linked through MDB_addr->MDMRB.W.

Because a mirrored LDU actually consists of two logical disks
(one which is a mirror image of the primary image), there must
exist a UDB for each physical unit in the LDU. A mirrored LDU
consisting of one mirrored unit (i.e., two physical units)
requires two UDBs. The UDBs indicate to the File System and to
the driver world that both devices are indeed in use. The UDBs
are linked through the DCT of the device to which they belong.

Despite the fact that a mirrored LDU actually consists of two
logical disks, it represents a single LDU. Only one LDU name is
grafted onto the directory hierarchy when the LDU is
initialized. Therefore, there exists an additional UDB, called
a "Mirror UDB," for each mirrored unit. The Mirror UDB is
linked into the LCB of the mirrored LDU. The Mirror UDB is
parametrically defined the same as the typical UDB, but contains
three redefinitions:

Offset Mirror UDB Parameter Redefinitions

UDDCT.W 0
UDUNT 2

UDPRM.W 47
UDSCM.W 51
UDCMS 53

DCT address of this device.
Device unit number.

Primary image UDB address.
Secondary image UDB address.
Current Mirror State

A sample configuration of a mirrored LDU aids in comprehending
the somewhat abstract concept of mirroring. Consider the
following devices genned into an AOSjVS 7.50 system, and the
following mirrored LDU created. The diagram on the following
page displays the presence and the linkage of the databases for
the mirrored LDU:

Devices:
DPJ<O,l>
Device Code: 24

Mirrored LDU:
Primary Image ID:
Primary Image Units:

DPJ1<0,1,2,3>
Device Code: 64

021012
DPJO, DPJ10, DPJ12

Secondary Image ID: 031113
Secondary Image Units: DPJ1, DPJ11, DPJ13

Licensed Material 6-39 Property of Data General

(LCB)

MDBCHN.W =========>

(MDB)

MDLNK.W

MDSTATE = state
MDID1 = 021012
MDID2 = 031113
MDLDN LDUNAME

======================= MDMRB.W

====>

(MURB)

MULNK.W

MUSTATE=state

MUUDB.W

\111
\/

(Mirror UDB)

==>

(MURB)

MULNK.W

MUSTATE=state

MUUDB.W

\ II I
\/

(Mirror UDB)

LDUDP.W==> UDUDL.W ====> UDUDL.W

UDDCT.W = DCT
addr of DC 24

UDCMS = state

UDSCM.W

UDPRM.W

(UDBs)

------>1 Unit 0

UDDCT.W = DCT
addr of DC 64

UDCMS = state

UDSCM.W

UDPRM.W

(UDBs)

------>1 Unit 0
1

========> next MDB

(MURB)

==> MULNK.W = -1

MUSTATE=state

MUUDB.W

\ II I
\/

(Mirror UDB)

====> UDUDL.W -1

UDDCT.W = DCT
addr of DC 64

UDCMS = state

UDSCM.W

UDPRM.W

(UDBs)

===>1 Unit 2 1

1
Unit 1 ---1<---

1
Unit 1 1<===

1
Unit 3 ---1<---

Licensed Material 6-40 Property of Data General

6.12.2 Running Mirror Requests

Mirror requests are run by the System Manager Task (SMTSK). In
order to start a mirror request, the MDB state must be changed
to perform the appropriate action, and the System Manager Task
must be woken up. The System Manager Task walks down the MDB
chain and looks for MDBs that are not in the idle state. The
system manager task dispatches on the MDB state, and takes the
appropriate actions.

Some MDB states require work to be done on individual units.
This work is done using MURBs. MURBs allow a mirror operation
to occur simultaneously on all physical units in the LDU.
Synchronization of a mirrored LDU is the primary motivator
behind the MURB/MDB design. When synchronizing an LDU, each
physical unit will get synchronized simultaneously. The LDU
will not be marked as synchronized until each piece is
synchronized (the MURB complete count is maintained in the MDB).

Each MURB contains a buffer header that is used for the mirror
request. Each buffer header is enqueued using a unique
post-processor that awakes the System Manager Task upon
completion.

The System Manager Tasks runs MDB requests. The MDB request
just starts the MURBs running to put the mirrored LDU in the
desired state. When all MURBs have completed, the MDB request
is complete.

Licensed Material 6-41 Property of Data General

The ?MIRROR system call allows the user to mirror, synchronize,
and remove LDU images. The LDU Management service that
implements ?MIRROR requests is MIRROR.P. MIRROR.P accepts the
LDU pathname as an argument, implying that the primary LDU image
must already be initialized. When MIRROR.P is invoked, the
following sequence of events occurs:

MIRROR.P ()
{

Validate ?MIRROR parameters;
Check ACLs;
Create UDBs for each unit in the secondary image;

Ensure all LD Unique IDs match in the secondary image;
Ensure all UDB info is correct;
Ensure controllers support mirroring;
Ensure mirrored pieces are on same controller;

Check time stamps for FORCE SYNC condition;

/* Now the mirror must be synchronized. */

If (MDB does not exist for this LDU)
{
Create an MDB with MURB for mirrored unit;
Init MDB/MURBs;
store LD unique ID of each image in MDB;

Get a Mirror UDB for mirrored unit and init it;

set UNSYNCED state in MDB;

Call SWAKE (unpends System Manager Task);
Pend awaiting completion;

If (error)
break mirror;
return (error);

Else

}

Create linked list of mirror UDBs;
Link into LCB;

Else /* MDB already exists for this LDU */
{
Link sechedary image UDB to mirror UDB;

Set UNSYNCHED state in MDB;

Call SWAKE (unpends System Manager Task);
Pend awaiting completion;

If (error)

}

break mirror;
return (error);

Licensed Material 6-42 Property of Data General

Set state to SYNC DISK READY in MDB;
Set MDB "Don't Unpend Caller' bit if needed;

Call SWAKE to start synchronization;
Pend awaiting completion (if necessary);

If (error)
return (error);

Else
return;

} /* end of ?MIRROR */

The System Manager Task calls LDU Management service MIROP.P to
run an MDB. An MDB is run to change the state of a mirror. MDB
processing consists of running all MURBs on each physical unit
in the mirrored LDU. Only when all the MURB processing is
complete can the mirror state in the MDB be altered. MIROP.P
calls the LDU Management operation RUNMURBS to run the MURBS in
the mirrored LDU. The RUNMURBS algorithm is illustrated after
MIROP.P. MDB processing is triggered either by initialization
of a mirrored LDU or by issuing a ?MIRROR request. The
algorithm of the sequence of events that occurs in MIROP.Pduring
MDB processing are the following:

MIROP.P()
{

for (each MDB on MDBCHN.W)
{
Get the MDB state and dispatch;

switch (MDB addr-)MDSTATE)
{ -

/***/
IDLE:
case MDIDL:

break;

/***/
SYNC DISK READY:
case MDSDR:

Set each MURB to SYNC DISK READY state;
Set # MURBs complete ~ 0;
goto SYNC_DISK_IN_PROGRESS;

/***/
SYNC DISK IN PROGRESS:
case MDSDP:

if (# MURBs complete == # MURB entries)
if (MDB "Abort Sync Request" bit == 1)

goto BREAK_MIRROR;
else

goto WRITE SYNC RECORD;
else

if (MDB "Abort Sync Request" bit == 1)
"Abort Sync Request" bit = 1 in non-idle MURBs;

call RUNMURBS;
break;

Licensed Material 6-43 Property of Data General

/***/
BREAK MIRROR:
case MDBRM:

Set each MURB to BREAK MIRROR state;
Set # MURBs complete =-0;
call RUNMURBS;

if (MDB "Abort Sync Request" bit -- 1)
call unpend_caller;

/***/
UNSYNC MIRROR:
case MDUSM:

Set each MURB to UNSYNC MIRROR state;
Set # MURBs complete = 0;
call RUNMURBS;

goto WRITE SYNC RECORD;

/***/
DELETE MIRROR:
case MDDLM:

Set each MURB to DELETE MIRROR state;
Set # MURBs complete = 0;
call RUNMURBS;

Set State to IDLE;
call unpend_caller;

/***/
WRITE SYNC RECORD: - -
case MDWSR:

Set each MURB to WRITE SYNC RECORD state;
Set # MURBs complete = 0;
call RUNMURBS;

Set state to IDLE;
if ("Dont unpend caller" bit -- 0)

call unpend_caller;
break;

/***/
WRITE SYNC IN PROGRESS RECORD:
case MDWSR:

Set each MURB to WRITE SYNC IN PROGRESS RECORD state;
Set # MURBs complete = 0;
call RUNMURBS;

Licensed Material 6-44 Property of Data General

goto SYNC DISK READY;

} /* end of switch */
} /* end of for loop */

} /* end of MIROP.P */

RUNMURBS is the LDU Management service that runs Mirrored Unit
Request Blocks. Each MURB runs the MDB request for the specific
physical unit in the mirrored LDU. The MURB chain is traversed,
and each MURB is run individually. When one MURB finishes, the
number of MURBs finished is incremented in the MDB
(MDB_addr->MDCMRB++), and the next MURB on the chain is run.
When all MURBs have completed, the MDB request is complete. The
algorithm of the sequence of events that occurs in RUNMURBS is
the following:

RUNMURBS ()
{

for (each MURB on MDB addr->MDMRB.W)
{
Get the MURB state and dispatch;

switch (MURB addr->MUSTATE)
{ -

/***/
IDLE:
case MDIDL:

break;

/***/
SYNC DISK READY:
case MUSDR:

Get Memory Buffer if None;
Set State to SYNC DISK IN PROGRESS;
Initialize MURB info; - -
Set Up MURB with initial Bitmap info;
goto SYNC DISK IN PROGRESS;

/***/
SYNC DISK IN PROGRESS:
case MUSDP:

if (lOP bit in Buffer Header -- 1)
break;

Calculate next transfer;
if (none left to transfer) or

("Abort Sync Request" bit == 1)
{
Set state to IDLE;
Increment # MURBs Complete in MDB;
break;
}

Licensed Material 6-45 Property of Data General

Issue Mirror Bulk Copy;
break;

/***/
BREAK MIRROR:
case MUBRM:

If (MDB "Switch" bit == 1)
switch UDBs in Mirror UDB (if not a half mirror);

Set Mirror State to HALF MIRROR;
Set State to IDLE;
Increment # MURBs Complete in the MDB;
break;

/***/
DELETE MIRROR:
case MUDLM:

Set mirror state to DELETED;
Release Memory buffer (used for DIB and Bitmap);
Set State to IDLE;
Increment # MURBs Complete in the MDB;
break;

/***/
SYNC MIRROR:
case MDSYM:

Set mirror state to SYNCHRONIZED;
Set State to IDLE;
Increment # MURBs Complete in the MDB;
break;

/***/
UNSYNC MIRROR:
case MUUSM:

Set mirror state to UNSYNCHRONIZED;
Set State to IDLE;
Increment # MURBs Complete in the MDB;
break;

/***/
WRITE SYNC RECORD:
case MUWSR:

Get Memory Buffer if None;
Read DIB from first UDB;
Put in the new sync record;
DIB "Disk is mirrored" bit = 1;
Write first DIB back out;

Read DIB from second UDB;
Put in the new sync record;
DIB "Disk is mirrored" bit = 1;
Write second DIB back out;

Licensed Material 6-46 Property of Data General

set state to IDLE;
Increment # MURBs Complete in the MDB;
break;

/***/
WRITE SYNC IN PROGRESS RECORD:
case MUWSP:

Get Memory Buffer if None;
Read DIB from first UDB;
Put in the new sync record;
DIB "Disk is mirrored" bit = 1;
Write first DIB back out;

Read DIB from second UDB;
Put in the new sync record;
DIB "Disk is mirrored" bit = 1;
DIB "Sync in progress" bit = 1;
Write second DIB back out;

Set State to IDLE;
Increment # MURBs Complete in the MDB;

} /* end of switch */
} /* end of for loop */

} /* end of RUNMURBS */

LDU Management must support initialization of mirrored LDUs.
However, the mirror-specific code that is actually embedded in
LDU Initialization has been extracted and placed in this
section. This provides a more organized and hopefully clearer
format within this i~ternals manual.

The "routine" that LDU Initialization called from XINIT.P has
been designated "validate mirror for LDU init". It is called
after both physical unit lists of both LDU images have been
validated for correctness, but excluding mirror-related
validations. Validate_mirror validates that the specified
physical unit lists can indeed be initialized as one mirrored
LDU. Validate mirror creates and arranges the mirror databases
as well.

For each image there exists one LCB, and for each physical unit
there exists one UDB. The UDBs are currently linked to the LeB
as well as the DCT. Validate_mirror will end up deallocating
one of the LCBs, leaving a single LeB for the mirrored LDU.
Validate mirror will not deallocate any of the UDBs, since they
must remain linked to the DCTs of their devices. However, the
UDB representing each physical unit will be unlinked from the
LeB. A new "Mirror UDB" will be created and linked to
LeB addr-)LBUDP.W.

As a point of interest, one mirroring-related operation must be
called from LDU Release. UPDMIR.P is called from DRLSE.P to
write the DIB of each physical unit in the mirrored LDU. This
must be done because certain words in the DIB are unique for a
unit that is part of a mirrored LDU.
Licensed Material 6-47 Property of Data General

The C-based pseudo-code for validate mirror for LDU init is the
following. The calling sequence can-be found in Section 6.4.

validate mirror for_LDU_init ();
{

/***
* Validate all kinds of mirror information to ensure that *
* these LDUs can indeed be mirrored. *
* *
* MIRINFO.P: checks that LDU unique IDs are different, *
* time stamps (DIB addr->IBDAT.W,IBTOD.W) are the same, *
* and logical disk-names (from DIB name space) are same.*
* *
* MCONFIG.P: checks that LDU max size (LCB addr->LBMSH.W) *
* is the same, the drives to be mirrored-are on the same*
* controller (UDB addr->UDDCT.W same), and that the *
* controller is a-unicorn (ARGUS) device that supports *
* hardware mirroring. Also, the BBTs of both units *
* must be exactly equivalent! *
***/

call MIRINFO.P;
call MCONFIG.P;

/* Validate mirrored LDUs */
/* More validation checks */

/***
* Allocate mirrored LDU databases. *
* *
* GETMDB.P: Find MDB on MDBCHN.W. If it does not exist, *
* create an MDB, and create and link its MURBs to the *
* MDB MURB chain, MDB addr->MDMRB.W. Init MDB/MURBs. *
* *
* GETUDB.P: Allocate a "mirror UDB" for each unit in the *
* mirrored LDU. The "primary" and "secondary" UDB *
* pointers are stored in the "mirror UDB." The mirror *
* UDBs are then linked together CUDB addr->UDUDL.W). *
***/

call GETMDB.P;
call GETUDB.P;

/* Create MDB and MURBs */
/* Create mirror UDB chain*/

/***
* Link the mirror UDBs to the LCB UDB chain. *
* *
* NONEED.P: Release the unneeded memory that had been *
* allocated to the second image, including its LCB. *
* The main "for" loop allocated an LCB for BOTH images, *
* but only one is needed for the mirror LDU. HOWEVER, *
* the UDBs corresponding to each PU are not released now*
* because they are linked through the DCT unit list, *
* DCT_addr->DCPUL.W. They will be released upon LDU *
* RELEASE. *
* *
* LNKMDB.P: links MDB to MDBCHN.W tail. *
***/

Licensed Material 6-48 Property of Data General

LCB addr->UDUDP.W = MDB addr->MDMRB.W->MUUDB.W;

call NONEED.P;
call LNKMDB.P;

/* Release some memory
/* Link MDB to MDBCHN.W

*/
*/

/***
* Synchronize the mirror. *
* SET START: stores the mirror state (MDSYM) in the MDB *

(MDB addr->MDSTATE), saves the data/time of sync in *
the MDB, and unpends the System Manager Task to run *
the sync request. MUNSYNC will be stored in the DIB *
until the mirrored LDU is released. If the MDB state *
is still MDSYM, MUNSYNC will be changed to MSYNC in

*
*
*
*
* *
* the DIB. *
***/

call SET_START.P (MUNSYNC, MDSYM, MDB_addr);

} /* end of validate mirror for LDU init */

Licensed Material 6-49 Property of Data General

7 Unit Management

7.1 Overview

There are three NON-DISK unit type devices present in AOS/VS
7.50. They are:

1) Magnetic Tape Units (MTUs);
2) Multiprocessor Communications Adaptor Units (MCUs); and
3) Line Printer Units (LPUs).

Generally, in this document, each unit type will be referred to
by its acronym (in parentheses above). This format eliminates
confusion among the various types that exist for each unit. For
example, the various types of magnetic tape units (MTB, MTC, MTD,
and MTJ) have been consolidated by the single acronym "MTU." The
various types of line printer units (LPB, LPD, LPE, and LPJ) have
been consolidated by the single acronym "LPU." Although there is
only one type of multiprocessor communications adaptor (MCA), it
is usually referred to as an "MCU" to preserve consistency. Note
that the AOS/VS file type for MTB devices is "MTU," the file type
for MCA devices is "MCU," and the file type for LPB devices is
"LPU." Unicorn type devices (MTJ and LPJ) are properly
distinguished when relevant. It is not an objective of this
section to address physical disk unit management.

Unit Management is a file system component between File
Management and the device drivers. File Management initiates
logical disk CCB requests as well as unit CCB requests. Unit
CCB requests are ordinary I/O requests to NON-DISK unit type
devices. Direct block I/O calls (e.g., ?RDB, ?WRB) are
generally used for unit I/O, although the AGENT will convert
record I/O calls (e.g., ?READ/?WRITE). Request-specific
information is gathered from the caller and stored in the CCB,
which is "enqueued" by File Management to Unit Management. Unit
Management moves the request data from the CCB to the unit I/O
buffer header. Moreover, Unit Management interfaces directly
with unit device driver routines to format the buffer header,
enqueue the buffer header to the DCT (non-Unicorn devices) or
UDB (Unicorn devices), start the device, and initiate the actual
data transfer. Unlike CCB Request Management, Unit Management
eliminates the intervention of Buffer Management by performing
all buffer header operations independently.

In summary, Unit Management enqueues a buffer to the proper unit,
initiates the data transfer by directly calling specific unit
driver routines, and immediately returns to File Management.
Similar to logical disk request service, File Management does not
pend the calling process' control block, but returns to the
system call processor, leaving the caller's TCB pended. When the
unit controller interrupts the host, the data transfer will be
complete. Finally, the unit buffer header post-processor unpends
the requestor's TCB.

Licensed Material 7-1 Property of Data General

The following diagram summarizes the relationships between the
components involved with Unit Management.

File Unit Management
Management

============== ============================

CCB ---> CCB ---> BH
<--- <---

(User TCB
pended)

CCB <--­
(User TCB
unpended)

Licensed Material

CCB <--- BH

7-2

Device
Driver

==============

BH ---> unit
<---

UNIT DEVICE
INTERRUPT!!!

BH <--- unit

Property of Data General

7.2 Unit Parameter Redefinitions

Unit devices possess attributes that disks lack, and vice versa.
Nevertheless, I/O is the only means of communication with both
device types. Furthermore, unit devices form part of the AOS/VS
file system, and File Management databases are allocated for
them. Since some essential unit device attributes, which are
stored in File System databases, are non-existent for disks,
parameter redefinition within these databases saves allocating
unnecessary memory to store them.

The following represent the CCB parameter redefinitions for the
three types of AOS/VS unit file types.

Offset CCB Redefinitions

CBERR 0
CBBHR.W 7

CBMDC.W 11
CBBLN 13
CBQBC 17
CBMCL 17
CBDEN 30

Error code from I/O processing (all units). ~
Buffer Header address (all units).

OCT address (MCU). I
Block length (MTU). I
Requested byte count (LPU). I
File number (MTU), Link number (MCU).
Densi ty mode (MTU). I

----------------------------_. __ ._-

The following FCB and UDB parameters are redefined for magnetic
tape units. Notice the common area in the FCB and UDB.
Moreover, this common area lies within the FCB Funny FIB. When
the MTU is opened, the FCB is created and initted before the
UDB. The Funny FIB is read from disk into the FCB. Therefore,
the common FCB offsets are copied (via WBLM instruction) into
the UDB. The UDB is then updated during the time the tape unit
is open. When the tape unit is closed, the driver copies the
current common data from the UDB back to the FCB, which Unit
Management subsequently flushes to disk. This allows Unit
Management to acquire the current tape position when the tape
unit is reopened. There are no FCB/UDB redefinitions for MCUs
or line printers.

Offset

FBLFL 13
FBLBL 14
FBFIL 15
FBBLK 16
FBOBL 17
FBOB2 20

FCB Redefinitions

-.--=---:--------:------=::-::------=-c:-::---------:--------------------------
Logical EOT file number.
Logical EOT block number.
Current file number.
Current block number.
Most recent old block count.
Second most recent old block count.

Licensed Material 7-3 Property of Data General

Offset

UDWFG 17

UDLFL 20
UDLBL 21
UDFIL 22
UDBLK 23
UDOBL 24
UDOB2 25

UDST1 31
UDERS 74

UDB Redefinitions

Write flag for close.

Logical EOT file number.
Logical EOT block number.
Current file number.
Current block number.
Most recent old block count.
Second most recent old block count.

Second status word on 6026 type tape drives.
Erase count (after bad tape).

The buffer header is the object enqueued to the device's UDB.
Request-specific data is retrieved from the buffer header and
moved to the UDB by the unit's driver. Since unit request data
is different from disk request data (file number, link number,
etc.), there are several buffer header parameter redefinitions
as well.

Offset

BQCCB.W 0
BQDCT.W 2

BQES1 4
BQOWC 4
BQORC 4

BQES2 5
BQPRI 6

BQWDC 7
BQQBC 7

BQFIL 22
BQLNK 22
BQTMP.W 22

BQBLK 23
BQRTY 23

BQERC 40
BQBYT 40

BHULN 41

Buffer Header Redefinitions

CCB address (all units).
DCT address (MCU).

PIO Error Status 1 (MTU).
Original Word Count (MCU).
Original Byte Count (LPU).

PIO Error Status 2 (MTU).
Priority (all units).

Word Count (MTU, MCU).
Requested Byte Count (LPU).

File Number (MTU).
Link Number (bits 0-7), status (bits 8-15) (MCU).
Temporary variable (LPU).

Block Number (MTU).
Retry Count (MCU).

Error (retry) Count (MTU).
Byte flag (LPU).

Length of BH for MTU/MCU/LPU

Licensed Material 7-4 Property of Data General

7.3 Opening Unit Files

Units are opened by the same File Management service provided by
File Open Services: GOPEN.P. However, each unit type file
requires different database initialization in order to make unit
I/O possible. Therefore, Unit Management provides File
Management with a service that takes care of the unit-specific
initialization. This service is called UNIT.P.

UNIT.P is called from within GOPEN.P to open unit type files.
UNIT.P is the generic entry point for all unit type files opens,
and it performs ACL checks and C2 record logging. It sets the
density mode flags (for MTUs) and disable form feed bit (for
LPUs) in the CCB, based on the options specified by the unit
opener in the ?GOPEN packet. Finally, UNIT.P calls UOPEN.P, the
routine which simply initializes stack offsets and dispatches to
the actual unit-specific open routine.

UOPEN.P is illustrated for each unit type file. Because the
unit dispatch table labels for specific units are local to
AOS/VS module UNIT.SR, the global entry point UOPEN.P is
repeated for each unit open description (instead of choosing the
local label as the procedure's main entry point). The contents
of the algorithm are specific to the unit being described.

The inputs to UOPEN.P are the file/link number (MTUs/MCUs), the
file type (index into the dispatch table), and the CCB address.
The return from UOPEN.P transfers control back to UNIT.P, which,
if no errors occurred, returns to GOPEN.P to continue with the
opening of the file. If UOPEN.P detected an error, UNIT.P is
responsible for cleaning up and returning the error code to the
calling process.

Licensed Material 7-5 Property of Data General

7.3.1 Opening Magnetic Tape Units (MTUs)

The following C-based algorithm illustrates the MTU-specific
operations that must be performed when opening the unit:

UOPEN.P (file num, file type, CCB addr)
{ - - -
/**

* File type is ?FMTU. *
* Dispatch to the Magnetic Tape Unit open routine. *
**/

LDSP (file_type, dispatch_table);

MTUNT: /* Magnetic Tape Unit open routine */

/**
* Do some initialization. *
**/

set bit (CCB addr, BCBUN);
CCB-addr->CBSTS 1= CUTMT;

if (file num != -1)
{ -

CCB addr->CBMCL = file num;
set-bit (CCB addr, BCBPN);
} -

/* Set CCB "unit" bit */
/* Specify MTU type */

/* File num specified?*/
/* Yes. */
/* Put it in the CCB, */
/* and set CCB bit to */
/* reflect this. */

/**
* Allocate a buffer header. *
* This buffer header will hold the unit-specific commands *
* and request parameters sent to the tape controller. There *
* is only one buffer header, implying that this file opener *
* can issue only one command at a time. Furthermore, since *
* the unit is exclusively opened, only this process can *
* issue commands to the MTU while it is opened. Two buffer *
* headers may not be enqueued to the unit at the same time. *
* Note: Since only user processes do unit I/O, the data *
* address at BH addr->BQADR.W will always point to a user *
* buffer! THIS-IS NOT A SYSTEM CACHE BUFFER! *
**/

BH addr = GSMEM (BHULN);
CCB_addr->CBBHR.W = BH_addr;

/* Allocate the BH. */
/* Save addr in CCB. */

/**
* Copy the density mode flags to the buffer header. *
* Unit Mgmt always forces MTUs to be exclusively opened. *
**/

BH addr->BQERC = CCB addr->CBDEN;
set bit (CCB_addr->CBFCB.W, BFBEO);

Licensed Material 7-6

/* Density mode to BH.*/
/* Implicit excl open.*/

Property of Data General

/**
* Allocate a UDB. *
* Save its address in both the FCB and buffer header. *
* (The DCT address is stored in UDB addr->UDDCT.W) *
**/

call GTUDB.P (FCB_addr->FBDCU, &UDB_addr); /* Get/init UDB.*/
FCB addr->FBUDB.W = UDB addr; /* Save addr in */
BH_addr->BQUDB.W = UDB=addr; /* FCB and BH. */

/**
* Unicorn tape drives (MTJ types) can be set for two special *
* modes (in the ?GOPEN packet): streaming mode and/or *
* buffered I/O mode. If either or both of them have been *
* specified, set the corresponding UDB bits. Furthermore, *
* unicorn controllers maintain the data stored in the FCB/UDB*
* common area. Thus, the data need not be copied to the UDB.*
* This must be done, however, for non-Unicorn types. *
**/

if (check_bit (UDB_addr, BDUCN))
{
if (streaming mode)

set_bit (UDB_addr, BUDSTR);

if (buffered IO mode)
set bit (UDB_addr, BUDBIO);

}
else

/* Unicorn device? */
/* Yes. */
/* STR mode specified?*/
/* Yes, set UDB bit. */

/* BIO mode specified?*/
/* Yes, set UDB bit. */

/* Non-unicorn device. Move common area from FCB to UDB. */
wblm (&FCB_addr->FBLFL, &UDB_addr->UDLFL, FBCOM);

/**
* Get the current initial status of the MTU. *
* MQBHR enqueues the buffer header with the "get status" *
* command to the tape unit. If an error occurs on the I/O, *
* BWAIT will take the error return, which means that the *
* tape drive cannot be opened because of a physical problem, *
* e.g., "physical unit failure" or "physical unit off line." *
* This error code is returned to the caller. *
* Return to GOPEN.P when done. *
**/

BH addr->BSTS = QTSTS;
call MQBHR (&PPBSY, BH_addr);
call BWAIT;

return;

} /* end of UOPEN.P for MTUs */

Licensed Material 7-7

/* Get status command.*/
/* Enqueue it to MTU. */
/* Pend until done. */

/* Back to GOPEN.P */

Property of Data General

7.3.2 Opening Multiprocessor Communications Adaptors (MCUs)

The following C-based algorithm illustrates the MCU-specific
operations that must be performed when opening the unit:

UOPEN.P (link num, file type, CCB addr) { - - -

/**
* File type is ?FMCU. *
* Dispatch to the MCA Unit open routine. *
**/

LDSP (file_type, dispatch_table);

MCUNT: /* MCA Unit open routine */

/**
* Examine link number and test its validity. *
* A value of -1 means that the link will be provided *
* dynamically with the I/O request specifications. *
* If the link number is valid, then set the CCB "unit" bit. *
**/

CCB addr->CBMCL = -1; /* Assume no link num.*/
if (link num != -1) /* Link num specified?*/

{ - /* Yes. */
if (link_num < 0 II link_num> 15.)/* Is it legal? */

return (Illegal link_number); /* No, return error. */

CCB addr->CBMCL = file num; /* Put it in the CCB. */
set bit (CCB_addr, BCBFN) ; /* and set permanent */
} /* link for channel. */

/* SHOW THIS IS UNIT! */
set bit (CCB addr, BCBUN) ; /* Set CCB "unit" bit */
CCB-addr->CBSTS 1= CUTMT; /* Specify MCU type */

/**
* Allocate a buffer header. *
* This buffer header will hold the unit-specific commands *
* and request parameters sent to the MCA controller. There *
* is only one buffer header, implying one channel request at *
* a time. The MCU is not opened exclusively, so there can *
* actually be multiple commands simultaneously enqueued to *
* the unit. *
*
* Since only user processes do unit I/O, the data address
* BH_addr->BQADR.W will always point to a user buffer!
* THIS IS NOT A SYSTEM CACHE BUFFER!

*
at *

*
*

**/

Licensed Material 7-8 Property of Data General

BH_addr = GSMEM (BHULN);

CCB addr->CBBHR.W
BH_addr->BQCCB.W

= BH addr;
= CCB addr;

/* Allocate the BH. */

/* Save BH addr in CCB. */
/* Save CCB addr in BH. */

DCT addr = &BTBL + (2 * CCB addr->CBFCB.W->FBDCU);
BH addr->BQDCT.W = DCT addr; /* Save DCT addr in BH. */
CCB addr->CBMDC.W = DCT_addr; /* Save DCT addr in CCB.*/

return; /* Back to GOPEN.P */

} /* end of UOPEN.P for MCUs */

Licensed Material 7-9 Property of Data General

7.3.3 Opening Line Printer Units (LPUs)

The following C-based algorithm illustrates the LPU-specific
operations that must be performed when opening the unit:

UOPEN.P (not used, file type, CCB addr)
{ - - -

/**
* File type is ?FLPU, ?FLPD, or ?LPE. *
* Dispatch to the correct LPU unit open routine. *
**/

LDSP (file_type, dispatch_table);

LPUNT: /* Line Printer Unit open routines.*/

**
* store the correct unit type in the CCB. *
**/

switch (FCB_addr->FBTYP) /* What type LP is this?*/
{
case ?FLPU: /* ?FLPU ? */

CCB addr->CBSTS 1= CULPB; /* Yes, LPB type to CCB */
break;

case ?FLPD: /* ?FLPD ? */
CCB addr->CBSTS 1= CULPD; /* Yes, LPD type to CCB */
break;

case ?FLPE: /* ?FLPE ? */
CCB addr->CBSTS 1= CULPE; /* Yes, LPE type to CCB */
break;

}

/**
* set the CCB "unit" bit. *
**/

/* Set CCB "unit" bit */

/**
* Allocate a buffer header. *
* This buffer header will hold the unit-specific commands *
* and request parameters sent to the line printer. *
* Then do some other database initia1izations. *
**/

BH_addr = GSMEM (BHULN);

CCB addr->CBBHR.W
BH_addr->BQCCB.W

Licensed Material

= BH addr;
= CCB.addr;

7-10

/* Allocate the BH. */

/* Save BH addr in CCB. */
/* Save CCB addr in BH. */

Property of Data General

DCT addr = &BTBL + (2 * CCB addr->CBFCB.W->FBDCU); /* DCT */
in BH. */ BH addr->BQDCT.W = DCT_addr; /* Save DCT addr

set bit (CCB addr->CBFCB.W, BFBEO);
if (check bIt (CCB addr, BCBFF))

set_bit (DCT_addr~ BDDFF);

/* Implicit excl open */
/* "Disable FF" bit */
/* from CCB to DCT. */

/**
* If the line printer is on a Unicorn controller, the *
* controller will need to access a UDB, which will be *
* allocated now. Non-Unicorn devices do not require a UDB. *
* This is because buffer headers are enqueued off the UDB *
* request queue (UDB addr->UDCRQ.W) for Unicorn devices, but *
* off the DCT request queue (DCT_addr->DCCRQ.W) for *
* non-Unicorn devices. *
* Additionally for Unicorn devices, we must get the device's *
* initial status and save it in the buffer header. *
**/

if (check_bit (UDB_addr, BDUCN» /* Unicorn device? */
{ /* Yes. */
call GTUDB.P (FCB_addr->FBDCU,&UDB_addr);/* Get/init UDB.*/

FCB addr->FBUDB.W
BH_addr->BQUDB.W

= UDB addr;
= UDB addr;

BH addr->BSTS = QTSTS;
call MQBHR (&PPBSY, BH addr);
call BWAIT;

call *DCT_addr->DCTFR.W;
return;
}

else
{
call *DCT addr->DCTFR.W;
return;
}

} /~ end of UOPEN.P for LPUs */

7.3.4 Opening Disk Units (DKUs)

/* Save addr in
/* FCB and BH.

*/
*/

/* Get status command.*/
/* Enqueue it to LPU. */
/* Pend. I/O errors */
/* returned to caller.*/

/* Format tab memory */
/* and return to */
/* GOPEN.P. */

/* Not unicorn device!*/
/* Format tab memory */
/* and return to */
/* GOPEN.P. */

LDU Management handles the initialization ("open") and release
("close") of logical disk units. Unit Management is responsible
for providing File Open/Close Services with routines to allocate
unit-specific databases for disk units when they are opened for
physical I/O. Although physical disk unit opens and closes have
been incorporated into Unit Management, the discussion on
physical disk I/O is covered by Buffer Management (section 5.13).

Licensed Material 7-11 Property of Data General

The following C-based algorithm illustrates the DKU-specific
operations that must be performed when opening the unit:

UOPEN.P (file num, file type, CCB addr)
{ - - -

/**
* File type is ?FDKU. *
* Dispatch to the Disk Unit open routine. *
**/

LDSP (file_type, dispatch_table);

DUNT: /* Physical Disk Unit open routine */

/**
* If the unit is already open, all necessary databases must *
* exist; there is nothing to do except return. *
* The "unit" bit (BCBUN) is not set in the CCB! Physical *
* disk I/O is performed quite differently from other unit *
* I/O. This is why the BCBUN bit is not set AND why physical*
* disk I/O is explained in Buffer Management. *
**/

FCB addr = CCB addr->CBFCB.W;
if (FCB_addr->FBOPN >= 1)

return;

/* Save FCB addr
/* Is unit open?
/* Yes, go home.

*/
*/
*/

/**
* Allocate an LCB. *
* An LCB is allocated for a single unit for the sole purpose *
* of maintaining the UDB pointer. When Physical Disk I/O *
* Services calls Buffer Management service NQLDRQ to enqueue *
* a buffer header to the disk unit, it must pass an LCB. *
**/

LCB addr = GSMEM (LBBLT);
FCB-addr->FBLCB.W = LCB addr; - -

/* Allocate the LCB. */
/* Save .addr in FCB. */

/**
* Allocate and init a UDB. *
* GDUDB.P calls the device-specific UDB init routine, which *
* inits such UDB parameters as disk size, cylinders, etc. *
* It also links the UDB onto the DCT physical unit list. *
**/

call GDUDB.P (FCB addr->FBDCU, &UDB addr);
LCB_addr->LBUDB.W-= UDB_addr; - /* UDB addr to LCB. */

/**
* Finish initializing the UDB, FCB and LCB. *
* Set the first/last unit addresses. (GDUDB.P set UDLAH.W!) *
* Disk's elementsize is equal to block size of whole disk. *
* The EOF is equal to the number of blocks * 512. *
**/

UDB addr->UDFAH.W = 1;
FCB-addr->UDFAH.W = 1;
UDB-addr->UDLAH.W += 1;

Licensed Material

/* First addr = 1 (UDB).*/
/* First addr = 1 (FCB).*/
/* Size = size + 1. */

7-12 Property of Data General

FCB addr->FBDFH.W = UDB addr->UDLAH.W; /* Elementsize, EOF.*/
FCB-addr->FBEFH.W = UDB-addr->UDLAH.W * BYTES_PER_BLOCK;

FCB addr->FBIDX = 0; /* Max index levels = 0 */
/* makes file contiguous*/

/**
* Link LCB to global LCB chain (tail). *
* For the sake of consistency, show LCB cache buffer list *
* queue descriptor as empty. No buffer headers will ever *
* be enqueued to the LCB because ONLY physical I/O is done. *
**/

LCB addr->LBCLP.W = -1;
LCB-addr->LBCLB.W = -1;

LCB addr->LBLBP.W = -1;
*.ELCB.W->LBLBP.W = LCB_addr;
.ELCB.W = LCB_addr;

return;

} /* end of UOPEN.P for DKUs */

Licensed Material 7-13

/* Make clean, null */
/* LCB queue descriptor.*/

/* Last LCB in chain. */
/* Link LCB to tail. */
/* New LCB tail pOinter.*/

Property of Data General

7.4 Closing Unit Files

Units are closed by the same File Management service provided by
File Close Services: GCLOSE.P. Just as Unit Management provides
File Open Services with the unit-specific open routine UOPEN.P,
so does it provide File Close Services with the converse routine
to perform unit-specific close routine. This service is called
UCLOSE.P.

UCLOSE.P essentially deal locates the file system databases
allocated by UOPEN.P. The service is short and straightforward.
The algorithm that describes UCLOSE.P is illustrated below.

The inputs to UCLOSE.P are the file type and the FCB address.
The return (WRTN) from UCLOSE.P transfers control back to
GCLOSE.P to continue with the normal closing of the file.

UCLOSE.P (file type, FCB addr)
{ - -
/**

* If UOPEN.P allocated a UDB for the unit, deallocate it. *
* If UOPEN.P allocated an LCB for the unit, deallocate it. *
* THE BHS THAT UOPEN.P ALLOCATED ARE DEALLOCATED BY GCLOSE.P!*
* In some cases, call a routine or send a command to the *
* unit controller to "reinitialize" (get it ready) for the *
* next time it is opened. *
**/

switch (file_type)
{
case ?FMTU:

/**
* Call mag tape cleanup routine (in the DCT). *
* Release the UDB's memory. *
**/

call *FCB addr->FBUDB.W->UDDCT.W->DCCLN.W;
call RLUDB.P (UDB_addr);
break;

case ?FMCA:

/**
* Remember, BH deallocated by GCLOSE.P, and MCUs do *
* not require UDBs, so there is nothing to do! *
**/

break;

case ?FLPU:
case ?FLPD:
case ?FLPE:

/**
* Release UDB for unicorn line printers. *
**/

Licensed Material 7-14 Property of Data General

if (check_bit (DCT addr, BDUCN))
call RLUDB.P (UDB=addr);

break;

case ?FDKU:

/**
* Call disk unit recalibration routine, which sets *
* the disk heads to cylinder 0, track 0, sector O. *

}

* Release the UDB. *
* Unlink LCB from global LCB chain release it. *
**/

call RECAL (FCB addr->FBLCB.W->LBUDP.W);
call RLUDB.P (UDB_addr);

unlink (&.MLCB.W, LCB addr);
call RSMEM (LCB_addr,-LBBLT);

break;

/* Unlink LCB, */
/* and release it.*/

} /* end of UCLOSE.P */

Licensed Material 7-15 Property of Data General

7.5 Unit I/O Interface Services

Since unit devices are represented by AOS/VS filenames, they are
not managed exclusively by Unit Management. For example,
generic File Open/Close Services (e.g., GOPEN.P, GCLOSE.P)
handles most of the general open/close work, but calls to Unit
Management UOPEN.P/ UCLOSE.P routines complete the open/close of
the unit. Similarly, File Management I/O Interface Services
(e.g., RDB.P, WRB.P) accomplishes the task of extracting the
unit I/O request parameters from the user packet and
initializing the user CCB. File Management then enqueues the
unit I/O to the device by calling the Unit Management I/O
Enqueue routine UIOENQ.

The control block that Process Management allocates to run any
Unit Management I/O system call does not pend after the unit I/O
is enqueued. Since the call to UIOENQ is the very last
operation performed by these services, they are able to avoid
invoking the CB pending mechanism after enqueuing the request
because there would be nothing to do, except return, when the
request completed. Hence, just like RDB.P/WRB.P for logical
disk I/O (Section 3.4.5), the unit I/O system call interface
enqueues the request, zeroes out the TCB address in the control
block, and immediately returns. The system call processor
recognizes that CB addr->CATCB.W is zero, and thus releases the
control block, but keeps the TCB pended. The unit
post-processor unpends the TCB, whose address is stored at
offset CBTCB.W of the CCB, when the I/O request is complete.

The unit I/O system call interface services are presented in the
C-based algorithm below. These entry points are the same ones
used for logical and physical disk I/O. Due to the identical
format of the packets, common entry points were established for
purposes of initial validation and data manipulation. At
assembly language level, the code makes checks to determine what
type of service is being requested (e.g., unit I/O, physical disk
I/O, ?BLKIO) and branches to the appropriate path. This
algorithm follows only the unit I/O paths.

The calling process' input accumulators are represented by
parameters in the TCB. The inputs and outputs to RDB.P/WRB.P
are the following:

Variable Input Output

TACO.W Not used. Undefined.

TAC1.W Channel number. Number of bytes
actually transferred.

TAC2.W Address of packet. Unchanged.

Licensed Material 7-16 Property of Data General

#define SCMCG 0372 /* Unit I/O system call charge */

RDB.P/WRB.P/PRDB.P/PWRB.P/BLKIO.P (TAC1.W, TAC2.W)
{
/**

* This is a system call with a packet. *
* Get the necessary data into system space. *
* Note: a trap handler address is stored in CCB addr->CBFEH.W*
* in case the wblm get an access violation. *
**/

channel num = TAC1.W;
caller pkt = TAC2.W
wblm (caller_pkt, &sys_pkt, pkt len);

/**
* Find the (user) CCB for the input channel. *
* DFAULT returns error code in CERWD of the control block, *
* which the system call processor will interpret. *
**\

PTBL addr = *CC.W->CPTAD.W;
call-DFAULT (channel num, PTBL addr, &CCB addr);

if (error) return; - /* Error code in CERWD */

/**
* Got the CCB. *
* This is where the common code for logical/physical/unit *
* branches off for unit devices. The rest of this algorithm *
* includes unit-specific code ONLY! *
* Again, physical disk I/O is NOT handled by Unit Management!*
**/

if (check bit (CCB_addr->CBSTS,CBUNTB))
{

/* UNIT DEVICE? */
/* YES ! ! ! */

/**
* Initialize the specific unit file's CCB with the *
* request parameters selected by the user. *
**/

switch (CCB addr->CBSTS & UNIT TYPE MASK)
{ -

case MTU:

/**
* MAGNETIC TAPE UNIT REQUEST. *
* Move starting block num, block size, and *
* and number of blocks to transfer into the CCB. *
* If file num was not specified at ?GOPEN, get it *
* from the packet. Then set CCB option bits if *
* if requested (BCBEO for ?ENOV, BCSAF for ?SAFM). *
**/

CCB addr->CBDBL = sys pkt->?PRNL; /* Blk num */
CCB-addr->CBBLN = sys=pkt->?PRCL; /* Blk siz */
CCB addr->CBNBK = sys_pkt->?PSTI & 377;/* Num blks*/

if (!check_bit (CCB addr->CBSTS, CBFNSB))
CCB addr->CBDBH = sys_pkt->?PRNH;

Licensed Material 7-17 Property of Data General

/**
* If physical I/O request (?PRDB/?PWRB/?BLKIO), *
* do the following: 1) set the PIO bit in the CCB. *
* This tells the BH post-processor to move error/ *
* status information into the PIO packet. *
* 2) pin the PIO error packet pages, so the PP will*
* not fault when transferring PIO data, 3) zero *
* out the PIO error packet explicitly. *
**/

if (physical I/O)
{
set_bit (CCB_addr, BCBPIO); /* PIO bit=l */

saved_user_data_addr = CCB_addr->CBUAD.W;
CCB addr->CBUAD.W = error packet addr;
call DMTST (PIBLT*2, CCB_addr); - /* Pin pages */
CCB addr->CBUAD.W = saved_user_data_addr;

error packet addr->PCSI = 0;
error=packet=addr->PCS3 = 0;
error_packet_addr->PCS5 = 0;
error packet addr->PCS7 = 0;
} - -

/* Zero out */
/* PIO pkt. */

/**
* DMTST: Pin the user pages referenced. This *
* ensures that pages will be resident during the *
* data transfer. If the pages are faulted out, *
* the controller could corrupt a good page at the *
* memory address. *
* CHRG: Charge for I/O, check time slice left. *
**/

call DMTST (CCB addr->CBNBK * CCB addr->CCBLN,
CCB-addr); -

call CHRG (SCMCG, CCB_addr->CBNBK, CCB_addr);

/**
* UIOENQ: Enqueue the unit I/O. *
* Then, since there is no more to do here, advise *
* the system call processor to deallocate (or *
* reassign) the CB. The MTU post-processor will *
* unpend the user TCB, unpin the user buffer pages,*
* and return data to the caller's packet. *
**/

call UIOENQ (CCB_addr);

*CC.W->CATCB.W = 0;

return;

Licensed Material 7-18

/* Unit I/O ENQueue */

/* Deallocate CB, but*/
/* keep TCB pended. */
/* System call done. */

Property of Data General

case MCU:

/**
* MCA UNIT REQUEST. *
* Initialize CCB with request parameters: *
* Move retry count, block size, link number to CCB.*
* Since the MCA transfers only 1 block of size *
* ?PRCL (i.e., transfer of ?PRCL bytes), CBNBK is *
* used to specify the transmission mode instead of *
* the number of blocks to transfer. *
* (1 = protocol mode, 2 = direct mode) *
**/

CCB addr->CBDBL = sys_pkt->?PRNL;
CCB addr->CBBLN = sys_pkt->?PRCL;

/* Retry count */
/* Block size */

if (!check bit (CCB addr->CBSTS, CBFNSB))
CCB_addr~>CBDBH =-sys_pkt->?PRNH; /* Link num */

if (extract mode (sys pkt->?PSTI)
CCB addr->CBNBK = 2;

else
CCB addr->CBNBK = 1;

direct)

/**
* DMTST: Fault and pin the page in user packet on *
* which the link number falls. This must be done *
* because the MCA post-processor updates the link *
* number (at interrupt level). This page must be *
* resident. Then, as usual for user data *
* transfers, pin the user buffer pages. *
* CHRG: Charge for the system call. *
**/

/* Link num falls on page containing ?PRNH. Pin it! */
call FLTPIN (&caller_pkt->?PRNH, *CMAP.W);

call DMTST (CCB addr->CCBLN, CCB addr);
call CHRG (SCMCG, 1, CCB addr); -

/**
* UIOENQ: Enqueue the unit I/O. *
* As usual, tell the system call processor to *
* deallocate the CB but to keep the TCB pended. *
* The TCB will later by unpended by the *
* post-processor. *
**/

call UIOENQ (CCB_addr);

*CC.W->CATCB.W = 0;
return;

Licensed Material 7-19

/* Enqueue the I/O. */

Property of Data General

case LPU:

}

/**
* LINE PRINTER UNIT REQUEST. *
* Since users can issue only ?WRBs to a LPU, return*
* an error if a read is specified. *
* Null requests to LPUs are illegal as well. *
* Set CCB option bits if requested (BCBEO = ?ENOV).*
**/

if (TCB addr->TSYS.W == ?RDB)
return (File_read_error);

/* Read req? */
/* Yes, bad. */

if (sys pkt->?PRCL == 0) /* Null req? */
return (Invalid_system_call_parameter); /* Bad. */

/**
* Move the number of bytes requested to the CCB. *
* Then, pin the user buffer pages, charge for the *
* system call, enqueue the I/O, tell syscall *
* processor to deallocate the CB but keep the TCB *
* pended, and return. The LPU post-processor *
* PPMUS (same for MTUs) will unpend the caller's *
* TCB and unpin user pages when the I/O completes. *
**/

CCB_addr->CBQBC = sys_pkt->?PRCL; /* Move */

call DMTST (CCB addr->CBQBC, CCB addr); /* Pin */
call CHRG (SCMCG, 1, CCB_addr); - /* Charge */

call UIOENQ (CCB_addr);

*CC.W->CATCB.W = 0;
return;

/* Enqueue*/

/* Fix CB */
/* Done! */

} /* end of if unit type */

} /* end of RDB.P/WRB.P/PRDB.P/PRWB.P/BLKIO.P

Licensed Material 7-20 Property of Data General

7.6 Enqueuing Unit I/O (UIOENQ)

Unit I/O Interface Services initializes the requesting CCB with
the request parameters and calls Unit Management to "enqueue the
unit I/O" (or "enqueue the unit CCB request") to the appropriate
unit. Each different unit type has a unique routine to extract
request data from the unit CCB, store it in the buffer header,
and enqueue the buffer header to the unit device's DCT (or UDB
if unicorn device) request queue. The Unit Management interface
to enqueue unit I/O is UIOENQ.

UIOENQ simply takes the CCB address as an input, isolates the
unit type from the status word, and calls the appropriate Unit
Management operation to enqueue the CCB request to the unit.
The three Unit Management routines that actually do most of the
work in enqueuing the unit CCB requests are:

1) MQCCB - Enqueue a unit CCB request to a MTU;
2) MCACB - Enqueue a unit CCB request to a MCU;
3) LPBIO - Enqueue a unit CCB request to a LPU.

In a multiprocessor environment, programmed I/O to any system
device must be issued by the mother job processor (JP). Before
UIOENQ dispatches to the unit-specific routine to enqueue the
request, it must check if it is running on the mother JP. If
so, UIOENQ proceeds with the enqueue.

If the CB executing in UIOENQ is running on a daughter processor,
it must signal the mother processor to enqueue the request.
Since the Disk Manager Task always runs on the mother processor
in AOS/VS 7.50, it takes responsibility for enqueuing unit CCB
requests originating on daughter processors. UIOENQ enqueues the
CCB to the global unit I/O wait queue UIOQUE.W, increments the
UIOQUE.W element count (UIOQCT), calls DWAKE to unpend the Disk
Manager Task, and returns. CCBs are linked to UIOQUE.W through
CCB addr-CBQLK.W. When the Disk Manager task is scheduled (on
the-mother processor) and determines that there is at least one
CCB enqueued to UIOQUE.W, it calls UIODEQ to dequeue one unit CCB
request enqueued by a daughter processor and successfully enqueue
it to the appropriate device. (The Disk Manager Task is called
separately for each CCB; it does only one pre-processing request
at a time.) This procedure is outlined below:

Licensed Material 7-21 Property of Data General

Daughter JP --->

RDB.P ()
/**

* Unit I/O Interface services calls UIOENQ to *
* unit CCB requests. *
**/

{

}

call UIOENQ (CCB_addr);
CB addr->CATCB.W = 0;
return;

/* Enqueue I/O */

UIOENQ (*CCB_addr)
{

}

if (check_bit (*MYPPCB.W, BCPMST))

/***
* If mother JP, enqueue I/O NOW to unit. *
* Depending on the unit type, QUE IT *
* dispatches to MQCCB, MCACB, or LPBIO. *
***/

{
call QUE_IT;
return;
}

else

/***
* If not mother JP, enqueue CCB to the unit *
* I/O wait queue UIOQUE.W. The Disk Manager*
* Task (runs on mother) will remove CCBs on *
* UIOQUE.W and successfully enqueue the 1/0.*
***/

{
call enqueue_tail (&UIOQUE.W, CCB_addr->CBQLK.W);

UIOQCT += 1;
call DWAKE;
return;
}

/* Incr UIOQUE.W CCB count */
/* Unpend Disk Manager Task */

Licensed Material 7-22 Property of Data General

Mother JP --->

RUNLC1: /* Disk Manager Task */
{

}

if (UIOQCT >= 1) /* Anything on UIOQUE.W? */

/***
* The Disk Manager Task enqueues the unit *
* CCB requests to the appropriate unit. *
* UIODEQ: dequeues CCBs from UIOQUE.W and *
* calls QUE IT to enqueue the CCB *
* to the unIt's DCT request queue. *
***/

{
call UIODEQ;
}

/* Yes, dequeue CCB from*/
/* UIOQUE.W, and enque */
/* BH to the unit. */

UIODEQ()
{

/***
* If UIOQUE.W is not empty, dispatch to the *
* appropriate routine to enqueue the I/O *
* to the proper device. *
* Note: only one CCB processed at a time. *
***/

{
if (*UIOQUE.W != -1) /* Any CCBs? */

{ /* Yes. */
CCB addr = *UIOQUE.W; /* Get req CCB. */
UIOQUE.W = CCB addr->CBQLK.W; / New head */
UIOQCT -= 1; - /* One less now. */

call QUE_IT (CCB_addr);
}

/* Dispatch to */
/* enque I/O to */
/* proper routine*/

return;
}

QUE IT (*CCB addr)
{ - -

}

/***
* This routine simply dispatches on the *
* unit type in the CCB to the appropriate *
* unit I/O enqueue routine. The buffer *
* header at CCB addr->CBBHR.W will be *
* enqueued to the unit. *
***/

LDSP (CCB addr->CBSTS & UNIT~TYPE_MASK, dsp_table);
return; -

Licensed Material 7-23 Property of Data General

7.7 Enqueuing Unit CCB Requests to Magnetic Tape Units (MQCCB)

Before the actual buffer header enqueue is done, the buffer
header must be initialized with the request data contained in the
unit CCB. The Unit Management service MQCCB extracts this data
from the CCB and moves it into the buffer header. MQCCB then
readies the buffer header for I/O by setting the I/O-in-progress
bit. Finally, MQCCB enqueues the buffer header to the
appropriate place.

In order for the unit device to begin transferring data, the
buffer header must be enqueued to:

a) the device's DCT request queue, DCT_addr->DCCRQ.W,
if a non-unicorn device, or

b) the device's UDB request queue, UDB addr->UDCRQ.W,
if a unicorn device.

For non-Unicorn tape drives, if there are no requests on the
queue, the device must be started by the magnetic tape driver
start-up routine, whose address is found at DCT_addr->DCSTR.W.
The start-up routine (which is a component of the driver world)
initializes the UDB, processes the specific unit command, sets
up the data channel map for the transfer, and issues the I/O
command to the device controller. If the device is busy
(rewinding) when the start-up routine is called, the input
buffer header is temporarily enqueued to UDB_addr->UDCRQ.W.
When the rewind completes, the start-up routine will be called
again to send out the I/O command to the device. The
non-Unicorn start-up routine is called MTAST.

For Unicorn tape drives, the buffer header is first enqueued to
UDB_addr->UDCRQ.W by the Unicorn device buffer header enqueue
routine UCNNQ. The Unicorn device start-up routine, UCNST,
allocates a database called a Unicorn Control Block (UCB). The
UCB contains pointers to the requesting buffer header and to the
unit's UDB. UCNST enqueues the UCB to the DCT UCB list,
DCUCB.W, where the Unicorn controller looks to find the base of
the I/O request list. In effect, the UCB is the database that
ultimately contains the request-specific information for I/O
requests to Unicorn devices. Since this section does not cover
device drivers in detail, there is only limited discussion on
this topic.

After the buffer header is enqueued, MQCCB returns to its
calling routine, UIOENQ. Consequently, UIOENQ returns
immediately to its caller, Unit I/O Interface Services. Since
there is no more work to do by the system call interface
routine, the call will return to the system call processor (in
lieu of calling CWAIT to pend), and only the requesting TCB of
the caller's process will remain pended.

The C-based algorithm that clearly illustrates the MQCCB
procedure follows. The only inputs are the unit-specific
post-processor address and the unit CCB address.

Licensed Material 7-24 Property of Data General

#define BYTES PER PAGE 04000
#define SCRTY-015

/* Number of bytes per page */
/* Default tape retry count */

MQCCB (PP_addr, CCB_addr)
{
/**

* This unit's one and only BH was allocated when the unit *
* was opened. Its address was stored in the CCB. *
* Save its address locally, and store the CCB addr in the BH.*
**/

BH addr = CCB addr->CBBHR.W;
- -

BH_addr->BQCCB.W = CCB_addr;
/* Save BH addr
/* Save CCB in BH

*/
*/

/**
* Move the unit CCB request parameters into the BH. *
**/

BH addr->BQFIL CCB addr->CBDBH; /* File number */
BH=addr->BQBLK

-
/* = CCB addr->CBDBL; Start block num */ -

BH addr->BQPRI = CCB addr->CBPRI; /* Process PNQF */ - -
BH addr->BQNBK = CCB addr->CBNBK; /* Num blks to xfer */
BH_addr->BQWDC = - CCB addr->CBBLN; /* Block size (words)*/ -

BH_addr->BQMAP.W = CCB addr->CBPTA.W; /* PTBL address */ -
BH addr->BQUAD.W = CCB addr->CBUAD.W; /* User buffer addr */ - -
BH addr->BQRBC.W = 0;

- /* Init run byte cnt */

/**
* Init the BH some more before enqueuing it. *
**/

BH addr->BQST = 0; /* Init status (read)*/ -
if (check bit (CCB addr, BCBCl)) /* Is this a write? */

set bit
-
(BH_addr~ /* BQMOD) ; Yes, set mod bit. */ -

if (check bit (CCB addr, BCBPIO) /* Physical I/O? */ -
(BH addr~ set bit BQPIO) ; /* Yes, set PIO bit. */ - -

if (check bit (CCB addr, BCBEO)) /* Log EOT override? */ -
(BH_addr~ /* set bit BQEOV) ; Yes, set in BH. */ -

if (check bit (CCB addr, BCSAF)) /* ?SAFM option set? */ -
set bit (BH addr, BQSAF) ;

- - /* Yes, set in BH. */

/**
* Calculate the maximum possible data transfer size in bytes.*
* This is done by multiplying the number of bytes per page by*
* the number of map slots assigned to the MTU. (Must *
* subtract 1 because DCT addr->DCNMS actually indicates one *
* map slot too many, due-to possible page overlap of buffer.)*
* Verify that the data transfer size is legal. *
**/

Licensed Material 7-25 Property of Data General

if ((CCB addr->CBBLN > max_possible_bytes) II /* Legal */
(CCB=addr->CBBLN < 3)) /* xfer? */

{ /* NO! */

if (BH_addr->BQNBK != 0) /* Null request? */
{ /* No, return illega1*/
return (I11egal_block_size); /* block size error. */
}

}

/**
* MQBHR: Magnetic tape unit enQueue Buffer HeadeR. *
* MQCCB calls MQBHR, which has been EXPANDED here! *
**/

MQBHR:

/**
* Enqueue the buffer header to the unit device. *
* If this unit is a Unicorn device, a special routine must *
* handle the buffer header enqueue. While non-Unicorn *
* device BHs are enqueued to the DCT, Unicorn device BHs *
* are initially enqueued to the UDB request queue, *
* UDB addr->UDCRQ.W. Once the BH is enqueued, we can return *
* to our caller. *
* The post-processor will unpend the requestor's TCB. *
**/

if (check bit (DCT_addr, BDUCN) /* Unicorn device? */
-

{ /* Yes. */
call NQUCN (unpend_addr, BH_addr) ; /* Enqueue BH to UDB.*/
return; /* Nothing else! */
}

/**
* Not a Unicorn device. *
* First finish up initializing the buffer header with the *
* request specifications. *
* Then, enqueue the buffer header to DCT request queue. *
* Buffer headers are enqueued to DCT addr->DCCRQ.W in order *
* of priority enqueue factor (PNQR),-saved at BH addr->BQPRI.*
**/

BH_addr->BQUPD.W = unpend_addr;

set bit (BH addr, BQTIO);
set bit (BH_addr, BQNAB);

if (check bit (BH addr, BQPIO))
BH_addr~>BQERC T= 1;

else
BH_addr->BQERC 1= SCRTY;

call MASK (DCT addr->DCMSK);
set bit (DCT_addr, BDLOK);

Licensed Material 7-26

/*

/*
/*

/*
/*
/*
/*

/*
/*

Save BH pp addr. */

Set I/O-in-prog. */
NOT a system BH. */

Physical I/O? */
Yes, one retry. */
No. */
Max retries. */

Mask out MTU ints */
and get DCT lock. */

Property of Data General

/**
* Enqueue the buffer header to the DCT. *
* If it is the only one, call the device start-up routine. *
* Otherwise, the device must already be started. *
* Note: there can only be one BH per unit (@MTBO), but *
* multiple BHs per device (@MTB units 0,1,2,3). *
**/

call enqueue_by_PNQF (DCT_addr->DCCRQ.W, BH_addr, BQQLK.W);

if (first request on DCT queue)
call *nCT addr~>DCSTR~W;

clear_bit (DCT_addr, BDLOK);
call UNMASK;

return;

} /* end of MQCCB */

Licensed Material 7-27

/* First on queue? */
/* Yes, start device.*/

/* Release DCT lock. */
/* Allow MTU ints. */

/* Back to caller. */

Property of Data General

7.8 Enqueuing Unit CCB Requests to MCA Units (MCACB)

The Unit Management service MCACB extracts this data from
the CCB and moves it into the buffer header for MCUs.
MCACB then readies the buffer header for I/O by
setting the I/O-in-progress bit. Finally, MCACB enqueues the
buffer header to the MCA Link Table. MCUs are not Unicorn
devices; the MCA driver is used to issue I/O commands to the
MCU.

The MCA Link Table is used to hold data relevant to the unit's
current state. Its address is stored in the DCT at
DCT addr->DCQVT.W. Buffer header requests are enqueued off the
MCA-Link Table through offset MA.FE. The MCA Link Table has the
following format:

Offset

MA.NR
MA.LR.W
MA.FE
MA.LE

0
1
3

17

MCA Link Table Definitions

Number of I/O Entries.
Highest link currently in use.
First entry (queue of requesting BHs).
Highest possible link.

It may be useful to note the various states that the MCA can
attain during transmission and reception. The state is stored
in the right byte of BH_addr->BQLNK, and in the DCT flag word
DCT addr->DCFLG. The states are the following:

STATEO (0) - state 0, No Timeout
STATEI (1) - state 1, No Timeout
STATE2 (2) - state 2, No Timeout
STATE3 (3) - state 3, No Timeout, Direct I/O
TIMEO (4) - state 0, Timeout
TIMEI (5) - state 1, Timeout
TIME2 (6) - state 2, Timeout
TIME3 (7) - state 3, Timeout, Direct I/O

After the buffer header is enqueued, MCACB returns to its
calling routine, UIOENQ. Consequently, UIOENQ returns
immediately to its caller, Unit I/O Interface Services (RDB.P,
WRB.P, etc.). Since there is no more work to do by the system
call interface routine, the call will return to the system call
processor. Only the requesting TCB of the caller's process will
remain pended.

The C-based algorithm that clearly illustrates the MCACB
procedure follows. The only inputs are the unit-specific
post-processor address and the unit CCB address.

Licensed Material 7-28 Property of Data General

#define STATE3 03

MCACB (PP addr, CCB_addr)
{

/* MCA I/O: state 3 */

/**
* This unit's one and only BH was allocated when the unit *
* was opened. Its address was stored in the CCB. *
* Save its address locally, and store the CCB addr in the BH.*
**/

BH addr = CCB addr->CBBHR.W;
BH-addr->BQCCB.W = CCB addr;
BH=addr->BQUPD.W = unpend_addr;

/* Save BH addr */
/* Save CCB in BH */
/* Save BH pp addr. */

/**
* Move the unit CCB request parameters into the BH. *
**/

BH_addr->BQLNK CCB addr->CBDBH; /* Link number. */ -BH addr->BQBLK = CCB addr->CBDBL; /* Start block num */ -
BH_addr->BQPRI = CCB addr->CBPRI; /* Process PNQF */ -
BH addr->BQNBK = CCB addr->CBNBK; /* Transmission mode */
BH=addr->BQWDC = - CCB - addr->CBBLN; /* Word count (neg!) */

BH addr->BQMAP.W = CCB addr->CBPTA.W; /* PTBL address */
BH=addr->BQUAD.W = CCB addr->CBUAD.W; /* User buffer addr */
BH_addr->BQRBC.W = 0; /* Init run byte cnt */

/**
* Validate some parameters. *
* Make sure link number in bounds (0 - 15.). *
* If it is, move it over to the left byte where it belongs. *
* If the MCA's last operation was xmit, this must be recv. *
* If the MCA's last operation was recv, this must be xmit. *
* Also, xmit operation cannot use link 0, else error. *
**/

if (BH_addr->BQLNK < 0) I I (BH_addr->BQLNK> 15.)
return (Illegal_link_number)

else
BH_addr->BQLNK «= 8;

if (check bit (BH addr->BQDCT.W->DCDVC, DCTFLG))
{ - - /* Last op receive. */
if (check bit (CCB addr, BCBCl)) /* This op recv too? */

return (Illegal_I/O_type); /* Yes, illegal. */
}

else
{
if

if

(!check bit (CCB addr, BCBCl)
return (Illegal I/O type);
(BH addr->BQLNK-== 0)
return (Illegal_link_number);

/*
) /*

/*
/*
/*

Last op transmit.
This op xmit too?
Yes, illegal.

*/
*/
*/

No, but is link
Yes, gotcha!

O?*/
*/

if (BH_addr->BQRTY < 0) I I (BH_addr->BQRTY> 255.)
return (Illegal_retry_value); /* Bad retry count. */

}

Licensed Material 7-29 Property of Data General

/**
* A receive operation was indicated by a set bit in the DCT *
* address offset in the buffer header. Reset it now. *
**/

BH_addr->BQDCT.W &= 017777777777; /* Reset bit O. */

/**
* Check transmission mode. (Protocol = 1; Direct I/O = 2) *
* If direct I/O, verify that there are no outstanding *
* requests. If there are not, set state 3 in the DCT and in *
* the status word (right byte of BH addr->BQLNK). *
**/

if (BH addr->BQNBK > 1)
{ -

if (DCT addr->DCQVT.W->MA.NR !=
return (Protocol_error_251);

DCT addr->DCFLG = STATE3;
BH_addr->BQLNK 1= STATE3;
}

BH_addr->BQOWC = - BH_addr->BQWDC;

/* Direct I/O?
/* Yes.

0) /* Outstanding reqs?
/* Yes, illegal.

*/
*/
*/
*/

/* No, state = 3. */
/* status = state 3. */

/* Make positive
/* word count.

*/
*/

/**
* Enqueue the buffer header to the MeA unit. *
* QMCAB does the actual enqueue. Buffer headers are enqueued*
* to the MCA link table, offset MA.FE. The MCA link table *
* address is found at DCT addr->DCQVT (Queue vector Table). *
**/

call MASK (DCT_addr->DCMSK.W); /* Mask out MCA ints.*/

call QMCAB (DCT_addr); /* Enqueue BH to MCA.*/

call UNMASK; /* Allow MCA ints. */

return; /* Back to caller. */

} /* end of MCACB */

Licensed Material 7-30 Property of Data General

7.9 Enqueuing Unit CCB Requests to Line Printer Units (LPBIO)

The Unit Management service LPBIO extracts this data from the CCB
and moves it into the buffer header. LPBIO then readies the
buffer header for I/O. LPBIO enqueues the buffer header to the
appropriate place.

Since line printers can be hooked up to Unicorn controllers, the
buffer header will be enqueued to:

a) the device's DCT request queue, DCT addr->DCCRQ.W,
if a non-Unicorn device, or

b) the device's UDB request queue, UDB_addr->UDCRQ.W,
if a Unicorn device.

Like MQCCB, LPBIO invokes the generic Unicorn buffer header
enqueue NQUCN, if the LPU is a Unicorn device. Otherwise, LPBIO
enqueues the buffer header to the DCT and calls the line printer
unit start-up routine to inform the LPU to begin the data
channel transfer. The start-up routines for LPB r LPD, and LPE
type line printer units are named LPBST, LPDST, and LPEST,
respectively. (See Section 7.7 for more on Unicorn units.)

The LPU start-up routines are relatively short and
straightforward in comparison to their disk, tape, and MCA
equivalents. Therefore, as a matter of both interest and
informativeness, the actual assembly language LPBST routine has
been duplicated below direct from the LPB device driver. The
comments provide insight into the logic.

Licensed Material 7-31 Property of Data General

LPBST:

NVLFD:

WSSVR
XWLDA
IOXCT
XNLDA
NLDAI
WAND
SUB#

WBR

NLDAI
WBTZ
NLDAI
WSNB

WBR

WBTO
WSUB
IOXCT
XNLDA

NLDAI
WBTZ

XNLDA
NEG
IOXCT

XNLDA
WMOV
WMOV
XJSR

WADD
WMOV
XWLDA
XWLDA
XNLDA
WADD
IOXCT
XNLDA
WRTN

o
3,DCCRQ.W,2
DIA
1,DCSDV,2
ONRDY,l
1,0
O,l,SZR
WTST

BDVFU,l
2,1
BQEOV,O
3,0
NVFLD

2,1
0,0
DOA

1,DCSDV,2

BDSWT,O
2,0

0,BQORC,3
0,0
DOC

1,DCSDV,2
2,0
3,2
SWAMP

2,2
2,0
2,OAC2.W,3
3,DCCRQ.W,2
1,BQBYT,3
1,0
DOBS

1,DCSDV,2

; First BH addr on req queue
; Get the status of this unit
; Retrieve it.

On-line and ready mask.
; (Mask)
; Is it both on-line and ready?
; NO! Wait for status change.

; Yes, VFU enable bit (DCT).
; Assume no VFU enable.
; Get enable VFU bit from BH.

Is the VFU to be loaded?
; No, don't load it.

; Yes, set the bit in the DCT.
; Send command to LPB to
; load the VFU.
; Status in AC1.

Turn off the waiting for status
bit in the DCT.

; Starting byte count.
LPB needs it negated.

; Inform LPB.

Status in AC1.
; SWAMP needs DCT addr in ACO
; and BH addr in AC2.
; Set up data channel map.

Convert data addr into byte
; pointer and move to ACO.
; Load DCT address,
; and buffer header address.

Byte flag.
Add correction to data addr.

; Start up the data transfer!
The device will interrupt
when transfer complete.

; The line printer is not on-line and ready, so we must wait
; for its status to change.

WTST: NLDAI
WBTO
WRTN

BDSWT,O
2,0

Licensed Material

; Turn on the waiting for status
to change bit and wait for
an interrupt.

. , . ,

7-32 Property of Data General

After the buffer header is enqueued, LPBIO returns to its
calling routine, UIOENQ. Consequently, UIOENQ returns
immediately to its caller, Unit I/O Interface Services. Since
there is no more work to do by the system call interface
routine, the call will return to the system call processor (in
lieu of calling CWAIT to pend), and only the requesting TCB of
the caller's process will remain pended.

The C-based algorithm that clearly illustrates the LPBIO
procedure follows. The only inputs are the unit-specific
post-processor address and the unit CCB address.

LPBIO (PP addr, CCB addr)
{
/**

* This unit's one and only BH was allocated when the unit *
* was opened. Its address was stored in the CCB. *
* Save its address locally, and store the CCB addr in the BH.*
**/

BH addr = CCB addr->CBBHR.W;
BH=addr->BQCCB.W = CCB_addr;

/* Save BH addr
/* Save CCB in BH

*/
*/

/**
* Move the unit CCB request parameters into the BH. *
**/

BH_addr->BQMAP.W = CCB addr->CBPTA.W; /* PTBL address */ -
BH addr->BQUAD.W = CCB addr->CBUAD.W; /* User buffer addr */
BH addr->BQQBC = CCB addr->CBQBC; /* Req'd byte count */ -
BH_addr->BQPRI = CCB addr->CBPRI; /* Process PNQF */ -

BH addr->BQRBC.W = 0; /* Init run byte cnt */ -
BH addr->BQORC = 0; /* Start byte count */ -
BH addr->BQBHT = 0; /* Byte flag */

-

/**
* Init the BH some more before enqueuing it. *
**/

BH_addr->BQST = QTMOD I QTIOP I QTNAB;

if (check bit (CCB addr, BCBEO))
set bit-(BH_addr~ BQEOV);

/* BH status

/* VFU enable?
/* Yes, set in BH.

*/

*/
*/

/**
* Enqueue the buffer header to the LPU device. *
* If this unit is a Unicorn device, a special routine must *
* handle the buffer header enqueue. All Unicorn *
* device I/O is handled by the same driver (AOS/VS module *
* UNICORN.SR). Refer to Section 7.7 for more details. *
* Once the BH is enqueued, we can return to our caller. *
* The post-processor will unpend the requestor's TCB. *
**/

Licensed Material 7-33 Property of Data General

DCT_addr = BH_addr->BQDCT.W; /* Get DCT address. */

if (check bit (DCT_addr, BDUCN) /* Unicorn device? */
{ /* Yes. */
call NQUCN (unpend_addr, BH_addr); /* Enqueue BH to UDB.*/
return; /* Nothing else! */
}

/**
* Not a Unicorn device. Enqueue the BH here. *
* First mask out line printer interrupts, and get DCT lock. *
* Enqueue the buffer header to DCT addr->DCCRQ.W by order of *
* the requestor's priority (BH addr->BQPRI). *
**/

call MASK (DCT_addr->DCMSK.W);

BH addr->BQUPD.W = unpend addr;
set_bit (DCT_addr, BDLOK);

/* Disallow LPU ints.*/

/* PP addr to BH. */
/* Acquire DCT lock. */

/**
* Tell the LPU to·start the data transfer. *
* First call UPDT to update BH addr->BQRBC,BQORC. *
* Then, if there is only 1 BH on DCCRQ.W, call the LPU *
* start-up routine, which issues commands to the device to *
* begin the data channel transfer. If there was already a *
* request on the queue, the LPU is already started. The *
* current request's post-processor will scan the queue and *
* force the LPU to run the next request, and so on, until *
* the last request is processed. *
**/

call UPDT (BH_addr);

if (only one BH on DCCRQ.W)
call DCT_addr->DCSTR.W;

/* Update BH fields. */

/* Start up LPU dev */
/* not already busy. */

/**
* The request has been enqueued. Clean up time. *
* Release the DCT lock and allow interrupts on the LPU again.*
* In congruence with all unit I/O, the requesting process' *
* TCB will be unpended by the BH post-processor, so we just *
* return. *
**/

clear_bit (DCT_addr, BDLOK);
call UNMASK;

return;

} /* end of LPBIO */

Licensed Material 7-34

/* Release DCT lock. */
/* Allow LPU intrps. */

/* Back to caller. */

Property of Data General

7.10 Unit I/O Request Post-Processing

After Unit I/O Interface Services enqueues I/O to the unit
device, the requesting process' system call completes, but the
TCB remains pended. When the data transfer completes, the
device generates an interrupt to the host, and the driver
services the interrupt. Before the interrupt service routine
dismisses the interrupt it calls the (unit I/O) buffer header
post-processor.

The main unit post-processor entry points are the following:

PPSUM - MTU/LPU post-processor
PPACM - MCU post-processor

Both of these entry points are defined at the same location;
they execute the same code. In reality, these post-processors
are "pre post-processors." Since AOS/VS 7.50 will not assume the
overhead of unit I/O buffer header post-processing at interrupt
level due to time-consuming calls to Memory Management,
PPSUM/PPACM must first determine if the JP is running at
interrupt level or base level before the "real" post-processing
begins. The "real" post-processors do the work of unpending the
requesting TCB, unpinning user pages, and moving data into the
user's packet. PPSUM/PPACM takes action depending upon the
state of the currently executing JP.

If the JP is running at interrupt level, the unit buffer header
is enqueued to the global Unit I/O Post-Processing queue,
UPPRC.W. Buffer headers are enqueued to the tail of UPPRC.W.
(The buffer header is linked through offset BH addr->BQPPL.W.)
Subsequently, the Disk Manager Task is awakened (unpended). The
Disk Manager Task, which runs at base level, calls the Unit
Management service UIOPP to dequeue all buffer headers from
UPPRC.W. For each buffer header on UPPRC.W, UIOPP dispatches to
the unique, "real" post-processor routine for the specific unit
type. UIOPP dequeues buffer headers from the head of UPPRC.W,
which forces a first-in first-out post-processing service.

If the JP is running at base level, PPSUM/PPACM still cannot
immediately dispatch to the unit's post-processor. Since unit
I/O buffer headers are post-processed on a first-in first-out
basis, PPSUM/PPACM must enqueue the current buffer header to the
tail of UPPRC.W to preserve the priority ordering. Next,
PPSUM/PPACM calls UIOPP to dequeue the buffer headers from
UPPRC.W and to invoke their post-processors. (Even if UPPRC.W
is empty upon entering PPSUM/PPACM, the buffer header is
enqueued anyway, so that UIOPP is always called. This
eliminates further checks of UPPRC.W and preserves Unit
Management's code modularity.) When UIOPP returns, system-wide
unit I/O processing will be complete.

It is important to note that the only type of request that will
cause the processor to be at base level in PPSUM/PPACM is a
rewind request. The magnetic tape start-up routine issues a
rewind request and waits for it to complete. The post-processor
is called directly from this routine, which is at base level.
The post-processor for all other unit I/O is called from the
interrupt service routine.
Licensed Material 7-35 Property of Data General

The following C-based algorithm outlines the unit I/O post­
processing:

MTAIS ()
{
/**

* The Magnetic Tape Interrupt Service routine *
* calls the unit's (initial) post-processor *
* routine (for all unit I/O except rewind *
* requests). *
**/

call *BH_addr->BQUPD.W;

}

PPSUM ()
PPACM ()
{

/* MTU/LPU Post-Processor */
/* LPU Post-Processor */

/**
* The buffer header is always enqueued to the tail *
* of UPPRC.W. If at base level, UIOPP dequeues *
* all BHs and calls their post-processors. If at *

}

* interrupt level, the Disk Manager Task is *
* unpended to call UIOPP from base level. *
**/

if (INTLV == 0)
call UIOPP;

else
call DWAKE;

return;

/* At interrupt level? */
/* No, call pp now. */
/* Yes, wake up DMTSK, */
/* who will call UIOPP. */

Licensed Material 7-36 Property of Data General

The "real" unit post-processors are called from UIOPP. These
AOS/VS entry points are the following:

MTAPP - MTU post-processor
MCAPP - MCU post-processor
LPBPP - LPU post-processor

The main objective of each of the post-processors is to unpin
previously pinned user pages and to unpend the pended user TCB,
which is awaiting the I/O completion. User pages are unpinned
via the Memory Management service UNPIN. The TCB is readied
simply by resetting the TCB pended bit, and the request is
officially complete. A sketchy algorithm follows:

call MAPUNW (CCB_addr->CBTCB.W); /* Map the TCB. */

clear bit (TCB_addr, ?BTPN) ; /* Unpend the TCB. */

call UNMAP (CCB_addr->CBTCB.W); /* Unmap the TCB. */ . .
return; /* All done! */

Licensed Material 7-37 Property of Data General

8 File Lock Management

8.1 Introduction to File Locking

File Locking was introduced in AOS/VS 7.00. This concept
allows cooperating tasks/processes to restrict access to "file
elements." In the context of file locking, a "file element" is
merely a number that represents a unique lock. There can be a
maximum of 2**32 file elements associated with a file. File
locking provides for an alternative method of
intertask/interprocess communications in relation to gaining
access to specific critical regions (e.g., whole files, shared
code, database records). The File Lock Management component of
the operating system handles all file locking operations.

User processes interface with File Lock Management via two
system calls:

?FLOCK - Locks a file element
?FUNLOCK - Unlocks a file element

The corresponding AOS/VS 7.50 File Lock Management services
that implement these calls are:

FLOCK.P - Locks a file element
FUNLOCK.P - Unlocks a file element

There are two types of locks: exclusive and shared. Lock
requestors have the option of waiting (pending) for a lock or
taking the error return from the request if the lock is not
available. When an exclusive lock is granted, no other lock
requestor can gain access to the element until the lock is
released. When a shared lock is granted, all subsequent shared
lock requestors are given access to the element until an
exclusive lock request is made. In this case, the exclusive lock
requestor first pends until the previous shared locks are
released, and then gets the exclusive lock. All lock waiters
are queued up on a first-in first-out basis.

There is one special type of request, the "whole file" lock
request, in which one caller gains exclusive access to all file
elements. In order for File Lock Management to grant a whole
file lock request, there may be no outstanding file element lock
requests and no previous whole file lock requests. No new lock
requests are granted until the whole file lock requestor
releases the lock.

All file lock requests are associated with a channel. That is,
a process must open a file before issuing an ?FLOCK. When the
channel is closed, all of the process' file locks that have been
granted are released, and all of its pending lock requests are
aborted. However, the locks themselves are associated with a
file. File lock requests made on different channels, which are
open to the same file, compete for the same locks.

Licensed Material 8-1 Property of Data General

File Lock Management is a component of the AOS/VS file system.
Nevertheless, let it be clear that files themselves are not
locked such that the file is off limits to all other system
processes. File locking is only effective when cooperating
tasks and/or processes use File Lock Management
(?FLOCK/?FUNLOCK) to enforce restrictive access to understood
critical regions, and when lock request denials are obeyed.

8.2 File Lock Management Databases

There are four principal Lock Management databases that keep
track of all file locking done on a file. All of them are
allocated from the File Lock Management database pool, FLOCK. DB.
The databases are the following:

1) Lock Management Block (LMB) - one per file
2) Lock Element Block (LEB) - one per element
3) Lock Queue Block (LQB) - one per lock request
4) Whole File Request Block (WFRB) - one per lock request

Offset Lock Management Block (LMB)

LMBST 0 LMB lock word.
LMBUC 1 LMB Use Count.
LMBFCB.W 2 FCB address.

LMBFWF.W 4 WFRB queue descriptor (head) .
LMBLWF.W 6 WFRB queue descriptor (tail).

LMBHD1.W 10 LEB queue descriptor (head) .
LMBTLB.W 12 LEB queue descriptor (tail).

LMBLNG 14 Length of LMB.

When File Lock Management receives the first lock request on a
file (first ?FLOCK call), an LMB is allocated. There is one LMB
per open file, and its address is stored in the file's FCB at
FCB addr->FBLMB.W. The LMB is deallocated when the last file
lock is released (e.g., ?FUNLOCK, implicitly by last close).
The LMB use count is incremented upon each lock request (for
each LQB or WFRB enqueued), and decremented whenever a lock is
released. The LMB database is locked by setting bit BLMBLK (0)
in the LMB lock word. It is locked when queue operations are
performed. The JP Management service BSLOCK is called to lock
the LMB.

Licensed Material 8-2 Property of Data General

Offset Lock Element Block (LEB)

LEBFLK.W 0 LEB Forward Link.
LEBBLK.W 2 LEB Backward Link.
LEBELN.W 4 Element number.

LEBFQB.W 6 LQB queue descriptor (head) .
LEBLQB.W 10 LQB queue descriptor (tail) .

LEBSTS.W 12 LEB status word.
LEBUC 13 LEB use count.

LEBLNG 14 Length of LEB.

Associated with every file lock request that attempts to lock a
particular element (in contrast to the whole file) is a file
element number. File Lock Management allocates an LEB for each
element for which there is an outstanding request lock or lock
request. Any 32-bit field constitutes a valid element number,
which is stored in the LEB. The LEB use count represents the
number of requests (LQBs) currently enqueued to the LEB. The
only bit pointer in the LEB status word is BLEBLK (offset 0240
from LEB_addr), which represents the LEB lock bit. The LEB is
locked when queue operations are being performed. The JP
Management service BSLOCK is called to (spin) lock the LEB.
Each LEB represents a unique file element number and is enqueued
to the LMB.

Licensed Material 8-3 Property of Data General

Offset Lock Queue Block (LQB)

LQBFLK.W 0 LQB/WFRB Forward Link.
LQBBLK.W 2 LQB/WFRB Forward Link.

LQBWFL.W 4 If WFRB, waiting LEB queue descriptor (head) •
LQBWLL.W 6 If WFRB, waiting LEB queue descriptor (tail).

LQBLTP 10 Lock type.

LQBCHN 11 Channel number.
LQBPTB.W 12 PTBL address of locker.
LQBTCB.W 14 TCB address of locker.
LQBTID 16 Unique Task ID of locker (UTID) •

LQBLNG 20 Length of LQB.

The database that represents each individual file lock request
is the LQB. The LQB is enqueued to the LQB request queue on the
LEB of the element it specified. LQBs are enqueued in the order
that File Lock Management receives them. Lock requests are
granted in this order as well. The requested lock type is
stored at LQB_addr->LQBLTP. There are three bit positions
defined for this field:

LQTLK (0) - Lock has been granted
LQTSH (14.) - Shared lock
LQTEX (15.) - Exclusive lock

Since only a task that has the file open can issue File Lock
Management calls, the channel number is stored in the LQB. The
process table address is saved in order to access
PTBL addr->PLCNT, the count of a process' outstanding lock
requests (maximum 65,535). The TCB address is needed to access
the TCB status word. The Unique Task ID is stored because it is used
as an index into PTBL addr->PTUNL.W. The bit is set in the
process table if the process is swapped out and a task is to be
unpended upon swap in. This condition can occur if an element
becomes free, and the next LQB belongs to a swapped process.

Offset

PTUNL.W 0146
PLCNT 0150

Process Table Fields involving File Lock Management

Bit Mask of tasks to unlock upon process swapin.
Count of outstanding lock requests.

When a whole file lock is requested, an LQB is allocated, but it
assumes the name of a Whole File Request Block (WFRB). WFRBs
are enqueued to the LMB (not the LEB) because they are
associated with the whole file (not an element). In order for a
whole file lock request to be granted, there can be no
outstanding lock requests (LMB addr->LMBHD1.W == -1). If there
are any outstanding lock requests, the WFRB will be enqueued to
LMB_addr->LMBFWF.W, but will pend until LMB addr->LMBHD1.W
Licensed Material 8-4 Property of Data General

becomes nUll. File Lock Management uses the same LQB parameters
to access the WFRB.

Since all lock requests are serviced in chronological order, all
requests that follow a whole file lock request must be enqueued
behind the WFRB. Subsequent LEBs are enqueued to the WFRB
through the queue descriptor WFRB addr->LQBWFL.W. When the WFRB
releases the whole file lock, the-chain of LEBs and LQBs
(enqueued to WFRB_addr->LQBWFL.W) is moved to
LMB addr->LMBHDl.W. Those locks are then granted. If another
whole file lock request comes through while the WFRB has the
lock, but after at least one LEB is enqueued to
WFRB addr->LQBWFL.W, the second WFRB is enqueued to
WFRB=addr->LQBFLK.W. When all the LQBs behind the first WFRB
acquire and release their file locks, the second WFRB's whole
file lock will be granted.

FLOCK.P provides the functionality to allocate and maintain the
File Lock Management database structures. FLOCK.P services file
lock requests and enqueues the requests to the LMB. FUNLOCK.P
provides the functionality to release file locks and to
deallocate unused databases.

The following illustrations should help to clarify the internal
representation of File Lock Management databases which File Lock
Management sets up. The diagrams show the links between the
LMB, LEBs, LQBs, and WFRBs (of one file) after the prescribed
system calls are serviced. The pending mechanism of lock
requests is evident as well. Consider the following sequence of
events.

Licensed Material 8-5 Property of Data General

1) 4 ?FLOCKs, element 1: exclusive, shared, shared, exclusive
2) 4 ?FLOCKs, element 2: shared, shared, exclusive, shared
3) 3 ?FLOCKs, element 3: exclusive, exclusive, shared

(LMB)

FCB addr->FBLMB.W => LMBFWF.W = -1
LMBLWF.W = -1
LMBUC = 11.

======================= LMBHDl.W
LMBTLB.W

(LEB 1) (LEB 2)

===> LEBFLK.W
LEBBLK.W = -1
LEBUC = 4

====>

LEBFQB.W
LEBLQB.W

(LQBs)

exclusive
granted

shared
waiting

shared
waiting

exclusive
waiting

<===

==> LEBFLK.W
<== LEBBLK.W

LEBUC = 4

=
=

LEBFQB.W
LEBLQB.W

(LQBs)

===> shared
granted

shared
granted

exclusive
waiting

shared
waiting

<=

===================

(LEB 3)

==> LEBFLK.W = -1
<== LEBBLK.W

LEBUC = 3

=
=

LEBFQB.W
LEBLQB.W

(LQBs)

===> exclusive
granted

exclusive
waiting

shared
waiting

<----

<------

If the first lock request for a given element is exclusive, it
will be granted. All subsequent requests to the element,
whether exclusive or shared, will pend until the exclusive
locker releases the lock. LEB 1 and LEB 3 are representative of
this case. If the first lock request for a given element is
shared, it and all subsequent shared requests will be granted,
until an exclusive request is made. If an exclusive lock
request to the element is made, it will pend until all previous
shared lock holders release the lock. LEB 2 is representative
of this case.

Licensed Material 8-6 Property of Data General

4) ?FLOCK, whole file lock request 1
5) ?FUNLOCKs, element 1: exclusive, shared
6) ?FUNLOCKs, element 2: shared, shared, exclusive
7) ?FUNLOCKs, element 3: exclusive, exclusive, shared

(LMB)

\

LMBFWF.W
LMBLWF.W
LMBUC = 4

====== LMBHD1.W
LMBTLB.W

/
\/ (LEB 1)

LEBFLK.W ==>
LEBBLK.W -1 <==
LEBUC = 2

LEBFQB.W =
LEBLQB.W =

(LQBs)

====> shared
granted

exclusive <===
waiting

===============

======

\ /

LEBFLK.W =
LEBBLK.W
LEBUC = 1

LEBFQB.W
LEBLQB.W

(LQBs)

===> shared
granted

-1

=

<=

\/ (WFRB l)

LQBFLK.W = -1
LQBBLK.W = -1

LQBWFL.W = -1
LQBWLL.W = -1

exclusive
waiting

The first two locks on element 1 were released, the first three
locks on element 2 were released, and all locks on element 3
were released. Before the whole file lock request can be
granted, ALL the locks on LMB addr->LMBHD1.W must be released.
The above diagram shows the databases' current states. If at
this point any lock request were made, it would be enqueued off
the WFRB. The following diagram shows the databases' states
when all file element locks have been released.

8) ?FUNLOCKs, element 1: exclusive, shared
9) ?FUNLOCK, element 2: shared

(LMB)

LMBFWF.W
LMBLWF.W
LMBUC = 1

LMBHD1.W = -1
LMBTLB.W = -1

Licensed Material

========>
========>

8-7

(WFRB 1)

LQBFLK.W = -1
LQBBLK.W = -1

LQBWFL.W = -1
LQBWLL.W = -1

exclusive
grqnted

Property of Data General

10) ?FLOCK, element 8: shared
11) ?FLOCKs, element 9: exclusive, shared
12) ?FLOCK, whole file lock request 2

(LMB)

=============== LMBFWF.W = -1
LMBLWF.W = -1
LMBUC = 5

------------- ===>(WFRB 2) -------------

LMBHDl.W
LMBTLB.W

\ /
\/ (WFRB 1)

(LEB 9)

LEBFLK.W = -1
===> LEBBLK.W

LEBUC = 2

LEBFQB.W
LEBLQB.W

(LQB)

====> exclusive
waiting

shared <===
waiting

(LEB 8)
LQBFLK.W = WFRB2
LQBBLK.W = -1

<== LEBFLK.W <== LQBWFL.W (LEB 8)
==> LEBBLK.W = -1 LQBWLL.W (LEB 9) ==>

LEBUC = 1

= LEBFQB.W
= LEBLQB.W

(LQB)

===> shared
waiting

=

<=

exclusive
granted

\ /
\/ (WFRB 2)

LQBFLK.W = -1
LQBBLK.W = WFRBI

LQBWFL.W = -1
LQBWLL.W = -1

exclusive
waiting

While the whole file lock request is in effect, all subsequent
lock requests are enqueued to the WFRB. LEBs are enqueued to
WFRB_addr->LQBWFL.W, and WFRBs are linked through
WFRB_addr->LQBFLK.W. When WFRB 1 is released in the above
diagram, its LEB chain will remain unmodified, but the chain's
new queue descriptor will reside in the LMB, namely
LMB addr->LMBHDl.W. Consequently, LMB addr->LMBLWF.W will point
to WFRB 2. Since all locks are serviced in chronological order,
all LQB requests must be honored before whole file lock request
2 is granted.

Licensed Material 8-8 Property of Data General

