AO0S/VS Internals

eference Manual
(AOS/VS Revision 5.00)

edugRiees’
‘ 4 DataGeneral 053001001

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN WHOLE
OR IN PART WITHOUT DGC PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information
contained in this document without prior notice, and the reader should in all
cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT-
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE-
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE-
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS,
MANAP, microNOVA, NOVA, PRESENT, PROXI, SUPERNOVA,
SWAT, ECLIPSE MV /4000, ECLIPSE MV /6000, and ECLIPSE MV /8000
are U.S. registered trademarks of Data General Corporation. AZ-TEXT,
COMPUCALC, DG/L, DESKTOP GENERATION, DATA GENER-
AL/One, ECLIPSE MV/10000, GW /4000, GDC/1000, GENAP, MV /UX,
REV-UP, TRENDVIEW, DEFINE, SLATE, microECLIPSE, BusiPEN,
BusiGEN, BusiTEXT, and XODIAC are U.S. trademarks of Data General
Corporation.

Copyright © Data General Corporation, 1985
All Rights Reserved

IMPORTANT NOTICE

I UNDERSTAND THAT INFORMATION AND MATERIAL PRESENTED IN THE
VS INTERNALS MANUAL MAY BE SPECIFIC TO A PARTICULAR REVISION
OF THE PRODUCT. CONSEQUENTLY USER PROGRAMS OR SYSTEMS BASED
ON THIS INFORMATION AND MATERIAL MAY BE REVISION-LOCKED AND
MAY NOT FUNCTION PROPERLY WITH PRIOR OR FUTURE REVISIONS OF
THE PRODUCT. THEREFORE DATA GENERAL MAKES NO REPRESENTATIONS
AS TO THE UTILITY OF THIS INFORMATION AND MATERIAL BEYOND THE
CURRENT REVISION LEVEL WHICH IS THE SUBJECT OF THIS MANUAL.
ANY USE THEREOF TO YOU OR YOUR COMPANY IS AT YOUR OWN RISK.
DATA GENERAL DISCLAIMS ANY LIABILITY ARISING FROM ANY SUCH
SITUATIONS AND I AND MY COMPANY HOLD DATA GENERA HARMLESS
THEREFROM.

7
| /)

AO0S/VS Internals

Reference Manual
(AOS/VS Revision 5.00)

s
053-001001

{»DataGeneral

ACS/VS Internals Table of Contents Page i-1

Chapter 1 INTRODUCTION

Introduction to Operating Sy§tems...................................1-1_
Processor Management Techniques..... e
Device Management..seeeeeeesssssssasssssssnsssssscassssssscssssssnesl=b
Information Management........................;.....................1—7
A0S/ VS Buiiding BloCKS.veeeeeeaeeaannns et eseseeeeceateccnseenan cees1-8
AOS/VS AUXiliary ProCESSES.eeeeecoececcssesssosscnsscasassasansnse ceeea1-8

AOS/VS BlOCk Diagl"am...-.................. -------------- occ'ono-.-'-1“8

Hardware Supported..-o.-.-... ooooooooo e esceeo 0ot o.co.o1-13

Chapter 2 MV ARCHITECTURE

Introduction.eeeeeeeeeaaenas Cerecesecenes Cetecerecaecernaans}..2—1
Fixed-point Computation...eeeeeeeeeeeeessseeosasesssosssosscsenans ...2;2
Floating-point Computation..eeeeeeeeesssns Ceereeeeaes -
Stack Management..ceeeeeeeceeeceecceossensessasascsnnas cecessressesel=b
Program Flow Management..eeeseeeeseeseesceascsasscsosscanaanss ceerens 2-8
FAULE HANALING. + v e reneneereneneeneneenenennns e eereeeeeeeaaan c..2-11
Device Management..eeeeeevesocaces ..; s saecetesasaeeeaunans cerea=12
System Management...... Cieesenane cesaa P~ 5
Central Processor Identification.......... cesseccasns cessersersesasa2=19
Protection ViolatioN.eeeeeeesessececesesesessssssosessscssnsennssnseal=2]1
C/350 Programming..ceeeeeeesescsssenesosrassassassssasannsnsssnsssasl=ll
System Control Processor (SCP).ee.iiiieeeirnrnenrecrennnnnnasesannass2=2l
Data Channel/Burst Multiplexor Channel.....eeeeeee creacean creecacans 2=-24

MiCrO—COde.....-a.-----..-.-.-o.-'.---... llllllllll Ce s e enens 00 e ?"?9

A0OS/VS Internals Table of Contents Page i-2

Chapter 3 KERNEL and DATA STRUCTURES

The RiNgS.eveeitiiienineartecesesssanertcocsssssscncaasesosssssassed=]
Memory Chains..... e)
Memory DatabasesS..eseeieeeesesereceocesecsassssossassssccsnasasenssesd=d
System Page Zeroeeeeeeeceeseees P B ol 4
Important offsets in STABLE.SRuusuveeeseresssunneeesesassnneneesssss3=13
Major DatabasesS..eeeeeeeeesccancans ceeenas e eI 4
Control BloCKS..eeeeeereseeeeesssonteooacsssseassccannans ceeens eeeee3=21
The major AOS/VS scheduling QUEUES..eeceessesrsseesessssssccossssannsed=22
The minor AOS/VS scheduling QueUeS...ceeees Cetiterestaesarssesanassed=20
Data RESOUICES. e aseenseenreeneeeensoassesnssessssasssasnssannssesss3=28
Kernel - base SysStemM...eceieeieeeeeecessesasesscsssssesssossscsscanaaad=3l
The Interrupt WOorld...eeeeeeesesecssccenssasscssssassscssasscansssead=bl
System Call ProcesSinge.eeecesescees A o1
Process Management...;........3-70
Memory Management..veeeeeeseecoessseensscsssosnssssssansassesnssacasaaed=90
Swap and Page File. i vviiieeencerennnas .;............................3—116
MiSCEllaneousS.seeeereeascsesassscssssscasasassssssasscssssssssssssesd=119

AOS/VS Timeslices

TSPRC

The BIAS Factor

Daemons

The System Memory Key (MKEY)
Interprocess Communications
Spool file directory chain
IPC Spocl File

Spool File Bit Map
Outstanding receive entries
?ISEND

ISEN2 logic

?IREC and ?IS.R

IREC logic

IS.R logic

?ILKUP, ?TPORT, 7RSEND, 7?GCPN
Databases offsets definitions
AGENT IPC

The connection manager

A0S/VS Internals Table of Contents Page i-3

Chapter 4 AGENT

Agent OverView.-.. ooooooo ...'0....Q..l‘..‘CllQ.n....otl..‘...c......u-1

System Call Dispatching....cececeese ceseesenese cescsessrascacsoassaeslt=31
Common Agent RoutineS.....eee.. ceresaans Ceececesstatacas ceseescssaesd=35
Multitaskingeeseeeeeeoeeonenens Ceseeeccescesecesatnscasccnscananana 4-58
Task Redirection Protection..eieeeeesss. Ceereeeseaeetcaaaranscasasssd=60
Agent/EXeC INLerfac. . e ueeeeeeeseececesacsassasescssssscssnssnssessd=62

ReSOUt"Ce Management Agent....... ---------------- ooooo-oonooooonooo..u-88

Chapter 5 THE USER ENVIRONMENT

The USER progran] ooooooooooooooooo LU RN B W} nooloouc.00.'..000..000-....5—1

Chapter 6 DISKWORLD

DISKWORLD OVEIVI€W . s s secosesneennsonseesaesscennncenseascanscanssssd=l
The Physical DiSKeeeeoeeeseeneanne Ceeetececescactacanas Cecessssenenns .6-6
In-core databaseS..seeeeesceeseasssssccsccssssssssccssasssnsssasanesd=16
1/0 ProCESSIiNgecececseensscscoscsessosissssssssssssscssansssancasssssd=22
The overall DISKWORLD diagramM...eeeeceseescescsscsscscssassosossassesb=34
Kernel / File system interface....ceceececscsscscecsccecaceacassesadd=35
Shared PageS.eeeeessceccecsccccacanns Ceeteesccesacertnnan cescessenessb=35
Key DISKWORLD page zero 10CationS.ceieeceeesceacecsssossascnasecssed=30
Logical Disk Structure..cceeeeseeseesescesccsness Y Y !

File System Data Bases in MemOry..eceeceseeecsscssssscsecsncsacsasssd=54

ACS/VS Internals Table of Contents Page i-4

Crapter 7 EXEC

Introduction to AOS/VS EXEC..eeeieesessosonncssnssonceaoscsansssoesal=]
EXEC In1tialization.ueesresseesessssreasesssssosssssssanssossnssaceal=12
EXEC QUEUeS.vvvrivannnnn. I ALk
Mcunt WOrid...7-&1
EXEC Memory Management..oeeeeeeeeeessnecsssscsossssscsssscsncsssceseel =00
Irtroducticn to EXEC'S COOPErativesS.eeeeeecsesesssacacsssonssseaneadl =04
Queues, Coops and DEVICES.ueeeeeeastesetssasesessesossssssscsoscacasl =07
Iritializationseeesieesssresessessasssesassssssssassssnssssnssesasasl =00
JOD ProcCesSSiNgeeeceeveceesseesosoceosesssstsscesssssccascssssosscensscel =02
Cooperative Terminations...,.......................................;7-75
CONTROL BEXEC Related CommandS.e.eeesessessocescsscsasoacsssssccaseal =10
Attachment 'A' - Ccop descriptor databasesS.seieeetececsescsocenneanel =TT

Attachment 'B' - Initialization of ?PROC packet, VCD, CCD
and the 7ISENC packet for FTA and SNA/RJE..eieiieeeracrnncaeeneeesT=81

Attachment 'C' - 'RUN THIS JOB' IPC for muli-streamed COOPSeeiees...7=83
Introduction to the CONTROL €EXEC COMMandS.seseesesesecseresssasaass?=85
Cormand ProcesSSiNg.eueeeseeerserestssssacssscocascssescrssssenssssssss =86
Introcuction To The 7EXEC Worldeeseeeeceseesasssneesacsossoasacaases/=88
PEXEC FUNCLionS.ueeesetueresasansessesacrssssrnsossossssnscscsssnsesesl =89
Tre PEREC System Call Formateeeeeeeieneeeeesesesesscosscnsonnscnnseal =90
Frccessing TEXEC ReQUeStSiiuserevesersnssrossensescnssnscesescnseneeal =91
Attachment 'A' - CONTROL EEXEC COMMENdS...eeeescesesoscsoseasssaseasal =93
Attachment '"B' = 7EXEC Function CoQeS.iuiivierrecienrareennnnansseasl=0U

Aitachment 'C' - PEXEC System Call Packet Varietions....vieeeveee...7=95

]

rr

XEC's Logen world...... Y gy 1

A0S/VS Internals Table of Contents Page i-5

Chapter 8 PMGR

Glossary of Terms and Key Data BaSeS...eeeeeeesccesscaccacsssnsssssad=]

Introducing the PMGR.:.i.ieeeeeeeeeesesessesssscsscessssesansannasaasd=3

Quick Overview of ZWRITE.....eeeveeeuesesnesaseacaressasaccnsaneess8=l

Proc'ing the PMGR.............................;.....................8—6

INtErnal MeChaNiSMS. ... n s enneeesnneeenneeeesnneesenseeennsssesses8=0

Task SCheduling in the PMGR....svseeeeeseennnnsesseseeeseennnnnnenss8=12
Service the SUNBQuuuveessoeeaeerosesscossssssesasasssasssssssasanessBd=12
Locks Used by the PMGRuuieeeieeeenarssnnsssnsenscccaciaasssasancessdd=16

RequeSt Aborts...ooo-oco'uouclonoo.noo‘-lﬁccolcolcntoqnou.ooooooo.oc8“18

IACS....CIIlllll....l.’.‘.....l.Ot..l..l..l..l.C.C..Il.'...l..'.l.q’8-2o

IOP..QOI.0'!.'000"0...0'00.0..'ll.......l.Cl..l‘l.l....il.l......!t8-28

Kernal = PMGR INLerface...eeeeecesssscsecasssscssrsocscacassncsasessd=t0
USEr REQUESESeeeeeeeereneseseeeeoossaesssasssssasascsssscascscensessd=t2
Screen Edifeeeeeeeiiaeiieetsntercnacetonssacsaciatsntsscnscessnsssss8=52
Programming £ips fOr the USEr....eeeeeeeessssssessseesesnnnsasesssssB=T0

MiSCELlaANEOUS. e v eeeeeeosoeseosesessosasscscsssssssssssncssascsssasesed=]1
Shared Consoles
TDFT
Modem Control

Overal Diagram of IAC interface to PMGR.i:uiieieeerenerecencsnsenaseeed=T3

Chapter 9 CLI

Introduction.sseeeeieeeeeereeeeeseeesesesosssosasescsssssssscssnsesed=l
Command ProcessSing..eceeeescesscscssssssccscsesssssscsscsssssssosasesed=d
CLI Module NameS..eeeeeessosassesassasscsssasssssssssasssscasanaessad=

AOS/VS Dump Format......-.....-o-.......--o--ooc-..-'-o-..-...--o-o-9-1u

AOS/VS Internals Table of Contents Page i-6

Chapter 10 SYSTEM INITIALIZATION
IntrodUCtionllloloqO.Cl0loooco'-..co.oooo‘coc.olol{.‘to.l...ooolclu.10-1

Prograrns.olootclttetOQC!00'0.lclclol.c.lln!000000000000000..00000010010-‘2

TBOOT. Tape Bootstrap

DFMTR Disk Formatter

INSTL AOS/VS Installer

DKBT Disk Bootstrap
SYSBOOT System Bootstrap
SINIT System Initialization
CLIBT Initial CLI

AOS/VS Internals Chapter 1 Page 1-1

CHAPTER 1 -~ INTRODUCTION
(AOS/VS revision 5.00)

This chapter introduces operating systems and 1in particular, it
desceribes the relation of AOS/VS to other Data General operating systems.
Tt also introduces the building blocks of AOS/VS and their interface to the
user.

Introduction to Operating Systems

What is an operating system? It is a progran which 1is a bit more
complex than a typical application. However there are some very complicated
application programs in the world. The operating systan's purpose in life
is to provide a mechanism which a person can use Lo manipulate data in
various forms to achieve a specified result. It acts as a resource manager,
an interface to the hardware, and the protector of each user's process
space.

As a resource manager the operating system controls four major
functions. They are: memory, processor, devices, and information.

In memory management there are four common methods of control. They
are: contiguous, partitioned, paged, and demand paged.

¥ Simple contiguous allocation

.‘»— ————————————————————————— +
! !
! !
1 System l
! !
! !
!:::::::::::::::::::::::!
! !
! !
! User program !
! 1
! !
!:::::::::::::::::::::::l
! !
! Wasted !
! !
- +

The above is typical of an MP/0OS or DOS type system.

AOS/VS Internals Chapter 1

¥ Partitioned

A —— +
| !
l System !
| |
lz===z==zzz=zzzczz=zzzzo===!
l l
! User i1 !
! !
!:::::::::::::::::::::::!
l |
l User #2 !
| l
lz===z==zzzz=zuzszzzzzz=====]
| !
| User #3 l
! !
|z==zz==z=zz=z==z=z=z=z=zz=z=z=zz=:==!
! |
! Wasted 1
l l
U ——+

Page 1-2

Advantages:

1. less wasted memory
2. less wasted CPU time
(multiprogramming)

Disadvantages:

1. Special hardware
2. 0OS is more complex
3. Fragmentation

The above is typical of an RDOS type system except that RDOS is only a

ground (user) system.

two

AOS/VS Internals Chapter 1 Page 1-3

* Paged allocation

— +
1 l

+ + l—- -1

User 1. '! Page 0 -\ ! System |
B e 1\ l—- -1

I Page 1 I-\\ ! !

O —— 1\ \ l============|

1 Page 2 1-\ \\ >1 !
frm——————— + \\ l—= -1

\ A\ ! Wasted !

\ A\ l— -1

\ A\ - >1 !

e + \ l— -1

User 2 | Page 0 I \ >l !
I | \ {— -1

! Page 1 -\ | L —— >l {
fm——————— + \ l— -1

\ / >1 !

e ——————— + \/ |- -1

User 3 | Page O I / - >1 l
e ! / \ {— -1

I Page 1 1-\/ '\ >1 !

e I\ |- -1

I Page 2 |-/ \ o I Wasted !

i ! \ {— -1

I Page 3 -\ '\ — >l !

e ————— + \ l-—- -1

\ ! Wasted !

\ | -1

\ >1 l

This is typical of an AOS operating system.

Advantages:
1. Solves fragmentation problem
Disadvantages:
1. Additional hardware needed (page tables or map registers)

2. Non contiguous programs ‘
3. Entire program must be in memory

A0S/VS Internals Chapter 1 Page 1-4

* Demand paging

This is a variation on the paged system and is typical of an AOS/VS
operating system. The variation is that programs running tend to have only
the required pages in memory to be run. The rest of the program is either
in the paging area or on the Shared Page LRU chain.

Advantages:

1. Allows partially loaded programs to be executed
Disadvantages:

1. Different coding philosophies (i.e. minimal indirecticn,
modular code)

Extra overhead

Thrashing

Additional hardware (beyond paged allocated additions) to
provide for referenced and modified flags, fault flag, and
the restarting of instructions after a page fault.

=W o

AOS/VS Internals Chapter 1 Page 1-5

Processor management i

There are typically three methods of processor management. They are:
run to completion, run until blocked (i.e. pended waiting for I/0
completion), and time-slice.

In a run to completion environment each program runs until it is done.
This is typical of a batch environment. Each program runs in the sequence
in which they are entered.

¥ Run to completion

1. Simple to implement

2. Adequate only for stand-alone or batch operating systems
3. Need ability to terminate run-away programs

4, CPU time is wasted waiting for completion of I/0.

In a run until blocked enviromment each program has control of the CPU
until it needs to do some type of 1I/0. If a program is very CPU intensive
it can control the CPU preventing anyone else from running. ‘

* Run until blocked (pended waiting for I/0 completion)

1. Allows multiprogramming
2. CPU bound programs can monopolize the CPU

In a time-slice environment the Real-Time clock assists in the control
of program run time. Each program runs until it uses up its time-slice or
it needs to do some type of I/0. There are several different methods for
determining the scheduling frequency of these programs. They are: first
come/first serve, round robin and priority. Each of these methods has its
advantages. They will be disscussed in the scheduler section.

¥ Time-slice
Run until either:

1. Process blocks
2. The time slice expires

Possible algorithms:
1. First come/first serve

2. Round robin
3. Priority

A0S/VS Internals Chapter 1 Page 1-6
Device Management

In device management the operating system controls three type of
ievices. They are: input, output, and storage. For input and output these
devices can be CRT's, hardcopy terminals, printers, plotters and card
readers. The storage devices are magnetic tape (serial) and disk (direct
access).

The above device access techniques are dedicated allocation, spooled,
and shared access. CRTs, hardcopy terminals, and magnetic tape are usually
dedicated allocation. Printers, plotters and card readers are usually
spooled devices. Disks are shared devices. '

There are problems associated with devices. Devices can be very
expensive, Sharing helps to solve the expense problem. Device speeds vary
but are very slow compared to the speed of the CPU. Error handling of
devices can be very complex and costly in software as well as performance.

A0S/VS Internals Chapter 1 Page 1-7

Information Management

An operating system also manages the flow.and stcrage of information.
The storage of information on a disk is the most important function of
information management.

In the allocating of files on a disk there are two basig apprqaches
which can be taken., The building of all files as contiguous is one

approach. The other approach is to build the files using an indexed method
(not ISAM).

Contiguous file allocation

Advantages
1. Simple
2. I/0 is fast, efficient

Disadvantages
1. Disk fragmentation
2. Difficult to expand files
3. Must allocate disk space for 'holes'

Indexed File allocation

Advantages :
1. Solves fragmentation problems
2. Easy to expand files
3. Need not allocate disk space for 'holes'

Disadvantages
1. Several accesses may be required to get data
2. More disk space required for a given file

AOS/VS Internals Chapter 1 ' Page 1-8

AOS/VS Building blocks

The previous section discussed the principle functions of an
operating system. The most important, is resource management. In AOS/VS,
this is done by a number of different 'programs'. The following discussion
will specifically tie parts of AOS/VS to the resources they handle. This
will also serve as an introduction to the parts of ACS/VS.

The KERNEL

This 1is the heart of AOS/VS; it is the code that is created by the
VSGEN program. The KERNEL is responsible for scheduling (process
management), file / memory management, and interrupt processing.

The AGENT

The AGENT is responsible for labelled magtape, system call
pre-processing (including the conversion of 16-bit packets to 32-bit
packets),interfacing to GSMGR, deflecting calls to RMA, and generic file
management.

The PMGR

All character oriented devices that are not on the data channel or
BMC are controlled by the PMGR (peripheral manager). These include the
consoles, card readers, and plotters. In each system, the PMGR exists
three places: PID 1, ring 3 and ring 7; and in the IOP , IACs or COMMBATs
of the MV machine. °

The GSMGR

All synchronous oriented devices are controlled by the GSMGR.
There is a separate BSCGEN needed to define the synchronous devices which
the GSMGR controls.

AQS/VS Auxiliary Processes

FXEC
EXEC is responsible for the management of batch / print queues,
labelled magtape mounts / dismounts, and log on / log off.

CLI
The CLI is an elaborate system call translator with a large
number of bells and whistles (template expansion for example).

AO0S/VS block diagram

On the following pages, there are two large block diagrams of
AOS/VS. The first outlines the overall system picture and does not discuss

AOS/VS Internals Chapter 1 Page 1-9

what goes on inside each module. The second is an attempt to represent the
functions performed by the AOS/VS kernel. A complete descripticn of the

system would include some "special" users like PMGR and EXEC. All these are
included in the box called "User events".

AOS/VS Internals Chapter 1 Page 1-10

/ \
i !
4+========+ +========+ !
| | | 1 4+=====c=+
! PMGR ! b ! Il ¢ | !
/===mee=1(PID 1) | ! EXEC leee—=] XLPT !
| I(ring 3)! ! ! ! !
| | { ! 1 4+======+
} $o=======+4 ===+ :
| \ / |
i \ / i
i \d /e i
i \ / |
; $+z=======+ 4+=c==z====+ :
| 1 ! ! ! i
| l ! ! ! '
f i ! User le=a——-! AGENT | i h
' ! ! I(ring 3)! i
i ! ! ! l !
{ +======z==+ +zz======+ I
i / \ i
| / \ |
i /i #=z=====z+ i
i / ! i
| / ' ! GSMGR ! i
| / l ! H
{ oSS+ L3144 =
| ! ! i
! ! ! i
\—mmmmmm ! AOS/VS | /
! !
! l
Lttt 3+t 13
a. XLPT <--> PMGR This interface is used in printing to non-data
channel devices (consoles)
b. PMGR <--> EXEC This interface is used for logon/logoff
c. EXEC <-=> XLPT This interface is used for queuing print requests

and handling such things as restarts, flushes
..etc.
d. PMGR <--> AGENT This interface handles I/0 to terminals
(?READ / 7WRITE are translated into IPC send/rec)
e. EXEC <-=> AGENT This interface handles the 7EXEC system call
f. PMGR <-=> AOS/VS Character oriented I/0 is handled by the PMGR at
AOS/VS's request. In return, the PMGR can request
that AOS/VS reschedule users. '
g. USER <--> AGENT System calls are processed through this link.
h. XLPT <-=> AOS/VS This interface is used in printing to data
channel devices.
i. AOS/VS <--=> AGENT Many system calls are preprocessed by the
AGENT, but eventually need the kernel.
j. GSMGR <--> AGENT Sync system calls are intercepted by the AGENT
and are sent to the GSMGR by IPCs

AOS/VS Internals Chapter 1

Page

-1

i i | i
i Hardware | ———————— > User events i< -------- +
i | i |) i |
e e e + ! | AGENT | | |
| (user devices) + , + i
(interrupts) + i I \ i
1 | o —————— + | \ [
i | i i \ 3
4+ + ! LCALL (faults) (traps) i
{OINTS v : : !
e + TR ittt ettt SR L + |
" T i | b P
| ———r SCPRC <=\ | FAULT | | STRAP | |
v i T b P
+= + e —————— + | dmm——— + Amm——— + |
i\ Interrupt | | | | ! i |
4——| level I/0 | P | | V—— / / i
! | routines | | I (process !
et + H i /traps) |
l | | / i
| (direct | i / i
' calls) | i / i
| Ao eeee + i i | i
! | Code found | | i i |
I | in resident |{emecmmmecceny i (enqueue & | i
! 1 AOS/VS | | system call ! i
| et _ | or page fault) | |
{ i (direct call completed) | i i
i e + i i i
| vV) \' |
i +— S ——— + :
| (reschedule due to a | | (schedule |
| significant interrupt) i SCHED | a process|
. > (AOS/VS system scheduler) |=——ceeeee- +
! | and task)
e ——— .- - S
. (enqueue "
(swap in/out & misc.) | request) i
+ -+ += | (time
i {(deamon, page fault | slice
i i or system call on | up)
A V a control block Y
e ————— + Frm——————————— + e —————————— +
| i i system page- | i |
i Core Manager | | able page or | | TSUP i
i ! i fault code ! ! '
P —————— + +— - + +— +

AOS/VS Internals Chapter 1 Page 1-12

User - system interface

Since the AGENT and the PMGR exist as seperate programs, in the
same space, the apparent system-user interface is really several
sub-interfaces:

user-AGENT, AGENT-system, PMGR-AGENT, GSMGR-AGENT, and PMGR-system.

PMGR system GSMGR
The interfaces involving either AGENT or PMGR will be discussed in
the AGENT and PMGR chapters. The user-system interface is summarized below

and its various aspects will be discussed in detail in the appropriate
chapters of the manual.

Control interfaces

There are four ways AOS/VS can take control away from a user :

the process makes a system call

the process takes a page fault

the process traps

an interrupt from a device comes in,

In the last three cases, control is yanked away from the user by
the hardware without any software preparation. The user's AC's and PC are
saved.

Jf a trap occurred, the process will be aborted by the system.
If ar interrupt came in, control will be restored to the user after

servicirg the interrupt, unless the interrupt was significant enough to
re:dy a higher priority process or control block.

AOS/VS Internals Chapter 1 Page 1-13

Hardware Supported

~The following is a list of the hardware supported by AOS/VS as of
revision 5.00,

Mpnemonic Description

ATI ’ Asynchronous Terminal/Modem Interface

BBU Battery Backup Unit

CRA DGC 4016 Card Reader

CRA1 - DGC 4016 Card Reader

DCUO DGC 4254 Data Control Unit

DCU1 DGC 4254 Data Control Unit

DCu2 DGC 4254 Data Control Unit

DCU3 DGC 4254 Data Control Unit

DKB DGC 6063, 6064 OR 6066 Fixed Head Disk

DKB1 DGC 6063, 6064 OR 6066 Fixed Head Disk

DKB2 DGC 6063, 6064 OR 6066 Fixed Head Disk

DKB3 DGC 6063, 6064 OR 6066 Fixed Head Disk

DKB4 DGC 6063, 6064 OR 6066 Fixed Head Disk

DKB5 DGC 6063, 6064 OR 6066 Fixed Head Disk

DKB6 DGC 6063, 6064 OR 6066 Fixed Head Disk

DKBT7 DGC 6063, 6064 OR 6066 Fixed Head Disk

DPD DGC 4234, 6045 OR 6030 Disk

DPD1 ' DGC 4234, 6045 OR 6030 Disk

DPF DGC 60<60,61.67>, 61<22,60,61> OR 6214 Disk
DPF1 DGC 60<60.61.67>, 61<22,60,61> OR 6214 Disk
DPF2 DGC 60<60.61.67>, 61<22,60.61> OR 6214 Disk
DPF3 DGC 60<60.61.67>, 61<22,60.61> OR 6214 Disk
DPFY DGC 60<60,61,67>, 61<22,60,61> OR 6214 Disk
DPF5 . DGC 60<60,61.67>, 61<22,60,61> OR 6214 Disk -
DPF6 . DGC 60<60,61.67>, 61<22,60,61> OR 6214 Disk
DPFT DGC 60<60,61,67>, 61<22,60,61> OR 6214 Disk
DPG DGC 6070 Disk

DPG1 DGC 6070 Disk

DPI DGC 60<97,98,99> 61<00,03> 62<25,27,34> Disk
DPI1 DGC 60<97,98,59> 61<00,03> 62<25,27,34> Disk
DPJ DGC 62<36.37> Disk

DPJ1 DGC 62<36.37> Disk

DPJ2 DGC 62<36.37> Disk

DPJ3 DGC 62<36.37> Disk

DPJY4 DGC 62<36.37> Disk

DPJ5 DGC 62<36.37> Disk

DPJ6 ' DGC 62<36.37> Disk

DPJ7 DGC 62<36.37> Disk

DPM DGC 45<13.14> Floppy Disk

DPM1 DGC 45<13.14> Floppy Disk

DRT Dual Receiver/Transmitter

IAC Intelligent Asynchronous Controller

IACY Intelligent Asynchronous Controller

IAC2 Intelligent Asynchronous Controller

IAC3 Intelligent Asynchronous Controller

IACY Intelligent Asynchronous Controller

IACS Intelligent Asynchronous Controller

IAC6 Intelligent Asynchronous Controller

AOS/VS Internals Chapter 1

IACT
IACS
IAC9
IAC10
IACT1
IAC12
IAC13
IACTY
IAC15
LPB
LPB1
LPB2
LPB3
LPBAY
LPB5
LPB6
LPB7
LPD
LPD1
LPE
LPE1
LPE2
LPE3
LPEY
LPE5
LPE6
LPET
MCA
MCA1
MIB
MTB1
MTC
MIC1
MTC2
MIC3
MID
MID1
PLA
PLA1
TTY
CRT

Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller .
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intellignet Asynchronous Controller
Intellignet Asynchronous Controller

DGC 42<15,16.18,19>
DGC 42<15,16.18,19>
DGC 42<15,16.18,19>
DGC 42<15,16.18,19>
DGC 42<15,16.18,19>
DGC 42<15,16.18,19>
DGC 42<15,16.18,19>
DGC 42<15,16.18,19>

DGC 6088, 6089 OR 6192 Line Printer (LP2)
DGC 6088, 6089 OR 6192 Line Printer (LP2)

OR 43<27,28,56> Line
OR 43<27,28,56> Line
OR 43<27,28,56> Line
OR 43<27,28,56> Line
OR 43<27,28,56> Line
OR 43<27,28,56> Line
OR 43<27,28,56> Line
OR 43<27,28,56> Line

DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4206 Multiprocessor Communications Adaptor
DGC 4206 Multiprocessor Communications Adaptor
DGC 6026 Magnetic Tape

DGC 6026 Magnetic Tape

DGC 6123 OR 6231 Magnetic Tape
DGC 6123 OR 6231 Magnetic Tape
DGC 6123 OR 6231 Magnetic Tape
DGC 6123 OR 6231 Magnetic Tape
DGC 4307 Magnetic Tape

DGC 4307 Magnetic Tape

DGC 4017 Digital Plotter

DGC 4017 Digital Plotter

Hardcopy Terminal
DGC D200 Compatible

Console

Page 1-14°

Printer
Printer
Printer
Printer
Printer
Printer
Printer
Printer

A0OS/VS Internals Chapter 1 Page 1-15

As can be seen from this chapter AOS/VS is a complex virtual operating
system. The building blocks and auxiliary services provided by AOS/VS were
introduced. In chapter 2 the MV hardware and microcode are discussed.

AOS/VS Internals Chapter 2 ' Page 2-1

CHAPTER 2 -- MV ARCHITECTURE
(AOS/VS REVISION 5.00)

This chapter introduces the MV architecture. its hardware.
micro code, and software,

The MV series computer incorporates four main systems:

The central processing unit (CPU) which consists of the instruction
processor for decoding and executing instructions,

The memdry system, which consists of a system cache

(except for MV-4000) that contains 1024 16-byte blocks and functions
as a look-ahead / look-behind buffer; and some assortment of memory
module.

~ The input / output system which consists of one or two(mv10000) I/0
channels suporting distrbuted processors for asynchronous
and bi-synchronous communicatiocns.

The system control processor (SCP), is a soft system console that
performs diagnostics and operator controlled functions.

| memory | lintelligent |=———m- ,
--------- |==1synchronous |==--
= | | controller |e=——ee-
i | i !
| CPU | i i
i with | | system | i online
linstruction|-——-| | i -
i cache | | cache i | storage
| L e e ————— |
i i |
3 — | lintelligent |-—----—-
i |-=lasynchronous |————--
i jcontroller |e=——eee—-
]
[}
| system |
| control |
iprocessor |

MV-10000 System Diagram

AOS/VS Internals Chapter 2 Page 2-2

The 32-bit CPU provides facilities to manage data, access memory, and
control program flow. The processor can perform fixed-point or
floating-point computation, as well as stack, program, queue, device,
system, and memory management. In addition, the processor contains the
Eclipse®C/350 compatible instructions for 16-bit program development and
upward compatibility.

Fixed-Point Computation

Fixed-Point computation consists of fixed-point binary arithmetic with
signed and unsigned 16-bit and 32-bit numbers. The processor also performs
decimal arithmetic, logical operations, and manipulates 8-bit bytes.

The processor contains four 32-bit accumulators (ACO - AC3) and a
processor staus register (PSR).

Fixed-Point Accumulators

Fixed-point accumulators can be accessed by instructions that
manipulate a bit, byte. word, or double word.

S -— ——
! : 1 i

byte O | byte 1 | byte 3 | byte 4
I — !

0o - 78 15 16 23 24 31

—— - ———

——— . ——— . o o - - —-

1 0
]]
word 0 ! word 1 |
]]
] [}

0 15 16 31

A word or double word operénd must begin on a word boundary. A byte must
begin on a byte boundary.

In addition to using an accumulator for fixed-point computation:
£C1 can contain a fault code placed there by the processor,
An instruction can be built in an accumulator and executed,

AC2 and AC3 can be used in relative addressing in place of the
PC.

AOS/VS Internals Chapter 2 Page 2-3

P[ocessgn'sggggg Register

The Processor Status Register contains status flags such as an
overflow fault service mask, a fixed-point overflow fault flag, and an
interrupt resume flag. The overflow fault service mask enables or disables
the processor from servicing the fault. The processor sets the overflow
fault flag when the results of a fixed-point computation exceed the
processor storage capacity. The interrupt resume flag reports an
instruction status to the processor.

The processor status register bits can be accessed by instructior that
set a bit or test and skip on condition of a bit.

ovk | ovr ires ixct reserved

0 1 2 3 y 16
OVK - overflow mask on = enable fixed-point overflow detectioﬁ

OVR - overflow flag set on when a fixed-point overflow occurs
cleared by:

I/0 interrupt request

Fault detection and servicing

Power up, I/0 reset. or system reset

Processor executes instruction which accesses the register.

IRES - interrupt resume flag

This flag is set when the processor interrupts a resumable
instruction that requires the processor to save its state
on the user stack.

IXCT - is an interrupt-executed opcode flag

When the processor executes a BKPT instructiorn,it pushes

a wide return block onto the current stack. ACO in the
return block contains the one-word instruction. When
returning program control, the PBX instruction pops the wide
return block and continues the normal program flow with the
saved instruction in ACO.

Reserved - These bits are set to zero when stored in memory and
ignored when loaded.

AOS/VS Internals Chapter 2 Page 2-4

Floating-Point Computation
Floating~-Point computation consists of floating-point binary

arithmetic with signed, single precision (32 bits) and double precision (64
bits), numbers.

The processor contains four 6U4-bit floating-point accumulators
(FPACO -~ FPAC3) and a floating-point status register (FPSR).

Floating-Point Accumulators

Floating-point accumulators can be accessed by instructions that
manipulate single and double precision floating-point numbers.

double word

undef ined

32 63

- —

double word O

—, e = e ——— - - - " ———

0 | 1

double word 1

32 63

A single precision number requires a double word (two consecutive words),
while a double precision number requires two double words (four consecutive
words).

Floating-Point Status Register

The floating-point status register contains overflow and underflow
fault flags, fault service mask, mantissa status flags, rounding flag, and
processdr status flags.

The processor sets an overflow or underflow fault flag when the result
of a floating-point computation exceeds the processor storage capacity. The
fault service mask enables or disables the processor from servicing a
fault. The remaining flags provide processor status.

The contents of the register can be accessed by instructions that can

AOS/VS Internals Chapter 2 Page 2-5

initialize it or test and skip on a condition.

OVF

| | | | | [1 1 !
l 1 | | l 1 | | |
| ANY | { UNF | DVZ | MOF | TE { Z | N | RND | Reserved i 1D i
| i | i i N N i | e

0 1 2 3 4 5 6 7 8 9 11 12 15
| o T T T o T
| Reserved i
| PR |
6 | 31
L T | !
0 | Floating-point Program counter (msb) i
| i — - P |

32 33 u7
i o o i
! Floating-point Program counter (1lsb) E
| Y |
48 3

Floating - Point status register format
ANY - error status flag set on when OVF, UNF, DVZ, or MOF is set
OVF - exponent overflow flag
UNF - exponent undeflow flag
DVZ - mantissa divide by zero
MOF - mantissa overflcw flag
TE - trap enable mésk
Z - true zero flag
N - negative flag
RND' - round flag
Reserve - bits 9 - 11 are processor specific
ID - id which reflects fleating-point revision
Reserve - bits 16 - 32 are processor specific

Floating-point Program counter - address of instruction causing error

AOS/VS Internals Chapter 2 Page 2-6

Stack Management

The processor contains facilities for narrcw and wide stack
management, A stack is a series of consecutive locations in memory.
Typically, a program uses a stack to pass arguments between subroutine
calls and tc save the program state when servicing a fault. After executing
a subroutine or fault handler, the processor restores the program and
continues program execution.

Narrow Stack Management

Th@ narrew stack consists of a contiguous set of words for supporting
ECLIPSE® C/350 program development and upward program compatibility. Narrow
stack management includes three 16-bit narrow stack management parameters.

There are three parameters used to define and control the narrow
stack. . »

Narrow Stack Limit - defines upper limit of the narrow stack

Narrow Stack Pointer - initially defines lower limit of the
narrow stack. After access the narrow stack pointer defines the current
location of the last word written onto or read from the narrow stack.

Narrow Frame Pointer - defines a reference point in the narrow
stack '

The C/350 (or narrow) return block normally consists of five words:
the contents of the least significant 16 bits of the four accumulators, the
least significant 1% bits of the program counter or the frame pointer, and
the carry in bit O cf the last werd pushed.

Vide Stack Management

The wide stack consists of a contiguous set of double words for
supporting the 32-bit processor programs. Wide stack management includes
four 32-bit wide stack management parameters, for each memeory segment. (A
memory segment is a logically addressable subset of memory, see memory
menagement section)

Wide stack management for the current segment alsc includes four
32-bit wide stack management registers.

Wide Stack Base - defines the lower limit of the wide stack.
When initialized it points tc one double word below the actual address of
first dcuble word in stack.

Wide Stack Limit - defines the upper limit of the wide stack.
Wice CStack Pointer - address of top location of the wide stack.

it is either the location of the last word placed on the stack or the next
“vailable ward on the stack.

A0S/VS Internals Chapter 2 Page 2-7

Wide Frame Pointer - defines a reference point in the wide stack.
The processor stores and resets the value of the wide frame pointer when
entering or leaving subroutines. The wide frame pointer identifies
theboundary between words placed on the wide stack before a subroutine
call, and between words placed or the wide stack during a subroutine
execution. Using the wide frame pointer as a reference, the processor can

move back into the wide stack and retrieve arguments stored there by a
preceding routine. .

Stack. overflow and underflow are stack faults. Stack overflow occurs
when a program pushes data into the area beyond that allocated for the
stack. Stack underflow occurs when a program pops data from the area beyond
the allocated for the stack. Once detected, the processor always processes
a stack fault.

Loading a 37777777777 into the wide stack limit register disables wide
stack overflow fault detection. Loading a 20000000000 into the wide stack
status register disables wide stack underflow fault detection.

S ——
|
segment Logical Address i

L S —

5

3

— - ————

1
|
:
|
N
Wide Stack Management Register Format

X - reserved
Segment - segment location of the stack
Logical address - logical address within the segment. Address

wraparound can occur within the current
segment.

AOS/VS Internals Chapter 2 Page 2-8

Program Flow Management

Program flow management ccnsists of controlling the program execution
(such as calling a subroutine) and handling faults.

segment

3

Logical Address

—-— —— —— ——

I - ———
w

R N —

Program Counter Format
Segment -~ Bits 1-3 specify current segment

Logical address - logical address within the segment. Wraparound
can occur within the segment.

The program counter specifies the logical address of the instruction
to execute. Thus, it controls the sequence of executing the instructions.
Address wraparound occurs within the current segment since only bits U
through 31 take part in incrementing the program counter.

To address the next instruction(for normal program flow), the
processor increments the program counter

By one on single werd instructions
By two on twc word instructions

By three on a three word instruction
By four on a four word instruction

Any of the following events can alter the normal program flow
sequence,

executing an XCT instruction
executing a jump instruction
executing a skip instruction
executing a subroutine call
detecting a fault

detecting an I/0 interrupt request

ACS/VS Internals Chapter 2

Page 2-9

In & subroutine call the call is made using either an LCALL or XCALL
instruction. The processor when using an LCALL or XCALL instruction

performs four steps.

1. Verifies that the instruction can access destination segment

2. Validates the entry point through.a gate array in the

destination segment.

3. Redefines the wide stack and transfers call arguments to it

4, Transfers program ccntrol

A Gate Array is a series of locations that specify entry points(or
Gates) to the segment. The processor accesses a gate array through an

indirect pointer in page zero of the destination segment.

Gate O
Gate 1
Gate 2
Gate 3

Increasing
Addresses

Gate n-1

10 151 16 | 31
| Etatte et S St Rt -

| Undefined | 0 | Maximum Number of Gates

! - S I
! i Bracket | Program Counter Offset.

e e e e e e e e e e

1PX1 011 | Program Counter Offset

! —— - - e ———————
i X | Bracket | Program Counter Offset

! ——— ——
i X | Bracket | Program Counter Offset

' - T - G — - v G T T e M G P B G e G P I G G G R B G OB S B S B B RS B GEe e e e e e
E h

]

|

! -

i X | Bracket | Program Counter Offset

1

J— ————— —

1011 314 31

Gate Array Format
Undefined - processor does not care
Maximum number of gates - total number of Cates

X - processor does not care

Bracket - gate bracket unsigned integer value 0 - 7 identifies
the highest segment that can use the gate. If Gate 1
bracket contains 011, only segments O - 3 can access

the segment.

Program Counter offset - address of first instruction of the
subroutine in the destination segment.

AOS/VS Internals Chapter 2 Page 2-10

The processor interprets the effective address of the XCALL or LCALL
instruction as shown below.

e e e e ——— '
i] 1 |
| Unused 10 Gate Number E
] 1 1

| = '

-1
1 34 151 16

Segment

<

117 o 31
XCALL or LCALL effective address

X - ignored by the processor

Segment - segment number of the destination segment

Unused - ignored by processor

Gate Number - gate in destination segment, used as index to an
element(gate) in the vectored array.

When executing a subroutine in another segment, the processor uses the
access privleges of the destination segment to determine the validity of
the reference. A Trojan Horse pointer exists if one of the arguments passed
from the source segment points to a location in the destination segment. (A
privileged access fault would occur if a program refers to a locatlr in a
lower numbered segment.)

For example: a trojan horse pointer can exist when a program in segment 6
calls a subroutine in segment 2 and one of the arguments passed is a
pointer to information in segment 2.

AOS/VS Internals Chapter 2 Page 2-11

Fault Handling

While executing an instruction, the processor performs certain checks
or. the operation and the data. If the processor detects an error, a
privleged or nonprivleged fault occurs before executing the next
instruction. When the processor detects a fault, it pushes a return block
onto the stack and jumps to the fault handler through the indirect pointer
in reserved memory. The initial and indirect pointers to a fault handler
(except a page fault handler) are 16 bits. Levels of indirection, if any,
occur within the segment initially containing the pointer. A nonprivleged
fault pointer is located in page zero of the current segment. A privileged
fault pointer is located in page zero of segment O.

If a privilege fault occurs while processing a nonprivilege fault, the
processor aborts the nonprivileged fault and .processes the privileged
fault.

If an I/0 interrupt occurs during the processing of a nonprivileged
fault the processor pushes the fault return block, updates the program
counter to the first instruction of the fault handler., then services the
I/0 interrupt. Upon returning from the I/0 interrupt, the processor
services the nonprivileged fault. :

: Fault i Type |
] 1 |
- —— PR PR
| Protection violation | Privileged !
| Nonresident page | Privileged i
| Stack operation | Nonprivileged |
| Fixed-point computation i Nonprivileged |
i\ Floating-point computation i Nonprivileged |
i Invalid decimal or ASCII data format | Nonprivileged |
[} ° |]
1 [} |

Faults

AOS/VS Internals Chapter 2 Page 2-12

Device Management

Device management entails the transferring of data between memory and
a device. The processor can transfer data (bytes, words, or blocks of
words) with the programmed I/0 (PIO), the Data Channel I/0 (DCH), cr the
high speed burst multiplexor channel (BMC). Common to the three transfer
facilities are the I/0 instructions, mapped or unmapped memory addressing,
and the interrupt system.

Programmec 1/0

With programmed I/0 bytes or words are transferred between “an
accunulator and a device. Programmed 1I/0 is used to transfer data to low

speed devices or to initialize a data channel or a burst multiplexor
channel.

Data Channel I/0

With the Data Channel I1/0, a transfer of words is initiated between
memory and a device. The data channel accesses memory directly (with or
without a device map). Thus the data transfer bypasses the accumulators.

High Speed Burst Multiplexor Channel

With the burst multiplexor channel, a transfer of blocks of words
between memory and a device is initiated. The burst multiplexor accesses
memory directly (with or witout a device map). Thus, the data transfer
bypasses the accumulators. "

With ‘the introduction of the MV/10000 there became a need to be able
to specify which IOC (I1/0 channel) to use for data transfer. The PRTSEL
instruction was created for this purpose. It changes the default 1/0
channel for data transfer.

PRTSEL -~ NIO 3,CPU with ACO specifying the channel

Reserved i I/0 chan
[]

1
0 15 16 28 29 31

Undefined

Layout of ACO

A0S/VS Internals Chapter 2 Page 2-13

System Management

System management provides facilities that determine processor
dependent configurations, such as the processor identification and the size
of main memory.

The 'processor supports memory management and system management
faclities for an operating system. The memory management facilities
transform a logical address into a physical address and monitor the
contents of the physical memory. The system management facilities return or
modify implementation dependent information about the system and the
service faults.

The processor uses a virtual memory of U4 Gbytes. Virtual memory
consists of eight segments or rings, which facilitate memory management. A
segment is an addressable unit of memory that contains programs and data. A
ring is a collection of protection mechanisms, which safeguards the
contents of a segment.

The processor addresses a segment through a 0 = 7 numbering system.
Each segment contains 512 Mbytes.)

Segment 0 _ B
The processor executes privileged and non-privleged instructions
as the kernel of the operating system.

Segments 1 = 7
The processor executes non-privleged instructions in segments
1-70

Since the logical address space is larger than the physical address
space, the processor uses a demand-paging scheme. THe processor maintains
pages of logical memory on disk until it needs them in the physical
memory.(A page equals 2 Kbytes.) when referring to an instruction or to
data that currently resides on disk, the processor moves the page to
physical memory. However. when the physical memory is full, the processor
may first copy a page from memory to disk before moving the referenced page
into memory. To facilitate the operation the processor maintains a table in
memory that determines:

Where a page resides (memory or disk resident)

Bits 13 - 31 of a segment base register specify a physical
address of a page table in memory. Each segment contains a
page table, which occupies at leat 2 Kbytes and begins on
an integral 2 Kbyte boundary. A page table contains entries
that indicate where the pages reside in memory.

When to overwrite a page in memory with a page from disk.

The processor maintains a table of referenced and modified
bits.

AOS/VS Internals Chapter 2 Page 2-14

Segment access and address translation

To access a memory word or words, the processor ‘accesses a segment,
translates a logical address(indirect or effective address) to a physical
addresss, and accesses the physical page, which contains the word or words.

SBR (Segment. Base Register)

For the processor to access a segment, it first checks the segment
base register specified in the logical address. Bit O of the segment base
register controls access to the segment by specifying if the processor can
refer to the segment for the instruction execution. If the processor cannot
refer to the segment. the processor aborts executing the instruction and
services a segment validity protection fault.

The processor maintains eight segment base registers (SBRO - SBR7) --
one for each of the eight segments. A segment base register contains
information which

Validates a segment access

Validates an I/0 access

Specifies a one- or two-level page table

Specifies for the segment the address of the first entry in the
page table,

1011121314 12113 311
o B B ! !
! ILIIY ! 1
IVILIEI/! reserved ! physical page address !
! 1 IF10! ! !
!

v segment validity 0 - invalid - / 1 - valid

L length (ir PT levels) 0 - 1 level / 1 -2 level

LEF LEF mode indicator c-1/0 / 1 - LEF mode

I/0 1I/0 allowed 0 - no I/0 / 1 - 1/0 allowed

Notes:
SBRs are loaded with cone of the following instructions:

LSBRA - 1load all (0-T) of the SBRs
LSBRS -~ 1load some (1-7) of the SBERs

AOS/VS Internals Chapter 2 Page 2-15

PTE (Page Table Entry) with software extensions

In eaéh segment. the processor accesses a page table that specifies
the status of the pages for the segment in memory. The page table contains
one entry (PTE) for each page, which

Indicates if a page is a valid access and the type of access

Indicates if a page is currently in physical memory

contains information needed to translate a logical address to a
physical address.

INRRRARN
1011121314151617181910111213 311
e e o e e e e e e e — - -1
P Istitfiwtul 1} !
IVIMIRIWIE! tht/tililwl 1 1 physical page address !
P Irtsiplrift 1} !

R

' page validity 0 - invalid / 1 - valid
M resident in memory 0 - no / 1 - yes
R read access bit 0 - invalid / 1 - valid
W write access bit 0 - invalid / 1 - valid
E execute access bit 0 - invalid / 1 - valid
The following bits are software defined:
shr page is shared 0 - not shared / 1 - shared
i/s initially loaded if unshared = 0 - not loaded / 1 - loaded
data vs code if shared 0 - if code / 1 - if data
fip fault in progress 0 - no / 1 - yes
Wwir page is wired 0 - no / 1 - yes
uwf unpend waiters of fault in prog 0 - no / 1 - yes

AOS/VS Internals Chapter 2 Page 2-16

Address Translation

Following a valid segment reference, the processcr checks the range of
the logical address space within the <cegment, &nd compares it to the
address range of the logical address. Bit 1 of the segment base register
defines a one- or two-level page table, which specifies the addressing
range. .
The processor compares bit 1 of the segment base register with bits 4
- 12 of the logical address. When bit 1 equals a zero, the logical address
bits 4 - 12 must be all =zeros. The processor aborts executing the
instruction. and services the protection fault (page table depth fault) when
any of the logical address bits 4 - 12 contain a one.

>
7]
%
®
o}
ct
o
!
1
1
]
1
1
!
o
O
)
oa
[¢2
—
(4]
<
®
—
—
O
o
(48]
[¢]
O
H,
)
(4]
(0]
(3

0 1 34 12 13 21 22 31

One-level Page Table Logical Vierd Address

e
| 1

1
|
segment | Page Level 2 | Page Level 1 | Page Offset
[}
|

! |
[

0 1 3y - 12 13 T2 22 , 3

<

- |

X - ignored by processor when'using direct addressing. Tested
by processor when using indirect addressing, and continues
testing the bit in subsequent indirect address until bit is
zero

Segment - specifies one of eight segment base registers

Page Level 2 - specifies an entry in the first of two page tables
for a two-level page table translation. The page table
entry contains the address of the second page table.
For a one-level page table translation, the page level
2 field must be all zeros. If not zeros then page table
validity protection fault occurs.

Page Level 1 - specifies an entry in a page table. For a cne- or
two-level page table translation, the page table entry
contains the address of the final page to be accessed
for data or an instruction.

Page Offset - The page offset specifies the final entry in the
final page. The page offset completes the address translation.

A0S/VS Internals Chapter 2 Page 2-17

Page Access)

When an instruction refers to a page, the processor determines the
validity of the access by checking the access request with the appropriate
validation and access validation bits in the page table entry.

When an instruction refers to a valid page that is not currently in
physical memory, a page fault occurs. The fault handler saves the current
state of the processor in reserved memory (context block), moves a memory
page to disk (if required), and then transfers the referenced page from
disk to memory.

Access Validation

When a referenced page is valid, the processor determines whether the
page 1is restricted to a particular access. Bits 2 - 4 cf the referenced
page table entry contain the access bits that specify any restriction.

When the reference to memory is for reading, the processor checks bit
2. A one in bit 2 indicates a valid read, while a zero indicates an invalid
read. When the reference is invalid, a protection fault occurs and AC1
contains the error code 0. ‘

When the reference to memory is for writing, the processor checks - bit
3, A one in bit 3 indicates a valid write, while a zero indicates an
invalid write. When the reference is invalia, a protection fault occurs and
AC1 contains the error code 1.

When the reference to memory is for executing, the processor checks
bit 4., A one in bit 4 indicates a valid execute. while a zero indicates an
invalid execute. When the reference is invalid, a protection fault occurs
and AC1 contains the error code 2.

¥%%¥ Note - In general, READ access must always be available to- any page
with execute access....

Pemand Paging

Since the logical address space is larger than the physical memory
space, all pages cannot reside in physical memory at the same time. A
paging facility(under control of the page fault handler) moves referenced
pages in and out of memory whenever necessary-- demand paging.

When an instruction refers to a valid page not currently in physical
memory or refers to a lccation that requires two-level page table when only
a one-level page table is allocated, then a page fault occurs. A status
field in the context block indicates the cause of the page fault. Refer to
the specific functional characteristics manual for more information on the
context block.

AOS/VS Internals Chapter 2 Page 2-18

Page faults
A page fault can occur for the following reasons:

Page table depth (an attempt was made to translate a two level
page table entry when only a one level
table was specified)

Page fault when referencing a page table
Page fault when referencing an object page

When a page fault occurs, the MV will copy the current context block
into the locations pointed to by offsets 32 and 33 of segment 0. The
processor then crosses to ring O and jumps indirect throught locaticns 30
and 31 of segment O which contains the fault handler.

Referenced and modified flags

A referenced and a modified flag are associated with a physical page
in memory. When the processor reads a word from memory, it sets the
referenced flag associated with the physical page to one. When the
processor writes a word to memory, the processor sets the referenced and
modified flags associated with the physical page to one. A read or write
operation occurs when the processor accesses memory witout a protection
fault occurring on a memory resident page.

*%%% Note: An I/0 memory reference does not affect the state of the flags

The referenced flag helps to determine which page in physical memory
the page fault handler should replace with a new page from disk. The
referenced flag allows an operating system and the page fault handler to
determine the frequency of references to individual pages.

The modified flag indicates if the processor wrcte a memory page. When
z modified flag equals cne, the processor modified the contents of the
page. The page fault handler must first copy the page to disk before moving
a new page from disk to memory. If a modified flag is zero, the processor
did not nmodify the contents of the page, and the page fault handler can
immediately move a new page from disk to memory.

A0OS/VS Internals Chapter 2 Page 2-19

Central Prqgggggm;ldentiijggjign7

The processor stores information about the processor parameters (such
as the memory size and micro code revision level) in one or more
fixed-point accumulators. Refer to the specific functional characteristics
manual for further information on the accumulators.

The following three 1load cpu identification instructions return the
infomation as shown.

LCPID or ECLID

]] 1
|] 1
Model Number | Micro code Rev | 0 | O
]]]
| | i

=
2
(@)
-3
<
wn
'_l.
N
[0}

— - —— - —————

0 15 16 23 24 25 26 31

bits 0 - 15 the binary value of model number (10001001001100) for MV10000
bits 16 - 23 current micro code revision

bits 24,25 set to 0 |

bits 26 - 31 amount of physical memory available

a 0 is 256 Kbytes
a 1 is 512 Kbytes to a maximum indicating 16 Mbytes.

A0S/VS Internals Chapter 2 Page 2-20

NCLID

Returned in ACO

— — - —— —— —— o —— e s B - - — = e S G e e . e - e e

1] 1
1 | [
| Undef ined i Model Number) i
|]
i i N——
0 15 16 , 31
Returned in AC1
| 1 | o
! Undef ined ! 1 | Reserved | Micro code Revision E
| 1 1 S P
0 516 17 23 24 31
Returned in AC2
i i i
! Undef ined H " Memory Size E
' - I : N - i
0 15 16 3

ACO - model number binary representation (10001001001100)

AC1 - Micro code revision

- . - —————— —————

| Bits | Meaning i
]] 1
! —_— - —_— ——— e e}
I 16 | Always set to 1 i
| 17 - 23 | Reserved for future use |
i 24 - 31 | current micro code revision|
] 1 .

i 1

AC2 - Memory size
A 0 indicates 32 Kbytes
A 1 indicates 64 Kbytes

AOS/VS Internals Chapter 2 Page 2-21

Protection Violation

The processor performs certain checks on the operation and on the data
while executing an instruction. If the processcr detects an error, a
privleged or non-privleged fault occurs. Since an operation could produce
multiple protection violations, the processor imposes priorities on the
faults. The processor services the highest priority fault and ignores lower
priority faults, when two or more occur.. For instance, the processor
services a level 2 priority and ignores a level 4 priority, when both occur
simultaneously.

When the processor detects a fault, it performs a segment crossing to
segment 0 (if the fault occurs in segment 1 to 7) and jumps to the
protection violation fault handler through the indirect pointer in reserved
memory. The initial and indirect pointers to the protection violation fault
hendler are 16 bits. Levels of indirection, if any, occur within segment O.

If a protection violation fault occurs while handling a nonpriveleged
fault, the processor aborts the nonpriveleged fault and processes the
protectioni violation fault. The return block pushed onto the stack for the

protection violation fault is undefined, as are the contents of ACO and
AC1. A

Level of Priority

- - -

0

Fault Description

] 1
[} {
- . ————— !
| Privleged or I/0 instruction violation |
| Indirect addressing violation i
i Inward reference violation i
[} i
! i
| |
1 |
| |
1 1
| i
]]
! t

Segment validity violation

Page table validity violation

Read, write. or execute access violation
Segment crossing violation

SO EWwWnN —

[
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Priority of protection violation faults

AOS/VS Internals Chapter 2 Page 2-22

C/350 Programming

The 32-bit processor executes 16-bit procesor instructions to provide
upward program compatibility and to develop 16-bit programs (for instance,
for the ECLIPSE C/350 procesor). Programs that include C/35C
memory-referenced and C/350 stack-referenced instructions must meet certain
requirements or restrictions. The specific functional characteristics
manual presents any machine restrictions.

C/350 registers

The C/350 fixed-point accumulator bits 0-15 correspond to the wide
fixed-point accumulator bits 16-31. When a C/350 instruction loads data
into an accumulator. it alters bits 16-31. and ignores bits 0-15. When a
C/350 instruction reads data from an accumulator (bits 16 - 31), it does
not alter the contents.

The C/350 fixed~point accumulator bits 1-15 correspond to the wide
accumulator bits 17-31 for relative addressing.

The C/350 instructions do not affect processor status register.

The C/350 floating-point accumulators are identical to the 32-bit
processor floating-point accumulators.

The C/350 program counter bits 1-15 correspond to the wide program
counter bits 17-31. A C/350 program flow instruction modifies bits 17-31,
while the most significant bits are the current segment and zeroes.

The C/350 reserved memory in the MV processor does not implement the
auto-increment and auto-decrement 1locations 20 thru 37. The processor
reserves these locations for storage of certain system parameters.

0 0 i C/350 effective address

—————— - —— | - -

segment

1

-— oo o ——

W) e e e
=
-—
(o))
—
3

3

C/350 program counter format

Segment - current segment

C/350 Effective address - remains within the first 64Kbytes of
the segment

AOS/VS Internals Chapter 2 Page 2-23

C/350 Stack

The C/350 stack (or narrow stack) supports C/350 program development
and upward program compatibility. Unlike the wide stack the narrow stack
only uses three parameters (in reserved memory) to define and to control
the narrow stack.

1. narrow stack limit - defines upper limit of stack

2. narrow stack pointer - current location of last word written
onto or read from the narrow stack

3. narrow frame pointer - defires a reference point in the rarrow
stack
C/350 Faults and Interrupts
The 32 bit processor services (with the same pointers and fault

handlers) the 16- and 32-bit floating-point and decimal/ASCII faults. It
also processes I/0 interrupts the same way.

AOS/VS Internals Chapter 2 Page 2-24

System Control Processor (SCP)

The system control processor (SCP) is a system within the MV computer
and has its own microcomputer, That is, the SCP has its own CPU and its own
operating system. The SCP is a soft system console. It performs diagnostic
functions and loads micro code into the microsequencer.

As a soft console, the SCP performs system control functions under
operator control. It permits the operator to load or examine and modify
main memory and to single-step through a program instructior by
instruction.

As a diagnostic tool, the SCP runs programs designed to help isolate
hardware problems. It also maintains an error log. When an error occurs,
the SCP records the type of error, its location, and the time it occurred.

The SCP provides all the system timing for the MV computer system. It
also connects to other components via several buses to allow examlnatlon
and modification or internal registers.

The operator terminal of the SCP gives the operator control over the
MV processor by transmitting commands to the system and provideing direct
responses and reports.

The SCP also contains the real-time clock, the programmable interval
timer. and the primary asynchronous line, all of which appear to the main
processor to be I/0 devices.

Data ChannelL@uraL,ﬂg;;;plexgn_Cngnpgl

The data channel (DCH) provides I/0 communications for medium-speed
devices and synchronous communications. The burst multiplexor channel (BMC)
is a high speed communications pathway that transfers data directly between
main memory and high-speed peripherals. The I/0-to-memory transfers for
both DCH and BMC always bypass the address translator.

DCH/BMC Maps

A map controls a DCH or BMC. This map is a series of contiguos map
slots, each of which contains a pair of map registers - and even-numbered
register and its corresponding odd-numbered register.

The MV computer supports 16 DCH maps, each of which contains 32 map
slots. The DCH sends to the processor a logical address with each data
transfer. The processor translates the logical address into a physical
address using the appropriate map slot for that address.

The device contrcller performing the data transfer controls the BMC.
No program control or CPU interaction is required, except when setting up
the BMC's map table. The BMC has two address modes and contains its own
map.

AOS/VS Internals Chapter 2 Page 2-25

BMC address modes

The BMC operates in either the unmapped mode - that is, the physical
mode - or the mapped mode - that is, the logical mode.

In the unmapped mode, the BMC receives 20-bit addrsses from the device
controllers and passes them directly to memory. As the BMC transfers each
data word to or from memory, it increments the destination address, causing
successive words to move to or from consecutive locations in memory.

If the controller specifies the mapped mode for data transfer, the
high-crder 10 bits of the logical address from a logical page number, which
the BMC map translates into a 10-bit physical page number. This page
number, combined with the 10 - low-order bits from the logical address, forms
a 20-bit physical address, which the BMC uses to access memory.

BMC Map

The BMC uses its own map to translate logical page numbers into
physical ones.The map table contains 1024 map registers, the odd-numbered
registers each containing a 10-bit physical page number. The BMC uses the
logical page number as an index into the map table, and the contents of the
selected map register becomes the high-order 10 bits of the physical
address.

Note that when the BMC performs a mapped transfer, it increments ' the
destination address after it moves each data word. If the increment causes
an overflow out of the 10 low-order bits, this selects a new map register
for subsequent address translation. Depending on the contents of the map
table, this could mean that the BMC cannot transfer successive words to or
from consecutive pages in memory.

DCH/BMC Registers

The MV computer system contains 512 DCH registers and 1024 BMC
registers. The map registers are numbered form O through 7777.

E Registers | Descrlptlon |
! ! - ————————e e st o e e e |
i 0000 - 3776 i Even-numbered registers most significant half of BMC |
! | map positions 0 - 1777 |
i 0001 - 3777 i Odd-numbered registers least significant half of BMC |
! | map positions 0 - 1777 i
i 4000 - 5776 i Even-numbered registers most significant half of DCH |
! : i map positions 0 - 777 5
i 4001 - 5777 i Odd-numbered registers least significant half of DCH |
' | map positions 0 - 777 |
| 6000 i 170 channel definition register |
| 6001 - 7677 | reserved |
! 7700 | I/0 channel status register i
| 7701 | I/0 channel mask register !
| 7200 - TT77 | reserved i
i i !

Device map registers

AOS/VS Internals Chapter 2 Page 2-26

0000 e
i i\ | Slot 0 - high i 0000
i BMC HEAN i i
| AN | Slot 0 - low i 0001
: slots AN | i
| i \ i Slot 1 - high i 0002
3777 | ! \ - - i .
4000 | | \| Slot 1 - low ! 0003
| DCH H N 1
! slots i
5777 | i
6000 | I/0 channel defintion reg |
|]
I Rt
6001 | i
! Reserved i
7677 | i
7700 { I/0 channel status register)
] .]
]]
7701 | I/0 channel mask register |
]]
| e sess=
7702 | i
! Reserved i
7777 i S
DCH/BMC registers
R B i
i ViD| Hardware Reserved H
—_ e ——— - i
o 1 2 15

Even-Numbered Register Format
V - validity bit ; if 1 processor denies access
D - data bit

if 0, the channel transfers data
if 1, the channel transfers zeros

Reserved write to with zeros; reading these bits returns
undefined state

A0S/VS Internals Chapter 2 Page 2-27

Res Physical Page Number

Odd-Numbered Register Format

Res - Hardware Reserved

Physical Page Number - associated with logical page reference

o T T |

| E |Res |BV |DV |Res|BX P |Dis| I/0 Channel | M
1] |]] i [}]]

| | | | [} 1 | _——
0123 4 5 6 7 8 9 10 13 14 15
I/0 Channel Definition Register Format

A

E - Error flag

Res - reserved

BV - BMC validity error flag if 1 BMC protect errcr has occurred
LV - DCH validity errcr flag if 1 DCH protect error has occurred
Res - reserved

BX - BMC transfer flag BMC transfer in progress

A - BMC address parity error has occurred

P - BMC data parity error hs occurred

DIS - disable block transfer

I/0 channel - I/0 channel number

M - DCH mode if 1 DCH mapping is enabled

0 - always set to 0

A0OS/VS Internals Chapter 2 Page 2-28

———— o -~ ———— - —— e e . e = ———— ———————

|]]]
|] | | |
IERR! Reserved {XDCH{ 1 |MSK }{INT |
i i i i f

[
0 1M1 12 13 1% 15
I/0 Channel Status Register Format
ERR - I/0 channel detected error by IOC or memory parity error
Reserved |
XDCH -~ DCH map slots and operations supported

1 - always set to 1

MSK - prevents all devices connected to channel from interupptirg
the CPU :

INT - Interrupt pending

Reserved IMKO |MK1
]]
-1 —
0 7 8 9 10 15
I/0 Channel Mask Register Format (MV/1000)

Reserved

—— — ——

Reserved
MKO - prevents all devices on channel O from interrupting CPU

MK1 - prevents all devices on channel 1 from interrupting CPU

AOS/VS Internals Chapter 2 Page 2-29

Micrc Code

The heart of the MV hardware/software system is the micro code. This
micro code contains the data paths used by the firmmware to decode the
instructions executable by each user. It is loaded from either disk or tape
at cold startup time. There is one istruction which accesses this area of
the machine. It is the LCS instruction. This instruction loads and verfies
the soft internal states of the machine(for example, micro-store, decode
rams, and scratch pad). In conjunction with bits 16 through 31 of three
accumulaters (ACO, AC1, AC2), the LCS instruction performs a load and
verify, or verify only, using the contents of a micro code file.

ACO contains the 1load and verify, or verify only. argument, and the
destinaticn code; AC1 cortains the bit length of the code data; and AC2
contains a pointer to the first block of data.

ACO
! 1 TN
! Unused IL/v | Destination Code i
]]]]
1 J— |] —— -1
0 15 16 17 3
AC1
; | o I
| Unused i Bit Length |
i S R |
0 15 16 31
AC2
| T o i
d Unused i Pointer i

0 15 16 ' 31

AOS/VS Internals Chapter 2 Page 2-30

'AC # | Contents | Meaning i
]]] (]
i i .- i
0 | LYV | Load/Verify option i
! ! | 0 implies load and verify |
! ' | 1 implies verify only i
| | destination | Code for where the data is to be loaded|
I ' code ! i
| i i i
i 1 | bit length | Bit length of code data i
i i i i
l2 E Pointer | Pointer to first block of data i
1 1]
[}]] [}

A0S/VS Internals Chapter 2 Page 2-31

Micro code File Format

The micro code file format contains data for use in various parts of
the machine's state. The micro code format is block-oriented format
(arranged into packets or blocks) that contains a description of the size
of the block and the type of data it contains.

(]]

! |

| Revision Block H Optional
]]

]

]
}
i Comment Block Optional
1
| :
i
f S
| |
f Title Block f
. _.J
| | | b o
i Comment Block i i Code Block d | Fill Block. E
| 1 1 |] ’
i e] ,_.i,---_.--__,l U |
i
e o e _—
| | i | | i
i Comment Block d] Code Block H | Fill Block E
i | t ‘ | | I |
] PP | e e e e e e e e e ——— - - —— — ———
[}
|
1
| |
| End Block i
| |

iterations from comment
i block on down

[}]

| [}

i Comment Block ! Optional
|]

I

AOS/VS Internals Chapter 2 Page 2-32

Micro code Block Format

Each micro code file must begin with a Title block and finish with an
End block(Title/End block pair). Fill and Code blocks must be placed
between the Title/end block pair. The Revision block precedes the first
Title block. Comment blocks can appear anywhere within the micrc code file.

Kernel Functionality

The kernel is the minimum set of micro code necessary for the machine
to function properly. With the kernel instruction set (including the LCS
instruction) the prccessor can read in target micro code from an I/0 device
(using kernel I/0 instructions) and then load this micro code into control
store using the LCS instruction,

Because there is a 16k-word limit to the amount of data that can be
loaded with a single LCS instruction, it may take several iterations of
accessing the I/0 device and executing the LCS instruction to completely
change the machine from the kernel to the target.

In this chapter the MV hardware was introduced along with the System
Control Processor and Micro code. The following chapter will discuss the
AOS/VS kernel.

AOS/VS Internals Chapter 3 Page 3-1

CHAPTER 3 - AOS/VS KERNEL and DATA STRUCTURES
(AOS/VS revision 5.00)

This chapter deals with the layout of memory for ring O and ring 1 of
the operating system. It also describes the data bases, queues and stacks
used by the kernel of the operating system. The operating system can be
broken into four pieces. They are:(1) base system, (2)memory management,
(3)processor management.and (4)I/0 device drivers. The first three pieces
will be discused in this chapter. The I/0 device drivers do not need
discussion as the listings are pretty complete.

eri
The following section describes the ring structure found in the MV
hardware, and diagrams the layout of the two system rings.

General memory layout

Ring
e T ——— |
7 ! mair user ring I\
! I\
6 l user code I\
l ! \
5 1 user code ! \
! ——— | \ context specific
Yy ! user code/INFCS II ! } (switched for each
T p———— | / process)
3 ! AGENT/PMGR ! /
1= ! /
2 ! not used 1/
! -1/
1 | per user kernel data | /
R |
0 l Kernel | e context general
! l (not switched on a per

process basis)

AOS/VS Internals Chapter 3

Ring O memory structure

top of
physical
memory
(12 mb)

CeE D CUD CUD CUD CUD LU CUD CuD CUD CUD CUD CUP GUP CuUP e CUD CED CUR (WD WD OUD CUD Sy OUD OWD CWD OUWD CWE WD SmD CuUE OWD Cum OuD SUS CwS CwE CmE oum Sum SuD

Page 3-2

———— !
Dynamic logical slots ;\
1\
A\
1\
! \
SWAPAREA ! >128 KW
! /
r /
1/
1/
- 1< \
1\ \
non-resident system | \ \
code ! /48 kw \
1/ \
1/ >1/2 mb
| /
Reserved 1 /
l /
l /
1< <
l \
Reserved ! \
! \
! \
! \
! \
! \
! \
CBASE (and CMEs) ! -\
MLDUI ! > 32 mb
SINITH 1 /
SINIT | /
-1\ /
STACKS I\ /
RESIDENT KERNEL 1\ /
and DRIVERS !)} 3Tkw /
STABLE v/ /
SZERO 1/ /
1/ /

AOS/VS Internals Chapter 3 Page 3-3

RING 1 memory layout

Ring 1 is defined as the context dependant system ring. For each
process, ring 1 1is unique ir contents, but the same in structure. This
implies that the first user CCB page for any user is located at the same
logical address in that users context. This obviously simplifies the
lookup of information in the databases.

Tnhe PTPs and CDPs for all context switched rings (1-7) are lccated
in ring 1. The memory in ring 1 is like any other ring, ie. it requires
high and low PTPs and CDPs to describe the logical/physical relationship of
its memory. This implies that ring 1 is self defining, or in other words,
the PTPs and CDPs that define ring 1 are themselves located in ring 1.

To help localize PTPs and CDPs, and therefore keep the number of
page 1 PTPs required to define the memory to hold the other ring PTPs and
CDPs, the logiczl memory of each of rings 1-7 are divided into two groups.
The third MB of ring 1 contains the PTPs and CDPs to describe up to 34 MBs
of each ring. The databases required to do this are:

One high level PTP per ring
Up to 34 low level PTPs per ring
Up to 34 CDPs per ring

If a process' ring requires more than 34 MB, the remaining PTPs and CDPs
will be built in a fixed location in the 4 and up MBs.

The diagram on the next page represents the ring 1 structure. Note
that the first RSEKVD K words of the 3rd MB are dedicated to the PEXIN, the
user CCBS. some reserved locations, and the page file directory.

AOS/VS Internals Chapter 3 Page 3-4

Remaining
Ring 7 CDPs

Remaining
Ring 7 PTPs

Remaining
Ring 1 CDPs

Remaining
Ring 1 PTPs

Ring 7 CDPs
Ring T PTPs
Ring 6 CDPs
Ring 6 PTPs

Rimg 2 CDPs
Ring 2 PTPs
Ring 1 CDPs

Ring 1 PTPs

(476)

(478)

(476)

(478)
(35)
(1434)
(35)
(1+34)

(35)
(1434)
(35)
(1434)

Page file directory

Reserved (5)

VICB pages (3)

User CCB pages (7)

PTBL extender page

4 +

! 476 Kw !

l !

! 478 KW 1

! {
e e e e e ——— +
e e e i ————— e

! 476 KW 1

! : I

! 478 Kw !

! {

+ -+\

! 35 KW !

4+ - + \

! 35 KW !

+ + \

l 35 KW !

4 + \

! - 35 KW !

4 - —————— \

: \

.‘.‘___.,,_.-4......"- PSP —— ...+ \

| 35 KW !

- + \
! 35 KW ! \ 1 MB
- : p— /
! 35 KW !

4+ + /
{ 35 KW !

4 + /

l 1 KW !

e - 4 /

! 5 KW 1

e : S— /

! 3 KW !

E—- : R /

! T KW !

4= + /

i 1 KW |

4 +/

! 1 MB ! 1 MB
+ - -+

! 1 MB ! 1 MB

AOS/VS Internals Chapter 3 Page 3-5

GSMEM is the term used to describe the pool of various size blocks
of general system memory. There are 8 sizes of GSMEM blocks, and therefore
8 different chains:

FC8 The chain of free 8 word chunks (blocks)
FC16 The chain of free 16 word chunks (blocks)
FC32 etc.

FC64

FC128

FC256

FC512

FC1024 The chain of free 1024. blocks (or pages)

GSMEM is also managed using a modifed buddy system (described
below). »

The Modified Buddy System

GSMEM chains are managed using a modificaticn of the buddy system
described in Knuth. "The Art of Computer Programming", vol 1. An
explanation, by way of example, as to how it works is as follows:

Assume we need a chunk of 36 words of GSMEM to hold a database.
First, we round 36 up to the next multiple of 8, which is 40. 'We next
allocate a chunk of memory from the FC6U4 chain, passing its address to the
routine requiring the memory. Since the database will only occupy the
first 40 words, we break the remaining 24 words up into two chunks, one of
16 words, the other of 8 words, and put the addresses of these chunks onto
the FC16 and FC8 chains respectively. If there are no chunks on the FC64
chain, we break the first entry on the FC128 chain into two 64 word blocks
and put their addresses on the FC64 chain (we now have something on the
FCobU4 chain and can proceed as above). If there are no entries on the FC128
chain, split the FC256 chain and continue. If there are no entries on the
FC256 chain, try the FC512, and finally the FC1024 chain. If there are no
free blocks on the 1024 chain, we either pass back an error to the calling
routine if the routine can pend, or ... we are in trouble.

AOS/VS Internals Chapter 3 Page 3-6

When we are done using the database, we return the memory to GSMEM,
and attempt to regroup the block into larger blocks. However. a block can
only regroup with the chunk it was split from ... it's buddy. The
determination of a buddy is done using the following algorithm:

GSMEM block address size = 8. buddy address
130 = 001 011 000 XOR 000 001 000 = 001 010 000 = 120
120 = 001 010 000 XOR 000 001 000 = 001 011 000 = 130
110 = 001 001 000 XOR 000 001 000 = 001 000 OO0 = 100
100 = 001 000 000 XOR 000 001 000 = 001 001 000 = 110
GSMEM block address size = 16. buddy address
120 = 001 010 000 XCR 000 010 000 = 001 000 000 = 100
100 = 001 000 000 XOR 000 010 000 = 001 010 000 = 120

In general:
Buddy address = (block address) XOR (size of block)

Again it is important to stress that a block of GSMEM will
only combine with its buddy.

A0S/VS Internals Chapter 3 Page 3-7

RU

The LRU chain in AOS/VS is composed of pages of memory that have a
use count of 0. These can be either shared or unshared. When the PFF
algorithm (see below) removes pages from a user's working set, the pages
are put at the end of the LRU. If the user faults in the page before the
page is removed from the LRU (the CME will have 2 stztus bit set saying
that the page is on the LRU, a search is not necessary), the page will be
unlinked from the list, and put back into the user's working set (the CME
also contains the logical address/PID number of the user using the page to
prevent a page from being removed from the LRU and put back on before the
original user requests the page again).

When AOS/VS requires memory, it will look at the LRU (from the
beginning, or oldest page) if nothing is available on the FC1024 chain.

Process memory chain_(PSMEMQ)

Each process table extender has a doubly linked list cf memory that
hes been allocated for a process, but not assigned. As an example, when the
GCORE routine (called when a process is selected for swapin) gets the
required page frames for a process the pages will te linked onto PSMEMQ.
Later. when pages are needed for the process, a special routine (PGMBLK)
will be called which will
look first at the process memory queue.

The queue is made up of chunks of contiquous memory linked
together through their first words.

of fset
PMFL.W 0 forward link
PMBL.W 2 backward link
PMST 4 . ' status

bit 0 - LPA memory area
1 - SPH memory area
PMSIZ 5 memory size (usually 1024.)

A0S/VS Internals Chapter 3 Page 3-8

Databases

The following databases are used in managing AOS/VS memory.
CMEs

There is one CME (core memrory entry) associated with each physical
page of memory (each page frame), and the database serves as the principle
descriptor for that page. The CMEs are allocated at SINIT time after the
SINIT code determines the size of the ECLIPSE MV's rphysical memory
(obtained from the CPUID). There is a page O location called CBASE.W that
points to the base of the CMEs, which are allocated contiguously from that
pcint. Therefore, the formula to find a CME is:

CBASE.W + (page # * CMPLN) where CMPLN is the size of a CME

The CME looks like this:

cf fset
CMPFL.W 0 Forward link if on the LRU
CMPBL.W 2 Backward link if on the LRU
CMPST y Status of the page
bit - 0 I/0 in progress
unused
this is a shared page
I/0 error detected on page 1/0
page in use by AOS/VS
CDE page . '
release to LRU list when count = 0
call unperd when I/0 completes
.page is on LRU
PTE page
level 2 PTE page
page is modified
flush waiting for page CCB unlock
another path waiting for CME flush
unsued
15 unused
use count
PID (when on LRU)
wired count
various information
Physical page # when cn free chain
SPH address if a shared page
FCB header address if a FCB page
LPA header address if a LPA page
if an unshared user page
bits 0 - 21 logical page #
4 22 - 31 PID
CMTIM.W 11 RTIM.W value at last fault (time stamp)
CMPGNR 13 physical page number corresponding to this
CME

P G
LW —=O0OWoO~TONUT.EWN —

CMPUC
CMPID
CMPWC
CMPPT.W

~Nonuorun

The current length of a CME is CMPLN (12.) words.

Note that CMPUC and CMPLD are det ned as the sume of fsets

A0S/VS Internals Chapter 3 Page 3-9

VCME

Virtual CMEs (VCME) are written to the swap file along with the
memory image when a user swaps out. They are used to reconstruct the CMEs
associated with the user when the user swaps in. They are 8 words long.

o of fset
VCMPFL . W 0 forward link
VCMPBL.W 2 backward link
VCMPST y status (same as CME status CMPST)
VCMPWC 5 wired count
VCMPPT. W 6 logical address

SPH

Shared page headers (SPH) are used to define a shared page. There
is one OSPH per shared page independent of how many processes are sharing
the page. SPHs are linked off of the FCB (file control block) for the file
in which the page 1s found. . ‘

cffset
CFFLK.W 0 Forward FCB link
CFBLK.W 2 Backward FCB link
CMMAP y physical page number
CMLAH.W 5 Disk logical address (block number)
CMFCB.W 7 parent FCB address
CFBLH.W 1" File logical address (block number?)
CMLPQ.W 13 LPA queue descriptor (4 words)
SPHST 17 shared page status word
. (bit 0 - page is locked bit)

(bit 1 - someone is waiting on lock)

CMHLKF . W 20 system wide hash link (forward)

CMHLKB. W 22 system wide hash lirk (backward)
SPHs are SPHLEN (20.) words long.

AOS/VS Internals Chapter 3 Page 3-10

LPAs

LPAs, logical page associators, are used to associate a logical
page 1in a process's address space with a shared page. LPAs are grouped in
pages reserved for there use. Additional pages are allccated on demand and
returned when not needed. LPAs are pointed to by the SPH they are
associated with.

-of fset
LPFLNK.W 0 Forward link off SPH
LPBLNK.W 2 Backward link off SPH
LPLOG.W y Logical address
LPWC. W 4 temporary storage locaticn
LPPID 6 PID
LPWC 7 Wired count (system+user)

Note that LPWC.W and LPLOG. w are define the same offsets.
Each LPA is currently LPLEN(8.) words long, and there are NUMLPA
(128.) LPAs per LPA page.

Each LPA page has associated with it a descriptor. These
desciptors are linked off of LPACH.W and SPHCH.W and look like this:

offset
PGDFL.W 0 Forward link (off LPACH.W)
PGDBL.W 2 Backward link (off LPACH.W)
PGFRAME y Physical page #
PGUSC 5 Number of LPAs in use on this page
PGFFL.W 6 Head of free LPA chain on this page
PGFBL.W 10 Tail of free LPA chain on this page

LPA page descriptors are 10. words long
CDEs (control directory entry)

For each shared data page in a user's address space, it is
necessary to map the physical page to the corresponding file and disk
address. This is done with the CDE. A CDE is a double word database found
in ring 1 and is managed in the same way PTEs are.

10 718 -3
e e s o e - e - i o
! Channel # ! page offset in file !

i — i — <
- < T

CDEs are collected in Control Directory Pages (CDPs). A count is
maintained in the CME for a CDP of how many CDEs are currently defined on
the page.

AOS/VS Internals Chapter 3 Page 3-11

VICB (Virtual Task Control Blocks)

VICBs are located in ring 1 of each user. They contain the
information that must be preserved during a page fault on the corresponding
TCB. Therefore. there is the potential of 32 VICBs. The first five VICBs
are located in the PEXTN page (in the area once occupied by the per process
stack). The remaining VICBs are allocated when needed in ring 1, 9. per
page, thus requiring a possitle 3 pages to store the complete VICB group.

At the time of a page fault, the MV processor will store the
current fault context block in the corresponding area of the VICB (pointed
to in page 0). In addition, the VICB has a two word save area. The use of
the area is discussed later in this chapter.

Each VICB is structured as follows:

i i\

| Fault AN

| Context i > 106, words

! Block v

i i/

fmm—————————

i Temporary | 2 words

o ——————————— + '
VICXB.W 0 fault context block
VISTK.W 162 stack block

VICBLN.W is the length of the block (108. words)
MXVTCB is the maximum number of VICB's (32.)
VICBPPG is the number of VICB's per page (9.)
SCVTCBEX is number of VICB's in PT extender (5.)

AOS/VS Internals Chapter 3 - ' Page 3-12

System page zero

The following is a summary of important page O locations, with a
brief description of their functions

PRSTK,.W:

SUBSL:
MAXRCB:

GARAY :

Entry

COPYR:

NGHBT:
PCTBL:
INCHK:
SYSIN:
INTLV:

points to the per processor stack
-320. ~(# of PIT ticks in a sub-slice)
20 maximum # of resident control blocks

The ring O gate array. These are the gates:
point + high gate function
RUNST+?ARING schedule a task
SYST+?ARING system call
PPNIC+7PRING PMGR panic
UINTR+?URING ?IXIT
DEBBRX+7ARING enter debugger from BKPT in ?URING
DEBBRZ+?ARING debugger start up from 7URING
RUNIT+?ARING ?2IMSG gate
RUNIS+?7ARING ?RESCHED gate
SIGNL+?URING 7SIGNL gate
WTSIG+?URING WISIG gate
SIGWT+?URING ?7SIGWT gate
NSIGNL+?ARING New ?SIGNAL gate for information to GURU
NWTSIG+?ARING New ?WTSWIG gate for PMGR.sched tuning
(ring 3) |

NSIGWT+?ARING New ?SIGWT gate for PMGR sched tuning
_ (ring 3)
GATENUM = 14, number of gates
?ARING = ?PRING = 3 in the ring field
?URING = T in the ring field
The Data General Copyright

Name of the AGENT file (AGENT.PR)

Unsafe panics table

In checksum loop indicator

In system flage 1=zin system/0=in user

current interrupt level (O=base, n=level. define by the MV
hardware as page 0, ring 0, offset 0.

TSPTB.W:Time slice end flag

TSLSV:

CTSK.W:
CMAP.W:
TODH.W:
RTIM.W:

Temporary time slice save area (for storage during interrupts)
The current executing task

Pointer to the address of the current user map

Time of day in seconds

Page fault relative time (incremented at each page fault)

A0S/VS Internals Chapter 3

MPMGR: Master peripheral manager
DCTCH.W:Unit DCT chain

CC.W: Cubrently executing ELQUE entry
OCC.W: 01d CC.W

SCPCL.W:SCP/HOST communication buffer list

Important offsets in STABLE,SR

PIDBT
PIDTB.W
PIDLN

SKLTN
SHTDN
AOSBT
ESDSW
OVFAH.W
RTCCB

PIFCID.W
PERCID.W
NETCID.W
HIFCID.W

LHID
LHNAM
PPBCH.W
PPBCHB.W

CXPBLK.W
CNXTB.W
CPUID.W

SSBRTAB:
SBRTAB=SBR1
SBR2-SBR7

REFSIZ
SFILE.W

HISLS.W
CKSUM
OVMIN
CXFLAG

INITF
DCHN.W

CRUN.W

Pid usage bit table (bit set indicates PID in use)
Pointer to the process table address table
Length of the process table table (initially 16.)

Skeleton (universal) system indicator (-1 => not)
+1 system is shutting down

-1 => abnormal shutdown / 0 -=> normal shutdown
In ESD indicator

Overlay file logical disk address

31 words reserved for the system root CCB

The Process Informaticn File (PIF) CID (channel ID)
The :PER CID

The :NET CID

The Host ID file CID

local host ID :

local host name (16. words long)

protected file perm1551on block page link(forward)
protected file permission block ‘page link(backward)

connection table/protected shared file lock word
address of the connection table (0 => not defined)
cpu id and micro code word

rlng 0 SBR
ring 1 SBR (and start of the context dependant SBRs)
ring 2 - ring 7 SBR

size of the referenced bit matrix (set up by SINIT)
pointer to the PAGE file table

‘Base of the active histogram chain

Current checksum value
minimum number of overlays allowed in memory

context block format flag 1n1t1allzed to MV/8 or MV/€

format

in initialization flag (1 -> still initializing)
Base of the active delay chain

currently running PTBL

Page 3-13

AOS/VS Internals Chapter 3

N_T_RUN.W
OLDNTRUN
NTRUNDUP

WISCON
WTSCINT

WTSCINTL
WTSCDCC
WTSCDCCL
WISCCYC

WTSCCYCL

WISGO

WISCIDL
WISCIDLL

SSTKCT
SSTKQ
RSTKCT
RSTKQ

G1
G2
G3
Gu
QMIDDLE
QMIDCNT

G1RANGE
G2RANGE
PRANGE

HIBLK
LLOGICAL

SCTBL.W

LSWPAD
SWQD. W
SPQD.W
SVQD. W
SBQD. W

Page 3-14

highest priority entity ready to run

last occupier of N_T_RUN.W

indicator that there was a second structure which had the
same

PNQF as the curent structure in N_T_RUN.W

flag which shows weighted scheduling desired

number of seconds to wait for examination to determine if

weighted scheduling to be used

nuber of seconds in the time interval which elapses between

checking cpu utilization

counter of the number of seconds of the duty cycle
remaining

duty cycle number of seccnds c¢f a time interval during
which weighted scheduling is enabled.

number of times we will get to the end of ELQUE while
looking for someone who is both ready to run and who
has not run this interval when this counter goes to
0 shut off WISGO .

number of times we will get to the end of ELQUE while
looking for a PTBL which is both ready to run and not
run this interval ,

tested after each structure has been selected via ncrmal

scheduling. If 1 then we are in the time interval after

having found we are in cpu contentiocn.

Simple counter inc'd in the idle loop used tc register the

amount of activity in the idle loop.

If this number of counts is recorded in the idle loop

during a time interval then welghted schedullng should

begln.

Number of free group 2 control blocks
Free group 2 control block queue
Number of free group 1 control blocks
Free group 1 control block queue

high priority for group 1 processes

high priority for group 2 processes

low priority for group 3 processes

high priority for group 3 processes

PNQF at the 'middle' of group 2

counter of # of q's from head/tail if positive more ¢'s
from head if negative more q's from tail

group 1 range set up at sinit time

group 2 range set up at sinit time

values for entire priority range

highest block
last logical page in use

Address of system call count table

logical address of the swaparea

Physical address of the queue descriptor for VCME
Physical address of the queue descriptcr for VCME
Physical address of the queue descriptor for VCME
Physical address of the queue descriptor for VCME

AOS/VS Internals Chapter 3 Page 3-15

SWPSI global count of swapins

SWPSO o global count of swapouts

TOQUE timeout request queue

BFLRU.W . list of free buffers in LRU crder

BTAIL.W ,

BUFCN Number of buffers currently on the free buffer LRU

FC8 . Free 8 word GSMEM queue (.¥)

FC16 Free 16 word GSMEM queue (.W)

FC32 :

FCo4

FC128

FC256

FC512 Free 512 word GSMEM queue (.W)

FC1024 Free 1024 word GSMEM queue (.W)

CBASE.W ‘ address of the base of CMEs

LRUCH.W Chain of CMEs describing shared pages with a use count

of zero '

UPSYS.W Queue of high address system pages (overlays) in memory

SFHCH.W Chain of SPH page descriptors

LPACH.W Chain of LPA page descriptors

FCBCH.W Chain of FCB page descriptors

IFCB FCB/CCB unique ID (initially 1, incremented each time a
, FCB is created)

SMFLG Core manager request flag

CMFLG System manager request flag (this is not a typo)

MKEY System memory key (incremented when memory is released)

BIAS Minimum number of non-interactive processes in memory

FRIAS Maximum number of non-interactive processes in memory

ELQUE The major queue bases

IEBLK

IEQUE

IESWP

IERES

BLKQ

MBLKQ

DMTSK The disk manager control block

CMTSK The core manager control block

RTPTB The root process table

BTBL The interrupt vector dispatch table

AOS/VS Internals Chapter 3 Page 3-16

MDCH1- The data channel map control slot (bit =1 -> free slot)
MDCH8 :
FLTBK.W Fault block for system
fXTNPG: PEXIN address in ring 1 (constant for alllusers)
PFDADR: Page file directory address in ring 1
VTCBTAB: Address of the VICBs in ring 1
INUSER.W # of interrupts in non-ring O code
INSYST.W # of interrupts in non-checksum loop
IDL.W # of interrupts in idle loop (checksum loop)
DFSPCNT The default maximum per ring IPC messages spooled
GSWOTM.W Time stamp of the last process picked by COREM for
' swapout :

These offsets are related to faulting informaticn gathered by the system.

DIRFLT.W Count of faults run directly.

INFLT Count of faults using a CB.

LSFLT.W Count of logical faults on system pages.
PENDFLT.W Count of faults that pended.

The following symbol is used for tuning.

TAMTUNED This item is the flagword to signify that the tuning
program was run.

The following symbols are used by the terminal utilization utility

(GURU)
GURUBTYP This is the mask showing the conditions under which
to begin timing.
GURUETYP This is the mask showing the conditions under which
to end timing.
GURUFLAG If on then we wish to use the GURU utility
GURUTB.W The address of the GURU buffer.

GURUBUCK The number of ticks in each bucket

AOS/VS Internals Chapter 3 Page 3-17

Major dg;aba§g§

Process tables and process table extenders

Eachi process in AOS/VS has associated with it two major databases
one called the process table (PTBL) and the other called the process table
extender (PEXIN)., The PTBL is zlways available in memory, while the PEXIN
will swap out when the process does. Therefore, the PEXIN cannot contain
any information vital to process schedulirg and swapping. Examination of
the PEXIN offsets will bear this out. Both of these databases are defined
in PARS.

Below are some of the more important PTBL offsets:

PLNK. W forward link for connecting the process table to one cf
the majer queues :

PBLNK.W backward link for majcr queues

PSTAT contains the most important status bits for the process

PNQF Priority eNQue Factor - determines the order in which

this PTBL will be enqueued (see chapter 4 for formula)

PPC.W address to begin processing when this PTBL is given
control
PKEY . W key on which to unpend this process

PDAD.W, PSONP.W father. son, and brother PTBL addresses

PFLAG - PFLG4 additioral process status words

PEXTN.W pointer to the process table extender

PSFDF.W,PSFDB.W Spool file directory chain (forward/backward link)

PSFRC.W Spool file entry count (1 byte per rings 4 - 7)
PIORR.W outstanding IREC receive chain

PIPCS.W IPC spool file CCB address

PID the PID

PPRV assigned priviledges (superuser/superprocess...) flags

PCMLK. ¥ link word for processes waiting for swapin or swapout

AOS/VS Internals Chapter 3

PSLEX

Page 3-18

time slice exponent (see chapter 4 for calculation)

PDLNK, VW, PDINH.W of fsets used in managing ?WDELAY system calls

SWCCB.W,PGCCB.W swap and page file CCB addresses

PWSET

PWSSH

PSRNG

PTRGC

working set size

number of shared pages in the working set

server ring bit map (bits 0-7)

target system call count (# of system calls currently
targeted at this process

Some of the more important PEXTN offsets:

PSQCT
PSQMX

PWCCB. W, PDCCB. W

PCTSK.W
PSWD.W
PSL

PSBR1.W -
PSWBT .W

PDFR.W
PSRCH.W

PUNM

PPNM

PWSMIN, PSWMAX
PCAPT

PRFIL1.W -
PRFIL7 .W

PMEMDIS

PUCCBS

number of active system calls for this process

maximm allowed number of calls for this process
address of the current directory CCBs (working/default)
address of this processés current TCB

chain of TCBs waiting for CBs and stacks

‘number of PIT ticks left in the current subslice

The ring 1-7 SBRs associated with this process

-chain of tasks with outstanding ?WDELAYs

eight addresses of the searchlist CCBs

eight words for the username

the first 15 letters of the program name

the minimum/maximum working set

time constant used in PFF algorithm (not used)
address of the CCBs associated with the .PR files for

rings 1 = 7

T sets of 12. words each used to describe the memory
in each ring (see PARS page 19)

T words of counters indicating the number of user CCBs
in .each of T corresponding user CCB memory pages

A0S/VS Internals Chapter 3 Page 3-19

PRMUNP, PRMSHP number of removable unshared/shared pages

PRCCB.W address of the breakfile CCB if one is requested
PFRING ring of father that issues the ?PROC call
PSWOTM. W swapout start time stamp

PSI (Page, Swap, IPC)

The PSI data base contains a linked list of CCB's for open (hot)
but no longer needed page, swap, and ipc files. These files are not
needed because the process that owned them has since terminated. When a
new process takes an associated pid number this database is accessed to
find psi CCB's associated with a pid. This process saves the system
overhead of opening and closing of system files each time a proc is done.

The symbols dealing with Page/Swap/Ipc start with the letters PSI.

PSIBEG Hot PSI pool queue despriptor.

PSIEMP.W Count of the number of times the optimization of
procs failed because the pool was empty.

PSIFLG Hot PSI locking word.

PSIMAX , Absolute maximum hot PSI pool size (20)

PSINOT.W Count of optimiztion failure do to the associated pid not
being in the pool.

PSIOPN Current number of open PSI's,

PSIREQ Requested pool size (aefault 5)

PSITAB.W Address of the first word in PSI pocl.

PSITOT Current hot PSI pool size.

PIDBT - The PID's Bit,

e

PIDBT is a bit table containing a bit for each possible PID. Bit
number I will be zero if no process currently exists with PID = I. Bits 0
and 3 are preallocated for the root process and for CLIBT.

AOS/VS Interna.: (ept- 3 Page 3-20
PIDTB - The Table of PID's

PIDTB is the process-idéntifier-to-process-table-address conversion
table. Its current size is kept in 1locaticn PIDLN in page zero. PIDTB
entries are defired as follows :

PIDTB(PID) = O if nc procesc exists with that PID

PIDTB(PID) = processor table address Lf that PID exists

PIDTG 1o dnitialty fat SINET ¢ ime) allocated in a 32 word GSMEM
chiunk. The Lirst tine the PLL covpt wxeceds the lergth of the table, a

teble twice i cize (32 .0 64 . 128 0 256) is allocated out of GSMEM,
the old taple = ~oydied into thie ower bl of the new one. and the old one

is released to GSMEM, This is cal'ed from the PROC2 module.

AOS/VS Internals Chapter 3 Page 3-21

Control blocks

Control blocks are used for cases in which the system needs a stack
to handle a code path, and there is a possibility that the path will pend.
These stacks may be allocated when a user makes a system call which
requires a stack, or they may be allocated for system use (daemons).

There are three types of control blocks; resident, or those
associated with resident or preemptible processes, swappable, or those
associated with swappable processes, and three special CBs associated with
the disk manager. core manager, and system manager. Each control block has
its own stack and these will be discussed later when we deal with the
subject of stacks.

The first eight offsets of a control block (CB) matches those of a
PTBL (thus allowing the two types of databases to be handled by the same
queue search routines). It is through the first twc links (PLNK.¥ and
PBLNK.W) that CBs and PTBLs are linked onto the eligible queue. The other
important offsets are: . :

CATCB.W The address of the user TCB that the system call is
running on behalf of (or 0 if a daemcn or the core
manager)

CBFEH.W CB fatal error handler address- The address the systen

should pass control to on a trap within the system. If
the CB can better handle the trap, it will ... otherwise
we will panic

CMQWD. W used only by the CMISK CB., It is the start of the swap
in / swapout queue. ‘

CSTKC.W The pointér to the stack base for the stack associated
with this CB

CPTAD.W The address of the PTBL that this CB is running on
behalf of

CERWD - When a routine processing a CB request encounters an

error, the error code is stored into this location. The
CB dismissal routine will check this word, ard if non
zero, pass the value back in the TCEs ACO

CBDLS.W Each CB has a DLS (dynamic logical slot) associated with
it. This offset points tec it.

Each control block has associated with it a fault context context
block, a stack, and a dynamic logical slot. When the control block is
selected as the entity to run, the MV's hardware registers are set up to
point to the appropriate corresponding valves for the control block. The

AOS/VS Internals Chapter 3 Page 3-22

memory needed for a CB is allocated from GSMEM except for the first group 1
control block (CBO0O), the CMTSK CB, and the system manager task CB. The
physical layout of the memory associated with a CB is as follows:

Each control block has associated with it a page fault context
block, a stack, and a dynamic logical slot. When the control block 1is
selected as the entity to give control to, the MV's hardware registers are
set up to point to the appropriate corresponding values. The databases
involved are linked together as follows:

-

Stack addr-6 ->! context blk

-

Stack addr-4 ~>! CB address !

-t -+

e e e}

Stack addr-2 =>! stack limit ==\
g e -

Stack addr ---->! !

| !
1 512, werds !
! 1
!

N o= oo oem oem pem

1<~

¥

Unallocated CBs (those not on ELQUE) are enqueued to either SSTKQ
(if it is a swappable CB) or RSTKQ (if it is a resident CB) The maximum
number of resident control blocks is specified in the page zero location
MAXRCB (currently 16.)

Each time a resident process is proc'ed, the group 1 control block
pcol grows up to the maximum. Upon process termination, if the process
terminating is resident. the pool will shrink.

The major AOS/VS scheduling queuves
NOTE: Queues used by the AOS/VS diskworld are discussed in chapter 6.

AOS/VS maintains T major queues that are used in scheduling and
scheduling related functions. These are:

ELQUE the eligible non-blocked queue

BLKQ the eligible blocked queue

MBLKQ " the eligible explicitly blocked queue
IEBLK the ineligible blocked queue

IESWP the ineligible swapped queue

IERES the ineligible resident/preemptible queue
IEQUE the queue of priority swapins for calls

involving move bytes and IPCs

A0S/VS Internals Chapter 3 Fage 3-23

ELQUE is a special queue in thal. it contains both CBs and PTBLs.
A1l other queues contain only PTBLs.

There are two offsets found in both the process table and the
control block which are used to link itams on the queues together, they
are:

PLNK. W which is the link to the next item on the queue.
PBLNK. W which is the link to the previous item on the
. queue.

These queues (due to the common link word) are mutually exclusive,
implying thatl a process can only be on one of the queues at a given tine.

FLQUE - The Eligible Queue

FLQUE - This location, defined in STABLE, points tc the head of the
eligible queue, which is always the core manager control block
address. E

The eligibie queue is a linked list containing the Core
Manager, the system manager. any conirol blocks in use,
and the process tables of any eligible processes.
Subsequent 1inks in the chain are linked both

forward and backward through offsets in the process table,
and all links are either control block or process

table addresses.

The eligible queue is always headed by the Core Manager coritrol

block, and the last entry on the eligible queue is the aadresc

of the roct process tatle. The order of entries on the queue is

determined by the entries PNQF which will be discussed later.
ELINT - number of eligible interactive processes.

ELNON - number of eligible non-interactive processes.
These two counts are defined in STABLE. For -AOS/VS, a

non-interactive process is a swappable process having a time slice exponent
cf 6. An interactive process is any other swappable process.

BELKQ - The Blocked Queue

BLKQ - This location, defined in STABLE, contains the process table
address of the process at the head of the tlocked queue.

The blocked queue is a linked list of the process tables of all
eligible processes that are currently blocked, but not
explicitly blocked (waiting for son term, of by ?BLKPR). The
chain is linked through offsets PLNK.W and PBLNK.W.

PTBLs on the BLKQ are ordered in FIFO order

AOS/VS Internals Chapter 3 Page 3-24

SRBLC -

The following locations are defined in STABLE :

number of blocked processes on the BLKQ

BLEND - the end of the BLKQ

MBLKQ

-— _The Explicitly Blocked Queue

MBLKQ -

This locaticrn, defined in STABLE, contains the process table
address cf the process at the head of the explicitly blocked
queue

The explicitly blocked queue is a linked list of the process
tables of all processes that are explicitly blocked, and

not swapped. A process is explicitly blocked if it was the
target of a ?BLKPR or it executed a ?PROC and block. The -
chain is lirked through offsets PLNK.W and PBLNK.W of

the process tables in the queue.

PTBLs on the MBLKQ are in FIFO order

The following locations are defined in STABLE :

MBLKCN - number of blocked processes on the MBLKQ

TERES -

IERES -

JIELRS -

IESFL -

The Ineligible Resident Queue

This location, defined in STABLE, contains the PTBL address of

the process at the head of the ineligible resident queue. This
queue links the process tables of any resident or preemptible
type processes that have not been allocated memory (swapped out)
and are not blocked. Resident type processes can only be on
this queue when being created, or if they have just had their
type changed to resident.

Because a process on this queue is swapped out, the process
table extender and user status information in user's page zero
as well as all the unshared porticns of the user's process are
not in memory.

PTBLs on the IERES queue are ordered by PNQF

number of presently ineligible resident processes

when non-zero, inhibits the scan of this queue.

These locations are defined in STABLE.

A0S/VS Internals Chapter 3 Page 3-25

IESWP -

IESWP -

IELSW -

IESFL -

The Ineligible Swappable Queue

This locaticr.,, defined in STAELE, contains the PTBL address of
the process at the head of the ineligible swappable queue. The
ineligible swappable queue is a doubly linked list of all

the non-blocked swappable processes which are now swapped out

Because a process on this queue is swapped out, the process
table extender and user status information in user's page zero
as well as all the unchared portions of the user's process, are
not in memory.

PTBLs on IESWP are ordered by PNQF

number of presently ineligible swappable processes
when non-zero, inhibits the scan of this queue.

These locations are defined in STABLE.

IEQUE -- high priority_swapin gueue

This locaticr, defined in STABELE, contains the PTBL address of -
the first process on the IEQUE. The IEQUE is a queue of
processes that must be swapped in in order to complete a byte
move to a target. In AOS, the write is made directly to the
swap file. In AOS/VS, we might have to write to the page file
and not the swap file. In order to simplify and accelerate
move bytes processing, the process that the system call is
targeted at will be swapped in.

Processes on IEQUE will be temporarily given a PNQF of 0,
thus accelerating the swapin processing

Processes on IEQUE are in FIFO order

IEBLK -- The ineligible blocked queue

TEBLK -

Note :

This location, defined in STABLE, contains the PTBL address of

‘the first process on the IEQUE. The IEQUE is & queue of

processes that are blocked, and therefore not in need of
swapping in. At the time that a process unblocks, it will be
migrate to a different ineligible queue.

New processes are added to the front of the IEBLK queue.

IEBCN is a counter in page 0 of the number of processes oﬁ
the IEBLK queue

AOS/VS maintains four different queues of wuwapped processes,
in order to better control the priority of certain swapins.
The swapins on IEQUE are required to complete a system call
(and therefore free up a CB) and are of the highest priority.

AOS/VS Internals Chapter 3 : ‘ Page 3-26

Next come the swapins of resident and preemptible processes,
and finally those of swappable. Those processes on the IEBLK
queue will not be swapped in until the become unblocked.

The core manager (who is responsible for swapin) will not scan
the IESWP queue unless the IERES queue is empty.

The minor AOS/VS scheduling queues

NOTE: Queues associated with the disk world are discussed in chapter 5.

There are three additional queues not discussed in the previcus
section that deal with processes or scheduling. These are:

DCHN.W the chain of processes with cutstanding delays

HISLS.W the chain of processes with outstanding
histograms

CMQWD. W the chain cf process that are waiting to be

swapped. (either in or out)

Unlike the case of the major queues, a process table can be on more
than one of the minor queues at a given time. However, the process table
must also be on one of the majcr queues if it is cn a minor queue.

The minor queues are not linked through offsets PLNK.W and PBLNK.W
(these are still used to link on the major queue). In the case of the
DCHN.W queue, links are through offset PDLNK.W of the process table. In the
case of the HISLS.W chain, links are through of fset PHLNK.W of the process
table extender. For the CMQWD.W chain, the link is offset PCMLK.W.

DCHN.W -~ The Delay_ Chain

DCHN.W This location. defined in STABLE, holds the PTBL address of the
process at the head of the delay chain.

The delay chain is a queue used for keeping track of all of
the tasks in the system currently doing a delay. A delay is
the method by which a user task can pend for a specified time
without tying up system resources.

The delay chain is actually two linked lists in one. The first
one is pointed to by DCHN.W and is the linked list of process
tables associated with processes that have one or more tasks
doing delays. The second is a linked list of the process tables
in the delay chain, including links to all the tasks in this
given process that are currently doing delays.

The process tables in the celay chain queue are singly linked
using offset PDLNK.W in the process table. The linked list is
terminated by a minus one in the link word. Note that process
tables found on the delay chain may also be found on various
other chains such as the eligible queue or blocked queue.

AOS/VS Internals Chapter 3 Page 3-27

PDLNK.W

PDINH.W

PDFR.W
?TSYS -

BISLS.W = 1T

HISLS.W

PHLNK. W

CMQWD. W

Delaying tasks TCB's for each process are singly linked through
offset 7?TSYS of the TCB. The list is terminated by a minus one.
The TCB's of each process are ordered by the amount of time left
to delay. Those tasks with the least amount of time left to
delay appear earlier on the chain. If two tasks delay for the
same amount of time, the link word ?TSYS of the first task will
have bit zero set (1B0).

The following five offsets are defined as process table offsets :
fdrward process link offset.

number of real time clock ticks the first task is to delay

The following three offsets are defined in the process table
extender :

start of the TCB delay chain.

forward task link offset, defined in the TCB of the task
currently doing a delay. ‘

This locaticr, defined in STABLE, contains the PTBL address of
the process at the head of the histogram queue.

The histogram queue is a linked list of all the processes

which have initiated histogram creation via a ?IXHIST call.

The histogram queue is a singly linked list off the associated
processes process tables., The link offset is "PHLNK.W" and the
link is terminated with a minus one. The information contained
in the histogram is stored in the process table extender of the
process making the "?IXHIST" call. Note that because of this the
process making the call must be resident to insure that the
process table extender is always in memory.

forward link of the histogram queue, defined in the process
table extender.

- The Core Manager Request Queue

CMQWD. W

This location is defined as a control block offset that only

has meaning for the Core Manager control block, CMISK. It is

the beginning of the chain of processes that are enqueued to

the Core Manager for swapping, either to be swapped in or

swapped out. This offset contains a PTBL address. The queue is a
singly linked list. through offset PCMLK.W of the process tables
found on the queue.

A0S/VS Internals Chapter 3 Page 3-28

Data Resources

We will also limit our description of data resources to a few
items, the largest data resource in AOS/VS being the File System, subject
of chapter 6. The data resources we chose to develop here the System Stacks
and the system pageable pages.

The stacks

The ECLIPSE MV contains numerous predefined locations within page O
ring O used to manipulate a stack. At any given point, one stack: is
defined as current. The following page O ring O locations are defined by
the hardware:

Location Use

0 - the current interrupt level
4 } , ‘ vector stack pointer

6 vector stack limit

T vector stack fault address
14 current stack fault address
20/21 WFP (current frame pointer)
22/23 , WSP (current stack pointer)
2l/25 WSL (current stack limit)
26/27 WSB (current stack base)

40 C/350 stack pointer

41 ' C/350 frame pointer

42 C/350 stack limit

43 C/350 stack fault address

In AOS/VS there are three types of stacks used by the system :
STACK TYPE STACK BASE USE

Interrupt stack SS when processing an interrupt, the
current stack will be SS (set up by
the XVCT instruction from base
level)

Per processor stack STK1 set up whenever we are in the
normal (base level) AOS/VS codepath

Control block stack pointed to Set up when we run the control

by the CB block

At any point in time one stack is current, and pointed to by the
MV/8000 hardware stack registers defined in ring 0, page zero. The system
always runs in ring O, therefore all these stacks are defined in ring O.
These stacks are in effect only when the system is running. Before giving
control to a user, the user's current stack is set up (this could be either
a 32 bit stack or C/350 stack).

A0S/VS Internals Chapter 3 Page 3-29

The intgzcyg; stack

Location INTLV in SZERO is incremented at the start of interrupt
handling, and is decremented by the interrupt dismissal code. When the
system is at base level (not processing an interrupt), INTLV = 0. The
hardware ~XVCT instruction will examine INTLV, and if the value is O at the
time of the interrupt, it will save the current stack information 1in
preassigned page 0 locations, and make the interrupt stack the current
stack. :

Interrupt stack definitions :

stack base: SS

stack limit: SSLMT

stack size: 512. words

stack is defined in module STKS

loc 0: INTLV, current interrupt level (O=base level)
loc 4: SS. vector stack pointer

loc 6: SSLMT. vector stack limit

loc 7: OVFLO, vector stack fault

The Per processor stack

The per processor stack acts as the universal stack for all system
activity not related to one of the other system stacks. This stack being
constantly re-initialized by code paths in the Scheduler and the Core
Manager, it is necessary that all code using this stack be very careful
that it will not depend on it in cases where it may be changed.

Per processor stack definitions :

stack base: STK1
stack limit: STKIN (stored at location STK1-1)

stack size: 384. words

stack is defined in module STKS
PRSTK: STK1 is a label defined in SZERO

System pageable pages

System pageable pages contain system code that is wusually not
permanently resident but 1is brought into memory at same point in time.
These pages contain code similar to that found in the overlays of AOS. The
system reserves enough pages to contain all of the overlays in the 33
megabyte of ring O.

The only I/0 operations to the system pageable pages are read
operations. These pages contain pure code; they are never modified and
thus never need to be written back to the system file.

AOS/VS Internals Chapter 3 Page 3-30

The system maintains a queue called UPSYS which contains the CME
for each physical page associated with a system pageable page.

For more information look at the modules SZERO.LS and STABLE.LS which are
in the appendix of this manual.

A0S/VS Internals Chapter 3 Page 3-31

The Kernel of AOS/VS comprises three major sections of the operating
system. These three major sections are: (1) base system, (2) memory
management. (3) process management.

The base system is made up of modules which handle various system
services which no one process needs. It handles operator console 1/0,
scheduling of tasks and processes, interrupt dispatching, power failure
detection and miscellaneous subroutines.

The following modules make up the basic system.

CONIO

console I/0 routines for the master console
entry points:
OUTMES - print a message on op console
GETCHAR - read a character
PUT - print a character
BINAS1 - print a single binary wcrd
BINAS2 - print a double binary vicrd
CRESCLVE resolves unloaded modules during link to -1
DUMMY dummy module for the AGENT
DVRS - powerfail restart routine for MAGTAPE, MCA, IOP, IAC
INTS - interruprt service routines
entry points:
INTS - interrupt service entry
OVFLO - stack overflow
UDEX - set up for user device driver
IUD - undefined device service
UINTR - return from user interrupt
IRTC - RTC interrupt service
IUPSC - UPSC interrupt service
IPIT - PIT interrupt service
IWKUP - wake up a PTBL
PCWKUP - wake up a PTBL, don't check N_T_RUN.W
DISMISS - dismiss an interrupt '
PFLTPIT - reschedule on a page fault at subslice
end '
ORWPAT1 - patch space for weighted scheduler
IRTSTL - weighted scheduler return
UTRAP.2 - pop to user that may have trapped

ORWELL - weighted scheduler
entry points: :
ORWELL - entry for real time clock handler
ORWELLY0 - scheduler entry to see if PTBL
runnable
ORWELL60 - entry for ELQUE search on failure to
find anyone ready-to-run
PANIC - system panic handler
entry points:
PNIC - panic the system
EPNIC - panic the system don't clear regs 5 - 8
PNIC2 - panic entry for the PMGR
PPNIC - panic entry for LPMGR
STRP - system validity panic entry
SHUTPR - OP CLI trap handler
PWRFAIL - power fail restart handler
entry points:
PWRFL - system power fail restart entry

AOS/VS Internals Chapter 3 Page 3-32

UIPFL - user device restart return
RESOLVE - resolve more unloaded modules from sysgen
SCHED - system process scheduler
entry points: ‘
SMON - scan ELQUE from top setting SYSIN
SMONO - scan ELQUE from the top
SMON2 - run same process again
SMON3 - run next_to_run process
SMOND - enter checksum loop
TACT - activate a control block
PENTR - schedule start a process
PCALL - same as PENTR
MAPCON - map ring 1 - 7 context
REMAPCON - remap ring 1 - 7 context
RUNEX - check if ready to run next
RUNST - start a reschedule of a task
PSCHD - find and start up a processes task
TSKEX - set up a stck fault block
EXVFL - flag the save for extended variable task
PEND - pend a process table for an event
UNPEND - unpend a process table
STKST - set up a process stack
RUNIT - special gate for ?IMSG to save state
RUNIS - special gate for ?RESCHED to save state
TSKSAV - save task state for all velid rings
EVENT - determine if PTABLE/CB really ready to
run
ORWPAT2 - patch for weighted scheduler
ORWPAT3 - patch for weighted scheduler
ORWPATY - patch for weighted scheduler
ORWPATS - patch for weighted scheduler
SMONDD - entry to idle loop
PCBST - entry to run in user space
RSTPR - set up runtime for direct page faults
UTRAP.1 - inward address trap user assumed to be
the cause
SCMOD - routines to process direct system calls
entry points:
TIMEQ - enqueue a 7WDELAY request
SIGNAL -~ signal the system from a process
RMBTU - move bytes to user from caller
RMBFU - move bytes from user to caller
SIGNL - signl a task or process
WISIG - wait for a signl
SIGWT - signl a task and wait for a signl
UNLINK - remove a PTBL from a delay chain
LINKIN - insert a PTBL on a delay chain
TPID - check validity of a pid
NSIGNL - new signal call to pass info to
GURU
NWTSIG - new wtsig for pmgr I/0 scheduling
NSIGWT - new sigwt for pmgr I/0 scheduling
SCPER - SCP error processor
entry point:
SCPER.P - read out the error from the SCP
SCPRC - system call processor
entry points:

AOS/VS Internals Chapter 3 Page 3-33

SYST - system entry point

FSYST - page fault handling entry

CALLS - bkpt for kernel syscalls

IOCRG - charge for I/0 blks

RETER - system error returner

RETE2 - system error returner

GETERR - get current system error

TCBAD - roached TCB error handler

MAXSYS - highest sytem call number

MCCT.W - system call dispatch table

SNTIO - enque TCB to PTBL extender

TRIN - return from CBLK processing

DSQCT - decrement active call count

DIRRS - direct call handler
- SYSMGRPV - check for sysmgr privlege

DBTB - direct call bit table

CWTIB - parallel call bit table

TGRIN - good return from direct page faults

SGSUB1 - system subroutines
entry points:

MUIOPGR - mark user I/0C pages for read rq
MUIOPGW - mark user I/0 pages for write rq
LDHSC - load hi-speed channel map :
SSOVF - system stack fault handler

MASK - add to acurrent mask

UNMASK - recover previous mask

CDLD - load DCH maps A and B

DLD - load DCH map C

EDLD - load DCH map D

SWAMP - set up data channel map
ALDCH - allocate and load PMGR slots
ALSLOT - all purpose 1/0 slot allocation
DEALS - all purpose I/0 deallocation

SGSUB2 - memory management/scheduler part of system subroutines
entry points:

SGSUB2 - module name

INSHARED - verify address in shared area
SAVST - save process state

GMDESA - get memory descriptor address
CLEAR - clear core

IMCLR - clear user/system area

MCLR - clear user/system area

CHNSHFT - shift the channel for MV10000
OVCHNL - adjust frame size to fit frame of

target

TCBRS - restart a task

NQTCB - enque a TCB to a PTBL

KCINT - update caller's page-sec integral
DBTRP - format a data base trap in PTBL
SSTRP - set up fatal termination for a process
PFITER - dequeue a PTBL and requeue with new

priority

PTREE - block the entire process tree
PBITS - format PTBL flag to control termination
TCECK - validate a TCB address

UPHSET - add a page to working set bit array
ARNGDES - inc working set descriptor count

AOS/VS Internals Chapter 3

STRAP

SYSER

SYSMGR

UWART

Page 3-34

SRNGDES - dec working set descriptor count
MODPRIO - modify priority using new structure
CHRPSWA - change resident/preemptable
to ‘
CHSWARP - change swapable process to
resident/preemptable

MAPSWAIN - map sweappable priority on input
MAPSWAOU - map swappable priority on output

- system trap routines entry points:

- system error
entry points:

- Xyzzy system
entry points:

STRAP - module name

MAGIC - protection fault handler

BRKPT - breakpoint handler (panic 14)

FPFLT - flcating point fault handler (panic T7)
COMFLT - commercial fault handler (panic 7)
FIXOV - fixed point overflcw handler (panic T7)
SSOVFE - Eclipse stack fault handler

handler

UNERR.P - unit error reporter
manager

SYSMGR - init system manager's control block

SMINT - init sytem manager's control block

SWAKE - force a re-schedule of the system
manager

SWAK1 - force a re-schedule of the system
with interrupts disabled

- entry point if system debugger in use

A0S/VS Internals Chapter 3 Page 3-35

The AOS/VS scheduler

There are three distinct parts to the AOS/VS scheduler. These are:

1. The AOS/VS process scheduler (SMON in SCHED). Its responsibility is
to determine if any process table (PTBL) or control block (CB)
is ready to run, and if so, run it. If not, it will perform &
checksum on various AOS/VS constants.

2. Thé AOS/VS task scheduler (PSCHD in SCHED). Its purpose in life is
to decide which user TCB is to run when the process gets control
of the CPU.

3. COREM (Core Manager), which in AOS/VS is not actually part of the
scheduler., but does scheduler oriented activities. COREM handles
swapping, some queue migration and resident process unpending
if the process was waiting for memory.

Definitions

An ELIGIBLE process is a process that has at least one page of
its context in memory.

An INELIGIBLE process is a process whose context exists only ir
the swap file. An INELIGIBLE process must be first made
eligible (i.e. it must be swapped into memory) before it can
be scheduled by the system to run.

A BLOCKED process is a process that has been pended for same
period of time. A BLOCKED process may be either ELIGIBLE or
- INELIGIBLE

. A process becomes blocked as soon as the scheduler
finds there are no ready TCBs for that process, or by
the explicit 7?BLKPR system call.

A0S/VS maintains 6 major queues. The databases on these
queues are of the following type:

PROCESS TABLES - Contain enough information about a user
process to allow the scheduler to both make a decision about
scheduling the user, and then give control of the CPU to thet
user process (see PARS.SR).,

CONTROL BLOCKS - Contain the static (non-stack) state of a
path within the system. These paths are active to either
process user system calls, or daemons created by the system.
If the user system call is non-direct, or the daemon request

AOS/VS Internals Chapter 3 Page 3-36

requires a stack, a system stack will contain the dynamic
state of this path. The dynamic state of a path includes
all subroutine return addresses, and temporary variable data
used by the path (see PARS.SR). There are two basic types
of control blocks, swappable (those started on behalf of a
swappable process) cr resident (those initiatec on behalf of
a resident or preemptible process)

The queues and the pointers to the queue head are:

ELQUE:

The eligible queue of process tables and control
blocks. This is the primary queue used by the scheduler.

*

The DISK MANAGER Control Block is always first on
this queue.

The CORE MANAGER Control Block is always second on
this queue.

The SYSTEM MANAGER Control block is always third.

The active resident Control Blocks are next. These
are in FIFO order by time.

The group 1 process tables are next. These are in order
based on a process' priority. These include the PMGR
process table which is permanently on the ELQUE_

Next comes the swappable Control Blocks, again FIFO by
time

The group 2 process tatles are next ordered bty PNQF
The group 3 process tables are next ordered by priority

Last on queue is a dummy process table, the root process
table. This never requires CPU time, but is used to
mark the end of the elque. The root process table

has a PID of 0, and is the father of the PMGR and OP:CLI
processes.

AOS/VS Internals Chapter 3

Notes:
1. All control blocks are
in time-created order
(by group)

All process tables are
in order by group

The PMGR is always on the
ELQUE

The last allocated resident
CB is always reserved for
the PMGR

.'_ ______ ‘L
>! Disk Manager Control block !

prom
\J

c—————————

v

| Core manager Control block !

Y —
*=

+

'

e

- —
| System manager Control blk !

. c—————- o ————— o = e -

V’
l First of the re51dent CBs !
+- -t
— [S —— .
! Last of the resident CBs |

- . eee e mem———

'

e —————— e

! Highest pri group 1 PTBL !

<4
+

- e ——— - o = =i e o]

! Lowest pri group 1 PTBL !

4 - +

v
e - e e v 0 o e b e e s
! First of the swappable CBs !
e o - - - +

Jra— -
*- h

| Last of the swappable CBs !

- "
+ . e m——— -

'
o e e e e e e o e +
| Highest pri group 2 PTBL |
r.|=4.

| Lowest pri group 2 PTBL !

e - — e

-
| Highest pri group 3 PTBL !

v

pr—

! Lowest pri group 3 PTBL

+ - +

v
L +
! DUMMY ROOT PTBL (Idle loop)!
e ——————— e e +

Page 3-37

AOS/VS Internals Chapter 3 Page 3-38

+ ———
! !
| Eligible Queue I<

- +

Process swaps out
Process swaps while on the BLKQ

out while on

N om om0 o= oem o

) o o e v

\
A >1 (ELQUE) 1< \ !
l +- + l l
I Process { ! Process | !
| is explicitly | ! Unblocks ! !
! unblocked | ! ! !
! ! ! Process ! !
! ! ! has nothing ! R
! Process is ! ! to do ! 1
l explicitly ! ! l !
! blocked ! ! ! l
1 ! ! + + |
l l | l 11
+ + l \ >! Block Queue ! |
l R l (BLKQ) I 1
! Explicitly I< l 1!
I Blocked queue ! A blocked process becomes +- + |
! (MBLKQ) ! explicitly blocked !
l |
+- !
!
l
|
!
!
l
!

TN 0 0w 0w Gw0 G CuD Cum B CWE Cun U Cum CuR W Cud SuD Cum D G Gmn CuE CHE Cuw Cub CwE Cun Suws Cwn Cuwm Oww .~

the MBLKQ /
!
'
+ + An ineligible . +
! ! process blocks ! | Swap in !
! Ineligible I ! Ineligible | e A
! Blocked Queue | ! Queues !
! (IEBLK) ! >! (IERES/IEQUE/ K
! ! An ineligible ! IESWP) | Process swaps
+ | process is + + out while on
unblocked the ELQUE

Notes: A process has nothing to do if:

a. There are no task ready to run ... and ...

b. There are no outstanding system calls (?WDELAY/?IREC are
not outstanding system calls) ... and ...

c. There are no TCBs enqueued to the PEXIN's system call chain

A process is explicitly blocked if:

a. A 7BLKPR is targeted at that process ... or ...

b. The process executes a ?PROC with the block option
(wait until son termination)

Other queues:
IEQUE: Queue of ineligible processes involved in move bytes

IESWP: Queue of ireligible group 2 processes

AOS/VS Internals Chapter 3 Page 3-39

IERES: Queue of ineligible group 1 processes
IEBLK: Queue of ineligible blocked processes

BLKQ: Queue of non-explicitly blocked processes

MBLKQ: Queue of explicitly blocked processes

One minor queue that involved in schedulirg:

Core Manager queue: Queue of processes waiting for swap in or out

CPU time contention

In general, AOS/VS will allocate CPU time in the following overall
priority structure.

Interrupt driven control functions that process events,
these include:

Interrupts
Time Slice Completions (PIT interrupts)
group 1 control blocks, these include:
The Disk Manager -- permanently the highest priority.
The Core Manager -- permanently the second highest priority
resident system daemons, and resident user system calls in
a FIFO order.
Group 1 processes, ordered by PNQF
Group 1: PNQF =z assigned priority
Swappable Control blocks, these include:

Swappable system daemons, and swappable user system calls
in a FIFO order.

Group 2 processes, ordered by PNQF
Group 2: PNQF = dervied from priority and interactiveness
Group 3 processes, ordered by PNQF

Group 3: PNQF = assigned priority

AOS/VS Internals Chapter 3 ‘ Page 3-40

Groupl processes receive control for a fixed time

Group 2

slice of 2.048 seconds. When this slice expires, the process
is re-linked to the end of its priority group. If there is
only one process at this priority level, then the same process
is run again for another 2.048 seconds. Every 32 milli-
seconds (a sub-slice), the process's tasks are rescheduled.
This is done to allow a round robin scheduling of multiple
tasks at the same priority level.

processes receive time slice based on past behavior and
assigned priority.

T = time-slice = (32 millisec) * (2 #¥ 3)
where: 1 <= S <=6
The initial S is 1

The initial S will then be modified based upon the
use of the allocated time slice by the process.

If the process blocks before the full slice expires, S will be
given a new value based on the number cf subslices used.

If process is still running when the time slice expires, S
Wwill be incremented by 1 the next time the process is
scheduled. However. if the swappable process' priority
is > 1, and the current S is 6, no change will be made
to S. If the swappable process' priority is 1, S may
reach an effective value of 7 (S will still = 6). In this
case, a compute bound, or non-interactive, group 2 process
of priority 1 can attain a time slice of 4.096 seconds. It
will, therefore. receive twice as much CPU time as an equally
compute bound group 2 process with a lower priority.

Actual time slicing is done on 32 ms. intervals. Hence,
2 ¥% S yields the number of sub-slices.

The scheduler maintains a count of the subslices for each
process and the remainder of any incomplete sub-slice in
the process's process table. This is done in case the
process is pended due to:

1. Processing of an interrupt.
2. The scheduling of a system control block, or a higher
priority process after an interrupt.

Control will return to the interrupted group 2 process
when group 2 processes are again allowed CPU time.

Priority enque factor derivation for group 2 processes

The basic equation:

PNQF = (slice-exponent) + 1BO + (7¥priority)

AOS/VS Internals Chapter 3 - Page 3-41

Notes:
. PNQF = 100001 if the process is terminating.

. 1B0 is set to insure that all group 2 procesoes have a lower
priority- than group 1 processes.

. The 'slice-exponent' is the S explained earlier.

. PNQF values are read as unsigned values. The lowest PNQF
values have the highest priority for CPU time.

. If the PNQFs for two processes are equal, they are managed on
round-robin basis to insure all processes can get CPU time.

. The PNQF is updated whenever a process blocks, or a time slice
expires.

The AOS/VS process scheduler

Prior to Revision 4,00 AOS/VS there were three process types with two
independent types of fixed scheduling characteristics. Resident and
preemptible processes are always of higher priority than swappable
processes and may be assigned an external priority between 1 and 255.
Swappable processes are always of a lower priority than resident and
preemptible processes and may be assigned an external priority between 1
ard 3.

There were two scheduling groups:

1) Resident/Preemptible Process priority range 1 to 255
2) Swappable Process priority range 1 to 3

Priority Scheduled Heuristically Scheduled
kbl | Cod [[
1 255 1 2 3

Resident/Preemptible Swappable

One of the inherent problems with this strategy is that a user is
always forced to have Resident/Preemptible processes of a higher priority
than Swappable processes. This is a problem if a user wants to run a
Fesident process at a 1lower priority than a Swappable prccess. Ancther
deficiency is the inability to define a process at a lower priority than
that of a JSwappable processes, With all Swappable prccesses baing
Heuristically scheduled regardless of the externally assigned priority, all
Swappable processes compete with each other heuristically.

The first step taken is tc define a new priority structure. This
structure defines three separate scheduling groups which may be chosen
iregardiess of process type. A result of this definition is to make the
priority independent c¢f the process memory requirements type. The other

AOS/VS Internals Chapter 3 Page 3-42

factor which in AOS/VS used to be insignificant now comes back intc use.
That factor is the BIAS, The priority structure is now centered around
three groups. The groups are:

Group 1:

High Priority .

Priority Scheduled only

Priority Range 1 to G1
Group 2:

Medium Priority

Heuristically Scheduled only

Priority Range Gl +1 to G2
Group 3:

Low Priority

Priority Scheduled only

Priority Range G2 +1 toG3

High Priority Medium Priority Low Priority
i i i , i
1 G1 G2 G3
Priority Heuristic Priority

Each of the Priority Group limits, (G1, G2, G3), are user selectable at
VSGEN time., The limit for G3 is 511. In order for this new scheme tc be
compatitle with prior revisions of AOS/VS priority scheme the fcllewing
values must be used:

G1 = 255
G2 >=G1 +3
G3 = G2
High Priority Medium Priority
1]]
it i | e
1 255 256 257 258
Priority Heuristic

If this structure is compared with the one drawn to show the current AOS/VS
scheduling groups, some similarities can be seen. The only differences are,
that the Heuristic scheduling priorities are 256, 257, and 258, instead of
1, 2, and 3, as previously defined.

A0S/VS Internals Chapter 3 Page 3-43

Examples of how this scheme works:

1. When a Swappable process is created at Priority 1, it will
be mapped by the system onto priority 256 in the
Heuristic Range in order to meet the compatibility
requirement. This means that a Swappable process cannot be
created at priorities 1, 2, and 3 within the high
priority group where there is no Heuristic algorithm, but
Swappable processes can be created that are not
Heuristically scheduled within the priority range 4
through 255.

2. Resident and Preemptible processes at priorities tetween 1
and 255 act as before.

3. Resident and Preemptible processes created at priorities
256, 257, and 258, will be heuristically scheduled.

It should be apparent that this scheme is fully compatible with~ the = old
scheduler. A user 1is not required to change the priority structure of an
installation to fit the new scheduler in AOS/VS revision 4.00. It also
allows for more flexibility in that the user is no longer forced into the
scheduling characteristics based on process memory type. This scheme allows
the user to view the scheduling as a two-fold scheduler with High Priority
Scheduling and Lower Priority Heuristic Scheduling.

A Simple Scheduling Scheme Without Heuristic Schedulirg
| Gl = G2
By specifying these Group Limits as equal, a simple Round Robin scheduler

without heuristics is generated and no assumptions about process type
versus scheduling characteristics exists.

High Priority Low Priority

1

LI il |

[}
1 G1=G2 G3
Priority Pricrity

Any process type may be selected at any priority and scheduling is strictly
Round Robin.

An example of a system which could use a Round Robin Scheduler is a polling
system. '

AOS/VS Internals Chapter 3 Page 3-u4

The framework chosen for the new scheduler design provides a simple
and fast scheduler with the underlying tools to build a more complicated
structure. The compatible Scheduler algorithms are:

Pecision Making Algorithms

Quantum Oriented Scheduling
This provides processor-sharing scheduling
characteristics by defining Quantum expiration
as a preemption point.

Preemptive Scheduling
Any process of higher priority than the currently
executing process which becomes ready to run via
external event completion will become the rext
process to be scheduled.

There are two independent Quantum times which are used for Preemption
purposes.

Sub-Slice
This is the smallest Quantum which may be used
for preemption purposes.

Time-Slice
This is the largest Quantum made up of same
integral number of Sub-Slices.

By defining two different Quantums it is possible to use two Decision
Making algorithms whose Decision Epocs occur at different frequencies. This
allows for short (Subslice), and long (Timeslice) term Decision making
algorithms.

Arbitration Rule Definition:

Any arbitration which must be done to resolve conflicts
among competing processes is done vie Round Robin
Scheduling.

Round Robin Scheduling

When a process completes its time Quantum, it is
considered as lower in priority than all processes of
equivalent priority.(i.e. A process is shuffled to the
end of its priority group at the end of a time Quantum.)

AOS/VS Internals Chapter 3 Page 3-45

The current scheduler (pre rev 5.00) algorithm schedules processes via
linear ordering by Priority eNQue Factor, selecting the highest priority
process to run at any given time., The lower the PNQF, the higher the
process' priority, and the sooner it was scheduled for execution. AOS/VS
orders all processes by PNQF, and generates PNQF as given below:

Process Type PNQF

Resident/Preemtible Control Blocks 0

Resident/Preemtible Processes Process Priority (1-255)
Swappable Control Blocks 32768

Swappable Processes 32768 +

(7 * Process priority)+E
Where E is the Heuristic
O0<KEXKT

The new scheduler for revision U4.00 maintains this type of linear
ordering by using the following PNQF definitions.

Group . Type PNQF

Resident Centrol Blocks 0

Group 1 Processes Process Priority

Swappable Control Blocks G1 + 1

Group 2 Processes G141 + (7*(Process Priority - G1))+E
Group 3 Control Blocks T*(G-G1 +1) +G

Group 3 Processes 7%(G2 - G1 + 1) + Process Priority

Given the above cﬁanges to the scheduler. below is an example of how the
new scheduler can be made compatible with the old scheduler in terms of
PNQF ordering of processes for execution.

It was stated earlier that in order to define a compatible scheduler that
Gl = 255, G2 = 258, and G3 >= G2. By defining G1 = 255, G2 = 258, and G3 =
270 a compatible scheduler may be generated. By substituting into the PNQF
definitions, one obtains the following PNQF equations.

Non-heuristic Group
1 < Priority <= 255

Group 1 Control Blocks 0
Group 1 Processes Process Priority

Heuristic Group
255 < Priority <= 258

Group 2 Control BLocks 256
Group 2 Processes 256 +
(7*(Process Priority-255))

+ E

Non-heuristic Group
258 < Priority <= 270

AOS/VS Internals Chapter 3 Page 3-46

Group 3 Control Blocks 28 + 258
Group 3 Processes 28 + Process Priority

This generates non-overlapping linearly ordered PNQF's given below.

Group 1
User selectable Priority Range 1,2, ..., 255
Control Blocks 0
Processes 142, veey 255
Group 2
User selectable Priority Range 256, 257, 258
Control Blocks 256
Processes 256 + 7 + E
256 + 14 + E
256 + 21 + E
Group 3
User selectable Priority Range 259, 260, ..., 270
Control Blocks 258 + 28

Processes . Process Priority + 28

AOS/VS Internals Chapter 3 Page 3-47

Another added feature of revision U4.00 scheduler is a secondary
scheduler which can be used in CPU contention envircnments. This scheduler
requires that the system be patched in five (5) locations to enable the
secondary scheduler. In the real time clock handler is a routine to chieck
to see if the CPU is under heavy contention by checking if an idle - loop
counter (WISCIDL) has exceeded a cutoff limit (WISCIDLL). If it has
exceeded the cutoff limit there is a flag (WISCGO) set so that the
scheduler knows that weighted scheduling is enabled. This same routine sets
a bit in the G2 and G3 process tatles to show which one has run or not.
After picking someone to run in the scheduler and that scmeone is a G2 or
G3 then check if it has run before in this interval of time. If it has run
before then it is passed over and the next who is both ready to run and has
net. run this interval is selected to run.

The weighted scheduler is turned off by elther of two events:

The duty cycle completes (it can be specified that
processes will run only N seconds out of an
interval)

or

The number of times to cycle through the ELQUE has been
used up.
In either case the flag (WISCGO) which was set to turn on weighted
scheduling gets turned off.

A0S/VS Internals Chapter 3 : | Page 3-48

On the ELQUE there are three types of control blocks. They are Disk
manager control block, Core manager control Block, and System manager
control block. These control blocks have to have the highest priority on
the queue to enable them to run and run quickly and frequently.

Disk manager

The disk manager runs as the highest priority control block on the
ELQUE. It replaces the branch out of the scheduler which was in- prior
revisions which went to the same point. The change was made to speed up the
scheduling process. The disk manager runs all IOCBs when they are ready to
runi. When the N_T_run.w is set the scheduler branches to RUNLC in DSKIO to
shchedule IOCBs. All active IOCBs are run. As long as there are ready IOCBs
they are run. When there are no more ready IOCBs the disk manager control
block is changed by stting the 'not ready to ru bit and resetting the
running bit. The disk manager is readied by a call to the routine DWAKE,

Core manager

The core manager runs as the second highest priority control block
on ELQUE, It remains dormant until a code path calls the routine CWAKE
which sets the ready to run bit in the status word for the CB in addition
to the words or bits needed to indicate which action the core manager
should process when it gets control of the CPU. ’

Special requests to core manager (flag word is SMFLG)

a. 1b0 -- Unpend resident processes waiting for memory release.
This is done by loading the appropriate key and calling
UNPEND.

b. 1b3 -- Scan BLKQ looking for anyone waiting to unblcck.
(call BSCAN in COREM2)

The SYSTEM MANAGER

The system manager code is found in SYSMGR. The system manager is
currently used for five purposes. The first is to report unit errors, the
second 1is to report over- subscribed memory, the third is to enable
look-ahead faulting, the fourth is to enable look-ahead flushing, and fifth
is to handle SCP error reporting. The unit errors are detected by the
controllers, which set up error status words in the appropriate UDB (unit
device block). The error routine then calls SWAKE, which will cause the
system manager to wake up the next time a scan is made of the eligible
queue (much as CWAKE does for the core manager). The oversubscribed memory
condition (no memory available, no preemption possible) is detected by the
preemption code, which then call SWAKE.

The requests to the system manager are indicated in CMFLG.(The core
manager equivalent is SMFLG)

A0OS/VS Internals Chapter 3 Page 3-U49

The A0S/VS task scheduler

The AOS/VS scheduler checks to see if the PIBL just readied for
running 1is a control block, a PTBL or a TCB. If it is a TCB then it causes
the user routines tc be executed. If it is a PTBL it examines the active
TCB chain for a ready to run TCB. The task scheduler has the ability to
check to see if a more significant event has occured to force a
rescheduling to the other event. If there are tasks to be run then ready
the tasks and run them. If there is no other task other than the current
one then run it.

Event Synchronization

It is unusual for AOS/VS to process for an extended period of time.
Usually, many paths require short periods of CPU time. When a path gives
up control, it is generally because it's waiting for an event.

Typical events are:

1. Waiting for a disk block to be read into AOS/VS buffer (e.g.
opening a file requires the reading of a directory entry.

2. Waiting to access a database being used by another active
path.

3. Waiting for an AOS/VS global resource.
The general procedure for pending/unpending is as follows:

1. The path calls the subroutine 'PEND', passing to 'PEND'
the key it wishes to wait on.

2. The path becomes quiescent (i.e. it is not given any CPU
time).

3, Another path calls the subroutine UNPEND, passing to
'"UNPEND' the key that the first path is waiting on.

4, The waiting path now becomes ready and resumes execution.

All paths waiting on given key are readied when 'UNPEND' is called.

PEND keys
SKTRM = 1 Wait for son proc term
SKTRG = 2 Wait for target call completion
SKOOM = 4 AOS/VS needs memory
SKSWP = 5 Wait for swap of proc to complete
SKSIO = 6 Shared read wait
SKBUF = 7 Base level AOS/VS needs buffer

AOS/VS Internals Chapter 3 Page 3-50

SKDED = 8, Target call waiting for special unpend after
ELQUE scan ‘
SKNWU = -1 General wait (no wakeup key)

database An AOS/VS code path can pend waiting
for a specific database. In this case,
the key is the database address

AOS/VS uses hierarchical event locking. A majority of the paths
only lock a single database. If two databases must be locked, then a path
requiring the locking of database 'A' and then database 'B' will require

that any path that uses these two databases must lock them in the same
sequence.

AOS/VS Internals Chapter 3 Page 3-51

The interrupt world

When an I/0 device completes its operation and 1is ready to
receive/send more data, it requests an interrupt. As soon as the CPU is at
an interruptable point in its processing, and has finished servicing data
channel requests, it takes care of the interrupt.

Upon servicing an interrupt, the ECLIPSE MV CPU does the following
(with interrupts left off):

if the ATU is enabled (in VS it will be), Fetch the pointer
to the interrupt handler from ring O, location 1

- If the ring at the time of the interrupt is not zero, then
store the current stack registers in the current ring's
page zero locations, load ring 0's stack information into
the hardware stack registers, and cross to ring 0

- resolve any indirection in the pointer to the interrupt -
handler address ’

- process the first word of the handler (which in AOS/VS is
a XVCT instruction, which, in addition to many other things,
will reenable interrupts, and vector to the appropriate
interrupt handler

After servicing the device, the interrupt service routine will jump
to the routine DISMIS, which will return program execution to the point at
which we were interrupted. Note that one of the last last things that the
XVCT instruction does is to reenable interrupts, thus allowing other device
to interrupt us.

If interrupts are disabled throughout the interrupt service
routine, the CPU can no longer be interrupted until this device servicing
is finished, and all other devices requesting interrupts must wait. This
might lead to 1losing data on fast unbuffered devices. Therefore more
scphisticated hardware instructions are available to implement a system of
interrupt priorities which will permit some devices to interrupt others.

Every 1/0 device is assigned an interrupt mask bit by the hardware,
and the interrupt service routines can conirol int=rrupt priorities by
setting interrupt masks : any device which should not interrupt the device
being serviced is masked out (prevented from requesting an interrupt) if
its mask bit is set. The mask bits corresponding to devices which can
interrupt are zerced. By changing the priority mask, an interrupt service
routine can mask cout those devices whose interrupts are undesirzble,
without disabling interrupts
for the duration of the service,

dinterrupts

AOS/VS handling of

mne

¢ running AOD/VS will normally point to
v the ECLIPSE MV ig

Gt v \
FIV SN S L] G~

Locaticon © of & m
INTS, the interrupht ispoichi

AOS/VS Internals Chapter 3 ' ‘ Page 3-52

interrupted, it examines the effective address pointed to by location
1. The effective address in AOS/VS resolves to INTS, which contains a XVCT
instruction. When the MV encounters the XVCT instruction, the following
occurs:
Fetch the level count from location 0, segment O
If the count is 0, then
Increment the level count
Save location 14 (stack fault address) and the stack info
internally
Load location 14 and the stack registers with the vector info
(from page 0, loc 4-7)
Push saved data onto the new stack
Push wide return block onto the new stack

If the count is not 0, then

Increment the level count ,
Push wide return block onto current (seg 0) stack

Calculate the effective zddress of the XVCT instruction

Index into the vector table (effective address from XVCT address)
by device code. Value‘will point to DCT for the device

Push current mask (VCT table address-2) onto stack

OR current mask with contents of 2,3 of DCT intb VCT addresss-2 -
Do MSKO with the ORed mask

Load ZEX device code into AC1

Load PC with first two words of DCT

Load PSR with word 4 from DCT

If a stack overflow has occured:

Transfer control to the stack fault handler (loc 14)
Fetch and execute first instruction of fault handler

If no stack overflow has occured:
Fetch and execute instruction pointed to by PC

Enable interrupts

BTBL (Vector table)

BTBL is the vector table that the XVCT instruction will dispatch
through. The table is a series of double word pointers to interrupt
service routines. The table is indexed by device code. The table is
initialized so that all pointers point to the routine IUD, which is the
undefined interrupt handler. During SINIT, the table pointers are filled

A0S/VS Internals Chapter 3 Page 3-53

in for each sysgened device so that they point to the appropriate DCT,
which in turn contains the address of he interrupt service routine. When a
user IDEFs a device, the pointer corresponding with the IDEF'ed device code
is set to UDEX, which 1is the dispatch routine to the user interrupt
processor.,

DISMISS (Interrupt dismissal)

Interrupts in AOS/VS are dismissed by the routine DISMISS (in the
module INTS)., After the appropriate routine processes the interrupt, it
does a XJMP to DISMISS (The exception is the routine UINTR [user interrupt
dismiss] which jumps to a separate entry in DISMISS)., DISMISS will return
based as follows:

1. Decrement INTLV

2. Disable interrupts

3. If we are not at level 0, then perform a WPOPB to get back o
to previous level (note that UINTR jumps to DISMISS at this step)

4, If the ring field of the PC at the time of the interrupt is O,
and INCHK is not 1, enable interrupts and do a WRSTR to restore
the pre-interrupt state. Increment INSYST.W, the number of
interrupts that occured while the system (non-idle) was active.

5. If the ring field of the PC at the time of the interrupt is 0,:
and INCHK is 1 then the system was interrupted while in the
idle loop so increment IDL.W, the counter of such occurances.
Then check RESCH and UPQUE. If the are both 0, enable interrupts
and do a WRSTR. If either RESCH or UPQUE is not 0, then clear
INCHK and jump to the top of the scheduler

6. To reach this point. the processor was in the user (ring<>0) at
the time of the interrupt, so increment INUSER.W. If both
RESCH or UPQUE are 0, and we have not reached a sub-slice end,
then start up the PIT, enable interrupts, and WRSTR

T. If the current subslice is done, add the slice value to the
PEXTN offset that contains CPU time (PRUNH.W). If the CPU
time exceeds the limit (limiting requested), format the user's
process table so that the process will terminate. If the
subslice end is also a full slice end, set the flag to indicate
so. Store the time slice residue in the PEXTIN, save the current
task's information, and jump to the scheduler.

8. Finally, to reach this point. the processor was in the user

AOS/VS Internals Chapter 3 Page 3-54

(ring<>0), this is not a subslice end, and either RESCH or UPQUE
is non zero. Reset the running bit, store the sub-slice residue,
save the current task's state, and jump to the top of the
scheduler., =

A0S/VS Internals Chapter 3 Page 3-55

INTS logic

Simply execute a XVCT instruction on the location BIBL., This will
result in the functions described above, with control eventually passing to
the interrupt service routine appropriate for the device that interrupted.

IRTC logic

This is the real time clock interrupt handler. Every clock tick
it performs the following :

read and halt the PIT, and save the time slice in TSLSV if
the interrupt occured at base level

- startup the RTC

- check to see if PFF can be turned off, if it can be turned off then
turn off PFF and update counters. :

- if a second has elapsed, update the time of day, and if
necessary, the date

- if in state 3 or 4 check to see if switching states will help system
performance (see PFF and PSTEAL in memory management)

- if @ second has elapsed, check for a device timeout, and
process any that occur. (Each device's timeout block will be
decremented and if any go to 0, the system will dlspatch
through the timeout routine for that device)

- if there are any processes with histograms, the histograms
are updated.

- the time remaining for any process on the delay chain is
decremented; if it goes to zero and the process is eligible,
the task making the delay call is unpended. If the process
is not eligible, set the BPFDU bit to tell the SWAPIN code
to unpend the first task with delay when the swapin is
completed. If the process is blocked, set the appropriate
flags to have the Core manager unblock it.

UDEX and UINTR logic

UDEX is dispatched to on any interrupt from a user device. If the
interrupt occured at base level, UDEX will first halt and read the PIT,
UDEX will then save the interrupted PTBL address on the stack, get the PTBL
for the user that defired the device, and turn I/0 allowed on and LEF mode
off for the ring that contains the service routine., UDEX then 1loads the
hardware SBRs (1-7) with the SBR words for that user (from the PEXIN).

AOS/VS Internals Chapter 3 Page 3-56

Finally, a fake return is built on the stack to set up the user's AC, and a
WPOPB is executed to go to the user.

The user returns from the user interrupt handler via a LCALL
instruction to UINTR. UINTR will restore the SBRs to the state before the
interrupt occured and jump to the common interrupt dismissal code
(DISMISS).

IWKUP and UIWKUP logic

IWKUP readies a specified process. If the process is not pended on
a page fault, the the not ready to run bit is reset. If the process is a
resident process other than the PMGR, IWKUP will force a reschedule of the
system by incrementing RESCH, and of the user's TCBs by setting the BPFRS
(reschedule) bit in the process table. Before returning to the calling
code path (IWKUP is called with a XPSHJ), enable interrupts.

UIWKUP is g special version of IWKUP called from UINTR. Certain
assumptions are made because we know that UIWKUP is called from the
interrupt world. UIWKUP will reset the not ready to run bit if the process
is not pended during a fault, XNISZ RESCH to force a reschedule, set the
BPFRS bit to force the processes tasks to alsoc reschedule, and return
(UIWKUP is also called via a WPSHJ). Note that UIWKUP does not enable
interrupts before returning.

Power Failure Handling

AOS/VS now detects power failure if enabled at VSGEN time. The STKS
module checks for power failure and branches to the power failure routine.
The sytem does one of three things based on configuration. If full battery
back-up then system will restart if user selected the option otherwise the
system will be set up to run ESD on return of power. If partial battery
back-up then ESD will be readied to run upon restoration of power. If no
battery back up then ESD will be set up but system will die and FIXUP must
be run to recover disks.

The machine state is saved (i.e. floating point.stack pointer, frame
pointer. and device code). It tells the PMGR devices to save their state
and halt. It tells any user devices to do their thing in event of power
failure if programmed for power failure.

Upon restoration of power the power failure routine tries to resart
the system by printing the power failure message on the console device. It
tries to restart the sysgenned devices followed by the user defined
devices. Upon successful completion of the restart another message appears
indicating restart was completed.

PFL Jogic

This routine handles powerfails and spurious interrupts on device code
0. The routine performs a SKPDZ CPU, which will skip on a real powerfail.
If not a real powerfail (spurious interrupt on device code 0), then ISZ a
counter, and if the counter overflows, panic (4001), else jump to the
DISMISS code. If a powerfail has occured, goto the powerfail routines (if
defined) else panic (15001) when the system recovers.

A0S/VS Internals Chapter 3 Page 3-57

SYSTEM CALL PROCESSING

General flow of a system call

Entry into AOS/VS is through the ring O gate array, which points to
the entry point SYST in SCPRC. The user's system call is processed as a
LCALL to the AGENT ring, which, after identifing the call as one that needs
the system, will make an LCALL to the system ring. (the LCALL in the user
space is found in the module SCALL which is bound intc each user program.
There is a version for 16 bit processes, and one for 32 bit processes. The
code can be found in URT16.LB or URT32.IB. Calls from 16 bit processes are
converted into 32 bit calls by the AGENT, which will recursively call
itself, It is the 32 bit call that reaches the kernel.

Kernel system call processing

Entry to the AOS/VS kernel is through the ring 0 gate array. The
standard system calls are referred to as TCB calls, (in that they run on
TCBs). Only TCB calls go through SYST

Some system calls have specific attributes that are classifiea
by tables found in SCPRC

1. Direct calls -- Processing of the system call will never pend,
although the task making the call can pend.
(No stack or CB is needed)

7RDB 7?WRB ?SPAGE ?WDELAY ?MBTU ?MBFU ?RPAGE
?SGNL ?GPORT 7SIGNL ?WTSIG ?SIGWT ?DVSTT ?NSIGNL
?NWTSIG 7NSIGWT

2. Parallel calls -- A multitask process can have no other system
calls active while this call is active.

2CTYPE ?GCHN ?GPROC ?MEMI ?SSHPT ?TABT
7RPAGE ?SPAGE ?SRDB ?IHIST ?WIRE

AOS/VS Internals Chapter 3 Page 3-58

3 Expensive calls - Calls to the flle system. This table is used

to determine the CPU charge for a call

7CREATE ?GPROC ?DELETE ?RENAME ?GCHN ?ILKUP
?GOPEN ?GCLOSE ?SOPEN 7DIR ?INIT ?FSTAT
7RELEASE 7?SLIST ?GLIST ?GNAME ?GACL ?7SACL
?GNFN ?RDUDA ?WRUDA ?CRUDA ?SATR ?BRKFL
?SCLOSE ?CGNAM ?DACL ?GFNAME ?UPDAT ?ROPEN
?RCLOSE ?SOPFF ?RINGLD ?RNGPR ?WIRE ?GTRUNC
?ESFF

AOS/VS Modules invelved in system call processing

SCALL --

AGENT --

SCPRC -~

SCHED --

SCMOD -~

bound into the user prcgram

runs in ring 3 and preprocesses all system cails
(converts 16 bit tc 32 bit) (see chapter 8)

system call procescsor for TCB requests

The AOS/VS scheduler. This picks up the enqueued
requests from the PEXTNs, associates them with a CB
and stack, and then jumps irto the approprlate
overlay for processing.

This routine is involved in miscellaneous direct
calls (those that cannot pend) and will riot be
included in this chapter.

The diagrams provided on the following pages graphlcally
represent the overall flow of a system call in AOS/VS

A0S/VS Internals Chapter 3 Page 3-59

SYSTEM CALL PROCESSING INTERFACE

<4 L
J .

! : !
4==—e—==] SCALL s £

I 4===2{ s !
{1 + + l !
(S| l l l !
11 ! ! ! !
! 4=-=-! USER | LR l
1 .~ 1 PROGRAM ! !
! ! ! 1
! 1 3] 1
l + + l
! I PAGE ZERO 1 |
! + + |
! | User space
22222 12222222222222222222222222222222222 V22 2222222222222 2Z22 22222222222
! ' . | AGENT space
! !
| + + l
1 1 ! !
| ! User TCBs and ! |
1 ! UST ! !
! ! l !
l +- + l
l ! ! !
! /====! AGENT 16 bit I<==\ !
| I conversion ! ! !
{1 I routines ! l !
! ! I !
(| +- + ! 1
A S | 11 1
! \===>! AGENT 32 bit Il===/ l
| CE— >! preprocessing le—-eeceeme- /
[m———— ! routines e
! ! | |
l 4 ~-+ -
! |
l ! AGENT space
22222 1222Z222222222Z222Z22227
! ! KERNEL space
| +- + | 4+ +
1 ! ! ! I individual !
\mmmem >1 SYST (in SCPRC) l====/" | system calll
I Kernel system l | processing |
! call dispatch |{e—==-=>1 code !

- <
L +

| code
!

e
*—

& eem cme

AOS/VS Internals Chapter 3 Page 3-60

dule; SCAL

This module is automatically added into a user program at LINK
time. The primary purpose of SCALL is to get the user into AOS/VS AGENT
code. There are two different SCALL modules, one for 16 bit processes,
and one for 32 bit. Though some of the instructions are different the
general idea is the same.

! 16 bit ! ! 32 bit |
! start | | start |
v v
! JSR @17 ! l XJSR @6 !
! System call number ! | system call # !
User Program \ / :
ERRRRRRRRRRRERXRRRRKRRARRE o>y Commmms FERRRRRXRRRERERREXEAREXRR
SCALL module !
!
v

—— e S s O o e G . e G G B Gy (T e Bz G e B G B B4 G T e B

| Enter the AGENT using a |
! LCALL to gate O, ring 3 !
l .
\

The AGENT will preprocess
the system call (possibly
converting a 16 bit call

to a 32 bit call) and then
call the system with an

LCALL to gate 1, ring O

The system will process the !
call and return to the AGENT!
which will post process the |
call and return to the user |

......_.........-......
= tmm o o= omm o |

If we took the error return (SYST+2) !
then increment the PC (on the stack) to point !
to the system call error return, otherwise !
increment the PC twice to point to the good !

!

€ G G G T A L. @ -

AOS/VS Internals Chapter 3

Module: SCPRC
SCPRC is part of the kernel.

| Start at SYST in SCPRC |

\

| disable interrupts !

v

I Push a return block on the per-process stack !

v

! Read and disable PIT !

v

I Increment SYSIN !

Y

| Enable interrupts |
v

| Setup the fault block !

v

| Save the PIT residue |

Fault code enters here ————e————t
\'

| Save the current task information !

Page 3-61

'
NO YES

[m———— ! Are we in the interrupt world? le—=-=\

s v
| Increment the PC to ! | Format the user to trap !
| take the good return !

!
v
(X) -1 Jump to the user interrupt !

! dismissal routine !

AOS/VS Internals Chapter 3 o Page 3-62

X)
v

/===z=z==z==zzzzz=zzzz=zz | Is the system call valid? | ==z=z====\
I 0 < system call < MAXSYS |

!

!

!

!

! | Charge for the call (basic=10. PIT ticks; expensives= 1
! ! 100. ticks). (If this charge [subtracted "from the users !
! | current remaining slice] causes the subslice to

l ! expire, set PSTSU in PSTAT to indicate timeslice end) - !
!
!
!
!
\

'
NO YES
/===z==1 Is this a direct system call? l==z==\

! Increment PSIDIR in the PTBL !
! (one more indirect call enqueued !

-_— I YES === NO
| Increment PSDIR ! +<{z== | Are any parallel calls ===
! (one more direct | | ! running for this process? | !
! call enqueued) !

l
!) /===z==z=z==z=z===z=z===z/
|
l

v ' ! YES NO
==>+{===z=z! Are we already rurning the l==
! maximm number of calls? | |

! Enqueue the TCB off |
! the PEXTN (PSWD.W) !
! in priority order !

- - ——— o ————

YES NO
/====z========! Is this call a ==
v | parallel call 7 |

N oem 0en s S0 pum Sum e N\
~N
1
[]
]
!
]
1
1
]
1
]
1
t
1
~N

......... ====! Any other system |
YES! calls active? l

v

!
!
! Set bit to indicate ! |
! holding on parallel call | !

!

(Y) [DIRRS]

A0S/VS Internals Chapter 3 Page 3-63

v

! Set up the PRSTK.W stack !
v

! Form dispatch offset from system call word !

v
YES
. /=== Is the system call count table defined? !::::}
1
l !
: !
! Update the counter in the system call ! !
! count table indexed by the call # ! ‘ :
1 |
\::::::::::::::::=:=Z:>+<:=::::::::::::::::::::::::/
v

! XJSR through the System Call !
! table to the appropriate code !

\

/=====! Did an error occur during l=z=z=z=z=\
l the processing? l

YES - - NO
/==z1 Was is a restart error? l====\
l
!

l Put the error code into the |
| TCB's ACO and decrement the PC !

Gum Gun Cum CuB G Cun Cun Cum Swm Cam Cum Cum

| The new system call word ! ! Unpend the TCB 1|
! is setup; decrement !
! PSDIR, increment PSIDIR ! ' l

\') | Decrement PSDIR |

! Enqueue the TCB off of the
! PEXTN (offset PSWD.W) in
! TCB priority order

<l

\===z===zzz=zzzzzzzzzzoz/ ! Jme to PCALL !

Module; SCHED

AOS/VS Internals Chapter 3 Page 3-64

(Get a TCB from the PTBL extender)
' !
v

: "NO
/====== | Is the system call # in range ! ===>! Return error |

YES | Is path holding on a | NO
z===z=z=z=z=zzzz=z=z===:==| parallel call? | ===

€ o o v tem e O\

YES ! Are we already running INO
:::::::::::::;::! the max number of calls? l==\
!
v
YES NO
/=z==z=z==z=z= | Is this a parallel call? | ===\

N\

{==z=zz | Any active system calls? ! ==\
- !

! Set the holding on !
| parallel call bit !

\====z=z=zz==D4{==zz=========z====/
v
: NO
YES | Is it a direct system call? | ===\
/:::::: !
! |
!
! Unlink the TCB from ! /z=======/
I the PTBL extender ! |
\' NO! Any available !YES
/===1 CB? l===\
! Jump to DIRRS (Y on prev. pg) ! ! !
! !
! |
::::::::::::::==:===:>+<==:::::::::::::::::/ /::::::/
' ! |
v
! No system calls can run ... run a TCB | . (Z)

(2)

AOS/VS Internals Chapter 3 Page 3-65

! Unlink this TCB from the PEXIN 1!

v
YES NO
/====1 Is the system call metering table defined? ! ::}
!

\::::'_‘\ /:::::::::::::::::::::::/
! !
V) !
!
! Increment the corresponding ! |
! counter l
!
l v
\====z=z=z=z=z=zz=z=z=zzz==z=z=z==)+<{===z===| Daemon processing code !
l ! joins here !
!
\'
| Get the CB |
v
! Put the TCB address into the CB |
'
| Set the running bit in the !
! CB and clear it in the PTBL !
v
! Enqueue the CB onto the ELQUE !
'
l Make the CB's stack the current stack !

! and make the CB's fault block the current block !

\'
YES : NO
/====z=1 Is this a daemon request? l===\
1 !
1 !
! Jump into the .appropriate ! ! Jump into the appropriate |

! daemon code path | | system call code path !

AOS/VS Internals Chapter 3

Syst

MCCT.W:

PAIRED

call di

CREATE. P
DELETE. P
RENAME. P
MEM, P
GCHAIN, P
PRSTAT. P
DPMGR. P
PAIRED CALL
RRDB

RDB.P
PAIRED CALL
RWRB

WRB.P
PROC, P
MEMI. P

-1

INTAD. P

-1

-1

PAIRED CALL
RMBTU
MBTU, P
PAIRED CALL

- RMBFU

MBFU.P
ISEND,.P
IREC.P
ILKUP.P
‘GRUNT. P
TABT.P
-1
CTYPE.P
CALL
RBLKIO
BLKIO.P
GTIME.P
STIME,P
SDAY, P
GDAY,P
IDEF.P
IRMV.P
SSHPT. P
RPAGE
ODIS.P
OEBL.P
DEBL.P
DDIS.P
STMAP. P
SUPROC.P
TABT.P
TRMPR. P
GOPENLP
GCLOSE. P

N N N N W WO W W W W W WE WA WS e W NI e we e

We we we wWe we we wae

“e we

“ws we

Wwe we we We we Wwe we we woe

Ve Wwe we We we we we wo

O
1-
2-
3-
.
5
6

T-
10-

1=

Page 3-66

CREATE

DELETE

RENAME

AVAILABLE MEMORY
CHAIN

PROCESS STATUS
DEFINE PERPH PROC

PRIMARY READ BLOCK
SECONDARY READ BLOCK

PRIMARY WRITE BLOCK

12- SECONDARY WRITE BLOCK
13- CREATE A PROC

14-

MEM INC

15- QUEUE A TIME REQ (AOS-16)

16~

DEFINE INT PROC ADDR

17- MOVE BYTES TO GHOST

20-

21-
22—

23~
24~

MOVE BYTS FROM GHOST

PRIMARY CALL TO MOVE BYTES
SECONDARY WITH STACK
PRIMARY CALL TO MOVE FROM
SECONDARY WITH STACK

25- IPC SEND

26~
27-
30-
31=

IPC RECEIVE

IPC LOOKUP

GET RUNTIME STATS
ABORT CALL

32- TRANSLATE A TO A MAPPED ADDR

33~

34~
35-
36-
37-
10-
41—
h2-
13-
uhi-
45~
46~
47~
50~
51-
52-
53—
54
55
6 -

57—

CHANGE PROC TYPE

PRIMARY BLKIO
SECONDARY BLKIO

GET TOD

SET TOD

SET DAY

GET DAY

DEV INTERRUPT DEFINE
INTERRUPT REMOVE
SET SHARED PARTITION
REL SHARED SLOT
DISABLE PROG CONT A
ENABLE CONT A

ENABLE MAPPED DEV
DISARBLE MAPPED DEV
SET MAP FOR USER DCH
CHANG1E SUPERPROCESS MODE
TASK ABORT
TERMINATE A PROC

CLOSE A USER CHANNEL

AOS/VS Internals Chapter 3 Page 3-67

-1
-1
-1
-1
-1

144~ ENABLE A SYNC LINE
145~ DISABLE A SYNC LINE
146- SEND DATA

147~ RECEIVE DATA

150~ DEFINE A POLLING LiST

SPAGE. P : 60— SHARED PAGE READ
CXINFO.P s 61 -AGEN/KERNEL PAGE FAULT INTERFACE
CISND, P ; 62- SEND A KEYBOARD INTERRUPT TO SON
SOPEN. P : 63- SHARED OPEN
-1 s 64— GET A PORT OWNER AGENT RESERVED
TPORT. P s 65- TRANSLATE A PORT NUMBER
BLK.P s 66— BLOCK A PROCESS
UNBLK. P : 67- UNBLOCK PROC
PRIPR.P + 70~ CHANGE PROC PRI
SIGNAL s 71— SIGNAL THE SYSTEM
GUNM. P s 72- GET A PROCESS'S USER NAME
GSHPT. P s 73- GET SHARED PARTITION VALUES
GHRZ.P + Tli- GET CLOCK FREQ
DIR.P s 75- DIR
DINIT.P s 76— INIT AN LDU OR MIV
FSTAT. P : T7- GET FILE STATUS
DRLSE. P : 100- RELEASE AN LDU OR MTV
SLIST.P : 101- SET SEARCH LIST
GLIST.P : 102- GET SEARCH LIST
LOGGR. P s 103~ MANIPULATE SYSTEM LOG
GBIAS.P ; 104= GET BIAS FACTOR
SBIAS.P : 105- SET BIAS
WHIST, P : 106~ INIT HISTOGRAM
KHIST.P : 107- KILL HISTOGRAM
-1 s 110~ GHOST SHARED OPEN
GNAME, P s 111~ GET FULL PATHNAME
GNCP, P s 112- GET A CONSOLE PORT NUMBER
SUSER. P ; 113~ CHANGE SUPERUSER STATUS
SACL. P s 114- SET A FILE'S ACL
GACL.P : 115- GET A FILE'S ACL
PNAME, P s 116~ PROCESS NAME <-> PID
-1 s 117- RESERVED
FLUSH, P s 120~ FLUSH A SHARED PAGE TO DISK
-1 ; 121- GET A FILE'S ALIAS
GTACP, P : 122- GET ACP'S FOR A FILE
-1 s 123- DELETE FILE AND ALL NAMES
GLINK.P : 124- GET LINK CONTENTS
GPRNM, P : 125~ GET PROGRAM NAME
LOGEV. P : 126~ LOG EVENT IN SYSTEM LOG
DADID. P : 127- GET FATHER'S PID
CPMAX, P : 130- SET CONTROL POINT DIR MAX SIZE
GNFN.P s 131- GET DIR'S NEXT FILE NAME
-1 : 132~ MAP PERFORMANCE DATA TO USER
RDUDA. P s 133- READ USER DATA AREA
WRUDA. P ; 134- WRITE USER DATA AREA
CRUDA. P : 135~ CREATE USER DATA AREA
-1 : 136~ ASSOCIATE A FILE
-1 ; 137- DISASSOCIATE A FILE
ENBRK, P : 140~ ENABLE A BREAKFILE
SATR,P ; 141~ SET FILE ATTRIBUTES
IS.R.P ; 142~ IPC SEND/RECEIVE
BRKFL.P . 143- BREAK FILE
]
;
;
;
;

AOS/VS Internals Chapter 3

-1

-1

-1

-1

-1

-1
SINFO.P
-1
SCLOSE. P
MAPR.P
CGNAM. P
SSID,P
GSID.P
DACL.P
CONX.P
DRCONX. P
SERVE,P
RESIGN.P
MBTC.P
MBFC. P
PRCONX. P
DRCONX. P
VRCUST.P
PRCONX. P
-1
RNAME. P
RSEND. P
ITIME.P
FNAME.P
HNAME, P
RPORT. P
-1

-1
KIOFF.P
KION.P
KWAIT,P
KINTR.P
VRCUST, P
CTERM.P
-1

-1

-1

-1

-1
BNAME, P
PRDB.P
PWRB.P
-1

-1
UPDATE.P
ROPEN.P
RCLOSE.P
SWST, P
KWST, P
ALLO,P
SOPPF . P
PMTPF.P

WO W WO WO WP W WE WO WO VO WP W Ve WO Ve WO W W W WO WO W WP W WO WO WE WS Ve WO WO W Ve W W WO WE WE WO W WO WS WNE WO WP WO Ve WS WE PO Ve Ve Ve W W e we

151-
152-
153-
154~
155-
156~
157-
160-
161-
162-
163-
16—
165-
166-
167-
170-
171-
172-

A73-

174-
175-
176~
177-
200-
201-
202-
203-
204-
205-
206-
207-
210-
211-
212-
213-
214-
215-
216-
217-
220-
221-
222-
223-
221~
225~
226-
227-
230-
231-
232-
233-
234~
235-
236-
237~
240-
241 -

Page 3-68

ENAB, A M.D.TERMINAL FOR POLLING
DISA., A M.D.TERMINAL FROM POLL.
GET SYNC LINE ERROR STATISTICS
DEFINE EXTENDED CONTEXT
INITIALIZE EXTENDED CONTEXT
RELEASE EXTENDED CONTEXT

GET SYSTEM INFORMATION
LOGICAL TO PHYSICAL MAP
CLOSE A SHARED FILE

MAP A REGION OF ADDRESS SPACE
GET PATHNAME FROM CHANNEL #
SET SYSTEM ID

GET SYSTEM ID

USER DEFAULT ACL (ON/OFFYSET)
CONNECT

DISCONNECT

BECOME A SERVER

STOP BEING A SERVER

MOVE BYTES TO CUSTOMER

MOVE BYTES FROM CUSTOMER
PASS A CONNECTION

RING SPECIFIC DISCONNECT
VERIFY RING CONNECT

PASS A RING CONNECTION
ACCESS THE NETWORK

HOST ID FROM PATHNAME

SERVER ?ISEND

RETURN TIME IN INTERNAL FMT
SERVER PATHNAME RESOLUTION
HOST ID<->HOSTNAME

NETWORK ?TPORT

RESERVED

RESERVED

DISABLE KEYBOARD INTERRUPTS
ENABLE KEYBOARD INTERRUPTS
WAIT FOR A KEYBD INTERRUPT
SERVER KEYDB INTERRUPT FNCT
VERIFY CUSTOMER RELATIONSHIP
TERM CUSTOMER PROCESS
ENCRYPT/DECRYPT

ENABLE SYNC LINE FOR HDLC
DISABLE SYNC LINE USING HDLC
SEND USING HDLC PROTOCOL
RECEIVE USING HDLC PROTOCOL
NETWORK PROCESS NAMES
PHYSICAL READ BLOCK

PHYSICAL WRITE BLOCK

RESERVED

RESERVED

FLUSH FILE DESCRIPTOR
RESERVED OPEN (AGENT ONLY)
RESERVED CLOSE (AGENT ONLY)
START WORKING SET TRACE

KILL WORKING SET TRACE
ALLOCATE DISK FILE ELEMENTS
OPEN A PROT. SHARED FILE
PERMIT ACCESS TO PROT SHAR FILE

AOS/VS Internals Chapter 3 Page 3-69

-1
-1
-1.
-1
-1
-1

242~ RESERVED

2U3- RESERVED

244~ RESERVED

2U5- ?SIGNAL (GATE CALL # RESERVED)
2U6- WTSIG (GATE CALL # RESERVED)
24T- ?SIGWT (GATE CALL # RESERVED)

’

’

)

’

’

y
RNGST.P ; 250~ RESTRICT RING LOADING
RNGPR.P ; 251- GET PATHNAME FROM LOGICAL ADDR
VALAD.P ; 252- INNER RING SERVER VALIDATE
FLTSC ; 253- PAGE FAULT PSEUDO CALL
GMEM. P ; 254~ GET SYSTEM AVAILABLE PAGES
LMAP,P ; 255- MAP A SYSTEM/USER PAGE
EXPO.P ; 256- SET/CLEAR/CHECK EXECUTE PROTECT
POKE.P ; 257- USER DEB CHANGE C(LOCATION)
PEEK.P ; 260- USER DEB EXAMINE C(LOCATION)
WIRE.P ; 261- WIRE A PAGE INTO WS
UNWIRE.P ; 262- UNWIRE A PAGE
TIMEQ ; 263- QUEUE A TIME REQ (MAGIC)
RINGLD,P ; 264- LOAD RESTRICTED RINGS
LEFE.P ; 265~ ENABLE LEF MODE
LEFD.P ; 266- DISABLE LEF MODE
LEFS.P ; 267- SAMPLE LEF MODE
-1 s 270- RESERVED
-1 ; 271- RESERVED
-1 s 272- RESERVED
-1 ; 273- RESERVED
-1 ; 274~ RESERVED
GTRUNC.P ; 275- TRUNCATE A DISK FILE
ESFF.P ; 276~ FLUSH SHARED FILE
DVSTT ; 21T- GET DEVICE STATISTICS

MAXSYS= (.-MCCT.W-1)/2 ; HIGHEST SYSTEM CALL NUMBER (=27T)

Note: <entry>.P indicates that the call is pendable, that it is
found in a system pageable page and therefore requires a CB
to execute. However some entries not having the .P suffix
also require a CB-(example - FLTSC)

AC5/VS Internals Chapter 3

Page 3-70

The following list of modules handie process management. They are

listed alphabetically by module

occur in the listing.

CHAIN

CLNUP

PRCNG

PROC

PROC2

PROC3

RINGLD

and the entry poirits are listed as they

chain to another program

entry points:

GCHAIN.P - chain to another process

MAPR.P

- stack initialization

¢lean up a process upon termination

entry points:

CLNUP.P
WRBRK. P

RETCN.P -
PLLRU.P -
RESET.P -
A.BRKF.P-

terminate a process

entry points:

RET.P
FPTRM.P
TRMPR.P
TERM.P

PRNCI.P

proc a process

entry points:

PROC.P -
PROPEN. P-
RDUST.P -
RD2BLK. P-
USTVAL, P-
TCBVAL, P-

proc code continued

entry points:

PROC2.P
PTRAF
CLWS.P

proc errcr handler

entry points:

load a lower
entry points:

PRCER.P
SETTL.P
PERR.P

PDLSW. P

PSIPE.P -

PSWBLD. P-
ring

RINGLD, P~
VALAD.P -

" RNGST.P -~

cleanup a process for chain/term

write a breakfile image

let go of channels,pages for
chain/tern:

return process console

pull unshared pages off LRU

abcrt 1/0

patch location for agent breakfile

term demon

fatal process terminaticn

?GTERM system call

terminate a process (without
subordinate)

trap “C°B entry

proc a process

open a .PR file

read ust from .PR file

read first 2 blocks of .PR file
checks for valid ust

checks for valid tcb

second half of PROC code
trap from user proc call
initial working set calculation

common error processor
set time limit on proc
error handler for memory error in
PROC2
creates a hot PSI pool entry if
both page and swap exist. If one
does not exist a panic 14465
ocecurs.
clean out page + swap to prevent
a panic
build hot PSI pool entry

load a lower rirg
inner ring server address validation
restrict ring loading

A03/VS Internals Chapter 3 Page 3-T1

S0V11

SOV1T

SSCV3

SWAPFILES

CTYPE.P - change process type
break file processing
entry points:
: BRKFL.P - create a break file 7brkfl system
call
IBRK.P - create a break file with user and
agent
ENBRK.P - enable a break file to be taken
initial load of a process and ring 1 initialization.
entry points:
PPRLD.P - proc initial load deamon
R1INIT.P - ring 1 initialization
routines used in proc
entry points:
RXINIT.P
NUHIAD.P

init ring from the .pr file
change ring 1 to get more logical
addresses in the user ring

swap file manager
entry points:
PROC1.P

continuation of proc code

AOS/VS Internals Chapter 3 Page 3-72

Program Load Option
Every process starts with a working set large enough to accommodate
Page 0 (the first 2K bytes of the logical address space) and the

program counter (PC) page. The PC points to the instruction which is
currently executing in a program.

You have the option, however, of loading part or all of the unshared
address space in your initial program file into physical memory. This
program load option is useful when the program which you're A
executing ‘

o] is short

0 runs briefly
o frequently references a large unshared area.

By loading in pages initially, you save the time incurred by multiple,
sequential page faults.

Before you can use the program load option, your system manager must
enable the initial program load option during the VSGEN dialcgue by
indicating the number of pages a process can have at initial load time.
You must then use the SPRED utility to edit the preamble of your program
file to indicate the address range of the area you want loaded. For
details, refer to "How to Generate and Run AOS/VS" (093-000243).

Variable Swapfiles

Memory contention occurs on a system when currently active processes
all desire total working sets larger than the memory available. When
contention is light, AOS/VS removes inactive pages from processes and
keeps them in a "page file" dedicated to that process. If the process
later demands the page(s), the system restores them to the working set.

When heavy memory éontention occurs, the system picks a process to swap
cut to disk via a "swap file". Each process has its own swap file in
the SWAP directory. By default, these files have a fixed size.

‘The fixed size. however, can be a disadvantage for certain processes.
For example, if the swapfile is 124 pages and the system decides to
swap out a process whose working set size is 250 pages, the system has
to break up the working set to fit it in the swapfile. When this same
process is later swapped back into memory, the process must incur a
series of page faults to restore its working set back to 250, For
processes with large working sets, this paging can be costly.

To incur less cost., you can set up a system to allow swapfiles which
vary in size‘from process to process.

To allow the use of variable swapfiles,

o During the VSGEN dialogue. the svstem manager irdicafes tha%t he

AOS/VS Internals Chapter 3 Page 3-T73

wants variable swapfiles and specifies a default and a maximum
swapfile size.

o " The system manager gives certain users (those who run programs
with large working sets) the privilege of changing their working
-set size.

o The privileged users edit the preamble of their program files
with the SPRED utility. In doing so, they specify a size for
the swapfile equal to the typical size of the working set of
the program.

Process Types

To manage the multiprocess environment, AOS/VS .allocates main memory to
processes based on their priorities and scheduling characteristics.
Processes fall into two main categories:

o Those which always reside in memory (these are called
resident). In general, only the most critical processes in your
system environment should be resident. :

o Those which the memory manager moves back and forth between
disk and memory (these are called preemptible and swappable).

NOTE: Under AOS/VS preemptible and swappable processes are almost
identical; for differences, see the section on "Priority
Changes" in this chapter. Under A0S, however, a preemptible
process ALWAYS has a higher priority than a swappable process.

When yoﬁ create a process with the 7PROC system call, by default the
process is the same type as its father. You may, however, give it
another type, if you wish, : '

Any process can issue' the ?WIRE system call to bind pages to its
working set. Remember, however, that if you start wiring a lot of
pages to a resident process, you'll degrade the performance of the
system because of the increased number of pages the system will be
unable to swap out when contention occurs.

In addition to any pages you may wire with ?WIRE, AOS/VS automatically
wires the Agent of a resident process to its working set (the Agent is
that part of AOS/VS which pre-processes system calls and serves as an
interface to the operating system.) You may, however, issue an ?AWIRE
system call to unwire all the Agent pages from a resident process,
except for those needed to support user devices. As a result, you
free up some pages of memory and improve the efficiency of the system
as a whole. Your resident process, however, may seem less efficient.

As a general rule, ADS/VS keeps interactive swappable processes in
memory longer than non-interactive swappable processes. You may change
this, however, by setting the bias factors.

A0S/VS Internals Chapter 3 ‘ Page 3-T4

Priority Numbers

Eligible processes compete with each other for CPU time, based on their
individual priority numbers. AOS/VS uses priority numbers to determine
each process's priority., When you create a process, you may assign it a
priority number.

Priority numbers range from 1 (the highest priority) through 511 (the

iowest)., These numbers span three scheduling groups (with no overlap
and no gaps), whose boundaries are determined during VSGEN.

Priority Changes

If a process wants to change its own priority, it may issue the 7FRIPR
system call. To change the priority of another process, however, the
calling process must be in Superprocess mode. (See "Superuser
Mode/Superprocess Mode" in this chapter.)

The priority of a process may also change when you change its type with
either 7?CTYPE or ?PROC. Given that the boundaries of the 3 scheduling

groups are
Group 1 = 1 - G1
Group 2 = G1+1 - G2
Group 3 = G2+1 - 511

then Tables 2-1 and 2-2 summarize the changes in priority which occur
when a process changes type. Notice that a swappable process can never
assume a priority of 1, 2, or 3, but it may APPEARK to do so because of
the wag priority numbers get mapped (see the discussion of "Mapping"
below.

Priority Changes Geing from a Resident or Preemptible to
Swappable Type

-~ - e - .- - em e -

Priority Before Change Priority After Change

- o an ow e - - mm o am

| | |
[}] 1
i I 1
| 1-3 i 1-3 % * {
| 4 - i 2 % ¥x H
i G1+1 - G143 | 1 -3 #*# ;
i G+ - G2 i Gl+4 - G2 i
i G2+1 - 511 i G2+1 - 511 i

et e = e - - B e oS -

¥ This parallels what happens under AOS.

*¥% flthough you would see these numbers if you displayed the
priority of a process with the CLI PRIORITY command, the actual
priorities would be G1+1 - G1+3. See "Mapping" below.

Priority Changes Going from a Swappable to a Resident or

AC3/VS Internals Chapter 3 Page 3-75

Preemptible Type

- e -

i Priority Before Change Priority After Change

| i
' :
1-3 * ': 1-3%. |
| :
| i

]
E B I ¢ 4 - G1
i Gl+d - 511 Gl+d - 511

e e e I G G- B GaT 5 G B G B G0

* This parallels what happens under AOS.

*¥% Although you would see these numbers if you displayed the
priority of a process with the CLI PRIORITY command, the actual
priorities would be G1+1 - G143. See "Mapping" below.

Mapping

A resident or preemptible process can assume any of the priority
numbers 1 through 511. The system uses this number in gauging the
importance of the process during scheduling and displays this same
number if you request the process's priority.

To maintain compatibility with AOS, however, AOS/VS has to map priority
numbers for swappable processes. As a result, the actual number the
csystem uses in its scheduling calculations and the number it displays
when you request the process's priority may differ. :

The discrepancy between actual and displayed priority numbers occurs in
three cases:

1) If you assign a swappable process a priority of 1, 2, or 3.
2) If you assign a swappable process a priority of Gl1+1 - G143.

3) If a resident/preemptible process with a priority of 1, 2, or 3
changes its type to swappable.

In all three cases, AOS/VS uses a priority number of G1+1 - G1+3 when
scheduling the process because a swappable process cannot have a
priority of 1, 2, or 3. The system cannot, however, display the numbers
G1+1 - G143 for a swappable process, and so displays 1 - 3.

In all other cases (4 - G1 and G1+4 - 511), the actual number is the
same as the displayed number.

Remember, however, that if you do assign a swappable process a priority
of 1 and then it changes type to resident (or preemptible), the
resident process WILL have an actual prlorlty of 1, even though the
swappable process could not.

Examples of Mapping

1) If a resident process with a priority of 2 changes its type to
swappable, the system displays a priority cf 2, but it actually uses

AOS/VS Internals Chapter 3 . Page 3-76

G1+2 when scheduling the swappable process.

2) If a resident process with a priority of 3 changes its type to
preemptible. the system displays and uses & priority of 3 for the
preemptible process.

3) If a preemptible process with a priority of G1+3 changes its type to
swappable. the system displays a priority of 3, but uses G143 in
scheduling the swappable process.

4) If a preemptible process with a priority of G2+44 changes its type
to swappable, the system displays and uses a priority of G2+44 for the
swappable process. :

5) If a swappable process with a displayable priority of 3 (meaning its
real priority is G1+43) changes its type to resident. the system
displays and uses a priority of 3 for the resident process.

6) If a swappable process with a priority of 5 changes its type to
preemptible, the system displays and uses a priority of 5 for the
preemptible process.

Process Scheduling

be

AOS/VS schedules eligible processes based on their priority numbers and
scheduling characteristic. As you may recall, the range of process
priority numbers (1 through 511) spans three scheduling groups.

Group 1 ranges from 1 to a number. "G1", which is set during VSGEN.,
AOS/VS schedules any process whose priority number places it in Group 1
on a round-robin basis. Under this scheme, each process is allocated a
uniform slice of time during which it may execute. Once a process of a
specified priority temporarily stops executing (having used up its time
slice), it is not chosen to execute again until all other processes of
that priority have been chosen to execute.

Group 2 ranges from G1+1 to a number, "G2", which is also set during
VSGEN. AOS/VS schedules any Group 2 process heuristically, which means
that the system takes the process's past behaviour into account when
alloting it an interval of time during which it may execute.

Group 3 ranges from G2+1 to 511. AOS/VS handles processes in this
group on a round-robin basis.

NOTE: If you need to maintain compatibility with AOS, G1 and G2 must
be set to 255 and 258, respectively.

Group 1 processes are always more important (that is, more 1likely to

chosen for execution) than those in Group 2 or 3, and Group 2 processes
are always more important than those in Group 3. Within each group,
the lower the priority number, the greater the importance of the
process. The importance of a process may, however, alter as a result
of a change in tyre.

if an executing process cannot proceed, you can issue the ?RESCHED

AOS/VS Internals Chapter 3 Page 3-T7

system call, which allows the calling process to give up control of
the CPU and forces AOS/VS to immediately schedule another process for
execution.

A0S/VS Internals Chapter 3 : Page 3-78

Process creation

Process creation is one of those AOS/VS functions that is not
the responsibility cf anyone module or routine. It involves system call
call processing, COREM, daemons and other such things. The following
is an attempt to follow a process creation from the time at which a
process performs a 7PROC until the new process is healthy and strong,
ready to assume its place in the ACS/VS world.

7PROC Create a New Process

The 7PRCC is first pre-processed by the AGENT, which builds an
iritial IPC message from the user packet that contains the names of the
generic files E€LIST, @INPUT, @OUTPUT, @DATA. This IPC message is sent
to the new process to be picked up when the new process's AGENT starts
up. The AGENT then enters into the kernel through the normel system
cail path. AOS/VS does the actual processing and then control is
returned to the AGENT for some post .processing.

System call trace:
1. Meter the number of PROC requests (PROCRQ.W)

2. Set up a temporary CB fault'handler (may fault when reading the
user's packet) ‘

3. Copy the user's packet onto the CB stack

4, If the caller does not have the unlimited sons privilege, count up
the number of son and make sure the caller will not exceed the
assigned limit

5. If the caller wants to create with btlock, return an error if the
caller is resident. If the caller is creating without block,
return an error if the caller does nct have the privilege to do so.

6. Allocate a PTBL and PEXIN from GSMEM (72. and 1K words long)

7. Set up some initial values (point the PTBL at itself and the PEXTN,

set the initial load, the swap in progress, and the daemon start
bits). If a full breakfile (MDUMP) is requested, set the bit.

8. Check process priority and check for proper ranges and ability to
chiange priority.

9. Set up the working set minimum and maximum of fsets in the PEXIN
10. Open the .PR file, and insure that it is an executable file tyrge,
that the user has execule cccess and that it is at least 1K long.

11. Store the CID (Channel ID or the address of the CCB) in the PEXTN.

AOS/VS Internals Chapter 3 Page 3-79
12. check for extensible swapfiles if so set up new swapsize = to smallest
of preamble, swapsize or new WSMAX,
12. Allocate a 256 word chunk of GSMEM and read in the second block
(block 1) of the .PR file using the NQCRQ routine.
14, Verify that the TCB address pointed to in USTCT of the UST is U446
15. Validate the active TCB queue (must also be 4u6)

16. Store away the initial user PC and task count for the AGENT
and make sure the task count is valid (1<=taskcount<=32)

17. If the user is procing up a process of 2 diffefent type (16 vs 32)
insure that the user has the privilege

18. Validate the processes address space (shared does not overlap the
unshared, initial PC is in the valid address space, etc.)

19. Release the GSMEM chunk allocated in step 13.
Call to PROC1.P in SWAPFILES.,

20. Setup the PSMEMQ, PWSMQ, PFRMQ, PRBQUE, ILAQUE, and PIORR/PIORB chain
pointers

21. Check for pre-paging + initial load. If set load it in.

22. Set up single or multi level .PR

23. Set up the concurrent: system call number

24, Allocate the swap and page files Note that this
will return a PID number

25. Set up the new processes username

(At this point. the code chains from PROC1 to PROC2)

26. Set up default and working directories

27. Store the subslice length (32 ms) in the PSL offset of PEXIN
28. Expand the PIDTB if necessary (if PID#>PIDLN it must expand)
29. Update the appropriate son and brother.pointers

30. Set up the process name in the PIF

AOS/VS Internals Chapter 3 o Page 3-80

31.

36.

37.
38.

Create and initialize the IPC spool file, initialize the spool
file directory chain (on the PTBL), and send the initial user
and AGENT IPCs

Set up the new processes searchlist (same as fatherS)

Put the ring 7 .PR file name into the PIF.

34, If the user specified a max CPU time, set up the values in the PEXTN

If a console is being assigned to the new process, connect the new
process to the console controller (PMGR or SVTA), and send an IPC
to the console controller. Then wait for the PMGR or SVTA to
signal the completion of the console assignment.

If the proc'er has received a "C"B during the proc, abort.

If requested, pass along the default ACL

Set up the initial working set requirement in the PTBL extender
as follows (estimate initial process memory requirement)

a. Calculate the number of pages required in the AGENT for the
TCBs and the number of pages required in ring 1 for the
virtual TCBs (call this sum A)

b. For a 16 bit process, we will need pages for the
following:

1 low level PTP for ring 7

1 high level PTP for ring 1

1 low level PTP for ring 1

1 data page for ring 1 (page file directory)

1 high level PTP for ring 3

1 low level PTP for ring 3

A+1 data pages for ring 3 (A from step a above +1 for
the initial AGENT PC page)

If resident, all the shared and unshared pages,
otherwise 2, the initial PC page, and page O

For a 32 bit single level process:

1 low level PTP for ring 7

1 low level PTP for ring 1

1 data page for ring 1 (page file directory)

2 low level PTP for ring 3

A+1 data pages for ring 3

1 or 2 data pages for ring 7 (only 1 if the initial PC
is in page O

1 high level P1P for ring 1

1 high level PTP for ring 3

ACS/VS Internals Chapter 3 Page 3-81

4o.

For a 32 bit two level process, we allocate as for a single
. level process plus:

1 high level PTP for ring 7
(1) low level PTP for ring 7 if necessary

. If the caller is to block, set a bit to tell the scheduler to block

the caller when all system calls are completed (BPFEB)

If the new process is resident attempt to grow the resident CB pocl
(if this fails, abort the proc)
Set up the connect time and day, and the initial PNQF

If the new process is to be blocked after initial load, set the
appropriate bit

Enqueue the new PTBL to the appropriate ineligible queue
Meter the number of completed procs (PROCFN.W)

The system call is complete (the caller can now continue if this was
nct a proc/block call)

Tine passes ... Eventually the process will get the initial required .
memory (which will be enqueued off of the processes memory queue, and
the PTBL will be moved onto the ELQUE. The PTBL will get control of
the CPU and it the scheduler will start up the initial load daemon.
This will then take us to IPRLD.P in SSOV3. Then ...

1'

Set up the PTPs. The memory for these pages will have bteen
allocated by GCORE and linked of the process' memory chair

Set up the SBRs to point at the new PTPs

If the process is narrow (1€ bit) and resident, read and wire in
the entire working set. Otherwise, read in the user's page O
and initial PC page (stored by the PROC code at step 16)

and initial load area if set.

If the process is to come up in the debugger, set the appropriate
flag in DEBFLAG

Chain to the initialize AGENT code (still called IGHOST.P)

> IGHOST.P code is located in SOV1T and does the following:

If the PMGR is running (MPMGR<>0) then open up AGENT.PR, and put
the CID into the ring 3 .PR file CID location in the PEXTN. If
the PMGR is not running (MPMGR=0) then open LPMGR.PR (IOP or IAC)
and the CID into the ring 3 .PR file CID location in the PEXTN.
(This will initialize the PMGR if PID 1 or the AGENT if not PID 1)

AOS/VS Internals Chapter 3 Page 3-82

i"J

. Build the PTPs for ring 3., and store the information irn the PEXIN

w
.

Get a2 data page for page 0 (note that the page should be on the
process' memory chain and VS will panic if the get pege call fails)

4, Pead into a system tuffer the UST for the AGENT so we can obtain
thie infcrmetion atout the AGENT's shared area

5. Read AGENT biock O into the ring 3 address space

¢. Allocatic (irvor the process' memory queue) enough pages to hold the
TCBs an. add the pages to the ring 3 PTP structure

[« Read in the TCB pages frow the preamble

2, Set up the initial starti,.g address (either AINIT or ADEBUG),
and store the user's starting address in AGAC2.W

J. Fault in tne AGENT FC page (which cannot already be there because
the page is shared)

1C. Wire ii. vhe TCB pages
11. Set up the initial (primary) AGENT stack

12. Set up the user's stack (tased on whether the user is 16 or 32 bit)

—_
[(We]

. Reset tlie initial load bit, and flag that the initial load is
complete '

14, Update tiie werking set tc reflect the additional pages added

-
(92

. Clear the process sched action bit (so that the process will now
run)

16. Dismiss the CB

When the scheduler next scans down the ELQUE, it will find the new
process ready to run, and will give control to the one TCB that

exist. If this is PID 1, the PC will point to the PMGR init code, else
the PC of that TCB will point to either AINIT or ADEBUG. :
1. If the entry point is ADEBUG, set a flag to indicate so.

2. Build a fake return block on the current stack, with all ACs=0
and the PC = the user's starting address (passed by the kernel)

3, Initjalize the memory manager
4, Build the TCB free chain

5. Allocate merory for the memory database (store the address
in AMEMDB)

A0S/VS Internals Chapter 3 Page 3-83

6. Get the memory for the AGENT stacks (192. words per task).
T. Point each TCBs ring 3 SP and FP at the allocated stacks

€. Initielize the ring 3 and ring 7 memory allocation tables using
information obtained from the kernel via ?MEM and ?GSHPT

9., Copy the first 21. words of the AGENTs UST into the user's UST
10. If the user is 16 bits, and an cverlay descriptor table is
defined, call AINIT16. which will allocate the memory needed
to hold an overlay descriptor table within the AGENT space,
and will copy the ring 7 table irto the ring 3 table
11. Read in the initial IPC
le. If the user did not specify the PROC/DEBUG option, then perferm e
WRTN which will pass control to the user. Otherwise, jump to the
debugger (LJMP XDEBUG)
Process Termination
There are basically five ways that a process can terminate.
1. Direct termination -- (self termination and forced termlnatlon
by a different process) -

7?RETURN
?TERM

2. Console interrupt -- (user forced by typing interrupt key)
“C “B
“C "E
MODEM DISCONNECT

3. Trap.

See the section on traps (there are 11 different
hardware traps defined by the MV series ECLIPSEs.)

4, Father terminaticn
5. Fatal process error - (While processing a system call or
internal routine, AOS/VS has taken an

unrecoverable error path and must
terminate the process

Code paths:

AOS/VS Internals Chapter 3

Page 3-84

Hardware Traps while not in ring 0, “C*B, or “C"E (PRNCI.P)

1.

2.

Save away the current task information

Join the common code below

Fatal process errors (FPTEM.P)

1.

Store the error code (from the CB) into the process tatle extender,
and set the fatal term bit in the process table

2. Save the TCB at the time of the error

3. Zero the (B's TCB pointer to prevent the unnecessary awakening of
the TCB when the call CB completes

4, Jump to coumon code below

Self termination / forced termination (TERM.P) '

1. If a forced terminaticn (i.e. TERM 12), validate the target PID
of the command.

2. If self—termination;»set the self term bit (BPFST)

3. Zero the CB's TCB pointer to prevent the unnecessary awakening of
the TCB when the call CB completes -

4., Jump tc commor code below

Common code (module PRCNG)

1.

2.

If the process is already terming ignore this termination,
otherwise set the first term bit.

Call PTREE to block the process! entire inferior process tree.

Begin mair termination loop:

3. Look for a process that does nct have a2 scn, and call PBITS
passing the found PID as the parameter.

PRCNG

SGSB2 |

4, PBITS will:

a, If the process is faulting, set the term after fault bit.

b. If the process is not swapping, clear sched action (allow
things to happen)
c.. Set the break (op interrunt) bhit. in PSTAT

A0S/VS Internals Chapter 3 Page 3-85

d. Set the terming bit.

e. Reset the not ready bit.

f. If the process is blocked, unblock it (or have the coremanager
unblock it if at interrupt level)

g. If the process is not in core. regenerate the PNQF to speed
things up, and flag the COREM to swap in the process

SGSB2

FECNG

5. We then go back to the scheduler, which will find the process we
just PBITed ready to run, and start a terminaticn daemor for that
process., The daemon will start at RET.P in PRCNG

6. Increment TERMRQ.W (number of term requests)

T. If the terminating process now has a son (which was proced during
the termination cycle, go back to step 2 above)

8. Change the WSMAX for the terming process to the system default.

9. Give control to the processes AGENT to allow it time to clean up
databases, and flush AGENT buffers. Controcl will be transfered
unless:

a., This is a self term. The 7RETURN or ?TERM self system call
will have started in the AGENT which will have flushed its
buffers before passing control to the kernel.

b. The terminating process has trapped in the AGENT. If the
trap was in the AGENT, the system is uncertain about the
state of the databases and buffers and therefore will not
allow them to be flushed.

c. The terminating process was initially loading. Since the
AGENT has never run, and in fact does not even exist for
this process, we can not give control to it.

The system will force the current TCB for the user to execute the
AGENT cleanup code. It will also disable task resheduling for the
terminating process, prevent the process from ever blocking, and
prevent the running of outstanding system calls enqueued off of the
PEXTN. The code will also tell the AGENT to perform a full
breakfile (MDUMP) if this option was requested at PROC time.

10. If the father has resource limiting on, decrement the time limit ty
the time used by this process

11. If this is a trap, then:

AO3/VS

12.
13.
14,
15.
16.
17.
18.
19.

a.
b.
€.

If

c.
e,
If

a.
b.
b.

If

b.
CC
d.
e.

If
a.
b.

C.

If

Internals Chapter 3 v Page 3-86

If this is the PMGR trapping, then PANIC 12010

Create the breakfile CCB (delete, create, open the file)
Notify the PMGR about the termination (via IPC)

Call CLNUP.P (see documentation below) .

Call SIPCD.P (which will format the termination IPC message)

this is a °C "B or °C "E, then:

If this is a "C "E, then create the breakfile CCB

If this was a modem disconnect, process as & FATAL ERROR (see
below)

Notify the PMGR via IPC about the termination

Call CLNUP.P

Call SIPCD.P

this is a FATAL error, then:

Notify the PMGR

Call CLNUP.P

Call SIPCD.P (termination code = 4, terminated by the system)
If this is a modem disconnect, then put the error (175) in the
IPC Lo be sent; otherwise. put the error from the process table
extender into the IPC message.

this is a self termination, then:

Set up the termination IPC header and if a user termination
message was specified, copy it onto the stack. s
Notify the PMGR about the termination

If there is a user message, send it (SIPC.P).

-Call CLNUP.P

Join the code path below at step 13.

this is a term by AOS/VS (because the father termed), then:
Notify the PMGR about the term

Call CLNUP.P
Call SIPCD.P

SIPCD was sucessful, send the IPC message (SIPC)

Release the system CCBs associated with this process' directories

Release the swap and page files associated with the process.

Unlink us from our fathers son list.

If we are PID 2, jump to DEATH, the routine to shut the system down

Release the process' unshared memory area (including the PEXTN)

Unpend any processes waiting for terminations (call UNPEND)

If

the father is not the root. and the father is not terminating,

then unblock him if he is waiting for son termination.

A0S/VS Internals Chapter 3 Page 3-87

20. Call the core manager (memory is now available)

21. Update PIDTB and PIDBT (zero the double word pointer in PIDIB and
clear the appropriate bit in PIDBT)

2Z. Unpend processes waiting on SKTR (son termination during system
shutdown

23, If this is a resident prccess terminating,'return one resident CE
to GSMEM

2L. Release the process table to GSMEM

25. If our father is the root. or not terminating, we are done
Otherwise. if the father has another son (we are survived by a
brother), terminate that son (and its sons and...) otherwise, term
the father. (Jump to step 3 above)

CLNUP.P

(Note that this routine is also used by the ?CHAIN code)

1. If this is not a ?CHAIN, build and post a logfile terminaticr
message.

2. Release user devices (IDEF)

3, If a breakfile CID exists (i.e. we are creating a breakfile) then
do the following in this order:

a. Copy PFLAG words and the trap code from the kernel space into
the AGENT page O
b. Write out the AGENT page O and TCB pages
c¢. Close the breakfile
4, Delete any user created IPC entries for this process.

5. Dequeue outstanding IRECs
6. Dequeue outstanding spoolfile directory entries from the FTBL chair

7. Close IPC spool file.

8. Inform the Connectioh manager about the termination (TBC in CONX)

9. If this is a chain, terminate any sons that were proc'ed from
rinrgs 3 - 6.

10. Remove this process from the delay and histogram chains if
appropriate.

AOS/VS Internals Chapter 3 . Page 3-88

11. If a WS trace is in effect for this process, stop it.

12, Wait for all system calls targeted at this process to complete.

15. Release the shared areas for rings 3-7. This is done by
examining the CME for each page in the WS and removing the page
(via FREL) if the 'shared' bit is set.

1&, Close any open files (call the routine RESET.P)

15, Search the LRU for unshared pages belonging to this process and
put the found pages onto the FC1024 chain.

1€. Close each .PR file open for ring 1-7

17. Release the searchlist (if not CHAIN) |

1€. Dequeue process from ELQUE. (end of CLNUP)

AOS/VS Internals Chapter 3 Page 3-89

Process termination diagram -~ the numbers indicate order in which
the processes will terminate.

————— +
O (D I |
! !
f————— +
/ \
/ \
/ \
1 (3) ! { (5) |
! ! ! !
/ \ \
/ \ \
+ e — o ——————— +

(1) ! (2) ! ! w1

ol o
+ o=

System shutdown (DEATH)

1. Term all processes (set term bits in all processes)
2. Pend root process until all others are gone.

3. Turn off system log.

4. Close PIF

5. Release :PER directory CCB

6. Release the :SWAP and :PAGE directory CCBs to the hot PSI pocl
if the pool is not full.

7. Release all LDUs still initializéd (the root [:1 is last to go)

8. Tell the world and halt the processor.

AOS/VS Internals Chapter 3

Page 3-90

The following modules handle memory management.

CLUSTER - prepage at load and fault time

entry points

ILCLSTR - initial load prepaging

CLUSTER - fault time prepaging
COREM - core manager

entry points

COREM - core merager

CMINT - ccre manager task

CWAKE - force a reschedule of core marager

CMENQ - enqueue a process to core manager

EXPTB - exponent's elque counter table
COREM2 - part 2 cf core manager

ertry points

GPNQF - generate priority enque factor
CTBLK - block a process
IUNBLK - interrupt unblock a process
CTUNBLK - unblock a process
PDEQ - remove a pro