
AOSIVS Internals
Reference Manual
(AOSIVS Revision 5.00)

t. DataGeneral
[~l

053-001001

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS
DOCUMENT FOR USE BY DGC PERSONNEL, LICENSEES, AND
CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS THE
PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN WHOLE
OR IN PART WITHOUT DGC PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information
contained in this document without prior notice, and the reader should in all
cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT­
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE­
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE­
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR­
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

CEO, DASHER, DA T APREP, ECLIPSE, ENTERPRISE, INFOS,
MANAP, microNOV A, NOV A, PRESENT, PROXI, SUPERNOV A,
SWAT, ECLIPSE MV /4000, ECLIPSE MV /6000, and ECLIPSE MV /8000
are U.S. registered trademarks of Data General Corporation. AZ-TEXT,
COMPUCALC, DG/L, DESKTOP GENERATION, DATA GENER­
AL/One, ECLIPSE MV /10000, GW /4000, GDC/I000, GENAP, MV lUX,
REV-UP, TRENDVIEW, DEFINE, SLATE, microECLIPSE, BusiPEN,
BusiGEN, BusiTEXT, and XODIAC are U.S. trademarks of Data General
Corporation.

Copyright © Data General Corporation, 1985
All Rights Reserved

IMPORTANT NOTICE

I UNDERSTAND THAT INFORMATION AND MATERIAL PRESENTED IN THE
VS INTERNALS MANUAL MAY BE SPECIFIC TO A PARTICULAR REVISION
OF THE PRODUCT. CONSEQUENTLY USER PROGRAMS OR SYSTEMS BASED
ON THIS INFORMATION AND MATERIAL MAY BE REVISION-LOCKED AND
MAY NOT FUNCTION PROPERLY WITH PRIOR OR FUTURE REVISIONS OF
THE PRODUCT. THEREFORE DATA GENERAL MAKES NO REPRESENTATIONS
AS TO THE UTILITY OF THIS INFORMATION AND MATERIAL BEYOND THE
CURRENT REVISION LEVEL WHICH IS THE SUBJECT OF THIS MANUAL.
ANY USE THEREOF TO YOU OR YOUR COMPANY IS AT YOUR OWN RISK.
DATA GENERAL DISCLAIMS ANY LIABILITY ARISING FROM ANY SUCH
SITUATIONS AND I AND MY COMPANY HOLD DATA GENERA HARMLESS
THEREFROM.

AOS/VS Internals
Reference Manual
(AOSIVS Revision 5.00)

t. Data General
[~'l

053001001

AOS/VS Internals Table of Contents Page i-1

Chapter 1 INTRODUCTION

Introduction to Operating Systems ••••••••••••••••••••••••••••••• •••• 1-1 ..
Processor Management Techniques ••••••••••••••••••••••••••••••••••••• 1-5

Dev ice Mana gement •••••••••••••••••••••••••••••••••••••.••••••••••••• 1-6

Information Management. · '• 1-7

AOS/VS Building Blocks. · • • 1-8

AOS/VS Auxiliary Processes •• 1-8

AOS/VS Block Diagram. · 1-8

Hardware Supported .. 1-13

MV ARCHITECTURE Chapter 2

Introduction • .2-1

Fixed-point Computation ... 2-2

Floating-Point Computation •• 2-4

Stack Management ••••••••••.•••.••••.••.•••••••••.•••.••••.••.•••.••• 2-6

Program Flow Management •••••••.•••.•.•••.•••••.••••••.•••.•••..•.•.• 2-8

Fault Handling ••• ••.••• 2-11

Device Management •••• . • • • • • • • • • • • • II ••••••• • 2-1 ?

System Management ... 2-13

Central Processor Identification •••••••••••••••••••••••••••••••••••• 2-19

Protection Violation .. 2-21

C/350 Programming ..•.......... 2-22

System Control Processor <SCP) •••••••••••••••••••••••••••••••••••••• 2-24

Data Channel/Burst Multiplexor Channel •••••••••••••••••••••••••••••• 2-24

Micro-Code .. ,. t 2-29

AOS/VS Internals Table of Contents Page i-2

Chapter 3 KERNEL and DATA STRUCTURES

The Rings ••.••.•...••••.•••••••.•.•••..•••••••.•••••• , ••••••.•••••.•• 3-1

Memory Chai ns ••.••••.•••••••.••••••••••••••••••••••••••••••••••••••• 3 .. 5

Memory Databases ••••••.•••••.•••••.•••••.••••••••••••.••••••.••••••• 3-8

Sy stem Page Zero •••••.••.••.•••.•.•.•.• e .••••••••••••••••••••••••• •• °.3-12

Important offsets in STABLE. SR •••••••••••••••••••••••••••••••••••••• 3-13

Major Databases ..•......••••.••..••••••••.••.•...••...•• e .••••••••• •• 3-17

Control Blocks .. 3-21

The major AOS/VS scheduling Queues •••••••••••••••••••••••••••••••••• 3-22

The minor AOS/VS scheduling Queues •••••••••••••••••••••••••••••••••• 3-26

Da ta Resources •••••••.••••.••••••••.•• ' •••••••••••••••••••••••••••••• 3-28

Kernel - base system •••••••.•• 3-31

The Interrupt Worlci ,•........... 3-51

System Call Processing ... 3-58

Process Management •••••••••••••••.•.•.••••••.•.•.••••••••••••••••••••• 3-70

Memory Mana gement •••••••••••• c •••••••••••••••••••••••••••••••••••••• 3-90

Swap and Page f"ile ... 3-116

Mi scellaneous ... 3 -1 1 9

AOS/VS Timeslices
TSPRC
The BIAS Factor
Daemons
The System Memory Key (MKEY)
lnterprocess Communications
Spool file directory chain
IPC Spool File
Spool File BitMap
Outstanding receive entries
?ISEND
ISEN2 logic
?IREC and ?IS. R
IREC logic
IS. R logic
?ILKUP, ?TPORT, ?RSEND, ?GCPN
Databases offsets definitions
AGENT IPC
The connection manager

AOS/VS Internals Table of Contents Page i-3

Chapter 4 AGENT

Agent Overvie\i•.. 4-1

Agent Data Bases •••••••••••••••••••••.•.•.••••. e .•••••••••••••••••• •• 4-2

Agent Initialization .••....••.•..•••.•....•..••.••.•.•.••••••..•..•• 4-28

Agent Gates •••••••••••••• . ••• 4-30

System Call Dispatching • . ••• 4-31

Common Agent Routines •• . ••• 4-35

Mul ti tasking •••••••.•••.•••••••• . ••• 4-58

Task Redirection Protection ••• 4-60

Agent/Exec Interface •••••••••••• • • • • • • • • • • • \I •••••••••••••••••••••• •• 4-62

Resource Management Agent ••• 4-88

Chapter 5 TIlE USER ENVIRONMENT

The USER progrant ••••.••••.••••••••.••••..••••••.•••••.•••••••••••••• 5-1
5-85

Chapter 6 DISKWORLD

DISKWORLD Oyerview ... 6-1

1~e Physical Disk • . •••• 6-6

In-core databases •••••••••••• ~ •••••••••••••••••••••••••••••••• •••••• 6-16

I/O Processing .•••..••••••••.••••••. •••• 6-22

The overall DISKWORLD diagram ••••••••••••••••••••••••••••••••••••••• 6-34

Kernel/File system interface • . ••••• 6-35

Shared pages ••••••• . ••••••••••••••••••• 6-35

Key DISKWORLD page zero locations ••••••••••••••••••••••••••••••••••• 6-36

Logical Disk Structure •• 6-38

File System Data Bases in Memory •••••••••••••••••••••••••••••••••••• 6-54

ACS/VS Internals Table of Contents Page i-4

C[;apter 7 EXEC

Ir:troductlon to AOS/VS EXEC •••.•.•. I" I ••••••••••••••••••••••••••••• 7-1

EXEC 1m tialization • .• 7-12

EXEC Queues • .7-18

t-'lcunt Ivor 10. 7-41

EXEC r·!emory ~1anagement ••••••••••••••••••• . .7 -60

Ir.troducticn to EXEC's Cooperatives ••••• .7 -64

Queues, Coops and Devices ••••••••••••••.•••••••••••••••••••••••••••• 7-67

Iri tial iza tion •••••••• 7-69

Jeb Processing ••••••.•••• ,. 7-72

Cooperative Terminations. • .. 7-75

CGNTROL @EXEC Related Cow~ands •• ·7-76

Attachment 'A' Coop descriptpr d.ata bases •••••••••••••••••••••••••• 7-77

Attachment 'B' Initialization of ?PROC packet, VCD, CCD
and the ?ISEND packet for ITA and SNA/RJE ••••••••••• 7 -81

Attachment 'C' 'RUN THIS JOB' IPC for muli-streamed coops ••••••••• 7-83

Introduction to the CONTROL @EXEC Commands •••••••••••••••••••••••••• 7 -85

Cocmand Proce ssi ng •••••••••••••• · 7-86

In7,roduction To The ?EXEC Horld. · 7-88

?EXEC Functions • .. . 7-89

Tr.t: ?EXEC Syster.J Call Format •••••.•.•••••.••• 7-90

Frccessing ?EXEC ReqL:ests •••••••••••.•••.••••••••••••••••.•••••••••• 7-9i

J..ttachment , h.' CONTROL @EXEC Canrr.ands.7-93

.';t tacr:.rr.ent , B' ?EXEC Function Codes7-94

;.:'l:,achr.1ent 'C' - ?EXEC Sy~tem Call Packet Varic.tions 7-95

Loge:; ,,"'·orla .•.•••...•••••••••••••.••••••••••••••••••••••••••• 7 -99

AOS/VS Internals Table of Contents Page i-5

Chapter 8 PK:iR

Glossary of Terms and Key Data Bases •••.••••••••••••.••••••••••••••• 8-1

Introducing the PK:iR •••••••• . •• 8-3

Quick Overview of ?WRITE ••• . • • 8-4

Proc'ing the Pt-liR ...•................................•....•......... 8-6

Internal Mechanisms •••••••••••••8-9

Task Scheduling in the PMGR •••••••••••••••••••••••••.••••••••••••••• 8-12

Se rv i ce til e SU N.BQ II •••••••••••••• 8-12

Locks Used by the PMGR ••••••••••••••••••••••••••••••• ~ •••••••• •• 8-16

Request Aborts •••••.•••••.•.•••.••••.••..•••••••••••• J •.•.........•• 8-18

lACs 41 ••• , •• 8-20

rop ... '.' .•............ .. 8-28

Kernal - Pt1GR Interface•.............. 8-40

User Requests ..•.............. 8-42

Screen Edit ••••• ••••• 8-52

Programming tips for the user ••••••••••••••••••••••••••••••••••••••• 8-70

Miscellaneous ... 8-11
Shared Consoles
TDFT
Modem Control

Overal Diagram of lAC interface to PMGR ••••••••••••••••••••••••••••• 8-73

Chapter 9 CLI

Introducti on •• 9-1

Command Processing•.................•.................. 9-5

eLI Modul e Names •••••••• ~ •• • 9-8

AOS/VS DLUTlP Fonnat •••••••••••••••••••••••••••••••••• • !I •••••••••••••• • 9-14

AOS/VS Internals Table of Contents Page i-6

Chapter 10 SYSTEM INITIALIZATION

Introduction , ' 10-1

Progr arns •••••••••• e ••••••••••••••••••••••••••••••••••••• ' ••.•.•••••••• • 10-2

TBOOT.Tape Bootstrap
DFMTR Disk Formatter
INSTL AOS/VS Installer
DKBT Disk Bootstrap
SYSBOOT System Bootstrap
SINIT System Initialization
CLIBT Initial CLI

AOS/VS Internals Chapter 1

CHAPTEH 1 -- INTRODUCTION
(AOS/VS revision 5.00)

Page 1-1

This chapt.er introduces operating systans and in particular, it
d('scribes the r'elation of AOS/VS to other Data Genentl operGiting systans.
It. a1::;o illtroduces the building blocks of AOS/VS and thei r interface to the
user.

What. is ~m oper'ati ng systffil'? It is a vrogran which i~; GI bit. more
complex th;m a typical ;1pplication. However Lher'e are S<111e very com(jlicated
applh~atioll progr'ans in the world. TIll! operating :;y:,Lun' 5 (Jurpo:Je in Ii fe
i~; to pr'ov ide a mcchani ~:;m which a persun ean use t(J llianipuJ ute da ta in
V,-H'il)us f()nns to acllit.'ve a specified re:jult. It acts U:.J a r'e~;(Jun:e manager,
an interface to the haniwan:, and Lhe prot(.'Ctor of each U:'>CI" 5 proces:J
space.

As a r'esoun:!(' manager the oper'ating systan controls four major
functions. They art': memor'y, proces~)Or, devices, and irtf'ormalion.

In memory mallagelllenL t.her'c are four ComnKm methods of control. They
31'e: contigllous, par'titioncd, paged, and demand paged.

* Simple contiguolls allocation

+------------,-----------+
1
1

System 1
1
1

=======================1
1
1

User program 1
1
1

=======================1
1

Wasted 1
1

+-----------------------+

The above is typical of an MP/OS or DOS type system.

AOS/VS Internals Chapter 1

* Partitioned

+----------------.-------+
1 1
1 System 1
1 I
I============~==========!
1 1
I User #1 I
! I
I======:::=====::=====:=!
1 I
1 User #2 I
I . I
I==========~============I
1 1
I User #3 I
I I
I=======================!
I I
I Wasted I
I I
+-------------------,----+

Page 1-2

Advantages:

1. less wasted memory
2. less wasted CPU time

(mul tiprogranming)

Disadvantages:

1. Special hardware
2. OS is more complex
3. Fragmentation

The above is typical of an RDOS type system except that RDOS is only a two
ground (user) system.

AOS/VS Internals Chapter 1 Page 1-3

* Paged allocation

+------------+ . I

+-----------+ I--
User 1. I Page 0 1-\ I System

1-----------1 \ I--
I Page 1 1-\ \ I
1-----------1 \ \ 1============

Page 2 1-\ \ \---------------->1
+-----------+ \ \ I-~

\ \ I Wasted
\ \ 1--
\ \-------.-------> I

+-------.----+ \ I--
User 2 I Page 0 1-------\-------------->1 I

1-----------1 \ 1-- --I
1 Page 1 1-\ \------------>1 I
+-----------+ \ 1-- --I

\ / .• -------------> I I
+-----------+ \ / 1-- --I

User 3 I Page 0 1-----/---------------->1 I
1-----------1 / \ 1-- --I
1 Page 1 1-\ / \-------------->1 I
1-----------1 \ 1-- --I
1 Page 2 1-/ \ I Wasted I
l----~------I \ 1-- --I
1 Page 3 1-\ \--------.--------> 1 I
+-----------+ \ 1-- --I

\ 1 Wasted !
\ 1-- --I
\---------------->1 1

+------------+

This is typical of an AOS operating system.

Advantages:

1. Solves fragmentation problem

Disadvantages:

1. Additional hardware needed (page tables or map registers)
2. Non contiguous programs
3. Entire program must be in memory

AOS/VS Internals Chapter 1 Page 1-4

* Demand paging

This is a variation on the paged system and is typical of an AOS/VS
operating system. The variation is that programs running tend to have only
the required pages in memory to be run. The rest of the program is. either
in the paging area or on the Shared Page LRU chain.

Advantages:

1. Allows partially loaded programs to be executed

Disadvantages:

1~ Different coding philosophies (i.e. minimal indirection,
modular code)

2. Extra overhead
3. Thrashing
4. Addi.tional hardware (beyond paged allocated additions) to

provide for referenced and modified flags, fault flag, and
the restarting of instructions after a page fault.

AOS/VS Internals Chapter 1 Page 1-5

Processor management techniques

There are typically three methods of processor management. They are:
run to completion. run until blocked (i.e. pended waiting for I/O
completion), and time-slice.

In a run to completion environment each program runs until it is done.
This is typical of a batch environment. Each program runs in the sequence
in which they are entered.

* Run to completion

1. Simple to implement
2. Adequate only for stand-alone or batch operating systems
3. Need ability to terminate run-away programs
4. CPU time is wasted waiting for completion of I/O.

In a run until blocked environment each program has control of the CPU
until it needs to do sane type of I/O. If a program is very CPU intensive
it can control the CPU preventing anyone else from running.

* Run until blocked (pended waiting for I/O completion)

1. Allows multiprogramming
2. CPU bound programs can monopolize the CPU

In a time-sl~ce environment the Real-Time clock assists in the control
of program run time. Each program runs until it uses up its time-slice or
it needs to do some type of I/O. There are several different methods for
determining the scheduling frequency of these programs. They are: first
come/first serve, round robin and priority. Each of these methods has its
advantages. They will be disscussed in the scheduler section.

* Time-slice

Run until either:

1. Process blocks
2. The time slice expires

Possible algorithms:

1. First come/first serve
2. Round robin
3. Priority

AOS/VS Internals Chapter 1 Page 1-6

.Qevice Management

In device
:kvice~,. They
devices can be
tr-aders. The
access).

management the operating system controls three type of
are: input, output, and storage. For input and output these

CRT's, hardcopy terminal::., printers, plotters and card
storage devices are magnetic tape (serial) and disk (direct

The above device access techniques are dedicated allocation, spooled,
and shared access. CRTs, hardcopy terminals, and magnetic tape are usually
dedicated allocation. Printers, plotters and card readers are usually
spooled devices. Disks are shared devices.

TI1ere are problems associated with devices. Devices can be very
expensive. Sharing helps to solve the expense problem. Device speeds vary
but are very slow compared to the speed of the CPU. Error handling of
devices can be very complex and costly in software as well as performance.

AOS/VS Internals Chapter 1 Page 1-1

Information Management

An operating systan also manages the flow and storage of information.
The storage of information on a disk is the most important function of
information management.

In the allocating of files on a disk there are two basic approaches
which can be taken. The building of all files as contiguous is one
approach. The other approach is to build the files using an indexed method
(not ISAM).

Contiguous file allocation

Advantages
1. Simple
2. 1/0 is fast, efficient

Disadvantages
1. Disk fragmentation
2. Difficult to expand files
3. Must allocate disk space for 'holes'

Indexed File allocation

Advantages
1. Solves fragmentation problems
2. Easy to expand files
3. Need not allocate disk space for 'holes'

Disadvantages
1. Several accesses may be required to get data
2. More disk space required for a given file

AOS/VS Internals Chapter 1 Page 1-8

AOS/VS Building blocks

The previous section discussed the principle functions of an
operating system. The most important. is resource 'management. In AOS/VS,
this is done by a number of different 'programs'. The following discussion
will specifically tie parts of AOS/VS to the resources they handle. This
will also serve as an introduction to the parts of AOS/VS.

The KERNEL

This is the heart of AOS/VS; it is the code that is created by the
VSGEN program. The KERNEL is responsible for scheduling (process
management), file / memory management, and interrupt processing.

The AGENT

The 'AGENT is responsible for labelled magtape, system call
pre-processing (including the conversion of 16-bit packets to 32-bit
packets),interfacing to GSMGR, defl€.~ting calls to RMA, and generic file
management.

The PMGR

All character oriented devices that are not on the data channel or
Bf-IC are controlled by the PMGR (peripheral manager). These include the
consoles, card readers, and plotters. In each system, the PMGR exists
three places: PID 1, ring 3 and ring 7; and in the lOP, lACs or COMHBATs
of the MV machine.

The GSMGR
All synchronous oriented devices are controlled by the GSMGR.

There is a separate BSCGEN needed to define the synchronous devices which
the GSMGR controls.

AOS/VS AuxiliarY. Processes

EXEC
EXEC is responsible for the management of batch / print queues,

labelled magtape mounts / dismounts, and log on / log off.

CLI
The CLI is an elaborate system call translator with a large

n~lber of bells and whistles (template expansion for example).

AOS/VS block diagram

On the following pages, there are two large block diagrams of
AOS/VS. The first outlines the overall system picture and does not discuss

AOS/VS Internals Chapter 1 Page 1-9

what goes on inside each module. The second is an attempt to represent the
functions. performed by the AOS/VS kernel. A complete description of the
system would include sane "special" users like PMGR and EXEC. All these are
included in the box called "User events".

AOS/VS Internals Chapter 1 Page 1-10

f

a
/ ------------.------------------------\
I
I

+========+ +========+
1 1 1 1 +======+
1 PKJR I b I 1 c 1 1

/-------I(PID 1) 1--------------1 EXEC 1-----1 XLPT I
!(ring 3)1 1 1 1 1
I I 1 1 +======+
+========+

\
\'

+========+
I I
1 1 g

\d
\

+========+
/

/e
/

/

+========+
I I
1 1

1 User 1------1 AGENT 1
1 1 I(ring 3)1
1 1 I I
+========+ .+========+

/ \ j
/ \

/ i +=======+
/ I I

/ I GSKiR I
/ I I

+=============+ . +=======+
I I
I I

\-----"1 AOSIVS 1---------------------------1

+=============+

h

a. XLPT <--> PKJR This interface is used in printing to non-data
channel devices (consoles)

b. PMGR <--> EXEC This interface is used for logon/logoff
c. EXEC <--> XLPT This interface is used for queuing print requests

and handling such things as restarts, flushes
•• etc.
d. PKiR <--> AGENT This interface handles I/O to tenninals

(?READ / ?WRITE are translated into IPC send/rec)
e. EXEC <--> AGENT This interface handles the ?EXEC system call
f. PMGR <--> AOS/VS Character oriented I/O is handled by the PMGR at

AOS/VS's request. In return, the PMGR can request
that AOS/VS reschedule users. .

g. USER <--> AGENT .System calls are processed through this link.
h. XLPT <--> AOS/VS This interface is used in printing to data

. channel devices.
i. AOS/VS <--> AGENT Many system calls are preprocessed by the

AGENT, but eventually need the kernel.
j. GSMGR <--> AGENT Sync system calls are intercepted by the AGENT

and are sent to the GSMGR by IPCs

AOS/VS Internals Chapter 1

+---------------------+
Hardware I

I
I I
I I

+---------------------+

Page 1-11

+---------------------+
I I
I I

+-------->: User events 1<--------+
I I I I
I I I I

: : AGENT: : :
I
1 (user devices) +-----~---------------+

(interrupts) +------+ I: \
I

'1

+-------------+
: INTS :
+-------------+ I

1
I
I

:------------+
V

+-------------+
: Interrupt

+---1 level 1/0
: : routines 1

: +-------------+

+----------+ : \ : : \
LCALL (faults) (traps)

V ::
+----·----·------i +--- ... --+ +-------i

I I
I I

I I
I I

1 SCPRC :<-\ : FAULT :
I I
I I

I I
I I

+---------------+ +-------+
I I
I 1

\------1

I I
I I

: STRAP :
I I
I 1

+-------+
I
I

I
(process
Itraps)

I
(direct
calls) /

I

+-------------+
: Code found :
: in resident : <-----··-----···i
: AOS/VS :
+-------------+

: (direCt call completed)
+---------------------+

V v

(enqueue a
system call
or page fault) I

I
I
I
I
I

V
+--_ .. _---------------------_._-----+

(reschedule due to a : (schedule
significant interrupt): S C H ED: a process

+------------------------->: (AOS/VS system scheduler) :----------+
: : and task)
+----- . ----.-.- ----.- .. _----------_ ... -+

A (enqueue A A

(swap in/out & misc.): request):
+---------------+ +----------+ (time
: : (deanon, page fault
: :. or system call on
V V a control block

I
I
I
I

V

slice
up)

+---------------+ +----------_._---+ +---------------+
I
I

: Core Manager
I
I 1

+---------------+

system page- :
able page or :

: fault code
+---------------+

TSUP

+---------------+

AOS/VS .1ntemuls Chapter Paee 1-12

Since the AGENT and the PMGR exist as seperate programs,
s~\me sp.:.lce, the apparent system-user interface is really
~\lb-interfaces:

user-AGENT, AGENT-system, PMGR-AGENT, GSMGR-AGENT, and PMGR-system.

user
I
I
I
I
I
I

AGENT
11\

I ! \
I I \

I I \
I I \

I I \
I I \

PMGR system GSMGR

in the
several

The interfaces involving either AGENT or PMGR will be discussed in
the AGENT and PNGR chapters. The user-system interface is sllllIlBrized below
and its various aspects will be discussed in detail in the appropriate
chapters of the manual.

Control interfac~

There are four ways AOS/VS can take control away from a user

- the process makes a system call

- the process takes a page fault

- the process traps

- an interrupt from a device comes in.

In the last three cases, control is yanked away from the user by
the hardware without any software preparation. The user's AC's and PC are
saved.

If a trap occurred, the process will be aborted by the system.

If ar. interrupt carne in, control will be restored to the user after
SerVlClr:g t.hr:; interrupt, unless the interrupt was significant enough to
;',=,-oy a r.igber priority process or control block.

AOS/VS Internals Chapter 1 Page 1-13

Hardware Su~~~~

. The following is a list of the hardware supported by AOS/VS as of
revision 5.00.

Mnemonic

ATI
BBU
CRA
CRA1
DCUO
DCU1
DCU2
DCU3
DKB
DKB1
DKB2
DKB3
DKB4
DKB5
DKB6
DKB1
DPD
DPD1
DPF
DPF1
DPF2
DPF3
DPF4
DPF5
DPF6
DPF1
DPG
DPG1
DPI
DPI1
DPJ
DPJ1
DPJ2
DPJ3
DPJ4
DPJ5
DPJ6
DPJ1
DPH
DPt11
DRT
lAC
IAC1
IAC2
IAC3
IAC4
IAC5
IAC6

Description

Asynchronous Terminal/Modem Interface
Battery Backup Unit
DGC 4016 Card Reader
DGC 4016 Card Reader
DGC 4254 Data Control Unit
DGC 4254 Data Control Unit
DGC 4254 Data Control Unit
DGC 4254 Data Control Unit
DGC 6063. 6064 OR 6066 Fixed Head Disk
DGC 6063. 6064 OR 6066 Fixed Head Disk
DGC 6063. 6064 OR 6066 Fixed Head Disk
DGC 6063. 6064 OR 6066 Fixed Head Disk
DGC 6063. 6064 OR 6066 Fixed Head Disk
DGC 6063. 6064 OR 6066 Fixed Head Disk
DGC 6063. 6064 OR 6066 Fixed Head Disk
DGC 6063. 6064 OR 6066 Fixed Head Disk
DGC 4234, 6045 OR 6030 Disk
DGC 4234, 6045 OR 6030 Disk
DGC 60<60.61.61>, 61<22.60.61> OR 6214 Disk
DGC 60<60.61.61>, 61<22,60,61> OR 6214 Disk
DGC 60<60.61.61>,61<22,60.61> OR 6214 Disk
DGC 60<60.61.61>, 61<22,60.61> OR 6214 Disk
DGC 60<60,61.61>, 61<22,60,61> OR 6214 Disk
DGC 60<60,61 .61>, 61 <22 ,60 .61 > OR 6214 Disk·
DGC 60<60.61.61>, 61<22,60.61> OR 6214 Disk
DGC 60<60.61.61>, 61<22,60.61> OR 6214 Disk
DGC 6010 Disk
DGC 6010 Disk
DGC 60<91,98,99> 61<00,03> 62<25,21,34> Disk
DGC 60<91,98,99> 61<00,03> 62<25,21,34> Disk
DGC 62<36.31> Disk
DGC 62<36.31> Disk
DGC 62<36.31> Disk
DGC 62<36.31> Disk
DGC 62<36.31> Disk
DGC 62<36.31> Disk
DGC 62<36.31> Disk
DGC 62<36.31> Disk
DGC 45<13.14> Floppy Disk
DGC 45<13.14> Floppy Disk
Dual Receiver/Transmitter
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intelligent AsynchrQnous Controller
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller

AOS/VS Internals Chapter 1 Page 1-14·

IAC7
IAC8
IACg
IAC10
IACll
IAC12
IAC13
IAC14
IAC15
LPB
LPB1
LPB2
LPB3
LPB4
LPB5
LPB6
LPB7
LPD
LPD1
LPE
LPE1
LPE2
LPE3
LPE4
LPE5
LPE6
LPE7
MCA
MCAl
MTB
MTB1
MTC
MTCl
MTC2
MTC3
MID
MID 1
PLA
PLA1
m
CRT

Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller·
Intelligent Asynchronous Controller
Intelligent Asynchronous Controller
Intellignet Asynchronous Controller
Intellignet Asynchronous Controller .
DGC 42<15,16.18,19> OR 43<27,28,56> Line Printer
DGC 42<15,16.18,19> OR 43<27,28,56> Line Printer
DGC 42<15,16.18,19> OR 43<27,28,56> Line Printer
DGC 42<15.16.18,19> OR 43<27,28,56> Line Printer
DGC 42<15,16.18,19> OR 43<27,28,56> Line Printer
DGC 42<15,16.18,19> OR 43<27,28,56> Line Printer
DGC 42<15.16.18,19> OR 43<27,28,56> Line Printer
DGC 42<15.16.18,19> OR 43<27 ,28,56> Line Printer
DGC 6088, 6089 OR 6192 Line Printer (LP2)
DGC 6088, 6089 OR 6192 Line Printer (LP2)
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Printer
DGC 4425 Laser Pri'nter
DGC 4425 Laser Printer
DGC 4206 Multiprocessor Communications Adaptor
DGC 4206 Multiprocessor Communications Adaptor
DGC 6026 Magnetic Tape
DGC 6026 Magnetic Tape
DGC 6123 OR 623 1 ~gnetic Tape
DGC 6123 OR 6231 Magnetic Tape
DGC 6123 OR 6231 Magnetic Tape
DGC 6123 OR 6231 Magnetic Tape
DGC 4307 Magnetic Tape
DGC 4307 Magnetic Tape
DGC 4017 Digital Plotter
DGC 4017 Digital Plotter
Hardcopy Terminal .
DGC D200 Compatible Console

AOS/VS Internals Chapter 1 Page 1-15

As can be seen from this chapter AOS/VS is a complex virtual operating
system. The building blocks and auxiliary services provided by AOS/VS were
introduced. In chapter 2 the MV hardware and microcode are discussed.

AOS/VS Internals Chapter 2

CHAPTER 2 -- MV ARCHITECTURE
(AOS/VS REVISION 5.00)

Page 2-1

This chapter introduces the MV architecture. its hardware.
micro code, and software.

The MV series computer incorporates four main systems:

- The central processing unit (CPU) which consists of the instruction
processor for decoding and executing instructions,

- The memory system. which consists of a system cache
(except for MV-4000) that contains 1024 16-byte blocks and functions
as a look-ahead I look-behind buffer; and some assortment of memory
module.

- The input I output system which consists of one or two(mv10000) lID
channels suporting distrbuted processors for asynchronous
and bi-synchronous communications.

- The system control processor (SCP), is a soft system console that
performs diagnostics and operator controlled functions.

I memory I

I
I

I I
1 1
I CPU ___ I __
I with I system I
linstruction ----I

cache

I
1
I ___ 1 __ -

system
I control
I processor

I 1-------------
cache

lintelligent
I __ I synchronous

I controller

online

storage

I 1------·
I 1----
I 1-------

lintelligent 1-------­
--Iasynchronousl------

I controller 1---------

MV-10000 System Diagram

AOS/VS Internals Chapter 2 Page 2-2

The 32-bit CPU provides facilities to manage data, access memory, and
control program flow. The processor can perform fixed-point or
floating-point computation, as well as stack, program, queue, device,
system, and memory management. In addition, the processor contains the
Eclipse®C/350 compatible instructions for 16-bit program development and
upward compatibility.

Fixed-Point ComputatiQn

Fixed-Point computation consists of fixed-point binary arithmetic with
signed and unsigned 16-bit and 32-bit numbers. The processor also performs
decimal arithmetic, logical operations, and manipulates 8-bit bytes.

The processor contains four 32-bit accllTlUlators (ACO - AC3) and a
processor staus register (PSR).

Fixed-Point Accumulator~

Fixed-point accumulators can be accessed by instructions that
manipulate a bit, byte. word, or double word.

~--- ---_._._-_._---- -----.....,
1 1 1 1 1
1 byte 0 1 byte 1 I byte 3 1 byte 4 1
1 1 I I I
o 1 8 15 16 23 24 31

I
1

1 word 0
1 ____ -

o

word 1
I 1-....-____ ,

15 16
1

31

A word or double word operand must begin on a word boundary. A byte must
begin on a byte boundary.

In addition to using an accumulator for fixed-point computation:

AC1 can contain a fault code placed there by the processor,

An instruction can be built in an accumulator and executed,

AC2 and AC3 can be used in relative addressing in place of the
PC.

AOS/VS Internals Chapter 2 Page 2-3

Processor Status Register

The Processor Status Register contains status flags
overflow fault service mask, a fixed-point overflow fault
interrupt resume flag. The overflow fault service mask enables
the processor from servicing the fault. The processor sets
fault flag when the results of a fixed-point computation
processor storage capacity. The interrupt resume flag
instruction status to the processor.

such as an
flag, and an
or disables
the overflow
exceed the
reports an

The processor status register bits can be accessed by instruction that
set a bit or test and skip on condition of a bit.

ovk ovr ires ixct reserved I
1

I I I 1 __ - 1
_______________ --______ 1

e 1 2 3 4 16

OVK - overflow mask on = enable fixed-point overflow detection

OVR - overflow flag set on when a fixed-point overflow occurs
cleared by:

1/0 interrupt request
Faul t detection and servicing
Power up, 1/0 reset. or system reset
Processor executes instruction which accesses the register.

IRES -interrupt resume flag

This flag is set when the processor interrupts a resumable
instruction that requires the processor to save its state
on the user stack.

IXCT - is an interrupt-executed opcode flag

When the processor executes a BKPT instruction,it pushes
a wide return block onto the current stack. ACe in the
return block contains the one-word instruction. When
returning program control, the PBX instruction pops the wide
return block and continues the normal program flow with the
saved instruction in ACe.

Reserved - These bits are set to zero when stored in memory and
ignored when loaded.

AOS/VS Internals Chapter 2 Page 2-4

Floating-Point computation consists of floating-point binary
arithmetic with signed, single precision (32 bits) and double precision (64
bits), numbers.

The processor contains four 64-bit floating-point accumulators
(FPACO - FPAC3) and a floating-point status register (FPSR).

Fl oa ting-P.9j..nt_jl..c.9..YmU.lJ;ltQr~

Floating-point accumulators can be accessed by instructions that
manipulate single and double precision floating-point numbers.

I , , , ,---
.0

,
I

1

double word

undefined
1 ________ _

32

----, -------,
I ,
I , double word 0

I
I

.I
31

1 ,
I ,

, __ I

63

-I ,
I ,

1 ___ - __ .'. __ ' ___ • _____ 1

o 31
1 ---------, --I
1 double word 1 1
I' , _________________ I

32 63

A single preclslon number requires a doubl~ word (two consecutive words),
while a double precision number requires two double words (four consecutive
words) •

Floating-Point ~'!'Sl..t.Y.~t.B~ill

The floating-point status register contains overflow and underflow
fault flags, fault service mask, mantissa status flags, rounding flag, and
processdr status flags.

The processor sets an overflow or underflow fault flag when the result
of a floating-point computation exceeds the processor storage capacity. The
fault service mask enables or disables the processor from servicing a
fault. The remaining flags provide processor status.

The contents of the register can be accessed by instructions that can

AOS/VS Internals Chapter 2 Page 2-5

initialize it or test and skip on a condition.

I
1
I
1
I

---�-----�------I---�--T--T---~I---·--·---l-·--------I

ANY OVF UNF DVZ MOF 1 TE : Z : N 1 RND 1 Reserved 1 ID I
__________ 1 __ 1_1_1 1 1 ____ I

o 1 2 3 4 5 6 7 8 9 11 12 15

--- --- - ---- -------- -----_._------_._-------_._--.
Reserved

I
I
I
I 1 ______ -- __________ . ___ - - - - - __ I

16

o I
1
I __ 1 ____ -

32 33

31

-----------------.
Floating-point Program counter (msb)

I
I
I
I _____ . ____ . _______________ . ____________ ._ I

47

---_._--------_._--------------_._-----
I
1

1 Floating-point Program counter (lsb)
I . I
1 ______ ----_._-------_._---_._--------_·_-------------____ I

48 63
Floating - Point status register format

ANY - error status flag set on when OVF, UNF, DVZ, or MOF is set

OVF - exponent overflow flag

UNF - exponent undeflow flag

DVZ - mantissa divide by zero

MOF - mantissa overflew flag

TE - trap enable mask

Z - true zero flag

N - negative flag

RND - round flag

Reserve - bits 9 - 11 are processor specific

ID - id which reflects floating-point revision

Reserve - bits 16 - 32 are processor specific

Floating-point Program counter - address of instruction causing error

AOS/VS Internals Chapter 2 Page 2-6

StackManagem&~~

The processor contains facilities for narrow and wide stack
management. A staok is a series of consecutive locations in memory.
Typically, a program uses a stack to pass arguments between subroutine
calls and to save the program state when servlclng a fault. After executing
a subroutine or fault handler. the processor restores the progr.am and
continues program execution.

The narrow stack consists of a conUguous set of words for supporting
ECLIPSE c" C/350 program development and upward program compatibility. Narrow
stack management includes three 16-bit narrow stack management paraneters.

There are three parameters used to define and control the narrow
stack.

Narrow Stack Limit - defines upper limit of the narrow stack

Narrow Stack Pointer - initially defines lower limit of the
narrow stack. After access the narrow stack pointer defines the current
location of the last word written onto or read from the narrow stack.

Narrow Frame Pointer - defines a reference point in the narrow
stack

The C/350 (or narrow) return block normally consists of five words:
the contents of the least significant 16 bits of the four accumulators, the
least signific.ant 15 bits of the program counter or the frame pointer. and
the carry in bit 0 of thE' last word pushed.

v·Tide Stack M..e.nagement

The wide stack consists of a oontiguous set of double words for
s~pporting the 32-bit processor programs. Wide stack management includes
four 32-bit wide stack management parameters, for each memeory segment. (A
memory segment is a logically addressable subset of memory, see memory
H:2nagement section)

Wide stack management for the current segment also includes four
32-bit wide stack management registers.

h'tde ~)tack Base - defines the lower limit of the wide stack.
hlllen i.ni tiaUzed it pointE) to one double word below the actual address of
first double word in stack.

i-lide Stack Limit - defines the upper limit of the wide stack.

Vi C:C ~;:.ack PO:Lnter·- address of top location of the wide stack.
It is ei.thcr thE. J.ocation of the last word placed on the stack or thE': next
\O:\ilabJ e \··'(I!d on the ~3tacic.

AOS/VS Internals Chapter 2 Page 2-7

Wide Frame Pointer - defines a reference point in the wide stack.
The processor stores and resets the value of the wide frame pointer when
entering or leaving subroutines. The wide frame pointer identifies
theboundary between words placed on the wide stack before a subroutine
call, and between words placed on the wide stack during a subroutine
execution. Using the wide frame pointer as a reference, the processor ·can
move . back' into the wide stack and retrieve arguments stored there by a
preceding routine.

Stack. overflow and underflow are stack faults. Stack overflow occurs
when a progran pushes data into the area beyond that allocated for the
stack. Stack underflow occurs when a progran pops data from the area beyond
the allocated for the stack. Once detected, the processor always processes
a stack fault.

Loading a 37777777777 into the wide stack limit register disables wide
stack overflow fault detection. Loading a 20000000000 into the wide stack
status register disables wide stack underflow fault detection.

. --_._----------_._-.--.
1 1

X I segment I Logical Address I .
•• • •• 1_1 _____ 1 _____ - _______ · _____________ . ___________ 1

o 1 3 4 31
Wide Stack Management Register Format

X - reserved

Segment.- segment location of the stack

Logical address - logical address within the segment. Address
wraparound can occur within the current
segment.

AOS/VS Internals Chapter 2 Page 2-8

Program flow management consists of controlling the progran execution
(such as calling a subroutine) and handling faults.

----- ---------------I
1

I segment I
I I

Logical Address
1 1 __________ __

1 3 4
Program Counter Format

Segment - Bits 1-3 specify current segment

I
1
I ____ I

31

Logical address - logical address within the segment. Wraparound
can occur within the segment.

The program counter specifies the logical address of the instruction
to execute. Thus. it_controls the sequence of executing the instructions.
Address wraparound occurs within the c~rrent segment since only-bits 4
through 31 take part in incrementing the program counter.

To address the next instructionCfor normal program flow), the
processor increments the program counter

By one on single wcrd instructions

By two on two word instructions

By three on a three word instruction

By four on a four word instruction

Any of the follOWing events can alter the normal program flow
sequence.

executing an XCT instruction

executing a jump instruction

executing a skip instruction

executing a subroutine call

detecting a fault

detecting an I/O interrupt request

AOS/VS Internals Chapter 2 Page 2-9

In a subroutine call the call is made using either an LCALL or XCALL
instruction. The processor when using an LCALL or XCALL instruction
performs four steps.

1. Verifies that the instruction can access destination segment

2. Validates the entry point through a gate array in the
destination segment.

3. Redefines the wide stack and transfers call arguments to it

4. Transfers program control

A Gate Array is a series of locations that specifY entry points(or
Gates) to the segment. The processor accesses a gate array through an
indirect pointer in page zero of the destination segment.

o 151 16 1 31 1 1 -----------1----1--
Undefined 1 0 1 Maximum Number of Gates

x 1 Bracket 1 Program Counter Offset. Gate 0

1 X 1 0 1 1 Program Counter Offset Gate 1

1
1

X 1 Bracket 1

X 1 Bracket :

Program Counter Offset

Program Counter Offset

Gate 2

Gate 3

Increasing
·Addresses

1---
1 X 1 Bracket 1 Program Counter Offset Gate n-1
1 1---
1 0 11 314 31

Gate Array Format

Undefined - processor does not care

Maximum number of gates - total number of Gates

x - processor does not care'

Bracket - gate bracket unsigned integer value 0 - 7 identifies
the highest segment that can use the gate. If Gate 1
bracket contains 011. only segments 0 - 3 can access
the segment.

Program Counter offset - address of first instruction of the
subroutine in the destination segment.

AOS/VS Internals Chapter 2 Page 2-10

The processor interprets the effective address of the XCALL or LCALL
instruction as shown below.

1 - - - - - -1- - ~ - - - --- - -- - - - - - -,- -- ~ - ~ ~ - -- - - ~ - - - ------------,
1 I_ 1 1

X 1 Segment 1 Unused 1 0 I Gate Number 1
1 1 1 1 1 1 1_1 ___ - 1 __ 1 __ 1 , __ ~ ____________ -_~_-_ 1

o 11 314 151 16 117 311

XCALL or LCALL effective address

X - ignored by the processor

Segment - segment number of the destination segment

Unused - ignored by processor

Gate Number - gate in destination segment, used as index to an
element(gate) in the vectored array.

When executing a subroutine in another segment, the processor uses the
access privleges of the destination segment to determine the validity of
the reference. A Trojan Hors~ pointer exIsts if one of the arguments passed
from the source segment points to a location in the destination segment. (A
pri_vileged access fault would occur if a pr'ogran refers to a locatir: in a
lower numbered segment.)

For example: a trojan horse pointer can exist when a program in segment 6
calls a subroutine in segment 2 and one of the arguments passed is a
pointer to information in segment 2.

AOS/VS Internals Chapter 2 Page 2-11

Faylt Handling

While executing an instruction, the processor performs certain checks
or~ the operation and the data. If the processor detects an err'or, a
privleged ,or nonprivleged fault occurs before executing the next
instruction. When the processor detects a fault, it pushes a return block
onto the stack and jumps to the fault handler through the indirect pointer
in reserved memory. The initial and indi rect pointers to a fault handler
(except a page fault handler) are 16 bits. Levels of indirection, if any,
occur within the segment initially containing the pointer. A nonprivleged
fault pointer is located in page zero of the current segment. A privileged
fault pointer is located in page zero of segment O.

If a privilege fault occurs while processing a nonprivilege fault, the
processor aborts the nonprivileged fault and ,processes the privileged
fault.

If an liD interrupt occurs during the processing of a nonprivileged
fault the processor pushes the fault return block, updates the program
counter to the first instruction of the fault handler. then services the
liD interrupt. Upon returning from the I/O interrupt, the processor
services the nonprivileged fault.

Fault

Protection violation
Nonresident page
Stack operation
Fixed-point computation
Floating-point computation
Invalid decimal or ASCII data format

Faults

Type

Privileged
Privileged
Nonpri vileged
Nonprivileged
Nonprivileged
Nonprivileged

AOS/VS Internals Chapter 2 Page 2-12

Device management entails the transferring of data between memory and
a device. The processor can transfer data (bytes, words, or blocks of
words) with the prograrruued I/O (PIO), the Data Channel I/O (DCB) , Gr the
high speed burst multiplexor channel (BHC). Common to the three transfer
facilities are the 1/0 instructions, mapped or unmapped memory addressing,
and the interrupt system.

Programnled I/O

\~i th programr,led 1/0 bytes or words are transferred between an
ac:cunulator and a device. Programmed I/O is used to transfer data to low
speed devices or to initialize a data channel or a burst multiplexor
channel.

Data Channel 1/0

\-iitl1 the Data Channel 1/0, a transfer of words is initiated between
memory and a device. The data channel accesses memory directly (with or
\-.1i thout a device map). Thus the data transfer bypasses the accunulators.

High Speed Burst Multiplexor Channel

With the burst multiplexor channel,- a transfer of blocks of words
between memory and a device is initiated. The burst multiplexor accesses
memory directly (with or witout a device map). Thus, the data transfer
bypasses the accunulators.

With the introduction of the MV/10000 there became a need to be able
to specify which IOC (1/0 channel) to use for data transfer. The PRTSEL
instructior. was created for this purpose. It changes the default I/O
channel for data transfer.

PRTSEL - NIO 3,CPU with ACO specifYing tbe channel

-. ------- - --. ---- - -,--_._--- -------- --- - -- -- - -------
I I I
1 1 1

Undefined Reserved I I/O chan I
I I I I

'o-~«-------'-------------1-5 1-1-::"6----
1 ____ .1

28 29 31

Layout of ACO

AOS/VS Internals Chapter 2 Page 2-13

System Managemep~

System management provides facilities that determine processor
dependent configurations, such as the processor identification and the size
of main memory.

The processor supports memory management and system management
faclities for an operating system. The memory management facilities
transform a logical address into a physical address and monitor the
contents of the physical memory. The system management facilities return or
modifY implementation dependent information about the system and the
service faults.

The processor uses a virtual nemory of 4 Gbytes. Virtual memory
consists of eight segments or rings, which facilitate memory management. A
segment is an addressable unit of memory that contains programs and data. A
ring is a collection of protection mechanisms, which safeguards the
contents of a segment.

The processor addresses a segment through a 0 - 7 numbering system.
Each segment contains 512 Mbytes.

Segment 0
The processor executes privileged and non-privleged instructions
as the kernel of the operating system.

Segments 1 - 7
The processor executes non-privleged instructions in segments
1 - 7.

Since the iogical address space is larger than the physical address
space, the processor uses a demand-paging scheme. THe processor maintains
pages of logical memory on disk until it needs them in the physical
memory.(A page equals 2 Kbytes.) when referring to an instruction or to
data that currently resides on disk, the processor moves the page to
physical memory. However. when the physical memory is full, the processor
may first copy a page from memory to disk before moving the referenced page
into memory. To facilitate the operation the processor maintains a table in
memory that determines:

bits.

~~ere a page resides (memory or disk resident)

Bits 13 - 31 of a segment base register specifY a physical
address of a page table in memory. Each segment contains a
page table, which occupies at leat 2 Kbytes and begins on
an integral 2 Kbyte boundary. A page table contains entries
that indicate where the pages reside in memory.

when to overwrite a page in memory with a page from disk.

The processor maintains a table of referenced and modified

AOS/VS Internals Chapter' 2 Page 2-14

To access a memory word or words, the processor 'accesses a segment,
translates a logical address(indirect or effective address) to a physical
addresss, and accesses the physical page, which contains the word or words.

For the processor to access a segment. it first checks the segment
base register specified in the logical address. Bit,a of the segment base
register controls access to the segment by specifYing if the processor pan
refer to the segment for the instruction execution. If the processor cannot
refer to the segment. the processor aborts executing the instruction and
services a segment validity protection fault.

The processor maintains eight segment base registers (SBRa - SBR7) -­
one for each of the eight segments., A segment base register, contains
information which

Validates a segment access
Validates an I/O access
Specifies a one- or two-level page table
Specifies for the segment the address of the fir'st entry in the

page table.

1011121314 12113 311
-- ! -1- ! -1-----------------1---------------------------·----1 '
I 1 ILII!! 1
IV!L!EI/! reserved I phYSical page address 1
! 1 IF 10 I! 1

----~-----~------~~---------------------------------------I
V segment validity a - invalid'

a - 1 level
/ 1 - valid

L length (in PT levels)
LEF LEF mode indicator
I/O I/O alJowed

Notes:

o - I/O
o - no I/O

/ 1 - 2 level
/ 1 - LEF mode
/ 1 - I/O allowed

SBRs are loaded with one of the following instructions:

LSBRA - load all (0-7) of the SBRs
LSBRS ~ load some (1-7) of the SBRs

AOS/VS Internals Chapter 2 Page 2-15

PTE (Page Table ~y) with software extensions

In each segment. the processor accesses a page table that specifies
the status of the pages for the segment in ~emory. The page table contains
one entry (PTE) for each page, which

V
M
R
W
E

Indicates if a page is a valid access and the type of access
Indicates if a page is currently in physical memory
contains information needed to translate a logical address to a

physical address.

11111111
101112131415161718!910111213 311

---------------------------.----.---------~---------------I
! 1 1 1 1 1 lslilf!w!ul ! I 1
IVIMIRIWIEI Ihlllililwl I I physical page address
I I 1 I I I Irlslplr!fl ! I 1

--·--1
page validity
resident in memory
read access bit
write access bit
execute access bit

a - invalid
a - no
a - invalid
a - invalid
a - invalid

/ 1 - valid
/ 1 - yes
/ 1 - valid
/ 1 - valid
/ 1 - valid

The following bits are software defined:

shr page is shared a - not shared / 1 - shared
i/s initially loaded if unshared a - not loaded / 1 - loaded

data vs code" if shared a - if code / 1 - if data
fip fault in progress a - no / 1 yes
wir page is wired a - no / 1 - yes
uwf unpend waiters of fault in prog a - no / 1 - yes

AOS/VS Internals Chapter 2 Page 2-16

Address Translation

Following a valid segment reference, the processor checkS the range of
the logical address space wi thin the 5egment. end compares it to the
address range of the logical address. Bit 1 of the segment base register
defines a one- or two-level page table, which specifies the addressing
range.

The processor compares bit 1 of the segment base register with bits 4
- 12 of the logical address. When bit 1 equals a zero, the logical address
bits 4 12 must be all zeros. The processor aborts executing the
instructio~ and services the protection fault (page table depth fault) when
any of the logical address bits 4 - 12 contain a one.

-------------------- -- - ---- ----------------
1 1 1 1
1 1 1 1

X : segment: O--~----O : Page Level 1: Page Offset
1 1 1 1 1 • 1 1_1 ____ 1 1 ___ 1 __ _ ________ 1

o 1 3 4 12 13 21 22 31

One-level Page Table Logical vlord Address

- -- - _ .. - - --- - -- --- --------- - - ---
1 1 1
1 1 1

X : segment : Page Level 2 I Page Level 1 Page Offset
1 1 1 1 1 1_1 _____ 1 _____ 1 _________ 1 __ _

o 1 3 4 12 13 21 22 31

X - ignored by processor when using direct addressing. Tested

1
1
1
1

by processor when using indirect addressing, and continues
testing the bit in subsequent indirect address until bit is
zero

Segment - specifies one of eight segment base registers

Page Level 2 - specifies an entry in the first of two page tables
for a two-level page table translation. The page table
entry contains the address of the second page table.
For a one-level page table translation, the page level
2 field must be all zeros. If not zeros then page table
validity protection fault occurs.

Page Level 1 - sr;ecifies an entry in a page table. For a one- or
two-level page table translation, the page table entry
contains the address of the final page to be accessed
for data or an instruction.

Page Offset - The page offset specifies the final entry in the
final page. The page offset completes the address translation.

AOS/VS Internals Chapter 2 Page 2-17

~Acces;2

When an instruction refers to a page, the processor determines the
validity of the access by checking the access request with the appropriate
validation and access validation bits in the page table entry.

When an instruction refers to a valid page that is not currently in
physical memory, a page fault occurs. The fault handler saves the current
state of the processor in reserved memory (context block), moves a memory
page to disk (if required), and then transfers the referenced page from
disk to memory.

Access Validation

When a referenced page is valid, the processor. determines whether the
page is restricted to a particular access. Bits 2 - 4 of the referenced
page table entry contain the access bits that s~~cifY any restriction.

When the reference to memory is for reading, the processor checks bit
2. A one in bit 2 indicates a valid read, while a zero indicates an invalid
read. When the reference is invalid, a protection fault occur~ and AC1
contains the error code O.

When the reference to memory is for writing, the processor checks· bit
3. A one in bit 3 indicates a valid write. while a zero indicates an
invalid write. When thE reference is invalici, a protection fault occurs and
AC1 contains the error code 1.

When the reference to memory is for executing, the processor checks
bit 4. A one in bit 4 indicates a valid execute. while a zero indicates an
invalid execute. When the reference is invalid, a protection fault occurs
and AC1 contains ~he error code 2 .•

*** Note ~ In general, READ access must al~~ys be available to-any page
with execute access ••••

Demand Paging

Since the logical address space is larger than the physical memory
space, all pages cannot reside in physical memory at the same tin~. A
paging facility(under control of the page fault handler) moves - referenced
pages in and out of memory whenever necessary-- demand paging.

When an instruction refers to a valid page not currently in physical
memory or refers to a location that requires two-level page table when only
a one-level page table is allocated, then a page fault occurs. A status
field in the context block indicates the cause of the page fault. Refer to
the specific functional characteristics manual for more information on the
context block.

AOS/VS Internals Chapter 2 Page 2-18

Page faults

A page fault can occur for the following reasons:

Page table depth (an attanpt vias made to translate a two level
page table entry when only a one level
table was specifled)

Page fault when referencing a page table

Page fault when referencing an object page

When a page fault occurs, the MV will copy the current context block
into the locations pointed to by offsets 32 and 33 of segment o. The
processor then crosses to ring 0 and jumps indirect throught locations 30
and 31 of segment 0 which contains the fault handler.

Referenced anq modified flags

A referenced and a modified flag are associated with a physical page
in memory. When the processor reads a word from memory, it sets the
referenced flag associated with the physical page to one. When the
processor writes a word to memory, the processor sets the referenced and
modified flags associated with the physical page to one. A read or write
operation occurs when the processor accesses memory witout a protection
fault occurring on a memory resident page.

**** Note: An I/O memory reference does not affect the state of the flags

The referenced flag helps to determine which page in physical memory
the page fault handler should replace with a new page from disk. The
t'eferenced flag allows an operating system and the page fault handler to
determine the frequency of references to individual pages.

The modified flag indicates if the processor wrote a memory page. When
z. modified flag equals one, the processor modified the contents of the
page. The page fault handler must first copy the page to disk before moving
a new page from disk to memory. If a modifi.ed flag is zero, the processor
did not modify the contents of the page, and the page fault handler can
immediately move a new page from disk to memory.

AOS/VS Internals Chapter 2 Page 2-19

Central Pro~essor Identi~~

The processor stores information about the processor parameters (such
as the memory size and micro code revision level) in one or more
fixed-point accumulators. Refer to the specific functional characteristics
manual for, further information on the accumulators.

The following three load cpu identification instructions return the
infomation as shown.

LCPID

I
1
I
1
I

or ECLID

Model Number
I
1
I
1
I

I I,
1 1

Micro code Rev 1 0 I 0 I Memory Size I
I I I I 1 ___ - ______ 1 __ _

____ . ___ 1_1_1 ______ ---------- 1

o 15 16 23 24 25 26 31

bits 0 - 15 the binary value of model number (10001001001100) for MV10000

bits 16 - 23 current micro code revision

bits 24,25 set to 0

bi ts 26 - 31 arr.ount of physical memory available
a 0 is 256 Kbytes
a 1 is 512 Kbytes to a maximum indicating 16 Mbytes.

AOS/VS Internals Chapter 2 Page 2-20

NCLlD

Returned in ACO
-.-----.--.--.---1----------------- ------.-----------,

1 1

Undefined 1 Model Number l
1 1 1 1 ____ - ._________ 1 - 1

o 15 16 31 .

Returned in AC1

1 1
1 1

1
1
1

Undefined I 1 1 Reserved
1_1 __ -

15 16 17

1 Micro code Revision I
1 1

___ 1 ___ --_--_.-'_._-_·_-- 1 1 ____ -

o 23 24 31

Returned in AC2

1
1

1 Undefined 1
1 1

Memory Size
1 ____ ._------------_. __ . I~---_----.---_-
o 15 16

ACO - model number binary representation (10001001001100)

AC1 - Micro code revision

AC2 - Memory size

Bits 1 Meaning

16
17 - 23
24 - 31

1
- 1 ______ -----_._-------

1 Always set to 1
1 Reserved for future use
1 current micro code revision
1 1 __ -

A 0 indicates 32 Kbytes
A 1 indica tes 64 Kbytes

1
1
1 ______ 1

31

AOS/VS Internals Chapter 2 Page 2-21

Protection Violation

The processor performs certain checks on the operation and on the data
while executing an instruction. If the processor detects an error, a
privleged or non-privleged fault occurs. Since an operation could produce
multiple protection violations, the processor imposes priorities on the
faults. The processor services the highest priority fault and ignores lower
priority faults, when two or more occur •. For instance, the processor
services a level 2 priority and ignores a level 4 priority, when both occur
simultaneously.

When the processor detects a fault, it performs a segment crossing to
segment 0 (if the fault occurs in segment 1 to 7) and jumps to the
protection violation fault handler through the indirect pointer in reserved
memory. The initial and indirect pointers to the protection violation fault
handler are 16 bits. Levels of indirection, if any, occur within segment O.

If a protection violation fault occurs while handling a nonpriveleged
fault, the processor aborts the nonpriveleged fault and processes the
protection violation fault. The return block pushed onto the stack for the
protection violation fault is undefined, as are the contents of ACO and
AC1.

I Level of Priority
I 1-------------------I 0
I 1

2
3
4
5
6

Fault Description I
1
I

-----~- - -- -- -- ---.-•• - ---------------------- 1

Privleged or I/O instruction violation I
Indirect addressing violation I
Inward reference violation
Segment validity violation
Page table validity violation
Read, write. or execute access violation
Segment crossing violation

I
1
I
1
I ________________ . ___ ._. __ .• __________ 1

Priority of protection violation faults

AOS/VS Internals Chapter 2 Page 2-22

Q..35Q Programm-ing

The 32-bit processor executes 16-bit procesor instructions to provide
upward program compatibility and to develop 16-bit programs (for instance,
for the ECLIPSE C/350 procesor). Programs that include C/350
memory-referenced and C/350 stack-referenced instructions must meet certain
requirements or restrictions. The specific functional characteristics
manual presents any machine restrictions.

C/350 registers

The C/350 fixed-point accumulator bits 0-15 correspond to the wide
fixed-point accumulator bits 16-31. When a C/350 instruction loads data
into an accumulator. it alters bits 16-31. and ignores bits 0-15. \\lhen a
C/350 instruction reads data from an accumulator (bits 16 - 31), it does
not alter the contents.

The C/350 fixed point accumulator bits 1-15 correspond to the wide
accumulator bits 17-31 for relative addressing.

The C/350 instructions do not affect processor status register.

The C/350 floating-point accumulators are identical to the 32-bit
processor floating-point accumulators.

The C/350 program counter bits 1-15 correspond to the wide program
counter bits 17-31. A C/350 program flow instruction modifies bits 17-31,
while the most signi ficant bits are the current segment and zeroes.

The C/350 reserved memory in the MV processor does not implement the
auto-increment and auto-decrement loc~tions 20 thru 37. The processor
reserves these locations for storage of certain system parameters.

---_._-----------------_. __ ._-_._----_.
segment I 0-------------0 I C/350 effective address I

1

I I I 1 ____ -_------ __ 1 ______________ 1

3 4 16 17 31

C/350 program counter format

Segment - current segment

C/350 Effective address - remains within the first 64Kbytes of
the segment

AOS/VS Internals Chapter 2 Page 2-23

C/350 Stack

The C/350 stack (or narrow stack) supports C/350 program development
and upward program compatibility. Unlike the wide stack the narrow stack
only uses three parameters (in reserved memory) to define and to control
the narrow stack.

1. narrow stack limit - defines upper limit of stack

2. narrow stack pointer - current location of last word written
onto or read from the narrow stack

3. narrow frame pointer - defir.es a r'eference point in thE r.a rro\li
stack

C/350 Faults and Interrupts

The 32 bit processor services (with the same pointers and fault
handlers) the 16- and 32-bit floating-point and decimal/ASCII faults. It
also processes I/O interrupts the same way.

AOS/VS Internals Chapter 2 Page 2-24

Systan Control P~~l>..9r (SCP)

The systan control processor (SCP) is a systan within the MV computer
and has its own microcomputer. That is, the SCP has its own CPU and its own
operating systan. The SCP is a soft systan console. It performs diagnostic
functions and loads micro code into the microsequencer.

As a soft console, the SCP performs systan control functions. under
operator control. It permits the operator to load or examine and modify
main memory and to single-step through a program instructibr: by
instruction.

As a diagnostic tool, the SCP runs programs designed to help isolate
hardware problems. It also maintains an error log. When an error occurs,
the SCP records the type of error, its location, and the time it occurred.

The SCP provides all the systan timing for the MV computer systan. It
also connects to other components via several buses to allow examination
and modification or internal registers.

The operator terminal of the SCP gives the operator control over the
MV processor by transmitting commands to the systan and provideing direct
responses and reports.

The SCP also contains the real-time clock, the programmable interval
timer. and the primary asynchronous line. all of which appear to the main
processor to be I/O devices.

The data channel (DCH) provides 1/0 communications for medium-speed
devices and synchronous communications. The burst multiplexor channel (BMC)
is a high speed communications pathway that transfers data directly between
main memory and high-speed peripherals. The I/O-to-memory tran5fers for
both DCH and BMC always bypass the address translator.

DCH/BMC Maps

A map controls a DCl-I or BHC. This map is a series of contiguos map
slots, each of which contatns a pair of map registers - and even-mmlbered
register and its corresponding odd-numbered register.

The MV computer supports 16 DCH maps, each of which contains 32 map
slots. The DCH sends to the processor a logical address with each data
transfer. The proces~or translates the logical address into a physical
address using the appropriate map slot for that address.

The device controller performing the data transfer controls the BMC.
No program control or CPU interaction is rE"Ciuired, except when setting up
the BMC's map table. TIie BHC has two address modes and contains its own
map.

AOS/VS Internals Chapter 2 Page 2-25

BMC address modes

The· BMC operates in either the unmapped mode - that is, the physical
mode - or the mapped mode - that is, the logical mode.

In the unmapped mode, the BHC receives 20-bit addrsses fram the device
controller~ and passes them directly to memory. As the BMC transfers each
data word to or fram memory, it increments the destination address, causing
successive words to move to or fram consecutive locations in memory.

If the controller specifies the mapped mode for data transfer, the
high-order 10 bits of the logical address fram a logical page number. which
the BMC map translates into a 10-bit physical page number. This page
number, combined with the 10· low-order bits fram the logical address, forms
a 20-bit physical address, which the BMC uses to access memory.

BHC Map

The BMC uses its own map to translate logical page numbers into
physical ones.The map table contains 1024 n~p registers, the odd-nLmbered
registers each containing a 10-bit physical page number. The BMC uses the
logical page number as an index into the map table, and the contents of the
selected map register becomes the high-order 10 bits of the physical
address. .

Note that when the BHC performs a mapped transfer. it increments· the
destination address after it moves each data word. If the increment caus€s
an overflow out of the 10 low-order bits, this selects a new map register
for subsequent address translation. Depending on the contents of the map
table. this could mean that the BMC cannot transfer successive words to or
fram consecutive pages in memory.

DCHlBMC Registers

The MV computer system contains 512 DCH registers and·1024 BMC
registers. The map registers are numbered form 0 through 7777.

-----------I Registers I Description
I I 1---------------- 1----------· .. --- ------. ., ---------.. ~ - _ -- --... ------------

0000 - 3776

0001 - 3777

4000 - 5776

4001 - 5777

6000
6001 - 7677

7700
7701

7200 - 7777

Even-numbered registers most significant half of BMC
map positions 0 - 1777
Odd-numbered registers least significant half of BMC
map positions 0 - 1777
Even-numbered registers most significant half of DCH
map positions 0 - 777
Odd-numbered registers least significant half of DCH
map positions 0 - 777
liD channel definition register
reserved
liD channel status register
liD channel mask register
reserved
--- ------------ --- -_._----------_. __ ._---- -- -- -.-.

Device map registers

AOS/VS Internals Chapter 2

0000 -:---___ _
~~----- --- --------- ----

\ 1 Slot O' - high

3777
4000

BMC

slots

DCH
slots

5777 ----------------------------6000 I/O channel defintion reg
1--------------------_·_-<· .-.........

6001 1
I
1 Reserved

7677 1----------------------··-----
7700 1 I/O channel .status register

I . 1----------------------------
7701 I I/O channel mask register

7702

7777

I 1-------------------- --- ---

Reserved.

\ 1-------------------\
\
\

Slot 0 - low
I 1-------------------

Slot 1 - high
\ 1------·-- ... -.-.-------...

\ 1 Slot 1 - low
\1 ___ -- __ .----- __

DCHlBMC registers

I 1
1 V 1 D I' Hardware Reserved 1
I I I I 1_1_1 ____ - ___ . _______ . _____ . ______ . __ .•. _1

o 1 2 15
Even-Numbered Register Format

V - validity bit ; if 1 processor denies access

D - data bit
if 0, the channel transfe'rs data
if 1, the channel transfers zeros

Page 2-26

0000

0001

0002

0003

Reserved write to with zeros; reading these bits returns
undefined state

AOS/VS Internals Chapter 2

• 1
----------------j

1 Res I Physical Page Number
• • I __ "I _____ ~--------------

o 1 2
Odd-Numbered Register Format

Res - Hardware Reserved

15

1
• 1

• 1

Page 2-27

Physical Page Number - associated with logicaJ page reference

-. -. - - -." ..• - -- -j- - - -.- -- -. • - -.-- -.---,-----------.---.---.'
1 1 1 1 1 1 1 1 1 1 1 1 1

I E IRes IBV IDV :Res:BX : A : P :Disl liD Channel I M 0
• • • • • • • • • • ••• 1_1 __ 1_.1_1_1_1_1_1_1 ___ 1 __ 1 __ .1

o 1 2 3 4 5 6 7 8 9 10 13 14 15
I/O Channel Definition Register Format

E - Error flag

Res - reserved

BV - m1C validity error flag if BMC protect error has occurred

DV - DCH valioi ty error flag if DCH prott-oct err'or has occurred

Res - reserved

BX - BMC transfer flag BMC transfer in progress

A - m1C address parity error has occurred

P - BMC data parity error hs occurred

DIS - disable block transfer

liD channel - I/O channel number

M - DCH mode if 1 DCH mapping is enabled

o - always set to 0

AOS/VS Internals Chapter 2 Page 2-28

, , _____________ ._~ ___________ , __ 0 __ , __ - __ ,-:-__ , ___ ,

, I I I I I I

IERRI Reserved IXDCHI 1 IMSK lINT I , , , , , , ,
I_I 1 __ 1 __ 1 __ 1 __ 1

o 11 12 13 14 15
lID Channel Status Register Format

ERR - I/O channel detected error by IOC or memory parity eOrror .

Reserved

XDCH - DCH map slots and operations supported

1 - always set to 1

MSK - prev~nts all devices connected to channel fran interupptir.g
the CPU

INT - Interrupt pending

------------,---,---,--------------:-
I I I

Reserved IMKO IMK1 I Reserved I
, I , , I
1 ______ ------- 1 __ 1 __ 1 ___ -----------.-- I

o 7 8 9 1015
1/0 Channel Mask Register Format (MV/1000)

Reserved

MKO - prevents all devices on channel 0 from interrupting CPU

MK1 - prevents all devices on channel 1 from interrupting CPU

AOS/VS Internals Chapter 2 Page 2-29

Micro Code

The heart of the ~N hardware/software system is the micro code. This
micro code contains the data paths used by the firmware to decode the
instructions executable by each user. It is loaded from either disk or tape
at cold startup time. There is one istruction which accesses this area of
the machine. It is the LCS instructioll. lhis instruction loads and verfies
the soft internal states of the machine(for example, micro-store, decode
rams, and scratch pad). In conjunction with bits 16 through 31 of three
accumulators (ACO. AC1, AC2) , the LCS instruction performs a load and
verify. or verify only. using the contents of a micro code file.

ACO contains the load and verify, or verify only. argument. and the
destinaticn code; AC1 cor.tains the bit length of the code data; and AC2
contains a pointer to the first block of data.

ACO

---j----I --------- --~- ---- - --.-- - - -- --
1 1

I
1

I I I I
Unused :LlV : Destination Code

1 ________________ 1 __ 1 ___________________ 1

o 15 16 17 31

AC1

Unused : Bit Length :
I , , I _____________ 1 ____________________ 1

o 15 16 31

AC2

Unused
I

---- ------.-~--.------------

I
I , Pointer I

I , _____ .1---". __ _

15 16
---______ 1 ,----o 31

AOSIVS Internals Chapter 2

----.---------.-----.-------------.-------
I AC n I Contents Meaning

I I ------ -------_, . .,.- ----_._--------.. ------------------:-----
o LlV Load/YerifY option

o implies load and verifY
, implies verifY only

destination Code for where the data is to be loaded
code

, bit length Bit length of code data

2 Pointer Pointer to first block of dat.a
--- ----.. --.--- -- ----- _ .. ---------.--.------.------

Page 2-30

AOS/VS Internals Chapter 2 Page 2-31

Micro code File Format

The micro code file format contains data for use in var::.ous parts of
the machine's state. The micro code format is block-oriented format
(arranged into packets or blocks) that contains a description of the size
of the bloqk and the type of data it contains.

Comment Block 1
1
1 - _____ -1

Comment Block
1
1
1
1
1 ____________ 1

iterations from comment
block on down

------- -------------
Revision Block

--------------- -

-------- ---------
Comment Block

1
1
1
1
1 1 ____ - ____ _

Title Block
1
1
1
1
1 ___________ - - ___ I

Code Block 1
1
1 _________ - _______ I

- I
1
1
1 _______ 1 ______ ---

1 1
1 1

I Code Block :
t__ _ ___ -_____ I

1
1
1
1
1 1 ___ -

End Block
1
1
1
1
1 ___ I

Comment Block
-----1-- -- -----

1
1
1
1

--------------____ -_1

Optional

Optional

Fill Block 1
1
1 _______________ 1

Fill Block 1
1
1

-----------______ 1

Optional

AOS/VS Internals Chapter 2 Page 2-32

Micro code Block Format

Each micro code file must begin with a Title bloCk and finish with an
End block(Title/End block pair). Fill and Code blocks must be placed
between the Title/end block pair. The Revision block precedes the first
Title block. Comment blocks can appear anywhere within the micrc code file.

Kernel Functionality

The kernel is the minimum set of micro code necessary for the machine
to function properly. With the kernel instruction set (including the LCS
instruction) the processor can read in targ~t micro code from an I/O device
(using kernel I/O instructions) and then load this micro code into control
store using the LCS instruction.

Because there is a 16k-word limit to the amount of data that can be
loaded with a single LCS instruction, it may take several iterations of
acceSSing the'I/O device and executing the LCS instruction to completely
change the machine from the kernel to the target.

In this chapter the MV hardware was introduced along with the Systan
Control Processor and Micro code. The following chapter will discuss the
AOS/VS kernel. '

AOS/VS Internals Chapter 3

CHAPTER 3 -- AOS/VS KERNEL and DATA STRUCTURES
(AOS/VS revision 5.00)

Page 3-1

This chapter deals with the layout of memory for ring 0 and ring 1 of
the operating system. It also describes the data bases, queues and stacks
used by the kernel of the operating system. The operating system can be
broken into four pieces. They are:(1) base system, (2)memory n~nagement,
(3)processor management. and (4)1/0 device drivers. The first three pieces
will be discused in this chapter. The 1/0 device drivers do not need
discussion as the listings are pretty complete.

The ri~

The following section describes the rirlg structure found in the MV
hardware. and diagrams the layout of the two system rings.

General memory layout

Ring

7

6

5

4

3

2

1

o

1-----------------------1 1 main user ring !

1-----------------------1
1 user code !

1-----------------------1
I user code I
1------·--------------'. -'. I
1 user code/INFCS II 1

1-----------------------1
! AGENT/PM:iR
I~----------------------I
! not used 1

!-----------------------I
! per user kernel data !

1-----------------------1
1 Kernel 1

1-----------------------1

\

1

\
\
\

1
1

1

\
\

}
1

I

context specific
(switched for each
process)

context general
(not switched on a per
process basis)

AOS/VS Internals Chapter 3 Page 3-2

top of
physical
memory
(12 rob)

o

I-------------·--~· ---... -- !
1 Dynamic logical slots 1
1-----------------------1\
1 1 \
I I \
I 1 \
1 1 \
1 SWAPAREA 1)128 KW
! 1 /
! I /

1 /
1 I /
1-----------·· ··-... --····----1 <----\
1 1 \ \
I non-resident system 1 \ \
1 code 1 /48 kw \
1 I / \
1-----------------------1/)1/2 rob

1
Reserved 1

/
1 1
1----------------------- <-----<
1 \
1 Reserved \
1 \
1---.. ··· __ ····---,--_·_ .. -.:..,---- \

\
\

1 \
1 \
I CBASE (and CMEs) \
1 MLDUI) 32 mb
I SINIT1 1
I SINIT 1
! ------------------•. -- -- \ 1
I STACKS \ /
I RESIDENT KERNEL 1 \ /
I and DRIVERS I} 31kw 1
1 STABLE 1 / 1
! SZERO 1 / 1
1-----------------------1/-------1

AOS/VS Internals Chapter 3 Page 3-3

RING 1 memory-]..QY.9.u..t

Rjng 1 is defined as the context dependant system ring. For each
process, ring 1 is unique in contents, but the same in structure. This
implies that the first user CCB page for any user is located at the same
logical address in that users context. This obviously simplifies the
lookup of information in the databases.

The PTPs and COPs for all context switched rings (1-7) are located
in ring 1. The memory in ring 1 is like any other ring, ie. it requires
high and low PTPs and COPs to describe the logical/physical relationship of
its memory. This implies that ring 1 is self defining, or in other words,
the PTPs and CDPs that define ring 1 are themselves' located in ring 1.

To help localize PTPs and COPs, and therefore keep the number of
page 1 PTPs required to define the memory to hold the other ring PTPs and
COPs, the logical memory of each of rings 1-7 are divided into two groups.
The third MB of ring 1 contains the PTPs and COPs to describe up to 34 MBs
of each ring. The databases required to do this are:

One high level PTP per ring
Up to 34 low level PTPs per ring
Up to 34 COPs per ring

If a process' ring requires more than 34 MB, the remaining PTPs and COPs
will be built in a fixed location in the 4 and up MBs.

The diagram on the next page represents the ring 1 structure. Note
that the first RSRVO K words of the 3rd MB are dedicated to the PEXTN, the
user CCBS. some reserved locations, and the page file directory. .

AOS/VS Internals Chapter 3 Page 3-4

+-----.-----.----.------~.-."+
Remaining I 476 KW !
Ring 7 COPs (476) !

+-----------------------+ Remaining I 478 KW I
Ring 7 PTPs (478) ! I

+------ •. --- - . ~ ~.-~-- -----+

+------ ~,-.-. -.---.--.~-. ---'+
R6lJaining I 476 KW I
Ring 1 CDPs (476) !

+-----------------------+
Remaining ! 478 KW !
Ring 1 PTPs (478) I I

+--------_ .•. _-----_ .•.• ,---,-+ \
Ring 7 COPs (35) I 35 KW

+--------------.---------+ \
Ring 7 PTPs (1+34) ! 35 KW I

+-----------------------+ \
Ring 6 COPs (35) I 35 KW I

+-----------------------+ \
Ring 6 PTPs (1+34) I 35 KW I

+------,. - ---,-----,--------,+ \

\

+-----_ .•. _-_._---_._._-- .'-- •. + \
Ril1'g 2 COPs (35) I 35 KW I

+-----------------------+ \
Ring 2'PTPs (1+34) I 35 KW ! \ 1 MB

+--------------..:----- ----+ /
Ring 1 COPs (35) I 35 KW !

+-~----- ------_._--------+ /
Ring 1 PTPs (1 +34) I 35 KW !

+-----------------------+ /
Page file directory I 1 KW I

+-----------------------+ /
Reserved (5) t 5 KW I

+-- . --+ / .
VTeB pages (3) I 3 KW !

-i-'- --+ I
U5er eCB pages (7) I 7 KW !

+--------------... _----_._--+ /
PTBL extender page ! 1 KW !

;-· .. --$·------··----~·~·~·~·---+I
I 1 MB I 1 MB
+-------_._-'------- _._--_._+
I 1 MB ! 1 MB
+-.---------.--.~.--.------.-.-+

AOS/VS Internals Chapter 3 Page 3-5

Memory chains

GSMEM

GSMEM is the term used to describe the. pool of various size blocks
of general system memory. There are 8 sizes of GSMEM blocks, and therefore
8 different chains:

FC8
FC16
FC32
FC64
FC128
FC256
FC512
FC1024

The chain of free 8 word chunks (blocks)
The chain of free 16 word chunks (blocks)
etc.

The chain of free 1024. blocks (or pages)

GSMEM is also managed using a modi fed buddy system (described
below) •

The Modified Buddy System

GSMEM chains are managed using a modification of the buddy system
described in Knuth. "The Art of Computer Programming", vol 1. An
explanation, by way of example, as to how it works is as follows:

Assume we need a chunk of 36 words of GSMEM to hold a database.
First. we round 36 up to the next multiple of 8, which is 40. 'We next
allocate a chunk of memory from the FC64 chain, passing its address to the
routine requiring the memory. Since the database will only occupy the
first 40 words, we break the remaining 24 words up into two chunks, one of
16 words, the other of 8 words, and put the addresses of these chunks onto
the FC16 and FC8 chains respectively. If there are no chunks on the FC64
chain, we break the first entry on the FC128 chain into two 64 word blocks
and put their addresses on the FC64 chain (we now have something on the
FC64 chain and can proceed as above). If there are no entries on the FC128
chain, split the FC256 chain and continue. If there are no entries on the
FC256 chain, try the FC512, and finally the FC1024 chain. If there are no
free blocks on the 1024 chain, we either pass back an error to the calling
routine if the routine can pend, or ••• we are in trouble.

AOS/VS Internals Chapter 3 Page 3-6

When we are done using the database, we return the memory to GSMEM,
and attempt to regroup the block into larger blocks. However. a block can
only regroup with the chunk it was split fran' ••• it's buddy. The
detennination of a buddy is done using the following algorithm:

GSMEM block address size = 8. buddy address

130 = 001 011 000 XOR 000 001 000 = 001 010 000 = 120
120 = 001 010 000 XOR 000 001 000 = 001 011 000 = 130
110 = 001 001 000 XOR 000 001 000 = 001 000 000 ~ 100
100 = 001 000 000 XOR 000 001 000 = 001 001 000 = 110

GSMEM block address size = 16. buddy address

120 = 001 010 000 XOR 000 010 000 = 001 000 000 = 100
100 = 001 000 000 XOR 000 010 000 = 001 010 000 = 120

In general:

Buddy address = (block address) XOR (size of block)

Again it is important to stress that a block of GSHEM will
only combine with its buddy.

AOS/VS Internals Chapter 3 Page 3-1

The LRU chain in AOS/VS is composed of pages of memory that have a
use count of O. These can be either shared or unshared. When the PFF
algorithm (see below) removes pages from a user's working set, the pages
are put at the end of the LRU. If the user faults in the page before the
page is ranoved from the LRU (the CHE will have 'a status bit set saying
that the page is on the LRU, a search is not necessary), the page will be
unlinked from the list. and put back into the user's working set (the CME
also contains the logical address/PID number of the user using the page to
prevent a page from being removed from the LRU and put back on before the
original user requests the page again).

When AOS/VS requires memory, it will look at the LRU (fran the
beginning, or oldest page) if nothing is available on the FC1024 chain.

Process memory chain-1PS~EMQ)

Each process table extender has a doubly linked list of memory that
h2S been allocated for a process, but not assigned. As an example, when'the
GCORE routine (called when a process is selected for swapin) gets the
r€quired page frames for a process the pages will be linked onto PSMEMQ.
Later. when pages are needed for the process, a special routine (PGMBLK)
will be called which will
look first at the process memory queue.

The queue is made up 'of chunks of contiquous memory 'linked
together th~ough their first words.

PMFL.W
PMBL.W
PHST

PMSIZ

offset
o
2
4 .

"

5

forward link
backward link
status
. bi t 0 - LPA memory area

1 - SPH memory area
memory size (usually 1024.)

AOS/VS Internals Chapter 3 Page 3-8

Databases

The following databases are used in managing AOS/VS memory.

There is one CME (core merr.ory entry) associated with each physical
page of memory (each page frame), and the database serves as the principle
descriptor for that page. The CMEs are allocated at SINIT time after the
SINIT code determines the size of the ECLIpSE MV's physical memory
(obtained from the CPUID). There is a page 0 location called CBASE;W that
points to the base of the CHEs, which are allocated contiguously from that
point. Therefore. the form~la to find a CME is:

CBASE.W + (page # * CMPLN) where CMPLN is the size of aCME

The CME looks like this:

CMPFL.W
CMPBL.W
CMPST

CMPUC
CMPID
CMPWC
CMPPT.W

CMTIM.W
CMPGNR

offset
o
2
4

5
5
6
7

11
13

Forward link if on the LRU
Backward link if on the LRU
Status of the page
bi t - 0 I/O in progress

1 unused
2 'this is a shared page
3 I/O error detected on page I/O
4 page in use by AOS/VS
5 CDE page
6 release to LRU list when count :: 0
7 call unpend when I/O completes
8 ,page is on LRU
9 PTE page

10 level 2 PTE page
11 page is modified
12 flush waiting for page CCB unlock
13 another path waiting for CME flush
14 unsued
15 un,used

use count
PID (when on LRU)
wired count
various information

Physical page # when cn free chain
SPH address if a shared page
FCB header address if a FCB pase
LPA header address if a LPA page
if an unshared user page
bits 0 - 21 logical page #

22 - 31 PID
RTIM.W value at last fault (time stamp)
physical page number corres~onding to this

CME

The current length of a CME is CMPLN (12.) words.

Note that CMPUC and 01PllJ :JI', , (h-t Ifwd ;),'5 the ~)(..1111e offset!'>

AOS/VS Internals Chapter 3 Page 3-9

Virtual CMEs (VCME) are written to the swap file along with the
memory image when a user swaps out. They are used to reconstruct the CMEs
associated with the user when the user swaps in~ They are 8 words long.

VCMPFL.W
VCMPBL.W
VCMPST
VCMPWC
VCMPPT.W

offset
o
2
4
5
6

forward link
backward link
status (same as CME status CMPST)
wired count
logical address

Shared page headers (SPH) are used to define a shared page. There
is one SPH per shared page independent of how many processes are sharing
the page. SPHs are linked off of the FCB (file control block) for the -file
in which the page is found.

offset
CFFLK.W 0 Forward FCB link
CFBLK."I 2 Backward FCB link
CMI~AP 4 physical page number
CMLAH.W 5 Disk logical address (block number)
CMFCB.W 7 parent FCB address
CFBLH. \-1 11 File logical address (block numbed
CMLPQ.W 13 LPA queue descriptor (4 words)

SPHST 17 shared page status word
(bit 0 - page is locked bit)
(bit 1 - someone is waiting on lock)

CMHLKF.W 20 system wide hash link (forward)
CMHLKB.W 22 system wide hash lir!l< (backward)

SPHs are SPHLEN (20.) words long.

AOS/VS Internals Chapter 3 Page 3-10

LPAs, logical page associators, are used to associate a logical
page in a process' 5 address space with a shared page. LPAs are grouped in
pages reserved for there use. Additional pages are allocated on demand and
returned when not needed. LPAs are pointed to by the SPH they are
associated with.

LPFLNK. \-1
LPBLNK.W
LPLOG. vI
LPVIC. vf
LPPID
LPWC

, offset
o
2
4
4
6
7

, .

Forward link off SPH
Backward link off SPH
Logical address
temporary storage location
PID
Wired count (system+user)

Note that LPWC.W and LPLOG.W are define the same offsets.
Each LPA is currently LPLEN(8.) words long, and there are NUMLPA
(128.) LPAsper LPA page.

Each LPA page has associated with it a descriptor. These
desciptors are linked off of LPACH.W and' SPHCH.W and look like this:

PGDFL.W
PGDBL.W
PGFRAME
PGUSC
PGFFL.W
PGFBL.W

offset
o
2
4
5
6

10

Forward link (off LPACH.W)
Backward link (off LPACH.W)
Phy sical page II
Number of LPAs in use on this page
Head of 'free LPA chain on this page
Tail of free LPA chain on this page

LPA page descriptors are 10. words long

CDEs <.9.9ntrol directory entry)

For each shared data page in a user's address space, it is
necessary to map the physical page to the corresponding file and disk
address. This is done with the CDE. A CDE is a double word database found
in ring 1 and is managed in the same way PTEs are.

10 718 311
i-------,---.---+----,-------.------- ---.... '.- ... -- .. -+
1 Channel #! page offset in file !
+-------------i--------------------------------+

CDEs are collected in Control Directory Pages (CDPs). A count is
maintained in the CME for a CDP of how many CDEs are currently defined on
the page.

AOS/VS Internals Chapter 3 Page 3-11

VT~Bs are located in ring 1 of erJch user. They contain the
information that must be preserved during a page fault on the corresponding
TCB. Therefore. there is the potential of 32 VTCBs. The first five VICBs
are located in the PEXTN page (in the area once occupied by the per process
stack). The remaining VTCBs are allocated when needed in ring 1, 9. per
page, thus requiring a possible 3 pages to store thE; complete VTCB group.

At the time of a page fault, the MV processor will store the
current fault context block in the corresponding a reel of the VTCB (pointed
to in page 0). In addition, the VTCB has a two word save area. The use of
the area is discussed later in this chapter.

Each VTCB is structured as follows:

+--------------+

I
I
I
I

Fault
Context
Block

1\
I \
I >
: I
II

+-----.-- -----. --I-
: Temporary I
+--------------+

VTCXB.W
VTSTK. W

o
162

106. words

2 words

fault context block
stack block

VTCBLN.W is the length of the block (108. words)
~~TCB is the maximum number of VTCB's (32.)
VTCBPPG is the number of VTCB's per page (9.)
SCVTCBEX is number of VTCB's in PT extender (5.)

AOS/VS Internals Chapter 3 Page 3-12

Systen p~.z~r..Q

The following is a sLllllIlSry of important page 0 locations, with a
brief description of their functions

PRSTK. W: points to the per processor stack
SUBSL: -320. -(# of PIT ticks in a sub-slice)
MAXRCB: 20 maximum # of resident control blocks

GARAY: The ring 0 gate array • These are the gates:

function

schedule a task
systE!ll call
PKlR panic

Entry point + high gate

RUNST+?ARING
SYST+?ARING
PPNIC+?PRING
UINTR+?URING
DEBBRX+?ARING
DEBBRZ+?ARING
RUNIT+?ARING
RUNIS+?ARING
SIGNL+?URING
WTSIG+? U RING
SIGWT+?URING
NSIGNL+?ARING
NWTSIG+?ARING

. ?IXIT

NSIGWT+?ARING

GATENUM = 14.

enter debugger fram BKPT in ?URING
debugger start up fram ?URING
?H5G gate
?RFSCHED ga te
?SIGNL gate
?WTSIG gate
?SIGWT gate
New ?SIGNAL gate for information to GURU
New ?WTSWIG gate for PMGR.sched tuning

(ring 3) .
New ?SIGw~ gate for PMGR sched tuning

(ring 3)

number of ga tes

?ARING = ?PRING = 3 in the ring field
?URING = 7 in the ring field

COPYR: The Data General Copyright

NGHBT: Name of the AGENT file (AGENT.PR)
PCTBL: Unsafe panics table
INCHK: In checksun loop. indica tor
SYSIN: In systE!ll flage 1=in systenlO=in user
INTLV: current interrupt level (O=base, n=level. define by the MV

hardware as page 0, ring 0, offset O.

TSPTB.W:Time slice end flag
TSLSV: Temporary tin~ slice save area (for storage during interrupts)
CTSK.W: The current executing task
CMAP.W: Pointer to the address of the current user map
TODH.W: Time of day in seconds
HTIM.W: Page fault- relative time (incrEmented at each page fault)

AOS/VS Internals Chapter 3 Page 3-13

HPf-liR: Master peripheral manager
DCTCH.W:Unit DCT chain

CC.W: Currently executing ELQUE entry
OCC.W: Old CC.W

SCPCL.W:SCP/HOST communication buffer list

Important offsets in STABLE.SR

PIDBT
PIDTB.W
PIDLN

SKLTN
SHTDN
AOSBT
ESDS\.;r
OVFAH.W
RTCCB

PIFCID.W
PERCID.W
NETCID.W
HIFCID.W

LHID
LHNAM
PPBCH.W
PPBCHB. \oJ

CXPBLK. \<1
CNXTB.W
CPUID. W

SSBRTAB:
SBRTAB:SBR1
SBR2-SBR7

REFSIZ
.SFILE.W

HISLS.W
CKSUM
OVMIN
CXFLAG

INITF
DCHN.W

CRUN.W

Pid usage bit table (bit set indicates PID in use)
Pointer to the process table address table
Length of the process table table hnitially 16.)

Skeleton (universal) systan indicator (-1 -> not)
+1 systan is shutting down
-1 -> abnormal shutdown / 0 -> normal shutdown
In ESD indicator
Overlay file logical disk address
31 words reserved for the systan root CCB

The Process Information File (PIF) CID (channel ID)
The :PER CID
The :NET CID
The Host ID file CID

local host ID
local host name (16. words long)
protected file permission block page link(forward) .
protected file permission block page link(backward)

connection table/protected shared file lock word
address of the connection table (0 -> not defined)
cpu id and micro code word

ring 0 SBR
ring 1 SBR (and start of the context dependant SBRs)
ring 2 - ring 7 SBR

size of the referenced bit matrix (set up by SINIT)
pointer to the PAGE file table

Base of the active histogram chain
Current checksum value
minimum number of overlays allowed in memory
context block format flag initialized to MV/8 or tW/6

format

in initialization flag (1 -> still initializing)
Base of the active delay chain

currently running PTBL

AOSiVS Internals Chapter 3 Page 3-14

N_T_RUN.W
OLDNTRUN
NTRUNDUP

WTSCON
WTSCINT

WTSCINTL

WTSCDCC

WTSCDCCL

WTSCCYC

WTSCCYCL

WTSGO

WTSCIDL

WTSCIDLL

SSTKCT
SSTKQ
RSTKCT
RSTKQ

G1
G2
G3
G4
QMIDDLE
QMIDCNT

G1RANGE
G2 RANG E
PRANGE

HIBLK
LLCXiICAL

SCTBL.W

LSWPAD
SWQD.W
SPQD.W
SVQD. \&1
SBQD.W

highest priority entity ready to run
last occupier of ~T_RUN.W
indicator that there was a second structure which had the

same
PNQF as the curent structure in N_T_RUN. W

flag which shows weighted scheduling desired
number of seconds to wait for examination to determine if
weighted scheduling to be used
nuber of seconds in the time interval which elapses between
checking cpu utilization
counter of the number of seconds of the duty cycle

ranaining
duty cycle number of seccnds of a time inter'val during

which weighted scheduling is enabled.
number of times we will get to the end of ELQUE whil~

looking for someone who is both r6ady to run and who
has not run this interval when this counter goes to
o ,shut off WTSGO

number of tiu~s we will get to the end of ELQUE while
looking for a PTBL which is both ready to run and not
run this interval

tested after each structure has been selected via nc·rmal
scheduling. If 1 then we are in the time interval after
having found we are in cpu contention.
Simple counter inc'd in the idle loop used to register the
amount of activity in the idle loop.
If this number of counts is recorded in the idle loop
during a time interval then weighted scheduling should
begin.

Number of free group 2 control blocks
Free group 2 control blOck queue
Number of free group 1 control blocks
Free group 1 control block queue

high priority for group 1 processes
high priority for group 2 processes
low priority for group 3 processes
high priority for group 3 processes
PNQF at the 'middle' of group 2
counter of II of q' s fran head/tail if positive more q' ~
fran head if negative more q's from tail

group 1 range set up at sinit time
group 2 range set up at sinit time
values for entire priority range

highest block
last logical page in use

Address· of system call count table

logical address of the swaparea
Physical address of the queue descriptor for VCHE
Physical address of the queue descriptor for VCME
Physical address of the queue descriptor for VCME
Physl.cal address of the queue descriptor for VCME

AOS/VS Internals Chapter 3 Page 3-15

SWPSI
SWPSO

TOQUE

BFLRU.W
BTAIL. W
BUFCN

FCB
FC16
FC32
FC64
FC128
FC256
FC512
FC1024

CBASE.W

LRUCH.W

UPSYS.W

SFHCH.W
LPACH.W
FCBCH.W

IFCB

SMFLG
CMFLG

MKEY

BIAS
I-lEUS

ELQUE

IEBLK

IEQUE
IESWP
IE RES
BLKQ
MBLKQ

DMTSK
CMTSK
RTPTB

BTBL

global count of swapins
global count of swapouts

timeout request queue

list of free buffers in LRU order

Number of buffers currently on the free buffer LRU

Free 8 word GSMEM queue (. vJ)
Free 16 word GSMEM queue (.W)

Free 512 word GSMEM queue (.W)
Free 1024 word GSMEH queue (.vJ)

address of the base of CMEs

Chain of CMEs describing shared pages with a use count
of zero

Queue of high address system pages (overlays) in memory

Chain of SPH page descriptors
Chain of LPA page descriptors
Chain of FCB page descriptors

FCB/CCB unique ID. (initially 1, incremented each time a
FCB is created)

Core manager request flag
System manager request flag (this is not a typo)

System ~emory key (incremented when memory is released)

Minimum m.mlber of non-interactive processes in memory
Maximum number of non-interactive processes in memory

The major queue bases

The disk manager control block
The core manager control block
The root process table

The interrupt vector dispatch table

AOS/VS Internals Chapter 3 Page 3-16

MDCH1-
MDCH8

FLTBK.W

fXTNPG:
PFDADR:

VTCBTAB:

INUSER.W
INSYST.W
IDL.W

DFSPCNT
GSWOTM.W

The data channel map control slot (bit =1 -> free slot)

Faul t block for systan

PEXTN address in ring 1 (constant for all users)
Page file directory address in ring 1

Address of the VTCBs in ring 1

of interrupts in non-ring 0 code
of interrupts in non-checksum loop
of interrupts in idle loop (checksum loop)

The default maxirrn,lmper ring IPC mess.1ges spooled
Time stamp of the last process picked by COREM for
swapout

These offsets are related to faulting information gathered by the systan.

DIRFLT.W

INFLT

LSFLT.W

PENDFLT.W

Count of faults run directly.

Count of faults using a CB.

Count of logical faults on systan pages.

Count of faults that pended.

The following symbol is used for t~ning.

I At-1TU NED This item is the flagword to signifY that the tuning
program was run.

TIle follOWing symbols are used by the terminal utilization utility
(GURU)

GURUBTIP

GURUETIP

GURUFLAG

GURUTB.W

GURUBUCK

This is the mask showing 'the 'conditions under which
to begin timing.

This is the mask showing the conditions under which
to end ti ming.

If on then we wish to use the GURU utility

The address of the GURU buffer.

The number of ticks in each bucket

AOS/VS Internals Chapter 3 Page 3-17

Ma j or da tabases

Each process in AOS/VS has associated with it two major databases
one called the process table (PTBL) and the other called the process table
extender (PEXTN). The PTBL is always available in memory, while the PEXTN
will swap out \olhen the process does. Therefore. the PEXTN cannot contain
any information vital to process schedulir.g and swapping. Examination of
the PEXTN offsets will bear this out. Both of these databases are defined
in PARS.

PLNK. \II

PBLNK.W

PSTAT

PNQF

PPC.w

PKEY. W

Below are same of the more important PTBL offsets:

forward link for connecting the process table to one of
the major queues

backward link for major queues

contains the most important status bits for the process

Priority eNQue Factor - determines the order in which
this PTBL will be enqueued (see chapter 4 for formula)

address to begin processing when this PTBL is given
control

key on which to unpend this process

PDAD.W, PSONP.W father. son, and brother PTBL addresses
PSONL.W

PFLAG - PFLG4 additional process status words

PEXTN.W pointer to the process table extender

PSFDF. W,.PSFDB. W Spool file directory chain (forward/backward link)

PSFRC.H Spool file entry count (1 byte per rings 4 - 7)

PIORR.W outstanding IREC receive chain

PIPCS. W IPC spool file CCB address

PID the PID

PPRV aSSigned priviledges (superuserlsuperprocess •••) flags

PCMLK. v! link word for processes waiting for sv.;apin or swapout

AOS/VS Internals Chapter 3 Page 3-18

PSLEX time slice exponent (see chapter ij for calculation)

PDLNK.W,PDINH.W offsets used in managing ?WDELAY system calls

SWCCB.W,PGCCB.W swap and page file CCB addresses

PWSET

PWSSH

PSROO

PTRGC

working set size

number of shared pages in the working set

server ring bit ma~ (bits 0-1)

target systEm call count (if of system calls currently
targeted at this process

Same of the more ~mportant PEXTN offsets:

PSQCT

PSQMX

number of active system calls for this process

maximum allowed number of calls for this process

PWCCB.W,PDCCB.W address pf the current directory CCBs (working/default)

PCTSK.W

PSWD.W

PSL

PSBR1.W -
PSWB1.W

PDFR.W

PSRCH.W

PU~

PPNM

PWSMIN, PSWMAX

PCAPT

PRFIL1.W -
PRFIL1.W

PMEMDIS

PUCCBS

address of this processes current TCB

chain of TCBs waiting for CBs and. stacks

. number of PIT ticks left in the current subslice

The ring 1-1 SBRs ass·ociated with this process

chain of tasks with outstanding ~~ELAYs

eight addresses of the searchlist CCBs

eight words for the username

the first 15 letters of the progran name

the minimum/maximum working set

time constant used in PFF aJ.gorithn: (not used)

address of the CCBs associated with the • PR files for
rings 1 - 1

1 sets of 12. words each used to describe the memory
in each ring (see PARS page 19)

1 words of counters indicating the number of user CCBs
in.each of 1 corresponding user CCB memory ~ges

AOS/VS Internals Chapter 3 Page 3-19

PRMUNP, PRMSHP number of removable unshared/shared pages

PRCCB. ~:

PFRING

PSWOTM.W

address of the breakfile CeB if one is requested

ring of father that issues the ?PROC call

swapout start time stamp

The PSI data base contains a linked list of CCB's for open (hot)
but no longer needed page, swap, and ipc files. These files are not
needed because the pr'ocess that owned them has since tenninated. When a
new process takes an associated pid number this database is accessed to
find psi CCB's associated with a pid. This process saves the system
overhead of opening and closing of system files each time a proc is done.

The symbols dealing with Page/Swap/Ipc start with the letters PSI.

PSIBEG

PSIEMP.W

PSIFLG

PSlMAX

PSINOT.W

PSIOPN

PSIREQ

PSITAB.W

PSITOT

Hot PSI pool queue despriptor.

Count of the number of tiQes the optimization of
procs failed because the pool was empty.

Hot PSI locking word.

Absolute maximum hot PSI pool size (20)

Count of optimiztion failure do to the associated pid not
being in the pool.

Current.number of open PSI's.

Requested pool size (default 5)

Address of the first word in PSI pool.

. Current hot PSI pool size.

PIDBT is a bit table containing a bit for each possible PID. Bit
number I will be zero if no process currently exists with PID = 1. Bits 0
and 3 are preallocated for the root process and for CLIBT.

AOS/VS Intern"".; (:'C1pt .. :' 3

PIDTB - The Table of PID1s

Page 3-20

PIDTB is the pr'ocess-identifier-to-process-table-address conversion
table. Its current size is kept in location PIDLN in page zero. PIDTB
entries are defined as follows :

PIDTD(PID) = 0 if nc, pl'i:ces •. : exist:::; ,~i th that PID

PIDTB(PID) - prcx;t:.S:';';l' t8Dle dddl·I~S:.'1 'f that PID exists

PTDTlj i:; ll;:tLll" (;;t .'~E!IT' [:1(;;) allocated in a 32 wor'dGSMEM
cLunl<. TI1e l i'~;t tn:!c the: i'L </)li'l ';ACll\.i~ the ler,gtb of the table, a
table \'vJtce !.iF :;i2,(' (32 •• fLj .• 1 ;18 • ,. 2')6) is allocated out of GSMEH,
the ola taDh.· '.:;,;.>J into the .. ~(.\ er bJd "l' t.he new one. and the old one
is released to (..;::t'lEr·~. This 1S ci;.l'td from the PROC2 module •

•

•

AOS/VS Internals Chapter 3 Page 3-21

Control blOcks

Control blocks are used for cases in which the system needs a stack
to handle a code path, and there is a possibility that the path will pend.
These stacks may be allocated when a user makes a system call which
requires a stack, or they may be allocated for system use (daemons).

There are three types of control blocks; resident, or those
associated with resident or preemptible processes, swappable, or those
associated with swappable processes, and three special CBs associated with
the disk manager. core manager, and systan manager. Each control block has
its own stack and these will be discussed later when we deal with the
subject of stacks.

The first eight offsets of a control block (CB) matches those of a
PTBL (thus allOWing the two types of databases to be handled by the same
queue search routines). It is through the first tWG links (PLNK.\o! and
PBLNK.W) that CBs and PTBLs are linked onto the eligible queue. !pe other
important offsets are: ..

CATCB. W

CBFEH.W

CMQWD. \oJ

CSTKC.W

CPTAD.W

CERWD

CBDLS.W

The address of the user TCB that the system call is
running on behalf of (or 0 if a daemon or the core
manager)

CB fatal error handler address- The address the system
should pass control to on a trap within the system. If
the CB can better handle the trap, it will ••• otherwise
we will panic .

used only by the CMTSK CB. It is the start of the swap
in / swapout queue.

The pointer to the stack base for the stack associated
with this CB

The address of the PTBL that this CB is running on
behalf of

When a routine processing a CB request encounters an
error, the error code is stored into this location. The
CB dismissal routine will check this word, ar.d if non
zero, pass the value back in the TCEs ACO

Each CB has a DLS (dynamic logical slot) associated with
it. This offset points to it.

Each control block has associated with it a fault context context
block, a stack, and a dynamic logical slot. When the control block is
selected as the entity to run, the MV's hardware registers are set up to
point to the appropriate corresponding values for the control block. The

ADS/VS Internals Chapter 3 Page 3-22

memory needed for a CB is allocated from GSMEM except for the first group 1
control block (CBOOO), the CMTSK CB, and the system manager task CB. The
physical layout of the memory associated with a CB is as follows:

Each control block has associated with it a page fault context
block, a stack, and a dynamic logical slot. When the control block is
selected as the entity to give control to, the MV's hardware registers are
set up to point to the appropriate corresponding values. The databases
irlvol ved are linked together as follows:

+---------------+ Stack addr-6 ->1 context blk I
+---------------+ Stack addr-4 ->1 CB address
+-----------------+

Stack addr-2 -> I stack limit 1--\
+-----~-----------of- 1

Stack addr --~->I 1 1
1 1 1
1 512. \'lcrds 1
1 1 1
1 1<-1
+---------------+

Unallocated CBs (those not on ELQUE) are enqueued to either SSTKQ
(if it is a b"Wappable CB) or RSTKQ (if it is a resident CB) The- maxinun
number of resident control blocks is specified in the page zero location
MAXRCB (currently 16.) -

Each time a resident process is proc'ed, the group 1 control block
pool grows up to the maxinun. Upon process tennination, if the process
terminating is resident. the pool will shrink.

NOTE: Queues used by the AOS/VS diskworld are discussed in chapter 6.

AOS/VS maintains 1 major queues that are used in scheduling and
scheduling related functions. These are:

ELQUE
BLKQ
HBLKQ
IEBLK
IESWP
IERES
IEQUE

the eligible non-blocked queue
the eligible blocked queue

- the eligible explicitly blocked queue
the ineligible blocked queue
the ineligible swapped queue
the ineligible resident/preemptible queue
the queue of priority swapins for calls
involving move bytes and IPCs

[AOS/VS Intet'Tlals Chapte." 3
I

Page 3-23

ELQUE is a special queue in that. it, contains both CBs and PTBLs.
AJ 1 other queues contain only PTBLs.

The."e are two offsets found in both tht~ process table and thc
contr"ol block which are used t.o link i tuns on the quelJCS together. they
a."e:

PLNK.W
PBLNK. \of

which is the link to tbe next itan on the queue.
which is the link to the previous itan on the
queue.

These queue~, (due t.o the comlOOn link word) ere mutually E:xclusive,
implyjng. th;Jl CI pt"oces~; ean only be on one of Uw qucue:.; ut a givE.'p tillle.

FLQUE - This location, definE'd in STABLE, points t.o the head of the
eligihlc queue, which is always the core manager control block
address.

TIle eligible queue is a linked. list containinr, the Core
~~anager, the syst.an manager. any control blocks in use,
and the pt'ocess tables of any eligible proces!3es.
Subsequent links in the chain are linked both
forward and backward through offsets in the process table,·
and all lini{s are either control block or process
table addresses.

The eligible queue is always headed by the Core Hanager control
block, and the last entry on the eligible queue is the addres~
of the root process table. The order of entries on the queue is
determined by the entries PNQF which will be discussed later.

aINT - number of eligible interactive processes.

aNON - number of eligible non-interactive processes.

These two counts are defined in STABLE. For -AOS/VS, a
non-interactive process is a swappable process having a time slice exponent
of 6. An int.eracti ve p'ocess is any other swappable process.

BLKQ - The Blocked Queu.f

BLKQ - This location, defined in STABLE, contains the process table
address of the process at the head of the blocked queue.

The blocked queue is a linked list 0f the process tables of all
eligible processes that are currently blocked, but not
explicitly blocked (waiting for son t.erm, of by ?BLKPR). The
chain is linked throl1gh off5ets PLNK.W and PBLNK.W.

PTELs on the BLKQ are ordered in FIFO order

AOS/VS Internals Chapter 3 Page 3-24

The following locations are defined in STABLE

SRBLC - number of blocked processes on the BLKQ

BLEND - the end of the BLKQ

MBLKQ - This location t defined in STABLE, contains the process table
address of the process at the head of the explicitly blocked
queue

The explicitly blocked queue is a linked list of the process
tobles of all processes that are explicitly blocked, and
not swapped. A process is explicitly blocked if it was the
target of a ?BLKPR or it executed a ?PROC and block. The·
chain is lir;ked through offsets PUJK. Hand PBLNK. H of
the process tables in the queue.

PTBLs on the t-n.BLKQ are jn FIFO order

The follOWing locations are defined in STABLE

MBLKCN - number of blocked processes on the MBLKQ

IERES - The Ineligible Resident Queue

IE RES - This location, defined in STABLE, contains the PTBL address of
the process at the head of the ineligible resident queue. This
queue links the process tables of any resident or preanptible
type processes that have not been allocated memory (swapped out)
and are not blocked. Resident type processes can only be on
this queue when being created, or if they have just had their
type changed to resident.

Because a process on this queue is swapped out, the process
table extender and user status information in user's page zero
8S well as all the llnshared portions of the user's process are
not in memory.

PTBLs on the IERES queue are ordered by PNQF

IELRS - number of presently ineligible resident processes

IESFL - when non-zero, inhibits the scan of this queue.

These locations are defined in STABLE.

AOS/VS Internals Chapter 3 Page 3-25.

IESWP - The_ In.e).1gj..b.l.!t .sl'l.p.P.P.P.b.J..~t Qu.e.u.e
IESWP - Thislocatio~, defined in STABLE, contains the PTBL address of

the process at the head of the ineligible swappable queue. The
ineligible swappable queue is a doubly linked list of all
the non-blocked swappable processes which are now swapped out

Because a process on this queue is swapped out, the process
table extender and user status information in user's page zero
as well as all thE: llnshared portions of the user's process, are
not in memory.

PTBLs on IESWP are ordered by PNQF

IELSW - number of presently ineligible swappable processes

IESFL - when non-zero, inhibits the scan of this queue.

These locations are defined in STABLE.

This location, defined in STABLE, contains the PTBL address of
the first process on the IEQUE. The IEQUE is a queue of
processes that must be swapped in in order to complete a byte
move to a target. In AOS, the write is made directly to the
swap file. In AOS/VS, we might have to write to the page file
and not the swap file. In order to simplify and accelerate
move bytes processing, the process that the system call is
targeted at will be svlapped in. . .

Processes on IEQUE will be temporarily given a PNQF of 0, .
thus accelerating the swapin processinb

Processes on IEQUE are in FIFO order

IEBLK -- The ineliiible blocked QU~u.e

IEBLK - This location, defined in STABLE, contains the PTBL addl~ess of
the first process on the IEQUE. The IEQUE is c;1 queue of
processes that are blocked, and therefore not in need of
swapping in. At the time that a process unblocks, it will be
migrate to a different ineligible queue.

New processes are added to the front of the IEBLK queue.

IEBCN is a ·counter in page ° of the number of processes on
the IEBLK queue

Note AOS/VS maintains four differ~nt queues of ~'\!arred processE:s,
in order to better control the priodty of certain swapjns.
The swapins on IEQUE are required to complete a system call
(and therefore free up a CB) and are of the highest priority.

AOS/VS Internals Chapter 3 Page 3-26

Next come the swapins of resident and preemptible processes,
and finally those of swappable. Those processes on the IEBLK
queue will not be swapped in until the become unblocked.
The core manager (who is responsible for swapin) will not scan
the IESWP queue unless the IERES queue is empty.

NOTE: Queues associated with the disk world are discussed in chapter 5.

There are three additional queues not discussed in the previous
section that deal with processes or scheduling. These are:

DCHN.W
HISLS.W

CMQWD.ltJ

the chain of processes with outstanding delays
the chain of processes with outstanding

histograms
the chain cf process that are waiting to be

swapped. (either in or out)

Unlike the case of the major queues, a process table can be on more
than one of the minor queues at a given tin~. However. the process table
must also be on one of the major queues .if it is cn a minor queue.

The minor queues are not linked through offsets PLNK.W and. PBLNK.W
(these are still used to link on the major queue);, In the case. of the
DCHN. W queue. links are through offset PDLNK.ltJ of the process table. In the
case of the HISLS.W chain, links are through offset PHLNK.W of the process
table extender. For the CHQWD. W chain, the link is offset PCMLK. ~J.

DCHN.W This location. defined in STABLE, holds the PTBL address of the
process at the head of the delay chain.

The delay chain is a queue used for keeping track of all of
the tasks in the system currently doing a delay. A delay is
the method by which a user task can pend for a specified time
without tying up system resources.

The delay chain is actually two linked lists in one. The first
one is pointed to by DCHN.W and is the linked list of process
tables associated with processes that have one or more tasks
dOing delays. The second is a linked list of the process tables
in the delay chain, including links to all the tasks in this
given process that are currently doing delays.

The process tables in thE: c.elay chain queue an' singly linked
using offset PDLNK.ltI in the process table. The linked list is
terminated by a minus one in the link word. Note that process
tables found on the delay chain may also be found on various
other chains such as the eligible queue or blocked queue.

AOS/VS Internals Chapter 3 Page 3-Z7

Delaying tasks TCB's for each process are singly linked through
offset ?TSYS of the TCB. The list is terminated by a minus one.
The TCB's of each process are ordered by the amount of time left
to delay. Those tasks with the least amount of time left to
delay appear earlier on the chain. If two tasks delay for the
same amount of time, the link word ?TSYS of the first task will
have bit zero set (1BO).

The following five offsets are defined as process table offsets

PDLNK.W forward process link offset.

PDINH.W number of real time clock ticks the first task is to delay

The following three offsets are defined in the process table
extender

PDFR.W start of the TCB delay chain.

?TSYS - forward task link offset. defined in the TCB of the task
currently doing a delay.

HISLS.W This location. defined in STABLE. contains the PTBL address of
the process at the head of the histogram queue.

The histogram queue is a linked list of all the processes
which have initiated histogram creation via a ?IXHIST call.'
The histogram queue is a singly linked list off the associated
processes process tables. The link offset is "PHLNK. \oj" and the
link is terminated with a minus one. The information contained
in the histogram is stored in the process table extender of the
process making the "?IXHIST" call. Note that because of this the
process making the call must be resident to insure that the
process table extender is always in memory.

PHLNK.W fon~ard link of the histogram queue, defined in the process
table extender.

CMQWD.W - The Cor~~ger Regu~ Queue

CMQWD.W This location is defined as a control block offset that only
has meaning for the Core Manager control block, CMTSK. It.is
the beginning of the chain of processes that are enqueued to
the Core Manager for swapping, either to be swapped in or
swapped out. Tr,is offset contains a PTBL address. The queue is a
singly linked list. through offset PCMLK.W of the process tables
found on the queue.

AOS/VS Internals Chapter 3 Page 3-28

Data Resources
We will also limit our description of data resources to a few

itans, the largest data resource in AOS/VS being the File Systan, subject
of chapter 6. The data resources we chose to develop here the Systan Stacks
and the systan pageable pages.

The stacks

The ECLIPSE MV contains numerous predefined locations within page a
ring a used to manipulate a stack. At any given point, one stack· is
defined as current. The following page a ring a locations are defiJ'led by
the hardware:

Location

a
4
6
7
14
20/21
22123
24/25
26/27
40
41
42
43

Use

the current interrupt level
vector stack pointer
vector stack limit
vector stack fault address
current stack fault address
WFP (current frame pointer)
WSP (current stack pointer)
WSL (current stack limit)
WSB (current stack base)
C/350 stack pointer
C/350 frame pointer
C/350 stack limit
C/350 stack faul t address

In AOS/VS there ay'€ three types 'of stacks used by the systan

STACK TYPE STACK BASE

Interrupt stack SS

Per processor stack STK1

Control block stack pointed to
by the CB

USE

when processing an interrupt, the
current stack will be SS (set up by
the XVCT instruction from base
level)
set up whenever we are in the
normal (base level) AOs/VS codepath
Set up when we run the control
block

At any point in tirr~ one stack is current, and pointed to by the
MV/8000 hardware stack registers defined in ring 0, page zero. The system
ah/ays runs in ring O. therefore all these stacks are defined in ring O.
These stacks are in effect only when the system is running. Before giving
control to a user. the user's current stack is set up (this could be either
a 32 bit stack or C/350 stack).

AOS/VS Internals Chapter 3 Page 3-29

Tbe interrupt stack

Location INTLV in SZERO is incremented at the start of interrupt
handling, and is decremented by the interrupt dismissal code. When the
system is at base level (not processing an interrupt), INTLV : O. The
hardware XVCT instruction will examine INTLV, and if the value is 0 at the
time of the interrupt, it will save the current stack information in
preassigned page 0 locations, and make the interrupt stack the current
stack.

Interrupt stacl{ definitions

stack base: SS
stack limit: SSLMT
stack size: 512. words
stack is defined in module STKS
loc 0: INTLV, curr'ent interrupt level (O=base level)
loc 4: SSt vector stack pointer
loc 6: SSLMT. vector stack lintit
loc 7: OVFLO. vector stack fault

The Per processor st~gk

The per processor stack acts as the universal stack for all systan
activity not related to one of the other system stacks. This stack being
constantly re-ini tialized by code paths in the Scheduler and the Core
~1anager, it is necessary that all code llsing this stack be very careful
that it will not gepend on it in .cases where it may be changed.

Per processor stack definitions:

stack base: STK1
stack linrit: STK1N (stored at location STK1-1)

stack size: 384. words

stack is defined in module STKS
PRSTK: STKl is a label defined in SZERO

System pageablsL~~~

System pageable pages contain system code that is usually not
permanently resident but is brought into memory at same point in time.
These pages contain code similar to that found in the overlays of AOS. The
system reserves enough pages to contain all of the overlays in the 33
megabyte of ring O.

The only 1/0 operations to the system pageable pages are read
operations. These pages contain pure code; they are never modifi.ed and
thus never need to be written back to the system file.

AOS/VS Internals Chapter 3 Page 3-30

The system maintains a queue called UPSYS which contains the CME
for each physical page associated with a system pageable page.

For more information look at the modules SZERO.LS and STABLE.LS which are
in the appendix of this ~anual.

AOS/VS Internals Chapter 3 Page 3-31

The Kernel of AOS/VS comprises three major sections of the operating
system. These three major sections are: (1) base system, (2) memory
management. (3) process management.

The base system is made up of modules which handle various system
services which no one process needs. It handles operator console 1/0,
scheduling of tasks and processes, interrupt dispatching, power failure
detection and miscellaneous subroutines.

The following modules make up the basic system.

CONIO

CRESCLVE
DUMMY
DVRS
INTS

ORWELL

- console 1/0 routines for the master console
entry points:

OUTMES - print a message on op console
GETCHAR - read a character
PUT - print a character
BIN AS 1 - print a single,binary werd
BINAS2 - print a double binary \-iord

- resolves unloaded modules during link to -1
- d~ module for the AGENT
- powerfail restart routine for MAGTAPE, MCA, lOP, lAC
- interruprt service routines

entry points:
INTS - interrupt service entry
OVFLO - stack overflow
UDEX - set up for user device driver
IUD - undefined device service
UINTR - return from user interrupt
IRTC - RTC interrupt service
IUPSC - UPSC interrupt service
IPIT - PIT interrupt service
IWKUP ~ wake up a PTBL
PCWKUP - wake up a PTBL, don't check N_T_RUN.W
DISMISS - dismiss an interr'upt .
PFLTPIT - reschedule on a page fault at subslice

end
ORWPAT1 - pa tch space for weighted scheduler

.' IRTSTL - weighted scheduler return
UTRAP.2 - pop to user that may have trapped

- weighted scheduler
entry points:

ORWELL - entry for real time clock handler
ORWELIAO - scheduler entry to see if PTBL

runnable
ORWELL60 - entry for ELQUE search on failure to

find anyone ready-to-run
PANIC - system panic handler

entry points:
PNIC - panic the system
EPNIC - panic the system don't clear regs 5 - 8
PNIC2 - panic entry for the PMGR
PPNIC - panic entry for LPMGR
STRP - system validity panic entry
SHUTPR - OP CLI trap handler

PWRFAIL - power fail restart handler
entry points:

PWRFL - system power fail restart entry

AOS/VS Internals Chapter 3 Page 3-32

UIPFL - user device restart return
RESOLVE - resolve more unloaded modules from sysgen
SCHED - system process scheduler

SCMJD

SCPER

SCPRC

entry points:
SMON - scan ELQUE from top setting SYSIN
SMONO - scan ELQUE from the top
SMON2 - run same process again
SMON3 - run next_to_run process
SMOND - enter checksllll loop
TACT - activate a control block
PENTR - schedule start a process
PCALL - same as PENTR
MAPCON - map ring 1 - 7 context
REMAPCON - remap ring 1 - 7 context
RUNEX - check if ready to l'un next
RUNST - start a reschedule of a task
PSCHD - find and start up a processes task
TSKEX - set up a stck fault block
EXVFL - flag the save for extended variable task
PEND - pend a process table for an event
UNPEND - unpend a process table
STKST - set up a process stack
RUNIT - special gate for ?IMSG to save state
RUNIS - special gate for ?RESCHED to save state
TSKSAV - save task state for all vCllid rings
EVENT - detennine if PTABLEICB really ready to

run
ORWPAT2 - patch for weighted scheduler
ORWPAT3 - patch for weighted scheduler
ORWPAT4 - patch for weighted scheduler
ORWPA'I5 - patch for weighted scheduler
SMONDD - entry to idle loop
PCBST - entry' to run in user space
RSTPR - set up runtime for direct page faults
UTRAP.1 - inward address trap user assuned to be

the cause
- routines to process direct system calls

entry points:
TIMEQ - enqueue a ?WDELAY request
SIGNAL - Signal 'thesystem from a process
RMBTU - move bytes to user from caller
RMBFU - move bytes from user to caller
SIGNL - signl a task or process
WTSIG - wait for a signl
SIGWT - signl a task and wait for a signl
UNLINK - remove a PTBL from a delay chain
LIN KIN - insert a PTBL on a delay chain
TPID - check validity of a pid
NSIGNL - new signal call to pass info to

GURU
.NWTSIG - new wtsig for pmgr IIO scheduling
NSIGWT - new sigwt for pmgr 1/0 scheduling

- SCP error processor
entry point:

SCPER.P - read out the error from the SCP
- system call processor

entry points:

AOS/VS Internals Chapter 3 Page 3-33

SGSUB1

SGSUB2

AOS/VS Internals Chapter 3 Page 3-34

SRNGDES - dec working set descriptor count
MODPRIO - modifY priority using new structure
CHRPSWA - change resident/preemptable

to
CH3-lARP - change swapable process to

resident/preemptable
MAPSWAIN - map swappable priority on input
MAPSWAOU - map swappable priority on output

STRAP - system trap routines entry points:
STRAP - module name
MAGIC - protection fault handler
BRKPT - breakpoint handler (panic 14)
FPFLT - floating point fault handler (panic 7)
COMFLT - commercial fault handler (panic 7)
FIXOV - fixed point overflew handler (panic 7)
SSOVFE - Eclipse stack fault handler

SYSER - system error handler
entry points:

UNERR.P - unit error reporter
SYSMGR - xyzzy system manager

entry points:
SYSMGR - init system manager's control block
SHINT - init sytem manager's control block
SWAKE - force a re-schedule of the system

manager
SWAK1 - force a re-schedule of the system

with interrupts disabled
UWART - entry point if system debugger in use

AOS/VS Internals Chapter 3 Page 3-35

The AOS/VS scheduler

There are three distinct parts to the AOS/VS scheduler. These are:

1. The AOS/VS process scheduler (SMON in SCHED). Its responsibility is
to determine if any process table (PTBL) or control block (CB)
is ready to run, and if so, run it. If not, it will perform a
checksum on various AOS/VS constants.

2. The AOS/VS task scheduler (PSCHD in SCHED). Its purpose in life is
to decide which user TCB is to run when the process gets control
of the CPU.

3. COREM (Core Manager), which in AOS/VS is not actually part of the
scheduler. but does scheduler oriented activities. COREM handles
swapping, some queue migration and resident process unpending
if the process was wai ting for memoy'y.

Definitions

Queues

An ELIGIBLE process is a process that has at least one page of
its context in memory.

An INELIGIBLE process is a process whose context exists only i.r:
the swap file. An INELIGIBLE process must be first made
eligible (i.e. it must be swapped into memory) before it can
be sche~uled by the systan to run.

A BLOCKED process is a proces.s that has been pended for sane
period of time. A BLOCKED process may be either ELIGIBLE or

. INELIGIBLE

A process becomes blocked as soon as the scheduler
finds there are no ready TeBs for that process, or by
the explicit ?BLKPR system call.

AOS/VS maintains 6 major queues. The databases on these
queues are of the following type:

PROCESS TABLES - Contain enough information about a user
process to allow the scheduler to both make a decision about
scheduling the user, and then give control of the CPU to that
user process (see PARS.SR). .

CONTROL BLOCKS - Contain the static (non-stack) state of a
path within the systan. These paths are active to either
process user systan calls, or daemons created by the system.
If the user system call is non-direct, or the daemon request

AOS/VS Internals Chapter 3 Page 3-36

requires a stack, a system stack will contain the dynamic
state of this path. The dynamic state of a path includes
all subroutine return addresses, and temporary variable data
used by the path (see PARS.SR). There are two basic types
of control blocks, swappable (those started on behalf of a
swappable process) or resident (those initiatL~ on behalf of
a resident or preemptible process)

The queues and the pOinters to the queue head are:

ELQUE: The eligible queue of process tables and control
blocks. This is the prinary queue used by the scheduler.

* The DISK MANAGER Control Block is always first on
this queue.

* The CORE MANAGER Control Block is always second on
tifis queue.

* The SYSTEM MANAGER Control block is always third.

* The active resident Control Blocks are next. These
are in FIFO order by time.

* The group 1 process tables are next. These are in order
based on a process' priority. These include the PMGR
process table which is permanently on the ELQUE

* Next comes the swappable Control Blocks, again FIFO by
time

* The group 2 process tables are next ordered by PNQF

* The group 3 process tables are next ordered by priority

* Last on queue is a dumny process table, the root process
table. This never requires CPU time, but is used to
mark the end of the elque. The root process table
has a PID of O. and is the father of the PMGR and OP:CLI
processes.

AOS/VS Internals Chapter 3

-t--------... -+ ~-----.,,-----------.----------+
1 ELQUE 1------------------->1 Disk Manager Control block 1
+-----.. --:--+

Notes:

1. All control blocks are
in time-created order
(by group)

2. All process tables are
in order by group

3. The PMGR is always on the
ELQUE

~------------.--,. ---...... ~----.... --+
v

-+-------_._ ... _- ---------_._------+
1 Core manager Control block 1

+----------------------------+ v
+------------------~.-.-----.-.. _.+
I System manager Control blk I +------_._----_ _-_ _- -_ .. --+

v
+-------_._----------- .,._------+
I First of the resident CBs !
+----------------_._-------..... _+

+----------......... --.- -_.- ---.--------+
1 Last of the resident CBs I +---------------... __ a _ •• ____ ._+

V
+----------------- -.--.~ ------ .. -+
! Highest pri group 1 PTBL I

+------------------~---------+

+--------------_._ .. ~-... ---.. --_._;.
I Lowest pri group 1 PTBL !

+----------------------------+
4. The last allocated resident V

CB is always reserved for +---.--------.----------------.-+
the PMGR 1 First of the swappable CBs I

+----------------------------+ 1 Last of the swappable CBs I
+--------------_._---_ --.---...... +

V
+----------,----_._--- ~~------+
1 Highest pri group 2 PTBL
+----------------------------+
+-------------------------.---. -~.
1 Lowest pri group 2 PTBL . I +----------------... __ ._ ... _-_._--.,
+----------_._------_. __ _----+
1 Highest pri group 3 PTBL !

+-----------------------~.---+ . . .
+----------------------------+
1 Lowest pri group 3 PTBL I
+-----... ~ -_:_ ... _-------_ ... _-------+

V

+-----------------------------+
! DUMMY ROOT PTBL (Idle loop) 1
+---------------------_._-- ---+

Page 3-31

ADS/VS Internals Chapter' 3 Page 3-38

+---------,;...-----_.-. .. -,+
1
1 Eligible Queue

1--------------------------------\
1<------------·--------·------\

1----------->1 (ELQUE) I <----------~-------.--\
+------------------+

Process
is explicitly
unblocked

Process is
explicitly
blocked

1 1
I 1
I I
1 1
I I
1 1
1 1
1 1

Process
has nothing
to do

Process
Unblocks

1 1 +--------------+
I 1 1 1

+----------------+ 1 \------------->1 Block Queue 1
1<----1 1 (BLKQ) 1

Explicitly 1<-----------------------------1 1
Blocked queue J A blocked process becomes +--------------+

(MBLKQ) 1 explici tly blocked 1
1 1

+----------------+ 1
Process swaps
out while on
the MBLKQ

1 Process swaps out 1
1 while on the BLKQ 1
1 1
1 1 --------------.-.-----:------ ------ ----I
1
V V

+----------------+ An ineligible +----------~------+
1 1 process blocks II Swap in
I Ineligible 1<-----------------1 Ineligible 1---':"---·--1
I Blocked Queue I I Queues !
I (IEBLK) 1-----------------·> I (IERES/IEQUEI 1 <-----------1
I ! An ineligible IESWP) 1 Process swaps
+----------------1 process is +-----.------------+ out while on

unblocked the ELQUE

Notes: A process has nothing to do if:

a. There are no task ready to run ••• and •••
b. There are no outstanding system calls (?WDELAY/?IREC are

not outstanding system calls) ••• and •••
c. There are no TCBs enqueued to the PEXTN's system call chain

A process is explicitly blocked if:

a. A ?BLKPR is targeted at that process ••• or •••
b. The process executes a ?PROC with the block option

(wait until son termination)

Other queues:

IEQUE: Queue of ineligible processes involved in move bytes

IESWP: Queue of. ineligible group 2 processes

AOS/VS Internals Chapter 3

IERES: Queue of ineligible group 1 processes

IEBLK: Queue of ineligible blocked processes

BLKQ: Queue of non-explicitly blocked processes

MBLKQ: Queue of explicitly blocked processes

One minor queue that invol ved in schedulirJS:

Page 3-39

Core Manager queue: Queue of processes waiting for swap in or out

CPU time contention

In genel~al, AOS/VS will allocate CPU time in the foll~ing overall
priority structure.

Interrupt driven control functions that process events,
these include:

Interrupts
Time Slice Completions (PIT interrupts)

group 1 c,?ntrol blocks, these include:

The Disk Manager -- permanently the highest priority.

The Core Manager -- permanently the second highest priority
resident system daemons, and resident user system calls in
a FIFO or de r.

Group 1 processes, ordered by PNQF

Group 1: PNQF = assigned priority

Swappable Control blocks, these include:

Swappable system daemons, and swappable user system calls
in a FIFO order.

Group 2 processes, ordered by PNQF

Group 2: PNQF: dervied from priority and interactiveness

Group 3 processes, ordered by PNQF

Group 3: PNQF : assigned priority

II

AOS/VS Internals Chapter 3 Page 3-40

Group1 processes receive control for a fixed time
slice of 2.048 seconds. ~hen this slice expires, the process
is re-linked to the end of its priority group. If there is
only one process at this priority level, then the same process
is run again for another 2.048 seconds. Every 32 ~illi­
seconds (a sub-slice), the process's tasks are rescheduled.
This is done to allow a round robin scheduling of multiple
tasks at the same priority level.

Group 2 processes receive time slice based on past behavior and
assigned priority.

T = time-slice = (32 millisec) * (2 ** S)

where: 1 <= S <= 6

The initial S is 1

The initial S will then be modified based upon the
use of the allocated time slice by the process.

If the process blocks before the full slice expires, S will be
given a ne\-.1 value based on the number of subslices used.

If process is still running when the time slice expires, S
will be incremented by 1 the next time the process is
scheduled. However. if the swappable process' priority
is > 1. and the current S is 6, no change will be made
to S. If the swappable process' priority is 1, S may
reach an effective value of 7 (S will still = 6).. In this
case. a compute bound, or non-interactive, group 2 process
of priority 1 can attain a ti~~ slice of 4.096 seconds. It
will, therefore. receive twice as much CPU time as an equally
compute bound group 2 process with a lower priority.

Actual time slicing is done on 32 ms. intervals. Hence,
2 ** S yields the number of sub-slices.

The scheduler maintains a count of the subslices for each
process and the remainder of any incomplete sub-slice in
the process's process table. This is done in case the
process is pended due to:

1. Processing of an interrupt.
2. The scheduling of a system control block, or a higher

priority process after an interrupt.

Control will return to the interrupted group 2 process
when group 2 processes are again allowed CPU time.

Priority enque factor derivation for group 2 processes

- The basic equation:

PNQF = (slice-exponent) + 1BO + (7*priority)

I

AOs/VS Internals Chapter 3 Page 3-41

Notes:

PNQF = 100001 if the process is tenminating.

180 is set to insure that all group 2 processes have a lower
priority' than group 1 processes.

The 'slice-exponent' is the S explained e8rlier.

PNQF values are read as unsigned values. The lowest PNQF
values have the highest priority for CPU time.

If the PNQFs for two processes are equal, they are managed on
round-robin basis to insure all processes can get CPU time.

The PNQF is updatoo whenever a process blocks, or a time elice
expires.

The AOS/VS ~ess scheduler

Prior to Revision 4.00 AOS/VS there were three process types witb two
independent types of fixed scheduling characteristics. Resident and
preemptible processes are always of higher priority than swappable
processes and may be assigned an external priority between 1 and 255.
Swappable processes are always of a lower priori ty than resident and
preemptible processes and may be assigned an external priority between 1
ar.d 3.

There were two scheduling groups:

1) Resident/Preemptible Process priority range 1 to 255
2) Swappable Process priority range 1 to 3

Priority Scheduled, Heuristically Scheduled , 1 , I I ,-----------------_ _-------, 1----------1---------1
1 255 123

Resident/Preemptible Swappable

One of the inherent problems with this strategy is that a user is
always forced to have Resident/Preemptible processes of a higher priority
than Swappable processes. This is a problem if a user wants to run a
Resident process at a lower priority than a Swappable process. Another
deficiency is the inability to define a process at a lower priority than
that of a Swappable processes. With all Swappable processes baing
Heuristically scheduled regardless of the externally assigned priority, all
Swappable processes compete with each other heuristically.

The first step taken is t.c define a new prior'ity structure. This
structure defines three separate scheduling groups which may be chosen
regardless of process type. A result of this definition is to make the
priori ty independent of the process memory requirements type. The other

..

AOS/VS Internals Chapter 3 Page 3-42

factor which in AOS/VS used to be insignificant now comes back into use.
That factor is the BIAS. The priority structure is now centered around
three groups. The groups are:

Group 1:

Group 2:

Group 3:

High Priority
Priority Scheduled only
Priori ty Range

Medilll1 Priority
Heuristically Scheduled only

1 to G1

Priority Range G1 + 1 to G2

LCM Priority
Priority Scheduled only
Priori ty Range G2 + 1 to G3

High Priority MedilUTl Priority Low Priority
I I I I

I----------------------I---------------------I----~---------1
1 m ~ m

Priority Heuristic Priority

Each of the Priority Group limits, (G1, G2, G3), are user selectable at
VSGEN time. The limit for G3 is 511. In order for this new scheme to be
compatible with prior revisions of AOS/VS priority scheme the follOWing
values must be used:

G1 = 255
G2 >= G1 + 3
G3 = G2

High Priority Medium Priority
I I I I

I-----------··~· ~-----1----------1------·------·--1
1 255 256 257 258

Priority Heuristic

If this structure is compared with the one drawn to show the current AOS/VS
scheduling groups, some similarities can be seen. The only differences are,
that the Heuristic scheduling priorities are 256,257, and 258, instead of
1, 2, and 3, as previously defined.

ADS/VS Internals Chapter 3

Examples of how this scheme works:

1. When a Swappable process is created at Priority 1, it will
be mapped by the system onto priority 256 in the
Heuristic Range in order to meet the compatibility.
requirement. This means that a Swappable process cannot be
created at priorities 1, 2, and 3 within the high
priority group where there is no Heuristic algorithm, but
Swappable processes can be created that are not
Heuristically scheduled within the priority range 4
through 255.

2. Resident and Preernptible processes at priorjties between 1
and 255 act as before. '

3. Resident and Preemptible processes created at priorities
256, 257, and 258, will be heuristically scheduled.

Page 3-43

It should be apparent that this scheme is fully compatible with' the, old
scheduler. A user is not required to change the priority structure of an
installation to fit the new scheduler in AOS/VS revision 4.00. It also
allows for more flexibility in that the user is no longer forced into the
scheduling characteristics based on process memory type. This scheme allows
the user to view the scheduling as a two-fold scheduler with High Priority
Scheduling and Lower Priority Heuristic Scheduling.

A Simple Schedulif.1g Scheme Without Heuristic Schedulirg

G1 = G2

By specifying these Group Limits as equal, a simple Round Robin scheduler
without heuristics is generated and no assumptions about process type
versus scheduling characteristics exists.

High Priority Low Priority
I I I
I ------------------------------ I -----------------•. -- - .•• - • -_.- I

1 G1 =G2 G3
Priority Priority

Any process type may be selected at any priority and scheduling is strictly
Round Robin.

An example of a system which could use a Round Robin Scheduler is a polling
system.

AOS/VS Internals Chapter 3 Page 3-44

The framework chosen for the new scheduler design provides a simple
and fast scheduler with the underlying tools to build a more complicated
structure. The compatible Scheduler algorithms are:

Decision Making Algorithms

Quantum Oriented Scheduling
This provides processor-sharing scheduling
characteristics by defining Quantum expiration
as a preemption point.

Preemptive Scheduling
Any process of higher priority than the currently
executing process I,lhich becomes ready to run via
external event completion will become the next
process to, be scheduled.

There are two independent Quantum times which are used for Preemption
purposes.

Sub-Slice
This is the smallest Quantum which may be used
for preemption purposes.

Time-Slice
This is the largest Quantum made up of some
integral number of Sub-Slices.

By defining two di fferent Quantums
Making algorithms whose Decision Epocs
allows for short (Subslice), and long
algorithms.

Arbitration Rule Definition:

it is pOf;sible to use two Decision
occur at different frequencies. This

(Timeslice) term Decision making

Any arbitration which must be done to resolve conflicts
among competing processes is done vta Round Robin
Scheduling.

Round Robin Scbeduling

When a process completes its time Quantum, it is
considered as lower in priority than all processes of
equivalent priority.(i.e. A process is shuffled to the
end of its priority group at the end of a time Quantum.)

AOS/VS Internals Chapter 3 Page 3-45

The current scheduler (pre rE:V 3.CO) algorithnl schedules processes via
linear ordering by Priority eNQue Factor, selecting the highest priority
process to run at any given tin~. The lower the PNQF, the higher the
process' priority. and the sooner it was scheduled for execution. AOS/VS
orders all processes by PNQF, and generates PNQF as given below:

Process Type ENQf
Resident/Preemtible Control Blocks 0
Resident/Preemtible Processes Process Priority (1-255)
Swappable Control Blocks 32168
Swappable Processes 32168 +

(7 * Process priority)+E
Where E is the Heuristic
o < E < 7

The new scheduler for reV1Slon 4.00 maintains this type of linear
ordering by using the following PNQF definitions.

Group _Jy~

Resident Centrol Blocks
Group 1 Processes
Swappable Control Blocks
Group 2 Processes
Group 3 Control Blocks
Group 3 Processes

o
Process Priority
G1 + 1
G1+1 + (7*(Process Priority - G1»)+E
7 * (G2 - G1 + 1) + G2
7*(G2 - G1 + 1) + Process Priority

Given the above changes to the scheduler. below is an example of how the
new scheduler can be made compa ti. ble wi ttl the old scheduler in· terms of
PNQF ordering of processes for execution.

It was stated earlier that in order to define a compatible scheduler that
G1 = 255, 02 = 258, and G3 >= G2. By defining G1 = 255, G2 = 258, and G3 =
210 a compatible scheduler may be generated. By substituting into the PNQF
definitions, one obtains the following PNQF equations.

Non-heuristic Group
1 < Priority <= 255

Group 1 Control Blocks
Group 1 Processes

Heuristic Group

o
Process Priority

255 < Priority <= 258

Group 2 Control BLocks
Group 2 Processes

256
256 +
(7*(Process Priority-255»)

+ E

Non-heuristic Group
258 < Priority <= 270

NJSlVS Internals Chapter 3

Group 3 Control Blocks
Group 3 Processes

Page 3-!l6

28 + 258
28 + Process Priority

This generates non-overlapping linearly ordered PNQF's given below.

Group 1
User selectable Priority Range 1,2, ••• ,255

Control Blocks
Processes

Group 2

o
1.2, ••• ,255

User selectable Priority Range 256,257,258

Control Blocks
Processes

Group 3

256
256 + 7 + E
256 + 14 + E

. 256 + 21 + E

User selectable Priority Range 259, 260, ••• , 270

Control Blocks
Processes

258 + 28
Process Priority + 28

AOS/VS Internals Chapter 3 Page 3-47

Another added feature of revision 4.00 scheduler is a secondary
scheduler which can be used in CPU contention environments. This scheduler
requires that the system be patched in five (5) locations to enable the
secondary scheduler. In the real time clock handler is a routine to check
to see if the CPU is under heavy contention by checking if an idle' loop
counter (WTSCIDL) has exceeded a cutoff limit (WTSCIDLL). If it has
exceeded the cutoff Umit there is a flag (WTSCGO) set so that the
scheduler knows that weighted scheduling is enabled. This same routine sets
a bit in the G2 and G3 process tables to show which one has run or not.
After picking someone to run in the scheduler and that someone is a G2 or
G3 then check if it has run before in this interval of tirre. If it has run
before then it is passed over and the next who is both ready to run and has
not run this interval is selected to run.

The weighted scheduler is turned off by either of two events:
The duty cycle completes (it can be specified that

processes will run only N seconds out of an
interval)

or

The number of times to cycle through the ELQUE has been
used up.

In either case the flag (WTSCGO) which was set to turn on weighted
scheduling gets turned off.

AOS/VS Internals Chapter 3

On the ELQUE there are three types of control blocks. They are Disk
manager control block, f Core manager control Block, and System manager
control block. These control blocks have to have the highest priority on
the queue to enable them to run and run quickly and frequently.

Disk manager

The disk manager runs as the highest priority control block on the
ELQUE. It replaces the branch out of the scheduler which was in prior
revisions which went to the same point. The change was made to speed up the
scheduling process. The disk manager runs all IOCBs when they are rtadyto
run. When the N_T_run.w is set the scheduler branches to RUNLC in DSKIO to
shchedule IOCBs. All active IOCBs are run. As long as there are ready IOCBs
they are run. When there are no more ready IOCBs the disk manager control
block is changed by stting the 'not ready to ru bit and resetting the
running bit. The disk manager is readied by a call to the routine DWAKE.

Core manager

The core manager runs as the second highest priority control block
on ELQUE. It remains dormant until a code path calls the routine CWAKE
which sets the ready to run bit in the status word for the CB in addition
to the words or bits needed to indica te which action the core manager
should process when it gets control of the CPU.

Special requests to core manager (flag word is SMFLG)

a. 1bO -- Un pend resident processes waiting for memory release.
This is done by loading the appropriate key and calling
UNPEND.

b. 1b3 -- Scan BLKQ looking for anyone waiting to unblock.
(call BSCAN in CO REM2)

The SYSTEM MANAGER

The system manager code is found in SYSMGR. The system manager is
currently used for five purposes. The first is to report unit errors, the
second is to report over- subscribed memory. the third is to enable
look-ahead faulting, the fourth is to enable look-ahead flushing, and fifth
is to handle SCP error reporting. The unit errors are detected by the
controllers, which set up error status words in the appropriate'UDB (unit
device block). The error routine then calls SWAKE, which will cause the
system manager to wake up the next time a scan is made of the eligible
queue (much as CWAKE does for the core manager). The oversubscribed memory
condition (no memory available, no preemption possible) is detected by the
preemption code, which then call SWAKE.

The requests to the system manager are indica ted in CMFLG. (The core
manager equivalent is SMFLG)

AOS/VS Internals Chapter 3 Page 3-49

The AOS/VS task scheduler

The AOS/VS scheduler checks to see if the PTBL just readied for
running is a control block, a PTBL or a TCB. If it is a TCB then it causes
the user routines to be executed. If it is a PTBL it examines the active
TCB chain for a ready to run TCB. The task scheduler has the ability to
check to see if a more significant event has occured to force a
rescheduling to the other event. If there are tasks to be run then ready
the tasks and run them. If there is no other task other than the current
one then run it.

Event Synchronizatio~

It is unusual for AOS/VS to process for an extended period of tin~.
Usually, many paths require short periods of CPU time. When a path gives
up control. it is generally because it's waiting for an event.

Typical events are:

1. Waiting for a disk block to be read into AOS/VS buffer (e.g.
opening a file requires the reading of a directory entry.

2. Waiting to access a database being used by another active
path.

3. Waiting for an AOS/VS global resource.

The general procedure for pending/unpending is as follows:

1. . The path calls the subroutine 'PEND', passing to 'PENDf
the key it wishes to wait on.

2. The path becomes quiescent (i.e. it is not given any CPU
time) •

3. Another pa th clllls the sli:>routine UNPEND, passing to
'UNPEND' the key that the first path is waiting on.

4. The waiting path now becomes ready and resumes execution.

All paths waiting on given key are readied when 'UNPEND' is called.

PEND keys

SKTRM = 1

SKTRG = 2

SKOOM = 4
SKSWP = 5
SKSIO = 6
SKBUF = 7

Wait for son proc term

Wait for target call completion

AOS/VS needs memory
Wait for swap of proc to complete
Shared read wait
Base level AOS/VS needs buffer

AOS/VS Internals Chapter 3 Page 3-50

SKDED = 8. Target call waiting for special unpend after
ELQUE scan

SKNWU = -1 General wait (no wakeup key)

= database An AOS/VS code path can pend waiting
for a specific database. In this case,
the key is the database address

AOS/VS uses hierarchical event locking. A majority of the paths
only lock a single database. If two databases must be locked, then a path
requiring the locking of database 'A' and then database 'B' will require
that any path that uses these two databases must lock them in the same
sequence.

AOS/VS Internals Chapter 3 Page 3-51

The interrupt world

When an 1/0 device completes its operation and is ready to
receive/send more data. it requests an interrupt. As soon as the CPU is at
an interruptable point in its processing, and has fil1lshed servicing data
channel requests, it takes care of the interrupt.

Upon servicing an interrupt, the ECLIPSE ~N CPU does the following
(~Jith interrupts left off):

- if the ATIJ is enabled (in VS it will be), Fetch the pointer
to the interrupt handler from ring O. location 1

- If the ring at the time of the interrupt is not zero, then
store the current stack registers in the current ring's
page zero locations, load ring 0' s stack information into
the hardware stack registers, and cross to ring 0

- resolve any indirection in the pointer to tr:e interrupt
handler address

- process the first word of the handler (which in AOS/VS is
a XVCT instruction. which, in addition to many other things,
will reenable interrupts, and vector to the appropriate
interrupt handler

After servicing the device, the interrupt service routine will jump
to the routine DISMIS, which will return program execclt.ion to the point at
which we were interrupted. Note that one of the last last things that the
XVCT instruction does is to reenable Interrupts, thus allowing other device
to interrupt us.

If intermpts are disabled throughout the interrupt service
routine, the CPU can no longer be interrupted until this device servicing
is finished, and all ollier devices requesting interrupts must wait. ThiS
might lead to losing data on fast unbuffered devices. Therefore more
sophisticated hardware instructions are available to imiJlement a systan of
interrupt priorities which will permit sane devices to interrupt others.

Every 1/0 device is assigned an interrupt mask bit by the hardware.
and the interrupt service routines can control int-:rrupt priori ties by
setting interrupt masks : any device which should not interrupt the device
being serviced is masked out (preventcd from requesUng an interrupt) if
its mask bit is set. The mask bits cort'€sponding to devices which can
interrupt are zeroed. By changing the lJriority mask, an interrupt service
routine can mask out those devices whose interrupts are undesiro.:blp.,
without disabling interrupts
for the duration of the service.

Li.~ normally point to
INTS. the inter E ~1V i~

AOS/VS Internals Chapter 3 Page 3-52

interrupted, it examines the effective address pointed to by location
1. The effective address in AOS/VS resolves to INTS, which contains a XVCT
instruction. When the MV encounters the XVCT instruction, the following
occurs:

Fetch the level count from location 0, segment 0

If the count is O. then

Increment the level count
Save location 14 (stack fault address) and the stack tnfo

internally
Load location 14 and the stack registers with the vector info

(from page 0, loc 4-7)
Push 'saved data onto the new stack
Push wide return block onto the new stack

If the count is not O. then

Increment the level count
Push wide return block onto current (seg 0) stack

Calculate the effective cddress of the XVCT instruction

Index into the vector table (effective address from XVCT address)
by device code. Value will point to DCT for the de-vice

Push current mask (VCT table address-2) onto stack

OR current mask with contents of 2,3 of DCT into VCT addresss-2

Do MSKO with the ORed mask

Load ZEX device code into AC1

Load PC with first two words of DCT

Load PSR with word 4 from DCT

If a stack overflow has occured:

Transfer control to the stack fault handler (loc 14)
Fetch and execute first instruction of fault handler

If no stack overflow has occured:

Fetch and execute instruction pointed to by PC

Enable interrupts
BWL (Vector table)

BWL is the vector table that the XVCT instruction will dispatch
through. The table is a series of double word pointers to inteJ'rupt
service routines. The table is indexed by device code. The table is
initialized so that all pointers point to the routine IUD, which is the
undefined interrupt handler. During SINIT. the table pointers are filled

AOS/VS Internals Chapter 3 Page 3-53

in for each sysgened device so that they point to the appropriate DCT,
which in turn contains the address of he interrupt service routine. When a
user IDEFs, a device, the pointer corresponding with the !DEF'ed device code
is set to UDEX, which is the dispatch routine to the user interrupt
processor.

DISMISS (Interrupt dismissal)

Interrupts in AOS/VS are dismissed by the routine DISMISS (in the
module INTS). After the appropriate routine processes the interrupt. it
does a XJMP to DISMISS (The exception is the routine UINTR [user interrupt
dismiss] which jumps to a separate entry in DISMISS). DISMISS will return
based as follows:

1. Decranent INTI..V

2. Disable interrupts

3. If we are not at level O. then perform a WPOPB to get back
to previous level (note that UINTR jumps to DISMISS at this step)

4. If the ring field of the PC at the time of the interrupt is 0,
and INCHK is not 1, enable interrupts and do a WRSTR to restore
the pre-interrupt state. Incranent INSYST.W, the number of
interrupts th~t occured while the systan (non-idle) was active.

5. If the ring field of the PC at the time of the interrupt is 0,'
and INCHK is 1 then the systan was interrupted while in the
idle loop so increment IDL.W, the counter of such occurances.
Then check RESCH and UPQUE. If the are both 0, enable interrupts
and do a WRSTR. If either RESCH or UPQUE is not 0, then clear
INCHK and jump to the top of the scheduler

6. To reach this point. the processor was in the user (ring<>O) at
the time of the interrupt, so increment INUSER.W. If both
RESCH or UPQUE are 0, and we have not reached a sub-slice end,
then start up the PIT. enable interrupts, and WRSTR

7. If the current subslice is done. add the slice value to the
PEXTN offset that contains CPU time (PRUNH.W). If the CPU
time exceeds the limit (limiting requested), format the user's
process table so that the process will terminate. If the
subslice end is also a full slice end, set the flag to indicate
so. Store the time slice residue in the PEXTN, save the current
task's information. and jump t.o the scheduler.

8. Finally, to reach this point. the processor was in the user

AOS/VS Internals Chapter 3 Page 3-54

(ring<>O), this is not asubslice end, and either RESCH or UPQUE
is non zero. Reset the running bit, store the sub-slice residue,
save the current task's state. and jump to the top of the
scheduler.

AOS/VS Internals Chapter 3 Page 3-55

INTS logic

Simply execute a XVCT instruction on the location BTBL. This will
result in the functions described above, with control eventually passing to
the interrupt service routine appropriate for the device that interrupted.

IRTC logic

This is the real time clock interrupt handler. Every clock tick
it performs the following :

read and halt the PIT. and save the time slice in TSLSV if
the interrupt occured at base level

- startup the RTC

- check to see if PFF can be turned off. if it can be turned off then
turn off PFF and update counters.

- if a second has elapsed, update the time of day, and if
necessary. the date

- if in state 3 or 4 check to see if switching states will help system
performance (see PFF and PSTEAL in memory management)

- if a second has elapsed, check for a deviCE tin~out, and
process any that occur. (Each device's timeout block will be
decrernented and if any go to 0, the system will dispatch
through the timeout routine for that device)

- if there are any processes with histograms, the histograms
are updated.

- the time rernaining for any process on the delay chain is
decrernented; if it goes to zero and the process is eligible,
the task making the delay call is unpended. If the process
is not eligible, set the BPFDU bit to tell the SWAP IN code
to unpend the first task with delay when the swapin is
completed. If the process is blocked, set the appropriate
flags to have the Core manager unblock it.

UDEX and UINTR logic

UDEX is dispatched to on any interrupt from a user device. If the
interrupt occured at base level, UDEX will first halt and read the PIT.
UDEX will then save the interrupted PTBL address on the stack, get the PTBL
for the user that defired the devtce! and turn I/O allowed on and LEF mode
off for the ring that contains the service routine. UDEX then loads the
hardware SBRs (1-7) with the SBR words for that user (from the PEXTN).

AOS/VS Internals Chapter 3 Page 3-56

Finally, a fake return is built on the stack to set up the user's AC, and a
WPOPB is executed to go to the user.

The user returns from the user interrupt handler via a LCALL
instruction to UINTR. UINTR will restore the SBRs to the state before the
interrupt occured and jump to the common interrupt dismissal code
(DISMISS) •

IWKUP and UIjlKUPJ.oW

IWKUP readies a specified process. If the process is not pendedon
a page fault, the the not ready to run bit is reset. If the process is a
resident process other than the PMGR, IWKUP will force a reschedule of the
system by incrementing RESCH, and of the user's TCBs by setting the BPFRS
(reschedule) bit in the process table. Before returning to the calling
code path (IWKUP is called with a XPSHJ), enable interrupts.

UIWKUP is a special version of IWKUP called from UINTR. Certain
assumptions are made because we knCJW that UIWKUP is called from the
interrupt world. UIWKUP will reset the not ready to run bit if the process
is not pended during a fault, XNISZ RESCH to force a reschedule, set the
BPFRS bit to force the processes tasks to also reschedule, and return
(UIWKUP is also called via a WPSHJ). Note that UIWKUP does not enable
interrupts before returning.

Power Failure Handling

AOS/VS now detects power failure if enabled at VSGEN time. The STKS
module checks for power failure and branches to the power failure routine.
The sytem does one of three things based on configuration. If full battery
back-up then system will restart if user selected the option otherwise the
system will be set up to run ESD on return of power. If partial battery
back-up then ESD will be readied to run upon restoration of power. If no
battery back up then ESD will be set up but system will die and FIXUP must
be run to recover disks.

The machine state is saved (i.e. floating point. stack pointer, frame
pointer. and device code). It tells the PMGR devices to save their state
and halt. It tells any user devices to do their thing in event of power
failure if programmed for power failure.

Upon restoration of power the power failure routine tries to resart
the system by printing the power failure message on the console device. It
tries to restart the sysgenned devices followed by the user defined
devices. Upon successful completion of the restart another message appears
indicating restart was completed.

PFL logic

This routine handles powerfails and spurious interrupts on device code
O. The routine performs a SKPDZ CPU, which will skip on a real. powerfa1.l.
If not a real. powerfail (spurious interrupt on device code 0), then ISZ a
counter, and if the counter overflows, panic (4001), else jump to the
DISMISS code. If a powerfail has occured, goto the powerfail routines (if
defi.ned) else panic (15001) when the system recovers.

AOS/VS Internals Chapter 3 Page 3-57

SYSTEM CALL PROCESSING

General fl~ of a §.Y.&.em..9£l1l

Entry into AOS/VS is through the ring 0 gate array. which points to
the entry point SYST in SCPRC. The user's system call is processed as a
LCALL to the AGENT ring, which, after identifing the call as one that needs
the system. will make an LCALL to the system ring. (the LCALL in the user
sr;ace is found in the module SCALL which is bound into each user program.
There is a version for 16 bit processes, and one for 32 bit processes. The
code can be found in URT16.LB or URT32.IB. Calls from 16 bit processes are
converted into 32 bit calls by the AGENT, which will recursively call
itself. It is the 32 bit call that reaches the kernel.

Kernel system call processing

Entry to the AOS/VS kernel is through the rir~g 0 ga te array. The
standard system calls are referred to as TCB calls, (in that they run on
TCBs). Only TCB calls go through SYST .

Some system calls have specific attributes that are c:lassifjed
by tables found in SCPRC

1. Direct calls Processing of the system call will never pend,
al though the task making the call can pend.
(No stack or CB is needed)

?RDB ?WRB ?SPAGE ?WDELAY ?MBW ?MBFU ?RPAGE
?SGNL ?aPORT ?SIGNL ?WlSIG ?SIGWf ?DVSTT 'lNSIGNL
?NWlSIG ?NSIGWf

2. Parallel calls -- A multi task process can have no other system
calls active while this call is active.

?CTYPE ?GCHN ?GPROC ?MEMI ?SSHPT ?TABT
?RPAGE ?SPAGE ?SRDB ?IHIST ?WIRE

AOS/VS Internals Chapter 3 Page 3-58

?
J. Expensive calls - Calls to the file system. This table is used

to determine the CPU charge for a call

?CREATE ?GPROC ?DELETE ?RENAME ?GCHN ?ILKUP
?GOPEN ?GCLOSE ?SOPEN ?DIR ?INIT ?FSTAT
?RELEASE ?SLIST ?GLIST ?GNAt'lE ?GACL ?SACL
?GNFN ?RDUDA ?WRUDA ?CRUDA ?SATR ?BRKFL
?SCLOSE ?CGNAM ?DACL ?GFNAME ?UPDAT ?ROPEN·
?RCLOSE ?SOPFF ?RINGLD ?RNGPR ?WIRE ?GTRUNC
?ESFF

SCALL 7- bound into the user program

AGENT -- runs in ring 3 and preprocesses all system calls
(converts 16 bit to 32 bit) (see chapter 8)

SCPRC -- system call processor for TCB requests

SCHED -- The AOS/VS scheduler. This picks up the enqueued
requests fram the PEXTNs, associates them with a CB
and stack, and then jumps i~to the appropriate
overlay for processing.

SCMJD -- This routine is involved in miscellaneous direct
calls (those that cannot pend) and will not be
included in this ·chapter.

The diagrams provided on the following pages graphically
represent the overall flow of a system call in AOS/VS

AOS/VS Internals Chapter 3 Page 3-59

SYSTEM CALL PROCESSING INTERFACE

+---------------+
I I

-+-------1 SCALL 1 <--------+
I -+--->J 1-----+
I I -+-----~.--- --.----+ I
1 I I I I
1 1 1 1 1
I -+----1 USER 1<---+
1 I PR(x} RAM 1
I I I
1 II
I -+---------------+
I I PAGE ZERO I
I -+---------------+
1 User space

zzzzzlzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzz
1 AGENT space
1
1 -+---------------+
1 I I
I I User TCEs and 1
1 lUST
I 1
1 -+---------------+
1 I I
1 1====1 AGENT 16 bit 1<==\
1 1 1 conversion I 1
I 1 1 routines 1 I
I 1 1 1 .1 .
1 1 -+------------.---+ I
I 1 1 1 1
1 \===>1 AGENT 32 bit 1===1
\------>1 preprocessing 1----------1
1-------1 routines 1------\
I 1 1 I
1 -+--------------.-+ I .
1 I
I I AGENT space

zzzzzlzzzzzzzzzzzzzzzzzzzzzzzzzzzzzztzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
I I
I -+-----------------+ I -+------------+
I 1 I 1 I individual 1
\------>1 SYST (in SCPRC) 1----1· 1 system calli

1 Kernel system I I processing 1
1 call dis~tch 1<---->1 code
I code I +------------+
I I

+-----------------+

KERNEL space

\

AOS/VS Internals Chapter 3 Page 3-60

Module; SCALL

This module is automatically added into a user program at LINK
time. The primary purpose of SCALL is to get the user into AOS/VS AGENT
code. There are two different SCALL modules, one for 16 bit processes,
and one for 32 bit. Though some of the instructions are different the
general idea is the same.

I 16 bit I
I start I

I 32 bit I
I start I

v v

JSR @17 I
System call number I

I XJSR @6 I
J system call # J

User Program
11111111111111111111111111

\ /
=:::=:>+<::==== 1111111111111111111111111

SCALL module I
I
V

Save the return address
on the user stack AC3

V

I Enter the AGENT using a
I LCALL to gate 0, ring 3

I
V·

The AGENT will preprocess
the system call (possibly
converting a 16 bit call
to a 32 bit call) and then
call the systan with an
LCALL to gate 1, ring 0
The system will process the I
call and return to the AGENTI
which will post process the I
call and return to the user 1

1
V

I If we took the error return (SYST+2)
I then increment the PC (on the stack) to point
1 to the system call error return, otherwise
I increment the PC twice to point to the good
I return and (W)POP back to the user

AOS/VS Internals Chapter 3

Module; SCPRC

SCPRC is part of the kernel.

I Start at SYST in SCPRC I

v

1 disable interrupts 1

v

I Push a return block on the per-process stack 1
--v

Read and disable PIT

v

Increment SYSIN

v

1 Enable interrupts I

v

I Setup the raul t bl~k 1

v
I Save the PIT residue 1

Fault code enters here ---------+
V

1 Save the 'current task information I

V
NO ---------------------------------- YES

1------1 Are we in the interrupt world? 1----\
V --------------------------------- V

Page 3-61

I Increment the PC to 1
I take the good return 1

1 Format the user to trap I

v
(X) ~-----------------------------1 Jump to the user interrupt I

I dismissal routine I

AOS/VS Internals Chapter 3

(X)
V

NO ----------------------------- YES 1================== I Is the systan call valid? I =======\
1 1 0 < systan call < MAXSYS i 1
1 ----------------------------- 1 1 V

Page 3-62

! ---1 1 Charge for the call (basic=10. PIT ticks; expensives= 1
1 ! 100. ticks). (If this charge [subtracted from the users!
1 1 current ranaining slice] causes the subslice to I
I ! expire. set PSTSU in PSTAT to indicate timeslice end)
1 ---
! V
! NO ---------------------------------- YES
1 1=====1 Is this a direct system call? 1====\
\---------->+ ---------------------.-------------

V

------------------------------------ 1
1 Incranent PSIDIR in the PTBL I 1======1
! (one more indirect call enqueued I I
------------------------------------ 1

I I
1===========1 I
I I
I 1==================\ I
I! I V
I -------------------- I YES ---------------------------.-- NO
I ! Incranent PSDIR I +<=== I Are any parallel calls 1===\ .
I I (one more direct I I I running for this process? I I
I ! call enqueued) I I ----------------------------- I
I -------------------- I 1=================1
I I I 1
\==========)+ I V

V ! YES ------------------------------ NO
----------------------- 1==)+<====1 Are we already running the 1==\
I Enqueue the TCB off I I maximum number of calls? I 1
I the PEXTN (PSWD.W) I ------------------------------ 1
I in priority order 1 1
----------------------- 1 1=============1

V 1
--------- I YES -------------------NO
1 Jump I 1============1 Is this call a 1==\
I to 1======1 V I parallel call? 1 1
I PCALL I -------------------- ------------------- I
--------- \==== I Any other systan 1 1

YESI calls active? I I
-------------------- 1=====1

V I

---------------------------- I I Set bit to indicate 1 I
I holding on parallel call I 1
---------------------------- I

I V
\==================)+==>(Y)

(Y) [DIRRS]

AOS/VS Internals Chapter 3 Page 3-63

v
1 Set up the PRSTK.W stack 1

v

1 Form dispatch offset from system call word 1

v
YES ---. 1===1 Is the system call count table defined? 1====\
I --- I
1 1

------------------------------------.--- I
I Update the counter in the systan call 1 1
1 count table indexed by the call , I 1
--- I

I 1
\=====================>+<==========================1

V

I XJSR through the System Call 1
1 table to the appropriate code 1

V
YES ----------------------------- NO 1=====1 Did an error occur during 1=====\
lithe processing? 1
I -----------------------------
V

yES---------------------------. NO
1===1 Was. is a restart error? 1====\
I --------------------------- I
1 I
I ----------------------------------
1 1 Put the error code into the I
1 1 TCB' s ACO and decrement the PC 1
I ----------------------------------
1 I
\===============\ \========>+<=======1

1 I

The new system call word
1 is setup; decranent
1 PSDIR. incranent PSIDIR

V

----------------------~-------

1 Unpend the TCB I

1 Decrement PSDIR 1

1 Enqueue the TCB off of the 1
1 PEXTN (offset PSWD.W) in V
1 TCB priority order 1==========>+
------------------------------ I I

1 1 ----------------------\======:==:::::=:::::=1 Jump to PCALL

Mod ule; SCHED

AOS/VS Internals Chapter 3 Page 3-64

(Get a TCB from the PTBL extender)
I
V

YES --------------------------------' NO ----------------1====== t Is the systan call' in range I ===>.1 Return error I
I -------------------------------- ----------------
I
\=====================\

V

YES I Is path holding on a I NO
1==================1 parallel call? I ===\
I ----------------~------- I
I 1===============1
l I
I V
I -----------------------------
V YES I Are we already running INO
+<=============?==I the max number of calls? 1==\
I ----------------------------- I
1 V

I YES -----~---------------------- NO
I 1========= I Is this a parallel call? I ===\
I I ---------------------------- I
1 V I
V YES ---------------------------~ NO 1 <===== 1 Any active systan calls? 1 ==\ I

---------------------------- I I
I I

----------------------- I
1 Set the holding on 1 1
1 parallel call bit I I
----------------------- I

I 1
\=========>+<=================1

V

-------------~----------------- NO YES I Is it a direct systan call? 1 ===\
1====== ------------------------------- I

I
----------------------- I
1 Unlink the TCB from I 1========1
1 the PTBL extender 1

V

I Jump to DIRRS (Yon prevo pg) 1

NOl Any available IYES
1===1 CB? 1===\
I ----------------- 1 I I
I I

\=====================>+<===================1 1======1
I I

--- V
1 No systan calls can run ••• run a TCB 1 (Z)

(Z)

AOS/VS Internals Chapter 3 Page 3-65

1 Unlink this TCB from the PEXTN
----------------------------------v YES --_______________________________________ ~____ NO

1====1 Is the system call metering table defined? 1 ==\
I -- I
1 1
\-----\ I-------~---------------I ----- -----------------------

I I
V 1

1 Increment the corresponding 1
I counter 1

1
1
1
1

1 V --------------------------
\======================>+<======1 Daemon processing code

joins here 1 1
1
V

1 Get the CB

V

1 Put the TCB address into the CB 1

V

Set the funning bit in the
CB and clear it in the PTBL

V

1 Enqueue the CB onto the ELQUE

v

Make the CB's stack the current stack
and make the CB 's fault block the current block

YES

1
V

1=====1 Is this a daemon request?

NO
1===\

1
1

I
1

Jump into the·appropriate
daemon code path

Jump into the appropriate
system call code path

AOS/VS Internals Chapter 3 Page 3-66

System call dispatch locations (MCCI.W)

MCCT.W: CREATE.P
DELETE.P
RENAME.P
MEM.P
GCHAIN.P
PRSTAT.P
DPt-GR. P
PAIRED CALL
RRDB
RDB.P
PAIRED CALL
RWRB
WRB.P
PROC.P
MEMI.P
-1
INTAD.P
-1
-1
PAIRED CALL
RMBTU
MBTU.P
PAIRED CALL
RMBFU
MBFU.P
ISEND.P
IREC.P
ILKUP.P
GRUNT.P
TABT.P
-1
CTfPE. P

PAIRED CALL
RBLKIO
BLKIO. P
GTIME.P
STlME.P
SDAY.P
GDAY.P
IDEF.P
IRMV.P
SSHPT.P
RPAGE
ODIS.P
OEBL.P
DEBL.P
DDIS.P
STMAP. P
SUPROC.P
TABT. P
TRMPR.P
\;OrEN. r
GCLOSE.P

0- CREATE
1- DELETE
2- RENAME
3- AV AILABLE MEMO RY
4- CHAIN
5- PROCESS STATUS
6- DEFINE PERPH PROC

; 7- PRIMARY READ BLOCK
10- SECONDARY READ BLOCK

11- PRIMARY WRITE BLOCK
12- SECONDARY WRITE BLOCK
13- CREATE A PROC
14- MEM INC

; 15- QUEUE A TIME REQ (AOS-16)
16- DEFINE INT PROC ADDR
17 - K)VE BYTES TO GHOST
20- K)VE BYTS FROM GHOST

21- PRIMARY CALL TO t-[)VE BYTES
22- SECONDARY WITH STACK

23- PRIMARY CALL TO MOVE FROM
24- SECONDARY WITH STACK
25- IPC SEND
26- IPC RECEIVE
27- IPC LOOKUP
30- GET RUNTIME STATS
31...; ABORT CALL
32- TRANSLATE A TO A MAPPED ADDR
33- CHANGE PROC TYPE

34- PRIMA.RY BLKIO
35- SECONDARY BLKIO
36- GET TOD
37- SET TOD
40- SET DAY
41- GET DAY
1-12- DEV INTERRUPT DEFINE
43- INTERRUPT REMOVE
44- SET SHARED PARTITION

. , 45- REL SHARED SLOT
46- DISABLf: PRIX; CONT A
47 - ENABLE CONT A
50- ENABLE MAPPED DEV
51- DISABLE MAPPED DEV
52- SET MAP FO R USER DCH
53- CIIANCE ;)uPERPROCESS t-VDE
54- TASK AbORT
~):S- TEEM n~ ATE A PROC

57 - CLOSi;: A USER CHANNEL

AOS/VS Internals Chapter 3

SPAGE.P
CXINFO.P
CISND.P
SOPEN.P
-1
TPORT.P
BLK.P
UNBLK.P
PRIPR.P
SIGNAL
GU~·.P

GSHPT.P
GHRZ.P
DIR.P
DINIT.P
FSTAT.P
DRLSE.P
SLIST.P
GLIST.P
L<XiGR. P
GBIAS.P
SBIAS.P
WHIST.P
KHIST.P
-1
GNAME.P
GNCP.P
SUSER.P
SACL.P
GACL.P
PNAME.P
-1 .
FLUSH.P
-1
GTACP.P
-1
GLINK.P
GPRNM.P
L<XiEV. P
DADID.P
CPMAX.P
GNFN.P
-1
·RDUDA.P
WRUDA.P
CRUDA.P
-1
-1
ENBRK.P
SATR.P
IS. R. P
BRKFL.P
-1
-1
-1
-1
-1

Page 3-67

60- SHARED PAGE READ
61 -AGEN/KERNEL PAGE FAULT INTERFACE
62- SEND A KEYBOARD INTERRUPT TO SON
63- SHARED OPEN
64- GET A PORT OWNER AGENT RESERVED
65- TRANSLATE A PORT NUMBER
66- BLOCK A PROCESS
67- UNBLOCK PROC
70- CHANGE PROe PRI

, 71- SIGNAL WE SYSTEM
72- GET A PROCESS'S USER NAME
73- GET SHARED PARTITION VALUES
74- GET CLOCK FREQ
75- DIR
76- INIT AN LOU OR MTV
77- GET FILE STAlPS
100- RELEASE AN LOU OR MTV
101- SET SEARCH LIST
102- GET SEARCH LIST

, 103- MANIPULATE SYSTEM L<Xi
104~ GET BIAS FACTOR
105- SET BIAS
106- INIT HIST<XiRAM
107 - KILL HIST<XiRAM
110- GHOST SHARED OPEN
111- GET FULL PATHNAME
112- GET A CONSOLE PORT NUMBER
113- CHANGE SUPERUSER STATUS
114- SET A FILE'S ACL
115- GET A FILE'S ACL
116- PROCESS NAME <-> PID

, 117- RESERVED
120- FLUSH A SHARED PAGE TO DISK'
121- GET A FILE'S ALIAS
122- GET ACP'S FOR A FILE
123- DELETE FILE AND ALL NAMES
124- GET LINK CONTENTS
125~ GET PR<XiRAM NAME
126- L<Xi EVENT IN SYSTEM LOG
127 - GET FATHER'S PID
130- SET CONTROL POINT DIR MAX SIZE
131- GET DIR'S NEXT FILE NAME
132- MAP PERFORMANCE DATA TO USER
133- READ USER DATA AREA
134- WRITE USER DATA AREA
135- CREATE USER DATA AREA
136- ASSOCIATE A FILE
137- DISASSOCIATE A FILE
140- B~ABLE A BREAKFILE
141- SET FILE ATTRIBUTES
142- IPe SEND/RECEIVE
143- BREAK FILE
14L!- ENABLE A SYNC LINE
145- DISABLE A SYNC LINE
146- SEND DATA
1L(7- RECEIVE DATA
150-· DEFINE A POLLING L[ST

AOSIVS Internals Chapter 3

-1
-1
-1
-1
-1
-1
SINFO.P
-1
SCLOSE.P
MAPR.P
CGNAM.P
SSID.P
GSID.P
DACL.P
CONX.P
DRCONX.P
SERVE.P
RESIGN.P
MBTC.P
MBFC.P
PRCONX.P
DRCONX.P
VRCUST.P
PRCONX.P
-1
RNAME.P
RSEND.P
ITlME.P
FNAME.P
HNAME.P
RPORT.P
-1
-1
KIOFF.P
KION.P
KWAIT.P
KINTR.P
VRCUST.P
CTERM.P
-1
-1
-1
-1
-1
BNAME.P
PRDB.P
PWRB.P
-1
-1
UPDATE.P
ROPEN.P
RCLOSE.P
SWST.P
KWST.P
ALLO.P
SOPPF.P
PMTPF.P

Page 3-68

151- ENAB. A M.D. TERMINAL FOR POLLING
152- DISA. A M.D. TERMINAL FRa-t POLL.
153- GET SYNC LINE ERROR STATISTICS
154- DEFINE EXTENDED CONTEXT
155- INITIALIZE EXTENDED CONTEXT
156- RELEASE EXTENDED CONTEXT
157- GET SYSTEM INFORMATION
160- LOGICAL TO PHYSICAL MAP
161- CLOSE A SHARED FILE
162- MAP A REGION OF ADDRESS SPACE
163- GET PATH NAME FROM CHANNEL H
164- SET SYSTEM ID
165- GET SYSTEM ID
166- USER DEFAULT ACL (ON/OFF/SET)
167- CONNECT
170- DISCONNECT
171- BECOME A SERVER
172- STOP BEING A SERVER

;.173- MOVE BYTES TO CUSTOMER
. ; 174- MOVE BYTES FROM CUSTOMER

175- PASS A CONNECTION
176- RING SPECIFIC DISCONNECT

; 177- VERIFY RING CONNECT
; 200- PASS A RING CONNECTION
; 201- ACCESS THE NETWORK

202- HOST ID FROM PATHNAME
203- SERVER ?ISEND
204- RETURN TIME IN INTERNAL FMT
205- SERVER PA THNAME RESOLUTION
206- HOST ID<->HOSTNAME
207- NETWORK ?TPORT
210- RESERVED
211- RESERVED
212- DISABLE KEYBOARD INTERRUPTS
213- ENABLE KEYBOARD INTERRUPTS

; 214- WAIT FO R A KEYBD INTERRUPT
; 215- SERVER KEYDB INTERRUPT FNCT
; 216- VERIFY CUSTOMER RELATIONSHIP

217- TERM CUSTOMER PROCESS
220~ ENGRYPT/DECRYPT
221- ENABLE SYNC LINE FOR HOLC
222- DISABLE SYNC LINE USING HOLC
223- SEND USING HOLC PROTOCOL
224- RECEIVE USING HOLC PROTOCOL
225- NETWORK PROCESS NAMES

, 226- PHYSICAL READ BLOCK
227- PHYSICAL WRITE BLOCK
230- RESERVED
231- RESERVED
232- FLUSH FILE DESCRIPTOR
233- RESERVED OPEN (AGENT ONLY)
234- RESERVED CLOSE (AGENT ONLY)
235- START WORKING SET TRACE

, 236- KILL WORKING SET TRACE
; 237- ALLDCATE DISK FILE ELEMENTS
; 240- OPEN A PROT. SHARED FILE
; ~41- PERMIT ACCESS TO PROT SHAR FILE

AOSIVS Internals Chapter 3

-1
-1
-1 .
-1
-1
-1
RNGST.P
RtllPR.P
VALAD.P
FLTSC
GMEM.P
LMAP.P
EXPO.P
POKE.P
PEEK.P
WIRE.P
UNWIRE.P
TIMEQ
RINGLD.P
LEFE.P
LEFD.P
LEFS.P
-1
-1
-1
-1
-1
GTRUNC.P
ESFF.P
DVSTT

MAXSYS= (.-MCCT.~1)/2

2q2- RESERVED
2q3- RESERVED
2qij- RESERVED

Page 3-69

2q5- ?SIGNAL (GATE CALL' RESERVED)
2q6- ?WTSIG (GATE CALL /I RESERVED)
2q7 - ?SIGWl' (GATE CALL /I RESERVED)
250- RESTRICT RING LOADING
251- GET PATIiNAME FRG1 LOGICAL ADDR
252- INNER RING SERVER VALIDATE
253- PAGE FAULT PSEUDO CALL
25q- GET SYSTEM AVAILABLE PAGES
255- MAP A SYSTEM/USER PAGE

, 256- SET/CLEAR/CHECK EXECUTE PROTECT
; 251- USER DEB CHANGE C(LOCATION)
; 260- USER DEB EXAMINE C(LOCATION)
; 261- WIRE A PAGE lNTO WS
• 262- UNWIRE A PAGE

263- QUEUE A TIME RfQ (MAGIC)
26q- LOAD RESTRICTED RINGS
265- ENABLE LEF MODE
266- DISABLE LEF MODE
261- SAMPLE LEF MODE
270- RESERVED

, 271- RESERVED
; 272- RESERVED
; 273- RESERVED
; 27 q- RESERVED
; 275- TRUNCATE A DISK FILE
; 276- FLUSH SHARED FILE
; 271- GET DEVICE STATISTICS

; HIGHEST SYSTEM CALL NUMBER (=211).

Note: <entry>.P indicates that the call is pendable, that it is
found in a system pageable page and therefore requires a CB
to execute. However same entries not having the .P suffix
also require a CB~(example - FLTSC)

AOS/VS Internals Chapter 3 Page 3-70

The following list of mOc!l.·les handle process management. They are
listed alphabetically by module and the entr·y points are Hsted as they
occur in the listing.

CHAIN

CLNUP

PRCNG

PROC

PROC2

PROC3

RINGLD

- chain to another program
entry points:

GCHAIN. P - chain to anot:ber process
~~PR.P - stack initialization

- clean up a process upon tennination
entry points:

CLNUP.P - cleanup a process for chain/term
~lRBRK. P - write a breakfile image
RELMF. P - let go of channels, pages for

chain/term
hETCN.P - return proces~ console
PLLRU.P - pull unshared pages off LRU
RESET.P - abort I/O
A.BRKF.P- patch location for agent breakfile

- tenni.na te a process
entry points:

RET.P - tenn demon
FPTRM.P - fatal process ternlination
TRHPR.P - '?GTERM systan call
TERM.P - tenninate a process (without

subordinate)
PRNCI.P - trap ACAB entry

- proc a process
entry points:

PROC.P - proc a process
PROPEN.P- open a .PR file
RDUST. P - read ust frqn • PR file
P~2BLK.P- read first 2 blocks of .PR file
USTVAL.P- checks for valid ust
TCBVAL.P- checks for valid tcb

- proc code continued
entry points:

PROC2.P - second half of PROe code
PTRAP - trap from user proc call
CLWS.P - initial working set calculation

- proc error handler
entry points:

PRCER.P - common error processor
SETTL. P - set time limit on proc
PERR.P - error handler for memory error in

PROC2
PDLSW.P - creates a hot PSI pool entry if

both page and swap exist. If one
does not exist a panic 14465
occurs.

PSIPE.P - clean out page + swap to prevent
a panic

PSWBLD.P- build hot PSI pool entry
load a lower ring
entry points:

RINGLD.P- load a lower rirg
VALAD.P - inner ring server address validation

. RNGST. P - restrict ring loading

AOS/VS Internals Chapter 3 Page 3-11

SOV11

SOV11

SSOV3

CTYPE. P - change process type
- break file processing

entry points:
BRKFL.P - create a break file ?brkfl system

call
IBRK. P - create a break file with user and

agent
ENBRK.P - enable a break file to be taken

- initial load of a process and ring 1 initialization.
entry points: .

PPRLD.P - proc initial load deanon
R1INIT.P - ring 1 initialization

- routines used in proc
entry points:

RXINIT.P - init ring from the .pr file
NU HI AD • P - change ring ,1 to get more logical

addresses in the uSer ring
SWAPFILES - swap file manager

entry points:
PROC1.P - continuation of proc code

AOS/VS Internals Chapter 3 Page 3-72

Proiram Load Option

Every process starts with a working set large enough to accommodate
Page 0 (the first 2K bytes of the logical address space) and the
program counter (PC) page. The PC points to the instruction which is
currently executing in a program.

You have the option, however, of loading part or all of the unshared
address space in your initial program file into physical memory. This
program load option is useful when the program which you're
executing

o is short

o runs briefly

o frequen,tly references a large unshared area.

By loading in pages initially, you save the time incurred by multiple,
sequential page faults.

Before you can use the program load option, your system manager must
enable the initial program load option,during the VSGEN dialogue by
indicating the nlnuber of pages a process can have at initial load time.
You must then use the SPRED utility to edit the preamble of your program
file to indicate the address range of the area you want loaded. For
details, refer to "How to Generate and Run AOS/VS" (093-000243).

Variable Swapf~

Memory contention occurs on a system when currently active processes
all desire· total working sets larger than the memory available. When
contention is light, AOS/VS removes inactive pages from processes and
keeps them in a "page file" dedicated to that process. If the process
later demands the page(s), the system restores them to the working set.

When heavy memory contention occurs, the system picks a process to swap
out to disk via a "swap file". Each process has its own swap file in
the SWAP directory. By default. these files have a fixed size.

The fixed size. hcwevet. can be a disadvantage for certain processes.
For example, if the swapfile is 124 pages and the system decides to
swap out a process whose working set size is 250 pages, the system has
to break up the working set to fit it in the swapfile. When this same
process is later swapped back into memory. the process must incur a
series of page faults to restore its working set back to 250. For
processes with large working sets, this paging can be costly.

To incur less cost. you can set up a system to allow swapfiles·which
vary in size from process to process.

To allow the use of variable swapfiles,

o During the VSGEN dialogue. the svstem manager indtc8 tps thaJ~ be

ADS/VS Internals Chapter 3 Page 3-13

wants variable swapfiles and specifies a default and a maximum
swapfile size.

o 'The system manager gives certain users (those who run programs
with large working sets) the privilege of changing their working

'set size.

o The privileged users edit the preanble of their progran files
with the SPRED utility. In doing so,they specify a size for
the swapfile equal to the typical size of the ~orking set of
the program.

Process Types

To manage the multiprocess environment. ADS/VS ,allocates main memory to
processes based on their priorities and scheduling characteristics.
Processes fall into two main categories:

o Those which always reside in memory (these are called
resident). In general, only the most critical processes in your
system environment should be resident.

o Those which the memory manager moves back and forth between'
disk and memory (these are called preemptible and swappable).

NOTE: Under ADS/VS preemptible and swappable processes are almost
identical; for differences, see the section on "Priority
Changes" in this chapter. Under ADS, however, a preemptible
process ALWAYS has a higher priority than a swappable process.

When you create a process with the ?PROC system call, by default the
process is the same type as its father. You may, however. give it
another type, if you wish.

Any process can issue,the ?WIRE system call to bind pages to its
working set. Remember, however, that if you start wiring a lot of
pages to a resident process, you'll degrade the performance of the
system because of the increased number of pages the system will be
unable to swap out when contention occurs.

In addition to any pages you may wire with '?WIRE, AOS/VS autanatically
wires the Agent of a resident process to its working set (the Agent is
that part of AOS/VS which pre-processes system calls and serves as an
interface to the operating system.) You may, however. issue an ?AWIRE
system call to unwire all the Agent pages from a resident process,
except for those needed to support user devices. As a result, you
free up some pages of memory and improve the efficiency of the system
as a whole. Your resident process, however. may seem less efficient.

As a general rule, AOS/VS keeps interactive swappable processes in
memory longer than non-interactive swappable processes. You may change
thiS, however. by setting the bias factors.

AOS/VS Internals Chapter 3 Page 3-74

..ErJori ty Numb~

Eligible processes compete with each other for CPU time, based on their
individual priority numbers. AOS/VS uses priority numbers to determine
each process's priority. When you create a process, you may assign it a
priority number.

Priority numbers range from 1 (the highest priority) through 511 (the
lowest). These numbers span three scheduling groups (with no overlap
and no gaps), whose boundaries are determined during VSGEN.

Priority Cha~

If a process wants to change its own priority. it may issue thE ?PRIPR
system call. To change the priority of another process, however. the
calling process must be in Superprocess mode. (See "Superuser
Mode/Superprocess Mode" in this chapter.)

Cbanging Type

The priority of a process may also change when you change its type with
either ?CTYPE or ?PROC. Given that the boundaries of the 3 schedt..ling
groups are

Group 1 = 1 - G1
Group 2 = G1+1 - G2
Group 3 = G2+1 - 511

then Tables 2-1 and 2-2 ~ummarize the changes in priority which occur
when a process changes type. Notice. that a swappable process can never
assune a priority of 1.2. or 3, but it may APPEAR to do so because of
the way priority numbers get mapped (see the discussion of "Mapping"
below.)

Priority Changes Going from a Resident or Preemptible to
Swappable Type

Priority Before Change Priority After Change I
I
I

---•. - ------ -- _ •.• --.--------------. I

1 - 3
4 - G1
G1+1 G1+3
G1+4 - G2
G2+1 - 511

1 - 3 * **
2 * **
1 - 3 **
G1+4 - G2
G2+1 - 511

* This parallels what happens under AOS.

** Although you would see these numbers if you displayed the
priority of a process with the CLI PRIORITY cow~and, the actual
priorities would be G1+1 - G1+3. See "Happing" below.

Priority Changes Going from a Swappable to a Resident or

ADS/VS Internals Chapter 3 Page 3-75

Preemptible Type
----------...... ----.-------------.-------------------------------------
I Priority Before Change I Priority After Change

. . I I
---------------------------------- ,------------------------------. I

1 - 3 **
4 - G1
G1+4 - 511

1- 3 * .
4 - G1
G1+4 - 511

I
I
I
I
I
I

--------------------------------~ -.-..... ~-.- --,-------.-.. ", :_- -----

Mapping

* This parallels what happens under ADS.

** Although you would see these numbers if you displayed the
priority of a process with the CLI PRIORITY command, the actual
priorities would be G1+1 - G1+3. See "Mapping" below.

A resident or preemptible process can assume any of the priority
numbers 1 through 511. The system uses this number in gauging the
importance of the process during scheduling and displays this Same
number if you request the process's priority.

To maintain compatibility with AOS,however, AOSiVS has to map priority
numbers for swappable processes. As a result, the actual number the
system uses in its scheduling calculations and the number it displays
when you request the process's priority may differ.

The discrepancy between actual and displayed priority numbers occurs in
three cases: '

1) If'you assign a swappable process a priority of 1, 2, or 3.

2) If you assign a swappable process a priority of G1+1 - G1+3.

3) If a resident/preemptible process with a priority of 1, 2, or 3
changes its type to swappable. '

In all three cases, AOS/VS uses a priority number of G1+1 - G1+3 when
scheduling the process because a swappable process cannot have a
priority of 1. 2. or 3. The system cannot. however, display the numbers
G1+1 - G1+3 for a swappable process, and so displays 1 - 3.

In all other cases (4 '- Gl and Gl+4 - 511), the actual number is the
same as the displayed number.

Remember, however, that if you do assign a swappable process a priority
of 1 and then it changes type to resident (or preemptible), the
resident process WILL have an actual priority of 1, even though the
~wappable process could not.

EXamples of Mapping

1) If a resident process with a priority of 2 changes its type to
swappable. the system displays a priority cf 2, but it actually uses

AOS/VS Internals Chapter 3 Page 3-76

G1+2 when scheduling the swappable process.

2) If a resident process wi th a priority of 3 changes its type to
preanptible. the systan displays and UEes a ~·riority of 3 for the
preanptible process.

3) If a preanptible process wi th a priority of G1 +3 changes its type to
swappable. the systan displays a priority of 3, but uses G1+3 in
scheduling the swappable process.

Lj) If a preanptible process with a priority of G2+44 changes its type
to swappable.the systan displays and uses a priority of G2+44 for the
swappable process.

5) If a swappable process with a displayable prior'ity of 3 (meaning its
real priority is G1+3) changes its type to resident. the systan
displays and uses a priority of 3 for the resident process.

6) If a swappable process with a priority of 5 changes its type to
preanptitle, the system displays and uses a priority of 5 for the
preanptible process.

Process Scheduling

be

AOS/VS schedules eligible processes based on their priority numbers and
scheduling character'istic. As you may recall, the range of process
priority numbers (1 through 511) spans three scheduling groups.

Group 1 ranges from 1 to a number. "G1", which is set during VSGEN.
AOS/VS schedules any process whose priority number places it in Group 1
on a round-robin basis. Under this scheme, each process is allocated a
uniform slice of time during which it. may execute. Once a process of a
specified priority tanporarily stops executing (having used up its time
slice), it is not chosen to execute again until all other processes of
that priority have been chosen to execute.

Gr'oup 2 ranges from Gl + 1 to a number, "G2", which is also set during
VSGEN. AOS/VS schedules any Group 2 process heuristically, which means
that the systan takes the process's past behaviour into account when
alloting it an interval of time during which it may execute.

Group 3 ranges from G2+1 to 511. AOS/VS handles processes in this
group on a round-robin basis.

NOTE: If you need to maintain compatibility with AOS, Gl and G2 must
be set to 255 and 258, respectively.

Group 1 processes are always more important (that is, more likely to

chosen for execution) than those in Group 2 or 3, and Group 2 processes
are ah:ays more important than those in Group 3. Within each group,
the lower the priority number, the greater the importance of the
process. The importance of a process may, however. alter as a rE;~;L:lt
of a change in type.

If an executing process cannot proc~ed, you can issue the ?RESCHED

AOSIVS Internals Chapter 3 Page 3-77

system call, which allows the calling process to give up control of
the CPU and forces AOS/VS to immediately schedule another process for
executi.on.

AOS/VS Internals Chapter 3 Page 3-78

Process creation

Process creation is one of those AOS/VS functions that is not
the responsibility of anyone module or routine. It involves systsn call
call processing, CO REM , dasnons and other such things. The following
is an attsnpt to follow a process creation from the tin~ at which a
process performs a ?PROC until the new process is healthy and strong,
ready to assume its place in the AOS/VS world.

?PIWC Create a New Process

The ?PROC i5 first pre-processed by the AGENT, which builds an
ir,i. tial IPC message from the user packet that contains the names of the
gEneric files @LIST, @INPUT, @OUTPUT, @DATA. This IPe message is sent
to the new process to be picked up when the new process's AGENT starts
up. The AGENT then enters into the kernel through the normal system
call path. AOS/VS does the actual processing and then control is
returned to the AGEN:r for sane post .processing.

System call trace:

1. Meter the number' of PROC requests (PROCRQ. W)

2. Set up a tempor'ary CB fault h?.ndler (may fault when reading the
user's packet)

3. Copy the user's packet onto the CB stack

4. If the caller does not have the unlimited sons privilege, count up
the ntrnber of son and make sure the caller will not exceed the
assigned limit

5. If the caller wants to create with block, return an error if the
caller is resident. If the caller is creating without block,
return an error if the caller does not have the privilege to do so.

6. Allocate a PTBL and PEXTN from GSMEM (72. and lK words long)

7. Set up sane initial values (pOint the PTBL at itself and the PEXTN,
set the initial load, the swap in progress, and the dasnon start
bits). If a full breakfile (MDUMP) is requested, set the bit.

8. Check process priority and check for proper ranges and ability to
change priority.

9. Set up the working set mininrum and maximum offsets in the PEXTN

10. Open the .PR file, and insure that it is an executable file type,
that the user has execute C.ccess and that it is at least lK long.

11. Store the eID (Channel 1D or the address of the CCB) in the PEXTN.

AOS/VS Internals Chapter 3 Page 3-79

12. check for extensible swapfiles if so set up new swapsize = to smallest
of preamble. swapsize or new WSMAX.

13. Allocate a 256 word chunk of GStI£M and read in the second block
(block 1) of the .PR file using the NQCRQ routine.

14. Verify that the TCB address pointed to in USTCT of the UST is 446

15. Validate the active TCB queue (must also be 446)

16. Store away the initial user PC and task count for the AGENT
and make sure the task count is valid (1<=taskcount<=32)

17. If the user is procing up a process of a different type (16 vs 32)
insure that the user has the privilege

18. Validate the processes address space (shared does not overlap the
unshared, initial PC is in the valid address space, etc.)

19. Release the GSMEM chunk allocated in step 13.

Call to PROC1.P in SWAPFILES.

20. Setup the PSMEMQ, PWSMQ, PFRMQ, PRBQUE, ILAQUE, and PIORRIPIORB chain
pointers

21. Check for pre-paging + initial load. If set load it in.

22. Set up single or multi level .PR

23. Set up the concurrent· system call number

24. Allocate the swap and page files Note that this
will return a PIO number

25. Set up the new processes username

(At this point. the code chains from·PROC1 to PROC2)

26. Set up default and working directories

27. Store the subslice length (32 ms) in the PSL offset of PEXTN

28. Expand the PlOTS if necessary (if PIO#)PIDLN it must expand)

29. Update the appropriate son and brother pointers

30. Set up the process name in the PIF

AOS/VS Internals Chapter 3 Page 3-80

31. Create and initialize the IPC spool file, initialize the spool
file directory chain (on the PTBL), and send the initial user
and AGENT IPCs

32. Set up the new processes searchlist (same as fathers)

33. Put the ring 7 .PR file name into the PIF.

34. If the user specified a max CPU time, set up the values in the"PEXTN

35. If a console is being assigned to the new process, connect the new
process to the console controller (P~CR or SVTA), and send an IPC
to the console controller. Then wait for the PMGR or SVTA to
signal the completion of the console assignment.

36. If the proc'er has received a ACAB during the proc, abort.

37. If request~~, pass along the default ACL

38. Set up the initial working set requiranent in the PTBL extender
as follows (estiw2te initial process memory requirement)

a. Calculate the number of pages required in the AGENT for the
TCBs and the number of pages required in ring 1 for "the
virtual TCBs (call this sum A)

b. For a 16 bit process, we will need pages for the
following:

1 low level PTP for ring 7
1 high level PTP for ring 1
1 low level PTP for ring 1
1 data page for ring 1 (page file directory)
1 high level PTP for ring 3"
1 low level PTP for ring 3
A+1 data pages for ring 3 (A from step a above +1 for

the initial AGENT PC page)
If resident, all the shared and unshared pages,

otherwise 2, the initial PC page, and page 0

For a 32 bit single level process:

1 low level PTP for ring 7
1 low level PTP for ring 1
1 data page for ring 1 (page file directory)
2 low level PTP for ring 3
A+1 data pages for ring 3
1 or 2 data pages for ring 7 (only 1 j"f the ini tial PC

is in page 0
high level P1P for ring 1
high level PTP for ring 3

AOS/VS Internals Chapter 3 Page 3-81

For a 32 bit two level process,we allocate as for a single
level process plus:

1 high level rTP for ring 7
(1) low level PTP for ring 7 if necessary

39. If the caller is to block, set a bit to tell the scheduler to block
the caller when all systan calls are completed (BPFEB)

40. If the new process is resident attanpt to grow the resident CB pool
(if this fails, abort the proc)

41. Set up the connect time and day, and the initial PNQF

42. If the new process is to be blocked after initial load, set the
appropriate bit

43. Enqueue the new PTBL to the appropriate ineligible queue

44. Meter the number of completed procs (PROCFN.W)

45. TIle systan call is complete (the caller can now continue if this ~,as
net a proc/block call)

Time passes ••• Eventually the process will get the initial required.
meMory (which will be enqueued off of the processes memory queue,and
the PTBL wUl be moved onto the ELQUE. The PTBL will get control of
thl:: CPU and it the scheduler will start up the initial load daemon.
This will then take us to IPRLD.P in SSOV3. Then •••

1. Set up the PTPs. The memory for these pages will have been
allocated by GCORE and linked of the process' memory chain

2. Set up the SBRs to point at the new PTPs

3. If the process is narrow (1E bit) and resident. read and wire in
the entire working set. Otherwise. read in the user's page O.
and initial PC page (stored by the PROC code at step 16)
and initial load area if set.

4. If the process is to come up in the debugger. set the appropriate
flag in DEBFLAG

5. Chain to the initialize AGENT code (still called IGHOST.P)

The IGHOST.P code is located in SOV17 and does the following:

1. If the PMGR is running (MPMGR<>O) then open up AGBJT.PR, and put
the CID into the ring 3 • PR file CID loca tion in the PEXTN. If
the PMGR is not running (MPMGR=O) then open LPMGR.PR (lOP or lAC)
and the CID into the ring 3 .PR file CID location in the PEXTN.
(This wi] 1 initialize the PMGR if PID 1 or' the AGENT if not PID 1)

AOS/VS Internals Chapter 3 Page 3-82

? -.
3.

4.

5.

,
I •

I -.

Build the PTPs for ring 3. and store the inforrr.ation ir. the PEXTN

Get a data page for page 0 (note that the page'should be on the
process' . memory ch8in and VS will panic if the- get page call fails)

Read into a systun l-l.lffer the UST for the AGENT so we can obtair;
the inl(;r;nc.. tiOl! about the AGENT's shared area

Read AGENT bl.ock 0 into the ring 3 address space

Alloca t~ (fran the proces:',' memory queue) enough pages to hold th.E
TCBs an,; arid the pages to the ring 3 PTP structure

RE:ad in the TeB paSt:s fl'al' the pr'eanble

Set up the ini tial s:artL.g address (either AINIT or lIDEBUG),
and st(lre t"'le user'f.. starting address in AGAC2.W

FRul t ir~ tne AGENT FC page (\-Ihich cannot already be there because
the page is shat"e."Ci)

10. Wire L ;,hE- TCB pages

11. Set up th~ initial ~primary) AGENT stack

12. Set up the user's stack (lased on whether the user is 16 or 32 bit)

13. Reset the ini ti.al load bit, and flag that the ini tial load is.
complete

14. Update t,i€ werking set to reflec~ the additional pages added

15. Clear the process sched action bit (so that the process will now
run)

16. Dismiss the CB

When the scheduler next scans down the ELQUE, it will find the new
process ready to run. and will give control to the one TCB that
exist. If this is PID 1. the PC will point to the PMGR init code, else
the PC of that TCB will point to either AINIT or ADEBUG.

1. If the entry point is ADEBUG, set a flag to indicate so.

2. Build a fake return block on the current stack, with all ACs:O
and the PC = the user's starting address (passed by the kernel)

3. Inittalize the memory manager

4. Build the TCB free chain

5. Allocate merwry for the memory database (store the address
in AHEMDB)

AOS/VS Internals Chapter 3 Page 3-83

6. Get the memory for the AGENT stacks (192. words per task).

7. Point each TCBs ring 3 SP and FP at the allocated stacks

8. Initialize the ring 3 and ring 7 memory allocation tables using
information obtained from the kernel via ?MEM and ?GSHPT

9. Copy the first 21. words of the AGENTs UST into the user's UST

10. If the user is 16 bits, and an overlay descriptor table is
defined, call AINIT16. which will allocate the memory needed
to holo an over"lay descriptor table wi ttl in the AGENT space,
and will copy the ring 7 ,table into the ring 3 table

11. Read in the initial IPC

1~. If the user did not specify the PROC/DEBUG option, then perform Co
WR~ which will pass control to the' user. Othel~ise. jump to the
debugger (LJMP XDEBUG)

Process Termination

There are basically five ways that a process can terminate.

1. Direct termination -- (self termination and forced termination
by a different process)

?REWRN

?'fERM

2. Console interrupt -- (user forced by typing interrupt key)

3. Trap

"'C "'B

"'C "'E

MODEM DISCONNECT

See the section on traps (there are 11 different
hardware traps defined by the MV series ECLIPSEs.)

4. Father terminatiorl

5. Fatal process error - (While processing a systan call or
internal routine, AOS/VS has taken an
unrecoverable error pa th and must
terminate the process

Code paths:

AOS/VS Internals Chapter 3 Page 3-84

Hardware Traps while not in ring 0, ACAB, or ACAE (PRNCI.P)

1. Save away the current task information

2. Join the common code below

Fatal process errors (FPTP.H.P)

1. Store the error code (from the CB) into the process table extender,
and sel the fatal term bit in the process table

2. Save the TCB at the time of t.he error

3. Zero the CB's TCB pointer to prevent the unnecessary awakening of
the TeB when the cal] CB completes

4 • J LIllP to C)t::mon code below

Se.1.f termination / forced termination (TERM. P)

1. If a forced termination (Le. TERM 12), validate the target PID
of the comrnand.

2. If self-termination, "set the self· tenn bit (BPFST)

3. Zero the CB's TCB pointer to prevent the unnecesSBry awakening of
the TCB when the call CB completes

4. Jump to common code below

Canmon code (module PRCNG)

1. If the process is already terming ignore this termination,
otherwise set the first term bit.

2. Call PTREE to block the process' entire inferior process tree.

Begin main termination loop:

3. Look for a process t.hat does nct have a son, and call PBITS
passing the found PID as the paraneter'.

PRCNG
___________ • __ • __ _. ___ •• __________________ ~-.-.--- .. __ • ____ W· •••• " ___ • ___________ ..

mSB2

4. PBlrs will:

2. If the process is faulting, set the term after fault bit.

b. If the process is not swapping, clear sched action (allow
things to happen)

c. SP.t the break (00 interrunt) hit. i.n PSTAT

AOS/VS Internals Chapter 3 Page 3-85

d. Set the terming bit.
e. Reset the not ready bit.
f. If the process is blocked, unblock it (or have the corananager

unblock it if at interrupt level)
g. If the process is not in core. regenerat.e the PNQF to speed

things up, and flag the COREM to swap in the process

SGSB2
--PF:CNG

5. We then go back to the scheduler. which will find the process we
just PBITed ready to run. and start a termination daemon for th,it
process. The daemon will start at RET.P in PRCNG

6. Incranent TERMRQ.W (number of tenn rc-quests)

7. If the terminating process now has a son (which was proced during
the termination cycle, go back to step 2 above)

8. Change the WSMAX for the terming process to the systan default ..

9. Give control to the processes AGENT to allow it. time to clean up
databases, and flush AGENT buffers. Control will be transfered
unless:

a. This is a sel f term. The ?REWRN or ?TERM self system call
will have started in the AGENT which will have flushedi ts
buffers before passing control to the kernel.

b. The termina ting process has trapped in the AGENT. If the
trap was in the AGENT, the system is uncertain about the
state of the databases and buffers and therefore will not
allow them to be flushed.

c. The terminating process was initially loading. Since the
AGENT has never run, and in fact does not even exist for
this process, we can not give control to it.

The system will force the current TCB for the user to execute the
AGENT cleanup code. It will also disable task resheduling for the
terminating process,prevent the process fran ever blocking, and
prevent the running of outstanding system calls enqueued off of the
PEXTN. The code will also tell the AGENT to perform a full
breakfile (MDUMP) if this option was requested at PROe tin~.

10. If the father has resource limiting on, decrement the time limit t:y
the time used by this process

11. if this is a trap, then:

AOS/VS Internals Chapter 3 Page 3-86

a. If this is the PMGR trapping, tben PANIC 12010
b. Create the breakfile CCB (delete, create, open the file)
c. Notify the PMGR about the tennination (vj.a'IPC)
d. CalJ. CLNUP. P (see docLluentation below)
e. Call SIPCD. P (which will format the tennination IPC message)

If this is a "c "B or "'c "E, then:

a. If this is a "C "E. then create the breakfile CCB
b. If this was a modem disconnect, process af, [; FATAL ERROR (see

below)
c. Notify t.he P~1GR via IPe about the termination
d. Cal] CLNUP.P
e. Call SIPCD.P

If this is a FATAL error. tben:

a. Notify the PMGR
b. Call CLNUP.P
b. Call SIPCD.P (termination code = 4, terminated by the systan)
d. If this is a modem disconnect, then put the error (175) in th~

IPC ::'0 be sent; otberwise. put the error frOOl the process table
ext.ender into the IPe message.

If this is a self tennination, then:

a. Set up the termination IPC header and if a user terminaUon
message was specified, copy it onto the stack.

b. Notify the PMGR about the tennination
c. If there is a user message, send it (SIPC.P).
d.Call CLNUP.P
e. Join the code patb below at step 13.

If this is a term by AOS/VS (because the father tenned), then:

a. Notify the PMGR about the tenn
b. Call CLNUP.P
c. Call SIPCD.P

12. If SIPCD was sucessful, send the IPC message (SIPC)

13. Release the system CCBs associated with this process' directories

14. Release the swap and page files associated with the process.

15. Unlink us frOOl our fathers son list.

16. If we are PID 2, jump to DEATH, the routine to shut the system down

17. Release the process' unshared memory area (including the PEXTN)

18. Unpend any processes waiting for termi.nations (call UNPEND)

19. If the father is not the root. and the fatber is not tennJnating,
t.hen unblock him if he is waiting for son tennination.

AOS/VS Internals Chapter 3 Page 3-87

20. Call the core rr~nager (memory is now available)

21. Update PIDTB and PIDBT (zero the double word pointer in PIDTB and
clear the appropriate bit in PIDBT)

22. l'npend processes waiting on SKTR (son termination during system
shutdown

23. If this is a resident process terminating, return one resident CB
to GSMEM

2~. Release the process table to GSMEM

25. If our father is the root. or not terminating, ,we are done
Otherwise. if the father has another son (we are eurvived by a
brother), terminate that son (and its sons and •••) otherwise, ternl
the father. (Jump to step 3 above)

CLNUP.P

(Note that this routine is also used by the ?CHAIN code)

1. If this is not a ?CHAIN, build and post a logfile terminatior;
message.

2. Release user devices (IDEF)

3. If a breakfile CID exists (i. e. we are creating a breakfile) then
do the followIng in this order:

a. Copy PFLAG words and the trap code from the kernel space into
the AGENT page 0

b. Write out the AGENT page 0 and TCB pages
c. Close the breakfile

4. Delete any user created IPC entries for this process.

5. Dequeue outstanding IRECs

6. Dequeue outstanding spool file directory entries from the PTBL chair:

7. Close IPC spool file.

8. Inform the Connection manager about the termination (TBC in CONX)

9. If this is a chain, terminate any sons that \-/ere proc'e<i from
rings 3 - 6.

10. Remove this process from the delay and histogram chains if
appropriate.

AOS/VS Internals Chapter 3 Page 3-88

11. If a WS trace is in effect for this process, stop it.

1~). Wait for all systan calls targeted at this process to complete.

1',
.,). Release the sban.::d areas for rings 3-7. This is done by

examining the Ct·~E for each page in the \~S and ranoving the page
(via FREL) if the 1 shared 1 bit is set.

1~. Close any open files (call the routine RESET.P)

1:,. Search the LRU for l.mshar(.'<i pages belonging to this process and
put the found pages onto the FC1024 chain.

1f. Close each .PH file open for ring 1-7

17. Release the sear'chlist (if not CHAIN)

1e. Dequeue process from ELQUE. (end of CLNUP)

AOS/VS Internals Chapter 3 Page 3-89

Process tennination diagran -- the nunbers indicate order in which
the processes will tenninate.

/
/

/

+----------+
(6)

-1---------+
\
\
\

+-----------+ .-----------+
(5)

+-----------+ -t-----------+
/

/
+-----------+

(1)

-+-----------+

System shutdown (DEATH)

\
\

~-------, -+
(2)

of------------+

\
\

-t---------.. of·
(4)

-t---------.. ~

1. Term all processes (set term bits in all processes)

2. Pend root process until all others are gone.

3. Turn off system log.

4. Close PIF

5. Release :PER directory CCB

6. Release the :SWAP and :PAGE directory CeBs to the hot PSI pool
if the pool is not full.

1. Release all LDUs still initialized (the root [:] is last to go)

8. Tell the world and halt the processor.

AOS/VS Internals Chapter 3 Page 3-90

The following modules handle memory management.

CLUSTER - prepage at load and fault time
entry points

ILCLSTR - initial load prepaging
CLUSTER - fault time prepaging

COREN - core manager
entry points

CORElv'! - core maraBer
CMINT - core manager task
C\~AKE - force a reschedule of core mar.aSer
CMENQ - enqueue a proces~; to core manager
EXPTB - exponent's elque counter table

COREM2 - part 2 cf core manager
el"!try points

GPNQF - generate priority enque factor
CTBLK - block a process
IUNBLK - int.errupt unblock a process
CTUNBLK - .unblock a process
PDEQ - remove a process tabe fr(~ a queue
PENQ - enque process table to end of queue
TSPRC - process end of time slice
TSUP - process end of time slice

"PRBAG - mark process for swapout
FITER - enque a process t.o one of the
. ineligible swapped queues
NOSYS - check for any outstanding system calls

FAULT - fault in pages
entry points

FAULT - fault a page into the working set
FAULTS special entry into fault for ?SPAGE
FLTWR - fault and wire a page into working set
FLTWRS - special entry to FLTWR for '?SPAGE
UNWIRE - unwire a page in a working set
UNWIRS - special unwire entry for ?SPAGE

t~PR - memory mapping routines

t·'~EMRY

entry points
CKSWIP - check for eligible to have page swiped
LDPTBL - force'load a PTEL
RLPTBL - release a PTBL
GPTBL - convert a PlD to PTBL
FUCCB - find user CCB
DFAULT - find and fault in user CCB
MAPU/
HAPUNW read in user pages with full access
RMAPU/
RMAPUNliI - read in user pages with read/execute

access
MAPCU/
NAPCUNW - map in a user page
RMAPCU/
RMAPCUN\~- n:ap in a user pa~e
UNMAP - unmap a user page

- memory management routines
entry point.s

RPMEM - release memory on the PSMEMQ

AOS/VS Internals Chapter 3 Page 3-91

HEMRY 2

MEMRY3

PFF

RMVWSB - update WS bit and ref bit arrays
PLPHYS, and PHPHYS when removing a
page

PGSMEM - GSMEM that looks on the PSMEMQ
PGSMEMNW- GSMEM that looks on the PSMEMQ (no

CKWMAX
PGMBLK
GMBNW
GSMNW
GMCNB

wait)
- check for exceeding WSMAX of process
- GMBLK that looks at PSMEMQ
- GMBLK wi th no wai t
- GSMEM with no wait
- get a block from only the candidate

chain
GSHRS - get a page and wait as well as restart

TCB
GSMEM - get a page or pages fran meoory
RSMEM - release a piece of system memory
G~J3LK - get a block of manory
G~SRS - get a block and restart TCB
RFBLK - release a 1k page to free chain
RFBLKN - release a 1 k page do not change MKEY
RSBLK - release 2 shared 1k block of memory
RUSBLK - release an unshared 1k page to LRU

- rest of memory n~nagement
entry points

GETSPH - allocate an SPH
RELPMEM - release an entry from PSMEMQ
TGCHK - verify validity of target process
PGLPA - get an LPA from PSMEMQ
GLPA - get an LPA
PSMFREE - release memeory to it proper chain
GFCB - find a free FCB
RFCB release an FCB .
KPFCB - find and mark as allocated a free FCB
SHFLS - flush (write) shared pages reset

mod i fi.ed
SHFLSNR - flush (write) shared pages no reset
DQCHD - dequeue a core map header fram LRU
GCORE - allocate ws bit array ref bits process

mem
RCORE - rele~se ws bit array ref bits ptbl ext

mem
- logical ring 0 memory n~nagement

entry points
DALCB - deallocate a control block
ALCB - allocate a control block
ALOPTES - allocate pte's for ring-O logical

ALOMEG
DLSAL/

space
- allocate ring-O low level ptp

DLSREL - allocate/free dynamic logical slot
ESAL/
ESREL - allocate/free extender logical slot
GETXSPC - get space in process' extender slet
FREXSPC - free space in process' t!xtender slot

- page fault algorithms
entry points

CLRFAY - clear reference ar'f'ay

AOS/VS Internals Chapter 3 Page 3-92

PGFLT

PGREL

PRMPT

PRSUB

PTE

CREF - copy
PFF - page
PFFUFT - pagt

reference bit array
frequency algorithm
frequency algori tho!

- hardware page fault handler
entry points

CPDESC
CPINC
fTPDEC
F'TPINC
FLTSC
PGFLT
NPGFLT
FIXCB

- decraner.t contr'cl page use count
- incranent control page use count
- decrffilint pc:ge table use COUllt
- incranent page table use count
- page fault pseudo system call
- hardware fault handler
- b:lI'dwal'l! fault tlandler
- converts direct to indirect call

- release memory pages
entry pOints

FREL - release all logical pages
LKLPA - find a logical page associator
LPAPREL - release a logiccl page associator
PRELS - special entry into prel for ?SPAGE
SYSREL - r~lt:ase ring '0' overlay page
\,)'SQREL - release all of a proce:3s' ranoveable

pages
- r:retln~tjon for ['emory contention

entry points
PRPH
MSOLV
FRPG

- preanpt a process for core mgr
- need a page frame can wait for it
- need a page frame can't wait

- page file management ro~tines
entry points

APGFRD find a region descriptor backed up by
the page file in a process's addres~
space

CPGFFBLK- get a disk page for an unshared page
READPG - read a page from page file
READPR - read a page from the .PR file
UNFLUSH - flush an unshared page to page file
UNFLSH1 flush unshan.>d page but also pas~; in

PTFL
STARTIO - queue 1/0 for a page fault
READSY - read system page

- rout: r!es for examining and modifying PTE's
entry points

GETPHYS - get physicol address for logicals
address

RGETPHYS- same 2S GETPHYS but panic if nc·t
rEsident

GETPTE - get contents of PTE
GETPTE.O- get PTE but wire calling overlay first
GPTEA get the a(idres~; cf a PTE
GPTF..P.NW - no "12i t versior, cf GPTEA
GETPTENW- get contents of PTE but never p€r:d
GPTEA.Cl - get PTE address but wire calling

(,verlay
SETPTE - set thE' conter.ts of 8 PTE
GETSEr - get c()tlLent:;; of ::.iBH
GETIJFVl - get level 1 page table
GE'Tl.EVc' - ~I.et J eH] 2 f;age table

AOS/VS Internals Chapter 3 Page 3-93

SPH

STEAL

SWAP IN

- routines for shar€.d
entry points

DQSPH
FSPHDQ

page headers

- deque a SPB fn:m the FCB SPH chain
- searches for a srh on systan wide sph

chains. If found then dequeues it
FSHPNDQ - searches for a sph on systan wide sph

chains but does not d~~que
SPHCHINT- init the FeB SPH chain CD entries
READSH - read a shared page

- page stealing routines
entry points

DCHEPWSC- deque aCME frc(li the ranovable chain
NEWPS - steal a physical page using removable

array
PSTf..AL - steal a physical page from the wJS

array
QCMEPWSC- enqueue a Ct-lE to cElTiovable chair;
RPGFWS - steal a logical page from WS arrc:y

- swap in a Ilt'ocess
entry points

SWAPIN - swap in a proces:. fran swapfile
SWAPlU - ~e rfcm swap filE 1/0
BLDSWAP - build dng 0 .swar,area PTP fran WS bit

array
SWAPOUT - swap out a process

entry points
SWAPOUT - SWa~' (Jut i3 pt'oce:~s i L:£1ge
CLNLRU - flush LRU of any pages being swapped
SWSINIT - set \)1' [nr a scar of werking set array

TRACE - working set trace
en~ry points

TRACE - woriong &(:'\ t.race maintenance
STRACE: - 5ystdt \I;;, lr dce il!ajntenance
KTRACE - rit: dowl.! \JS trace
Y~TRACE - rIp a systall WS trace
RCHEX - get an exLendtr to examine
WCHEX - modify Cln extender

VMSUB - virtual merneory management rm,tines
entry points

GENCCBAD- convert user channel to logical roing 1
ceB

VALPAGE - validate <~ t'eque:-:;ted page
RESPAGE - check 1 f I'age f'esident
vJORKPAGE- validate page part of working set
LRUCK -check if rEi-luested page on LRU
GENPTADD- generate <3 ring 1 address of PTE
GENCl)ADD~· at E d 1'1 1 address of CDE
PXTNPG - Pl'I)C(;o:'3 L~ to \;::f.1.ender pClge address
CCBTAB - eeL table acldres5
VTCBS 1.':bS ~jti.irt of vtcb
VTCBTAB - addr,::,s,: of ~)tcH·t of vtcb area
SVTCBS - acldr'('ss of start of svtcb area
BUILF'r -, 1 J Fl.! table
HBtJJLDPT- '2 poge table (levf:l

,;

U3Uf 1

AOS/VS Internals Chapter 3 Page 3-911

Demand Paging

AOS/VS isa demand-paged, virtual-memory operating system. Virtual
, memory means that memory is a composi te of main memory and disk memory.

Demand paging is the AOS/VS method of adding 10giNd pages to the
working set of a process as the process "demands" (refers to) those
pages. The working set is that subset of a precess's logical address
space which is currently in memory. The working set changes in size
ar.d content as the process references pages.

The pages outside the werking set make up the process' virtual address
space.

By default, when a page fault occurs (that is, a process demands a
page), the system adds one page to th~ working set. You have the
option, however, of requesting that ttH:' system add the faulting page,
plus a cluster of iogicallycontiguous virtual pages, to the working
set at fault time. This option is knGm as "pr'c-paging at fault time".
Pre-paging is the process of adding unreferenced virtual pages to a
working set. ' '

The pre-paging optior: is useful when

a a program includes large array-like structures (large meaning
that the virtual addra~ses of the structure exceed the main
memory available)

o the algorithm which processes the structures tends to reference
the'entire structure or parts of it sequentially

o the area in which you want.pre-paging to occur is in unshared
or unused memory

If your program has such characteristics and you understand its page
referencing patt.erns, pre-paging can speed up execution considerably.
The system is far rrJ()re efficient when it moves a cluster of contiguous
pages into main mernor'y ti";;.n when it moves' them in one by one.

Before you can use the pre-paging option, your system manager must set
the pre-paging parameter during the VSGEN dialogue (if the pre-paging
parameter is either 0 or 1, pre-paging is off system-wide; otherwise.
this parameter indicates the maximun number of pages you can add to the
working set during one fault).

Assuning pre-paging is enabled, you must then use the SPRED utility to
edit the preamble of your program file. When you do so, you indicate:

c :':-:., ~:'~artirJg and ending addres::;es for the cluster area
(remember this must be an unshared or unused portion of memory)

o the cluster size in pages

AOS/VS Internals Chapter 3 Page 3-95

Get ti ng a page frPllI.§:

When attenpting to get a page frame, ie. a physical memory page,
AOS/VS will first attenpt to grab a free fran:e, and fail ing this, will
attenpt to preanpt a lower priority process. The two basic routines t.o do
tr~is at'e:

bet a page frame Gl"SLK
PGMBLK get a page frame, but first examinE t.he per process

chain of assigned memory

The basic algorit.hm is as follows:

1. Attempt to get the memory frem GS~lH1 by examinine, the FC1024
chain

L. Attempt to get a page from the LRU

When these preferred methods faU. nc fr-=e t:1age frame is available,
and it is time for:

PreanptioJ]

The preemption code will release pages to the LRU. PRPR, located
in PREEMPTS.SR is responsible for all preanption, and can be called under c~
nUly!ber of different cir'cunstances. The routine is outlined below:

Note: In order to rrevent certain race conditions, a time stamp has
been added t (, 1 ,'V ision 1.60. When a process is picked to
be pretmpted, the time is recorded in the PEXTN (in PSWODI. W)
and in the global last swapout thle flag GSWO'JrI. W) • When the
process sucessfully swaps out, tbese two loc2ticn~ cHe cleared.
When the Core manager again tries to preanpt, and finds the
saIT;e process as the best candidate to swap out, it examinEs the
time stamp. If not. O. and more than 3 seconds have elapsed, H
is assuned that the process can not swap out, and a second
choice is fe-undo The scheduler befon:: entering the checkslml
loop will examine the Global last swapout went, and if more
than 3 seconds have elapsed since the last process was selectee!
for swapout t it will !"lake up the corananager so that the
al ternate can be found.

1. If this is a CMTSK or SMTSK request. attanpt to use an extrclnecus
free systan pag€able page (overlay), and return an en'or if
none exist (CMTSK and St"TSK will handle the error)

CMTSK wi,ll call FRPR at te:lipt.ing ~c ~et. memory for c! PTBL
extender

St~TSK wDl cal} IRPR at cunptl.r.g, leU fault in UNERF.P

AOS/VS Internals Chapter 3 Page 3-96

2. If the process the preemption is on behalf of hae, been marked for
swapout, just return.

3. Turn on PFF call PFF on all processes found on the MBLKQ and BLKQ
(PFF will actually release pages to the LRU). If this adds enough
pages to the LRlJ to sa Usfy the request. return.

4. If this is a sjngle page request:

a. If we at'e faulting on a systan pageable page, attallpt to r€'USE:
a free systan pageable page.

b. If there is currently a process enqueued for swc.pout return
with the PTBL address of that process as a key.

c. Fran the back of the HBLKQ, attanpt to find a proc('ss that
can be swapped out (not the target of a system call. and not
resident [resident processe~ wi11 end up on MBU(Q if they
were blocked as swappable and then a change process type was
ain~d at the process]). If one is found, return the
PTBL address as a key.

d. Fran the back of the BLKQ, attanpt to find a process that
can be swapped out (not the target of a systan call, and not
re:sident [rEsident processes wDl end up on BLKQ if they
were blocked as swappable and then a change process type was
ain;ed at thE process]). If one is found, return with the
PTBL address as a key.

e. Attanpt to steal a page frOO! a 10Her or equal priodty ~rocess
on the ELQUE.

f. Attanpt to steal a page from thE process that needs the
preanption.

g. No preanption is possible

5. If this is a multiple page request:

a. See if the request can be satisfied simply by releasing
the excessi v€ systEm pageable pages (OVCNT>OVHIN)

b. If there is a process enqueued to swapout that will release
enough pages to satisfy the request. return the PTBL address
as a key.

c. Scan first the fvI.BLKQ, then thf: ELKQ, and finally the ELQUE

ilCS/VS Internals Chapter j Page 3-97

fran the back locking to see if enough proces:;es can be
swapped out to satisfy the request.. If so, mark the first
process found for' swapout. (Vi'hen the swapcut cOITlpletes, the
CORE MANAGER will rescan for the next process to swapout).

By starting at the back of the MBLKQ and BLKQ, we \<Jill find
the processes that hove been on the specific queue the
longest.

By starting at the back of the ELQUE, \<Je ~.;ill find the
IOj,lest priority process. However, sp€'ci81 rules apply.

Do not violate the BIAS facters

If the preanpting proces::. is resident. preanptible,
or swappable completing, a move bytes, only non-resident
processes of lower or equal priority can be preemptro.

If the preanpting, process is swappable. do not prE-Empt:.

1) a resident or preemptible process
2) a swappable precess of 100·:er PNQF
3) a swappable pre'cess cf E..qual priorj ty if it has a

lower timeslice exporellt
4) a precess (if equal priority, equal exponent, that bc.s

never ccmpleted a complete tirnesl:i.(;e
5) a prCCE;SS of equal pr':iority. higher exr;onellt ur.less

it h<.:s run enough subslices to equal the nm:ber of
~l!bslic€s tb"'it· t.he pn~~pting process would have nir,

d. Attanpt to steal enough pag,ef, fran the lo\·,er priodty
processes on the ELQUE thElt ~Ji11 nc,t flt intc the swat:
file (H~)12L,) 8r;d has ene·Llef. (Xces~ pages(>12 LJ,) to satisfy
thE: l'E:qIJest •..

e. No ~rear.ptior; possible, take error return

The
mechanism.
i.n <.~ddi tior.
stctmping.

fol::"owing section describes the il02/VS favl t. processing
This includes both th:~ bbrdv.:2re and soft\<:c!n: rrGCes::ing,
to the Page; fault frequency (PFF) algorithm 2r:d time

The fir~t secU.on is an cV8r",:c\>. cf the E2:r:tire ~rocess.

Ar~/VS Internals Chapter 3 Page 3-98

.Qyeryiew

When a user. or the systan accesses a page of memory, the
following can happen:

Yes I

Is the page (A)
part of the
working set

?

\ N.o

I (B) I I(C)
Normal I Page in I

I Physical I reference
(No fault) II Memory? 1\

I I I \
================= / ..:...---....... ---------~- \

Yesl \No

Page is in
memory

I (D)

(logical fault)

I

Page is new
(User just
did a ?MEMI)

I (F)

\ (H)

Page is I
in a :
different:
address
space

---------------------------- ------_._---_.

Page is on
the LRU

I (G)

\ -------------... -----.

(1) I

I
I

Page must be
in a disk file
(physical fault)

I (E)

\ (K)

I Page is Page is in
a user
opened
shared file

I in the PR
.: file

I
I
I
I
-----------_ ... ------------- .. ------------- ------------ _ ...

Page is in t.he
per process
page file
(:PAGE file)

--.. --- --.-----------­...... ... -.-------------

(J)

AOS/VS Internals Chapter 3 Page 3-99

The following list compares a specific type of memory
reference to the logic path involved. The letter sequence corresponds
to the boxes in the previous diagram.

Normal access to a page within the W. S AB
ir; ei ther the shared or unshared a rea.

TIle user does a ?MEMI, and then accesses ACDF
the page for the first time '

The user accesses an unshared page that has ACDG
been removed from the W.S, but has remained
ir! physical memory (on the LRU)

The user accesses a shared page that is ACDH
currently in use by someone else.

nle user accesses a shared page that was ACDG
in use at sometime before, and is still
in physical memory (on the LRU)

The user accesses an unshared page that was ACEI
never modified during this .PR execution and
is no longer in the w.s or on the LRU

The user references an unshared page that ACEJ
has been previously modified and .is no longer
part of the w.s or on the LRU

nee user references a shared page within a ACEI
.PR file, and that page is not on the LRU
or in another processes working set)

The user references a share page within a ACEK
data file (opened via ?SOPEN or the
equi valent)

***** NOTE: With pre-paging enabled there are more pages read in at fault
time. The routines are primed for this prior to performing the
actual faults. This is the only change in the following logic.

AOS/VS Internals Chapter 3 Page 3-100

There are a number of databases used by AOS/VS (and the MV
h;,rdware) in determining the current state of a logical page of memory.
M(jst of these are discussed earlier in this chapter. For completeness, the
following diagran shows the other relevant databases and their
rdationships to one another. These database will be discussed in roore
d(:tail later in this chapter.

------------- ------------- ----_ ... ----- ---------- ----------
Channel 1--->1 File 1--->1 Shared 1->1 SharE.'Ci 1->1 Shared
Control Control header header header
Block Block (311) (3H) (SH)
(CCB) (FCB) #1 112 lin

v V V

I CME I CME I CME

There is one CCB per open user channel. These channels are the one
thdt a user references in a ?RDB or ?WRB system call. If two users have
the same file open, each will have thei r awn eeB.

There is one FeB per open file SystEfIl wide. The FCB is pointed to
by the CCB and contains information about the file (i.e. where it is on
disk, and an open count). There is one FCB per file regardless of how many
processes have opened it. If two users open the same file, the use count
ir; the FCB wHI be 2, and both CCBs will' point at the same FCB.

There is one SH per shared page in physical n~ory. A shared page
is associated with a file, not a user. Therefore the SHs are linked off of
the 'per file' database, or the FCB. The SH contains, among other data
items, the physical page number of the shared page.

The following diagrams illustrate the states of the databases
during each type of memory reference (AB, ACDF above). Note that N = x
indicates a don't care state for N.

AOS/VS Internals Chapter 3 Page 3-101

AS - normal reference

PTE

I R=1 I page #=n :

This reference is simple, the R=1 indicates that the residency bit h, set,
therefore the page is part of the W. S. The ATU knCMS what physical page
the instruction is referencing because it is in the PTE (page II).

ACDF - reference to a ?MEMIed page never before referenced

PTG

: 11=0: I
: 1=0: page #=x I
: S=O: I

PEXTN

I Unshared
I memory
: information

The ATU knows that the page is not in the WS because R=O. The fault occurs
transfering control to AOS/VS. The OS examines the PTE software bits and
knows that the page is not. shared (S=O), and has not been referenced and
modified before (1=0). Therefore the page must be e.i ther in the .PR file
on the disk, or be a new ?MEMIed page. The fact that it is a ?MEMIed page
can be calculated using data within the PEXTN, specifcally the highest
unshared • PR page within the file. If the logical address of the faulting
page is higher than the value in the PEXTN, the page must have been added
vi~ ?MEMI. AOS/VS will make a call to GSMEM for one ~ege, put the physical
page number.into the PTE. and set the residency bit within the PTE.

AOS/VS Internals Chapter 3

ACDG -- Logical fault, page is unshared

PTE

1 R=OI 1
1 S=OI page #=n 1
1 l=x 1 1

C~1E for page n

'on LRU'=l

PID of process
that is n~
faulting

logical addr"
within the
process

Page 3-102

After AOS/VS receives control from the MV fault hardware. the as sees that
the page is unshared (S=O). It then examines the page nunber in the PTE,
and looks in the corresponding CME to see if the 'on LRU' bit is set. If
so, AOS/VS will then look to see if the logical address pair within the CME
matches the PID/logical address pair of the current fault. If it does, the
page is ranoved from the LRU, the ' on LRU' bi t is cleared, and the
residency bit in the PTE is set.

AOS/VS Internals Chapter 3 Page 3-103

ACEI page is unshared, not on the LRU, initially loaded (modified)

or

ACEJ -- page is unshared, not on the LRU, not initially loaded

PTE

I R:O: I
: S=O: page #=x I
: I:?: I

PEXTN PFD
(if ini tially loaded)

: page
: file
: CGE

I logical'
I file
I address

PEXTN
(if not modified)

I .PR I unshared
I file I memory
I eeB I info

After AOS/VS receives control from the HV fault hardware, the OS sees that.
the page is unshared ,5=0). It then examines the page number in the PTE,
and lod<s in the corresponding GME to see if the 'on LRU' bit is set. and
that the logical address/PID in the GME n,atches the logical address/PID for
this fault. Since we are assuming a fault, one of the two conditions will
fail. If the page has been ini t.ially loaded (or modified), AOS/VS will
obt.ain the GGB address of the page file from the PTBL, and th~ acidress
within the file from the page file dirECtory loca ted in the process' ring
1. If the page has not. been modified, AOS/VS will obtain the CeB address
of the • PR file from the PEXTN, and calculate the address within the file
from information found in the memory descriptor also located in the PEXTN.
Since we new have a GCB, we must also have a FGB, and therefore the
location on disk of the file. AOSiVS will allocate a page from GSMEM, and
four blocks will be read from the appropriate file. The physical page
number of the new page is put into the PTE, and the r'esidency bit is turned
on.

ACS/VS Internals Chapter 3 Page 3-104

AClXi -- Logical faul t, page is shared, pa rt of a • PR file, on the LRU

or

ACDG -- Logical fault, page is shared, part of a data file, on the LRU

PTE

1 R=O: I

I 3=1 1 page #=x 1
I 1=0 I I

I

CDE (if data file)

I Data 1
1 file I
I CCB

I

file I
I

logical I
address I

I .PR .PR 1 ------ 1 SH lin I

or
data
file
eCB

I
I
I I
1 1

1->1

or
data
file
FCB

I
1
I
1 1

1->1
I I
1 1

CME for page x

SH
Ii 1

I
1

1-> ...
I
1

I I
1---------1

Ifile I
1

->Ilogical I':">
laddr = n

1 physical 1
1 page H=n 1

CME for page n

PEXTN (if .PR file)

1 • PR 1 shared
1 file 1 area
1 CCB 1 info

• • •
1 SH 1

->1 Ox 1->
I I
1 1

•
CME for page x

. ..

LRU-->1 use· cnt = 0 1---->1 use cnt = 0 1---->1 use cnt = 0

After identifying the page as a shared page, AOS/VS loci<s at the code/data
bit in the PTE. If the bit indicates code (part of a .PR file), the
address of the PR file's CCB is obtained fran the PEXTN, and the file
logical address is calculated fran the shared memory descriptor also in the
PEXTN. If the bit indicates data. the CCB address and file logical address
is obtained fran the correct CDE. FollOwing the CCB pointer to the FCB,
AOS/VS then searches down the FCB's SH chain until a match is found for the
file logical address. The SH will also contain the physical memory page
holding the correct shared page. Since the use count on the shared page is
O. the page must be on the LRU. Therefore, AOS/VS removes the CME fran the
LRll chain, puts the physical page number (fran the SH) into the PTE, sets
the residency bit in the PTE, and incranents the use count in the CME.

AOS/VS Internals Chapter 3 Page 3-105

ACDH -- Logical fault, page is shared, part of a .PR file, in use by
someone "else

or

ACDH -- Logical fault, page is shared, part of a data file, in use by
sane one else

PTE

1 R=O: 1
1 S=1: page #=x 1
: 1=01 1

.PR I .PR I

or I or I

data I I data I I
I
I

I
I
I SH I
I I

CDE (if data file)

1 Data 1
1 file 1
1 CCB

file 1
logical 1
address 1

1 SH lin I
I

I I 1---------,
: file

file 1->1 file .1->1 #1 1-> • • • -> !logical 1->
:addr = n : CCB I I FCB I

I i I

-------- --------

CME for page n

: use cnt <>0 I

I I
I I

----.--
1 physical I
1 page II=n I

PEXTN (if .PR file)

1 .PR 1 shared
1 file 1 area
1 CCB 1 info

I I
I I
I SH I
I I

••• ->1 Ilx 1->
I I
I I

.. '",

The logic for this path is the same as the one immediately above, except
that the use cnt<>O indicates that the page is not on the LRU, and
therefore does not have to be removed from it. The use count will be
incremented to indicate that one more process is using the page.

AOS/VS Internals Chapter 3 Page 3-106

ACEI -- Physical fault, page is shared, part of a .PR file

or

ACEK -- Physical fault, page is shared, part of a data file

PTt::

I R=OI I
I $=1: pag~ #=x :
: 1=0: :

-------- --------
I

CDE (if data file)

: Data:
: file:
: CCB

file I
I

logical :
address :

.PR .PR I ------ ------
or or I I

I I

data I I data I I SH I I SH I
I I I I I I I

file 1-> : file 1->: 111 1-> ... ->1 Ilx 1-> . ..
CCB I I FCB I I

I I I I

PEXTH (if .PR file)

: • PI-< I shared
I file : area
: CCB : info

I SH I
I I

->1 Ily 1-> . ..
I I
I I

Afl,er identifying the request as shared, .PR file, the data/code· bit is
interogaterl. If the page is to come from a code file (.PR), the .PR's CCB
address is obtained from the PEXTN, and the file logical address is
caJ cUlate from the shared file information also found in the PEXTN. If the
page is to come from a data file, the files CCB address and file logical
address is obtained from the CDE.Since the page will not found on the
appropriate FCB's SH chain, AOS/VS must read it from the disk. The address
on the disk is calculated from the file location (in the FCB) and the
10tical file address in the CDE or PEXTN. A physical page is aquired from
GS~lEM, the four blocks are read into the page, and a shared header is
buil t. The physical page number is put in the PTE, and the PTE's residency
bi t is set.

AOS/VS Internals Chapter 3 Page 3-107

Time stamping

AOS/VS maintains a global counter RTIM.W whicn is increment~Q and
assigned to each physical page as it faults in. The value is stored into
the CMTIM.W offset of the physical pagests CME.

The PFF flag which indicates PFF is on is PFFEN. It is turned on
arid off as time advances depending on the memory usage. If the machine gets
into memory contention then PFF is turned on. '

PFF and PFFUFT are two routines (found in PFF.SR) used to determine
which pages, if any, should be removed from a processes working set. The
routines will remove each selected page from the WS, and if it is an
unshared page, or a shared page with a use count of 0, it will be put on
the LRU. PFFUFT will, in addition, always update the process t s time since
last fault (PFTOT.W in the PEXTN), while PFF will only update PFrOT.W if
the WS will be changed. Below is a general sunrrary of the code path
involved:

1. If PFF is disabled (it will not be turned on untD the first
call to PRPR for preemption) just return

2. Compare the current WS size with the minimum, and if they are equal,
just return (we cannot release any pages)

3. Calculate the"number of CPU ticks used by this process since it
started:

<320-time_slice_residue) + CPU time previous to this slice (PRUNH. W)

If this is a PFFUFT call, store the result in PFTOT.W (number of
ticks at last fault)

4. Calculate the number of ticks used since last fault:

(results from step 3) - (old PFTOT.W)

and ·if the value is less than CAPT (currently 2000) just return.
CAPT, therefore. is the minumum number of ticks that a process can
run before getting it WS adjusted.

5. Since we are going to adjust the WS, update PFTOT.W

6. Update the WS-mills integral (call KCINT)

7. Release all of the unreferenced pages until WSMIN is reached.

For each unreferenced, unwired, unshared page:

a. Clear the PTE resident bit
b. Decrement the use coun t on the PTP that holds the PTE

AOS/VS Internals Chapter 3 Page 3-108

c. Decrement the WS size (PWSET)
d. If the page has been modified, set the initially loaded bit

(which will cause the page to flush to the page file, and
be reread from it instead of fran the .PR file)

e. Purge the ATU (PATU)
f. Release the page to the LRU
g. Update the WS and referenced arrays
h. If the ~age being released is a PT page, reset the resident

bit and set the initially loaded bit in the 1st level pn::,
and decrement the use count of the 1st level PTP.

For each unreferenced, shared page:

a. Scan down the page's LPA (pointed to by the page's CME),
looking for a match on the PID. If no mat~h, we are done.

b. If a match, release each logical page
c. Purge the ATU
d. If the page is wired, call UNWIRE (decrement the wire count)
e. If it is. a shared data page (vs code), decranent the

corresponding CDE use count
f. Decranent the working set size (PWSET)
g. Release the shared page
h. Release the LPA
i. Update the working set and referenced arrays
j. Go back to a (a PID can have more than one LPA for a given

shared page)

AOS/VS Internals Chapter 3 Page 3-109

Handling a harcJwa re filJ.ltJ

. The ECLIPSE MV hardware, upon detecting a fault, will dispatch
through ring 0 location$ 30 and 31. In AOS/VS, this double word pointer
contains the address PGFLT (in PGFLT.SR). .

1. Read out and stop the PIT (the user could be faulting)

2. If we faulted on the systan fault block (never should happen), or
in the interrupt world,. PANIC 14340.

3. If SYSIN = 1, then we faulted in the systan (on a CB) So •••

a. If the hardware detected a page fault depth violation, and
the process that this CB is running for does not have the
privilege to change page table levels, PANIC 14340.

b. If the address that caused the fault was not in ring 0,. then
we credit the user for indirectly causing the fault. First
we call PFFUFT to adjust the working set, then we call
FAULT (see below) to fault in the page, we clear the
referenced bit array, and return control to the CB with·
a WDPOP.

c. If the address that caused the fault was j.n ring 0, then
the systan faulted in attanpting to access a pageable systan
page. Call ASPGTWS (see below) to add the systan pageable
page to the systan working set, meter the fault (SFAULT.W),
and-return to the control block with a WDPOP

4. If SYSIN = 0, then we faulted in the user ••• so •••

a. Set SYSIN = 1 .(we are now in the systan)

b. Save the €aulting PC (from the context block of the VTCB)
in the TCB .

c. Store away the PIT value into the PEXTN (at PSL)

d. Set the task is faulting bit in the current task

e. If we are at the end of a time slice (the PIT value was
o at the tin~ of the fault), jump to the timeslice end
processing in the interrupt service code.

f. Fetch the VTCB address, and store the faulting task's TSYS
word in VTSTK.W in the VTCB •.

g. Put a pseudo systan call value (253) in TSYS.W to indicate
a fault. (The fault will run similar to a systan call)

h. Jump into the systan call processing code ••• which will:

AOS/VS Internals Chapter 3 Page 3-110

1. Enqueue the TCB to the systan call queue for the
process

2. Allocate a CB (this could pend ••• 'CBs are limited)
3. Enqueue the CB to the ELQUE to be found later by

the scheduler
4. Give control to Ule CB which will jump to the second

stage of the fault code (in FAULT.SR)
i. Check the type of fault. If it is a page depth fault

(attanpt to do a two level translation on a one level
table), grow the number of levels if allowed (bit in
PFLG3, else signal an error.

j. Copy the hardware referenced bits into the process's
referenced array

k. Call PFFUFT
1. Call FAULT
Di. Clear Ule referenced bit array
n. Restore the TSYS word from the V'ISTK offset in the VTCB
o. '.fake th~ good return path back to the systan call dismissal

routine, which will:

1. Unpend the TCB
2. Dequeue the CB from the ELQUE and return it to the

appropriate free CB queue.
3. Jump to .. the scheduler (which will find this

process with at least' the task that just faulted
ready to run)

.AOS/VS Internals Chapter 3 Page 3-111

FAULT

1. Get the page table address for the address that. caused the fault

2. Update the WS-mill integral, and add the page to the working set
(call APG1WS below)

3. Time stamp the page (RTIM.W + 1 -> RTIM.W, RTIM.W -> CMTIM.W)

4. Return

Adding a page to a working s~

* ASPG1WS
* APT1WS
* APG1WS

Add a page able system page to the system WS
Add a page table page to a WS
Add a data page to a user's WS

1. If the page is already in the working set (PTE resident bit is set)·
just return

2. If the page is already faulting in (PTE faulting bit is set), pend
waiting for the faulting (key is PTE address), and when unpended,. go
to step 1.

3. Set the fault" in progress bit.

4. Wire in the PTPs required to complete the fault.

5. If the requested page is shared, call READSH to read in the page,
and goto step 10. .

6. If the page is unshared and on the LRU:

a. If adding this page causes the process to exceed the working set
maximum, remove one page.

b. Meter the global and logical fault counters (per PID)

c. Dequeue the page form the LRU.

d. Increment the removable page counter.

e. Goto step 10.

7. Read in the appropriate page:

If the page is a system page (ring 0) request, read in the
system page via a call to READSY.

If the page is an initially loaded user page, read the page

AOS/VS Internals Chapter 3 Page 3-112

from the page file (READPG).
If the page is a non-initially loaded .PR file page, read

the page form the.PR file (READPR)
If the page is a non-initially loaded user page that was

?MEMled into the address space, allocate a page with a
call to PGMBLK .

If the page is a PTP, build it (BUILDPT)

8. Set up the usage descriptor offset in the CME (lcgical addr + PID)
(PID = 0 for the system)

9. Add the frame number (passed bac~ by READSY, READPG, READPR,
PGMBLK, or BUILDPT) into the PTE

1(1. Set the resident bit in the PTE, unpend anyone waiting for the page,
and pass back the modified PTE in ACO

11. If not a system pageable page, increment PWSET, and set the
correspond.ing bit in the process's WS array. If the WS change is
to the currently mapped process, the ATU must be purged to implement
the change

12. If a system page, time stamp the fault (from RTIM.W), and enqueue
the page to UPSYS.W (at the end of the queue, UPSYS.W is a LRU).
Increment OVCNT (number of system pageable pages in memory) and
write protect the page

13. Return

Reading a page into]lemory

The read requests from the add page to WS code above can be of four
types, READSH (read a shared page), READPG (read a page from the page
file), READPR (read a page from the PR file), and READSY (read a systml
pageable page). All of the routines will have to request one page frame
of physical memory, and therefore might have to preempt another process.
Therefore these routines can pend. Note that these pages are often called
overlays, and for ease of use, they will be here.

REiillSY -- read a system pageable page (module PRSUB.SR)

1. Calculate the overlay number:

(logical_address-start_of-pageable_area)/1024.

2. Get a page frame (call GMBLK). If none are available, call SYSREL
which will release an old overlay page and repeat this step. ,

3. Build a buffer header on the stack including the logical address
of the overlay on the master LDU (overlay# *4)+DVFAH.W. OVFAH.W
contains the logical address of the base of the overlay area on disk.

4. NO the buffer header (NQBHR) and wait for completion (BWAIT-> PEND
this is an overlay load, so we must have a CB, so we can pend)

Return with the frame #

AOS/VS Internals Chapter 3 Page 3-113

RF.ADSH -- read a shared page (roodule PRSUB.SH)

1. If the maximum working set will be exceeded by the new page, remove
one page from the working set.

2. Tne shared page will be either a data page or code page:

a. If the shared page is a code page (fran a • PR file), get the • PH
ceB for the requested ring, and calculate the disk block offset
of the page in the shared area (using the ring's memory descriptor
offsets PSPRST.W and PSHSH.W)

b. If the shared page is a data page, fault in the page's CDE,
incranent the corresponding CDP's use count, and fault in and wire
the user CCB page holding the data file's CCB (obtained from the
CDE) •

3. Get and initialize an LPA

4. Scan the FCB chain (pointed to by the CCB) to see if a shared.
header (SH) for the page is already in memory. If so, but it
is locked (indicating I/O in progress), pend the current task
using the SH address as the key.

5. If the page is not in memory:

a. Allocate a shared header (from GSMEM) and initialize the disk
block number (so it will be found by others wanting this page).

b. Lock the shared page header (see 4 above).

c. Enqueue the new shared header onto the FCB SH chajn.

d. Allocate a page of mem~ry (PGMBLK)

e. Enqueue a shared read request to the diskworld (fran the
appropriate file found in step 2, to the page allocated in
step 5d).

f. Unlock the shared header. and unpend anybody pendedon this
headers (see 4 above).

6. Incranent the use count for the shared page (in the CME)

7. If this is the first copy of the shared page, incranent PRMSHP (0
of shared pages in the WS with a use count =1) for the faulting
process. If this is the second copy, decranent PR~5HP for the
process that requested the page first. (The first requesting
process can be found by examing the LPA chain)

8. Enqueue the new LPA to the Shared page header's (SPH) LPA chain.
(the chain is ordered by descending PID)

AOS/VS Internals Chapter 3 Page 3-114

9. If we now have one process with multiple copies of the same shared
page in the process's address space, set bit BPFMS to indicate so.

1(:, Incranent the shared page count in the working set

11. Return

READPR -- read a page from the • PR file (roodule PRSUB. SR)

1. Get a page frame (PGMBLK)

2. Get the .PR file CCB address for the requesting ring (from PEXTN)

3. Convert the logical address requested into a disk block number

(page # + preamble) * 4

4. Enqueue the request as an unshared read

5. Increment PRMUNP, the number of unshared, unwired pages

6. Return

RElillPG -- read a page from the process's page file (roodule PRSUB.SR)

1. Get a page frame (PGMBLK)

2. If thi~ is a PTP, convert the address to a ring 1 address

3. Convert the logical address into a pagefile address

4. Enqueue the 10 request as an unshared read

5. Increment PRMUNP, the number of unshared, unwired pages

6. Return

Note: PGMBLK will first scan down the process memory chain before looking
at fr'ee general memory. GMBLK will just look at free general
memory

There are two basic routines invol ved with ranov ing pages fran a
working set. These are PSTEAL, which is called by the preemption code in
thE: core manager. and RPGFWS, which is called from the SWAPOUT routine to
shrink the current working set down to 124. pages. The code path is, for
thE most part, comroon between the two routines.

Calculate the bounds of the workings set (lowest page and highest
prlg€ ir.t wcr!{ir;g ~~ct:

iAOS/VS Internals Chapter 3 Page 3-115
I

2. Examine each unreferenced page in the working set to see if it is
the best candidate for removal, and if so, can be removed. The
best candidate for removal is the .page with the lowest CMTIM.W.
(relative time last faultEd) The page can be removed if:

a. The page is not wirEd ••• and •••

b. The page is unsharEd ••• or •••

c~ The page is shared with a use count of 1

3. If a page was found in step 2, call FREL to release it {if it is
unshared, the page's PTE residency bit will be reset, the use count
on the corresponding PTP will be decremented, ~e page modified bit
in the PTE will be set if the LMRF says it has been, the page
is release to the LRU, and the WS and referenced array are updated.
If the page is shared data, the corresponding CDP's use count will
be decremented, the page will be released (if last user it will be
enqueued to the tail of the LRU and marked modified if so), the
LPA will be released, and the referenced and WS arrays will
be updatEd.

4. If the required number of pages have been released, take the good .
return

5. All pages have been checked, and we have not found the required·
number of unreferenced pages. Perform step 2 and 3 on pages in
the working set that have been referenced.

6. If we h,ave satisfied the request, take the good return. If not,
put the number of pages removed in AC1, and take the bad return.

AOS/VS Internals Chapter 3 Page 3-116

Swap and p~J;ll~

SFILE. W is a t.able of bytes that is indexed by PID and contains
tbe file type and 'in-use' bit for each page file.

Fjle type number Element size

1 32

2 64

3 64

1. Identify the page file type

Page file type

1 mbyte (single level page table
user including a 16 bit user)

10 mbyte (not used)

512 mbyte (double level page table
user)

2. Scan the table looking for a SFILE.W' entry not in use, and the PID
number not reserved by the connection manager. When one is found,
and it is of the type we are looking for, join the common code below.
Otherwise, save the PIP II in one of 4 temporary locations indexed
by type (0 = free) for later. If a 'PID n for a type is already
saved, just continue the scan

3. If no free match is found, then find a page file based on the
follCMing:

If'we need a 1 mbyte file:

a) look first at any unused page file (PID n will be in STFREE.W)
If a free page file is found, then create and open the file
and join the common code below

b) If no free page file is available, then look at 10 mbyte files
If one is available, then delete it, and create and open a
1 mbyte file, and join the commOn code below

c) If no 10 mbyte file is available, then look for a 512 mbyt.e
free page file. If one exists, delete it, and create and open
the new file, and join the common code below

d) Return an error, no available PID

If we need a 512 mbyte file, do as above but in the following
order:

a) unused 10 mbyte file

b) unused page file

c) unused 1 mbyte file

(common code) We now have a page file, and a PID number. Create

AOS/VSInternals Chapter 3 Page 3-117

(if necessary) and open the associated swap file (all swap files
are the same size)

Deal location

1. Close the swap file

2. Close the page file

3. Clear the in use bit in SFILE.W

4. Done

Swapping

The swap file

Each swap file is 128 pages long. There are four pages reserved
for holding various queues of VCME (virtual core map entries) that are .
used to describe the CMEs they hold. Therefore, only 124. pages can be
swapped out. As in AOS, only unshared pages will be swapped out.

There are four VCME queues in the swapfile. Each holds a
specific type of VCME

SPQD.W
SBQD.W
SVQD. \of
SWQD. \If

holds the shared page VCt£s
hblds the high level page table page VCMEs
holds the low level page table page VCMEs
holds the unshared da ta page VCMEs

The VCME for a page contains the wire count for that page. Pages
that were wired at the ti~ of the swapout will be enqueued to the
front of the appropriate chain, while. those that were not wired
will be enqueued to the back.

SWAPOUI

1. If we are aborting an initial load, goto step 8

2. Meter the number of swapouts (SWPSO) and the number of times that this
process has swapped out (PSWPSO in the PIBL)

3. If the WS is larger than size in usable swapfile size in PIBL Extender,
release the overflow pages by calling RPGFWS

4. Set the swap in progress bit

5. Initialize the swap file queues

AOS/VS Internals Chapter 3 Page 3-118

6. If there are any shared pages in the working set, build one VCME
for each page and enqueue it to SPQD.W. Then release the page
(decrement the use count and process if the count goes to 0)

7. If the process is tenninating, release any unshared unwired pages.

8. Remove all unshared pages associated with this process from the LRU
and enqueue the pages to the FC1024 chain.
(This step will flush any modified page to the page file before
it is removed)

9. For each page ir. the working set, copy the CME into the appropriate
type of VCME and enqueue the VCME to its proper swapfile queue.

10. Remap the process ir~ge into the swaiJarea (a contiguous logical area)

11. Call SWAPIO, requesting a write

12. If the Global swapout timestamp matches that found in the
PEXTN, clear the global stamp.

13. Release the process's page frames ('call RCORE)

14. Reset the swap in progress, one slice completed & enqueued to CM.

15. Dequeue the process table from the CMTSK swap queue.

16. Dequeue the process from the ELQUE, BLKQ, or MBLKQ and enqueue it
to the appropriate ineligible queue

17. Unpend anyone waiting for this process to swapout

18. Return

SWAP IN

At the time the Core manager calls the routine SWAPIN, the
following has been done:

GCORE has been called to allocate the needed memory pages and
PTBL extender (PEXTN)

All of the needed pages, LPAs, and SPHs have been enqueued to
the process's memory queue (PSMEMQ)

The WS and Reference bit arrays have been allocated

AOS/VS Internals Chapter 3 Page 3-119

1. If the process is swapping in to complete a target system call,
goto step 3

2. If the process has been preempted or blocked, abort the swapin
(release the memory assigned, and enqueue the process to the
appropriate ineligible queue)

3. Increment SWPSI (global number of swapins)

4. Dequeue the number of needed pages to complete the swapin request
fran PSMEMQ, set. up the ring 0 swap file PTEs to point at the
appropriate pages, and read the process image in from the
appropriate swapfile.

5. Rebuild the process table's SBRs from the high level PTP VCMEs

6. Rebuild the hi level PTP to point at the low level PTP

7. Restore each CME based on the VCME enqueued to SVQD.W and update
the ring 1 PTE that. will point to the page (SVQD. W for high lev.el PT)

8. Do the same with SBQD.W (SBQD.W for low level PTs)

9. Restore each CME based on the VCME enqueued to SWQD (unshared data
page), and update the low level PTE that points to it

10. Fault (and wire based on the wire count) each VCME on the SPQD
chain (shared pages)

11. Clear the PSWOTM.W (time of last swapout) time stamp.

12. If we are swapping in ,the process to complete a target system
call. call UNPEND with the PTBL address as the key.

13. Dequeue the process table from the CMTSK swap queue.

14. Process any ?SIGNL and ?SIGWT requests aimed at this process.
There is a double word bit map (PTUp.vn in the process table
that will have a bit set for each TCB that must be unpended.
(A check is made to make sure that the TCB is indeed pended on
a ?WTSIG)

15. All done, return to the CMTSK main code path.
Miscellaneo~

This section will discuss same of. the AOS/VS routines and concepts
that can not be classified as exclusively part of one module.

AOS/VS Internals Chapter 3

AOS/VS Timeslices

Page 3-120

There are two types of timeslices under AOS/VS. The first, the
subslice (3s) , is always 32 ms long and is defined by the interrupting of
the PIT. The second, the user's timeslice (Ts), is defined as:

Ts = Ss * (2 ~ S)

where S (varying between 1 and 6) is determined by the
interactiveness of the user.

At the end of a subslice (PIT interrupt), the following occurs:

1. Bump the number of subslices run since last made eligible
(PSSFl... in the PTBL)

2. Increment the user's CPU usage by -SUBSL (SUBSL is a
negative number. so this will increase the CPU usage value)

3. If the user has resource limiting (max CPU time) cbeck to
see if j t has been exceeded. If so set the appropriate
bits to force termination (TIME LIHIT EXCEEDED).

4. Decrement the subslice count and put the PTBL in TSPTB. It!
If the count is not 0, then we are not at a full timeslice
end, so set the high order bit of TSPTB.W (time slice end
flag) to indicate PTBL shuffle only.

5. Reset the subslice (SUBSL -> PSL)

6. Save the user's task state.

7. Rescan the eligible queue (jump to the scheduler).

8. The scheduler will see that the flag (TSPTB.W) is set and
will call TSPRC below.

1. The scheduler checks TSPTB.W It will contain either 0
(no slice end, a PTBL (timeslice end), or 1SO + the PTBL
(subslice end). We are concerned with the latter two
possibilities: the scheduler will jump to TSPRC.

2. If this is a timeslice end (OSO):

a. If the process is swappable then increment the
exponent if not already max (6), calculate the new
PNQF for the process, and calculate the number of
subslices to make up the next full slice

b. Put the new number of subslices that make up a full
slice into the process table extender (constant for
non-sl.Jappable prOCe3~()

AOS/VS Internals Chapt~r3 Page 3-121

c. Call PFF to adjust the process' working set.

d. If any processes are on IEQUE, IERES or IESWP, call
CWAKE to wake up the core manager

3. Move this rTBL to the end of its priority group on ELQUE.

4. Jump back to thfJ scheduler

The BIAS factQ.L§.

The locations BIAS and HBIA.<) ~ In STABLE, define the AOS/VS bias
value. The bias factol~ is used to balance the number of non-interactive
vs interactive swappable Pt'OCcsses on the ELQUE. BIAS contains the mimlIlum
number of non-interactive processes that AOS/VS attanpts to keep on ELQUE,
while HBIAS represents the maximum number. A non-interactive process in
the AOS/VS sense is a swappable swappable having a time slice exponent of
6.

The following systEm modules reference the bias values

SSOV5 - Implements the ?GBlJ\S I ?SBIAS calls.

COREM - The HBlA'S factor is used HI deciding which swappable
processes can be marked for swapout. If the number of
non-interacti.ve processes on the ELQUE (ELNON): HBIAS, then
only a different non- ve pr'ocess can be preempted
off of the Fl..QUE.
In the preanption code, , AOS/VS will not preempt a
a non-interactive pl'ocesg if U:lE: current mmber of non­
interactive pl'ocesses equals BL~'S.

CORM2 - When AOS/VS scans ,the IESWP queue for processes to swap in,
and the mi..nimum BIAS has not been met, it will not swap in
an interactive IJrocess if any non-interactive processes have
become unblocked, rega rd 1"';5s the fact that the non-
interacti ve process might

A daanon can
opposed to ttle w,er'
sOOlething done. and
daEmon for the processing.

Daemons are cur'

1. Process
"C'B)

2, i, ' i.',

jered an AOS/VS initiated systan call (as
m' t'd call). When AOS/VS needs

p;:.th red mi ght pend, AOS/VS will use a

u.~;ed following:

t trap, fatal error,

ting for

AOS/VS Internals Chapter 3 Page 3-122

3. Process a 16 bit process changing to/from resident (we
will wire in a the pages of a resident 16, bit process)

4. Process keyboard interrupts (other than ACAA)

Daemons are started by setting the request daemon bit in PSTAT, and
run off of control blocks. They can be identified by examining offset
CATCB.W (12) of the CB. It will contain a O. The code for dispatching to
the specific daemon code paths is located in SCHED.

'Tbe Systau Memory K.es-.l:1K.El

MKEY is a location defined in the system upper page zero to keep
track of the significant changes in available system memory (GSMEM). When
a process has to wait for memory, the current value of MKEY is stored into
its process t~ble i~ offset PMKEY. .Subsequent comparisons of PMKEY to MKEY
allow the scheduler to decide if the memory situation is nOll such that the
process could in fact run.

Besides STABLE, MKEY is referenced by the following modules :

MEt1RY - Routines GSENQ and .. RFBLK ISZ' es MKEY when adding an area of
GSMEM to a significant chain, i.e. when the element is added
to an empty cha.in and all chains of larger size elements and the
LRU are empty. -

HEHR2 - Routine RCORE will ISZ MKEY independent of the state of the
FC1024 chain or the LRU. ROORE release a processes memory
on-termination or swapin abort

SCHED - Routine PMWT, dispa tched on by the process scheduled start
up code (PENTR) when bit PSMWT is set, checks if PMKEY is
different from MKEY. If not, we just run the next process
on the ELQUE because no more memory is currently available.

SCPRC - Routine TERTN (bad return from control block processing)
will restart -the TCB request when we cannot get the memory
resource to process it. Before releasing the control block
the process is marked by setting bit PSMWT, so that it will
not run before MKEY changes.

AOS/VS Internals Chapter 3 Page 3-123

INTERPROCESS COMKJNICATIQNS .AN~.N.S.

The system modules which effectively perform Ule sending/
receiving of IPC messages are the modules IREC, !SEND and ISEN2.
ISEN2 is chained to from ISEND in the event th,at spooling has to occur.

Ad9i'tionally. some supporting IPC system calls are docunented
here: ?ILKUP, ?TPORT'. and ?RSEND are coded in the module ISEN2.

IPe Ir.j tialin.tJ..9.n

IPC initialization for every new process (except CLIBT at system
startup) is done during process creating in PROC2. The IPC spool file
":PROC:IPS.PID" is created if it does not already exist, and its CCB
address is saved in the new process' process table. The spool file is then
opened (unless it is in the page/swap/ipc pool) and its CCB lock~d. The
bit map in block 0 is set up and the PTBL's spool file directory· pointer
(PSFDF/PSFDB) are initialized to -1. The CCB is then unlocked. ,The
initial IPC messages (user and AGENT), if specified'are sent.

Spool file dir€tC1iQrY chain

Each process has a spoolfile directory chain, which consists of
spool file' directory entries double linked off of PSFDF.W (forward) and
PSFDB. W (backward). In addition, double offset PSFRC. W in the PTBL
contains four single byte counters indicating how many message~e spooled
for each of the 4 user rings (4-7). Each user can have up t 48. messages
spooled to each ring. The chain is time ordered.

A spool file directory entry has the following format

MEFD.W chain forward link
MEBK.W chain backward link

,MESFL = ?ISFL system flags
MEUFL = ?IUFL user flags
MEOPH = ?IOPH origin port number (hi)
MEOPL = ?IOPL origin port Dl.ll1ber (low)
MEDPN = ?IDPN destination port number
MELTH = ?ILTH message length (in words)
MEPTR.W = ?IPTR word pointer to message text in buffer

(user buffer before the call, spool
file buffer after spooling)

MHNAM hostname

The length of a spool file directory entry is 13. words long,
and are allocated from GSMEM on demand.

AOS/VS Internals Chapter 3

The IPCSpool File

The IPC spool file is organized as follows :

BLOCK

a

2

1 Zl •.

1 bit = 16. word nugget

WORDS

a - 255.

a - 255.

a - 255.

a -255.

1 word = 256. word = full disk block

USE

Bit map

Bit map

Buffer'

Buffer

Page 3-124

Allocation is from left to right in a word. A set bit means the
corresponding nugget is free. ISEN2 will zero the appropriate bits when it
allocates space to· hold a message in the spool file.

The bit map for the spool file is initialized as follows by PROC2
at process creation time

BITNAP WORD

a
1

1 Zl.

CONTENTS

a
a
-1
-1
-1
-1

BLOCK ALLOCATION

bit map

free

•
free

AOS/VS Internals Chapter 3 Page 3-125

Spooling an IPC message

When a message is spooled to a user ring (4-7) the appropriate
counter is checked to insure that the per ring maximllD is not. exceeded.
Then:

If there is a message associated with the '?ISEND:

a. The counter SMLLIPC.W i~. incranented (global number of headers
with messages)

b. The counter GLOBIPC. W is incranented (global numoor of headers)
c. The spool file bit map (block 0) is read in
d. Space is found for the message
e. The message is written into the file
f. The bitmap is updatoo.
g. An IPC spool file directory entry is allocated, filled in, and

enqueued to the end of the PTBL's queue.
h. The pet' ring counter is incranented by one

If there is no message associated with the ?IS END :

a. The counter ZEROIPC. W is incranented (global number of headers
without messages)

b. The counter GLOBIPC. W is incr6l1ented (global number of headers)
c. An IPC spool file directory entry is allocated, filled in, and

enqueued to the end of the PTBL's queue.
d. The per ring counter is incranented by one

When a process issues ?IREC and the corresponding ?ISEND cannot. be
found (but the origin PID does exist), then an ORR (Outstanding Receive
Request) entry must be creat.ed. The ORR is allocated out of GSMEM, and
filled in with the data found in the '?IREC packet. Then the ORR is linked
to the end of the receiver's ORR chain. The chain originates at offset
PIORR.W i~ the receiver's process table. The chain is tenminated by aO.
To prevent race conditions, when the chain is being accessed, the IPC lock
bit (found in the IPC spool file CCB) is set.

Format of an outstanding receive entry:

OLNK.W
OBLNK.W
OOPH
OOPL
ODPN
OLTH
OADDR.W
OBUFH.W
OTCB. ~J
OSFL
OHNAM

link word
backwan:i link word
origin port·number high (HID/PID)
origin port number low (16 bit port #)
desUnation port number
buffer length (jn words)
pointer to user buffer
pointer to user header
user TCB address
systan flag word
hostname

ORH entries are 16. \fJords long and are allocated out of GSHEH when
needed.

AOS/VS Internals Chapter 3 Page 3-126 i

?I S END

Entry pOints in ISEND and ISEN2 :

ISEND. P entry point for user systar, call

IS. R TSt'Nr entry for ?IS. R and connection support. The
1- "'- .lege ' necks are Sklpped.

~lPC. P entry foint for a systan SE.'ld

lIPe.p send an initial IPe message; this is used by PROC2
to send a process its initial IPe message.

SENDR.P implements ?RSEND call

ISEN2.P logic to spool an IPe message.

ISEND logiq

First, the caller's IPC privilege is checked. The caller
can send the message if:

1. The call is fran the AGENT ring ••• or •••
2. The caller has IPC privileges
3. The caller is a server of the target PID/ring

The destination local port and the receiver's PID are checked for
validi ty and the full destination ~nd origin ports are set up. At this
point the receiver" s spool file CCB is locked; if it was already locked we
pend waiting for its release.

The receiver's chain of ORRs is then scanned to see if an exact
"natch of ports can be found. If not. then the receive from all case is.
examined. If a match is found, the ORR is unlinked fran the chain, and its
llenory released to GSMEM; the IPC message is then copied to the receiver
USing the HBW code. 'If no match is found, either an error is returned(if
so requested), or the message is spooled to the target process.

In the case where the sender or the receiver is the systan. the
ISEND logic is basically the same, however validity checks are sirrplified.

Same, as above

AOS/VS Internals Chapter 3 Page 3-127

?IREC and ?IS. R

Module entry points :

IREC entry point for user system call

IS. REC receive part of is.r

IR EC l.Q.gi.G

First, the destination port is validated and the message buffer in
the receiver's address space is examined to make sure the first and last
pages are valid (we check the whole buffer area later).

If there is an entry on the receiver's spool file directory chain,
the chain is scanned looking for a port match. If found, any message is
moved into the user's address space, and the bit map updated. Then the per
ring message count is decremented if the ring field is 4 - 7. Finally. the
spool file directory entry is dequeued from the PTBL chain.

If no match is found but the sender's PID does exist, a ORR is
built out of GSMEM space and linked onto the receiver's chain of ORRs
hanging off its process table.

IS. R logic

This system call performs an IPC send which, if successful, is
fo} lowed by a receive with the same ports. The packet is a regular ?ISEND
packet followed by two words specifying the length and location of the
receive buffer. The cal~ is non-direct and executes entirely in the ISEND
and IREC overlays.

First a ORR is allocated, so that if t.he call is restarted, the IPC
message does not get sent more than once. The packet is then moved to the
stack, the caller's IPC privilege is checked and the send issued via entry
JSEND, followed right away by the receive. Any error condition will go
through a path which releases the memory acquired for tbe ORR.

AOS/VS Internals Chapter 3 Page 3-128

?ILKUP. ?TPORT. ?RSENP. ?GCPN

Module entry pOints (in ISEN2)

ILKUP. P user entry for ?ILKUP

SLKUP.P systan entry for ?ILKUP, name 'in user space

VLKUP.P " " " " II " systan "
TPORT.P user entry for ?TPORT

RPORT. P networking ?TPORT

RSENP. P " ?ISENP

GNCP.P get console port number (in SSOV5)

ILKUP (Port look up logic)

ILKUP takes a pathname, resolves' it and checks for an IPC type
entry with that name. If the file is of the correct type, the port
information is obtained from the file's FIB and passed back to the' caller
TCB. If the file is not of type IPC (or does not exist), an 'error is
returned.

RPORT I TPO.BI (POritranslation lQgiQ.1

For RPORT processing, the caller specifies a PIP. For TPORT, the
PID is that of the callers.

RPORT and TPORT take as input a local port number, ring number and
PID and return the global port number assigned' to it. The internal global
port format is:

?GCPN logic

The entry point for this call. GNCP. P, is defined in module SSOV5.
This call takes a PID or a process name and returns the port number of that
nrocess' console, or an en'or if the process has no console. After the
checks are performed (PID exists), the process table is retrieved and the

Jcess console port number in offset PCONH.W is returned.

AOS/VS Internals Chapter 3 Page 3-129

Databases offsets definitions

Often, the same information is present in several IPC
databases, referenced by different offset names. To assist one locking at
the systEm modules, the following charts illustrate which offsets
correspond.

For example, a user who issues ?ISEND, has a packet with an offset
of ?IOPN. In !SEND this is placed on the stack at offset 'OPN'. After
port conve_rsion, this word on the stack is referenced as 'DPN'. If this
entry is spooled, this same word is stored at offset 'MEDPN' of the spool
file entry.

A user who issues ?IREC, has a packet with an offset of ?ISFL.
This is placed on the stack by IREC at offset 'SFLAG', and if necessary,
put in an outstanding receive entry at offset 'OSFL'. If this entry is
accessed by ISEND, it will be placed on that stack as 'RSFL'.

ISENDdefinitioos

Header

?ISFL

?IUFL

?IDPH

?IDPL

?IOPN

?IL'lli

?IPTR

IREC definitions

Header/user

?ISFL

?IUFL

?IOPH

?IOPL

?IDPN

Stack

SFLAG

UFLAG

DPH

DPL

OPN

L'lli

MESA.W

Stack

SFLAG

UFLAG

OPH

OPL

DPN

Converted

DPN

OPL

OPH

ORR entry

OSFL

OOPN

ODPN

Spool entry

MESFL

MEUFL

MEDPN

MEOPL

MEOPH
MELlli

MEPTR.W

!SEND stack

RSFL

ACS/VS Internals Chapter 3

?ILTH LTIi

?IPTR BUFA.W

AC2 UAC2.W

11e IPC ports

a..w
OADDR.W

OBUFH.W

MESA.W

UBUFH.W

The IPC port numbers format is defined as follows

Sender's packet:

DPH destination port number high
DPl destination port m.mber low
OPN origin port number

Receiver's p~cket:

OPH origin port number high
OPl origin port number low
DPN destination port .

Page 3-130

Port 0 is reserved •. It is often used by ISEND/SIPC. Ports 1-7777
are available for user ports. Ports 10000-17777 are AGENT ports. The PMGR
uses ports 1-17777.

A user can receive on port 0 and match any user port. AGENT cannot
receive on port O. The PMGR can receive on port 0 and match any port.

The ports passed by the user are converted into system wide global
ports. These converted port numbers· are moved to the spool file or
outstanding receive chain as necessary. Comparisons are made between two
sets of converted port numbers to see if ports match.

Initial IPC and termination IPC

If ?PIPC <> -1 in the caller's ?PROC packet, then there is an
ini tial message to be sent (via ISEND/IIPC) so that a "Receive fran me"
will receive it. Its IPC header address is in ?PIPC and the father
establishes the format of this message. When CLI is the father, the message
contains an edited version of the original ClI command, the command tree,
and CLI file information, and the user flag is set to 180.

System calls ?REWRN and ?TERM effect process terminations.
In either case, a message is sent to the father process. The default
IPC header layout is :

?ISFL
?lUFL
?IDPH
?IDPL
?lOPN
?ILTH

o
term code/PID
O/dad's PID
o
?SPTM
o

AOS/VS Internals Chapter 3 Page 3-131

7IPTR 0

Optionally, this default header can be overridden by ?RETURN or
?TEffi.1. See the "AOS/VS Progranmer's Reference Manual" for details on these
sjsten calls. Details on the format. of the tennination message can be
found there too.

While AOS/VS is processing a tenninatiori, the systan module PRCNG
invokes ISEND/SIPC to send the tenninationmessage to the father process.
However. this is not sent if the father is the root process or is also
terminating.

AGENT .IPC

When a user's AGENT is initialized, a port is assigned for each of
hi~ tasks. Tasks 1,2,3,etc ••• are assigned ports 10000,10001, 10002,
etc. • • One use of these ports is for communica tion wi th the console while
the debugger is running. (The debugger runs in the ghost.)

When the AGENT processes a ?PROC, it has the option of sending an
AGENT-to-AGENT message on port 10000. If ACO<>O, then ACl points to a
message which is sent during process creation, invoking SIPC in ISEND. The
me:lsage consists of a list of the generic file names, so that the new
ghost will be able to open generic files.

Format of the AGENT-to-AGENT header

?ISFL
?IlJFL
7IDI'H
?IDPL
?IOPN
?ILTH
?IPTR

IPe locking

o
o
O/PID
200
o
ACO
ACl

Whenever a code path accesses the IPC spool file directory cbain,
the spool file or the ORR chain of a process, that processes spool file CCB
is lOCked. This prevents same race 90nditions.

The Connection Managex

Connection management systan calls are implemented in the
the following modules:

In MISC1:

SERVE.P user entry for becoming a server

AOS/VS Internals Chapter 3 Page 3-132

In NET1:

RESIGN. P user entry for resigning as a server

TBC.P system entry for breaking a connection on a TE~1
or a CHAIN

DRCONX. P user entry for breaking a connection

VCNeT.p entry to verifY a connection (used exclusively
by and defined in IREC

In CONX2:

CONX.P user entry for becoming a customer of a specified
server

ICNCT.P system entry for establishing a connection

PRCONX.P user entry for passing a connection from one server
to another

In CONX:

MBTC.P user entry for moving bytes to customer

t-1.BFC.P user entry for moving bytes from customer

MBW. P user entry for moving bytes to a user

MBFU.P user entry for moving bytes from a user

The Connection Chain

The Connection Manager maintains a connection chain consisting of
one 9. word da tabase per connection. . These da tabases are found in
dedicata:1 pares of GSMEM which are in linked via their CMEs. Each page can
ho~d 113. connections. The first CME is pointed to by an 11. word header
whi.ch is pointed to by CNXTB. W in page o. The first connection page, and
tht: chain header' is allocata:1 at the time of the first connection, and
subsequent pages are allocated when needed, and linked to the front of the
chain.

Below is the format of the per connection database:

CXf1dL.W
CXBKL.W
CXCPID
CXSPRNG
CXCPRNG
CXSPID
CXSTS

forward link
backward link
customer PID
server PID/RING
customer PID/RING
server PID
status information

AOS/VS Internals Chapter 3 Page 3-133

Five status bits are presently defined

connection broken by customer CXBMC = 100
CXBOB = 1B1
CXBPF = 1B2
'CXBOB = 1B3
CXBMS = 1B15

do not send an obituary message to customer
not currently used

SERVE./ RESIGN logic

send SIGNL instead of obit IPC on break
connection broken by server

SERVE simply sets the appropriate bit in the server ring bit map
wcrd (PSR~) in the PTBL.

RESIGN checks if the caller is a server, turns off the bit in PSRNG
ir] the caller's process table and sets bit eXBMS in the status word of
every entry with this server's PID found in the cdnnection table. If the
obituary flag is not set for this particular connection, an IPC header is
built using ?SPTM as origin port and 0 as local destination port, and an
IPC termination message is sent via SIPC.P (remember, the SIPC.P entry
skips privilege checks).

CONXj ICNeT logic

CONX establishes a connection as requested by a user, and ICNCT
establishes a connection requested by an internal code path. The logic for
both calls is similar, with the CONX logic doing a bit more error
detection.

CONX will first format the PID/RING entries specified in the system
call packet anq verify that the target process is indeed a server. CONX
will then search the connection chain (or allocate the chain if this is the
very first system wide connection). If the connection is found, CONX will
do one of the following:

If the connection was'broken by the customer, return the
'connection broken' error condition

If the connection was broken by the server, reestablish the
connection.

If the connection was not broken, update the user defined
flags based on the caller's ACs. .

If the connection is not found, a new entry will be added
to the connection chain (a new page will be allocated if necessary).

DRCONX logic

If the connection table is not defined, return an error.Otherwise,
DCONX builds a couplet Llsing caller's PID and target PID, and then scans
the connection table locking for a matCh on the couplet. If the entry does
not exist the couplet is reversed and the table is scanned again. When the
ent.ry is found, we set the appropriate "Broken Connection" status bit, and
if trie resul t of the call is that bo th bi ts CXBPC and CXBPS are set, the

PDS/VS Internals Chapter 3 Page 3-134

entry is cleared. If the result is that only one of the bits is set, a
break message is sent to the other party; this independently of the state
of flag CXBOB.The IPC header for the break message is,as described above

PRCONX logic

PRCONX fetches the target process table and checks the server bit.
ne caller's PID is compart.."<i to the target PID as they must be different.
ne connection table is then scanned locking for a match on the couplet of
th~ former custaner's PID/caller's PID. If The connection is found and
nei ther of the "Broken Connection" status bits are set, the new server's
PID is stored j.nto the right byte of the entry.

VCNCT logic

This entry simply verifies the existence of a connection by
scanning the connection table looking for the correct couplet, and if
found checking the status bits to verify that the connection is not broken.

TEC logic

TBC is an internal entry point called fran overlay CLNUP on a
process tenmination or chain.

If the connection table does not exist, we are done. If it does,
scan down it looking for a couplet con.taining the tenninating process'
PID. For every couplet where this PID is found as a server, the
"Connection broken by server" bit is set. and an obituary message sent to
the custcrner according to the state of CXBOB. For every couplet where the
PID is found as a custaner. the "Connection broken by custaner" bit is set
and an obit.uary message is always sent to the server.

AOS/VS Internals Chapter 4

CHAPTER 4 -_. AGENT OVERVIEW
(AOS/VS Revision 5.00)

Page 4-1

The Agent is the interface between the user and the rest of the
Operating Systan. Every systan call made by the user is processed
through the Agent. The Agent·may actually process the call, or preprocess
the call and pass it onto the Kernel for further processing. On
returning from the Kernel, the Agent may or. may not post-process the
call. Since the Agent is the outer most layer of the operating systElu. and
the layer. the users interface with, users see the Agent as being
"the" operating systan.

The Agent ~~rforms eight major functions:

* Dispatching of all systan calls.

* Provides an environment for application oriented systan
calls within a top-down structured operating systan.

* Validation of user supplied parameters

* Extended operating systan support

* Systan call deflection for Resource Manager Agent

* Systan call deflection for EXEC

* Systan call deflection for GSMGR

* Systan call deflection fo·r PMGR

AOS/VS Internals Chapter 4 Page 4-2

Agent Data Bases

Before discussing how the Agent works, it is necessa ry to understand the
structure of the Agent data bases. At this point the data bases will be
listed, and their structure shown. The use of each data base w~ll be
described later in the manual when we deal with the part of the of the
Agent that uses the data base. This section's main purpoSe is to
group the data bases in one area. so they will be easy to find for
reference. As you read further you will can refer to this section to
remind you of the structure of each data base.

The following is a list of the Agent da ta bases. Eacrl one will be
described in more detail later.

* User Status Table (UST)

* Task Control Blocks (TCBs)

* Task Control Block Extenders (TCBXes)

* Channel Table and Channel Descriptor Tables (CDTs)

* Channel Maximization Table (CMT)

* System Call Ring Buffer

* Memory Data Base (Rings 3 - 7)

* Generic File Message Buffer

* Overlay Descriptor Table

* Agent Heap Memory (Unshared and Shared)

* Agent Stacks

AOS/VS Internals Chapter 4 Page 4-3

User Status Table - UST

The UST is. a per-process da ta base kept in the Agent. Currently, the UST
starts at location 400 in the Agent's ring and is USTEN words long.
The UST is created by LINK and contains information pertaining to the
whole process.

The following table shows the layout of the UST.

+--------_._---------------------+
UST: o I Ext Var count IExt Var Pa 0 Stl USTEZ

+-------------------------------+ 2 I Start of symbols I USTSS
+-------------------------------+ 4 End of symbols USTSE
+----------------------------_ .. -+

6 Address of Debugger (or -1) I USTDA
+-------------------------------+ 10 I Program revision USTRV
+-------------------------------+ 12 I Number of task: No. impure blkl USTTC
+-------------------------------+ 14 Address of overlay table USTOD (1)

16

20

22

24

+-------------------------------+
I Shared starting block number I
+-------------------------------+
I Interrupt address I
+-------------------------------+ I Shared size in blocks I
+---------------+---------------+ I PR file type I
+------~--------+ I

I

+---------------+
+--------------------_._---------+

USTST

USTIT

USTSZ

USTPR

25 I Pointer tQ .KILL Table I USTKL
+--------------------------~----+ 27 IPointer to the Address of .Ba1B1 USTBM
+-------------------------------+ 31 IPhys strt Page of Shared Area USTSH
+---------... ---------------------+

33 I Ptr to Currently Active TCB I USTCT
+-------------------------------+

USTES

USTBL

35 I Start of Active TCB Chain I USTAC (USTAQD1)
+-------------------------------+ 37 I 2nd part of active queue desc I USTAQD2
+-------------------------------+ 41 I Start of Free TCB Chain I USTFC (USTFQD1)
+-------------------------------+ 43 I 2nd part of free queue desc I USTFQD2
+---------------+------------~--+. 45 I Flag Word I USTFL
+---------------+

AOS/VS Internals Chapter 4 Page 4-4

The following bits have been defined in the UST flag word USTFL:

?UFDR - bit 2 - ir.hibit scheduling
?UFDB - bit 3 - Process is being debugged
?UFPH - bit 5 - Scheduling explicitly inhibited by Agent

?BUDB is the bit offset from the start of the UST to ?UFDB.
?BUPH is the bit offset from the start of the UST to ?UFPH.

Task Control Blocks =_J~~~

U~like the UST, the TCBs are a per-task data base. There is a TCB for
e2Gh task within a process. TCBs contain information, needed by the Agent
and Kernel, about a particular task. This information varies for each
task, unlike information in the UST, and thus must be kept in a per-task
da ta base.

,AOS/VS Internals Chapter 4 Page 4-5

The following table shows the structure of the TCBs.
t-------------------------------+ o . I Fwd Link to next TCB in Chain I ?n..NK. W
+-------------------------------+

2 . I Bwd Link to prev TCB in Chain I ?n..NKB. \or
+-------------------------------+

Task Status Flag Word ?TSTAT ?TCBFL
+-------------------------------+

6 I Ring 1 Stack Overflow Handler 1 ?TKSO.W--+

10

12

14

16

i-------------------------------+
Ring 1 Frame Pointer

+-------------------------------+
Ring 1 Stack Pointer

+-------------------------------+
Ring 1 Stack Limit

+-------------------------------+
Ring 1 Stack Base

+-------------------------------+

?TKFP.W

?TKSP.W

'?TKSL.,W

I
I
I
I
I
I

1->
I
I
I
I
I
I

?TKSB.W --+
20 I Ring 2 Stack Overflow Handler I ?TKSO.W--+

22

24

26

30

32

34

36

40

+-------------------------------+
1 Ring 2 Frame Pointer 1

+-------------------------------+
Ring 2 Stack Pointer

+---------------------------~---+ Ring 2 Stack Limit
+-------------------------------+
I Ring 2 Stack Base 1
+-------------------------------+
1 Ring 3 Stack Overflow Handler I
+------------------.... ------------+

Ring 3 Frame Pointer
+-------------------------------+
I Ring 3 Stack Pointer I
+-------------------------------+

Ring 3 Stack Limit I
+------------------------------.-+
I Ring 3 S'ta~k Base 1
+------------------------------.. +

?TKFP.W

'?TKSP.W

,?TKSL.W

I
I
I
I
I
I

1->
I
I
I
I
I
I

'?TKSB.W -+

?TKSO.W --+

'?TKFP .W

?TKSP.W

?TKSL.W

I
I
I
I
I
I

1-->
I
I

1
I
I

,?TKSB. \oJ --+

44 1 Ring 4 Stack Overflow Handler 1 ?TKSO.W --+

46

50

52

54

+--------------~----------------+ Ring 4 Frame Pointer
+-------------------------------+
1 Ring 4 Stack Pointer I
+--------------------------~----+

1 Ring 4 Stack Limit 1
+-------------------------------+
I Ring 4 Stack Base I
+-----------------------.--------+

--continued--

?TKFP.W

'?TKSP.W

,?TKSL.W

I
I

I
I
I

1-->
I
I
I
I

I
,?TKSB. \oJ --+

Ring 1

Ring 2

Ring 3

Ring 4

AOS/VS Internals Chapter 4 Page 4-6

+-------------------------------+
56 : Ring 5 Sta~k Overflow Handler 1 ?TKSO.W --+

+-------------------------------+ : Ring 5 Frame Pointer 1 ?TKFP.W
+---------.----------------------+

60

62

64

66

Ring 5 stack Pointer 1 '?TKSP.W 1-> Rj.ng 5

+-------------------------------+ : Ring 5 Stack Limit I
+-------------------------------+

,?TKSL.W
I
I
I
I
I
I

Ring 5 Stack Base '?TKSB. \o! --+
+--------------------------. ..;.----+

70 : Ring 6 Stack Overflow Handler 1 '?TKSO. W --+

+-------------------------------+ 72 Ring 6 Frame Pointer 1 '?TKFP.W
+-------------------------------+ 74 ,I Ring 6 Stack Peinter 1 '?TKSP.W
+-----~---------------~---------+ 76 1 Ring 6 Stack Limit 1 '?TKSL. W
-+------------------------------.-+

100 Ring 6 Stack Base I
. I ,?TKSB. \-,1 --+

+-------------------------------+
102 1 Ring 7 Stack Overflow Handler 1 '?TKSO.W --+

+------------~------------------+ 104 Ring 7 Frame Pointer' 1 ?TKFP. W
+---------~---------------------+

I
I
I
I
I
I

--> Ring 6

106 Ring 7 Stack Pointer '?TKSP.W 1-> Ring 7

110

112

114

116

120

122

124

126

+-------------------.------------+
1 Ring 7 Stack Limit I

+---~--------------------~------+
Ring 7 Stack Base

+-------------------------~-----+ I
I Overflow Mask

+-------------------------------+ I ACO Save Area :
+-------------------------------+ I AC1 Save Area :
+-------------------------------+
1 AC2 Save Area .:
+-------------------------------+ : AC3 Save Area :
+-------------------------------+ : PC and Carry Save Area :
+-------------------------------+ --con tinued--

I
I

?TKSL.W I
I
I

?TKSB.W -+

?TOVF.W

'?TACO. W

?TAC1.W

. '?TAC2.W

?TAC3.W

?TPC.W

AOS/V~; Internals Chapter 4

130

134

136

142

144

146

152

154

156

160

162

1t>4

166

170

172

174

176

200

202

204

+-----------------_._-------------+
Ring 1 USP Save Area : ?TUSPS.W

+---------'---------------------,-+
Rir.g 2 USP Save Area : ?TUSPS.W

+-------------------------------+
Ring 3 USP Save Area : ?TUSPS.W

+-----------------.,.-----------_.-+
Ring 4 llSP Save Area ?TUSPS.W

+--------····--------·--------------T
Ring 5 LISP Save Area : ?TUSPS.W

+---------_._--------'------------+
Ring 6 LISP Save Area : ?TUSPS. W

+--------- .,--------,-------------+
Ring 7 LISP Save Area : ?TUSPS. W

+--------------------------------+
+
I
I

+

+

+

+

+

+

+

+

Floating Point Uni t
Save Area

I
I

+
I
I

+
I
I

+
I
I

+
I
I

+
I
I

+
I
I

+
I
I

+
I
I

+
I I
I I

+------------------------------,-+
: A(extended state save area)
+--------------... -----------------+
: Current Descriptor' :
+-------------------------------+
I SystEm Call Word :
+--------------------------------+
I Task ID : Task Priority :
+-------------------------------+
I System Call Link :
+-------------------------------+
:Saved TSYS.W used by fault code:
+-------------------------------_.+

?TFPA,

?TELN. W

?TCUD.W

?TSYS.W

?TID ?TPR

?TSLK. \-1

?TFSYS.W

Page 4-7

AOS/VS Internals Chapter 4 Page 4-8

The fullowing bits have been defined in the TCB statu:, word ?TSTAT:

?TSPN - bit 0 - Task pended (general pend bit)
?TSSG - bit 1 - Task pended on ?XMlW/?REC
?TSSP - bit 2 - Task suspended
?L3RC - bi t 3 - Task waiting for ?TRCON message
?T~~OV - bit, 4 - Task waiting for overlay
?T~WP - bit 5 - Task is faulting
?T~~S - bit 6 - Task pended on an Agent lock
':'TSAB - bit 7 - Task pended awaiting ?GABORT
?TSTI.. - bit 8 - Task pended awaiting ?TU NLOCK fran another task
7T3YG - bi t 9 - Task has been ?SIGNALLED
'?T~)DR - bit 10 - Task pended by ?DRSCH (user disabled rescheduling)
?T~XR - bit 12 - Task pended on ?XMT or ?REC
'tLvSG - bi t 13 - Task pended on a ?WTSIG/?SIGWf
11'3UT - bit 14 - Task is executing ?UTSK code
?TSUK - bit 15 - Task is exec uting ?UKIL code

?BTPN is the bit offset from the start of the TCB to '?TSPN
?BTSG is the bit offset from the start of the TCB to ?TSSG
?BTSP is the bit offset from the start of the TCB to ?TSSP
?BTRC is the bit offset from the start of the TCB to '?TSRC
?BTOV is the bit offset from the start of the TCB to ?TSOV
?BIWP is the bit offset from the start of the TCB to ?TSWP
?BTGS is the bit offset from the start of the TCB to ?TSGS
?BTAB is the bit offset from the start of the TCB to ?TSAB
?InTI.. is the bit offset from the start of the TCB to ?TSTL
,?B:-WG is the bit offset from the start of the TCB to ?TSTG
?BTDR is tbe bit offset from the start of the TCB to ?TSDR
?BSXR is the bit offset from the start of the TCB to '?TSXR
?B\rJSG is the bit offset from the start of the TCB to ?1WSG
?BSUT is the bl t offset from the start of the TCB to '?TSUT
'?BSUK 1s the bit offset from the star't of the TCB to ?TSUK

11"1': fullowing bits have been defined in the TCB flag word ?TCBFL:

?N 1:E1'1SK - bits 0 - 2 - Mask for next ring of execution on a hard
Dahe fault
?TCBFLAL - bit. 3 - Agent can skip ?ALLOCATE on ?SPAGE
?TCBFLDF - bit 4 - Task taking a depth fault
?UTIDMSK - bits 8 - 15 - Mask for the unique task ID of the task

AOS/VS Internals Chapter 4 Page 4-9

TCBX Database: the Task Control Block Extender

The ?TLOCK implementation requires a fairly large area for
variables~ If the TCB were expanded to include these new
variables, it would have been necessary to rebuild TCBs at Agent
initialization time. Further. the scheduler requires that the TCBs be in a
resident memory; the extended size of TCBs, 'would cause a performance
hit, especially in small memory configur'ations. Rather than expand the
TCBs, it .was decided to create a new database to give a home for these
and other per-task variables. This database is called the Task Control
Block Extender. or TCBX. The space for the TCBX is allocated durir;g Agent
initialization. A pointer to the base of the structure is kept in page
zero of the Agent. Currently, the information in this database is used
by tile Agent only. 'The TCBX has one entry for each TCB for wt1ich the
program was linked. TCBX elements are indexed by decrementing the UID
(since UID is one-relative) and multiplying it by the length of the TCBX
elf1nent; this forms the offset from the base of the table to the TCBX
element for the specified task. Macros in PARSA are recommen- ded for
conversions between any of the address of the TCB or TCBX, and the UID.

ACS/VS Internals Chapter 4 Page 4-10

n.e TCBX tablE~ contains one element for each TCB. Each element has
th: following layout:

+-------------------------------+
o TCBX Flags : 7TFLAG

+--------_._---------------------+
2 i Address of TCB for this Task I 7TTCB

+------------_._-----------------+
4 : IDGOTO address I 7TIDGOTO

+---------------------------------+
6 : FC of task pr ior to redi recti.on I 7TCLDPC

+----.----------------------------+ 10 : Post processing routine ?TKAD
+---- ----_._----------_._---------+

12 Spawn Ring IOrig caller Rngl 7TSRING 7TOCRING
-t---------... ---------------------+

14 Bit Array of Task Pended on I 7TLOCKPN
+-------------------------------+

16 : Bit Array of Task Pended on usl 7TLOCKPY
+-------------------------------+ 20 Pend Request - Ring 4 7TLOCKR4
+-------------------------------+

22 : Pend Request - Rtng 5 I 7TLOCKR5
+--------_. -------------.----.:..-- --+

24 Pend Request - Ring 6 I 7TLOCKR6
+-------------------------------+

26 Pend Request - Ring 7 I 7TLOCKR7
+-------------------------------+

30 A(Ring 4 TLOCK mailbox) 7TLOCKMLl
+-------------------------------+

32 : A(Ring 5TLOCK mailbOx) I 7TLOCKM5
+-------------------------------+

34 A(Ring 6 TLOCK mailbox) I 7TLOCKM6
+-------------------------------+

36 A (Ring 7 TLOCK mail box) ?TLOCKM7
+-----------------------------~-+

40 Callers ring/Calling level I ?TCLRING
+----------.---------------------+ .

41 : Context ring/Context level I 7TCXRING
+-------------------------------+

AOS/VS Internals Chapter 4 Page 4-11

Tht; fullowing bits have been defined in the TCBX flag word ?TFLAG:

?Ti-PtCRB - bit 0 - Task is processing a PMGR request
?TABTB - b~t 1 - Task is being aborted
?Tt:IDCB - bit 2 - ?UIDCALL in progress
?Tr-iYR4B - bit 28 - ?TMYRING for ring 4 ?TLOCK
?T1:iYR5B - bit 29 - ?TMYRING for ring 5 ?TLOCK
?TIWR6B - bit 30 - ?TMYRING for ring 6 ?TLOCK
?Ti-iYR7B - bit 31 - ?TI-fYRING for ring 7 ?TLOCK

?TFPtCRP is the bit offset from the start of the TCBX to ?TFPM:::RB
?T;\.BTP is the bit offset from the start of the TCBX to ?TABTB
?TliIDCP is the bit offset from the start of the TCBX to ?TIJIDCB
?THYR4P is the bit offset from the start of the TCBX to ?TMYR4B
?Tr-iYR5P is the bit offset from the start of the TCBX to ?TMYR5B
?niYR6P is the bit offset from the start of the TCBX to ?TMYR6B
?THYR7P is the bit offset from the start of the TCBX to ?TMYR7B

?TFPtCRM is the bit mask for ?TFPM:::RB
?TABTN is the bit mask for ?TABTB
?TUIDCM is the bit mask for ?TUIDCB
?TI-iYR4M is the bit mask for ?TMYR4B
?Tf·iYR5M is the bit mask for ?THYR5B
?THYR6M is the bit mask for ?TMYR6B
?THYR7M is the bit mask for ?TMYR7B

The: bits ?THYR<4,5,6,7> are cleared at task initialization time (and
during Agent initialization, for the initial task's TCBX only), and
arl': set when a ?TLOCK call is issued from a given ring with the flag
?TliYRING specified in ACO. They indicate that protec- tion is in effect
freATI redir'ections from the current ring in addition to the higher
ril!gs.

?TSRING and ?TOCRING

The ?TSRING contains the ring of the initial PC which was specified when
the task was created, the "starting ring".

Thf: ?TOCRING word contains the ring of the original caller of the current
sy:3tan call. This ring is placed in ?TOCRING during Agent dispatching of
caJls which came from OUTER rings (ie from outside of the Agent).

Both of these ring numbers are integers, and will typically be in the
range of 4 to 7.

ACS/VS Internals Chapter 4 Page 4-12

?TLOCKM<4,5,6.7>: Mailbox Pointers

?TLOCK allows the user to specify the address of a doubleword mailbox
wr.tch can be polled to detennine if a task has attanpted to redirect it.
It is possible for each task to specify its own mailbox in each user ring;
th,=refore, the TCBX has four doubleword pointers, one each for rings 4 thru
7. These pointers are named ?TLOCKM<4,5,6,7>.

At any given time, each mailbox pointer has one of the following
v,,;lues:

<zero> Tbe ring corresponding to this mailbox pOinter is not
cUC'rently protected.

«-1» The ring corresponding to this mailbox painter is
protected; however. there is no mailbox.

<addr> The ring corresponding to this mailbox pointer is
protected, <addr> gives address of mailbox.

?TL.OCKPH: Bitmap of Tasks We Are Pended On

Th, ~ ?TLOCKPH ("Pend Me") doubleword of the TCBX is used as a bitmap to
indicate which tasks .weare waiting for; these tasks must all i.ssue a
?TUNLOCK before the current task is unpended. If any of these bits are
on, the TLOCK suspend flag (?TSTL bit of word ?TSTAT of the TCB)·is also
set. At task initialization time, the "Pend Me" bitmap is zeroed. When a
t.ask issues one of ·the redirection calls, a bit is set for· each task that
,.t tried to· redirect but was protected, and it sleeps if this word becomes
nonzero in tte process of attanpting r€<i'irection. As each task issues its
?TUNLOCK, it clears the bit in our doubleword corresponding to that task,
3nd wakes up the redirector if the doubleword becomes zero.

0'IT..OCKPY: Bitmap of Tasks that are Pended on Us

Tht~ ?TLOCKpv ("Pend You") doubleword is used -as a bitmap of
have attanpted to redirect the current task, but are pended
current task is protected from them.

tasks which
because the

1LDCKPRR sets the flag bit when redirection of a protected task is
at1,anpted. 1LOCKCPR resets flag bits when a task ?TUNLOCKs.

:AOS/VS Internals Chapter 4 Page 4-13

?TLOCKR(ring>: Pended Request indicators

If a t.ask attanpts to redirect a protected task" the protected task needs
some means of knowing what action it should take when it unlocks. The
?TLOCKR(ring> (llpended Reque'st") doublewords are used to indicate the most
recent redirection request of the highest priority type which applies
to the ring. They only have meaning if at ,least one bit in ?TLOCKPY is
set.
The actions are stored in ?TLOCKR(ring> as follows:

* ZERO: no peoded requests for this ring.

* ?TLR.SUS someone wants to SUSPEND us

* anything other than (O,?TLR.SUS,?TLR.KILL) is the address which
someone wants us to IDGOTO.

* ?TLR.KILL: sanecne wants to KILL us

ACS/VS Internals Chapter 4 Page 4-14

crTs are lAsed to describe the characteristics of a channel. A COT is
acded to the channel table each tine a channel is opened via the ?OPEN
crll. The information in the COT is used to read fran and write to a
crannel vic the ?READ and ?WRITE calls. The CDT for a particular crannel
i~ deleted from the channel table when the channel is closed via the
?CLOSE call. COTs are not used for channel activity through' systan
cCllls other thi:m these.

The following table describes the structure of the channel table.

+---_._--------------------------+
ACHTB----> 0 I Address of COT for channel 0 I

+--------------------.----------+
2 I Adpress of COT for. channel 1 I

+-------------------------------+
4 I Ad.dress of COT for channel 2 I

+-------------------------.------+
6 I Address of COT for channel J I

+----------------.---------------+
10 I Address Of cor for channel 4 I

+------------------------.;..------+
I
I

+
I
I

+

I
I

+
I
I

+
I I
I I

+-------------------------------+
1000 I Address of CDT for chan'nel 256 I

+---_._-----------------------_._-+
Tr.e entry for a channel in the channel table is zer'o until the channel
is opened. When it is opened, a CDT is built and the address of the
CD',' is placed in the appropriate entry of the channel table.

AOS/VS Internals Chapter 4

The following table describes the COTs.
+-------------------------------+ o Pointer to opener's TCB CDTCB. \01

+--------~----------------------+ 2 Ring of opener in bits S1-S3 I CDRNG.W
+-------------------------------+ 4 I/O Status I Open Status I CDFST
+-------------------------------+

6 I Record Length from ?OPEN I CooLR.W
+-------------------------------+ 10 I Ptr to Terminator Table CDTTA.W

12

14

16

20

+-~-----------------------------+ I Ptr to User's Data Area I
+-------------------------------+ I Temporary Storage I
+-------------------------------+ Temporary Storage
+---------------+---------------+ I Format I
+---------------+ I

I

+--------------+
+-------------------------------+

CDUBF. \oJ

CDTM1.W

CDTM2.W

CDFMT

21 I Byte Ptr to User's Data Area I CDBAD.W
+------------------------------. -+

23 Requested Record Length CDRCL.W

25

Z7

31

+-------------------------------+ : Record no.(hi) I Record no.Clow)I CDRNH
+-------------------------------+ IEOF in .blks(hi) IEOF in. blk(low) I CDEFH
+-------------------------------+ I Remainder(byte)I Density Flag I COOlS
+------------,-------------------+

CooST

CDRNL

CDEFL

COCiPF

--> 33 I I I CIXiOP CDTPY
I +-------------------------------+ (CIXiFL CDPCH)
?GOPEN Pkt. 35 . I I CDPFC CDPEW

Page 4-15

+-------------~-----------------+ (CDPPH) (CDPPL)
--> 37 I I I

I I I CDPEH CDPEL
+-------------------------------+ 41 Address of Record Buffer CDBRB.W
+-----------------------------_._+

43 Channel Buffer Length CDLBF.W
+-------------------------------+ 45 I Byte Pointer to Buffer' I CDBSP.W
+-------------------------------+ 47 Current Buffer Byte Displ. I CDBCP.W
+---------,------+---------------+

51 IWrite error cd. I CDWEC
+---------------+ I

I

+----------------+ I
I

-continued--

ACS/VS Internals Chapter 4

-~------------------------------+
52 : Ptr to Labelled Tape Data Basel CDLAB.W

+-------------------------------+
54 : Ptr to Screen mgrnt extension I CDSCR.\'J

+------------------------------.-+
56 : Ptr to field trans extension I CDFTX.W

+-------------------------------+
60 Head of IPC Packet : IPC. HEAD

62

64

66

70

72

74

76

100

102

104

+-----------_._----------------_.-+

+------------.-------------------+
I I
I I

+---------.----------------------+
I I
I I

+------------------_. ------------+
I I
I I

+-------:------_._--------.--------+
I I
I I

+----.---------------------------+
: Data Area I IDATA
+-------------------------------+ I I

I I

+-------------------------------+ I I I
I I I

+-------------------------------+
Status Bits : Status Bits : BFFLG

+-------------------------------+
: RDB error code : BFREC
+-----~---------+

,.
I
I

+----------------+ I
I

+-------------------------------+
105 Start of Data : BFDSP.W

BFDEP.W

·BFPKT

+-----_._------------------------+
107: End of Data :

+-------------------------------+
--~ 111 : Block count : Status :

BFBLG

I +-------------.------.------------+
Blc·ck I/O 113 Address of Buffer

(BFSTI) (BFSTO)
BFCAD.W

Packet +-------------------------------+
: 115 I Block Number BFRNWBFRNL
I +--------------------.---.--------.+
--~ 117 : Block length : Reserved : BFRCL BFRES

+-------------------------------+

Page 4-16

AOS/VS Internals Chapter 4 Page 4-11

TI,e following symbols are defined as bit offsets frem the start of
U:e COT to bit in the I/O status flag work COFST:
BCllFG - offset to bit 0 - Create flag; Used only for opening the

file
BCDNG - of fset to bit 1 - Nega ti ve flag
BCDEC - offset to bit 2 - Echo bit
BCDES - offset to bit 3 - End of address space encountered
BCDVH - offset to bit 4 - Variable header
BCDET - offset to bit 5 - End of labelled tape
BCDMB - offset to bit 6 - Multiple buffers
BenNA - offset to bit 7 - New' address bit
BCDSH - offset to bit 8 - Shared file bit
BC)AP - offset to bit 9 - Append flag i Used only for opening

generic files
BCDWA - offset to bit 10 - Write access allowed to file
BCD PI - offset to bit 11 - Priority request allowed
BCDFS - offset to bit 12 - '?FSTAT has been done on this read
BenSC - offset to bit 13 - Caller has previously iss~d screen

management reads
BCiJER - offset to bit 15 - Error occurerl

The following symbols are defined as bit offsets frem the start of
tht COT to bit in the Open status flag work COOST: '

BCUPO - offset to bit 0 - File is a peripheral device Cie. con-
trolled by PMGR)

BCDSI - offset to bit 1 - Serial I/O device
BCnMT - offset to bit 2 - Magnetic tape file
BCDSP - offset to bit 3 - Spool file
BCDlvlF - offset to "bit 4 - Magic file indi~ator
BCfJSR - offset to bit 5 - Records are spanned
BC1NR - offset to bit 6 - Variable record processing
BCDNX - offset to bit 1 - Current block is next block
BCDEQ - offset to bit 8 - EXEC spool queue
Be[IIP - offset to bit 9 -. IPC file
BCDLT - offset to bit 10 - Labelled magnetic tape
BCDIN - offset to bit 11 - Input file
BCDOT - offset to bit 12 - Output file
BC[JeR - offset to bit 9 -' Create file
BCDCE - offset to bit 10 - Correct error

.l\l'~·;;V~' Intemals Chapter 4 Page 4-18

n°,; OIT is a bit table used by all systan calls that use channels, not
jl.:;t ?OPEN, ?READ, ?WRITE. and '?CLOSE. It is used to check if a task has
at',~ess to a given channel.

n- ,; CMT is shown in the following table.
o One Bit for each Channel 256

+--_.--------------------------'--+
n~ 1'31-------> I I Rin~ 3

+-------------------------------+
Ring 4

+-------------------------------+
: Ring 5

+-------------------------------+
Ring 6

+-------------------------------+
I I Rine 7
+---.---------------------------+

Th:~re is a bit for every channel within each of the Rwgs (3-7).

AOS/V3 Internals Chapt"er 4 Page 4-19

Sj stUll CslI Ring Bufill

The System Call Ring Buffer logs the most recent 16 system calls made.
The buffer wraps around as a ring; the first double word logically
follows the last double word.

n"e following table describes the Agent Ring Buffer.
TFACE.START "
I
I +---+ +->0 Ring i Call no." I Addr of TBC(low wrd) I

2

4

+---+ Ring : Call no. I Addr of TBC(low wrd) I +-____________________ . _____________________ J..+

Ring I Call no. I Addr of TBC(low wrd) I
+---+

6 I Ring I Call no. I Addr of TBC(low wrd) I

+---+ 10 Ring I Call no. I Addr of TBC(low wrd) I
+---.--+ 12 I Ring I Call no. I Addr of TBC(low wrd) I <--TRACE. PTR "
+---+ (NEXT AVAILABLE" 14 Ring I Call no. I Addr of TBC(low wrd) I ADDRESS)
+---+ 16 I Ring I Call no. I Addr of TBC(low wrd) I

+---+ 20 I Ring I Call no. I Addr of TBC(low wrd) I

+---+ 22 Ring . I Call no. I Addr of TBC(low wrd) I

+---+ 24 I "Ring I Call no. I Addr of TBC(low wrd) I

26

30

+---+
Ring I Call no. I Addr of TBC(low wrd) I

+---+
Ring I Call,no. I Addr of TBC(low wrd) I

+---+ 32 I Ring I Call no. I Addr of TBC(low wrd) I

34

36

+-----------------------------,--------------+
I
I Ring I Call no. I Addr of TBC(low wrd) I
+---+
I Ring I Call no. I Addr of TBC(low wrd) I

+---+

AOS/VS Internals Chapter 4 Page 4-20

Tbe Agent Memory Data Base maintains the starting and ending
addresses of the unshared and shared areas of rings 3 through 7.

The following table describes the Agent Memory Data Base
AMEMDB--------> +-------------------------------+

SUS I Start of unshared area 1----+

EUS

SSH

ESH

SUS

EUS

SSH

ESH

SUS

EUS

SSH

ESH

SUS

EUS

SSB

ESH

SUS

EUS

SSH

ESH

+--------------------------------+ 1
1 End of unshared area I 1

+--------------------------------+ 1---> Ring 3
1 Start of shared area I

+-------------------------------+ I 1 End of shared area 1----+
+-------------------------------+ 1 _Start of unshared area 1---+
+-------------------------------+ I
1 End of unshared area I I

+------------------------------+ 1---> Ring 4
1 Start of shared area 1

+-------------------------------+
1 End ·of shared area 1----+
+-----------------------..:-------+ 1 Sta.rt of unshared area 1----+
+-------------------------------+ I
I End of unshared area 1 1

+-------------------------------+ 1---> Ring 5
I Start of shared area 1

+-------------------------------+ 1 I End of shared area 1---+
+------------.-------------------+ 1 Start. of unshared area 1----+
+-------------------------------+ End of unshared area 1

+-------------------------------+ I Start of shared area I

I
I

1---> Ring 6

+---------------.---------------~+ I
I End of shared area 1----+
+-------------------------------+
I Start of unshared area 1---+
+-------------------------------+ 1 End of unshared area I
+-------------------------------+ 1---> Ring 7
1 Start of shared area 1 I

+-------------------------------+ I
I End of shared area 1----+
+-------------------------------+

AOS/VS Internals Chapter 4 Page 4-21

Generic File Message Buffer

n-,e Generic File Message Buffer contains information on resolving the
generic files @INPUT, @OUTPUT, @LIST, and 8)ATA. When these files are
ovmed, the files assigned to them are resolved and opened.

The Generic File Message Buffer has the following format.

+-------------------------------+
PRIPC--~> o 1 Offset to @INPUT file name 1--+

+-------------------------------+ I
1 Length of entry 1

+-------------------------------+ 1 2 I Offset to @OUTPUT file name, I--+--+
+-------------------------------+ I 3 1 Length of entry 1 I
+-------------------------------+ I I 4 Offset to @LIST file name 1--+--+--+
+-------------------------------+ I I I

5 I Length of entry : I I I
+-------------------------------+ I 1 1 6 Offset to @DATA file name . 1--+--+--+--+
+-------------------------------+ 1 1 1 Length of en try I I
+-------------------------------+ I I

I

+-------------------------------+ I @INPUT file name 1<-+
-+--------------"-----------------+
I @OUTPUT file name : <----+
+-------------------------------+
1 @LIST file name 1<-------+
+----------------------.~--------+

@DATA file name 1<----------+
+----~--------------------------+

Al] offsets in the Generic Message File Buffer are self relative.

AOS/VS Internals Chapter 4 Page 4-22

Overlay Descriptor ~

The Overlay Descriptor Table is used for 16 bit processes only. It
describes ~.he ncdes of the overlays and the areas of each node.

Notes 0;"; overl::iY descriptors:

* The''''e may bf~ ~ero or more ncx:ie descriptors, one for each
overlay ncx:ie present.

* Fot' t!2ch tlode descrir,tor, there is at least one area, and
there :5 une area descriptor per area.

* To c011pute
the SLll1 0:

A.
B.
C.

the add(€2s for a given area descriptor, take
the following:
The starting address of the ncx:ie descriptor.
The nu~ber of words in a ncx:ie descriptor.
The product of the area number (zero relative)
and the length of an area descriptor.

* Th~ total word size "lieeded for a nooe descriptor is the sun
of +:h,.., following:

A. One word (16 bit table) or two words (32 bit
table)f or the poin ter t.o the descr iptor , wi th in
the an'ay node descriptor pointers at the beginning
of the table.

B. 'The size of the node descriptor (N.NDFAR or
W.NDFAR) •

C. The number of areas times the area descriptor
size (N.NDARS or W.NDARS).

* The total word size needed for an overlay descriptor table
is the sum of the sizes for node descriptors plus one word
(16 bit table) or two words (32 bit table) for the number
of nodes.

: AOSIVS Internals Chapter 4

The Overlay Descriptor Table has the following format.
+-------------------------------+ o W.NDNUM
+--------------------------~----+

?USTOD-~-> 2 I Ptr to First Node Descriptor 1---------+
+-------------------------------+

4 1 Ptr to Second Node Descriptor· 1
+-------------------------~~----+

+-------------------------------+
ND*2 I Ptr to Last Node Descriptor 1----+

+-------------------------------+ I 1
I

1

+-------------------------------+ I I First Node Descriptor 1<---1----+
+ (5 words) +

(See Figure 1)

+-------------------------------+
1 First Area Descriptor
+ of First Node +

(3 double words)(See Figure 2)1
+-------------------------------+

+---~---------------------------+
1
+

Last Area Descriptor
of First Node

1
I

+

+-------------------------------+

+-------------------------------+
1
I

+ Last Node Descriptor
1
I

+<---+

+-------------------------------+
1
I

+
First Area Descriptor

of Last Node
I
I

+

+-------------------------------+

+-------------------------------+
1
I

+
Last Area Descriptor

of Last Nod'e
I
I

+
1
I

+-------------------------------+

Page 4-23

AOS/VS Internals Chapter 4

Figure 1
Node Descriptor

+-------------------------------+

Page 4-24

o Node Number INumber of Areas I W.NDARS
+-------------------------------+

1 Number of Overlays I W.NOOVS
+-------------------------------+ 2 I High File Blk for 1st Overlay I W.NDFHI
+-------------------------------+ 3 I Low File Blk for 1st Overlay I W.NDFLO
+-------------------------------+

tl I Ov'~rlay Size (256 Word Blks) I W.NDASZ
+-------------------------------+ ,.,

I
I

1 BO is set if overlay
is to be read into
Shared Area

Fi'gure 2
Area Descriptor

+-------------------------------+ o I Ptr to Node Descriptor : W.ARNOD
+-------------------------------+

2 I Starting Address of Area I W.ARBAS
+-------------------------------+ 6 IArea Usage word i Status I W. AROUC
+-------------------------------+

The following bits have been defined in the Area Descriptor status word,
W.AROUC:

Bit 0 - loading flag
Bits 1 - 9 - Overlay number
Bits 10 - 15 - Usage count

AOS/VS Internals Chapter 4 Page 4-25

Agent Heap ,Memory

Agent memory is divided into two parts, unshared
these has its own data base. We will first take a
data base.

and
lode

shared. Each of
at the unshared

Agent Unsbared Memory Data Base
The Agent maintains the following data base for its unshared memory pool.

AVAIL:
+-------------------------------+

o
+-------------------------------+

2 IPtr to first Block in memo pooll---+
+------------------~------------+ I I

I
I
I

+-------------------------------+ I o Size of Block 1<--+
+-------------------------------+

2 Ptr to next Block 1----+
+-------------------------------+
+-------------------------------+
+-------------------------------+
+-------------------------------+
+------------~------------------+ Siz e of Block 1<--+
+-------------------------------+

2 Ptr to next Block 1----+
+-------------------------------+
+-------------------------------+
+-------------------------------+
+---~---------------------------+

+-------------------------------+
o Size of Block 1<--+

+-------------------------------+ 2 I -1 I
+---~---------------------------+ I
I I

+-------------------------------+
+-------------------'------------+ I I
I I

+-------------------------------+

AOS/VS Internals Chapter 4 Page 4-26

Agent Shared Memory Data Base

Tne Agent maintains the following data base for the shared memory pool.

SHQD:
+-_ .. -_., ... _> 0

1 +-- 0
I I
I I

+------+-_.- ;::

4

6

+---- . -+--) 0

+--- 2

4

6

+--> 0
I
I

+------+---·2

4

6

o

+--- 2

4

6

-\--------------------,._---------+
: Ptr to Fir'~t Sha:' i Pa Header 1---+
+--------------- - .. ----------,----+ 1
: Pt.!' to Last Shar.;d Pa fL·~ader ~----+----+.
+--------------... ----------------+ I

I
I
I
I

+-------------------------------+<---+
I Fwd L:'nk to next Shared Pa Hdr 1----+
+-------------------------------+
I Bwd Link to prev Shared Pa Hdrl
+-------------------------------+
I Ptr to Shared P2ic':e Block I
+-------------------------------+
I Flag I
+--.... ----------------------------+
+-------------------------------+<---+
I hrj Link to next Shared Pa Hdr 1---+

...... ----_._------------------------+
I Bwd Link to prev Shared Pa Hdrl
+-------------------------------+

Ptr to Shared Page Block
+-------------------------------+

Flag I
+-------------------------------+

+-------------~-----------------+<---+
I Fwd Link to next Shared Pa Hdrl----+
+-------------------------------+
I Bwd Link to prey Shared Pa Hdrl
+-------------------------------+
I Ptr to ShareQ Page Block I
+-------------------------------+
I Fla'g I
+-------------------------------+

+-------------------------------+<---+
1 Fwd Link to next Shared Pa Hdrl<--------+
+-------------------------------+
1 Bwd Link to prev Shared Pa Hdrl
+-------------------------------+
I Ptr to Shared Page Block I
+-------------------------------+
I Flag I
+-------------------------------+

Tne flag in the shared page header indica tes whether of not the sharec
page block is in use.

i AOS/VS Internals Chapter 4 Page 4-27.

Agent Stac~

Tre Agent stack is used to store return blocks, and for tanporary
storage. There is a stack for each possible task. The maxinun mmber
of possible task is specified in the UST at USTTC.

lre Agent Stack has the following format. There is a similar stack
fer each task.

+-------------------------------+
1 <--- Stack Base

+-------------------------------+
I I
I 1

+-------------------------------+
+-------------------------------+

+-------------------------------+
+-------------------------------+
+-------------------------------+
I I
I I

+ +
I I
I I

+ Return Block +
I
I

+ from WSSVR +
I I
I I

+ +
I I
I I

+ +
1<--- Frame Pointer

+-------------------------------+ I I
I I

+-------------------------------+ I I
I I

+-------------------------------+ 1 Last Dbl Word pushed on Stack 1<--- Stack Pointer
+-------------------------------+
+-------------------------------+
I
I

+-------~-----------------------+ I I
I I

+-------------------------------+ I I
I I

+-------------------------------+ I I
I I

+-------------------------------+<---- Stack Limit

AOS/VS Internals Chapter 4 Page 4-28

Agent Initialization

.At ?PROC time the Kernel passes control to the entry point AINIT of the
A~ent if the process is not coming up in the debugger. If the proc~ss is
c<)ming up in the debugger. control is passed to ADEBUG. At ADEBUG the
Agent sets the "debug" flag in Agent flag word, then passes con"trol to
AINIT. AINIT does the following initialization.

* If there is a symbol table (ie. the contents of location 40
are non-zero), wire it so that PALANGUL does not crater,
which it does when it hits a page fault on the symbol
table. Then we touch each page of the symbol table to
insure that it. is faulted in.

* AMEMINIT is called to initialize the memory manager.
AMEMINIT will be discussed in further detail later.

* Set up the memory da ta base for rings 3 and 7, the only
loaded rings. Zero the data base for rings 4, 5, and 6.

* The channel maximization table is set up. The Agent gets
memory for the table, zeros it, and stores the address of
the table in page zero, (CMITST)

* The TCB extehders are set up. ?TCBXLN words are needed for
each'TCB extender (TCBX). The TCBX for the initial task is
initialized with the ring it originated in (ring 7), the
address of the TCB for this TCBX, and the ring of the
original caller (ring 3).

* PMGR.INIT is called to initialize the local PMGR. Since the
PKJR is out of the realm of the Agent, even though it
occupies the same ring, it will not be delt with exten-
sively in this manual. .

* Build a fake return block on the stack. The starting
address of the user's progran is placed in the "return PC"
double word in the return block. This is done so we can
start up the user by doing a WRTN, which will take us to
the start of the user's progran.

* Initialize the TCB free chain. The first TCB follOWing the
UST is used for the initial task. The second TCB, if there
is one. is the first free TCB. The number of TCBs is
specified in the UST at USTTC. Since the first TCB is
active, we will link USTTC - 1 TCBs in the free chain.

AOS/VS Internals Chapter 4 Page 4-29

* The Agent then gets 192 words of memory for each task to be
used as its stack. The stack parameters (SP, FP, SS, and
SL) are set in each TeB for its ring 3 stack.

* The Agent setp up the .KILL table. The table contains four
double word addresses. These are the addresses of the .KILL
routines for rings 4, 5, 6, and 7. The addresses for rings
4, 5, and 6 are initialized to -1. The address of the ring
7 .KILL routine is taken from the UST (USTKL) and placed in
the table. The address of the table is placed in the UST
(USTKL) •

* Part of the UST, up to and including USTPR, is copied into
the user's ring (ring 7).

* The overlay table is set up for 16 bit usersw

* The Agent does a ?IREC to receive the initial IPC message.

* If the user was PROC'ed up resident the Agent is wired.

* If the debug flag is set we go to the debugger to initial­
ize it. The debugger will start the user up. If the debug·
flag was not set we do a WRTN to start up the user.

AOS/VS Internals Chapter 4 Page 4-30

A[,ent Gates

n ere are seven entry points, which are accessible fran outer rings,
ir the Agent. These entry points are appropriately called gates. An
Ol:ter ring task can enter the Agent only by making an LCALL through one
of these ga tes. This mechanism prov ides limited access to the 'systan
ard increases the integrity of systan protection. The following are a
ljst of the seven Agent gates.

G~te number

o
1
2
3
4
5
6

Entry point

INCOMING. CALLS
TASKA
TASKB
UKILA
UBKPT
IXMT
IXIT

Function

Main Agent gate for system calls
Unsuccessful return from ?UTSK
Successful retur'n from ?UTSK
Return from ?UKIL routine
User Debugger gate

?IXMT gate
16 bit caller ?IXIT gate

Sy stan calls corne through ga te zero of the Agent. In the next section
WE will look at how this is done, and what is done at INCOMING. CALLS
to dispatch a task to the proper system call handler.

AOS/VS Internals Chapter 4 Page 4-31

System Call Dispatching

System call dispatching is similar, but not identical, for 32 bit and 16
bit programs. We will take a look at how each one gets into the Agent.

3;: bi t prograns

User's invoke system calls via ?XXXX, where XXXX is the name of the system
call. ?XXXX is a macro which expands into the following for 32 bit
programs:

XJSR @6
(system call number corresponding to XXX>

The "@" symbol stands for indirect addressing. For the 32 bit progran
this means take the address at location 6 and jump to that address. This
is the same as

XWLDA 2,6
XJ5R 0,2

At the address specified by location 6 is the system call wart (5YST),
which looks like ~he following.

SY5T:

SY5T1 :

WPSH 3,3
LCALL 6000000000,0
WBR 5YST1
ISZTS

I5ZTS
LDAPF 3
WPOPJ

At. this point, an explanation of how this mechanism works is called for.
ne XJSR @6 causes the address of the next instruction, in this case
tt:e address of the system call number. to be loaded into C3, and jumps to
tbe specified address, which in this case is the system call wart. The
system call wart pushes the address of the system call number on the
stack (WPSH 3,3), and does an LCALL into the Agent through gate zero. Gate
z~ro is the entry point for all system calls. Before we discuss how the
system call is handled once in the Agent, let's take a look at how 16 bit
programs get into the Agent.

AOS/VS Internals Chapter 4 Page 4-32

16 Bit Progran~

16 bit prograns invoke system calls in the same manner as 32 bit
prograns, via ?XXXX. ?XXXX expands into the following for 16 bit
pl'ograns.

JSR @11
<[;ystem call number corresponding to XXXX>

Tile address specified by location 11 is the system call wart for 16 bit
pl'ograns (SYST). It loci<s like the following.

SYST:

SYST1 :

PSH 3,3
LCALL 6000000000,0

JMP SYST1
ISZ @40

ISZ @40
LDA 3,41
POPJ

n,e 16 bit system call wart does the same thing as the 32 bit system
cc:dl wart. Namely. it pushes the address of the system call number on the
stack and does an LCALL into the Agent through gate zero.

Gates and gate arrays will be discussed'further later in this manual. For
new, it is sufficient to know that a task entering the Agent through gate
zero enters at INCOMING. CALL. The Agent goes through the following
series of steps to dispatch the task off to the proper system call
handler.

* the PSW portion of the return blOck has already been pushed
on the stack by the LCALL. The remainder of the return
block is pushed on the stack by a WSAVR instruction. The
LCALL loads 'the address of the instruction following the
LCALL into AC3. Therefore, when AC3 is saved on the stack,
by the WSAVR, it is the return PC which is pushed onto the
stack.

* The Agent gets the caller's stack pointer from page zero of
his ring. It loads the return PC from the top of the
caller's stack (remember the WPSH 3,3 [or PSH 3,3 in the
case of 16 bit prograns] from the system call wart). The
Agent then loads the single word pointed to by the return
PC (remember the return PC pointed to the system call
word) •

* Next location 2 ,of Agent page zero is checked. The value in
this location is interpreted as follows:

0: process the system call in the Agent as usual.
This is the standard mode of operation.

ACS/VS Internals Chapter 4 Page 4-33

-1: make the kernel system call directly, bypassing
all Agent processing. This mode is only used by the
Kernel and File Systems group for testing system
calls that do not have pre-processors in the Agent
yet.

XXX: bypass Agent processing of the system call
which has the system call number "XXX". However,
allow the Agent to process, all other system calls.
This mode is also used by the Kernel and File
Systems group for testing.

Since we are interested in ,the system call processing done by the
Agent. and since this is the usual roode of operation, we will
ignore the last two cases and concentrate on the first. It is
sufficient to say that in the latter two cases, if Agent processing is
not to be done, the Agent LCALLs into the Kernel at this point.

* The Agent checks to make sure that the system call number
supplied by the user is valid (ie. that it is between the
lowest and highest system call numbers allowed). If it is
not valid 1 we return to the user with error code ERICM .
(Illegal System Command). If the system call number. is
valid, we increment CALL. TOT, which isa count of the
number of system calls this process has made.

* The Agent checks if system call logging is turned on. If it
is it jumps to a routine to log the system call. System
call logging is turned on via ?LOGCALLS.

* The Agent then logs the system call in its system call ring
buffer.· If the ring buffer does not exist (ie. this is the
first system call this process has made), it is created.
Then the ring of the caller. the system call number, and
the lower word of the address of the TCB making the call is
logged into the buffer.

" * If the caller is a 16 bit program, the dispatch table used
contains entry points for the 16 bit code. If the caller is
32 bit, another dispatch table is used which contains the
entry points for the 32 bit code. The Agent .calls
CALLER. TYPE to determine if the caller is 16 bit or 32 bit,
then gets the base address of the proper dispatch table.
The system call number is doubled to produce a double word
offset into the dispatch table for this system call
handler. The address of the system call handler for this
system call is load in an AC fran the dispatch table. If
the address is minus one. there is no system call with this
number. and the Agent takes an error return with the error
code ERICM. If the address is not minus one, it is pushed
on the stack, and the Agent does a WPOPJ to go to the
system call handler. The WPOPJ pops a double word off the
stack, uses it as an address, and jumps to that location.

AOS/VS Internals Chapter 4 Page 4-34

Now that we have lodeed at the data bases in the Agent, ~at the
Agent does during initialization, and how system calls are dis­
patched to the appropriate system call handler. let's take a lod<
at the common routines in the Agent. These routines are commonly
used throughout the Agent, SO it is advantagerus to knew what these
routines are and what they do. That way you will be familiar with
these routines when we lode at the various system calls.

,AOS/VS Internals Chapter 4

CllDmOn Agent Routines

n,e common Agent routines fall into 10 categories.

* Agent Initialization

* Call Dispatching

* Caller Identification - 16 or 32 bit

* Word and Byte Pointer Validation

* Agent Heap Memory Management

* Resource Locking

* Abort Handling

* Deterministic Scheduling

* Channel Management

* Common Return Points

Page 4-35

We have already discussed Agent Initialization and system call
dispatching, so we will not go into futher discussion of these· at
this point •. However. we will look at the others in more detail in
the following sections.

AOS/VS Internals Chapter 4 Page 4-36

Caller Identifica tion

The routine used to identify a caller as either a 32 bit caller or a 16
bl t caller is CALLER. TYPE. It is called in the follo.Jing manner.

LPSHJ CALLER. TYPE
<return for 32 bit caller>
<return for 16 bit caller>

Input:
No input required

Output:
ACO - Unchanged
AC 1 - Unchanged
AC2 - Unchanged
AC3 - Unchanged.

CALLER. TYPE determines the type of caller in the follo.Jing manner.

* It checks USTPR in the UST. USTPR is set up by LINK and is
zero for a 32 bit progran and non-zero for a 16 bit
progran. If USTPR is zero, the' caller is 32 bit, and that
return is taken.

* If USTPR is non-zero, CALLER. TYPE checks the ring that the
call came from. If the call was from ring seven, then he is
truly a 16 bit caller, otherwise he is a 32 bit caller.

AOS/VS Internals Chapter 4 Page 4-37

Wcrd and Byte Pointer Validation

Tbe word and byte pointer routine names are governed by their
function. The format of the routine names is that the first letter is an
"A", for Agent routine. The second letter is an "R" or ''W'', which mean
vr:lidate for read access or validate for wr,ite' access respectively. The
third letter is a "V" for validate. The next two letters are either "WP"
or "BP"" Which stand for word pointer or byte pointer. The last letter
indicates the delimiters used for validation. An "L" stands for
absolute length. The entire .length of the buffer must be validated. An "X"
means validate a string of unknown length. but known maximum length.
1t:e string is validated until a delimiter is encountered. A ''D'' means the
same as an "X" , but the string is tennina ted by two consec uti ve
delimiters. Lastly. an "ACL" means that the string is an access control
list, which has the format

USERNAME<O><access type><O>[USERNAME<O><access type><O> ••• l<O>

An access control list is terminated by two consecutive delimiters •.

Combinations of these gives us the following routines.

* ARVWPL - Validate a word pointer to a string of known
length for read access

* AWVWPL - Validate a word pointer to a string of known
length for write access

* ARVBPL - Validate a byte pointer to a string of kna.m
length for read access

* A~~BPL - Validate a byte pointer to a string of kna.m
length for write access

* ARVBPX - Validate a byte pointer to a string of unknown
length. but known maximum length for read access. The
string tenmlnates with a delimiter.

* ARVBPD - Validate a byte pointer to a string of unknown
length. but known maximum length for read access. The

, string tenninates with two delimiters.

* ARVBPACL - Validate a byte pointer to an access control
list.

AOS/VS Internals Chapter ij Page ij-38

Word and Byte Pointer Validation of a String of Known Length

These are the routines that end with an "L". These routines are used
when a pointer to a string or buffer of known length must be validated.
An example of this is the validation of pointers to paraneter packets.
These routines are called in the following manner.

LPSHJ A(R,W>V<W,B>PL
(exception return>
<normal return>

Input:
ACO - Word or byte pointer to the string
ACl - Ring of caller in bits S1 - S3
AC2 - Length of string in words 'or bytes

Output:
ACO - Unchanged for normal return, error code for exception

return
AC 1 - Unchanged
AC2 - Unchanged
AC3 - Unchanged

The logistics of these routines are as follows.

• Check that the ring of the caller's word/byte pointer is
greater than or equal to the callers ring (AC1 input) • If
not take an error return.

• Check that the target address falls within either the
shared or unshar~ area of caller's word/byte pointer ring.
If not take an error return

• Check that the caller has the appr,opriate access to the
specified area (the shared area is read only). If not take
an error return.

• Check that the ending address falls within the same area,
shared or unshared, as the target address. The ending
address is calculated by adding the length to the target
address. If not take an error return.

AOS/VS Internals Chapter 4 Page 4-39

Byte Pointer Validation of a String of Unknown Length

This is the routine that ends with an "X". It are used to validate a
string of unknown length. but known maxinun length, Where the string is
tenninated by a delimiter. An example of its use is the validation of
data sensitive text strings. Obviously. only' read validation can be
done on a string of unknown length, terminated by a delimiter. This
routine is. called in the following manner.

LPSHJ ARVBPX
<exception return>
<normal return>

Input:
ACO - Byte pointer to the string
AC1 - Ring of the caller in bits S1 - S3
AC2 - Maximum length of the string in bytes
AC3 - Address of delimiter table

Output:
ACO - Unchanged for normal return, error code for exception

return.
AC1 - Unchanged
AC2 - Unchanged
AC3 - Unchanged

The logistics of this routine are very similar to the "L" routines.
However. if the target address is valid, and his maximum ending address
is invalid" the iollowing additional check is made.

* Starting at the target address, search forward through the
caller's string looking for a match with any of the delimi­
ters in the delimiter table. The search is ended when a
delimiter is found or at the end of the area, 'shared or
unshared. If a delimiter is found in this range, the byte
pointer is valid.

AOS/VS Internals Chapter 4 Page 4-40

Byte Pointer Validation of a String Qf UnknQtlD Length - two delimiters

ntis routine ends with a ''D''. It is used to validate a string of unknaID
lE·ngth. but kn~n maxinun length. Ylere the string is tenninated by
two consecutive delimiters. It may be used to validate list, where each
element in the list is separated by a delimiter. The list must
be tenninated with two consecutive delimiters. This routine is palled
as follows.

LPSHJ ARVBPO
<exception return>
<normal return>

Input:
ACO - Byte pointer to the string
AC1 - Ring of the caller in bits S1 - S3
AC2 - Maximum l~ngth of the string in bytes
AC3 - Address of the delimiter table

Output:
ACO - Unchanged for normal return, error code for exception

return
AC 1 - Unchanged
AC2 - Unchanged
AC3 - Unchanged

The logistics of this routine are similar to ARVBPX, except if the
final search is conducted, the search is for a pair of delimiters
rather than a single delimiter.

.AOS/VS Internals Chapter 4 Page 4-41

Byte Pointer Validation of an Access Control List

This routine is used to validate a byte pointer to an access control
list. The list must be terminated by two consecutive delimiters. The
format of an access control list is as follows.

USERNAME<O><access type><O>[USERNAME<O><accesstype><O> •••]<O>

This routine is called in the following manner.

LPSHJ ARVBPACL
<exception return>
<normal return>

Input:
ACO - Byte pointer to the string
AC1 - Ring of the caller in bits S1 - S3
AC2 - Maximum length of the string in bytes
AC3 - Address of the delimiter table

Output:
ACO - Unchanged for normal return, error code for exception

return
AC1 - Unchanged
AC2 - Unchanged
AC3 - Unchanged

The logistics of this routine are also very similar to ARVBPX, once again,
except for the final search. In the final search, start at the target
address and. search forward for the next <0>. When it is located, space
past the next byte. which is the access type byte. and check again for a
<0>. If the byte after this is another <0>, this is the end of the list.
At all times during the search, we make sure we stay in the same area,
shared or unshared, specified by the target address.

,

All the validation routines have macros to do the LPSHJ. The macro
names are the same as the routine names, but without the initial
letter "A". For example, "LPSHJ ARVBPX" can be replaced by the
macro "RVBPX".

AOS/VS Internals Chapter 4 Page 4-42

Agent Heap Memory Management

There are two memory heaps in the Agent, I..I'lshared and shared. This memory
is used by the Agent for the processing of systElll calls and for Agent data
b<.!ses. We will lod< at the unshared memory mnagement routines first,
Since they are the ones most commonly used.

lInshared Memory Management

1[le Agent unshared memory pool is initialized during Agent ini tial­
ization using the following routine.

LJSR AMEMINIT
<normal .return>.

Input:
No required input

Output:
ACO - Unchanged
AC1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

A}~EMINIT initializes the I..I'lshared memory pool by allocating any Agent
unshared memory that follows the initial Agent stacks within that same
page. Memory is allocated for use from the unshared memory pool using the
follOWing routine.

LJSR AGMEM
<exception return>
<normal return>

Input:
ACO - Number of words of unshared membry requested

Output:
ACO - Unchanged for normal return, error code for exception

return
AC 1 - Unchanged
AC2 - Address of the unshared memory block
AC3 - Frame pointer

AGI-1EM performs a "first fit" search of the unshared memory pool to satisfy
the caller's request. It starts at the pool descriptor, location AVAIL
in Agent page zero, and searches forward. If a block of sufficient size is
not located, then a call is made directly to the Kernel (?MEMI) to
acquire more memory. Acquired memory is placed at the end of the list.
When a block of sufficient size is located, the requested size is carved

:AOS/VS Internals Chapter 4 Page 4-43

out fran the' beginning of the block, and the ranainder. if any, is linked
back into the list. AGHEM always retUrns at least eight words, and
'request have an upper limit of 262144 words (1000000 octal). AGMEM calls
LOK with the double word MEMLOCK to ensure single tasking through AGHEM.

Wben the Agent is finished with allocated unsharecl memory, it calls the
follOWing routine to return the memory to the unshared memory pool.

LJSR AFMEM
<exception return>
<norm~l return>

Input:
AC2 - Address of the tmshared memory block to be returned

Output:
ACO - Unchanged for normal return, error code for exception

return
AC1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

AFMEM searches through the unshared memory pool tmtil it locates either
a higher block than the input block, or the end of. the list. The speci-fied
block is then linked into the list at this point, and, if possible, it
is merged with any neighboring blocks to make one larger contiguous block,
thus decreasing fragmentation. AFMEM also calls LOK with the double
word HEMLOCK to ensure single tasking with AFMEM (and AGMEM) ,. thus
maintaining the integrity of the unshared memory pool.

AOS/VS Internals Chapter 4

Shared Memory Manaiement

There are two routines which handle the shared memory
Agent. The routine to acquire memory fram the pool

LJSR ASGMEM
<exception return>
<normal return>

Ir,put:
No input is required

Output:

Page 4-144

pool within the
is the following.

ACO - Unchanged for normal return, error code for exception
return

AC1 - Unchanged.
AC2 - Address of the shared block
AC3 - Frame pointer

ASGMEM acqui res a shared page block fram the shared memory pool. Each
block is "SHMIM" shared pagf:ls long. SHMIN is defined to be long enough
to satisfy all callers of ASGMEM. ASGMEM searches through the shared
page header queue to find a free shared page block. The flag double
word within the header indicates whether or not the corresponding block is
free. If a header that indicates a free block is found on the queue,
the address of the block is returned to the caller and the flag in the
header is modified to indicate that the block is in use. If a free
shared block is not found, a new shared page header is allocated
from the un shared memory pool and a new shared page block is acquired
by a ?SSHPT call. The header is linked into the queue with a flag
indicating that the block is in use. The header is pointed to the
shared block, and the address of the shared block is returned to the
caller.

To free shared memory, the following routine is called.

LJSR ASFMEM
<exception return>
<normal return>

Input:
AC2 - Address of the shared block

Output:
ACO - Unchanged for nor'mal return, error code for exception

return
AC1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

r 'F:1!>~ :x-:lrehes through tile shared page header queue for the header
(:(:"rl'sponding to the specified block. It then resets the header flag to

AOS/VS Internals Chapter 4 Page 4-45

indicat~ that the shar~ page block is free. Both ASGMEM and ASFMEN call
LOK with the double word lock SHLOCK. Th.isensures single tasking within
these two routines.

Resource Locking

The Agent locks resources both globally and locally. Global locking is
accomplished by two modes of disabling scheduling. Local locking is
implemented· by software locks of specific code paths and data bases.
First, we will take a look at global resource locking.

Global Resource Locking

There are two methods used by the Agent to·
multitasking. Both disable rescheduling for other
process. When scheduling is disabled wi thin a process,
which was the current task at the time of the disable
did the disable) will run.

globally disable
task wi th in a
the only task

(ie. the task that

The first method of disabling scheduling, and the. most commonly used,
is to set the single word "?TSMA" to a non zero value. ?TSMA is defined as
location "one" of Agent page zero. ?TSMA is reset by the Kernel as the
first part of a Kernel system call request. Therefore, if the Agent
makes a call to the Kernel to reschedule a task, ?TSMA is set to zero upon
entering the Kernel, and all task that are not pended for other
reasons are considered for rescheduling. An example of the use of
?TSMA is when the Agent is playing with the UST or TCBs. ?TSMA is set so
no other ta~k will be scheduled,thus guaranteeing that the UST and TCBs
will not be in a transient state when they are looked at.

The second method the Agent uses to disable scheduling is by setting
the disable scheduling bit, ?UFPH, in the UST. This bit is set and reset
by two macros.

TIle macro used to set the bit, thus disabling scheduling is ADRSCH. There
is no input to the macro, and all ACs remain unchanged.

The macro used to reset the bit in the UST, thereby enabling task
scheduling, is AERSCH. Again, there is no input to the macro, and all ACs
remain unchanged.

Unlike ?TSMA, ?UFPH is not reset by the Kernel. Scheduling
disabled until the Agent explicitly resets this flag bit.
valuable if the Agent wants scheduling to remain disabled across
call.

remains
This is

a Kernel

AOS/VS Internals Chapter 4 Page 4-lI6

Local Resource Lockini

Local resource locking differs from global locking in that only task
trying to access the locked resource will be pended. All other task will:
continue to be scheduled as usual ,assuning scheduling is not disable by
the Agent. or the user. Code paths and data bases can be locked. using
the local resource locking routines.

Locking of a resource is done by calling the following routine.

LJSR LOK
<normal return>

Input:
AC2 - Address of the lock double word for this resource

Output:
ACO - Unchanged
AC1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

LOK associates a double word lock with a critical resource. LOK
examines the lock. If it is zero, the resource is free, and the
caller's TCB address is placed in the lock double word. Control is then
returned to the caller. If the lock is non-zero, ?TSGS is set in the
caller'S TCB status word (?TSTAT). This marks the caller ineligible to
run. The address' of the lock double word is placed in the system call
double word (?TSYS) of the caller's TCB. The variable WAITERCOUNT is
incremented. Finally. LOK calls the Kerhel to reschedule another task.

When a task is finished with a critical resource, it releases it by calling
the follOWing routine.

LJSR UNLOCK
<normal return>

Input:
AC2 - Address of the lock double word for this resource.

Output:
ACO - Unchanged
AC1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

UNLOK looks at WAITERCOUNT. If it is zero, UNLOK silJl)ly zeros the lock
double word and returns to the caller. If WAITERCOUNT is not zero, UNLOK
searches the active TCB'chain for a task pended on a lock (?TSGS is set
if the task is pended on a lock). When a task is found, UNLOK checks the
address of the lock this task is pended on (it is stored in ?TSYS). If the
te::,k is not pended on this lock, UNLOK continues to search the active

ADS/VS Internals Chapter 4 Page 4-47

TCB chain to' find one that is. If no task is found pended on this' lock,
UNLOK zeros the lock double word and returns to the caller. If a task is
found pended on this lock, UNLOK resets the loca ted TCB' s ?TSGS flag and
ze:ros its ?TSYS double word. It places the address of the located TCB in
the lock double word. If the relative priority of the located task is
greater than that of the calling task, UNLOK calls the Kernel to
reschedule a task. Otherwise, UNLOK returns directly t.o the caller.

Besides WAITERCOUNT, there is another co~nter used in the lock
routines. It is called LOCKCOUNT and indicates the current number of task
currently holding locks. Each time a task successfully locks a
resource through LOK, LOCKCOUNT is incranented, and each time a lock is
released through UNLOK, and there is no task waiting for this resource,
LOCKCOUNT is decranented. If there is a task waiting for the lock,
LOCKCOUNT is not touched, because directly after UNLOK releases the
resource fran one task, it gives it to another.

LOK and UNLOK disable scheduling by setting ?TSMA, to ensure that there
aloe no race conditions with task trying to secure the same resource.

AOS/VS Internals Chapter 4 Page 4-48

Abort Handling

When a task is being redirected, various cleaning up must be done before
the task is allowed the proceed to its new destination. An example of
this "cleaning up" is that any system call the task is pended on must be
rjpped down, and the task unpended. The system call that does this is
c811ed ?GABORT, and is called in the following manner.

?GABORT
<exception return>
<normal return>

Ir:put:
ACO - Address of the TCB of the task to be aborted
AC1 - PC to redirect the aborted task to

Output:
ACO - Unchanged for normal return, error code for exception

return
AC 1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

The ?GABORT system call is only valid if it is made from within the Agent.
It rips down all system calls in progress, and may be called during
?IDGOTO, ?IDKIL, or ?PRKIL. ?GABORT clears certain task suspension
bits, aborts ?READ/?WRITE request to the PMGR and IPC request to X25,
and tears down certain system calls. It guarantees orderly restoration of
Agent resources before the aborted task proceeds to its new
instruction sequence. By convention,' before calling ?GABORT, the task
to be aborted is pended by setting the abort flag (?TSAB) in ?TSTAT of
its TCB.

The logistics of ?GABORT are the following.

I Validate the callers input arguments.

I If the Abort PC table has not yet been allocated, allocate
it now.

I Place the input PC in the Abort PC table entry correspon­
ding to the ordinal position of the specified task's TCB,
and zero the corresponding mailbox entry.

I Place the address of the special GABORT post-processing
routine in the first return block on the Agent's stack.
This allows the aborted task to finish up processing in the
Agent before it is redirected. When this task does its last
WRTIJ, which would bring it back into user space, it is sent
to this routine to be redirected.

AOS/VS Internals Chapter 4 Page 4-49

* For the task to be aborted, clear the?TSTAT flag bits in
its TCB corresponding to task suspension due to ?SUS,
?IDSUS. ?PRSUS. ?XMTW, ?TRCON, or 16 bit overlay waiting.

* If ?TSPN is set in ?TSTAT, the task to be aborted is pended
. on sane other system call. If it is not set, continue to

the last step.

* Check if the task is pended on a ?WTSIG or ?SIGWT to the
PMGR. If so, see if the system call he made was a ?READ or

. ?\\TRITE. If it was prepare to send a special ?IS. R call to
the PMGR to tell it to rip down the ?READ/?WRITE on behalf
of the task to be aborted. We get the PMGR's control port
by getting the CDT for the channel that this task has open
to the PMGR (fran the ?READ/?WRITE paraneter packet). We
can then get the PMGR's control port from the CDT directly.

* The Agent issues an ?IS.R call to the PMGR telling it to
rip down this ?READ/?WRITE.

* If the task was not pended on a ?WTSIG or ?SIGWT to the
PMGR, we check the system call double word (?TSYS) to see
if it is pended on an ?IREC or ?IS.R.

* If the task is pended on and ?IREC or ?IS.R, we check to
see if it is to X25 by checking if the port of the sender
is X25's port.

* If the sender is X25, the Agent call NETABORT to send an
?IS.R to X25, telling it to rip down this IPC.

* If the task was pended on a system call (?TSPN is set in
?TSTAT), ?TABT is called to rip down the outstanding system
call. ?TABT is a Kernel call.

* It is now time to wait for all task to finish their Agent
processing on behalf of the call that is being ripped down.
Clear the ?TSAB bit in ?TSTAT for the task to be aborted.
Have the ?GABORT calling task go to sleep by issuing a ?REC
on the mailbox in the specified Abort PC table entry.

When the task that is to be aborted issues its final Agent WRTN
instruction, it jumps to the special GABORT post-processing code. This
code does the following.

* The task gets its new PC fran the corresponding Abort PC
table·entry.

* The task wakes up the ?GABORT calling task by issuing an
?XMT call on the mailbox in the specified abort PC table
entry. '

* The task jumps to its new PC.

AOS/VS Internals Chapter 4 Page 4-50

D,~tetministic ~

Wnen the Agent wishes to explicitly cause a task rescheduling, as is the
c~se when the Agent is going to pend the currently executing task, it makes
a call to the Kernel through the Kernel's scheduling gate. There is a
m~-icro called SCHED which will do this. The following e.xample
i! lustrates the use of this macro. .

SCHED
<normal return>

There is no input to this macro, and all ACs, except AC3, remain
unchanged upon return. AC3 contains the frame pointer upon return fran
the Kernel. The task making a call to the scheduler will take the normal
r,~turn when, if ever. it is rescheduled.

AOS/VS Internals Chapter 4 Page 4-51

Channel Management

n-ere are routines in the Agent to manage the two Agent channel data
bases: the channel descriptor tables (CDTs) and the channel maximization
table (CMT). There are two separate tables because the channel maximization
table must be used for all channel activity, but the channel descriptor
t~.ble only has entries for channels that al'e used through the Agent I/O
S) stan calls (?OPEN, ?READ, ?WRITE, and ?CLOSE).

Let us first address the routines used to maintain the channel
maximization table (CMT).

c'

AOS/VS Internals Chapter 4

Channel Maximization Table Management

As part of the multiple ring support offered by AOS/VS,
by inner rings are protected from use by outer rings.
a table of channels, and which ring they were opened
maintained. This maintenance is done by three routines in

Page 4-52

channels opened
To achieve this,

fran, must be
the Agent •.

TIle following routine is used to make an entry to the channel·
maximization table when a channel is opened.

LJSR ADDCMT
<exception return>
<normal return>

Input:
ACO - Channel number

Output:
ACO - Unchanged
AC 1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

MJDCMT finds the ring of the caller that made the original system call by
tCiking his return address fran the first return blook on the stack. It
then sets the bit corresponding to the specified channel and ring in
the CMT. This bit is found using the following formula for the bit offset
from the start of the CMT.

BIT OFFSET = « RING OF CALLER - 3) * 256.) + CHANNEL NUMBER

Each time a channel is used, the ring of the caller must be checked against
the CMT to determine if the calling task has access to the channel. The
following routine does this.

LJSR CHKCMT
<exception return>
<normal return>

Input:
ACO - Channel number

Output:
ACO - Unchanged for normal return, error code for exception

return
AC1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

AOS/VS Internals Chapter 4 Page 4-53

CHKCMT does the follC7woling.

* Validates the channel number passed as input by comparing
it to the minimum and maximum possible channels. If the
channel number is outside of this range, it takes the error
return with the error code for "ILLEGAL. CHANNEL".

* Loops through the CMT, checking the bit for the specified
channel and each ring, 3, 4, 5, 6, and 7. If no bit is set
for this channel in any ring, it takes the exception return
wi th "CHAN NEL NOT OPEN".

* If a bit is found set for this channel, it compares the
ring of the caller to the ring specified- in the CMT, If the
callers ring is less than or equal to this ring CHKCMT
takes a good return. Otherwise, it takes the exception
return with the error "ILLEGAL CHANNEL".

'Wben a channel is closed, the bits for this channel must be cleared frem
the CMT. This is done by the following routine.

LJSR DELCMT
<exception return>
<normal return>

Input:
ACO - Channel number

Output:
ACO - Unchanged for normal return, error code fer exception

return'
AC1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

nJe logistics of DELCMT .is. as follows.

* Call CHKCMT to make sure the calling task has access to the
channel. If it doesn't take exception return with IIILLEGAL
CHANNELII or "CHANNEL NOT OPENII if appropriate.

* Loop through the CMT resetting the bit for the specified
channel in all rings, 4, 5,' 6, and 7.

DELCMT is called in the Agent before the Agent calls the Kernel to close
tr.e channel. If the Kernel takes an error return on the close call, the
Agent calls ADDCMT to put the channel back into the GMT. This is done in
this manner to close a window in the channel maximization logic, and
with the assumption that the Kernel rarely takes an error return when
closing a channel.

Unlike the CMT, the CDT is not maintained for all systan calls that open,

AOS/VS Internals Chapter 4 Page 4-54

close, or access channels. It is only used for channels that are opened,
closed, and accessed by the Agent I/O systslI calls 'lOPEN, 'lREAD,
?WRITE, and ?CLOSE. Let's take a loak at the routines that maintain the
channel table and its COTs.

Channel D~scriptQr Table Management

F.8ch time a ?OPEN is done, a CDT is created, containing various
information from the ?OPEN packet,and added to the channel table. The
information from the CDT is used when a ?READ or ?WRITE is done on the
cLannel, and the information in the ?READ/?WRITE packet says to use the
pcirameter specified at ?OPEN time, or the paraneter passed in the
packet is only used at ?OPEN time.

n,e routine to insert a CDT into the channel table is the
following.

LJSR INSCDT
<normal return>

Input:
AC2 - Address of the cor to be inserted into the channel

table
Output:

ACO - Unchanged
AC1 - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

The logistics of INSCDT is the following~

* Lock the channel table.

* Check if the channel table has been initialized yet. If
not, get memory for it.

* Put the address of the CDT. in the ·channel table. The
channel table is set up such that there is one double word
entry for each channel. Thus the formula for indexing,
from the start of the channel table, into the table is the
following.

INDEX = CHANNEL NUMBER * 2

* Unlock the channel table.

When a ?READ/?WRITE is issued on a channel, information stored in the CDT
for that channel is needed to determine the ?READ/?WRITE
cbaracteristics, address of the Agent buffer. pointer position, etc.
The routine to retrieve a COT for a channel from the channel table, is the
fcilowjng.

AOS/VS Internals Chapter 4

LJSR GETCDT
<exception return>
<normal return>

Ir!put:
ACO - Host ID/Channel number

Output:

Page 4-55

ACO - Unchanged for normal return, error code for exception
return

AC1 - Unchanged
AC2 - Address of the CDT'for the specified channel
AC3 - Frame pointer

Tre logistics of the GETCDT routine are the following.

* Make sure that the channel is in the range of legal
channels. If not. pass back the error "ILLEGAL CHANNEL".

* Check to see if the channel table is initialized yet. If it,
is not. no channels have been opened, so take exception
return with "CHANNEL NOT OPEN".

* If the channel table is initialized, get the CDT entry for
the specified channel. If the entry for the channel is
zero, take the exception return with "CHANNEL NOT OPEN".

* If the CDT entry for the specified channel is not zero,
pass the address of the CDT back to the user in AC2.

Wben a channel is closed by a 7CLOSE. the CDT for that channel must be
deleted from the channel table. The following routine deletes a'CDT from
the channel table.

LJSR RELCDT
<normal return>

Input:
ACO - Host id/Channel number

Output:
ACO - Unchanged
ACl - Unchanged
AC2 - Unchanged
AC3 - Frame pointer

RELCDT has the following logic.

* Lock the channel table.

* Call GETCDT to get the address of the CDT for the specified
channel. This is done to make sure that the channel is
open.

AOS/VS Internals Chapter 4

* Zero the channel table entry for this CDT.

* Unlock the channel table.

Page 4-56;

iAOS/VS Internals Chapter 4 Page 4-57

Cammon RetYrD Point~

There are two points that a task can leave the Agent and return to a user
ring. One, AGENT. NORMAL, is for normal returns from the Agent. The
other', AGENT. EXCEPTION, is for exception returns. All systan call
handlers do an WMP to these routines. There are two macros defined
which will do the WMP. The first is called NORMAL.REWRN, which
jumps to . AGENT • NORMAL. The second is called EXCEPTION. REWRN, which
jumps to AGENT. EXCEPTION.

At the common return points the Agent checks to see if the caller is
returning back into the Agent, or into a user ring. If it is returning
to a user ring, the Agent calls a routine DRCHK, to see if scheduling has
been disabled by the user. and to pend the task if appropriate. There
will be more on this routine in the section on multitasking. When the
task returns from this routine, the Agent, for a normal return, adds
two to the return PC and issues a WRTN. For an exception return, the Agent
stores the error code in ACO, adds one to the return PC and does a WRTN.

AOS/VS Internals Chapter 4 Page 4-58

Multitasking

Tasks are the fundamental elements of a process. Like a process, a task is
an executing entity; it is a flow of control through source code, not the
source code itself. A process may have up to thirty two asynchrqnously
executing tasks. The concept of a process having roore than one task
executing is called multitasking.

As a progran technique, multitasking offers several advantages,
including

* Parallelism - Multitasking gives a program the flexibility
to respond to external asynchronous events.

* Efficiency - While one task may be suspended on an I/O
operation, anotber task can be executing.

Wbile it is the Kernel that provides the scheduling that underlies
multitasking, it is the Agent that provides management facilities for the
user. All multitasking system calls are handled in the Agent.

1l1ere are three major da ta bases needed for the support of
multitasking: the User Status Table, UST, the Task Control Blocks , TCBs,
and the Task Control Block Extenders, TCBXes. The format of these data
bases was described in the section on Agent data bases. The LINK utilitity
reserves space for the UST and TCBs. The TCBXes are set up during Agent
ini tialization.

.AOS/VS Internals Chapter 4 Page 4-59

The TCBs maintained in two queues. The queues are step up such tilat tiley
may be searched with tile hardware queue instructions. The queue
descriptors for botil queues are in the UST. One queue is a chain of
active tasks, the other is a chain of inactive task. When a process is
initialized there is one TCB on the active chain, with the remainder of the
TCBs on the -free chain. Each time a ?TASK system call is made, In'
TeBs are dequeued from the free chain and placed on the active chain,
where In' is the number of tasks to be initialized (ie. ?DNUM in the ?TASK
parameter packet). When a task is tenninated by one of the 'kill' system
call. the TCB(s) for the tenninated task(s) are dequeued from the active
chain and enqueued on the free chain until they are activated again by
another ?TASK system call.

,

AOS/VS Internals Chapter 4 Page 4-60

Task Redirection Protection

Two new system calls, ?TLOCK and ?TUNLOCK, enable inner ring segment images
tu lock themselves from task redirection. The task redirection system calls
are defined to be the ?IDGOTO. ?IDKIL, ?PRKIL, ?IDSUS, and .?PRSUS
system calls. These calls either clp a task from its current line of
execution or unconditionally pend the task wi thin its current line
of execution. Either event can play havoc wi thin the system of locks that
control a critical region.

An inner ring segment image can issue a ?TLOCK call to protect itself
from task redirection from higher rings. Ring maximization is the'
protection model employed by these calls. The key value here is not
the current ring of execution (current PC), but the lowest ring fran
which a ?1LOCK systan call is currently in effect for the task to be
nxUrected. This means that. concurrent ?TLOCK calls can be issood from
mu] tiple inner rings and mu:".t be rffilelllbered separately by AOS/VS. As an
example, if ?TLOCK calls have been made for one task from botil rings 5
and 6, then task redir'ection calls will only be il1'll1'ediately satisfied from
rings 4 and 5. An option will be provided to permit tasks to also
disable task redirection calls from within their own ring.

The ?TUNLOCK system call fran a given task in a given ring cancels the
effect of earlier ?TLOCK calls on behalf of the same task in the same
ring. Consecutive ?TLOCK calls from the same ring on behalf of a
single task are legal but accomplish no further protection.
?TUNLOCK calls that do not follow ?TLOCK calls will return with an error
indication. To amend our earlier exampl~, if a ?TUNLOCK call is later
issued from ring 5, then task redirection calls can nOtl be successfully
issued from rings 4, 5 or 6.

A task in a higher ring (higher than the current level of
TLOCK'ing) that issues a task redirection call on behalf of a
TLOCK'ed task will pend until the task issues ?TUNLOCK calls on behalf
of all protected lower rings. This can b~come quite complicated if a task
i~sues a ?PRKIL or ?PRSUS system call and passes an input priority that
specifies more than one protected task. In that case, AOS/VS will make
a not.e of all tasks that match the specified priority at the time of the
redirection system call. If waiting is necessary, due to ?TLOCK
protection, the pended redirecting task will wait for the noted tasks
and those tasks only. If a redirector specifies more than one task, it
is possible that the redirections will occur separately over
indetenminate periods of tin~.

The ?TLOCK call will accept an input argument, in AC2, that specifies a
double word mailbox. An input value of -1 in AC2 indicates that the
c::-:ller does not wish to specif'j ;) mailbox. If the caller specifies a
moilbox, it does not have to contain a zero on input to the ?TLOCK call.
The ITl8ilbox address, jf pn)vi(ied, will t..:nable the operating systEm to
inform a protected task that anoUier task is trying to redirect it.

.AOS/VS Internals Chapter 4 Page 4-61

AOS/VS will place a non-zero flag in the mailbox at the time of a pended
task redirection request by another task. A task executing within an inner
ring segment inage can poll the mailbox as desired. It might react to the
redirection event by aborting its progress in the critical region in a
controlled manner and then issuing a ?TUNLOCK call to help the redirection
request to proceed.

It will also be possible to use the ?TLOCK systan call to protect against
task redirection calls issued from within the' same ring. An input flag,
?TMYRING, is defined for ACO. The caller must specifY the ?TNYRING
flag on ?TI..OCK input to cause the call to protect against task
redirection calls issued from within the same ring.
On output from ?TLOCK, the operating systan will set the ?TALOCK flag in
ACO if the ring was already locked for the calling task at the time of the
?TLOCK system call. The ?TMYRING flag in ACO may also be set by ~DS/VS
on ?TLOCK output. AOS/VS will set that flag ,if the caller's ring was
already locked against redirection calls from within the same ring ?TLOCK
input time. (Note: ?TMYRING will only be set if ?TALOCK is also set.)

Successive ?TLOCK calls can be used to change the state of task
redirection protection. At present, that state consists of the address
of the double word mailbox and the ?TALOCK and ?TMYRING flag
variables. When a ?TLOCK system call changes the address of the ' mailbox
associated with the calling task in the ring, AOS/VS will place in the
new mailbox the current contents of the old mailbox. Each ?TLOCK
call will output the values of the state variables, as they were prior
to the system call. The various state values should be saved by
users until they leave their critical region.

It is the responsibility of ?TLOCK users to appropriately restore the
state variables .when exiting the critical region. Callers can employ a
?TLOCK call, to retain task redirection protection while changing either
the mailbox address or ?TMYRING variable. Callers can issue a'?TUNLOCK
call if their initial ?TLOCK call indicated that task redirection
protection was not already in effect on entrance to their critical
region.

The ?TLOCK/?TUNLOCK functionality is necessary and reasonable for tasks
that are spawned from outer rings. However, inner ring servers may
also wish to initialize proprietary tasks that execute only in the inner
ring. Such a task might, for example, solely issue ?IREC system calls
to wait for global server termination indication. To prevent
unwitting conflict with outer ring task redirection calls (principally
?PRKIL and ?PRSUS), a ring maximization rule is also applied to the task
redirection calls. The rule states that a task created within an inner
ring can only be redirected by a call from that ring or lower.

AOS/V5 Internals Chapter ~ Page ~-62

Agent/Ex~ Interface

Overview of ?EXEC processins

Certain CLI commands cause a 16-bit ?EXEC packet to be built by CLI,
which then makes a 16-bit ?EXEC call. When the Agent gets such a call, it
pl~ocesses it by:

• The 16-bit ?EXEC handler (called NEXEC or the Narrow Packet
Converter) builds a 32-bit ?EXEC packet and issues a 32-bit
?EXEC call.

• The 32-bit ?EXEC handler (called AEXEC) builds a message
and, sends ~t to Exec via the ?IS.R call.

• Exec receives the call, processes it, and returns the
message to the Agent. Certain requests will cause Exec to
return information in the message packet.

• The 32-bit ?EXEC handler updates the 32-bit ?EXEC packet as
needed, and returns to the caller (in this case, the caller
is the 16-bit ,?EXEC code path).

• The 16-bit ?EXEC handler updates the 16-bit ?EXEC packet as'
needed, and returns to the caller (CLI).

Details of the proceSSing which occurs in the 16~bit and 32-bit
?EXEC call handlers can be found in later sections.

AOS/VS Internals Chapter 4 Page 4-63

A Simple Example

Suppose that a user logs on to @CON4, and types the command
[!CONSa..E]t'. CLI issues a ?EXEC call for function ?XFSTS,
r(!turns status flags and (optionally) the console or strean

''WRITE
~ich
name.

Tbe 16-bit ?EXEC packet built by CLI lod{s like 'this:
--

?XRFNC ?XFSTS request code I
I I 1---,

?XFP1 I don't care,- used to return info from Exec
I I ,---,

?XFP2 B(area to receive a string from Exec)
--

When the CLI issues a ?EXEC call, the Agent dispatches to the NEXEC Narrow
Packet Converter routine to translate the packet into the corresponding
32-bit packet and reissue the ?EXEC call as a 32-bit user. The 16-bit byte
pointer to CLI's string buffer is expanded to 32 bits. The packet which
is constructed by NEXEC looks like this:

--
?XRFNC I ?XFSTS request code

I ,---
I not used for this request
I . 1---

?XFP1 I zero
I 1---

?XFP2 I B(area to receive a string from Exec) I
I • I
I --------.-------------------------------------- I

lower word of ?XFP2
---_._-

The 32-bit ?EXEC handler, called AEXEC, constructs a message to be sent to
Exec. This message is called "EXCrt in the rest of this doclJllent. For
the ?XFSTS request, the EXC message -lodes very much like the ?EXEC
packet, except:

* The ?XFP2 bytepointer becomes a byte offset from -the
beginning of the EXC message into the string partition

* The packet includes a string area of sufficient size to
contain all strings to be transferred between the Agent and
Exec.

AOS/VS Internals Chapter 4 Page 4-64

Therefore. the EXC message has the following format: '

X.RFNC

X.FPl

X.FP2

--
?XFSTS request code 1

I I 1---,
I zero
I I ,---,

(-1) to indicate string return
--

area reserved for transferring strings
between the Agent and Exec

--
Aft.er this message is built, it is sent to Exec via the ?IS. R call. Exec
prxesses the, request, and the packet nCM lod<s like this:

X. RFNC

X.FPl

X.FP2

--
1 ?XFSTS request code
I 1---
I 000007 (status flags returned by Exec)
I 1---
1 000006 (byte offset to returned string)
1===
ICON4(0)xx
--

Note that this request returns only one string, and uses no strings as
input. Therefore. the byte offset to the string returned by Exec is 5. This
offset is relative to the beginning of the message, by convention. If no
string was requested to be returned (X.FP2 had 0 when the ?IS.R call was
made), the string area (and X.FP2) is not changed by Exec.

The contents of the single word X.FPl (flags word) are returned to the
32-bit ?EXEC packet into offset ?XFPl of the packet.

If the user requef;ted th • .it the con:3oh: or strean name be returned int
ttJt~ user's string area. the contents of the string area of the EXC message
are moved into the user's string area. as indicated by the ?XFP2
bytepointer in the 32-bit ?EXEC packet. Ass un ing there were no errors
df·tected by the Agent or by Exec, a normal return is made.

C',-i :'(;P. the 32-bit ?EXEC caUer Wn~ t.he 16-bit ?EXEC handler, it
ru:ei ves control when the 32-bi t processj ng has completed. The ?XFSTS
rf'ljuest returns information to the user; therefore, the contents of
ttl!: f] ags word ?XFPl in the 32-bi t '?EXEC packet are moved into the
P:1P::'> word ?XFPl in thp 16-bi t ,(EXEC p,1ckd,.

'.;. 'l'~P "I, ~).?-h'j 1, l",ilndlt"I" ll·;::' '!J(NI'd ,:'1,," ."-i::nJ,g : if ,.Any) .into the users
'1~t !,n~': ""Ii', ~r. :,1. ,,' I'I"~ ·.I~~'C)"'-I' ',.) ',"I~I ·'t'l" 1 :i" .. ~l ",e;';jlJil, oJO a return
l~' rfJ-irt ~ 1.1 thp 1 ,)-r. I"~ I :. ;' ,('j I , •

AOS/VS Internals Chapter 4 Page 4-65

;A Cgnplex. Example

The commands to CLI which cause the biggest amount of work to be
performed by the Agent are those which submit requests to any queue using
the ?XFSUB request. The reason for all the extra work is that the packet
format depends on the queue type for the submit request; therefore, the
Agent has to submit a ?XFQST request to Exec to find the queue type before
it can translate the packet (note that the queue names are
user-specified at system generation time, so the Agent cannot itself
infer the queue type from the contents of the queue name string).
In this example, the CLI user· gives the command:

QSUBMIT/QUEUE=PRINT/NOTIFY/DEST=ZIPPY :UDD:TRAPPER:YOW.CLI

eLI builds a ?EXEC packet which looks like this:

?XRFNC

?XTYP

?XDAT

?XTIM

?XLMT

?XPRI

?XFGS

?XSEQ

?XRES

?XFBP

'?XPBP

?XAFD

?XAFT

?XXWO

?XXW1

?XXW2

?XXW3

--
I ?XFSUB request code
I 1---
I Bytepointer to queue name string ("LPT(O)")
I 1---
I
1
I

zero (enqueued date will be returned here)
I----------------------~------------------------I
1
I

zero (enqueued time will be returned here)
,---
I zero (limit will be returned here)
I 1---I -1 (default, since user didn't specifY)
I . 1---I '000010 (flags - INOTIFY for this example)
I I 1---I sequence number (returned)
I . 1---I zero (reserved)
I , ---~------
I zero (default forms name)
I 1---I Bytepointer to II :UDD:TRAPPER:YOW. CLI (0)"
I 1---zero (no IAFTER= switch was given)

zero (no IAFTER= switch was given)

zero (default, since user did not specifY)

zero (default, since user did not specifY)

zero (default, since user did not specifY)
I-------------------------~---------------------I Bytepointer to "ZIPPY<O)"·
--

PDS/VS Internals Chapter 4 Page 4-66

CLI issues the ?EXEC call. and the Agent dispatches to NEXEC. The Agent
rt:!cognizes the packet to be a ?XFSUB request, but needs to know the
qt~eue type in order to detennine the packet format. It calls the WHICHQ
routine to issue a 32-bit ?XFQST request to Exec to find the queue type,
using a packet like this:

--
?XRFNC I ?XFQST request code

I ,---
I not used for this request
I ,---

?XFP1 : zero
I 1---

?XFP2 I Bytepointer to "PRINT(O>"
I .---

lower word of ?XFP2
--

~1ICHQ receives the queue type, and translates the queue type ·to the
associated request type (using the QTYPE table), and so returns ?XFLPT as
the packet type. The NEXEC routine constructs the 32-bit packet, which has
the same format as the 16-bit packet except that bytepointers are 32 bits
long instead of 16, and issues a 32-bit ?EXEC packet.

AEXEC (the 32-bit ?EXEC call handler) receives the packet - and the request
type is still ?XFSUB, so it ALSO needs to call WHICHQ to find the packet
type corresponding to the queue type name. The packet built by WHICHQ
and sent to EXEC is the same ?XFQST packet illustrated above. When AEXEC
determines that the packet type is ?XFLPT, it constructs an EXC message
for that packet type (but preserves the function code as ?XFSUB):

AOS/VS Internals Chapter 4 Page 4-67

======================================~==========
X. RFNC

X. TIP

X.DAT

?XFSUB request code
------------------------_._----------_ ... _--------

000040 (byte offset to "PRINT<O)")
------------~----------- ... ----------------------
zero (will be returned by Exec)

X.TIM

X.LMT

X. PRI

X.FGS

X.SEQ

X.FBP

X.PBP

X.AFD

X.AFT

X.XWO

X.XW1

X.XW2

X.XW3

------ ------------------------------_._--------
zero (will be returned by Exec)

zero (will be returned by Exec)

-------------.-------------------------.. ~--------
-1 (default queue priority will be used)

------------------------------_ ---_ .. _--------
000010 (/NOTIFY flag bit for this 'example)

zero (will be returned by Exec)

zero (default forms name)

I 000046 (offset to ":UDD:TRAPPER:YOW.CLI<O>")

zero (no IAFTER was specified)

zero (no IAFTER was specified)

zero
1--
I zero
I

I-~---------------~-----------------------------I zero (default number of copies)
I " I --------------..... -----.---..... --------------.--... -.----- I

I 000073 (offset to "ZIPPY<O>" in string area
--
IPRINT<O):UDD:TRAPPER:YOW.CLI<O)ZIPPY<O)xxxxxxxxl
Ixxxi
--

Note: The diagran above does not attanpt to show which
word each character of the strings will be in, but
rather illustrates the order and position of the
strings. The "x" characters represent unused bytes.

Notice that the byte offset to the first string
("PRINT<O>") is 40, not zero. The reason is that
the offset is the number of bytes from the begin­
ning of the message packet. not from the beginning
of the string area. This convention was adopted for
ease of implementation.

AOS/VS Internals Chapter 4 Page 4-68

Th~ EXC message is sent to Exec via the ?IS. R call. Exec processes the
rEq uest and ret.urns the message. The returned Illes sage is unchanged,
except. for the following fields: X.DAT, X.TIM, X.LMT, X.PRI, and X.SEQ.
These singleword values are returned to the 32-bit ?EXEC packet
(offsets 'tXDAT. ?XTIM, ?XLHT. ?XPRI, and ?XSEQ) and Jl.EXEC ret.urns to its
c8,ler (NEXEC).

NbEC updates the 16-bit packet wit.h the values returned by Jl.EXEC
ar.! returns to its caller (CLI).

eli. fird.sfJp.s by giving the rne~sage "QUEUED, SEQ=xxx, QPRIO=xxx",
uSing the values returned by the ?EXEC call.

n,!~ Agent/Exec interface is largely table driven. The way in which
a)acket is translated from a 32-bit ?EXEC packet to the EXEC
me;sage is controlled by the following tables:

* The FUNCTION TABLE: Used by NEXEC and AEXEC routines, it
gives general information about. the packets, indexed by the
?EXEC packet function code.

* The VALIDATE PACKET TABLE: Used by AEXEC routine, it
describes the source and destination offsets and the entry
type for each field to be transla ted frai: ?EXEC packe t
format to EXC message. The entry type indj cates how the
entry will be converted.

* The UPDATE PACKET TABLE: Used by AEXEC routine, it descri­
bes the source and destina tion offsets and the entr'y type
for each field of information to be retw1 ned to the user
from theEXC message returned by EXEC.

* The QUEUE TYPES TABLE: used by WHICHQ to deternline the type
of queue from the queue name string.

* The STRING LENGlli TABLE: for string entry types (filename,
VOLID, password, etc), gives the maximum length of the
string.

* The VALIDATION DISPATCH TABLE: used by AEXEC to dispatcH to
the appropriate Validati on/Hove routine for one field].r,
the 32-bit ?EXEC packet. Indexed by entry type. Located in
A.32.14.SR.

* The UPDATE DISPATCH TABLE: used by AEXEC to dispatch to the
;:::rJpropriate Update routine to return ir:formation for for
Otle field. Indexen by entry type. LocatEd in A.32.14.SR.

,AOS/VS Internals Chapter 4 ,
Page 4-69

* NPC.DISPATCH table: used by NEXEC to dispatch to the
routine to convert a packet fram 16-bit to 32-bit ?EXEC
format. Indexed by ?EXEC function code. Located in

'A.16.14.SR.

* The "BIG TEMPORARY AREA" is used by AEXEC to store tan­
porary variables in processing one 32-bit ?EXECrequest.
Defined and allocated in A.32.14.SR.

The Function Tabl~

The function table is used to' look up information for the specified request
function fram the ?EXEC packet offset ?XRFNC. Used by NEXEC and AEXEC
routines, the Function Table gives the length of the packets, flags, and
specifies the packet table entries to be used. '

The function table contains one entry for each function code in the range
?XFMIN to ?XFMAX (Exec minimum/maximum function codes). It is indexed by
?EXEC function code, and is located in the module XTABLES.SR.

The follOWing information can be found in the function table:

* Length of the USR packet (the number of, words in the
caller's 32-bit ?EXEC racket)

* Space to be allocated for the EXC message, including the
space required for the string partition of this message.

* Flags for Internal-Only Function, Undefined Function, and a
flag to. indicate that information should be returned to the
c~ller's packet after EXEC returns its mesrage.

* Offset from the beginning of the Function Table to the
validate packet table entry corresponding to this function
code.

* Offset fram the beginning of 'the Function Table to the
update packet table entry corresponding to this function
code.

Each entry has the following format:

1===1
F. SIZE: 1 size of USR st'ring area 1 size of EXC 1

1 (6 bits) (4 bits) I (6 bits) I
I I 1---1 F .FLAGS: ' 1 flag bits 1 I 1 ,---,

F.VPKADD: I offset to Validate Packet Table entry for func
1 1

I------------------------~----------~-------------I F.UPKADD: 1 offset to Update Packet Table entry for function 1

1===:

AOS/VS Internais Chapter 4 Page 4-70

Tbe "size of USR" field gives the number of words required for the 32-bit
?EXEC packet as defined in PARU.32.SR.

The "string area" of F. SIZE gives the nl.lllber
will be needed for the string area of the EXC
function. Note that the "string area" and
F.SIZE, taken as a 10-bit integer. give the total
for the EXC packet.

F.FLAGS gives information regarding a function:

of '64-word blocks which
packet for a given

"size of EXC" fields of
mUllber of words required

* Bit F.BUND indicates that this function code is undefined.

* Bit F.BINT indicates that this is an "internal" function:
such functions are restricted to calls made by the Agent!
Ghost. Users who request an internal function get ERXUF.

, Bit F.BUPD indicates that either the packet or the user's
strings should be updated by the Agent/Ghost on receiving
the return message fram Exec.

The Packet Tables have varying numbers of . entries depending on the
function code. Also. some functions share the same Packet Table
entries. F. VPKADD gives the word offset fram the beginning of the
Validation Packet Table to the beginning of the entries for
vclidating/moving the packet for a function. F.UPKADD gives the word
offset fram the beginning of the Update Packet Table to the beginning of
a,e entries for updating a packet for a function.

The F.T macro is used for generating the entries for the Function
Tcbles. The macro "is kind enough to check for certain obvious error
conditions;" if you notice an assembler diagnostic for a s~rce line
which begins ""ERROR -", it may be the macro's way of informing you that
you have a damaged brain.

!AQS/VS Internals Chapter 4
I

Page 4-71

:The Packet· Tables

There are two packet tables for each function which
locations and entry types of the fields for
("preprocessor") and for updating ("postprocessor") a packet.

give. the
validating

The Validate/Move Packet Table, which is defined in XTABLES.SR. gives
the information for each entry to be translated fran the user's ?EXEC
pcicket to. the EXC message. The Validate/Move Packet Table has variable 0
length entries and is not indexed; in order to find the starting address
of an entry, the Function . Table entry offset F. VPKADD is used to
calculate the starting address of the packet table entry.

The Update Packet Table is defined in XTABLES.SR.. It is used by AEXEC
to find out what fields of information should be returned fran the EXC
message to the user. Like the Validate/Move Packet Table, the Update
Packe t Table is not indexed: the Function Table entry offset F .1IPKADD is
used to calculate the starting address of the packet table entry.

The entries of the Packet Table vary in length depending on the number
of fields to be translated for a function. The first word of each Packet
Table entry gives the number of translations to be performed. Following
this is one word for each translation which indicates the location of the
field in the USR and EXC packets, and a field type code which indicates
what kind of translation is to be performed.

1==1
I Number of fields to translate or update
I

I---------------------------~----------------------I off~et in'USR
: (6 bits)
I

offset in EXC
(6 bits)

field type
(4 bits)

1--
The other translation specifications are in same
format as the word above.

l===================~==============================

<=One entry
for each
field to
translated
or updated

Note that several functions may share one Packet Table entry if they
use the same fields in the same way. Thus you must be careful when
changing this table to ensure that you are not affecting another
function.

The V. P .·T and U. P. T macros are used to define the structure of each type of
packet. The first entry for each packet has "<,, as the first
argument. This indicates to the macro that it should generat.ea
header entry specifYing the number of fields to be translated, i.e~
the number of· entries. which follow the header. The other entries
specifY the word offset fran the beginning of the USR packet to the entry
to be translated, the word offset from the beginning of the EXC packet
to the location of the translated. paraneter, and the entry type. The
entry type tells the Preprocessor how to perform the translation.

Sirlce the x. P. T macros generate rathel~ complex entries, it performs sane

AOS/VS Internals Chapter 4

validation of its own within' the macro; if you see
diagnostic for a line which starts with " •• ERROR - ",
macros' own way of telling you you have brain damage.

Page 4-72

an assembler
it is the x.P.T

Please note that the Validate and Update routine packet tables must have
the same format since they are dispatched in the same way.

1!-le Queue IY~J£3l>l§

]he Queue Types Table associates a queue type (an integer value, as
returned by Exec) with the Exec function code to access that queue. For
example: queue type Q1LPT is associated with the Exec function ?XFLPT.

1['e queue types tables is used by the WHICHQ subroutine. It is located
in XTABLES.SR. and is indexed by queue type number.

Entries for this table is generated by the Q. T macro. The only
argument to this macro is the queue type (like LPT. ITA, and so on).
The end of the Queue Types Table is defined by using the Q.T maCFO with
no argument.

Tr.e String Length TaD~

The String Length Table associates string entry types (like
filename, pathname, VaLID, VaLID list, etc.) with the maxil1llll1 length
allowed for that string type. For example, a filename (entry type E.FNM)
may not exceed FNM.LEN characters including the delimiter. It is used
by the Validate/Move and Update routines, and is indexed by entry type.

The string length table is generated, thru the use of the U.L macro. The
only argument is the string type (like FNM for filename). To define the
end of the string length table, use the U.L macro with NO ARGUMENTS.

Rcutines for the w.n.tLExec Interface

'fr'e routines for the Agent/~Interface ~nQlude;

• NEXEC: sometimes referred to as NPC (Narrow Packet
Converter) routine, it translates 16-bit ?EXEC packets into
32-bit ?EXEC packets.

* AEXEC: the 32-bit ?EXEC Packet Translator, which translates
32-bit ?EXEC packets into the message format which EXEC
expects, sends the message, and returns any information to
the user's packet.

* V ALIDA TION/Move routines: these are used by AEXEC to
translate one field of the 32-bit ?EXEC packet to the
corresponding field of the EXC packet. For string fields,
the bytepointer is translated to a byte offset into the
string partition of the mps~~ge. and moves the string into

i AOS/VS Internals Chapter !l
i

Page !l-73
i

* UPDATE routines: these are used by AEXEC to return
information, one field at a time, fran the message returned
by EXEC to the caller's packet.

* The WHICHQ routine: for ?XFSUB and ?XFOTH functions, this
routine finds out what flavor of submit packet has been
requested, according to the queue name string. The function

,code implied by the queue name string is returned.

nle NEXEC routine converts 16-bit format ?EXEC packett; into 32-bit ?EXEC
packets. It is the entry point to which transfer is controlled when a
16-bit process issues the ?EXEC call fran ring 7.

The conversion involves changing 16-bit bytepointers to 32-bit
bytepointers, and relocating the paraneters according to the 32-bit packet
format. Following this conversion, a 32-bit ?EXEC call is made to
construct the EXC message and send it to EXEC. When the 32-b.it ?EXEC
call is completed, strings and paraneters are updated as required by the
function.

NEXEC Logic

The first word of the packet is validated so that the Agent can safely
access the function request code. Using the function code, lookup the
length of the 32-bit packet in the function table, and allocate sane
Agent memory in which to build the 32-bit packet. Finally, dispatch to
a routine to convert the remainder of the packet, make a 32-bit
?EXEC call. and return information as necessary.

If the function code is ?XFSUB or ?XFO'lli, the remainder of the packet
format depends on the qU~,ue type, which is a user specified string. Since
the string contents to queue type' conversion is system generation
dependent, the WHICHQ routine is called to ask EXEC to convert the queue
name string to a queue type number. Then WHICHQ looks up the function code
for this queue type nl.lIlber in the Queue Types Table.

In the case where the ?XFSUB request is made for the batch queue, the
function' code remains ?XFSUB, since there is no specific request
code for the batch queue submit function.

AOS/VS Internals Chapter 4 Page 4-14

lr.e NEXEC Conversion Routines

TI"leseroutines may be shared by fLU'lctions which have identical packet:
fermats. For example, the ?XFHOL, ?XFUNH, and ?XFCAN (queue hold, unhold,!
and cancel) are able to share the same routine.

For submit-style packets (FTA, SNA, HAM, LPT, PTP, PLT, SUB, and o:nn a
cbeck is performed to see if the user-specified fLU'lction code was
?YFOn1, since this function can be dispatched to any of the' submit.
packet handlers. If this is the case, the username and password are also!
converted. 'The CHECK.OnI routine. local' to the module, performs this!
function.

TIie routines which perform packet conversion for the various request'
codes are macro-driven, 50 that the source code for this part. of the'
mcdule is essentially table-driven. Thus, a new function request code can
be added easily by the use of these higher level rracros.

Macros for Packet Conv,ersion .Rm.Jt.~

The R.SETIJP and W.SETIJPmacros contain code which iscOllUOOn to all of the·
packet conversion routines. They perform packet area validation and
set AC' s for use by the other macros.

The macro R.3ETIJP checks for read access and sets up AC's for:
converting the fields of the packet. The macro W. SETIJP is'
identical, except it checks for write access. Use W.SEnJP when will need to'
return info to the' caller. '

TI-.e first argument for the R.SEnJP and W.SE'lUP macros is the'
function code. For example, the EXEC function ?XFQST uses QST as the;
fj rst argument to the W.SE'lUP macro. The second argument for the setup
macros is the label of the error handler routine.

TI"ie other macros are used by NPC to conv~rt each field of the 16-bit
?EXEC packet to a 32-bit ?EXEC packet. These macros assume that the AC's!
heive been set up properly by the x.SETIJP macro: ACO contains zero, AC!
(used as a work accumulator) can have any value, AC2has A(32-bit packet),'
and AC3 contains A(16-bit packet). '

TI",e only argument is the name of the field to be translated. For example"
to translate the singleword at offset ?XFP1 of the 16-bit ?EXEC packet, i
code fiN. K)VE XFP1".

~.K)VE "Narrow K)VE": Move a singleword from the narrow packet to the
wi de packet.

NVv. CONVERT "Narrow to Wide CONVERT": Get a singleword fran the narrow
packet and sign extend it, then store it as a doubleword in the wide
pa(;ket.
Bf'. COWF.RT "Byt.E- Poi YJter CONVERT" ~ Cet a ·;jne:1 pword fran tlie narrow packet.

ACS/VS Internals Chapter 4 Page 4-75

it to 32-bits; otherwise, use 170000
into a 32-bit byte pointer. Store the

If it is zero or -1, sign extend
for the top word to make it
doublE.wordinto the 32-bit packet.

N.ZERO "Narrow ZERO": Store a 16-bit zero into the specified
W. offset

The N. RE1URN ("Narrow REWRN") macro is used to ret.urn information from
the 32-bit packet received from EXEC to the 16-bit caller's packet. It
expects that AC2 has the address of the 32-bit packet, and that AC3 has
the address of the caller's 16-bit packet. It takes a word from the
32-bit packet and returns it to the caller via the caller's 16-bit
packet.

Note that is not necessary to update strings, since they are updated
by AEXEC in the area specified by the bytepointer. '

AEXEC: The 32-bit ?EXEC Packet-Ir9~~J&r

AEXEC is the dispatch point in the Agent for ?EXEC calls from a 32-bit
process (or from inner ring servers, including the Agent, of a 16-bit
process). The highest level part of AEXEC performs· initial
validation and allocates memory for the new packet, then calls' the
validate/move routines to build theEXC format packet from the 32-bit
?EXEC packet. Next, an ?IS.R packet is built; the address of the EXC
message is used for both of the ?IPTR and ?IRPT pointers. When EXEC
answers, information is returned to the user (as required for the
function) via the update routines.

AEXEC Ini tializati.Q!l.Ml.d...i~.ali.d9..t1.Q1l

TIle initialization for the Agent/Exec interface is simply getting the
memory for the big temporary area and saving the pointer on a stack
tl~porary doubleword.

Prevalidation checks for certain brain-damaged situations: making sure
that EXEC is up, ensuring that we have access to the function code of the
?EXEC packet. making sure that the function code is within a legal
range, checking that the specified function code is defined, and bouncing
any internal-only requests issued from a ring other than the Agent ring.
Any of· these problems will save us a lot of work, because we won't
have to borrow memory for the pa'ckets, construct. them, or send the IPC
to Exec.

* Get memory for big temp by calling AGMEM.

* Validate the ?EXEC packet for read access of one word (the
function code) only.

* Issue the ?ILKUP to get EXEC's port. If this fails, return
an error to the user that EXEC isn't available.

.AOS/VS Interrials Chapter 4 Page 4-16

* Check that the function code is within the range of minimum
to maximum defined functions. If not, return ERXUF (EXEC
Unknown Function) to the user.

* Store the function code in the big temp area word FUNCI'ION,
find the address of the function table entry corresponding
to the function, and store that in FT.ENTRY.

* If the "Undefined" (B.BUND) bit of the flags word in the
function table entry is set. return ERXUFto the user.

* If the "Internal-only" (B.BINT) bit of the flags word is
set. check the original caller's ring to make sure that the
call came fran the Agent. Otherwise, return ERXUF to .the
caller.

iAOS/VS Internals Chapter 4 Page 4-77

AEXEC10: S~cial Test JQr_ ?XFQntFw..c.t.i9I1

If the requested function is ?XFOTIi, examine the supe ruse r status via
?~·,USER. ?XF01H is only legal froo superusers; if the process is not a
s\;peruser. return ERPRV ("Caller Not Privileged for This Action) to the
cc,ller.

TI;e ?XFOTH function is intended for use by STACKER and SFTA
(networking file transfer process); these two prograns are normally proc' ed
as superusers.

We have to do this to prevent malicious users froo using the
function to steal passwords for other users. If they have superuser
privilege anyway, there are easier ways to steal passwords.

AOs/VS Internals Chapter 4 Page 4-78

AEXEC20; Get Memory ~ Packets

I Get the word from the function table entry which specifies
the lengths of the user packet (USR), the message packet
which will be sent to Exec (EXC), and the length of the
string area portion of the EXC packet.

I USing masking and shifting instructions, isola te these
values, and store them in the big temp area variables·
USR.LEN and EXC.LEN (note that EXC.LEN includes the length
of the string area).

I Validate the caller's packet for the entire length USR.LEN,
read access. When we validated the packet before, we only
validated the first word so that we could lock at the
function code.

I Add USR.LEN and EXC.LEN to find the total memory needed for
the packets. Call AGMEM to get the memory.

I Store the address. of the borrowed memory (fram AGMEM) as
the beginning ·of the EXC packet, in variable EXC.PKT of the
big temp area.

I Convert the EXC.PKT address to a bytepointer and save it in
EXC.PKTB. This will be used to calculate the byte offset

. from the beginning of EXC to a given string in the EXC
string area.

I Isolate the length of the string area only from the total
length of the EXC packet. Calculate a bytepointer to the
beginning of the EXC string area and save it in EXC.STR.

AOS/VS Internals Chapter 4 Page 4-79

AEXEC30: Get Packet Table ~j&~

* For functions ?XFOlli and ?XFSUB, call WHICHQ to correct the
function code (but do NOT change FUNCTION in the big temp
area) •

* Calculate the address of the function table entry for the
function code (this will have changed if the function code
was corrected as per the above item).

* Using the function table entry detennined above, get the
address of the validation/move packet table entry for this
function and save it in VPT.ENTRY of the big temp area.

* Get the address of the update packet table entry for this
packet. and store it in UPT.ENTRY in the big temp area.

AOS/VS Internals Chapter 4 Page 4-80

Set up a loop which will
v;;Jlidation packet table
counter.

have one iteration for each entry
entry. Use the top of the stack for

F(,r each entr'Y in the validation packet table,

in the
the loop

* Calculate the source address for the parameter to be
validated/n~ved by adding the USR uffset in the VPT entry
to the address of the USR packet.

* Calculate the destination address for the parameter to be
validated/moved by adding the EXC offset in the VPT entry
to the address of the EXC packet.

* Perform thE (lction specified in the VPT entry by dispa tch­
ing to tbl:; appropriate validation/move routine.

* Decrement the loop counter at the top of stack and reiter­
ate if there is more work to be done.

If the function code is ?XFOTH, call the V.MST routine
u~ername and password bytepointers. We do this manually
additional set of batch-type entries for each
in:plied by . ?XFOTH.

once each for the
to avoid havi~g an

possible operation

,AOS/VS Internals Chapter 4
i

AEXEC60: Talk to EXEC yja 7IS.R

Page 4-81

* Build the 7IS.R packet. Use the portion of the big temp
area which is allocated for the 7IS. R packet. The pointer
to the message (7IPfR) will simply have the address of the
EXC packet. which is the message to . Exec. The Exec port
number was established earlier via ?ILKUP in prevalidation.

* Send the message off to EXEC via ?IS.R call.

* If ?IS. R takes the error return, send this error back to
the ?EXEC caller.

* Check for errors returned by Exec in the 7IUFL word of the
?IS. R packet. and return it to the user if nonzero.

The label AEXEC65 t which is the address of the ?1S. R call, is defined
as an external so that it is easy to set a breakpoint for messages to be
sent to EXEC.

AOS/VS Internals Chapter 4 Page 4-82

AEXEC70: Return Info to User's Packet via Update Routines

Validate the caller's ?EXEC packet for write access. Earlier we
validated the packet for read access only.

Note that the info will be returned to the USER'S ?EXEC PACKET, not
the USR packet. The USR packet is just our copy of the user's ?EXEC
packet.

Set up a loop to return in forma tion fran the EXC packe t to the user.
If there is any information to be returned, use the update packet table
entry for the (possibly corrected) function; we calculated the
address for th.is entry earlier. Use the top of stack for the loop counter;
the loop count is taken fran the number of entries in the update packet
table.

For each parameter to be returned to the user,

* Calculate the source address for the parameter
updated by adding the EXC offset in the UPT entry
address of the EXC packet. .

* Calculate the destination address for the parameter
updated by adding the USR offse·t in the UPT entry
address of the USR packet.

to be
to the

to be
to the

* Perform the action specified in the UPT entry by dispatch-
ing to the appropriate update routine. .

* Decranent the loop counter at the top of stack and rei ter­
ate if there is more work to be done.

We're done ncw. Branch to the normal return point.

A03/V3 Internals Chapter 4 Page 4-83

AEXEc90; Normal and Error Return Pgints

AEXEcgO is an error return point which will return ERXUF ("EXEC
UnknOiln Function") to the caller.

AEXEC91 returns ERXNA ("EXEC Not Available ll) when the ?ILKUP fails.

AEXEC98 is the comroon error return handler. It assunes that the error
code is· in ACO. Memory which was borrowed for the packets and for the big
temp area is returned before taking the caller's exception return.

AEXEC99 is the normal return handler. It also returns memory which was
borrowed for the packets and big temp area. and ,then takes the caller's
normal return.

If the free memory routine (AFMEM) failS, the process
t8nninated with "3Y3T6-1 RING TRAP, EXECUTE PROTECTION", . which
the Agent "panics".

will be
is the way

AOS/VS Internals Chapter 4 Page 4-84

The Valida te/M~_.Routines

The Validate/Move routines have essentially the same input
parameters, and depend heavily on the "big tanporary area".

For the routines which access strings, the byte pointer to the string
is validated; then the string is move into the string area. startin~ with
the next available byte.

The Validate/Move routines always move information from
(the Agent copy of the 32-bit caller's ?EXEC packet) to
(the message to be sent to Exec).

V.NUM Move a singleword. No validation is performed.

the USR packet
the EXC packet

V.STR Validate an optional string' (pointer can be zero, the
default value) and check for illegal characters.

V.MST (Must be a STring). Validate a required string (the pointer
must not be zero) and check for illegal characters.

V.VLS Validate a Volume ID list. Pointer must be nonzero.

V.SPC Special Case Valida,tion

V.IRS Indicate Return String

TIle V. NUM Routi~

This routine moves a singleword value (numeric or flags) from the USR
packet to the EXC packet. No range validation is performed by the Agent.

U)e V. STR Routi ne

This routine moves an optional string from the user's space into the EXC
string area, and places a byte offset to the EXC string into the EXC
parameter area.

The string is optional for this routine: if the bytepointer to the string
is zero, no string will be moved, and the parameter for this string will be
zero instead of a byte offset into the string area.

This routine checks for a nonzero pointer. in which case it calls the
V.MST string to do the real work of string moving.

AOS/VS Internals Chapter 4 Page 4-85

The V. tAST Routine

niis i'outine validates and moves a required string.

V cd ida te the bytepoin ter to the string (no defaul t is allowed) • Check
fer illegal characters for this entry type. Check that the string length
does not exceed the maximum for that entry type.

If the string is valid, get the byte offset of. the next available byte of
U;e string area and store it into the string paraneter. Move the string
ir; to the. string pa rti tion of the EXC message, starting wi th the next
available byte. Update the offset to the next available byte for the
nExt use of the string area.

The V.VLS Routine

This routine validates and moves a Volume ID list.

Validate the pointer to the string, using ARVBPO (Read Validate
Bytepointer for string with Double delimiter). Check the length of each
Volume ID in the list to ensure that they are all six or less chFlracters
long (seven, including the delimiter). F.nsure that the entire string does
not exceed the maximum num~er of characters allowed for a Volume· ID
List. .

n;e V. SPC RoutiM

n!is routine handles a "special case" for Exec requests ?XFHOL (hold a
queue entry), ?X~NH (unhold), and ?XFCAN (cancel).

n!e doubleword paraneter at offset ?XFP2 of the packet is to be
interpreted as a bytepointer only if the singleword parameter at ?XFP1
haS the value (-1). In that case, the V.MST routine is called to move a
jobname into the string area.

Otherwise. the FIRST WORD at offset· ?XFP2 is interpretted as a job
sequence number. and the word at ?XFP2+1 is ignored.

Tbe V. IRS Routine

This routine is used when a user has specified an area to be used to
return a string from the ?EXEC call.· It validates the bytepointer for
write access before a call to Exec is made, and indicates to Exec that a
string is to be returned for this parameter.

nle reason for validation before calling Exec is to avoid an IPC in
the case where the pointer is invalid, or points to an area to
which we do not have write access.

By convention with Exec, if the parameter is zero, no
returned. Any nonzero value will cause Exec to move

string will be
a string into the

AOS/VS Internals Chapter 4 Page 4-86

string portion of the EXC packet' and save the byte offset to that string
in the parc:meter. The nonzero value used to signal Exec to return the
string is (-1).

TIle Update routines are very similar to the Validate/Move routines, except
tr:at they are used to move information frem the EXC packet (which was
rt~turned by Exec) back to the user's packet or string buffers. .

For the routines which access strings, the byte pointer to the string ~
buffer is validata:.i for write access. If valid, the string is moved from,
the EXC string area to the user's string buffer.

nie Update routines always move information frem the EXC packet (the
message received from Exec) to the user's 32-bit packet or the
user-specified string buffer.

U.NUM Return a singleword.

1I.MST Return a string.

TI-'e U.NUM Routine

TI-lis routine returns a singleword value (humeric or flags) frem the EXC
packet to the USR packet.

'fr:e U,MST Routine

T1"is routine returns a string frem the EXC string area into the
user-specified string area.

-
Validate the user's bytepointer to the string buffer for write
access. If the pointer is valid, move it into the user's buffer and
terminate the string with a NULL character.

WHICHQ: Roytine to Determine Implied Function Codes

'frle WHICHQ routine is used to determine the request function codes which
applies to ?XFSUB and ?XFOTH packets frem the queue type specified by
the caller. This implied function code is important because it specifies
the format of the extender words of the submit-style packets
(parameters ?XXWO thru ?XX(3).

The WHICHQ routine is called by both the 16-bit and 32-bit ?EXEC
handlers (NEXEC and AEXEC).

Tbe WHICHQ routine follows these steps:

* Valldate the bytepointer to the queue type name string,
using the Agent routine ARVBPX. If invalid, return the
error code to the caller.

AOS/VS Internals Chapter 4 Page 4-87

* Create a 32-bit ?EXEC packet for a ?XFQST request. The
bytepointer to the queue name string, as specified in the
submit packet. is passed in ?XFP2.

, ,

* Issue a 32-bit ?EXEC call for queue status.

* Determine the implied function code, using queue type
number which is returned by Exec to index into the queue
types table.

* Return the implied function code to the caller.

Compa rison ,.tJLtbjL'p.J..d..J\~ntlE~_ Interfag~

The Old Agent/Exec Interface (AOSIVS Revision 1.40 and earlier) is
different from the current interface in that it merely validated the
pointers in the packets, and sent the (32-bit) packet to Exec. It did not
send the strings to Exec. This approach required Exec to issue the ?MBFU
(Hove Bytes From User) once for each string to be fetched from the user
space, and the ?MBTU (Move Bytes To User) once for each' string to be
returned to the user.

The calls to transfer bytes between processes are expensive;
further. they required the ability to transfer bytes between a ring 7
caller (EXEC) and a potentially inner ring of the user. Starting 'with
AOS/VS Revision 1.50, the byte transfer calls were restricted by the rules
of ring maximization, so that such transfers became illegal.

The old interface did all packet translation by specialized code in the
Agent. The addition of a new function request type required the addition of
new code in the Agent specific to the packet. In the new interface, the
packet format is controlled by the tables in the global module XTABLES.SR
(shared by EXEC, the Agent, and the Ghost), so that new functions
could be implemented by only adding new entries to the table.
Therefore. the main advantages to the new interface are:

* Better performance for Exec, which no longer has to issue
as many expensi ve IPC-type ca,lls

* Reduced IPC traftic on the system, resulting in improved
system-wide performance

* Flexibility of new functions, and the ability to add new
functions to both ADS and AOS/VS by changing one module

Another difference was the addition of the ?XFQST function so that the
Agent could determine the packet format for SUBMIT type requests.
Formerly. the parameters ?XXWO thru ?XXW3 were treated identically
between packet types, so that (for example) the page nunber was treated
as a bytepointer. This worked in most but not all cases; the limitations
could not be resolved. With the new function, the Agent is able to
translate packets properly.

ACS/VS Internals Chapter 4 Page 4-88

Resource Management Agent

As of revision 2.00 of AOS/VS there has been available a new piece of
the Xodiac'Msystem called RMA.The Agent performs the deflection of the RMA
calls from the user to the remote system. The addition of this function
added another layer of complexitiy to the Agent.

RMA Databses Used !n the AGENT

As a result of the inclusion of the RMA interface in the AGENT several
new databases were added to the AGENT. They are:

• IRMA databse - pointers to all other RMA databases

• CSB database - connection state block

• TIB database .. task informa tion block

• HRB database - host record block

;p.OS/VS Internals Chapter 4 Page 4-89

All of the above da tabases are used by the Agent in illl>lementing the
R~lA interface to Xodiac. Each database has a link in the IRMA datbase.
These pointers are to the head and tail of each database. A lock word is
also kept for each database. The GSB and HRB dabase also have a list of
free elements which can be used by RMA.

The format of the IRMA database is as follows:

--
I_GSHEAD o· I GSB Database Head I

+------------------------+
I_GSTAIL 2 I GSB Database Tail I

+------------------------+ I_CSFREE 4 : GSB Free List :
+------------------------+ I __ CSDB 10 I GSB Database Lock :
+----------------.--------+

I_TIHEAD 12 I TIB Database Head :
+------------------------+

I_TITAIL 14 I TIB Database Tail I
+------------------------+

I_TIDB 16 I TIB Database Lock I
+------------------------+

I_HRHEAD 20 I HRB Database Head I
+------------------------+

I_HRTAIL 22 I HRB Database Tail I
+------------------------+

I_HRFREE 24 I HRB Free list I
+------------------------+

I_HRDB 30 I HRB Databse Lock I
+-~----------------------+

I_HID 32 I IRMA Host ID I
+------------------------+

I_PID 33 IRMA Process ID
--

IRMA Database

The IRMA data structure is allocated and initialized at "AINIT" time
by the IRMA (AGENT) initialization code. Free lists exist because more than
one element is allcea ted at a tirre to reduce the fragmentation of AGENT
unshared memory.

AOS/VS Internals Chapter 4 Page 4-90

Connection State B.l9.c.k

The Connection State BLock is associated with a connection to the URMA
pr{~ess. It is built when a deflection to RMA occurs. This is the
connection made when there is a s¥sten call to pocessed accrosf, the
network.

The format of the CSB database is as follows:

--
CS_SUCC 0 Successor GSa

-+---... _---_._--------_ _------+
CS_PRED ';'

'- Predecessor CSB
+--------_ .. ----------------+

CS_COUNT 4 Reference count
-fo-.-........ ---------------------t

CS_PORT 5 IRMA's IPC port number
+----•. ----,-----------~---...

CS_USFID 1 I Shared file unique id
+--~--------------------+ CS_SCHAN 11 I Shared file channel H
--

CSB Database

iAOS/VS Internals Chapter 4
!

IRMA Task Information Block

Page 4-91

The Task Information Block is the basic operating structure for tasks
ill IRMA. The TIB locates information about the Global RMA server. If TI_CSB
i::; zero, there is no RMA process knGln to this TIB. If TI_CSB is non-zero
th~n the CSB contains important information abput the RMA server, including
shared file information obtained by the first task that "accessed" the RMA
process. This information is then shared with other tasks.

The format of the TIB database is as follows:

TI_SUCC 0

TI_PRED 2

TI_CSB 4

TI_PORT 6

TI_SFB 10

TI_SMEM 11

TI_CTAB 13

TI_CL'TII 15

TI_CFLG 16

TI_ISY 11

TI_HRB 21

TI_HID 23

TI_TIPE 24

TI_PAGES 25

--Successor TIB
+------------------------+

Predecessor TIB
+------------------------+ I TIB's CSB I
+------------------------+
I RMA port nunber
+------------------------+
I Shared file buffer ID
+------------------------+
I Shared memory address
+------------------------+ I Conversion table addr. I
+------------------------+
I Conversion flags,
+--------~--------------~+
I Conversion flags
+------------------------+

ISYWKP procedure
+------------------------+
I Current HRB address
+------------------------+
I Current HID
+------------------------+

Host type
+------------------------+
i Request buffer pages
--

TIB Database

AOs/VB Internals Chapter 4 Page 4 ... 92

The Host: Record Block contains the; Host lO, a· flag w,ord, and the
string containing the Host pre[ix name. The Host prf:ix; name is in the·
fe·rmat of ": net: <hostname><O)II. The string can be used. to pref.ix pa tbnames, ,
PJ'ocess names., or qt;euenames when returning results' to. the user.

The format of the HRB database is a.s fbllows:

-----------------------------.----.- --- - -' ----. --.--- --- -.
HICSUCC 0 HRB successor

-+--_ ... -------_._------,_._-.. -----+
IlR_PRED 2 HRB. predecessor

+-.. _--_ ... ----"--_ •. _--.,........;.-... --+
HR_HID 4 HRB Host ID

+-------.-,---... .. ~ ... ----,----... --+
HR __ FLAG 6 HRR Flag word

-t----------~--------.-----...
HE - PLEN 7 HRB prefix length

+--------------r.--.... --~------..,.. ...
HF: _PRI-X 10 HBB pref ix buffer

--
HRB Database

Tbe follOWing are the Host Record Block flag word. definitions. The most
irr;portant bit in the flag is the ranote systan type flag,. It 5e611S that if
there are incompatibilities withtin systEm. calls betwe-ell AOS and AOS/VS
then IRMA must reconcile these differences bofore sending the pocket
aceross the network.

The bits are:

bit 0 - ranote systan type flag
o = ADS
1 = AOS/VS

bit 1 - => "incomplete HRB"

bit 15 - intialization flag

AOS/VS Internals Chapter 4 Page 4-93

Access to URMA

Access to URMA is through the use of either an AU. REQUEST or AU. REPLY
IPC message. These messages are of zero length as all the infOOlation needed
h; contained in the IPC header. The request may send a HID in the header.
TIle reply may include a shared file buffer identifier.

To access ranote resources there are both an ARR. REQUEST and
AHR. REPLY. These are both zero length IPC messages. IRMA sends the shared
file buffer identifier. maxinun pages needed, and host identifier. The
reply will contain an error code if some interface or other error occurred
(~uch as a "host type mismatch). URMA reports normal systan errors through
the ASAP messages (discussed later) in the shar€d file buffer. and not
throLOgh the IRMA/UHMA interface. IRMA must set the host type bit in the
ARR. REQUEST IPC header indicating what it thinks the r'anote host type is.

There are two types of messages that can be flagged in the IPC message
headers. They are: access UHMA or access ranote resource. These are
contained in the IPC header flag as well as the host type bit. IRMA sends
the SFB(shared file buffer) identifier. maxinun pages needed and HOST ID.
The field definitions for the IRMA - UHMA IPC message headers are as
follows: .

Bit o

1
2
3
4
5
6

o = AOS
1 = AOS/VS
access URMA
access ranote resource
assign SFB
return HOST type
return file capability
some error accurred error code in ?IPTR/?IPTL

The following are the. ASAP (RMA) protocol message op-codes: (they must
be the same as AOS)

AOP_IDENT
AOP_SYS
AOP_TERM

. AOP_CHAIN

1
2
3
4

IDENTIFICATION
SYSTEM CALL
TERMINATE
CHAIN

As sytan calls are executed through the RMA server they may have to be
converted from/to 16 bit packet format. This conversion is done for input
in the module IABAQ, and for output int the module ISYWKP. The conversion
is accomplished by usingth systan call number and accessing a 16 word
segment in a table contained in module VSCDB.

.,

MJS/VS Internals Chapter 4 Page 4-94

'The IRMA interface consists of six modules. They are:

IABAQ - builds a system call request message

IRESO - obtain necessary resources to process a systan call
request resoW"ces are data structures, sharei file
resources, and URMA server.

IRMA - initialize RMA inter'face, IRMA patch space, ?IRMA call
entry to obatain resources, INULTAB null delimiter
table

IUSEND - IPC communication with URMA

ISYWKP - process systan call reply messages

VSCDB '- IRMA system call conversion table.

AOS/VS Internals Chapter 5

CHAPTER 5 -- THE USER PROGRAM
(AOS/VS revision 5.00)

Page 5-1

The purpose of this chapter is to describe the user context and its
relation to ADS/VS. It will describe virtual nemory, ring structure.
Inner-ring management terms, and system calls. It will discuss memory,
processes, tasks and user devices.

Introduction

AOS/VSis a 32 bit, demand-paged, virtual-memory operating system that
runs on MVclass machines.

ADS/VS combines the flexibility and convenience of minicomputer
architecture with the processing power of a large mainframe computer.
AOS/VS is uniquely suited to both commercial and scientific applications.
Specifically. ADS/VS provides the following:

o A logical address space of up to 2048 megabytes per process

o Virtual memory rr~nagement

o Sophisticated process-protection scheme

o Support for concurrent 16 and 32 bit programs

o Compatibility with ADS

o A wide range of system and applications utilities

o High-level language suppoert

o Full functional support for inne,r rings

Full functional support for inner rings allows you to write
multi tasked prograns that will execute in more than one user ring (user
rings are Rings 4 through, 7). specifically. full functional support for the
inner rings provides the user with the following advantages:

o Improved software performance

By creating local servers in the inner rings better use of the
large logical address space can be made. INFOS_LS.PR is a
good example of a local server as it is used to make all the
INFOS calls and is loaded into Ring 4 of the user when an
open of an INFOS file is needed.

o Larger logical address space

By using inner rings, the logical address space can be expanded
from 512 megabytes (the capacity of one user ring) to 2048
megabytes (the capacity of four user rings).

AQS/VS Internals Chapter 5 Page 5-2

Virtual Mems>ry

Virtual memory allows the user to run pragrans that are larger than
the ~ysieal memory of the configuration. With virtual IJlE!IJl.()ry, ADSiVS can
move active portions of a progran· from' disk to memQry while the progran is
executing. When the system needs more memory t AOS/VS returns the inactive
portions of the progran to disk. This process of IOOving portions of the
program in and out Qf memory is called demand Qggini.

The portion of an executing progran (called a process) that is in
physical memory at any giv'en time is its wQrking ___ ~. The size of each
pl'ocess's working set ('hanges as demands Qf the process change. AOSIVS
determines the working set size by examining the number of p:lges the
process currently needs as well as its history of page faults.

Page _faults are references to memory locations that are nat currently
in physical memory. When a page fault occurs, the AOS/VS demand paging
mechanism moves the page that is need'ed fran disk into phy sical memory.

AOS/VS allocates a large working set to a process that has a history
of many page faults. Therefore. to run a ~iystaTi as efficiently as possible,
the mllnber' of pap;;c' fault.s must be reduced. To do aLis, tht: code of a
program should be in modules that cluster' the instructions and da ta
together as closely as possible. The fewer page faults that processes cause
the smaller and more stable is its working set. However. some page faults
are unavoidable.

The enti re range o.f memo.ry loca lions that a process can address is
called its logical adJir~ spac~. The logical address space .is divided into
eight 512 megabyte units called segments. Although these segments are
connected . by strict pro.tocols, they .are independent of one another.
Therefore AOS/VS can use each segment for a different function. This makes
virtual memory systans very efficient and reliable.

Each segment is protected by a .r:.l.ng. that is pennanently bound to that
segment. Thus, RingO (the innermost ring) protects Segment 0, ring 1
protects Segment 1, and so forth through Ring 7 (the outermost ring) and
Segment 7. These rings prevent segments fram interfering with one another.
even though each segment may be performing a different function. If d

program that is in one segment needs to. change 'or access the contents of
another segment. it must follow strict protocols established by the rings.
(The systan follows these protocols without your knONledge.)

The eight segments (and their rings) are arranged hierarchically.
Segment 0 has the greatest ability to. change or access the contents of
other segments, and Segment 7 has the least. Similarly t Ring 0 gives
segment 0 the greatest protection from interference by other segments, and
Ring 7 gives Segment 7 the least protection.

Segments 0 through 3 contain the AOS/VS operating system. Segments 4
through 7 contain user programs. Because the user pro.grams and the AOS/VS
operating system share the single large logical address space, context
swi tching is unnecessary. In fact, system caJls and calls to. routines that
are in another segment become subroutine calls. 111i::; means that when users
issue a system call, Ull~t>e is no need for ACJ!;/VS to ch;.:mge contexts. AOS/VS
do~~s take part. however. in th~ ex€<;ution of rlo8t . .2y~)t fIr: calls.

:AOS/VS Internals Chapter 5 Page 5-3

Ordinarily. a segment can only change or access contents of segments
whose segment and ring nLIDbers are higher than or equal to its own segment
and ring number. For example, the rings will not allow a program that is
exect~ing in Segment 4 to access the contents of Segments 0 through 3, but
they would allow that same process to access Segments 4 through 7. With a
subroutine call, however. a segment number is higher than or equal to the
target segment can access the segment in which the subroutine actually
resides. In this case, the ring that protects the target segment allows the
subroutine call to pass through a gate. This gate points to the starting
location of the subroutine. Although the user cannot make a cr'oss-ring
subroutine call directly to the starting location of the subroutine, the
user can return directly from the subroutine. Subroutine returns do not
have to pass through gates. The only restriction ,on subroutine returns is
that they must originate fran a segment whose nllIlber is lower than or equal
to the target segment.

Inner-ring Management Terms

o Segment image
A .PH file that AOS/VS has made part of a process's logical
address space.

o Process image
A union of user segment images and of system segment images.

o Program file
A segment image linked for anyone ring

o Process

o Task

An executing set of segment images, plus all of the system
resources that the process image needs to execute.

A~ asynchronous ,flow of control wi thin a process.

o Global server
A separate process that performs functions on behalf of a
customer process.

o Local server
A server that shares the same logical address space as its
customer.

AOS/VS Internals Chapter 5 Page 5-4

Systan CSllls

AOS/VS support~-; a wide varlety of systan calls. Systan calls are
command nlal!f'OS that call predefined systan routines. There are various
categories of system calls. wtlich allow the user to do the following:

o Create and manage proc~sSt:s

o Establish interprocess communicatlons

o Create and maintain disk files and d~rectories

o Perform fUe input ana output

o Creat.e and mai,ntain a multitasking environment

c Defir:e an.' acC'es:'l user C1evicf.'~

o Establish binar)! synchronous communica tions

o Establish custaner/server connections between processes

o Perform input and output in blocks, 'ratller than records or lines

AOS/VS Internals Chapter 5 Page 5-5

Ring Structure

The logical address space of the system is divided into eight
512-megabyte units called segments. Although strict protocols connect
these segments, they are independent of one another. As a result, AOS/VS
can use each segment for a different function.

Each segment is protected by a hardware ring which is permanently bound
to. the segment. Ring 0 (the innermost ring) protects Segment 0, Ring 1
protects Segment 1, and so forth through Ring 7 (the outermost ring) and
Segment 7.. See Figure 5-1 •

IlllllllllllllllSegment 31111111111111111
II 1==============Ring 2=============1 II
II I IllllllllllSegment 211111111111 I Ii
II I II -========Ring 1======== II I II
II I II IlllllSegment 11111111 II I II
II I II II 1====Ring 0===1 III II I II
II II II I I1I11IIIII1I1 I III II I II
II II II IllSegment 0111 III II I II
I I I I I I III I I I II I I I I I II I I I I I I I I
II II II 1=============1 III II I II

etc. II IIIIIIIIIIIIIIIIIIIIIII III I etc
II ======================= III I

Figure·5-1. Segments and Their Protection Rings

These rings prevent segments from interfering with one another, even
though each segment may be performing a different function. If a program
which is executing in one segment needs to change or access the contents of
another segment. the pr.ogram must follow strict protocols established by
the rings.

(The system follows these protocols without your knowledge.)

The eight segments (and their rings) are arranged hierarchically.
Segment 0 has the greatest ability to change or access the contents of
other segments, . and Segment 7 has the least. Similarly, Ring 0 gives
Segment. 0 the greatest protection from interference by other segments, and
Ring 7 gives Segment 7 the least protection.

Segments 0 through 3 contain the AOS/VS operating system, with the
kernel residing in Segment o. Segments 4 through 7 are for user programs.
(In the future. however. rings 4 and 5 may contain software supplied by
Data General.)

AOS/VS Internals Chapter 5 Page 5-6

Subroutine Calls

Because the user prograns and the .AOS/VS operating systEm share a'
single logical address space, context switching is unnecessary. In fact,:
systEm calls' arid. calls to routines which are in another segment becOOle:
subroutine calls. This means that when you issue a systEm call. AOs/VS:
does not need to change contexts. AOS/VS does take part., however. in the
execution of most systan calls.

Ordinarily. a segment can only change or access the contents of
segments whose segment and ring mUllbers are highet' than or equal to .
its own sp.gment :Jiid rillS numbel'. For excunple) ttl!:: rwg.::l wlll not
allow a progran which is executing in Segment 4 to access the
contents of Segments 0 through 3, but they would allow that same
process to access the contents of Segments 4 through 7 •

With a suhroutine call. however. a segment whose segment number is
higher than or equal to the target segment (;<:Jii access tht: Segmerlt in
whj ch the subroutine actually resides. In this cdse, the ring which
protects the targ.et. regment allows the sLlbrouLi.lIf:: eall to f)O;;::;

through a gate. This gate points to the starting looation of the
subroutine. .

Although you cannot make a cross-ring subroutine call directly to
the starting location of the subroutine, you ean return directly
from the subroutine. Sl.lb,'Oll1me cetuf't1.::; do Ill)t llave to pdss through
gates. In fact, the only restrietlurl on subroutine returns is that
they must originate frem a segment whose nLrnber is. lower than or
equal to the target segment.

AOS/VS Internals Chapter 5 Page 5-7

User Rings

As you may recall, the user rings are rings 4 through 7, with rir,g 7
being the default user ring. You may, however. load a progran file
into one of the other user rings (4 through 6) by issuing the
?RINGLD system call. Also. AOS/VS allows you to write prograns
which execute in more than one user ring.

This functional support for the inner user rings results in:

o Improved software performance

You can take better advantage of the large logical address space
of the MV-series hardware by using the inner user rings to
create local servers. (These are servers which share the same
logical address space as their customers and which can be loaded
into the inner rings of a process.)

Local servers are faster than global servers because they do not
need to use the interprocess communications (IPC) facility
system calls or the ?MBFC and ?MBTC system calls to move da.ta
between customer and server. (See Chapters 7 and 8 for
details.) Instead, because a local server resides in the same
logical address space as its customer. local servers can use
MV-series hardware instructions to perform identical
synchronization and data movement.

o Improved accounting

When you use the inner user rings to implement local servers, the
server becomes part of the logical address space of the process
which uses it. As a result, the server is no longer a separate
process. A local server's use of resources is accounted for by
AOS/VS as part of the resources used by the customer's process.

o Larger logical address space

By using the inner user rings, you can expand your logical address
space from 512 megabytes (the capacity of one user ring) to 2048
megabytes (the capacity of the four user rings).

AOSiVS Internals Chapter 5 Page 5-8

Demand Paging

ADS/V'S is a demand-paged, vi rtual-memory operating system. Virtual
memory means that memory is a composite of main memory and disk memory.
Demand paging is the AOS/VS method of adding logical pages to the
working set of a process as the process "aemands" (refers to) those
pages. The working set is that subset of a process's logical address
space which .is currently in memory. The workine set, changes ill size
and content as the process refererlCe[, pages. .

The pages outside the working set make up the process' virtual address
space.

Pre-Paging at Fault Time Option

By default, when a page fault occur~ (that is, a process demands a
page), the system adds one page to the working set. You have .the
option I however •. of reqllesting that t.he systan add the faulting page,
plus a cluster of logically contiguous virtual pages, to the working
set at fault time. This option is knCloln as IIpre-~'aging at faull time".
Pre-pagi.ng is the process of adding unreferenced virtual pages to a
working set. .

The pre-paging option is useful when .

o a program includes large array-like structures (large meaning
that the virtual addresses of the structure exceed the main
memory available)

o the algorithm which processes the structures tends to reference
. the entire structure or part~ of it sequentially

o the area in which you want pre-paging to occur is in unsharoo
or unused memory

If your program has such characteristics and you understand its page
referencing patterns, pre-paging can speed up execution considerably.
The system is far more efficient when it moves a cluster of contiguous
pages into main memory than when it moves them in one by one.

Before you can use the pre-paging option, your system manager must set
the pre-paging parameter during the VSGEN dialogue (if the pre-paging
parameter is either 0 or 1, pre-paging is off system-wide; otherwise,
this parameter indicates the maxilTUD mJDber of pages you can add to the
working set during one fault).

AssllJling pre-paging is enabled, you must then use the SPRED utility to
edit the preanble of your program file. When you do so, you indicate:

o the starting and ending addresses for the cluster area
(remember this must be an unshared or unused portion of memory)

o the cluster size in pages

AOS/VS Internals Chapter 5 Page 5-9

Program Load Option

Every process starts with a working set large enough to accomroodate
Page 0 (the first 2K bytes of the logical address space) and the
program counter (PC) page. The PC points to the instruction which is
currently executing in a progran.

You have the option, however. of loading part or all of the unshared
address space in your initial program file into physical memory. This
program load option is useful when the program which you're executing

o is short

o runs briefly

o frequently references a large unshared area.

By loading in pages initially, you save the time incurred by multiple,
sequential page faults.

Before you can use the program load option, your system manager must
enable the initial program load option during theVSGEN dialogue by
indicating the number of pages 3 process can have at initial load tin~.
You must then use the SPRED utility to edit the preamble of your program
file to indicate the address range of the area you want loaded. For
details, refer to "How to Generate and Run AOS/VS" (093-000243).

Variable Swapfiles

Memory contention occurs on a system when currently active processes
all desire total working sets larger than the memory available. When
contention is light, AOS/VS removes inactive pages fram processes and
keeps them in a "page file" dedicated to that process. If the process
later demands the page(s), the system restores them to the working set.

When heavy memory contention occurs, the system picks a process to swap
out to disk via a "swap file". Each process has its own swap file in
the SWAP directory. By default, these files have a fixed size.

The fixed size, however, can be a disadvantage for certain processes.
For example; if the swapfile is 124 pages and the system decides to
swap out a process whose working set size is 250 pages, the system has
to break up the working set to fit it in the swapfile. When this same
process is later swapped back into memory, the process must incur a
series of page faults to restore its working set back to 250. For
processes with large ~orking sets, this paging can be costly.

To incur less cost. you can set up a system to allow swapfiles which
vary in size fram process to process •.

To allow the use of variable swapfiles,

AOS/VS Internals Chapter 5 Page 5-10

o During the VSGEN dialogue, the system manager indicates that he
wants variable swapfiles and specifies a default and a maximum
swapfile size.

o The system manager gives certain users (those who run programs
with large working sets) the privilege of ohanging their
,working set size.

o The privileged users edit the preanble of their progran ~iles
with the SPRID utility. In doing 50, they specify a size for
the swapfUe equal to the typioal size of the working se't of
the program.

Shared ,and Unshar~ Memory Pages

Memory pages can be either unshared or mared.

Unshared Pages

Unshared pages are pages in your logical address space which only one
process can access. You cannot write-protect unsliared pages.

Shared pages

Shared pages are pages of· physical memory which may be shared among
,multiple users. Unlike shared pages, where each user of a page has his
own private copy, several users can access (and po~sibly n~difY) one
physical shared page. AOS/VS keeps track of Ule use of a shared page.
When this use count is 0 t the page may stay in memory if the demand for
memory is low; if the demand for memory exceeds what is available, the
page is released~

If a shared page is not currently in use, AOS/VS plaoes it on an LRU
chain. An LRU chain is a list of released shared pages, which is
arranged in least recently used (LBU) order. The shared pages on the
LBU chain are candidates for re-use by any process.
When you issue the ?RPAGE system call. AOSiVS does not immediately
release the shared page fran memory. If you modified the page and,
therefore. want to release and update it, inmediateJ.y. you must issue
either a ?FLUSH system call, a modified version of the ?RPAGE system
call, or the ?ESFF system call. All three provide ways of writing the
contents of a shared page to disk.
Before you can use the ?SPAGE, ?BPAGE, or ?FLUSHsystem calls, you
must use the?SOPEN system call to open the target file for shared
access. A file opened this way is called a shared file. The ?SOPEN
system call gives you the option of opening your shared file for
Read-only access. To close a shared file, you must issue the ?SCLOSE
sy,stemcal!.

There are three ways to use shared memory pages:

o ExpliCitly, by using the shared-page system calls, such as
?SSHPT, ?SOPEN. ?SPAGE, and so forth

;ADS/VS Internals Chapter 5 Page 5-11

o Implicitly, by defining a shared area with assembly language
pseudo-ops

o By opening a file for shared access with a special form of the
?OPEN system call

The .NREL and .PART pseudo-ops allow you to define shared areas in an
assembly language progran. The .NREL pseudo-op directs the
macroassembler (MASM) to place the code or,data that comes after it
into one of the predefined NREL (normal relocatable) memory
partit~ons. To specifY which partition you want, use the appropriate
nonzero argument with the pseudO-OPe

For example, the statement .NREL 5 tells MASM to place all subsequent
source statements in the predefined shared-data partition. The
statElllent .NREL 1 and .NREL 7 tell MASM to place all subsequent
source statements in the predefined shared-code partition.

To define your own partitions in NREL memory, use .PART
pseudo-ops. This pseudo-op allows you to define a variety of
attributes (characteristics) for the partition, including whether it
is part of the shared or unshared memory.

When you link your source code, the Link utility uses your .NREL and
.PART specifications to create shared (and unshara1) partitions in
the final progran file. The shared areas beccxne part of the logical
address space of any proces that uses the progran file.

AOS/VS Internals Chapter 5 Page 5-12

Protected Shared Files

A set of comnDn logical servers can use shared memory files to coordinate.
access to a cOOlIOOn "resource. Each local server tbat wants to share the
memory must first open and then read from or write to tbe. same shared
file.

Inner-ring servers may need to limit access to their shared files.
They may not want any segments otber than themsel ves to have access
to their shared memory. However. tbe access control list (ACL)
protection mechanism cannot protect a local server. because all
segments within a process share the same username. The ?SOPFf' and
the ?PMTPF system calls permit a more private form or protecting
shared files.

You can use the ?SOPPF system call to open a shared file in a
protected manner. Once a shared file has been opened in a protected
manner. tbe opener can iSSLE the uswl shared-page system calls, just
as if the channel w~re opened by a ?SOPEN system call. To close a
shared file, whetber or not it was opened in a protected manner, you
can use the ?SCLOSE system call.

The first ?SOPPF system call behaves differently than subsequent
?SOPPF system call opens of the same shared file that you want to
open in a shared manner.

After a segment image uses the ?SOPPF system call to open a protected
shared file for tbefirst time, that segment image is called the
"first opener" of tbe file. The first opener of a protected shared
file can use tbe ?PMTPF system call to permit other "segment images to
access the file. The ?PMTPF caller also informs AOS/VS of the type
of file ac"ce~s privileges that tbe caller wants to pass to anotber
segment image. .

Only the first opener of a protected shared file can iSSLE a '?PMTPF
system call against that file. Also. there must be a valid
connection between PID/ring tandem from which the ?PMTPF system
call is iSSLEd (the server) and the PID/ring tandem of the target
(the customer).

A first opener that iSSLES the ?PMTPF system call cannot pass access
privileges it does not have itself. In addition, access privileges
are not cumulative.

An access grant remains active until one of the following events
occurs:

o The connection between the first opener of the protected
shared file and the target segment image is broken,

o The first opener closes the fHe.

o The first opener revokes the access gr;:Jnt by is~;uing anther ?PMTPF
\-Ji th fewer or no access privi.l eges.

~S/VS Internals Chapter 5 Page 5-13

This means that a segment image possesses only access privileges
specified by the most recent ?PMfPF systEm call that addressed that
segment image. Thus, a ?PMfPF systan call that specifies no
privileges can revoke a segment image's access privileges.

Dedicated and Undedicated Memory Pages

Just as AOS/VS distinguishes between sha-red and unshared pages, it
also distinguishes between dedicated and undedicated memory pages.

o Dedicated pages are memory pages that AOS/VS reserves for
specific purposes. They include physical pages occupied by the
resident portion of AOS/VS and pages wired to a resident process
by the ?WIRE systan call.

o Undedicated pages are pages that AOS/VS can assign to any process
as the process needs them. Undedicated pages are not necessarily
"unused" pages; they are si""lyavailable for reassignment. The
?GMEM systEm call returns the current nl.lllber of undedica ted pages
available to the calling process.

User Context

The user's unshared area starts at the first word of the logical
address space in the current ring, and extends to.,.zard nl.l1lerically
higher addresses. The shared page area occupies the numerically
highest portion of the address space and expands upward and downward.

Between the shared and unshared portions of the logical context,
there c~n be cin "unused" area~ You can allocate this area with the
systEm calls ?MEMI and ?SSHPT. The ?MEMI systEm call modifies the
unshared area's upper boundary, while the ?SSHPT systEm call modifies
the number of shared pages in the logical address space and the
position of the shared area in your user address space.

Figure 5-2 shows the relationship . among the unshared, unused, and
shared areas in a typical user context.

o ----------.. -----------
I
1
I

Unshared
1 1
1\\\\\\\\\\\\\\\\\\\\1
1\\\\\\\\\\\\\\\\\\\\1
1\\\\\\\\\\\\\\\\\\\\1
1\\\\\\\\\\\\\\\\\\\\1
I , 1--------------------1 I ,
1 1

(1 MB)I-------Shared-------I
I I
1 1

11111111111 1 __ _

Figure 5-2.

I
1

I
V_,

1
1
> Unused a rea
1
I

_I

1 ,
1
I
1

V

AOS/VS Internals Chapter 5 Page 5-1!4

Processes

This section defines processes and how AOS/VS uses them. You must be
familiar with the following tenms and what they mean to AOS/VS:

o Progran File

A file containing executable code. To the system, this file is a
static image, known as a segment image, for a particular segment of
memory.

o Segment Image

A progran file that AOS/VS has made part of a process's logical
address space. Segment images are either created by users or
supplied by the operating system (as resources). Together, user
segment images and system segment illBges make up a process irrBge.

o Process

An executing set of user segment illBges and system segment images.

o Task

A task is a path through a process. Tasks are asynchronously
controllable entities to which the system alloca tes CPU resources
for a specific time. A task is the basic element of a process and
may only execute code within the address space allocated to its
process.

Each process is made up of one or more tasks, which execute
asynchronously. You can design your ·code so that several tasks
execute a Single re-entrant sequence of instructions, or you can
create a different instruction path for each task. Control always
goes to the highest priority ready process, and within that process,
to the highest priority ready task.

When you create a process, it exists until one of the following
events occurs:

o The process traps.

o The process tenminates voluntarily.

o Another process terminates the process.

o The process's father terminates.

:ADS/VS Internals Chapter 5 Page 5-15

Memory Scheme

AOS/VS allocates memory and CPU time to each process based on its
priority and scheduling characteristic. (A process is scheduled
either on a round-robin or a heuristic basis, as described later
in this section.

The entire range of locations addressed bY,aprocess is its logical
address space. Under AOS/VS. a process's user-visible address space
can consist of up to 512 megabytes for each of the four user rings
(rings 4 through 7).

At any given time, only a subset of each process's logical address
space is in memory. This subset. which is called the working set,
changes in size and content as the process references pages and then
returns them to disk.

Every process starts with a working set large enough to accommodate
Page 0 (the first 2K bytes of the logical address space) and the
program counter (PC) page. The program counter points to the current
control point in a program.

Users have the option, however. of starting off with a much larger,
working set by initially loading sane or all of the unshared '
address space in their program files.

The rest of the logical address space -- the pages outside the
working set -- is virtual address space.

The size of a process's working set directly relates to the nLmber of
memory pages toe process currently needs or is likely to need. When
a process refers to a page or set of pages outside its working. set,
the hardware signals a page-fault condition. AOS/VS responds by
adjusting the size of the working set. The 7WIRE and 7UNWIRE system
calls give a process with sufficient privleges control over its
working set. The 7WIRE system call wires (that is, permanently
binds) pages to the wor-king set. The 7UNWIRE system call releases
previously wired pages.

You can also control the size of the working set through the· 7AWIRE,
7WIRE. and 7UNWIRE system calls, all of which determine how many pages
are wired (bound) to the working set. In addition, the 7PROC system
call .lets you set the minimum and maxil1lLll1 working set size when you
create a process. Furthennore. a . change in the type of the process
(with ?CTYPE or 7PROC) affects the size of the working set. as resident
processes (those always residing in memory) automatically have more
pages wired to their working sets.

When a page fault occurs, the operating system normally adds one page
to the working set. You have the option, however. of requesting that
the system add a cluster of pages to the working set when a page fault
occurs.

AOS/VS Internals Chapter 5 Page 5-16

Process Types

To manage the multiprocess environment. AOSiVS allocates main memory to
processes based· on their priorities and scheduling characteristics.
Processes fall into two main categories:

o Those which always reside in memory (these are called
resident). In general, only the most critical processes in your
system environment should be resident.

o Those which the memory manager moves back and forth between
disk and memory (these are called preanptible and swappable).

NOTE: Under AOS/VS preemptible and swappable processes are almost
identical; for differences, see the section on "Priority
Changes" in this chapter. Under ADS, however. a preanptible
process ALWAYS has a higher priority than a swappable process.

When you create a process with the ?PROC system call, by default the
process is the same type as its father. You may, however. give it
another type. if you wish.

Any process can issue the ?WIRE system call to bind pages to its
working set. Remember, ,however, that if you start wiring a lot of
pages to a resident process, you'll degrade the performance of the
system because of the increased number of pages the system will be
unable to swap out when contention occurs.

In addition to any pages you may wire with ?WIRE, AOSiVS automatically
wires the Agent of a resident process to its working set (the Agent is
that part of AOS/VS which pre-processes system calls and serves as an
interface to the operating system.) You may, however. issua an ?AWIRE
system call to unwire all the Agent Pages fram a resident process,
except for those needed to support user devices. As a result, you free
up same pages of memory and improve the efficiency of the system as a
whole. Your resident process, however. may seem less efficient.

As a general rule, AOSiVS keeps interactive swappable processes in
memory longer than non-interactive swappable processes. You may change
this, however. by setting the bias factors~

AOS/VS treats a pre-emptible process as a high-priority swappable
process. However. when a resident process or a highe priority
pre-emptible process requires memory, AOSiVS swaps the pre-emptible
process out to disk. Also. when another process explicitly blocks a
pre-emptible process (with the ?BLKPR system call), AOSiVS can swap
the pre-emptible process out to disk if it needs more memory.

; AOS/VS Internals Chapter 5 Page 5-17

Priority Numbers

Eligible processes compete with each other for CPU time, based on their
individual priority numbers. AOS/VS uses priority numbers to detennine
each 'process's priority. When you create a process, you may assign it a
priority number.

Priority numbers range from 1 (the highest priority) through 511 (the
lowest). These numbers span three scheduling groups (with no overlap
and no gaps), whose boundaries are detennined during VSGEN. For
details, see the section on "Process Scheduling" in this chapter.

Priority Changes

If a process wants to change its own priority, 'it may issue the ?PRIPR
system call. To change the priority of another process, however, the
calling process must be in Superprocess mode. .

Changing Type

The priority of a process may also change when you change its type with
either ?CTYPE or ?PROC. Given that the boundaries of the 3 'Scheduling

groups are

Group 1 = 1 - G1
Group 2 = G1+1 - G2
Group 3 = G2+1 - 511

then Tables 5-1 and 5-2 summarize the changes in priority which occur
when a process changes type. Notice that a swappable process can never
assune a priority" of 1, 2, or 3, but it may APPEAR to do so because of
the way priority numbers get mapped (see the discussion of Mapping" below.)

Table 5-1 Priority Changes Going from a Resident or Preemptible to
Swappable Type

Priority Before Change

1 - 3
4 - G1
Gl+1 - G1+3
G1+4 - G2
G2+1 - 511

Priority After Change .

1 - 3 • ••
2 • ••
1 - 3 ••
G1+4 - G2
G2+1 - 511

---------------II"!"---.---

* This parallels what happens under ADS.

** Although you would see these numbers· if you displayed the
priority of a process with the CLI PRIORITY command, the actual
priorities would be G1+1 - G1+3. See "Mapping" below.

ADSIVS Internals Chapter 5 Page 5-18

Table 5-2 Priority Changes GOing from a Swap pable to a Resident or
Preemptible Type

-------~-~------------~-----------~-~------------------------------I Priority Before Change I Priority After Change
I I I 1--------------------------_·_----,--------------------------------,

1 - 3 **
4 - G1
G1+4 - 511

1 - 3 *
4 - G1
G1+4 - 511

-----.-------.---------------------------------------.----------_ _.

* This parallels what happens under ADS.

** Altr10ugh you would see these numbers if you displayed the
priori ty of a process with the CLI PRIORITI command, the actual
priorities would be G1+1 - G1+3. See "Mapping" belQi.

Mapping

A resident or preemptible process can assume any of the priority.
numbers 1 through 511. The system uses this nlluber in gauging the
importance of the process during scheduling and displays this same
number if you request the process's priority.

To maintain compatibility with ADS, hbwever, AOS/VS has to map priority
m.lllbers for swappable processes. As' a result, the actual number t.he
system uses in its scheduling calculations and the mJllber it displays
when you request the process's priority may differ.

The discrepancy between actual and displayed priority nlll'lbers occurs in
three cases: .

1) If you assign a swappable process a priority of 1, 2, or 3.

2) If you assign a.swappable process a priority of G1+1 - G1+3.

3) If a resident/preemptible process with a priority of 1, 2, or 3
changes its type to swappable.

In all three cases, ADS/VS uses a priority' number of G1+1 - G1+3 when
scheduling the process because a swappable process cannot have a
priority of 1, 2, or 3. The system cannot, however, display the numbers
G1+1 - G1+3 for a swappable process, and so displays 1 - 3.

In all other cases (4 - G1 and G1+4 - 511), the actual num~~r is the
same as the displayed number.

Remember. however. that if you do assign a swappable process a priority
of 1 and then it changes type to resident (or preemptlble), the
resident process WILL have an actual priority of 1, even though the
swappable process could not.

,AOS/VS Internals Chapter 5 Page 5-19

Examples of Mapping

1) If a resident process with a priority of 2 changes its type to
swappable, the systan displays a priority of 2, but it actually uses
G1+2 when scheduling the swappable process.

2) If a resident process with a priority of 3 changes its type to
preanptible, the systan displays and uses a priority of 3 for the
preanptible process.

3) If apreanptible process with a priority of G1+3 changes its type to
swappable, the systan displays a priority of 3, but uses G1+3 in
scheduling the swappable process.

4) If a preanptible process with a priority of G2+44 changes its type
to swappable, the systan displays and uses a pr,iority of G2+44 for the
swappable process.

5) If a swappable process with a displayable priority of 3 (meaning its
real priority is G1+3) changes its type to resident, the systan

displays and uses a priority of 3 for the resident process.

6) If a swappable process with a priority of 5 changes its type to
preanptible, the systan displays and uses a priority of 5 for the
preanptible process.

Process Scheduling

AOS/VS scheduies eligible processes based on their priority numbers and
scheduling characteristic. As you may recall, the range of process
priority numbers (1 through 511) spans three scheduling groups.

Group 1 ranges from 1 to a number, "G1", which is set during V&lEN.
AOS/VS schedules any process whose priority number places it in Group 1
on a round-robin basis. Under thisschane, each process is allocated a
uniform slice of time during which it may execute. Once a process of a
specified priority tanporarily stops executing (having used up its time
slice), it is not chosen to execute again until all other pr·ocesses of
that priority have been chosen to execute.

Group 2 ranges from G1+1 to a number, "G2", which is also set during
VSGEN. AOS/VS schedules any Group 2 process heuristically. which means
that the systan takes the process's past behavior into account when
alloting it an interval of time during which it may execute.

Group 3 ranges from G2+1 to 511. AOS/VS handles processes in this
group on a round-robin basis.

For details of setting G1 and G2. see "How to Generate and Run AOS/VS"
<093-000243.)

AOS/VS Internals Chapter 5 Page 5-20

NOTE: If you need to maintain compatibility with AOS, G1 and G2 must
be set to 255 and 258, respectively.

Group 1 processes are always more important (that is, more likely to be
chosen for execution) than those in Group 2 or 3, and Group 2 processes
are always more important than those in Group 3. Within each group,
the lower the priority nl.lIlber. the greater the importance of the
process. The importance of a process may, however. alter as a result
of a change in type, as Tables 5-1 and 5-2 show. .

If an executing process cannot proceed, you can issue the ?RESCHED
system call, which allows the calling process to give up control of
the CPU and forces AOS/VS to immediately schedule another process for
execution.

Process Identification

A process identifier (PID) end a process name identify each process •. When
you create a process, AOS/VS assigns it a unique process identifier
in the range from 1 to 255. At the same time, you must
assign a process name to that process. .

A full process name is a character string that consists of a username
and a simple process name, with a colon(:) between two elements.
Each element can contain up to 15 valid filename characters. The
valid filename characters are:

o Letters A through Z.

o Numbers 0 through 9.

o Period (.), dollar sign ($), question mark (1), and underscore CJ.

A username functions like a family surname. AOS/VS uses this part of
the process name to detennine the process's genealogy and its access
rights to files. By default, each son process bears its father's
username. A father process can assign its sons a different username
only if the father was created with the privilege to do so.

You can use either the full process name or a simple process name as
input to the system calls. When you supply a simple process name,
AOS/VS expands it.

You cannot assign the same simple process name to processes that
have the same username. If you do, AOS/VS returns error code ERPNU
(process name already in use).

iAOS/VS Internals Chapter 5 Page 5-21

Process States

When a process has gained memory, it competes for CPU time. At this
point. AOSIVS lodes at both the priority anq state of a process to
detennine its order of execution. A process is always in one of the
following three states:

o Eligible

A process is eligible for CPU time when it has acquired memory
and is ready to run.

o Ineligible

A process is ineligible when it has not acquired memory, even if
it is otherwise ready to run. Every process is ineligible at its
inception.

o Blocked

A process is blocked if its execution is suspended to wait f~r a
specific event that mayor may not occur. A process can block
voluntarily, another process can block it (generally via the
?BLKPR systan call), or AOS/VS can block it •.

Process BlOCking

AOS/VS blocks a process under the following conditions:

o When another process explicitly blocks it, using the ?BLKPR
systan call.

o When the process creates a subordinate process, called a son, and
voluntarily blocks itself until the son tenninates.

o When the process i~sues a systan call that suspends its only
active task.

The last condition implies that the process has only one task or that
all of its other tasks are suspended. ?IREC and ?WDELAY are -tWo
examples of systan calls that can cause a process to block.

AOS/VS unblocks a process under the following conditions:

o When the process previously blocked with ?BLKPR is explicitly
unblocked with ?UBLPR. (?BLKPR and ?UBLPR work as a pair; ?UBLPR
unblocks only those processes that were previously blocked with
?BLKPR.) .

o When a son created by the process tenninates (provided the father
voluntarily blocked to wait for the son to tenninate)

AOS/VS Internals Chapter 5 Page 5-22

o When a task within the process becomes ready to run (AOSIVS
blocked the process because it had no ready task)

When memory contention occurs, AOSIVS is more likely to swap blocked
processes or to rEmove pages fran them. The processes that have been
blocked the longest are the prime candidates for these actions.

Keep in mind that resident processes cannot be explicitly blocked.

Process Traps

A process trap is a hardware error. Each process exists until it
terminates voluntarily. becanes terminated by another process, or
encounters a process trap (that is, "traps"). Anyone of the
following conditions can cause a process to trap:

o The process tries to reference an address that is outside its
logical address space or refers to an invalid address within.
Ring 7.

o The process tries to use more than 16 ievels of indirection in a
memory reference instruction.

o The process tries to read, write~ or execute code that is
protected against any of these actions (for example, it attempts
to write to write-protected shared area of its logical
address space). The ?VALIDATE systsn call decreases the likelyhoad
of this kind of trap by letting you check an area for access before
attempting a read or write.

o The process uses I/O instructions while LEF is disabled and I/O
protection is enabled.

o A process tries to execute a privileged instruction in a user
ring.

When a process traps or terminates vO+Untarily, AOSIVS uses the IPC
facility to send that process's father a termination message. If the
process terminated. on a trap, the IPC message describes the cause.

Break Files and Memory Dumps

When a process terminates, you can save the state of certain memory
parameters and tables (for example, the process's UST and TCB's) in
two ways:

o You can create a break file

A break file is a status file in the terminated process's working
directory that contains this information. You must be logged on
to examine a break file.

:AOS/VS Internals Chapter 5 Page 5-23
!

o You can dump the contents of a particular ring to a dump file.

A dump file contains all of the information that a break file
contains, plus a copy of the memory image. Also. you do not
have to be logged on to examine a dump file.

To perform a dump, issue the ?MDUMP systan call. which creates
a dump file wherever you specify.

There are two ways to terminate a process and explicitly ~reate a
break. file:

o Issue a ?BRKFL system call.

o Type a CTRL-C CTRL-E sequence fran the process console.

To create a breakfile every time a process traps, set bit ?PBRK in
offset ?PFLG of the process's ?PROC packet.

AOs/VS copies the following words to the break file:

Status Word
?BRACO
?BRAC1
?BRAC2
?BRAC3
?BRPC
?BRTID
?BRFP
?BRSP
?BRs..
?B~$

Contents
Value of ACO
Value of AC1
Value of AC2
Value of AC3
Value of PC
Task ID
Value of the stack frame pointer
Value of the stack pointer
Val·ue of the stack limit
Value of the stack base

Unless you specify another pathname, AOS/VS assigns the break file
the default pathname is:

?pid.time.BRK
where:

o pid is the 3-digit PlD ~fthe terminated process

o time is the time of the termination, in the form
hours-Pdnutes_seconds

AOS/VS only creates a break file if the terminated process has write
or APPEND access to its working directory and if the working
directory has enough disk space for the break file.

The ?ENBRK system call. unlike the ?BRKFL system call, which
terminates a process and creates a break file, does not terminate
the process. Instead, if the process traps, issues a"CTRL-C CTRL-E,
or is the target of a TERM/BREAK, the. ?ENBRK system call allows
AOS/VS to create a break file of whatever user ring you specified as
its target ring. The ?ENBRK systan call allows AOS/VS to create a
break file, it does not explicitly direct it to do so.

AOS/VS Internals Chapter 5 Page 5-24

Linking Programs Together with the ?CHAIN System Call

The ?CHAIN system call allows you to link together several steps of a
long, complex program set, where each program is a' separate program
file. The programs may be of different types (i.e., 16-bit and 32-bit).
This is useful if you're approaching maximum PID counts on your system
or if you lack the privilege to create unlimited sons. The ?CHAIN
system call actually releases the system resources that one process is
using, and then executes a new program. In addition, the ?CHAIN sy~tem
call transfers the follOWing attributes to the new program:

o The username, process name, PID, console, search list. default
ACL, and working directory of the calling process

o The generic file associations of the calling process (for
example, the filenames associated with generic files @INPUT,
@OUTPUT, @LIST, and @DATA).

o The privilege.s, process type, and priority of the calling
process.

When a process chains to a new program, AOSiVS performs the following
steps:

o Unloads all of the process's inner user rings.

o Terminates all son processes that were previously created by
?PROC system calls issued from the inner user rings.

o Breaks the connection, which in turn, causes AOS/VS to revoke
access privileges to protected shared files.

Inner Rings

To load program files into a specific ring, you can issue the
?RINGLD system call. Then, to find out what program was loaded into
the ring, you can issue the ?RNGPR system call. If you want to
prevent the ?RINGLD system call from loading a runtime routine into
a particular ring, you can issue the ?RINGST system call.

To cross from an outer ring to an inner, a program must have
access to the proper gates; that is, entry points to the code in the
inner ring. When you write a progt'am to execute in Rings 4,5, or 6,
you must define an array of the legal entry points (gates).

In the module in which you define your gate array, you must declare
the gate entry points as .EXTG (external gate). Also, in your source
module, you must declare gate entry points as .ENT (entry
point). The 'Principles of Operation of ECLIPSE 32-Bit Systems' nanual
explains how to reference gates and how to set up gate arrays.

Figure 5-3 shows how a process can span rings. For the purpose of the
figure. aSSllTle that the main program has used the '?RINGLD system call
to load a program file into Ring 6.

AOS/VS Internals Chapter 5

Gate

Main progran
------,,---------------_ .. _----

Progran loaded with ?RINGLD

I
I

·1 =
I I
1 1

71 6

--------"------------------
" ---,...----I

I

= I " I -I = I
I . I

5 41 31 21 1= 0
I 1 = I

= I
I

---------> = 1
------.---.-.--.

----------------_.

Page 5-25

Access fran
. Ring 6 through

ga te in Ring 6

Full access fran
inner rings to
outer rings

--------._-------------------------.-------------------
Figure 5-3. Ring structure

ADS/VS Internals Chapter 5 Page 5-26

File Creation and Management

A file is a collection of related data that is treated as a unit.
"File" also refers to the disk blocks used to store files. F.ach file
has a filename by which you and AOS/VS address that file. You can
create files and assign them filenames by using the ?CREATE system
call, the CLI, or one of the text editors AOS/VS supports. Or, you
can create files as you assemble, compile, and link your source code.
In the latter case, the utilities assign the filename. .
There are two general types of devices that allow you to store. and
retrieve file information. YOu can use multifile devices, such as
disks and magnetic tape. to perform file lID and to store and
retrieve files. Other devices, such as consoles, you can use
strictly for file lID.

Disk File Structure

Each file consists of one or more file elements. A file element is a
set of contiguous 512-byte disk blocks. (contiguous disk blocks are
blocks with sequential addresses). The default file-element size is
four (four disk blocks per element), or whatever file-element size
you selected during the system generation procedure. You can also
specify a file-element size when you create a file.
AOS/VS always rounds a" file-element size to the next higher multiple
of the default file-element size. For example, if you create 2 file
wlth a file-element size of five and the default file-element size is
four, AOS/VS rounds the file-element size to eight.

AOS/VS allocates disk space to a file based on its file-element size.
For example, a file with 2 file-element size of four "grows" in units
of four contiguous blocks.

The blocks that make up a file element are always contiguous,
although the file elements may not be. For example, a file with a
file-element size of four may consiet of a number of IIscattered"
4-block elements.

To keep track of each file's file elements, AOS/VS maintains one or
more index levels for each disk file~ An index is a single block
that lists the address of each file element. As a file exhausts one
index, AOS/VS provides a superior index, to a maxinuri of three index
levels. A pointer in each index leVEl links that level with its
immediate subordinate.

Files wi th larger file-element sizes have fewer separate elements
and, therefore. require fewer index levels. Files with smaller
file-element sizes are easier to store. however, because each block
in a file element must be contiguous. (It is easier for AOS/VS to
find eight contiguous blocks, for exarnple, than to find 500).

The maximum size for a disk file is 2**23 blocks. You cannot use all
the blocks in the total disk storage, however t because AO~/VS n,ust
re,:erve sane fOI' index blocks, to stcre disk boot~traps, and f(jr'

otLer purpo~'E:s.' .

AOS/VS Internals Chapter 5 Page 5-Z7

Directory Creation

Gener·ally, you groupre1.ated disk files into directories for
convenience. A directory is a file that contains information about a
particular set of files. For example, you might create a directory
called PL_1 to group all· PU1 source files, or a directory called UPD
to contain all user profiles. The AOS/VS file name conventions also
apply to directory names. .

AOS/VS. organizes directories into a hierarchial tree stru~ture
similiar to the process tree structure. (See figure 5-4.) The ini tial
hierarchy. A colon represents the root.

Directory Entries

Each directory contains a directory entry for every one of its
subordinate files. A typical directory entry contains the name of
the file, its file type, a list of the access privileges for various
users, and other information unique to the file type. For exanple, a
directory entry for an IPC file contains such additional information
as the PID of the proces that created the file and the file's Ipcal
port nLlllber. AOS/VS recognizes 256 different types of directory
entries, numbered from 0 to 255.

Data General reserves types 0 through 1Z7; the user paraneter files
PARU.32 and PARU.16 define these types. Users can define directory
entry types 128 through 255.

AOS/VS Internals Chapter 5

:' Root
11\

I I \
I \

UTIL UDD UPD
1\ I \

I \ I \

Page 5-28

Directory----------,.·~. --> LANG SPEED
1\ SED

OOMt-DN BIFF

I
I

Subdirectory----> PL_'
I
I
I
I

File Entr~es----> PL1.PR
PL1.TEMP

•

I \
\

\
IXLL

I
I
I
I

DGL.PR
OGL.ST

I
I

DFSHEET
PROOS

IAN
FUMBLE

•

-----.-._-----'-- -- - ------- -_.- -_. -_. ---.- --- ----- _.-
Figure 5-4. Sample Directory Tree

File Types

A file's characteristics and function determine its file type. Table
5-3 lists the AOS/VS file types.

User data files (file type ?FUDF) are not executable files. Typically,
you use ?FUDF files to. store the object files or text files you create
with one of the text editors.

As Table 5-3 indicates, there are three types of progran files:

o ?FPRV files, which are developed under AOS/VS.

o ?FPRG files, which are developed under ADS.

o ?FUNC files, which are developed under VS/UNIX.

AOS/VS Internals Chapter 5 Page 5-29

Table 5-3. File Types

!Mnemonic ----Type- - - - -- -.- - -- - ----- - -Canmer;ts -- ----- . '-1
I===~==== ==================~=:: ================:=======~===:=::=:=I
I ?FUDF User Data File Usually applies to source or I
I object files. I
I I
I I

?FTXT Text File Should contain ASCII text. I

?FPRG AOS Program File

?FPRV AOS/VS Program File

?FUNX VS/UNIX file

?FDIR Disk Directory

?FCPD Control Point
Directory

?FLNK Link File

?FSTF Symbol Table File

?FUPF User Profile File

?FSDF System Data File

?FIPC IPC Port Entry

?FMTF Magnetic Tape File

?FGFN Generic F.ilename

?FGLT Generic Labeled Tape

?FDKU Disk Unit

?FSPR Spoolable Peripheral
Directory

?FQUE Queue Entry

?FLDU Logical Disk

Program file for use under ADS
(16-bit code).

Program file for use under ADS/VS
(16-bit code or 32-bit code).

File for use 'under VS/UNIX

None.

(See ''Disk Space Control" in this
chapter.)

None.

Produced by the Link utility and
I used primarily by AOS/VS.
I
I

I
I
I

I
I
I
I

Used by PREDITOR (user profile
editor) and EXEC.

None.

(See section on IPCs).

None.

Refers to the generic filenames;
that is, @OUTPUT, @LIST, @DATA,
etc.

None.

None.

None.

None.

Cann.ot create with the ?CREATE
system call. (See "Logical
Disks'" in this chapter.)

AOSIVS Internals Chapter 5 Page 5-30

Table 5-3 continued File Types

I Mnemonic Type Canments
======== ====================== ===================================1

?FMCU

?FMTU

?FLPU

?FNCC
?FPCC
?FFCC
?FOCC

?FCRA

?FPLA

?FCON

?FSYN

Multiprocessor
Communications Unit

Magnetic Tape Unit

Data Channel Line
Printer

FORTRAN Carriage
Control

Card Reader

Plotter

Console (hard-copy
or video display)

Synchronous

Cannot create with ?CREATE
systEm call.

Device you use to access magnetic
tape files; cannot create with
the ?CREATE systEm call. .

Cannot create with the ?CREATE
systEm call.

None.

Cannot create with ?CREATE
systEm call.

Cannot create with ?CREATE
systEm call.

Cannot create with ?CREATE
systEm call.

Cannot create with ?CREATE .
systEm call.

You cannot execute an AOS-written program under AQSlVS unless you
relink it with the AOS/VS Link utility. (In sane cases, you must
re-assemble or re-compile an AOS program file to execute it under
AOS/VS.) If you try to execute an ?FPRG program file under AOSlVS,
it returns error code ERIFT (illegal file type).

Directory Access

Each process that. runs under AQSlVS has a working directory. A
working directory is a process's reference point in the overall
directory structure and its starting point for file access. (In
other words, your working directory is the directory you are working
in.) You can use any directory as a working di rectory, prov ided you
have proper acces to it.

In most cases, you will probably access files from your current
working directory. When you refer to a file that is not in your
working.directory._ you must refer to it by a pathname, unless you've
included the file's parent directory in the search list for your
process

AOS/VS Internals Chapter 5 Page 5-31

If you want to change your working directory so that you can access
files that are not currently in it, issue the ?DIR system call. Also,
the ?DIR system call allows you to return to your initial working
directory after you are finished working elsewhere.

A search list is a list of directories that AOS/VS searches if it
fails to find the file that you want in your working directory. You
can use the ?SLIST system call to create a search list or to change
the contents of an existing search list. To examine your current
search list, issue the ?GLIST system call.

Filenames·

A filename is a byte string that consists of at least one, and as
many as 31. ASCII characters. The legal filename characters are:

o Uppercase and lowercase letters

o Numerals 0 through 9

o Period (.)

o Dollar Sign ($)

o Question mark (?)

o Underscore (_)

AOS/VS treats uppercase and lowercase letters alike.

To rename a f~le, issue the '?RFNAME system call.

In general, you can use any conventions you like to name files and
families of files. Table 5-4 lists the filename conventions used by
AOS/VS and its utilities.

Table 5-4. Filename Conventions

File I
I
I

Filename End In
---------------------------------------1-------------------~---------

Assembly language source file
CLI macro files
Object files
Progran files
Temporary files
Library files

.SR

.CLI

.OB

.PR

.TMP and begin with ?

.LB

You create source files for a program's source code, and then
assemble of compile them to produce object files. One or more linked
object modules and/or library files make up an executeable program
file. In general t you use temporary files for data that re:J,uires
only short-term disk storage.

ADSIVS Internals Chapter 5 Pacge 5-32

PatMames

A patilname specifies the exact location of a directory or file in the
file structure. For example, you could use the folla!llingpa thname to
locate directory EAGLE, an entry in the superior di~tory PAT:

:UDD:PAT:EAGLE

Directory PAT is inferior to directory UDD, which , in turn, is
inferior to the system root. which the colon (:) represents.

A pathname can consist of:

o A prefix .alone (such as a colon to indica te the system root).

o An optional prefix followed by the name of a directory or file.

o Pairs of prefixes and directory names or filenames.

The prefix dir~ts AOS/VS to a particular point in the file structure.
Table 5-5 lists the valid pathname prefixes.

Table 5-5. ValidPathname Prefixes

Prefix I Meaning
======== I ====.==.====-===.=================.==.================.====.====== I

=

Startilt the system root directory.

Start at the cur'rent working di rectory,;

(Uparrow) Move up to the inJDediately superior directory.
(You can use more than erie ulErrow in a pathname.)

Start at the peripheral di~tory (:PER).

The peripheral directory (:PE.R), which' is' inferior to the root.
contains the names of generic filenames, which refer to classes of 1/0
devices, and the name.s of system devices.

The = pr'efix directs AOS/VS to search only the working di~tory.
Generally. when a pathname has no = prefix and the file that you want
is not in the working directory, AOS/VS checks thesearoh list. The =
prefix prevents AOS/VS fran doing this.

To construct a pathname to a directory other than your working.
directory, use either a single prefix, or one or more pairs of prefixes
and directory names. For example, the prefixes AA cause AOS/VS to move
to the directory two levels above your current working directory. The
pathname :UDD:PAT explicitly directs AOS/VS to directory PAT, which is
subordinate to botheUDD and the root. .

AOS/VS Internals Chapter 5 Page 5-33

A full pathname traces the path of a particular file all the way fran
the root to the file's parent direJtory. The last entry in a full
pathname is : filename, where filename is the name of the file you want
to access. The following is a complete pathname to the file GLOSSARY,
which is an entry in direJtory EAGLE:

:UDD:PAT:EAGLE:GLOSSARY

Figure 5-4 illustrates the use of pathname strings for a sample
direJtory str~cture.

Many systEm calls require pa thnames as arguments. When you supply a
pathname as an argument. you must tenminate it with a null <000> byte.
similarly. the systEm uses this format when passing pathnames to your
programs. Remember to allow sufficient buffer space to hold the filename
and the null tenminator whenever you use a systEm call that returns a
pathname or filename. .

The ?GNAME and ?CGNAM systEm calls both return a file's complete·
pathname, starting with the root. However. they are not the same in
that the ?GNAME systEm call requires a filename or portion of a
pathname as input, while the ?CGNAM systEm call, requires the file's
channel number as input.

/
DireJtory----------------> LANG

/

/
/

SubdireJtory----> PL_l
I
1
I
1

File Entries----> PL1.PR
PL1.TEMP

Working
Directory Pathname

/

/
UTIL
/\

/

\
SPEED

D
I
1
I
1

/

filel

: Root
/\

\
\

A
/\

/ \
/

B
/ \

/ \
\
E'
I
I
1

file2

SystEm Action

\
C
I
1
I
I·

file3

D AE:file2 From working direJtory D, move up to
direJtory B, and down to direJtory E.
Locate file2· in E.

Figure 5-4. Directory Structure

ADs/VS Internals Chapter 5 Page 5-34

As:ulIling that the dire;:torys.tru.cture is the one shOwn in Figure 5-4,
and ·that D is the working directory, issuing :the ?GNAME system call
would yield the f'oll~ing results:

Your Input
.--.-.-...----....
.file1
.... E

"E:fUe2

?GNAME Output

:A:B:D:file1
:A:B:E
:A:B
:A:B:E:file2 .

The ?GRNAttE .system call is similar :to the ?GNAMEsystem call, except
.that it returns the complete pathname of a generic file. YOu cannot
use the ?GNAME .systemcallto get the tltrue "pathname of .a generic
file .• For example, given the input pathname @DA'TA, the ?GNAME system
call would return :PER:DATA as the complete pathname, even though the
completepathname of the ·file is actually :UDD:USER:DATA. In this
case, the ?GRNAME system call would return :UDD:USER:DATA.

Link Entries

A link entry (file type?FLNK) is a file· that contains a pathname to
another file.

Link entrie.s .act as a pathname shorthand. When you specify a link
entry in a pathname, AOS/VS substitutes the contents of the link for
its name. In figure 5-4, for example, you can create a link called G
that contains the patbname :A:B:D. Thereafter, whenever you refer to
link G, AOS/VSresolvesthat link to:A:B:D. Link entries work
differently as input to the system calls ?CREATE and ?DELETE. The
next 'section discusses two exceptipns.

A prefix is optional in a link-entry pathname. If there is a prefix,
.AOS/VS starts resolving the pathname at the directory that the prefix
specifies. If there is no prefix, AOS/VS starts resolving the
pathname at the link entry's parent directory.

In addition to acting as pathname abpreviations, link entries serve
another purpose. A process can access a file wi thout copying the
actual file into its working directory. To do -this ,the process must
include the appropriate link entry in i tsworking di rectory.

Another way to avoid copying a file is to include the directory
that contains the file in a search list. This works only if no other
directory in the search list contains a file with the same name. The
?SLIST system call sets a search list for the calling process. Note
that a search list cannot contain more than eight pathnames.

One of the entries of a link can be another link. This is called a
link-to-link reference. Too many link-to-link references can cause
the system call that is referencing the link to overflow its stack.
If a stack overflow does occur, AOS/VSreturns the stack overflow
error mes sage, ERSTO. . .

AOS/VS Internals Chapter 5 Page 5-35

Because the number of link-to-link references that you can use depends
on both your program and AOS/VS, it is impossible to predict how many
link-t.o-link references will cause a stack overflow. Therefore, if a
stack overflow occurs while you are using a pathname, examine the
pathname. Then, if the pathname contains link-to-link references,
remove them. .

To find out what a particular link entry represents, issue the ?GLINK
system call. The ?GLINK system call is particularly useful if you
cannot decide whether to delete an existing link entry and/or create a
new one~

Use of ?CREATE and ?DELETE System Calls on Link Entries

You can use the ?CREATE and ?DELETE system calls to create and delete
link entries just as you would other files. When you apply these calls
to link entries, however. AOS/VS creates or deletes the link itself,
not its contents.

For example, suppose in directory :A you create link entry B, which
contains the pathname D:E. If you issue ?DELETE against pathnaOle :A:B,
AOS/VS deletes link B without resolving its contents. Directories D
and E remain intact, however. as does di rectory A. (Directory·· A is·
simply the "path" to link entry B.)

AOS/VS resolves a link if it is simply part of the pathname of a file
you wish to create or delete. Consider the preceding example. If you
issue ?DELETE against file C in the paUmame :A:B:C, AOS/VS resolves
link B to :D:E. and then deletes file C in directory :D:E. Again,
directories A, D, and E remain intact.

Fi1e Access

To read, write. or execute a file, you must have the proper access to
it. Under AOS/VS there are five kinds of access for every file:

o Owner access

o Write access

o Append access

o Read access

o Execute access

Table 5-6 lists the access privileges and their meaning for
directories and all other file types.

ADS/VS Internals Chapter 5 Page 5-36

Table 5-6. File Access Privileges

I Privilege I For Nondirectory Files I For Dj"rectories I
1=========1==========================1=============================='

Owner I Allows you to: Allows you to:
Access I

I 0 read and change ttle
I file's ACL.
I ,
I

I
o read the filestatus

and permanence of the
file.

o set the permanence of
the file.

o get a complete pa thname I
of the file.

o rename or delete the
file.

o create a User Data Area
(UDA) for the file and
read or write to it.

o read and change the ACL of
the di rectory.

o initialize an LDU if you
have owner access to the
LOU's root directory.

o rename or delete the
directory.

----~---- ----------~--~----~--~-~---------~---------------~-----Write
Access

Allows you to:

o modifY the data in the
file.

o read the filestatus .
and permanence of the
file.

o get a complete
pathname of the file.

o create a User Data Area
(UDA) for this file and
write to it.

Allows you to:

o create, delete, and rename
the directory's files.

o read and change each file's
ACL.

o read and set the permanence
of the directory's files.

o initialize and release an
LOU in the di rectory.

-------- -----~------------------- ----~-----------------------Append Allows you to: Allows you to:
Access

o read the filestatus
and permanence of the
file

o get a complete pa thnamel
of the file. I

o add files to the directory.

o initialize an LDU in the
directory.

. ----------1---~------------
Table 5-6. File Access Privileges continued

AOS/VS Internals Chapter 5 Page 5-37

1
I
I

Frivilege For Nondirect9ry Files For Directories

Read
Access

========================== ==============================
Allows you to: Allows you to:

o examine the data in
the file.

1 0 read the filestatus and

c list the name, filestatus,
and permanence of each file
in the directory.

: permanence of the file., 0 use this dirt~tory as a
: - : working di rt~tory.

o get a complete
pathname of the file.

o read a User Data Area
for the file.

o read each file's ACL.

o get the cont~nts of a link
entry in the directory.

Execute Allows you to: Allows you to:
Access

o execute the file.

o read the filestatus
and permanence of the
file.

o get a complete pathnamel
of this file. :

I ,
I
I

o name the di rectory in a
pathname (tbis is essential
if you wish to name the
directory or refer to it.)

o make the directory your
working directory.

o resolve a pathname using a 1

link in the directory.
I I I ' _____ 1 ___ - ______ 1

Execute access is the most essential kind of access to directories,
because it allows you to use the directory name ir. a pathname. Wit.hout
this privilege, all other access privileges to a directory are
meaningless.

Owner access to a directory allows you to initialize logical disks in
that directory with the ?INIT systan call. (See "Logical Disks" in
this chapter.)

If you are writing to a file with the ?WRITE systEfli call, you must have
both read and write access to it. If, on the other hand, you are
writing to it with the ?WRB system call. you only need write access.
When reading from a file with ?READ or ?RDB you need read access to it.

A03/VS Internals Chapter 5 Page 5-38

Access Control Lists

AOS/VS maintains a unique access control list (ACL) for every file that
is not a link entry. An ACL is an ordered list of the users who can
access the file and the type of access granted to each user. Wher: you
try to read, write. or execute a file, AOS/VS checl<s your usemamr,
against each entry in the parent dir€Ctory's ACL and agaiLst each entry
in the file's ACL.

For example, if the ACL for file :TJ : GLOSSARY • PR allows username
TJ Read and Execute access, as well as Execute access to t.he
directory TJ and the root. then users that log on under' usemame
TJ can execute tbe file GLOSSARY.pr and read its data. However.
these ::.iame users cannot delete the file GLOSSARY. PR, or change
i tc ACL, unless they also have WRITE access to GLOSSARY. PIP s
parent directory. TJ.

There are several ways to set an ACL for a file or a directory. !.)ne
way is to use the CLI command ACL. Another way is to defj.ne a filE:' s
ACL from your source code via the ?CREATE. ?SACL, or ?DACL systEm
calls. The ?CREATE Systffil call allows you to defj.ne the ACL along with
the otber specifica tions for the new file or di rectory. The ?SACL
systffil ~all allows you to set an ACL for a file or direct(Jr'y.

To det~rmine a particular file or din.<!tory' s ACL, iSSLe the r!GACL
Systffil call. The ?GTACP systan call is more specj.fic in that it.·
returns the ACL for a specific file and username. If you are iu
Superuser mode, the ?GTACP system call allows you to find out if CI

given user has access to a particular file.

Depending on your input parameters, the ?DACL system call sets, ch~ars,
or examines the default ACL mode for one or more processes that have
speclfic usernames. Default. ACL mode is process specific, rather than
file specific. For example, a process can issue the ?DACL system call
to turn on defaul t ACL [node and define a specific ACL for all files it
will later create. A default ACL defined with the ?DACL system call
exists until the ?DACL caller terminates or until it redefines that.
default. by issuing another ?DACL system call.

The ?CREATE. ?DACL, and ?SACL system calls take the following bit lliasks
a~ ACL specifications:

Mask

?FACA
?FACE
?FACR
?FACW

.?FACO

Meaning

Append access
Execute access
Read access
Wri te access
Owner access

AOS/VS Internals Chapter 5 Page 5-39

ACL Templa tes

When you create an ACL, you can define access privileges for specific
usernames, or you can use ACL templates to represent certain
username/character combinations. Table 5-7 lists the valid ACL
templates and the character combinations they represent.

Table 5-7. Valid ACL Templates
------------------------------Template : Meaning

======:===:==
+ : Matches any character string. For example, the ACL

*

: username specification PA+ matches any character
: strtng that begins with PA, such as PAT, PAM, PAUL,

PA_B, and PA.M.

Matches any character string except those that contain
one or more periods. For example, PA- matches PAT,
PAM, PAUL, and PA_B, but not PA.M.

I
I
I
I
I

Matches any single character except the period. For
example, PAl matches PAT and PAM, but not PAUL,
PA_B, or PA.M. . I

I
I

AOS/VS scans ACL entries from left to right. Thus, you should not
place the plus sign C+) template first, because it will override more
specific templates or usernames. For example, the following ACL
specification begins with +<?FACR> (the zeros are delimiters), which
gives all users Read access only (?FACR), even though the second
element assigns Owner access to a. specific username (PAT):

+<O><?FACR>PAT<O><?FACO><O>

The Permanent Attribute

Any user with Owner access can easily delete a directory of file.
Therefore. AOS/VS provides the permanent attribute for additional
protection.

The permanent attribute prevents users from deleting a directory or
file, regardless of its ACL. The ?SATR system call sets the
permanent attribute. or removes it, if the target directory or file
alr'eady has permanent status. The ?FSTAT system call returns vari.ous
information about a cii.rectory or file, including whether or not it
has the permanent attribute.

If you set the permanent attribute for a file, you should also set it
for the file's parent directory. Otherwise, a process can delete the
file by deleting the parent directory.

AOS/VS Internals Chapter 5 Page 5-40

Logical Disks

A logical disk (LD) is one or more physical disk .units that you treat
as a single logical unit. Each file is completely contained within a
single LD.

Each LD isa complete collection of disk space that contains a
directory tree structure. In fact, each LD has a single directory
called the local root. It is the local root that acts as the
foundation for constructing a directory structure. You specify an ACL
for the local root when you construct the LD.

When you bootstrap AOS/VS, you select one LD as the Master LD. The
root of this LD becomes the system root. which is identified by the
colon (:).

Master ·LD (before ?INIT)

/
DGL

/

': <----system root
I
I
I
I

UTIL
/ \

\
\
FORT4

Assume that the LD to be initialized is LD ALPHA. ALPHA's local
root. directory UDD, contains two inferior directories: USERA

I and USERB. If you issue the ?INI! system call for ALPHA, and you
specify 0 in AC1, AOS/VS grafts ALPHA to the system root. and the
directory tree becomes:

Master LD (after ?INIT)

:<----system root
I
I
I
I

/ \
/ \

/
UTIL
/\

/ \
DGL FORT4

\
UDD
/\

/ \
USERA USERB

Figure 5-5. Initializing a Logical Disk

AOS/VS Internals Chapter' 5 Page 5-41

Before you can use any LD except the Master LD, you must initialize it
wi th the ?INIT system call or the CLI INITIALIZE command. To use the
?INIT system call, you must have Owner access to the LD's local root
directory. The ?INIT system call grafts the LD's local root to a
specified directory. (See Figure 5-5.)

Tbe disk structure within each LD can have more than eight directory
h:vels, excluding the local root (directory level zero within that LD). Up
to eight different LDs may be grafted upon each otber, starting from the
sy stem root. If each LD were grafted a t the eigth di rectory level of the
previous ld, then the actual maximum directory level attainable under the
AOS/VS disk structure is 64 directory levels (excluding the system root).

An LD remains initialized until you release it by issuing the ?RELEASE
system call. You may want to release an LD to remove its component
volumes from the disk drives and mount otber volumes onto those disk
drives.

Disk Space Control

You can control how AOS/VS allocates disk space by designating cert.ain
directories in an LD as control point directories (CPDs). CPDs
function exactly like other directories, but they contain two
additional variables:

o Current space (CS), which is the amount of space currently
allocated.

o Maximum space (MS), which is the maximum amount of space
available in the directory.

Current space (CS) is the current number of disk blocks occupied by the
CPD and all its inferior files, except for files in an inferior LD.
When you create a CPD, AOS/VS initializes CS to zero. Maximum space
(MS) is the maximum number of disk blocks available to the CPD and all
its inferior files, except for fjles in an inferior LD. To specifY MS,
issue the ?CPMAX system call.

Each LD's local root is a CPD. Thus, a local root's CS is the total
space currently used in the LD, and its MS is the maximum number of
disk blocks the LD can contain.

CPDs restrict a file's disk space to a predefined limit. When a file
requires more disk space, AOS/VS first checks the MS and CS of its CPD.
AOS/VS allocates more disk space to that file only if it can do so
without causing the CPD's CS to exceed its MS. If a file's patbname
contains more than one CPD, AOS/VS compares the CS to the MS at every
point. starting with the CPD closest to the file.

Figure 5-6 shows a simple directory structure with two CPDs.

AOS/VS Internals Chapter 5 Page 5-42

Assume that the LD root and directory CP1 in Figure 5-6 are CPDs. If
file1 needs an additional n blocks, AOS/VS first adds n to the CS of
CP1, which is the control point closest to file1 •. If CS+n is greater
t.han the MS for CP1, any attanpt to allocate additional space for file1
will fail.

LD Root

/

control
/

/

directory A
I
I
I
I

:CP1 :A:file1

I
I
I
I

point CP1
\

\
\

directory B
I
I
I
I

:CP1 :B:file2

Figure 5-6. Control Point Directories (CPOs)

When you create a CPD, AOS/VS does not initially check its MS against
those of the other CPDs in the file tree. In fact, AOS/VS permits
oversubscription, as long as the tree's total CS does not exceed the
MS in any superior control point, up to and including the local root.
Note that you cannot set a CPD's MS to less than its CS.

AOS/VS Internals Chapter 5 Page 5-43

File I/O

Writing to or reading data fram a device is called file inputloutput
(lID). before you can use file 1/0 system calls, you must understand
file lID. Therefore. this is divided into the following topiCS:

File lID Concepts

This defines blocks, records, and channels, describes how
AOS/VS stores and accesses files, and describes the steps that
you normally perform to use file liD.

Blocks and Records

AOS/VS stores files (data) in physical units called blocks. In
general. there are two methods of accessing these files.

o Block liD

o Record I/O

Block lID system calls allow you to directly access the blocks in
which your files are stored. Blocks vary in size fram device to
device. Therefore. when you access a file using a block liD system
call, you must specifY the block size, the starting block number. and
exactly how many blocks you want to transfer.

Record lID system calls allow you to indirectly access the blocks in
which your files are stored. WHen you issue a record lID system
call. AOS/VS sees the file as a collection of logical units called
records. Then, AOS/VS selects the correct file and records based on
the record type that you specified when you created the file. The
record type defines the format of, a file's records. AOS/VS uses this
informa tion along wi th other pa ranet.ers, such as the file's pa thname,
to associated physical blocks on a device with a ceratin file and its
records.

Channels

File lID. which includes both block 1/0 and record lID, takes place
across paths called channels. When you issue a system call to open a
file, AOS/VS assigns the file a channel and a unique channel number
to identify that channel. The mnemonic ?LOCHN represents the lowest
possible channel number and the mnemonic ?HICHN represents the
highest possible channel number

To disassociate a channel number fram a file, close the channel. When
you close a channel, it becomes unavailable for further file 1/0.
AOS/VS assigns a new channel number every time you reopen the file.

AOSIVS Internals Chapter 5 Page 5-44

File 1/0 Operation Sequence

Table 5-8 sumrmrizes the usual sequence of operati,ons for record 1/0
and block 1/0.

Table 5-8. File 1/0 Operation Sequence

Operation
--

1) Open the file.
2) Read or write.
3) Close the file.

Record 1/0 Call
--

'?OPEN
'?READI'?WRITE
'?CLOSE

Block 1/0 Call
--

'?GOP EN
?RDB/?WRB or ?BLKIO
'?GCLOSE

--- -----------

Many file 1/0 system calls require a packet of file specifications. In
general. ~~e '?OPEN. '?READ, '?WRITE. and '?CLOSE system calls use similar
specification packets, as do the '?GOPEN. '?RDB, ?WRB, and ?GCLOSE ~ystem
calls. However. some packet offsets and masks apply to certain system
calls only. For example, the Exclusive Open option applies to the
?OPEN system call, but not to the '?READ, '?WRITE. or '?CLOSE system
calls. At various points in the file 1/0 cycle, you can change certain
information in the file specification packet.

You can open a file repeatedly withou,t issuing a ?CLOSE system call
after each '?OPEN system call. AOSIVS maintains an open count for each
?OPEN system call and closes the file only when the open count equals
zero.

The creation option in the '?OPEN packet allows you to slDllltaneously
create and open certain file types. Table 5-9 lists the file types you
can create with this option. When you select the creation option and
default the file type parameter in the '?OPEN packet, AOS/VS creates the
new file as a user data file (type ,?FUDF). You generally use user data
files for storing text, data. and variables. User data files are not
executable program files.

Unless you have exclusively opened a file (an option available in the
'?OPEN packet), more than one process with write or read access can
update any record in the file Simultaneously.

~OS/VS Internals Chapter 5 Page 5-45

Table 5-9. File Types You Can Create with the ?OPEN System Call

----~------~----------.-------------~----------------'-----'File Type 1 Meaning Comments

1 ,

=========1================
?FUDF 1 User Data File , ,

?FTXT Text File

?FPRV 32-bi t
Program File

?FPRG 16-bit
Program File

?FDIR Disk Directory

?FIPC IPC File

?FCPD Control Point
Directory

==
This is the default file type. (To
take this default, set the right byte
of offset ?ISTO to 0.)

This type of file should contain ASCII
code.

This type of file is an executable
32-bit program file; it should contain
linked, executable code.

This type of file is an executable
16-bit program file; it should contain
linked, executable code.

If you use the ?OPEN system call t.o
create this type of file, you can
default only the following parameters:'
hash frame size, maximum number of
index levels, and access control list.

This type of file di rects AOS/VS to ,
create an IPC file or open an existing
IPC file to allow full-duplex
communications between two processes.

AlthQugh you can use the ?OPEN system
call to create a control point
directory, we recommend that you use
the ?CREATE system call instead.

1 ___ - _____________ _

By issuing the ?UPDATE system call. you can guarantee the integrity of
all previous ?WRITE system calls issued against a file if the 'system
crashes while that file is still open. The ?UPDATE system call flushes
memory-resident file descriptor information to disk. Note, however.
that the ?UPDATE system call does not write a file's data to disk, just
its file descriptor information. File descriptor information includes
the file's User Data Area (UDA). .

File Pointer

To manage repeated I/O sequences, AOS/VS maintains a separate file
pointer for each open channel. The file pointer keeps track of the
character position for the next read or write sequence on a file.

AOS/VS Internals Chapter 5 Page 5-146

When you open a file, AOS/VS positions the file pointer, by default, to
the first character (byte) in the file. AOS/VS then moves the file
pointer forward as it reads or writes each record or byte string.
Three ways to override the default position of the file pointer are:

o Select the Append option in the ?OPEN packet (?APND in offset
?ISTI) •

This option moves the file pointer to the last byte in the file,
which allows you to append data with the '?WRITE system call.

o Manipulate the file pOinter" in the ?READ or ?WRITE packet during
an I/O sequence.

o Issue the ?SPOS system call to reposition the file pointer
without performing I/O.

'Ihe ?GPOS ::.:y~tt!lI call ret-um::; the cun'ent lJosition of the file pointer.
The ?TRUNCATE system call deletes all data that follows the file .
pointer in a disk file, and writes two end-of-filt marks after the file
pointer in a nlCtt!,lletic talJe file. '

Block I/O

Block I/O is the process of reading or writing files that exist on a
device, in physical uniL-; called blocks. The sizes of these blocks
vary from device to device. (See "I10 Devices and Generic Filenames"
for information on devicec.)

The ?GTRUNCATE system cal] allows you to reduce the size of a disk file
that is currently open for block I/O.

The ?ALLDCATE system call allocates blocks for specified data elements
and zeroes those da ta elements that do not actually exist. You can use
the ?ALLOCATE system call to make sure that subsequent I/O will not
cause a calling process to exceed its control point directory's
maximums. (See Chapter 4 for information on control point
directories.)

To perform block 1/0 on a file, you must know the number of blocks you
want to transfer (block count), the starting block number. and the
block length (number of bytes per block). You specify this information
in a block I/O packet. (See the description of the ?RDB/?WRB and
?BLKIO system calls for the packet structures.)

The ?RDB/?WRB and ?BLKIO calls are very similar. except that ?BLKIO
includes additional functionality for reading the next allocated data
element in the file. ?RDB reads an element whether it is a] located or
not. As a result, this 'lBLDO optlon makes block reading very fast when
you have long files with many unallocaLt.>d elements.

:AOS/VS Internals Chapter 5
!

Page 5-47

Physical block lengths vary fran device to device. To find the block
length for a particular device, refer to the 'Progranmer's Reference
Peripherals' manual. The standard block length for disks is 512 bytes.
Magnetic tape block length is whatever length you specify when you
issue the 7GOPEN systEm call. You must specify an MCA unit's block
length with each read or write operation.

Physical Block 1/0

AOS/VS.supports physical block 1/0 for disks. Physical block 1/0 is
more primitive than block 1/0. To perform physical block 1/0, you must
issue either the systEm calls 7PRDB (read phYSical blocks) and 7PWRB
(write phYSical blocks) or the 7BooO systEm call with the physical
block I/O option.

Physical block 1/0 allows you to bypass AOS/VS's usual retries for disk
errors. You can also use the 7PRDB/7PWRB and 7BLKIO systEm calls to
check for bad blocks on a disk, or for problems wtth an 1/0 device.
When AOS/VS encounters a bad block (transfer error) while it is
executing one of these systEm calls, it takes the normal return, but
flags the bad block and reports the reason for the error in the. packet.
When a device error occurs during these systEm calls, AOS/VS aborts and
returns the device error code to the packet.

In summary, physical block 110 differs from block 1/0 in that physical
block I/O has:

o No remapping.

If a physical block transfer fails because of a bad block, AOS/VS
continues to read or write the additional blocks, and then takes
the normal return from the 7PRDB/7PWRB or 7BooO systEm calls.

o No retries.

If a physical block transfer fails, AOS/VS does not try to read
or write the block(s) again. ·(This is different from block 1/0
in which AOS/VS retries the block read or block write.)

o No ECC corrections.

If data errors occur during a physical block transfer. AOS/VS
completes as much of the transfer as possible, and takes the
normal return from the systEm·call.

7PRDB/?PRWB and ?BLKIO with the physical block read option work in
conjunction with the assembly language block status instructions DIA,
DIB, and DIC. (For details on the syntax and function of these
instructions and the error-correction codes for devices, refer to the
'Programmer's Reference Peripherals' manual.)

AOs/VS Internals Chapter 5 Page 5-48

Record 1/0

Roo,ord 1/0 is. the process of reading or writing files that exist on a
device, in logical groupings called records. There are four types of
records:

o Dynamic-length

When you read to or write from a file that contains dynamic-length
records, you must specifY the length of each dynamic record in that
file.

o Fixed-length

When you read to or write from a file that contains fixed-length
records, you must specifY a record length that is comnon to every
record in that file .•

o Data-sensitive

When you read to or write from a file that contains data- sensitive.
records, you must specifY the maximum record length in offset ?IRCL
of your 1/0 packet. Then~ AOS/VS transfers data until it either
encounters a delimiter or reaches the maximum record length that
you specified. In the latter case, your 1/0 system call fails and
returns error code ERLTI.. (line too long) in ACO .•

The default delimiters are: NEW LINE, CR (carriage return), NULL,
or FORM FEED. You can override the default delimiters by
specifying a 16-word ddimiter table when you open the file or by
issuing the ?SDLM system call after you open the file. The ?GDLM
system call returns the delimiter table for a file.

o Variable-length

When you read to or write. from a file that contains variable-length
records, you must specify the leng~h of each record in a 4-byte
ASCII header. This means that each reCord in a file can be a
different length.

AOS/VS Internals Chapter 5 Page 5-49

Device Names

During system initialization, AOS/VS records the names of all
available I/O devices in its peripheral directory, :PER. Because the
standard device names are not reserved words, you must precede each
one with the prefix @. As a pathname template. @ represents the:PER
directory. Thus, when you use @ as a filename prefix, AOS/VS
recognizes the filename as either a device name or a generic
filename. See Table 5-10 for a complete list of the AOS/VS devices
and thei/r device names.

Generic Filenames

The peripheral directory (:PER) also contains generic filenames.
Generic filenames are names that refer to devices or files of a
particular type, such as input files, output files, and list files.

Generic filenames represent common classes of devices and files. BY
coding with generic filenames, you can change the filenames
associated with the generic names without recoding the program. For
example, you might code a program with the generic filename @LIST to
represent the list file. Then, before you execute the program •. you
can set the list file to a specific filename.

AOS/V~; Internals Chapter 5 Page 5-50

Table 5-10 AOS/VS Devices and Device Names

1 Name: Dev ice :
1================:==1
1 ALM Asynchronous Line t1ul tiplexor. :

@CONO

@CON2 through
@CONn

@CRA and @CRAl

@OKBO through
@DKB6

@OPnO througb
@DPn17

@LPB, @LPBl
through @LPB7

@LMT

@LFD

@MCA, @MCAl

@MTNO through
@MTN17

@PLA and @PLAl

System Control Processor (SCP).

DASi-lER display COll301es or asynchronous
communications lines 1 through n on Lines 0
thf'Ough n-2 (for example, CON2 is on Line O.
COl~3 .i:.:. (.ill Line 1, etc.).

First and Se<.:ond Card Readers.

6063 or 606~ fixed-head disk unit 0 through 6.

Mov ing-head disk uni t:.> 0 through 7 on the first
<..:ontroller. and 10 (octal) through 1'((octal) on
the second controller where n is a single
alphabetic character that indica tes the disk
unit type. (Refer to the 'Managing AOS/VS'
manual for descriptions of these types.)

Data channel line printers 0 through 17.

Labeled magnetic tape.

Labeled floppy diskette

Multiprocessor communications adapter
controllers (unit names).

Magnetic tape controller units 0 through 7 on
the first controller. and 10 (octal) through 17
(octal) on the second controller.

First and second digital plotters.

I

AOS/VS Internals Chapter 5 Page 5-51

Table 5-11 lists the six generic filenames and the files they
represent. Like device names, generic filenames requires the @ prefix.

Table 5-11 Generic Filenames

Filename 1 Refers To
==========1==

@CONSOLE Any interactive device associated with a process

@LIST

@INPUT

€OUTPUT

@DATA

@NULL

(usually a CRT console).

A mass output file.

A command input file.

Any output file.

Any mass input file.

A file that remains empty.

Like device names, generic filenames reqiure the @ prefix.

For an interactive process, your console usually serves as both the
@INPUT and the €OUTPUT file. @NULL is not a strict generic filename,
in that you cannot associate it with an actual pathname. When you
write data to the @NULL file AOS/VS does not output the data to any
other file or dev ice. When you try to read @NULL file, AOS/VS
returns an end-of-file condition.

When you create a process with the ?PROC system call, you can set any
generic filename except @NULL to a specific pathname. For example,
you can set a process's @LIST file to the following pathname:

:UDD:USERNAME:MYDIR:LPT

where:

o MYDIR is the current working directory

o LPT is the list file

The ?PROC packet provides the following parameters for generic
filename associations:

Offset

?PCON
?PIFP
?POFP
?PLFP
?PDFP

Generic Filename

@CONSa..E
@INPUT
€OUTPUT
@LIST
@DATA

AOS/VS Internals Chapter 5 Page 5-52

The ?PROC packet also allows the '?PROC caller to pass its own generic
fHename associations to a newly created son.

Usually. AOS/VS copies the data it reads fran the @INPUT file to the
eoUTPUT file. However. If @INPUT and @OUTPUT are both consoles, then
the @INPUT function echoes data to the @OUTPUT console. The
generj.c fi.lenames @INPUT, @OUTPUT and @LIST acquire all the
charact erjstic3 of the dGV ices aSS0Clated with them. For exampl~, If
you associate the genenc ~LIST file with the line printer', a
separat.e listing prints each time you open and close @LIST or any
ot.her file.

The @DATA file is similar to the @INPUT file, except that it does riot
copy data to the @OUTPUT file.

\OS/VS Internals Chapter 5 Page 5-53

1ultiprocessor Communications Adapters

AOS/VS supports type 42006 Multiprocessor Communications Adapters
(MCAs). The I/O protocol that AOS?VS uses for these devices is the
same as MCA protocol that Data General t sAOS, ROOS, and RTOS operating
systems use.

Each MCA enables two or more central processing units (CPUs) to
communicate across a data channel. The MCA units are connected by
hardware links. A single MCA can connect a CPU to as many as 14
other CPUs. By adding a second MCA (MCA1), you can connect another
15 CPUs.

Each MeA link consists of two devices; an MCAT. which transmits data
from one processor to another. and an MCAR, which receives the data.
The MCA pathname takes the following forms:

@MCAT:n
@MCAT1 :n
@MCAR:n
@MCAR1 :n

where n is the number of the MCA link, in the range fam 0 through 15

The link number indicates which remote CPU you are communicating with
when your local CPU is linked to more than one remote CPU.

AU:..;; V;; Internals Ctwpt.er' 5 Page 5-5j~

Ch,lract.et' Dev ices

Character devices are devices that perform I/O in bytes. CRT
and ha1u-coPY consoles are typical character devices.

Charcter devices can operate in one of two modes: binary mode or
text mode. Text mode is the default, but you can specify binary mode
when you issue a ?READ or a ?WRITE SySt.ffil call against the device.
'iJllf'n a character device is in binary Inode, AOS/VS l'ecop;nizes only
It;l)Hliters. Ther{:fore. AO::5/VS passe~ each byte 01 any other'

,:l!;l/'clcter without interpretation.

Wllt'n a character device j:os in text mode, AOS/V~; irlterprets each byte
;)ccol'ding to U1~ dey ice IS dldl'8cleristi GS, or Liisllngulshing
features. The device characteristi.cs j nclude:

o TIle line length of the output •

. J Whether the Lievice is AN:':;] standanl of nOll-l\N::>l standard.

() Whether the dev j ce eCh()f:S (:haracter:~.

o Whether the dev ice uses hardware tab stops of form feeds.

To qualify text mode further. you can set the character device to the
Page Mode characteristic. When a cha.rncter device is in page mode,
AOS/VS autanat.j cally stops H~j output at the line length (lines per
page) you specify. 01' when it encounters a FORM FEED character.

To display the next page while the dey ice is in page mode, type the
CTRL-Q console control character. (See "Console Format Control" in
this chapter for a description of the console control characters.)

The ?GCHR and ?GECHR system calls return the current characteristics of
a character device and the extended characters tics of a character
dev ice, respectively. The ?SCHR and ?SECHR system calls set or ranove
device characteristics or' extended device characteristics,
respectl.vely. depending on your input specifications.

To define characteristics for a character device, you must set certain
characteristic flags in a 5-word buffer' in AC2 when you issue the ?SCHR
system call or the ?SECHR system call. Usually. you will probably set
characteristic flags in the first three words of this buffer. If you
set characteristic flags in the fourth or fifth words (words 3 and 4),
then you are setting an "extended" characteristic.

The extended c1t<JJ'Llct.eri.stl C;l control XUN/XOI' F data flow over console
lines. They also control characteristics such as baud rates for
Intelligent Asynchronous Controller's (lACs). For details, see the
description of ?SECHR.

AOS/VS Internals Chapter 5 Page 5-55

The initial operator process (PID 2) can override characteristics that
wl~t'e set during the systan-generation procedure. However. if you are
not PID 2. you can only set the modem control and monitor ring
indicator characteristics during the systan-generation procedure. (For
more information on the systan-generation procedure, refer to the
"How to Generate and Run AOS/VS" manual.)

The ?SEND systan call allows you to pass a message from a process to a
console without opening and closing the console. This means that you
can pass messages from real-time processes without consoles to a systan
process, such as OP CLI.

Full Duplex Modems

A full-duplex modem is a communications device that translates analog
signals to digital signals, and vice versa, over telephone lines.
AOS/VS supports I/O over full-duplex modems, which AOS/VS treats as
character devices.

You must define modems and set the modem control characteristic
(?CMOD) during the AOS/VS systan generation procedure. You cannot
set or remove this characteristic with the ?SCHR systan call. .

AOS/VS supports both auta-ansv;er modems and non-auta-answer modems.
Table 5-12 lists the flags used in modem operation.

Table 5-12. Modem Flags

I Flag I. Meaning
======1===

CD I Carrier detect; if set, the communications line is
conditioned for data transmissions.

DSR Dataset ready; if set. AOS/VS is connected to a
communications line.

DTR Data console ready; if set. AOS/VS is ready to connect
with a remote user.

RTS Request to send; if set, AOS/VS has made a request to
send data.

I
I
I
I
I __ I

AOS/VS Internals Chapter 5 Page 5-56

Auto-Answer Modems

The following steps summarize the operating sequence for auto-answer
modems:

1. During modem initialization, both OTR and RTS are off. which
indicates that the nlOdem is off.

2. Upon execution of the first 10PEN system call. AOSIVS sets OTR
and RTS. and changes the lIlodt:lT1 status to on.

3. No 1/0 will take place until both DSR and CD are on, which
indicates that the modem is connected.

4. The 1/0 call terminates with an errol' return if OSR lapses during
the I/O sequence, or' if CD lap:;(.:s for more than 5 seconds.

Non-Auto-Answer' Hodem;)

If you are receiving data over a non-auto-answer modem. and you are
not PID2. which can override chara9teristics set during the
system generation procedure, you can select the Monitor Ring
Indicator characteristic during the systan generation procedure.
This characteristic appears as par'ClIleter '?CMRI in the second device
characteristic word. Like the '?Ct1JD character~stic, you can
only set the '?CMRI characteristic during the systan generatio'n
procedure. unless you are PIO 2.

AOSIVS uses the Monitor Ring Indicator to detect incoming calls
(rings) to a non-auto-answer modem. If you select the ring-idica tor
option, AOS/VS begins monitoring the ring indicator as soon as you
open the local modem-controlled dev ice. When. a ranote user places a
call to your device, the hardware signals a modem interrupt and sets
the ring indicator. AOS/VS then raises the DTR flag and sets a
timer. If AOS/VS does not detect a DSR signal and a valid carrrier
signal within 5 seconds of the modem.interrupt, it posts a disconnet:t
against the line. When this occurs, yu must close the
modem-controlled device and re-open it.

The follOWing steps summarize the operating sequence for
non-auto-answer modems with Monitor Ring Indicator option:

l. During modem initialization, both DTR and RTS are off, which
indicates that the modem is off.

2. Upon execution of the first '?OPEN system call to the
modem-controlled dev lee t AOS/VS begins monitoring the ring
indl.cator, Pl'()vjlif!lI ~10U ~electej llib chal'actenstic ('?CMRI)
during t.he ~y::>tl~1I ~t:lll~r'dtion pro(;(:dl..lr(;.

,\OS/VS Internals Chapter 5 Page 5-57

3. When a remote user places a call. the MV hardware signals an
interrupt for the local modem and sets the ring indica tor; AOS/VS
then sets the DTR flag and starts the ring indicator timer.

4. AOS/VS begins checking for a DSR signal and a CD signal; if these
occur within 5 seconds of the modem interrupt, the modem is
connected; otherwise, the system posts a disconnect against the
line.

5. No I/O takes place until the modem is connected.

6. I/O terminates with an- error return if the modem becomes
disconnected during the I/O sequence; this state occurs when
either the DSR flag changes from on to off. or the carrier signal
lapses for longer than 5 seconds.

NOTE: If you have selected the ring-indicator option,
you cannot use the communications line for
manual dial-outs. To use the line for manual
transmissions. you must generate it again,
without the ring-indicator option.

Character Device Assignment

AOS/VS allows you to open a device for the exclusive use of one and
only one process by "assigning" the device to that process. You can
do this explicitly by issuing the ?ASSIGN system call, or you can do
this implicitly by opening the file. You cannot issue the ?ASSIGN
system call against a file that is already open.

If you assign a file with the ?ASSIGN system call, you must issue the
?DEASSIGN system call to break the assignment. If you assign a
device with the ?OPEN system call, you can break the assignment by
closing the device or by terminating the process. A process can open
a device more than once without breaking an ?OPEN system call
assignment; AOS/VS does not break the assignment until the last
?CLOSE system call (when the ?OPEN system call count drops to zero).

Device assignment works somewhat differently for consoles. All son
processes can share their father's console, even if the console was
specifically assigned to the father. However, only the most recently
created son can actually control the console bye issuing ?OPEN,
?CLOSE. ?ASSIGN. ?RELEASE. ?GCHR. ?GECHR. ?SCHR. and ?SECHR system
calls against it. The father process and all other sons can issue
only ?READ and/or ?WRITE system calls against an assigned console.

AOS/VS Internals Chapter 5 Page 5-58

Line-Printer Format Control

When you write a file to a data channel line printer controlled by
EXEC, you can tailor the format of the output by creating a user data
area(UDA) for the file. The ?CRUDA systsn call creates a UDA. The
?RDUDA and ?WRUDA systsn calls read and write UDA infamation,
respectively. Typically. you use UDAs to specify file formats,
although you can use them for ot~er purposes.

In addition to the ?CRUDA systEm call. you can also use the AOS/VS
Forms Control Utility (FeU) to create UDAs for format specifications.
To do this, you must perform the fo1);JWing steps:

1. Create a file with the name of the UDA that you want to
create.

This file can contain format speCifications or. if you wish, it
can be emptl'o

2. Exec ute FeU.

3. Move the newly created UDAs to the :U'It..:FOIt1S directory so
that EXEC can access them.

If you want the contents of a particular UDA to override EXEC's
default format specification, use CLI switch IFOItfS when you .
print the file on the line printer. If you ami.t the ?FOlt1S switch or
if the file has no format specifications, AOSiVS uses the current
defaul~ EXEC .format settings.

Console Format Control

Several control characters and control sequences allow you to control
the output that prints on your console.

A control character is any character that you type while you press
the CTRL key at the same time. By' de~ault, AOS/vs does not pass
control characters to your program. However. if you want to override
this default, set binary mode or type CTRL-P immediately before you
type a control character. Either method will cause AOSiVS to pass
the control character to your program. Table 5-13 lists the control
characters and what they do.

AOS/VS Internals Chapter 5
!

Page 5-59

Table 5-13. Control Characters and Their Functions

Control
Character I Function

1===========1===
: CTRL-C 1 Begins a control sequence.

I
1
I

CTRL-D

CTRL-O

CTRL-P

CTRL-S

CTRL-Q

CTRL-U

CTRL-T
and

CTRL-R

I
1

An end-of-file character; terminates the current read
and directs AOS/VS to return an end-of-file condition.

Suppresses output to your console until you type
CTRL-O again. (If AOS/VS detects a BREAK condition
then its output resumes immediately.)

I Signals AOS/VS to accept the next character as a
literal, not as a control character.

Freezes all output to your console, but does not
discard it. (To disable CTRL-S, type CTRL-Q)

Disables CTRL-Sj if the device is in page mode,
CTRL-Q displays the next page

Erases the current input line on your console

Reserved for future use by Data General. (Currently
these control sequences do nothing. However, if you
precede either one with a CTRL-P, AOS/VS passes them
to your progran.) 1_________ ______ __________ __

A control sequence is a CTRL-C immediately followed by any control
character from CTRL-A through CTRL-Z. What happens when you type the
second control character depends on the internal state of the process
with which the console is associated. If the process has not
explici tly redirected the control character. then AOS/VS ignores the
control sequence and treats the second control character as it
normally would. However. AOS/VS ignores control sequences that do
not have a default action.

Table 5-14 lists the control sequences and what they do.

AQS/VS Internals. Chapter 5

Table 5-14. Control Sequences and Their Functions

Control
Sequence Function

Page 5-60

; ==.=::===::.:=='===-= ===1
CTRL-C CTRL-A Generates a console interrupt (provided you used

the ?INTWT systan call to define a console
interrupt task).

I
1
I
I
I
1

. I
1

CTRL-C CTRL-B Generate a console interrupt and aborts the
current process

CTRL ... C CTRL-C Echoes the characters "'c "'c on the console, and
empties your type-ahead buffer. (This is useful
when you want to revoke a command you have typed
ahead.)

CTRL-C CTRL-D
through Reserved for use by Data General
CTRL-C CTRL-Z

I
I
I
1
I ___ I

The IPC Facility as a Canmunica tions Dev ice

You can use IPC files as a communications device, and perform I/O
against them. When you perform 110 against an 1,PC file, AOS/VS buffers
the messages in first-in/first-out order. To use the 1PC ·facility as a
communications device AOSiVS performs the following steps:

1. The calling process creates an IPC file entry with the ?OPEN
creation option (bit ?OFCR in otfset ?1ST1) and sets the file
type to ?FIPC (the file type for IPC files).

2. AOS/VS issues a global ?IREC system call for the IPC entry, which
indicates that the entry is open. (Note that global ?IREC systan
calls issued fran a particular ring .can receive only IPCs
destined for that particular ring.)

3. The other process issues a complementary ?OPEN systan call on the
IPC entry.

4. AOS/VS responds with an nSEND systan call to synchronize the two
processes.

After AOS/VS performs these steps, either a process can issue ?READ or
?WRITE systan calls through the est.ablished IPC file. When one of
the processes closes the IPC entry or tenninates, the systan sends
the other process an end-of-file condition (error code EREOF) when it
tries another ?READ systan call against that file.

You perform 1/0 on an IPC entry, AOS/VS synchronizes all ?READ
and ?WRITE systan calls. Thus, for a process to receive another

AOS/VS Internals Chapter 5 Page 5-61

process's termination message, it must read it in the proper
sequence. Otherwise, the process could repeatedly attanpt to write
to the closed IPC entry with no results, because in that case, there
is no error return.

Note that the process that creates the IPC file (by issuing the firs
?OPEN system call) owns the file.

Task Concepts

A task is a path through a process. It is an asynchronously
controllable entity to which the CPU is allocatoo for a specific
time. A task can only execute code within the bounds of the address
space allocated to its process.

Each process consists of one or more tasks, which execute
asynchronously. You can design your code so that several tasks
execute a single re-entrant sequence of instructions, or you can
create a distinct instruction path for each task.

You combine program file with other information to define processes.
A task is the basic element of a process. Initially. each process
has only one task associated with it. However. unlike processes,
tasks within a process only exist until you kill them either
explicitly or implicitly.

If you are familiar with high-level languages such as BASIC or
FORTRAN. you are probably familiar with single-task programs.
Single-task programs display one path that connects all branches of
logic, no matter how complex. Multitasking is a programming
technique that allows up to 32 tasks within a single process to
execute.

As a programming technique, multitasking offers several advantages,
including:

o Parallelism

Multitasking is a straightforward way to handle complex parallel
events within one program. Thus, it can be useful for time-out
and alarm routines, and overlapped 1/0. Multitasking gives a
program the flexibility to respond to external asynchronous
events

o Efficiency

While one task is suspended, perhaps on an I/O operation, another
task can be executing. Each task has a priority level, and
AOS/VS schedules tasks based on their relative pri.orities. The
AOS/VS multitasking scheduling facility provides efficient CPU
and memory use, especially in an' envtronrnent with heavy memory
contention and devices of varying speeds.

AOS/VS Internals Chapter 5 Page 5-62

You can design your code so that several tasks execute one re-entrant
instruction sequence, or you can create a different instruction pa th
for each task.

Task Protection Schemes

The AOS/VS protection model prevents tasks executing in an outer
ring fram interfacing with tasks executing in critical inner-ring
code paths. AOSIVS uses two classes of protection mechanisms to.
protect tasks executing in one ring fram interference by tasks
executing in other rings:

o Ring maximization

Under this protection scheme, AOSiVS considers a task that is
e,xecuting in a user ring to be less privileged than another task
that is executing in a lower user ring. For all system calls,
AOS/VS uses the ring-maximization protection scheme when it
validates user-supplied channels, word pointers, or byte
pointers.

This means that a channel opened by a system call issued fram
one user ring cannot be passed as input. to a system call issued
fram a higher user ring. Also. system calls issued fram one
user ring cannot be passed as input pointers to lower-ring
memory loca tions. .

The ring-maximization protection scheme par~lels the .
hierarchical protection scheme of the MV-series memory-management
hardware.

o Ring specification

The ring-specification protection scheme protects tasks executing
in one user ring fram interference by tasks executing in any
other user rings. The connection-management facility and the
IPC facility use the ring-specification protections scheme in the
follOWing ways: .

o The connection-management facility considers connections to
be between pairs of process identifier (PID)/ring tandems.

o]r.e IPC facility now requires a ring field as well as a PID
and a local port number field as part of each global port.

All IPC messages are sent to specific rings within a
destination process. Within the destination process, only
tasks that issue IPC receive request system calls from the
specified ring. can receive IPC messages sent to that ring.
In ,this way, interprocess communications paths are secured
fran both rnal'icious and accidental interference by tasks
issuing IPC requests fram other rings within the same
process.

AOS/VS Internals Chapter 5 Page 5-63

Task Identifiers and Priority Numbers

When you create a task, you should assign it a task identifier
(TID) in the range from 1 through 32. In addition to providing a
simple way for you to keep track of each task's actions, several
system calls require a TID as input.

If you do not assign each task a TID, AOS/VS assigns the initial
task TID 1. but assumes that every other t~sk is TID 0. Although
permissible, this is not advisible. Tasks that share TID ° cannot
issue ?lDSTST, ?IDPRI, ?IDRDY, ?IDSUS. and ?TIDSTAT system calls.

In addition to the TIDs that you supply. AOSIVS assigns a unique TID
to each task in the system. Therefore. even though each ini tial task
is TID 1 within its own process, it also has a unique TID. This
system-assigned unique TID allows you to index ,into multiple-task
databases.

To fine out what the unique TID for a particular task is, issue the
?UIDSTAT system call. The ?UIDSTAT system call returns the unique
TID and the contents of the task's status word.

Priority numbers are values AOS/VS uses to detenmine the order in
which tasks execute. Priority numbers range from 0 (the highest
priority) through 255 (the lowest priority). AOS/VS assigns the
initial task (TID 1) priority 0, highest priority.

To find out the priority and TID of a calling task, issue the ?MYTID
system call. If you want to use system calls that require a TID or
priority level as an input parameter, you can use the ?MYTID system
call to get this information.

Task Identification

The Link utility lets you speciry the maximum number of tasks in a
process, up to a limit of 32 tasks. Each process is initialized when
AOS/VS begins to execute that process's initial task. To initiate
other tasks, any executing task can issue the ?TASK system call.

The ?TASK system call requires a packet. This packet allows you to
speciry several characteristics for the new task, including its TID
and its priority.

You can influence task scheduling-by assigning a priority level to a
task. If you do not assign a priority, aos/vs assigns the new task
the same priority level as the calling task (the task that issued the
?TASK system call).

You can use the ?TASK system call to initiate one or ~~re tasks
imrnediately. or you can use it to initiate a task at a later time.
Therefore. there are two versions of the ?TASK pacl<et:

o 111e st.andard packe t. which initiates a task.

AOS/VS Internals Chapter 5 Page 5-64

o The extended packet. W111ch ini tiates a task at a particular time
and at particular intervals. This is called queued task
creation.

When you isssue a ?TASK system call that specifies a starting PC
wi thin Ring7, AOS/VS passes control to the ?UTSK task-initiation
routine. which places the address of a task-kill routine in AC3 and
then returns control to the ?TASK system call. (?UTSK is in the user
runtime library URT32.LB.)

You can tailor a task-initiation routine to your own application.
For example, you may want to assign system resources to each newly
initiated task. To use a tailored task-initiation routine, you must
assi gn the new routine the label ?UTSK and then link it with your
program. If you do not do this, AOSIVS passes control to the default
?UTSK routine, which immediately returns control to the ?TASK system
call. In addition, if your tailored ?UTSK task-initiation routine
pushes anything onto the stack, it must also pop it off the stack
before exiting. from the ,"outine. Otherwise, if it leaves anything
on the stack, the calling task may not return to the proper address

, in your program.

To abort the ?TASK system call while your ?UTSK task-initiation
routine is executing,' load ACO with an error code and return to the
address in AC3 (the address of the task-initiation error return). If
you do not want to abort the ?TASK' system call. increment the value
of AC3 by 1 and return to the address in AC3 (the address of the task
initiation normal return). This not only caus~s the ?UTSK task­
initiation routine to return successfully. but' also causes the ?TASK
system. call to continue normally.

To use the queued task creation option, you must set the extended
?TASK packet. and you must issue the ?IQTSK system call creates an
additional task, the queued task manager. which handles the
initiation queue. (The queued task manager is one of the 32 possible
tasks in your program.) THE ?DQTSK system call removes one or more
?TASK packets from the queued task manager's initiation queue •

. Stack Space Allocation and Stack Defwition

Every task that uses the AOS/VS system calls must have a unique
stack. A stack is a block of consecutive memory locations that
AOS/VS sets aside for task-specific information.

The stack works by a push-down/pop-up mechanism; that is, you store
information by "pushing" it onto the stack, and retrieve information
by "popping" it off the stack. The 'Principles of Operation 32-bit
ECLIPSE systems' manual explains stacks in detail and describes the
assembly language ~nstructions for the push and pop functions.

The Link utility alloc:ales tilt stack for tile initial task when you
link your progl'an. By default, Link sets up a stack of 60 words for
the initifll task. You can ;:;pedf\] an i.11temat.e size by using the
appropriate funcUon sWIt.ch in the Link command line.

AOS/VS Internals Chapter 5 Page 5-65

You must allocate stack space and define the stacks for all other
tasks within the ?Tl\sK packet(s). The stack parameters in the ?TASK
packet include the stack base, or starting address of the stack, the
stack size. and the address of the stack fault handler.

The stack fault handler is a routine that takes control when there is
a stack fault. you can define your own stack fault handler or you
can use the AOS/VS default stack fault handler. To specifiy the
defaul t stack handler t set the stack fault handler pa rameter to
-1.

A stack base value of -1 means that you will allocate the stack at a
later time (that is, after task initiation). If ycu choose this
option, you must allocate the stack before the newly initiated task
issues any system calls. You must allocate a stack at least 30
double words (60 words).

Inner-Ring Stacks

A task that tries to enter an inner ring via an LCALL instruction
cannot succeed unless there is a 32-bit stack (called a wide stack)
already defined in the target ring for that task. When you load a
segment image into an inner ring, inner-ring stacks must be
initialized for all tasks that may want to enter that ring. This
section describes the rules that govern the inner-ring stack
initialization that AOS/VS performs when you issue the ?RINGLD system
call.

Every process begins executing in Ring 7. You can specifY the Ring 7
stack for the initial task of the process either when you link or
after the initial task begins to execute.

The ?RINGLD system call initializes inner-ring wide stacks on behalf
of all possible tasks in an inner ring. You can specifY the size of
these initial stacks at one of the following times:

o When you compile your program.

To do this, the compiler initializes locations 20 through 27 (the
wide-stack parameters) of the process image. Then, at ?RINGLD
time, AOS/VS partitions the region delimited by the stack base
and the stack limit into separate stacks of equal size for all of
the tasks in the process.

o When you link your program into a program file.

To do This, you must specify the following in ycur Link command
line:

/STACK=n

itinere r. =: (nu;~iber of tasks) * (staCk size per task)

AOs/VS Intetnals Chapter 5 Page 5-66 ;

Link allocates n words at the end of your unshared area. At
?RINGLD time, AOS/VS partitions this n-wordregion into separate
stacks for each task in the process. Although n can be as few as
12 double words, we recommend that you allocate at least 60
double words per task for n.

If you specifY the segment image's initial stack size when you link,
AOS/VS uses that size to override any stack size that you may have
specified at compile time. .,

When you link an inner-ring segment iage, you should also specifiy a
value for the/TASKS: switch. The n1.ltlber that you choose must be .
greater than or equal to the nt.lllber of possible tasks specified for
the (Ring 7) process inege. (Note that a general-purpose local
server should be linked for 32 tasks.)

When you issue ?RINGLD, AOS/VS performs the following steps:
. .

1. AOS/VS loads the segment inege into the inner ring for which it
was linked.

2. AOSIVS initializes wide stacks in the specified ring for all
tasks of the process.

AOS/VS gets the size of the total available stack region from
locations 20 through 27 (the wide-stack parameters) of the ring.
Then, AOS/VS divides tne region into equal-sized wide stacks for
each possible task in the process. The size of each stack is the
size that was impliCitly set at either compile or Link time.

Typically. AOs/VS perform~ the following steps to initialize the
inner-ring stacks: .

1. AOS/VS sets the frame pointer, the stack pointer. and the stack
base to the start of the task's stack region.

2. AOS/VS sets the stack limit to the end of the stack region minus
2 frames. .

3. AOSIVS sets the stack overflow handler address to the address
that you specified in page 0 of the segmentinege.

It is possible to force AOSIVS to initialize a single cammon
inner-ring stack for all tasks in the process. To do thiS, set the
stack pointer within the segment inege so that it contains the same
value as the stack limit. Then, at ?RINGLD time, AOs/VS initializes
all the stacks within the inner ring so that they have the- same stack
pointer. frame pointer. stack base, and stack limit.

iAOS/VS Internals Chapter 5
1

Page 5-67

?TASK system calls can be issued from any loaded user ring. If a
task in an inner ring issues a ?TASK system call, it can initiate a
task in that ring ot in any higher, loaded user ring. It can specify
new wIde-stack paraneters for the new task. Offsets ?DSTB, ?DSFLT,
and ?DSSZ of the ?TASK packet allow the caller to initialize new
stack parameters for the task in the ring specified by the new task's
initial PC (offset ?DPC).

The ?TASK system call causes AOS/VS to reset the wide stacks for the
new task in all user rings lower than the ring specified in ?DPC.
AOS/VS. resets wide stacks by resetting thestack pointer and the
frame pointer to the stack base. This ensures that the tasks can r&-use
the same stack sequentially several times in a
?TASK/?KILL/?TASK/?KILL sequence.

Once a new task has been initiated, it is free, to alloca te a new wide
stack for itself at any time. However. it is the responsibility of
the task to recycle the old wide-stack memory, if the process wishes
to r&-use the memory.

Task Scheduling

AOS/VS schedules tasks according to a strict priority scheduling
algorithm applied at the task level.

After a process's initial task begins to execute under AOSlVS, you
can change its task priority at any time by issuing either the?PRI
or the ?IDPRI system call.

To change a process's own priority, you can issue the PRIPR systan
call. However. if you want to change the priority of another
process, the calling pocess must be in Superprocess mode.

Tasks pass through several different states while a process is
executing. a task passes from inactive to the active state when
you initiate it with the ?TASK system call. After a task is active,
it can become ready or suspended. FiBure 5-7 illustrates the task
states and the system calls that affect them.

AOS/VS reschedules tasks under the following circumstances:

o \-1hen the task that is executing becomes suspended.

o When a suspended task of a higher priority than the task that is
currently executing becomes ready to run.

o Vihen there is more than one highest prioroty-Ievel task that is
ready to run and a round-robin interval has elapsed.

•

AOS/VS Internals Chapter 5 Page 5-68

RTN, ?KILL

1 _____ V~.____ 1 __ _

Inactive
1 ?TASK 1 Active 1 Task Scheduler 1 Active 1
1-----> 1 Ready 1-------------IExecuting I
I I I I I

1_--_--_1 1.1 1 1

'?IDRDY ,. ?IDSUS ?SUS
?PRRDY ?PRSUS ?IDSUS
?XMT ?PRSUS

----->1 Active 1

?REx::
?XM'lVl

_____ .ISuspended 1<--------
I 1

Figure 5-7. Task States

To disable scheduling, you can issue either the ?DRSCH system call,
which does not return an indication of the prior state of scheduling,
or you can issue ?DFRSCH system call. which do~. Both the
?DRSCH and the. ?DFRSCH system calls are very dangerous in that they
can disrupt tne entire multitasking environment. Therefore, do not
use these system calls unless you are very certain that they are
precisely what you need.

To re-enable scheduling after you have disabled it with a ?DRSCH or a
?DFRSCH syst.em call. issue ?ERSCH.

Task Suspension

. Several different events, including sane system calls, will suspend
an active task. To explicitly suspend a task, issue one of the
following system calls:?SUS. ?IDSUS. or ?PRSUS. Certain other
system calls suspend the calling task while they perfonm their
functions. Sysytem calls of this kind include the I/O system calls
?READ and ?WRITE. system calls to acquire system resources, and
system calls that depend on another task's response, such as the
?XM'lVl and ?REC system calls.

Tasks compete for all system resources (including the CPU),: Only
"ready" tasks can compete for the CPU. A task is ready if it is not
waiting for sane event to complete (that is suspend). If a task is not
ready. then it is suspended.

AOS/VS Internals Chapter 5 Page 5-69

A task becomes suspended when it:

o Is part of a proces that the ?BLKPR system call has blocked. To
do this, the ?BLKPR system call suspends all tasks within the
process.

o Issues an explicit request to suspend itself or another task
within the same process (via the ?IDSUS and ?SUS system calls).

o Issues an explicit request to wait for a message fran another
task wi thin the same process (via ?REC and ?XMTW system
calls) •

o Issues certain (most) system calls. A system call is usually a
request to use same system resource.

If every task in a process is suspended, then the process is
blocked. To block a process (that is, suspend every task), you must
issue the ?BLKPR system call. When you have explicitly blocked a
process with the ?BLKPR system call. you must issue he ?UBLPR system
call to unblock that process.

The ?WDELAY system call suspends a task for a specific amount of
time. This allows you to synchronize tasks or to temporarily suspend
a task until same asynchronous event has completed.

Task Readying

Atask remains suspended until the event that caused the suspension
completes or until the suspended task is "readied" by AOS/VS or by
another task.·

Tasks become ready when:

o A task that was suspended by a ?blkpr system call against its
process is explicitly unblocked by the ?UBLPR system call and the
task is not suspended for any other reason.

The ?BLKPR and ?UBLPR system calls work together. Therefore. the
?UBLPR system call can only unblock processes that were blocked
by the ?BLKPR system call.

o A task issues an ?IDRDY or a ?PRRDY system call to explicitly
request that AOS/VS ready another task. (The ?IDRDY system call
readies a task of a given TID and the ?PRRDY system call readies
all tasks of a given priority).

In this case, the task that is being readied must r:ave been
previously suspended by a ?SUS. ?IDSUS. or ?PRSIlS ~ystem call.
In addition, the task that is being readied must bElong to Ule
~iame process as the task that issues the ?IDRDY system call.

o :\ message fo)" whic\ the task 'vias fi:pJicHly r~'.'<1Ucsi ed to "laiL·

ADSiVS Internals Chapter 5 Page 5-10

becomes available. In this case, the tsk only becomes ready when
the message is fran another tsk wi thin the same process.

oA systEm resource becomes available after an implicit wait for
that systEm resource during a systEm call.

o A task issues a task~kill systEm call (?IDKIL or ?PRKIL) or a
redirection systEm call (?IDGOTO) against a suspended task.
(Before AOS/VS executes the systEm call, it automatically reaqies
the target tsk.)

Task Redirection

To redirect a task's activity without killing it, you must issue the
?IDGOTO systEm call. The ?IDGOTO systEm call stops the task's
current activity (or readies the task, if the task was suspended) and
then directs the task to a new location. The task begins executing
at the new location as soon as it regains control of the CPU. The
task's priority rEmains tpe same.

Typically. you use ?IDGOTO to interrupt a task after a CTRL-C CTRL-A
console interrupt sequence. (A CTRL-C CT~ sequence interrupts
console output.) ,

Inner-ring Task Redirection Protection'

Tasks executing in critical sections of an inner ring cannot 'tolerate
being redirected by tasks executing in outer rings. However, task
redirection is a common method of responding to external events. In
fact, typing a CTRL-.G CTRL-A console interrupt sequence frequently
causes an ?IDGOTO systEm call to perform task redirection On the main
task(s) of a process. Therefore. to solve this problem, ADSIVS
provides you with the ?TLOCK and ?TUNLOCK systEm calls, which allow
you to control whether a task can be redirected by a task-redirection
systEm call. (The task redirection systEm calls are ?IDGOTO. ?IDKIL,
?PRKIL, ?IDSUS, and ?PRSUS.)

The ?TLOCKsystEm call allows a task 'that is executing in an inner
ring to lock itself against task-redirection systEm calls issued by
another task that is executing in a higher ring of the same process.
The ?TUNLOCK systEm call unlocks a previously locked task.

A task can issue a ?TLOCK systEm call to protect itself fran being
redirected by ay task that is in a higher ring or, optionally. in
the same ring. The ring-maximization protection scheme governs which
tasks can and cannot redirect a task. (In other words, only' a
task-redirected sys~Em call that originates from the same ring or in
a lower ring can redirect a locked task.)

If a task issues a task-redirection systan call. but the task it
wants to redi rect (the tc.rge t task) is locked, the calling task wai t5
until the target task i~sues enough nUNLOCK syslan calls to unlock

,AOS/VS Internals Chapter 5 Page 5-71

the rings that are lower than the ring in which the calling task
resides.

If a task issues a ?PRKIL or a ?PRSUS system call whose input
priority specifies more than one protected task, AOS/VS makes a note
of all tasks of that priority when the ?PRKIL or ?PRSUS system call
occurred. If the redirecting task must wait because one or more
target tasks are locked, the task will only wait until all the noted
locked tasks issue enough ?TUNLOCK system calls to allow the
r"edirection to occur. If a redirecting task specifies more than one
task, the redirection may occur separately (depending on whether one
or more of the target tasks are locked). However. in this case, the
task-redirection system call will not complete until all the
specified tasks have been redirected.

As input to the ?TLOCK system call. you can specifY a double word
mailbox in AC2, if you want AOS/VS to inform your protected task when
another task is trying to redirect it. AOS/VS will set a nonzero
flag in this mailbox if another task's redirection request is
waiting.

To protect a task from being redirected by another task within the
same ring, set the ?TMYRING flag in ACO when you issue the ?TLOCK
system call.

If a task in an inner ring is redirected to a higher ring, then
AOS/VS resets the stack pointer and frame pointer for each affected
inner ring to the stack base of that ring on behalf of all loaded
user rings that are less than or equal to the redirected higher ring.
This means that if a task in Ring 5 is redirected to Ring 7, AOS/VS
resets the ta~k's stack and frame pointers for Rings 5 and 6.

Task Termination

You can kill (terminate) a task explicitly or implicitly. To
explicitly kill a task, issue one of the following system calls:

?IDKIL
?PRKIL
?KILL

Kills a task of a certain TID.
Kills all tasks of a certain priority.
Kills the calling task.

To kill a task implicitly. begin the new task with a WSSVS or WSSVR
(wide-save) instructions, and end it with a WRTN (wide-return)
instruction. As AOS/VS executes the initial wide-save instruction,
it saves the contents of AC3 as the return address for the task. At
this point. AC3 contains the address of the task-kill routine (placed
in AC3 during task initiation). When AOS/VS executes the WRTN. it
passes control to the return address in AC3j that is, the task-kill
routine

Because killing a task does not guarantee an orderly release of its
user-related resources, you may want to define a ki1 ~-processing
routine for this pUfDose (for example, to close the ';ask's currently

AOS/VS Internals Chapter 5 Page 5-72

open channels).

You can define either a unique kill-processing routine for each task
or a. general kill-processing routine/for all tasks within a process.
?KILAD, which you issue after task initiation, defines a unique
kill-processing routine that is then invoked when you isssue ?IDKIL or
?PRKILL. If you define a general kill-processing routine, assign the
routine the label ?UKIL and link it with your program. You can use
both ?KILAD and user-defined ?UKIL kill-processing routines within
the same program.

If there is no user-defined ?UKIL routine to kill a task, AOS/VS uses
the d~ ?UKIL routine in URT32.lb. This routine returns control to
ADS/VS. which then kills the task. ?UKIL kill processing is only
invoked on behalf of tasks that initiated processing within Ring 7
(that is, tasks whose initial PCs are Ring 7 addresses).

Task Creation and Termination Detection

Typically. a local ser'ver needs to maintain accurate task-specific
databases. Therefore. to keep those task-specific databases
accurate. a local server must be able to keep track of when tasks are
created and when they terminate. This action describes how ADSIVS
helps an inner-ring server to detec~ when a task is created and when
it is terminated.

All active tasks have distinct Unique Storage Position (USP) "
pointers associated with Rings 4 through 6. Ta~ks within 32-b~t
processes alsq have a USP pointer associated with Ring 7". A
double-word pointer at location ?USP within a ring specifies the USP
pointer for a given task within the ring. The USP pointer allows
tasks" to keep track of task-specif~c databases associated with a
particular ring.

When a process issues a ?TASK systan call to create a task, ADSIVS
initializes all the USP pointers associated with that task to zero.
When a custaner issues LCALL to enter a local server, the local
server can examine the USP pointer to "that inner ring. The local
server can interpret a zero USP pointer to mean that this is the
task's first visit to the local server. In this case, the local
server can initialize any task-specific databases for that initially
entering task.

AOSIVS uiquely identifies every task within a process to aid in
identifying task-specific databases with their tasks. The ?UIDSTST
systan call returns the unique TID associated with a given task.

When a task tenninates, AOSIVS serially invokes a ?UKlL posprocessor
for each loaded user ring whose ring mJllber is less than or equal to
the ring specified by the task's initial PC. Local servers can use
the ?UKIL postprocessor to update or deallocate task-specific data­
bases, as appropriate. The ?UKIL routjne should not. issue systan
calls.

AOS/VS Internals Chapter 5 Page 5-73

Several ?UKIL postprocessors (one per ring) can be associated with a
process. However. only one ?UTSK postprocessor can be associated
with a process. AOS/VS only invokes a ?UTSK postprocessor on behalf
of tasks that are to be executed in Ring 7. The ?UTSK postprocessor
must reside in Ring 7.

Task-to-Task Communications

AOS/VS provides an intertask communications facility that you can use
to synchronize tasks or pass messages among them. The following
systan calls allow tasks to communicate with one another:

?XMT

?XMlW

?REC

?RECNW

Transmits· an intertask message

Transmits an intertask message and awaits its reception

Receives an intertask message; suspends the ?REC caller
if there is no message currently available

Receives an intertask message; does not suspend the
?REC caller if there is no message currently available

Tasks deposit messages in and retrieve them from 32-bit locations
called mailboxes. Before you can send a message with an ?XMT or ?XMTW
systan call. you must ini tilize the appropriate mailbox to zero.

Timing is a factor for both the ?XMTW and the ?REC systan call. If a
sending task issues an ?XMTW systan call before another task issues a
complementary receive, AOS/VS suspends the sender until the receive
occurs. Likewise, if a task issues a ?REC systan call against an
empty mailbox (the sender has not transmitted the message yet),
AOS/VS suspends the receiver until the transmission occurs.

THe ?XMT and ?RECNW systan calls maintain the calling task in the
ready state. regardless of the timing of the transmit and receive
sequence. If a task issues a ?RECNW systan call against an empty
mailbox, the system call fails, and AOS/VS returns an error code to
ACO.

You can use the ?XMT and ?XMTW systan calls to "broadcast" a message;
that is, to send the message to all tasks currently waiting for the
message. If you do not select the broadcast option and more than one
task is waiting for the message, AOS/VS sends the message to the
receiver with the highest priority.

Cri tical Region Locking

You can use the intertask communications systan calls to lock or
unlock a critical region. A critical region is a procedure or
database that all tasks share. but that is available to only one task
at a time. To protect a critical region, you must define a mailbox
to synchronize task execution within the critical region. A task
gains control of a critical region by issuing a successful receive
against that mailbox. The procedure for locking and unlocking a

AOS/VS Internals Chapter 5 Page 5-74

critical region is as folloWs:

o First, a task initializes the locking facility, by either setting
the mailbox to a nonzero value or by issuing the 1XMT system call
"without broadcast" fran the initializing task to the mailbox.
(The ?XMT system call message may specifY the address of the
critical region.)

o Second, a task locks (gains exclusive control of) the critical
region by issuing an ?REC system call against the mailbox.
AOS/VS suspends other tasks that issue subsequent ?REX: system
calls against the mailbox.

Once a task has locked a critical region, it remains locked until the
task issues another ?XMT system call to unlock it. If more than one
task is waiting for control of a critical region (that is, more than
one task was suspended by a ?REX: system call to the mailbox), the
second ?XMT system call readies the highest priority receiver. which
then gains control of the critical region.

You can also lock a critical region implicitly by issuing a ?DRSCH
system call. which disables all task scheduling in the calling
process, or a ?DFRSCH system call. which not only disables all task
scheduling in the calling process, but also returns indication of
the prior state of scheduling. If you use a ?DRSCH or a ?DFRSCH
system call to lock a critical region, you should use a ?ERSCH system
ca~l to unlock it. However. ?DRSCH and ?DFRSCH system calls can be
dangerous because they disable all multi task sch¢uling for the
calling process. . .

Unless absolutely necessary, you should avoid the ?DRSCH and
?DFRSCH system calls. Although there are may be times when you need
to issue one of these system calls, ·such as to control a "race"
condition between two tasks that arecampeting for the same critical
region, you must use them with discretion. Disabling task
scheduling, even briefly. can disrupt the entire multitasking
environment.

The ?ERSCH system call re-enables multi task scheduling for the
calling process.

Aos/vs Internals Chapter 5 Page 5-75

The Interprocess Canmunications (IPC) Facility

AOS/VS allows processes to communicate with each other through the
Interprocess Canmunications (IPC) facility, which allows you to:

o Transmit variable-length free-form messages from one process to
another

o Synchronize processes during execution.

You can use the IPC facility to pass arguments fran a father process
to a son process and return the results to the father before the son
terminates. If there is a delay between the father's receive request
terminates. If there is a delay between the father'S receive request
and the son's message, AOS/VS pends the father process until the son
process responds, thereby synchronizing the two processes. AOS/VS
uses the IPC facility to send messages to father processes to notify
them of their sons' termination.

The following primitive system calls allow you to send and/or receive
IPC messages:

?IS END
?IREC
?IS. R

Sends an IPC message
Receives an IPC message
Sends and then receives an IPC message

For each of these system calls, you must supply a header (packet)
that includes the origin and destination of the message, its length.
its address, ~nd other information about the connection.

During each IPC transmission, portions of the sender's header over­
write portions of the receiver's header. In fact, some transmissions
consist solely of passing header information from the sender to the
receiver.

To use the primitive IPC system calls, ?ISEND and ?IS. R, the calling
process must have privilege ?PVIP, which is one of the optional
privileges you can specify when you create a process with the ?PROC
system call.

If the calling process does not have ?PVIP privilege, it must use
the IPC facility as a standard peripheral device, which it can then
access by device-indepenent I/O techniques. Also. you can use the
connection-management facility. to establish communications
between processes. (Note that is a process is a declared customer
under the connection-management facility, it does not need the
?PVIP privilege to issue the ?IS.R system call.)

AOS/VS Internals Chapter 5 Page 5-16

Sending Messages Between IPC Ports

ADS/VS send IPC messages between ports. Ports are full-duplex
communications paths that a process identifies by port. nl.ll1bers. There
are two types of port n\lObers:

o Local port numbers

Local port numbers are values that the IPC caller (either the
sender or receiver) defines to identify its own ports.

o Global port numbers

Global port numbers uniquely identify each port currently in use
systan wide. Global port n\lObers are made up of a process's PID,
its local port number.and its ring number. When a process
refers to its local port in an IPC systan call. ADS/VS translates
the local port number to its global equivalent. The ?TPORT
systan call performs this translation.

When a process sends an IPC message, it defines a local port n\lOber
for the connection, then it specifies that· port number and the
destination's global port number in tbe IPC header. The receiving
process issues a complementary receive system call and, like the '
sender. defines its own local port nUmber and specifies the sender's
global port n\lOber. If the port specifications on both ends match
(including target ring), AOSIVS sends the messag~.

a process must use a global port n\lOber to refer to another process's
port. HoWever. 'because global port numbers depend on the systan
environment. they frequently change during subsequent process
execution. To circumvent this problem. potential IPC users can issue
?CREATE system call to create IPC files, which serve as ports.
Then, these same users can define the local port numbers before they
issue IPC system calls. As AOS/VS executes the ?CREATE system call.
it translates the local port n\lObers into glob1l port n\lObers.
Potential senders and receivers can then issue ?ILKUP system calls
against the IPC file to determine its global port n\lOber.

When you issue the ?CREATE system call to create an IPC file, AOSIVS
saves the nlnber of the ring from which the systan call was issued in
the new IPC file. The global port nl.ll1ber. which ?ILKUP returns,
incorporates this same ring number. AOS/VS interprets all global
port numbers as containing ring fields.

The ?ISEND and ?IS.R systan calls interpret ring fields (within
global port numbers) as follows: '

Offset ?IDPH(the global port nllllber) must always contain a
valid user ring number. The ring number specifies the ring to
which the message wHl be sent. HCMever. the caller must have
appropriate privileges to send a message to that ring within
that partil"l'19r pr,,\('"''''''

:AOS/VS Internals Chapter 5 Page 5-77

The ?IREC system call interprets rir.g fields (within global port
numbers) as follows:

Offset ?IOPH (the global port number) can contain either a
"valid user ring number or a zero ring number. A nonzero ring
number indicates that?IREC returns a message only from sends
issued from the specified origin ring within th~ specified origin
process. A zero ring number indicates "that ?IREC will return a
message from any ring within the specified origin process that
sends a message destined for the ?IREC caller's ring. (You can
use the ?IMERGE system call to construct a global port number
with a zero ring field.)

When you include ring fields as part of global port numbers, the
?IREC port-matching rules are affected in that if the receiver
specifies a non-zero ring field in an otherwise zero global header, a
ring-specific global receive takes precedence after explicit matches.

To identify the PID that is associated with a particular global port
number, you must issue the ?GPORT system call. Conversely. if you
~lOW the name of the PID of a console's associated process, you can
identify its console port-number by issuing the ?GCPN system call.

The ?ISPLI system call extracts the ring field from a global port"
number. while the ?IMERGE system call permits bothe16- and 32-bit
users to modifY the ring field within a global port number.

AOS/VS Internals Chapter 5 Page 5-78

Connection Management

AOS/VS allows y~u to establish a customer/server relationship (called
a connection) between processes, and then use the server process to
perform certain functions on behalf or its customers. Typically, a
server process performs general routines that customer processes can
access. For instance, you can create a server process to build files
or perform I/O.

Connection management allows servers to move bytes to and from' their
customers' buffers.

Connection Creation

To make a connection between two processes you must define one
process as the server and the other as the customer. To do thiS,
issue the ?SERVE system call to ,define the calling process as a
server. and issue the ?CON system call to define a customer and
establish the logical connection between the customer and an existing
server.

AOS/VS maintains a connection table, which manages exchanges between
customers and servers. When a customer makes a connection (via the
?CON system call) with a declar~ se'rver, AOS/VS writes an entry in
the connection table that specifies the PID of the server, the PID of
the customer. and the customer's ring field. F~ch ?CON system qall
generates one connection-table entry.

A process can act as a server for other processes and can also act as
a custOmer of other servers as long as it issues the appropriate
number of ?SERVE and ?CON system calls. A process that acts as both
a server and a customer is called a multilevel connection.

You can make a double connection between two processes. A
double connection allows each process to act as ether the customer
or the server of the other. depending on the action to be performed.
A double connection requi res that two ?SERVE system calls and two
?CON system calls. AOS/VS creates twQ connection-table entries,
one for each ?CON system call.

Fast Interprocess Synchronization

Frequently identical local servers loaded into different processes
will use a comnxm shar~ memory file for global synchroniza tion.
PDS/VS includes a fast interprocess synchronization facility that
common local servers can use to pend and unpend tasks, depending on
the state of databases in that shar~ memory. '

The fast interprocess synchronization mechanism, which uses the
?SIGNL, 7WTSIG, and ?SIGWT system calls, provides you with another
way of synchronizing processes. Unlike the IPC system calls, the
fast interprocess synchronization system calls do not move any data.
Instead, they allow a task within a process to send and receive

,AOS/VS Internals Chapter 5 Page 5-79

task-specific signals to and from the same or another process.
Because they do not move data. ?SIGNL, ?WTSIG, and ?SIGWT are very
fast. and they require very little system overhead.

When a task issues a ?SIGNL or a ?SIGWT sytan call, the target does
not have to be waiting to receive the signal. Instead, AOS/VS
remembers the task-specific target. A subsequent ?WTSIG or ?SIGWT
system call issued by the target task causes the target task to

. proceed immediately. A ?WTSIG system call, however. will pend the
caller if a signal for the task is not outstanding.

Unlike the IPC system call ?IS. R. the ?SIGWT system call does not
force the calling task to. wait for a signal from the same task that
it signaled. Any signal that specifies the pended task will wake up
that task. .

No privileges are necessary to issue the ?SIGNL, ?WTSIG, or ?SIGWT
system calls.

AOSIVS Internals Chapter 5 Page 5-00

User Device Support

AOSIVS supports' a wide variety of user devices, such as magnetic tape
drives, disk drives, and line printers, which you us\Blly define
during the systEm-generation procedure. However a process that has the;
?PVDV privilege can define and enable devices at execution time.

Devices that you define and enable during the systEm-generation "
procedure are called systEm-defined devices. Devices that a pr~ess
with the ?PVDV privilege defines and enables at execution time are
called user-defined devices. This seCtion describes those systan
calls that allow you to use both systEm- and user-defined devices.

AOSIVS supports a maxinun of 64 user (that is, systElD-!odefined andlor
user-defined) devices per 1/0 systan. You can use any device code in
the range fran 1 to 63, as long as you do not use codes that are
already in use. (Note that AOSIVS reserves many device codes for its
own use.)

. To introduce a user-defined device to AOSiVS at execution time, you
must issue the ?IDEF systan call. As inp~t to the ?IDEF systan call,
you must supply:

o A device code for the new 'device.

o The address of the device control table (DCT) you defined
for the new device.

The DCT speci.f1es the address of the user-defined device t s interrupt
service" routine. You must supply to AOSIVS the follOWing information:

1. The address of the interrupt service routine

2. The address of the power-failure/aut.o-restart routine or,
if you do not want to use such a routine, -1.

3. the interrupt' service mask.

To ranove a user device, issue the ?IRMV "system call.

?IDEF System Call Options

When you issue the ?IDEF systan call. you can select any of the
follOWing options:

o Burst Multiplexor (BMC) 1/0

o Data Channel (DCH) map A.

o DCH map B, C, or D.

o Neither BHC or DCH 1/0.

· AO:3/V~; Internals Chaptel' 5 Page 5-81

Y()U can select either burst multiplexor (BMC) 1?0 or data channel
(DCB) J /0 for a user'-defined device by selecting cer'tain options when
Yl.'U issue the nDEF systan call. (In general your choice depends on
the dey ice I s design.)

11' you want to use the BMC map or DCH B, C, or D maps, you must
u::;e an ~xtended map table. However. you can define (issue the ?IDEF
sy::;tan ~all against) a device that is on DCB map A without using an
extended map table. To do this, you must specifY that you do not
w,mt to use the extended map table in the acclmulators when you issUe
the ?IDEF systan call. This option, does not allow you to specifY
the fi f'st acceptable map slots y.our applica ti.on needs.

However. if you do not want to use either DCH or SMC I/O, you must
specify this option in the accumulators when you issue ?IDEF. Also,
if you do not want to use either DCB or SHC I/O, you do not have to
use the extended map table. '

Burst multiplexor I/O requires pr'ogran control only at the beginning
of each block transfer. Therefore. BMC I/O is generally faster than
DeH I/O. Typically, the SMC rate is about half the memory rate.
al though the ex~ct transfer rate var'ies from implementation to .
implementation. Note that not all user-deffined devices have BMC
hardware.

If you use extended form of ?IDEF, you can select specific DCB or
B~:C map slots. Each MV/8000 DCH map consists of 32 map slots,
mmlbered 0 through 37 (octal). The MV/8000 BMC map consists of 1024
map slots, numbered 0 through 1777 (octal).

Fach map slot (DCH and BMC) address 1K memory words. The hardware
uses three map slots to map data from the device to memory during
data transfers.

To select a particular DCH map or the BMC option, you must perform
the follOWing steps: .

1. Set up a map definition table in your logical address space.

'2. Issue the ?IDEF systan call.

When you issue the ?IDEF systan call, AOS/VS allocates--but does not
initialize--map slots. To initialize these map slots, you must issue
the ?STMAP systan call.

If you issued the ?IDEF system call with the DCH map-A-only option,
then you can issue only one ?STMAP systan call to initialize the map
slots allocated on DCH map A. However. if you issued the ?IDEF systan
call with the extended-map-table option, you can issue more than one
?STMAP systan call. Each ?STMAP systan call, in turn, initializes a
different group of map slots. (The map definition table entries
define each group of map slots.)

AOSIVS Internals Chapter 5 Page 5-82

When you issue the ?STMAP system call. you can initialize part of a
group of map slo.ts that is defined in a map definition table entry.
For example, if entry 2 has allocated 10. map slots on the BHC, an
?STMAP system call only initializes 5 of the 10. 'map slots.

(Fora detailed description of BHC I/O, DCH I/O, and the DCH maps,
refer to the 'Principles of Operation 32-Bit Eclipse systems'
manual.)

User Interrupt Service

To define a user device to AOS/VS, you must issue the ?IDEF system.
call. Each device, such as a disk, is progranmed to do a particular
jQb •. When a device starts doing its job, the CPU and AOS/VS ignore
that device. As soon as the device completes its job, it signals the
CPU that it is done. This signal is called an interrupt.

When the CPU detects an interrupt, it stops doing whatever it is
dOing, so that.it can "service" the interrupt. Servicing an
interrupt means that AOSiVS passes control to the appropriate
interrupt service routine. To do this, AOSIVS must pass a vector
through the interrupt vector table, which is a hardwar&-defined
index. .

The interrupt vector table contains' an entry for each device. Each
entry points to a DCT, which contains the address of the interrupt
service routine that will service, a particular interrupt.

The ?IDEF system call directs AOSIVS to build "a system DCT and enter
it in the interrupt vector table. Conversely. the ?IRMV system call
clears the device's DCT entry fram the interrupt vector table.

The device's DCT also contains the' current interrupt service mask.
The current interrupt service mask is a value that specifies the
devices that can interrupt the user-defined device.

Before AOS/VS transfers control to an interrupt service routine. it
performs the follOWing steps:

1. Loads AC2 with the address of the interrupting device's DCT.

2. Loads ACO. with the current interrupt service mask.

3. Takes the current interrupt service mask and incluseively ORs it
wi th the interrupt service mask in the DCT.

4. Saves the current load effective address (LEF) state. LEF mode
is a CPU state that allows AOS/VS to correctly interpret MV/80O.O.
LEF instructions.

5. Turns off LEF mode.

The inclusive-OR operation establishes which deVices, if any, can
interrupt the interrupt service routine that is currently executing.

AOS/VS Internals Chapter 5 Page 5-83

AOS/VS restores LEF mode when you issue ?IXIT system call to
dismiss your interrupt.

A process in an interrupt service routine can issue only three system
calls:

o ?IXMIT. which sends a message to a task outside the interrupt
service routine.

o ?SIGNL, which signals a task within your own or another process.

o ?IXIT. which exits from an interrupt service routine.

AOS/VS does not save the state of the MV/8000 floating-point
registers when a process enters the interrupt service routine. If
necessary (for example, if you want to use floating-point
instructions), you can save the state of the floating-point registers
when the interrupt service routine receives control and restore that
state before you issue the ?IXIT system call.

User Stacks

Each user task has its own user stack. A user stack is a data
structure to which the contents of certain Page 0 hardware locations
point. The contents of these hardware locations are called stack
pointers. Whenever a task runs, AOS/VS must first load that task's
stack pointers into hardware locations octal 20 through 26. This
allows the task to use its stack.

When user-defined device interrupt handler receives control at
interrupt level, the stack that AOS/VS loads into the Ring 7 hardware
registers is the stack of the last user task that was running.
AOS/VS does not set up a stack for your interrupt service routine.
Therefore, to use a stack, you must set uup your own.

Before you issue the ?IXIT system call to exit from the interrupt
service routine. you must perform the following steps:

1. Save the current hardware stack pointers.

2. Restore the current hardware stack pointers to the hardware.

Communicating from an Interrupt Service Routine

Multitasking halts when a device interrupt occurs. However. an
interrupt service routine can communicate with an outside task by
issuing the ?IXMT system call. The ?IXMIT system call transmits a
message of up to 32 bits from the interrupt routine to a specific
receiving task outside the sending routine. There is a location in
the system OCT that serves as a mailbox for the message. The
external task receives the message by issuing a ?IMSG system call
against the OCT associated with the interrupt routine.

AOSIVS Internals Chapter 5 Page 5-84

You can issue ?IXMT and ?IMSG system calls in any order. If the
?IMSG systan call occurs before the ?lXMT systEm call. AOSiVS
suspends the receiving task until the ?lXMT sys~an call occurs. If
the ?lXMT systan call occurs first. AOS/VS posts the message in the
mailbox until the receiving task issues the ?It-6G systan call.

You cannot use the ?lXMT systEm call to broadcast a message.

Enabling and Disabling Access to all Devices

Processes can issue I/O instructions from their tasks to all syst6ll
and user devices. When a process issues a ?DEBL systEm call. AOS/VS
enables device 1/0 and disables LEF mode, which allows tasks within
the calling process to issue 1/0 instructions. Note that the 1/0
enable and LEF mode states are process wide, and therefore. affect
all tasks.

The ?DEBL and ?DDIS systan calls work in parallel with the LEF mode
system calls ?LEFE, ?LEFD, and ?LEFS.

No device 1/0 can occur while the CPU is in LEF mode, because LEF
instructions and 1/0 instructions use the same bit patterns.
Similiarly. when LEF mode is disabl~, AOSIVS executes LEF
instructions as if they were 1/0 instructions. Thus, the deciding
factor for executing LEF and 1/0 instructions is the state of the
CPU; that is, whether it is in LEFmode or 1/0 mode.

Note that the?DDIS system call. which disables 1/0 mode, does not
automatically re-enable LEFmode. To disable I/O mode, and re-enable
LEF mode, you must issue the ?LEFE system call. Also, the ?LEFD
systEm call. which disables LEF mode, does not automatically
re-enable I/O mode. To perform these two functions, you must issue
the ?DEBL system call.

LEF Mode

LEF mode (load-efective-address mode). is the CPU state that protects
the 1/0 devices from unauthorized access. 1/0 instructions and LEF
instructions use the same bit patterns. AOS/VS decides how to
interpret these instructions by checking the LEF rr.ode state and the
state of the complimentary 1/0 mode.

LEF mode and I/O mode are mutually exclusive. When the CPU is in LEF
mode, all 1/0 instructions execute as LEF instructions; therefore.
I/O cannot take place in this state. Conversely. the CPU must be in
LEF mode to execute LEF instructions properly.

AOS/VS provides the following system calls to check and alter LEF
mode:

?LEFD
?LEFE
?LEFS

Disable LEF mode
Enable LEF mode
Returns the current LEF mode status.

AOS/VS Internals Chapter 5 Page 5-85

Each process begins with LEF mode enable. AOS/VS disable LEF mode
when a process enters a user device routine, and restores LEF mode
when the process exits from the routine.

Power-FailurelAuto-restart Routine

If you specify an extended DCT within the '?IDEF system call--provided
you have the necessary battery backup hardware--AOS/VS will restart
your user devices after a power failure. The DCT extension (offset
?UDDRSJpoints to a power-failurelauto-restart routine. When a power
failure occurs, AOS/VS transfers control to the auto-restart routine,
with the DCT address in AC2, and the current systan mask in ACO.

AOS/VS checks to see if there are any user-defined devices that have
associated power-failure/restart routines if auto-restart is enabled.

(During the auto-restart routine, AOS/VS enables interrupts and masks
out all devices. This allows AOS/VS to recognize only power-failure
interrupts.) AOS/VS transfers control to the auto-restart routine
with a system mask of -1, which cannot be changed. The states of
both the devices and the data channel map are undetermined after a
power failure.

AOS/VS Internals Chapter 6 Page 6-1

SHAPTER 6 - DISKWORLD
(AOS/VS revision 5.00)

This chapter explores the diskworld of AOS/VS. Its databases are
detailed here along with the structure of the physical disk. The modules
which make up the file system are also listed.

ACLST

ACPRV

BUFIO

CACHE

- process ACL' s
entry points

DACL.P - set up default ACL
SACL.P - set ACL
ISACL.P- search a system file and system ACL
JSACL. P- search a user file and user ACL
KSACL.P- search a user file and system ACL
VSACL.P- search an IDP to file's PIB in system

ACL CCB must be locked
GACL.P -get a files ACL

- set up access privleges
entry points

ESTAC.P - establish access privileges user name
in process table

PESTAC.P- establish access privileges user name
in process table

UESTAC.P- establish access privileges user name
in user space

TMATCH.P- check if a string matches template
GTACP.P - given user name get ACL privilege for

file
SATR.P - set a file's attributes
ASCAN.P- verifY that ACL's are correct

- disk buffer I/O
entry points

BUFIO - start of module
NQBHR - enqueue buffer hdr on LCB
NQBH1 - enqueue on UDB

, NQUCN - enqueue a BH to UNICORN type device
BWAIT - wait for BH request
STUNT - disk starter routine
rODON - request done processing
PPBSY - post process for system buffer I/O
PPBMD - post processor for systE!il buffer I/O

readies LCB's waiting for buffers
CTLIN - checks for controller interference

- use system cache buffers
entry points

ONLCB - add buffers on FCB to LCB
SRCLCB- loak for buffer on LCB
OfFLCB- remove buffer from LCB list
SLCB - search LCB
CLRLCB- remove buffers from LCB
DELLCB- delete deallocated blocks from LCBs

AOS/VS Internals Chapter 6 Page 6-2

CLOSE

CPDCK

CPDUP

CREATE

DE

DEBKS

DINIT

DIRST

- file closing support
entry points

ICLOSE.P - internal close
RCLOSE. P - close a file and' reserve the channel
SCLOSE. P - close a shared file
GCLOSE.P - plain user close
ECLOSE.P - special system close
KFCB.P - kill a user FCB
KCCB.P - kill a system CCB
KCCBE.P - kill a system CCB and exit

- control point directory hierarchy
entry point

CPDCK - check control point hierarchy to se if it
will allow a file to grow

- control point directory update
entry points

CPDUP - update control point directory to
reflect the growth of a file

- create a file
entry points

CREATE.P - user call to create a file
ICREATE.P- internal call to create a file
VCREATE.P- internal call to create a volume

entry LDU
BCREATE.P- int'emal call to create a breakfile
PCREATE.P- internal call to create a page/swap

file
- delete a file

entry points
DELETE.P - delete a directory entry
IDELETE.P- internal directory entry delete
UDELETE.P- in~emal directory entry delete
VDELETE.P- delete a volume directory entry
CLDEL.P - delete a directory entry that has

just been created
DIPCF.P - delete process' IPC directory entries

- de-allocate blocks
entry points

DESKS
DEBLK

- disk initialization
entry points

- de-alloca te 'n' blocks
- de-allocate 1 block

DINIT.P - disk initialization segment 1
- directory manipulation

entry points
DIR.P
RDIR.P

CPMAX.P

- change working directory
- release tenninating proc's working

directory and default directory
- set control point directory's max

size
FSTAT.P - get file status

AOS/VS InternOals Chapter 6 Page 6-3

DPANQ

DSKIO

DUMPR

SSD

i{FSIN

~ moving head disk enqueue
entry points

- disk release
en try poi n ts

DPANQ - moveing head disk enqueue routine

DRLSE. P - release a disk
IRLSE.P - internal disk release
SDOWN.P - shutdown the system

- disk I/O module
en try poi n ts

DSKIO - start of module
NQCCB - enqueue CCB
RUNLC - run any ready requests
CWAIT - wait until a CCB request finishes
LCBWU - wake up IOCBs waiting for a buffer
IOWLK - wake up IOCBs waiting on a locked buffer
RIOCB - release an IOCB to free chain
WAIT - wait for an event to occur
IOWU - wake up IOCBs waiting on a bit map
IOWUNU- wake up IOCBs waitng on a bit map, t.he

lock is already free though
IWWU - wake up IOCBs wainting on LCB withdraw

lock
PPCUS - post processor for user CCB requests
PPCUB _. ?BLOCKIO post processor for user CCB
request
PPCBI - post processor for CCB blkin requests
PPCSY - post processor for system CCB requests
PPCSR - post processor for system shared reads

- core dump routine
en try poi n ts

DUMPR - dump start address
WTAPE - tape write routine

- emergency shutdown procedures
entry points

ABORT - ESD processing jumped to 50-51
ESDQ - ESD shutdown processing
STOP 1 - "DRLSE" jumps here on shutdown
DCHON - data channel mapping on all channels
PZERO - running copy of page zero
SIPZLN- length of page zero for sinit
ESDFLT- page fault handler entry °

CLR - clear memory
- kernel file system interface

entry points
NQLDRQ - enqueue a logical disk request
RECAL - enqueue a recal request
GSTS - enqueue a disk status request
NQCRQ - enqueue a channel request
CH.ACC - return a channel's access privileges
CH.EOF - return a channel's EOF
CH.FTY - return a channel's file type
CH. LDA - return a chanel' s logical disk addt'ess

•

AOSIVS Internals Chapter 6 Page 6-4

OPEN

RES1.2

RESLV

SGSB3

- open file processing
entry points

GOPEN.P - standard user open
SOPEN. P - user shared open
SOPPF1.P- protected shared file open, 1 st open
ROPEN. P - AGENT only reserved open
IOPEN.P - internal open
XIOPEN.P- internal exclusive open
EOPEN.P - internal open with user name
XEOPEN.P- internal exclusive open

- network resolves
entry points

NRSLV.P - networking resolve continued
REXTN.P - read the extender
RNAME.P - ?RNAME systan call
FFCB.P - find an FCB
LOClWP.P- loci{ up a filename in a directory

- resolve a filename
entry points

GRSLV.P - ?GNAME resolve
RESLV. P - search for disk files in the pa thname
WRSLV. P - search for disk files in pa th execept

last which cannot exist
,DRSLV.P - search for files in path last must be

a directory
RRSLV.P - ?GFNAME resolve
LKRTN.P - return from link resolution

- file systan and systan call processing subroutine
entry points '.

SGSB3 - start of module
DQBCN - dequeue buffer header from LRU
IMTB - (interrupt level) move bytes
FPLOK - pend lock an FCB
FPULK - un-pend lock an FCB
PLOCK - lock cxpblk for locking disconnects

while PMTPF's are on-going and
vice-versa

'PUNLCK - unlock "CXPBLK"
CLOCK - lock. a CCB
CULCK - unlock a'CCB
CULCKNF - unlock a CCB don't flush FCB
RAID - read a di rectory block
REDEL - release a directory element
CV1L - convert address to intra-directory

RELB
RELD
HELM
RELF
CBLKIN
BLKIN
BLKINW
ASBUF
BLASB

pointer
- release buffer
- release buffer and destroy
- release buffer and set modified
- release buffer and set flush
- read a block from a channel
- read a block from a file
- read a block from a file (no wait)
- assign a buffer (no wait)
- assign a buffer

ACS/VS Internals Chapter 6 Page 6-5

3OV10

UNIT

WDCBK

XINIT

FLFCB
FLFCW
FLFCWL

LKBH
ULKBH
FLBFW

- flush FCB to FIB
- flush FCB to FIB and wait
- flush FCB to FIB and wait, the parent

CCB is already locked
- lock a buffer header
- unlock a buffer header
- flush a buffer and wait for I/O

completion
UPFIB - update a filB from an FCB
VALCID - validate aCID

- file system common subroutines
entry points

JELLO.P - allocate a free directory element
JELUDA.P- allocate a UDA
GNFN.P - get next file name
IGNFN.P - internal get next file name
SGNFN.P - special internal get next filename
GEIB.P - search directory block for free

element
- device dependent routines for disk tape line printer and mca

entry points
UOPEN.P - unit open
UCLOSE.P - unit close
GWDB. P - get a UDB
RLUDB. P - release a UDB
GDUDB.P - get a disk UDB

- write to disk and get free blocks
entry points

WDCBK
WDBLK
MWAIT

- allocate "n" contiguous disk blocks
- allocate 1 disk block
- wait for bitmap FCB lock wi th

withdraw
MSWAT - wait for bit map lock for de-allocate
MWLCK - lock out LCB bit map withdraws
MWULK - allow LCB bit map withdraws
TRTBL - null tenninator table

- disk initialization segment 2
en try poin ts

XINIT.P - disk initialization segment 2
EINIT.P - disk initialization error processing

AOSiVS Internals Chapter 6 Page 6-6

~hysical Disk

Physical Layout

Physical disk units (PU)

The fundamental element of a disk unit is the disk block or
sector. AOS/VS addresses theses blocks sequentially. so that a unit with N
blocks has an addressing range of 0 through N-1. These sequential
addresses must be broken down into head, sector. and cylinder addresses in
order for the disk unit to access the desired blocks. This translation is
performed by the disk drivers.

Logical Disks (LOU)

A logical disk is an association of physical disks which are made
to appear as a single large disk. The purpose for this is to allow a more
ex tended addressing space. A LDU can be composed of fran 1 to 8 disk uni ts
of any mixture of AOS/VS disk types.

In order to identify the structure of a logical disk, AOSIVS
requires a certain amount of each disk's address space to be reserved for
the system's use. This reserved space' is invisible to the user and
therefore does not have an AOS/VS logical disk address.

A logical disk has a number of logical blocks equal to the sum of
the numbers of physical blocks on all the disks in the LDU minus the total
invisible space on all those disks. Logical disk addresses must be broken
down into physical disk unit and the physical disk address on that unit.
This translation is done by the disk bl09k 1/0 routines.

The follOWing example compares physical and logical addressing of
disks:

PHYS. ADDR.

uni t 111

o 1 10
I
1

n-110

unit 112

1 10
1

n-1 !O

uni t 113

1 10 n-11
I

-----------------------------.------------------------ I
I
1

INV 1 VISIBLE
I
1

: INV
I
1

: VISIBLE
I I
1 1

: INV I VISIBLE

I 1--I LOG. ADDR. 1 0 n-11 I n-10 2n-21 1 2n-20 3n-31

.AOS/VS Internals Chapter 6 Page 6-7

AOS/VS disk fgrmat

As mentioned before. each PU in a LDU is divided into two main
areas. These are the INVISIBLE SPACE which is the first 8. blocks and
contain information needed by the systsn and the VISIBLE space which is .the
remainder of the disk and contains both user and systsn data.

The invisib~e space is in the following format:

--~---------.------------------------------~----------------------
1 1
1 DSKBT 1
1 & I DSKBT
I DRIVER 1
1 1

1
1

BBT 1 DIB
1
1

1
1
1
1
1

R~ERVED

--
BLOCK II: 0 1 2 3 5 6 7

DSKBT and DRIVER:

This contains the information read in by the program load switch.
This contains a disk driver and the logic to read in block 1 (DSKBT).

DSKBT:

Block 1 contains the code needed to read in the DIB (block 3) and
fetches the location of the systsn bootstrap area. It then reads in the'
systsn bootstrap and transfers to the routine.

BBT:

This block contains the AOS/VS bad block table for the PU. The
table is set up as follows:

symbol

BBNBB:

BBRAH :

BBRAL:

BBRAS:

BBBBD:

word function
--

0: 1 # of bad blocks 1
I:::::=::::::::~::::I

1 : 1 1
I--REMAP location --I

2: 1 I
1:::::::::::::::::::1

3: 1 REMAP area size I
1:::::::::::::::::::1

4: 1 1
I-Bad block addr #1-1

5: 1 1
1:::::::::::::::::::1

2n+2: 1 I
I-Bad block addr /In-I

2n+3: I 1
--

The symbols are defined
in PARFS.

The REMAP location is the
area to which bad blocks
will be (snapped.

Bad block addr n is the
address of the nth bad
block.

All disk addresses are
two words long.

ADS/VS Internals Chapter 6 Page 6-8

DIB (Disk Information Block)

The DIB's prinery purpose is to link the units of a LDU rogether.
Atiogical disk initialization time, considerable checking is done to
ensure that the specified disks form a complete logical disk. In addition
the DIB contains uni t sizing information and pointers to system data bases.

The DIB is defined in PARFS starting at the symbol IBREV.

Briefly, the DIB contains the following information:

Disk Format Revision number
Per unit status flags
LDU uniq ue 1. D.
Sequence m.mber of this PU in LDU
of physical units in LDU
II of heads,iI of sectors/track, II of cylinders on the PU
of visible disk blocks on the PU
Physical disk address of the BBT (always 2 for na-J).

If the uni t is the first of a LDU the DIB also contains the
following information:

PerLDU status flags
Logical disk address of LDU name and Access control .

blocks
Logical disk address of bit map.
System bootstrap disk address and length
Overlay area disk address and length
Installed system pointer
LDU current and maximum sizes
''Funny FIB" of root directory (FIB = File Information

Block)

AOS/VS Internals Chapter 6 Page 6-9

VISIBLE SPACE

Several of the AOS/VS system data bases are in the visible portion
of the disk. These locations are allocated by either the formatter (DFMTR)
or the installer (INSTL).

BIT HAP -- indicates which disk blocks .have or have not been
allocated (1 bit per block-- set if in use). There
is one bit map per LDU and the location is setup by
DFMTR

Rr~AP AREA -- is the area to which bad disk blocks are remapped.
There is a remap area on each PU, the loca tion of
which is setup by DFMTR.

BOOTSTRAP AREA -- is the area which contains the code for SYSBOOT.

OVERLAY AREA -- contains AOS/VS system overlays; setup by DFMTR.
INSTALLED SYSTEM -- is a file that lives in the root (:) but has no name.

The file is created by INSTL

AOS/VS Internals Chapter 6

Files in the AOS/VS disk world •.

Index blocks

Page 6-10

The following diagrams trace the growth of the index tree for an
AOS/VS file. F.A indicates the 'first address' or where AOSiVS looks when
looking for the file. Each index block contains 128 double word pointers.
After data element zero is written:

F.A -> DATA

After data element one is written:

F.A ->

1 I

J
1 INDEX BLOCK
1

1 \===============:::====::=::\ V . V

1
1 DA TA ELEMENT ZERO
I

After data element 128. is written:

I
F.A -> 1 INDEX BLOCK

1

1 I

I
I DATA ELEMENT ONE
I

Note: Maximum of
3 index
levels
allowed

1 \========:=::==:::=:~::===:=:=\
V V

1 1
1 INDEX BLOCK 1
I I

~---------~-------------
I I
I \====:::=:===:=:=:\
V V

I 1
1 DATA ELEM. 0 t
I !

I
I DATA ELEM. 1
I

INDEX BLOCK

------------------------~ I
\=======::==:\

V

1 I
I DATA ELEM. 128.1
I I

AOS/VS Internals Chapter 6 Page 6-11

AOS/VS disk directories

Building Blocks

The directory file (standard AOS/VS file, element size of 1) is
arranged in 256 word Directory Data Blocks (DDB) which consist of various
Directory Data Elements (DOE). Consecutive DOEs are not chained together.
together. The DDBs can be chained together using relative pointers that
consist of single precision relative block numbers within the directory.
The first eight words of each DDB is a header of the following format.

Word

o
1

2-7

Descript,ion

Forward Link (to other DDBs)
Backward Link (to other DDBs)
o

Subsequent words are allocated in the eight word elements to form
the DOEs. There are six types of DOEs. They are:

Symbol

DEFNB
DEFAC
DEFIB
DEFLB
DEFUD
DEFUI

DEFRE

Element type code

1
2
3
4
5
6

o

Description

FNB (File Name Block)
FAC (File Access Control)
FIB (File Information Block)
FLB (File Link Block)
FUD (File User Data)
FUI (File Unique 10)

(Not really a type of DOE, 0
, indica tes free element)

The main database is
information about a file.
and, if defined, the FLB and
back to the FIB.

the FIB. It contains or points to all vital
The FIB will point to the first FNB, the FAC

the FUD. All of these databases in tUrn point

The pointers between the FIB and other Directory Data Elements are
called lOPs (IntraDirectory POinters). This format is as follows:

o

Blk II within file
(DDB II)

11 bits = 2048 DDBs

I element addr. I
I in block I

10 11 15

5 bits = 32 DDEs/DDB

AOS/VS Interna1s Chapter 6 Page 6-12

The offset 0 (DETAS) of 'any of the DDEs is special. The left byte
contains the element type (0-5) and the right byte contains the size in
words. Note that the size of a free element (type 0) is 0 (i.e. offset 0
is 0). '

The ranainder of the offsets vary frOOl DDEs. These are defined on
the follOWing pages.

File Information Block (FIB)

Symbol

FINLP
FIACL
FILBP
FlUID
FITCH
FITCL

FISTS
FITIP
FICPS
FIHFS
FIDCU

FIHID

Offset

1
2
2
3
11
5

6
7
10
10
10

10

SFIBL:FICPS-DETAS+1:11

Description

Pointer to FNB (IDP)
Pointer to FAC (IDP)
Pointer to FLB (link only) (IDP)
Unique ID .
File creation time (hi)
File creation time (10)

File status
File type (RH) and format (LH)
File control parameters
Hash frame size (directories)
Device code (left), Unit number (right)
Unit type only
Host ID - Network type files

Short FIB length

FIB extension for data files and directories:

FIFW1 11
FIFW2 12
FIEFH.W 13
FIDFH.W 15
FIDFL 16
FIFAH.W 17
FIIDX 21

FIIDR 22

FIFUD 23
FITAH. W : FITAH
FITAH 24
FITAL 25
FITMH.W = FITMH
FITMH 26
FITML 27
FIFCB.1t! 30

Extension for EOF in future
" " II

Last logical byte (EOF) (.W)
Data element size (.W)
Data element size (low)
First logical address (.W)
Current index levels (left)
Maximum index levels (right)
Count of inferior directories

Pointer to FUD
Time last accessed (.W)
Time last accessed (high)
Time last accessed (low)

. Time last modified (.W)
Time last modified (hi)
Time last modified (10)
FCB address or zero (.W)

AOS/VS Internals Chapter 6 Page 6-13

FIBLT=FIFCB.W-DETAS+2=32 Full FIB length
FCOML=FIIDR-FISTS+1=15 Length of common data between FIB and FCB

FIB extension for Control Point Directories:

FlCSH. \<1 32
FHSH.W 34
lEIBL=FIMSH.W-DETftB+2=36

Current size (.W)
Max size (. W)
Long FIB length

Offsets 6 - 23 (enclosed by the dashed lines) are common to
FIBs, DIBs,FCBs and 'funny FIB'.
Symbol Offset Description

File Name Block (FNB)

FNFIB
FNNAM
FNBLT=FNNAM-DETAS

1
2
2

Access Control Block (FAC)

FAFIB
FAACL
FACLT=FAACL-DETAS

File Link Block (FLB)

FLFIB
FLLCN
FLBLT=FLLCN-DETAS

1
2
2

1
2
2

File User Data block (FUD)

FUFIB
FUFFL
FUFBL
FUUDA
FUDLT=FUUDA

File Unique ID (FUI)

FDFIB
FDUID
FUILT=FDUID

1
2
3
4
4

1
2
2

FIB pointer
File name offset
FNB header length

Pointer to FIB
Access Control List offset
FAC header length

Poi n ter to FIB
Link data offset
FLB header length

FIB pointer
FUD forward link
FUD backward link
User da ta offset
FUD header length

FIB pointer
ID Data offset
FUI Header Length

AOSiVS Internals Chapter 6 Page 6-14

Sample FNBs (FLBs are in the same format)

. +-------+---------------+ +-------+---------------+
DETAS=O I 1 10 (8.) o I 1 20 (16.) I

+-----~-+---------------+ +-------+---------------+
FNFIB=1 I pointer to FIB 1 I poin ter to FIB

+-----------------------+ +-----------------------+
FNNAM:2 I 'If "I 2 I ilL "0

+-----------------------+ +-----------------------+
3 "L liE 3 I liN 'IG

+-----------------------+ +--------~--------------+ 4 I liN "A 4 I " 'If

+-----------------------+ +-----------------------+
5 I "M I "E I 5 I "I "L

+-----------------------+ +-----------------------+
6 I (0) I don't carel 6 I "E liN

+-----------------------+ +-----------------------+
1 I don't care 1 I "A "M

+-----------------------+ +-----------------------+
10 I liE (0)

+-----------------------+
11 I don't care

+-----------------------+
+-----------------------+

11 I don't care
+-----------------------+

Directory format:

The following is a diagram of t~e internal organization of a
directory file:

ILogical Block Number
!O HFS-1 HFS I HFS+1 I HFS+2 I HFS+3 •••
I--~-----------------------------I Start of FNB hash chains
I

Start of . I Bit I Unused I actual
I others chain I Map I I chains

1--
HFS = Hash Frame Size

The first HFS blocks of a directory contain the first filenames for
files that hash to the same value. Using the standard DDB links,
additional DDBs are linked to these first blocks. Each DDB so linked will
contain only filenames tnat hash to the same value. Only specific DDBs are
allocated for FNBs. The easiest way to describe which uses the bit map.
~.very fourth word in the bit map is used to mark DDBs used exclusively for
FNBs. (16 DDBs for FNBs, then 48 DDBs for other chains etc.)

AOS/VS Internals Chapter 6 Page 6-15

The hash value is computed as follows:

1. Take the sum of the ASCII values of the characters in the name
2. Divide by the HFS (Hash frame size)
3. The ranainder of step 2 becomes the hash value for the name.

Example for the filename AOS and a hash frame size of 1.

A= 101
o = 117
S = 123

343 --> 343/7 = 40 with a remainder of 3.

Therefore the hash value is 3.

No ordering is attempted of DOSs within a ohain or of FNBs in a
DDS. A filename, once a hash chain has been determined, is searched for
sequentially.

The next block of the directory is the anchor DDS of an unordered
chain of DDBs that contains the ranainder of the DOEs that make up the
directory.

The directory bit map is used in allocation of blocks within a
directory. It contains one bit per DDB. As mentioned above, every fourth
word of the bit map is reserved for FNB allocations.

The blocks that follow the unused block (HFS+3 and on) contain
the other DDBs that make up the chains.

FNBs must be in a DDB reserved for them. FACs, FIBs, FUDs, and FLBs are
mixed together in the other DDBs. Pointers are bi-directional and are in
IDP format.

1-------1 1-----1
1 FNB 1<========\ 1=====>1 FAC 1
1------- 1 1 1 1-----1
1 FNB 1 1 1 FAC 1
1------,-1 1 1------- 1 1 1-----1

\=====>1 1<========1
I !
1 FIB I
1 1

1=====>1 1<========\
1 1-------'1 1

1-----1 1 1 1
1 1 (==========1 1 1 1----1
1 FUD I 1 \=====> 1 FLB 1
1 1 1-----1 1-----1
1-----1 <======> 1-----1 •• 1 1 1 FLB 1

1 1 1 FUl I 1-----1
1 FUD ! 1 1
1 1 1-----1
1-----1

AOS/VS Internals Chapter 6 Page 6-16

In-core databases

The follCMing database reside in memory. The length of time that
the databases are around varies. The LOBs are around fran INIT to RELEASE,
the UOBs fran OPEN to CLOSE, while the OCTs are pennanently
allocated.

LCBs and UDBs are used to convert a disk request for a logical disk
into a physical request to a specific disk unit. The UDB and the bCT are
used for processing the physical request.

Logical disk Control Block (LCB)

The LCB contains the following information:

Pointer to the chain of UDBs that make up the LCB (.W)
Pointer to the next LCB in the system (.W)
Buffer cache list pointer (forward and backward, both • W)
Various LOU bit map lock words .
Bit map FCB address (.W)
Bit map buffer address (.W)
LOU's root CCB addr. or 0 (.W)
Current size (.W)
Max size (. W)

There is one LCB per logical disk that has been initialized. An
LCB is LBBL! words long (22.). LCBs are. allocated when a LOU is ini ted and
returned when the LOU is released.

Unit Definition Block (UDa)

DCT address
Device unit number
Unit request list
Last logical address (.W)
liDB forward link (logical) (.W)
liDB forward link (physical) (.W)
Unit start addr (.W)
NlInber of blocks to move
Unit status word
Cylinder size in sectors (UDNSC*UDNHD)
Number of sectors per track
Flags (left byte) Number of heads (right byte)
Data address (. W)
DOA word (temp) .
DOC word-used as running cylinder number
Error counter, flags, status, retry count
Temp block coun ter

AOS/VS Internals Chapter 6

Unit status (DIA or DIC only)
Bad block table pointer and remap address (each is .W)
Pointer to metering locations (if metering is defined)

Page 6-17

Certain offsets are used by UNERR, the unit error report
routines while other are used for fatal (hard) errors and in
times of PANICs, etc.

Moving head disk UDB states (UDSTS)

Symbol Bit Description

DPIDL 0 Idle
DPSKR 1 Seek ready
DPSKP 2 Seek in prog
DPSKD 3 Seek done
DPIOR 4 I/O ready
DPIOP 5 I/O in prog
DPIOD 6 I/O done
DPRCR 7 Recal ready
DPRCP 10 Recal in prog
DPRCD 11 Recal done
DPSKE 12 Seek error
DPIOE 13 I/O error
DPFTE 14 Fatal error
DPGST 15 Get status

There is one UDB for each disk, LPT and tape unit that has been
opened. (There are different symbol definitions for the tape not discussed
here.) A UDB is UDBLT words long (41.), and allocated when an LDU is inited
and released when the LDU is released.

Device Control T,ables CDCT)

The DCTs contain the following information:

Address of the interrupt service routine (.W)
Interrupt mask (.W)
PSR state (.W)
Device code
Status
Map slot assignments
Address of device specific routines (Initialization, powerfail,

enqueue, timout •••) (.W)
UDB list (for disk, tape, and LPB/LPD)

DCTs for AOS/VS are bound into the .PR file at V:3GEN time.

AOS/VS Internals Chapter 6 Page 6-18

The following is a diagran of how sane database are connected. It
assumes three LCBs, two containing a fixed head disk and 6060 (96 mb) and a
third containing two 6060s.

Device Device Device
Code zr Code 26 Code 67

I I I
IDCf I IDCf I IDCf I
I DPF I IDKB I I DPF1 I
I I I I I I

V V V

----- ------- V
I I I I V
I LCB I =============> I UDB I ====> I UDB I V
I 1 I I DPFO I I DKBO I V
I I I I I I V

----- ----- V
V V V

------- ------ V
I I I V

I Lca I =============> I UDB I ====> I UDa . I V
I 2 I I DPF1 I I DKB1 I V
I I I I I I V

------ ------- V

I I I
I LCB ==~> I UDB . I ===\
I 3 I DPF10 I I
I I I I

------- I
V !

------ I
I (==/

! UDB I
I DPF11 I
I I

AOS/VS Internals Chapter 6 Page 6-19

File Contrc~~~

There is one FCB for each file opened regardless of how many users
open it. FCBs are 43. words long and contain the following information:

Pointers to LCB, CPB, UDB (.W)
Pointer to the FIB on disk
"Funny FIB" for the file (file type, status, EOF, element size

Hash frame size, first address, index levels)
Open count
Parent CCB pointer (.W)
File level counter
Pointers to buffer and shared page chains (.W)
PID and ring of first opener for SOPFf opened files
Forward and backward link for PPB chain

FCBs are loaded from the disk FIB when the file is first opened.
The use count is increnented for each user that opens a file, decrenented
when they close it. When the use count returns to zero, the FCB is
released. FCBs are found on dedica ted pages in AOS/VS.

Channel Control Block (CCB)

There is one CCB for each channel (user or system) open. System
CCBs are in ring 0, and user CCBs reside in ring 1. All CCBs are 27.·
words long and contain the following information:

Link word for when enqueued to CCBWQ
Pointer to the FCB (.W)
Parent CCB pointer (.W)
Priority / Number of blocks to transfer
Process table or CB address (.W)
User buffer address (. W)
Last block byte count
Retry count (MTAIMCA)
Logical address of most recent index blocks referenced
Relati ve block number of most recent index blocks referenced
post processing address
command word (READ/WRITEIDELETEIREAD SYSTEM BUFFER!

TRU NCA TEl ALLOCA TE)

There are: 27. words/CCB
37. CCBs/page
7 CCB pages/process (256 channels)

AOS/VS Internals Chapter 6 Page 6-20

Channel IDentifier (Crp)

In order to make the kernel less dependent on the diskworld
databases, the concept of the CID was introduced. Currently t the CID is
simply the address of the system CCB. A kernel routine passes a CID to the
Kernel/FileSystem interface routines which in turn process the request.
The kernel builds a special packet for the request and does not need to
knQol the format of the system CCB.

Control Paint Directory Block (CPB)

There is one CPB for each Control point directory or LDU. Each is
6 words long and contain the following information:

Current size in disk blocks (-.W)
Maxinun size in disk blocks .(.W)
Pointer to parent CPB (.W)

Every time a disk block is allocated or deallocated for a file, its
parent CPB (painted to by the FCB) is incremented or decremented. The CPB's
parent CPB is also modified recursively.

Buffer Header (BH)

Buffer headers contain information about bufter level 1/0. -
They contain:

LRU chain pointers (forward and back) (each • W)
Buffer header chain pointers (forward and back)(each .W)
Use count
Buffer Address
Data address on disk
Number of blocks (if not a system buffer request)
PTBL address or physical block number

Protected file pennission blocks

Protected file pennission blocks are allocated each tine a user does
a ?PMTPF system call targeted at a PID that does not already have any
access to the specified file. Pennission blocks are enqueued off of the
file's FCB (FBPPB). Permission blocks are 14. words long, and are found in
pages dedicated to this type of database. The first PPB on eacn page acts
as a header. There are 12. normal PPBs on each page plus the header PPB.
The normal PPB contains:

AOS/VS Internals Chapter 6 Page 6-21

PPB forward and backward links (both.W)
The PID/Ring of the first opener
The PID of the process that can use the file
The FCB address of the file that this PPB controls.
Five words of permitted access control (one per rings 3-7).

The header PPB on each PPB page is in the folloWing format:

A pointer to the next and previous PPB page (both .W)
A forward and backward link (both .W) of free PPBs on this page
A count of free PPBs on this page
The page address of the page

Input/Output Control Block (IOCB)

IOCBs contain the following information:

Forward IOCB chain link (for IORUN.W) (.W)
Backward IOCB chain link (for IORUNoW) (oW)
CCBaddress (oW)
IOCB status word
Save levels (IOCB routines do not use the stack)

The following locations are used by the diskworld as a buffer header to
enqueue the request (until the dashed line)

Data address (oW)
Status
Link to next BH (forward and back) (each oW)
LRU forward and backward links (each .W)

The LRU forward chain is used to hold the 10CB address
when running an IOCB request

#blks to transfer·this element
physical memory block or PTBL·address
unpend(post process) address
TCB address
Data address (oW)

Q=file element #=blk#/element' size IOQLO (oW)
Remainder from Q computation(oW)
I/O error code
Counter ·of #levels of indexing needed
Indexing word «O><x1><x2><x3» (.W)
Current #levels in file
Data element size (oW)
Temp variable IOICB(=IOVAR)
Amount of bytes transferred so far
FeB address

AOS/VS Internals Chapter 6 Page 6-22

Block count
Buffer header address

The save levels are used to hold return addresses from
subroutines. IOCBs are allocated as they are needed (see later in chapter)
and are 64. words long.

IOCB status states:

IOCB dormant
Waiting for I/O
IOCB ready
Waiting for a buffer
Waiting on the bit map
Waiting on file lOP

1/0 Processina

The follOWing diagran is an attenpt to follow a ?RDB call through
the various systen levels.

Information
Involved

! Block I LDUs EDF I' LDUs
I oriented ! Index BI09ks I PUs
I channel 1/0 I I

I user's
AOS/VS modules I DSKIO BUFIO

Databases
Involved

Interface

?RDB

CCB
FCB

CCB

I
I CCB I FCB
I IOCB/LCB/BH
I

I
I BH/LCB
I UDB I DCT
I

I
LCBlBH I UDB/BH

. I

I Heads
I Sectors
I Cylinders

DRIVERS

BH I UDB
DCf

---------_ .. _---
Code flow --------> <---------> <----------->

Notes:

1. The code can bounce back and forth between DSKIO and BUFIO
in the case when BUFIO returns an index block instead' of
a data element to DSKIO, which then must ask BUFIO for the
next level.

2. The code can bounce back and forth between BUFIO and DRIVERS
in the case that a request reaches the end of a PU but not
the end of a LDU.

AOS/VS Internals Chapter 6 Page 6-23

roCB Processing

1. Initialized by NQCCB. This routine will allocate an IOCB,
place the location of RUNRD into the IOCB at offset
IOSPC.W, and flag the IOCB ready to run.

2. RUNLC will find the IOCB ready to run and begin execution
at @IOSPC.W

3. Code path will have to pend at points waiting for disk req.
This is done with a call to WAIT, which will put the pending
address in the IOCB at offset IOSPC.W and jump back to
RUNLC.

4. When the disk request is completed, the, interrupt will wake
up the IOCB by setting its ready to run flag.

5. Loop back to 2. This will continue until the IOCB
processing is completed.

6. IOCB allocation:

a. The max number of IOCBs for the systan is determined by
available memory (if the diskworld can get an IOCB, it
will) •

b. The min number of IOCBs is defined by SCMNI which is 2.

c. The system will dynamically grow the pool of IOCBs.
When an IOCB is done and at least one IOCB is on the
free chain, AOS/VS will return the completed IOCB to
the free memory pool (i.e AOS/VS always attempts
to keep at least one IOCB on the free chain, and
always SCMNI IOCBs allocated.)

d. When attempting to allocate an IOCB, GIOCB first attempts
to assign one from the free chain. If this is empty,
GIOCB will attempt to grow the IOCB pool. If it
can, it does, and returns the new IOCB to be
associated with a CCB. If it cannot, the it takes an
error return which forces the CCB to be enqueued off
CCBWO.W.

Some words about WAIT

1. Called with a XJSR WAIT.

2. Store away the return address (AC3) into offset IOSPC.W of
the IOCB

3. Store away the status (ACO) in offset IOSTW.

ADS/VS Interna1s Chapter 6 Pag~ 6-2~

4. Enable interrupts.

5. Try to run any other IOCB requests (Jump ~ck into RUNLC)

NQCCB (Module: DSKIQl

NQCCB enqueues CCB requests. It attempts to allocate an IOCB. If
successful, the IOCB is enqueued to IORUN.W. If not, the CCB is epqueued
to CCB~.W

1. NQCCB - Convert the ring 1 CCB address to a ring 0 address (LPHY)

2. Store the post processor address (in ACO at time of call) into the
CCB

3. Reset the CCB error flag in the CCB.

4. Try to allocate an IOCB. If this fails, goto step 10.

5. Store the CCB and FCB addresses in the IOCB.

6. Set the IOCB status to 'ready to run' ,and put location RUNRD in
offset IOSPC.W of the IOCB. (RUNRD is the address at which 10CB
processing begins).

7. Enqueue this IOCB in I/O priority order on the list of IOCBs
(IORUN.W) (disk priority = PNQF for resident and' preanptible
processes, = 377 for all swappable processes)

8. Call DWAKE to ready the disk manager, control block.

9. Return (this was called with a XJSR).

10. We must wait for an IOCB. Enqueue the CCB in priority order onto
the CCB waiting list (CCBWQ.W). Increment the waiting CCB counter
(CCWC), and if necessary the max count of waiting CCBs (CCMX).

11. Return

RUNLC . (Module: DSKIO)
RUNLC runs all readied IOCBs for all LCBs. RUNLC is entered when

the scheduler runs the DMTSK control block. It is also entered when an IOCB
pends (PEND).

1. Enable interrupts

2. Clear DWAKE called flag.

3. Set LCBP.W (current LCB pointer) and IOCBP.W (current 10CB) to -1.

4. Find a ready IOCB. Determination is done by examining the IOCB
running list (IORUN.W) to see if any IOCBs are ready.

AOS/VS Internals Chapter 6 Page 6-25

5. Save the IOCB address in IOCBP.W (IOCBP.W always contains the
address of the currently executing IOCB).

. .

6. Save the address of the LCB associated with this IOCB in LCBP.W.

7. Execute the code specified by the IOCB. (XJMP @IOSPC.W).

RUNRD (Modu~SKIOl

All individual IOCB code paths start here. This address is loaded
into offset rosPC.W of the roCB when it is initialized. RUNLC jumps
through this offset which always contains the IOCB restart address.

Upon starting:

AC2, AC3 = IOCB address
The LCB is in LCBP.W (put there by RUNLC)
The IOCB is in IOCBP.W (put thereby RUNLC)

All values stored as temporaries are stored in the IOCB.

1. Initialize some IOCB temporaries - zero the error code and the
last block correction (number of bytes in last block).

2. Wait for any 10 to this file to stop by checking the 10 in progress
bit in the FeB.

3. Store the follOWing in the IOCB:

PTBL address IOMAP.W
current II of index levels IONLV
data element size IODEH.W

4. If the file type (from the FCB) is a disk unit type (?FDKU),
then if the beginning block number of the request is greater­
than the element size, signal an error (EOF). Otherwise, store
the block number in the file element offset location of the IOCB
(IOREH.W) and set the element number (IOQHLW) to zero.

5. If this l.s not a disk unit file, then calculate the element
number (Q) that the request starts in by dividing the starting
block number by the element size (store the results in IOQHL W)
and store the remainder in IOREH.W.

6. Calculate the number of blocks that can be transfered from this
element. If the complete request cannot be satisfied, save the
count of how many blocks can be transfered in offset IOBNL,
and the rEmaining number of blocks in the request in offset CBNBK.

AOs/VS Internals Chapter 6 Page 6-26

1. Dispatch (LJSR) to the appropriate READ/WRITFIDELETFIALLDCATFI
TRUNCATE. (The command code is in the CCB (CBFLG». See below
for each individual code path

8. Upon returning fran the element processing, if an error has
occured, set the error flag in the CCB, invalidate the last
index level entry, and goto step 12.

9. Update the in memory data buffer address (incranent by 256
multiplied by the number of blocks transferred.

10. Update the count of total bytes transferred.

11. If there are any blocks ranaining to be transfered (CBNBK(>O),
then save the updated byte count, incranent the data element
number (IOQHI.W), and zero the IOREH.W (loci< at the first block
in the new element), and go back, to step 6.

12. Copy the error code (if any) from the IOCB to the CCB

13. Call the CCB unpend processor (offset CBUPD.W in the CCB points to
the code path). '

14. Wake up anyone waiting for this I/O to complete. . '

15. Dequeue this IOCB from IORUN.W.

16. If any CCBs are waiting for an IOCB, get the first on the' list,'
and assign this IOCB to that request. Ini tialize the IOCB by
copying'the neW CCB and FCB addresses into the IOCB, put the
address of RUNRD in offset IOSPC.W, and mark the IOCB ready to
run. Dequeue the CCB from the CCBW'J~W list, enqueue the IOCB to
IORUN.W (in priority order), and jump back to RUNLC.

11. If no CCBs are waiting to run, return the IOCB to the free pool
or free memory pool depending on the state of IOFRE.W, and the
total count of IOCBs '

18. Jump back into RUNLC to run any other IOCBs.

The following routines are called fran the 10 processing routines
documented below:

AOS/VS Internals Chapter 6 Page 6-zr

INDEX -

GRCM -

GROFL -

eKEOF -

PARSQ and
MATCH

Loops through the index levels. It takes the normal
return if it reaches the data level, the zero return
if it reaches a hole in the index, or the error return
if an error is encountered during the index reading.

INDEX calls LBLKN to get an ir.dex block. LBLKN
determines if the block is still in memory as
a system buffer. and if it is, waits for any
10 to the buffer to complete and returns. If
the block is not in memory, LBLKN assigns a
buffer for the request, NQs the buffer header
block, NQs the buffer header, waits for the 10
and takes the good return. If no buffer is
available LBLKN waits for one.

Allocates space on the disk for a file. Allocates
necessary index blocks until lowest level, updating
the previous level index blocks, and then allocates
a data element. GRCM calls WDBLK (allocate 1 blk)
and WDCBK (allocates n contiquous blocl<s).

Decides if the number of index levels must and can
grow (the file might already have the max number of
index levels). If so, the address of the new index
index block is put in the file's first address, and
the old first address is put in the new zeroed index
block.

Checks for the EOF condition. On writes, shared reads
and system buffer reads, the EOF is extended. On
normal reads, the number of blocks to read is
decremented, and the EOF flag is set. On all calls
to CKEOF, the request is checked against the absolute
maximum of 2A 32, and truncated if beyond that.

Each request can be broken down into a maximum of 3
index levels, and each level can have 128. different
pointers to the next level, therefore, each request
can be represented by three 7 bit numbers, designated
x1, x2 and x3. PARSQ will determine the three 7 bit
values and MATCH will 'compare the current x1, x2, and
x3 with the previous requests values. If a match
occurs, then the request can be optimized. If a match
occurs on all three levels, there is no need to
transverse the index levels, if a match occurs on two
levels, then only the last level must be read. The
occurance of matches is recorded in the metering
locations X1MATCH. W, X2MATCH. W, and X3MATCH. W (see the
end of this chapter for more information)

AOS/VS Internals Chapter 6 Page 6-28.

The fo.llowing ro.utines are dispitched to. by RUNRD (step 6)

RDDEL - Reads o.ne o.r part o.f o.ne data element

1. Check EOF co.nditio.n, but do. no.t extend file.

2. Check number o.f blocks to. read. If zero, just return.

3. If shared read, jump to. SHRD.

4. Compute indexing o.ffsets (XJSR PARSQ) , and try to. use matched data

5. If the file first address is 0, then go.to. step 12.

6. Loop thro.ugh the index levels (call INDEX)

7. If INDEX to.o.k the zero. return, we tried to. read a ho.le •• Jump to.
step 11.

8. Set up the buffer header o.ffsets o.f the IOCB. These co.ntain
the data buffer address in memo.ry, and flags to. indicate that
this is a user request. and a read!

9. NQ the buffer heade r. and wait fo.r the 10 to. complete. (XJSR GIOWT
which will call NQBHR in BUFIO. and the wait fo.r 10 completion).

10. Return (Jump bacl< into. RUNRD at step 7).

11. Release BH of last index block (residue from INDEX)

12. Clear co.re indicated by theTCB using the ro.utine IMCLR. An
erro.r from the ro.utine will cause a PANIC 14033. (At the Po.int
at which we came to. step 12. we either tried to. read an empty file
o.r attempted to. read in a ho.le, either o.f these o.peratio.ns will
return zero.es to. the user).

13. Invalidate the index o.ffsets that were no.t actually read.

14. Return (Jump back to. RUNRD at step 7).

SHRD - Shared read

1. If we are reading in a ho.le, o.r past the end o.f file, we must
allocate new elements and their associated indices so. that anybody
else requesting the read will get the same info.rmatio.n.

2. Compute the indexing (PARSQ), and try to. o.ptimize the read (MA1CH)

3. Fill the new areas allocated with zero.s.

4. Read in the data element (jump to. step 8 o.f RDDEL).

AOS/VS Internals Chapt~r 6 Page 6-29

WRDEL - Write a data element

1. Check the end of file condition and truncate the request if
necessary

2. If a zero length request. just return

3. Set the modified and the flushed bits in the file's FCB

4. Grow the file past EOF if necessary

5. Call PARSQ and attanpt to optimize the index reads

6. If necessary. loop down the index levels (INDEX)

7. If a hole in the index was found allocate and zero the new element

8. If really a write (as opposed to a allocate) then set up the
request in the buffer header and enqueue the rEquest

9. Update EOF if necessary

10. Return to RUNRD

DELFlL - Delete file's space from disk.

DELFIL steps through indexes deleting blocks with calls to DEBLK
(delete single block) or DEBKS (delete n contiquous blocks)

TRUNCFIL - truncate a disk file

1. Check to see if the new EOF is before the old EOF. If not. the
request is either illegal or not necessary

2. Call PARSQ to get the index structure

3. Call index to step down the index levels if necessary

4. Release all data elements after EOF

5. Shrink the number of index levels· if possible and return any
unnecessary index blocks to the general disk pool

This ends the documentation on RUNRD.

ftDS/VS Internals Chapter 6

CCB post processing

PPCUS/PPCUB - CCB post processing for user 1/0 requests

1. Pass the number of bytes transferred and error code if any
back to the TCB and unpend the TCB

Page 6-30

2. If this is a ?BLKIO call then get the packet length and address
save it on the stack, set up byte count in packet and restore it·
unwire it and pass it back.

3. If this is not an allocate request. then update the modified
and referenced bits because the data channel and BMC maps cannot.

If this was a read request. set the modified and referenced
bits for each page

If this was a write request, set the referenced bit for each
page

4. Unwire the pages involved in the transfer

5. Decrement the active call count for the user

6. Wake up the process (IWKUP)

7. Unlock and unwire the CCB

8. Return

RNA - Read Next Allocated block (?BLOCKIO)

This routine reads the next allocated data eJ:ement in the file. By "next"
we mean starting the search at the index offset innediately following that
of the unallocated data element requested. The algoorithm searches th rest
of the current index block, goes to its parent index block, searches· the
rest of it, and so on until either an allocated data element/index block if
found or there are no more parent index blocks to search in which case EOF
is returned. If an allocated slot is found, then we travel down the right
hand side of the index structure (we had essentially traversed the left
hand side when trying to find the next allocated index block/data element)
until we get to the data level and have the LDA of the allocated data
element. If. as we travel down the right hand index structure. we ever
encounter an index block which has nothing in it, then we panic since we
should never have allocated an index block without putting same~ing in it.
once we have found the allocated data element and have its logical disk
address, we can figure out its logical file address by using its index
block offset values and the file's data element size. before returning, we
turn on the phase II RNA request bit in the iocb so that if we hit another
unallocated Gata element later in the request, it won't call this routine
again but instead will terminate the read request.

AOS/VS Internals Chapter 6

PPCBI - post processor request for the system blockin requests
PPCSY - post processor for system read and write request
PPCSR - post processor for system shared read CCB requests

1. If PPCBI then return the buffer header address to caller in
the CCB

2. If PPCSR copy disk address from IOCB to CCB for waiter.

Page 6-31

3. Reset the CB or PIBL not ready to run bit and zero the unpend code

4. Disable interrupts go try and set next to run and enable interrupts.

5. Return

NQBHR / NQBH1 (Module: BUFIO)

NQBHR enqueues a buffer header to the UDBs. It takes as input a
LCB address. NQBH1 takes as input the actual UDB address.

1. Save unpend address in the buffer header.

2. Set 10 in progress in BH. If already set. PANIC 14050.

3. If this was a NQBHR call (not NQBH1) then translate the LCB address
into a UDB address. This is done by scanning down the chain of
UDBs associated with the LCB until the request address is less than
the maximum address on the unit. If we come to the end of the
chain and have not found a unit we will PANIC 14047

4. Mask out interrupts from the diskworld

5. Meter the number of requests on this unit.

6. If nothing is on this unit's request list. enqueue this request,
and start the device (XJSR STUNT)

7. If sanething was already on the unit's request list. just enqueue
the buffer header to the UDB; and meter the fact that the disk
was active at the time the request came in.

8. Increment NQDBHRS (number of currently enqueued buffer headers)

9. Restore the interrupt mask

10. Return with ACO=UDB address

AOS/VS Internals Chapter 6

IOooN (Module: BUFIO)

1.

This is called from the interrupt service routines.

If this was a physical 1/0 request, copy the DIA, DIB, ECC
words into the request state block and goto step 4

Page 6-32

...
2. If an error has occured, store the information into the error

locations in the UDB, and wake up the system manager (which will
report the error)

3. If there are more blocks to transfer. check to see if this is an
LDU or single PU. If this is the last unit in a LDU or a single
PU signal an error (if PU signal EOF - if LDU signal PANIC 14052).
If it is not the last unit of a LDU, enqueue the request to the
next UDB in the LDU and start the transfer.

4. Call the post processor for the request.

5. Decrement NQDBHRS

6. If there are anymore request on this UDB, start the unit.

AOS/VS Internals Chapter 6 Page 6-33

Disk drivers

Disk drivers are the base level support of disk in AOS/VS. There
are eight major routines for each driver. Each DCT will point to the
relevant driver modules.

Routine

a. Interrupt Service

b. Start Up

c. Set Up

d. Initialization

e. Enqueue

f. Check timeout

g. Time out routine

h. Powerfail restart

Function DCT offset

- device interrupts, restart, errors DCINS.W

- start current request DCSTR. W

- setup next request, calculate seeks. DCSUP.W

- Init UDB DCTIU.W

- Enqueue new request to UDB. DCENQ.W
(DKBNQ enqueues in FIFO order

DKANQ attempts optimization)

- Check timeout block routine

- Routine to handle device tin~out

- Device dependant restart code

DCCTO.W

DCRW.W

DCPRS.W

For quick reference, the follOWing demonstrates the relation­
ships between device name and modules that handle that device.

Device 1
N~e 1 alb 1 c 1 die 1 fig 1 h 1
------1-------�-------�-------�-------�-------1-------1-------1-------1

DKB 1 DKBIS 1 DKBST 1 DKBSU 1 DKBIU 1 DKBNQ 1 I DKBTM 1 DKBRS 1
------I-------I-------I-------I------~I-------I-------1-------1-------1

DPD I DPAlS 1 DPDST 1 DPDSU 1 DPDIU 1 DPANQ I DPACT I DPATM I DPDRS 1
------1-------1-------1-------1-------1-------1-------,1-------1-------1

DPF 1 DPFlS 1 DPFST I DPFSU ! DPFIU 1 DPANQ I DPACT 1 DPATM 1 DPFRS 1
------1-------1-------1-------1-------1-------1-------I----~--I-------I

DPG I DPAIS 1 DPDST 1 DPDSU 1 DPGIU 1 DPANQ 1 DPACT 1 DPATM 1 DPGRS 1
------1-------1-------1-------1-------1-------1-------1-------1-------1
DPI 1 DPAIS 1 DPDST 1 DPDSU 1 DPlIU' 1 DPANQ 1 DPACT 1 DPATM ! DPGRS 1

------1-------1-------1-------1-------1-------1--------1-------1-------1
DPJ 1 DPJIS 1 UNCST 1 DPJSU 1 UCNIU 1 UCNNQ I IODON 1 UCNTM 1 UCNRS 1

------1-------1-------1-------1-------1-------1-------1-------1-------1
DPM 1 DPMIS 1 DPMST 1 DPMSU 1 DPMIU 1 DPANQ 1 DPACT 1 DPATM ! DPMRS 1

------!-------I-------I-------I-------I-------I-------1-------1-------1

Note that many routines are shared. a-h refer to functions
above ie a=interrupt service, b= startup etc.

/

/

AOS/VS Internals Chapter 6

The overall disk worl.9_ diagran

I I
II

USER
X

TCB

RING 3 I I RING 3

RING 1

USER
X

PEXTN

/

//
//

/ /
//

/

USER
X ..

PTBL

RING 0

/
//
/

USER
X

CCB

//
//

//
/

LCB

LCB

I I
II

-J l-
/"",

//
//

//

,
"

//
//

//
//

//
//

t

PARENT f4--- FCB
CCB

I t I

• OCT ~ OCT

+ +
~ .. I-

UDB UDB

• ~

t
"-

UDB

r---+

" " '. , ,-'

f----. PARENT
CPB

f---+ BH f---+

,-'
"

USER
Y

TCB

USER
V

CCB

" "

IOCB ---

"

Page 6-34

RING 1

USER
Y

PEXTN

" " " , '-
" ,

USER
Y

~ PTBL

PHYSICAL
DISK

FAC

J----------I~~I FILE
FIRST

ADDRESS

d

'-,

AOS/VS Internals Chapter 6 Page 6-35

Kernel I File s~ interface

In an attempt to make the kernel less dependent on specific file
system databases and routines, the following concepts have been included in
the operating system.

NQCRQ

NQLDRQ

CH.ACC

CH.EOF

CH.FTY

CH.LDA

Shared pages

Enqueue a request (via NQCCB) and wait or its completion
(via CWAIT). The caller passes a packet and the file's
CID.

Enqueue a request toa logical disk unit (via NQBHR)

Return a file's access control bits

Return a file's EOF pointer

Return a file's file type

Return a file's first logical disk address

Shared pages under AOS/VS exist in one of three states.
These are:

1. Not in use and not in memory
2. Not in use and in memory
3. In use (and in memory)

AOS/VS maintains two chains to manage shared pages. These are:

1. LRUCH,- the system LRU chain - this chain (of CMEs)
contains pages that have been released from
a processes working set. A shared page
with a use count of 0 will be on this
chain

2. FCB chain - this chain (of SH[sharedpage headers])
contains shared memory pages associated
with a file (regardless of use count)

AOS/VS also maintains a database called the CDE for each shared
data page in the user's address space. Bits 0 - 7 contain the CCB number
that describes the file that the page belongs to, and bits 8-31 contains
the logical page address (block number/4).

When a user executes a ?SPAGE, AOSiVS will simply build a CDE entry
for that shared page. When the page is eventually accessed,the user will
fault on the page, and control will pass to the routineREADSH. READSI-! will

AOS/VS Internals Chapter 6 Page 6-36

calculate the disk file address 'of the page if the page is in a .PR file,
or it will lookup the file address andCCB # in the appropriate CDE. Now
t:.h;.it we knCM the logical disk address and CCB, the cOI'responding FCB'~ SH
chain is searched for a match. If a match is found, then the page does not
ha\'e to be read in, t.he page frame for that page is put in t(> the PTE, and
if the frame was on LRUCH, it is deq ueued. If the page is not in memory, a
shcired header is built and locked; a page is allocated from GSNEM, and the
4 blocks are read into it.. Then the new page frame value is placed into
tiL' PTE. AOS/VS wi}) increment the use count (in the CME) for that page.
In both cases, an LPA will be allocated linking the page and the logical
addref.s in the user's space '

wnt.·n a user (or the system when ttle user tel1ninates) relem:;f.s a
pa~e, AOS/VS will decrement t.he use count. If the count is not nGi 0 we
art> done. If the count is n(~ 0, AOS/VS will put the page (Ct-'lE) on LHllCH,
wh<::.'re it wEI sit until either:

a) Sane one r,eeds that shared page again (in which caSE: we tak€.
the page off LRUCH, and incranent the use count

or:

b) Saneone r:eeds the page for sanething else. In thi~ case
the page will be flushed if necessary and the page will be
removed from LRUCH, and the FCB chain.

Key Diskworld page z.-ent.l.QQii.t.1.QM

The folla.,iing locations in page zero (defined in SZERO.LS and
STABLE.LS)' are useful in examining the disk world. Same locations are
po~nters to chains, others are metering locations, counter or flag words.

SZERO.LS locations:
STABLE.LS locations:

LCBP.W
IOCBP.W
.MLCB.W
• Fl.CB. rl
IORllN.W
IOTAIL.W
IOFRE.W
CCB\\Q.W
RLCFL

WFLAG
BFLRU.W
B1AIL. r!
NOBUFS
BU(:CN
BlWLO

Pointer to current LCB, used by DSKIO
Pointer to current IOCB, used by DSKIO
Pointer to a linked list of defined LeBs for the system
Pointer to the end of the LCB list.
IOCB running list head
IOCB running list tail
IOCB free list head
CCB wait queue head
RUNLC flag - non zero if there is sanething for RUNLC
to do.

<>0 - Base level waiting for system buffer
Head of,free buffer chain, in least recently used order
Tail of free buffer chain
Number of times that no buffer was available
Number of buffers currently on the BFLRU.W
Lowest number of buffers ever on BFLRU.W

.AOS/VS Internals Chapter 6

BFHIN

FCBCH.W

Starting number of system buffers

FCB chain, chain of 8 word descriptors defining
the physical memory blocks being used for FCBs

Metering locations:

NQDBHRS
PRDRQS.W
PWTRQS.W
PBLKSR.W
PE-.LKSH.W .
FCBRDS.W
LCBRDS.W
X1MAT.W
X2MAT.W
X3MAT.W
roTC
WAC
IOMX
CCWC
CCMX

Number of buffer headers currently NQd to disks
number of physical disk read r.equests
number of physical disk write requests
number of physical blocks read
number of physical blocks written
number of reads found on a FCB buffer list
number of reads found on an LCB buffer list
number of 2nd level index matches
number of low level index matches '
number of da ta level index matches
IOCB total count
IOCB active count
Max value of rOTC
Count of CCBs waiting for IOCB
Max value of CCWC

Page 6-37

AOS/VS Internals Chapter 6 Page 6-38

Logical Disk Structure

The basic concern of this section is to determine how AOS/VS relates a
disk filename with the physical disk addresses of the' data associated with
the file.
A. File' Structure

The reader should already be familiar with one of the steps of data
location, namely, how AOS/VS finds data elements from randan index ,blocks
(RIBS) in progressively larger files:

1-->********
1--->*********** ! * 0 *
1 1 110142 1------ * *
1 1---------1 * *
! 1 404012 1------ *****.**
! 1-------1 1->********

->*********** 1 I'" 1 * 1 *
1 1 27134 1-- *********** * *
1 1---------1 * *

'!?? 1 1 61536 1-- H******
1 1---------1 1 1-->********
1 1 " ! 1-->*********** 1 * 128 *
1 *********** 1 343551 1------ * *
1 I------~--I * *
1 1 445i I--~·- ********
1 1---------1 1-->********

1 1 1 "I * 129 *
1->********11 *********** * *

1 1272 1+ * *
RIB 1---":"-1 . RIBS, RIBS, ********

level 1 1441 1-- level 2 level 3 elements
1 1-------1 1 1->********

1 "I 1 +->*********** 1 *16384 *
********* 1 1 1 45021 1----- * *

two word 1 1 1---------1 * *
addresses 1 1 114102 1____ H******

1 1--------1 1-->********
1->**********1 1 1 "I *16385 *

1 251 1-+ *********** * *
1---------1 * *
1 6440 I_ H******
1---------1 1 1-->********

" 1-->*********** 1 *16512 *
*********** 1 10011 1--- * *
two word 1---------1 * *
addresses 1 150162 1--- ********

1---------1 1-->********
1 " 1 *16513 *
*********** * *

two word * *
addresses **** •• **

Figure 1. File Structure.

AO'.:.JIV:3 Internals Chapter 6 Page 6-39

1rle obvious next step is to detennine how AOS/VS finds the first RIB.
1tI€: will approach this probiem over the next several secions by
investigating the overhead structures (invisible space) and directories of
tbe logical disk.

B. Pllysical layout of visible and invisible spaces

The size of the AOS/VS file pictured above is phenanenal; It has the
potential of greatly exceeding the physical capacity of any real disk. So,
in order to sidestep the file growth limitations imposed by the phy sical
uni ts, AOS/VS supports the concept of a logical disk unit (LOU) by sj mply
grouping multiples of physical disk units (PU's) together and viewing the
arr.assed sectors as one contiguous address space. The overhead structures
nE:cessa ry to tie the uni ts together are written onto the disks as they are
setially formatted during a single DFMTR run. In dealing with files, the
AOS/VS tasking world sees the disk exactly as above, i.e., with no clues as
to which sectors belong to which PUIS. It is not until the disk driver is
requested to actually do 1/0 that the details of relating a disk address to
drive, sector, surface, and cylinder (via the overhead structures) comes
into play.

(One consequence of the' contiguous address space' advantage is that
none of the physical units can be missing when the LDU is brought on-line.
To create a larger or smaller LDU requires re-formatting. This should not
be confused with grafting, where the address space of an LDU is presented
to another LDU in the form of a Control Point Directory; because of the
physical boundaries, the initial LDU cannot let its own file structures
spill out onto the grafted LDU.)

Figure 2 shows the basic block allocations which exist on a rev 4.xx
logical disk conSisting of two single density Zebra (6060) disk packs.
NOTE that blocks are referenced in the diagran by ei t.her a logical address
(LOG xx) or a physical address (PHY xx). The physical addressing is the
more primitive method of identifying the series of blocks spanning the two
disks; the progression is from unit one physical block 0 clockwise to
physical block 556027 (8), then to the first block on the second pack (=
physical block 556030 (8))., and finally clockwise to physical block 1334057
(8). The disk driver uses physical addresses to detennine sectors,
surfaces, and cylinders according to the following formula:

(local block 0) = (physical block 0) - (0 blocks on all
pacv~ before this one)

(local block 0)
mod 45--------
(0 sectors per cyl)

remainder1

(0 sectors per sur)

= ·clyinder 0 + remainder1

= surface 0 + remainder2

sector 0 = remainder2

AOS/VS Internals Chapter 6 Page 6-40

As will be seen shortly. the sequence n of the disk in the LOU, the n
of sectors per cylinder, the n of sectors per surface, etc., are kept in
each PUIS third block.

AOS/VS does not use physical addresses for file transactions because
dOing so could conceivably result in overwrites of the LOU overhead
structures. This could happen, for example, if sane one inadver:tently
changed a RIB pointer while doing sane disk editing. NOTE in Fig 2 that the
first 10 (8) blocks of each PU are not included in the counting sequence of
logical blocks; These collectively comprise the 'invisi bIe space' of the
LDU because any algorithm working exclusively fran logical addresses (like
an AOS/VS system task) can never access information i~ these areas.

For tbe disk driver tc convert logical addresses to physical. the
procedure is:

unit

one

(6060)

physical address = logical address + (10 x disk sequence U)

I
I

octal

I
I
I
I

e.g., fran RIB from 3rd block
on PU

••••••••••••••••••••••••• -I " •

"***"*******************'*'******'****'**********'*
, LOG (inv) , LOG (inv) , LOG (inv) , LOG (inv) ,
* , * * * * PHY 0 , * PHY 1

*
, PHY 2

*
, PHY 3

*
, ,

"**'*****'*'*"*"'*"*'*"'*"'**""***'*'*'****"
* LOG 556011 I * LOG (inv) * ,

*
,

* , PHY 556021 , 0' PHY 4 * , , , ,
'""**' ****'***""**
*

,
* LOG (ir:v) ,

I ,
* * , , I PHY 5 *

*
,

* * *"***1**1'*'*"'*'******'*****'****'*********'*****,
* LOG 1 , LOG 0 , LOG (inv) * LOG (ir.v) *
* * *

,
* , PHY 11 , PHY 10 * PHY 1 , PHY 6 ,

* * * *
,

'*'**"""""""***"""""'**"""'*"""'*"

•

v

AOS/V~ Internals Chapter 6 Page 6-41

. . . . ,

lmit

two

(6060)

111
* LOG (inv) * LOG (inv) 1 LOG (inv) I LOG (inv) *
* * 1 * *
* PHY 556030 * PHY 556031 * PHY 556032 * PHY 556033 *
* * * * *
*************1****1*****1****************************
* LOG 1334037* * LOG (ir.v) *
* * * *
* PHY 1334057* * PHY 556034 *
* * * *
************1* **************
* * * LOG (inv) *
* * * *
* * * PHY 556035 *
* * * * ***
* LOG 556021 * LOG 556020 * LOG (inv) * LOG (inv) *
* * * * *
* PHY 556041 * PHY 556040 * PHY 556037 * PHY 556036 *
* * * * *
'****

Figure 2. Logical disk addressing.

C. Details of invisibile space for the first PU

v

The first 10 (8) blocks in Figure 3 illustrate the format of invisible
space for the first PU in an LOU after DFMTR and INSTL have run. The
information contained in these blocks is fairly straightforward:

1. Physical blocks 0 and 1 contain-the code used to read the system
bootstrap progran into memory and start it running. Block 0 initially gets
inLo rr.emory via the BOOT command to the SCP-CLI. It also homes the Zebra
heads to track zero and clears the controller registers to effectively set
ur a 'r'ead block 0 into memory starting at location 0' disk transfer. The
BOOT command activates a ROH which loads memory with a 32(8) word progran
and starts the CPU; The progran starts the controller (NIOS DEV), whose
device code is given in the BOOT command, and hangs in location 377
(contents of 377 = JMP 377). The DMA transfer eventually overwrites
lo~ation 377 so that the next fetch cycle at 377 results in the first
execution of an instruction from block O. For the purposes of argument, let
us assume that this intruction is a 'JMP 0'. Then the net effect of BOOT is
as shown in Figure 3, where the BOOT code flows into the first part of the
system bootstrap bootstrap. It is an easy matter for these 256(10)
instructions to read in block 1. yielding a-net 512(10) word progran quite
capable of reading and starting programs much larger than itself.
Unfortunately, it is not sophisticated enough to bring in an entire

AOS/VS Internals Chapter 6 Page 6-42

operating system; Therefore. it reads and starts an intennediary program
(the system bootstrap). The location and size of the system bootstrap as
well as the system itself are kept as data in physical block 3, which is
further documented below.
2. Physical block # 2 is the bad block table, ~lich contains the disk
remapping information necessary to make bad blocks transparent to the file
system. One of these tables exists on each PU; hence, fram Figure 3, no
Single disk in an LOU can have more than (256-4)/2 =126 decimal bad blocks.
When the LDU is initted, the bad block tables of each PU are read into
memory so that the disk driver can do fast checking of each logical address
involved in I/O. .

3. PhYSical block n 3 is the disk information block, or DIB, which is the
most important block in the LOU. Table 1 below shows the structure of the
DIB and highlights the locations of disk addresses seen previously in
Figure 3. The system bootstrap bootstrap uses the DIB to find out where the
system bootstrap is. The system bootstrap uses it to find out where the
default system and overlays are. The system uses it to find out where the
the disk block usage map is (one bit per logical block -- set => block in
use). It also uses it to find out where the first RIB of the root directory
is; Since all filenames begin ultimately fram the root, this is indeed a
crucial step in our objective to relate names to locations. Only the 1st PU
is privileged to point to the LOUts bit map, root directory, default
sy~tem. and system bootstrap.

,AOS/VS Internals Chapter 6 Page 6-43

4. Physical blocks 4-7 are currently unused.

BOOT 27
system bad disk

bootstrap block information
bootstrap table block reserved

• (PHY blks 0,1) (PHY blk 2) (PHY blk 3) (PHY blks 4-7)
*.**********.***********.** •••• * •• *.* •• ***.** ••• ** ••• *** ••• ** ••••• *****.*
I. . >--- I. >---- 1 II bad blks 1 I
I I 1-------------1 1
I 1 1 remap + 1
1 I 1 loc + I
1 1 1------------1 + + 1
I I • 1 remap size + + I
I 1 1-------------1 + + +' 1
I I 1 bad block + + + I
I 1 • 1 111 1 ++++ 1
1 .1 •• -----. 1-------------1 + + + + 1
I 1 • 1 " 1+++++ 1
.********.*.***.** •• ***********.******1+.+1+1+1+11**1**1**1*1***11*

+ + + + +
• • • • • • • • • • • + + + + +

+ + + + +
system bootstrap + + + + +

*'I*V****"""'***I*III"'*"II'I"*'*"'*<-+ + + + +
I 1 1 .>---- 1 + + + +
I 1 I 1 + + + +
I 1 1 1 + + + +
I .1 •••••• 1.. 1 ++++
I .1 1 I ++++
I • I 1 1 ++++
I • r 1 1 ++++
1 -----.. 1 1 ----. 1 + + + +
I 1 I • 1 ++++
''1*.'.*.***.,.,***.**"."""""'.',,, + + + +

•'.
default system

+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

'*"v"'**""'I"I'II'I*'I'II'*"""'I"I<---+ + + +
I I . .>---- 1 +++
I 1 1 +++
I I • ----- 1 + + +
I • 1 . • • • • • 1 • • 1 + + +
I • I I 1 + + +
I • 1 I 1 + + +
I • 1 I I + + +
I • I I 1 + + +
I • I I 1 + + +
I -----. · I I I . + + +
! I I I + + +
'***1**'*****""***'**"'**'*'*'****'**'1* + + +

ADSIVS Internals Chapter 6

+++
++ +
+ + +
+ + +

overlay file + + +
... <-----+ ++
I --- I I I ++
I I I I ++
I -- I I I ++
I I I I ++
I I I I ++
I I 1 I ++
1 I I I ++
I I 1 I ++
I --- 1 I I ++
1 I I I ++
I I 1 1 ++
••• + +

+ +
+ +

disk block bitmap + +
••• <------+ +
1 1 1 I· +
I 1 1 I +
1 one I bit I per 1 +
I 1 I I +
I block I for ! all 1 +
1 I I I +
I blocks I in 1 LDU I +
I I I I +
I I I I +
I I 1 I +
I I 1 1 +
••• +

+
+
+
+

root directory RIB + ••••••••••••••• <--------+
I I
1-----------1
1----------1
1-----------1
1---------.--1
1------------1
•••••••••••••••

Figure 3. Overhead Structures.

Page 6-44:

AOS/VS Internals Chapter 6 Page 6-45

000000
000001
000002
000003
000004
000005
000006
0000<77
000010
000011
000012
000013
000014
000015
000016
000017
000020

; disk
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr
.dusr

Table 1. DIB Format.

information block
ibrev::O
ibtyp::ibrev+ 1
ibsts=ibtypt-1
ibidh=ibsts+1
ibidm=ibidh+1
ibidl=ibidm+1
ibsfJp:ibidl+ 1
ibn pu= ibsnpt-1
ibnhd=ibnPU+ 1
ibnst=ibnhd+ 1
ibncy=ibnst+1
ibvis=ibncy+1
ibnbh=ibvis+1
ibnbl=ibnbh+1
ibbth=ibnbl+1
ibbtl=ibbth+ 1
ibuid::ibbtl+ 1

(dib) paraneters
;disk format file sys rev number
idisk unit type
istatus word(per unit flags???)
ildu unique id (high)
ildu unique ia (middle)
;ldu unique id (low)
;sequence number of this PU irl ldu
;number of PUs in Idu
;number of heads
;number of sectors per track
;number of cylinders
;disk addr start of visible ~;pace
;number of 'vis disk blocks (high)
;number of vis disk blocks (low)
jPHYs addr of bad block table (hi)
;PHYs addr of bad block table (10)
;10 word unique id for n.c.

; the following dib offsets are only valid on unit 1 of ,the Idu

000032 .dusr
000033 .dusr
000034 .dusr
000035 .dusr
000036 .dusr
000037 .dusr
000040 .dusr
000041 .dusr
000042 .dusr
000043 .dusr
000044 .dusr
000045 .dusr
000046 .dusr
000047 .dusr

000050
000051
000052
000053
000054
000055
000056
000057
000060
000061
000062
000063

000064

; funny

; funny

ibldf=ibuid+10.
ibnmh=ibldf+ 1
ibnml=ibnmh+1
ibach=ibnml+1
ibacl=ibach+1
ibbah:ibacl+1
ibbal=ibbah+ 1
ibsbh=ibbal+1
ibsbl=ibsbh+1
ibssb=ibsbl+ 1
iboah=ibssb+1
iboal=iboah+1
iboas=iboal+1
ibfbp=iboas+1

;ld flags .
;disk address of name block (hi)
;disk address of name block (10)
;disk address of acl (hi)
;disk address of acl (10)
;disk address of bitmap (hi)
'disk address of bitmap (10)
systEm bootstrap address (hi)
systEm bootstrap address (10)
size of system bootstrap
address of overlay area (hi)
address of overlay area (10)
size of overlay area
idp to fib of installed systEm

fib for root directory starts here
; file status

(fcoml words)

; file type (rh) and format (lh)
;hash frame size (directories)

extension for eof in future
" " " last logical'byte (eof) (hi)

last logical byte (eof) (10)
data element size (hi)
data element size (10)
first logical address (hi)
first logical address (10)
current index levels (left)
maximum index levels (right)
count of inferior directories

fib ends here

AOS/VS Internals Chapter 6 Page 6-46

000065 .dusr ibcsh=ibffb+fcoml ;current size of Id (hi)
000066
000067
OOOGlO

00OGl1

.dusr ibcsl=ibcsh+ 1 ;current sizE' of Id (10)

.dusr ibmsh=ibcsl+ 1 jmax size of 1d (hi)

.dusr ibmsl=ibmsh+1 jmax size of 1d (10)

.dusr iblen=ibms1+1 ;dib fixed le.·ngth

; dib status word mask definitions
; valid only on first disk of Id

100000 .dusr ibsin= 1bO j10gical disk initialized

040000 .dusr ibsbi= 1b1 ;sysboot has been inst.alled
;(the two status flags appear in word 32)

D. Details of invisible space for the other PUIS

The other PUs' invisible space appears exactly as the first PUIS
invisible space, except as just noted in (3) above concerning the DIB's.
When all the pointer information is taken away, what remains in the DIE is
basicly disk characteristic information. For instance, the unique id and #
of PU' s in the LDU are inspected during ini t time to ensure that the
complete LDU is present. The sequence #, starting address of visible space,
and size of visible space determine which logical address belong to which
PU's. The physical characteristics are also given in order to convert
physical addresses to sectors, surfaces, and cylinders. See the DIB below
(fr'om parfs.sr) for specifics. .

E. Directory structures

In part 'D' above, it was shown that' information in the DIB points to
the first RIB of the root directory file. In the follOWing paragraphs, we
discuss how information about files is arranged in the root.

It is important to keep in mind that the root directory (or any
directory for that matter) is just an ordinary ADS/VS file from a
structural standpoint. What makes the directory file seem different fran
non-directory files is the not-so-stralght..;.forward organization of it;~'
vadous record types and the prolific use of pointers among them. (The
directory file which was just introduced in Figure 3 rrdght lead one to
believe that at least all records of a given type are grouped together;
However. that diagran's purpose was to reveal how the root directory was
related logically to other fundamental disk structures and not how it was
internally managed.) The reason for the complex architecture h; the
tremendous range of storage requi rements which might be necessary to
describe individual files in a directory. For instance, a file can have a
one character filename and zero length ACL or 31 character filename and 511
character ACL. If a single record in the directory were t.o describe the
entire file, it would have to be at least 542 bytes long -- and that
doesn't include di.sk addresses, creation da tes, etc I and \1 since fjJ enames
and ACL's in general are nowhere near the maximum length. ~t is easy to see
that the one-record-per-file type of directory organizatioJ~ would re ... "3ult in

AOS/VS Internals Chapter 6 Page 6-47

an unC:lcceptable amount of wasted record s(Sce in each descriptor. By
breaking the single descriptor into a series of variable length records
that point to each other. it is possible to achieve much better s(Sce
uti lization.

The specific record types which describe certain aspects of a file are
lbted below. To get an exhaustive description of a fUe requires finding
ev,,-'ry appJ.icable record (i. e., the FNB and FIB plus the FAC if there is an
ac(:es!j control list I the FLB if the file is a link, etc.) and reading them.

type name nmemonic how located
-------- ----_ -----

0 free 8w area nla scannjng data blocks
1 file name block FNB filename match
2 access cont list FAC from FIB
3 file info block FIB from FNB
4 link block FLB from FIB
5 user data area FUD from FIB

As in any ordinary file whose records are variablE' 1n length •. part of
tlw overhead of each record is the record size. In all record types listed
ab\we, the word length is kept in the first word of the record, right byte.
(TLe left byte is used to identify the record type.) One departure from the
normal overhead of variable length records does exist. however; the records
must begin on 8-word boundaries (nuggets). (Each 8-word segment is called a
'directory data entry' or 'DDE'.) The motivation for this rule is the
format of the pointers to other records called t inter-directory pointers'·
or 'IDPs'. Their format:

1--------------------------------1----------------1
1 relative block # of block in 1 # of DDE where 1
1 directory where record resides I record begins

1--------------------------------1-----------------o 10 11 15

Note how this format places an irnnediate limitation on the size of a
dir'ectory file; it can only grow to 2**11:2048 relative blocks. If records
were kept using the normal AOS/VS byte bookkeeping, then the pointer \OlOuld
requir'e 9 bits to accomodate the byte offset (into a 512:2**9 byte block)
and only 7 bits would be left over to describe the record's relative block
number. Hence, the directory could only grow to 128 relative blocks!

Wi th the IDP forma t disclosed, we are now in a good position to
actually trace through the directory structures to see how AOS/VS relates a
filename to its location and attributes. The discussion refers to TablE· 2
and Figure 4.

Step 1 -- Use the DIB on PU1 to find the root directory
RIB. This was already considered in Ftgure 3.

AOS/vS Internals Chapter 6 Page 6-48

Step 2 -- Find the FNB for the file.
A) Hash the filename by taking the sum of the ascii values of all

the filename characters and dividing by t.he frame size for the
directory. (For the root. this number is the contents of
displacement 52 in the DIB of PU1.) The ranainder of this
diviSion is the hash value.

B) The hash value is the relative block II in the directory file
where
the FNB (hopefully) resides. Therefore. use the bash value as
a displacement into the RIB (actually the [hash value]*2
because of the two word addresses) to find the logical address
of the relative block.

C) Keeping in mind that the entries are varj.able length records,
scan the FNB's for a match with the desired filename.

D) If the FNB is found, go to 3; otherwise, go to E)

E) Use the forward link to find the next block to scan. Actually.
Figure 4 is a little misleading in the fact that it shows the
forward link pointing directly at the next block, as though
the logical address were kept there. Actually. the link word
contains the rela ti ve block If of the next block to scan, and
the RIB must be used again to find the "LCXiical address. If
there. is no link, it can be concluded tha.t the file does not
exist. Otherwise, go to c).

Step 3 -- Find the FIB

A) Use the second word in the FNB to find the relative block # of
the block containing the file's FIB (bits 0-10 of the IDP) and
DDE # (bits 11-15 of the IDP) where the FIB starts in the
block.

B) Use the relative block # as a.displacement into the RIB to
find the logical address of the block.

C) In the block, the FIB begins at offset [DDE #]*10 (octal).

Step 4 -- Find other file information

A) Use the FIB format to find the location of the file and its
attributes.

B) Use the IDP's in the FIB to find other records in the
directory containing the file's ACL, UDA, etc.

AOS/VS Internals Chapter 6 Page 6-49

Table 2. Directory file record formats.

FNB -- file name block; to locate. use filename hashing and matching

offset 0
1
2
3
4

?

left byte = type, right byte = size in words
inter-directory pointer to FIB of file
filename starts here. one character per byte

left to right packing., . no parity

; size of record depends upon filename length
rounded up to end of DDE.

FIB -- file information block; to locate. use offset 1 fran FNB

offset 0
1
2

3
4
5
6

7
10

11
12
13
14
15
16
17
20
21

22
23
24
25
26
zr
30

type of record (left), size in words (r'ight)
pointer to first FNB (IDP)
pointer to FAC (IDP)

* or *
pointer to FLB (link only) (IDP)
unique id (IDP)
file creation tin1€' (hi)
file creation time (10)
file status -- contains access rights for "+".
(see FAC below for bit positions)
file type (rh) and format (lh)
file control parameters

* or *
hash frame size (directories)

* or *
device code (left), unit number (right) for

device files only (e.g., grafted LOU's)
* or *

host id - network type files
FIB extension for data files and directories
extension for €of in futUre

" " " last logical byte (eof) (hi)
last logical byte (eof) (10)
data element size (hi)
data element size (10)
first logical address (hi)
first logical 'address (10)
current index levels (left)

maximum index levels (right)
count of inferior directories
pointer to FUD
time last accessed (hi)

, time last accessed (10)
time las t modi fied (hi)
time last modified (10)
extension for FCB address

AOS/VS Internals Chapter 6 Page 6-50

31 virtual FCB address or zero
FIB extension for control point directories

32 current size (high)
33 current size (low)
34 max size (high)
35 max size (low)

FAC -- access control list; to locate. use offset 2 in FIB

offset 0
1
2

?

;execute:
;read:
;append:
;write:
;owner:

type of record (left), size in words (right)
address of FIB (IDP)
ACL -- username (one char/byte) terminated

by null byte. one byte of access,
next username terminated by null,
one byte of access, etc.

end determined by size of ACL (max=256 bytes)

00000001
00000010
00000100
00001000
00010000

bit positions of access privileges

FLB -- link; to locate. use offset 2 in FIB (ACL found from resolution)

offset 0
1
2
•
?

type of record (left), size-in words (right)
address of FIB (IDP)
link resolution name (could

be another link)
end determined by size of resolution name

FUI -- file unique id; to locate. use offset 3 in FIB (type not used)

offset 0
1
2

?

type of record (left), size in words (right)
address of FIB (IDP)
unique id

end determined by size of id

FUD -- user data area; to locate. use offset 23 in FIB

offset 0
1
2
3
4

type of record (left), size in words (right)
address of FIB (IDP)
FUD forward link
FUD backward link
user data

? end determined by amount of data and link values

I
I
I
I
I
I

n I
o I
t I

I
u I
s I
e I
d I

i
n

f
i
g

4

AOS/VS Internals Chapter 6 Page 6-51

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DIB on first unit (block 3)

1 1

50 1--------------1
1 "funny fib" 1--
1 1 I
1 1 I

(1)
find directory RIB
fran "funny fib"

65 1--------------1 I
1 1 I
**************** I di rectory RIB

I (2) (3) (4)
1 find find find
I file file file
I name info acl
I ***********************************
1----->1 + + + hvO 1

1-+------+------+-----------------1
displacement found
from hash value

1 + + + hv1 1
1-+------+------+-----------------1

1
1
I
1
1
1
1
1
1
1
I
1
1
I
1
1
I
I
I
I
I

displacement found
from FIB IDP in
file name block

displacement found

V + + hv2 1
1--------+------+----------------~1
1 + + hv3 1

1--------+------+-----------------1
1 + + hv4 1

1--------+------+-----------------1
1 + + hv5 1
1--------+------+-----------------1
1 + + hv6 1

1--------+------+-----------------1
v + ddb 1

1---------------+-----------------1
1 + bitm 1

1---------------+-----------------1
1 + r~ 1

1---------------+-----------------1
1 + ddb 1

1---------------+-----------------1
" "
" " " " ______________ v ddb 1

I 1---------------------------------1
I . (two word addr~ses) ddb 1
I 1---------------------------------1
I
I
I
I
1
I

"
"

"
" ***********************************

---------------------------------1
I
1
1

AOs/VS Internals Chapter 6 Page 6-52

v directory data block (ddb) v
*************************** ***************************

DDEO 1 forward link 1------->1 forward link 1
1 backward link 1<-------1 backward link 1
1 1 1 1

--------.---------------------1 1-----------------------1
DDE' 1 1 1 1

1 1 1 1
1 1 1 . 1

-------------------------------1 1------------------------1 DDE2 1 type=3 / size=40 1 11
1 FNB IDP 1 1 ,
1 FAC IDP 1 1 1
1 FLB IDP 1 1------------------------1
1 FUD IDP 1 1 1
1 1 1 1
1 1 1 1
1 ,1 1------------------------1
1 RIB LOGical address '1--- 1 type=2 / size=20 1
1 n index levels 1 1 1 FIB reI blk n / el n 1
1 11 1 0/ p 1
1 1 I 1 <0> / 00011111 1

-------------------------------1 I 1 <0> / <0> 1
1 • 1 I 1 1
1 • 1 I 1 1

----*************************** 'I ***************************
I
I

I----------~--------~-----~--------
I
I

-------->************************** **************************** I
DDEO 1 forwa rd link 1------>1 forwa rd link 1 I

1 backward link 1<------1 backwark link 1 I
1 1 1 1 I

-------------~-----------------1 1------------------------1 I
DDE1 1 type=' / size='O 1 , 1 I

1 FIB reI blk n / el n 1 , 1 I
1 f / i 1 1 1 , , 1 / e , 1 1 f
1 n / a 1 1 1 1 , m / e 1 1 -- other file 1 I
1 <0> / <0> 1 1 1 I
1 <0> / <0> 1 1 name blocks 1 I

-------------------------------1 1-------------------------1 I
DDE2 1 1 1 for hash 1 I

1 1 1 1 I
1 1 1 value two -- 1 I , 1 1 1 I
1 • 1 1 1 1
1 1 1 1 I
1 1 1 1 I
*************************** *************************** 1

AOS/VS Internals Chapter 6

************<--------
* file * 1
* element"* 1
* zero * 1

file RIB, one index level
(could be another directory)

Page 6-53

* * 1 **********************11111*11**11<-----------
I * 1----1 1
********1*** 1------------.. ·------------------1

1---1 1
************<-------1 1-------------------------------1
* file I ----1 1
I element I 1 1--------------------------~-----1
I one * 1 --1 (two word addresses) 1
* I 1 1 1--------------------------------1
I I 1 1 1 1
*1********** 1 I 1--------------------------------1

I I 1 1
*1**********<-------- I 1 1
I file I I 1 • 1
* element * I 1 • 1
* two * I 1 • 1
I * I 1 1
* * 1 1 1
************ I 1 1

1 1 1
****1***1***<--------1 ·1 1
I file * 1 1
I element * 1 1
* three * 1 1
I * 1****1**1***1*****1**********1***1
I * ****1***1***

Figure 4. Directory file structure

G. More about the directory file RIB

One aspect of Figure 4 not yet revealed is the significance of the
abbreviations in the RIB (ie, HVO, DDB, bitm, etc). The first seven
addresses (or more properly. the first 'frame size' addresses as determined
at directory create time) are unconditionally set aside to point to the
directory data blocks (DDB's) containing the FNB's. When so many FNB's of
the same hash value exist that they can no longer fit into une block,
AOS/VS lets the file grow in the normal fashion by allocating a free block
and putting its logical address in the RIB. The forward link in the filled
block is thus established and saved. (Remember, the forward link is the
relative block II of the next block.) "

Other DDB's contain the other record types.
The entry marked 'res' is not used, but reserved for future use.
Finally. the entry marked 'bitm' is the address of a bit bit map for

the directory file DDB's. Note: this bit map is used only for keeping
tabs on the usage of the DDB's in the directory file itself and should not
be confused with the bit map pointed to in PU1's DIB, which is used to
control block usage on the entire LOU.

AOS/VS Internals Chapter 6 Page 6-54

File System Data Bases in Memory

A. Memory structures involved in user disk 1/0

The tables described below are shown in Fig 5. The discussion assumes
that a ?RDB is under consideration.

1. CCB's -- channel control blocks
This table (16. words long) describes an individual disk request, such

as a relative block number and the number of blocks to transfer. There is a
unique CCB for every open channel, and they are kept in GSMEM space.· User
CCB's are saved on disk as part of a process' swappable context and
therefore the space for them is allocated in 256 (10) word chunks. The
implication of this is that 17 channels open concurrently is much worse
than 16. The maximum amount of memory available to a process for CeB's is
1k (= 64. channels x 16. words). When the process is swapped back in, the
CCB's are not brought along il11O'edia tely. but are instead "faulted" in to
memory as they are required by the user's system calls. eeB's point to
FeB's.

2. FCB's -- file control blocks
This table is 32. words long and essentially holds the FIB of an open

file; Hence, it contains the information necessary to convert a file
relative block number into a logical disk address (possibly through the
reading of several index blocks).. The rela tionship between the eeB and the
FeB is another example of AOS/VS' sharing philosophy; when two or more
users open channels to the same pathname, only one FeB is needed because
its contents are common to all the channels. The eeB's, on the other hand,
describe each user's particular requests of the file. Since size
information is kept in the FeB, note that users will see the results of
file appending done by other users. FeB's point to LeB's.

3. LCB' s -- logical control blocks
Logical control blocks are 16. words long, and there is one in GSMEM

for each inited logical disk in the system. LeB's contain the info needed
to "tie together" a logical disk. Via the LeB, the system can find, among
other things, the LOU's bit map, the root directory eeB address, and an
ordered list of unit descriptor blocks (see below) that describe each
physical unit. Knowing the order of the physical disks that comprise the
logical disk is the first step of converting a logical disk address to a
sector, surface, cylinder. and drive number.

4. UDB's -- unit descriptor blocks
UDB's are 32 words long •. They are used to describe the physical

characteristics of a unit in an LOU. The information kept there is
essentially that of the DIB of the unit. To convert logical disk addresses
into physical adresses local to a particular drive, it is only necessary to
move down the LOU's UDB chain, subtracting the total number of blocks on
each unit from the logical address desired. (Note that invisible space
complicates the algorithm a bit.) When a unit is found whose total exceeds
the remainder. the unit's sector, surface, and cylinder info can be used to
calculate the controller commands needed to read the block.

AOS/VS Internals Chaptet" 6 Page 6-55

5. DCT's -~ device control blocks

Each UDB is actually a member of two UDB chains. The first was
described above in relation to the LDU; the second involves all units on a
particular controller and begins in the controller's OCT. The reason two
cI':ains are needed is because the units of an LOU do not necessarily
coincide exactly with all the units of just one controller. Hence, the
system setup of a disk transfer uses the UDB chain starting in the LCB to
find information, whereas the interrupt world prefers the chain originating
in the OCT.

6. IOCB' s ~- I/O control blocks
roCB's are used to hold state information when the processing paths

used to drive disks need to pend. Recall that ?RDB is a direct call and
therefore that it cannot pend because it has no CB. All that ?RDB does is
validate the user's request, initialize an IOCB, 'and link it into a queue
called "iorun". It is the routine pointed to by the IOCB that will start
the t'eal disk processing. It will get control the next time the scheduler
is entered and finds that the disk manager control block is next to run
and, if it is, searches down the queue lod<ing for an IOCB that is ready
for service. Hence, system setup of disk I/O is essentially treated as
another type of control block. Note that SMON sees a queue that is limited
to CB's and PTBL'sand TCB's. However. since ELQUE starts at the first CB on
queue (Disk Manager) , any entry into the scheduler at a point other. than
SMON will not involve IOCB processing.

There is a pool of 5 IOCB's for each inited logical disk. If a user
does a ?RDB and no IOCB's are available to start the request, the 'user's
CCB is enqueued to another linked list call "CCWJ" where the ?RDB functions·
win be performed when an IOCB becomes free.

Cache Buffers hold the contents of recently used system buffer info

1111*** 11*'111 *'*1*'1 IIIIIII 11*11*1 '11'11'

1 CH 1-->1 CH 1-->1 CH 1-->1 CH 1-->1 CH 1-->1 CH
*11111' 1*1111* 11.11*1 1111'1* 1"1111 1111'"

V V V V V V
11*'1*1 1**11'1 111'*1' 11111" '11111' 111'111

1 1-->1 1->1 1->1 1-->1 1->1 1
ICACHE! rCACHE! !CACHE! ICACHE! ICACHE! tCACHEI
1 I 1 1 I 1 I 1 1 1 1 '1
111'1 IIIIIII 111111' 1'11'1' 11'1'1* 1'1*1"

AOs/VS Internals Chapter 6 Page 6-56

A disk controller might support
many drives, not all i~ the same lOU

File system data bases
convert logical addresses
to physical addresses

•••••••
I I
I OCT I
I I
H •••••

• ••••••
I I
I OCT I
I I
•••••••

I
v v

••••••• ••••••• ••••••• ••••••• ••••••• ••••••• • ••••••
I 1->1 1-->1 1->1 1->1 1-->1 1/0 1-->1 1/0 I
1 CCB I I FCB I I LCB I I UOB I I UOB I I CB I I CB I
I I I I I I I I I I I I I I
••••••• ••••••• ••••••• ••••••• ••••••• ••••••• • ••••••

v· v *...••.
I 1->1 1->1 1,->1 1->1 1->1 1/0 1->1 BH I
I CCB I I FCB I I LCB I I UOB I I UOB I I CB I •••••••
I I I I I I I I II I I _..
••••••• ••••••• ••••••• • ••••••
I 1->1 I->! I->! BH I
! CCB I I FCB I I UOB I •••••••
I I I I I !

IOCB's describe transfers
and point to processing
paths

•••••.• . •• *... ••..••. Physical unit opened by user

••••••• ••••••• • ••••••
IORUN -->1 1/0 1-->1 1/0 1-->1 1/0 I

I CB I I CB 1 I CB I
I I I I I I
••••••• ••••••• • ••••••

IORUN is the chain of
IOCB's that want
service

•••••••
CCWQ -->1 I

CCWQ is the chain of backed-up CCB's that
?RDB couldn't find IOCB's for

I CCB I
I I
•••••••

AOS/V~:; Internal s Chapter 6 Page 6-57

System buffers are used to read RIB's, directory records, disk bit maps,
the IPS
files, Swap, Page, etc.

*"'11' 1****** ******* ******* '******
1 BH 1-->1 BH 1-->1 BH 1-->1 BH I-->! BH
' ******* ******* ******* *******

v v v v v
******* ******* ******* ******* *******
1 1-->1 1-->1 1-->1 I-->! 1
1 buf 1 1 buf! 1 buf 1 1 buf! 1 buf 1
I ! I II 1 I I I 1
******* *****" ******' ******* *******

Fig 5. File system data bases.

B) System buffers for system disk requests
System -buffers are 256. words long and are associated with a 16. word

header. They are taken out of GSNEM space and there are a mimimum of eight
of them. although the system will dynamically try to grow the available
buffer pool as long as GSMEM is not strained as new disk requests are made.
Otherwise. they are replaced on an LRU basis. (See the discussion an CACHE
buffers below.)

There are two cases which concern system buffers. The first is a user
doing a ?RDB in a file with one to three index levels; all RIB's are read
into system buffers. The other involves the system reading it.s own special
files, like active directories, SWAP, PAGE, IPS.XXX, LDU bit maps, etc.

In the first case, the IOCB discussed in section "E" above is not
linked onto the UDB. It is marked as not ready. but a buffer header is
enqueued instead. TIle processing entry point in the lOCB is updated to
bring control back into the "E" routine when the interrupt world finally
reads the irldex block into the buffer and wakes up the IOCB. If a second
level must be read, the same procedure is repeated, and so on until the
IOCB itself can be placed on the UDB and the desired block delivered to the
user.

In the second case, system requests are handled in much the same manner
as user requests. eCB's for system files are filled with relative block
information, the FCB-LeB-UDB relationship is exploited to convert relative
blcck numbers to absolute block numbers, and an IOCB is used as a state
table queued on IORUN. If index levels must be traversed, buffers are used
just as described above.

Because buffer headers and IOCB's can both be queued on a UDB, it
should be obvious that many of their displacements have identical
interpretations.

[Note: When the user does a ?RDB to a physical unit, there is no lOCB
processing at all (because the device is not inited) and ir. this case, a
buffer header is enqueued to the UDB and.a status bit indicates that the
I/O i~: intended for user space.]

AOS/VS Internals Chapter 6 Page 6-58

C. The purpose and use of CACHE buffers

Whenever the system must read a blocl< into a systan buffer, it first
checks to see if the block is already in a buffer in an unaltered state. If
it is, the block needn't be read and a very large amount of seek time is
avoided. Thus, it is clear that the more buffers that are available, the
faster (in general) the system will respond.

The buffers are used on a least-recently-used basis when no roam is
available in GSMEM to grow the buffer pool. Under these circunstances, the
system suffers when there are a maximum of twenty buffers and it is trying
to read twenty-one different blocks (from a bit map, for instance) in a
continual loop.

The purpose of CACHE buffers is to save the contents of unused blocks
in gvmem so that. later on, they can be copied back into a buffer when the
system requests them; a memory-to-memory transfer is much faster than a
disk-to-memory transfer. However. not all blocks saved in CACHE will be
called back before they are overwritten because of the least-recently-used
algorithm. so it is not necessarily true that adding CACHE buffers to the
system will speed it up. The addition of CACHE must be weighed against the
CPU time introduced to support the feature as well as the loss of total
memory available to users.

The memory overhead is easy to caiculate. Each CACHE buffer requires
256. words of GSMEM as well as 16. words of header. Thus, a spec for 128
CACHE buffers puts a memory load of 32 + 2 = 34 pages onto the system. If
the same system without CACHE under normal operating conditions shows
swapped users (excluding those that are waiting for son tennination) , the
introduction of CACHE probably will degrade the system's overall response
time.

The CACHE algorithm must be considered, too. When it is detenmined that
a buffer must be involved in 1/0, the system fir'st tries to find a buffer
with the desired block. Then it lodes down the CACHE chain. If the block is
not found in CACHE, the least recently used buffer is blm'ed into the least
recently used CACHE buffer (unless, of course, free data bases can be
found) and the new block read. If the block is found in CACHE, a buffer
must be blnl'ed up in order to make roam for CACHE to be blm'ed down.

It should be pointed out that if too few CACHE buffers are spec'ed,
thrashing is invited; users may no longer be swapped out, but CPU time is
being wasted in blm'ing blocks up into CACHE without the compensating
effect of a good "hit" ra teo

To properly choose a CACHE buffer spec, it is necessary to know the
"break even" situation and judge whether or not the introduction" of CACHE
helps or hinders. One statistic -- the percentage hit rate -- is extremely
easy to find using the ?LMAP system call. documented in the AOS/VS System
programmer's manual. The tougher question is, "what, for my system, is a
gooo hit rate?".

AOS/VS Internals Chapter 7

CHAPTER 7 ~- ~
(AOS/VS Revision 5.00)

Page 7-1

AOS/VSEXEC is a program that provides many of the features that our
user community associates with the AOS/VS multi-user envirorment.

EXEC's Major Functions

EXEC's multi-user functional worlds include the following:

(1) Logon World - Logs users on and off of consoles

(2) Queue World - Manages user queues

(3) Batch World - Manages batch streams

(4) Cooperative World Communicates
processes (i.e., processes that
plotters, network file transfers, etc.)

with cooperative
control printers,

(5) Mount World - Manages a tape handling facility that
coordinates user tape requests, operator directives, and
magnetic tape units.

(6) CONTROL @EXEC (CX) World - Fullfills requests from the
operator.

(7) ?EXEC World - Fullfills requests from the user community.

(8) Miscellaneous - Includes a variety of support worlds
(delay functions, message disIBtcher, remory management.
etc.).

Each of these functions will be described in much greater detail as the
EXEC chapter progresses.

EX~C's General Purpose

More generally, EXEC's purposes can be described as follows:

(1) Centralizes operator/system manager control over
time-sharing, multi-user functions.

(2) Provides the flexibility and "tuning" capabilities
necessary to effectively manage the many and varied AOS/VS
multi-user environments.

(3) Enforces system security.

(4) Provides monitoring and accounting infornation.

ADSIVS Internal s Chapter 7

EXEC Task Structure

AOS/VS EXEC has 14. tasks (refer to the diagran):

• 9 tasks are in ring 7.

• 5 tasks in ring 6.

The tasks are named as follows:

AOS/VS EXEC Tasks

Initialization Task
CONTRCL @EXEC Task
?EXEC Task
Termination Listener
Dequeuer Task
Cooperative Listener
Mount Manager
Delay Manager
IPC Ignorer

Console Driver
PKiR Listener
SVTA Listener
Delay Manager
Message Dispa tcher

EXEC Task Descriptions

Priority

200.
200.
200.
200.
200.
200.
200.
200.'

'200.

3.
2.
2.
3.
3.

Page 7-2

.IWl&

7
7
7
7
7
7
7
7
7

6
6
6
6
6

FollOWing are brief descriptions of these tasks. More information
is provided in the detailed descriptionsQf EXEC's various functions.

(1) Initialization Task (Ring 7)

• The "initialization task" is the task that EXEC first
comes up in.

• This task performs a variety of one-time initialization
operations including bringing up all of the other tasks.

• When EXEC, initialization is complete. this task suspends
itself (?SUS) for the rest of EXEC's life.

AOS/VS Internals Chapter 7 Page 7-3

[More information on EXEC initialization is provided later
in this document.]

(2) CONTROL @EXEC Task (Ring 7)

* The "CONTROL @EXEC Task" (also called the Command
Decoder) listens for all commands entered by the operator
and performs the requested actions. This task provides
the interface through which the operator may control all
of EXEC (e.g., enable/disable consoles, control queues,
manage tape requests, etc.).

* All "CONTROL @EXEC" commands go to this task (via the
IPC ports associated with file :PER:EXEC).

* This task interacts with most of EXEC's data bases and
other tasks.

(3) ?EXEC Task (Ring 7)

* The "?EXEC Task" (also called the Request Decoder")
listens for all ?EXEC system calls and performs. the
requested actions. .

* This task provides the EXEC interface through which
system users can submit queue requests (print, batch,
etc.), request tape operations (mount/dismount), and ask
for status information (logon status, consolename,
operator on/off duty, etc.).

* ?EXEC system call requests come to EXEC as IPC messages
via ports associated with file :PER:EXEC_REQUESTS.

(4) Termination Listener (Ring 7)

* The "Termination Listener" listens for all process
termination and broken connection messages coming from the
operating system to EXEC.

* EXEC receives termination messages for all son processes
(consoles, batch jobs, and cooperatives) and any other
process to which EXEC is connected (VTA and FTA).

* Console and VTA terminations are reported to the console
driver task.

* Batch job terminations are reported to the dequeuer
task.

* Cooperative terminations are reported to the operator'5
console.

AOS/VS Internals Chapter 7 Page 7-4

(5) Dequeuer Task (Ring 7)

* The "Dequeuer Task" matches queue entries that need
servicing with idle batch streams and cooperative
processes.

(6) Cooperative Listener (Ring 7)

* The "Cooperative Listener" listens for IPC me~sages
coming to EXEC from cooperative processes (processes that
control devices and system resources).

* Cooperative processes include XLPT (line printer), XPLT
(plotter), FTA (file transfer), SNA. (SNA./RJE emulatcr),
etc.

* Cooperative IPC messages fall into 2 categories:
- Noti fica tions of a change of status

(e.g., job is done).

- Requests for EXEC to display a message on the
operator's console (e.g., "PHYSICAL UNIT FAILURE").

(7) Mount Manager (Ring 7)

* The "Moun t Manager" moni tors EXEC's tape moun tl dismoun t
request data base. searching for entries that need
servicing by the operator.

* When a tape request requires attention, the mount
manager prompts the operator with a display at the
operator's console.

(8) Delay Manager (Ring 7)

* The "Delay Manager" times all ring 7 EXEC operations
that cannot be performed until a certain amount of time
has elapsed.

* All delay requests come to this task from other tasks.

* When the specified time expires, the delay task
processes the delayed request.

* This delay task is most commonly used to delay
processing of queue entries (e.g., "QPRINT/AFTER::8:30:00
FILE") •

* Note that each ring has its own delay task (i.e., there
are two delay tasks, one for ring 7 and one for ring 6).

AOS/VS Internals Chapter 7 Page 7-5

(9) IPC Ignorer (Ring 7)

* The "IPC Ignorer" receives IPC messages and simply
discards them (without interpretation or action).

* All of EXEC's IPC requests to PMGR and SVTA generate
responses. If EXEC doesn't care about the response, it
specifies that the answer be returned to this task.

* EXEC must receive all incoming IPC messages or they will
clog the IPC spool file queue (maintained by the operating
system on EXEC's behalf) and cause problems.

(10) Console Driver (Ring 6)

* The "Console Driver" pulls r~uests for console
processing off the console driver queue (internal queue)
and performs the specified action.

(11) PMGR Listener (Ring 6)

* The "PM:1R Listener" task listens for all console-rel.a ted
responses coming to EXEC from the PMGR.

* The PMGR' s messages are in response to EXEC' s r~uests
to to aSSign/deassign a console, get/set the console's
characteristics, and perform read/write operations to a
console.

(12) SVTA Listener (Ring 6)

* The "SVTA Listener" task listens for all console-rel.a ted
responses coming to EXEC from SVTA.

* SVTA' s messages are in response to EXEC' s r~uests to to
assign/deassign a console, get/set the console's
characteristics, and perform read/write operations to a
console.

* All messages to/fram SVTA are identical to those to/from
the PMGR except that they pertain to VCONS (virtual
consoles across the network) instead of local consoles.

* EXEC uses the IPC interface to communicate .with SVTA
(via the ?ISEND/?IREC system calls).

AOSIVS Internals Chapter 7 Page 7-6

(13) Delay Manager (Ring 6)

• This ''Delay Manager" task time's all ring 6 EXEC
operations that cannot be performed until a certain amount
of time has elapsed.

• All delay requests come to this task from other ring 6
tasks.

• When the specified time expires, the delay task notifies
the task that made the original delay request.

• The ring 6 delay task is most comllDnly used
console logon attempts when too many
use rname/pa s sword pairs are entered (i.e.,
attempts, locking console for 10 seconds").

to delay
invalide

"Too many

• Note that each ring has its own delay task (i.e., there
are two delay tasks, one for ring 7 and one for ring 6).

(1~) Message Dispatcher (Ring 6)

• The "Message Dispatcher" task sends out all
console-related messages' to the operator.

• Other ring 6 tasks place messages on an internal queue
and the message dispatcher sends them to the appropriate
pid/port. .

Page '7-'(

EXEC Data ~

EXEC maintains a variety of data bases neces~;ary for its many
fUnctions. The following table lists the major data oases <ind
where they reside.

Name

Batch Descriptors (BD)
Logon Descriptors (LD)
Mount Descriptors (MD)
Unit Descriptors (UD)
Virtual Coop Desecriptors (VCD)
In-Core Cooperative Descriptors
Disk Queue (DQ)
In-Core Queue (CQ)
Queue Descriptors
Delay Descriptors
User Profiles
Operator's Console Descriptor
Pids/Sons Data Bases

File
(CD)

Ring 'r
Rinr, 6
Rinr, '{
Ring '{

EXEC.OOOPERATIVt~
Ring '{

Disk file :QUEUE:Q
Ring '(

DQ and CQ
Ririe; 6 and r{

Visk files in :UPD
Ring 7
Ring 7

[Note that there are a variety of EXEC data bases besides the
major ones listed above.]

Following are brief descriptions of these da ta bases. More
information on these are provided in the detailed descriptions
of EXEC's various functional worlds.

(1) Batch Descl'iptors (BD)

* There are 4 batch descriptors, one for each batch
stream.

* Batch descriptors are static (assembled into EXEC).

* 'Batch descriptors are linked together on the "batch
stream chain" (BSCHN).

• Batch descriptors include status info., pid, info. on
the queue entry being processed, etc.

• Ring 7

AOS/VS Internals Chapter 7 Page 7-8

(2) Logon Descriptors (LO)

* Each logon descriptor describes one console enabled
underEXEC (including local consoles, roodems , virtual
consoles, etc.).

* LDs are allocated from free memory when a console js
enabled.

* The logon descriptors are entered in two tables: one
indexed by console control port number, one by local LD
numbers assigned by EXEC.

* LOs contain console name, status, pid, username, connect
time, etc.

* Ring 6

(3) Mount Descriptors (MD)

* Each MD describes a user's tape mount request.

* MDs are allocated dynamically from free memory ~en a
user mount request comes in. They are deleted when the
operator fullfil Is the· corresponding dismount request
(generated by the user/agent or when the user tenninates).

* MDs are linked together onto the "mount chain" (MDCHN). . "

* MDs contain usernarne of requestor. volid list, pid,
logical tape name, associated UD, etc.

* Ring 7

(4) Unit Descriptors (UD)

* Each UD describes one magnetic tape unit.

* When EXEC comes up, it allocates one UD from free memory
for every tape unit genned" into the system (i. e., one U>
for each file of type "MW" in directory :PER).

* After initialization. the number of UDs is static (none
are added or deJeted during EXEC's lifetime).

* UDs are linked together onto the "unit chain" (UDCHN).

* UDs contain unitname, status, associated MD, etc.

* Ring 7

AOS/VS Internals Chapter 7 Page 7-9

(5) Virtual Cooperative Descriptors (VCD)

t Each cooperative (coop) descriptor describes one
cooperative process.

t VCDs reside in disk file EXEC.COOPERATIVES because EXEC
does not have enough roan internally to store them all.

* Coop descriptors contain cooperative name, IPC ports,
pid, status, info. on the queue entry being processed,

(6) In-Core Cooperative Descriptors (CD)

* Each CD is an abbreviated version of the VCD (the coop
descriptor that resides on disk).

* The abbreviated CD is used to improve performance by
reducing disk accesses when a particular coop is needed
(i.e., the in-core coop data base is searched for the
appropriate CD and then the corresponding VCD can be
retrieved from disk with only one access).

(7) Disk Queue (DQ)

* The disk queue resides in file :QUEUE:Q, which is
created by EXEC at initialization time.

t The disk queue contains the queue descriptors (one per
queue ~p to 32.).

* The disk queue also contains all of the queue entries
(entries submitted to the queues by users).

(8) In-Core Queue (CQ)

* The in-core queue is an abbre.riated version of the disk
queue (above) that resides within EXEC.

* The in-core queue is used to improve performance by
reducing disk accesses when the queue world must be
scanned (e.g., queueing and dequeing jobs).

* Ring 7

AOS/VS Internals Chapter 7 Page 7-10

(9) Queue Descriptors

• Each queue descriptor describes one'of EXEC's queues.

• There are three queues created by EXEC at initialization
time that cannot be deleted: BATCH_INPUT, BATCH_OUTPUT,
and BATCH_LIST.

• Other queues may be created and deleted dynamically
while EXEC is running (up to a maximum of 32). .

• The queue descriptors reside i.n the disk queue;
abbreviated versions live in the in-core queue (both disk
and in-core queue are described above).

• Queue descriptors contain queuenam~, queue type.
associated coop(s), etc.

(10) Queue Entries

* Each queue entry describes one user queue submit
request.

* Queue entries are modified dynamically as users submit
requests, and as those'entries are processed (maximum of
256 queue entries).

* The queue entries reside in the disk queue; abbreviated
versions live in the in-core queue (see above).

(11) Delay Descriptors

* Delay descriptors describe an eve~t that cannot be
performed until a certain amount of time has elapsed.

* EXEC maintains two sets of delay descriptors: one 'for
ring 7 and one for ring 6. Each set is completely
seperate in contents and o~ganization.

(12) User Profiles

* User profiles reside on disk in directory :UPD (User
Profile Directory).

• There is one profile for each user who can logon under
EXEC.

• Profiles are created by OP with the preditor utility.

• The profile is used by EXEC to detennine who can use the
system and how; it contains username/password pair,
privileges, initial progran and IPC, etc.

AOS/VS Internals Chapter 7 Page 7-11

(13) Operator's Console Descriptor

* The OP console descriptor contains infonnation about the
operator's console (ports, etc.).

* It is used when ring 7 EXEC wishes to send messages to
the operator's console. (Ring 6 has a different scheme
for sending messages).

* The operator's console is assembled into EXEC.

* Ring 7

(14) Pids/Sons Data Bases

* The Pids/Sons data bases indicate what pids are sons of
EXEC.

* "Sons" is a bit map with the bits of EXEC's sons set.

* "Pids" is a table indexed by pid. The table entries
contain address of the son's descriptor (e.g., logon,
batch, coop descriptor addresses).

* Ring 7

AOS/VS Internals Chapter 7 Page 7-12

EXEC Initialization

When EXEC first comes up, it performs a variety of one-tine
initialization actions. This portion of the document lists and
describes these actions.

The initialization discussion is divided into two parts:

* Ring 7 Initialization

* Ring 6 Initialization

Ring 7 Initialization

When you PROC EXEC.PR, EXEC first comes up in ring 7. The
initial task that gets control is the 'initialjzation task.' 1he
following list describes what this task does.

[Overlay files XIOVO.SR, XIOV1.SR, and XIOV2.SH contain the rir,g
7 initialization code.]

(1) Load the ring 6 portion of EXEC.

* The first thing ring 7 EXEC does is load the ring 6
portion of EXEC.

* Ring 6 EXES J'(·sides in file EXECVS.PR and this must be
in the same directory as the ring 7 EXEC.PR file (e.g., if
EXEC.PR is in :UTIL, EXECVS.PR must also be in :UTIL).

* Ring 7 uses the ?RINGLD system call to load in ring 6.

* If an error occurs when loading ring 6 EXEC, EXEC
terminates immediately.

(2) Disable all control character sequences.

* EXEC issues the ?KIOFF system call to disable control
character sequences (e.g., ACAB).

* Since EXEC does not have a process console, it should
never get any control character sequences.

* This is a safeguard to make sure a user cannot terminate
EXEC via control character sequences in the case where
PMGR gets confused and incorrectly assigns EXEC a process
console •.

AOS/VS Internals Chapter 7 Page 7-13

(3) Turn on superuser and superprocess.

* EXEC requires both superuser and superprocess to perform
its various functions (e.g., access :UPD, :UDD, :QUEUE,
etc.) •

* If EXEC receives an error on· the ?SUSER or ?SUPR(~
calls, it tennina tes.

(4) Initialize ring 6 EXEC.

* Now that ring 6 is loaded (see above), ring 7 can LCALL
into ring 6 to initialize that ring.

* A later section of this chapter describes ring 6
ini tialization.

(5) Find out EXEC's username.

* EXEC stores its username for later use.

* Only users wi th the same username as EXEC can issue
CONTROL @EXEC system calls.

(6) Make sure EXEC's initial directory is :PER.

* EXEC creates and access a variety of files in :PER and
should have this directory as its initial one.

(7) Make sure that only one EXEC process is running.

* Only one EXEC can operate at a tilre. If another EXEC is
up, terminate.

* To detennine if another EXEC is already up,
the existance of various files (e.g.,
:PER:EXEC_REQUEST, etc.).

(8) Create IPC ports.

check for
:PER:EXEC,

* Create IPC port :PER:EXEC for receivin!:, "CONTROL @EXEC"
commands.

* Create IPC pprt :PER:EXEC_REQUEST for receiving ?EXEC
system call requests.

AOS/VS Internals Chapter 7 Page 7-14

(9) Create file @LMT.

* EXEC creates generic labeled tape file :PER:LMT for
later use in implicit tape mount requests.

* Set ACLs on file @LMT to "+,WR".

(10) Make sure user director :UDD exists.

* If :UDD does not exist. create a one as a control point
directory (maximum size is -1).

* If creating :UDD, set ACLs to "+,E".

(11) Make sure the :QUEUE directory exists.

* If :QUEUE does not exist. EXEC creates one.

* EXEC sets the ACLs on' :QUEUE to "+,AE" so that the eLI
and AGENT can create files in here.

(12) Get system revision number.

* Save this value fo~ later use in banners, etc.

(13) Detenmine directory of the EXEC.PR file.

* This directory name is saved so that EXEC knows where to
find the file LOGON. MESSAGE, the cooperative programs
(e.g., XLPT.PR), etc.

(14) Re-create file EXEC.COOPERATIVES and allocate one shared
page.

* Delete EXEC. COOPERATIVES (if it exists) and recreate it.

* This file contains EXEC's virtual cooperative
descriptors (VCD).

* EXEC declares one page of its address space as shared
(via ?SSHPT) so that it can later bring in pages fr~1
EXEC. COOPERATIVES.

(15) Bring up the other ring 7 tasks.

* Issue ?TPSK system calls for the other 8 tasks in rir.g
7.

AOS/VS Internals Chapter 1 Page 1-15

(16) Initialize the queue world.

* Create the file :QUEUE:Q, if it doesn't already exist.

* If the Q file already existed,
initialize the in-core queue data base
queue. That is, rebuild the queues
in-core as they are stored on disk.

read the file and
to reflect the disk
and queue entries

* Set ACLs on file :QUEUE:Q to "+,R" (the CLI requires
read access to provide the QDISPLAY function).

* Ensure that the three pennanent batch queues exist
(BATCH_INPUT, BATCH_OUTPUT, BATCH_LIST).

(11) Build the tape unit descriptors (UDs).

* Go through directory :PER looking for files of type MTU
(magnetic tape units).

* For each one, create a unit descriptor (UD) and link
that descriptor onto the unit chain (UDCHN).

(18) Initialization complete -- suspend operation.

* Now EXEC's initialization is complete (both rings 6 and
1).

* The initialization task is no longer needed and, thus,
suspends itself via a ?SUS systen call, never to be used
again,

AOS/VS Internals Chapter 7 Page 7-16

Ring 6 Initialization

As we saw above, EXEC first comes up in ring 7 which, in turn,
loads ring 6 and then LCALLs in to initialize it. The following
list describes ring 6's initialization actions. Note that all
these actions are performed in ring 6 by the initialization task
(the same task that performs the ring 7 initialization actions
described above).

(1) Store initialization values passed from ring 7 to ring 6.

* Ring 6 needs the following values and addresses:

Ring 7 console ?PROC packet address
Ring 7 console ?PROC routine address
Ring 7 SVTA ?CON routine address
Ring 7 address that holds SVTA's pid

We supply roore information on these in the section on rir;g
6 - 7 interactions.

(2) Save EXEC's father's pid and username.

* Used for (a) sending unsolicited EXEC messages to the
operator and (b) deciding who can issue CONTROL @EXEC
commands.

(3) Initialize the r~ng 6 delay chain.

AOS/VS Internals Chapter 7 Page 7-17

(4) Initialize the logonworld.

* Alloca te the "logon lock" for the logon descriptor da ta
base.

* Initialize the various banners and greeting line text
messages.

(5) Initialize the free memory pool.

(6) Create the ring 6 tasks.

* EXEC is now ready to bring up the five ring 6 tasks.

(7) Done with ring 6 initialization.

* After ring 6 is initialized, control returns to ring 7
where ring 7 intialization continues (see above).

AOS/VS Internals Chapter 7 Page 7-18

EXEC Queues

The purpose of EXEC's queue functionality is to allow many users
access to limited system resources in an orderly, flexible
manner.

Everyone should be familiar with the CLI's QDISPLAY which. shows
the current state of EXEC's queue world.

QDISPLAY Showing Queues

BATCH INPUT BATCH OPEN
38070 DA POLY_60 :UDD:SORBATES:?028.CLI.001.JOB

*38071 U.232 :UDD:HEAVY:MACROS:?015.CLI.004.JOB
38063 DA ZIPPY :UDD:ZIPPY:TACOS:?046.CLI.001.JOB

*38064 D ZIPPY· :UDD:ZIPPY:DONUTS :?046 .CLL002.JOB

BATCH_OUTPUT

BATCH_LIST

LPT
*38182
38184 N
38185 H

LPT1

PLT

FTQ

PRINT OPEN

PRINT OPEN

PRINT OPEN
HOUDINI :UDD:HOUDINI:3.00.RN:RELEASE.3.00
JEFF :UDD:UTILGRP :STRS:NEW:EXEC. C22860
JEFF :UDD:UTILGRP:STRS:NEW:EXEC.C22861

PRINT OPEN

PLDT OPEN

FTA CLDSFD

FLAGS EXPLANATION:
H = HELD BY USER
D = IDELETE
N = INOTIFY
A = UNEXPIRFD IAFTER
* = ACTIVE

AOS/VS Internals Chapter 7 Page 7-19

Features'

The following list describes the major features of EXEC's queue
world:

(1). Efficient sharing of system devioes, batch streams, and
other system resources.

* EXEC receives many requests from use,'s and spools them
to the limited number of cooperatives and batch streams in
an orderly, efficient manner.

* Since all jobs come from EXEC, the' ba tch str earns and
cooperative processes need only know about EXEC and not
all the various users on the system.

(2) Flexibility for each user to specifY how his/her job is to
run.
* By having all queue requests go through EXEC, various
features are available that would otherwise be difficult
to implement. The following is a partial list (refer to
the ?EXEC description in the AOS/VS Pl~ogrammer' s Manual
for more information):

- Postpone job processing until a certain time (e.g.,
QPRINT/ AFTER=) •

- Prioritize jobs (e.g. , QBATCHlQPRIOlU1Y=).

- Do not make a job eligible for processing until
explicitly notified (e.g., QPRINT/HOLD).

- Notify the submitter upon job completion (e.g.,
QBA TCHI NOTIFY) •

- Specify page limits and CPU time limits' (e.g.,
QPRINT/PAGES=. QBATCHlCPU=).

- SpecifY whether to restart a job or not if EXEC or the
system crashes during the job (e.g., QPRINT/NORESTART).

- Specify options such as number of copies, fold long
lines, special printing forms, title lines at the top of
each page, etc.

ADS/VB Internals Chapter 7 Page 7-20

(3) Flexible, centralized system manager/operator control over I

the batch streCll1s, cooperatives, queues, and queue
entries.

• Operator can OPEN. CLOSE. CREATE. DELETE. FLUSH, or
obtain the STATUS (SPOOLSTATUS) of any queue.

• Operator can HOLD, UNHOLD, CANCEL, or obtain the STATUS
of any entry in a queue.

• Operator can START. STOP, PAUSE. or obtain the STATUS of
batch streCll1s and cooperatives at any time.

Queue Data Bases.

[The queue data bases are defined in EXEC parameter file
XQPARS. SR.]

The File :QUEUE:Q

(1) EXEC makes sure the file :QUEUE:Q exists when it comes up,
creating it if it's not there.

. .
(2) EXEC places all information about queues and queue entries

in file :QUEUE:Q.

(3) EXEC stores queue informa·tion on disk for two reasons:

(a) If EXEC or the system crashes, the information in
the queue will not be lost. When EXEC comes up, it will
read the file and restore the queues and queue entries.

(b) The CLI can read the queue file directly when a user
wants to see a "QDISPLAY" (see earlier figure); the CLI
does NOT have to disturb EXEC who has plenty of other,
more important things to do.

AOS/VS Internals Chapter 7 Page 7-21

Fermat of the :QUEUE:Q File

Queue Descriptors

Each queue descriptors describes one EXEC queues (e.g., LPT.
BATCH_INPUT, etc.). The following list describes how these
queue descriptors are stored in file :QUEUE:Q and also the
contents of these queue descriptors (See diagram).

(1) The first 4 blocks (1 page) of file Q contains the queue
descriptors.

(2) Each queue descriptor is 32. words long. Thus, EXEC can
support up to 32. queues (i.e., 32. * 32. words = 1024
words = 1 page).

(3) EXEC reads/writes the queue file in 1 page chunks. Thus,
EXEC can read/write all the queue descriptors at one time.

(4) Each queue descriptor contains the following information:

~ Status flags: Queue is open/closed
Queue may not be started

(batch queues cannot be STARTed
at a cooperative process)

Queue may not be deleted
(batch queues are permanent)

* Queue type: batch, print, plot. fta, sna, hamlet, etc.

* Queue name: BATCH_INPUT, BATCH_OUTPUT, LPT, FTQ, etc.

(5) Each queue has a queue number (an internal number used to
identify the queue within EXEC).

* The queue number is the queue offset into the Q file.
For example, queue #3 is the third queue descriptor in the
file :QUEUE :Q.

KJS/VS Inte"':lals Chapter 7 Page 7-22

Queue Entries

Each queue entry describes one user queue request (Le., one
qsubmit). The following list describes how these queue entries
are stored in file :QUEUE:Q and also the contents of these queue
entries (See diagram).

(1) The queue entries reside in file :QUEUE:Q after the .queue
descriptors; that is, after the first 4 blocks.

(2) Each queue entry occupies 1 block (4 per page). EXEC
'supports up to 256 queue entries.

(3) Each queue entry contains the following information:

* Status flags: Current being processed?
Looking a t this entry"! (lock)

* Queue number: Number of the queue that this entry was
submitted to.

* Date/time of queue entr~ submission.

* Limit, if specified (pages, cpu time, etc.).

* User specified qpriority factor.

* Entry Flags: User hold
Operator hold
Queued by superuser
Delete after processing
Don't restart after crash
This is a restart
Cancelled by operator
Cancelled by user
Binary (pr~nt jobs)
Requires operator on duty
JAFTER: specified
Titles option (print jobs)
Operator flush (batch jobs)
Fold long lines (print jobs)

• Sequence number.

• Date/time after which job may be processed (valid if
after flag is set).

AOS/VS Internals Chapter 7 Page 7-23

• Pathname of file being submitted to the queue:

- For batch jobs, this file contains the commands to be
executed in the batch strean.

- For other jobs, this pa timame ~pecifies the file to be
printed, plotted, transferred, ~tc.

• Username of process who submitted the queue job.

• Queue specific information (e.g., forms name,
destination username, queue output patilname, listfHe
pa thname, etc.).

[The ?EXEC system call description in the AOS/VS
Progranmer's Manual contains information on many of these
values.]

User Data Area (UDA)

A User Data Area (UDA) is a 128-word data area that the system
associates with a file but is "invisible" to the user. That is,
the UDA will not be seen if the user reads the file in a
"normal" manner.

You must use special system call's to create, read, and write to
a file's UDA (i.e., ?CRUDA, "?WRUDA).

EXEC creates a UDA for file :QUEUE:Q and uses this UDA as
foll~s:

(1) File :QUEUE:Q has a bit map in the UDA that indicates if a
block in the file is valid (in use) or not. If a bit is
set. the corresponding, queue entry block has valid
information in it. If the bit is NOT set. the
corresponding queue entry block is not valid.

(2) This bit map helps speed up the CLI's QDISPLAY"processing.
The CLI first reads in the Q file's UDA bit map. Using
this map, the CLI can detennine which blooks of the Q file
contain valid queue entries. Thus, the eLI can read only
those blooks that are necessary for its QDISPLAY.

(3) Note that the first word of the UDA contains a "queue
revision" number so that if we ever change the queue
format. anyone who reads the file can tell.

AJ.:',s/VS Inte~als Chapter 1 Page 7-24

Ir:-Col~e Queue Data· Bases

In addition to the disk queue data base (file :QUEUE:Q), EXEC
maintains several in-core queue data bases (i.e., data bases
that reside within EXEC's logical address sp3ce).

Th-= In-Core Queue

(1) The in-core queue data base is an abbreviated
the queue entry portion· of the disk queue.

'the ent.ries in the in-core queue is identical
queue; however. each entry is much shorter.

version c,1'
The order of
to the disk

(2) By .using the in-core queue, EXEC can select an entry
wi thout having to search the disk queue (a time co nSlIIling
process due·· to disk accesses). After detennir.ing which
queue entry it wants, EXEC can retrieve the COrl'esponding
disk entry \~i th only 1 disk access.

(3) In-core queue descriptors are 11. words in length. They
are identical to the disk queue entr~es EXCEPT for the
following: .

* In-core queue entries do r~OT contain the ~trinbs
(i.e., pathnames, filename, usernames, etc.).

*. In-core queue ~ntries contain a hash values for the
uSername ·and forms name (if appropriate).

* The in-core queue' entries also do not contain soule
miscellaneous information that resides in the last three
"X" words of the user's ?EXEC submit packet (i.e.,words
?XXW1. Xx}!2, ?XX}i3).

Que~e Names and Queue status Tables

EXEC maintains two in-core tables that provide information on
the queues:

(a) queue names table

(b) queue status table

The following two sections describe these two tables.

~os/vs Internals Chapter 7 Page 7-25

Queue Names Table

EXEC maintains a table of queue names (QNAMS) so it can quickly
find out if a queue exists and, if so, what its name and number
is.

(1) The queue name table has 32 one-word entries. The table
offsets corresporxi to the queue descriptor offsets in the
queue aata base •. Thus, the third entry in the queue name
table corresponds to the third queue descriptor in the
:QUEUE:Q disk file.

(2) The table entries contain the following values:

* -1, if there is no queue.

* if not -1, the val ue is a by te-poin ter to the name of
the queue corresponding to the table offset (see
diagran) •

Queue Status Table

EXEC aiso maintains a table of queue status values so it can
quickly determine the status and type of a queue. The format of
the table is quite similar to the queue names table.

(1) The queue status table has 32 one-word entries. The table
offsets correspond to the queue descriptor offsets in the
queue data base. Thus, the third entry in the queue
status table corresponds to the. third queue descriptor in
the :QUEUE:Q disk file.

(2) The table entries contain the follOWing values:

* -1, if there is no queue.

* if not -1, the value indica tes (eI) t.he status of the
queue, and (b) the queue type (see diagran); Note that
these values are the same as those stored in the queue
descriptors on disk (file :QUEUE:Q).

AOs/VS Internal s Chapter 7 Page 7-26

Managing EXEC's Queues

Now that we've examined the EXEC queue data bases, we can show
how EXEC manages and controls the queues.

[Most of EXEC's queue code resides in modules EXQUE.SR,
XCOV6.SR. and XDEQ.SR.]

Creating Que~es

To create a queue, the operator issues a command in the
following format:

CONTROL @EXEC CREATE <QUEUE1YPE> <QUEUENAME>

For example, "CONTROL @EXEC CREATE PRINT LPT".

When EXEC receives a CREATE command,it does Uie following:

(1) Make sure the <QUEUE1YPE> is legal. The legal queue types
for the CREATE command are: PRINT, PLOT, HAMLET, SNA, FTA.
The user must specify the queue type so EXEC know what
Kind of queue entries may be placed in the queue.

(2) Validate the queue name (same as filenames). '

(3) See if the queue name already exists. Check the QNAMS
table.

* If the queue name already exists, return an error.

(4) If the queue name is NOT already in the table, try to find
an empty slot for the new queue name.

* If the table is full (i. e'., already 32. queues), return
an error.

* Else, return the table offset of the first free entry
(this value is the queue nLluber for the new queue).

(5) Fill in the appropriate data bases:

* Fill in the name in the queue name table (QNAMS).

* Fill in the status and type in the QSTAT table.

* Fill in the queue descriptor entry in the disk queue
(:QUEUE:Q) •

!AOS/VS Internal s Chapter 7
I

Opening/Closing Queues

Page 7-27

(1). When a queue is created, it is initially "closed". This
means that users may not submit entries to this queue.

(2) To open a queue to the user community,the operator issues
the command "CONTRa.. @EXEC OPEN <QUEUENAME>".

(3) Similarly t the operator may close a queue at any time by
. iSSuing the command "CONTRa.. @EXEC CLOSE <QUEUENAME>".

(4) Opening and closing queues does not affect queue entries
that are already in the queue.

(5) To open/close a queue, EXEC does the following:

• Find the queue nllllber (via the QNAt-S table).

• Update the open/close flag in the QSTAT table.

• Update the open/close flag in the queue descriptor in
the disk file :QUEUE:Q.

•

•

ADSIVS Intemals Chapter 7 Page 7-28

Deleting Queues

Since the operator can create queues, s/he may also delete them
by issuing the command:

CONTRa. @EXEC DELETE <QUEUENAf£>

In order to delete a queue, the following must apply:

(1) The queue must. of course, exist (EXEC checks the QNAMS
table) •

(2) The queue must be closed (check QSTAT table).

(3) The queue must be empty (no queue entries in it).

(ll) The queue cannot be currently servicing a cooperative
(more on this later).

(5) The queue must be "deletable" •. There is status flag that
indicates whether it is legal to delete the queue or not.
(Batch queues BA1tHJNPUT, BA1tH_OUTPUT, BA'ItH_LIST are
permanent queues and cannot be deleted.)

If the queue fulfills all of these conditions, the queue pan be
deleted. EXEC does the following:

(1) Clear the queue n~e entry in the QNAMS table.

(2) Clear the queue status el1try in the QSTAT table.

(3) Clear out the queue descriptor in the disk file :QUEUE:Q •

AOS/VS Internals Chapter 7 Page 7-29

Purging Queues

In sane cases, the operat.or may want to delete all entries in CJ

particular queue. This action is called "purging" and the
command that accomplishes this is:

CONTRCl.. @EXEC PURGE <-QUEUENAME>

In _order to purge a queue, the follQl,,/ing must be true:

(1) The queue must, 'of course, exist (EXEC checks the QNA~
table) •

(2) The queue must be closed (check QSTAT, table).

(3) The queue must not. be currently servicing a cooperative
(Le., the queue can't be STARTed).

If the queue fulfills the above conditions, EXEC can purge all
entries in this queue. To do this, EXEC does the following:.

(1) First, EXEC saves the queue's number (detennined fran'
examining the QNAMS table).

(2) EXEC then scrolls through the in-core queue data base
looking for entries that have the queue's number in them.

(3) For each entry tha,t is in the queue, EXEC marks it "not in
use" (i.e., markS, the in-core queue entry, clears the
corresonding UDA bit in :QUEUE:Q, updates the disk queue
entry) •

(4) When EXEC reaches the end of the in-core queue data base,
all entries have been checked and appropriate ones deleted
(marked as "not in use"). ,

AOS/VS Internals Chapter 7 Page 7-30

?EXEC Queue Calls

As mentioned earlier. EXEC maintains a task that listens for
?EXEC system calls. Basically, this task receives ?EXEC
packets, interprets them, &nd dis(Stches to the appropricte
routine to perform the desired actions. We will go int.o the
details of this task later.

There are several ?EXEC system calls that pert.ain to the queue
world:

(1) ?EXEC Queue Submit Call

Use~s issue ?EXEC calls to place submit queue entries to
EXEC for processing. '

(2) Hold/Unhold/Cancel Requests

After submitting a queue entry, users may "hold" that
entry (i. e., direct EXEC not to select the job for
processing). Similarly. users can "unhold'" the entry
(make a "held" job eligible for processing).

Also. a user may cancel a queue request if s/he decides
that the job should not be processed. '

Note that' most AOS/VS users do not issue ?EXEC' system calls
directly ~ Rather, th'ey issue CLI commands which, in turn, ge t

. translated into '?EXEC system calls (e.g., QPRINT, QBATCH, QHOLD,
QUNOOLD, QCANCEL, etc.). '

[The code that processes these ?EXEC queue requests resides in
source modules XROVO.SR, XROV1.SR. and EXQUE.~R.]

AOS/VS Internals Chapter 1 Page 1-31

Submitting Queue Requests

To . submit entries to queues, users issue ?EXEC system calls
sPecifying a queue submit code in the first word of the ?EXEC
packet.

The ?EXEC queue submit packet includes the following information
(note that sane of the values are returned by EXEC):

?EXEC Queue Submit Packet

• Queue type (print. plot. fta. sna. hamlet. etc.).

• Byte-pointer to queue name (e.g., BATCH~NPUT, LPT).

• Date/time enqueued (returned by EXEC)

• Resource limit - The meaning of this value depends on
the queue type (e.g., maxinn.m number of pages, maximum
CPU time).

• Qpriority for processing the job (0 - 255).

• Flags word: Hold this entry
Delete file after processing
Don't restart on crash
Output in binary mode (print)
Requires OP on duty
Notify user when completed
/AFTER flag
Print titles line (print)
Fold long lines (print)

• Sequence number (returned by EXEC).

• Byte-pointer to jobname (batch) or forms name (print),
if desired.

• Byte-pointer to pa thnameof file to be processed.

• /AFTER= date and time.

• Values specific to the particular queue type (e.g.,
qoutput pathname, qlist pathname, number of copies, file
transfer destination pathname, etc.).

[Refer to the ?EXEC system call description in the AOS/VS
Programmer's Reference Manual for more information.]

When EXEC receives the queue
performed same validation (e.g.,
and pathnames are legal, etc.) •.

soomit, the AGENT has already
validates that byte-pointers

EXEC performs a variety of other validations, some of which are
listed below:

AOS/VS Internals Chapter 1 Page 1-32

(1) Make sure queue exists.

(2) Make sure the queue name matches the queue type specified
in the request (.e.g., QPRINT/QUEU E:BATCH_IN PUT is
illegal) •

(3) Make sure queue is OPEN.

(4) The job file must exist and the user must have &ce:ess tu
'it.

(5) Other validations specific to the queue type, the queue
entry values, and the options specified by the usel~.

Placing The Queue Entry In The Queue'

If the user's queue submit packet is valid, EXE.C tries to place
it in the queue data base.

(1) First, EXEC scans through the in-core queue locking for an
empty (unused) queue entry. This is a sequential search
from the beginning of the queue. .

(2) When an empty slot is found, it is ir.itialized with the
appropriate information (some from the user's queue sub~it
packet. some generated by EXEC).

(3) The corresponding disk queue entry is iri tialized. SinCE
queue entries are 1 block long, this disk action is atanic
(i.e., either the new info. js there or the old info i~;
there; it is impossible that only part of the block will
be writ ten out).

(4) Lastly. EXEC sets the bit in the disk queue's UDA bit mal
that corresponds to the new queue entry block (the one
just initialized). Since the CLI uses the bit map to
detennine which blocks contain valid queue entries, we
always intialize the block first and set the bit later.

[As a side note, when deleting the queue entry from the
queue, EXEC will clear the appropriate UDA bit FIRST, and
then update the queue entry disk block. Again,' once the
UDA bit is cleared, the eLI will not access the
corresponding block.]

AOS/VS Internals Chapter 1 Page 1-33

H(Jlding, Unholding, Cancelling Queue Requests·
In addition to the ?EXEC -call that places entries into the
queue, there are three other calls related to the queue world:

I HOLD - Do not select this queue entry for processing.

I UNHDLD _ Cancel a previous HOLD request (i.e., make a
queue entry eligible for processing)~

I CANCEL - Remove a queue entry from the queue.

The general format for these three systen calls is as follows:

I ?EXEC function code (hold, unhold, or cancel)

I Sequence number or jobname

When EXEC receives a hold/unhold request, it does the following

Hold/Unhold Reouest

(1) Finds the corresponding queue entry (in-core first, .then
on disk).

(2) Sets/Clears the "hold" bit in the queue entry.

(3) When a job has the "hold" bit set, the job will not be
selected for processing.

When EXEC receives a cancel request, it does the following:

Cancel Regyest

(1) Finds the corresponding queue entry (in-core first, then
on disk).

(2) If the queue entry is. active (being processed), EXEC
aborts the job.

(3) If the queue entry is NOT active, EXEC simply sets a bit
in the queue entry (in-core and disk).

(4) Later, during job selection, EXEC will see the cancel bit
and perform the appropriate action. (Usually, EXEC or the
cooperative will simply· write "CANCELLED BY USER" wherever
the job's output would normally go.)

As mentioned earlier. AOS/VS users do not usually issue ?EXEC
calls directly. Instead, they issue CLI commands that are
translated into ?EXEC calls (e.g., QHOLD, QUNHOLD, QCANCEL).

[Refer to the ?EXEC systen 'call description in the AOS/VS
Programmer's Manual for more information.]

AOS/VS Internals Chapter 7 Page 7-34

Batch.PrQCessini

EXEC's batch functionality allows you to run a job without using
your console. Thus, by using batch, you can have one or more
programs running and still have access to your console for
interacti ve processing.

The following list provides same general characteristi~s of
EXEC's batch world:

(1) Programs that run in batch should not require a console
for execution.

(2) One batch process can run in each "batch stream" (EXEC
maintains four of them).

(3) Since batch jobs are ?PROCd as a direct son of EXEC
(instead of the user's son), the user's console is not
tied up or affected in any way during batch execution.

Batch Data Bases

(1) EXEC maintains 4 batch streams.

(2) There is a "batch descriptor" for each stream and they are
linked together in a list (the batch chain). .

(3) Currently. the 4 batch descriptors are static. They are
assembled into EXEC anq cannot be either created or
deleted during EXEC's lifetime.

(4) The corresponding batch queues BA'ItH_INPUT, BATCH_OUTPUT,
BATCH_LIST are also static. That is, they always exist.

(5) The format of a batch descr,iptor is as follows:

* Status flags: Batch @OUTPUT opened
Termina tton in progress
Paused at end of job
Idle (nothing to do)
Verbose messages enabled
Silence mode enabled
Limiting enabled

* Process type and priority

* Username

* ?PROC output name

* ?PROC list name

iAOS/VS Internals Chapter 7 Page 7-35

• Strean name (e.g., "STRWL..2")

• Queue entry select packet: contains information about
the job that is currently running in the batch strean.

• Highest/lowest qpriority that may run in this batch
strean.

• Highest acceptable CPU tim:! limit for this stream (usE~d
if limiting enabled).

Managing Batch Streans

Managing batch streans is sanewhat less complicated than
managing cooperatives.

(1) Batch queues are static. That is, the queues BATCH_INPUT,
BATCH_OUTPUT, and BATCH_LIST are created by EXEC and exist
for the life of EXEC.

(2) The batch strean <-> queue associations are simpler:"
there are always 4 batch streans and the jobs are always
selected from the BATCH_INPUT queue. This cannot be
modified.

This means that there is no need for a queue bit map in
the batch descriptors.

(3) EXEC does not need to use IPCs to communi ca te wi th ba tch
streans. Instead, EXEC does the following:

Batch Manipulation

Action

Start this job

Job is done

Flush the current job

Get a stream's status

How It Happens

EXEC ?PROCs a job in a
batch strean.

EXEC receives a process
termination from AOS/VS.

EXEC simply terminates the
process running in the ba tch

stream.

EXEC can loci(directly at the
batch descriptor data base and

determine the status.

(4) When EXEC ?PROCs a user's batch job, it reads the user's
profile and uses the privileges and parameters specified

ADs/VS Intemals Chapter 7 Page 7-36

there.

The user must have "batch privilege" to run jobs in the
EXEC batch streans.

Spooling Queue Entries

Up to now, we have described:

• The format of the various queue data bases.

• How op manages the queues.

• How users place entries in the queues.

• How coops are associated with queues.

• How EXEC and coops communicate.

• How batch streams operate.

To canplete our coverage of EXEC's QUEUElCOOP/BA1tH worlds, we
must consider how EXEC selects queue entries for the various
cooperatives and batch streams.

In EXEC, "spooling" is the act 'of ,selecting a particular entry
from the queue for running on an idle cooperative or batch
strean. This is also referred to as "deq':leueing".

[The code' that supports the functionality described in this
section resides in file XDEQ.SR.]

The Dequeuer Task

EXEC maintains a task whose sole purpose is to find jobs f(lr
coops and batch streams to run.

The dequeuer task is normally "asleep". It does not search for
jobs unless it' is "poked" (woken up) by an inter-task message
from another EXEC task.

The follOWing actions will "poke" the dequeuer task:

Foking tQe DeQue~

(1) CONTROL @EXEC START; CONTROL @EXEC CONTINUE

A new cooperative may have been started up or a coop/batch
stream has been readied.

AOS/VS Internals Chapter 1 Page 1-'57

(2) BATCH TERMINATION

A batch streCll'l has tenninated and is n~ ready to accept
another job.

(3) JOB DONE MESSAGE FR(}t COOP

A cooperative has finished a job and is n~ ready to
accept another one.

(4) ?EXEC QUEUE SUBMISSION

A user request has been queued up. This request may be
able to run at an idle coop/batch streCll'l.

(5) QUEUE DELAY EXPIRATION

A user submitted a job with the /AFTER: option. The
specified time has elapsed and the job may n~ be spooled
to a coop or batch streCll'l.

Dequeuer Action

When the dequeuer task gets poked, it does the following:

Deaueuer Action

(1) The dequeuer task searches all batch and coop descriptors
looking for idle ones.

(2) When the dequeuer task finds an idle streCll1lcoop, it
searches the queue to find the "best" job that is eligible
to run on that stream/coop.

(3) If the dequeuer task finds an eligible job for the strean
coop, it starts that job up and marks the streCll1lcoop busy
(not idle) and the queue entry active.

As we've seen, to start coop and batch jobs, EXEC does the
follaNing:

Cooperati ves - Send a "start this job" IPC message to
the cooperative.

Batch streCll'ls - IssUe a ?PROC system call to oring up
the user's batch process.

(4) After checking all coops and batch streans, the dequeuer
goes back to sleep and waits to be poked again.

Note that the dequeuer performs the same action no matter why it
got poked. That is, whenever it's poked, the dequeuer searches
ALL batch streams and cooperatives, not just the one that caused
it to wake up.

JOSIVS Internals Chapter 1 Page 1-38'

Select1ng a Queue Entry

When the dequeuer task finds an idle Cooperati. ve or ba tch
strean. it calls a routine that searches the in-core queue
looking for a job to run at the coop/strean.

The queue selection routine does the following:

Queue Selection Routine

(1) Initialize the "best queue entry" variable to 0 (i.e., no
best queue entry yet).

(2) Look at a queue entry and see if it fulfills the follOWing
,criteria:

* The queue entry cannot be waiting for a
/AFTER: to expire. .

• The queue entry type and. the coop/batch type
must match (e.g'., only spool print queue entries
can go to print coops).

• If coop/batch limiting is enabled, the queue
entry's limit must be less than or. equal to the
coop's/strean's limit.

• The queue entry's qpriority musts fall within
the range specified for the coop/strean.

OP uses the QPRIORITY command to specifY a valid
range for coops/streans. Users specifY
qpriorities for their queue submissions with the
/QPRIORITY= switcn.

• For print type coops, the form specified in
the queue entry must match the form enabled at
the printer.

(3) If a queue entry does NOT fulfill all of the above, the
dequeuer gets the next queue entry and checks these
criteria again (i.e., go to step '2).

(4) If the queue entry DOES fulfill these criteria, the
dequeue.'. calls a "queue entry compare" routine that
compares the current "best queue entry" (best so far) with
the new one. .

[ACS/VS Internals Chapter 7 Page 7-39

* If the new queue entry is, better suited for
the coop/stream, the compare routine places the
new queue entry in the "best queue entry"
variable.

* If the old queue entry (the one in the "best
queue entry" variable) is deaned better than tbe
new one. then the "best queue entry" variable is
left as is.

[We provide IOOr~ information on the queue entry compare
routine below.] ,

(5) At this point. the selection routine checks to see if tile
new "best queue entry" is a cancelled job (i. e., the job
has been cancelled by OP or user). If so, EXEC will run
this job immediately (go to step #7 below).

(6) If the best job is NOT cancelled, the selection routi~e
gets the next queue entry and continues with step 1!2
above.

(7) When the selection routine cannot find any more entries ir:'
the queue, it spools the queue entry stored in the "best
queue entry" variable to the idle coop/stream. (That is,
the queue entry is marked "active" and the coopistream is
marked "busy".)

(If the "best queue entry" variable is still 0 at the end
of the selection routine. the coop/stream ranains in the
idle state.)

Cowpa.'ing Queue Entries

As mentioned above, the selection routine finds an eligible
queue entry and calls another routine that decides if the new
queue entry is better sui ted for the coopistream than the
previous best.

In the following tables, "old entry" refers to the previous best
queue entry; "new entry" refers to the one that is being
compared to the previous best. '

AOS/VS Internals Chapter 1 Page 1-40

First. the compare routine checks the new queue entry for the
follCMing:

VariEble

Cancelled by OP

Cancelled by user

Entry ,on hold

Examine New Queue Entry

Entry requires operat~r
on duty and s/he is not

New job is a restart (Le.,
EXEC or AOS/VS crashed
while job was active)

Action

New entry is b~tter

New entry is bett.t:'r'

Old entry is better

Old entry is better

New entry is bettu'

If the above comparisons did not detennine whether the new entry
was better than the old one. the two entries are compared head
to head as follows: '

Head to Head Comparison

Variable

New entry's qpriority is
higher than old entry's

New entry submitted earlier
than old ,entry

New entry's sequence number
is lower than old entry's

Action

New entry is bettl'f'

New entry is better

New entry is better

If the new entry is determined to be' better, then the new entry
is placed in the "best queue entry" variable.

If the new entry is NOT better. then the "best queue entry"
variable will not be modified.

rAOS/VS Internals Chapter 7
!

Page 7-41

iMount World

EXEC's mount world functionality provides system users with a
way to ask the operator to perform tape operations. At the same
time, the operator can control access to all tape units in a
flexible. organized manner. . '

Mount World Features

(1) Users do not have to know what unit their tape is on.

• User's can issue dunp/load commands supplying a logical
name instead of a unit name.

,. When the operator mounts the user's tape, EXEC creates a
link from the user's logical name (e.g., "TAPE") to an
actual unit name (e.g., "@MTBO").

• When the user accesses the tape, s/he can use the
~ogical name and does not need to know the actual tape
name (e.g., "TAPE:O" resolves to "@MTBO:O").

(2) The operator has centralized control over tape requests
and units.

• OP can accept or refuse any user tape requests.

• OP can aSSign tape units to requests in any order.

• OP can direct EXEC not to accept any more tape requests
(via the "CONTRa.. @EXEC OJ>ERA TOR OFF" command).

(3) Request and unit book keeping.

• EXEC keeps track of what tapes are"on what drives

• . EXEC also keeps track of which user requests are on
which tape units.

• In the case of labelled tapes, EXEC keeps tracl< of what
volids are on which drives and which volids the user
intends to access.

* OP can get this information with the commands
"UNITSTAWS" and "H)UNTSTAWS".

(4) EXEC logs tape use to the system log (i.e., file :SYSLOG).

•

AOS/VS Internals Chapter 1 Page 1-42

• This is useful for monitoring and billing purposes.

• The magnetic tape unit log entry contains the following:

- Username
- Tape unit name
- Current tinE
- Amount of tin~ unit was in use

(5) There is no jntemal limit to the number of user mount
requests or tape uni ts that EXEC can support.

Dat.a Bases

EXEC's tape handling facility works with 2 data bases:

(1) Unit Descriptors (UD)

(2) Mount Descriptors (MD)

Unit Descriptors (UD)

(1) When EXEC comes up, it searches the. :PER directory for all
magnetic tape units (i.e., files of . type "M'IU").

(2) EXEC creates a "unit descriptor" for each one and links
them together onto the "u.ni t chain" (UDCHN).

(3) The unit chain is static; that is, after initialization,
EXEC never deletes or adds unit descriptors to the chain.
Since the number of tape units is genned into the system
and is, thus, static, EXEC's scheme is perfectly valid.

(4) Each unit descriptor contains the following:

• Link to the next unit descriptor.

* Date/time unit was connected to user's request (used
for billing).

* Link to associated mount descriptor.

* Link to other units associated with the 'same mount
descriptors.

I Flags:

- Drive is (pre)mounted
- Drive is currently open
- User has been billed for this drive

~S/VS Internals Chapter 1 Page 1-113

• Unit name (e.g., If@MTBOIf).

• Username of user whose tape is on this uni t.

• Volid on this unit.

(5) The operator may issue the IfCO.NTRCL @EXEC UNI'lSTAWS"
command to detennine what drives' exist on the system.
Unitstatus will also return the status of the various

. units (i.e., whether it is being used, username, volid,
etc.) •

Mount Descriptors (MD)

(1) When a user wishes to access a tape, s/he issues a mount
request:

• ?E~EC system call with a mount code in it.

• CLI "KJUNT" command (which resolves to a ?EXEC call).

[,Refer to the ?EXEC system call description in the ADS/VS
Progranmer's Manual for information on the format of this
call.] .

(2) When· EXEC receiv~s a mount request fran the user. it does
the following: .

(a) Checks to see if the operator is "ON DUTI" (OP can
control this with the "CONTRCL@EXEC OPERATOR" command).

If OP is "OFF DUTI", the user will r~eive an error.

(b) EXEC then checks to make sure that the requestor is
a son of EXEC (or grandson, etc.). The user must be a
son of EXEC to use the tape facility so that i~ s/he
tenns, EXEC will get a tennination message and can
delete the user's mount request. .

If a user is not a son of EXEC, s/he will r~eive an
error.

(c) If the operator is on duty and the user is a son of
EXEC, EXEC will create a "mount descriptor" (MD) for the
user's request.

(d) The mount descriptor is allocated dynamically from
EXEC's free memory pool.'

(e) Mount descriptors are linked together on the mount
descriptor chain (MDeHN).

ADSIVS Internal s Chapter 7 Page 7-441

(3) Each mount descriptor contains the f0l,lowing:

• Link to the next mount descriptor.

• Flag word (mostly used to communicate with AGENT):

- Volid not verified
- IBM format
- Tape density
- Read only
- OK to extend volid list
- First/specific volid in list

• Flag word (for EXEC's internal use):

- Mounted explicitly
- Logical name supplied
- Return status word
- Return unitname
- Return volid
- Dismount text present
- First volid
- Requestor has' logged off
- Dismount me '
- Fileset (MD) is open

• Action bits (if any are set, the MD requires action by
the operator):

- Mount error
- Mount next volume
- Mount specific volume
- Moun t in progres s
- Mount request outstanding
- Request to extend volid list

• Associated unit descriptor chain (points to the
unites) currently associated with this MD).

• Associated user descriptor (points to a logon
descriptor or batch descriptor).

• Logical tape name (as supplied in the user's request).

• Volid list - list of ordered volids required by the
user (labelled tape only). .

• Pointer to current volid - points ,into volid list
(labelled tape).

• Requestor's text (as supplied by the user).

~OSlVS Internals Chapter 7 Page 7-45

• Requestor's pid.

• Pia of EXEC's immediate son.

• Unique ID for this mount descriptor (MID).

• Username associated with this MD.

(q) The operator may issue a "CONTRCL @EXEC K)UNSTAWS"
command to detennine if there are any mount requests and,

. if so, what their. status is.

(5) In addition, EXEC will pranpt the operator if there are
any outstanding mount requests (i.e., mount requests that
require action).

ASSOCiating Units With Mount Requests

(1) When a mount request comes in fran the user, EXEC owill
pranpt the operator to either:

• Refuse the request, in which case EXEC will return the
error "REFUSFD BY OPERATOR" and delete the mount
descriptor; or

• Fulfill the request by assigning a unit to the user
and mounting the user's tape on that unit.

(2) Again, the operator may issue the "UNITSTAWS" command to
detennine which drives are available.

(3) The operator assigns a drive· to the mount request by
iSSuing a command such as "CONTROL @EXEC K)UNTED
<UNITNAME>" •

(q) When OP issues a "M)UNTED" command, EXEC does the
following:

(a) Makes sure that the unit is not already aSSigned.

(b) Sets the ACLs on the drive to "<USER>,~ARE" so that
no one else can access the drive.

(c) Places the date/time in the unit descriptor for
later billing purposes.

(d) Links .the mount descriptor to the unit descriptor.

(e) Marks the unit descriptor as "mounted" <i.e., in
use) •

AO.UVS Internals Chapter 7 Page 7-1.6 1

(f) If the 'request is for a labelled tape, EXEC will
place the volid of the tape in the unit descri~·tor.

(5) Once the user's mount request is assoCiated with a tape
unit, the user may access the tape as desired. That is,
the user can LOAD, DUMP, COPY, etc. to the tape that OP
has mounted.

(6) When the user is finished with the tape, s/he iss~s a
dismount request (either a ?EXEC dismount call or a eLI
DISK>UNT command).

(7) When EXEC receives the dismount request, it does the
'follOfiing:

(a) Sets the ACLs on the tape drive to null so that no
one can write on the tape.

(b) Places a tape usage entry in the system log (file
:SYSLOO) •

(c) Pranpts the operator to dismount the tape.

(8) When OP removes the tape fran the drive, s/he notifies
EXEC by issuing the command "CONTRa.. @EXEC DISK>UNTED". At
this pOint. EXEC does the follOfiing:

(a) The user's mount descriptor is removed fram the
mount descriptor chain and freed up (i.e., the memory is
~eIeased back tq EXEC's free memory pool).

(b) EXEC marks the uni~ descriptor as available (i.e.,
not in use).

Tape Hount Example

The follOfiing section traces through a typical mount session
between the operator and the use!:'. This example takes place on
a secure system where users do 'not have access to the tape
drives and must, therefore. ask OP to n~unt tapes for them.

(1) Suppose that user "ZIPPY" wishes to lode at a tape. He
would issue the CLI comnand: ,

) K>UNT TAPE I JUST GAVE YOU

In this request:

"TAPE~' is the logical name tha.t the user will use to
refer to the tape.

"I JUST GAVE YOU" is a text string that EXEC will relay
to th~ operator; it may contain anything the user wishes
to tell OP.

~SlVS Internals Chapter 7 Page 7-1fT

I

(2). After ZIPPY issues the KlUHr COIDnand, his CLI process
hangs until ·OP responds with a "KlUNTID" or "REFUSED"
command

(a) The user's CLI process will interpret the KlUNT
command and turn that into a ?EXECsystan call (with the
appropriate mount function code) ~

(b) The AGENT, in turn, cha'lges the CLI'S ?EXEC picket
into an IPC and sends it to EXEC' S "EXEC_R~UEST" port.
The AGENT pends waiting for a response to the IPC (i.e.,
the AGENT issues an ?IS.R) and, thus, the user's KlUNI'
also pends. (We describe ?EXEC calls elsewhere.)

(3) When EXEC receives the MOUNT request, it creates a mount
descriptor for ZIPPY and places it at the end of the mount
descriptor chain (MDCHN).

(4) After EXEC creates the mount descriptor, it will pranpt
the operator with the following message:

" UNIT MJUNT'.

MID=2, USER=ZIPPY, PID=26, EXEC SUB-TREE PID=26

REQUEST IS 'I JUST GAVE YOU'

UNIT(S) ARE: NONE.

RESPOND: OONTRCL @EXEC KlUNTID @UNI1NAME

OR: CONTRCL @EXEC REFUSED

(5) AssLllling that the opera.tor wants to fulfill ZIPPY's
request, s/he may issue a "UNITSTAnJS" command to see what
tape units are available. The UNITSTAnJS display might
loci< like this:

@MTBO NOT MOU NI'ED

MB1 NOT MOUNTED

@MTB2 NOT MOUNTED

In. this case, the systan has 3 tape drives and none of
them are currently in use.

(6) OP decides to assign ZIPPY's· request to tape unit @MTBO.
S/he gets the appropriate· tape (in this case, the one
specified in ZIPPY's text) and mounts it on unit @MTBO.

•

ADSIVS Internals Chapter 7 Page 7-48

After OP mounts the tape, s/he iSSlES the command

*) CONTRa.. @EXEC MOUNTED MBO '

(7) EXEC now links the unit descriptor for @MTBO with the
mount descriptor (MID 2) and sends an answer back to the
user (so that ZIPPY'S eLI wakes up again). (See diagram).

(8) Just to make sure everything worked OK, OP iss~s
MOUNTSTA11JS and UNIlSTAWS commands:

*) CONTROL @EXEC UNIlSTAWS

@MTBO MID=2, USER=ZIPPY, PID=26

@MTB1 NOT MOUNTED

@MTB2 NOT MOUNTED

*) CONTRa.. @EXEC OOUNTSTAWS

1* UNIT OOUNT *1

MID=2, USER=ZIPPY, PID=26 , EXEC SUB-TREE PID=26

REQUEST IS II JUST GAVE YOU'

UNIT(S) ARE: @MTBO

I) ACL/V @MTBO

@MTBO ZIPPY,OWARE

(9) Meanwhile, ZIPPY's MOUNT request has come home and he can
again issue CLI commands.

First, ZIPPY Checks to se~ if EXEC correctly created the
tape link from the logical name "TAPE" (supplied in
ZIPPY's mUNT request) to the tape uni tname (supplied by
OP) •

) F/AS/SO TAPE

DIRECTORY :UDD:ZIPPY

TAPE LNK @MTBO

ZIPPY is. convinced that EXEC has done its job so he goes
ahead and accesses the tape. He can use the tape link name
for convenience.

) LOAD/V TAPE:O
12-MAY-83 14:00:03

[AOSIVS Intemals ~hapter 1
i

MAINPRCXI. PL 1
KlDULE_l • PL 1
KlDULE~. PL 1
K>DULE...3. PL 1
GENE~SUBS.PLl

) LOAD/V TAPE:l
12-MAY-83 14:00:14

PRCXlRAM.PR
MAINJRCXI. MEKJ

Page 1-49

. Note that when ZIPPY references "TAPE :0" and "TAPE: 1", he
is really accessing tape files "@MTBO:O" and "@MTBO:l".

(10) ZIPPY has gotten the information he needs and issues a ell
DISKJUNT command to notify OP that he'is done:

) DISKJUNT TAPE

This command sends an IPC to EXEC indicating that ZIPPY is
done with the tape unit.

The CLI DISMJUNT command does not pend like the· MJUNT
command 50 that the user's CLI regains control
inmediately.

(11) When EXEC receives the DISMOUNT request it:

(a) Deletes the link file "TAPE" fran ZIPPY's directory.

(b) Sets the ACLs on drive @MTBO to null (so no one can
write to it).

(c) Places a tape unit entry in syslog indicating how
long ZIPPY had control of the @MTBO unit.

(d) Writes the following DISMOUNT message on the OP
console:

•• WAITING TO BE DISKJUNTED ••

MID:2, USER:ZIPPY, PID:26 , EXEC SUB-TREE PID:26

UNIT(S) ARE: @HTBO

RESPOND: CONTRCl.. @EXEC DISMOUNTED

The operator must issue a ''DISMOUNTED'' command; OP
cannot refuse to dismoun t the tape.

(12) When the operator receives this request, slhe issues the
command "CONTRCl.. @EXEC DISKJUNTED". This causes EXEC to
mark the tape unit as unused and releases ZIPPY's mount
descriptor to the free memory pool.

AOSiVS Internals Chapter 7 Page 7 -50

Non-Default Mount Descriptors

In the previous section, we assumed that there was only one
mount request outstanding. However. at tines there will be many
outstanding requests at one tine.

In the above "CONTRa... @EXEC" commands, the operat.or did not
indicate which mount descriptor the commands were for. FGr
example, OP simply entered "CONTRCL @EXEC I"OUNTED @MTBO" ar.d
EXEC figured out that .it was for ZIPPY's mount request.

(1) If OP does not. specify a mount descriptor in his/ht-r
commands, EXEC assllnes that the command refers to the
first mount aescriptor on the mount chain that requir~s
action (the default MD).

EXEC links the mount descriptors onto the chain in tbe
order in which they are received.

(2) If OP wishes to perform an operation on a mount request
other than the default, s/he must specify a "mount it"
(MID) in the command. For example, the following commands
refer to mount request 3 (which need not be the defaul.t
MD): .

CONTROL @EXEC MOU NTED/MID=3 @MTBO

CONTROL @EXEC DISMOUNTED 3

CONTROL @EXEC MOUNTSTATUS 3

EXEC's MOUNTSTAWS display returns the MID for each IllOur;t
descriptor (sed MOUNTSTATUS commands in previous example).

(3) When EXEC receives an operator command for a non-default
mount descriptor, EXEC simPly' performs the appropriatE.;
operation(s) using the specified MD instead of the
default.

;AOSIVS Internals Chapter 7 Page 7-51

Labelled· Tape

"Labelled Tape" allows a single file to span several tapes. This
is desireable when trying to d\Jl1p lots of files at once and they
will not fit on one single tape (e.g., backing up all of :UDD at
once) •

(1) To use labelled tape, the user (or OP) Itust first create a
"labelled tape set"; that is, a set of tapes that are
grouped together in a specific order.

(2) Each tape in a "labelled tape set"'has sane information
stored at the beginning (in the "label" area).

Each tape label contains a unique name that differentiate
it from the rest of the tapes in the set. Often, these
names will indicate where in the ordered set the tape is
(e.g., three tapes may be named "VOL1", "VOL2", "VOL3").
Each labelled tape is called a "volLrne" and each name is.
referred to as a "volLll1e id" (or "volid" for short).

(3) The user must place these names on the various tape
volLrnes with the LABEL utility. For example, the command
"X LABEL @MTBO VOL1" places the label "VOL1" onto the tape
that is mounted on @MTBO. (Refer to the doc\Jl1entation for
more· in forma tion on the LABEL utility.)

(4) Though EXEC knows which volumes are on which tape drives,
it is the AGENT (not EXEC) that actually lod<s at the
labels (and valida tes them).· Thus, the AGENT knows the
format of the labels; EXEC does not.

ADS/VS Internals Chapter 1 Page 1-52

Referencing Labelled Tapes

4/1/83

(1) When the user wishes to reference a labelled tape set,
s/he issues a special version of the CLI K>UNT command (or
?EXEC systan call) and specifies the names of all volumes
in the labelled tape set in the correct order.

f'DUNT/VOLID:VOL 1/VCLID:VOL2/VOLID:VCL3 TAPE BACKUPS' FOR

''VOL 1 ", ''VOL2'', "VOL3" are the voll.lnes in the labelled
tape set.

"TAPE" is a logical unit name.

"BACKUPS FOR 4/1/83" is a comment that will be forwarded
to the operator wi th the roount r8:luest.

(2) When EXEC receives this mount r8:luest, it displays the
follOWing pranpt to the operator: .

(4)

(5)

.. EXPLICIT LABELLED K>UNT II

MID=1, USER:ZIPPY, PID= 12 ~ EXEC SUB-TREE PID=8

REQUEST IS 'BACKUPS FOR 4/1/83'

UNIT(S) ARE: NONE

CURREllT VCLUME: VCL1, ALL VCLUME(S): VCL1, VCL2, VCL3

RESPOND: CONTRCL @EXEC K>UNTED @UNI'INAME

OR: CONTRCL @EXEC REFUSED

OP will roountthe first valid (VOL 1) and respond with the
command "CONTRCL @EXEC MOU NT~ @MTBO".

EXEC will link the unit descriptor for @MTBO with the
user's mount descriptor and send a response back to the
user.

The user may nCM reference the labelled tape set with the
appropriate commands. For example:

) DUMP/V/REC TAPE:O :UDD:I

(6) When the user accesses the tape, the AGENT will perfonn
all necesSary label validations (e.g., make sure OP
mounted the correct volume, make sure the tape has not.
expired, etc.).

:AOS/VS Internals Chapter 7 Page 7 -53

(7) Thus far. the labelled tape session is the same as the
unlabelled tape session (from EXEC's standpoint).

(8) If the user's DUMP reaches the end of VOL 1 without
finishing the DUMP operation, the following occurs:

(a) The AGENT will realize that the labelled tape file
should be continued on the next volume of the set.

(b) The agent will generate a "NEXT VOLUME" ?EXEC
request (IPC) to EXEC indicating that the operator
should mount the next volume of the set.

(c) The "NEXT VOLUME" request occurs without the user
kn~ing. As far as slhe is concerned, the Dut1P
operation is proceeding along without interruption.

(9) When EXEC receives the "NEXT VOLUME" request, it finds the
appropriate mount descriptor and prompts OP to mount the
next volume in the labelled tape set.

•• EXPLICIT LABELLED MOU~IT ** NEXT VOLUME **

MID=7, USER=JEFF, PID=8, EXEC SUB-TREE PID=8

REQUEST IS 'BACKUPS FOR 4/1/83'

UNIT(S) ARE: @MTBO

CURRENT VOLUME: VOL2, ALL VCLUME(S): VOL 1, VOL2, VOL3

RESPOND: CONTROL @EXEC ~U NT ED

OR: CONTROL @EXEC REFUSED

Note that EXEC indicates which volume OP should mount
(e.g., "CURRENT VOLUME:").

(10) OP then mounts the next volid in the set and responds with
the "CONTROL @EXEC MOUNTED" command. This sends a return
IPC to the AGENT.

(11) Again, the AGENT performs some validation on the tape:

(a) Makes sure the volid is correct.

(b) Makes sure that the volid is from the correct
labelled tape set.

(c) Makes sure the new tape has not expired.

(12) When the AGENT is convinced that the new volid is the
correct one, the DUMP proceeds onto this tape from the
point where it left off earlier.

AOSIVS. Internals Chapter 7 Page 7-54:

(13) This sequence of events ,will proceed until one of the
following occurs:

(a) The user's DUMP completes successfully.

(b) The user reaches the last volume in the set and the
DUMP has not completed (in this case, the user recei ve5
an error).

Multiple Units for One Mount Request

It is interesting to note that the operator need not mount the
second (or third, etc.) volid on the same tape unit that the
first one was on.

(1) For example, suppose the operator [lX)unted VOL1 on @MTBO.
When the operator receives the next volume request, s/he
may lOOunt that voll.llle on @MTB1 and issue the command
"CONTROL @EXEC K.lU NT ED @MTB1".

(2) In this case, EXEC will lfnk the unit @MTB1 to the [lX)unt
descriptor. @MTBO is still linked in and the 2 units form
a "mount descriptor unit chain" (see diagran).

Premountir'lg Uni ts

The "pranount" feature is a 'natural extension of the multiple
unit functionality. "Premounting" a tape means that the i

operator [lX)unts a tape on a unit for a user before the request
for that tape actually comes in to EXEC. That is, the operator
anticipates the need for a tape and mounts it before it is
requested.

(1) In the previous labelled tape e'xample, the user specified
that there are 3 voll.llles in the labelled tape set. After
the operator [lX)unts VOL 1 on @MTBO t slhe knQiS that the
user will probably want to access VOL2 next.

(2) Instead of waiting for the "NEXT VOLUME" request, OP can
place VOL2 on unit @MTB1 and issue the command:

CONTROL @EXEC PREMOUNT @MTB1 VOL2 ZIPPY

In the PREMOUNT command, the operat.or must supply the
following:

(a) The unitname the tape is on.

AOS/VS Internals Chapter 7

(b) The volid of the tape that OP mounted.

(c) The username that will access the tape.

Page 7 -55

(3) When EXEC receives the PREMOUNr command, it does the
following

(a) Links the specified tape unit descriptor into the
mount descriptor unit chain, (as described above) and
marks the unit as "mounted" and "not open" (i. e., it is
allocated but is not actually in use at this time).

(b) EXEC sets the ACLs to "(USER> ,(MARE" so that no orJt;
else can access the drive.

(4) When the "NEXT VCLUME" request comes' in for ti'lat user,
EXEC will search the units associated with that mount
descriptor to determine if the volume it needs is already
mounted.

(5) In this case, EXEC finds the next volume already mounted
(on @MTB1). Thus, EXEC will send the appropriat.e
answering IPC back to the user indicating that the next
volLll1e is mounted. This occurs without bothering the'
operator (no OP intervention is necessary).

(6) EXEC's MOUNI'STA1US and UNI1STA1US commands always show:

(a) Which unit(s) are associated with which mount
descriptors.

(b) Which unit(s) are mounted, premounted, and not in
use.

Still More on Labelled Tape

In the above discussions, we have focussed on the normal,
straight forward use of EXEC's labelled tape functions. There
are, in addition, a variety of additional features that EXEC
provides:

(1) Specific Volumes

EXEC allows the user to jump directly into the Nth volune
of a labelled tape set without scanning through all of the
ones before that.

For example, if you know the file you want to access
begins on voll.llle VOL3, you can ask OP to mount VOL 3
directly. without first going through VOL1 and VOL2 first.

See the LOAD and DUMP /SPECIFIC switch documentation for
more information.

AOS/VS' Internals Chapter 7 Page 7-56

(2) Extending Volid Lists

If the user specifies the /EXTEND switCh on his/her mUNT
request, the operator may extend the user's labelled tape
set if the tape operation reaches the end of the specified
set but has not completed. That is, if a user's operation
comes to the end of the volid set, EXEC allows the
operator to append tapes to the end of the set (rather
than return an error to the user).

See the MJUNT/EXTEND doclll1entation for more information.

(3) Error Handling

When an error occurs, the AGENT and EXEC must determi~c
whether it is the user's problem or the operator's problEm
and notify the responsible individual.

If the problem is the operator's (e.g., wrong volid
mounted, \mit off line. etc.), EJ(EC will tell OP what is
wrong and give himlher a chance to correct it. The user
will not be disturbed and when the problem is corrected by
the operator, the user's operation will continue.

If the error is the user"s fault, s/he will receive an
error on the current operation.

(4) Other Mount Options

EXEC provides support for the following:

• Tape densities

• Read only tapes

• IBM Format

(5) Implicit Mount Requests

In the above examples, the user explicitly asked for
his/her labelled tapes to be mounted. That is, the user
explicitly issued the MJUNT command (or the corresponding
?EXEC call). We refer to these mount requests as
"explicit" ones.

In addition to "explicit mount requests", the user may
generate "implicit" mount requests. In an ilJl)liCit mount
request, .the user does NOT issue a K>UNT command. Rather.
s/he references a labelled tape in the LOAD, DUMP, COPY,
etc. command directly. For example, suppose a user issued
the following command (WITHOUT previously issuing a MOUrn'
command) :

AOS/VS Internals Chapter 7 Page 7 - 5 7

DUMP/V @LMT:VOL1:0 :UDD:#

"@LMT" is a special file created by EXEC that stands for
"Labelled Magnetic Tape".

"VOL 1" is the volid of the labelled tape the user wish!?:::,
to access.

In this case, the AGENT will lod< at the destination of
the dl.lllp (@LMT:VOL1 :0) and determine that the user want~;
to dl.lllp to a labelled tape. The volid of the labelled
tape is VOL1.

When the agent detects an implicit labelled tape
reference, it generates a mUNT request to EXEC on the
user's behalf (the user does not krICklthat this occurs).
The AGENT informs EXEC that the request is implicit and
EXEC, in turn, tells the operator that the request is
implicit (in the mount request display).

After the operat.or mounts the specified volLme, the AGENT
proceeds with the operation that the user wants to perform
(in this case, a DUMP operation). When the operation is
complete, the AGENT will generate a DISMOUNT request to
EXEC so that the tap~(s) will be dismounted and the mount
~equest deleted.

Though the implicit mount functionality is convenient and
easy to use, it is less powerful and less flexible that
the explicit mount functionality. The disadvantages stan
from the fact that the user cannot specify all of the
information and options in his/her implicit request that
s/he can supply on the explicit MOUNT command (e.g., tape
density, text message, read only, IBM format. etc.).

In particular. the user cannot supply the complete volid
list. only the first one. This means that EXEC and the
operator do not krICklthe next volumes required by the
user. Thus, when a next volume requests comes in, EXEC
cannot tell the operator the name of the volume that is
required. Rather. the user and operator must pass this
information in same other way (i.e., independerit of EXEC).

We recommend that people use the explicit mount.
functionality when they have a choice. Generally,
implicit mount references are used in programs that issue
reads and writes but have no krICklledge of labelled tapes.
In these cases, the user may specify his input/output file
as "@LMT:<VOLID):(TAPEFILE)" and the program can be made
to access labelled tapes without krICkling it.

AOS/VS Internals Chapter 1 Page 1-58

Mount Prompter Task

The "mount prompter task" (or simply the "mount task") is the
task that displays the mount requests on the operator's console.
The mount task operates as follows: '

(1) In its idle state. the mount task is pended on an
in tertask message. Tha t is, it wai ts to be awakened tly
another EXEC task.

(2) The following operations wake up the mount task:

(a) A incoming mount/dismount request from a user (tbe
?EXEC task will wake up the mount task in this case).

(b) An operator command fulfilling a mount request (tbe
CONTROL @EXEC task will wake up the mount task in this
case) •

(3) When poked, the mount task searches the mount descriptor
chain looking for a request that. needs to be serviced by
the operator.

(a) If any of the "action bits" in a mount descriptor
are set. the request needs action by the operator.

(b) If there are no mount requests or if none of them
require operat~r action, the mount task goes back tu
sleep.

(4) If the mount task finds a request that needs operator
action, it displays that request on the operator's console
(i.e., the mount task pra:npts the operat.or to fulfill the
request) •

(a) The mount task only displays 1 request at a time.

(b) The mount task displays the first mount request on
the MD chain that requires action. As described
earlier. this is the "def~ult mount request".

(5) The mount task's display to the operator's console
includes the follOWing information:

* Type of tape request (e.g., labelled/unlabelled,
explicit/implicit, first/next/specific volume, mount
error. etc.).

* Mount ID (MID).

* Username of requestor.

* Pid of requestor.

* Pid of user's process immediately subordinate to EXEC.

AQSlVS Internals Chapter 7 Page 7-59

* Request text supplied by user.

* Unites) associated with the mount request, if any.

* Opts possible responses to the request.

Except for the possible responses, the mount task'5
display is identical to the MOUNTSTATUS display. (See the
sample displays in the earlier examples.)

(6) After displaying the request to the operator, the mount.
task delays fora specified amount of tine and then wakes
up to display the mount request again.

* The delay time starts at 1 minute and doubles with
each display up to a maximum of 16 minutes. At this
point, the mount task will prompt the operator to answer
the request every 16 minutes.

(7) When the operator answers the request (either fulfills it.
or J'efuses it), the mount task goes back to step 113 above
and searches the chain for another mount request to
display.

, * Again, if none can be found, the mount task goes to
sleep until it is awakened by another EXEC task.

(8) As we described earlier. the operator need not specifY a
mount 1D (MID) in his/her CONTRa.. @EXEC commands when
referencing the default mount request.

* Again, the default mount request is the one that tht:
mount task is currently displaying.

(9) Also as mentioned earlier. if the operator wishes to view
the status of a mount request other than the default, s/he
may issue the CONTRCL @EXEC MOUNI'STATUS command.

(10) Similarly. tile operator may fulfill a request other than
the default mount request by supplying a MID value In the
CONTROL @EXEC command.

* In this case, the mount task will continue to prompt
the operator to act on" the default mount request since
it still requires action.

AOS/VS.lnternals Chapter 7 Page 7-60

EXEC !1emory Management

This section describes how EXEC manages free memory within it.s
logical address space. Each ring has its own memory management
system; the following sections describe each of these.

Ring 7 Memory Management

The following sections describe the major characteristics,
internal design, and allocate/release operations of EXEC' 5 rir.g
7 free memory pool.

[Ring 7 memory code resides in the EXEC resource management
module EXRSM.SR.J

Ring 7 Memory Management Characteristics

EXEC's ring 7 memory management has the
characteristics:

following

(1) EXEC's ring 7 freE- memory pool starts irnrrediately after
the unit descriptors and extends to the end of the last
memory page allocated to EXEC.

(The unit descriptors, allocated dilrir.g ini tialization,
reside at location ?NMAX.)

(2) EXEC issues a ?MEMI system call whenever it needs to
expand the memory pool (1 page at a time). Since ring 7
EXEC is 16-bit, its maximum size is 32K words.

(3) EXEC never shrinks. That is, EXEC never releases free
memory pages back to the system.

(4) The free memory pool is organized such that any length
area can be acquired exactly (e~g., no rounding up to the
nearest power of 2, etc.).

(5) When releasing memory back to EXEC's pool, the length of
the area need not. be supplied -- only the address.

(6) Free space is garbage collected at acqui re time, but only
insofar as it is required to find the first free are2
large enough to fulfill the request.

Ring 7 Memory Organization

EXEC's ring 7 memory pool is organized as a ~eries of areas,
each beginning with its length. If an area is free. the lengtI:

AOS/VS Internals Chapter 7 Page 7 -61

value is positive; if the area is in use, the length is
negative. (See diagran).

Allocating Ring 7 Memory

The length word is "invisible" to the acquirer. When N words
are requested, EXEC allocates N+1 words. The length of the &re<:i
(e.g., N+1) is negated and stored in the first word; that i~,
-(N+1) is stored. The requestor is given the address of the
second word and, thus, receives an area of size N.

If a free area is not large enough to satisfy the request, the
next area is checked. If this area is also free. EXEC combines
the two adjacent free areas and checks to see if the new area
created is large enough. TIlis free memory combination continuE'S
until the request is sa tisfied or until EXEC determines that
there is not enough free memory available.

If there is not enough memory available, EXEC issues a ?MENI
call to increase its logical addl'ess space by another page. This
new page is added to the free m~lory pool and EXEC again triES
to fulfil] the request.

If EXEC is already 32K words in size, it will receive an error'
on the ?MEMI system call. When this hap~~ns, EXEC sends a
warning message to the operator and then pends the allocate
operation waiting for a release to occur. When a memory release
occurs, the allocate operation is unpended and EXEC again triES
to find enough free memory to so. tisfy the request.

ReleaSing Ring 7 Memory

At release time, the releaser specifies the memory area's
address. The release routine accesses the wOl~d before the giverl
address (the invisible word), which contains the length of the
memory area.

EXEC performs a gross validity check to make sure the word i~,
negati vet

EXEC then makes the length value in the invisible word positive
to show that the area is free.

Ring 6 Memory Management

The follOWing sections describes the major characteristics,
internal design, and allocate/release operations of EXEC's ring
6 free memory pool.

AOS/VS Internals Chapter 7 Page 7 -62

Ring 6 Memory Characteristics and Organization

The following list describes the major characteristics of ring (;
memory management:

(1) Ring 6 rrJ2 ill tai:1S e",;.· lxk, ,~:IS of siz es oS, 16 I 32. 64.
128, 256, 512: and 102 il wC'r'j3 each ('See diagi'am)

(2) Ini t.ially. c..·.I~C star·t~ Lut with a page of memory on each
of t.hese chains.

(3) When a page of memory 1S allocated to EXEC (via ?MEMI)
that whole page is broken up and placed on a single chain.
For example, the whole page will be broken up into 16-word
chur'~s and all will be placed on the 16-\-Jord chain. (Note
that this is NOT a buddy system.)

AOS/VS Internals Chapter 7 Page 7 -63

Allocating Ring 6 Memory

When one of EXEC's ring 6 tasks needs memory, it calls the
allocate memory routine specifYing the size it needs. The
allocation routine will determine the smallest size block (powf'r
of 2) that can fulfill the request (e.g., if you request 12
words, you will receive a 16-word block).

EXEC then goes to the appropriate chain, gets the fi.rst
available block on the chain, and returns the address to tile
requestor.

If there are no free blocks on the needed chain, EXEC request.s
another page of memory from the systan (?MEf>lI), breaks the who:e
page up into blocks of the needed size, and places all of the~.e
blocks onto the same chain. For example, if a user needs a
32-word block and there aren't any, EXEC gets another page,
breaks it up into 32-word chunks, and places all of these chunks
on the 32-word free chain.

After breaking up the new page onto the appropriate chain, EXEC
fulfills the memory request with the first block on the chain.

If EXEC receives an error on the ?MEMI systan call, it
terminates with an internal consistency error. Since ring 6
EXEC is 32-bit, if it exceeds its logical address space, EXEC
has grown way too big and something is wrong.

Releasing Ring 6 Memory

When a ring 6 EXEC task wants to release some memory back to tIle
free pool, it calls the FREE_MEM,ORY routine specifYing (a) the
memory address and (b) the size. The size specified by the
releaser is the same size specified at allocation time and,
thus, is not necessarily the actual size of the block.

When EXEC receives the memory release request, it rounds tbe
size up to the next power of 2 as it did during the allocation
process (e.g., 8, 16. 32, etc.). EXEC then places this memory
area onto the corresponding free memory chain.

AOS/VS Internals Chapter 7 Page 7 -64

COOPERATIV~

A "COOPERATIVE" (or "coop") is a process that relies upon EXEC's queueing
and spooling facility to initiate job processing. Currently, all
cooperatives are either ?PROC'd or ?CON'd to by EXEC. EXEC currently
knows about five cooperative processes. Each of these processes has .an
associated device or a system resource that it utilizes. These are .the
ccoperati ves and the dey ices or system resources:

1) XLPT.P~ controls line printers.

2) XPLT.PR controls digital plotters.

3) FTA.PR transfers a file over a network to a remote machine.

4) HAMLET.PR is the IBH a serial transfer device.

5) SNA.PR allows DG machines to be used as a host in an IBH netHiork.

A cooperative process is either one of the following, single-streaned
or multi-streamed. XLPT and XPLT are single-streamed coops,
they accept jobs from only one stream at a time. The networking
coopera ti ves,
FTA.HAMLET and SNA/RJE are all multi-strean coops.' FTA and HAHLET
accept jobs from any number of streams in the range 1 to 7 and SNA/RJE
accepts jobs from any number of streams in the range 1 to 6. The exact
number of s·treams is set at NETGEN time for that cooperative.

Tasks associated with the Coop world functions

~ 1) CONTROL @EXEC (or CX) task
This task pends on an ?IREC on local port CONPRT waiting
for OP to issue a CONTROL @EXEC command.

2) Coop listener task
This task pends on an ?IREC on local port COPPRT waiting
for IPCs from EXEC's coops.

3) ?EXEC request task
This task also pends on an ?IREC, on local port REQPRT,
waiting for a user to issue a ?EXEC request (either via a
?EXEC call or via a CLI Q-command which ultimately resolves

to a ?EXEC call).

4) Dequeuer task
This task waits on a ?REC on mailbox DEQMBX waiting to be
poked so it can search the queues for a job to spool to an
idle coop or batch strean.

ADSIVS Internals Chapter 1 Page 1-65

5) Term task
This tasks pends on an ?IREC on system port ?SPTH waiting for
termination messages for sons of EXEC.

EXEC and Cooperative Canmunications

EXr.C and the cooperatives communicate via IPC messages. To send a me~!:..age
to a coop, EXEC issl~s a ?ISEND; to receive a message from a coop EXEC
issues an ?IREC. EXEC's CX task ini tiates the. first of these IPCs wl1el~
th~ coop is first brought up or is first connected to. The next round of
IPes comes fran the coop when it notifies EXEC's coop listener task th2t
it is ready to process jobs. All other IPCs which pass between EXEC nnd
th,_, coop are directives which request the coop to perform the required
function to fulfill the request. All of the IPCs which pass between
EU.C and its cooperatives will be discussed in more depth later.

DaLabases

A. Major databases

1) In-core coop descriptor (CCD)
A minin~l amount of information descr'ioing a cooperative.

2) Disk or 'virtual' coop descriptor (VCD)
All the necessary information required to support a cooperative.

B. ReI a too da tabases, bi t maps and tables

1) Coop bit map
A bit n~p of all of EXEC's coops where the bit set represents
the pid of that coop.

2) Sons bi t n~p
A bit map of all of EXEC's sons and coops where the bits
correspond to tile son's or coop's pid.

3) Pidds table
A table of descriptors where the pid offset into the table
points to the associated descriptor (in-core CD for coops).

4) Core queue
A miniml amount of information describing a job currently in
a queue.

5) Disk queue
All the information available about a queued job (residing
in the file :QUEUE:Q).

AOS/VS Internals Chapter 7 Page 7 -66

1r.e Coop descriptor

The in-core Coop descriptor

The in-core coop descriptor, an abbreviated version of the disk coop
descriptor,
lives within EXEC's address space and is allocated statically. The most
frequently accessed words of the descriptor are duplicated in both
databases, thus reducing the number of requests to disk to obtain the
disk version of the database.

The disk or virtual coop descriptor

The disk (or virtual) coop descriptor is created at EXECs initialization
time in the same directory in which EXEC was ?PROC'd, with the filename
EXEC. COOPERATIVES. EXEC. COOPERATIVES is a user datafHe with dynamic
record format and file element size of 4, a must since we ?SPAGE one page
of the file at a time into EXEC's address space. EXEC reserves the last
page in its address space for its shared partition vic-J a ?SSHPT.
See attachment 'A' for a complete description of the CCD and VCD databases.

AOS/VS Internals Chapter 7 Page 7 -67

Queues, Coops and Devices

Introduction to queues, coops and devices

When EXEC is proc'd all the queues which existed when EXEC last
tel~inated will still exist when EXEC comes back up. These queues,
however. are stopped (except for batch_input) and must be started
before any jobs submitted to those queues can become active. Once
the queues are started at a coop, the coops must be continued before
job processing can occur. At this point. all jobs submitted to a queue
can be processed by a cooperative process.

Queue Type

The relationship which exists between queues and coops is partially
determined by the queue type. The queue type is set by the
'CONTROL @EXEC CREATE <queue type) <queuename), command. Once a
queue has been created with this command, it will always exist with
its original queue type until the queue is deleted via a
'CONTROL @EXEC DELETE <queuename>, command.

Queues, Coops and Devices

In addition to the queue type, queues and devices are associated via a
'CONTROL @EXEC START <queuename> @<devicename>' command. The queue type
determines which coop gets associated with the specifjed queue and device.

Please note that 'CONTROL @EXEC' will be replaced with the macro name 'CX'
in all following command notation.

A. Associating queues with devices

To associate a queue with a particular device, the username 'OP'
must issue a command of the form:

CX START <queuename> @<devicename>
where <queuename> is an existing queue,
and <devicename> is the name of a device genned into the
system. an IPC port to which EXEC will communicate (for the
network coops), or simply a file existing in :PER.
For example, the command:

'CX START LPT @LPB' indicates that all jobs submitted
to queue LPT will be printed on device @LPB. Note that
the device need not be '@LPB', it may be '@CON7' or '@FOO'.

AOS/VS Internals Chapter 7 Page 7-68

B. Associating queues and coops

Once a particular queue is started at a device, EXEC must
decide which coop to associate with them. This association
is predefined by the function that the coop performs.

Coop

XLPT
XPLT
ITA
HAt-LET
SNAlRJE

Function

prints a file to a predefined destination
plots a file on a plotter
transfers a file across a network
acts as a serial file transfer device
allows a DG machine to be used in an
IBM network

Queue j.~

pr~r,t

plot
fta
hanlet
sna

AOS/VS Internals Chapter 7 Page 7-69

Ini tialization

Coop and Coop descriptor initialization

The CX START command not only associates the specified queue with the
specified device, but it also prompts EXEC's CX task into initializing
a CCD and VCD for that cooperative if one does not already exist. Also,
the command eventually results in the CX task?PROCing or ?CONnecting to
the cooperative process that corresponds to the specified queue type.

A. CCD and VCD Initialization

1. Scan the CCOs looking for the first one where the PIO
location is zero. This is the first free CCD.
Note that if the entire CCD block is scanned and no
free CCDs are available, the error '~~ximum Cooperatives
Exceeded' (60 or 48.) is returned and EXEC continues processing.

2. When a free CCD is found, the corresponding VCD on disk is
brought into core. The CCDs and VCDs correspond sequentially
to each other. Thus, if the first free CCD is the fifth in
the CCD table, then the fifth VCO on disk needs to be paged
in to memory. To retrieve the corresponding VCD from disk,
the routine .GETCD is called. The .GETCD routine performs the
following function:

a) converts the CCD address to an address relative to
the beginning of the CCD table,

b) divides the address by the size of a single CCD (34)
resulting in the entry number of the CCD in the CCD
table (also the entry number of the VCD we want from disk).

c) there are 4 VCDs/page so the entry number must be divided
by 4 to give the page number within EXEC.COOPERATIVES
where the requested VCD resides.

d) If this page is already in memory (we keep the current
page number that is paged in), then there is no need .
to ?SPAGE it in. Instead, all but the last 2 bits'of
of the entry number must be cleared. This converts
the entry number to a number in relation to 4 CCDs/page.

e) This number is then multiplied by 400 (400 words/VCD)
to get the address of the VCD on the page,

f) and the address is added to the address of VCDBUF
(address of the first word of EXECs shared page partition).

g) If the requested page is not· in memory, then that page
number is saved as the current page na.l in memory,

h) and the page number is then multiplied by 4 (4 blocks/page).

AOSIVS Internals Chapter 7 Page 7-70

i) The result, the first block nunber of the page rEquested
is stored in ?PRNL of the ?SPAGE packet, ?PSTI is set
to 14, and ?PCAD is set to VCOBUF.

j) The ?SPAGE is then issued to page in the rEquested page.

k) Steps d - f are then followed to convert the entry
m.lllberto an address relative to VCOBUF.

3) When the VCO address is returned fran .GETCO, the entire
database is zeroed (not to be confused with the entire
page which was paged in, only the rEquested VCO is zeroed).

4) The 'START' command code reserves space on the stack for
the ?PROC packet. All the information currently knCMl1 about
the coop, the queue associated with it, and the device, is
initialized in the CCO, VCO and ?PROC packet. When the CX
task ?PROCs the coop, the initial IPC to the coop is passed
in the ?PROC packet. The local port OOPPRT is stored in ?IOPN
of the IPC message header. This notifies the coop of the port
to which messages should be passed. The ?PROC packet, IPC
message, VCO and CCO must all be initialized.
See attachment 'B' for a description of the initialized
?PROC packet. ceo and VCO v

5) FTA and RJE are somewhat different than previously described
in 14 above. The CX task ?CONnects to FTA and RJE to obtain'
a customer-server relationship. The task then issues, a '?ISENO
to send the'initial IPC message to those coops. The VCOs for
these coops are initialized in almost the same way as the
other coops VCOs. The one difference is FTA and RJEs IPC
message header contains a pointer to an initial message
separate fran the VCO, which isn't the case for the other coops.
Attachment 'B' reflects this difference.

QNAMS table. :QUEUE:Q and the queue number

When a 'START' command is issued, the queuename is searched for in a QNAMS
table. QNAt-f3 is a table of byte pointers 'to the queuenames which have
been previously created. The offset into this table for the queuename
corresponding to a particular coop, is its queue m.mber. The queue number
is also the offset of that queues queue descriptor into the file :QUEUE:Q.

AOS/VS Internals Chapter 7 Page 7-71

Queue and COop Relationship

In the CCD and VCD are two words which hold a queue bit map. For each
queue that is started at a device, the cooperative associated with that
device
has a bit set in its queue bit map (CDQ and CDQ2 in the VCD and CDQBH and
CDQBM2 in the CCD) which corresponds to that queues number. Setting a
bit in the bit map results in the association of the queue with that
queue number with the coop which was ?PROC'd or ?CON'c to as a result of
the 'START' command. The queue bit. map initialization is done at CCO
and VCO intialization time described above.

Multiple queues and coops

Several queues can be started a t the same dey ice, resulting in several
bits being set in the coop descriptor queue bit map. Currently, 32.
queues (total) are allowed in EXEC, 3 of which are the BATCH related
queues. This is the reason for the 2 word bit map. It should also be
noted that a single queue can service several devices or coops resulting
in the same bit being set in the queue bit maps of all the coop descriptors
associated with that queue.

Coops/Sons/PIDDS Tables

The COOPs bit map, SONs bit rr~p and the PlODS table are used by all of
EXECs
tasks. It is at 'START' time that these tables get the appropriate values
set for the newly proc' d coop. The pid of the coop is returned from the
?PROC or ?GPORT, in the case of FTA and SNA/RJE, and the bit corresponding
to that pid is set in the COOPs' and SONs' bit maps. For the PlODS table,
the value currently in the corresponding offset into the table is retrieved
and stored in the COLNK word of the CCO and the CCO address for the newly
proc'd coop is placed in the pid offset into the PlODS table (this is done
to prevent possible confusion within EXEC when a terming son and a newly
proc'd son are assigned the same pid and EXEC hasn't cleared the terming
son's da tabases yet).

Continuing the cooperative

Once the cooperative has been proc'd or connected to, it must be
continued. EXEC initially brings the coops up as.paused (i.e., ·the
paused bit in word STS of the VCO and COSTS of the CCO is set and
thus prevents any jobs from being spooled to that cooperative),
requiring OP to issue a 'CX CONTINUE @<device>' to clear the paused
bit so the coop will be marked as idle and thus ready to receive jobs
for processing.

The initial response message

After the coop receives the initial IPC message from EXEC, it knows
that EXEC is ready to accept messages from it. The coop must send a
, READY'
message to EXEC indicating that it is ready to begin processing jobs.
If the coop is multi-streamed, it must send one ready message per

AOSiVS Internals Chapter 7 Page 7-72

strean. Each ready message contains the strean nl.rnber to which the
message applies.

Job Processing

Job Processing

When the coop has sent its initial 'READY' message to EXEC, it is re"dy
for the dequeuer task to spool a job(s) t.o it for processing. The .
dequeuer task searches the disk queue entries in :QUEUE:Q for a job
to spool to the idle coop. When the best job is found, it is selected,
marked as active; the coop is marked as busy, and the dequeuer task
issues a 'RUN nus JOB' IPC to the idle coop. The message that is sellt
to the coop contains all the information about the job that is necessary
for the coop to process the job. It should be noted that the message is
slightly different for the multi-streaned coops. See attachrrent 'C' for
the exact format of the multi-streamed coops 'RUN THIS JOB' IPC.

READY and DONE Messages

When the coop finishes processing the job sent by EXEC, it responds
wi th a READY message. A READY message from the coop indicates that
the coop has finished the current job and is ready to accept another.
When the coop listener task receives a READY message, it pokes the
dequeuer again to initiate the search for another job to spool to the
coop. If one is found, another RUN THIS JOB message. is sent to the coop.
This cycle of READY and RUN THIS JOB messages may continue between EXEC
and the coop indefinitely. If at salle point, the co ope ra ti ve wants to
tell EXEC that it has finished processing the current job but does NOT
want EXEC to send another one. it sends a DONE message. When EXEC
receives a DONE message, it does not send any message to the coop at
all.
The coop must re-initiate communications with EXEC via a READY message.

Save UID Message

When the cooperative is FTA, and the recoverability functionality was
specified in the FTA request, FTA sends EXEC an IPC specifying a two
wor'd unique ID. This ID is used to assist FTA in recovering should the
systan, EXEC, FTA or the network (all local or ranote) terminate during a
ITA request.

Received UID Message

When EXEC receives a SAVE UID IPC from FTA, it saves the two UID words in
the disk queue for that job and sends an IPC message back to FTA 'notifying
ITA that the UID was received.

AOS/VS Internals Chapter 7 Page 7-73

Status Messages

At any point. EXEC can ask the cooperative for its status. This is
triggera:l by a CX STAWS @<devicename> command. When a status command
is executed, EXEC sends a STAWS request message to the specified
coop. When the coop receives a STAWS request message, it detennines
the status of the job(s) it is running and returns that information to
EXEC as a STAWS response message. The STAWS response indica tes if the
coop is idle (done and waiting for a job), not ready (done but not waiting
for a job), or active. If active, thee coop will return information
on the job being processed (e.g., sequence number. etc.). If the coop
is multi-streamed, information, on each stream must be supplied.

Pause Messages

Any time the coop is active (i.e., processing a job), EXEC can ask the
coop to pause within the current job by sending a PAUSE message to the
coop. Currently only XLPT has the ability to pause within a job.
This directive is a result of a 'CX ALIGN' command. When the coop
receives a PAUSE request, it detennines when the best time is to stop
processing the current job, and then does so. When the coop has stopped
processing the current job, it sends a PAUSED message back to EXEC.
EXEC then relays this information to the OP console where the ope'rat.or
may then take the desired action. When the operator wants the coop to '
continue processing the job, s/he issues a 'CX ALIGN/CONTINUE' command.
EXEC then sends a RESUME message to the coop. At this point, the coop
continues processing the paused job. The RESUME message can contain
additional information of value to the coop (e.g., the ALIGN/CONTINUE
command accepts an argument which directs XLPT to resume printing 'x'
pages back from where it paused or on page 'x'). Note that the pause/

resume functionality described above is different fran the 'CX PAUSE'
command. The 'CX PAUSE' command directs EXEC to pause the coop BETWEEN
jobs; this is implemented totally inside of EXEC by setting the paused bit
in the coops CCO and VCO. The pause/resume functionality directs the
coop to pause WITIUN a job; this is implemented inside the cooperative
process.

Bir.ary Message

The operator may at sane point want to tell XLPT to go into binary ffiode.
To do so. ti1e 'cx BINARY <filename or OFF>' command is issued. The CX
task sends a binary message to XLPT with the specified filename in the
VCO and the binary bit set. or no file if none was specified, but the
binary bit cleared.

Recover Message

When the system. EXEC, FTA or the network goes down and FTA is processing
a request with recovery specified, EXEC checks the job's UIO field in the
disk queue and if one exists, sends FTA a,recover IPC. This IPC prompts
FTA to continue processing the job from its ,last checkpoint instead of
restarting the job from the beginning.

AOS/VS Internals Chapter 7 Page 7-74

Restart Message

Sometimes, it is desirable to start a job over at the beginning. To do
so, the operator issues a CONTROL @EXEC RESTART command. The CX task
then sends a RESTART message to the coop. Upon receiving this message,
the coop goes back to the beginning of the job and starts it over again.
If the coop is multi-streamed, the RESTART command will indicate which
stream the RESTART is for.

Restart After Message

If at same point during a FTA transfer. FTA detects a problem on the
remote machine. it may send EXEC a restart after IPC. This IPC message
specifies a relative amount of time after which EXEC should restart the
job. EXEC handles this request in the same way it handles a job
submitted with the '/AFTER=' switch.

FLUSH and CANCEL Messages

To stop a coop from further processing an active job, the operator issues
a CXFLUSH command or the user who submitted toe job can issue a CLI
QCANCEL command (or the corresponding ?EXEC cancel request). These
commands prompt EXEC to send FLUSH a message or a cancelled by user
message to 'the coop. This message directs the coop to stop processing
the current job i11lrediately. When the coop has flushed/cancelled the
job, it sends a READY (or DONE) message ,to EXEC.

Error Message

At various times dUring its operation, the cooperative may want to display
a message on the operator's console. Instead of sending a message
directly. the coop can send an ERROR IPC message to EXEC and EXEC will
relay that message to the operator's console. The ERROR message from
the coop to EXEC may contain a text string and/or it may contain an AOS/VS
system error code. If the message has a text string, EXEC will simply
display that message on the operator's console. If the coop's message
contains a system error code, EXEC will display the corresponding text
message (obtained from the ?ERMSG system call).

Final Messages

When the system manager wants to stop the cooperative in an orderly,
graceful manner, s/he issues a CX STOP command. EXEC will then send a
STOP message to the cooperative. When the coop receives a STOP message,
it finishes all job(s) currently being processed and sends DONE messages
to EXEC for each one (i.e., done. but not ready for another job). After
the cooperative is completely idle, it either (1) terminates itself in
an orderly manner (usually, by iSSuing a ?RETURN system call); or
disconnects from EXEC (?DOON system call).

AOS/VS Internals Chapter 1 Page 1-15

Cooperative Terminations

Cooperative Terminations

As mentioned above, cooperatives can be tenminated by the CX STOP command.
The stop command with a devicename argument pranpts the CX task to clear
the coops queue bit map word in the CCD and VCD. Thus, the next time the
dequeuer is poked and searches the CCDs for an idle coop, the queue bit
map is checked and when found to be zero, a tenm IPC is sent to the
coop and the coop tenminates itself. The stop command with a queuename
argument can be used to also tenm a coop. In this case, just the bit
for the specified queue is cleared fran the coops queue bit map. If,
however. this was the only bit set in the queue bit map, then the dequeuer
task will issue a tenm IPC to the coop the next time it checks the coop
for possible next job processing. The CX TERM command can also be used
to tenn a coop. This command simply issues a ?TERM on the cooperati ve.

Term task

EXEC's tenn task pends on a ?IREC waiting for its sons and coops
tennina tion
messages fran the systan. When a tenmination message is received~ the
following occurs:

1) The ~oops bit map is checked for a matching pid. If the
tennination is fran a cooperative, the pid offset into the
PIDDs table is checked for the correct CCD address. If the
address is not the same, then the PIDLNK chain in that
descriptor is followed until the CCD address is found.

2) When the CCD address is found, it is zeroed. If it was also
in the PIDLNK chain, then the pids bit in the SONs bit map
is left set, otherwise, it is cleared.

3) If there is a currently active descriptor in PIDLNK, it is
checked for a CCD, and if so, .then the pid bit in the COOPs
bit map is left set. otherwise it is cleared.

4) The pid location and queue bit map are cleared fran the CCD

5) The coop is checked for ITA or SNAlRJE arid if so then the
tenn task issues a· ?DCON to disconnect fran the process.

6) A message is then sent to the OP console to notify OP of
the cooperatives tenmination.

The cooperative is at this point. cleared fran EXEC's databases and is
no longer a son of, or associated with EXEC.

AOS/VS Internals Chapter 7 Page 7 -76

CONTROL @EXEC Commands

CONTROL @EXEC commands

Several of the CX commands have same effect on cooperative processes.
In general, these commands fall into one of three categories:

1) Those commands which direct a cooperative to take " specified
action

CCD

(i.e., an IPC ultimately results from issuing the command and the
cooperative must take same action):
ALIGN BINARY FLUSH RESTART
START STATUS STOP

2) Those commands which require support from the cooperative
(i.e., no IPC is sent. but new values are set in the coops VCD and

resulting
. CPL

EVEN
LPP
UNLIMIT

in changes in the cooperatives operation):
CONTINUE DEFAULTFOlt1S ELOtlJATE
FOlt1S HEADERS LINIT
PAUSE SPOOLSTATUS TRAILERS

3) Those commands which are coop related but do not require support
(i.e., they apply to a cooperative 'process but have no effect on it):
BRIEF PRIORITY QPRIORITY SILENCE
TERMINATE UNSILENCE VERBOSE XBIAS

AOS/VS Internals Chapter 7 Page 7-77 ..

Attachment 'A' - VCD ang CCD Databases

; 'TIlE VIRltIAL OR DISK COOP DESCRIPTOR DATABASE
. ; THE FIRST ?IPLTH WORDS (7) ARE FOR AN IPC HEADER •

000007 .DUSR
000010 .DUSR
000011 .DUSR
000220 .DUSR
000221 .DUSR
000222 .DUSR
000223 .DUSR
000224 .DUSR

000225 .DUSR
000226 .DUSR

0002Z7 .DUSR
000230 .DUSR
000231 .DUSR
000232 .DUSR
000233 .DUSR

APR=?IPL'TII
TPKT:APR+1
BTS=TPKT+ 1 .
BTSDIS=(BTS*16.)+D
BTSDTO=(BTS*16.)+1
BTSITC=(BTS*16.)+2
BTSDCT:(BTS*16.)+3
BTSOPN=(BTS*16.)+4

BTSCPW=(BTS*16.)+5
BTSNIS=(BTS*16.)+6

BTSENA:(BTS*16.)+7
BTSLCL=(BTS*16.)+8.
BTSTER:(BTS*16.)+9.
BTSFO:(BTS*16.)+ 10.
BTSVD=(BTS*16.)+11.

000235 .DUSR BTSBAT= (BTS*16.)+13.
000236 .DUSR BTSTAK= (BTS*16.)+14.
000237 .DUSR BTSLP= (BTS*16.)+15.

000012 .DUSR
000013 .DUSR
000014 .DUSR
000015 .DUSR
000016 .DUSR
000016 .DUSR
000017 .DUSR
000020 .DUSR
000021 .DUSR
000022 .DUSR
000023 .DUSR
000024 .DUSR
000025 .DUSR
000026 .• DUSR

·000000 .DUSR
000001 .DUSR
000002 .DUSR
000003 .DUSR
000004 .DUSR
000005 .DUSR

PIOLNK=BTS+ 1
USR=PIDLNK+ 1
POF=USR+1
PLF=POF+1
DNM:PLF+1
STN=DNM
UQPR::DNM+1
UPBTS::UQPR+1
DCN:UPBTS+ 1
TCN:DCN+1
NXT=TCN+1
BIASF=NXT+1
PRIORITI=BIASF+ 1
STS:PRIORITI+ 1
STPAU=O
STIOL=1
STVRB=2
STTRM=3
STSIL=4
STLIM=5

•

jASSOCIATED PROCESS 1.D.
;TERM PACKET BUFFER
jBATCH/LOGON STAWS BITS
jDISABLE SOON AS POSSIBLE
j TlMEOOTS ENABLED
;1/0 TERMINATED BY CLOSE
jDISCONNECTED
jBATCH: @OUTPUT OPENED
; LD : SEND ENABLE MSG TO OP
jPASSWORD CHANGE REQUESTED
jPOSTPONE WTLD ?ISEND FOR
jANOnlER TASK
jOPEN IS FIRST AFTER ENABLE
jLAST CLOSE BEFORE DISABLE
jTERMINATION IN PROGRESS
jFORCED OUTPUT IN PRffiRESS
jVTA DIED FOR nlIS LD
jUNUSED BIT
j(WAS POST-?PROC IN PROGRESS)
jO=LD 1=BATCH DESCRIPTOR
JOO NOT RELEASE STACK
;LOO ON/OFF IN PROGRESS

jLINK FOR PIODS TABLE
jB.P. TO USER NAME
jB.P. TO ?PROC OUTPUT NAME
jB.P. TO ?PROC LIST NAME
;B. P. TO ?PROC DEVICE NAME
jB. P. TO STREAM NAME
jUSER MAX QUEUE PRIORITI
;USER PRIVELEGE BITS
jCONNECT TIME - DATE
jCONNEXT TIME - HOUR
jLINK TO NEXT DESCRIPTOR
jBIAS FACTOR
jPROCESS TIPE & PRIORITI
;BATCH/COOP· STAWS BITS
jPAUSE(D) AT END OF JOB
jIDLE (NOnlING TO 00)
jVERBOSE MESSAGES
j COOP Ta..D TO TERMINATE
jSILENCED
jLIMITING

AOS/VS Internals Chapter 7

000006 .DUSR
000007 .DUSR
000010 .DUSR
000011 .DUSR
000012 .DUSR
000013 .DUSR
000011l .DUSR

00001S .DUSR

STLP2=6
STFLO=7
STUPp=8.
STUNE=9.
STBIN=10.
STALN=11.
STDOE=12.

STNL:=13.
'j4.
15.

Page 7-78

jLP2 FLAG
i ELOt{;A TE FLAG
jUPPERCASE ONLY ENABLED
jUNEVEN't-ODE ENABLED
iBINARY MODE ENABLED
iWAITING TO BE ALIGNED
iBATCH: ERROR ON DEFAULT
jOUTPUT FILE
jCONVERT <NL> TO <CR~ <NL.>
; - RESEHVED
i-RESERVED

jFOLLOWING OFFSETS ARE ruE SELECT PACKET

000027 .DUSR
000027 .DUSR
000030 .DUSR
000031 .DUSR
000032 .DUSR
000033 .DUSR
000034 .DUSR
000035 .DUSR
000036 .DUSR
000037 .DUSR
000040 .DUSR
000041 .DUSR
000042 .DUSR
000043 .DUSR
000044 .DUSR
000045 .DUSR
000046 .DUSR
000047 .DUSR
000050 .DUSR
000051 .DUSR
000052 .DUSR
000053 .DUSR
000054 .DUSR
000055 .DUSR
000056 .DUSR

000057 .DUSR
000060 .DUSR
001357 .DUSR

000061 .DUSR
000062 .DUSR
000063 .DUSR
000064 .DUSR
000065 .DUSR
000066 .DUSR
000067 .DUSR

QSPK=STS+1
QTYP=QSPK+SELTYP
QDAT=QSPK+SELDAT
QTIM=QSPK+SELTIM
QLMT=QSPK+SELLMT
QPRI=QSPK+SELPRI
QFG~c,~ QSPK+SELFGS
QSEQ=QSPK+SELSEQ
QXWO=QSPK+SELWJ
QXW1 = QSPK+SEL Wl
QXW2 =QSPK+SEL W2 .
QXW3=QSPK+SELW3
QPRH=QSPK+SELPH
QPRL=QSPK+SELPL
QPID=QSPK+SELPID
QUBP=QSPK+SELUBP
QFBP=QSPK+SELFBP
QPBP=QSPK+SELPBP
QOBP=QSPK+SELOBP
QLBP= QSPK+SEL LBP
QDBP=QSPK+SELDBP
QHDL=QSPK+SELHDL
QLMAX=QSPK+SELMX
CDFHH=QSPK+SEFHH
CDDHH=QSPK+SEDHH

CDQ=CDDHH+ 1
CDQ2=CDQ+1
CDBOFS=(CDQ*16.)-1

CDTY P= CDQ2 + 1
CDHDR=CDTYP+1
CDTLR=CDHDR+ 1
CDCPL=CDTLR+1

. CDLPP=CDCPL+ 1
CDXPH=CDLPP+ 1
CDXPL=CDXPH+l

jBASE OF PACKET
jTYPE OF ENTRY (BATCH)
jDATE ENTRY ENQUEUED
jTIME ENTRY ENQUEUED
jMAX CPU SECONDS, PAGES, ETC.
jPRIORIIT
jENTRY FLAGS
jSEQUENCE NUMBER
j ruE FOU R "X" WO RDS

jHIGHEST PRIORITI TO SELECT
jLOtIEST PRIORITI TO SFLECT
jENQUEUER'S PID
jB.P. USERNAME (COpy OF USR)
jB.P. FOFf1S OR JOBNAME
iB. P. PATHNAME
jB.P. @OUTPUT (COPY OF POF)
jB.P. @LIST
jB.P. DESTINATION
jENTRY'S QUEUE HANDLE
jMAXIMUM LIMIT TO ACCEPT
i HAS H OF FO RvtS
jHASH OF DEFAULTFOR-1S

JBIT MAP OF ACCEPTABLE QUEUES
i (DOUBLE WO RD)
iBIT OFFSET FOR QUEUE 111

JQUEUE TYPE COOP STARTED ON
i II OF HEADERS
i II OF TRAILERS
jll OF COLUMNS/LINE'
jll OF LINES PER PAGE
jGLOBAL PORT II FOR COOPS TO
jTALK TO EXEC.

•

~S/VS Internals Chapter 1 Page 7-19

CDHOO=CDXPL+ 1jSTREAM 0
CDHS1=CDRSO+1 jSTREAM 1
CDHS2=CDHSO+2 i:
. CDHS3=CDHSO+3 i:
CDHS4=CDHOO+4 i:
CDHS5=CDHSO+5 iSTREAM 5
CDHS6=CDHOO+6 i:
CDHS7=CDHSO+1 -STREAM'1 t. , .
CDHSL=l iLOWEST STREAM n

000070 • DUSR
000071 .DUSR
000072 .DUSR
'000073 .DUSR
00007 4 • DUSR
000075 • DUSR
000076 .DUSR
000071 .DUSR
000001 .DUSR
000006 .DUSR
000007 .DUSR

CDS SH: 6 iHIGHEST STREAM n FOR SNA/RJE
CDHSH:1 iHIGHEST STREAM n FOR HA~LET

. iAND FTA
; AREAS FOR NAMES WIlHIN COOP DESCRIPTOR

000100 .DUSR CDQUE=CDHS7+1 iQUEUE NAME FRG1 WHICH IT CAME
000120 .DUSR CDDEV=CDQUE+QQLlli iDEVICE NAME OF SPOCLED DEVICE
000140 .DUSR CDPTH=CDDEV+QQLlli iCURRENT FILE'S PAlHNAME
000240 .DUSR CDFMS=CDPTH+QPL1li iFOItfS REQUESTED FOR IT
000240 .DUSR CDFIL=CDFMS iFTA DEST PAlHNAMElRJE QaJTPUT

000260 • DUSR
000300 .DUSR
000340 .DUSR
000350 .DUSR
000351 .DUSR

CDDFM=CDFMS+QFL1li
CDDES=CDDFM+QFL1li
CDUSR:CDFIL+QPLTH
CDEND=CDUSR+QULTH
CDLTH=CDEND+ 1

iPAlHNAME
i DEFAU LT FO It1S
iDESTINATION
iUSER WHO SUBMITTED REQUEST
iLAST WOII> OF CD .
iLENG1li OF CD

i Tl;iE FOLLOWING ARE DUPLICATED FOR EASIER REFERENCE
000016 .DUSR CapBP=DNM iB.P. COOP (DEVICE) NAME
000014 .DUSR CDQBP=POF iB.P. QUEUE NAME

AOS/VS Internals Chapter 7 Page 7 -80

; THE IN-CORE COOP DESCRIPTOR

000000 .DUSR
000001 .DUSR
000002 .DUSR
000003 .DUSR
000004 .DUSR
000005 .DUSR
000006 .DUSR
000007 .DUSR
000010 .DUSR
000011 .DUSR

000012 .DUSR

000013 .DUSR
000034 .DUSR

CDAPR=O jPID OF COOP
CDDPH=CDAPR+ 1 j DESTINA TION HI PO RT
CDDPL=CDDPH+1 ;DESTINATION LO PORT
CDQHDL=CDDPL+1 jQUEUE HANDLE
CDQTYP=CDQHDL+1 jQUEUE TYPE
CDSTS=CDQ'IYP+ 1 jSTA1US vlORD
CDQBM::CDSTS+ 1 ;FIR~T WORD OF QUEUE BIT ~AP
CDQBH2=CDQBM+ 1 ;SECOND ~ORD OF QUEUE BIT MAP
CDBPD=CDQBM2+ 1 JBP TO DEVICE NMiE
CDTMP=CDBPD+ 1 ; UNUSED LOCATION SO 1HA T THE

;LINK WORD IS IN WE SAHE LOCATION AS 111E
;OTHER DESCRIPTORS SO 'PIDLNK' CAN BE USt~.

CDLNK=CDTHP+ 1 ; LINK TO DEseR OF PROCESS
;WIlli SAHE PID

CDDNM=CDLNK+ 1 jAREA FOR DEVICE NAME
CCDSIZ=CDDNM+QQLTH+1 jEND OF IN-CORE DESCRIPTOR

;OTHER CCD RELATED SYMBOL DEFINITIONS

;DEFINE THE BIT OFFSET TO THE FIRST BIT IN WE QUEUE BIT MAP
000137 .DUSR CDQBOF=(CDQBM*16.)-1 ;BIT OFFSET TO FIRST BIT

;DEFINE THE MIN AND MAX NUMBER OF COOPS
000000 .DUSR MINCPS=O jMINIMUM NUMBER OF COOPS
000060 .DUSR MAXCPS=60 jMAXIMUM NUMBER OF COOPS

;THE FOLWWING DEFINE THE SHARED PAGE PARAMETERS AND nlE
jSHARED PAGE FILE FOR EXEC. COOPERATIVES

000001 .DUSR NOPAGS=1. . jONLY ONE PAGE
002500 .DUSR CCDLTH=(MAXCPS-MINCPS)*CCDSIZ
000037 .DUSR CPAGE=32.-NOPAGS jSTARTING PAGE NUMBER
076000 .DUSR VCDBUF:CPAGE*1024. jADDRESS OF FIRST PAGE

NJSlVS Internals Chapter 7

Attachment 'B' - Initialized ?pROCpacket.JW. CCl)
and ?ISEND initial message

Page 7-81

?PROC packet offsets for singl&-streaned Coops and HAKET which are
ini tialized before issuing the ?PROC.

--~-----------------~----
?PFLG = ?PFPX
?PSNH = BP to coop name
?PIPC = VCD addr
?PNM = CDDBP+1
?P~M = -1
?PPRI = 3
?PDIR = -1
?PCAL = -1
?PUtfot = -1
?PPRV = -1
?PWMI = -1
?P~ = -1
?PWSS = -1
?SMCH = 0
?SMCL = 0

.'.:.

VCD offsets which are initialized either before or after the ?PROC or
?CON of the qoop.

---~--------------------
?IDPH \ high and low global
?IOPL / ports for FTA and SNA
?IOPN = COPPRT
?ILnl = CDLnl or H.IMLEN
?IPTR = VCD addr or HAMlO addr
APR = pid of coop
USR = BP to username area
CDQBP/POF = BP to queuename area
CDOBP/DNM = BP to devicename area
STS = status word
QPRI = 0
QPRL = 377
QUBP = BP to username area
QFBP = BP to forms name area
QPBP = Bf to pa thname area
QOBP = BP to defaultfonms name area
QDBP = BP to destination pathname area
QLHAX = -1
COFHH = -1
CODHH = -1
CDQ \ bit corresponding to the
CDQ2 / queue' is set
CDQ1YP = queue type fran QSTA'lS table
CDHDR = 1 \
COTLR = 0 \ printers only
CDCPL = 120 /

AOS/VS Internals Chapter 7 Page 7-82

CDLPP = 102 I
CDDEV = @devicename

CCD offsets which are initialized either after the ?PROC or ?CON of the
coop.
--
CDAPR = pid of coop
CDDPH = high destination port of coop
CDDPL= low destination port of coop
CDQTYP = queue type
COSTS = status word
CDQBM = \ bit for corresponding
CDQBM2 =1 pid is set
CDBPD = BP to devicename area
CDLNK = link to next descriptor with 'same pid
CDDNM = @devicename

FTA and SNAlRJEs offsets which are initialized for the initial ?ISEND
message to the coop.
--
H.IMHI = \ EXECs high global port'
H.IMHL = I EXECs la.. global port ,
H.IHDV = devicename

: AOS/VS Internals Chapter 7 Page 7-83

Attachment 'C' - RUN nus JOB IPC fQI' multi-streaoed coQPs.

jEXEC --> HAK.ET "PROCESS nus FILE" ~iESSAGE

000000 .DUSR
000000 .DUSR
000001 .DUSR
000002 .DUSR
000003 .DUSR
000004 .DUSR
000005 .DUSR
000015 .DUSR
000115 .DUSR
000116 .DUSR

H.SN:
H.XO:
H.Xl:
H.X2:
H.X3:
H.FGS:
H.USR:
H.PTH:
H.END:
H.LEN:

o j STREAM NUMBER
jXWO : STREAM II

jXWl
H.SN
H.XO+l,
H.X1+1.
H.X2+1
H.X3+1
H.FGS+1
H.USR+QULlli
H.PTH+QPLW
H.END+l

jXW2
jXW3
jSTAlUS FLAGS
jUSER NAME
jPA'lHNAME
j END OF THIS MESSAG E
jLENG'lH OF THIS MESSAGE

j EXEC --> FTA "PROCESS 1HIS FILE" 'MESSAGE

000000 .DUSR
000001 .DUSR
000002 .DUSR
000003 .DUSR
000004 .DUSR
000005 .DUSR
000006 .DUSR
000007 .DUSR
OOOOlO .DUSR
000011 .DUSR
000012 .DUSR
000013 .DUSR
000014 .DUSR
000015 .DUSR
000016 .DUSR
000017 .DUSR
000020 .DUSR
000021 .DUSR
000022 .DUSR
000023 .DUSR
000024 .DUSR
000025 .DUSR
000026 .DUSR
000027 .DUSR
000030 .DUSR
000031 .• DUSR

. 000032 .DUSR
000033 .DUSR
000034 .DUSR
000035 .DUSR
000036.DUSR
000037 .DUSR
000040 .DUSR
000041 .DUSR
000141 .DUSR
000241 .DUSR
000251 .DUSR

F.STR: 0 jSTREAM NUMBER
Fe XWO: F. STR+ 1 j XWO
F.XW1: F.XWO+l jXWl
F.XW2: F.XW1+1 jXW2
F.XW3: F.XW2+1 jXW3
F. SEQ: F. XW3+ 1 j SEQUENCE NUMBER FO R JOB
F. FGS: Fe SEQ+ 1 j FLAGS WO II)
F. LMT: F. FGS+ 1 j LIMIT WO RD (UNUSED)
F.UIDH= F.LMT+1 jHIGH 16 BITS OF UID
F. UIDL= F. UIDH+ 1 . LOW 16 BITS OF UlD
F. RESO: Fe UIDL+ 1 - RESERVED
F. RES1: F. RESO+ 1 - RESERVED
F.RES2: F.RES1+1 - RESERVED
F. RES3: F. RES2+ 1 - RESERVED
F. RES4= F. RES3+ 1 - RESERVED
Fe RES5= F. RES4+ 1 - RESERVED
F. RES6= F. RES5+ 1 - RESERVED
F. RES7 = F. RES6+ 1 - RESERVED
F. RES8: F. RES7 + 1 - RESERVED
F. RES9= F. RES8+1 - RESERVED
F.RES10: F.RES9+1 - RESERVED
F. RES11 = F. RESl 0+ 1 - RESERVED
F. RES12: F. RES11+ 1 - RESERVED
F. RES13= F. RES12+ 1 - RESERVED
F. RES14= F. RES13+1 - RESERVED
Fe RES15: F. RES14+ 1 - RESERVED
F. RES16= F. RES15+ 1 - RESERVED
F.RES17= F.RES16+1 - RESERVED
F.RES18= F.RES17+1 - RESERVED
Fe RES19: F. RES18+ 1 - RESERVED
F.RES20= F.RES19+1 - RESERVED
F. RES21: F. RES20+ 1 - RESERVED
FeRES22: F.RES21+1 j - RESERVED
F.PA'lH=F.RES22+1 jPA'lHNAME OF SaJRCE FILE"
F.DEST:F.PA'lH+QPLTH jPA1HNAME OF DESTINATION FILE
F.USER= F.DEST+QPLTH jUSER NAME
F.END: F.USER+QULTH iLAST WORD OF MESSAGE

AOS/VS Internals Chapter 1 Page 7 -8'1

000252 .DUSR F.LEN= F .END+l ;LENG1H OF MESSAGE

jEXEC --> SNA/RJE "PROCESS 1HIS FILE" MESSAGE

000000 .DUSR

000001 .DUSR

000002 .DUSR
000003 .DUSR

000004 ~DUSR

000005 .DUSR
000006 .DUSR
000007 .DUSR
000010 .DUSR
000011 .DUSR
000012 .DUSR
000013 .DUSR
000014 .DUSR
000015 .DUSR
000016 .DUSR
000011 .DUSR
000020 .DUSR
000021 .DUSR
000022 .DUSR
000023 .DUSR
000024 .DUSR
000025 .DUSR
000026 • DUSR
000027 .DUSR
000030 .DUSR
000031 .DUSR
000032 .DUSR
000033 .DUSR
000034 .DUSR
000035 .DUSR
000036 .DUSR
000037 .DUSR
000040 .DUSR
000041 .DUSR
000141 .DUSR
000241 .DUSR
000251 .DUSR
000252 .DUSR

R.STR= 0 ;STREAM NUMBER (RUN ON
1HIS STREAM)

R.XWO= R.STR+1 ;XWO - STREAM NUMBE~
; SPECIFIED BY. USER

R.XW1= R.XWO+l ;XW1 - (UNUSED)
R.XW2= R.XW1+l ;XW2 "SPECIAL" RJE WOJl)S

; PASSED AS IS
R.XW3= R.XW2+1 ;XW3 FROM USER'S PACKET

; TO RJE
R.SEQ= R.XW3+1 ;SEQUENCE NUMBER FOR JOB
R.FGS= R.SEQ+1 ;FLAGS WORD
R.LMT= R.FGS+1 ;LIHIT WORD (UNUSED)
R. RESO= R~ LMT+ 1 ; - RESERVED
R. RES1 = R. RESO+ 1 ; - RESERVED
R.RES2= R.RES1+l j - RESERVED
R. RES3= R. RES2+ 1 ; - RESERVED
R. RES4= R. RES3+ 1 - RESEHVED
R. RES5= R. RES4+ 1 - RESEHVED
R. RES6= R. RES5+ 1 . - RESEHVED
R.RES7= R.RES6+1 - RESEBVED
R. RES8= R. RES1 + 1 - RESERVED
R. RES9= R. RES8+ 1 - RES.ERVED
R. RES 10= R. RES9+ 1 - RESEHVED
R. RES11 = R. RESl 0+1 - RESEltVED
R.RES12= R.RES11+1 - RESERVED
R.RES13= R.RES12+1 - RESERVED
R.RES14= R.RES13+1 - RESERVED
R.RES15= R.RES14+1 - RESERVED
R.RES16= R.RES15+1 - RESERVED
R.RES11= R.RES16+1 ; - RESERVED
R.RES18= R.RES11+1 ; - RESERVED
R.RES19= R.RES18+1 . ; - RESERVED
R. RES20= R. RES19+" - RESERVED
R.RES21= R.RES20+1 - RESERVED
R.RES22= R.RES21+1 - RESERVED
R.RES23= R. RES22+ 1 - RESERVED
R.RES24= R.RES23+1 - RESERVED
R.PAW= R. RES24+1 PAWNAME OF SruRCE FILE
R.QOUT= R.PAW+QPL1H ;PAWNAME OF QOUTPUT FILE
R. USER: R.QOUT+QPL1H ;USER NAME
R.END= R.USER+QUL1H jLAST WORD OF MESSAGE
R.LEN= R.END+1 ;LENG1H OF MESSAGE

· ADS/VS Internals Chapter 1 Page 7 -85

Introduction to the CONTRa.. ~_Canmangs

Introduction to CONTROL @EXEC Canmands

The CONTROL @EXEC (or 'CX') commands are commands iss~d by a user
with the same username as EXEC. These commands request an action to
be performed or initiated by EXEC.

:PER:EXEC Initialization

During EXEC's initialization, the file :PER:EXEC (or @EXEC) is created.
File @EXEC is an IPC type file with local port CONPRT. This is the file
to which all IPCs for the CX commands are sent. Note that :PER:EXEC
and @EXEC are the same file.

CONTROL @EXEC Command Task

The CONTROL @EXEC command task (or 'ex' task) is the task in EXEC which
handles processing CX commands. The CX task· pends on an ?IREC on'
local port CONPRT, or control port @EXEC waiting for a user to issue
a CX command. When the '?IREC is fulfilled, the ex task verifies the
cormnand and '?aCALLs the appropriate overlay and performs the requested
action.

CONTROL @EXEC Commands

There are currently approximately 50 CX commands. These commands can be
grouped into one of the following categories: the logon world, the queue/
coop/batch world, the mount world or general use commands. These
commands are listed in attachment 'A' by thecategori€'s listed above.

The Ccxnrnand IPC

When a user issues a ex command, the eLI issues a ?EN~UE call to
@EXEC specifying the command which was entered. The ?ENQUE call
results in an IPC being sent to @EXEC with the command as the message.
EXEC' 5 CX task pends on local port CONPRT waiting "for a command to be
iSt;ued. When the IPC is received, the CX task begins processing the
command.

The 'CX.CLI' macro

On most AOS/VS systems, a macro eX.CLI exists. This macro contains the
CLI command line 'CONTROL @EXEC % 1-% ' • This macro allows the string
'CONTROL @EXEC' to be replaced by 'CX' with the command string passed
to the macro as the argument string. In all following notation,
'CONTROL @EXEC' will be replaced by the macro 'CX'.

AOS/VS Internals Chapter 1 Page 1-86

Processing OQNTROL @EXEC Commands

Canmand- Processing .

When an IPC is received on port CONPRT, tile command entered by tile
user is passed in the IPC and is stored in buffer CONCM>. The command
is stored as entered by tile user. links are not resol ved by the CLI or
EXEC.
The ex task performs the following functions:

1) Gets the pid of the user who sent the IPC (issues a ?GroRT
on the sender's ports) and issues a ?GUNM on that pid to get
the username. The username is then compared to EXEC's usernamE'.

2) If the username is not the same as the username of EXEC,
the error 'V,ALID ONLY FRCM OPERATOR' is returned to the user.

3) The command entered by the user. which may be minimally unique,
is looked up in the command table. If the string is not found
in the table, or if the string is not unique, the CX task
returns an error to the user.

4) If the command string is found in the command table, tile CX
task then parses the rest of the command string for switches
and arguments (.LKUP returns a byte pointer to the delimiter
follOWing the command. In EXEC's case a null, comma, or a
slash are three acceptable delimiters).

5) ParSing is done by checking the remaining command string
byte by byte for a null (=>end of string),
a comma (=> argument), or a s+ash (=> a swi tch) •

a) If a null is encountered, the nunber of arguments is
pushed on the stack, the address of the byte pointer
to the last switch is pushed on the stack, and the swi tch
count is pushed on the stack.

b) If an argument is encountered, .the comma is converted
to a null in the command string, the byte pointer to tile
argument is pushed onto tile stack and the parsing continues.

c) If a switch is encountered, the slash is converted to
a null in the command string, the byte pointer to the
switch string is pushed onto the stack and the parsing
of the string continues.

d) When parsing is complete. the argument count is verified
for being in the correct range for that command. If
it isn't, tne appropriate error is returned (too few
or too many. arguments).

AOS/VS Internals Chapter 7

e) The switch count is then verified for being in the
cerrect range fer ~at command. If it isn't, the
apprepriate error is returned (toe few or toe many
switches) •

Page 7-87

f) The everlay entry peint fer the command code is obtained
fran the command table and is pushed on the stack.

~) The switch ceunt is placed in AC2, ACO if clEared
and the ?RCALL is issued to. bring in the appropriate
everlay.

h) Each specific command reutine then validates the
specific switches and arguments to. verif'j that
they are in fact valid fer that comrr~nd.

n If any swi tch er argument is detennirJed to. be invalid,
the apprepriate error cede is placed in ACO and
executien returns to. the main CX cemmand leop.

j) As leng as all the switches and arguments are valid,·
processing centinues, the requested action is
perfermed and centrol returns to. the mair. command leop.

k) Upon returning fran the everlay, the CX task checks ACO
fer an errer cede (i.e., ACO=O => no. error). If an
errer cede was passed back, the cerresponding message'
is written to. the eperators censele, fellowed by the
command, the switches, and arguments.

1) The CX task then checks the PRCl-1PT value for O. If
it dees net equal 0, then the time prartpt is writ ten
to. the ep censele. .

m) The CX task is nON finished processing CX command
and issues an ?IREC to. wait fer anether.

AOS/VS Internals Chapter 7 Page 7 -88

IntroductiQn to the ?EXE&-World

?EXEC Request

A ?EXEC request provides users with a method of requesting EXEC to
perform various actions for them.

:PER:EXEC_REQUEST Initialization

During EXEC's initialization, the' fiie :PER:EXEC_REQUEST is created.
File @EXEC_REQUEST is an IPC type file with local port REQPRT. This
is the file to which all IPCs for the ?EXEC requests are sent.

?EXEC Request Task

The ?EXEC request task is the task in EXEC which handles processing
of ?EXEC requests. The ?EXEC request task pends on an ?IREC on local
port REQPRT waiting for a user to issue a ?EXEC request. When the ?IREC
is fulfilled, the request task does same validation and then ?RCALLs to
the appropriate command overlay to perform the requested action.

AOS/VS Internals Chapter 7 Page 7-89

?EXEC Functions

The ?EXEC Functions

The actions performed by EXEC when an ?EXEC request is made, fall into
one of the following categories:

1) Submitting jobs to user queues
Users issue the CLI commands, QPRINT, QBATCH, QSUBMIT, QFTA etc.,
or a ?EXEC call ,to place entries into EXEC's queues.

2) HOLD/UNHOLD/CANCEL queue entries
Users may hold, unhold or cancel any job which they previously
enqueued to a particular queue. This action is performed via a
CLI QHOLD, QUNHOLD, QCANCEL or the proper ?EXEC call.

3) MOUNT/DISMOUNT tape requests
A user may issue a tape mount or dismount request to have the
operator put a tape up on a tape drive. The operator must be
"on duty" (i.e., 'CX OPERATOR ON') for mount and dismount
requests to be honored. The user must also be in EXEC's subtree
to issue these commands. This is because EXEC must ranov'e the
mount descriptor database in the event that the user terminates
before the request is complete. Mount and dismount requests
can be made by issuing the CLI MOUNT and DISMOUNT commands
or by'issuing the appropriate ?EXEC request.

4) Status Information

request:

A user may want to obtain status information from EXEC by issuing
a ?EXEC status call or by issuing one of the following CLI
psuedo- macros: [ILOGON], [ICONSOLE] or [IOPERATOR]. The

following information can be obtained by issuing a status

a) operator "on duty" status
b) whether the user is a son of EXEC, and if so:

i) wheth,er the user is logged on in ba tch or
a t a console '

ii) returns the pid of the most immediate son
iii) returns the console name or stream name

where the most immediate son ~as proc'd

AOS/VS Internals Chapter 1 Page 1-90

The ?EXEC System Call Format

The ?EXEC system call

The ?EXEC system call requires the user to specify a packet containing
all the information necessary for EXEC to perform the user's request.

?EXEC function codes

The first word of the ?EXEC request packet contains the function code value
that corresponds to the user's request. There are currently 31 function
codes, six of which are reserved for internal use. The first 23 codes
correspond to the functions previously mentioned in chapter 2. See
attachment 'B' for a complete list of the ?EXEC function codes.

The remaining ?EXEC.packet

All ?EXEC packets have a function code in the first word of the packet.
The ranaining information in the packet varies depending on the particular
function being requested. In general, the remaining informa tion consists
of
the pointers and strings which EXEC requi res to fulfill the request. See
attachment 'et for the different ?EXEC sY,stem call packets. .

AOS/VS Internals Chapter 7 Page 7-91

Processing ?EXEC Requests

Processing a ?EXECrequest

When a user iSSLeS a ?EXEC systan call, the call is passed to the AGENT.
The AGENT checks to see if the call is a ?EXEC call, and if so, valida tes
the user's ?EXEC packet verifYing that the entries are· reasonable.

1l':e ?EXEC packet verification

wren the AGENT validates the u,ser's ?EXEC packet, it checks for the
follOWing in its validation:

1) The function code must be a valid code number (1-31)

2) Depending on the function code, the AGENT then validates that
the da ta is the cor rect type for tha t code (1. e., the da ta
in the packet is not validated, just the type). For example,

a) valid mlllbers
b) valid pathnames
c) valid queuenames
d) valid username or filename
e) valid devicename

3) If any information fails to validate. the AGENT passes an
error'directly to the user without ever sending an IPC to EXEC.

This amount of AGENT valida tion reduces the amount of systan overhead
that would occur if EXEC performed this level of validation.

The AGENT IPC Message to EXEC

The AGENT builds, an IPC message in its own address space fran the
?EXEC packet that the user specified. The IPC message contains all
the strings and data necessary for EXEC to fulfill the request.

The AGENT's ?IS. R to EXEC

The AGENT iSSLes a ?IS.R to EXEC's local port, RElJPRT. The IPC message
contains the translated ?EXEC packet. The AGENT waits for a response
fran EXEC.

Processing The request

EXEC's ?EXEC request task receives the IPe and begins processing:

1) Verifies that the IPC came fran the AGENT and ignores
the IPC if not (EXEC can't return an error to an unknown sender).

2) Validates the function code (1-31).

ADS/VS, Internals Chapter 7

.3) Pushes the overlay routine address on the stack

4) ?RCALLs to the appropriate overlay routine to perform
the requested action.

Page 7-92

5) In the overlay routine. the request task performs further
validation of the ?EXEC packet returning an error to its
main routine if any values are found to be incorrect or if
the requested action could not be performed.

6) When the requested action is complete or when an error
is returned, the request task sets up an IPC to send
back to the AGENT.

7) The IPC to the AGENT contains all the information which
EXEC returns to the user for his/her requested action,
or an error if one occurred. This IPC satisfies the
AGENT's ?IS. R.

8) The AGENT interprets EXEC's IPC message, places the information
which is to be returned to the user in the user's ?EXEC packet
and returns control to the user'.

9) The request task then loops back to pend on the ?IREC
wai ting for another user ?EXEC request.

AOS/VS Internals Chapter 1

Attachment 'A' - ~NTRCL @EXEC 'OOMHANDS

Logon World Commands:

CONSa..ESTAlUS DISABLE ENABLE

Queue/Coop/Batch World Commands:

ALIGN
CLOSE .'
DEFAULTFOIMS
FLUSH
LIMIT
PRIORITY
SILENCE
STA1US
UNLIMIT

BINARY BRIEF
OONTINUE CPL
DELETE .ELOrllATE
FORMS HEADERS
LPP OPEN
PURGE QPRIORITY
SPOCLSTA1US STACK
STOP TRAILERS
UNSILENCE . VERBOSE

Mount World Commands:

TERMINATE

CANCEL
CREATE
EVEN
HOLD
PAUSE
RESTART
START
UNIDLD
XBIAS

DISMOUNTED
REFUSED

MOUNTED
UNIlSTAlUS

MOUNTSTAlUS PR EMOU NT

General Use Commands:

LOOGING MESSAGE OPERATOR PRG1PTS

For a description of each commands function see the

Page 1-93

"Hal To Run and Generate AOSIVS on your Eclipse MV/FAMILY Canputer"
Manual , 093-000243-02. .

AOs/VS Internals Chapter 7 Page 7-94

Attachment 'B' - 1he ?EXEC Function Codes

Code Value Symbol Function
------~----~--

1
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31

~".'." . ..'"'" ..

.?XFl1UN
?XMLT
?XFDUN
?XFO'IH
?XFSUB
?XFLPT
?XFPTP
?XF10R

'?XFPLT
?XFHAM
?XFSNA
?XFFTA
?XFXUN
?XFXML
?XFHOL
?XFUNH
?XFCAN
?XFSTS
?XFQST
?XF1.O
?XFLC
?XFl1E
?XFNV
?XF30R
?XFSv

Mount a tape on a drive
Mount a labeled tape on a drive
Dismount a drive or a labeled tape on a drive
Submit a batch job for another user
Submit a batch job
Submit a print job
Submit a paper tape punch job
Reserved
Submit a plot job
Submit a HA~LET file
Submit a SNA/RJE file
Submit a FTA file
Extended mount a tape on a drive
Extended mount a labeled tape on a drive
Hold a queue entry
Unhold a queue entry
Cancel a queue entry
Get status information fran EXEC
Get the queue type fran the queue name
Labeled tape open
Labeled tape close
Mount error
Mount ·next volume
Reserved
Mount specific volume

.. ..: " .

AOS/VS Internals Chapter 7 Page 7-95

Attachment 'C' - The ?EXEC system call packet

The following describes the ?EXEC systan call packet for queue requests.

?XRFNC

?XTYP

?XDAT·

?XTIM

?XLMT

?XFGS

?XFBP

?XPBP

?XAFD

?XXWO

?XXW1

?XXW2

7XXW3

o 15 16 31
+--------------------------------+
I Queue type I Reserved I ?XRES
+--------------------------------+ I Byte pointer to queue name I
+--------------------------------+ I Date queued .I Reserved I ?XRES1
+--------------------------------+ I Time queued I Reserved I ?XRFS2
+--------------------------------+ I Resource limit I Priority ?XPRI
+--------------------------------+
I Flag word I Sequence H I ?XSEQ
+--------------------------------+ Byte pointer to jobname

or formname
+--------------------------------+

Byte pointer to entry's I
pathname I

+--------------------------------+ I / AFTER da te I / AFTER time I ?XAFT
+--------------------------------+ (high bits) I (low bits) I 7XXWOL
I Print flag word1 I
+--------------------------------+ (high bits) I (low bits) ?XXW1L

Print flag word2
+--------------------------------+ I (high bits) I (low bits) ?XXW2L
I Print flag word3
+--------------------------------+ (high bits) I (low pits) I ?XXW3L
I Print flag word4 I
+--------------------------------+

The following describes the ?EXEC systan call packet for status requests.

7XRFNC

?XFP2

o 15 16 31
+--------------------------------+ I Function code I Status Info I ?XFP1
+--------------------------------+ Byte pointer to buffer for I
I additional info I
+--------------------------------+

,

AOS/VS Internals Chapter 7 Page 7-96

The following describes the ?EXEC system call packet for holdlunholdlcancel
requests.

?XRFNC

?XFP2

o 15 16 31
+-~------------------------------+ I Function code Flag word
+--------------------------------+
I Byte pointer to job name or
I sequence number
+--------------------------------+

?XFP1

The following describes the ?EXEC system call packet for unlabeled mount
requests. '

?XRFNC

?XMUL

?XMUT

o 15 16 31
+---~----------------------------+ I Function code
I (?XFMUN)

'Reserved

+-------------------~------------+ Byte pointer to tapets
logical name

+-----------------------------~--+ Byte pointer to the O~rator I
request text I

+-----------------------~--------+

?XRES

The following describes the extended ?EXEC system call pac,ket" for
unlabeled m~unt requests.

?XRFNC

?XMUL

?XMUT

?XMUQ

?XMUR

?XMUF

?XMUS

?XMUE

o 15 16 31
+-----------------------~--------+ I Function code I Reserved
I (?XFXMUN) I (set to 0)
+--------------------------------+

Byte pointer to tapets
logical name

+--------------------------------+
Byte pointer to the Operator I

request text I
+--------------------------------+

Reserved
+--------------------------------+

Reserved
+--------------------------------+

Flag word Reserved
+--------------------------------+

Reserved
+--------------------------------+

Reserved
+--------------------------------+

?XRES

AOS/VS Internals Chapter 7 Page 7-fJ7

The following describes the ?EXE~ system call· packet for labeled mount
requests.

o 15 16 31
+---------------------------p--~-+ ?XRFNC I Function code

(?XFMLT)
Reserved

(set to 0)

?XMLL

?XHLT

+--------------------------------+
Byte pointer to tape's

logical name
"+--------------------------------+

Byte pointer t9 the Operator I
request text I

+----------------.---------------+
?XMLV I Byte pointer to list of VOLIDsl

I each separated by a <0> I
+--------------------------------+

?XRES

The following describes the extended ?EXEC system call packet for
labeled mount requests.

o 15 16 31
+--------------------------------+

?XRFNC I Function code
I (?XFXHLT)

Reserved
(set to 0)

?XMLL

?XMLT

+--------------------------------+
Byte pointer to tape's

logical mime
+----~---------------------------+ Byte pointer to the Operator I

request text I
+--------------------------------+

?XMLV I Byte pointer to list of VOLIDs.\

?XHLR

?XMLF

?XMLS

?XMLE

I each separated by a <0> . I
+----------------~---------------+ Reserved
+----------~-------------~---~---+ Flag word Reserved
+-------.--~-.-~--~-------------+ Reserved
+-------~------------------------+ Reserved
+---------~~---~---------------+

?XRES

AOS/VS Internals Chapter 7 Page 7-98

The following describes the ?EXECsystem call packet for a dismount
tape request.

o 15 16 31
~-------------------------------+ ?XRFNC I. Function code
I (?XFDUN)

Reserved
(set to 0)

+--------------------------------+
?XDUL I Byte pointer to tape's logical I

I name or unit to dismount I
+--------------------------------+

?XDUTI Byte pointer to the Operator
I message to tell Op what to do
I' wi th the tape after dismoun t
+------------------------------~-+

?XRES

~S/VS Internals Chapter 7 Page 7-99

Logon World

The ,Logon World's purpose is to allOli users access to the AOS/V~;
operating systan in a secure, orderly, and flexible manner. To
accomplish this, the Logon World is given the tasks of: assuring
syst~s security; controlling, monitoring, and logging consol€'
activity; and verifying user's access privileges.

Features

Systan Security

(1) Each user must have a PROFILE to log on. These profile~
exist as files in :UPD and have names corresponding to the
user's name. (Profiles are created/modified using the
Preditor utility).

(2) User's must knCM a valid USERNAME/PAS3oIOIm pair to gain
entry to the systan.

(3) User's must have the correct privilege to logon. (e.g. liSE
CONSCLE, KJDEM, USE VIRTUAL CONSa..E, etc).

(4) Actions taken at a console when unsuccessful' logon
attanpts occur can be specified by the operator. Using'
swi tches on the CX ENABLE command line the operat.or can
~pecify that a console is to be disabled in the event of
an unsuccessful logon attanpt(/STOP) or re-enabled after a
ten second pause(/CONTINUE or by default).

(5) The number of unsuccessful logon attanpts necessary to
trigger the actions described above can be modified using
the CX ENABLE command and the /TRIES=n switch (10 >= n >=
1).

(6) The operator can change the enable parameters for a
previously enabled console using the /FORCE switch and the
CX ENABLE command. With tl'lis feature the operator can run
a macro at night that puts all consoles at a high level of
security without requiring users to logoff.

(7) Consoles disabled due to invalid" logon attanpts are
reported a t the op console and recorded in' EXEC's log
provided that EXEC logging is enabled.

Personalized Profiles

(1) Each user has a personalized profile that provides the
ability to specify exactly what privileges and systan
resources each user may access (e.g. SUPERUSER,
SUPERPROCESS, ACCESS DEVICES, MAXHUM :UDD SIZE, MODEM,
CONSa..E, VCON, etc; complete profile content and format
will be discussed later in this chapter).

AOS/VS Internals Chapter 7 Page 7-100

(2) Individuals with SUPERUSER, usually the operat~r, can use
the PREDITOR utility to create, modifY, and delete user
profiles. (EXEC and PREDITOR alone' may 'access user
profiles directly).

Centralized Console Control

By using PR EDI TOR to define user profiles and various CONT~a..
@EXEC commands, the operator may do the following: '

(1) ENABLE/DISABLE consoles for logon (CX ENABLE/DISABLE
cOmmands) •

(2) Set the logon parameters for anyone or all consoles (ex
ENABLE command and swi tches) •

(3) Decide how and if users may logon (PREDITOR utility).

(4) Decide which users may access which devices (PREDITOR
utility). '

(5) Determine the state of any console (CX CONSa..ESTAWS
command).

(6) Terminate any user job running at an EXEC console (CX
TERMINA TE command).

Logging of 'User Activity to :SYSLOG

EXEC logs several types of entries to the system log :SYSLOG.
These entries can be useful for accounting and billing purposes,
system usage monitoring, and security violation tracking.

Message Types

(1) Console Connect Time - This entry is logged whenever the
user job running at an EXEC console is terminated. The
log entry includes the username, console, and elapsed time
since the initial logon occurred.

(2) Pri vileged User Logon - This entry is logged \t1enever a
privileged user logs on. A privileged user is anyone who
has one of the following privileges: SUPERUSERj
SUPERPROCESS; or ACCESS DEVICES. The SYSLOG entry
includes the username and the date and time of the logon.

III The next two codes are not directly logged by the
Logon World but have been added here for completeness. 11*

AOs/VS Internals Chapter 7 Page 7 -101

(3) Pages Printed - The pages printed entry is logged whenever
a user logs off. The log entry contains the username,
device, and the number of pages printed at that device.

(4) Unit Usage - EXEC enters a unit usage entry whenever same
type of media is used under EXEC'·s mount facility. The
entry indicates the username, device· name, and elapsed
time of usage.

Unlimited Number of Consoles U.nder EXEC

EXEC will support an unlimited number of consoles. However.
limits on this number are set at link time in accordance with
AOS/VS limits.

Data Bases

Current Limits:
local consoles
virtual consoles
total (max-consoles)

= 256
=80
= 336

Many ~EC data bases are specific to the Logon World and
therefore reside in ring six. Most are listed and described
here and have been separated into two groups: Support Data Bases
and Primary Data Bases. Use these descriptions as a reference
when reading the sections to follow. They describe how these
data bases interact with the various Logon World specific tasks
providing the features listed previously.

Support Data Bases

o Username Hash Table(UHT)
o Pid Array(PAJ
o Profiles
o Profile Descriptors(PDs)

Primary Data Bases

o Logon Descriptors(LDs)
o Logon Local Port Table(LLPT)
o Logon Hash Table(LHT)
o VCON Logon Hash Table(VLHT)
o Input Descriptors(IDs)
o Console Driver Input Queue(CDIQ)

AOSiVS Internals Chapter 1 Page 1-102

Support Data Bases

Username Hash Table

The Username Hash Table has a total of 41 entries. Each entry,
wheri in use, is a tw<>-word poin ter to a Use rnarne Descr iptor. .The
Username Descriptors will not be fully descrited here. It will
suffice to say that they contain enough information to identify
indi vidual users, indica te the total nt.lllber of jobs currently
running on the systEm with that username, and contain a special
link field whose purpose will be described later.

When EXEC wishes to detennine whether a usemame is cormron to
more than one job, the username is hashed as follows;

do count = 1 to length(use~~ame);
hash~value = hash~value +

rank(substr(user~ame,l»+l;

This hashed value is passed through a KlD function together with
the HBOUND of the Username Hash Table. The result is a slot
which will point to the Username Descriptor should there be
another job currently on the systEm wi th that llsemame.

Certainly there can be more than 47 unique usernames associated
with processes under EXEC at a given time. It was deCided
however. that it would not be desirable to allocate a static
data base· with slots for nearly every usemame possible as the
size would be ridiculously large. Instead, we assume that
collisions will occur when hashing usemames into the table.
When these collisions occur, the link field in the Username
Descriptor whose address is already pointed to by the table
entry is filled in with the address of the Username Descriptor
whose hashing caused the collision.

This avoids having to allocate additional static space for the
Username Hash Table. The overhead involved in maintaining this
structure is not great as a given entry is only accessed twice
during an EXEC son processes lifecycle.

Pic Array

The Pid Array initially has 64 entries which are allocated at
initialization time. Each entry, when in use, is a tw<>-word
pointer to a Pid Descriptor. A Pid Descriptor contains the
address of the Logon Descriptor associated with the pid, the pid
type (console or other), and a special link field (described
later) •

AOS/VS Internals Chapter 1 Page 1-103

Entries are filled when a user is ?PROCed. The resultant pid i~
used as a direct index into the table.

The·. value of the pid after EXEC's ?PROC can certainly be greater
than 64. Therefore the table is dynamic; it can grow to a
maximum dirrension of 512 pids, EXEC's current limit (Note that
the number 512 anticipates a growth from AOS/VS' limit of 256
pids). The way it grows is rather unique. EXEC will grow the
table in chunks. It compares the current number of table'
entries plus the size of the growth chunk (currently 32
entries), with the pid ~tself and takes the greater of the two
values. Then EXEC allocates two times the new value
words(pointers). In effect, EXEC allocates a new table of zero
entries. Then the old table is copied into the first ~ection uf
the new table and the old copy is freed. This avoids
maintaining a static data base with 512 two-word entries. One
obvious problem is that since EXEC's son's pids are usually far
from sequential, and since these pids are used to access the Pid
Array, there is a high likelihood that empty slots will exist i.n
the table. These slots are cleared and the Pid Descriptors
released when the pid terms.

To add to the confusion, it is possible that the Pid Descriptor·
for a pid that is termed may not be freed before another EXEC
son w~th that pid is released. In this case, the link field in
the Pid Descriptor is used. The newest Pid Descriptor is always
at the head of the chain with older descriptors linked to it.
Therefore. when EXEC goes to release the Pid Descriptor
associated·with a given pid it must check to see if there are
multiple descriptors with· a common pid and release the oldest
descriptor.

Profiles and Profile Descriptors

User Profiles exist as files in :UPD. These entries are created
by the Preditor utili t.y, one for each user on the system.
Specific user information is stored here such as: privileges;
username; password; max priority; etc.

EXEC is the only other process that should access the User
Profiles. EXEC reads in the Profile information directly from
:UPD and stores the information it requires in a Profile
Descriptor. This descriptor· is allocated during the Logon
process and is deleted once the user is successfully ?PROCed.
EXEC needs the profile information to:

(1) Validate the. USERNAME/PASSWOID pair.

(2) Confirm that user has appropriate logon privileges (e.g.
tJODEM, CONSa..E, VCON).

AOS/VS Internals Chapter 7 Page 7-104

(3) Acquire the users intial program for ?PROCing purposes.

(4) Set up process memory sizes.

(5) Get the users initial process priority.

(6) Set up maximum number of sons for us~r's process.

(7) Set working set min and max.

(8) Establish Max :UDD:USER size.

(9) Save user privilege bits and batch pr'iority in Logon
Descriptor.

In addition, EXEC must write information to the users profile.
His "last previous logon" time must be updated and his new
password if one was given •. Here EXEC makes the changes in the
profile buffer and then writes the information back to the :UPD
file.

Primary Data Bases

Logon Descl~iptors

Logon descriptors are allocated, one for each console, at enabJ.f·
time. They may exist in unHmited numbers (limits set at'link
time, equal to the maximum number of . consoles). These
descriptors' can be very large since they contain the consolenamE
which may be as long as the maximum pathname length. But since
the consolename is usually quite short (e.g. CnN19), EXEC
calculates tile actual length.of the consolename and allocates
just enough space to accomodate it and the rest of the
descriptor.

We can get away with this because the descriptors are never
reused - the console name can never. change.

We allocate extra roam for a null to appease our data sensitive
operating system.

The actual formula used to determine the necessary number of
words is:

WORD LENGTII FULL~ESCRIPTOR -
WORD LENGTH OF VARYING PART +

CONVERT TO WORDS (BYTE LENGTH OF NA~1E + ONE EXTRA BYTE +
ONE TO HANDLE ODD BYTES) + ONE WORD FOR
LENGTII OF STRING.

The Logon Descriptor for a given console is rt~eased when tile
console is closed and deassigned at the end of the disable
sequence.

AOS/VS Internals Chapter 7

Logon Descriptor Format

Sreplace states_to_remember by 8;

declare 1 logo~descriptor based,
5 node_type binary(15) fixed,
5 control-POrt bit(32) aligned,
5 reac:L.port bit(32) aligned,
5 writ~rt bit(32) aligned,
5 console-number binary(15) fixed,
5 current_state binary(15) fixed,
5 pid binary(15) fixed,
5 soft-priv_bits,

10 unused bit(10),

Page 7-105

10 change-pw bit(1), II true if 0 II
10 remote_resource bit(1), II true if 0 II
10 virt_con~riv bit(1), II true if 0 II
10 mod~riv bit(1), II true if 1 II
10 batcn-priv bit(1), II true if 1 II
10 console-priv bit(1), II true if 1 I,

5 batcn-priority binary(15) fixed,
5 ~o_buff pointer.
5 profile_channel binary(15} fixed,
5 profile_buffer_addr pointer.
5 logo~try_count fixed binary(15),
5 logo~try~x fixed binary(15),
5 connect_time binary(31) fixed,
5 mod~ercds_counter binary(15) fixed,
5 virtua~console' bit(1),
5 lo&....o~off._in-Progress bite 1) ,
5 use_for~fe~bann~r bit(l),
5 timeouts_enabled bit(l),
5 timeout_occurred bit(1),
5 rea~rofile bit(1),
5 svtLdied . bite 1) ,
5 input_when-svtLdead bit(l),
5 requests-pending bit(1),
5 disable bit(l),
5 ope~complete bit(l),
5 close_complete bit(l),
5 re~complete bit(1),
5 write. complete bitCl) ,
5 set_timeout_complete bit(l),
5 enable_timeouts_complete bit(l),
5 earlier error_flag bit(1),
5 bi&....i_o_buffer bit(1),
5 continue~ogon bit(l),
5 svta died_error_code binary(15) fixed,
5 device_chars,

10 st bit(1),
10 sff bit(1),
1 0 epi bi t (1) ,

AOS/VS Internals Chapter 7

10 unused bit(1),
10 spa bit(1),
10 raf bit(1),
10 rat bit(1),
10 rac bit(1),
10 nas bit(1),
10 ott bit(1),
10 eol bit(1),
10 uco bit(1),
10 It bit(1),
10 ff bit(1),
10 ebO bit(1) ,
10 eb 1 bit (1) ,
10 ulc bit(1),
1 0 pm bi t (1) ,
10 nrm bit,(n,
10 modem bit(1),
10 device_typebit(4),
10 timeouts BIT(1),
10 tsp BIT(1)",
10 pbn BIT(n,
10 esc BIT(1) ,
10 wrp BIT(1) ,
10 fkt BIT(1) ,
10 reserved bit(2) "
10 lines-per page BIT(8),
10 line_length BIT(8),

5 state.j1istory,
6 last_state binary(15) fixed,
6' previous_states (states_to_remember) ,

7 state binary(15) fixed,
7 input_type binary(15) fixed,

5 enable_request .pointer,
5 pende~request_queue pointer,

Page 7 -106

5 user name character (?MAX-USERNA~LENGTH) varying,
5 deviceJlame character (?MAX-PAWNAHE-LENGTH) varying;

Logon Local Port Table

The Logon Local Port Table has one entry for each possible Logon
Descriptor (currently 336). Each entry, when in use, is a
two-word pointer giving the address of a Logon Descriptor.
Entries are filled in at enable time. As CONx is enabled, it is
assi gned its uniq ue iri ternal console number "n" and its Logon
descriptor is allocated. The address of the LD is then stored
in the 'n'th entry in the Logon Local Port Table. Later,' when
EXEC needs to fj.nd. the Logon Descr iptor for a given console, and
it has access to that console's unique ID, it can find that LD
using the ID as an index into the Logon Local Port Table.

AOS/VS Internals Chapter 1 Page 1-101

This ID is available and as such, the table can only be used to

find the appropriate Logon Descriptor for a console, when an
EXEC initiated IPC comes home. The entire sequence is as
foll~s:

(1) EXEC initiates IPC on behalf of a console with the unique
console number and an action code in combination as the
local port number (port number = 3 • console number (+1 if
read port) (+2 if write port».

(2) IPC returns and the local port number is decoded by the
appropriate IPC listener.

(3) Unique internal console number is then used to access the
appropriate Logon Local Port Table entry.

(4) This entry 'gives the address of the appropriate Logon
Descriptor.

Logon Hash Table

The Logon Hash Table currently has 427 entries. 427 being the
first prime number greater than 400. 400 was used instead of 256
because it was not clear how many consoles we would have to
support in the near future (VCONs are a special case as
discussed later).

Each entry, when in use, contains the control port and the
address of the Logon Descriptor for a given console. These
entries, as are the Logon Local Port Table entries, are filled
in at enable time. When a console is enabled EXEC ?ILKUPs its
control port number. This number is then hashed giving a slot
in the Logon Hash Table. If this entry is not in use, the
control port and the address of the Logon Descriptor associated
with it are laid down. If it was already in use, the next
sequential available slot is used.

This table is used to find a local console' 5 Logon Descriptor'
when EXEC receives an IPC that it did not initiate such as the
IPC generated by the CX DISABLE @CON6 command. Here EXEC has
only the console name. The st'eps that are then taken to find
CON6's Logon Descriptor are listed below.

(1) EXEC receives an IPC that it did not initiate (e.g. ex
DISABLE @CON6).

(2) EXEC does an ?ILKUP on the console name and obtains its
control port.

-.

AOS/VS Interrials Chapter 7 Page 7 -108

(3) The control port is hashed using the following algorithm
SLOT = t-l)D (CONTROL_PORT HBOUND(LOOON_HASCLTABLE)+ 1)

(4) Collisions may cccur so it is necessary to compare the
control port at the indicated slot with the original. If
they don't match, the search continues sequentially fran
that slot.

(5) Once the correct control port entry is found, the address
of the Logon Descriptor can be obtainL~ from the second
field in that entry.

Vc,)n Logon Hash Table

As of AOS/VS rev 4.00, the VCON Logon Hash Tab}€' has 83 entries.
The number' eighty three was chosen because it is the first prinl?
number greater than the maximum number of VCONs supported by
EXEC (80).

Each individual entry, when in use. contains the control pOl't
and the address of the Logon Descriptor for ,J given consol€:.
These entries are filled and accessed in the same way as entries
in the Logon Hash Table. The r.eason for the separation of the
two data bases is that it is sometin~s necessary to access all
the Logon Descriptors that are associated with VCONs. With the
separate VCON Logon Hash Table, EXEC doesn't have to search. for
VCONs in a table with as many as 256 non VCQN entries.

It t.>ecomes necessary to access the LDs for VCONs collectively at
two different times.

(1) When SVTA dies it is necessary to terrninate the process
running under EXEC at each VCON and to notify the
operator. through the OP console, that the virtual console
has been disabled. We do not release the LDs associatE.'Ci
with the virtual console at this time. Instead the LD is
kept around so that the operator can do a CONSOLESTATUS to
determine the state of the VCONs that were just disabled.
Also. EXEC needs the VCONs' . LOs so that it can
successfully process the terminations for the processes
that were running under EXEC at the VCONs. Without the
LDs EXEC would not be able to handle the term and an
internal consistency error would be taken.

(2) When the operator attanpts to r&-enable H VCON, EXEC then
frees up all the old LDs. Once again, it is necessary to
go through the VCON Logon Hash Table to find each' of the
LDs to be freed.

AOS/VS Internals Chapter 7

Input Descriptors

Page 7 -109

Input Descriptors can exist in unlimited numbers and can be of a
variety of sizes and formats. Each of the formats does have a
common header which gives the information necessary to determine
the type and size of the Input Descriptors. These descriptors
are allocated and filled in by several different routines in
ring 6 and are pushed (actually linked) onto the Console Driver
Input Queue as input for the Console Driver Task.

Input Descriptors can be of any of the ,followir,g types.

'0 .. Console Input Descriptors:
Assign Descriptors
Open Descriptors
Get Characteristics Descriptors
Set Timeout Descriptors
Write Descriptors
Set Characteristics Descriptors
Read Descriptors
Close Descriptors
Release Descriptors
Enable Descriptors
Disable Descriptors
Terminate Descriptors
Delay Descriptors
Timeout Error Descriptors
Disconnect Error Descriptors
Network Error Descriptors
General Error Descriptors

o SVTA.Died Descriptors

o Term Descriptors

As was previously mentioned, each of these types of Input
Descriptors can be put on the input queue for the Console Driver
Task. This task must then check the input type and pass control
to the appropriate action routine. The algorit.hm used to decode
and dispatch in the Console Driver Task shall be discussed in
the next section. For now, it is sufficient to note that each
Input Descriptor on the Console Driver Input Queue represents an
action that needs to be performed within the Logon World. The
type of the input descriptor and the· current state of the
console effected, indicates that action. These descriptors are
freed in the routines which perform the requested actions.

Cor.sole Driver, Input Queue

The Console Driver Input Queue(CDIQ), is a dynamic queue that is
made up of linked Input Descriptors. As Input Descriptors are
allocated and pushed on the queue and subsequently released, the
CDIQ will grow and shrink accordingly. There is no limit to the
number of IDs that can be on the queue at one time. When
entries are added and/or deleted the atomic queue instructions
are used eliminating the need for queue locking.

AOSIVS Internals Chapter 7 Page 7 -110

Inputs

Each ID that is in the queue is linked to ID before and after
it. Note that the link fields in the ID point to the link field
in adjacent ID and not to its head.

As mentioned previously, EXEC's Logon World is completely dr~ven
by external requests and responses. That is, the Logon W~rld
only performs actions when triggered to do so by an external·
input. In this section we will see that these inputs come frem·
five sources: The Operator; the PMGR; SVTA; the Delay Task; and
AOS/VS.· The next section will go into greater detail and
describe what actions these inputs trigger as well as how the
Console Driver Task manages multiple input·s.

(1) When the Operator issues CX ENABLE, DISABLE, TERMINATE,
and CONSa..ESTAWS commands, the CLI partially decodes the
command line and fires off an IPC to @EXEC which
eventually winds up in the Logon World.

(2) The operating system, AOSlVS, is another source of input
to the Logon World. The termination listener task in ring
7 receives terminations fran the system whenever the
process running at an EXEC owned console terminates, a
batch job terminates, or SVTA dies.

(3) The PMGR sends inputs to the Logon World in the form of
responses to EXEC requests. The PMGR_LISTENEILTASK, puts
up a global ?PREC which receives all responses coming to
ring 6. EXEC initiates the sequence by requesting a
write, read, control, etc.· The response comes back in the
form of a yes the action was successful, or no it was not
successful.

(!J) SVTA sends inputs to the Logon World in same manner as
PMGR except these are respon~s to EXEC ?IREC requests for
virtual console operations over the net.

(5) The Delay Task responds to EXEC requests also. EXEC
requests a· notification fran the Delay Task when ten
seconds have passed so that it knQJS when to wake up a
console that was paused as a result of an unsuccessful
logon attempt. The Delay Task responds whel, the ten
seconds have expired.

The example section to follow will show that inputs from one
source can perpetuate inputs from the other sources.

AOS/V~ Internals Chapter 7 Page 7-111

Design

State Machine

The implementation design called the "Finite State Machine" is
well suited for input-driven action ~chemes. EXEC uses this
design technique to manage console· actions. EXEC's State
Machine is driven by a 2-dirrensional table. The first dirrension
is the consoles current state and the second is the input type.

Each console is always in a certain state. These states refJect
where in the logon/logoff sequence the console is. The
console's current state as well as a paraneterized number of
previous states are stored in its logon' descriptor. These
previous states are used for debugging the Logon World.

There are a total of 35 states along the first dirrension of the
table. They are:

1*
* States.
**1

~replace wait_for_enable_state by 1;
~replace wait_for_assign_state by 2;
~replace wait_for_open-state by 3;
~replace wait_for-set_char_state by 4;
~replace wait_for_stoc_state by 5;
~replace wait_for_write_banner_state by 6;
~replace wait_for_timeout_enable_state by 7;
~replace wait_for_read_new_line_state by 8;
~replace wait_for_write-sreetins-state by 9;
~replace wait_for_write_userprmt_state by 10
~replace wait_for_rea~username~state by 11
~replace wait_for_write-pwprmt_state by 12
~replace wait_for_rea~asswor~state by 13
~replace wait_for_write_timeout_state by 14
~replace wait_for_write_invali~state by 15
~replace wait_for_writuattanpts_state by"16
~replace wait_for_write-pewpwprmt_state by 17
~replace wait_for_rea~newpw_state by 18
~replace wait_for_write-pewpwmess_state by 19,
~replace wait_for_write_loghea~state by 20;
~replace wait_for_write_logmess_state by 21 ;
~replace wait_for_write_logtrlr_state by 22;
~replace wait_for_disable_to_state by 23;
~replace wait_for_termination-state by 24;
$replace wait_for~logoff_banner_state by 25;
~replace wait_for_disable_banner_state by 26;
%replace wait_for_close_state' by 27;
%replace wait_for_deassign_state by 28;
%replace disable_in-progress_state by 29;

AOS/VS ,Internals Chapter 7 Page 7 -112

~replace wait_for_disable_timeout_state by 30;
~replace svta die~state by 31;
~replace bad_state by 32';
~replace get_from_action-state by 33;
Sreplace get frOOLtable_state by 34;
Sreplace freelogon-descriptor_state by 35;

There are a total of 18 different inputs makinG up the second
dirrension of the table. A list of the most recent input types
for a given console are also stored in its Logon Descriptor.' By'
matching these recorded inputs with the states that they put the
console in, it is possible to walk back through a consoles
actions'in search of unexpected sequences. The 18 states are:

1*
*
**1

Console Input Types

$replace opel'Linput by 1;
Sreplace assign_input by 2;
Sreplace get_characteristics_inputby 3;
Sreplace set_timeout_input by 4;
Sreplace write_input by 5;
Sreplace set_characteristics_'input by 6;
Sreplace read_input by 7;
Sreplace close_inpl~ by 8;
Sreplace deassign_input by 9;
Sreplace enable~input by 10;
%replace disable_input by 11·
'Sreplace tenninatecL.input by 12

. %replace delay_input by 13
Sreplace svta tenninatecL.input by 14
Sreplace timeout_error_input by 15
Sreplace disconnect_error_input by 16
%replace network-error_input by 17
$replace general_error_input by 18

%replace n~console_inputs by 18;

When EXEC receives an input for a console, it indexes into the
State Table using the console's current state and the input type
and finds the appropriate entry. Each entry in the State Table
contains the action to perform on the console and a number
indicating the next state to put the console

For example:

(1) CON7 currently has the logon banner on the screen
(***press newline***)

(2) EXEC has issued a READ request to the PMGR to read any
newline entered at CON7.

iACS/VS Internals Chapter 1 Page 7-113

(3) CON'T is currently in the "WAIT FOR NEWLINE" state and' this
value is stored in CON'T's Logon Descriptor.

(4) When a user hits newline at CON1, the READ request comes
home from the PKlR.

(5) EXEC interprets the message as a READ input for CON'T.

(6) At this point EXEC indexes into the State Machine's table
using the current state(WAITYOILREAD_NEWLINE) and the
input (READ).

(1) In the corresponding table entry, EXEC finds the action to .
perform on the console(WRIT~GREETING_LINE) and the next
state to put the console in
(WAITYOR WRITLGREETING_LINE).

(8) EXEC puts up a r~uest to the PMGR to perform the write
action and updates the current state field in CON7' s LD.
This eventually results in the greeting line being sent to
CON1 ("AOS/VS 4.00 / EXEC 4.00 •••••••••).

There are many advantages to this State Machine implementation •.

(1) ~asy to implement and test action routines, (actions are
isolated from each other).

(2) Easy to modify the Logon World's behavior. Action
routines can be easily modified as can entries in the
State Table.

(3) Timeout errors handled without difficulty. Errors are not
handled as special cases but simply as inputs to the State
Machine. If a timeout error occurs when EXEC is waiting
for a user to enter his/her password, EXEC simply treats
this as a "TIMEOUT INPUT" and indexes into the table as it
would normally.

(4) Better validation of inputs/states. By definition, ·every
element of the table must have an entry. All invalid or
unexpected combinations of states and inputs· have table
entries that direct EXEC to perform an error action. For
example, if CON5 is in the "WAITYOILREArLNEWLINE" state,
it is clearly incorrect for EXEC to receive a "WRITE"
input from the PMGR. In this case, EXEC indexes into the
table as it normally would. However. the action specified
directs EXEC to take an "INTERNAL CONSISTENCY ERROR". This
indicates that same portion of EXEC is seriously ill and
processing cannot continue. Here again, the State Machine
design forces the programmer to consider an action for
every combination of states and inputs.

AOS/VS Internals Chapter 1 Page 1-11 q

(5) Better debugging information. EXEC saves a number of
states and inputs for each console in its Ln. This saved
info provides a state history for the cOnsole and is quite
useful in the debugging process. For exanple, in the
previous paragraph we saw an error caused by the receipt
of an unexpected input. 'Ilen EXEC took the INTERNAL
CONSISTENCY ERROR. a ?MDUHP of rings 6 and 1 is triggered.
We can then lod< through the dump and easily find .the
console that caused the error by examining the cons~les

, state history. The cause of the problem can then be
narrowed down to certain areas in EXEC, the PKiR, etc.

Console Driver Task

.,

As previously mentioned, EXEC's Logon World receives input fran
a variety of sources. For effective ordering/handling of these
inputs, EXEC maintains a the Console Driver Input Queue. Several
other tasks listen for these inputs and determine if they are
requests or responses for the Console Driver Task. If they are,
the inputs are formatted into Input Descriptors and linked to
other IDs fonning the CDIQ.

The console driver task pulls requests off the CDIQ and perfonr.s
the desired action(s) on the appropriate console(s). The
following outline describes the general act~ons performed by the
console driver task .•

l1)(F: (1) Pop an entry off the input queue (INPUT_QUEUE).

(2) Determine the tyPe of input (3 major types). The
type is stored in the input descriptor.

Console Input
Tennination Input
Svta Died Input

(3) Dispatch to the cor'rect code for each input:

(a) Console Input - Break down further into the
type of console input. Again, the type of console
input is also stored in the input descriptor.

(i) Enable Input

- Determine if the enabte cOlDDBnd
is for all consoles or just 1

- For every console that is to
be enabled:

AOS/VS Internals Chapter 7 Page 7 -115

- Allocate/initialize a logon
descriptor if one doesn't
exist

- Call STATE-MACHINE to perform
the appropriate action for
the console.

(ii) .Disable Input

- Determine if the disable is for all
consoles or just 1

- Call STATE-MACHINE to perform
the appropriate action for each
console

(iii) Control Input (input othel" than enable
or disable)

- Find the logon descriptor
associated with the input

- Call STATE_MACHINE to pe'rform the
correct action

(b) Termination Input

- Determine which console the termed pid
is running on

- call STATE-MACHINE for that console with
.the termination input

(c) Svta Died Input (the net died)

- Send a message to OP (Disabling VCONS due
to SVTA termina tion)

- Loop th~ough all the consoles and for every
VCON, callSTAT~CHINE to perform the
appropriate action

- Disconnect from SVTA
- Free up the mes~ge dispatcher task if it .

is pended on SVTA .

(4) Free up the input descriptor, if appropriate.

(5) Go to the top of the loop and process another input.

When STATE-MACHINE is called as part of the above algorithm it
does the following:

(1) Saves the logon descriptor we are working on

ACS/VS Internals Chapter 7 Page 7 -116

(2) Validates logon descriptor and input descriptor pointers

(3) Save the current state and the input received (Each logon
descriptor has within it the last N states it was in and
the last N inputs it received -> used for debugging and
analysis. The value for N is set at link time).

(4) Perform the appropriate action on the console. The logon
descriptor has a 'current state' value wi thin .it..
STATE-MACHINE indexes into a table using the current state
value and the input value to determine what action to·
perform. The appropriate action routine is executed for
the console.

(5) Now that the STATE-MACHINE has performed the action, it
must update the console's current state. The current
state can come from the state table or Ule action routine
itself.

In addition to identifying the action to be performed, the
state table also includes the nex~state value for the
console. Normally, the state machine can simply take this
value and use it as the currf'.nt state in the logon
descriptor.

Sometimes, however. the· table cannot determine the next
state for the console. In these cases, the table ~ntry
contains the value 'get_frOOLactiofLstate' (instead of an
actual state). When this happens, the STATE-MACHINE will
use the next-state returned by the action routine.

(For example, when validating the user's pas5'Word, the
table cannot determine what the next-state for the console
will be because it does not know if tne password is
correct or not. In this case, the validate password
action routine must return the console's next-state).

(6) If the SVTA-died bit is set after the action is performed,
then place the console in the 'svt~die~statet.

(7) If the new current state for the console is
tfree_logofLdescriptort, then do just thatl Free up all
of the console's memory and release the logon descriptor.

Design Advantages

There are many advantages that come with the Console Drive Input
Queue and Task design.

(1) All inputs from the various sources are collected in one
place. Therefore the Console Driver Task need only listen
for inputs from one source instead of many.

.AOS/VS Internals Chapter 7 Page 7 -117

(2) EXEC buffers its input messages internally instead of
depending on the systans IPC spool file mechanism.

(3) The Console Driver Task never has to pend directly on
external inputs. The listener tasks do the pending while
the CD task only pends waiting for internal inputs.

(4) The structure of the input queue provides a simple way for
EXEC to multiplex among many consoles. The Console Driver
Task services the inputs in the order that they are placed
on the queue. Since the various inputs are for different
consoles, the CD task can be logging on/off many consoles
at once.

As mentioned above, the console driver task is not pended
directly on external events. When EXEC wants to send a message
to a console, an action routine initiates an ?l/P-SEND but does
not put up an ?l/P-REC. Instead, EXEC relies on the listener
task to receive the responses/requests that al~e aimed at the
Logon World. The CD Task is then free to process additional
inputs.

There are advantages of this unpended design.

(1) The Console Driver Task need not hang even if a console
does. If for same reason a communication to/from the
PMGRlSVTA is lost or pended, only· that console will be
hung. The Console Driver will continue processing all
other consoles on the systan.

(2) Consoles requests are completely independent of time. EXEC
does not care how long a request takes to complete.

Pended Request Queue

In certain situations, the Console Driver Task cannot perform an
action that is requested until another action completes. For
example, if the operator issues an ENABLE and a DISABLE command
for the same console, EXEC cannot perform the DISABLE until the
ENABLE completes.

In these Situations, EXEC queues up the request on a 'pended
request queue'. The pended request queue hangs off of the logon
descriptor and is specific to one console. Certain of the
specific action routines have kna..Jledge of this queue but the
global console driver task mechanism does not. Thus, if a
console is in the 'WAITYOR __ ASSIGN' state (state 3) and a
disable comes in for that console (input type 11), the state
table indicates that EXEC shoulo perform the
'PEND_REQUEST_ACTION' (action 41). The disable request will be
placed on a queue associated with that logon descriptor. The
console's current state is not changed when a request is pended.

AOS/VS Internals Chapter 1 Page 7 -118

Appropriate action routines will check the pended request queue
to see if further actions are necessa ry • In the above case,
when an assign (input 2) comes home for the console, the Stat
~ch1ne will execute the 'OPEN-ACTION' (action 3). After
performing the action for the assign input, the opel'Laction
routine will check the pended request queue and perform any
actiones) necessary to fulfill those pended requests.

Examples

Er.abling Consoies

The following is a list of the actions EXEC must perform in
order to ENABLE a console (in this case CON1) in response to the
command CX ENABLE @CON7.

(1) The control @EXEC listener task in ring 1 receives an IPC
@EXEC containing the string "ENABLE @CON1".

(2) Ring 1 does sane validation of the command string and
passes control through the Stub Handler to Ule ENABLE
corrunand module in ring 6 (the ring 1 activity will be
fully described in the class on the ex World).

(3) In the ENABLE module an input descr.iptor of the "console
input type" is allocated and ini tiaiized. .The various
fields of the lD contain all necessary information about
the command or pointers to it.

(4) The new ID is pushed onto the bottom of the CDIQ.

(5) The Console Driver eventually pops the ID off the CDIQ.

(6) The ID is decoded and it is determined that a console
ENABLE was requested.

(1) EXEC acquires the consolename' using the ID and does an
?ILKUP to get its control port.

(8) A ?GPORT is done using the control port to determine who
the console belongs to.

(9) Once it has been confirmed that the console belongs to the
PMGRlSVTA (PMGR in this case), the logon descriptor for
this console must be found. The control port is hashea
giving and. index into the Logon Hash Table.

(10) If this is not an attempt to re-enable a console there
should be no LD currently allocated for the console. If
this is true a new LD is allocated and initialized and an
entry is made in the LLPT and the LHT.

AOS/VS Internals Chapter 7 Page 7 -119

(11) Now everything is initialized and a call is made to the
state machine with the console's current state having been
set as "WAITJ'ORENABLE".

(12) The state machine indexes into the state table using the
current state of the console, ''WAITJ'OFLENABLE'', and the
input type, "ENABLE".

(13) The table entry indicates that the action to be performHl
is the "ASSIGN ACTION".

(14) Control is passed to this action routine where a request.
is put up to the PMGR to ASSIGN the console to EXEC.

(15) Next the action routine indicates that the console shoulo
be put in the ''WAITJ'OR_ASSIGN'' state.

(16) The PMGR listener task in ring 6 then receives the
response from the PMGR.

(17) The local port is decoded giving the console's number and
an action code which indicates whether tbis is a response
to a write, read, or control request. In this case it is. a
control response (the console number and the action code
were used to form the local port when EXEC made the assign
request) •

(18) The console number is then used as a direct index into the
Logon Local Port Table and the console's LD is accessed.

(19) Next an ID is allocated and initialized indicating that an
ASSIGN request has been fulfilled. The 1D is pushed onto
the CDIQ for the Console Driver.

(20) As before t.he Console Driver pops the ID off the CDIQ and
decodes it.

(21) The state machine once again gives the next action and
state of the console.

(22) This EXEC/PMGR interaction continues until all the
follOWing actions are performed on the console:

o OPEN - Here the console is readied for 1/0 operations and
its read and write ports are acquired and stored
in its LD.

o GET CHARACTERISTICS - Used later (Modem, Hard Copy).

o SET TIMEOUT CONSTANT - The tirreout con~)tant for read actions
is set to 30 seconds (This i::. for USERNAME/PAS:)VJORD
reads) •

AOS/VS Internals Chapter 7 Page 7 -120

o WRITE LOOON BANNER - EXEC gets the SYSID when it comes up and
stores it in the banner string.' Dim mode is set.
the screen is cleared and the banner is written out.

o READ NEWLIKE - Read is put up pending user's newline (note that
EXEC does not pend here but processes other inputs
pertaining to other consoles.

At this point the console has been successfully enabled.

Logging On

When the user types a newline to the anabled console, he
triggers a furthur series of ·requests and responses between EXEC
and the PKiR which result in various actions. These actions
generally occur as follows.

o WRITE GREETING LINE - Operating system and revision information
are combined with the date, time, and console-name and
printed at the console.

o ENABLE TlMEOUTS - Timewts enabled so that requests for USERNAME
and PAS5VlORD pairs will timec;x,lt after 30 second~ (note
that setting and enabling timeouts are two separate
actions. . '

o WRITE USERNAME PROMPT

o READ USERNAME

o WRITE PASSWORD PROOPT

o READ PASSWORD - No echo on this read.

o VALIDATE USERNAME/PASSWORD - User's :UPD profile is read in
and used for the validation. If correct pair entered
EXEC checks to make sure user has proper privileges to
logon on. If incorrect pair. then the prompt is
reissued unless the user has exceeded the number of
logon tries permissable at the console.

o DISPLAY LOOON MESSAGE - (If it exists) The first 512 bytes of
of the file LOOON.MESSAGE is displayed (the file must
exist in the same directory as EXEC's program file.
EXEC keeps 512 byte buffers worth of logon message
around and only reads a new one if the file has been
modified since the last time it read it.

o DISPLAY LAST PREVIOUS LOGON DATE AND TIME - This information is
available in the user's profile.

AOS/VS Internals Chapter 1 Page 1-121

o ?PROC THE USER - The user's process is ?PROCed using the
privileges and settings specified in her/his profile.
Control is passed to the user's progran. Temporary
console memory such as the profile buffer and I/O
buffer is released. Last previous logon information
is updated in the user's profile and finally a :SYSLCXl
entry is made if the user possesses SUPERUSER, SUPER­
PROCESS, or ACCESS DEVICES privileges.

Now the user is logged on and running the ini tial
specified in his/her ,profile. EXEC does not regain
until this process, EXEC's son, tenminates for any of
reasons.

Termination/Logging Off

progran
contr'ol
several

When the user's program which is running as a son of EXEC
tenninates, the operat.ing system sends an IPC message to the
Term Listener Task in ring 1. This message is partially decoded
and passed through to ring 6. This initiates EXEC's logoff
actions. Also. note that the Pt-KiR returns control of the
effected console to EXEC when the user's program terminates.

The fqllowing is a brief list of the major actions that are
taken as a result of this tennination notification.

(1) The ring 6 Process Termination routine receives
notification that one of EXEC's processes has termed. The
term code is then used to determine what type of term it
was.

(2) Next, an 1D is allocated, initialized appropriately and
pushed on the CD1Q.

(3) The Console Driver Task tpen pops the ID off the CDIQ and
processes it.

(4) Having determined that this 1D is of the "termination"
variety, the Console Driver calls ~he state machine with
the oonsole's current state, (which should be' '~ait for
termination"), and the input type, ("termination").

(5) The State Machine then indexes into its table using these
two fields and finds the next action should be the "writ.e
logoff action". This routine is passed control.

(6) Here a message buffer is allocated and various pieces of
text are placed in it. The first message placed there
indicates why the console job is terming

(1) To this is added the pid information as well as the
connect time.

'.

AOS/VS Internals Chapter 7 Page 7-122

(8) The Username Hash Table is then indexed to determine if
other EXEC sons with the same username are running on the
on the systan. If there are then this info is added to
the buffer.

(9) Various other things such as the consolename, username-,
and a time stamp are added and a write request is issled
on behalf of the console to the PMGR.

(10) EXEC then logs the termination to :SYSLOG, removes this
pid's entry in the Pid Array, and either decrements the
count of jobs in the Username Descriptor for thi::, username
or' deletes the UD if this was the only job wi th that
username.

This sort of communication between the PMGR and EXEC
continues fran this point until the following actions complete.

o The Console is Closed - incidental console I/O
buffers are released and the console is closed.

o The Console is Deassigned - If the console is simply
terming, as in this case, it is not actually
deassigned, but instead reopened (if the console
was to be disabled, it would be deassigned
and its LD as well as LLPT and LHT
entries would be released).

Once these actions are completed, barring any errors or disable
attempts, the logon banner is rewritten at the console and it is
returned to the "wait for newline" state.

Special Cases

Modems

The characteristics data that EXEC gets fran the PMGR indicates
whether a console is genned as a moqem or not. If it is a modem
it will be subject to several special case actions.

(1) EXEC will enable timeouts while waiting for the user to
type newline instead of waiting and enabling them in time
for the use rnamel pas sword prompts.

(2) The user must have modem privilege to log on.

(3) When the user's job terminates, the console is cloSed and
the PMGR breaks the connection on the line. EXEC cannot
immediately re-open the console in this case and throw up
a new banner. EXEC must first wait while the PMGR holds
the line for 15 seconds to clear noi se. Then the conso1 E:
can be re-opened and the banner will be available to the
next user who dials up.

AOS/VS Internals Chapter 7 Page 7-123

VCONs

Virtual consoles are consoles logged on across the network. When
SVTA comes up, it creates VCON files in :PER for the virtual
consoles (i.e., VCON1 VCON2 ••) •• As with modems, EXEC must
perform some special actions for VCONs.

(1) EXEC determines whether a console is a VCON or not by
doing a ?GPORT on the control port of the console and
checking the pid that is returned. Presently, if the pid
returned is not the PMGR's pid it is assumed that SVTA is
the owner. This will change when the addition of new
terminal servers is supported.

(2) If OP is enabling a VCON, EXEC must connect to SVTA. This
ensures that EXEC will receive a termination message if
SVTA terminates.

(3) Users must have the 'virtual console' privilege to log on
across the network.

PO If SVTA dies, EXEC must perform the actions specified in
the previous section on the VCON Logon Hash Table.

Console Memory

EXEC must allocate and free 3 types of memory for consoles:

- logon descriptor
- I/O buffer
- Profile buffer

(1) Logon Descriptor - Logon descriptor's are allocated and
initialized when a console is enabled. This logon
descriptor (LD) stays around until the console is disabled
and deassigned.

LD allocation is handled in CDNSa..E.J)RIVER_TASK. PL 1.
Freeing up of the LD occurs in DISABL,E_ACTION.PL1.'

(2) I/O Buffer - During various portions of the logon
sequence, EXEC must allocate i/o buffers for each console.
EXEC will use constant strings when it can (e.g., n***
AOS/VS 3.0.0.0 / PRESS NEWLINE TO BEGIN LOCGING ON ***n).
However, when reading/writing user specific strings, EXEC
must allocate an i/o buffer for the console (e.g., reading
username and password, writing out last previous logon,
the termination message, etc) ••

EXEC allocates i/o buffers in 2 sizes: small and larbe.
When allocating an i/o buffer, EXEC places the address in
the logon descriptor and sets a bit indicating what size

AOS/VS Internals Chapter 7 Page 7 -124

buffer it is. During logon, EXEC need only allocate a
small buffer (for username, password, etc).. During
logoff (and also if EXEC cannot ?PROC the user for sane
reason), EXEC requires a large i/o buffer because the
message(s) are bigger.

(3) Profile Buffer - At various portions of the logon/logoff
sequence, EXEC must read in the user's profile. Thus,
EXEC allocates a profile buffer and places the address. of
the buffer in the logon descriptor. Then EXEC reads the
user's profile into this buffer. EXEC will, of course,·
free up the profile buffer when it is no longer needed.

The profile is needed for usemame/password valida tion,
previous logon time/date, ?PROC paraneter's and privileges,
etc.

AOS/VS Internals Chapter 8

CHAPTER 8 - PMGR (Peripheral ManaGeR)
(AOS/VS Revision ~.OO)

Page 8-1

This chapter deals with the peripheral manager. the lOP, and lAC. It covers
the internals of the PMGR software. the lAC software. and the lOP software.

Glossary of Terms and Key Data Bases

AGENT: Ring 3 of a user's process.

ASYNCHROONOUS: An event that happens randomly in time. An event
that is not expected to happen at a certain time, although
it is expected. In the Data COOlmunications world, this is
a type of protocol.

BAT/WOMBAT: A furry marsupial mammal of Australia & Tasmania about
the size of a Badger.

CHAINS: A singly linked-list data structure that does not use the
MV/800o's queue instructions.

COMKlNICATIONS INFOFt1ATION BLOCK (CIB): A data base used by both
, the HOST and lAC to comm~1icate requests between each

other. Does not require a lock, yet works in a queue like
manner.

GLOBAL: The Pid 1 peripheral Manager process on both the lOP and
lAC systans. The GLOBAL PKiR functions include unshared
memory management. control command process and local
request processing.

INTERRUPT (VECTOR) TABLE: An lOP Database used with the VCT in­
struction to transfer control to the appropriate interrupt
handler when an interrupt is received by the lOP.

INTELLIGENT ASYNCHRONOUS CONTRa...LER (lAC): An independent 16-bit
ECLIPSE-like CPU with 16KW of local memory used as a,
front-end processor for asynchronous character I/O.

INPUT/OUTPUT PROCESSOR (lOP): An independent 16-bit ECLlffiE CPU
with 32KW of local memory used as a front-end processor for
asynchronous character I/O on MV/8000s and M600s.

LOCAL: The portion of the PMGR that lives in the AGENT.

AO:;/V<;3 Internals Chapter 8 Page 8-2

PERIPHERAL INFOIt1ATION BLOCK (PIB): The PIB contains all the
information and status for a particular device support~~ by
the Pt'IGR. Each device has exact.ly one PIB assllCiated with
it.

PERIPHERAL: A peripheral is a dev ice that is connected to the HOST
CPU by various means. These include consoles, card
readers, plotters, lAC's, and lOP's.

PERIPHERAL TABLE (PERTB) : It is a table of all the peripherals
genned for the system and supported by the PMGR. It
contains all the information that was acquired at sysgen
time for this dev ice including dev ice code, ini tializi::!tion
word, etc.

PlD TABLE (PlTITB): A table that anchors a chal.n of PIBs together
that are CMned by the same PID. For example, after EXEC
has enabled all the consoles but before anyone has logged
on, the pib for each console that EXEC has enabled will be
on this chain.

QUEUES: Those data bases upon which queue instructions arc used.

REQUEST BLOCK (RB): A block of data which contains all info which
the PMGR needs in order to .satisfy the user's request.
There is one RB per user request.

REQUEST TABLE (RTABLE): In an lOP system: when the h0st has re­
quests for the lOP, this table tells the lOP which Jines
are awaiting activity.

In at lAC system: this is part of the CIB, again it tells
which line a request(s) is waiting for service.

SHADOW PORT TABLE (SPRTB): A table that maps IPC ports into PIBs.
Each entry contains the address of the PIB and a routine to
start execution at for tilis ~ype of port. There are three
types of ports: Control, Read and Write.

STATE SAVE AREA (SSA): A block of data containing everything unique
about the process at the time it did a PROC and BLOCK.
Such things are: Characteristics, deliw~ter tables, edit
program and open count.

SYNCHRONOUS: An event that is syncopated with another event. In
the Data Canmunica tions world, this is a type of protocol
used to communicate. According to Webster: arran'gement of
contempor~neous events.

lISER: Any process but pid 1, rings 4 thru 7.

AOS/VS Internals Chapter 8 Page 8-3

Introducipg the PMGR

The PMGR supports all serial Asynchronous character I/O devices
(terminals, card readers, etc.), versus block I/O devices (disks
and tapes).

The PMGR on AOS/VS a seperate process (Pid 1) and is not part of
thekernal as is traditionally done. This has the advantage5 of
having a well defined interface, is more easily maintained since it
is not "mixed" in with ther kernal, the kernal is (much) smaller.
and it is easier to migrate the PMGR roto a separate proc€:ssor
(lOP/lAC). On the other hand, being seperate can cause confusion
due to rev locks and causes the PMGR to be slower since it behaves
the same as a user process.

The PMGR supports a wide variety of hardware. including:
Hosts:

MV/8000, MV/6000, MV/4000. HV/10000. MV/8000 II.

Peripheral devices:
lOP, lAC, ALMs, Plotters, Card readers, OPOON,
Terminal s and modems

The PMGR does NOT support:

Hosts: Any 16 bit Eclipse

Peripheral devices:
ALM tied to the. Host, UI.W ASLH, Line printers (LPA),
Plotter on lAC systems.

The System calls processed by PMGR include ?READ, ?WRITE. ?OPEN.
?CLOSE. ?STOM, '?GCHR. ?SCHR. ?ASSIGN,·. ?DEASSIGN and more •.
Indirectly. the PMGR also processes ?PROC, ?TERM, . ?REWRN, ?CHAIN
via Kernal calls to the PMGR. Also. there a few "special" system
calls used by the Agent/Local for shared memory management and
ini tialization.

2
I-
CI:

~

AOS/VS Internals Chapter 8 Page 8-4

Quick Overvl.ew of ?WRIT_E

...J

...J «
u
...J

N

The following is a brief descri~Jtion of a ?WRITE systfrr:
processed by the Agent and P~iGR. The numbers correspot:d
paragraphs below.

LOCAL

RING 0

RING

1 & 2

RING 3

liO nS.R
'"

t 10 I
I

9 ..
LOCAL

I RB I

2

+
I

I 4

3 ?SIGWT

-
?SIGNL

8

- -,

GLOBAL

RING 0

RING

1 & 2

RING 3

I RBI

/
I

call
to

SHARED
). AREA

I "TXT" I I "TXT" 1
I

~--------'r------~---~I

>1
'-r- ?WRITE ~

'cib
RING 4 - 7

as
the

lAC

("S "U:; I

AOS/VS Internals Chapter 8 Page 8-5

1) The user issues a ?WRITE systEm call, passing a ?WRITE
packet. This is transformed into an LCALL to the Agent by
URT.32.

2) The Agent dispatches the systEm call to the Agent I/O world
which translate the ?WRITE packet into a ?IS.R packet
suitable for the PMGR. The Agent then does a ?IS.R.

3) The ?IS. R systEm call processor detects that the IS. R is
destined for the PMGR and deflects the call to the local
PMGR (label PMqR.ISR).

4) The local PMGR: translates the IS. R packet into a RB,
allocates a buffer large enough to do the ?WRITE. copies
the user's buffer into the new alloca ted buffer (called a
tEmP buffer) via a WCMV instruction, enqueues the RB/buffer
onto the Global request queue, ?SIGNLs the global that it
has work to do, and waits to be signalled of the
completion.

5) The global PMGR: rEmoves the RB fran the request. queue,
finds the device that the ?WRITE is for, sets up the ?WRITE
to the lAC, and issues an NIOS I/O irJstruction to the. lAC.

6) The lAC reads a character at a tin~ fran the tEmP buffer
into the ring buffer. After the buffer has been completely
moved into the ring buffer, the lAC interrupts the HOST.

1) The interrupt world in the HOST detects which LAC/line
caused the interrupt and wakes up the global PMGR.

8) The global PMGR then ?SIGNLs the local PMGR that the ?WRITE
has completed, which wakes up. the local PMGR.

9) The local PMGR the translates the RB back into the ?IS. R
packet for the Agent anc~. takes the good return to the ?IS. R
code.

10) The ?IS.R takes the good return to the Agent I/O code.

11) The Agent I/O then translates the ?IS.R packet back into a
?WRITE packet and takes the good return fran the LCALL into
the user's ring.

And the ?WRITE is completed.

ACS/VS Internals Chapter 8 Page 8-6

Procfing the PMGR

Global PMGR Initialization

•

The first process to run on ADSiVS is called CLIBT. It is bound
into AOS/VS at systan generation time and contains a table genera­
ted by VSGEN called PERTB (Peripheral Table) •

After CLIBT has done an initial 'load, if necessary, it ?PROCs
either PMGR or IPMGR. This is unconditionally pid 1. The ,systan
detects that pid 1 is being ?PROCed at IGHOST time and instead of
loading the Agent into ring 3. loads either LPMGR or LIPMGR. This
means the PMGR (Global) does not have an Agent but rather masquera­
des as one.

As soon as the PMGR gets control, 'it immediately sets itself up to
do I/O instructions by turning LEF mode OFF and enabling I/O mode.
Next the PMGR makes itself resident and turns superuser ON. Next,
the PMGR ?WIREs from 0 up to INIT code. Next Page 0 is execute
protected and the shared file in :PER is created (@PMGR.SF). The
PMGR then allooates the first page of the Shared file.

AOS/VS Internals Chapter 8 Page 8-7

•

The PMGR then ?MEMls four pages of memory to recieve a copy of
PERTB fran CLIBT •. This has a problem - do you knQJ what it is?
The.PMGR then puts up an ?IREC to recieve its initial IPC.

The PMGR then scans PERTB once to detenmine how many devices have
been genned so that the size of the shadow port table (SPRTB) can
be detenmined. The SPRTB is then allocated fran shared memory.

A second pass of PERTB is then made, this time initializing all the
devices gen'd, ?DPMGR'ing (?IDEF) the devices and building all
databases needed. This includes one PIB per line, one CIS and Line
table per lAC. As each lAC is encountered is tested and then·
loaded with its resident code and databases. If this is an lOP
system. then the lOP is loaded.

The PMGR sends an IPC back to CLIBT so it may continue on.

Then the runtime memory rranager is initialized. Based on the
number of devices gen'd, the size of the shared area is allocated.
The shared area must be fixed in size since it is NOT possible to
dynamically grow the shared areas simulataneously between the
Global and all the locals. Why? Basically, the size of the shared
area is is computed as 3 <= 3*devices <= 100. The shared area
starts at page 400 (decirral). By limiting the shared area to less
than 112 •. pages, this keeps the PMGR and Agent to a single level
PTE. Double level PTEs are very undesireable since they r~uire an
additional page per process.

There are a variety of lnit failures possible; usually due to an
incorrectly gen'd system. If any of the system calls fail.
the PMGR will panic, passing the error code returned by the system
in AC1. It is possible that an lAC or lOP is bad, which can cause
the PKiR to panic. On lAC systems, if the PMGR can detect the lAC
failure soon enough (at test time), it will just report the failure
and skip that lAC. For lOP systems, the PMGR just panics (easy way
out). Another popular reason for failure is due to a rev lock
between the system. the Agent and the PMGR. This can cause a
variety of problems.

AO:)/VS Internals Chapter 8 Pase 8-8

LOi,al PMGR Ini tialization

When the Agent first gets control of a process' just starting up, a
routine is called in the local PMGR vlhich is responsibJe for local
ini tialization. Basically. all it does is fire off an IPC to the
global. The global then gives that local Read/Write access t.o the
shared file, allocates and deallocates 512 words of shared memory,
and then fires an IPC back telling:

1) the internal revision of the PMGR
2) where the shared area starts
3) how big the shared area is and
4) the 1D of the shared file.

Both messages must be IPCs, and must come froo, ring 3.

After the IPC is received, the local verifies that it is cornjJati ble
with the global by checking the revision number and the starting
address of the shared area. Next the local will establish (?SSHP)
the shared area to the size as passed in the IPC. Then the local

, wi1l open the shared file using the file ID passed to it, and
?SPAGE in the ent.ire file with one systan call. If any of these
steps fail. the Agent will TRAP.

AOS/VS Internals Chapter 8

Internal Mechanisms

Memory Manager

There are three types of memory managed by the PMGR:

* Unshared Wired,

* Unshared Unwired,

* Shared Wired.

Each type of memory is managed the same way using a very
buddy system (see Appendix A for a memo describing this).
the PMGR memory manager:

1) Does not recombine at RMEM (release) tine but
GMEM time IFF that is the only way to get memory
allocating more. .

Page 8-9

rodified
Briefly.

rather at
short of

2) Does not shrink the memory pool. This is to limit the
number of page faults. Once upon a tine, page faults were
on a per process basis, not a per task basis. It seems
quite reasonable that we should shrink.

3) Does not require locking since Atomic Queue instructions
are used to manage the buddy queues.

4) Is distributed between the global and ALL the local PMGRs.
This means that memory requests for the locals are not
single threaded thru the Global.

The PMGR's MM is a very important portion of the PMGR since every
I/O request requires two (2) memory requests. It is very important
that these requests be a quick as possible.

Each type of memory is used for different purposes:
o Unshared Wired is for stacks, SSA, Console Chains.
o Unshared Unwired is to spool ?SEND buffers, upto 2048

characters long. This allows users to send messages tq
consoles that have "S up without taking an error.

o Shared Wired is for ALL other databases.

There is one more memory manager used for the EDIT READ progransms,
called CHAINS. lbere is one chain per unique memory type (ie Edit
Prograns) which contains a queue header. maximum memory for this

ACS/VS Internals Chapter 8 Page 8-10

chain... As a request is made to allocate an EP, the manager first
checks to see if this EP is already on the EP chain. If it is then
the use count is bumped by one. Otherwise the size of the new EP
is added to the current amount for all EPs. ThEm the EP is added
to the EP chain and the use count set to one.

PID Table (PIOTB)

The prD table is used to translate pid nurnbers to owner's consoles.
It is statically allocatoo at MASM tine (unshared data). It is
used when a user ?PROCs, ?TERMs or ?CHAINs to find the devices
associated with that process. The pid table can be found in
PGLOBAL. SR.

Peripherial Information Block (PIB)

The PIB is a per device database that tells current device state.
The PIB is built at INIT time during the second pass of PERTB. The
PIB contains such things as:

o Status information (ie waiting on read)
o Blocked queue pointers
o Device specific drivers
o Ring buffer pointers
o Current and default characterisitics
o Delimiter tables, current cursor position and edit read

information
o Open counts, current owner. shared console chains, and

owner chains
o Anchor for Read/Write/Control chains

. 0 Physical addresses for IAC(IOP processors

The PIB is the most heavily used of all PMGR databases and is the
largest. It is defined in the parameter file PARP.SR. The PIB
contains all information regarding a specific device that must be
available between user requests. The PIB is also used to single
thread user requests, one at a time, to· the dev ice via RlW/C
chains. Only user requests at the head of the chain can be active.

Request Block (RB)

The request block (RB) is used to describe a user's request. There
is one RB per user request, created at request tin~. Request
blocks are defined in PARP.SR. A request block contains:

o IPC port info
o PID/UTID of requestor
o UTID of Global PMGR task
o Screen Edit/Edit Read information such as cursor position
o User's buffer information such as address and size
o Pointer to next request on chain
o Global PMGR stack informa Lion

AOS/VS Internals Chapter 8

A request block is usually created
tanporary buffer associated with it.
the global. who assigns a stack to
appropiate PIB.

51- adow Port Table (SPRTB)

Page 8-11

by the local pngr, wi th a
The RB is then passed onto

it and enqueues it to the

The Shadow Port Table (SPRTB) is used to translate IPC ~~rts
associated with a particular device to the corresponding PIE. The
SPRTB is allocated between pass 1 and pass 2 of INIT time and is
filled in during pass 2. Its definition can be found in PARP. SR.
Each entry in the shadow port table contair.s two i tans:

c Address of the PIB,
o Address of a routine to pass contr'ol to.

There are tilree entries per device: Read, ~rite. and Control. Some
devices, such as card readers, do not have a write entry since it
is a read only device. By looking at the local port in the IPC
information of the RB, the PMGR can easily loci<up the PIB and
quickly start the request.

Global - Local Queues

There are two queues maintained between the local and global PHGRs
called :

o Global Request queue (requests-to tile Global),
o Global Completion queue (requests completed by the global).

These queues are statically allocated at HASM time and created with
the shared file. Their definition can be found in PARP.SR.

The request queue is used by locals to enqueue work to the global
without using IPCs. The local enqueues a RB onto the request queue
using atomic queue instructions. If the HB just enqueued is the
first one. then the local will ?SIGWT the global. If the RB is not
the first one. then the local- will just do a ?WTSIG knGling full
well that the global will eventually see the RB just- enqueued.
This has the charact.eristic that as there is more work for the PMGR
to do, the more efficient it gets.

The completion queue works in a very similar manner. although it is
only used for unpended 1/0 requests. When the global has completed
a request for a local and it· was an unpended 1/0 request, the
global puts the RB an the completion queue and ?SIGNLs the
requestor. The requestor then searches the completion queue for a
RB of interest (must match by PID, Ring and Key) and atomically
dequeues it from the completion queue.

AOS/VS Internals Chapter 8 Page 8-12

Task Scheduling in the PMGR

The PMGR process runs with a pre<mptive scheduler and six tasks.
It has been found that this number of tasks can handle all of the
PMGR duties. Task rescheduling time and idle time are also at a
mininrum due to the small number of tasks. How does the PMGR get
everything done?

Only one of the six tasks is dedicated to any particular job. This
is the timertask, which has task ID of 1 and priority of o. The
timertask is responsible for timing out all reads and writes which
an: issued with timeouts enabled. Therefore, to allow time-outs to
work as accurately as possible, this task must be guaranteed to be
scheduled before any other task. This is accomplished by giving it
a higher priority than any of the other tasks.

The other tasks take turns running. They all have a priority of 1.
They are able to do any of the other jobs the PMGR has to do. The
PMGR does it's own task scheduling, since we are in essence our own
Agent. Therefore. we can very easily assign a priority to our
jobs, even though all the tasks run at the same priority. Job
priorities are determined by the order in which the PMGR assigns
jobs to tasks. The jobs the PMGR has to do and the priority they
are allocated in are:

o service the SUNBQ
o wait for an event
o wait for an IPC
o wait for a signal

Service the SUNBQ

The name SUNBQ stands for Start of UNBlocked Queue. This is a
queue of PIB's that are either blocked or done and waiting to be
restarted. A PIB gets placed on the SUNBQ if the request block
associated with it becomes blocked for same reason. The possible
blocked bits are:

o blocked on input of a terminator,
o blocked on number of bytes,
o blocked on output roam,
o blocked on connect,
o read blocked on memory, or
o write blocked on memory.

The blocked state is designated by which bit(s) are set in the
status words of the PIB. The status bits in the PIB only refer to
the head request on the read, write, and/or control queue.

AOS/VS Internals Chapter 8 Page 8-13

For easier control of the SUNB queue there are two counters asso­
ciated with it. These counters are NUNB and NEVEN and they reside
in' PKlR page O. They must be in page 0 so the drivers in the
systan can' access them. NEVEN is the mmber of r~uests that are
blocked waiting for an event. NUNB is the number of r~uests that
are unblocked and waiting to be restarted. The total of these two
counters should be equal to the number of blocked and done bits set
in all the PIB's on the entire queue. PIB's are allowed to have
more than one blocked or done bit set at the same time. So, the
total of these numbers does not necessarily have to be the m.rnber
of elements on the queue. [An example of a PIB having more than
one blocked or done bit set follows. Assume that a user's terminal
is at a CLI prompt. This means that there's a read up and it is
blocked on input of a terminator. The person sitting at this tube
decides to type a AS. Then someone decides to do a lot of ?SENDS
to this user. The ?SENDS all get turned into writes to the target
terminal. Since AS is up on the target terminal, none of the
writes will be able to write to the screen. As soon as the output
ring buffer fills up the write will block on output roan. Now
there are two blocked bits set in the one entry on the SUNBQ.]

Why use a queue?

The main reason a queue is used to pend a r~uest is to free up the
task which is processing the r~uest. If a queue was not used the
task itself would have to pend. This is not a desirable condition
since the request could be blocked indefinitely. Therefore. by
queuing up the request the task is free to work on some other
request. In this manner the PMGR can get by with only six tasks to
do everything, since no task is unnecessarily idle.

Servicing of the SUNBQ

The method of servicing the SUNBQ involves the use of the counter
NUNB. First, NUNS is checked to see if there are any r~uests on
the queue that need to be resumed. If NUNS is zero the SUNSQ needs
no service. If NUNB is non-zero the first PIB found on the queue
which has any unblocked (done) bits set is dequeued. Then, the
done bit which was found is zeroed. After which, the PIB is
dequeued from the SUNBQ. If any other blocked or done, bits are
set. the PIB is put back on the tail of the queue. NUNS is then
decranented to reflect the fact that there is one less request
waiting to resume. The head request of either the read, write. or
control queue, depending on which done bit was set, is started up.

Wait for an Event

To wait for an event means to wait for an interrupt to come in
through the Kernal. A task that is being rescheduled determines if
it should become the event waiter'by first looking at NEVEN. If
NEVEN is non-zero then a request is blocked waiting for sane event
to take place, such as a person'to type a terminating character on
their terminal. Before waiting for an event the task checks a word

AO;")/VS Internals Chapter 8 Page 8-14

in page 0 which has the address of the current task waiting on
events. If there is no task address in this word, kn~n as PBTCB. W
in the Kernal or BTCB in the PMGR, this task becomes the event
waiter by putting his/her address in this word to signify that
there is someone waiting on events. It then forces a reschedule of
the tasks so some other task can start running.

When an interrupt is received by the drivers in the Kernal, the
follCXtJing actions are performed. NEVEN is decremented to show. one
less event t.o wait for and NUNB is incremented to show that. the
request is ready to be unblocked. Then, the event waiter word is
checked. If there is a task waiting the pend bit is cleared and
word PBTCB. vJ is cleared so the PMGR will kncM that no tas\<: is
waiting on interrupts. If there is no task waiting on events the
Kernal does not clear any bits. This is no pr'oblem since NUN[:. has
been incremented and the request will be processed on the next task
reschedule of the PMGR. The reason for the event waiter task
rather than just let NUNB get incremented and found later, i::; for
speed in processing. If NEVENis non-zero there should definitely
be an event coming in soon. Therefore, if we knCXtJ an interrupt is
coming, we should wait for it and process it imnediately. rather
than wait for the next reschedule.

Wait for an IPC

The third job a task will try to do, when being scheduled, is wait
for IPC messages being sent to the PMGR. There is a flag word
which tells whether there is already a task doing this job. The
flag is bit 0 of word TWOIR (Task Waiting On IRec) in PMGR page O.
If this bit is set there is already a task wi th a global ?IREC up.
Otherwise, the task being rescheduled becomes what we call the IPC
listener task. When an IPC is rec~ived and validated this task
will process the new request. Bit 0 of TWOIR will be cleared and a
task reschedule will take place, possibly resulting in another task
becoming the IPC listener. If there is no IPC listener and an IPC
is sent to the PMGR, the system will simply put it in an IPC spool
file for the PMGR to receive later.

Wait for Signal

The final job a task will try to do is become the signal listener.
The Signal listener is responsible for any requests coming through
the local PMGR rather than through IPC's issued to the PMGR. There
is a flag word and bit used in the same manner as TWOIR is for the
IPC listener. The word which signifies whether there is a task
waiting on Signals is TWOSIG (Task Waiting On SIGnal). Once a task
becomes the signal waiter it checks the global request queue for
any requests. Requests are enqueued to this queue by the L(~al
PMGR and dequeued by the Global PMGR. If a request is found on the
queue a ?WTSIG is not necessary. The request is simply dequeued
and processed. If the global request queue is empty, a global
?WTSIG is issued. When the local gets the next request it will
enqueue it onto the global request queue and if the queue was prnpty
it will issue a ?TSIGNL to the global PMGR. The PMGR's ?WTSIC will

AOS/VS Internals Chapter 8 Page 8-15

receive the signal and the request just placed on the queue will be
processed. If there is no task waiting for signals when one comes
in the signal is dropped, but the request is still enqueued to the
global request queue. When a task finally is available for
Signals, it will see the requests on the request queue and begin
processing them.

Go To Sleep

If there are no jobs for this task to do, or if i tcan' t get memory
for either the request block or stack, it suspends itself. We call
this sleeping. In fact, the label of the PC placed in the Sl.mpen­
ded task's TCB is "SLEEPING".

AOS/VS Internals Chapter 8 Page 8-16

Locks Used by the PMGR

There are three different types of locks used by the PMGR. The
different locks detennine the level of locking.

INTDS/INTEN

The most powerful type of locking is IN1DS/lr\TEN. This lock .does
not allow any interrupts to be handled. This locking is act.ually
done by instructions to modify the interrupt flag in the hardware.

Task scheduling d~sabled/enabled

Task scheduling is controlled through the UST (User Status Table).
If bit ?BUPH is 0 task rescheduling is allowed. If the bit is 1 it
is not allowed. With this lock in effect no other task wi] 1 be
allowed to run until scheduling is re-enabled. This lock is used
when modifying queues, or status bits, etc. that other tasks could
also want to modify. This is used in conjunction with INIDS/INTEN
so that both interrupt world and PMGR' 5 base level will not toe able
to modify data in critical regions.

PM:.iR Lock Words

The mildest form of locking is the use of lock words. This type of
lock is used to prevent other devices from accessing key databases.
On AOS/VS the only device which uses two-key Jocking is the IOP.
This form of lock does not prevent the host or IOP from running
unless it is trying to access a particular set of databases. The
form of lock words the PMGR uses is knChln as a two-key lock. This
type of lock consists of two words, or two bits, which make up the
lock. These words are referred to ·as key s of the lock.

Locking on lOP Systems

When the Host is locking it checks to see if t.he lOP already has
the lock. If the lOP's 'key' is zero. the lOP does not have the
lock, so the host sets it's key to one. thereby obtaining the lock.
If the lOP's key is set. the host waits· for the lOP to unlock
before obtaining the lock. To insure that the lOP is functioning
properly. the host PMGR times how long it waits for the lock. If
the lOP has the lock longer than 1 second the PMGR panics, since
the lOP seems to have died.

AOS/VS Internals Chapter 8 Page 8-17

When the lOP tries to get the lock it first checks if the host's
key is set. If it isn't the lOP sets it's key. Then it has to
check that the host hasn't obtained the lock during the tin~ it
took to set it's key. If the host's key is still zero the lOP can
be confident that it has obtained the lock. On the other hand, if
the host's key is now set, the lOP was unsuccessful in getting the
lock and must wai t for the host to release the lock. The lOP
merely does a busy wait until the lock is available. This is
referred to as spinning on the lock. ,In this manner the host has
priority over the lOP. This type of lock, can be, used with any
device. In fact, the AOS/VS PMGR used to use it with lAC devices,
but no longer does.

LOCking on lAC systans

The lAC does not have to be explicitly locked out of databases that
exist in the host. This is due to a m.mber' of reasons. One is
that the lAC has it's own copies of key databases, such as the PIB
and request block, and updates them to and from the host at well
defined times. Another reason is that AOS/VS supports atanic
read-modifY-write instructions. This type of instruction means
that a location can be read, modified, and updated with the modi­
fied result and is guaranteed not to be interrupted betwe'en any of
these steps. For purposes of scheduling all words and bits' are
modified using these atomic instructions. The PMGR was not able to
get r~d of all the locks until revision 1.60. Before that revision
the PMGR did not use the atanic instructions to update the communi­
cation interface between the Host and the lAC, so a two-key lock
had to be used with this device, too.

A03/VS Internals Chapter 8 Page 8-18

Request Aborts

Now that we know how to schedule a request and insure the integrity
of data, it is important to know how to abort a request, shoula the
need arise. Request aborts have to be implemented when a request
is being termed, such as ACAA, or when an entire process is being
termed. The tricky thing about request aborts is that the task
which is processing the termina tion is not in control of. the
request which is being termed. Therefore. the task handling the
termination does not easily know what state the request(s) is in
that will need to be termed. It finds out what requests need to be
termed by looking at the PID (Process ID) of the process terming.
The PID is used as an index into the PIDTE. The PIDTB associates a
PID with the PIB it owns. All PIBs with the same owner are linked
together through the PIB itself. Once the head PIB is found, the
entire chain is checked for any request outstanding for the PID
terming. If only a request is' terming, rather than the er,tire
process, the PID is not used to determine which requests to abort.
Instead, the global port number is tested and all requests on the
PIB which have the same global port number are aborted. Also,
rather than go through the whole chain of PIBs, only the one which
issued the request termination is looked at.

Wh,Jt Does An Abort Do?

Once the task processing the termination request knows which PIB to
deal with. it determines what state the head read, write, or
con.trol request is in. This is done by lookir;g at the status bits
in the PIB. These bits refer only to the head request of any of
the queues, depending on which bits are set. since only the head
request can be active.

H~ does it work?

When doing a request abort the first thing that is done is the
abort bit is set in the request block at the head of the queue.
Then the state of the request is checked. If there are any blocked
or done bits set the request is assumed not active. The SUNBQ
counters are updated appropriately and the request is ranoved fran
the PIB queue. The PIB is then ranoved fran the SUNBQ if there are
no more blocked or done bits set. If the request is blocked and
was issued to an lAC device the lAC must also be notified of the
abort. This is done by either issuing a 'stop read' or 'stop
write' command to the lAC, depending on whether a read or write is
being aborted. Canmands issued to the lAC will be discussed in
further detail in the next section dealing with lAC's.

AOS/VS Internals Chapter 8 Page 8-19

If no blocked or done bits are set the request is assumed active.
In this case the request is left running until it finds the abort
bit set. When it finds the abort bit set it will term himlherself.
By letting the request term itself it is not necessary for the task
doing the abort to have to decide what state the other task i~ in
and clean up after it. Since the task being termed knows what
state he/she is in, it is quite simple for himlher to clear. up
before terming.

The abort bit is checked by every request in a few definite places.
There are exactly four places in processing that a request checks
to make sure it hasn't ,been aborted. One of these is every tin~ a
character is taken out of the input ring buffer (i.e. every time a
character is received from the terminal). The abort bit is al so
checked at the start of every write request. The third place the
bit is checked is before blocking a request block for any reason.
The fourth place a request checks whether it should term itself is
inmediately before resuming a process after unblocking. The check
is made here just in case an abort took place after the done bit
was cleared but before the request actually started processing.
When the request sees the abort bit it clears up all locks it might
have, frees up any memory it can, and then sends the task to find
something else to do.

Now we've covered how head requests are aborted, but what about
reques,ts that aren't at the head of a queue? All request blocks
that are outstanding for a PID that is terming, in the case of a
process termination, must also be torn down. Once the head request
is taken care of the rest are much easier. since they are not'
active. Any non-active requests are simply dequeued from the PIB
queue and any memory allocated to them is freed up.

AOS/VS Internals Chapter 8 Page 8-20

What is an lAC'?

According to the lAC Progranmer' 5 Reference Manual "an lAC
(ir.telligent asynchronous controller) is a single, 15-inch square
board that allows you to connect either 8 or 16 terminals and other
asychronous devices to your computer. The lAC contains a micropro­
grammed processor with local memory, a host interface, and a
communications interface." An lAC resembles an Eclipse in that, it
is bit sliced. It doesn't have a front console, but it does have
two LEDs. These LEDs are used by diagnostics to signify what ~tate
the lAC reached before failing. When the systan is not runnirlg the
LED on the left is in a steady on state. When running norm&lly.
the software causes the LEDs to blink in decreaSing numerical
succession (3->0). When the lAC panics t.he software lights both
LEDs and does a 'JMP .'. This instruction is necessary since the
lAC can not be halted. When the host wants to stop the lAC from
running it must issue an I/O reset to the device.

Ho\o/ The Pmgr Uses The lAC

The PMGR uses the lAC to do a lot of the manual work of read and
write requests so the host CPU is freed up to do other jobs. Most
of the code which processes reads and writes is loaded into the
lAC. Then, all the host has to do is set up the request, issue it
to the lAC, and wait for the lAC to signal that it has completed.
All of this will be covered in greater detail later.

Databases Used By The lAC

The lAC uses a number of databases~ some of which exist solely in
the lAC, some which exist solely in the Host, and others that exist
in both in slightly different forms.

Those databases which exist in both the lAC and the Host are:
o the PIB (Peripheral Information Block),
o the request block,
o line table', and
o stacks.

The PIB and Request Block in the lAC are used for the same type of
information as the databases which exist in the Host. The reason
the lAC has it's own set of these is so data chnnel activity will

AOS/VS Internals Chapter 8 Page 8-21

be at a minimum. With it's own PIB and Request Block the LAC can
do much of the read and write processing without needing the Host.
There are a few differences between the PIB and Request Block in
the. lAC and those in the Host. One is that the lAC's copy is much
smaller than the Host's. It contains a subset of the Host's wi th a
few added words that only the lAC needs to knew. Another dif­
ference is that the order of contents is different between the two.

All other databases exist in only one of the locations. Some
databases that are only in the Host are referenced by the lAC, but
the· Host never directly references any of the databases that exist
solely in the lAC. Those databases that are shared by the Host and
lAC, but which are located in the Host, are:

o the CIB,
o the temporary buffer.
o delimiter tables.

The lAC must be able to read and possibly write to these databases.
The Host also has a line table and stacks, but these are never
referenced by the lAC. Those databases that are in the IAC only
are:

o the line table,
o ring buffers, and
o stacks.

Internal Mapp~ng Unit (IMU)

One of the most important features of the lAC is how it moves data
back and forth between the host. To do this it uses a non-standard
map in conjunction with same unique instructions. The map consists
of what is called the internal mapping unit or IMU. This map uses
the data channel map slots to actually access the host. Before
referencing the data channel, however. other calculations are done.
The actual translation involves a number of steps. First, bits 1
through 5 of the logical address given in the instruction are used
to detennine which internal map slot to use. Each IAC has 32
internal map slots do with what.he/she wants. Bits 6 - 15 of the
logical address go unchanged to become the lower 10 bits of the
data channel address. In the meantirre, the upper 5 bits of the
logical address have been converted to the upper nine bits· of the
data channel address. These nine bits select the da.ta Channel nap
slot to us.e by the internal map slot. The data channel map tran­
slates the 9 bits into 14 bits which specify the uppper bits of the
host }ilysical address. The low order 10 bits of the data channel
address become the low order 10 bits of the physical page.
Finally, the data on the necessary page is accessible.
Of the 32 internal map slots available to the lAC, AOS/VS only uses
seven slots. This means that only seven Host data channel slots
are needed for each lAC in the system, which leaves same extra
slots available for other users to use. The lAC uses one of the
IMU slots for mapping PMGR page 0 and one for mapping the PMGR
database table page. The database table page is used when initial-

AOS/VS Internals Chapter 8 Page 8-22

izing the lAC so that it can load the data fran the Host. Three of
the slots are used for mapping all of the Host's PIBs associated
with the 8 or 16 lines for the given lAC. This infers that all
PIBs for each lAC are allocated contiguously in' Host memory. It
also assumes that the PIBs will not take more than 3 pages of
memory, which potentially could be a problem. Currently. ho~ever,
we can fit ten PIBs on a page and need only sixteen PIBs at most
for an lAC' so we're well below our limit. The other two slot.:, of
the IMU the lAC uses are dynamic slots. The lAC is able to diange
the page these slots map to using the HMSTA (host map !;;tore
accumulator) instruction. This instruction specifies the da ta to
be loaded into a given Host data channel map slot. In this way one
DCH slot can be used to map various pages. These two dynamic slots
are used to map all non-static databases. One slot is used to n~p
the request block, temporary buffer. or user's user al"ray as needed
by the request. The other slot is used to map the delimiter table,
insertion buffer. or edit table as needed.
The instructions which use the IMU are what are called the 'host
instructions' on the lAC. These include instructions such as HSTA
(host store accumulator), HLDB (host load byte), HINS (host incre­
ment and skip if zero), HLDA (host load accumulator), HSlBO (host
skip if zero bit and set to one), etc. All of these instructions
take the logical address given in the instruction and perform the
mapping translation on it. If the ~ogical address is bad, undeter­
mined results will occur.

lniting the lAC

The, lAC memory is statically allocated at initialization' time. The
Host moves all the necessary information to the lAC when it is
ini ting it. The first thing the Host does when it finds an lAC
device genned is check that the lAC device is alive and well. It
does this by issuing a "Get Info" request to the lAC and waiting
for it to respond. If the lAC does not respond within a certain
amount of time, it is pronounced dead. (This time varies fran one
CPU to another.) A message is sent to the operator's console
stating that the lAC with device code N does not respond and will
be bypassed. In this way bad lAC's will not prevent the systan
fran coming up. Once it has been determined that the IAC is in
good working order. the Host begins loading the lAC resident code
into the lAC. It does this by doing a read block of IACRS.PR and
writing the file to the lAC in 400 word blocks. Once all the code
is loaded, the Host begins writing out the databases. The order of
allocation in lAC memory of the databases is as follows:

- lAC PIB
- Input Ring Buffer
- Output Ring Buffer
- lAC Read Request Block
- lAC Write Request Block

This is repeated for every line on the lAC. When all the lines
have been initialized the Host writes out the lAC line table. This
table has been filled in as the Host set up the PIBs in both the

AOS/VS Internals Chapter 8 Page 8-23

lAC and Host memory. Then the Host starts the LAC running at
location 1. These steps are repeated for each lAC in the system.

Starting a Request

Now that the lAC is all set up and running it would be nice to let
it do some work. The interface between the Host and lAC is rr~inly
the CIB (Communication Interface Block). The definition of this
database can be found in PARP.SR. It basically loci{s like:

o Device code of lAC.

o Number of lines on this lAC.

o lAC panic register.

o Link to next CIB on chain.

o Host -> lAC command word. This word contains a command
number for those commands that should be done iouTlediately
by the lAC, even before other interrupts. It is used in
conjunction wi th the Pulse interrupt. The uses 'of this
word will be explained later.

o Completion Register (lAC -> Host). This register is used
, for completions due to asynchronous completions. Specifi­

cally these are ACAX sequences and modem disconnects.

o Completion Line II (lAC -> Host). This is the line number'
which issued the asychronous completion which is found in
the previous word.

Host Line Table Address.

II of Requests outstanding to lAC. This value is incremen­
ted by the Host every time it issues a request to the lAC.
It is decremented by the lAC when a request is processed.

II of Completions outstanding to Host. This value is used
exactly opposite of the previous word. The lAC i'ncrements
it every time a request is completed and the Host decrements
it every time it sees the completion from the lAC.

Request table - 2 words per line. The first word of the
entry for each line contains the request bits that corr'e5-
pond to the request count above. The total of all the bits
in the first word of all the entries should be equal to one
more than the number of requests outstanding, since the
count starts at -1. The second word for each entry con­
tains the bits that correspond to the completion count
above.

The Host uses interrupts to inform the lAC that there is a request
for it to process. When the Host finds something for the lAC to do
it sets the appropriate bit in the request table at the end of the

AOS/VS Internals Chapter 8 Page 8-24

CIB. Then, it increments the request count in the CIB. If the
count becomes zero the Host interrupts the lAC, since it is not
currently processing any requests from the table. If the count is
non-zero the lAC is already processing requests 'in the table and
will find the new request sooner or later. Because the count and
bit in the CIB are updated using atomic instructions, no locking
between the Host and lAC is necessary.

Processing by the lAC

Once the lAC receives an interrupt it reads the request count. . fran
the CIB to see how much has to be done and it looks at the r'c<;uest
table to determine what request to process. It will do all the
requests for one line, then move on to the next line, etc. until
the request count goes to -1. As each request is found the request
count is decremented and the bit in the request table i.s cleared.
The possible requests that can be issued tv the lAC and briefly
what function they perform are:

o Start input - initialize device for i~put. This trun0ates
the input buffer.

o Start output - initialize device for output
o Clear Wanbat device request - clears some of the status

bits in the lAC's PIB.
o Process a modem on request ~ this brings up the hardware

signals DTR and RTS so the modem can begin to communicate.
o Process modem off request ~ allows all present output to

complete, then shuts off the modem if the line is .on a
modem.

o Start Wombat read request - enqueue read request onto
eligible queue and set the ready to run bit so scheauler
will run it .

. 0 Stop Wombat read request - preempt the currently running
read, if there is one. Eise, just tell Host that the
control request is done.

o Start Wombat write request - enqueue write request onto
eligible queue and set the ready to run bit so scheduler
will run it.

o Stop Wombat write request - preempt the currently running
write. if there is one. Else., just tell Host that the
control request is done.

o Set Wombat characteristics - set the characteristic words
in the Wombat's PIB to the newest current characteristics.
This needs to be done every time the characteristics change
on the Host side.

o Set timeout constants - set the timeout constants ir: the
Wanbat PIB to be the newest timeout value set by the user.

If any bit is set in the request table that is undefined, the lAC
will panic. The order the requests appear above is also the order
of priority. The left most bit of the word has the highest
priority. decreasing as you move to the right. Also, the lines
themselves have a priority structure, namely fran the lowest r:umber
line on an lAC to the highest line. These priorities are assigned
by the software. due to the method used to find a request to
process.

AOS/VS Internals Chapter 8 Page 8-25

Currently. all of these requests are handled at interrupt l\jvel,
i.e. with interrupts off. In Revision 4 this will be changed so
that a base level task will look through the request table once the
initial interrupt from the Host has been received. This will cause
reads and writes to get processed more quickly, since less work
will be done at interrupt level.

When a read or write request actually ,starts processing in the lAC,
the first thing it does is set up the Wanbat's PIB and Request
Block· from the Host's. It does this using Host instructions, the
IMU, and the data channel. Once these two databases are set up
properly. the lAC only needs to access the Host when reading from
or writing to those databases that exist solely in the Host. These
are the temporary buffer. the delimiter tables, and the editread
databases. The lAC code contains all the necessary read and write
code, including screen edit and editread functionality.

Scheduling

The way the lAC schedules requests is in a round robin type
fashion. As reads and writes come into the lAC, they are ·enqueued
onto the eligible queue. When the scheduler is invoked, 'the queue
is searched from the request following the current request all' the
way through the queue. The queue is a circular queue so the search
will continue indefinitely until it finds a request with the
ready~to-run bit set. The first two tasks put on the queue are the
timer task and the checkslJll task. The checksllll task is a1 ways
ready to run, so the scheduler will never loop forever \Oli tbout '
finding something to run.
The lAC does not have any type of pre-emptive scheduler. A request
runs until it has to block waiting for an event. such as if there
are no more characters to read from the input ring buffer. Only
when the request blocks itself or when it completes is another
request allowed to run. This type of scheduler can cause problems.
If a request takes a lot of processing time and never has to block,
it will prevent other requests from running. There are also a
couple of advantages to this 'scheduler. One is that it is very
simple and straight forward to implement. Another. which is
related to this simplicity, is the fact that it takes 'very little
code space. This is especially important .,in the lAC, where memory
is scarce,

Request Completion

When a request completes the first thing the lAC does is update the
Host databases. Throughout the processing of the request most of
the data was only altered in the lAC's databases. Now, the Host's
databases must be updated so the user will receive the correct
information. All, the data is moved over across the data channel
map, just opposite of when the lAC started the request. Once the

AOS/VS Internals -Chapter 8 Page 8-26

data is moved, the lAC sets the completion bit in the CIB so the
Host knows what type of request was just completErl. The lAC then
incrEments the number of completions in the CIB. The number of
completions start at -1, just like the number of requests do. If
incrEmenting the number of completions causes it to become 0, the
lAC will issue an interrupt to the Host. Otherwise. the Host is
already handling completions from the lAC and will see the new bit
sooner or later.

On the Host side the driver in the Kernal will receive the
interrupt. The request table on the end of the CIB is checke-d to
determine what has completed. Processing then continues normally
with notification to the user of how his/her request turned out.
The possible completions the lAC can signify in the request table
are; read done. write done. read control done. and write control
done.

Modem Disconnects and ACAX Sequences

Panics

Let's suppose the request did not complete normally. Let's say the
user typed a ACAA in the middle of output to the screen. The LAC
wants the Host to know that this is not a normal completion. The
way it does this is through a word in the CIB called the completion
register. The lAC sets the appropriate bit, either that a control
sequence or a modem disconnect occurred, and then interrupts the
Host. The lAC driver in the systan looks at the completion regis­
ter and dispatches to the correct routine which will handle the
completion.

When the lAC's software finds an ipconsistency it can't deal with.
it will panic the systEm. To do this it puts the panic subcode
into the CIB and interrupts the Host. When an interrupt comes into
the lAC driver in the systEm, the first thing that is checked is
the panic word in the CIB. If it is non-zero, the Host assumes the
lAC has requested a systEm panic. If the panic word is zero, the
driver will then check the completion register and then the comple­
tion count. The panic value written, on the screen is a 17002. The
subcode is found in the first word output on the screen and is
usually greater than or equal to 2000 (there are still a couple of
panic subcodes that were inherited from the lOP that are less than
2000. but they are slowly disappearing). [As a side note. the lOP
also panics with a 17002, but none of it's subcodes are in the 2000
range.] The definition of the 17002 panic subcodes can be found in
the AOS/VS panics listing under 12300 panics.

Powerfail

The latest addition to the lAC repertoire of commands has been
powerfail support. The unique thing about a powerfail request is
that it is on a per lAC baSiS, rather than line by line. Before
this command all requests to the lAC were issued and deal t J,.,i th

AOS/VS Internals Chapter 8 Page 8-Zl

line by line. Also. a powerfail command needs to be h~ldled before
any other commands are processed, so nothing gets lost. To imple­
ment this new feature a new word called the command word, was added
to the CIB. lIpon notification that a powerfail is in progress, the
Host sets the command word in the CIB and interrupts the lAC. For
the lAC to realize that the interrupt is not the normal interrupt
that is used when processing requests, the Host uses the PULSE
interrupt. The lAC gives this interrupt priority so powerfail
requests wil~ be processed immediately.

When the lAC realizes that a powerfail has occurred it does very
li ttle processing. It simply clears the command word in the CIB,
clears the pulse interrupt and disables RTC (real time clock) and
busy interrupts so they will not interrupt the lAC. The lAC then
waits for another pulse interrupt frcr.l the Host signi1ying a power
restart command. All other interrupts are' ignored, so no prr .. ces­
Sing in the lAC is lost. When the power I'est-art command is re­
ceived the first thing the lAC does is simulate a modem disconnect
on all modem controlled lines. Then, all receivers and transmit­
ters are turned on, and business continues as though nothing
happened.

MCP1 (COMBAT BOARD or ALPHA)

The MCP1 is a board that has eight asyncronous lines (similar to the
lAC), two synchronous lines, and a data channel line printer on it
(thus combat). At init time the pmgr sizes the board to see whether
it is an iac or an MCP1. If the board is an MCP1 then the ~jgr loads
ALPHARS down into the board.

In general, the modules that were changed for the ALPHA have an
alpha extension to the module name.

WINTS/WPRDR

WPRDR.ALPHA is a general module that handles output service,
interrupt level output, disconnects, and modem service from the
host. WINTS.ALPHA is harware specific code for dealing with
alpha interrupts.

SETCHAR

This routine sets up the uart to reflect the user-specified
characteristics (baud rate. etc).

MAPIT

This routine maps a host physical page to an alpha logical
page.

HINTIT/PCI

WINIT is a routine that sizes the alpha and initializes it.
PCI deals with modems by turning transmit on or off and turn~r;g
thl" mnr1l"m nn nr nf f _

AO~/VS Internals Chapter 8 Page 8-28

IOP Hardware

The lOP is a slightly modified S-130 ECLIPSE CPU that plugs into
the MV/BoOO chassis. It has an I/O only chassis into which Asynch­
ronous Modem Interfaces (AMI/8) or Asynchronous Terminal Interfaces
(ATI/16)'s, Card Readers (CRA's), Plotters (PLAls) can be plugged
in. The lOP has a fixed 64KB address space in local semiconductor
memory of which any logical page can be mapped to HOST memory using
the data channel. The lOP device code is fixed at 65. The HOST
appears to the lOP as device code 4. Communication between the lOP
and the HOST CPU is accomplished by rr~nipulcting DONE and BUSY
flags that can be seen by the other CPU. The lOP's BUSY flag i~~ set
whenever the IOP is running and cleared when the IOP halts. The
IOP's DONE flag (as seen from the HOST) is set/cleared in the IOP
by issuing NIOS/NIOC to device code 4.

Frcnt Panel Console

Instead of an S-130 CPU with all the gaudy lights and switches, the
lOP has a programmed I/O interface that allows the software to
control the lOP like a computer operator controls the front console
of a standard ECLIPSE processor. The interface consists of:

* Console Switch Register - replaces data switches on stan­
da rd console.

* Console Function Register - replaces function switches.

* Console Address Register - last address referenced by lOP.

* PC Save Register - holds the PC when the lOP halts.

* Console Register - replaces the data lights on standard
console.

Modified ECLIPSE MAP

The ECLIPSE MAP is defined by a set of status and control words and
a 32 word block of data describing each of 32 pages in the ECLIPSE
logical address space. The lOP map is very similar to the standard
ECLIPSE MAP. The main difference is that The lOP can select any or
all of its 32 logical pages to be either LOCAL (using lOP local

AOS/VS Internals Chapter 8 Page 8-29

memory) or HOST (mapped through the HOST DATA CHANNEL A,B,C,D). In
addition, the lOP can inviSibly load a HOST DATA CHANNEL slot
without HOST intervention. It does this by issuing an I/O instruc­
tion to the lOP map with a special bit (DML) to allow DATA CHANNEL
MAP loading. This means that the MV HOST CPU need not be inter­
rupted while a DATA CHANNEL slot is being modified. The first 28
pages are always mapped to local lOP memory. The ranaining 4 pages
are used to access PMGR PAGE ZERO <including the HOST-to-IOP
REQUEST TABLE), PIB and Ring buffers. ,The latter two pages are
mapped dynamically to Physical pages in HOST GLOBAL PM:lR memory of
th_e -current device being acted upon.

Real Time Clock

The rop has a Real Time Clock that runs at 60 Hertz. This means it
generates an interrupt 60 times per second. This clock is used to
time modem operations. Every 30 seconds, the RTC interrupt service
routine scans the lOP line table to timeout modem events. One
function of the RTC is to time out the loss of carrier detect (CD).
If CD has been down for more than 5 seconds, on an active modem
line. then the modem is disconnected. Another function of the RTC
is to insure that a modem connection is successfully established by
waiting an initial period of 40 seconds for CD to be raised by the
modem.

Data Bases In, the lOP

There are a number of rOP-only data bases that are used to process
PMGR I/O. These are the DEVICE TABLE, COMPLETION TABLE, INTERRUPT­
VECTOR TABLE, the LINE TABLE and the lOP STACK. The following
describes these in greater detail.

Dev ice table

The lOP Device table is a block of data containing the Physical
addresses of all the HOST PIBs that are of interest to the lOP. rt
does not contain CONO's PIB because CONO is handled entirely in the
HOST. The table has three sec tions; Card r eade rs, Plo t ters and ATI
lines. There is a maximum of two card readers and two plotters that
the lOP supports. There are up to 128 ATI lines supported in the
rOPe Since only one lOP is allowed on an MV/8000 system, the total
PMGR device count is 133. '

Completion Table

The Completion table is a structure to contain the interrupting
events (ACAX sequences and Modem Disconnects) that the HOST PMGR is
not explicitly waiting for. These events are handled in the AOS/VS
KERNAL module IOPDR.

This table is only used for ATI lines because there is no such
thing as a ACAA on a card reader or Plotter.

AOS/VS Internals Chapter 8 Page 8-30

Interrupt Vector Table

The Interrupt Vector Table is a table of Interrupt Service Routine
addresses ordered by device code. This allows a hardware inter-rupt
to execute a unique set of instructions defined for each type of
device. The lOP instruction VCT is used for this purpose. This
instruction is identical to the standard ECLIPSE instruction. The
simplest form of the VCT instruction is used in the lOP to minimize
the time it takes each interrupt-level path to run to complEtion.
This is why mode A of the VCT instruction is used in the lOP. In
this mode, the VCT instruction determines the DEVICE CODE of the
device needing service and immediately dispatches through the table
to the corresponding device driver.

There are 5 different interrupt service routines in the IOP:
(numbers in parentheses are fixed device codes)

1) Dummy Powerfail routine (0)

2) HOST REQUEST and RTC (4)

3) Plotter output

4) Card Reader

5) ATI's and AMI's (34).

There is a dummy powerfail routine in the lOP because the powerfail
interrupt only occurs in the HOST. In case there is a problem in
the hardware when an INTA instruction is issued and no device
responds with its device code, what comes back is device code O.
This will cause a panic 17002 subcode 303.

All entries in the table that correspond to undefined dev ice codes
contain a pointer to a NOP interrupt service routine that counts
the number of undefined interrupts, clears the interrupt and
returns to base-level.

Lir.e Table

A stack

The lOP line table is a structure (two words per line) containing
modem status bits and a timer word for controlling modem lines. The
length of the Line Table is 256 words for a maximum of 128 console
lines. The Line Table is scanned by the RTC for non-zero ti.mer
words. If any are found, they are decranented. When any timer ",Iord
decranents to zero, then the modem on that particular line is
disconnected.

The lOP contains a single stack used both for Interrupt-level and
base-level processing. There are two base-level functions in the
IOP. The first function is to dequeue any completions stored in
the COMPLETION table and interrupt the HOST for each one. The

AOSiVS Internals Chapter 8 Page 8-31

second function is to insure that the static areas of lOP memory
(constants and code areas) do not get corrupted.

Data bases in the Host

The da ta bases in the HOST are used by the lOP, KERNAL and GLOBAL
PMGR. In ring 0 this includes the lOP DCT and HOST line table
accessed by IOPDR when lOP completions are processed. In rir.g 3
there is the REQUEST TABLE,PIB, Ring buffer, and various GLOBAL
PMGR PAGE ZERO variables.

Device Control Table and HOST DEVICE Table

The Device Control Table (OCT) is used by the KERNAL interrupt
service routine lOPOR to process interrupts from the lOP. This
ta~le contains the physical address of the HOST line table ir. PMGR
space. The lOP generates interrupts to th~ HOST when an asynchron­
ous completion is dequeued from the lOP completion table and sent
to the HOST. The DEVICE TABLE contains physical addresses of PIBs
that correspond to the entries in the lOP completion table. Physi­
cal addresses are needed because the LINE TABLE and PIB are not
part of the logical address space of the KERNAL. This allows the
lOP driver to find the PIB associated with a particular cOmpletion.

lOP Request Table

The lOP request table is the forerunner of the CIB for lAC's. It is
defined in PARIOP.SR and made up of double word entries each being
for a specific device the lOP supports. The first byte contains a
flag bit for each of the following:

1) Start device - do sanething to cause an interrupt on the
device

2) Clear device - undo it, this will also clear any other
specific request flag bits in this byte

3) Modem on - Raise the modem control signals Data Terminal
Ready (OTR) and Request To Send (RTS)

4) Modem off - Prepare to shutoff the IOOdem device (lower OTR
and RTS after output completes)

5) General request - flag to decide whether to enque this cell
into RTBLE. .

The second byte is used to store the control character following
the AC. The second word of each entry is used to link all the
request cells in the request table. RHEAD points to the first cell
and each link contains a cell number to the next cell. RTAIL
contains the cell number of the last cell enqueued. The last cell
always contains -1 in the link word. If RHEAD = -1 then there are
no requests outstanding to the lOP.

AOS/VS Internals Chapter 8 Page 8-32

Peripheral Information Block

The PIB, as was mentioned in previous sections, is a data base
consisting of all necessary information for a specific device. The
main itans in the PIB that are specific to lOP operation are:

Ring buffers

a) Device code and line number - to enque a request in the
HOST-to-lOP t'equest table (RTBLE) and to issue I/O jnstruc­
tions to the device.

b) PIB status - very briefly, there are 6 major states:

* INACTIVE (no read or write request in progress)

* INPUT BLOCKED (nothing in the input ring buffer)

* INPUT DONE (resuning a reaa request for input)

* OUTPUT BLOCKED (waiting for output rir:g buffer to
empty)

* OUTPUT DONE (resU'ning a write request for more
output)

* RUNNING (processing the input and/or output request
at the head of either the READ or WRITE request
chain)

c) PIB characteristics - to define special situations, for
example:

* /PM to do output in page mode

* /EBO & /EB1 define how characters echo

* /ESC to cause ESC char to act like AC~A

* /MOD to do extra processing for modem devices

d) Ring buffer information - to allow passing data to/from
interrupt-level (this will be explained in nore detail
below)

e) Timer constant and counters - to allow read/write tin~outs

Ring buffers are holding places between interrupt-level and
base-level. A base-level task processing a write request will fill
an output ring buffer and block (waiting for buffer to anpty). An
output interrupt will trigger an interrupt service routine to take
a character out of the buffer and send it to the device with a DOA
(or DaB or DOC) I/O instruction. An input interrupt will cause an
interrupt-level routine to read the character and put it in the
input ring buffer. When the blocked base-level task i:-, r~

AOS/VS Internals Chapter 8 Page 8-33

activated to resume a read r81uest. it will take characters out. of
the input ring buffer and transfer them to a Text BUFfer (TBUF) for
later disposition by the LOCAL PMGR.

There are 8 words for each ring buffer. The first 2 is a double
word containing the byte pointer to the beginning. This is also
used to decide if the buffer has been allocated for this device.
For example, a PIB for a card reader does not have an output ring
buffer. so the byte pointer -is zero.' Or a device that is not
ena~led will not have a ring buffer allocated to it. The next
three words define the physical page and beginning and ending
offsets to the buffer., This is used by the lOP and KERNAL device
drivers to determine the location and extent of the buffer. The
sixth word is the Insert Byte Offset. This is used to point t.e, the
next location to store a character. The seven1n word is the Remove
Byte Offset used to point to the next byte' to remove from the ring
buffer. And lastly. the eight word defines the size of the buffer.
This is used at OPEN or ASSIGN time to decide how much memory to
allocate for the ring buffer.

Page Zero Variables

Among the various ZREL locations used by the GLOBAL PMGR" the
follCMing are especially important to gocxi communication between
the GLOBAL PMGR and the lOP:

• NUNB - Number of unblocked events waiting for a task to
resume processing

• NEVEN - Number of events waiting for external action
(keystroke to come in or output to go out)

• BTCB - Physical address of a blocked Interrupt-Event-Waiter
(lEW) TCB

• UBTCB - Physical address of lEW TCB currently being un-
blocked

• IOPKEY - lOP's key to the lOP <-> HOST lock
• HOSTKEY - HOST's key to same
• IOPCPL - Asynchronous completion word from lOP (ACAX or

modem disconnect)
• IOPLIN - Line number of the device for above
• IOPPAN - Non-zero when lOP wants to panic the syst-em
• RHEAD - Cell number of the first enqueued r81uest to the

lOP request table (RTBLE)
• RTAIL - Last request enqueued to lOP RTBLE
• R'IBLE - Address of HO_ST to lOP request table

ACS/VS Internals Chapter 8 Page 8-34

IOP initialization

When the GLOBAL PMGR initializes, part of its job is to load up the
IOP frOOl file ":lOPRS.PR". Before doing this, the PMGR will deter­
mine if the lOP is in good working order. First the PMGR stores
zero into each of the 32k words to initialize the lOP semiconductor
RAM. Then the lOP r'esident code is loaded by opening the file
containing the lOP-resident code and reading a block a t time in.to a
buffer. Then it loads each word through the IOP front console
interface. While each word is being loaded, the PMGR reads back the
contents of that location to insure the lOP RAM is functioning
properly. If an error is detected in this conversation wi til the
lOP, the PMGR will panic with various subcodes indicating what
operation failed.

When all the lOP is loaded, it is started at location 1. This
location contains "JMP @.START" and the lOP proceeds to do its own
ini tializati on:

1) Jump into the lOP debugger (if enabled)

2) Change location 1 to contain the interrupt service routine

3) issue lORST to initialize ail controllers attached to the
lOP and turn off interrupts

4) Load the lOP MAP that defines 28 pages of local memory and
4 dynamically mapped pages to the HOST

5) Load the MAP/MEK>RY control word to:

* Disable Address Save mode

* Enable parity checking

* Enable DATA CHANNEL mode and USER mode

* Use DATA CHANNEL MAP .D

6) Initialize interrupt vector table with plotter and card
reader interrupt service addresses. The HOST and ATl
addresses are assembled in because they have fixed device
codes.

7) Clear all ATl lines by explicitly turning off the three
sect.ions of each line: receiver. transmitter and modem

8) Initialize only the ATl lines that have been VSGEN' ed. This
is to turn on the receiver and specify LINE CHARACTEHlSTICS
word (character length. even/odd parity and baud rate).

9) Enable interrupts (INTFJJ)

AOS/VS Internals Chapter 8 Page 8-35

10) Calculate the checksun

11) Go to the IDLE loop

Once in the idle loop, the lOP waits for Interrupts fran the HOST,
RTC, and I/O devices.

Processing an I/O Request

Input

When the PMGR receives an I/O request for a device, it either puts
it at the end of the chain of requests (if there is already an
active request there) or initiates the request in one of two ways
depending on whether it is doing input or output. What follows are
two discussions. one for input and the other for output.

In the HOST

The user task points to a buffer to contain the input data and
issues a ?READ system call. The Agent determines that the call is
to a PMGR device and prepares an IPC block. The call is deflected
to the LOCAL PMJR who allocates a read request block and a TBUF in
the shared file PMGR.SF. Then the request is enqueued to the GLOBAL
request queue and the LOCAL tells the GLOBAL PMJR there is saneth­
ing to do (if necessary by ?SIGWf, else just ?WTSlG). Now the AGENT
is pended waiting for the input data to be delivered by the GLOBAL
PMJR.

The GLOBAL PMJR will na.l process the request enqueued by the LOCAL.
It does this with the TWOSIG task (Task Waiting On SIGnal) which
dequeues it from the GLOBAL request queue and enqueues it to the
intended PIB's read request chain at the end of any read requests
already issued to the same keyboard. When it becomes the head of
the chain (it could happen ilJlllediately), the GLOBAL Pt<.iR Th'OSIG
task will allocate a stack and start processing the read request.

Note: What has just occurred was a switch of the role of
the TWOSIG task into a processing task. The TWOSIG
created another task and appointed itself a proces­
sing task (POOF1).

The processing task will na.l attempt to get a character received
from the device. If it succeeds in removing a character from the
input ring buffer. it will continue to execute in what is called
the "main input loop". This loop is the main processing code that
takes a character from the input ring buffer. checks whether a
delimiter is typed, echoes the character. places it into TBUF, and
goes back to the top of the loop to get another character. The
current task will stay in this loop until all the characters have
been extracted from the input ring buffer and processed into TBUF.

AOS/VS Internals- Chapter 8 Page 8-36

If it requi r'es another cha'racter (the read request has not been
satisfied) and the input ring buffer is anpty, then the current
task will block the PIB for this request and go find something else
to do. '

In the lOP

Meanwhile, the lOP is busy fielding the interrupts from all the
active devices who require output data and are supplying input
data. The input request mentioned above will be blocked unt~l a
character is available for it. lhis character will be processed by
lOP interrupt-level in the following way:

1) An' input character (typed on a keyboard) causes an it: ter­
rupt in the ATl hardware.

2) The interrupt service routine for that device is ir1voked
which reads the character and places it into the input ring
buffer.

3) The PIB status is checked for the presence of a blocked
condition (waiting for input).

4) If the PIB is not blocked on input, the interrupt service
routine is completed and the interrupt is dismissed (Go to
IDLE loop). '

5) If the PIB is blocked on input, the lOP will unbloc~ the
PIB and wake up the blocked Interrupt-Event-Waiter (lEW)
task in the GLOBAL P~R (if necessary).

Back to the HOST

The GLOBAL P~R lEW task will scan the SUNBQ of blocked PIBS
looking for a PIB request to restart. When the scan is successful,
the follOWing -will occur in the HOST PMGR (GLOBAL and LOCAL):

1) The lEW task will cease to be.an IEW task and become a
processing task by resuming at the place where the previous
task had blocked on input. Now this task will resume the
input request by taking the input character from the ring
buffer and placing it in the TBUF (combining it with
previous characters if doing a multi-byte request).

2) If the request has not been satisfied, it will go get
another character from the ring buffer. If there are no
more characters in the input ring buffer. then it will
block this request again (waiting for input).

3) If the request has now been satisfied, the read is unpended
by dOing ?TSIGNL to the LOCAL P~GR task waiting for the
input data.

AOS/VS Internals Chapter 8 Page 8-31

Output

4) The LOCAL PKiR will then move· the data to the user and
return to the AGENT I/O code.

5) The AGENT will then return control to the user task that
made the ?READ system call.

In the HOST

The 'user's task makes a ?WRITE call which gets the AGENT to call
the LOCAL PKiR in ring. 3 of the user's process. This causes the
LOCAL PKiR to allocate a TBUF in the shared area and enqueue the
request to the GLOBAL PKiR' s GLOBAL REQUEST QUEUE. The GLOBAL PKiR
(using its TWOSIG) will enqueue the request to the proper PIE. If
there are no requests at the head of this chain, the TWOSIG will
transform i tsel f in to a proces sing task and pt'oceed wi th the wr i te
request at the "main output loop". Here. the task will take a
character from the TBUF and insert it into the output ring buffer.
This loop will continue until the output ring buffer fills. When
this happens, this request will block on output room and the
current task will go find something else to do. This request will
be blocked until the lOP removes all the characters from the output
ring buffer. When the lOP empties the output ring buffer. it will
unblock the PIB by setting the output-done flag and wake up the lEW
task i,n the GLOBAL PKiR. This process continues until the write
request is satisfied.

In the course of processing the first character, (the first charac- .
ter to enter the ring buffer) the GLOBAL PKiR will post an OUTPUT
START request to the lOP. This is accomplished by setting a bit in
the request table corresponding to the line of the request and
issuing an NIOS to the lOP to tell it that a new request has been
added.

In the lOP

When the lOP processes the HOST output start request, it will issue
an I/O instruction to start the device for output (turn on the
transmitter).

When the device is started, an interrupt will occUr immediately.
This will cause the interrupt service routine to take the charac­
ters out of the output buffer (one character per interrupt). When
the output ring buffer is emptied, the lOP will unblOCk the PIB and
start the process of unpending the GLOBAL PKiR's lEW (if
necessary). This is done by storing the physical address of the lEW
task into PUBTCB. rJ, clearing PBTCB. Wand doing "NIOS HOST".

AOS/VS lnternalsChapter 8 Page 8-38

Back to the HOST

The unblock of the interrupt event waiter is only started by the
lOP. The lOP has enough to do with all the I/O interrupts and
maintaining the NUNS and NEVEN counts to tell the GLOBAL PKlR task
scheduler what task to invoke.

The KERNAL driver (IOPDR), in response to the "NIOS HOST" frCla the
lOP (which causes an interrupt to the HOST), will then unpend .the
blocked lEW. To do this, IOPDR will check the contents of PUBrCB.W
in PMGR page zero. If it is non-zero, then it is the address of the
lEW task. The pended bit (?BTPN) in this TCB is cleara::i and KERNAL
loca tion PMGRWU is set to -1. This causes the next pass of the
AOS/VS scheduler to pass control to the PMGR lEW.

When things go wrong

Modem disconnects and ACAX sequences

Modem diconnects are handled by the PMGR because no one else wants
it. A modem disconnect is an unexpecta::i tennj na tion of the tele­
phone connection due to a variety of reasons:

1) The phone line has become noisy due to bad equipment or a
disturbance on the line.

2) A power failure at the remote site

3) The user hangs up the phone

4) The phone bill has not been. paid

When this occurs an interrupt is generata::i that invokes the modem
service routine to check the status of the modem. The lOP detects
that the modem has been disconnected by a change in the modem
status signal DSR. When this signal drops the following is done in
the lOP:

1) The transmitter is turned off

2) The modem signals DTR and RTS are lowered (modem is turned
off)

3) The data in the input and output ring buffers are invalida­
ted by setting the remove pointer equal to the insert
pointer in each buffer

4) An asynchronous event (ACAB for modem disconnect) is posted
in the completion table (CTBLE).

AOSIVS Internals Chapter 8 Page 8-39

. 5) Any blocked condition in the PIB is l.Ilblocked to allow
completion of the r8luest (withK>DEM DISCONNECT ERROR)

'the completion table is set up to allow any or all devices to have
a completion posted to the HOST. Only one completion is processed
a t one time because the lOP must set IOPCPL and IOPLIN in PKiR page
zero and do "NIOS HOST" for each completion.

lOP Panics (11002)

When the lOP decides to panic because of a condition it cannot
resolve, all it has to ·do is set IOPPAN to non-zero and interrupt
the HOST.

Powerfail

When a power failure is detected in the HOST, the lOP is not
notified. The HOST forces the lOP to halt and reads the lOP's PC
and ACO. After the HOST saves this information, the lOP is made to
start at a known location which contains an "EJMP PWRFL" in lOP
code space. This code saves the lOP state and halts.

When the power returns, the HOST will start the lOP at another
known location containing "EJMPPWRRSIJ which will:

1) Reload the lOP map

2) Restart the clock

3) Reset all ATI lines (turn off the receivers and
transmitters) .

4) Cause a modem disconnect on any modems that were active

5) Re-initialize all ATI lines (turn on the transmitter)

6) Restore previous lOP state that was saved and HALT

Meanwhile the HOST was waiting for the lOP to HALT (lOP busy
flag=O). When the HOST detects that the lOP has halted,' it res­
tores lOP ACO and starts it up at the PC that was ~ved ·previously.

AOS/VS Internals Chapter 8 Page 8-40

Kerna] - PMGR Interf~

Several hooks have been put into the system to support. the PMGR and
PMGR like processes (SVTA), They are:

1) ?PROCI?TERM/?CHAIN system call processing,
2) Crude connection management.
3) ?SGNL system call,
4) ?DP~~R system call,
5) PMGR panic gate.
6) Scheduler considerations, and
7) PMGR interrupt drivers.

?PhOCI?TERM/?CHAIN' System Call Processing

The kernal sends the PMGR an IPC message for every ?PROC, ?TERMand
?CHAIN system call.

Currently. only three messages from the system are acceptable:

1) ASCON - handle a ?PROC (assign a console to a process).

2) CHAIN - handle a ?CHAIN, and

3) PTERM - handle a process ?TERM.

The kernal passes these messages while running on a deanon (control
block), While the PMGR is processing these requests for the
kernal. the deanon is pended, waiting for the PMGR. Deamons are a
rather rare item so it is important that the PMGR process these
requests AQAP.

The kernal uses a special IPC 'port into the PMGR: port O.
Normally, port zero is not a valid port number but since the kernal
enforces these rules, it can also break them. If the PMGR recieves
an IPC on port 0 and from Pid 0, then it knows the message was from
the system. Internally the PMGR uses a special PIB, called the
dummy pib, to single thread all kernal requests. By single
threading, potiential race conditions,between the kernal - PMGR and
internally to the PMGR are avoided. Further, performance is NOT
lost since there is only one CPU and nothing can be gained by
parallelism.

When the PMGR has completed the kernal's request, it will un pend
the deanon by issueing a ?SGNL system call [see below],

AOS/VS Internals Chapter 8 Page 8-J.j 1

Crude Connection Management

The very fact that the - PMGR is told about ?PROCs, ?TE1t1s and
?CHAINs is roughly equivalent to connection management pri~tives.
Further, the kemal gives the PMGR a chance to cleanup (by pending)
before allowing any more processing on behalf of that process.

?SGNL System Call

?SGNL is used to reply to the kernal that its PMGR request has
completed. The system call has two arguments: Error code and PID
of process on behalf the request was made.

Any ring of any process that has PMGR privilege can issue a ?SGNL
system call (basically. anyone who is a direct son of prD 2). The
kernal will validate that the target process is pended on a PMGR
function. If it is, it will be unpended. Basically. very little
validation is performed.

If the kemal returns any error on ?SGNL to the PMGR, the PMGR will
panic with a 12300 subcode 5.

?DPMGR System Call

The ?DPMGR system call is similar to the ?IDEF system call. It
defines a device as "belonging" to the PMGR. The device must
previously be gen'd as a PER device type and the DCT must be setup
accordingly. The first successful ?DPMGR establishes that process
as the "Master PMGR".

Not only does the ?DPMGRallow the PMGR to ?IDEF device but also
allocates and initializes DCH map slots a la ?STMAP. The PMGR
passes a table of logical addresses and ?DPMGR will load the DCH
slots with the corresponding physical page numbers, returning the
DCH slots used.

?DPMGR is baSically the PMGR's own system call to do any initial­
ization necessary to the kemal and is subject to change from rev
to rev.

The PMGR can force a system panic (12300) -by LCALLing into the PMGR
panic gate in ring O. '

The kernal will verifY that (1) the caller is from a system ring
and (2) the caller is the "master PMGR". A race condition exists.
If the PMGR wants to cause a panic before it has done the first
?DPMGR, the kemal will not knOll who is the master PMGR, and will
ignore the panic request resulting in a system hang.

The kernal also only allows the PMGR to pass only one AC to the
panic routine. Currently that ~C 'is used as the subcode. If would
be nice to be able to pass additional information (ie device codes)
to the panic routine.

AOS/VS Internals Chapter 8 Page 8-42

User Requests

A wide variety of user requests to the PMGR are available. Here we
will attempt to describe each of them. The requests· are seperate
into four categories:

1) Miscellaneous.
2) Con trol t and
3) I/O (Read/Write).

Miscellaneous User Requests

There are ·four user requests in this category:
1) Initialize local,
2) Get memory for local,
3) Get PMGR statistics, and
4) Reset PMGR statistics.

The first two requests have already been discussed in previous
chapters: initialization and memory management.

The GET Statistics request returns the follOWing information:
n Characters Read
n Characters Written
n Control and Miscellaneous Requests
II Systems Calls
n Devices Currently Assigned
n of Spins in LOCK
n of Calls to LOCK
n of Read Requests
II of vlri te Requests
n of Event Waiters Started

The RESET Statistics zeros out the above information except for the
n Devices Currently Assign word.

Cor.trol Requests

Control request consist of the following:'
1) ?Assign
2) Ascon
3) ?Open
4) ?Close
5) ?Deassign
6) Pterm
1) Chain
8) ?Rterm
9) Get/Set Characteristics

10) Get/Set Delimiter Table
11) Set Time out Constant
12) ?Send Message

AOS/VS Internals Chapter 8 Page 8-43

?ASSIGN

?ASSIGN allows an user to reserve a device for their exclusive use.
A device that is already assigned (either explicitly via a ?ASSIGN
or implicitly via ?OPEN or AScaN) cannot be ?ASSIGNed again. Tha t
is, you can not ?ASSIGN a console that is already owned. The only
way a device can be deassign is by issueing a ?OEASSIGN or by
process tennination. .

A process that has assigned a device is considered to be the owner
of the device but the device is NOT considered to be open or a
process console. The PMGR prepares the PIB for the new owner by

1) Resetting the delimiter tables to the default,

2) The edi t progran to the defaul t,

3) Time-out constants to default,

4) Setting the current characteristics to the default
characteristics,

5) Setting the device open count to zero,

6) Saving the pro number of the new owner. Finally.

7) The prB is linked onto the owner's chain via the pro table
(PIOTB) so it can easily be found at tennlchain time.

AOS/VS Internals Chapter 8 Page 8-44

AS CON

?OPEN

ASCON explicitly re-assigns a console to a process. There mayor
may not be a previous owner. The kernal passes' to the PMGR the
father (current owner) if there is one and the son (new ONner) of
the console.

If there wasn't a previous owner an explicit ?ASSIGN is performed
first.

If there was a previous owner, the PMGR then builds a State 'Save
Area (SSA) for the current owner and links it off the PIB of the,
console. ,The SSA contains the pid of the CMner. delimiter tables,
current edit program, current characteristics, time-out constant
and the local open count. Lastly. the PIB is removed from the
previous owner owner's chain.

ASCON then initializes the PIB for the new user by setting the
delimiter tables to the default, setting the edit program to the
default, and setting the process console bit. Lastly. the PIB is
linked onto the new owner owner's chain.

?OPEN initializes the device for 1/0. If th~ requestor is not the
current owner of the device, the open will fail with an error "Not
you device". Two open counters are'maintained by the PMGR: Local
open count or how many times the current owner has opened the
device and Global open or how many times ~he device has been
opened.

If the device is currently unONned then an implicit ?ASSIGN is
performed for the requestor. [On final process close the device
will be implicitly ?DEASSIGNed]. The device can already be owned
by a previous ?OPEN. by an explicit ?ASSIGN or by a ?PROC (ASCON).

OPEN first increments the local open count and the global open
count. If this is the first open on the device (global open count
goes from 0 -> 1) an initial device open is performed. This is:

1) Input ring buffer is flushed,

2) Any errors on the device are cleared,

3) If the device is modem controlled, AS is cleared,

4) Finally, the modem is "turned on".

If characteristic bit ?CFF is set, the PMGR will then output a form
feed to the device~

AOS/VS Internals Chapter 8 Page 8-45

?CLOSE

Close is the inverse of OPEN.

On final process close, that is when the local open count goes to
zero, if the device was implicitly assigned it is deassigned. If
the device was explicitly assigned (either by ?ASSIGN or (?PROC
(ASCON» the device is still owned by the requestor, it is just not
open for I/O. Any outstanding'I/O requests are aborted and an
error is returned to the requestor "I/O Termed by CLOSE".

On final device close (global open count goes to zero) the device
is prepared to be shutdown. Since there isn't any outstanding I/O
requests (a final device close implies a final process close) the
output ring buffer is checked to see if any output is left. If so
a bit is set saying to shutdown the device on output completing
[this is performed by the interrupt world so the request can
continue on]. If there isn't any output, the device is shutdown
inlTlediately, ie modem is turned off. A special kludge is put in
for PID 2. in that we will pend the request waiting for output to
complete since the PMGR is needed to finish the outputting of any
termination messages.

If the device is modem controlled, the lAC or lOP will then hold
the line closed for at least 15 seconds to give the hardware and
the Phone lines a chance to settle down.

?DEASSIGN (Release)

PTERM

Deassign is the inverse of ?ASSIGN. Deassign makes the device
available to the rest of the users in the system.

Deassign will not allow you to release the device if the local open
count is non zero or if the device is a process console. Deassign
removes the PIB from the owner's chain, releases any delimiter
tables and releases the edit program if any.

PTERM logically does the inverse of the ASCON, ?OPEN or· ?ASSIGN.
restoring the exact condition of the PIB (rom the information in
the SSA. The kernal passes to the PMGR the PlD of the process
terming and PlD of the new owner (father).
For each device on the owner's chain, all outstanding Control and
I/O requests are aborted, and· the local open count is passed to the
CLOSE routine forcing a final process close. See CLOSE for more
details. Since the PMGR maintains the owner's chain, the PMGR can
find all the devices owned by the process terming. If the device
was explicitly ?ASSIGNed then an explicit ?DEASSlGN is performed.
If the device was ?ASSIGN via an AScaN request and there is an SSA,
the SSA is restored for the father process. If the device was
implici tly ?ASSIGNed via ?OPEN then ·the final process close will
take of the ?DEASSlGN. See ?DEASSIGN.

AOS/VS Internals Chapter 8 Page 8-46

CHAIN

RTEHM

CHAIN is the same as PTERM, except that '?DEASSIGN is not called.

RTERM lets the requestor abort all requests currently in the PMGR
on their behalf. TWo arguments are supplied: (1) the control port
of the device and (2) the user's local port the request origin~ted
on.

RTEHM is used almost exclusively by the Agent to do Task Aborts in
response to C A sequences ('?lOGOTO).

Note that control requests are not aborted since they are consid­
ered by the PMGR as "unpending" and will complete irrmedia tel Y •

Get/Set Delimiter Table

Get/Set delimiter table is used to specify t.he delimiter table used
for data-sensitive Writes, Reads and Priority Reads. Further, the
caller may specify default delimiter tables by passing an address
of -1.

Using the default delimiter table saves 16. words of resident
memory.

Get/Set Characteristics
1

Get/Set characteristics is used 40 specify physical and logical
characteristics of the device. This includes such things as baud
rate. parity. CPL, LPP, etc. The PMGR maintains two sets of
characteristics: current and default.

The current characteristics are modified by the owner. The default
characteristics are the ones specified at gen time and are used
when characteristics are reset at initial device open time.

The PID 2 CLI can over ride the defa~lt characteristics by the
"CHAR/DEF/xxx @CONnnn" command. The use'r can see the default
characteristics by the command "CHAR/DEF". The user can reset the
current characteristics to the default by the command "CHAR/RESET"

SET Time Out Constant

The user may specify a time out constant for read or writes in the
range 2 < TO < 65536. On every key stroke the read time out
counter is reset the time out constant. Ditto for output.'

AOS/VS Internals Chapter 8 Page 8-47

'?SEND a message

A user may not ?WRITE to a device that is not its own. The PMGR
does provide a mechanism where one user may send a message to
another user's screen; this is called ?SEND. ?SEND may be used IFF
the device is a process console ('?PROC'ed) and the characteristic
NRM (No Receive Messages) is NOT set. PID 2 can over ride the NRM
restriction.

A maximum of 255. characters can be sent in one ?SEND request.
mesSage is always preceded by the string "<NL)Frexn Pid xx¥
where xxx is the pid of the requestor.

The
"

Certain control characters are filtered out of send messages in
order to prevent malicious users from annoying others. A bit map
in the PMGR is used to to specify which characters to fil ter out.

I/O Requests (Read/Write)

Read

There are two basic types of I/O requests: read and write. Both
types of requests provide a wide variety of options and types of
I/O.

Usually the current a.lner is the only process allowed to do I/O to
the device. There is one major exception: Father - Son I/O. This
where the son owns the device, but the father is allowed to do read
and writes also. The father is NOT allowed to do control r'equests
to the dev ice. .

There are several flavors or ?READ supported by the PMGR:
1) Data-sensitive reads
2) Dynamic reads,
3) Binary reads,
4) Priority reads,
5) Screen Edit reads.

Screen Edit is perhaps the most popular of all the types of reads.
Nearly every DG product uses screen edit reads.. Screen edit
originated in Line Edit, and became so popular that it was decided
to put it in the PMGR. That marked the beginning of the end for
the PMGR. In a later discussion we will talk about screen edit.

AOS/VS Internals Chapter 8 Page 8-48

Writes

The first three types of reads are used about evenly. In fact it
is even possible to combine binary reads with any other type of
read. That is you can have binary data-sensi'ti ve reads. When
doing a data-sensitive read, you specifiy the delimiter table to
terminate the read on using the control request talked about above.
For dynamic reads, a delimiter table is not used, but the read is
terminated when the number of bytes requested has been read.
Needless to say dynamic reads are more efficient that d~ta­
sensitive reads since the PMGR does not have to check each charac-
ter to see if it is a delimiter. .

There are a variety of options one can have on a read:
* Don't echo characters typed,
* Don't echo delimiters typed,
* Look for function keys,
* Drop type ahead,
* Position cursor before read,
* Return cursor position after read,
* Disable redisplay of user buffer before read,
* Priority read, and
* Posi tion cursor in user buf:...:".

The largest possible read the PMGR supports '1.s 511. characters.
This means to read the whole screen of most tubes, it will take
four reads.

There are only three types of Wri tes supported by the PMGR:
* Binary writes,
* Data-sensitive writes, and
* Dynamic writes.

Data-sensitive write. unlike reads, are very rarely used. Dynamic
writes are used almost exclusively. Occasionally, a use will be
found to do binary writes.

AOS/VS Internals Chapter 8 Page 8-49

?WRITE Action

Z ...J
I- ...J
a:: <t
~ ~
.... N

CSII332/

The following is a description of a ?WRITE systan call as processed
by the Agent and PMGR. The numbers corrf::spond to the itEfl'ls on the
next page below.

LOCAL

RING 0

RING
1 & 2

RING 3

I/O ?IS.R

t 10 I
1

9Jf

LOCAL

2

+

I
3

I
4

?SIGWT

?SIGNL
8

~--------------------~- --

I RB I

I "TXT" I
I

~------------~--------~ - - -.... 1

>1
- ?WRITE ~

~~
RING 4 - 7

..

GLOBAL
6

"DONE"
lAC

RING 0
• (INT)

Q;~
::l

RING w
~ 7 1f~ 1 & 2 <t
~~

RING 3

,I. <t)
"

0"
.. ~

(g

/ ~
~

/
I RB I

SHARED
~ AREA

I "TXT" I

AOS/VS Internals Chapter 8 Page 8-50

1) The user issues a ?WRITE system call, passing a ?WRITE
packet. This is transformed by URT32 into an LCALL to the
Agent.

2) The Agent dispatches the system call to the Agent I/O world
which translate the ?WRITE packet into a ?IS.R packet
suitable for the PMGR. The Agtnt then does a ?IS.R.

3) The ?IS.R system call processor detects that the IS.R is
destined for the PMGR and deflects the call to the lOcal
PMGR (label PMGR.ISR). This is done by doing a .GPORT and
seeing if the PID is 1. .GPORT is an Agent pr'imitive to do
?GPoRT code without incurring the system call overhead.

4) The local PMGR translates the IS.R packet into a RB,
allO<:!a tes a buffer large enough to do the ?WRITE. copies
the user's buffer via a WCMV into the new allocated buffer
(called a tenr buffer),. enqueues the RB/buffer onto the
Global request queue, ?SIGNLs the global that it has work
to do if this is the first HB on the blobal request queue,
and waits to be signalled of ,';'" completion.

5) The global PMGR removes the RB fram the request queue,
assigns a stack to the RB, finds the device that the ?WRITE
is for by using the local port # and indexing into the
shadow port table, sets up the ?WRITE to the lAC by setting
the appropiate request bit in the CIB, and issues an NIOS
I/O instruction to the lAC. The ''WRITE BLOCKed" bit is set
in the PIB, and the PIB is enqueued onto the SUNB queue
waiting for the write to complete (the RB has a stack
during this time).

6) The lAC copies over the portions of the PIB and RB that it
needs to do the ?WRITE and maps in the temp buffer. The
lAC reads a character at a time fram the temp buffer into
the ring buffer. After the buffer has been completely
moved into the ring buffer. the lAC sets the appropiate
completion bit in the CIB and interrupts the HOST.

7) The interrupt world in the HOST scans the CIB lod<ing for
bits set in the completion word. Finds the PIB by ir.dexing
into the line table for the that line, sets the ''WRITE
DONE" bit in the PIB and kicks NEVEN. The driver then
finds the PMGR's event waiter task, clears the pended bit
and then does an .IWKUP primitive on PID 1. The scheduler
eventually runs the PMGR' s event waiter task who searches
the SUNBQ looking for the PIB which has a done bit set.
Finds the PIB and resumes the code path.

8) The global PMGR then ?SIGNLs the local PMGR that the ?WRITE
has completed, which wakes up the local PMGR. De-assigns
the stack fran the RB (returns the memory to the free
memory pool) and the task returns to the scheduler.

AOS/VS Internals Chapter 8 Page 8-51

9) The local PMGR then transla tes the RB back in to the ?IS. R
packet for the Agent and takes the good return to the ?IS. R
code. In the case of a ?READ, the local would move via a
WCMV the temp buffer into the user's buffer.

10) The ?IS.R takes the good return to the Agent 1/0 code.

11) Agent 1/0 then translates the ?IS. R packet back into a
?WRITE packet and takes the good return fran the LCALL into
the user's ring.

And the ?WRITE is completErl.

AOS/VS Internals Chapter 8 Page 8-52

Screen Edit

The Peripheral Manager (PMGR) supports several types of ?READs for
asynchronous character devices. The scre~n edit type ?READ,
hereafter referred to as screenedit, allows users to specifY
initial cursor positioning and data display information, to use
screen control characters to edit data in the current input buffer.
and to receive information such as delimiter type and cursor
position upon ?READ termination. Several screenedit featuref': filay
also be selected on a ?WRITE. .

How to Issue a Scr~enedit 1/0 Request

Using ?READ/?WRITE System Calls

For purposes of clarity, only screenedit ?READ requests will be
addressed in the following section. The procedure to issue a
screenedit ?WRITE is th~ same, although only a subset of screenedit
options are applicable to ?WRITE requests.

In order to issue a screenedit ?READ, a thret-word screen manage­
ment packet must be supplied along with the n0~mal ?READ packet. A
32. word block must be. reserved directly after the ?READ packet in
your user program. The word address of the extended packet should
be stored in offset ?ETSP of the ?READ packet. In order to enable
extended packet processing, bit ?IPKL of word .?ISTI must be set in
the .?READ packet. On the first screenedi t ?READ issued,. bit' zero
of word ?ETSP must also be set. Setting this bit establishes the
screenedit extended packet supplied with this ?READ as the
'default' extended packet. This packet will be used on all subse­
quent screenedit ?READs and ?WRITEs'until a new packet is esta­
blished by providing the new packet address in ?ETSP and setting
bi t zero so that the packet will be read. The AGENT maintains a
copy of the default packet so that it is unnecessary to specifY a
new extended packet on the next 1/0 request if screenedit functions
which modify one or more of the extended packet locations (such as
return cursor position) are selected for t~he current 1/0 request.
The ?READI?WRITE and screenedit extended packet formats are presen­
ted in Figure 1. Screenedit options are discussed in section 3.

!AOS/VS Internals Chapter 8 Page 8-53

?ICH

?ISTO

1IBAD

1IRES

?IRLR

?IRNH .

?IFNP

?IDEL

1ETSP

?ESFC

?ESEP

?ESCR

o

Figure 1: SCREENEDIT DATABASES

?READ/7WRITE PACKET

15. 16. 31.
----------------------------~-~------------------channel number I ·file specifications

unused· unused

buffer byte pOinter
----------------------------------_._-------------

unused record length

II bytes transferred I reserved

unused
----------------------------------_._-------------

unused

unused
--- .

I flag I address of screen management packet

rest of 32. word block following ?READ packet I

SCREENEDIT EXTENDED IIO PACKET

o

I
I

\11

1IST

?IMR

?IBA

?IRC

?IRN

15.

? ? 1 1 1 I 1 1 1 I

I I

E E E E E I E E E I
I I

S S S S S I·S S S RESERVED I
I

S R N E C· I D I R N I
I I

E D R D P I D I P E 8. 15.1 I I

initial cursor position in buffer

. --~ initial colunn initial row

AOS/VS Internals Chapter 8 Page 8-54

SC1'eenedi t Data Base Pre-Processing

Before the PMGR can process a ?READ or
packet. and optionally. the screenedit
converted in to IPC forma t by the AGENT.
in Figure 2.

?WRITE 'request, the 1/0
extended packet. must be
This structure is outlined

?ISFL

?IUFL

?IDPH

?IDPL

?lOPN

?ILTH

?lPTR

?IPTL

Figure 2: CONVERTED IPe PACKET FOR PM:iR

o 15.

0

----------------------... ~----.------.--- --- ----_._------ - .. ----
R R I R R R R R I

I I

W W :' W W W W W I 1
I I

I E I D R B T P 1 MAXIMUM II BYTES TO TRANSFER: I

0 R I R N T T R I I
I I I

G B I P E F Q F I 7. 15.: I I

DESTINATION PORT II (HIGH) FRCN ?GCPN OR ?ILKP

DESTINATION PORT # (LOW)

ORIGIN PORT NUMBER

o OR 3

I I
I I

1--- EXTENDED PACKET ADDRESS OR USER BUFFER ADDRESS ---I
I
I

?IUFL flags:

RWIOG

RWERB

RWDRP

RWRNE

RWB1F

input: unused
output: reserved
input: don't echo delimiters
output: error bit
input: drop typed-ahead characters
output: ?READ ended with a function key sequence
input: do not echo any characters entered
output: reserved
input: binary ?READ (specifying binary mode disables
screenedit control character intrepretation.
In addition, no characters will be echoed
even if RWRNE is not set).
output: reserved

AOS/VS Internals Chapter 8 Page 8-55

RWPRF

input:

output:
input:

output:

?REAO will not tenninate until the n\Jl1ber of
characters specified in word ?IRCL of the
?READ packet is entered (or an error is
encountered) • If RWTTQ is not set then the
?READ will tenninate when a delimiter is en­
tered. If the buffer is filled before a
delimiter is encountered then the ?READ will
tenninate with a line-tao-long error (EPLTI..).
reserved
this ?READ is a priority ?READ (a priority
?READ to a device will preempt an active
non-priority ?READ for the same device after
the current character has been processed).
reserved

On a ?WRITE request. bits 6. - 15. of ?IUFL contain the maximum
n\Jl1ber of characters to output. For a ?READ, bits 1. - 15. of
?IUFL contain the maxinun n\Jl1ber of characters to read.

SENR

SEIO
SEPC

SERC

Note:

CONVERTED SCREENEDIT PACKET FOR PKJR*

---_.------
ini tial colLlIln

I

initial row

I
I S

E
N
R

S
E
I
o

S
E
P
C

S
E
R
C

RESERVED
I
I
I
I

INITIAL EDIT POSITION 1

I
I

I

4. . 1. I 8.

. I/O BUFFER ADDRESS

I
15.1

- do not predisplay the user's buffer. If SENR is not set
then bits 8.- 15. of ,the extended packet contain the
posi tion wi thin the input buffer to leave the cursor
after the buffer contents are predisplayed.

- enable screenedit control characters
- position the cursor before the '?READ to the initial

. colLlIln and row stored in offset zero of' this packet
- return cursor position to user at request tennination

• The extended packet is supplied to the PMGR only
if one or more of the following screenedit options
is specified: initial cursor positioning, return
cursor position or enable screenedit control
characters. If the extended packet is supplied,
then IPC packet offset ?ILTH is three and offset
?IPTR contains the address of the converted screen­
edit extended packet. Otherwise. ?ILTH is zero and
buffer address is stored in ?IPTR.

AOS/VS Internals Chapter 8 Page 8-56

Screenedit Options

7ESSE
The following options are available on a screenedit ?READ.

The ?ESSE option enables screenedit control character processing
for the current ?READ request on non-hardcopy devices. Selecting
this screenedit option on a hardcopy device will result in a ?READ
error. The following characters have special significance if ?~SSE
is selected:

CNn.-A - move cursor to the end of the currE'.nt line and
'output a space if the current character position
does not contain a DEL (177) character.
Outputting a space allows users to distinguish
between the current screen display and data
displayed during previous I/O requests

CNTL-B - move cursor tel the end of the previous word, or
to the beginning of the line if the cursor is
currently positioned with;n the first word.
To find the end of the prev ... C'Js word, the cursor
is moved left to the first character which is not
a space or a tab

CNTL-E - enter/exit insert mode. While in insert mode the
current insert position is marked by a 'hole' on
the screen. This 'hole' is closed when another
CNTL-E is entered, which resets the current input
mode to overstrike mode, or when the ?READ
terminates

CNTL-F - move cursor to the first character of the next
word in the line. or to the end of the current
line if the cursor is currently positioned within
the last word. To find the beginning of the next
word the cursor is moved right to the first
character which is not a space or a tab. If the
cursor is moved to the end of the line. a space is
output if the current character position does not
contain a DEL (177) character .

AOS/VS Internals Chapter 8 Page 8-57

CNTI.-H - rr.ove cursor to the beginning of the line (striking
the 'home' key on D200-compa ti ble t ernlinal s pe rforl'i~
the same function)

CNTI.-I - insert a tab at the current cursor position. The
rest of the line is shifted right to the next
tab stop. Tab stops are located ir. columns 8, 16,
24, 32. 40. 48, 56, 64, and 72 of each physical
line on the screen. Striking the 'TAB' key on
D200-compa ti ble tenninals performs the same functicL

CNTI.-K - erase all characters displayed on the screeD frar:
the current cursor position to the end of the line

CNTI.-M - (carriage return) erase all characters displayed
on the screen from the current cursor posi tion to
the end of the line. then tel1Tiir,at.e the ?REhD

CNTI.-U - erase this line from the screer,

CNTI.-X - (for non-40lO1 devices)
rwve the cursor one character to tr.e right.
Striking the -> key on D200-compatible dev:ces
performs the same function. If the cursor moves
I=-ast the er.d of the current line a space will
be appended to the input buffer ar.d echoed on the
screen, unless the current character position
contains a DEL «177» character. In this case
no space will be echoed. Trying to enter CNTRL-X
~hen the current character is a DEL will cause
the ?READ request to auto-terminate.

CNTI.-Y - (for non-40101 dev,ices)
rrlove the cursor one character to the left. If the
cursor is positioned at the beginnir.g of the buffer
the bell is sounded. Striking the <- key on D200-
compati ble dey ices performs the same function.
(for 401CI devices)
functionally equivaient to CNTL-X

CNTL-Z - (4010: devices only)
functionally equivalent to CNTL-Y for non-40iOI
devices

If ?ESSE is not selected on a screenedi t ?READ, CHTL-I and CiiTL-U
characters function as outlined above. The o~er control charac­
ters are echoed according the current device characteristics. The
defaul t echo mode for control characters is ar: up-an-cw (...) fol­
lowed by the upper case character entered, AH for exarr.ple.

AOS/VS Internals Chapter 8 Pag,e 8-58

?ESRD

?ESNR

?ESm

Selecting screenedi t option ?ESRD causes the contents of the buffer
pointed to by offset ?IBAD of the ?READ packet to be displayed on
the screen before ?READ processing begins. Data is displayed LAp to
the first delimiter or DEL «177» character in the buffer. if one
is found, otherwise the entire buffer will be displayed. l~ote.
however. that this is an error condition and the ?READ will sr:crtly
terminate with a line-too-long error (ERLTL). After predisploying
the data. the cursor is positioned after character N on the screen,
where N is the initial offset in the buffer to leave the CurS(K. N
is supplied in word ?ESEP of the screenedit extended packet. If N
is zero then the cursor is positioned at the beginning of the line.
If N is greater that tbe number of characters predisplayed, then
the cursor is positioned after the last character displayed on the
screen. ?ESRD is ignored if ?ESSE is not set.

Option '?ESNR should be selected i r typed-ahead characters are to be
ignored on Ulis ?READ. If ?ESNR is ;:h. then the PMGR will flush
the input ring buffer during ?READ ini tial.i.~:ation. ?READ proces­
sing will begin with the first character enter2d after the ring
buffer is flushed.

If ?ESm is selected then delimiters and auto-terminators
(characters entered on top of a DEL « 177» character in the
buffer) are not echoed on the screen. Otherwise these characters
are echoed normally. 'Delimiters' in the screenedit ?READ context
include function key sequences 'if the ?CFKT characteristic
(function keys are input delimiters) is set. auto-terminators and
any character flagged in the input delimiter table with the follow­
ing exceptions:

- CNTL-D characters will terminate the ?READ with a end-of
file error if ?ESSE is not set. or if ?ESSE is set and
CNTL-D is not flagged in the input delimiter table

- carriage returns are always treated as delimiters, if
?ESSE is set

In the screenedit ?WRITE context, a 'delimiter'
flagged in the output delimiter table as being
delimiter. Note that ~'ESm does not apply to any
than those included in the above definitions for
and WRITE delimiters.

is any character
a da ta-sensi ti ve
characters otber
screenedit ?READ

AOS/VS Internals Chapter 8 Page 8-59

7ESCP

?ESDD

?ESRP

7ESNE

If option 7ESCP is selected then the cursor will be positioned
before 7READ processing begins. Word 7ESCR of the screcnedi t
extended packet contains the initial cursor column (left byte) and
row (right byte). If 7ESCP is not selected then the cursor is left
in the current position on the screen. Contrary to previous
documentation, 7ESCP is valid even if 7ESSE is not set.

7ESDD is actually a flag returned by the PMGR rather than a user­
selectable option. If device characteristic ?CFKT (treat function
keys as input delimiters) is set and a function key in entered,
then the screenedit ?READ terminates normally (provided there is
enough roam in the user buffer to store the function key header and
the second character in the function key sequence) and ?ESDD is set
in the screenedit extended packet.

Upon 7READ termination, if ?ESRP is selected, then the· current
cursor position is returned to the user in word 7ESCR of the
screenedit extended packet (left byte - current column, right byte
- current r·ow). If option 7ESCP is also selected, then the row
returned is the physical row on the screen (row numbering is
zero-relative) otherwise it is the row relative to the starting
row. This value is also zero-relative. The column position
returned is always relative to the current row.

If option 7ESNE is selected then characters entered during this
?READ are stored in the input buffer but are not echoed on the
screen.

AOS/VS Internals Chapter 8 Page 8-60

Record Formats and Screenedit I/O

•

Screenedit ?READs with the ?ESSE option set are inhereDtly datasen­
sitive and are treated as such by the PMGR, regardless of the
record format specified in word ?ISTI of the ?READ packet. The
only exception to this is binary rr~de, in which case the ?ESSE
option is ignored. If ?ESSE is set. a copy of the N crlaracter
buffer (where N equals the buffer length in ?IRCL) pointed tu. by
?READ packet offset ?IBAD is moved into the PMGR before request
processing begins. This buffer ml,;st contain either a delirdter
(one present in the input delimiter table) or one or more consecu­
tive DEL characters or the ?READ request will be rejected on a
line-too-Iong error. If ?ESRD is set. the substring beginning with
the first character in the buffer and continuing up to but not
including the first delimiter or DEL in the buffer will be dis­
played on the screen. Note that this substrir,g can be null. i. e.
the first character in the buffer is the delimiter or DEL. If
?ESRD is not set. the data will not be predisplayed, although
entering CNTL-A will have the same effect as setting ?ESRD.
Entering CNTL-X will 'uncover' the character in the buffer at the
current cursor position.

If ?ESSE is set. the screenedit ?READ must be terminated wi th a
delimiter (unless the buffer contains a DEL character. see Section
6 for more information). This means that the maximum record length
specified in ?IRCL should account for at least one delimiter •. two
if the 'function keys are input delimiters' characteristic is set
(?CFKT). If ?IRCL characters are entered before a delimiter is
encountered, the ?READ will terminate with a line-too-Iong error.
In this case,the last character entered is not (1) considered to
be a delimiter and is therefore echoed on the screen unless ?ESt-I'E
is set.

If ?ESSE is not set on a screenedit request.
variable-length record formats may be specified.
?IRCL is the absolute record length and the I/O
terminate after ?IRCL number of characters have been

fixed- or even
In this case
request will

transferred.

Figure 3 summarizes the screenedit options which may be selected by
I/O request type •

~SlVS Internals Chapter 8 Page 8-61

Figure 3: Valid Screenedit Options by I/O Request Type

?ESSE

BINARY
READ

BINARY DA TASENS DATASENS FIXED
WRITE READ WRITE READ

FIXED
WRITE

X X *

,
- I X

I see I
I note 4 I X

---_._----,------, -
-I

?ESRD X X
I see I
I note 3 I X

I see I
I note 4 I X

?ESNR

?ESED

?ESCP

?ESDD

--_ .. _-
* x * x * x

-----------------------_._----------------_ ... _-_._------
x x * x

I see I
I note 4 I x

--_._-

* * *

x x *

*

,x

I

I see I
I note 4 I

*

x " I ,
I

I see I see I
?ESRP I note 1 I note 1 I * * * * ---

I see I
?ESNE I note 2 I x * x * X

----------------------~------------------------------

* = valid option
X = option ignored

notes:
1) by definition. the PMGR does not maintain an updated

cursor position while processing characters during
binary I/O. Therefore the cursor position returned,
if ?ESRP is selected, will be the initial position
specified in the extended packet, if. ?ESCP is set.
or the PMGR default initial cursor position.

2) by definition, characters entered during a binary ?READ
are not echoed to the device, therefore setting?ESNE
on a binary ?READ is redundant.

3) ?ESRD is ignored unless ?ESSE is set

4) complex situation. Read this section.

AOS/VS Internals-Chapter 8 Page 8-62

Scr'eenedi tError Condi tions

Screenedit 1/0 requests tenninate normally when:'

1) a delimiter or auto-tenminator is entered for a
?READ with ?ESSE set

2) a delimiter is entered for a data-sensitive ?READ
or ?WRITE. regardless of ?ESSE setting

3) ?IRCL characters are entered on a fixed length or
bina~ ?READ or ?WRITE if ?ESSE is not set

The following is a summary of possible errors returned from a
screenedit 1/0 request:

ERROR OCTAL
MNEMONIC CODE ERROR CONDITION

ERRAD

ERFNO

ERFIL

ERLTI.

EREOF'

ERISO

(33) - trying to ?READ f:'am an output only dev ice

(2) - trying to ?READ from a device you do not own

(75) - trying to perform a screenedit ?READ with
screenedit control characters enabled (?ESSE)
on a hardcopy device

(67) - if screenedit control characters are enabled
(?ESSE), the initial buffer pointed to by
offset ?IBAD of the ?READ packet does not
contain a delimiter or a DEL character in
the first N positions, where N is the record
length from offset ?IRCL of the ?READ packet

- the record length was exceeded before a
delimiter was encountered, or before the
second character pf a two character function
key sequence was received on a ?READ, if
function keys are input delimiters.

(30) - end-of-file character (CNTI.-D) entered

(234)- invalid screenedit options specified

- the flag bit in word ?ETSP of the ?READ packet
is not set on the first screenedit request
issued

AOS/VS Internals Chapter 8 Page 8-63

Auto-Terminating Screenedit ?READS

Screen management primitives can also be used to enable auto­
termination of a ?READ. Auto-terminating ?READS do not require a
delimiter to be entered before the system call comple'tes and can
also be used to protect data displayed on the screen durirg a
previous ?READ/?WRITE. In order to perform an auto-terrriinating
?READ, you must set bit ?ESSE in word ?ESFC of the screen manage­
ment extension packet. The data buffer pointed to by offset ?IRCL
of the ?READ packet must contain two consecutive DEL characters
«171><111» at the end of the buffer. The number of character
positions in the buffer. before the first DEL character defines the
length of the auto-entry field. The ?READ will terminate normally
when either a full field of characters is entered, a delimiter is
typed, or if the cursor is positioned over the DEL character in the
buffer and a non-screenedit control character is entered. The only
situation in which entering a full field does not cause the ?READ
to terminate is if data is currently being entered in insert mode.
While in insert mode, if entering a character fills the field then
a bell will be echoed and insert ffiode will be turned off. The
?READ will continue in overstrike mode. If the user attempts to
enter insert mode when the field is full then a bell well be
echoed. The ?READ will continue in overstrike mode.
If you enter a delimiter to terminate the ?READ, the deliwiter is
stored in the data buffer after the last character in the buffer
which is visible on the screen. For example, if you specified the
predisplay option (bit ?ESRD) or positioned the cursor at the end
of the buffer by issuing a screen edit control command, the delimi­
ter will overwrite the first DEL character in the buffer. If a
function key delimiter is entered, both DEL characters are
overwritten. .
When the cursor is positioned over a DEL character at the end of
the buffer. the next character, or character sequence in the case
of a function key, entered is treated as an auto-terminator, if the
character is not a screen edit control command, or if the character
is one of the following screenedi t control characters: CNTL-I,
CNTL-X. Auto-terminators are handled like delimiters: they cause
the ?READ to terminate. they are returned to the user in the data
buffer and they are not echoed if bit ?ESED of word ?ESFC in the
extension packet is set.
Developers should note that issuing auto-termina~ng screenedit
?READs does not present an iron-clad guarantee that the user will
not be able to position the cursor beyond the current data field on
the screen since there can exist a one-to-many correspondence
between the character entered from the keyboard and the resulting
character sequence echoed to the device (for example, control
characters are usually echoed as an up-arrow ,., followed by the
printable rendition of the ASCII character). In order to provide
maximum protection for the screen display, any character which
could be echoed as a character sequence should be flagged as a
delimiter in the input delimiter table. Tabs should be delimiters
as well.

AOS/VS Internals Chapter 8 Page 8-64

Screenedit Support for Terminal Types

Most of the information contained in this section applies not only
to screenedit requests but to all modes of PMGR 1/0 (binary mode
excluded). Due to numerous inquiries we have received regarding
the issue of terminal support, and due to the fact that terminal
type and terminal device characteristic settings can affect screen­
edit functionality. it seems appropriate to include the following
two sections in this document.

Most screenedit control functions involve changing the rendition of
the current screen display, either by positioning the cursor
elsewhere in the buffer. inserting or deleting single characters,
or erasing a portion or the entire line from the screen. These
control functions are normally accomplished by outputting a se­
quence of control characters to the termillal which indicate the
function to be performed, and optionally. one or more parameters
which are needed to complete the control function. Since these
control function sequences are terminal-dependent. i. e. the charac­
ter sequence which tells terminal type A to delete a character may
be different from the sequence telling terminal type B to perform
the same function, a set of 'Terminal Dependent Function Tables'
(TOFT's) have been established. TOFT's allow the PMGR to determine
the appropriate control sequence to . output to a device when a
terminal dependent control function is to be performed. The
follOWing section briefly outlines the TOFT format and how TDFT's
are used by the PMGR.

The follOWing terminal dependent functions are currently supported
by thePMGR:

FUNCTION FUNCTION
NUMBER FUNCTION NUMBER FUNCTION

-------- -------- --------- --------
'lFO HOME TF10 DELETE CHARACTER
TF1 CURSOR LEFT TF11 FREEZE WINDOW
TF2 CURSOR RIGHT TF12 1HAW WINDOW
'lF3 ERASE Ea.. 'lF13 CLEAR ALTERNATE MARGINS
TF4 CURSOR UP TFl4 SET ALTERNATE MARGINS
TF5 CURSOR DOWN 'lF15 reserved
TF6 WRITE CURSOR ADDRESS 'lF16 MARGIN INSERT LINE
TF7 reserved 'lF17 MARGIN DELETE LINE
TFa INPUT FUNCTION

KEY HEADER

AOS/VS Internals Chapter 8 Page 8-65

The format of a Terminal Dependent Function Table is presented in
figure 4.

Figure 4: General TDIT Format

----------------------------------~--------MAXIKJM FUNCTION NUMBER SUPFO RTED

ADDRESS OF EXTENDER TABLE

ESC/CSI ·BYTE 1 ESC/CSI BYTE 2

ESC/CSI BYTE 3 ESC/CSI BYTE 4

ESC/CSI BYTE 5 I ESC/CSI, BYTE 6

FUNCTION CELL FOR FUNCTION NUMBER 0

I
I
I

FUNCTION CELL FOR FUNCTION NUMBER 1

FUNCTION CELL FOR FUNCTION NUMBER 2

• • •
FUNCTION CELL FOR FUNCTION NUMBER N-1 I

. I FUNCTION CELL FOR FUNCTION NUMBER N

ESC/CSI BYTES 1 - 6: these are escape or control sequence
introducer bytes which are output to
the terminal to indicate that an escape
or control sequence follows

FUNCTION CELL: a function cell contains all the information
necessary to initiate a specific control
function. If a Single cell cannot hold
enough information to complete the function
cells may be linked together via the use of
an extended function table. The address of
this table is stored in offset 1 of the
primary TDIT.

AOS/VS Internals Chapter 8 Page 8-66

EXAMPLE for type CRT7 tenminal:

DCRT7 :
000000 PD000003
000001 PD 00000000000
000003 PD 017000
000004 PO 000000
000005 PD 000000
000006 PD 000010
000007 PD b20031
000010 PD 020030
000011 PD 000013

'IF3
o ;ADDR OF EXTENDER TABLE IS ZERO
36*400+0 ;<CSI1: 036><CSI2 : 000>
0*400+0 ;<CSI3 : 000><CSI4 : 000>
0*400+0; <CSI5 : 000><CSI6 : 000>
CCBS ;TFO- HOME
1B(FCC1)+CCEM ;'IF1- CURSOR LEFT
1B(FCC1)+CCCAN ;TF2- CURSOR RIGHT
CCVT ;TF3- ERASE END OF LINE

For this tenminal the highest function number supported is 'IF3 as
indicated as the first word in the table. There is no extender
table so the 16. bit address is zero. The tenminal will require a
control sequence introducer 036 octal to be output as the introdu­
cer byte for a function so it is def ir.ed as the first CSI/ESC byte
in the next word. This is the only one requi red so the second byte
in the word is zero and the next two words are also zero. The next
word is the first supported function for the device and this
tenminal defines 10 octal as the home character, no introducers are
required so the left byte is zero. The next function supported is
the cursor left function and this function requires the control
sequence introducer to be output as part of the sequence· to perfonm
the function. This tenminal defines a left cursor as a two charac­
ter sequence of 036 followed by a 031 to perfonm the left cursor.
The cell defined for this function has the FCC1 bit set to indica te
that the 036 must be output before ·the 031.

IDFT's provide a flexible and efftcient mechanism for supporting
different tenninal types. In order to optimize performance,
screenedit tries to utilize tenminal dependent functior. sequences
while performing screenedit control functions. What happens if,
while processing a screenedit control function, a particular
tenminal dependent function is needed but not supported by the
device? In most cases, the PMGR will try to simulate the function
for the device. The follOWing section briefly discusses how the
PMGR uses TOFT's for each possible screenedit control function.

AOS/VS Internals Chapter 8 Page 8-67

CN'1l..-A: (CN'1l..-A is not currently supported by a IDIT function)
The line· is redisplayed from the current. cursor position
·up to the last visible character disployed on the screen
(or up to the first delirni ter in the buffer I if ?ESRD was
not set)

CN'1l..-B: (CN'1l..-B is not currently ·supported by a TOrr function)
~N'1l..-B functionality utilizes the 'Cursor Left' functiorl.

CN'1l..-E: CNTL-E is.supported by TFDT function TF9.
If TF9 is not supported by the terminal, a space is

output at the current cursor position and the cursor
is moved left. under the space to indicCite the currE:nt.
insert position (note - this uses the cursor right
function). The rest of the line is then rcdisplayed.
This is repeated each tifl~ a character is entered
while in insert mode.

CN'1l..-F: (CNTL-F is not currently supported by a TOFT function)
CN'1l..-F functionality utilizes t.he 'Cursor Right' functiorl.

CN'1l..-H: ('Home' in this cont.ext is not supported by a TOFT'
function). The cursor is positioned at the starting
row and coltrnn of the I/O request. See cursor positioning

for further details.

CNTL-I: (CNTL-I is not currently supported by a IDFT function) ,
If the simulate tabs characteristic (?CST) then a tab
character is output to the device. Otherwise spaces
are output until the cursor is positioned at a tab stop.
At this point the ranainder of the' line is redisplayed
on the screen.

CNTL-K: CNTL-K uses successi ve 'Erase End of Line' functions one
for each time the line has wrapped on the screen. See
CNTL-U for further details~

CNTL-U: CNTL-U is supported by TOFT function TF3 - 'Erase End of
Line'. If TF3 is not supported by the ·,terminal, . an att.anpt
is made to position the cursor at the starting column and

, row of the 1/0 request. If this fails, AU <NL> is output
to the device and the simulation is complete. Otherwise
the current line is 'erased' by overwriting the current
screen display with spaces.

AOS/VS Internals Chapter 8 Page 8-68

Cursor
Left: Cursor Left is supported by WFf function TF1. If TF1 is

not supported by the tenminal, this function is a no-oPe
Cursor
Right: Cursor Right is supported by WFf function TF2. However.

screenedit does not utilize TOFf support for this function.
To move the cursor right one character the character on thE'
screen directly to the right of the cursor is redisplayed.

Position
Cursor: Posi tion Cursor is f~upported by WFT function TF6. If 1F6

is not supported by the device, then an attempt is made to
perform a 'Hane' function (TFO - move cursor to upper left.
hand corner of the screen). Successive new line character"s
are output to position the cursor to the starting row
followed by ~uccessive 'Cursor Rights' to position cursor
in the starting column in this row.

Screenedit Support for Device Characteristics

As mentioned in the previous section, PMGR support for device
characteristics when a screenedit I/O request i~ issued does not
differ significantly from characteris'tic support for non-screenedit
I/O. Potential screenedit applicatibn developers and users ~hould,
however, be aware of the impact upon screenedit functionality. of
setting or not setting the device characteristics discussed in the
following section.

'?CSFF - SIMULATE FOIt1 FEEDS

The 'sirrrulate form feed' characteris'tic is currently restricted to
hardcopy devices only and, if speeif i,eo for CRT devices, may result
in an incorrect cursor position being returned to the user if a
form feed is encountered during the I/O request. This restriction
is necessary due to different methods of cursor position main­
tenance for hardcopy and CRT devices.

'?C8BT - 8-BIT ASCII CHARACTERS

Screenedit ?READ results may be unpredictable if the user buffer
contains characters with the high bit set when the '?C8BT character­
istic is not set and screenedit option ?ESSE is set. Briefly, when
a character is entered from the keyboard or echoed on the screen,
the PMGR strips the high bit if '?C8BT is not set. Screenedit,
however. assllTles that no characters in the input buffer have the
high bit set. if ?C8BT is not selected (remember that this 'buffer
has been copied from the user program and data within the buffer is
accesible during the current '?READ). This causes problems, for
example, if a CNTL-B or CNTL-F is entered and the initial buffer
contains <211>'s rather than TAB characters «11>'s). This issue
is currently under investigation by the PMGR section.

AOS/VS Internals Chapter 8 Page 8-69

?CEOL - TRUNCATE LONG LINES

The 'truncate long lines' characteristic suppresses character ~
output once a full line of characters has been output to the
device. A 'line' in this context is defined as N characters where
N is number of columns per line currently defined by device charac­
teristic CPL. Output resumes after a <CR>, <NL) or <FF> is
encountered, or upon receiving another I/O request. Users should
be aware that setting ?CEOL does not truncate the data in the input
buffer on a ?READ. All characters entered during the request are
returned in the buffer. even if they are not echoed on the screen.

?CULC - ACCEPT BOlli UPPER AND LOWER CASE INPUT

If ?CULC is not set then all lower case 'characters entered are
converted to upper case before being echoed. Both screenedit and
non-screenedit ?READs will convert lower case characters to upper
case before checking to see if the character is a delimiter if
?CULC is not set. Users should note that currently no conversion
is performed on the characters in the input buffer copied from the
user program if ?ESSE is set. Therefore it is possible for lower
case characters to be echoed to the device if the predisplay user
buffer option (?ESRD) 1s set. This issue is under investigation by
the PMGR section.

?CWRP - HARDWARE WRAP

All screenedit control functions support multiply-wrapped lines,
provided that the ?CWRP characteristic is set. If ?CWRP is not
set. the PMGR executes a' software wrap' by outputting a <NL> (or
<CR> <NL> sequence for non-ansi-standard devices) each time a full
line of characters is output. Software wrapping will only work
correctly if the number of columns per line (CPL) is accurately
specified for the device. Screenedit control functions will work
for multiply-wrapped lines on a device without the hardware wrap
characteristic provided that the device supports the 'cursor up'
function (TF4). If' cursor up' is not supported, the PMGR will
perform as much of the screenedit control function as possible,
then output a bell to indicate that hardware restrictions prevent
the function from completing normally.

AOS/VS Internals· Chapter 8 Page 8-70

Programming tips for the user

To maximize your 1/0 thruput in the ?MaR, you should try to do the
following things:

• Minimize the number of 1/0 requests, by
• using as large 1/0 buffers as possible,
• do dynamic 1/0 rather than data sensitive 1/0,
• if possible, use binary dynamic 1/0, since it is even

faster, and
• gen the appropiate size ring buffers for your lines.

AOS/VS Internals Chapter 8 Page 8-71

Miscellaneoys

Shared Consoles

mFT

Shared consoles is a mechanism where several consoles can own the
console at one time. Setting a characteristic bit enables the
sharing of a console. After that. each process that is ?PROCed
with the console will be considered an owner of the console, but
not the interruptable or master owner. Only the process that
origninally set the shared bit can clear the bit, since is consid­
ered the interruptable. owner. Further, when the user types a "C"x
sequence, that sequence is sent only to the interruptable. It is
the interruptable owner's responsibility to pass the sequence on to
whoever. A new system was coined, ?CISND, to allow the interrupta­
ble ~mer to do this.

The PMGR implements shared consoles by hanging a chain off of the
PIB called the shared console chain. Whenever a request comes in
for that PIB, and the requestor is not the interruptable owner, the
PMGR scans the chain to see if the request was fram one of the
shared owners. If it was then the request is honored. The shared
console chain is part of the SSA area so several sub-trees of
shared owners may exist.

TOFT is the Terminal Dependent Function Table. This table is
defines cursor control sequences for each unique tenninal in the
system. The table is used for ALL cursor control sequences such as
up, down, left, right,. delete. insert a character. delete a
character. clear screen, etc.

The user fills in the TOFT by patching the PMGR. There is one TOFT
area for each CRT type (1-16). CRT3, CRT4 and CRT6 are already
defined for 605x, 40101, and 6130 tenninals. All other areas are
undefined and available for the user.

Modem Control

Modem control involves the control of several signals. After the
Signal name is either modem or host; this tells which device that
controls the Signal.

AOS/VS Internals Chapter 8 Page 8-7

a) RI - Ring Indicator (modem). A signal that the phone is
ringing.

b) CD - Carrier Detect (modem). The two modems are "talking"
to each other.

c) DSR - Data Set Ready (modem). The modem is alive, ie
ready.

d) DTR - Data Terminal Ready (host). The PMGR is alive.

e) R1S - Request To Send (host). The PMGR has something to
send.

f) CTS - Clear To Send (modem). The modem is willing to
accept characters.

To start a modem connection, the line is first ?OPENed and a ?WRITE
is performed. The host then waits for same one to call up by
mani toring RI (ring indica tor) • wt ~n a ring is detected, the PMGR
asserts DTR (data tenninal ready) and RTS (request to send) meaning
that the host has data to send to the modem. Optionally. RI can be
ignored if the characteristic bit ?MRI is not set; in that case
DTR/RTS will be asserted when the initial device is open is
performed.

The modem will acknowledge seeing DTRlRTS going high by raising DSR
(data set ready). At this point, the two modems will try to
establish a carrier between them (this is that loud squeal you here
when" you first call up). Once the carrier has been established,
the modem will raise CD (carrier detect).

If during the conversion carrier should go away for more than five
seconds (ususally due to a noisy line), the PMGR will time-out and
force a disconnect.

If the modem ever lowers DSR (data set ready), the PMGR will force
a disconnect. "

If the device is closed for the last time (final device close), the
PMGR will force a disconnect.

A disconnect is forced by lowering DTR (data tenninal ready) and
RTS (request to send) and waiting for DSR and CD to go low (if they
haven't already). Once DSRlCD go low, the PMGR will not raise
DTR/RTS for at least fifteen seconds in order to give the'modem and
phone line a chance to "clean up". Note the PMGR will wait forever
on DSRlCD going low. If another user tries to ?OPEN the line
before DSRlCD goes low an error will be returned "Modem busy -
Can't open line".

AOS/VS Internals Chapter 8 Page 8-73

Overall Diagram of lAC interaction with PMGR.

HOST I lAC

I
R R WL TABLE

I
r- H I I f--I I

N N I
OCT H PIB

G G
DCH I

DEVICE ! 0 3 -..... I B

I OR
f-- STATUS

16
I .-

r- MISC I

I
STATE WPIB

I STATUS ~

I I
DEVICE

LTABLE CIB I

I
CHAR

~ ~
f-

SSA SSA I
I

IN BUFF
I f-+1 BU.FF I I

CNT I CNT

RBI

OUT BUFF

B I S I READ
R I E RB I f--

OR OR RB I
WRITE

16 16
I I I I IPC

HEADER I
R I W I C r TASK

USER I
ToslsCHED f--r-

INFO I
FLAGS

I I
.--- r-- I

I
SCREEN

I I I I
~ SUFFER

STACK I
~ SPRTB STACK

PlOTS
I

0 TEXT
I

, TASK

• DCH
I

TOS I SCHED ~ 1 r-
I FLAGS
I ~ RB I I
I

I
SCREEN

254 f-
DCH I

SUFFER
I

255 AS ~ STACK
I
I

AOS/VS Internals Chapter 9 Page 9-1

Chapter 9 - eLI

Introduction

The general topics discussed in this chapter will deal with
the eLI's structure and command processing. An example will be
used to explain same basics regarding the operation of CLI.

The Stryctyre

Oyerview

The structure of CLI' can be broken down into four
categories: its tasks, its size, stack and operatingenvirorrnent.

- There are three types of tasks - primary, ACAA interrupt and
utility. The primary task of CLI is responsible for issuing a read
fran @INPUT t transferring the input to stack and editing,
expanding any macros, validating switches and arguments with
command descriptors and executing the command. The ""CAA interrupt
task is responsible for taking care of interrupts from the primary·
(main) and utility tasks, resetting the stack, list flag, command
input pointer and output buffer pointer and issuing error
message. The utility ta~k coordinates the handling of I/O
buffering.

The Sizing of CLI is detennined by the number ZREL and NREL
locations used. ZREL locations will contain processing mode
flags, temporary values and pointers. NREL locations are divided
into shared and unshared code.' The unshared area contains the
buffers, packets, stacks and names. The shared code region
contains the reentrant programs.

The stack structure is set up to independently handle each
of the tasks of CLI. Additionally, stack space is allocated for
CLI initialization.

CLI's environment is made up' of databases containing
buffers, lists, filenames and flags controlling the various
processing modes. Level control through the use of the stack is
also part of CLI's environment. .

Tasks

Upon initial entry into. CLI,· initialization takes place.
The stack gets initialized. The @INPUT and 8)UTPUT }:Bckets get
opened for the' primary (main) task. Initialization packets are
inVOked for ""C AA and utility tasks followed by CLI's initial
message CLI then enters the primary task.

AOS/VS Internals Chapter 9 Page 9-2

Primary task

The following outline defines the basic steps in CLI's
primry task.

1. Type CLI header message
2. Set-up the input buffer
3. Close tenporary list file if open
4. Execute prompt commands if any
5. Read line from @INPUT (.ISTR)
6. Push contents of input buffer onto the stack
7. Initialize variables controlled by global switches
8. Check for more lines on input
9. Begin editing the input
10. C, !eck for angle brackets, < >

if' pr~3ent. expand the brackets and rebJrn to step 9, else
11. Checl. . arentheses, () if present, expand the parentheses

and retur. <,.j' ep q, else
12. Check for macro, i: <'sen t. expand the macro and rebJrn to

step 9. else
13. Look up the command (.LKUP) J...fI1mand is unknown add

macro brackets and rebJrn to step _. else if the abbreviation
is not unique, issue an error message, r .m) and rebJrn to
step 5 else

14. Build the switch and/or argument'descriptors
15. VerifY that argument existence is consistent with commands

description, if not. issue an error message (.EO) and rebJrp
to step 4, else

,16. Dis~tch to the command
17. Remove the command from the buffer and rebJrn to step 7

"c:' A Interrupt Task

The function of the "CAA interrupt task is to interrupt the
task controlling the console. In the area of CLI this may be
either the primry or utility task. For the primary task, a
?IDGOTO interrupt is issued by the "C"A. ?IDGOTO is disabled for
the utility task. In both cases, the stack is reset together with
the list flag, command input pointer and output buffer pointer.
An error message is then issued before CLI goes to get another
line fram @INPUT.

Utility Task

The primary function of the utility task is to handle
double buffering for loads and dumps. This is accomplished
through a JMP O. MESSAGE where MESSAGE contains the address for a
read or write of the other buffer.

AOS/VS Internals Chapter 9 Page 9-3

The following defines the size constraints on CLI. ZREL
locations - ?ZMAX=374; this area contains processing mode flags,
temporaries and indirect addresses. NREL locations - ?NMAX=1677;
the unshared code area (approximately 500 words to start with)
contains buffers, packets, stacks and names. The shared code area
occupies the area (34000-77271).

Stack Structure

Initialization - when CLI begins execution stack requirement
is 30.words in unshared NREL.

Primary - begins at ?NMAX; extended by ?MEMI calls when
stack fault occurs. If the ?MEMI fails, the stack is reset to
?NMAX, the stack fault is set to abort, and a ?CHAIN is made to
the same CLI.

ACAA - uses 20.words in unshared NREL.

Utility - uses 20.words in unshared NREL.

EnviroOOlent

This section is a detailed breakdown of AOS/VS's operating
environment. The environment consists of databases and levels.
The data base is made up of buffers and flags. The following
describes the buffers and their use in the database.

IBUF - the input buffer
size: 128 bytes (with screenedit off)
size: 76 bytes (with screenedit on)

BUF - the output buffer
size: 128 bytes

STRING - current buffer
size: 128 bytes

AOS/VS Internals Chapter 9 Page 9-4

Also, there are a series of flags used to control eLI I/O
and maintain CLI status. The most important ones are:

BCt·DDE

DINI
FRAME
GOCHNS
LINI
LSTIT

OCHNS
SCGBL
SCLCL

SCRMOD

SPPt-DD

SUPt-DD

EMODE
QMODE
WM)DE

-1 for batch on
o for console on
1 for son of exec

-1 for @DATA or byte pointer to data filename
frame pointer at start of command execution
'?GOPENED channel bitmap
-1 for @LIST or byte pointer to list file name
o for all or address of list output packet
non-zero if command changes directories
?OPENED channel bitmap
total number of system calls made
number of system calls since last performance
command
screenedit mode"

1: off
-1: on
superprocess mode

1: off
-1: on
superuser mode
1: off

-1: on
class 1 error n~de
squeeze mode
class 2 error mode

Levels in CLl's envirol'1llent are maintained and controlled by
copies of the prompt list, string, datafile name, listfile name,
search list, working directory, "home pointer previous top of stack
and "new top" of stack and a set of processing mode flags. The
buffers maintained for level control are:

DIP-BUF

PRt1LST

LNAM

DNAM

contains the working directory at start of previous
commands processing
size: 128 bytes

the prompt list buffer
size: 9 words

list file name
size: 128 bytes

da taf 11 e name
size: 128 bytes

The flags used for level control are:

BLV1 - level at last input
LEVEl. - envi rorment
TLVL - level last typed out

AOS/VS Internals Chapter 9 Page 9-5

Command Processing

Sequence Qf Operations

The CLI begins by reading a line from @INPUT and pushing it
onto the stack. Each character is examined for angle brackets, ,,<
>", parentheses, "()", square brackets, "[]It, and the null at
the end of the command.

The expansion of angle brackets will cause the previous
"word" to be repeated for each argument in the brackets while
parentheses expansion will cause the enti re command to be repeated
for each argument. The use of square brackets will cause the
macro to be expanded into the command space on the stack.

The command string is then edited. That is, the initial
spaces are removed and multiple spaces and/or tabs are compacted
into single commas. This puts the CLI command into a standard form
with fields delimited by commas.

The command is then isolated and lodced up in the command
table (CTBL). When abbreviations are used, the entire command·
table is searched to insure that there are no multiple matches.

Switches and arguments associated with the various commands
are validateQ with respect to the command descriptor. As in the
case of the commands, unique abbreviations for switches and
arguments are accepted. An error is returned when there is a
multiple switch.

The command is actually executed by being dispa tched through
a table via a JSR.

Commands remaining in the input buffer are shifted to the
beginning of the buffer and processing continues.

Macro Processing

The macro file is first opened and read. Each character is
then examined and pushed onto the stack. When a delimiter is
found in the command string namely a null, new line, formfeed,or
carriage return, the next character is checked for an ampersand
(&). Whenever an ampersand is found neither the ampersand nor the
delimiter will be pushed on the stack.

When a percent sign ($) is encountered the dummY argument is
teplaced with the calling argument. If the dunnf{ argument is " n
1 ••• all the switches on the argument in the call are searched
for every 1 on the argument in the dumnu.

When the dumnf{ argument is $/n\ ••• all the switches on the
argument in the dumnf{ are searched for every \ on the argument in
the call.

AOS/VS Internals Chapter 9 Page 9-6

Comrr~nd Data Bases

Comrr~nd Table Data

The following defines the Command Table entry format for
beth commands and pseudo macros.

entryC

er. try1
entry2

byte pointer to ASCII string for command or
pseudo macro
command entry point
o

This' table is found in module ZDISP

S~itch Descriptors

Comrr.ands wi th simple swi tches:
-2 : A-P switch bitmap (all 16 bits)
-r: Q-Z Sv-litch bit [nap (bits 0-9)

and arsument flags (bits 10-15)
G : command entry point

Camrrands with complex switches:
swi tch table en try ,
entry C byte pointer to ASCII string for swi tch
entry 1 address of routine fer switch wi thout a value: C

if the switch takes a value,
er.try Co 0 if the switch does not take a value; address

of routine for switch with a value
-2 address of switch table
-1 argument flags (bits 10 - 15)

St~ck Structure for Cqmrrand Calls

Coorr~r.ds with Simple Switches (single charac~

1. Comrrar.d line as input <null>
2. Comrr~nd <null>
3. SH1/SV:2 ••• /SWn<null>
4. Argument 1 <null>

5. Byte pOinter to ar~ment 1

6. Argument count
7. A-P switch bit rr.ap
8. C'J-Z swi tch bi t map

ADS/VS Internals Chapter 9

Commands wi th CanDle x Switches

Complex Switches (multi-character)

1 • Command line as input <null>
2. Command <null>
3. Switch 1 <null>
4. Argument 1 <null>

•

Argument n<null>

5. Address of swi tch 1 routine
6. Byte pointer to switch 1 value or 0)
7. Swi tch coun t
8. Byte pointer to argument 1
9. Argument count
10. 0
11. 0

Examples

The CLI PUSH Command

Module Name: ZCMD4
Entry Poin t : XPSH

Page 9-7

First, ACAA interrupts are ,disabled (.PIG). Seventeen (17)
words of stack are then allocated and then filled with a word
pOinter to each one of the environment parameters. The contents
of the parameters are then pushed on top of the pointers in the
follOWing order after which "CAA is enabled:

1. The squeeze mode status
2. The CLASS2 mistake reaction
3. The CLASS1 mistake section
4. The prompt list
5. The string variable
6. The data file, status and name
7. The list file status and name
8. Thesearchlist status and name
9. The working directory
10. The screenedit state
11. The superprocess state
12. The frame pointer
13. The superuser state
14. The beginning of the. pointer block
15. The next available address after the'parameters

AOS/VS Internals Chapter 9 Page 9-8

The CLI POP Csxnmand

Module Name: XCMD4
Entry Point: XPOP

The ACAA interrupts are disabled, the inverse of PUSH is
performed and ACAA enabled.

Template ExPansion

Module Name: ZTEX

Several commands, namely: DELETE. FILESTAWS. TI PE, WAD,
DUHP, and MOVE use the tanplate expander. The expander is a
collection of subroutines that breakdown the input into modes,
that is the pieces separated by colons and then search the
directories encountered for files that match the template.

CLI Module Names

CLI module names and a description of their contents.

Main modules

Z

ZAWE

ZDISP

ZCMDO

ZCMD1

ZCHD2

ZCMD3

ZCMD4

Contents

contains the primary task, ACAA task and utility
task

processes: warning and error messages

contains the command dispatch table

bridges:

processes:

bridges:

BREAKFILE, BYE, CPUID, FILESTAWS.
HELP, PRG1PT, MESSAGE, PERFOlf1ANCE,
DATE. SYSID, SYSINFO, SYSLOG, TIME
COMMENT, WRI TE

BLOCK, 'HOST, PRIORITI, PRTIPE, RUNTIME,
SCREENEDIT, SQUEEZE, SUPERPROCESS,
SUPERUSER, TERMINATE. TREE, UNBLOCK

processes: CHAIN, CHECKTERMS, DEBUG, EXECUTE,
PROCESS. XEQ

bridges: DA T AFILE, LIS TFILE, STRING
processes: CHARACTERISTICS

bridges: CLASS1, CLASS2. LOG FILE , PREVIOUS.
TRACE

processes: CURRENT, LEVEL, POP, PUSH

AOS/VS Internals Chapter 9 Page 9-9

zoo

ZFMCO

ZFMC1

ZFMC2

ZFTA

ZIO

ZLOCK

ZMAC

ZMA1H

ZMOLD

zap

ZOPER

ZOVO

ZOV1

ZOV2

ZOV3

ZOV4

ZOV5

ZOV6

bridges: ACL, DEFACL, DIRECTORY, SEARCHUST
processes: IACL, IDEFACL, IDIRECTORY, IPATHNAME,

ISEARCHLIST, rUSERNAME

bridges: CREAT, DELETE. RENAME, TYPE
processes: COpy

bridges: LCXiEVENT, REVISION. SPACE

bridges: ENQUEUE, PAWNAME PERMANENCE

connects/disconnect to FTA, file transfer request
to FTA, process /BACKUP for FTA

process INPUT/OUTPUT for CLI

LOCK Flag

Macro expander

contains set-up for all arithmetic routines,
pseudo macro rOCTAL, rSIZE, IDEClMAL

processes: DUMP, LOAD, MOVE

bridges: ASSIGN, BIAS, CONNECT, DEASSIGN.
DISSCONNECT, INITIALIZE, PAUSE, REWIND

processes: CONTRa.., RELEASE, SEND

processes: OPERATOR ON/OFF

processes: CHARACTERISTICS, PREVIOUS

processes: DATA. HELP, LIST, MESSAGE, PERFOIttANCE

processes: BLOCK, CLASS1, CLASS2, HOST, INITIALIZE
PAUSE. PRIORITY, PRTYPE, RUNTIME,
SCREENEDIT SQUEEZE, SUPERPROCESS,
SUPERUSER. STRING, SYS1D, SYSLCXi, TREE,
UNBLOCK, WHO

processes: ACL, DATE, DEFACL, DIRECTORY, ENQUEUE,
LOGEVENT, "PAW NAME , PERMANENCE, PRC11PT,
SEARCHLIST, SPACE, TIME

processes: CONNECT, CREATE. DELETE. DISCONNECT,
INITIALIZATION, LOGFILE, PREFIX,
REVISION, REWIND, TYPE

processes: QCANCEL, QDISPLAY, QHOLD, QUNHOLD

processes: QBATCH, QFTA, QPLOT, QPRINT, QPUNCH

AOS/VS Internals Chapter 9 Page 9-10

ZOV7

zova

ZOV9

ZOV10

ZOV1l

ZPARS

ZPSM

ZQUE

ZSTK

ZSUB

ZTEX

ZURTRES

QSNA, QSUBMIT

processes: ASSIGN, BIAS, BYE, COPY, DEASSIGN,
DISMOUNT, KJUNT, TRACE

processes: BREAKFlLE, CHAIN, DEBUG, EXECUTE,
PROCESS, VARIABLE, XEQ

processes: CPUID, TERMINATION MESSAGES

processes: FILESTATUS. RENAME, SYSINFO

processes: OPERATOR ON/OFF, OPERATOR COPY

contains the parameter file for CLI

processes: I EQUAL, INEQUAL, lEND, : ELSE, I READ ,
IPID, IHID, I STRING , I LOGON , IOPERATOR.
IDATE. ITlME, IASCII, I EXPLODE , I ENAME ,
I SYSTEM , ILISTFILE, IDATAFILE,
I CON Sa.. E , I EFlLENAME , I EPREFIX ,
IEDIRECTl"Ir', IEEXTENSION

bridges: QDI3PLAY, QBA TCH, QSUBMIT, QPRINT,
QPUNCH, QPLOT, QHOLD, QFTA, QSNA,
QCANCEL, QUNlDLD, t-DUNT, DISMOUNT

handles stack manipulation for CLI

contains common subroutines used by CLI modules

performs templ~te expansion for CLI

runtime interface resource manager

AOS/VS Internals Chapter 9 Page 9-11

CLI Commands and their modules

CLI commands and their corresponding module names and module
entry
points. XXX -> YYY indicates that the entry point is actually a
bridge .
to an overlay entry point. [overlay entry point] = [module Entry
Point.]
For example., the overlay entry point for ACL is XACL(dot> •.

Command Name Module Name

ACL ZENV -> ZOV3
ASSIGN ZOP -> ZOV7
BIAS· ZOP -> ZOV7
BLOCK ZCMD1 -> ZOV2
BREAKFILE ZCMD1 -> ZOva
BYE ZCMDO -> ZOV7
CHAIN ZCMD2 -> zova
CHARACTERISTICS ZCM03 -> ZOVO
CHECKTERMS ZCM02
CLASS1 ZCMDll -> ZOV2
CLASS2 ZCMOll - > ZOV2
COMMENT ZCMOO
CONNECT ZOP -> ZOVll
CONTROL ZOP
COPY ZFMCO -> ZOV7
CPUID ZCMOO -> ZOV9
CREATE ZFMCO -> ZOVll
CURRENT ZCMD4
DATAFILE ZCM03 -> ZOV1
DATE ZCMOO -> ZOV3
DEASSIGN ZOP -> ZOV7
DEBUG ZCM02 -> Zova
DEFACL ZENV -> ZOV3
DELETE ZFMCO -> ZOV4
DIRECTORY ZENV -> ZOV3
DISMOU NT ZOP - > ZOV 4
DISMOUNT ZQUE -> ZOV7
DUMP ZMOLD
ENQUEUEZFMC2 -> ZOV3
EXECUTE· ZCM02 -> zova
FILESTATUS ZCMOO -> ZOV10
HELP ZCMOO -> ZOV1
HOST ZCM01 -> ZOV2
INITIALIZE ZOP -> ZOV4
LEVEL ZCM04
LISTFILE ZCM03 -> .lOV1
LOAD ZMOLD
UXJEVENT ZFMC1 -> ZOV3
LCXJFILE ZCM04 -> ZOV4
MESSAGE ZCMOO -> ZOV1

Module Entry Point

XACL
){ASS
XBIA
XBLK
XBRK
XBYE
XCHN
XCHA
XLSN
XCL1
XCL2
XCOM
XCNX
XCON
XCOP
XCPU
XCRE
XCUR
XDTA
XDAT
XDEA
XDEB
XDEF
XDEL
XDIR
XDCN
XDIS
XDUM
XENQ
XEXE
XFIL .
XHLP
XHST
XINI
XLVL
XLIS
XLOA
XLEV
XLOG
XMES

AOS/VS Internals Chapter 9 Page 9-12

t-DUNT ZQUE -> ZOV7 X1-10U
t-t)VE Zfi)LD XMOV
OPERATOR ZOPER -> ZOV11 XOPE
PATIiNAME ZFMC2 -> ZOV3 XPAT
PAUSE ZOP -> ZOV2 XPAU
PERFOIt1ANCE ZCMDO -> ZOVl XPER
PERMANENCE ZHIC2 -> ZOV3 XPMN
POP ZCMD4 XPOP
PREFIX ZCMDO -> ZOV4 XPFX
PREVIOUS lCMD4 -> lOVO XPRE
PRIORIlY ZCMDl -> ZOV2 XPPR
PROCESS ZCMD2 -> ZOV8 XPRO
PROMPT ZCMDO -> ZOV3 XPRM
PRTYPE lCMDl -> ZOV2 XPTY
PUSH ZCMD4 XPSH
Q5ATCH ZQUE -> ZOV6 XQBA
QCANCEL lQUE -> ZOV5 XQCA
QDISPLAY ZQUE -> ZOV5 XQDI
QFTA lQUE -> ZOV6 XQFT
QHOLD ZQUE -> ZOV5 XQHO
QPLOT lQUE -> lOV6 XQPL
QPRINT lQUE -> ZOV6 XQPR
QSNA ZQUE -> ZOV6 XQSN
QPUNCH ZQUE -> ZOV6 XQPU
QSUBMIT ZQUE -> lOV6 XQSU
QUNllLD ZQUE -> ZOV5 XQUN
RELEASE ZOP XREL
RENAME ZFMCO -> lOV10 XREN
REVISION ZFMCl -> ZOV4 XREV
REWIND ZOP -> ZOV4 XREW
RUNTIME ZCMDl -> ZOV2 XRNT

. SCREENEDIT ZCMDl -> ZOV2 XSCR
SEARCHLIST ZENV -> ZOV3 XSEA
SHlD ZOP XSEN
SPACE lFMC1 -> ZOV3 XSPA
SQUEEZE ZCMD1 -> ZOV2 XSQU
STRING ZCMD3 -> ZOV2 XSTR
SUPERPROCESS ZCMDl -> ZOV2 XSPP
SUPERUSER ZCMDl -> ZOV2 XSUP
SYSID ZCMDO -> ZOV2 . XSID
SYSINFO ZCMDO -> ZOV10 XSIN
SYSUXl ZCMDO -> ZOV2 XSYS
TERMINATE ZCMDl -> ZOV3 XTER
TIME ZCMDO -> ZOV3 XTIM
TRACE ZCMD4 -> ZOV7 XTRA
TREE ZCMDl -> ZOV2 XTRE
TYPE ZFMCO -> ZOV4 XTYP
UNBLOCK ZCMD1 -> ZOV2 XUNB
WHO lCMD1 -> lOV2 XWHO
WRITE ZCMDO XWRI
XEQ lCMD2 - > zovs XRUN

AOS/VS Internals Chapter 9 Page 9-13

CLI Pseudo macros and their corresponding module names and
module entry points.

Pseudo Module Module
Macro Name Name Entry Point
----------' ---- -----------
IACL ZENV YACL
IASCII ZPSM YASC
lCONS<l.E ZPSM YCNS
IDATAFILE ZPSM IDTA
lDATE ZPSM IDAT
lDECIMAL ZMA1H YDEC
lDEFACL ZENV YDEF
lDIRECTORY SENV IDIR
I EDIRECTORY ZPSM YEDR
I EEXTENSION ZPSM YEXT
IEFILENAME ZPSM YEFI
I ELSE ZPSM YELS
IENAME ZPSM YENA
lEND ZPSM YEND
I EPREFIX ZPSM YEPR
I EQUAL ZPSM YEQU
I EXPLODE ZPSM YEXP
IFILENAMES ZTEX YFIL
IHID ZPSM YHID
I HOST ZPSM YHST
I LEVEL ZPSM YLVL
ILISTFILE ZPSM YLIS
ILCXJON ZPSM YLOG
INEQUAL ZPSM YNEQ
I OCTAL ZMA1H YOCT
I OPERATOR ZPSM YOPR
IPA1lfNAME ZOO YPAT
IPID ZPSM YPID
I READ ZPSM YREA
ISEARCHLIST ZOO YSEA
ISIZE ZMA1lf YSIZ
I STRING ZPSM YSTR
I SYSTEM ZPSM YSYS
I TIME ZPSM !TIM
IUADD ZMA1lf YADD
IUDIVIDE ZMA1H YDIV
IUEQ ZMA1lf YUEQ
lUGE ZMA1lf YUGE
IUGT ZMA1H YGT
IULE ZMA1H YULE
IULT ZMA1H YULT
IUOODULD ZMA1H Yt-DD
IUMULTIPLY ZMA1H YMUL
IUNE ZMA1lf YUNE
IUSERNAME ZENV YUSE
IUSUBTRACT ZMA1H YSUB
IVARO - 9 ZMA1H YVRO - 9

AOS/VS Internals Chapter 9 Page 9-14

AOS/VS Dump Format

A dump file created by AOS/VS eLI bonsists of variable
length records, each having a fixed format header containing the
block's type and length. The format of the header is:

bit 0 5 6 15
+---------+---------------------+
: type : length (in bytes)
+---------+---------------------+

These blocks are not word-aligned, since the byte length of any of
the bloc'ks might be odd. The length refers to the length without
the header. Specific block types are detailed below. There is
one anomaly to the blocking scheme -- data from data files are not
contained in sane type of block, but rather follow data header
blocks (block type 7 -- see below).

o -- Start of dunp

format: +-------------------------------+ I type: 0 I . length: 14 I
+-------------------------------+
I dump format revision: 15 or 161
+--------------------------~----+
I time of dump: seconds I
+-------------------------------+ I minutes I
+-------------------------------+ I hours

+-------------------------------+
I date of dunp: day I
+-------------------------------+
I month I
+-------------------------------+
I year I
+-------------------------------+

(all numbers
are base 10)

may occur only once, at the start of the dump file

AOS/VS Internals Chapter 9

1 - file stabJs block
--

format: +------------~-~------------~---+ I type: 1 I length: ?slth*2
+-------------------------------+

?fstat packet
for the file.

+-------------------------------+

Page 9-15

This is the first you'll see of a file. It contains
useful information like the file type and length. It is always
followed by a name block.

2 -- Name block

format: +-------------------------------+
I type: 2 I length: variable
+-------------------------------+

file name (with
null tenninator)

+-------------------------------+
the file name is a si~le name (not a pathname).
You have to look at the directory start and end
blocks to tell what the pathname is.

3 - Uda block
- ---_ ... _---------------------

format: +--------------------~----------+ I type: 3 I length: 256
+-------------------------------+
I
I
I
I

. I
I

user data area
I
I ..
I
I

I
+-------------------------------+

only directories and data files may have uda blocks,
and in both cases, it directly follows the end block.
Most files do not have a uda -- currently they are
used only by infos.

AOS/VS Internals Chapter 9

4 -- Acl block

format: +-------------------------------+
I type: 4 I length: variable I
+-------------------------------+ I I
I I
I
I
I
I
I
I
I

access control list
(without null
tennina tor)

I I

+-------------------------------+

Page 9-16

the acl block is used only for directories and
data files, and in both cases, it comes right before
the end block. The acl block is not alwaY5 present.
and if it is not there. the acl should be set to
the user's default.

5 -- Link block

forma t: +--------------------------------+ I type: 5 I length: variable I
+-------------------------------+ I
I
I
I
I
I
I
I
I

link
resolution

name
I I

+-------------------------------+
the link block must be there for links, and it follows
the name block.

6 -- Start block

format: +-------------------------------+
I type: 6 I length: 0 I
+-------------------------------+

the start block is always present for data files
and directories, and is always matched by an end
block. It follows the file name block, and after
it come data blocks (for data files) or file status
blocks of subordinate files (for directories).

AOS/VS Internals Chapter 9 Page 9-17

7 -- Data. header block
--

format: +-------------------------------+
I type: 1 I length: 10
+-------------------------------+ I . I
I I

+--- byte address (32 bits) ---+
I I
I I

+-------------------------------+
I I
I I

+--- byte length (32 bits) ---+
I I
I I

+-------------------------------+
alignment count (16 bits) I

+-------------------------------+
the byte address specifies where in the da ta file
to put the following chunk of data. Currently. it
must be a multiple of 512 bytes (one disk block).
Minus one as the address means continue from where
the last block left off (this convention is not now
used). In general, hunks may be left out of the
data (if one data block does not take up where the
previous one left off) -- this happens if all the
intervening area was full of zeros.

A data header block will be followed by (aligrunent
count> bytes to be ignored (currently either zero or
one), followed by (byte length> bytes of data. Next
comes another data block, or an acl block, or an
end block.

8 -- End block

format: +-------------------------------+
I type: 8 I length: 0 I

I'

+-------------------------------+
ari end block means the file can be closed, or the
directory popped out of.

9 -- End of dump

format: +-------------------------------+
I type: 9 I length: O.
+-------------------------------+

occurs only once, at the end of the dump file.

AOS/VS Internals Chapter 9

Picture of a sample dump file

. Suppose we have the following directory tree:

working directory
+-------------------+

Page 9-18

+---------------+---------------+---------------+
I
I
I
I

"dog"
(data file,

contains ''arf(12)")

I
I
I
I

I
I
I
I

"insects"

I
I
I
I

"fido"
(link to
"dog")

(directory)
"rats"

(empty
I
I
I
I

directory)

+-------------------+
I
I
I
I

"bee"
(empty data

file)

I
I
I
I

"gee"
(empty data

file)

suppose also that the file "gee" has a user data area (uda).

AOS/VS Internals Chapter 9 Page 9-19

In the following diagram. the lines are not necessarily on
word boundaries, Remember. the informa tion r blocks r are by te
aligned, not word aligned,

. --~-----+-----------------------+ type 0 header
information

,
,

"

~------+-----------------------+ type 1 ?fstat,
packet
for

"dog"
--------+-----------------------+

type 2 : name block
for "dog" I

I

--------+-----------------------+
type 6 I start block

----~---+-----------------------+ type 7 data header block
address:: 0
da ta length :: 4
alignment :: ?

+-----------------------+
: the data: :
: "arf<12>" :

--------+-----------------------+
type 4 I acl for "dog"

--------+---------------~-------+ type 8 : end block

--------+-----------------------+ type 1 ?fstat
packet
for

"fido"

--------+-----------------------+ type 2 I name block :
: for "fido" I

--------+-----------------------+
type 5 I link name

I ("dog")

--------+-----------------------+ type 1 I ?fstat I
I packet I
I for I
I "insects" I

--------+-----------------------+ type 2 I name block
I for "insects" ..

--------+-----------------------+ type 6 I start block I
--------+-----------------------+

-

AOS/VS Internals Chapter 9

--------------------------------+
type 1 I ?fstat

I packet
I for
I
I "bee"

--------+-----------------------+
type 2 I name block

I for "bee" :
--------+-----------------------+

type 6 I start block

--------+-----------------------+
type 4 I acl for "bee" I

--------+-----------------------+
type 8 I end block :

--------+--------------------~--+
type 1 ?fstat I

packet :
for :

I "gee" :
--------+-------------------~.---+

type 2 : name block
: for "gee" I

--------+-----------------------+
type 6 I start block

--------+----------~------------+
type 4 I acl for "gee" :

--------+-----------------------+
type 8 I end block I

--------+-----------------------+
type 3 I uda for "gee" :

--------i-----------------------+
type 4: acl for "insects" :

--------+-----------------------+
type 8 : end block

--------+-----------------------+
type 1 : ?fstat

I packet
I for
I lira ts" :

--------+-----------------------+
type 2 : name block

: for "rats"
--------+-----------------------+

type 6 I start block :

--------+-----------------------+
type 4 I acl for "rats"

--------+-----------------------+
type 8 : end block

--------+-----------------------+
type 9 I end of dump :

+-----------------------+

Page 9-20

ADS/VS Internals Chapter 9 Page 9-21

Sample FED of a dump file

The following is a real live sample of a CLI dump tape.
The structure that was dunped is the same as described above.

01 000016 _
11 000017 _
2/ 000062 _
3/ 000055 _
4/ 000015 _.
5/ 000003 _
6/ 000014 _
71 0<50124 _
101 002056 _

o / 14.
15.
50.
45.
13.
3.
12.
B4.
1 1 46.

11/ 000104 _ -------+
121 177777 _
131 177777 _
14/ 000000
151 000000
16/ 000000 _
171 000004 _
20/ 000003 _
211 014046 _
221 060107 _
23/ 014046 _
241 060115 _ '
25/ 014046 _
26/ 060115 _
27/ 000000_
301 000000 _
31/ 000004 _
32/000000 _
33/ 046734 _
34/ 000000 _
35/ 000000 _
36/ 000000
37/ 000000 _ ----------+
40/ 004004 _ 2 1 4
41/ 042117 _ ''DO
42/ 043400 _ G(O>"
43/ 014000 _ 6.
44/ 016012 _ 7 / 5
45/ 000000 _ ---I
46/ 000000 _ ---I
47/ 000000 _ ---+
50/ 000004 _ ---+

"ar
f(012)''

4 / 5
"CA

L(O>"

BKHDR (type 0)
Dump revision number
Second of creation
Minute of creation
Hour of creation
Day of creation
Month' of creation
Year of creation

BKFST (type 1)1 46.

<-------?FSTAT Packet
for ''DOG''

bytes

BKNAM (type 2) 1 4 bytes.

BKBEG (type 6) start block
BKDAT (type 7) data header block

byte ad'dress of data

byte length 4 bytes
alignment count

BKACL (type 4) ACL

51/ 000000 _
52/ 060562 _
53/ 063012 _
54/ 010005 _
55/ 041501 _
56/ 046000 _
57/ 017440 _ <37> / B. 37 = OWARE / BKEND (type B.)

AOS/VS Internals Chapter 9

601 000004 _ a I 1
61/ 027000 _ 46. I a
621 000377 _
631 177Tr7 _
641 177400_
651 000000 _
661 000000

-------+

671 000000 _
701 000000 _
711 000030 _

I
I
I
I

I
I
I
I
I
I

BKFST. (type 1.)
46. bytes long

Page 9-22

721 023140 _
731 050400 _
741 000000_
75/ 000030 _
76/ 023140 _
77/ 050400 _
1001 000000

I<------?fstat for
"fido"

101/ 000000
102) 000000 _
1031 000000 _
1041 000000 _
1051 000000 _
1061 000000 _ I

1071 000000 _ ----------+
1101 000010 a I 2
111/ 002506 _ 5 I "F
1121 044504 _ 10
1131 047400 _ 0<0>"
1141 012003 _ 5 I 3
1151 062157 _ "DO
1161 063404 _ Gil I 1
1171 027000 _ 46. I
1201 005377 _ ---------+
1211 177777 _
1221 177400_
1231 003400 _
1241 000000

I
I
I
I
I
I
I
I

BKNAM (type 2)

BKLNK (type 5) link name

BKFST (type 1) ?fstat
for file "insects"

125/ 000000 _
1261 000400 _
1271 001430_
1301 023140 _
131/ 054030 _
1321 023140 _
1331 100030_
1341 023140 _
1351 100000_
1361 000000 _
137 I 000042 _
1401 000000
1411 000113 _
1421 025000 _
143/ 000400 _

<---- ?fstat packet
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1441 000000 _ l
14~j! 000000 _----------+

ADS/VS Internals Chapter 9

146/ 000010_ a / 1
147/ 004111 _ 10. / "1
150/ 047123 _ NS
151/ 042503_ EC
152/ 052123 _ 'IS
153/ 000030 _ <0>" / 6
154/ 000004 _ a / 1
155/027000 _ 46. / a
156/ 042317 _----------+
157/ 117777 _
160/ 177400'_
161/ 000000 _
162/ 000000 _
1631 000000 _
164/ 002000 _

~M (type 2)

BKBEG (type 6)
BKFST (type 1)

165/ 001430 _
166/023140 _
167/ 060030 _
170/ 023140 _

< -------?fstat packet
for "BEE"

111/ 060030 _
172/ 023140 _
1731 060000_
174/ 000000 _
175/ 000000 _
176/ 000000 _
177/ 000000 _,
20Ql 000000_
201/ 000000_
202/ 000000_
2031 000000 _----------+
204/ 000010 _ a / 2
205/ 002102 _ 4 / "B
206/ 042505 _ EE
207/ 000030 _ <0>" / 6
210/ 000020 _ a / 4
211/ 002503 _ 5 / tIC
212/ 040514 _ AL .
213/ 000037 _ <0>" / <37>
214/ 020000 _ 8. / a
215/ 002056 _ 1 / 46.
216/ 000104 _----------+
217/ 177777 _
220/ 177777 _
221/ 000000_
222/ 000000_
223/ 000000 _
224/ 000004 _
225/ 000003 _

BKNAM (type 2)

BKBEG (type 6) .
BKACL (type 4)

o WAR E access
BKEND (type 8)
BKFST (type 1)

226/ 014046 _
227 / 060141 _
2301 014046 _
2311 060141 _
2321 014046 _
233/ 060141 _

<-------- ?fstat packet
I for "GE·E"
I
I
I
I
I
I

Page 9-23

AOS/VS Internals Chapter 9

2341 000400 _
2351 000000_
2361 000000 _
2371 000000 _
2401 000000 _
2411 000000
242/ 000000_
243/ 000000 _ I

244/ 000000 _----------+
2451 004004 _ 2 / 4
~461 043505 _ "GE
2471 042400 _ E(O>"
2501 014000 _ 6 1 a
2511 010005 _ 4 / 5
252/ 04150 1 _ "CA
2531 046000 _ L(O>"
254/ 017440 _ <37> / 8.
255/ 000015 _ a / 3
2561 000106 _ 256
2571 041400 _---------+
2601 000000 _
261/ 050000
2621 042000 =:
263/ 002000_
2641 042001 _
2651 00040 1 _
2661 00040 1 _
2671 000401 _
2701 000401 _
271/ 000000 _
27 21 000000 _
27 31 000000 _
27 41 000000 _
2751 000020 _
27 6/ 000000 _
277/ 000000 _
300/ 000000_
301/ 000000_
302/ 000000 _
3031 000000 _
304/ 000000 _
305/ 000000 _
306/ 000000 _
3Cf{ 1 000000 _
3101 000000_
311/ 000000_
312/ 000000_
3131 000000 _
3141 000000 _
315/ 000000 _
316/ 000000 _
317/ 000000 _
3201 000000
321/ 000000

BKNAM (type 2)

BKBEG (type 6)
BKACL (type 4)

Page 9-24

GlARE access 1 BKEND (type 8)
BKUDA (type 3)
length of UDA

AOS/VS Internals Chapter 9 Page 9-25

3221 000000"_
323/ 000000_
324/ 000000 _
325/ 000000_
326/ 000000 _
3Z7 / 000000 _
3301 000000 _
331/ 000000_
332/ 000000 _
3331 000000 _
334/ 000000·_
335/ 000000 _
336/ 000000 _
337/ 000000 _
340/ 000000_
3411 000000_
342/"000000_
343/ 000000 _
3441 000000 _
3115/ 000000_
346/ 000000 _
347/ 000000 _
350/ 000000 _
351/ 000000_
3521 000000 _
353/ 000000_,
354/ 000000_
355/ 000000 _ UDA for file ''GEE''
356/ 000000 _
357/ 000000 _
360/ 000000 _
361/ 000000_
3621 000000 _
3631 000000 _
364/ 000000 _
365/ 000000 _
366/ 000000 _
367/ 000000 _
370/ 000000 _
371/ 000000 _
372/ 000000 _
3731 000000 _
374/ 000000 _
375/ 000000 _
376/ 000000 _
377/ 000000 _
400/ 000000 _
401/ 000000 _
402/ 000000 _
403/ 000000 _
404/ 000000 _
405/ 000000 _
1106/ 000000 _
407/ 000000 _

AOS/VS Internals Chapter 9

4101 000000 _
411/ 000000 _
412/ 000000 _
413/ 000000 _
414/ 000000 _
415/ 000000 _
416/ 000000 _
417 / 000000 _
420/ 000000_
4211 000000
422/ 000000 _
423/ 000000 _
424/ 000000 _
425/ 000000 _
426/ 000000 _
4Z7 / 000000 _
430/ 000000_
4311 000000 _
432/ 000000 _
433/ 000000 _
434/ 000000 _
435/ 000000 _
436/ 000000 _
437/ 000000 _
4 J-IO/ 000000 _
441/ 000000 _
4 J~2/ 000000 _
443/ 000000 _
444/ 000020 _
445/ 000000_
4~/ 000000 _

·447/ 000000 _
450/ 000000_
451/ 000000_
452/ 000000 _
453/ 000000 _
454/ 000000 _
455/ 000000 _---------+
456/ 000020 _ a / 4
457/ 002503 _ 4 / "C
460/ 040514 _ AI..
461/ 000037 _ <a)" / <37>
462/ 020000 _ 8. / a
463/ 002056 _ 1 / 46.
464/ 000012 _---------+
465/ 177777 _
466/ 177777 _
467/ 000007 _
470/ 000000 _
471/ 000000 _
472/ 00000 1_
473/ 000003 _
474/ 014046 _
475/ 060132 _

~KACL (type 4)

OW ARE
BKEND (type 8)
BKFST (type 1)

Page 9-26

AOS/VS Internals Chapter 9

4161 014046 _
4111 060132 _
500/ 014046 _
5011 060132 _
5021 000000_
5031 000000_
5041 000000 _.
5051 000000_
5061 000000 _
507 1 000000_
5101 000000 _
5111 000000 _
5121 000000 _---------+
513/ 004005 _ 2 1 5
514/ 051101 _ "RA
5151 052123 _ TS
5161 000030 _ <0>" '1 6
5111 000020 _ 0 1 4 .
5201 002503 _ 4 1 "C
5211 040514 _ AL
5221 000031 _ <0>" 1 <31>
5231 020000 _ 8. 1 0
5241 022000 _ 9. 1 0

BKNAM (type 2)

BKBID (type 6)
BKACL (type 4)

Cl4ARE
BKEND (type 8)
BKEDP (type 9)

Thus ends the sample dump file.

Page 9-ZT

,AOSIVS Internals Chapter 10

CHAPTER 10 - INITIALIZATION
(AOs/VS revision 5.00)

Page 10-1

This chapter will discuss AOS/VS initialization, the various
bootstraps available and the stand alone utlities needed to build the
AOS/VS environment.

There are several programs which get the user started in the world of
AOS/VS. These programs perform sever-al unique ,functions. Before the user
can get started in the AOS/VS environment he must run two very important
programs. They are OFMTR and INSTL. These are stand alone or stand among
programs. The programs are ,the same in operation whether they be stand
alone or stand among. The OFMTR program creates the AOSIVS disk environment
and INSTL creates the system disk environment. In addition to these
programs there are three other programs which play important roles in the
world of AOS/VS. They are T8OOT. OKBT, and SYSBOOT. Each of these programs
allow for the use of a device as a media which is used to load programs to
be run in memory. TBOOT reads programs from magtape. OKBT is the program
which is installed on the system disk in blocks 0 and 1. SYSBOOT is the
program which gets the full ADSIVS system functioning.

When the operator types BOOT 22 there is read from ROM in the computer
a small program which loads in the first 10211 words from file 0 and does a
JMP • at location -377. This JHP • gets overwritten by the data read from
tape which then starts the real TBOOTprogram.

AOS/VS Internals Chapter 10 Page 10-2

TBOOT

The first program a user or system engineer uses is TBOOT. TBOOT
allows the user to load and execute a stand-alone program fran magnetic
tape.

o Go to location 0 and start program

o Force a JMP @376 into location 777

o When 777 is overwritten it will JMP to location 10

o At '10 IORST is done

o Get Device code of tape drive and adjust I/O driver for that
device.

o Display message for file number

o Make sure tape is backspaced to file o.

o Space forward the number of files entered at prallpt

o Move TBOOT to high memory out of tne way.

o Set up DCH mapping and init the map registers

o Start the load of the specified file into memory·

o After loading in program rewind the tape

o Get start address fran location 2 and jump to it.

AOS/VS Internals Chapter 10 Page 10-3

DEMIR

DFMTR is the progran which is used to forma t a disk to enable it to be
used by AOSIVS. It is uS1.lllly run stand-alone fran the initial release
tape. On the tape DFMIR is file 2.

o Reset stacks and clear error traps

o Display revision number and progran name

o Ask for full or partial format

o Get description of LOU's

o If partial format read in DIB and check if REV 2 disk
if not valid display inconsistent DIB and exit

o Print out map of LOU (i.e. size of disk)

o Get LOU unique ID.

o Get LOU name

o Build ACL for disk

o Run surface analysis to flag bad blocks

o Install DIB on each Physical Unit

o If PU is 1 write out, 'funny FIB'

o Get bitmap address and init bitmap

o Hake sure there are no bad blocks in bitmap area

o Write bitmap onto disk

o If system disk allocate bootstrap area (124. blocks)

o Get and set overlay area and size

o Get and set up Remap area on all disks

o Write out name block and'Access Control Block

o Write out 'LOGICAL DISK CREATED'

o DFMTR is done

AOS/VS Internals Chapter 10 Page 10-4

INSn.

INSn. is the program which installs the system bootstrap and the
operating system in the ivisible area of the system disk. It is file 3 on
the release tape and can be booted using TBOOT.

o CLear stacks and set up error routines

o Print out program name and revision #

o Get the LDU device for drivers

o Read in the DIB

o If #1 in LDU set up DKBT driver info

o Wri te out blocks 0 and 1 for DKBT

o Get answer to install system bootstrap

o If yes then get the file from ~omewhere (usually tape file 4)

o Get answer to install a system

o If yes then get the file from somewhere (usually tape file 5)

o Rewrite DIB

o Exit back to SCP-CLI

,

AOS/VS Internals Chapter 10 Page 10-5

OKB! is the progran which gets written to blocks 0 and 1 of the systan
disk for the initial loading of the disk and its drivers to enable the
loading of the SYSBOOT progran.

o After having been loaded by the hardware ROMs OKBT starts at
location 10. '

o Issue an IORST and retrieve device code which is in ACO

o Set up for entry into location 400 in OKBT

o Read in DIB

o Start loading SYSBOOT into memory stat'ting at disk address
stored in the DIB

oRe-cal the disk

o ~ve pa rt of SYSBOOT to 76000

o ~ve rest of SYSBOOT to proper place

o ~nter SYSBOOT through its location 2 start address

AOS/VS Internals Chapter 10 Page 10-6

SYSBOOT

SYSBOOT is the program which loads in the program to be run very
similiar to TBOOT. It resides on disk and knows about standard disk file
structure. It only knows about a hashframe size of 7 (so don't change the
hashframe size of the root directory).

o Issue 10RST and set up ECC error routine for memory

o lnit the entire LOU by asking for each disk in the LOU'

o Ve~ifY that the disks are valid devices

o Read in OIB to check for valid revision and FIXUP bit on

o Set up .LOU table to reflect this disk

o Set up bad block table

o Get microcode file name and request if it should be loaded

o If it was the pennanent name then don't ask just load it

o Resolve the file name on disk

o Execute the LCS instruction to load the microcode

o Size memory for SYSBOOT

o . Get the system file name

o If user specified a file mame resolve the path else
create a pointer to the installed system

o Read in the system file and move it to high memory

o Write out the overlay file for the OS.

o Set up communications area for SINIT

o This communications area has the address of the overlay
file and names of LDU's in system

o Move part of system into lower memory and start the SINIT code

ADS/VS Intemals Chapter 10 Page 10-1

At ,this point in time the system has been booted into memory and now
same specific modules take over to process the sizing of memory and
building'the system databases out of free memory. The following will follow
the flow through the modules involved with starting AOs/VS into its running
state. The modules are SINIT, SINIT1 and MLDUI. There is also a process
started as PID 3 which was built during the VSGEN procedure (CLIBT).

SINIT

o Set up the stack base, frame pointer, stack limit, and stack
pointer

o Set up for default IOC 0

o Check to see if systEm patched, if not issue a warning

o Set up PIT slice residue for systEm startup

o Determine microcode rev and physical memory size

o If not valid do not come up

o Get table left behind by SYSBOOT

o If systEm booted fram magtape for debugger then get size of
OVHIN and set it up as the size of the disk overlay file

o Display ADS/VS and revison m.mber

o Clear last page of memory for disk world

o Set up maxirm.m m.mber of IOC's to support (currently 2)

o Set up CBASE.W for pointing to the CHE's

o Initialize the CHE's and 'free memory block chain (FC1024)

o Get memory for the systEm wide shared page header h,ash table

o Set up systEm 'map'

o Set up SBR table

o Set up page tables for the first 32 roB memory

o Set hi level page tables to point to low level page tables

o Wri te protect the resident executeable code of systEm

o Execute protect page 0

o Flag overlays to prevent flushing to the page file

AOS/VS Internals Chapter 10 Page 10-8

o Turn on the ATU

o Ini t IOC status register clear all error' flags

o Enable data channel mapping

o Clear reference and modified bits for all physical pages

o Set up sytem overlay queue

o Allocate logical swap area

o Reserve memory for the swapfile VCME descriptor page(s)

o Allocate system DLS's (Dynamic Logical Slots)

o Set up referenced bit matrix

o If system call counting enabled (SCeNT <> 0) set up counter
table

o Set up PTBL for CLIBT

o Set up PIDBT

o Init interrupt vector table

o Alloca te da ta channel map slots

o Allocate 8. system buffers

o Turn on interrupts

o Go to SINIT1 code

o Initialize master LDU (JSR MLDUI)

o Get Date and Time from the operator

o Initialize the RTC

o Initialize interface to SCP

o Initialize the UPSC if avaiable

o INIT floating point unit

o Get answer to default specs

o Set up system buffer cache

o Set up :PER directory

AOS/VS Internals Chapter 10 Page 10-9

o Create Generic file names

o Set up priority ranges

o Create unit entries in unit table (UNTlB)

o Create :PROC and PIF

o Create :SWAP and :PAGE

o Set up stack temps for proc'ing CLIBT

o Ask if this is initial load or not

o Create an IPC spool file so that PMGR can talk to CLlBT

o If initial load make CLIBT PID 2

o Sta rt CLIBT as PID 3

o This is where SINIT1 ends and AOS/VS is really running

AOS/VS Internals Chapter 10 Page 10-10

CLIBT

CLIBT is the initial process which is running and set up by system
in.i tialization code. It is run as PIO 3. After it is run it disappears and
leaves the PMGR running as PIO 1 and OP:CLI as PIO 2.

o Set up a stack for self use

o Enable I/O mode to use DP console

o Set default ACL

o Check flags sent fram SINIT

o If initial load GO and do it

o Set ACL for :PROC to + E

o Set ACL for :PER to + RE

o Create PMGR proc packet and wait for it to start

o Create PIO 2 process

o Enable ERCC interrupts

o Kill CLIBT

This is the end of the initialization prograns. As can be seen from
the brief· descriptions above, starting AOSiVS to run is a considerable
task. These routines are not very complex and are really same pieces of VS
'hacked' out to start the initial processes.

