SP/Pascal

Programmer’s Reference

¢y DataGeneral










NOTICE

Data General Corporation (DGC) has prepared this document for use
by DGC personnel, customers, and prospective customers. The
information contained herein shall not be reproduced in whole or in
part without DGC's prior written approval.

DGC reserves the right to make changes in specifications and other
information contained in this document without prior notice, and
the reader should in all cases consult DGC to determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT-
WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE-
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE-
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PROD-
UCTS DESCRIBED HEREIN SHALL BEDEEMED TO BE A WARRAN-
TY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY
OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSO-
EVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARIS-
ING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFOR-
MATION CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED,
KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS,
microNOVA, NOVA, PROXI, SUPERNOVA, ECLIPSE MV/8000,
TRENDVIEW, MANAP, and PRESENT are U.S. registered
trademarks of Data General Corporation, and AZ-TEXT, DG/L,
ECLIPSE MV/6000, REV-UP, SWAT, XODIAC, GENAP, DEFINE,
CEO, SLATE, microECLIPSE, BusiPEN, BusiGEN, and BusiTEXT
are U.S. trademarks of Data General Corporation.

Ordering No. 069-400203

© Data General Corporation, 1982

All Rights Reserved

Printed in the United States of America
Rev. 00, June 1982



Preface

\

This manual documents an extended Pascal for system programmers.
SP/Pascal has all of the features of MP/Pascal as well as extensions
to implement the MP/AOS and AOS operating systems. Chapter 1
provides an overview of the entire language.



Preface

Chapters 2 through 5 describe the language conventions and syntax.

Chapters 6 and 7 describe SP/Pascal routines and I/0, followed by
the rules on program structure in Chapter 8.

Chapters 9 and 10 describe predefined and external routines,
respectively.

Chapter 11 covers the new SP/Pascal exception handling feature.
Chapter 12 reviews the multitasking features.

Chapter 13 describes the CLI commands and macros that invoke the
compiler and Binder, and that execute your programs.

A series of appendices provide information on error messages,
interfacing to other languages, using the system call translator under
AOS, comparisons with other Data General versions of Pascal, and
other useful reference information.

An Index follows the appendices.
In addition, the following forms appear at the back of the book:
DG Offices: list of all Data General facilities world-wide.

How to Order Technical Publications: provides the addresses and
phone numbers of agencies from which order forms and manuals
can be obtained.

Technical Products Publications Comment Form: invites you to assist
DGC in improving future publications by evaluating this manual.

Users’ Group Membership Form: brings DGC software users together,
with group meetings and publications, to exchange ideas, applica-
tions, problems, and solutions.

Related Manuals The following manuals also belong to the series of books published
on the MP/AOS operating system.

MP/AOS Concepts and Facilities (DGC No. 069-400200) provides a
concise but thorough introduction to the MP/AOS operating system
for users who want to assess the system’s advantages.

MP/AOS System Programmer’s Reference (DGC No. 093-400051)
documents MP/AOS system structure and provides a complete
dictionary of system calls and library routines.

MP/AOS Command Line Interpreter (CLI) (DGC No0.069-400201)
describes the interactive CLI program, the user’s primary interface
to the MP/AOS system. A command dictionary provides command
descriptions, formats, and examples.



Loading MP/AOS (DGC No. 069-400207) describes how to install
MP/AOS software on ECLIPSE-line computers and how to load
tailored systems.

MP/AOS System Generation and Related Utilities (DGC No.
069-400206) describes the generation of an MP/AOS system tailored
to specific applications. It also describes the following utilities,
including sample dialogues as appropriate:

¢ SYSGEN, the interactive system generation utility;

e DINIT, the disk initializer;

¢ FIXUP, the disk repair utility;

e SPOOLER, which controls line printer operations;

e ELOG (error logger), the utility for interpreting the system log file.

MP/AOS Debugger and Performance Monitoring Utilities (DGC No.
069-400205) describes the following utilities, providing a dictionary
of debugger commands and sample dialogues as appropriate:

e FLIT, the process debugger;
e PROFILE, which measures execution-time performance;

¢ OPM, the process monitor that displays current system resource
allocation and status.

MP/AOS Macroassembler, Binder, and Library Utilities (DGC
069-400210) documents the MP/AOS macroassembler and binder as
well as the library file editor (LED) and system cross-reference
analyzer (SCAN). It includes programming examples and a dictionary
of assembler pseudo-ops.

MP/AOS Advanced Program Development Utilities (DGC 069-400208)
describes the following utilities:

e Text control system (TCS), a method for managing different
versions of a single file;

e BUILD, which creates a new version of a file from existing files,
thus minimizing effort and errors in program development;

* FIND, which locates occurrences of strings in text files. -

MP/AOS SPEED Text Editor (DGC No. 069-400202) documents the
features of SPEED, the MP/AQS character-oriented text editor.

MP/AOS SLATE Text Editor (DGC 069-400209) documents the
features of SLATE, a screen- and line-oriented text editor.

MP/AOS File Utilities (DGC No. 069-400204) describes the following
utility programs, providing sample dialogues for each:

Preface .




T n
I T
-

Preface

¢ FEDIT, a file editor that permits modification of system files,
including program and data files;

e FDISP, which can display the address and data contents of a file
or compare two files, displaying the parts that differ;

e SCMP, which can compare two source programs line by line;
e MOVE, which allows the transfer of files among directories;

¢ AOSMIC, which allows manipulation of MP/AOS and MP/0S
disks and files on an AOS system;

e FOXFIRE, which permits the transfer of files among MP/OS,
MP/AQS, and AOS systems over asynchronous communication
lines.

Books on three additional programming languages supported by
MP/AOS have previously been published as part of the bookset for
the MP/OS operating system:

MP/Pascal Programmer's Reference (DGC No. 069-400031) docu-
ments for system programmers a Pascal-based language targeted for
the MP/OS operating system.

MP/FORTRAN 1V Programmer's Reference (DGC No. 069-400033)
documents for system programmers a language based on ANSI 1966
standard FORTRAN with extensions.

MP/Basic Programmer’s Reference (DGC No. 069-400032) documents
for new users a programming language based on ANSI standard
Basic with extensions.

MP/0S

For information on Microproducts and a bibliography of documenta-
tion on the Microproducts line, see Introduction to Microproducts
(DGC No. 014-000685).

For information on cross development between MP/0OS and MP/AQS,
see MP/OS System Programmer’s Reference (DGC No. 093-400001).



Preface

Throughout this manual we use the following conventions to illustrate Conventions and
instruction formats: Abbreviations

COMMAND

argument

[optional]

CTRL-

arg1l arg2
EXAMPLE LINE

RESPONSE

Uppercase letters in THIS typeface indicate an instruction
mnemonic. You type an instruction mnemonic exactly as it
appears.

Lowercase italic letters represent a command’'s argument.
You must replace this symbol with the exact code for the
argument you need.

Brackets denote an optional argument (Command switches
appear in this format as well.) If you use this argument or
switch, do not type the brackets into your command line:
they only set off the choice.

Depress and hold the Control key while you press the character
following CTRL-.
Denotes either arg1 or arg2.

Uppercase letters in THIS TYPEFACE are used for programming
examples.

If the program can respond to the command in the example
the response is shown in uppercase letters in THIS TYPEFACE.

B






Contents

Preface
Related Manuals

Conventions and Abbrev1at10ns

Introduction

History of Pascal .
Language Features .
Advanced Support
Compiler Features ..
Operating Environment

Lexical Structure
Character Set .

Standard Character Set . .

Reserved Words . .
Identifiers ..
Predefined Identlflers
User-Defined Identifiers
Delimiters
Comments .

Data Declarations

Constant Declarations

Numeric Constants .
Integer Constants. . . .
Whole Constants
Real Constants . . .
Double_Real Constants

Non-Numeric Constants
Character Constants
String Constants
Boolean Constants

Pointer Constant S

i

A |

SRS S

o O o

12
13
13
.13
14
15
15
15
16
16
16

Type Declarations .
Data Types . ..
Declaring a Data Type

Predefined Simple Data Types . .
Integer.
Whole
Character (CHAR)
Boolean
Real o
Double Real v

User-Defined Simple Data Types
Enumeration Data Type
Subrange

Structured Data Types
Array Structured Data Type .
Array Constants
Record Structured Data Type .
Record Constants .. . . .
Set Structured Data Type . .
Set Constants
String Structured Data Type

Pointer Types . . .. o

Variable Declarations

File Declarations

User-Controlled Data Storage . .

Bit Qualifier

Storage Allocation and Ahgnment .

Benign Redefinition

17
17
18
18
18

.18

18
19
19
19
19
19

.20
.21
21
.. 22

23

.26

27

.28

.29

29
30
30
31
31
32
34



4,

Expressions
Operands .. .................. ... ..... 36
Constants. .. . ...... ... ... ... ... ...... 36
Referring to Array Variables. .. . .. .. . .. 37
Referring to Fields of Records. .. .. .. ... .. 37
Referring to Strings and Substrings . ... . .. 38
Referring to Pointer Variables ..... .. . .. 39
Set Literals. ... ... ... .. .. .. .. . .. ... .. 40
Function Designators. . . ....... ... .. ... .. 41
Operators .. ... ... ... ... ... ... ... 41
Arithmetic Operators .. ... .. ... ... .. .. 41
Boolean Operators . .. ...... ... .. .. ... ... 42
Relational Operators . .. .......... ... . .. 43
Set Operators .......................... 43
Operator Precedence .. ......... ... ... .. 44
Compatibility Rules . ... ... .. . . . 44
Compatibility of Two Operands . ... ... .. . 44
Whole and Integer Types .. .. ... ... ... .. 45
Packed Structures ... ... .. .. .. ... 45
Program Statements
Assignment Statement. . . ... ... . 49
Assignment Compatibility .. .. . .. .....50
Compound Statement. . . ... ... .. .. .. .. 51
EXCEPTION . ... ... ... . ... .. .. ... ... 52
WITH Statement . ............ .. .. .. .. .. 53
Flow of Control .. ... ... .. .. .. . . .. .55
IF Statement . ... ... . ... ... .. .. .. .. .. 55
CASE Statement ... ... ... ... . ........b6
WHILE Statement . ... ... ... .. . ... . . . .. 57
REPEAT Statement . ... ... ... ... .. . . . 57
FOR Statement. ... ... ... ... ... . .. .. 58
EXITLOOP Statement . . . ....... .. ... .. . . 59
RETURN Statement ......... .. ... .. .. .. 59
ERETURN Statement .. ... ... . . . . . . 60
Routine Invocations .. ... . . . 60

6. SP/Pascal Routines

Kinds of Routines .
Procedures
Functions
Scope of Routines
Routine Parameters
Using Parameters
Examples
Parameter List Compatibility . ..
Recasting Routine Parameters. . . . ..
Routine Qualifiers

Input/Output
File Formats
1/0 Extensions
Files .
Predefined Text Files
Declaring Files
Text Files
String Files
File Variables
Multi-Element I/0 Operations . . . ..
I/0 Procedures

FILEAPPEND . . ..
CLOSE
File-Positioning (Random-Access) .
FGPOS
FSPOS

EOF

I/0 Procedures (Text Files)
READ (Text Files Only) . ... ... .. .
READLN (Text Files Only) . . ..
WRITE (Text Files Only) ... . .
WRITELN (Text Files Only) .
PAGE (Text Files Only)

..64

..64

65

..66

68
68
69

.70

71
72

.74

.75

75
75
75

.76

76

.76

.77
277

77

79
80
81
81
81

.82

83
83
83
83

.84

86

...86
... 89
.90



I1/0 Procedures (Non-Text Files) . . . .. . . 91
READ . ... 91
WRITE ... ... . 91
Files of Type String . . .. ....... ... ... .. 91

SP/Pascal Program Structure

Source Program Components .. ... ... . . .. 94
Separate Compilation Units .. ... ... ... ... 94
Program Components ................... 94
Module Components . ................... 95

Program Qualifiers. . ... ... ... ... .. .. . .. 96
Variable Qualifiers ... ... ... .. ... . .... 96
Routine Qualifiers . .. ... ..... . ... .. . .. 98

Include Facility .. ... .. .. ... . .. .. 101

Overlay Facility . ... ... ... . ... .. ... 101
Overlaying SP/Pascal Programs . ........ 102
Managing Program Overlays - ?0VLOD
and ?20VREL. . .. .. .. .. .. ... . ... . . ... 102

Source Program Example ... .. . ... . .. . .. 103

Predefined Routines

Introduction . ... ... ... ... ... .. ... ... .. 110
Mathematical Functions. .. ... ... . . . . 113
ABS ... 113
ARCTAN . . ... ... 113
COS . ... 113
EXP 113
FLOAT . ... ... . 114
LN 114
ODD . ... ... 114
ROUND ... .. ... . 114
SIN 114
SQR . 115
SQRT .. .. 115
TRUNC ... .. 115
Type-Handling Routines . . ... ... .. . .. .. 115
Standard Type Coercion . .. ... ... ... .. .. 115
SP/Pascal Type Coercion . . ... ... .. ... .. 116
Standard Sequence Functions ... ... ... .. 118
String Manipulation . ... . ... ... .. ... .. 119
Dynamic Variable Pointers .. . ... .. . .. 121
FREESPACE ... .. ....... ... ... . .. .. 122
NEW ... 122
DISPOSE .. .. . .. .. .. . ... 123
MARK ... . 123

Address-Returning Functions ... ... .. . .. 123

BYTEADDR .. . .. ... .. .. 124
WORDADDR . ... ... . ... 124
Returning Field Size . ... .. ... .. .. .. . .. 124
BITSIZE and BYTESIZE . ... .. .. .. ... .. 125
Miscellaneous Routines . ... ... . .. . . .. 125
MIN . ., 125
MAX 125
SYSTEM . . ... .. 126

10.External Routines Supplied by

DGC
Routine Categories . ... ... . ... ... . . . 128
I/0 Routines . ... ... ... . . . . . . ... 130
Channel Open Procedure ... ... .. .. .. .. 131
Channel Close. .. ........ ... ... .. . .. 132
Data-Sensitive I/O0. ... ... ... .. .. .. . .. . 132
String Dynamic I/0 ..... . ... .. ... . 133
Buffer Dynamic I/0 ... ... .. .. ... ... .. 133
File-Position . . . ... ... ... . . ... . . 133
File Management. . ..... ... ... .. .. ... .. 134
Data Channel Printer Control ... ... . = . 134
Dynamic String Variables ... ... . = 135
System Interfacing.. . .... ... .. ... .. . .. 135
GET_MESSAGE.PAS. . ... . ... . .. . .. 135
MESSAGE.PAS . .. .. ... ... .. . ... ... .. 136
OVLY.PAS. .. .. ... .. . . .. . ... .. ... 137
SYSCALL.PAS. .. ... ... .. ... ... .. . ... .. 137
SYSLIB.PAS .. .. ... ... ... ... 138
HEADER.PAS . ... ... ... ... . . . .. .. .. 138
Numeric String Conversion . ... = .. = 139
DINT2ST.PAS . ... ... .. .. . ... ... 139
REAL2STR.PAS . .. ... ... ... ... . .. ... .. 140
SINT2ST.PAS . ... ... ... .. . . . .. . ... .. 141
STR2DINT.PAS .. ... ... .. . . . . . . .. ... .. 141
STR2REAL.PAS ... . .. ... .. .. . ... .. .. 142
STR2SINT.PAS .. ... ... ... ... . ... .. .. 143
Integers and Bit Manipulation . . == 144
INDEX.PAS .. ... .. ... ... ... 144
RANDOM.PAS .. ... ... .. . . .. . ... ... 144
BOOLEAN.PAS .. .. .. .. . ... .. .. .. ... 145
DOUBLE.PAS . ... .. .. . ... . ... .. 146
Double-Precision Arithmetic ... ... . . .. 146
DDMATH.PAS . ... . . .. ... . ..., 147
Mixed Arithmetic . ..... . .. .. . . . 148



11.SP/Pascal Exception Handling

Defining an Exception Handler. . ... .
Nesting of Exception Handlers
System Default Exception Handler . . .
Error Codes
User-Defined Errors. . ... ... . ..
Examples .

12. Multitasking

Tasks . . o
Managing Tasks . ..
Memory Management .
Creating Tasks: FORK Procedure . . ..
SETPRIORITY Procedure .
Deleting Tasks: RETURN and KILL
Task Scheduling . .
Intertask Communication
Procedures LOCK/UNLOCK .
Procedures PEND/UNPEND
Program Examples .

13.0perating Procedures

Compiling

Compiler Switches

Compiler Options

Compiler Error Messages
Storing Compiler Output
Binding
Executing Programs .

A. ASCII Character Set

B. Compiler Error Diagnostics

Error Message Occurrence
Syntax Phase Messages . .
Semantic Phase Messages .
Code Generation Errors

C. Calling and Interface

Conventions
Activation Record Format .

153
153
154
154
155

.158
.158

159

161

165
165
166
166

.. 167
.. 168
.168

176

176
.. 179
181

181

181

182

.185

188

.189
192

197

Calling Sequences . .
Default Convention
ASSEMBLY Convention .
CLRE Convention

Examples . .

200
201
202
202
202

D. Cross Development under AOS

Binding under AOS . . .. .
AOS-MP/AOS Differences . ..
MP/AOS System Call Translator .
Translated System Calls . .
Program Management Calls .
Multitasking
File Management Calls
I/0 Device Management Calls .
Transporting AOS programs to MP/AOS

206
207
207

..207
207
208
208
210

213

E. Assembly Language Parameters
Specific to SP/Pascal 215
F. SP/Pascal Formal Syntax 221

G. Differences Among Data General

Pascal Compilers

Reserved Words .

Data Types & Declarations

Characters & Strings

Routines & Parameters

Files & Input/Output Operations.
Miscellaneous Features . .

H. SP/Pascal Implementation

Limits
Index

DG Offices

How to Order Technical
Publications

Technical Products Publications
Comment Form

Users’ Group Membership Form

226
226
226
227
227
227

229

231



Figures
9.1 Memory organization ... .. ... ... ... 122
12.1 Task memory allocation .. ... .. . . . 159
Tables
2.1 Special MP/Pascal symbols ... ... . . . . 8
2.2 SP/Pascal reserved words ... .. ... ... .. .. . 9
5.1 SP/Pascal statement categories: assignment

and compound .. ... ... ... .. ... 48
5.2 SP/Pascal statement categories:

flow of control .. . ... .. ... . .. ... ... 49
5.3 RETURN control transfer. . ... ... .. ... . .. 60
7.1 Input/output procedures ... .. . . .74
7.2 Default values for WRITE field w1dth ...... 87
9.1 Predefined routines, mathematical

functions (* means compile-time evaluable) 111
9.2 Predefined routines, type-handling

functions (*means compile-type evaluable) . 111
9.3 Predefined ASCII string routines (* means

compile-time evaluable) ... . .. .. 111
9.4 Predefined routines, pointers for dynamic

variables (* means compile-time evaluable) 112
9.5 Predefined routines for returning addresses 112
9.6 Predefined routines for returning field

size (*means compile-time evaluable) .. = 113
9.7 Predefined miscellaneous routines . . ... . 113
10.1 External routines supplied by DGC == == 129
10.1 External routines supplied by DGC

(continued) . .. ... . ... ... 130
10.2 MP/AOS system calls and corresponding

parameter files. ... ... .. .. .. . 138
10.3 Miscellaneous integer and bit manipulation

routines . ... ... ... ... 144
10.4 Double-precision arithmetic functions = = 146
12.1 External procedures for multitasking . . . . . 158
12.2 Determination of task stack size . ... . . . 164
B.1 Syntax phase messages, Category 1 warnings189
B.2 Syntax phase messages, Categories 2 and 3 . 190
B.3 Syntax phase messages, Categories 3 and 4 . 191
B.4 Semantic phase messages, Category 1

warnings

B.5
B.5

B.5

B.5

B.6
B.7
C.1
C.2
C.3
C.4
D.1

D.2

D.3

D.4

D.5

F.1
F.2

Semantic phase messages, Category 3 errors193
Semantic phase messages, Category 3

errors (continued) ... ... ... ... ... ... 194
Semantic phase messages, Category 3
errors (continued) ... . ... . ... .. . . . ... 195
Semantic phase messages, Category 3
errors (continued) .. ... ... .. ... ... ... 196

Semantic phase messages, Category 4 errors 197

Code generation errors .. . ............... 197
Passing conventions for argument types . . .201
Default calling sequence . .. ... .. .. .. ... 203
Assembly calling sequence . ... .. . ... 203
CLRE calling sequence ... .. .. .. . .. . .. 204
Conversion of MP/AOS file types when
creating files under AOS . . . . . . . 209
Conversion of AOS file types when opening
files with MP/AOS programs . . ... 209
Reversal in polarity between MP/ AOS

attributes and AOS access privileges. 210
Correspondences between device

characteristics - - - .. . ... 211
Device name mapping = . . . . . 212
Modified BNF. .. . . 221
BNF syntax of SP/Pascal building

blocks .. ... .. .. .. .. .. . 222






Introduction

This manual describes SP/Pascal, a Pascal compiler that runs under
the MP/AOS operating system on Data General’'s ECLIPSE computers.
SP/Pascal combines the elegant structure of the original Pascal
language with a number of enhancements that greatly improve its
usefulness in advanced “real-world" applications.




Introduction

History of Pascal

Language
Features

Advanced Support

The Pascal language was created by Dr. Niklaus Wirth at the Institut
fur Informatik in Switzerland. Wirth named the language for Blaise
Pascal (1623 - 1662), the French philosopher, mathematician, and
inventor of the adding machine. First published in 1971, Pascal was
quickly accepted in both the academic and business worlds. More
than a decade later, it is still widely regarded as the state of the art
in general purpose programming languages. It is available on
everything from 8-bit microprocessors to huge mainframes, including
most Data General computers.

Pascal is conceptually based on ALGOL 60, from which it obtains
features such as block structuring, explicit declaration of all vari-
ables, and efficient control statements such as IF-THEN-ELSE and
REPEAT-UNTIL. Pascal expands on ALGOL in ways that are
harmonicus with the basic structure, not tacked on haphazardly. Its
most important improvements are its data structuring and input/out-
put facilities.

Data General's SP/Pascal language embodies a number of extensions
to standard Pascal. These extensions make the language more
powerful and easier to use. Some of the most important features are
listed below.

e A program may be divided into a number of source files which
can be compiled separately. This is especially important when
several people are working concurrently on a large program.

e An exception handling feature allows all types of error conditions
to be trapped by the program and handled in an orderly manner.
The EXCEPTION keyword defines a statement, or series of
statements, that are executed whenever an error occurs within a
specified part of the program. The built-in ERROR_CODE function
allows the program to find the specific cause of an error.

e A built-in STRING data type provides for efficient text processing.

e SP/Pascal routines can easily call, and be called by, routines
written in other languages, including assembler language.

e A RECAST facility allows the programmer to bypass Pascal’s
normal strict type-checking of data; for example, to do arithmetic
with pointers (memory addresses) by recasting them as integers.

In addition to the above, SP/Pascal has a number of special features
that give the programmer detailed control over the program’s use of
memory and other system resources. The SP/Pascal programmer
has access to virtually all the features of the ECLIPSE hardware and
the MP/AOS operating system. In many cases, this power eliminates
the need to write programs in assembler language, since programs
can have the run-time efficiency of assembler as well as the
“programmer-time’’ efficiency of Pascal. In fact, most MP/AOS



system utilities are written in SP/Pascal. Some key features are
listed below.

e SP/Pascal supports multitasking, to simplify programs that must
"do several things at once.”

» A ZREL keyword allows data to be placed in page zero of the
ECLIPSE memory. (Page zero can often be accessed more efficient-
ly than other memory.)

e A WHOLE data type supports unsigned arithmetic on 16-bit words.

e« An OVERLAY facility allows the creation of programs that are too
large to fit into main memory.

e Built-in functions are provided for allocating and releasing blocks
of memory at run time.

e A built-in SYSTEM routine gives the program direct access to all
functions of the MP/AOS operating system.

The SP/Pascal compiler is a state-of-the-art program that generates
very efficient machine code. It performs many types of optimization,
and exploits the entire ECLIPSE instruction set in order to make the
compiled program small and fast. The generated code is in the form
of a relocatable object module, which is then processed by the
MP/AOS Binder to produce an executable program. The Binder can
combine the program with other routines that are written either in
SP/Pascal or other Data General languages.

In addition to the object module, the compiler can produce a listing
of the source program, with messages to indicate any errors that are
detected. Optionally, the compiler can also produce a listing of the
machine instructions that comprise the generated code. This can be
very useful when debugging a program at the instruction level.

The SP/Pascal compiler will run on any ECLIPSE line computer
that supports the MP/AOS operating system. The computer must
contain the floating-point and character instruction set options.

Since the MP/AOS operating system is a functional subset of AOS,
SP/Pascal programs can be developed and run under AOS with the
MP/AOS system call translator. A program can be moved from one
system to the other with no modifications, although it must be
re-bound with the AOS or MP/AOS Binder.

MP/Pascal, which runs on Data General’'s MP/series computers, is a
functional subset of SP/Pascal. MP/Pascal programs can be compiled
by SP/Pascal, and transported to OZMOS or AOS systems, with little
or no modification.

Introduction

Compiler
Features

Operating
Environment






Lexical Structure

This chapter introduces the basic elements of the SP/Pascal language.
It describes the character set and the basic symbols that make up an
SP/Pascal program.



Lexical Structure

Character Set

tandard Character
Set

Reserved Words

All SP/Pascal statements must be made up from the following
standard and special characters. Characters not specified here are
illegal and are not accepted by the compiler, except as part of a
character or string constant.

The standard ASCII character set for SP/Pascal includes the follow-
ing alphanumeric characters:

A-Z,a-20-9, 8%, ? _ (underscore)

In general, the compiler treats upper-case and lower-case characters
as equivalent; i.e., WHILE, while, and While are equivalent. There
is only one exception to this case indifference: all characters in
string literals represent themselves. Appendix A lists the complete
ASCII character set.

Special Symbols

Special symbols within the character set serve as delimiters and
operators. The special SP/Pascal symbols are listed below. Their
uses are explained and illustrated in the chapters that follow.

+ < ( @

— (* ) -

» *) [ Blank

/ = ] Tab

= { Form Feed
<> | Carriage Return
< , {comma) > New-Line

= : %

==or =<

>=or => ' (quote)

Table 2.1 Special MP/Pascal symbols

Certain reserved words in the language have fixed meanings and
can be used only as defined. For instance, you cannot use reserved
words as identifiers. The reserved words for SP/Pascal are as follows:



AND END MOD REPEAT
ARRAY *ERETURN *MODULE *RETURN
*ASSEMBLY *EXCEPTION NIL SET
BEGIN *EXITLOOP NOT THEN
*BIT *EXTERNAL OF TO
CASE FILE OR TYPE
*CLRE FOR *OTHERWISE =~ UNTIL
CONST FORWARD *OVERLAY VAR
DIV FUNCTION PACKED WHILE
DO IF PROCEDURE WITH
DOWNTO IN PROGRAM *ZREL
ELSE *INCLUDE *RECAST

*ENTRY RECORD

Table 2.2 SP/Pascal reserved words

‘These words are DGC extensions to standard Pascal.

An identifier is a name that denotes either a variable, a type, a
procedure, a function, a program, a module or a constant. An
identifier must be unique within its scope of validity.

There are two kinds of identifiers:

e predefined identifiers that have a specific definition in the
language, but that, unlike reserved words, can be assigned a
different meaning by the user;

» user-defined identifiers that you specify and that are specific to
your program.

The predefined identifiers name routines, constants, files, and data
types. If you wish, you can redefine any identifier as something
specific to your application. Some examples of predefined identifiers:

ARCTAN, EOLN. FALSE, INTEGER, READ, TEXT

Identifiers can be composed of upper-case or lower-case alphabetics,
digits, underscores (__), question marks (?) and dollar signs ($). (Note
that the question-mark character is used extensively as a character
in system identifiers; to prevent conflict, avoid using it in a
user-defined identifier.)

An identifier must begin with an alphabetic; decimal digits can be
used but not as the first character. Imbedded blanks are not permitted
in identifiers. The compiler treats the characters ?, $, and _
(underscore) as letters. For example, SEMI_TOTAL, A123456, and
SETUP$CALL could be used as legal identifiers.

Lexical Structure

Identifiers

Predefined Identifiers

User-Defined
Identifiers



Lexical Structure

Delimiters

Comments

An SP/Pascal identifier can be up to 135 characters long. The first
ten characters of externally visible routine, module, and external
variable names and the first five characters of external assembly
language routine names must be unique. (The SP/Pascal compiler’s L
option can be used to specify truncation of an externally visible
identifier. Refer to Chapter 13, “Operating Procedures.”)

Identifiers, reserved words and arithmetic constants in a program
must be separated by one or more delimiters. Legal delimiters include
the Blank, Tab, Form Feed, Carriage Return and New Line characters.
All delimiters are equivalent, except within string literals where all
characters represent themselves. A comment is equivalent to a single
delimiter.

The SP/Pascal compiler provides for explanatory text about any
statement in the program. A comment can contain any legal ASCII
characters except the comment delimiter. Comments in a program
can be of any length.

The SP/Pascal compiler accepts comments that are pair-delimited,
either by curly braces (| }) or by asterisks within parentheses ((**)),
as follows:

{ comment } , or

(*comment*)

A comment delimited by curly braces can be nested within a
comment delimited by asterisks and parentheses, and vice versa.
But you cannot nest braces within braces or asterisks within
asterisks. For example:

Legal nesting: (* { | *)
Illegal nesting: { { } }

SP/Pascal introduces the percent sign (%) as a single comment
delimiter. The percent sign indicates that the rest of the line is a
comment. A comment delimited by a percent sign can follow code
on a line or can stand alone on a line. For example, both of the
following two lines are legal.

IF STATUS <<= 0 THEN RETURN; %Check for success
% Generate summary report after file analysis.

NOTE: A comment can also be used as a compiler directive instructing the
compiler with various options from within the source program. This option is
described with the other compiler options in Chapter 13.



Data Declarations

This chapter describes the methods for declaring data in an SP/Pascal
program. SP/Pascal provides a variety of ways to define constants,
data types, and variables. It provides some features, such as array
and record constants, that are a significant enhancement over the
standard Pascal language.




Data Declarations

Constant
Declarations

Any identifier that is not a reserved or predefined word must be
declared in the program'’s declaration section before the identifier
can be used in the program. The declaration section of a typical
program includes constant, variable, and type declarations. Addition-
ally, user-written routines (procedures and functions) must be defined
in the declaration section before they can be called in the executable
portion of the program. (User-defined routines are described in
Chapter 6.) This section defines the various language conventions
and rules for SP/Pascal declarations.

Any number of declarations can appear in any order. For example,
you can alternate several variable, constant, and type declarations.
However, when declarations of the same kind are grouped together,
the program is easier to read and understand, and documentation
comments can be reduced.

SP/Pascal permits any declaration to occur in several places in a
source program, provided that they are all equivalent. This feature
is a convenience when assembling a number of source files into a
single large program. For more information on this feature, see
“Benign Redefinition” at the end of this chapter.

A constant declaration introduces an identifier and assigns to it a
known value that cannot be redefined. The SP/Pascal syntax allows
scalar expressions to be used in constant definitions. However, such
expressions must be compile-time evaluable; i.e., all operands used
in the expression must be defined before use. (Compile-time evalua-
tion of expressions involving real constants is not supported.)

Additionally, SP/Pascal allows structured constants for use as
constants or literals.

The form of a constant declaration is:

CONST
identifier = expression;
[...identifier = expression;]

The value for a constant can be numeric (integer, whole, real,
double_real), non-numeric (character, string, Boolean, pointer), or a
user-defined or structured value or expression. Following are some
examples of constant declarations.

CONST
LETTER = "A";
MINUST = -1;
FACTOR = SUM/12;
BLANK = " °;
PI = 3.14159262:
MASK = OFFFFR16:



Once you declare it, you can use the constant identifier to denote the
named literal value in your program. (The only limitation is the
scope of the identifier when you do not declare it as global to the
entire program. Scope is detailed in Chapter 6.) The value of the
identifier cannot be changed throughout the program.

SP/Pascal numeric constants can represent integer and real numbers.
Integers can be either signed or unsigned (WHOLIL). Real numbers
can be either single or double precision.

NOTE: The underscore character may be used for clarity in nurneric constants: for
example, you can write one million as 1. 000 _000, rather than 1000000. The
underscore has no effect on the value of a numeric constant.

Integer constants represent signed values ranging from -32,768 to
+32,767. Decimal points and commas are illegal in integer numbers;
the plus sign is optional; the minus sign is required for negative
numbers. The values for integer constants can be entered in radices
of 2 through 16. The decimal radix is the default.

An integer constant is written as a signed string of decimal digits.
The following are valid integer constants:

73256 017632R8
-1 111.0000R2
+40 MAXINT

The predefined or standard constant MAXINT denotes the system's
largest available integer constant. You need not declare it before
using it. For SP/Pascal, MAXINT is defined as +32,767.

Whole constants represent unsigned values in a range from O to
65,535. The whole type is provided to allow the generation of
unsigned arithmetic and comparison operations. Specific rules for
using it are detailed further on, under “Predefined Simple Data
Types”.

Binary Constants

Binary constants can be used in place of integers, whole constants,
or literals. The range of binary constants is the same as the range of
integers and wholes. Binary constants consist of one to 16 binary
digits followed by R2 or r2. For example, 1011 __1111._0010R2.

Data Declarations

Numeric
Constants

Integer Constants

Whole Constants



Data Declarations

Real Constants

Octal Constants

Octal constants can be used in place of integers, whole constants, or
literals. The range of octal constants is the same as the range of
integers and wholes. Octal constants consist of one to six octal digits
followed by R8 or r8. For example, 17777R8.

Hexadecimal Constants

Hexadecimal constants can be used in place of integers, whole
constants, or literals. The range of hexadecimal constants is the
same as the range of integers and wholes. Hexadecimal constants
consist of one to four hexadecimal digits followed by R16 or r16. For
example, 12BR16.

Note that the hexadecimal digits are O through 9 and A through F.
The first character of a hexadecimal constant must be numeric. For
example, FFFFR16 is an identifier; OFFFFR16 is a numeric literal.

An SP/Pascal real number can assume absolute values between
approximately zero and 7.2 x 1075; they are precise to approximately
seven decimal places. The smallest positive real value is approximate-
ly 5.4 x 10779, Double-precision numbers (double_real type) have the
same ranges, but have a greater precision (to 15 decimal places).

A real number must contain either a decimal point, an exponent, or
both. Optionally, the number can be preceded by a sign. A large real
number can be entered in scientific (E) notation as a floating-point
number. For example, the following are legal real numbers:

1.500 77.876503
0.003 123.456.0
3.0 8E4

65E-4

E notation can be used with an exponent field directly after the last
digit. The exponent field, denoted by E or e, multiplies the number
to its left by the power of 10 specified by the integer to the right of
the E. The exponent field is an optionally signed integer.

Real number syntax is one of the following:
[+I—1d[d...d].d[d...d]
[+I=]1d[d...d][.d[d...dJE[+]I—]d[d...d]

Note that, if the E notation is not used, the decimal point (.) is
required. The point must be both preceded and followed by digits.
The point is optional if E notation is used.



Data Declarations

All real constants are converted to double-precision values by the
compiler. However, in arithmetic operations, real constants are
coerced to the precision of the other operands in the expression to
allow single-precision operations to use real constants. Compile-time
evaluation of expressions involving real constants is not supported.

SP/Pascal introduces a new predefined numeric data type, dou- Double_Real
ble_real, for double-precision (four-word) quantities. The dou- Constants
ble_real value range is the same as that for real (0 to 7.2 x 1075);

however, a double_real value is precise to 15 rather than 7 decimal

places. The rules for writing double_real constants are the same as

for real constants.

Non-numeric constants permitted by SP/Pascal include character, Non-Numeric
string, Boolean, and pointer constants. These are described in the

following subsections. (SP/Pascal structured constants are detailed ConStantS
under the subhead, “Structured Data Types,” further on in this
chapter.)

A character constant must be enclosed in single quotes (). The Character Constants
character can be any single printing character (plus blank) in the

ASCII-7 character set. By enclosing the relevant octal code in angle

brackets, you can include carriage control and other non-printing

characters as character constants. For example, ‘<<12>' represents

New Line. Within character constants, two consecutive single quotes

are used to represent the single quote character; for example, "’

represents a character constant with a value of the single quote.

With angle-bracket notation, you can generate any eight-bit charac-

ter.

The following examples illustrate character constants:

CONST
ZERO = '07;
QUOTE = """ ";
NEWLINE = '<12>7;
ODD_PARITYNL = '<212";

When the characters between the angle brackets are not octal digits,
or when the converted value of the octal digit sequence exceeds the
maximum character value (377R8), the entire sequence of characters
between the angle bracket characters (including the angle brackets
themselves) is treated as a string literal. Each of the illegal character
constants in the following actually would be defined in SP/Pascal as
a string constant.



Data Declarations

String Constants

Boolean Constants

Pointer Constant

CONST
ODD_PARITY_FF = '<200R8 + 14Ri>'; {illegal: expressions not allowed|
NINE = '<9>'; |illegal: non-octal digit|
TOOBIG = '<400>'; |illegal: outside range of CHAR|
RUBOUT = 177R8;
DELETE = '<RUBOUT>'; tillegalz symbolic values not allowed|
NOT_EQUAL = "< >'; |illegal: no octal value supplied|

You represent string constants by enclosing a group of characters in
single quotes. All characters within a string constant are significant.
To insert special characters (the single quote and non-printing
characters), use the method described under “Character Constants,”
above.

The maximum length of a string constant is 132 characters. String
constants containing only a single character are considered to be of
type CHAR rather than type string.

The compiler generates all string constants so that they terminate
with at least one null character; the null character is not counted in
the length of the string. Examples of string and character constants
follow.

CONST
SAMPLE = "YELLOW';
MESSAGE = "IT''S TOO LATE!<12>";

LIGHT = "GO ;
TAB = AP,
EMPTY = *7;

NOTE: For benign redefinition, string literals are equivalent when they are textually
identical. Case is significant in string and character literals.

The values true and false are predefined Boolean constants. For
example,

CONST
TESTING= FALSE;
DEBUGGING = FALSE;
PRODUCTION = NOT (TESTING OR DEBUGGING);

The reserved word NIL is the only pointer constant. For example,

CONST
EMPTY_LIST = NIL:



In SP/Pascal, every variable in a program must be of one specific
type that is either predefined or user-defined. The type determines
the set of allowable values a variable of that type can have and the
operations that can be performed on that variable.

Much of the checking for type consistency is done during compilation.
Programming errors, such as assigning a Boolean value to an integer
variable, are detected by the compiler. Early error detection is one
of the major advantages of the language’s emphasis on typing.

In general, legal data type categories are:
1. Simple types (basic scalar values that cannot be subdivided),

2. Structured types (complex values made up of grouped simple
types)
3. Dynamic pointer types.

Each of these categories is described further in the following
paragraphs. Details of each specific data type are provided further
on in this section; for information on using references to structured
data types in expressions, refer to Chapter 4, “Expressions”. The use
of the SP/Pascal extended capability, the bit qualifier, is described
in the section called “User-Controlled Data Storage” at the end of this
chapter.

There are six predefined simple data types: INTEGER, REAL, CHAR,
BOOLEAN (all standard Pascal) along with WHOLE and DOU-
BLE_REAL, (SP extensions). Each simple data type represents an
ordered set of values. For example, integer type represents the whole
numbers in sequential order from —32768 to +32767 so that 2 is
less than 3, and so forth; character type denotes the ASCII character
set in its standard sequence so that F comes after E. (See Appendix A
for ASCII order.)

Two kinds of user-defined simple data types, enumerated and
subrange, allow you to set up your own ordered sets of values. You
define an enumerated data type by listing the elements in the set in
their own order; for example, type RACE and its enumerated list
(WIN, PLACE, SHOW). A subrange is a contiguous subset of an
existing simple data type (either predefined or user-defined enumera-
tion). You define a subrange data type by listing the low and high
limits of the subset, such as a subrange data type GRADES as character
constants "A’..'F’. Details of these types are provided further on in
this chapter.

In SP/Pascal, there are five predefined structured data types:
ARRAY, RECORD, SET, FILE (standard Pascal data types) and
STRING, (an SP extension). Each structured data type is made up of
simple data values, such as an array of real numbers or a string of
single ASCII characters.

Data Declarations

Type Declarations

Data Types



Data Declarations

Declaring a Data Type

Predefined Simple
Data Types

Integer

Whole

Character (CHAR)

Boolean

The pointer data type permits dynamic allocation of storage for
variables whose size and lifetime are not known at compile-time (a
linked list, for example). Details on pointer handling are provided
farther on in this section.

There is a type declaration that allows you to associate an identifier
with a type. The format for declaring an identifier’s type follows.

TYPE
identifier = type;
[...identifier = type;]

You must specify a type for all variables declared in the program.
The type is provided along with the variable in the declaration
section. For example:

VAR SEMITOTAL, TOTAL: INTEGER:

When this technique is used with simple predefined types, you do
not need a separate type declaration. Also, the type for constants
need not be declared; the compiler determines the type from the
constant declaration.

SP/Pascal offers six predefined simple (scalar) data types: integer,
whole, character, Boolean, real and double_real. Further details for
some of these data types appear in the previous section on constants.

Integer variables can assume whole number values ranging from
—32,768 to +32,767.

Whole values are full-word unsigned quantities in the range of
0...65535. The whole type allows the generation of unsigned arithme-
tic and comparison operations.

CHAR variables assume the value of any single character in the
ASCII character set (ordinal values from zero to 255). (Refer to
Appendix A for the ASCII character set.)

Character values 128 through 255 are not assigned printable graphics.
However, this extension has meaning when applied to character sets
representing other languages. This feature is supported to comply
with ASCII-8 and with various foreign character sets (e.g., Japanese),
whose characters occupy a full byte.

Boolean variables denote logical values of either FALSE or TRUE.
The identifiers are predefined Boolean constants with FALSE defined
as less than TRUE.



Real variables are 32-bit single-precision quantities that can assume
signed numeric values with absolute values between zero and
approximately 7.2 x 10175, The smallest positive real value is
approximately 5.4 x 10~ 79. Real numbers are precise to within
approximately seven decimal digits.

Double_real variables are 64-bit double-precision quantities that
can assume the same signed numeric values as single-precision real.
Double_real numbers are precise to within approximately 15
decimal digits.

SP/Pascal allows you to define your own simple data types in several
different ways. The simplest of these declaration forms is

identifier = previously__defined_type__identifier

The previously-defined type identifier can be a predefined one or
another user-defined one. You can define two different simple data
types: enumeration and subrange.

This data type declares an ordered set of values by specifying all of
the identifiers denoting those values. An enumeration type can
contain up to 256 elements. The ordering of these elements is
determined by the left-to-right order in which they are listed in the
type declaration. If X precedes Y, then X is less than Y. The ordinal
value of the leftmost element is zero.

For example, you could define an enumeration data type called
WEEK and could order its days as follows:

TYPE
WEEK = (MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY);

Variables of type WEEK would be allowed to take on only the above
values.

NOTE: Enumeration types must contain more than one enumeration identifier;
single identifier enumeration lists conflict with a parenthesized constant expression.
For example,

TYPE E = (ONE); % illegal
TYPE S = (ONE)..10; % legal
TYPE P = (ONE, TWO); % legal

Data Declarations

Real

Double__Real

User-Defined
Simple Data
Types

Enumeration Data
Type



Data Declarations

Subrange

Users can define types that are subranges of another defined simple
type, such as integer, CHAR or enumeration. To declare a subrange
data type, provide two constants to define the boundaries of the
range. The constants are separated by the ‘to” symbol, which is
written as two periods with no intervening delimiters (..). For
example, once WEEK is defined as an enumeration type, you can
declare a subrange of WEEK, called WORKWEEK, as follows:

TYPE
WORKWEEK = MONDAY .. FRIDAY

The next example illustrates how you could declare subranges of
type integer and CHAR:

TYPE
RANK =1 .. 10
LETTER = A" .. "M":

You can use signed constants in declaring your subrange. For
example:

CONST
X =10;
TYPE
RANGE = -X .. -X:

NOTE: You can declare subranges only of Boolean, CHAR, enumeration, and
integer.

All numeric subranges in SP/Pascal are defined as signed integer
subrange types. There are no subranges of type whole. This definition
implies that the minimum value in a subrange must be less than or
equal to the maximum value. The upper bound of all subranges must
be less than or equal to MAXINT (<< =32767).

Anonymous Types

The identifiers defined in a type declaration section may be used in
other declarations to define the component types of structures, the
types of variables, and the types of routine parameters. This
technique associates the type name and its properties with its usage
in the other definitions. However, in structured type and variable
definitions (described below), you are not required to use a previously
declared type. Instead, you can choose to define a new data type in
one of the declarations. For example:



TYPE
R = RECORD
F:0..255
END;
VAR

XY : ARRAY [1..] OF REAL;

In these declarations, field F and variables X and Y are said to be
anonymous types because there is no type name associated with
them. Only the properties of the type are defined. In general,
variables of anonymous structured types are not compatible with
each other even if their actual structure is the same. Exceptions to
this rule are variables that are declared in the same definition, such
as X and Y above, and variables whose type is either string or
packed array of CHAR. For more information on these rules, see the
section on type compatibility in the next chapter.

Because the compatibility rules are special for anonymous types, you
should be careful when using them. For example, no variable of an
anonymous type (except string) can be passed as a VAR parameter.

Structured data types consist of data elements arranged in a composite
group. For example, a string is composed of elements of the simple
data type CHAR. More complex structures are possible, such as a
group made up of a number of individual arrays of real numeric
values. Details on referring to structured data items are provided in
Chapter 4, “Expressions”.

Five varieties of structured data types are permitted in SP/Pascal:
array, record, set, file (all standard Pascal) and string, (SP extension).
In SP/Pascal four of the structured types, array, record, set, and
string can be used to define structured constants.

Text is a predefined data type used for input/output files of character
data. Variables of type text, known as text files, contain elements of
type CHAR grouped into variable length lines. Text files are described
under “File Declarations” in this chapter, and in Chapter 7, In-
put/Output.

An array consists of a fixed number of ordered components. Each
component is called an element of the array. All array elements are
of the same type, the element type. You refer to a specific element by
an array_index or subscript. There is a unique element of the array
for every allowable value of the index_type.

The form of the array type declaration is

ARRAY [index_type] OF element__type

7

Data Declarations &

1

Structured Data
Types

Array Structured Data
Type



Data Declarations

Array Constants

Element_type specifies the type of each element in the array. The
index_type (which must be enclosed by square brackets) gives the
type and range of the array subscripts. The type for the array index
can be integer, whole, character, Boolean, enumeration or a subrange
of any of these. For example:

TYPE
A = ARRAY [CHAR] OF BOOLEAN;
MY_ARRAY = ARRAY [1..10] OF REAL;
Y=1.3;
Z = ARRAY [Y] OF DOUBLE-REAL:

The above example defines the type MY_ARRAY as a one-
dimensional array of real variables with subscripts ranging from 1
to 10, inclusive. These subscripts are a subrange of the predefined
integer type. Subrange values must be a valid scalar range with the
minimum less than or equal to the maximum.

Since there are no restrictions on element-type, multidimensional
arrays can be formed by nesting array declarations, as follows:

TYPE
TWODIM = ARRAY [ 1..6 ] OF MY_ARRAY;
TWODIM2 = ARRAY [ 1..6 ] OF ARRAY [ 1..5 ] OF INTEGER;
Q = ARRAY [BOOLEAN,CHAR] OF (MON,TUE, WED);

A convenient abbreviation can be used to declare TWO_DIM?Z, e.g.,

TYPE
TWO_DIM2 = ARRAY [ 1..6, 1..5 ] OF INTEGER;

This abbreviation is exactly equivalent to the more verbose form
used in the first example.

NOTE: It is easier to debug an SP/Pascal program with the process debugger
when arrays are defined as starting with element zero rather than 1, such as

TWO—DIM = ARRAY [ 0..5 ] of MY_ARRAY;

In some instances, the code generated for references to an array element is slightly
more efficient if the low bound is zero.

SP/Pascal allows the definition of array constants in any context
where an expression of a structured type is allowed. The syntax for
structured array constants is:

array-name [constant-expression-list]

Arrays must have all components assigned values in the constant
definition; there are no default values. Structured constants can
contain other structured constants as subcomponents. For example,



Data Declarations

TYPE
AR = ARRAY [1..4] OF BOOLEAN;

CONST
ARCON = AR [TRUE, TRUE,FALSE,TRUE];

To avoid restrictions on the storage mapping for arrays, array
constants can only be vectors. Therefore, in order to define a
multi-dimensional array constant, each dimension in the array type
definition must be specified by a separate type definition. For

example,
TYPE
A = ARRAY [1..3] OF INTEGER;
B = ARRAY [1..3] OF A;
C = ARRAY [1..3,1..3] OF INTEGER;
CONST

D= B[ A[1,1.1]. A[2.2.2]. A[3.3.3], ]: |a valid definition|
E=0C[ 1,1.1.2,2,2.3,3.3 ]; |diagnosed by the compiler as an error |

Record components can be of different types. Each component is Record Structured
called a field of the record and is identified by a field identifier. A Data TYPe
record-type declaration has the following form:

RECORD
[...field-definition ; ]
END

Field-definition looks like this:
identifier [...,identifier] : type

For example:

TYPE
D1 = RECORD
HI, LO : INTEGER;
END;
D2 = RECORD
HI : INTEGER;
LO : INTEGER;

END;




Data Declarations

Both of these examples declare a record type having two integer
fields called HI and LO. D1 and D2 have the same representation,
but denote separate types in the program.

The type of a field in a record can be another record. This permits
record definitions to be nested inside each other. In SP/Pascal,
records can be nested to a maximum of 15 levels. Note that the
nested record can include field names that are identical to the field
names in an enclosing record. However, within a single record
definition, all the field names must be unique. For example,

TYPE
NESTEDREC = RECORD

LEVEL :WHOLE;

STRUCT :RECORD
LEVEL:0..10;
NAME : STRING 10;
RESPONSE: (YES,NO,MAYBE):

END;
VALID:YES. .NO;
END;

It is possible to declare a record type that allows variables of that
type to differ in the number and/or type(s) of their fields. Record
types with this characteristic are known as variant records. The
form of the variant record definition follows.

RECORD
[...field-definition ; ]
CASE [identifier :] type OF
variant [...;variant ]
END

A variant looks like this:

variant-label [...,variable-label ] :
( [...field-definition ; ] )

The identifier following CASE is known as a tag field identifier. The
type of a tag field must have ordinal values that fall only in the
range of O to 127. Boolean and enumerations with 128 or fewer
elements satisfy this requirement. Otherwise, the type must be a
subrange (of integer, character, enumerated, or Boolean).

Each variant-label in the list must be of the same type as the type of
the tag field. The values of the case constants should exhaust the
type. There should be a defined constant for each possible value of
the tag field. Otherwise, the compiler issues a warning. For example,



the following type declaration section could appear in a program
that processes simple personnel records:

TYPE
PERSON_INFO = RECORD

CASE MARRIED : BOOLEAN OF
TRUE : (SPOUSE : ARRAY [ 1..9 ] OF CHAR;
CHILDREN : 0..15 );
FALSE : ( ); % Note empty variant
END;

In the preceding example, the number and types of fields following
the tag field in the record depend on the determination of the
current value of the tag field identifier MARRIED. When that value
is true, the tag field is followed by two fields, namely, SPOUSE and
CHILDREN; when the value is false, the tag field is followed by an
empty field list, denoted by (). Thus, records for married people
contain two fields not present in records for unmarried personnel.

The subrange notation X..Y is permitted in a record definition for
specifying a list of variant tags. This notation is a shorthand way for
referring to a list. For example, ‘A"..'C’ is equivalent to specifying
‘A’,B’,’C’ in a tag constant.

Untagged variant records are also supported. You can, for example,
have the following declaration section:

VAR
S : RECORD
F : INTEGER;
CASE BOOLEAN OF
TRUE : (G:INTEGER);
FALSE: (P:REAL);
END;

With the variable S declared in this manner, there is no tag field.
Your program may reference the integer variable S.G, or the real
variable S.P. This provides a way to bypass SP/Pascal’s normal
type-checking, similar to the RECAST facility (described in Chapter
6).

Since the tag field is not stored with the record, references to fields
in different variants cannot be checked for consistency with the tag
value. As a result, untagged variants are inherently unsafe. You
should use care when selecting this particular record structure.

Data Declarations

ray .

LD



Data Declarations

Record Constants

Variants can be nested within other variants in a manner similar to
the way records nest within each other. However, in SP/Pascal,
variants can be nested only to a maximum of five levels. It is
possible to mix tagged and untagged variants at different levels of
nesting. For example:

TYPE
SCALAR_TYPES = (DISCRETE, REALS);
DISCRETE_TYPES = (INTEGERS,KHOLES,BOOLEANS,CHARS, SUBRANGE  ENUMERATION);

SCALARREC = RECORD
SCALARNAME : STRING 80:
CASE SCALARKIND:SCALAR_TYPES OF
DISCRETE : (USER.DEFINED: BOOLEAN;
CASE DISCRETE_KIND:DISCRETE_TYPES OF
INTEGERS , WHOLES : (SIGNED :BOOLEAN) ;
BOOLEANS,CHARS: ():
SUBRANGE : (SUBRANGE_KIND : DISCRETE_TYPES;
CASE DISCRETE_TYPES OF
INTEGERS:  (IMIN, IMAX: INTEGER):
WHOLES:  (WMIN,WMAX:WHOLE);
BOOLEANS:  (BMIN,BMAX:BOOLEAN);
CHARS : (CMIN, CMAX: CHAR) ;
SUBRANGE:  ();
ENUMERATION: (EMIN, EMAX : WHOLE) ) ;
ENUMERATION: (ENUM_SIZE: 2..256;
ENUM_NAMES : ARRAY[ 0. .255] OF STRING 80));
REALS: (PRECISION: (SINGLE, DOUBLE));
END;

SP/Pascal allows the definition of record constants in any context
where an expression of a structured type is allowed. The syntax for
record constants is

record-type-name (constant-expression-list)

Records must have all components assigned values in the constant
definition; there are no default values. The order of the constants in
the constant-expression-list must match the order of declaration of
the fields in a record. Tag field values must be specified, even for
untagged variants.

Structured constants can contain other structured constants as
subcomponents. For example,



TYPE
RC = RECORD
F: INTEGER;
CASE B:BOOLEAN OF
TRUE: (G:REAL);
FALSE: ();
END;
CONST

RCCON = RC (3, FALSE);
VC_LON = RC (3, TRUE, 1.22);

A set is a structured type that represents a group of values of the base
type. The form of a set declaration is

SET OF base-type

Base-type is a scalar data type with elements whose ordinal values
are in the range of 0 to 255.

Set elements are not treated as individually stored elements like
record fields or array elements; the elements making up a set are
part of a type collection of related elements, such as ALPHABET
representing a set of the characters A through Z.

A variable of set type can adopt values that are in the powerset of
the base type (set of all possible subsets). The maximum set cardinality
is 256; set sizes are packed to the nearest word boundary. The empty
set, which has no elements, (denoted by []) is considered to be an
element of every set type.

For example,

TYPE
DECIMAL_DIGITS = SET OF 0..9;

TYPE
CHARSET = SET OF CHAR;
ASCII7 = SET OF " <<0>'.." <<177>";
SPECTRUM = SET OF (RED,ORANGE, YELLOW,GREEN,BLUE, INDIGO, VIOLET);

Set values are specified by enclosing the list of set elements in
square brackets. Within these brackets, elements can be listed
individually or by using subrange notation. Subrange notation is
permissible as a shorthand way of denoting a set of values. For
example, once the preceding sets are declared, you can declare
variables and assign them set values as follows:

Data Declarations

Set Structured Data
Type



Data Declarations

Set Constants

VAR
TOPHALF ,LASTHALF : DECIMALDIGITS;
PRIMARIES: SPECTRUM;
ALPHANUMERICS : CHARSET ;

TOPHALF:= [0..4];

LASTHALF:= [5..9]:

PRIMARIES:= [RED,YELLOW,BLUE];
ALPHANUMERICS:= ['0°..°9'.'A"..'Z','a’..'2'];

Sets are allocated the minimum number of words necessary to store
the values in the conceptual subrange from O to a maximum ordinal
value of the base type. All sets are implemented as bitstrings with an
origin of 0. Even if you do not start a set at O, the space for element
0 still is allocated. For example, Page 29

TYPE
$1=SET OF 0..10; {a one-word set|
$2 = SET OF 20..30; |a two-word set]|
$3 = SET OF CHAR; |a 16-word set|
S4 = SET OF '0°.."9"; |a four-word set|

SP/Pascal allows the definition of set constants in any context
where an expression of a set type is allowed. The syntax for structured
set constants is:

set-name [ constant-expression-list |

The subrange member designator (x..y) can be used in set constant
definitions. For example,

TYPE
DECIMALDIGITS = SET OF 0 .. 9;
COLOR = (RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET);
SPECTRUM = SET OF COLOR;
CHARSET = SET OF CHAR;

CONST
TOPHALF = DECIMALDIGITS[O..4];
LASTHALF = DECIMALDIGITS[S..9];
PRIMARIES = SPECTRUM[RED, YELLOW,BLUE];
ALPHANUMERICS = CHARSET['0'.."9","A".."Z",’3".."2"];



String is a structured data type representing a sequence of characters
of varying length (bounded by the maximum length). You define a
string type as follows:

string_type = STRING unsigned_integer

The unsigned_integer specifies the maximum number of characters
for that string variable. The unsigned_integer must be greater than
zero and cannot exceed 32,767.

The current length of a string variable can change. (The string
length can assume values from zero to the maximum length specified
for that string type.) For example:

TYPE
LINE = STRING 80 ;

defines a type, LINE. Variables of this type LINE can assume string
values with lengths ranging from O to 80 characters.

Often it is necessary to deal with data structures whose memory
space requirement cannot be determined at compile-time. The
pointer facility allows you to handle varying amounts of data in a
structured manner. With the pointer facility, you are not restricted
to the stack-based allocation schemes of a block-structured language.
The pointer facility allows for dynamic memory allocation. You
handle this dynamic storage using variables of pointer-type. A pointer
is declared in one of the following two ways:

pointer-type = ““resolution-type
pointer-type = (@resolution-type

The up-arrow or at-sign (* or @) indicates that the declared type
identifier is a pointer type. Variables of this type can be used only to
refer to elements of the resolution-type, which can be any valid type.
Often the resolution type itself contains pointers; this allows linked
data structures to be generated.

The declaration of a pointer type can precede the declaration of its
resolution type; that is, you can declare a pointer to a record before
you declare the record. This is the exception to the general rule that
every identifier must be declared before it is used. For example:

TYPE
POINTER = "LIST;
LIST = RECORD
NEXT : POINTER;
INFO: INTEGER:
CLASS: (FIRST, SECOND, THIRD);
END;

Data Declarations

String Structured Data
Type

Pointer Types



Data Declarations

Variable
Declarations

File Declarations

Managing dynamic storage of pointer variables is done with the
NEW and DISPOSE procedures (or the MARK and RELEASE proce-
dures) described in Chapter 9.

Pointer types that are defined before the declaration of the resolution
type are referred to as unresolved pointer types. Once the resolution
type becomes defined, all unresolved pointer types that are dependent
on this type become resolved. All pointer types must be resolved
before they can be used in any variable or routine declarations.

For example, in the following sequence of declarations, the definition
of SOME_RECORD must precede the variable declaration for I.

TYPE PTR = @SOME_RECORD;
. |any number of CONST or TYPE declarations

VAR I:INTEGER;

Variable declarations associate an identifier with data of a specific
type. The format of a variable declaration section is as follows:

VAR
identifier [...,identifier] : type;
[...identifier [...,identifier] : type];

The identifier can be any valid SP/Pascal identifier. The type can be
any of the predefined types or any type defined in previous type
declarations. Use the word VAR once and follow it with the variable
definitions. For example:

VAR
X,Y : INTEGER;
LETTER : CHAR;
GRADES : TEXT;

Also, you can declare a separate type in the VAR declaration. For
example:

VAR
Y: ARRAY [1..50] OF BOOLEAN;
{ defines “Y" and also specifies its type|

Variables declared in this manner are of anonymous type (see earlier
section on anonymous types.)

The file structured data type contains a sequence of elements of
identical type. File elements are not all accessible at the same time;
Jjust a single element, a window, is available. A file type declaration
follows:

identifier = FILE OF type



where identifier is the name of the file type, and type is one of the
legal simple or structured data types.

Text is a predefined data type specifically for files. The text file type
allows formatted output of the standard data types. A text file contains
elements of type CHAR in units called lines. The lengths of these
lines can vary. Text file lines are separated by a special delimiting
character (New Line, Carriage Return, Form Feed or Null).

Declare a text file as follows:
VAR textfile: TEXT

Textfile is the name of the file variable used for I/0 operations in
your program. The statements specific to I/O operations are de-
scribed in Chapter 7, “Input/Output”.

SP/Pascal has two predefined text files provides as default files for
I/0 operations. These are the standard INPUT and OUTPUT files
(declared with the program heading). For users familiar with the
assembler I/0 conventions, INPUT and OUTPUT correspond to
?INCH and ?0UCH. Since INPUT and OUTPUT files are defined as
entry variables, they can be referred to from other program modules.

SP/Pascal introduces bit-level data storage for some data types. This
feature allows you to specify your own storage packing and align-
ment. The following sections provide details on the SP/Pascal bit
qualifier and its use in controlling the storage of data.

The SP/Pascal bit qualifier provides extended capabilities for
user-controlled storage allocation. This qualifier can be used to
specify the absolute number of bits that a subrange, enumeration,
character, or Boolean type representation is to occupy. Scalar types
with storage requirements specified with the bit qualifier can modify
the storage alignment only for array and record structures. Except
for these structures, the bit qualifier does not affect storage allocation.

In SP/Pascal the reserved word PACKED has no effect on storage
allocation. Instead, the bit qualifier provides type-independent field
widths, direct control of alignment requirements, and both packed
and unpacked fields in the same record.

The bit qualifier does not affect the range of the type it modifies,
and the number of bits cannot be greater than 16. The following
values are the minimum acceptable for the various types that can be
bit-qualified:

Boolean One single bit

Character Eight bits

Data Declarations

User-Controlled
Data Storage

Bit Qualifier



Data Declarations

Storage Allocation and
Alignment

Enumerations Number of bits required to represent the ordinal
value of the last enumeration identifier.

Subranges Number of bits required to represent the maxi-
mum value in the subrange. Only positive
subranges can be bit-qualified.

When the bit qualifier is greater than the minimum number of bits
required to represent the type, then the values denoted by the type
are rightjustified in the entire field. Bit-aligned components of
variables are referred to with the same notation as for non-aligned
components. The SP/Pascal compiler generates the masking and
shifting instructions for the component access.

SP/Pascal provides two new predefined compile-time functions,
BITSIZE and BYTESIZE, to retrieve the number of bits or bytes
defined for a type. Refer to Chapter 9 for details of these predefined
functions.

The basic alignment rule for all data structures in SP/Pascal is that
data structures begin and end on word (16-bit) boundaries. In an
array structure, elements are aligned on a bit, byte, or word
boundary. If the bitsize is one, then the array is a bit vector; if the
bitsize is in a range from two to eight bits (or the element type is a
non-bit-qualified character type) the components are stored in bytes;
otherwise, the array elements occupy an integral number of words.

Generally, non-bit-qualified arrays of CHAR are packed implicitly
into bytes. However, you can specify a word-aligned array of CHAR
with the bit qualifier. For example,

A1 = ARRAY [1..10] OF BOOLEAN BIT 1; |a bit vector|

A2 = ARRAY [1..10] OF 0..255 BIT 8; |a byte array|

A3 = ARRAY [1..10] OF 1..7 BIT 3; |another byte array|

A4 = ARRAY [1..10] OF CHAR; |an implicit byte array of CHAR|

A5 = ARRAY [1..10] OF CHAR BIT 8; |an explicit byte array of CHAR|
A6 = ARRAY [1..10] OF CHAR BIT 16; {a word-aligned array of CHAR}
A7 = ARRAY [1..10] OF BOOLEAN; |a word-aligned array}

1]

In record definitions, it is possible to mix both bit-aligned and
word-aligned fields. All fields are allocated in the order they appear
in the record declaration. In a list of field names, the allocation is
from left to right. Bit fields in a single word are filled from left to
right starting with bit 0. Space is skipped only to prevent a field
from crossing a word boundary.

Two other restrictions apply to variant records. The tag field in a
tagged variant always occupies a full word, and the variant part
always starts on a word boundary. If any field in the record is not
completely filled, the compiler issues a warning message.



NOTE: Bits are numbered from zero to 15 with bit O the leftmost and most
significant and bit 15 the rightmost and least significant.

The following examples illustrate field placement and padding. The
first example is a record definition for a single-word structure with
the format of an ECLIPSE I/0 instruction:

TYPE
I0_INST = record
I0_CODE : 0..7 bit 3;
AC : (I0-ACO, IOLAC1, IQAC2, IO-ac3) bit 2;
OP_CODE : (DIA, DIB, DIC, DOA, DOB, DOC, NIO, SKP) BIT 3;
FLAGS: (NOFLAGS, S_FLAG, C_FLAG, P_FLAG) BIT 2;
DEV_CODE : 0..63 BIT 6;
END;

The next example is a type declaration for type R with a two-word
size. Field F occupies bits 0..3 of the first word; field G occupies bits
4..7 of the first word; field H occupies bits 0..7 of the second word.
The second and fourth bytes in R are inaccessible fillers. Because H
is a structured type, it is aligned on a word boundary in R.

TYPE
FOO = RECORD B:BOOLEAN BIT 8 END;
R = RECORD
F,G: 0..7 BIT 4;
H: FOO;
END;

The last example declares type VREC with a size of four words. Field
C1 occupies the entire first word. The character values in this field
are to be right-justified (stored in bits 8..15 of the word). Field C2
occupies bits 0..7 of the second word. Field T, the variant tag, is
allocated in word 3, not in the second byte of word two. Each of the
record variants occupies a single word.

TYPE
TAGS = (ONE, TWO, THREE, FOUR) BIT 8;
VREC = RECORD
C1: CHAR;
C2: CHAR BIT 8;
CASE T:TAGS OF
ONE: (I:INTEGER);
TWO: (W:WHOLE);
THREE,FOUR: (X:0..10 BIT 8;
Y:TAGS):
END;

Data Declarations

33



Data Declarations

Note that packing of data has an effect on the compatibility of
different data types. For more information, see the section on
“Compatibility Rules” in the next chapter.

Benlgn In order to simplify the writing of modular programs, SP/Pascal

o e, permits any identifier to be declared more than once, as long as all
Redeflnltlon the declarations are equivalent. This applies to declarations for
types, constants, and variables. Note that the declarations do not
have to be exactly identical, as long as they create the same internal
structure. For example, the following pairs of declarations are
equivalent:

TYPE
S = SET OF 1 .. 10;
R = RECORD
F. G: REAL
END;

TYPE
S=GETOF1.. (2 *5);
R = RECORD
F: REAL:
G: REAL
END:

On the other hand, the following definitions are not equivalent to
the ones just given:

TYPE
RANGE = 1 .. 10;
S = SET OF RANGE; |not equivalent because of named base type|

R = RECORD

G, F: REAL {not equivalent because field names are in wrong order |
END;



Expressions

This chapter describes the forms of expressions and variable
references in SP/Pascal programs. SP/Pascal supports the familiar
arithmetic and logical operators, plus standard Pascal operators such
as IN (for sets) and “."” (dot, for records). It also contains some Data
General extensions of standard Pascal, such as the “<<< >>" form
for referencing pieces of strings. This chapter also contains informa-

tion on compatibility of different data types.




Expressions

Operands

Constants

An expression is a user-specified combination of variables and
constants with SP/Pascal operators and functions. An expression is
made up of expression operands (names of variables, constants, and
literals) combined with expression operators (arithmetic, relational,
Boolean, set) and function designators, such as ROUND, SQRT, SIN).
Some examples of expressions:

COUNTERA + 1

TEXTIN > LINEMAX

STATCHECK OR (TIMER3 AND CLOCKMSK)
TALLY MOD 4

TAGVALUE IN SETOFTAGS

ERRHD < > -1

SIN(TOTAL/PI)

The compiler resolves an expression to a specific data value or
address. Any variable or constant used as an operand in an expression
must be declared prior to its use; for example, you must declare the
variables A and B before using C:= A-+2*B in a program. If an
operand does not have a previously-assigned value, the expression
evaluation produces indeterminate results at run-time.

The following paragraphs provide further information about data
types so you can use operands of these data types in SP/Pascal
expressions. For more information, see the preceding chapter.

A constant reference is the name of the constant. Literal values and
elements of enumerated types are constants. SP/Pascal permits the
use of scalar expressions in all contexts that allow a constant. Such
expressions must be compile-time evaluable and all operands must
be defined before they are used. Exception: The constant following
the name STRING in a type declaration must be either an unsigned
integer or the name of a previously declared constant.

Set, array, and record constants are allowed in any context where
an expression of a structured type is permitted. However, operands
in compile-time expressions cannot be components of structured
constants. For example,

CONST
M = RCLON + D[1,1]; |flagged as a compiler error|

Qualification of structured constants is identical to qualifications of
variables of the same type.

All unary and binary operations defined on operands of a scalar type
are permissible in compile-time expressions. In addition certain
function invocations can be used if their actual arguments are



compile-time constants. These functions are ABS, CHR, LENGTH,
MAXLENGTH, ODD, ORD, PRED, SQR, and SUCC. The predefined
functions BITSIZE AND BYTESIZE, whose arguments are type
names, may also be used in constant expressions. For example,

CONST

c=3+12*2;

S = 'abcdefqg’;

D = 0DD(Length(s));
TYPE

T = ARRAY [1..C*2] OF INTEGER;

An array consists of a fixed number of components of the same type.
Each component is called an element of the array. You refer to a
specific array element using a subscript list along with an array
identifier.

For example, with MY_ARRAY declared as a one-dimensional array
of real variables with subscripts ranging from 1 to 10, inclusive, you
could refer to an element of MY_ARRAY by following the array
name with the element number in square brackets. For example:

MY—ARRAY [8]

refers to the real variable element stored in position 8 of MY_AR-
RAY.

If an element of an array is itself an array (an array of arrays), as in

VAR
X : ARRAY [ 1..3 ] OF ARRAY [ BOOLEAN ] OF CHAR;

then a valid array reference could be
X[2][TRUE]

This can be abbreviated to
X[ 2, TRUE ]

In other words, the sequence “] [ in an array reference can be
replaced by a single comma.

To address a single record field, the reference takes the form:

record-name.field-name

You use the same form to refer to fields in the variant section of a
record, with one additional requirement: the current value of the tag
field identifier must be identical to one of the constants identifying
the field-name in the record definition.

Expressions

Referring to Array
Variables

Referring to Fields of
Records



Expressions

Referring to Strings
and Substrings

Assume, for example, that you declare a record, CITY, as follows:

TYPE
LOCATION = (INSSTATE, OUT-OF-STATE, FOREIGN):

CITY = RECORD
NAME : STRING 40;
CASE TAG: LOCATION OF
INSTATE: (DISTANCE:INTEGER);
OUT_OF_STATE: (STATE: STRING 20;
TIMEZONE: STRING 10);
FOREIGN: (COUNTRY: STRING 40;
PROVINCE: STRING 40);
END;

To assign the time zone for an OUT_OF_STATE city in this record,
you must first execute

CITY.TAG: = OUT—OF_STATE;
and then assign the field value:

CITY.TIME__ZONE: = 'CENTRAL;

Before the above assignment to CITY.TIME_ZONE is made, the
current value of the tag field identifier is checked to see that it
corresponds to OUT_OF_STATE. If there is no tag field, its current
value is not checked; it is then up to the program to ensure that it
has the correct variant. (The WITH statement, described in the next
chapter, provides another method of referring to record fields.)

NOTE: To guarantee the initial values of certain data types (such as the strings in
the preceding example} when a value is assigned to the tag field of a variant record,
SP/Pascal sets to zero the storage occupied by the remainder of the variant portion
in the record.

When you use string variables in expressions, remember that all
string variables are initialized as null strings. You can refer to a
string in two ways:

1. Refer to a whole string by using the name of the string variable,
or

2. Refer to a portion of a whole string (a substring) using the name
of the whole string and a character range in the form:

stringname <K expr y:expr, >

Expr; indicates the starting point of the referred-to substring, that
is, the number of the character position within the named string for
the substring’s first character. (The first character in a string is
numbered 1.) Expr, is the length (total character count) of the
referred-to substring. Substrings are variables of type string.



For example, once you define a string constant, TELEGRAPHIC, you
can refer to the substring GRAPH as follows:

CONST
S = ‘'TELEGRAPHIC' ;

WRITE (§ <<<5:5>>>>); {writes *'GRAPH’’ |

NOTE: A run-time error occurs if expr is less than or equal to O, or expr, is less
than O, or exprq + expr, — 1 is greater than the string’s current length.

You can refer to a single character within a string (yielding data of
type CHAR) with

stringname <Kexpr>

where expr is an integer expression denoting the character’s position
in the string.

NOTE: Expr must be greater than O and less than or equal to the string’s current
length.

In SP/Pascal, values of type CHAR are converted implicitly to type
STRINGI1 in all expression constants. This coercion means that
CHAR values can be assigned to string variables, passed as string
value parameters, and used as operands in string expressions.

Pointer variables are initialized to the predefined constant NIL,
which does not point to any variable. You control the allocation of
pointer values dynamically, using the predefined procedure NEW
(described in Chapter 9). To refer to a dynamically allocated variable,
use either of the following forms:

pointer-variable @
pointer-variable ™

Each form accesses the current value pointed to by that pointer. If
the type of the value referred to by the pointer is a record, array or
string, further qualification of the value is permitted.

Consider, for example, the following program fragment:

TYPE
T = RECORD
X : STRING 20;
END;
VAR

PTR : @ T;

Expressions

Referring to Pointer
Variables




Expressions

Set Literals

Assuming that you properly allocate T, using NEW, and that PTR
refers to it, and further assuming that T is properly initialized, then
the following is an example of a valid reference.

PTIRG . X < 1:3 >

NOTE: A run-time error occurs if an attempt is made to refer to a dynamic variable
whose value is NIL.

It is important to distinguish between pointer variables and the
instances referred to. The variable PTR in the preceding example is
a pointer variable. At different times during program execution it is
possible for PTR to point to several different instances of records of
type T.

Sets are defined as having values in the powerset of the base-type.
The empty set, denoted by [], is a subset of every set. A set literal
with a single element is denoted by [expression], where the expression
is within the allowable range of the base type.

You write literals with multiple elements, using a simple extension
of this notation. For example, [1, 2+ 3, 6] represents a set with
elements 1, 5 and 6. The compiler takes the type of a set literal from
the types of its components.

When all the elements in the set literal are constants, it is more
efficient to use a set constant (refer to “Structured Data Types”). For
example,

TYPE
T = SET OF 0..10;

allows you to replace the set literal in the preceding example with
T[1, 2+3, 6];.

Subrange notation is permissible in denoting set values. If, for
example, you declare a type MONTHS with a set variable
SKIMONTHS, you can assign the value of SKIMONTHS as follows:

TYPE

MONTHS = (JA, FE, MR, AP, MY, JE, JL, AG, SE)
VAR

SKIMONTHS : SET OF MONTHS

SKIMONTHS := [ JA .. AP ]



NOTE: If the ordinal value of the first range element is greater than the ordinal
value of the last element, the set is an empty set. For example, a set such as [9..3]
is empty.

A function designator consists of the function name followed by a
parenthesized comma list of actual arguments (if the function
requires arguments). Functions and their argument lists are described
in Chapter 6.

Four classes of operators can be used in expressions to evaluate the
expression’s operands. They are arithmetic, Boolean, relational, and
set, all detailed in the following paragraphs.

In SP/Pascal, predefined functions are treated like operators. The
precision of the returned result depends on the actual argument. If
the argument is a double-precision value, then the predefined
function returns a double-precision result. If the argument is a
single-precision value (or constant), then the result is single-precision.
The floating-point operations for calculating the predefined result
use the same precision as that of the returned value.

Arithmetic operators act on operands that are compatible with real,
double_real, integer, or whole types.

The +, —, and * operators act on both real and integer operands.
The / operator acts on real operands. The DIV and MOD operators
act only on integer types. For type whole, unique operations are the
unsigned multiplication and division (DIV) operations, along with
the unsigned comparisons.

For real expressions, when one operand is of type real and the other
operand is of type double_real, the REAL operand is converted
automatically to a double-precision value by zero-extending the
single-precision value.

In SP/Pascal, binary operations on operands of type whole are
performed without overflow checking. For mixed-mode operations
with one operand of type whole and the other of type integer, the
whole operand is implicitly coerced to an integer with no range
checking. A scalar operand can be coerced to a whole operand by
using the type name as a function.

You can convert integers to real numbers and vice versa, using the
predefined mathematical functions TRUNC, FLOAT and ROUND,
described in Chapter 9. No arithmetic operations can be performed
on arrays and structures, but you can operate on scalar elements of
these structured types.

Expressions

Function
Designators

Operators

Arithmetic Operators



Expressions

Boolean Operators

Unary Operations

The + and — operators act on real or integer operands as shown
below.

+ Identity

— Sign inversion

Binary Operations

Binary operators perform as follows:
+ Addition

- Subtraction

Multiplication

/ Division

DIV Division (always returns integer or whole result)
MOD Integer modulus (remainder)

The DIV operator performs division on integer type compatible
operands. The operand to the left of the operator is divided by the
operand to the right of the operator. The result is truncated so that
an integer value is obtained. For example, 23 DIV 5 evaluates to 4.

NOTE: Division by zero yields an error, and division by a negative number is
defined and produces the mathematically correct result.

The MOD operator yields the modulus that results from an integer
division. MOD always returns a result in the range 0..modulus—1
for positive moduli and in the range modulus+1..0 for negative
moduli. For example, 5 MOD —3 evaluates to —1 and 12 MOD 8
evaluates to 4.

The Boolean operators act exclusively on operands compatible with
Boolean types; the result is always Boolean. Boolean operators are

AND  Performs the logical AND of two Boolean operands. The
result of A AND B is true if both the value of A and the value
of B are true. Otherwise, the result is false.

OR Performs the logical inclusive OR of two Boolean operands.
The result of A OR B is true if either the value of A or the
value of B is true, or the values of both are true.

NOT  Complements the Boolean value of a single Boolean operand.
The result of NOT A is true if A is false and the result is
FALSE if A is true.



Relational operators act on compatible operands of any type except
the file type (or a record containing a field of file type) by evaluating
a relationship between expressions. These operators always yield a
Boolean result, — i.e., true if a specified condition is met and false if
it is not. Relational operators consist of:

Equal to
Less than
Greater than

Not equal

or => Greater than or equal to

ANV AN VA
V

or =< Less than or equal to

Any two operands of compatible type can be compared for equality
and inequality. You also can use all the comparison operators with
structured and simple types, except type file and records or arrays
containing elements of type file. Note, however, that comparisons
between simple types are signed, but comparisons between structures
are unsigned. However, type whole provides for unsigned comparison
operations.

String Comparisons

String comparisons are performed by means of a left-to-right,
character-by-character comparison based on the ASCII collating
sequence. To be considered equal, two strings must be of the same
length and contain an identical sequence of characters. The strings
WARP and WOOF, for example, are considered unequal, WOOF
being greater than WARP. If the two strings are equal up to the
length of the shorter string, the longer string is greater. For example,
‘ABCD’ is less than ‘ABCDE’.

Set Comparisons

When applied to set operands, the operators <<= and > = work as
follows:

The expression SETOFTOYS <= SETOFCUBES is true if
SETOFTOYS is a subset of SETOFCUBES.

The expression SETOFTOYS >= SETOFCUBES is true if
SETOFCUBES is a subset of SETOFTOYS.

The set operators are

+ Union
* Intersection
— Set difference

IN Set inclusion

Expressions

Relational Operators

Set Operators




Expressions

Operator
Precedence

Compatibility
Rules

Compatibility of Two
Operands

The first three operators listed (+, *, —) require set data for both
operands and return a set as a result. Both operand sets must be of
the same base type.

IN is used to determine if the left operand, an expression compatible
with the base type of the right-hand set, is a member of the associated
set. IN yields a Boolean result. The expression PEACHES IN
[SPINACH,PEACHES,ZUCCHINI] would yield true.

There are four levels of operator precedence for operations in
SP/Pascal:

Highest NOT
* / DIV MOD AND
+ — OR
Lowest = <> < <= > >= IN

The compiler evaluates operators of different precedence in the
order shown above. Operators at the same level of precedence are
evaluated from left to right. Any expression in parentheses, however,
is evaluated first, regardless of the operators preceding or following
the parentheses. Within parentheses, the normal rules of precedence

apply.

Each expression has a type as well as a resolved value. The operands
(variables, constants, and functions) that appear in an expression
must be compatible with the expression’s operators (arithmetic,
relational, or Boolean). Type compatibility determines if an operation
is applicable to its operand(s).

Two operand types are compatible in an assignment statement if
any one of the following conditions is true:

e They are identical in type; that is, they are defined by the same
type definition. Note that the compiler performs transitive closure
on all type definitions. For example, if you define X asan INTEGER
type and then define Y as type X, then X and Y are identical
types.

e One is a simple type, and the other is a subrange of the same type;
or both are subranges of the same simple type.

« They both are set types whose base type is the same simple type.

e Both are set types, and at least one is the null set.

¢ Both are STRING types.

e One is a packed array of CHAR, and the other is a string literal or
another packed array of CHAR of the same length.

e One is a real or double_real type, and the other is an integer or
whole type.



Some sample assignment statements:

DBL.HI : = RANDOM(4);

COUNTER : = —24;

TALLY : = CURRENTSUM;

ADJUSTMENT : = (PERCENTILE*GROSS)/AGENCYFEECODE:
PTRO. X< <I>>> := PTRe.X <<<I+1>>>:

A [34] - = 23;

Special assignment rules apply to variables of whole and integer
type. A whole variable can only be a positive integer value. An
integer variable can only be assigned to a whole value that is less
than 32768. (Refer to the compiler option W in Chapter 13.)

Binary operations on variables of type whole are unsigned and are
performed without overflow checking. For mixed-mode operations
(one operand is of type whole and the other of type integer) the
whole operand is coerced implicitly to an integer with no range
checking.

A simple operand can be coerced to a whole operand by using the
type name as a function. (The semantics are analogous to the ORD
function for integers.) For example:

W: WHOLE(1);

Unique operations on values of type whole are the unsigned
comparisons and the unsigned multiplication and division opera-
tions.

In constant definitions, signed values are defined to be of type
integer, while unsigned values are of type whole. Constants in the
range of 0..32767 are treated as either integer or whole, depending
on context. For example:

CONST A = -32768; (an integer constant)
B = 65535; (a whole constant)
C = +65535; (causes an error at compile-time)
D= 1; (either an integer or a whole constant)

Packed components of structures cannot be passed as VAR parame-
ters. A packed component is any component that is not word-aligned.

A bit-qualified type is compatible with a non-bit-qualified type of
the same name. That is, the bit qualifier does not create a new type.
This rule is essential for determining the compatibility of packed
components. For example,

Expressions

Whole and Integer
Types

Packed Structures



Expressions

TYPE

T1 = CHAR BIT 16;
T2 = CHAR BIT 10;

13=0..7;

T4 = RECORD
C1:

2

c3:
F1:
F2:

END;

VAR
X:T1;

CHAR BIT 16;

T1;

T2;
0..7 BIT 16;
T3 BIT 16;

Y:ARRAY[1..3] OF T2;

1:T4;

PROCEDURE P (VAR CH:CHAR; VAR RANGE:T3);

In thisexample, types T1, T2, and CHAR are all compatible. Variables
X, Y[1], Y[2], Y[3], Z.C1 and Z.C2 can be passed to procedure P as
argument CH. Variable Z.C3, a packed component, cannot be passed.
Only variable Z.F2 can be passed to the procedure as argument
range; variable Z.F1 is not compatible with type T3. The compatibili-
ty rules can be best understood by examining all types with the

bit-qualifiers removed.



Program Statements

This chapter describes the various forms of SP/Pascal program
statements. In addition to the standard Pascal control and data-
structuring statements, SP/Pascal provides some powerful exten-
sions, such as EXITLOOP and EXCEPTION.




Program Statements

This chapter describes SP/Pascal program statements. Generally,
statement categories are: assignment statements that initialize or set
a specific value for a variable; compound statements that represent a
collection of statements to be executed in sequential order; and flow
of control statements that direct changes in the order of statement
execution (including iteration and recursion). Tables 5.1 and 5.2
provide a .summary of the statements in each category, complete
with examples.

‘C‘ategq{yx . 'Statam&ms Examples
Assngnment - - TOTCOUNT: = SEMI+STOCK; COUNTER: =0; I: = 1
Compqgnadw SEGJN ENG - An executable section
.  BEGIN
'WHILE NOT EOF DO
~ BEGIN

READLN (INGOTNO, WTGRMS);
WRITELN('BAR',NUMBER:9,-",PRICE:8,'US");
. END
. END.
_ A routine declaration
~ FUNCTION PRICE (WTGRMS:REAL):REAL;
. CONST ozmce = 567.989;
,BEGlN
. Pmce = WTGRMS*OZPRICE

Ex C ptmn«handlmg compnund statement

 EXCEPTION

Table 5.1 SP/Pascal statement categories: assignment and compound



40
Program Statements 2

Category Statements Examples
Flow of Control  IF IF EOF THEN RETURN ELSE
« CHECKSTATUS;
CASE CASE STATUS OF
' 0: NEXTREAD;
1: ERRORHAN; - '
OTHERWISE WRITELN (STATCOD:6, 'BUG TEST HERE');
END; : .
WHILE WHILE TEMP < HOTPT DO RAISEHEAT: :
REPEAT REPEAT UPDATE UNTIL EOF; ;
FOR FOR PAYROLLNO: = 200 TO 1000 DO STATECALC;
WITH WITH STUDENT[N] DO FINALGRADE;
EXITLOOP IF TOTAL > 6000 THEN EXITLOOP;
RETURN CASE CHANREAD OF
2: TNK2INPUT;
3: TNK3INPUT;
4: TNK4INPUT;
OTHERWISE RETURN; END;
ERETURN IF STATUS <> O THEN ERETURN(STATUS):

Table 5.2 SP/Pascal statement categories: flow of control

NOTE: Program statements, like declarations, are separated by semicolons, which
are not, however, part of statements. The language also has a null statement, so
consecutive semicolons are allowed.

An assignment statement sets a variable to a specific value. The
value assigned to the variable can be a literal value, a predefined
constant, another variable, or an expression. Assignment statements
also are used to assign a result to a function.

variable := value

This assignment statement sets the value of the variable on the left
of the := sign to the value on the right; := is the assignment
operator. The variable and the value expression must be compatible
(as described shortly).

In an assignment statement, a double-precision value is truncated
when it is stored into a single-precision variable. Single-precision
values are zero-extended when stored into double-precision variables.

CONST
PI = 3.14159;
TWO = 2.0;
VAR
A,B:REAL;
X, Y:DOUBLEREAL ;

Assignment
Statement



Program Statements

Assignment
Compatibility

.= B + THO; |single-precision add|
=Bt X; | double-precision add|
=Y +PI; | double-precision add|

You can assign a full string or a substring to a string variable or
substring. You can also assign a character to a single subscripted
substring. For example:

WORDS << <(3>> .= 'R’;

If the variable to the left of the := is a full string, then its current
length is adjusted to equal that of the string expression on the right.
An error occurs if this adjustment causes the current length to
exceed the maximum declared length of the string. If the left side is
a substring, then the length of the right side must be exactly the
same length as the left side. For example:

SKLI>» .= vA';

S KL1:2>» .= 'AB';
S := "ABCD’;
S:="1;

A value of type T2 is assignment compatible with a variable of type
T1 if any of the following conditions is true:

e T1 and T2 are identical types and neither is a file type nor a
structured type containing a component that is a file type.

e TI1 is a real or double_real type and T2 is an integer or whole
type.

¢ TI1 and T2 are compatible simple types and the value of type T2 is
in the subrange bounds of type T1.

e Both T1 and T2 are real or double_real type.

* TI1 and T2 are compatible set types and all the members of the

value of type T2 are in the subrange bounds of the set base type of
type T1.

e Both T1 and T2 are string types.

e TI1 is a packed array of CHAR and the value of type T2 is a string
literal or another packed array of CHAR of the same length.



The compound statement specifies that its component statements are
to be executed in the same sequence as they are written. The reserved
words, BEGIN and END, act as statement brackets. The entire
executable section of a program is a compound statement, as is the
executable section of a declaration for a procedure or function.
Compound statements can appear in the same contexts as simple
statements.

An example of the use of a compound statement follows:

IF INDX > 24 THEN
BEGIN

1]

I+
J DIV 3;

— -
N

END
ELSE
BEGIN
WHILE S <I» <> "A’ DO
I := PRED (I),
S LI» := "A';
END;

Program Statements

Compound
Statement



Program Statements

EXCEPTION

SP/Pascal introduces the extended compound statement that contains
an exception block. The exception block is a sequence of statements
to which control is transferred whenever an error condition occurs.
An exception block begins with the EXCEPTION keyword. The
syntax follows:

BEGIN statement-sequence-1
EXCEPTION statement-sequence-2
END

Normal execution of an exception block only executes the statements
of statement-sequence-1. If no error (signal) occurs during the
execution of statement-sequence-1, the statements of statement-
sequence-2 are not executed. Control flows to the statement following
the exception block.

If an error is signalled anywhere during the execution of statement-
sequence-1, the remainder of the statements in that sequence are not
executed; instead statement-sequence-2 is executed. For details on
exception-handling, refer to Chapter 11.

An example of a compound statement with an exception block:

BEGIN

NEW(PTR);
EXCEPTION
IF ERRORLODE = HEAP_OVERFLOW
THEN DONE :=TRUE
ELSE ERETURN(ERROR-CODE);
END;



By using the WITH statement, you can expand the scope of a
particular record and refer to its components by their component
names only. Once a record is identified, the field name(s) alone are
sufficient for processing. The format of the WITH statement:

WITH reference ...[,reference] DO statement

In the statement following DO, the components of each record
specified by reference can be addressed by their component names
only.

For example,

VAR
A,B: RECORD
HERE: INTEGER;
FEAR: CHAR;
END;
WITH B DO
BEGIN
HERE ::'1000;
FEAR:="A";
END;

The statement
WITH reference ;,reference, DO
is equivalent to

WITH reference ; DO
WITH reference, DO

In SP/Pascal, the named-with extension allows you to define an
identifier that is associated with a particular record variable of the
WITH statement or to perform a recast operation in the statement
section and avoid the overhead of a procedure invocation. A reference
can be declared as follows:

identifer 1 [: identifier2] = variable-reference

Program Statements

WITH Statement




Program Statements

Identifierl, called the with-name, is a variable with a scope local to
the WITH statement. The type of the with-name is determined by
the presence of the optional identifier2. If specified, identifier2
dictates the type for the with-name, and the variable-reference is
allowed to be recast to this type. This enables you to change a data
type temporarily without using the recast feature. (The recast facility
is detailed in Chapter 6.)

If identifer 2 is omitted, the with-name is assigned the derived type
of the variable-reference. In this case, the with-name becomes a
shorthand notation for the variable-reference in the WITH state-
ment.

One useful application of this form is to allow some, but not all, of
the fields of one record to be copied to another record of the same
type without having to respecify each reference fully. For example:

WITH A = P@.RECFIELD, B = P1@.REC_FIELD DO BEGIN
A.F1:= B.FZ;
A.F2:= B.F1;

END;

This type of notation makes a program shorter, and may also allow
the compiler to generate more efficient code.

The following example illustrates the use of the recast operation in a
WITH statement.

TYPE

A1 = ARRAY[1..N] OF 0..255 BIT §;

A2 = ARRAY[1..BYTESIZE(A1) DIV 2] OF INTEGER;
VAR

X:A1;

PROCEDURE P;

WITH Y : A2 = X DO BEGIN {references to Y are treated as
accesses to a word array}

END;

END; ‘{p}



SP/Pascal provides structured statements that establish a pattern of
program statement execution that is not sequential. Control of the
program flow varies, depending on the statement. Changes in
program flow can be affected by: conditional statements (an IF or a
CASE statement), iterative statements (the WHILE, REPEAT and
FOR statements), or by the unconditional statements EXITLOOP,
RETURN, and ERETURN.

Additionally, program flow can transfer to other procedures. Proce-
dure calls are described at the end of this chapter; further information
about user-defined and external procedures is provided in Chapters
6 through 10. SP/Pascal extensions provide exception handling as
another level of flow-control in the language. The exception block
and ERETURN statement are described in this chapter, and exception
handling is detailed in Chapter 11.

The IF statement executes a statement only when its accompanying
conditional expression is true. (Note that the expression must yield a
result of type Boolean.) If expression is false, either the statement is
not executed or the statement following the optional ELSE keyword
is executed.

The two forms of the IF statement are:

IF expression THEN statement

IF expression THEN statement ELSE statement
For example:
IF A>>B THEN WRITELN ('Enter another order’) ELSE WRITELN (’Please wait’)

Without ELSE WRITELN ..., the program would execute the next
sequential statement when A is equal to or less than B.

NOTE: The syntax of the language does not allow a semicolon immediately before
the ELSE clause.

Program Statements

Flow of Control

IF Statement



Program Statements

CASE Statement

The CASE statement provides a test-and-branch mechanism and
selects one statement from a group of statements for execution based
on the value of a selector expression. When the CASE statement
executes, the current value of the expression is matched to one of the
specified case-constants; then the executable statement correspond-
ing to that case-constant executes.

CASE expression OF
case__constant(s):statement;
[...case__constant(s):statement;]

[OTHERWISE statement]

END;

The CASE statement includes an expression called the selector and a
list of statements. One or more case-constants, which are values
compatible with the type of expression, precede each statement.
Case constants can be of type CHAR or Boolean; they can be integer
or whole, constants, or items of an enumeration.

The subrange notation, X..Y, is permitted in CASE statements for
specifying a list of case labels. When this notation is used, the
maximum value must be greater than or equal to the minimum
value. The compatibility rules for the subrange bounds are the same
as those for a single-value label. For example,

VAR
I:INTEGER;
BEGIN
CASE I OF
0: N:=1;
1..10: N:=N DIV I;
END;
END;

The X..Y notation is a shorthand method for the following list of
values:

X,
succ(x).,
succ(succ(x)).

Y

If the expression does not correspond to any of the case-constants,
the statement(s), if any, in the OTHERWISE clause are executed.
When there is no corresponding case-constant and the OTHERWISE
clause is absent, an error occurs at run-time.



For example,

CASE I OF
0,1:J :=2;
2 :J:= 3;
4 :.J):=5;
OTHERWISE J := 10;
END;

In this example, if the selector expression, I, has the value 0, 1, 2 or
4, the corresponding statement is executed. Then control passes to
the statement following the CASE statement. If I is not O, 1, 2 or 4,
the statement in the OTHERWISE clause is executed.

NOTE: The matching value is referred to as a case-constant and not a statement
label; statement labels are not permitted.

The iterative WHILE statement evaluates a Boolean expression and,
if the result is true, executes the accompanying statement, repeating
these two steps until the test condition is no longer true. When the
condition becomes false, the iteration stops and program flow goes
on to the next sequential statement. The format for the WHILE
statement is

WHILE expression DO statement

Expression is evaluated before each execution of statement. If the
value of expression is false when first tested, statement is never
executed. (To execute first and then test, use the REPEAT statement.)

An example of the WHILE statement is

WHILE SKI>="A" DO
I=I+1,

The iterative REPEAT...UNTIL statement executes its accompanying
statement(s) and then evaluates a Boolean expression, repeating these
two steps until the condition is no longer false. When the UNTIL
condition becomes true, the program flow proceeds to the next
sequential statement. The format of the REPEAT statement is

REPEAT statement__list UNTIL expression

Statement__list is executed at least once. The Boolean expression is
evaluated after each execution of the statements. (To test before
executing the statement, use the WHILE statement.) Note that
REPEAT...UNTIL may enclose more than one statement, unlike
WHILE...DO which applies to a single statement.

An example of the REPEAT statement is

REPEAT
J:=J-+1 MOD 10;
I.=1 DIV 10;

UNTIL I=0;

Program Statements

WHILE Statement

REPEAT Statement



Program Statements

FOR Statement

The iterative FOR statement repeatedly executes its controlled
statement once for each value of the control variable in the span of
values assigned it. With each iteration, the control variable changes
automatically by one; you do not need a separate statement to adjust
the value of the control variable. There are two FOR-loop formats:
one for an increasing control variable, and one for a decreasing
variable. The two formats for the FOR statement are:

FOR variable := exp; TO exp,
DO statement

FOR variable := exp,; DOWNTO exp,
DO statement

Upon execution, exp; and exp, (the initial and final values of the
control variable) are calculated. If you specify TO and if exp; is less
than or equal to exp, the variable is assigned a sequence of
consecutive values of increasing magnitude, beginning with exp; and
ending with exp,. If you specify DOWNTO and if exp; is greater
than or equal to exp, the variable is assigned a sequence of
consecutive values of decreasing magnitude, beginning with exp; and
ending with exp,. The loop statement is executed once for each
value of the control variable.

You should remember the following:

e The initial and final values are calculated once, rather than each
time through the loop.

e It is possible for the loop statement never to execute, depending
on the initial and final values of the variable.

* When the loop is not executed, the control variable is not assigned.

» Variable, exp;, and exp, must be of compatible simple data types
(character, integer, whole, Boolean, subrange, enumeration, but
not real or double_real).

Examples of the FOR statement are :

FOR COLOR1 : = BLUE DOWNTO RED DO

BEGIN
A [COLOR1] : = SUCC (A [COLOR1]):
K: =K+ 1
END;

FORI:= 17010
D0 J := J+B[I]:



Program Statements

Note that the first example presupposes a type declaration in which
the ordinal value of BLUE is larger than the ordinal value of RED.

An EXITLOOP statement must be used only inside a FOR, REPEAT EXITLOOP Statement
or WHILE loop. It unconditionally transfers control to the statement
following the immediately enclosing loop. For example,

FOR I:= 1 TO LAST DO BEGIN

WHILE A[I] > 10 DO BEGIN

EXITLOOP; transfers control to J:=2 statement

END; {while|
J :=2;

IF B[I] = A[I] THEN EXITLOOP; |transfers control to statement
after END statement, K:=0

END; | for|
K:=0;

A RETURN statement unconditionally transfers control from the RETURN Statement
current procedure or function. Control is transferred as shown in

Table 5.3. Returning from program level terminates the program

normally and returns control to the operating system.



Program Statements

ERETURN Statement

Routine
Invocations

From To
Procedure Statement following statement invoking the procedure
Function Expression in which function was invoked

Main program  Program which executed this program (usually CLI)

Table 5.3 RETURN control transfer

An ERETURN statement unconditionally terminates the current
procedure or function and initiates a search of the currently
executing compound statement in all prevously activated routines
for an associated exception handler. (The routines are searched in
the reverse of their called order.) If no exception handler is located,
a default exception handler is executed as part of the program or
task termination.

The format of the ERETURN statement is
ERETURN(expression);

ERETURN requires an integer valued expression. The expression
can be the reserved word ERROR_CODE. For example

ERETURN(ERROR—CODE) ;
ERETURN(0);

For details on the use of ERETURN with exception handling, refer
to Chapter 11.

A routine is a procedure or function activated by a routine call. A
procedure call invokes the procedure and specifies any arguments to
be passed to the procedure; a function call also invokes the function
and passes any required arguments; however, a function call appears
only as part of an expression, since the function returns a value.

A procedure call is a statement. The format is as follows:

procedure name [(argument..,argument)];

A function call has the same syntax as a procedure call, but is used
only as part of an expression.

When the routine is a user-defined procedure or function, the
declaration for the routine must be specified somewhere in the
program. Predefined routines do not require declarations. Routines
and their declarations are described in Chapter 6.



Program Statements

Examples of routine calls are:

NEWTON(X,Y); {a user-defined procedure, NEWTON}
WRITE ('Name - ', LASNAM: 12); |a predefined procedure, WRITE|
A:= Z/MYMEAN(SCORES); {a user-defined function, MYMEAN}
DAILYDOUB = 8.44*RANDOM; {a predefined function, RANDOM|






SP /Pascal Routines

This chapter describes the process for declaring and implementing
user-written routines in an SP/Pascal program. Declared only once
in the source code, a routine can be invoked repeatedly in the
executable portion of the program. Sections further on in the chapter
describe parameter-passing for routines and the scope (range of
association) for identifiers in routines.




SP/Pascal Routines

Kinds of Routines

Procedures

SP/Pascal supports two different kinds of routines. A routine can be
either a procedure or a function; both contain a block of declarations
and statements that accomplish a specific operation. Routines can be
application-specific, user-defined subprograms defined in the decla-
ration section of the program. Alternatively, there are a number of
predefined routines (both standard Pascal routines and SP-specific
routines) that can be used in a program without a routine declaration.

Chapter 9 details some of the predefined routines that are available.
Chapter 10 describes the external routines provided by Data General
Corporation with each system in a library of external routine
declarations and commonly used definitions. (These can be specified
in the program as include files; then the routines can be used in a
program. Details of the include and overlay facilities are provided in
Chapter 8. Information in Chapter 8 introduces the various methods
for calling these routines and for calling assembly-language routines
in a program. Appendix C details SP/Pascal’s internal routine
initialization and calling sequences.)

Other available predefined routines are described elsewhere in this
manual. The predefined routines that handle input and output are
described in Chapter 7. Routines specific to multitasking programs
are found in Chapter 12; rules for exception-handling routines are
described in Chapter 11.

A procedure is a routine that contains a block or group of SP/Pascal
declarations and statements that accomplish a specific algorithm. A
procedure is defined once in the program with a procedure declara-
tion and then can be invoked any number of times using a procedure
call.

A procedure declaration introduces an identifier (the procedure
name) which is used to call the procedure. The declaration has the
following form:

PROCEDURE identifier [formal-parameter-list];
block ;

The block is a compound statement that is executed when the
procedure is invoked. (Parameter lists are detailed further on in this
chapter.)

The following example is a procedure declaration for a procedure,
NEXTCHAR, which could be called from a program whenever a
new input character is to be read:



CONST
END_OF.MEDIUM = '<031>";
PROCEDURE NEXTCHAR (VAR CH:CHAR):
BEGIN
IF EOF THEN CH:=ENDOF.MEDIUM
ELSE READ(CH):
END:

Each time the program invokes this procedure, the statement section
of the program needs only a single statement procedure call such as:

WHILE NEXTCHAR{C) << “> END_—OF.._MEDIUM DO
APPEND(STRING.C):

A function, like a procedure, is specified once in the program. A
function performs its operation and returns a value. Functions are
used as constituents of expressions. A function declaration, like a
procedure declaration, introduces the function name used to invoke
the routine. Additionally, a function declaration indicates the type
of result the function returns.

A function declaration has the following form:

FUNCTION identifier [formal-parameter-list]: type-identifier ;
block ;

The optional formal-parameter-list provides any data that is needed
by the function to perform its operation. The type-identifier specifies
the type for the result returned by the function.

NOTE: A function can return values of any type except type file or structured types
containing elements of type file

The following example is a function declaration for a function,
BEANCOUNT, which could be called from a program whenever its
calculation is required:

FUNCTION BEANCOUNT (AREA:INTEGER):INTEGER;

CONST

BEANS_PER_AREA = 12;
BEGIN

BEANCOUNT := BEANS_PER_AREA * AREA:
END;

Each time the program calls this function, the statement section of
the program need only use the function designator in an expression,
such as:

TOTAL = SEMITOT*BEANCOUNT(5) DIV 12;

SP/Pascal Routines

Functions



SP/Pascal Routines

Scope of Routines

Each time the function is invoked by a function designator, the
block is executed. Within the block, at least one statement must
assign a value to the function identifier. This value is the function
result, which must be of the same type as the function designator.

Both procedures and functions can have a block containing declara-
tions. The routine’s declarations can be any number of constant,
type, variable or routine declarations occurring in any order. (Nested
routine declarations, however, must not exceed the limit of eight
levels.)

A block creates a scope, i.e., a range of visibility for the identifiers
declared within the block. Specifically, the scope of an identifier is
limited only to the block in which it is declared and to any routines
nested within that block.

Depending on where the declaration appears in the program, the
scope of a variable or constant can be either global or local. Identifiers
declared within a particular block are said to be local to that block.
Identifiers declared in the outermost block, i.e., the main program,
are described as global, because their scope encompasses all of the
program’s inner blocks.

For example, a program containing two independent procedures
could be partially declared as follows:

PROGRAM P;
VAR
A : CHAR;

PROCEDURE ONE;
VAR
D : INTEGER;

BEGIN
END; |{ONE|
PROCEDURE THO;
CONST
S = "ABC';

BEGIN
END; |TWO|

NOTE: The formal parameter names are within the scope of the routine block.



Variable A is global, that is, accessible to all routines within the
program block. Identifier D is local to procedure ONE and cannot be
referred to by procedure TWO or by the main program; similarly,
identifier S is local to procedure TWO. (If procedure TWO were
nested within procedure ONE, the scope of variable D would extend
then to the nested routine: D could be accessed by procedure TWO.
At the same time, identifier S still would remain Iocal to procedure
TWO.)

Local identifiers can have the same name as identifiers in a
containing scope, but, in that event, the local definition takes
precedence. In other words, if two identifiers in a scope have the
same name, and one of the identifiers is declared in an inner scope,
a reference to the identifier from the inner scope refers to the local
identifier, not the global identifier. Of course, names must be unique
within any scope.

In the following declaration section, identifier X is declared in both
the program and procedure blocks:

PROGRAM Z;
VAR
X : INTEGER;

PROCEDURE CHARCOUNT ;
VAR
X : CHAR;

Since the procedure has redefined the identifier X, any operations
with X within the procedure now relate only to its local definition
as a variable of type CHAR. The global identifier X no longer is
accessible to the procedure.

When a routine is invoked, most of its local variables have arbitrary
values: local pointer variables are set to NIL and local string variables
are set to the null string. Local file variables are initialized to the
closed state. These local variables are allocated on the stack, so any
time a procedure or function invokes itself recursively, each invoca-
tion uses a different set of local variables. Additionally, routines are
reentrant, so that the same routine can be used by more than one
task. (Refer to Chapter 12 for details on multitasking.)

SP/Pascal Routines



SP/Pascal Routines

Routine
Parameters

Using Parameters

The formal parameter list in the declarations for both procedure and
function headers is the same; it takes the following form:

[(formal-element [...;formal-element])]
where formal-element is
[VAR] identifier-list:[RECAST ]] type-identifier

and identifier-list is an identifier or a list of identifiers separated by
commas.

Each identifier in the identifier list is referred to as a formal
parameter. Each formal parameter acts like a locally-declared
identifier within the block of the routine. If the formal parameter is
preceded by the keyword VAR, then it is known as a VAR parameter
or a reference parameter and each identifier acts like a locally
declared variable. Identifiers in VAR parameters can be modified
by statements within the routine block; also, they can be passed to
other VAR parameters.

A formal parameter list not preceded by the keyword VAR is known
as a value parameter. These routine value identifiers are treated as
local constants: they cannot be modified within the block; therefore,
they cannot be used to pass values out of the procedure.

Note that, in SP/Pascal, when an actual parameter of some structured
type (record, array, file, or string) is passed as a value parameter, a
copy of the actual parameter is not constructed.

NOTE: Standard Pascal specifies that value parameters are copied. SP/Pascal
does not copy value parameters for efficiency reasons. To mimic the effect of the
standard Pascal value parameter, declare a local variable and assign the parameter
to it. Perform the copy only when you must do it.

The syntax of both the procedure statement and the function
designator specifies an optional actual parameter list. The actual
parameter lists of both types of routines have the same form:

( expression [, ...expression ] )

The number of expressions, called arguments, in the actual parameter
list must equal the number of identifiers in the corresponding formal
parameter list to avoid a compilation error. Thus, if a routine has no
formal parameter list, its invocation must not have an actual
parameter list.

The type of the expression or variable in the actual parameter list
must be compatible with the type of its corresponding formal
parameter, as defined below.



The following example shows the declaration of the function EXPON
to perform exponentiation, given a power and an integer.

TYPE
POSINT = 0..MAXINT;

FUNCTION EXPON (INT: INTEGER; POWER: POSINT): INTEGER;

VAR
I . POSINT;
OUT : INTEGER;

BEGIN
outT := 1;
FOR I := 1 TO POWER DO
OUT := OUT * INT;
EXPON := OUT;

END;

A statement using this function could be
X:=VY*EXPON ( Z, 3);
The following is a sample procedure to perform exponentiation:
PROCEDURE EXPON ( VAR OUTCOME : INTEGER;

INT : INTEGER;
POWER : POSINT );

VAR
I . POSINT;
OUT : INTEGER;

BEGIN
ouT = 1;
FOR I := 1 TO POWER DO
OUT := OUT * INT;
OUTCOME := OUT;

END;

A possible procedure call would be:
EXPON ( X, Z, 3);

The following program fragment illustrates nested routines: (Routine
declarations can be nested to a maximum depth of eight levels.)

SP/Pascal Routines

Examples



SP/Pascal Routines

Parameter List
Compatibility

PROGRAM NEST(INPUT,OUTPUT);
PROCEDURE HEADS;

CONST
FF = '<014>";
TAB = <117
M= MONTH';
D= DAY,
T = "TEMPERATURE';
PROCEDURE LINE;
CONST
LINET = '
LINE2 =
BEGIN

WRITELN(OUTPUT,LINE1,TAB, TAB,LINE1, TAB, TAB,LINE2);

END; |LINE|
BEGIN |HEADS|
WRITELN(OUTPUT,FF);
WRITELN(OUTPUT,M,TAB, TAB,D,TAB, TAB,T);
LINE;
END; |HEADS |
BEGIN
HEADS;
END. {NEST|

The compatibility rules for all types, except string, are identical:

Actual parameters that correspond to value formal parameters
must be “assignment compatible” with those parameters.

An actual parameter that corresponds to a VAR formal parameter
must have the same type.

The actual parameter that corresponds to a VAR formal parameter
must be assignable; you cannot pass a constant or a literal as a
VAR parameter.

You cannot pass an element of a byte-aligned array of CHAR nor a
single character from a string to a VAR parameter.

Variant tag fields and packed (non-word-aligned) components of
structures cannot be passed as VAR parameters.

A FOR loop index variable may not be passed as a VAR parameter.

For example, using the following declarations:



VAR
. 1..10;
STRING 10;
ARRAY [1..10] OF CHAR;
ARRAY [1..10] OF CHAR BIT 16
RECORD

F:CHAR;

G.H: CHAR BIT 8;

CASE TAG:CHAR OF
A7 (K:CHAR);
END;

0 W > N -

PROCEDURE P(VAR ARG:CHAR);

The following calls to procedure P are illegal:

P(S<<I>>); %Character in a string

P( A[I]); %Character in a byte-aligned array
P( R.G); %Character in a byte-aligned record field
P( R.TAG); %Record tag field

The following calls to procedure P are legal:

P(B[I]); %Character in a word-aligned array

P(R.F); %Character in a word-aligned record field

P(R.K); %Character in a word-aligned variant field

Any string expression can be passed as a string parameter. If the
string actual parameter is a substring and is passed to a procedure
requiring a corresponding VAR formal parameter, assignment to the
formal parameter cannot alter the current length. Any attempt to do
SO causes a run-time error.

Occasionally, it can be advantageous to override the strong type-
checking features in the language. For example, you might want to
treat a set as an array of integers in order to print the set as a
sequence of octal numbers. You can override the type-checking with
the recast option in the routine interface. The inclusion of the
keyword RECAST as a prefix to a type identifier in the formal

SP/Pascal Routines

Recasting Routine
Parameters



SP/Pascal Routines

Routine
Qualifiers

parameter list allows the actual parameter, whatever its type, to be
treated as the formal parameter type for the duration of the routine.
For further details on the recast option (particularly for recasting
file types), refer to Chapter 7, “Input/Output”. For another way to
override strong typing, see the WITH (named with extension)
statement described in Chapter 5. There are two restrictions on this
facility:

1. The actual and formal parameters must occupy the same amount
of storage.

2. String pieces cannot be passed as recast parameters.

For example:

TYPE
DOUBLE =
RECORD
HI, LO : INTEGER;
END;
DBLARRAY = ARRAY [ 1..2 ] OF INTEGER;

VAR
A : DBLARRAY;
B : DOUBLE;

PROCEDURE CVTDBL
( VAR X : RECAST DOUBLE; Y : DOUBLE );
BEGIN

END;

Note that, due to strong typing, the assignment A:=B normally is
illegal. However, the recast facility allows the assignment to be
made using the procedure call CVTDBL (A,B).

Standard Pascal’s program structure requires that all routines be
defined in a single program unit, with each routine declared before
it is used. However, SP/Pascal permits more modular and flexible
programs as detailed in Chapter 8, “Program Structure”.

SP/Pascal provides extensions to allow forward reference to routines
within the program (the forward qualifier); SP/Pascal also provides
for separate compilation (or assembly) with the entry, external,
EXTERNAL CLRE, and external assembly qualifiers. The include
and overlay facilities also can be used to expand the modularity of
programs. Chapter 5 describes each of these program qualifiers. The
SP/Pascal routine calling-sequence details are in Appendix C.



Input/Output

SP/Pascal programs can perform input/output operations using
predefined procedures and functions with arguments of type file.
The standard Pascal file type, text, allows formatted output of the
standard data types. Input also is facilitated, since text files provide
for automatic conversion from character data to, for example, real
or integer values. This chapter describes Pascal files and explains
the predefined procedures used for I/O operations. Table 7.1
summarizes these procedures.



Input/Output

File Formats

Name

CLOSE
EOF
EOLN

FGPOS
FILEAPPEND

FSPOS
PAGE

READ

READLN

RESET

REWRITE

WRITE

WRITELN

Operation

Closes a file and releases the file buffer space
Detects end-of-file using the current file position

Detects end-of-line using the current character position in a
line (text files only)

Retrieves the current file position for random-access read

Opens a file and positions pointer after last data element so
additional write operations append data to end of existing file

Sets the file position for random-access write

Writes a Form Feed to the text file and terminates the print
line

Performs sequential read according to file type and input
argument

Performs sequential read and positions file pointer at the
beginning of the next line after the read (text files only)
Opens an existing file and positions file pointer at beginning
of file in preparation for reading

Opens a file and clears the contents in preparation for
generating a new file

Performs sequential write according to file type and input
argument

Performs sequential write according to file type and input
argument and outputs a New-Line character (text files only)

Table 7.1 Input/output procedures

SP/Pascal data is stored in two different kinds of files: text files and
binary files. Data in text files is represented by sequences of ASCII
characters. For example, the integer —32 would be stored in a text
file as the three consecutive characters —, 3, and 2. Data in binary
(non-text) files always is stored in the same form as its internal
representation. In a binary file, —32 would be stored as a single-word
item with a bit pattern equal to the binary value —32.

Other points of contrast between the two files are:

1. Text files can be printed or displayed at a console while binary
files typically are non-printable.

2. Text files require conversion of numeric data on input and output
while binary files do not require conversion.

SP/Pascal provides a third kind of file format, called variable-length
record format for use in special applications. This format is defined
for files with components of type string.



To increase the performance of I/0O operations in a program,
SP/Pascal provides buffering. When you open a file, you can select a
buffer size by specifying the number of components of the file type
that are to be transferred during each system call. (This extension is
intended primarily for non-interactive files.) Buffering can be
specified with the three file-opening routines, RESET, REWRITE,
and FILEAPPEND described in this chapter.

An SP/Pascal-defined ZREL location called P?STD allows you to
select run-time checking for certain non-standard capabilities. For
I/0 operations, these capabilities are reading and writing to the
same open file, an extended syntax for real numbers during input
conversion, and the value returned for the end-of-line character in
text files. The SP/Pascal run-time routines test the value of P?STD to
control detection of these extended capabilities. The value in P?STD,
by default, is initialized to zero to permit these extensions; however,
the value can be redefined at bind time. (A value of 1 indicates that
you prefer use of these extensions to be flagged as errors at run-time.
The /STD switch to the SP/Pascal Binder macro is described in
Chapter 13.)

This section describes file types and details the predefined procedures
used to perform input/output using variables of the file type.

SP/Pascal provides two predefined text files for I/0: INPUT and
OUTPUT (For assembly language users, these correspond to the
channels ?INCH and ?0UCH. See MP/AOS System Programmer’s
Reference, (DGC No. 093-400051.))

The INPUT and OUTPUT files are defined automatically in the
language as entry variables. Therefore, they can be referred to by
other modules. To use these standard files in a program, it is only
necessary to declare them in the program heading as in one of the
following examples:

PROGRAM TESTA(INPUT,OUTPUT);
PROGRAM TESTB(INPUT);
PROGRAM TESTC(QUTPUT);

A file-type declaration for the structured type, FILE has the following
format:

identifier = FILE OF type

Identifier is the name of the file type, and type is one of the types
described in Chapter 3.

NOTE: Type cannot be FILE, or a structure containing a file type. That is, FILE OF
FILE is explicity disallowed.

Input/Output

I/0 Extensions

Files

Predefined Text Files

Declaring Files



Input/Output

Text Files

String Files

File Variables

Examples of valid file declarations follow:

TYPE
INTFILE = FILE OF INTEGER;
RECFILE = FILE OF RECORD
HI, LO : INTEGER
END;

VAR
XFILE : INTFILE;
YFILE : FILE OF STRING 80;

Text is a standard Pascal predeclared file type. INPUT and OUTPUT
are files of this type. A text file contains elements of type CHAR in
units called lines. Text files correspond to data-sensitive files in the
MP/AOS system. That is, each line is terminated by a delimiter
character called the end-of-line character. The default delimiter
characters are Null, New Line, Form Feed, and Carriage Return.
Using end-of-line characters as line terminators allows the length of
a line in a text file to vary.

To declare a text file, write

VAR file : TEXT

File is the name of one of the file variables you use in your program
for 1/0 operations.

NOTE: I/O operations on files of text are extended in SP/Pascal to allow the
writing of byte-aligned or packed arrays of characters (type CHAR).

The SP/Pascal file of type string has an ANSI- and AOS-compatible
variable-length record format. In this format, the first four bytes are
used for an ASCII length field, followed by the actual characters.
The maximum number of characters in a variable-length record is
9995 as a result of this format. For example:

TYPE
VAR F = FILE OF STRING 80;
FFF;

FF’'s elements are strings whose lengths may vary from 1 to 80
characters.

For SP/Pascal the definition and use of files is extended so that all
file variables have a word size that is specified by the predefined
value parameter FRCSZ. (Refer to the assembly language parameters
specific to SP/Pascal listed in Appendix E and supplied in the file
SYSPASCAL.SR.) When a file is opened with either the RESET,
REWRITE, or the FILEAPPEND procedure, space for the file buffer
is allocated on the heap (see Chapter 9, “Dynamic Variable Pointers,”



for a description of the heap). This SP/Pascal extension conserves
storage for unopened files and permits the actual size of the file
buffer to be determined at run-time, an important feature for
multi-element I/0 operations.

SP/Pascal permits you to control I/0 operations by specifying the
number of file elements to be allocated in the in-memory file buffer
associated with a file variable. The RESET, REWRITE, and
FILEAPPEND procedures are extended to accept an (optional) third
parameter that allows you to provide an integer value representing
the element count for the buffer.

NOTE: You must supply a filename (the second parameter) in order to use this
extension.

When the third parameter is specified, all system-level I/0 operations
are done in units of the element count multiplied by the byte
representation size of the element type. The rules used to determine
the byte size of a file component are the same as those for determining
the size of an array component. (Refer to the end of Chapter 3.) This
facility allows a convenient mechanism for multi-element I/0 and
removes any line limit for text files. It reduces the number of system
calls required to process a file, and can improve performance
dramatically.

Both text and non-text (binary 1/0) files can use this feature. For
text files, when the third parameter is omitted, all reads and writes
are done as data-sensitive operations, a line at a time. Otherwise,
dynamic I/0 is performed. The element count feature is transparent
when you are using non-interactive files. However, for interactive
files, an element count must be used with caution, since it could
affect the timing of the I/0. (For an example of this facility, refer to
the detailed description of the RESET procedure in the following
section.)

Before a file can be read or generated, it must be opened. RESET
opens a file for reading, REWRITE opens a file for writing, and
FILEAPPEND opens a file for writing new data to the end of file.
SP/Pascal extensions to the I/0 procedures provide CLOSE for closing
an open file, as well as, for random-access, FGPOS for retrieving the
current file position and FSPOS for setting the file position.

RESET initializes a file for reading and positions the file pointer at
the beginning of the file (the first data item position). The first
READ after a RESET accesses the first element in the file. If the file
is not empty, EOF is set to false. You must reset all input files except
for INPUT before reading from them. The format for the RESET
procedure is

RESET (file [, external-pathname[,components]])

input/Cutput

Multi-Element I/0
Operations

I/0 Procedures

RESET



Input/Output

File is a file variable. The file parameter must be assignable; it
cannot be a value parameter in the current routine. External-
pathname is an optional string parameter naming a file or device to
be reset. Components is an optional parameter for file buffering.

When you do not specify external-pathname, the file associated with
file already must be open. SP/Pascal sets the file position to the
beginning of the file. If the file is closed, the procedure causes an
error at run-time when P?STD is set. Without P?STD set, the RESET
procedure creates a temporary scratch file for output.

For example:
VAR F : TEXT;

BEGIN
RESET(F, "ROUTES ) ;

Here ROUTES is the external pathname of a file open for reading
and associated with file variable F.

Components specifies the number of file components to be allocated
in the in-memory file buffer associated with this file variable. This
SP/Pascal extended parameter permits you to specify the number of
file components to be transferred during each system call. The
default value is the number of bytes for a single file component.

For example, consider the following files and calls to the RESET
procedure:

VAR
F-TEXT;
G:FILE OF INTEGER;

RESET(F, '@TTI"); %Call Number 1

RESET(F, 'DATA1’.512); %Call Number 2

RESET(G); %Call Number 3

RESET(G, 'DATA2’,256); %Call Number 4



In Call Number 1, the text file F is opened on the external file
named ‘@TTI'. Since no third argument is specified, reading from
the file is performed with data-sensitive operations. In Call Number
2, F is opened on the external file 'DATA1,’ but this time an element
count is given. The read operations on this file are done in units of
512 bytes. SP/Pascal correctly processes READLN and EOLN opera-
tions on this file using the standard default data-sensitive delimiters:
Null, Form Feed, New-line, and Carriage Return.

Call Number 3 opens the non-text file G with no optional parameters.
In this case, the variable G must already be open or an error occurs
at run-time. The I/0 operations are performed in units of two bytes.
In Call Number 4, G is opened on the external file ' DATA2" with an
element count of 256. The I/0 operations are executed in units of
512 (BYTESIZE(INTEGER) * 256) bytes.

SP/Pascal enhances random I/0 operations and file updating by
permitting optional write operations to be performed on a file opened
for input with RESET, according to a global flag P?STD. If P?STD is
left set at its zero default value at bind time, both reading and
writing are permitted for the file. When P?STD is non-zero, writing
to the RESET-opened file causes a run-time error.

REWRITE initializes a file for writing by creating a new file, opening
it, and setting EOF to true. The file pointer is positioned at the
beginning of the file (the first data item). The syntax is

REWRITE (file [,external-pathname[,components]])

File is a file variable. The file parameter must be assignable and
cannot be a value parameter in the current routine. External-
pathname is an optional string parameter identifying a file or device
to be opened for writing. Components is the optional file buffering
parameter. You must use the REWRITE command on any output
files (except for OUTPUT) before you write. For example:

VAR F : TEXT;

BEGIN
REWRITE(F, 'LISTS );

When you do not provide an external-pathname in the REWRITE
command, the file variable is closed if it is open, deleted if it is a
temporary file, and a temporary scratch file is opened for output.
For example:

REWRITE(F);

REWRITE

input/Output



Input/Output

FILEAPPEND

Once the temporary scratch file is generated, you can read its contents
using the RESET statement without an external-pathname, for
example:

RESET(F);
NOTE: All temporary files are deleted when the program terminates.

Components specifies the number of file components to be allocated
in the in-memory file buffer associated with this file variable. This
SP/Pascal extended parameter permits you to specify the number of
file components to be transferred during each system call. The
default value is the number of bytes for a single file component.

SP/Pascal enhances random I/0 operations and file updating by
permitting optional read operations to be performed on a file opened
for output with the REWRITE command, according to a global flag
P?STD. If P?STD is set to zero, both reading and writing are permitted
for the file. (The default for P?STD is zero.) When P?STD is set to a
non-zero value with the /STD switch at bind time, writing to the file
opened with the RESET command causes a run-time error.

This statement can be used in place of REWRITE to append data
following the last element in the file. FILEAPPEND opens the file or
device specified by external-pathname. If the file does not exist, it is
created. In the case of a pre-existing file, the file pointer is set
immediately after the end of the former data, and EOF is set to true.
The syntax is

FILEAPPEND (file, external-pathname[,components])

File can be a file of any type. The file parameter must be assignable
and cannot be a value parameter in the current routine. External-
pathname is a string parameter identifying a file or device to be
opened for appending data. Notice that external-pathname is a
required argument to this routine. Components is the optional file
buffering parameter.

For example, to update a file LISTS created in the REWRITE
statement:

BEGIN
FILEAPPEND(F, 'LISTS")

It is also possible to create a new file. In that case, the file pointer
points to the beginning of the new file. For example:

BEGIN
FILEAPPEND(F, NEWF’)

where NEWF is the external-pathname of a new file or device.



Components specifies the number of file components to be allocated
in the in-memory file buffer associated with this file variable. This
SP/Pascal extended parameter permits you to specify the number of
file components to be transferred during each system call. The
default value is the number of bytes for a single file component.

SP/Pascal enhances random I/O operations and file updating by
permitting optional read operations to be performed on a file opened
for output with FILEAPPEND, according to a global flag P?STD. If
P?STD is set to zero, both reading and writing are permitted for the
file. (The default for P?STD is zero.) When P?STD is non-zero, writing
to the RESET-opened file causes a run-time error.

CLOSE closes a specified file and releases the file buffer space in the
heap. The syntax is

CLOSE (file);

File is a file variable. The file parameter must be assignable and
cannot be a value parameter in the current routine. For example:

VAR F . TEXT;

BEGIN

CLOSE(F);

If the file specified with the CLOSE command is not open, a run-time
€ITor OCCUrs.

Two predefined procedures are provided in SP/Pascal for file
positioning for random access, FGPOS, for retrieving the current file
position, and FSPOS, for setting the current file position.

FGPOS returns the current file pointer position, a 32-bit number
pointing to the next byte in the file to be read or written. FGPOS is
the equivalent to the system call ?GPOS. The syntax is

FGPOS (file,position)

File is a file variable. The file parameter must be assignable; it
cannot be a value parameter in the current routine.

Position represents a 32-bit unsigned quantity. Position must be an
assignable parameter with a size equal to two words.

For an example of FGPOS, refer to the following paragraphs on
FSPOS.

Input/Output

CLOSE

File-Positioning
(Random-Access)

FGPOS



Input/Output

FSPOS

FSPOS allows you to set the file pointer position to the value specified.
FSPOS is the equivalent to the system call ?SPOS. The syntax is

FSPOS (file,position)

File is a file variable. Position represents a 32-bit unsigned quantity:
the position, after the call, of the next byte to be read or written.

The following program illustrates the use of FGPOS and FSPOS to
perform random-access operations on a file of records. The records
in the file simulate a list, which uses the file position as links.
Remember that after a read or write operation, the file position is
advanced to the next sequential record.

PROGRAM DISK.LIST;

TYPE
POSITION = RECORD HI,LO:INTEGER END:
DISK_REC = RECORD
FORWARD_LINK , BACKWARDLL INK : POSITION:
DATA:STRING 80:
END;
CONST
NILLLINK = POSITION(-1.-1);
FIRST_REC = POSITION (0.0):
VAR

CURRREC ,NEW.REC : DISKREC:
DATABASE:FILE OF DISKREC;
CURR_POSITION,NEXT_FREE_POSITION:POSITION;

PROCEDURE APPEND_RECORD;

BEGIN
NEW.REC . FORWARD_LINK := CURRREC.FORWARD_LINK;
NEW.REC .BACKWARD_LINK := CURR_POSITION;
CURR-REC . FORWARD_LINK := NEXT_FREE_POSITION;
FSPOS(DATABASE, CURR_POSITION);
WRITE(DATABASE, CURRREC) ;
FSPOS(DATABASE ,NEXT_FREE_POSITION);
WRITE(DATABASE ,NEWREC);
FGPOS(DATABASE ,NEXT_FREE_POSITION);

END:

BEGIN
FILEAPPEND(DATABASE, 'TEST');
FGPOS(DATA_BASE , NEXT_FREE_POSITION);
CURR-POSITION:= FIRSTREC;
IF NEXT_FREE_POSITION = FIRST-REC THEN BEGIN



WITH CURRREC DO BEGIN
FORWARDLINK:= NILLINK;
BACKWARDLLINK:= MIL_LINK;
DATA:= "INITIAL DATA';

END;
WRITE (DATABASE,CURRREC);
FGPOS(DATABASE ,NEXT_FREE_POSITION)

END
ELSE BEGIN
FSPOS(DATABASE, FIRSTREC);
READ(DATABASE, CURRREC) ;
END
NEWREC.DATA:= "EXAMPLE DATA’;
APPENDRECORD;
END.

The two standard I/0 functions, EOF and EOLN are used to test for
and identify the end of a file (EOF) and the end of the current line
(EOLN) within a text file. These functions can be used to test the file
position during reading.

The syntax for EOF is
EOF (file)

EOF returns the Boolean constant true when the end of the file is
reached. Otherwise, the function returns the Boolean constant false.
EOF can be used on both text files and binary files. If file is omitted,
EOF refers to the standard file INPUT.

The syntax for EOLN is
EOLN (textfile)

EOLN returns the Boolean constant true if the end of the current line
in textfile is reached, that is, if the next character to be read is one
of the legal line delimiters (Carriage Return, New-line, Form Feed,
or Null). Otherwise, the function returns the Boolean constant, false.
If textfile is omitted, EOLN refers to the standard file INPUT.

NOTE: This function applies only to files of type TEXT.

There are five procedures for performing I/0 operations on text
files: READ, READLN, WRITE, WRITELN, and PAGE.

Note that default file references are supported in each of these
procedures. When you omit the file variable in an output reference
such as WRITE or WRITELN, the standard file OUTPUT is used.

Input/Output

Text File
Position-Testing

EOF

EOLN

I/0 Procedures
(Text Files)



Input/ Output

READ
(Text Files Only)

Similarly , if you omit a file variable in an input reference such as
READ, READLN, EOLN or EOF, the standard file INPUT is used. If
you intend to use INPUT and OUTPUT files, either by specific
reference or by default, you must declare them in your program
heading.

The syntax for the READ procedure is
READ ([file,] var[...,var,])

The READ routine sequentially reads in data from file (or from the
standard text file INPUT if file is omitted). After the read, the file
pointer points after the last item read. Var; through var, are
variables. For text files, allowable types for these variables are real,
character, string, boolean, integer, whole or double_real, or
subranges of integer, character or boolean.

Data is associated with a variable according to its position in the
file. That is, the first data value in the file is associated with the first
variable, the second value with the second variable, and so on.

When reading integers or reals, data is scanned until a character
that cannot be part of a valid numeric constant of that type is
encountered. Following this scan, the characters are used to build a
signed number whose value is then assigned to the variable in the
READ statement. If the sequence of characters does not form a
signed number, or if the value assigned to the variable is not
assignment-compatible with the type of variable, the result is a
run-time error.

For error processing on conversion, use the appropriate DG-supplied
routines (ST2SI and ST2DI) described in Chapter 10. When using the
procedures, you should read numeric values into a string and then
convert them.

To read reals and double-reals, if P?STD is zero (default), the syntax
of reals is extended to include the syntax of integers, e.g., 1.0 and 1
are both valid. The syntax is restricted to standard Pascal style if
P?STD is non-zero. You may also use exception handling to recover
from conversion errors (see Chapter 8).

The format for entering reals or integers is the same as the legal
format described in Chapter 3 for integer, whole, real and dou-
ble_real constants. Decimal values are the only values permitted;
the alternate radix notation is not supported.

Reading a character simply assigns the next character in the text
file to the character variable. This could cause EOLN (textfile) to
become true, in which case the character returned is the line
terminator.



In SP/Pascal you can choose to have a space character returned as
the end-of-line character, rather than having the actual delimiter
character in the file (New-line, Carriage Return, Null or Form Feed)
returned when EOLN is true. When P?STD is non-zero, the space
character is used; otherwise, the usual delimiting characters are
used.

String variables are flexible. In SP/Pascal, string variables do not
overflow when read, and do not produce an error. In SP/Pascal,
when the number of characters remaining in the current line exceeds
the declared maximum length of the string, the string is filled only
to its maximum length, permitting you to perform some simple
input formatting. If the number of characters remaining in the input
line is less than or equal to the maximum length of the string, then
the remaining characters are assigned to the string, and its length is
adjusted.

Reading strings from a textfile is data sensitive, that is to say, the
remainder of the current line and the delimiter are assigned to the
string. If EOLN (textfile) is true, only the delimiter is assigned to the
string.

When reading Booleans from a text file, the system reads one
character (upper-case or lower-case) at a time and attempts to match
the largest substring corresponding to either true or false.

The following illustrates a READ procedure. Note that, as an example
of the default file parameter, file is omitted in the output reference
WRITE.

PROGRAM IOTEST(INPUT,OUTPUT);

VAR
F : TEXT;
LINE, STARS : STRING 80;

BEGIN

RESET(F, 'PROSE’);
WHILE NOT EOF(F) DO

BEGIN
READ(F,LINE);
WRITE(LINE);
END;

END.

Input/Output 8§



Input/Output

READLN
(Text Files Only)

WRITE
(Text Files Only)

The syntax for READLN is
READLN [([textfile,] [var][...,var])]

READLN reads in data from a textfile in the same way as READ
except that after the procedure call is executed, the pointer is
positioned at the beginning of the next line. (Before READLN can be
used, the file must be opened with the RESET procedure.) If there is
no next line (EOF (textfile) is true), then any further request to read
that file causes an error.

Examples
READLN(F);

This statement causes the pointer to skip to the next line in the file.
Assume a textfile contains the following characters:

54 123 19
4 122 157
349 10 45

If variables I and J are declared as integers, the statement
READLN(F,I)

assigns I the value 54. The two remaining numbers on the line are
ignored and the pointer is set at the beginning of the second line. If
the next operation is

READLN(F,J)

J is assigned the value 4, and the pointer is set at the beginning of
the third line. If VAR is not specified, the pointer skips to the
beginning of the next line.

NOTE: This procedure applies to text files only. Non-text files can be read only
with the READ procedure.

The syntax for WRITE is
WRITE ([file,Jitem[...,item,.])

Once a file is opened with REWRITE or with FILEAPPEND, WRITE
can be used to write the value(s) of the item(s) to the specified file or
to the standard file OUTPUT when you omit the optional file
argument. The value(s) of the item(s) are written in the same order
as expressed in the actual argument list. Items can be expressions of
type character, Boolean, real, string, integer, whole, double_real, or
subranges of integer, character, whole, or Boolean.

Items of type CHAR or string are written without conversion, but
expressions of other allowable data types are converted to strings;
Boolean values are written as either true or false; real values are
written in scientific notation; integer or subranges of integer values
are written in signed decimal notation.



The values of items are printed with a default field width (number
of columns), which depends on the data type.

You can specify an explicit field width to override the default with
the following format:

WRITE (file, x:y);

File is the name of the file; x is the name of the item which can be of
type integer, Boolean, whole, double_real, character, string, or real;
y is the maximum field width to be assigned to the item.

If the size of x is less than y (that is, if the number of characters
required to represent x is less than the maximum field width assigned
to it), x is preceded by a number of blanks equal to the difference in
width between the size of x and y. If y is equal to zero, and the type
of x is either CHAR or string, then nothing is printed. If P?STD is
non-zero, then setting y equal to zero causes an error. If P?STD is
zero, or if the type of x is other than CHAR or string, then setting y
to zero or less causes an error.

To write real numbers in fixed-point notation, use the format
WRITE ([textfile,] x:y:2);

File is the name of the file; x is the item; y is the maximum field
width; and z is the number of digits to appear following the decimal
point. Again, if y is greater than the width of x, x is preceded by a
number of blanks equal to the difference between x and y. If y is less
than or equal to zero, a run-time error occurs.

When you do not specify a field width, SP/Pascal uses the default
values shown in Table 7.2.

oty

c representation and a sign (if negative)

Table 7.2 Default values for WRITE field width

Because WRITE generates a continuous print line, you must specify
a termination point for the line. You can do this with WRITELN,
which terminates the current line and emits the New-line character.
The PAGE procedure can also be used to terminate a line.

Input/Output



Input/Output

NOTE: You must REWRITE or FILEAPPEND all files except OUTPUT before writing

to them.
Example 1
PROGRAM IOTEST(INPUT,OUTPUT);
VAR
F . TEXT;
LINE,STARS : STRING 80;
BEGIN
REWRITE(F, 'PROSE’);
WHILE (LINE < > STARS) DO BEGIN
READ(INPUT,LINE);
WRITE(F,LINE);
END;
END.
Example 2
PROGRAM FIELDWIDTH(INPUT,OUTPUT);
VAR
F : TEXT;
NUM,COUNT M : INTEGER;
BEGIN
COUNT := 0;
READ(NUM) ;
REPEAT
M := NUM * 10;

WRITELN(NUM:5,M:10);

COUNT := SUCC(COUNT)

NUM := M;

UNTIL(COUNT = 4);
END.

Note that file is omitted from the input and output statements.

The output of this program looks as follows:

1 10
10 100
100 1000

1000 10000



The syntax for WRITELN is
WRITELN [([textfile,] [item][...,item,])]

WRITELN terminates a print line. You can use WRITELN as a line
terminator immediately after a WRITE statement, or you can use it
instead of a WRITE statement as in the following two equivalent
examples:

WRITE (X, A + B); WRITELN(X);

WRITELN (X, A + B);

X is a text file and A and B are variables of integer or real type.
When you do not specify a text file, the standard file OUTPUT is
used.

NOTE: WRITELN is permitted only on files of type text. Non-text files must use
the WRITE procedure.

You can specify field widths with WRITELN. See WRITE for details.

The following program illustrates one method of prompting a user
for input. The sequence of I/0 statements must be executed in the
order shown. First, the prompt message is displayed. Second, a test
for end-of-file should be performed. Finally, the actual data is read.

PROGRAM DISPLAY_CHAR(INPUT,OUTPUT);
CONST EXITED = FALSE;
VAR CH:CHAR;
BEGIN
REPEAT
WRITE ('TYPE A CHARACTER : ');
IF EOF(INPUT) THEN EXITLOOP;
READLN(CH);
WRITELN('THE DECIMAL VALUE IS ’,O0RD(CH));
UNTIL EXITED;
END.

The following program demonstrates simple loops to read a file until
the end-of-file condition occurs and to read a line of text until the
end-of-line occurs.

Input/Output 8 9

WRITELN
(Text Files Only)



Input/Output

PAGE
(Text Files Only)

PROGRAM REMOVE_TABS(INPUT,OUTPUT);

CONST
TABSIZE = 8;
TAB= "<1D>';
BLANK = '
NULL = '<0>";

VAR INFILE,OUTFILE:TEXT;
NEXTCHAR:CHAR;
COLUMN, NUMBLANKS , ITERATION : WHOLE ;
FILENAME:STRING 136;

BEGIN
WRITE( Name of input file: ');
IF NOT EOF THEN READLN(FILENAME) ELSE RETURN;
FILE-NAME<< LENGTH(FILE-NAME) >>:= NULL;
RESET(INFILE,FILENAME,512);
WRITE( Name of output file: ');
IF NOT EOF THEN READLN(FILENAME) ELSE RETURN;
FILE-NAME<< LENGTH(FILE-NAME) >>:= NULL;
REWRITE(OUTFILE, FKILE-NAME,512);
WHILE NOT EOF(INFILE) DO BEGIN
COLUMN:= 1;
WHILE NOT EOLN(INFILE) DO BEGIN
READ(INFILE,NEXTCHAR);
IF NEXTCHAR = TAB THEN BEGIN
NUM_BLANKS:=TAB.SIZE - (COLUMN MOD TAB.SIZE);
FOR ITERATION:= 1 TO NUMBLANKS DO
WRITE(OUTFILE,BLANK);
COLUMN:= COLUMN + NUMBLANKS;
NEXTCHAR:= BLANK;
END;
WRITE(OUTFILE,NEXTCHAR);
COLUMN:= SUCC(COLUMN) ;
END; {not eoln}
READLN(INFILE); {next line|
WRITELN(OUTFILE);
END. {not eof|

The syntax for PAGE is
PAGE (textfile)

PAGE writes a Form Feed to the text file and terminates the print
line.



Two procedures perform I/0 operations on non-text files: READ and
WRITE. Non-text files include files with binary data and files of
strings.

The syntax for a READ procedure is
READ (file, var4[...,var,])

READ sequentially reads in data items from the file named by file
and assigns those items to the actual arguments in the parameter list
(vary,...,var, in the above format). Each argument must be of a type
identical to that of the file. The elements of the files are transferred
directly: no data conversion is performed.

The syntax for a WRITE procedure is
WRITE (file, item ...,item,])

WRITE sequentially writes the value(s) of the item(s) to file. The
items are expressions of the file type. No data conversion is allowed
and none is performed. As with any other file except OUTPUT, you
must REWRITE or FILEAPPEND the file before writing to it.

SP/Pascal treats files of type string in a special way. These files are
composed of variable-length records. Each record consists of an
integer four-byte count as its first field, followed by the actual data
bytes. The maximum byte count is specified by the length of the
string in the file type definition but is not to exceed 9995.

For example,

TYPE
F = FILE OF STRING 20

specifies a maximum record length of 20.

When writing to a file of type string, the current lengths of all
arguments must be less than or equal to this maximum byte count.
The length of the string argument is written, followed by the current
string value.

When reading from a file of type string, the string argument is
initialized to the contents of the next record in the file. If the string
MAXLENGTH is not large enough to accommodate the current
record, a run-time error is generated.

This file format is ANSI standard, and can be read, under AOS,
using the variable record format.

Input/Output

I/0 Procedures
(Non-Text Files)

READ

WRITE

Files of Type String







SP /Pascal Program
Structure

SP/Pascal provides for modular design in the program structure
itself. While a standard Pascal program must be a self-standing unit
that contains all of the information and code necessary for processing
and execution, SP/Pascal programs are not limited to a single unit.
Separate compilation units (precompiled object modules) can be
bound into a final program.

This chapter describes the modular structure of a program written
in SP/Pascal. Details of the source statements that make up the
various program components are provided in other chapters. Chapter
13 covers program compilation and provides an overview of program
implementation from compilation through program testing and
execution.




SP/Pascal Program Structure

Source Program
Components

Separate Compilation
Units

Program Components

An SP/Pascal program can include separate program and module
compilation units along with various program qualifiers. The modu-
lar structure of the language enables an SP/Pascal program to

* accept separate compilation units for modularity of programming;
 share routines and variables among modules;

* interface with assembly language routines or with any language
that supports Common Language Run-Time Environment (CLRE);

* send and receive system data through calls to the MP/AOS
operating system.

A compilation unit is an already-compiled object module. There are
two kinds of compilation units: program and module. The units
serve as separate components that make up an executable SP/Pascal
program. Every executable program developed in SP/Pascal is made
up of exactly one program compilation unit; optionally, the program
can contain one or more module compilation units. Every program
or module that is compiled produces a separate object file.

A program compilation unit is an executable unit that contains an
executable statement section. A program can also contain a declara-
tion section of program variables and routines along with references
to routines. The program could be an independent source program
that does not require additional code, or it could be a program that
uses routines and declarations external to it (in one or more module
compilation units).

A module compilation unit is a unit that contains one or more
declarations (for constants, variables, procedures and/or functions),
but no executable statement section.

A source program contains a program-heading and a program-block.
The one-line program-heading gives the whole program its name
and lists the program-parameters. The term program-block refers to
the remainder of the source program. It includes a declaration
section, which sets out all of its specific definitions, and an executable
section, which specifies the operations to be performed on those
definitions.

The syntax for the program heading is

PROGRAM program_name [program__parameters];

Program__parameters is a parenthesized comma-list of identifiers
representing external data files. The acceptable arguments are
INPUT and OUTPUT. (I/0 is described in Chapter 7.) Examples of
typical program headings follow:



PROGRAM MY_—PROG (INPUT,OUTPUT);
PROGRAM READFILE;
PROGRAM MY__REPORT(OUTPUT) ;

The program-block of a simple program consists of a declaration
section and the statement section. A large program'’s program-block
can be made up of an extensive declaration section with global
declarations, external routine definitions and external variable
references to be resolved at bind time, and directives for including
other source files in the same compilation. The declaration section
can have a number of procedure declarations, each with its local
variable declarations and statements. Detailed descriptions of these
components appear in Chapter 3.

* Declaration section: declarations of all the global variables,
constants, and routines used by the program. All program
identifiers must be defined before they are used.

* Statement section: sequence of executable program statements,
delimited by BEGIN and END statements.

For example, a typical source program submitted to the compiler has
the following general format:

PROGRAM HEADING

DECLARATION SECTION
CONSTANT DECLARATIONS
TYPE DECLARATIONS
VARIABLE DECLARATIONS
EXTERNAL DECLARATIONS
INCLUDE SPECIFICATIONS
PROCEDURE & FUNCTION DECLARATIONS

STATEMENT SECTION

BEGIN
STATEMENT(S)
END.

Note that the final END statement completing the statement section
is followed by a period (.). This syntax indicates the final program
statement to the SP/Pascal compiler.

Like a program, a module compilation unit contains a module-heading
and a module-body. However, a module cannot execute as an
independent unit; it requires binding with a program. The heading
names the module, and the block of source text can contain any
number of declarations. The text can be one or more complete
routines, a number of commonly used procedure or function declara-
tion sections, constant declarations, or variable declarations.

E |

SP/Pascal Program Structure

Module Components




SP/Pascal Program Structure

Program
Qualifiers

Variable Qualifiers

The format of a module heading is

MODULE module-name

For example,
MODULE MY_IO;

identifies the type of compilation unit and names it MY_IO.

For modules with routine declarations, the final END delimiter is
followed by a semicolon. For modules without routines, the final
declaration is followed by a semicolon.

A module consists of a module header followed by a declaration
section. A typical source module submitted to the compiler has the
following general format:

MODULE HEADING

DECLARATION SECTION
CONSTANT DECLARATIONS
TYPE DECLARATIONS
VARIABLE DECLARATIONS
EXTERNAL DECLARATIONS
INCLUDE SPECIFICATIONS
PROCEDURE & FUNCTION DECLARATIONS

Normally, all routines and variables are defined in a single program
unit, and a routine or variable must be declared before it is used.
SP/Pascal allows forward reference to routine declarations within
the program or module (the FORWARD qualifier); SP/Pascal also
provides for separate compilation (or assembly) with the ENTRY
and EXTERNAL qualifiers (which can apply to both routine and
variable declarations). The INCLUDE and OVERLAY facilities also
can be used to expand the modularity of programs. The following
sections describe each of these program qualifiers and facilities.

The syntax of variable declarations is extended to allow storage
qualifiers as follows:

[qualifier] VAR var-declaration1 [ ...;var-declaration2 |

Where qualifier for a variable declaration can be ENTRY, EXTER-
NAL, ZREL, ENTRY ZREL, or EXTERNAL ZREL. Each qualifier is
detailed in the following paragraphs. The two external qualifiers
(EXTERNAL and EXTERNAL ZREL) can be used in variable declara-
tions that occur at any routine level. The three remaining qualifiers
(ENTRY, ZREL, and ENTRY ZREL) can be specified only for variables
that are declared at the global level. This restriction is necessary
because these variables are allocated static (fixed) program storage
locations.



ZREL Variable Designator

A new storage class qualifier for variables is provided in SP/Pascal.
The reserved word ZREL can be used to direct the compiler to
allocate storage in the zero-relative or ZREL (page O) partition. The
qualifier must precede the keyword 'VAR' in the variable declaration.
Only variables declared at the global level can have this qualifier
present. For example:

ZREL VAR 1i:integer

Variables that reside in the ZREL partition can be accessed more
efficiently than other global variables. For this reason, frequently
used variables should be placed in this partition. However, the total
size of ZREL cannot exceed 216 words.

NOTE: Not all ZREL storage space is available for program variables; a small
amount of ZREL storage is used by some of the run-time routines.

ENTRY Variable Designator

The ENTRY designator makes a variable visible (“global”) for
reference by other modules. Once a variable is declared as an ENTRY
variable it can be shared among any number of modules. A shared
variable is directly accessible to the routines in the modules that
share it. Using shared variables provides an alternative to passing
variable values as routine parameters.

ENTRY variables are allocated in the ZREL area (when the ZREL
qualifier is specified), or in the program impure area. This convention
guarantees that the storage area for variables is available for the
duration of the program. For example:

ENTRY VAR f:text;
ENTRY ZREL VAR t:boolean;
i,j:integer;

To share a variable, one module declares it with an ENTRY qualifier,
and all other modules declare it with an EXTERNAL qualifier.

EXTERNAL Variable Designator

The EXTERNAL designator specifies a variable as having its storage
allocated by another compilation unit. That is, the variable’'s value is
available for use throughout the entire program. The EXTERNAL
designation makes the variable names globally visible from the
module (or routine) in which it appears. (Variables declared as
EXTERNAL reserve no space in the compilation unit.) These vari-
ables then can be referenced to like any other global variables. For
example:

SP/Pascal Program Structure

i gty
re



SP/Pascal Program Structure

Routine Qualifiers

MODULE utilities;
CONST STACKMAX = 20;

EXTERNAL VAR stack:array[1..stack-max] of 0..maxint;
EXTERNAL ZREL VAR stack_top:0..stackmax;
stackoverflow : boolean; |odd|
ENTRY FUNCTION previous:integer;
begin
if stack_top > 1 then previous:= stack[pred(stack_top)]
else previous:= -1;
end;

The syntax of routine declarations is extended to allow program
qualifiers as follows:

[storage-qualifier [call-qualifier]] [FORWARD]routine-declaration

The storage qualifiers for routines are ENTRY and EXTERNAL. The
allowable call qualifiers are CLRE and ASSEMBLY. The permissible
combinations of storage and call qualifiers are ENTRY CLRE,
EXTERNAL CLRE, and EXTERNAL ASSEMBLY. The FORWARD
qualifier also can be used in combination with the ENTRY qualifier.
Any of these qualifiers can be omitted from a routine declaration.
When the storage qualifier is not specified, the routine name is
visible (global) only to the current module. When the call qualifier is
omitted, the normal SP/Pascal calling convention is used by default.
(SP/Pascal routine calling conventions are detailed in Appendix C.)

The SP/Pascal CLRE qualifier allows for interface with other
Common Language Run-time Environment (CLRE) languages. When
youdeclare ENTRY CLRE, SP/Pascal expects all required parameters
to be passed in the standard CLRE stack order, rather than by the
default accumulator method. The EXTERNAL CLRE declaration
causes parameters to be passed in the standard CLRE stack format.
Details of CLRE processing are provided in Appendix C. A sample
EXTERNAL CLRE declaration is:

EXTERNAL CLRE PROCEDURE MOLE (VAR MW:REAL; G:REAL; MOLAR:REAL);

External Assembly Routine Designator

SP/Pascal provides several mechanisms for interfacing with routines
written in assembly language. The EXTERNAL ASSEMBLY designa-
tor directs the compiler to generate the same calling sequence and
parameter passing conventions that are generated by the MP/Pascal
compiler. This designator is used to permit a common interface to
assembly routines for both SP/Pascal and MP/Pascal programs.
SP/Pascal assembly language routines also can use the default calling



convention (used for other SP/Pascal routines) or the CLRE calling
convention described in Appendix C. (Like SP/Pascal routines, the
assembly language routine must have a unique name within the
program.)

External assembly procedures are declared in the same way as
external procedures. See Appendix C for details about communicating
with assembly language.

FORWARD Routine Reference

The FORWARD qualifier allows you to refer to a routine that is not
yet declared but that does appear further on in the same source. (The
compiler must be able to resolve the routine’s name as a defined
symbol, or the declaration is considered an error.) The language
allows you to identify just the routine name and any parameters it
takes without declaring the full procedure or function until further
on in the source; the forward reference is declared by specifying the
routine identifier, routine name, and parameters, along with the
reserved word FORWARD.

A forward reference can be useful with two routines, each of which
calls the other. Additionally, forward references provide for several
routines that call each other. The keyword FORWARD is used in a
routine identifier and can appear either before or after the routine
name as follows:

[ENTRY] [FORWARD] PROCEDURE | FUNCTION routine [(parameter-list)]
[ENTRY] PROCEDURE | FUNCTION routine [(parameter-list)]; FORWARD;

If the first form is used, there is no procedure body. If the second is
utilized, then FORWARD replaces the procedure body.

SP/Pascal allows you to repeat a parameter list in a procedure or
function declaration that is referred to by a forward declaration.
(This is an extension to standard Pascal.) The repeated parameter
list is optional. If it is present, it is checked for identity with the one
given with the forward definition. For the repeated list to be
identical, all the parameter names and modes (VAR or value) and
the parameter types must match. This extension makes the source
program easier to read, since it is no longer necessary to separate the
arguments textually from the routine body that refers to them. For
example, the following declarations are accepted:

PROCEDURE P(VAR CH:CHAR; LINE:STRING 10); FORWARD;

PROCEDURE P(VAR CH:CHAR; LINE:STRING 10);

SP/Pascal Program Structure



SP/Pascal Program Structure

However, the declaration
PROCEDURE P(VAR X:CHAR; LINE:STRING 10);
would be diagnosed as an error by SP/Pascal.

ENTRY Routine Designator

The ENTRY designator makes a routine visible to calls from other
modules. (The calling module designates the routine as outside by a
corresponding EXTERNAL declaration.)

EXTERNAL Routine Designator

The EXTERNAL designator specifies a routine as being declared
outside of the program or module compilation unit. A routine
designated as EXTERNAL to a compilation unit must be declared as
an ENTRY in another unit.

Referring to External Routines or Variables

The routine or variable name must be unique; it cannot be the same
as any other routine or variable name in any other module of the
program. If there are two global routines or variables with the same
name but in different modules, an error is detected at bind time.

NOTE: SP/Pascal creates external references only for those routines and variables
that actually are accessed in the module being compiled. This convention is
another aid for program development and the construction of include files.

In SP/Pascal, benign redefinition is permitted only between two
EXTERNAL definitions or an EXTERNAL and an ENTRY definition.
Parameter lists must use identical names for the parameters and
their types. (This is the same rule used for repeated parameter lists
in FORWARD referenced routines.)

Example of Separate Routines

In the following example, the module named TWO illustrates the
declaration of external variables and routines to match the ENTRY
declarations in module ONE. EXTERNAL routine designators, like
those for FORWARD and ENTRY routines, consist only of the
designator keyword, the routine name, and any parameters.

MODULE ONE;

ENTRY VAR COUNT: INTEGER;

ENTRY PROCEDURE PRINT (MESSAGE: STRING 80);
BEGIN

COUNT :=COUNT+1;
{Number of times called|

END;



|End of module ONE

MODULE TWO;

EXTERNAL VAR COUNT: INTEGER;
{Allows Count to be referenced|

EXTERNAL PROCEDURE PRINT (MESSAGE: STRING 80);
{Allows Print to be called|

{End of module TWO|

The INCLUDE facility permits the compiler to take the source text
from different files. The format is:

INCLUDE pathname;

Pathname is limited to 127 characters; it is not enclosed in quotes,
and the syntax is operating-system dependent. INCLUDE nesting is
limited to eight levels, including the original program file. Each
pathname requires its own INCLUDE statement. For example,

INCLUDE DOUBLE.PAS;

Chapter 10 describes some useful include files supplied by Data
General Corporation.

The OVERLAY qualifier specifies a separate compilation module as
an overlay. The format is:

OVERLAY MODULE module-name;

Module-name is initialized to the .ENTO value of the overlay. This
information is needed to manage overlays in a program. (Refer to
MP/AOS System Programmer'’s Reference (DGC No. 093-400051.)

For example,

OVERLAY MODULE INITIALIZE;

{module code

{end of module Initialize|
PROGRAM P;
EXTERNAL VAR INITIALIZE: INTEGER;

Initialize contains the .ENTO for the module Initialize

iy
%
g

o

|
SP/Pascal Program Structure .. .

Include Facility

Overlay Facility



i SP/Pascal Program Structure

Overlaying SP/Pascal
Programs

Managing Program
Overlays - 20VLOD
and ?0VREL

At this point, the DG-supplied routines in OVLY.PAS can be used to
load the overlay module. Refer to Chapter 10 for details about
OVLY.PAS.

Overlay module global variables that are not entry points are
allocated storage in unlabelled common. Therefore, their values are
valid only when the overlay is resident. They do not persist from
one use of the overlay area to another.

Overlaying is a technique that reduces the memory requirements of
a program. In a typical program much of the code is used infrequently
and does not need to be in memory while it is not being used. With
overlays, you can divide a program so that routines reside on disk
until they are required for execution.

You can divide an SP/Pascal program with the following steps:

1. Determine areas of code that are called only in rare instances
(routines for handling unusual conditions, routines for reducing
data, any non-critical processing instruction, etc.)

2. Modularize the selected code in one or more routine declarations.

3. Place OV?LD and OV?RL calls in the program to load the overlay
code into memory from disk and to release the code for overwrit-
ing by another code segment.

4. Direct the MP/AOS binder to allocate space in the executing
program for overlays (one entry for each overlay node).

To utilize overlaying, design your program with one or more overlay
nodes. An overlay node is a block of memory allocated during
binding. The node receives each segment of overlay code for
execution as it is needed. Each node has its own set of overlays, and
can hold one overlay at a time.

The system keeps track of currently loaded overlays. If your program
is multitasked, then several tasks can share a node, if all the tasks
request the same overlay. If a task requests a new overlay in a node
that is already in use by another task, then the requesting task is
blocked from execution until the node becomes available.



This handling of tasks under multitasking ensures that the nodes are
correctly managed in a way that is transparent to all tasks, provided
that your program observes the following conventions:

o All tasks explicitly call and release overlays using the OV?LD and
OV?RL routines.

o Tasks that use overlays can tolerate some delays when calling
them. (You can minimize these delays by optimizing your overlay
structure at bind time.)

The overlay facility is designed to be flexible. The exact distribution
of nodes and overlays is not specified until bind time, so no program
modification is needed to try out several different strategies. This
makes for ease in reorganizing overlays for greatest efficiency.

The binder links together the various inter-module references and
allocates space for the overlay nodes. It also builds an overlay file
containing all the overlays and places overlay control information
in the program file. The overlay file has the same filename as the
program, but with a suffix of .OL instead of .PR. For further details
on binding, refer to Chapter 13 of this manual, and MP/AOS
Macroassembler, Binder, and Library Utilities (DGC No. 069-400210).

The following program example is provided to illustrate program
structure, its components, the use of external and entry routines and
variables, include files, overlay modules and I/0 statements.

The sample program is designed to analyze text files and produce a
report showing the relative frequencies of alphabetic characters in
the file. The user is prompted for the names of the text files to be
analyzed. The program produces statistics for each text file and a
summary of all the files analyzed.

The program has three compilation units. The program or main
module names text files and calls procedures in the other two
modules; the modules are compiled separately for later binding with
the program. One of these modules contains procedures for counting
characters; the other contains procedures for generating statistics
and printing a report. (Certain routines in the program are incom-
plete; comments are included in these routines to indicate the actions
of the omitted code.)

PROGRAM example(input,output);

CONST pathlength = 127;
nullchar = '<0>';

TYPE letters = 'A’..'Z;
statrec = RECORD

SP/Pascal Program Structure it

Source Program
Example



[

g,

L
e

SP/Pascal Program Structure

lines:integer;
freq:ARRAY[ letters ] OF integer;
END;
filename = STRING pathlength;

VAR source,listfile:filename;
infile,outfile:text;
currentstats:statrec;
file_count:integer;
done:Boolean;

ENTRY VAR totals:statrec;
EXTERNAL VAR ovy-one,ovy-two:integer;
EXTERNAL PROCEDURE countchars(VAR f:text; VAR stats:statrec);

EXTERNAL PROCEDURE print_report(VAR f:text; name:filename;
VAR stats:statrec);

INCLUDE ovly.pas; |Overlay management routines |

BEGIN
{Include code to initialize totals & get listfile name
rewrite(outfile,listfile);
done:=false;
filecount:=0;
REPEAT
write(output, 'Type name of file to be analyzed: ');
IF NOT eof(input) THEN BEGIN
read(input,source);
IF length(source) < pathlength THEN
append(source,nullchar);
reset(infile,source);
filecount:=succ(file_count);
ov?ld(ovy_one);
countchars(infile,current_stats);
ov?rl(ovy-one);

{include code to add currentstats to totals|
ov?1d(ovy-two);
printreport(outfile,source,current_stats);
ov?rl(ovy_two);

END
ELSE done:=true;
UNTIL done;



SP/Pascal Program Structure E,

|Generate summary report if more than one file analyzed|
IF filecount > 1 THEN BEGIN
ov?ld(ovy_two);
printreport(outfile, 'Totals’,totals);
ov?rl(ovy-two);
END;
END. {Example|

OVERLAY MODULE ovy-one;
TYPE letters = "A’..°Z";
statrec = RECORD
lines:integer;
freq:ARRAY[ letters ] OF integer;
END;

VAR ok:boolean;
ch:char;
upper—case_alphas: SET OF letters;
lower—case_alphas: SET OF 'a’..'z’;

PROCEDURE convert_to_upper(VAR arg:char);
BEGIN

| Include code to convert arg from lower case to upper case|
END;

FUNCTION getchar(var f:text):char;
VAR result:char;

BEGIN
result:="<0>"; {Null char|
IF NOT eof(f) THEN read(f,result)
ELSE ok:=false;
getchar:=result;
END;

ENTRY PROCEDURE count_chars(VAR f:text; VAR stats:statrec);
BEGIN
Include code to initialize stats argument}
ok:=true;
REPEAT
WITH stats DO BEGIN
WHILE ok AND eoln(f) DO BEGIN



SP/Pascal Program Structure

lines:=linest1; {Count number of lines in file

ch:=getchar(f);
END;
IF ok THEN BEGIN
ch:=get_char(f);

IF ch IN lower—case_alphas THEN convert_taupper(ch);
IF ch IN upper—case_alphas THEN

freq[ch]:=freq[ch]+1; {Count occurrences |
END;
END;
UNTIL NOT ok;
END; |ovy_one|

OVERLAY MODULE ovy-two;

CONST pathlength = 127;
TYPE letters = 'A’"..'Z";
stat.rec = RECORD
lines:integer;
freq:ARRAY[ letters ] OF integer;
END;
filename = STRING pathlength;

VAR percentages:ARRAY[ letters ] OF real;
totalchars:real;

PROCEDURE print_header(VAR f:text; name:filename);
BEGIN

include code to print the name of the file just analyzed;
END;

PROCEDURE print_distribution(VAR f:text; stats:statrec);

VAR index:char;

BEGIN
{Calculate the total number of alphabetic chars in the file}
totalchars:=0;
FOR index:="A" T0 'Z’ DO



totalchars:=totalchars + stats. freq[index];
{include code to print totalchars and |
{the distribution for each alphabetic char |
END;

PROCEDURE analyze(VAR stats:statrec);

EXTERNAL VAR totals:statrec;

BEGIN
{Include code to fill in the percentages array and to|
{calculate any other useful statistics}

END;

PROCEDURE print_statistics(VAR f:text; VAR stats:statrec);
BEGIN
analyze(stats);
Include code to print the percentages array, }
the average chars per line, and ;
{any other statistics that have been generated|
END;

ENTRY PROCEDURE print_report(VAR f:text; name:filename;
VAR stats:statrec);
BEGIN
print_header(f,name);
printdistribution(f,stats);
printstatistics(f,stats);
END; {Ovy_two|

SP/Pascal Program Structure






Predefined Routines

SP/Pascal is equipped with a set of predefined, standard routines
that perform commonly-used operations: mathematical calculations,
type-handling operations, character and string manipulations, ad-
dress calculations, and storage space control. This chapter describes
these routines. The compiler automatically handles all predefined
routines in the source program.



Predefined Routines

Introduction

The following sections detail several types of predefined SP/Pascal
routines:

* mathematical functions

* type handling functions

* string functions and procedures

* dynamic variable handling functions

* functions that return bit fields and addresses
* miscellaneous routines

Tables 9.1 through 9.7 summarize the predefined routines available
with SP/Pascal.

The SP/Pascal input and output routines are predefined routines, as
well. However, input and output operations involve file management,
peripheral device, and media considerations not required by the
predefined routines in this chapter. Therefore, the I/0 routines are
detailed separately in Chapter 7.

The predefined routines described in this chapter adhere to the
language’s type rules; some operations require an argument of a
specific type, while others accept more than one argument type. For
example, the predefined function for calculating the square root of
an expression is incorporated into the program when you use the
function name in a statement, as with:

SEMICALC: = SQRT(X + 1.67)

Some routines accept one type of argument while returning another
as a result and can be used specifically for type-breaking. Some
predefined routines return a fatal error at execution time if the
argument is unsatisfactory. For example, TRUNC (R) causes a
run-time error whenever R is a real number greater than 32,767.

SP/Pascal offers compilation-time resolution with some of the
standard functions. These optimized functions are: ABS, BITSIZE,
BYTESIZE, CHR, LENGTH, MAXLENGTH, ODD, ORD, PRED, SQR,
and SUCC. When these compile-time functions are used in declara-
tions, the argument must be a constant expression resolvable by the
compiler; undefined constants generate a compiler error. (Operands
in compile-time expressions cannot be components of structured
constants.) The function argument need not be a constant expression
if the function appears in executable statements, rather than
declarations.



‘Operation ~ Argument Type

ARCTAN  Integer, whole, real, double._real
cos ~ Integer, whoie, real, double.,_realw
EXP ~ Integer, whole, real, doubie*rea!
'FLOA  Integer, whole -
IN  Integer, whole, real, deuble_,.real :
OBD* . for odd - :fnteger whole real daubie_real
'ROUND :[nteger whole real double_real
’ 5sii[rj,{}:f,f o '~lntegef, whole, real, deubteb_real :
SQR* ,‘ quares expressaon  Integer, whole, real, double_real
j $QRT - Square root af express:on ‘ ,Integer, who!e, real double_rea!

ij runcates expressnon Real, double_real

. ArgumentType

- lmeger,' thle‘

. ~integer, who!e. reai double_xeal

. zflnteger, whale CHA ,,Boelean
_anumerataon orsubrange -

- Argumeni. 'Tyj:e

~ Character or String
. Sting .
String
String or i‘m‘e'gér‘ , 

 Character

Table 9.3 Predefined ASCII string routines (* means compile-time evaluable)

~ Integer, whole, real, double_real

~ Integer, whote. reai double_real ‘
flnteger, whole CHAR Boolean

Predefined Routines

Result Type

Samé as argument
Real, double_real

Real, double_real

Real, double__real
Real

Real, double_real

Boolean

Integer, whole
Real, double_real
Same as argument
Real, double_real
Integer, whole

Result Type

Character
Integer

Whole

Real

Double_real
Same as argument

Same as argument

Result Type

n/a

Integer
Integer
n/a
String



Predefined Routines

Routine Name  Operation ' - - ArgumentType :
FREESPACE Gives size of largest free block (space between ~ None
top-of-stack and bottom-of-heap) . o -
NEW 4 ‘ Creates and allocates space for a dynamnc "variable Pointer
pointer L .
DISPOSE Deallocates space and destroys a dynamic vaﬁébie Pointer :l';,,, ;_;4 .
pointer ' ' -
MARK  Saves free space address for . Integer
» RELEASE to delete NEW variables ~ -
RELEASE  Deallocates all NEW vanabies and frees space to Intéger ;

MARK address

Table 9.4 Predefined routines, pointers for dynamic variables (* means compile-time evaluable)

Routine Name Operation Argument Type
BYTEADDR Returns byte address : ‘ Anv;yariable
WORDADDR Returns word address ~ Any variable

Table 9.5 Predefined routines for returning addresses

Routine Name  Operation  ArgumentType
BITSIZE* Minmumbitsintype
BYTESIZE * Minimum bytes in type

Table 9.6 Predefined routines for returning field size (* means compile-time evaluable)

Routine Name  Operation e Argument‘l'ype

;lnteger, whate CHAR ‘ B'

1’

MIN Returns smaller of twoargu ents

MAX ~ Returns larger of two arguments  In

SYSTEM Execméssysm’ﬁ;éaﬂy"&‘u’y'«""’;i'”," I",ffWhole/mteger

Table 9.7 Predefined miscellaneous routines

~ Result Type
!ntéger

L

n/a &
o

- ‘;:"n/?a

~ Result Type

’lntager & while
. integer or whole




SP/Pascal provides the following predefined mathematical functions:
ABS, ARCTAN, COS, EXP, FLOAT, LN, ODD, ROUND, SIN, SQR,
SQRT and TRUNC.

The syntax for ABS is
ABS (expression)

ABS returns the absolute (positive) value of the expression. The
expression type can be integer, whole, real, or double_real. When
resolving an integer or whole expression, ABS returns an integer
value; when expression is real, ABS returns a real value; when
expression is double_real, ABS returns a double_real result. SP/Pas-
cal resolves all calls to ABS with constant arguments at compile-time
so that ABS can be used in declarations.

The syntax for ARCTAN is
ARCTAN (expression)

ARCTAN returns the value (in radians) of the angle whose tangent is
expression. Expression must be a real, double_real, whole, or integer
type. The result returned from ARCTAN is a double_real number if
the argument is double_real; otherwise the result is real.

The syntax for COS is
COS (expression)

COS returns the cosine of expression. The expression, which repre-
sents the angle in radians, must be a real, double_real, whole, or
integer type. The function returns a double_real number if the
argument is double_real; otherwise the result is real.

The syntax for EXP is
EXP (expression)

EXP, the exponential function, returns the value of E (approximately
2.71828) raised to the power expression. The expression must be of
real, double_real, whole, or integer type and can have any value. An
expression outside a range of plus-or-minus 75,3 causes a run-time
overflow error. The result returned by EXP is a double_real number
if expression is double_real; otherwise the result is real.

Predefined Routines

Mathematical
Functions

ABS

ARCTAN

COS

EXP



Predefined Routines

FLOAT

LN

OoDD

ROUND

SIN

The syntax for FLOAT is
FLOAT (integer-expression)

FLOAT converts the integer-expression (either integer or whole) to a
single precision real number.

The syntax for LN is
LN (expression)

LN returns the natural logarithm of expression. The expression must
be of real, double_real, whole or integer type and must have a value
greater than zero. The result is a double_real number if expression
is double_real; otherwise the result is real.

The syntax for ODD is
ODD (integer-expression)

ODD returns the Boolean value true if integer-expression resolves to
an odd value. When integer-expression is even, the function returns
the value false. SP/Pascal resolves all calls to ODD with constant
arguments on compilation so that ODD can be used in declarations.

The syntax for ROUND is
ROUND (real-expression)

ROUND returns the rounded value of real-expression (real or
double_real) as an integer. This function rounds as follows:

IF X > 0.0, ROUND:=TRUNC (X + 0.5), ELSE ROUND:= TRUNC
(X-0.5)

The syntax for SIN is
SIN (expression)

SIN returns the circular sine of expression. The expression, which
represents the angle in radians, must be of real, double_real, whole
or integer type. The result is a double_real number if expression is
double_real; otherwise the result is real.



The syntax for SQR is
SQR (expression)

SQR returns the square of expression. Expression must evaluate to a
real, double_real, whole, or integer number. The result type corre-
sponds to expression’s type. SP/Pascal resolves all calls to SQR with
whole or integer constant arguments at compile-time so that SQR
can be used in declarations.

The syntax for SQRT is
SQRT (expression)

SQRT returns the square root of expression. Expression must evaluate
to a non-negative real, double_real, whole, or integer number. The
result returned is a double__real number if expression is double_real,;
otherwise the result is real.

The syntax for TRUNC is
TRUNC (real-expression)

TRUNC truncates the value of real-expression (real or double_real)
and returns a value of type integer. A value of real-expression outside
the limit for type integer or whole (that is, a range of 0..65,535)
generates an error. The context of TRUNC determines whether an
integer or whole result is returned.

SP/Pascal provides the following type-handling functions: CHR,
ORD, WHOLE, REAL, DOUBLE_REAL, PRED, and SUCC. These
routines are grouped as type coercion functions (standard and
SP/Pascal-specific) and as standard sequence functions.

CHR
The syntax for this function is
CHR (integer-expression)

CHR returns the value of type character for the ordinal number
specified by integer-expression. CHR, not a truly executable function,
changes the type of the argument value from integer to character.
Integer-expression must be in the range O to 255; out-of-range
expressions generate a compilation error when compile-time
evaluable; otherwise they cause a run-time error. SP/Pascal resolves
all calls to CHR with constant arguments at compile-time so that
CHR can be used in declarations.

For instance,
"A” =CHR(101R8)

and for any character variable,
CH=CHR(ORD(CH))

i

Predefined Routines

SOR

SQRT

TRUNC

Type-Handling
Routines

Standard Type
Coercion



Predefined Routines

SP/Pascal Type
Coercion

ORD
The syntax for this function is
ORD (expression)

ORD returns the expression’s integer ordinal value. Not a truly
executable function, ORD changes the argument value to an integer
type. For ASCII character manipulation, the function takes an
expression of type character. Additionally ORD takes a Boolean or
scalar argument as an expression. ORD of a CHAR expression yields
the integer value of the character in ASCII character code. A Boolean
expression yields an integer O for false and 1 for true. When the
expression is integer, ORD yields the integer value. SP/Pascal
resolves all calls to ORD with constant arguments at compile-time so
that ORD can be used in declarations.

An ORD function with a character type expression:
ORD('A’)=65
For an enumeration type expression, the first (least) constant has the

ordinal value zero, the second constant has the ordinal value 1, etc.
For instance, with an enumeration type declared as follows:

TYPE
COLOR= (RED, GREEN, BLUE)

The following relations are true:

ORD (RED) =0
ORD (GREEN)=1
ORD (BLUE)=2

NOTE: The ORD function may not be applied to real or double_real arguments.

In addition to the standard functions CHR and ORD, SP/Pascal
permits any scalar type name to be used as a coercion function.
WHOLE, REAL and DOUBLE_REAL are provided for these type-
handling functions. Each of these functions takes a scalar expression
as an argument and changes the type of the argument value to the
type of the function. For example, the standard function ORD is
equivalent to the type coercion function INTEGER.

WHOLE

The syntax for this function is

WHOLE (expression)

WHOLE returns the expression’s unsigned numeric value. This
function is used to generate unsigned comparison operations or

unsigned multiply and divide operations. For example, given the
following declarations:



VAR W:whole;
I:integer;

The relational expression I << W would generate a signed operation
because the value of W would be implicitly treated as an integer
value. To force the comparison to be unsigned, the expression should
be written as WHOLE(I) << W.

REAL
The syntax for this function is
REAL (expression)

REAL returns the expression’s single precision real value. The
expression must be a value of integer, whole, real or double_real
type. The function is used to control the precision of the arithmetic
operations in a real expression. For example, given the following
declarations,

VAR X,Y:real;
Z:doublereal;

the expression Z + X would generate a double precision addition
operation. To force the evaluation to be done in single-precision, the
expression should be written as REAL(Z) + X. The argument
expression to the REAL function is evaluated via single-precision
operations, regardless of the precision of the individual operands.
Thus, the preceding expression could also be written as REAL(Z +
X).

DOUBLE_REAL
The syntax for this function is

DOUBLE_REAL (expression)

DOUBLE_REAL returns the expression’s double-precision real value.
The expression must be a value of integer, whole, real or double_real
type. The function is used in conjunction with the REAL function to
control the precision of the arithmetic operations in a real expression.
The argument expression to the DOUBLE_REAL function is evaluat-
ed via double precision operations, regardless of the precision of the
individual operands. The REAL and DOUBLE_REAL functions allow
you to control explicitly the precision that is used in the evaluation
of any real expression. For example, consider the following expres-
sions:

Predefined Routines



Predefined Routines

Standard Sequence
Functions

X+y>20 % single prec add, single prec comparison
DOUBLEREAL(X + Y¥) > 2.0 % double prec add, double prec comparison
REAL (DOUBLE_REAL(X T Y)) > 2.0 % double prec add, single prec comparison
DOUBLE_REAL(REAL(X t Y)) > 2.0 % single prec add, double prec comparison

The functions PRED and SUCC are the standard sequence functions.
PRED

The syntax for this function is

PRED (discrete-expression)

PRED returns the predecessor of expression. The function resolves
the expression and returns the item that precedes it. PRED also can
take a scalar expression (except real or double_real) as an argument.
When the expression item does not have a predecessor, an error

results. SP/Pascal resolves all calls to PRED with constant arguments
at compile-time so that PRED can be used in declarations.

Using the variable STOP of the enumeration type, COLOR, for
example, the following assignment can be made:

STOP : = PRED(GREEN);
After the assignment, STOP:= RED is true.
SUCC
The syntax for this function is
SUCC (discrete-expression)

SUCC returns the successor of discrete-expression. The function
resolves the expression and returns the item that follows discrete-
expression. SUCC also can take a scalar expression (except real or
double_real) as an argument. When the expression item does not
have a successor, an error results. SP/Pascal resolves all calls to
SUCC with constant arguments at compile-time so that SUCC can be
used in declarations.

Using the enumeration type COLOR, for example:

GO : = SUCC(RED)

After the assignment, the value of GO is GREEN.



The following string routines are available: APPEND, LENGTH,
MAXLENGTH, SETCURRENT, and STR. Note that in SP/Pascal
values of type CHAR are converted implicitly to values of type string
1 in all expression contexts. This means that CHAR values can be
assigned to string variables, passed as string value parameters, and
used as operands in string expressions.

APPEND

This routine appends one or more strings, substrings or characters to
the end of an existing string. The syntax is as follows:

APPEND (string-identifier, append-list)

where append-list is a list of string variables, literals, substrings, or
elements of type CHAR. For example:

VAR
S,T: STRING 20;
BEGIN
APPEND (S, T<<3:5>, '<12>')
END.
LENGTH

The syntax for LENGTH is
LENGTH (string-expression)

LENGTH returns the current length of string-expression in the form
of an integer character-count value. SP/Pascal resolves all calls to
LENGTH with constant arguments at compile-time so that LENGTH
can be used in declarations.

MAXLENGTH
The syntax for this routine is
MAXLENGTH (string-identifier)

MAXLENGTH returns the maximum declared length of string-
identifier in the form of an integer character-count value. SP/Pascal
resolves all calls to MAXLENGTH with constant arguments at
compile-time so that MAXLENGTH can be used in declarations.

Predefined Routines

String
Manipulation




Predefined Routines

SETCURRENT
This routine sets the current length of a string. The syntax is
SETCURRENT (string-identifier, n)

String-identifier is the string whose length you are setting and n is
the new current length (number of characters) of that string. For
example:

VAR
NAME : STRING 20;

BEGIN
SETCURRENT (NAME , 10) ;

END.

NOTE: The length n cannot exceed MAXLENGTH and must be greater than or
equal to zero.

STR
The syntax for this routine is
STR (character-expression)

STR changes a value of type CHAR to a type string value that
contains the character specified by character-expression. STR can
be used to assign a single character to a string, or to pass a single
character to a routine that requires a string argument. (The STR
function is supplied primarily for MP/Pascal compatibility since
SP/Pascal automatically coerces elements of the type CHAR to strings
in all contexts requiring it.)



The routines that control pointers to dynamic variables allow you to
create new dynamic variables when they are needed. In order to
conserve available program space, the routines also permit you to
get rid of dynamic variables when they are no longer useful. Careful
management of available space adds to program efficiency.

The available space you are controlling is called the heap, a special
area of a program’s memory space. The space is reserved just for
storing data structures that are bound to pointer variables. The heap
is dynamic; it acquires available free space in the direction of low
memory for storing the instances as you allocate new dynamic
variables. Figure 9.1 shows a general layout for memory. For further
details on dynamic memory management, refer to Chapter 12.

The heap manipulation routines are: FREESPACE, NEW, DISPOSE,
MARK, and RELEASE. The FREESPACE function returns the amount
of free memory that can be acquired by the heap for storage of
dynamic variables. When FREESPACE reports sufficient area, you
can create instances of variables with the NEW procedure. Then,
when a variable is obsolete, you can eliminate it and free storage
space with the DISPOSE procedure. As an alternative to DISPOSE,
MARK and RELEASE work together to free physical heap storage
space without freeing space on a variable-by-variable basis. Because
the program stack and the heap share the same memory area, you
must manage the heap carefully to avoid running out of stack space.

i

=
i

Predefined Routines g

Dynamic Variable
Pointers



Predefined Routines

. ' 64K

User’s program

Pascal heap

l

Free space

T

Pascal stack

Global variables

Figure 9.1 Memory organization

FREESPACE This function is used to determine what the largest amount of
available space is before allocating a dynamic variable. FREESPACE
returns an integer representing the available space in memory words.
It is the largest contiguous area available for allocation.

NEW The syntax for NEW is
NEW!/(pointer-var)

NEW creates a dynamic variable and allocates memory space for it.
The argument to the NEW procedure must be a variable of pointer
type. NEW places the address of the newly allocated variable in
pointer-var. Insufficient free space for the variable causes a run-time
error. Once you use NEW to create a variable, the variable continues
to occupy storage space in the heap until you remove the variable
with DISPOSE or deallocate the area of the heap containing that
variable with RELEASE.



The syntax for DISPOSE is
DISPOSE (pointer-var)

DISPOSE deallocates the memory space occupied by the variable
referred to by the pointer reference. Once a pointer is removed with
DISPOSE, other pointer values that refer to this variable must not be
used.

The syntax for MARK is
MARK (integer-variable)

MARK saves the current bottom-of-heap (the low physical address of
the heap at the time of marking) in integer-variable. The global
variable P?HP marks the low bound of the heap, and S?MAX marks
the high bound of the stack.

Generally, MARK is used with RELEASE. By marking the original
bottom-of-heap before creating dynamic variables, you can deallocate
all the variables at one time by using RELEASE to free all space by
restoring the bottom-of-heap to the marked address. The alternative
to this is to use DISPOSE and deallocate the heap space variable by
variable.

The syntax for RELEASE is
RELEASE (integer-expression)

RELEASE disposes of all variables with heap addresses less than
integer-expression. This allows you to recover heap space when you
have finished using the associated dynamic variables. Usually, you
first determine the current heap bound with MARK, allocate and
use several dynamic variables using NEW, and then make that heap
area available again by using RELEASE to free storage back to the
previous MARK.

NOTE: Caution must be used with MARK and RELEASE. There is no protection
against setting the bottom-of-heap to an invalid address, nor against releasing
memory with its variables still in use. Also, files and tasks use the heap for storage.
You must not RELEASE areas of the heap used by them.

SP/Pascal offers two built-in functions that return variable addresses:
BYTEADDR and WORDADDR. These functions are particularly
useful in conjunction with the system interface routines (described
in Chapter 10).

The following paragraphs detail these functions.

Predefined Routines . £«

DISPOSE

MARK

RELEASE

Address-Returning
Functions



Predefined Routines

BYTEADDR

WORDADDR

Returning Field
Size

The syntax for BYTEADDR is
BYTEADDR (variable-reference)
BYTEADDR returns the unsigned logical byte address of its variable
argument, variable-reference.
NOTE: Variable-reference can be a qualified (subscripted) variable. If, for example,
VAR X: ARRAY [1..10] OF CHAR;
then BYTEADDR (X[3]) is valid.

When BYTEADDR is used with a (string-identifier) as variable-
reference, the function returns the byte address of the first character
of the string.

The syntax of WORDADDR is
WORDADDR (variable-reference)

WORDADDR returns the unsigned logical word address of its variable
argument, variable-reference.

NOTE: You cannot obtain the word address of a character in a string or in a
variable of type ARRAY of CHAR.

When WORDADDR has string-identifier as variable-reference, the
function returns the word address of the string descriptor.

SP/Pascal provides two predefined functions, BITSIZE and
BYTESIZE, that accept a type name as an argument and return the
number of bits (or bytes) that the type is defined to occupy. The
BITSIZE function is intended primarily for setting parameters for
definitions of record structure. For example,

CONST
N = 10;
TYPE
A = 0..N BIT SUCC(N DIV 2);
B = RECORD
F: A;
G: 0..1BIT 16 - BITSIZE (A);
END;

The BYTESIZE function can be used to set parameters for recast
types and to determine the size of a variable. The BYTESIZE of a
type is the number of bytes that a variable of that type occupies.
Therefore, the minimum bytesize for any type is 2, even for
bit-qualified types. For example,



TYPE
SS = SET OF 0. .N;
AR = ARRAY[1..BYTESIZE(SS) DIV 2] OF WHOLE;

The syntaxes for these functions are
BITSIZE (type)
BYTESIZE (type)

BITSIZE returns the number of bits, and BYTESIZE returns the
number of bytes, in type. The number of bits or bytes is reported as
a decimal integer. Both routines allow parameters for the size of
records and arrays to be set for I/O and ease of maintenance.
SP/Pascal resolves all calls to either routine at compile-time so that
BITSIZE (or BYTESIZE) can be used in declarations.

SP/Pascal provides three additional predefined routines for use in
programs. These are the functions MIN and MAX, and the procedure
SYSTEM. MIN and MAX are used to compare two values and return
the lesser (MIN) or greater (MAX) of the values. The SYSTEM
procedure is used to execute an MP/AOS system call.

The syntax for MIN is

MIN (expression 1, expression2)

MIN returns the smaller value of the function’s two input argument
expressions. The expressions must be compatible and of a discrete
type (integer, whole, Boolean, character, enumeration, or subrange).
If the type of the input arguments is integer, or a subrange of
integer, the comparison is signed; otherwise, the comparison is
unsigned. For example:

MIN(C -1, 1) = -1;

MIN( 'A", 'C" ) = "A";
MIN( WHOLE(-1), 1) = 1;
MIN( true, false ) = false;

The syntax for MAX is

MAX (expression1, expression2)

MAX returns the larger value of the function’s two input argument
expressions. The expressions must be compatible and of a discrete
type (integer, whole, Boolean, character, enumeration, or subrange).
When the type of the input arguments is integer, or a subrange of
integer, the comparison is signed; otherwise, the comparison is
unsigned. For example:

Predefined Routines

BITSIZE and
BYTESIZE

Miscellaneous
Routines

MIN

MAX

e

&4
gt
£73



Predefined Routines

SYSTEM

MAX( -1, 1) =1;

MAX( "A’, 'C’ ) = C
MAX( WHOLE(-1), 1) = -1;
MAX( true, false ) = true;

The syntax for SYSTEM is
SYSTEM (call number, call options, ACO, AC1, AC2)

The SYSTEM procedure is used to execute any MP/AQS system call.
The DG-supplied include file SYSCALL.PAS (described in Chapter
10) contains the definitions for the call numbers and call options.
ACO, AC1, and AC2 are the integer accumulator values required as
input and returned as output by the various calls. When the system
call executed by this procedure succeeds with a normal return,
program execution continues with the next sequential statement. If
the system call is unsuccessful (takes an error return), then an
exception condition is returned to the routine that executed the
SYSTEM procedure. Exception handlers are described in Chapter
11.

To invoke a system call, use the call numbers and options that are
parameterized and contained in the include file in SYSCALL.PAS.
When invoking a library routine, the call number must be specified
as an externally-defined integer. Since library routines cannot take
options, the option word must always be zero.

NOTE: The SYSTEM procedure is very similar to the ?SYS function described in
Chapter 10. The only difference between these two routines is the manner in
which errors are reported back to the calling routine.



External Routines
Supplied by DGC

The SP/Pascal package provides an assortment of external routines
that handle system calls and input-output operations, as well as
internal conversion routines for string manipulation and arithmetic
operations. Data General Corporation provides these routines (and
routine calls) in a number of source files. The files supplied by DGC
also contain parameters and constant definitions for useful routines.
You can insert the source files for any needed routines or declarations
in your program with the INCLUDE facility (described in Chapter 8).

NOTE: Most of the routines described in this chapter have the same names and
functions as corresponding routines for MP/Pascal. However, the MP/Pascal
routines must be declared EXTERNAL ASSEMBLY, whereas the SP/Pascal routines
must be declared EXTERNAL. If you have declared any of these routines in your
source files, rather than by using the DGC-supplied INCLUDE files, you will need to
change the declarations.



External Routines Supplied by DGC

Routine
Categories

The routines supplied by DGC can be divided into general categories:

e input-output routines,

» routines defining system parameters and system interface
parameters,

¢ numeric string conversion routines,

» multitasking support routines,

e double-precision arithmetic routines.

The following sections of this manual provide details about all the
DGC supplied routines that can be incorporated into an SP/Pascal
program. Table 10.1 provides an alphabetic list of the routines, along
with the name of the supplied source file in which the interface
statements are found.

NOTE: All external routines supplied by DGC use the normal SP/Pascal calling
convention. (See Appendix C for a description of this calling convention.)



Name

BYTEREAD

BYTEWRITE

CHARREAD
CHARWRITE

CLDELFILE

CLOSEFILE

DATE

DDCOM
DDDIV**
DDMUL**
DDNEG
DDSUB
DELETE
Digsyes
DRSCH
DSADD
DSDIV.
DSMUL
DSSUB
ERSCH
T
FORK
GETARG

GETMESSAGE
GETSWITCH

GPOSFILE
INDEX
KILL

LINEREAD

~ Description

ﬂ B'eaic!;{byteﬁcinter location(s)
 Writes to byte pointer location(s)
 Reads specified character count
~ Wriies ‘ speciﬁed character count
Closes and deletes channels file
. Closé‘s ‘named channel

~ Provides current date
pbADD

Performs ddubie—precision addition

 Performs ‘doubfe—precisicn comparison

Performs double-precision division

& 'Re"rfb‘rrhs double-precision multiplication
~ Performs double-precision sign inversion
~ Performs ,double—prec'isién subtraction
~ Deletes specified file

Converts double-precision integer to ASCII

~ Disables task scheduler
. )Pé;fprms ‘mixed-type addition
~ Performs mixed-type division
‘Performs mixed-type multiplication
~ Performs mixed-type subtraction
_ ‘«'Reéﬁéb!es task scheduler
',};efmjnat'esk program and returns to parent
~ Creates a task at run time
{\Ex:traé:,ts one message argument
~ Gets CLI format system message
 Extracts one message argument switch
. Gives file position for random access
f J.?,o‘ca’tés string position within string
~ Deletes a task and releases locks

Reads one string buffer

Table 10.1 External routines supplied by DGC

*P = Procedure and F = Function

**Requires inclusion of DOUBLE.PAS first for double-precision arithmetic

External Routines Supplied by DGC

Type*

W U MmUY mwWOY UV U U D AWM YUV UMMM HAMTEY YUY DD

Source File

IO_CALLS.PAS
IO__CALLS.PAS
IO_CALLS.PAS
IO_CALLS.PAS
IO_CALLS.PAS
IO__CALLS.PAS
HEADER.PAS
DOUBLE.PAS
DOUBLE.PAS
DDMATH.PAS
DDMATH.PAS
DOUBLE.PAS
DOUBLE.PAS
I0_CALLS.PAS
DINT2ST.PAS
TASKING.PAS
DOUBLE.PAS
DOUBLE.PAS
DOUBLE.PAS
DOUBLE.PAS
TASKING.PAS
SYSLIB.PAS
TASKING.PAS

GET_MESSAGE.PAS
~ GET_MESSAGE.PAS
GET_MESSAGE.PAS

I0_CALLS.PAS
INDEX.PAS
TASKING.PAS
I0_CALLS.PAS



External Routines Supplied by DGC

Name

LINEWRITE
LOCK
?MESSAGE
NEWSTR
OPENFILE
oviLD
OV?RL
PEND
RANDOM
RE2ST**
RENAME
REVISION
SETPRIORITY
SI2ST**

SPOSFILE
ST2DI**
ST2RE**

ST2sI**

7SYS
TIME
UNLOCK
UNPEND
XAND
XEXTRACT
XIOR
XNOT
XSHFT
XXOR

‘~ rkPerferms excluswe OR

Table 10.1 External routines supplied by DGC (continued)

I/0 Routines

*P = Procedure and F = Function

Description Type*  Source File
~ Writes one string b‘uffer P 10 CALLSPAS
 Locks out other tasks P TASKING.PAS
~ Hetums 'ror text for an error code B MESSAGE PAS
. Estabhshes dynamm stnng variable e JN&WSTR PAS
. ,Qpens named file and returns channel P I0_CALLSPAS
‘ ' verl P OVLY.PAS
‘»Releases s ecmed overiay P iOVL‘Y PAS
 Blocks task to wait for event P TASKING.PAS
. Returns random posrtwe mtegér - B ~ RANDOM.PAS
- ;Ccinver%s smgie—prec;smn real to dectmal P VREALZSTR PAS
, Renames specmed file - P I0_CALLSPAS
,;P 'mdes pmgram rewsuon number B HEADER«.RAS
‘ ' P TASKING.PAS
P SINT2ST.PAS
. DINTISTPAS
P I0_CALLS.PAS
P STR2DINT.PAS
. Converts fstrmg to smgle—precisrm real . P STR2REAL.PAS
' UConverts ASCII to srngle-pfemslon mteger - P STRZéfNT‘PAS '
. 1 ~ STR2DINTPAS
: _F | SYScALLPAS
. Prawdes current time. . 'F HEADERPAS
Unlocks locked tasks P TASKING.PAS
~ Unblocks task on event P TASKING.PAS
, Performs AND F BOOLEAN.PAS
: it fiele ~ F BOOLEAN.PAS
’ F BOOLEAN.PAS
'fPefforms !og:cal complement F  BOOLEAN.PAS
~ Shiftsavalue  F BOOLEAN.PAS
F BOOLEAN.PAS

**Requires inclusion of DOUBLE.PAS first for double-precision arithmetic

The I/0 package supplied by Data General Corporation is a set of 14
procedures. I0_CALLS.PAS defines these procedures and the data
types they use.

These routines give you more control, and a more direct interface to
the MP/AOS system, than the routines described in Chapter 7. They
are similar to the I/0 routines in most other Data General languages,
including assembler language. They are distinct from the regular
Pascal I/0 routines in a number of ways. For instance, regular



External Routines Supplied by DGC

Pascal I/O routines use file variables, while these routines use
channel numbers, which are integers. You should not use Pascal-type
and DGC-type I/0 simultaneously on one file.

To check routine success or failure, each I/0 procedure contains an
integer variable parameter, status. If the routine encounters an error,
the routine returns the system call error code in this argument. With
successful completion, the routine returns zero in status. It is good
practice to test status for a nonzero value after calling an I/0
procedure.

The data declarations used by the I/0 routines are:

CONST
max__path_Ith = 128; } maximum size of pathname :
max_path__Ith = 135; { maximum buffer size for data-sens. 1/0 }
TYPE
channel = 0 .. maxint;
pathname = STRING max_path_ith;
io_buffer = STRING 32767; { see NOTE below |
RECORD
high: INTEGER;
low: INTEGER,;
END;

NOTE: The type io_buffer, defined above, is intended for use in routine headers
only; the size is specified as 32767 to ensure that you may use any size buffer, up
to the maximum legal string size. This declaration appears in many of the routine
headers in the rest of this chapter. When declaring your buffer variables, you
should make their sizes as small as is convenient for your application.

In addition, INCH and OUCH (which correspond to ?INCH and
?0UCH, standard input and output channels) are defined as constants
in IO_CALLS.PAS. Refer to MP/AOS System Programmer’s Refer-
ence (DGC No. 093-400051), for details.

To open a channel, use the OPENFILE procedure, which follows: Channel Open
Procedure
EXTERNAL PROCEDURE OPENFILE
(VAR CHAN: CHANNEL;
FNAM: PATHNAME;
OPTIONS: INTEGER;
FILE_TYPE: INTEGER;
ELEM.SIZE: INTEGER;
VAR STATUS: INTEGER);

The OPENFILE procedure opens the file specified by fnam, a filename
that requires a null terminator. OPENFILE returns the opened file's
integer channel number in chan. Options, file_type and elem_size
are as described for the 20PEN system call. Constant definitions for



Channel Close

Data-Sensitive I/0

External Routines Supplied by DGC

the options are included in IO_CALLS.PAS. Definitions for file_type
are contained in FILE_PARS.PAS. For example,

OPENFILE (CHN, "TEST“, UC + EX ,?DUDF,1,ST);

FILE_PARS.PAS defines the MP/AOS file types and attributes for
the OPENFILE procedure.

There are two channel closing procedures:

e CLOSEFILE, which closes an open file on the channel specified;

e CLDELFILE, which deletes that channel’s file, in addition to
closing it.

The declarations for these procedures are:

EXTERNAL PROCEDURE CLOSEFILE
(CHAN:CHANNEL;
VAR STATUS:INTEGER)

EXTERNAL PROCEDURE CLDELFILE
(CHAN:CHANNEL;
VAR STATUS:INTEGER)

For data-sensitive I/0, use LINEREAD and LINEWRITE. The
declarations for these procedures are

EXTERNAL PROCEDURE LINEREAD
(CHAN:CHANNEL;
VAR BUFFER: LINE_BUFFER;
VAR STATUS: INTEGER);

EXTERNAL PROCEDURE LINEWRITE
(CHAN:CHANNEL;
BUFFER: LINE_BUFFER;
VAR STATUS: INTEGER);

LINEREAD and LINEWRITE perform data-sensitive I/0 to the string
specified in buffer. The maximum length of buffer is used as the
maximum byte value to read or write.

Read operations with LINEREAD read data up to the maximum
length of buffer. If no data-sensitive delimiters (Null, Carriage Return,
New Line, or Form Feed) are encountered before maximum length is
reached, an error is returned.

Write operations with LINEWRITE write data up to the first
data-sensitive delimiter, without regard to current string length. If
no delimiter is reached within the maximum length of buffer, an
error is returned.



External Routines Supplied by DGC §£§

For string dynamic I/0, use CHARREAD and CHARWRITE. The
declarations for these procedures are

EXTERNAL PROCEDURE CHARREAD
(CHAN: CHANNEL;
LTH: INTEGER;
VAR BUFFER: IO_BUFFER;
VAR STATUS: INTEGER);

EXTERNAL PROCEDURE CHARWRITE
(CHAN: CHANNEL;
BUFFER: IO_BUFFER;
VAR STATUS: INTEGER);

CHARREAD and CHARWRITE perform dynamic I/0 to the string
specified in buffer. On input, Ith specifies the number of bytes to
read. After the read is done, the current length of buffer is set to the
number of bytes actually read. On output, the current length of
buffer dictates the number of bytes written.

For buffer dynamic I/0, use BYTEREAD and BYTEWRITE which
follow:

EXTERNAL PROCEDURE BYTEREAD
(CHAN:CHANNEL;
BUF_BYTE_ADDRESS: INTEGER,;
VAR LTH: INTEGER,;

VAR STATUS: INTEGER);

EXTERNAL PROCEDURE BYTEWRITE
(CHAN: CHANNEL;
BUF_BYTE_ADDRESS: INTEGER;
LTH: INTEGER;

VAR STATUS: INTEGER);

The procedures BYTEREAD and BYTEWRITE perform dynamic
I/0 to the physical area in memory specified by the byte pointer in
buf_byte_address. You obtain this address using BYTEADDR, a
predefined function explained in Chapter 9.

There is no run-time check that ensures the validity of the specified
address. It is the responsibility of the calling program to safeguard
memory overwrites.

For file positioning, use GPOSFILE and SPOSFILE which follow:

EXTERNAL PROCEDURE GPOSFILE
(CHAN: CHANNEL;
VAR POSITION: RECAST FILE_POSITION;
VAR STATUS: INTEGER);

String Dynamic I/0

Buffer Dynamic I/0

File-Position



File Management

Data Channel Printer
Control

External Routines Supplied by DGC

EXTERNAL PROCEDURE SPOSFILE
(CHAN: CHANNEL;
POSITION: RECAST FILE_POSITION;
VAR STATUS: INTEGER);

The file position procedures manipulate the current file position,
giving you full random-access capability as an extension to the
sequential nature of Pascal’s normal file I/0. GPOSFILE returns the
file position, and SPOSFILE resets it.

A file_position is actually a 32-bit integer, which represents the
number of bytes from the start of the file to a given point. If you
plan to do any advanced manipulation on these numbers, you will
probably want to use double-precision integer arithmetic on them.
To do this, you must include the double-precision package DOU-
BLE.PAS. When the package is included, the variable passed in
position must be declared as being type DOUBLE. (DOUBLE.PAS is
described later in this chapter.)

Two DG-supplied procedures, DELETE and RENAME, allow you to
delete and rename specified files. The declarations for these proce-
dures are:

EXTERNAL PROCEDURE DELETE
(V : PATHNAME;
VAR STATUS : INTEGER);

This procedure deletes the file specified by the pathname in V. No
error is returned when the specified file does not exist.

EXTERNAL PROCEDURE RENAME
(F_NOW, F_THEN : PATHNAME;
VAR STATUS : INTEGER);

This procedure changes the name of the file specified in £ _now to
the name specified in f_then.

DCLP.PINC defines three procedures to open, write to, and close the
data channel printer.

EXTERNAL PROCEDURE POPEN
(DEVICE_CODE,PRINTER_TYPE:INTEGER;
VAR STATUS:INTEGER);

EXTERNAL PROCEDURE PCLOS
(VAR STATUS:INTEGER);

EXTERNAL PROCEDURE PWRIT
(BUFF_BYTEADDR,BYTE_COUNT:INTEGER;
VAR STATUS:INTEGER);



External Routines Supplied by DGC ig;%

In which the following important variables are declared:

device_code specifies the line printer device code

printer_type is an integer whose value is either O for LP2
or 1 for LPB (non-LP2)

buff_byteaddr is a byte pointer to an area in memory
containing data to be printed

byte_count specifies the number of bytes to be printed
NOTE: The routines defined in this include file are available only under MP/AQS.

The source file NEWSTR.PAS defines NEWSTR, the procedure for
dynamic allocation of a variable-length string.

EXTERNAL PROCEDURE NEWSTR
(VAR PT : RECAST MAXSTRP; SIZE : INTEGER);

MAXSTRP is declared in NEWSTR.PAS as follows:

TYPE
MAXSTRP = @STRING 32767;

NEWSTR allocates a string of the length specified in size and returns
a pointer to the string in pt. For example:

NEWSTR (P,23);

This call allocates a 23-character string on the heap and returns a
pointer to it in p.

A number of routines define constructs or interact with the MP/AQOS
operating system and the CLI: GET_MESSAGE.PAS, OVLY.PAS,
SYSCALL.PAS, SYSLIB.PAS, and TASKING.PAS. (The multitasking
routines provided by TASKING.PAS are described in Chapter 12.)

When the CLI begins executing a user program, an inter-program
command message is translated into a special CLI format. Your
program can read and interpret this message by using the three
routines (GETMESSAGE, GETARG and GETSWITCH). The routines
are defined in the source file GET_MESSAGE.PAS. For details on
the message, refer to the MP/AOS System Programmer'’s Reference
(DGC. No. 093-400051).

GETMESSAGE

GETMESSAGE places the entire command line in the MESSAGE
string variable:

EXTERNAL PROCEDURE GETMESSAGE
(VAR MESSAGE: GET_MSG_TYPE);

Dynamic String
Variables

System
Interfacing

GET_MESSAGE.PAS

o1



%
E &%%} External Routines Supplied by DGC

MESSAGE.PAS

GETARG

The GETARG function allows your program to examine one argument
(filename, function name, etc.) in the message; you must use
GETMESSAGE to get the entire message before using GETARG.

EXTERNAL FUNCTION GETARG
(MESSAGE: GET_MSG_TYPE;
ARG_NUM: INTEGER;
VAR ARG_VALUE: GET_SW_TYPE): BOOLEAN;

If the function finds the argument specified by arg_num, it returns
the value true. Otherwise, it returns the value false. Arg_value is set
to the null string if the arg_num‘th argument does not exist. When
the argument exists, arg_value contains the text of that argument
with all switches removed.

NOTE: If you call this routine with zero in arg_num, it will return the name of the
program.

GETSWITCH

You call the GETSWITCH function to examine a switch to a particular
command line (/U, /L=@LPT, etc.) (Before you can call
GETSWITCH you must use GETMESSAGE to get the whole message
in message.)

EXTERNAL FUNCTION GETSWITCH
(MESSAGE: GET_MSG_TYPE;
ARG_NUM: INTEGER;
SW_NAME: GET_SW_TYPE;
VAR KEYWORD_VALUE: GET_SW_TYPE): BOOLEAN

Arg__num specifies the integer number of the message argument you
would like to examine (0 specifies the program name). Sw_name
specifies the switch you are looking for. Sw_name must terminate
with a null byte.

If GETSWITCH cannot find the switch, the function returns false.
Otherwise, it returns true. If the switch is not a keyword switch,
keyword__value is set to the null string. Otherwise, keyword_value
contains the string that follows the equal sign in the switch.

This function returns the text associated with a specific error code.
The text is taken from :ERMES, the system error message file.

EXTERNAL FUNCTION ?MESSAGE
(ERROR_NO:INTEGER): STRING 80



External Routines Supplied by DGC

OVLY.PAS defines the two procedures used for overlay management,
OV?LD and OV?RL.

EXTERNAL PROCEDURE OV?LD
(OVLY_NAME:INTEGER);

EXTERNAL PROCEDURE OV?RL
(OVLY_NAME:INTEGER);

The OV?LD and OV?RL routines load or release an overlay specified
by the parameter ovly_name. Normally, ovly_name is the overlay
module name. An error during either the OV?LD or the OV?RL
procedure terminates the current program with a system error. The
SP/Pascal OVERLAY facility is described in Chapter 8, “Program
Structure”.

SYSCALL.PAS defines the function ?SYS, which can be used to
invoke any MP/AOS system call. The constants defined in this file
also are used with the predefined routine, SYSTEM, described in
Chapter 9 of this manual.

EXTERNAL FUNCTION
?SYS(CALL_NO,OPTIONS:INTEGER;
VAR ACO, AC1, AC2:INTEGER):BOOLEAN;

ACO, AC1 and AC2 are the accumulator values required as input and
returned as output by the various calls. The function returns false if
the system call succeeds with a normal return or returns true if the
call is unsuccessful.

For system calls, the call numbers specified in call_no and options
are parameterized and included in SYSCALL.PAS.

When invoking a library routine, the call number must be specified
as an externally-defined integer. Since library routines cannot take
options, the option word must always be zero.

A number of DGC-supplied files define parameter packets for system
calls (see Table 10.2). These parameter files contain the equivalent of
the assembly language files MPARU.SR and SYSID.SR; their primary
use is to access system calls. Details of system calls are provided in
the MP/AOS System Programmer's Reference, (DGC No. 093-400051).

OVLY.PAS

SYSCALL.PAS



SYSLIB.PAS

HEADER.PAS

. ?LBEF

External Routines Supplied by DGC

MP/AOS System Call  SP/Pascal Include File Name

f?QEND ?RCV ?RE‘,VA ?REPLY

"sse 10_PAK. PAS
 SINF 4PAK FAS

‘f?msa* s

Table 10.2 MP/AOS system calls and corresponding parameter files

*Supported for cross-development under AOS (see Appendix D).

SYSLIB.PAS contains the ?EXIT routine, which terminates the
program normally and returns control to the terminated program’s
parent program.

EXTERNAL PROCEDURE ?EXIT
(ERROR:INTEGER;
RET:STRING 2048);

The error parameter contains the error code to return (zero signifies
no error), and ret is a string that is returned to the parent. When the
parent program is the CLI, it prints the string and the message
associated with the error code to @TTO. You can use ret for any
message that will help users to understand why the program
terminated.)

HEADER.PAS defines three functions: DATE, TIME, and REVISION,
that are useful for printing the current time and date, or the revision
number of the program. The returned information is always a string
defined as follows:



External Routines Supplied by DGC

TYPE
DATESTR = STRING 29;
REVSTRING = STRING 7;
TIMESTR = STRING 11;

EXTERNAL FUNCTION DATE : DATESTR;

The returned date format looks like this:
FRIDAY FEBRUARY 30, 1979

EXTERNAL FUNCTION TIME : TIMESTR;

The returned time format looks like this:
12:09:00 AM

EXTERNAL FUNCTION REVISION : REVSTRING;

The returned revision format looks like this:

1.01

Six source files define procedures for converting numbers to ASCII
strings or vice versa, and handling exceptions. The file names are:

DINT2ST.PAS,
REAL2STR.PAS,
SINT2ST.PAS,
STR2DINT.PAS,
STR2REAL.PAS,
STR2SINT.PAS.

DINT2ST.PAS defines the procedure DI2ST, for converting a double-
precision integer to an ASCII string. You must include the files
DOUBLE.PAS and DINT2ST.PAS (in that order) before using this
procedure in your program. DINT2ST.PAS also defines the procedure
SI2ST for converting single-precision integer to an ASCII string for
instances when both procedures are needed. (Refer to the explanation
of the SINT2ST.PAS file.)

EXTERNAL PROCEDURE DI2ST
(VAL: DOUBLE;
RADIX_FLAGS: INTEGER,;
VAR OUTST: STRING 32767;
VAR ERROR: INTEGER);

DI2ST converts a double-precision integer value, val, to an ASCII
output string, outst, in the indicated radix. The radix word must be
in the range 2 to 35. By default, the output is unsigned and the length
of the string will be set to the length of the result. If the output string
is a substring, the result is padded with blanks to the end of the
substring.

Numeric String

Conversion

DINT2ST.PAS



45 xternal Routines Supplie
1 gf%@ E I Routi Supplied by DGC

REAL2STR.PAS

To modify the conversion, add options to the radix word. For signed
conversion, use the option i2st_signd; then the output string is
prefixed by a + or — sign, as appropriate. To right-justify the
string, specify i2st_rjust; this extends the output string to its
maximum length (or the string piece to its current length) by filling
it with blanks (the default), or zeroes, if the iZst_zextn option is
specified. The output number (with sign, if specified) is right-justified
in the string. Also, you can specify the i2st_astf] option to fill the
string with asterisks in the case of an overflow.

When the result of the conversion is too long, error returns
i2st_overflow. In this case, if you specified the i2st_astfl conversion
option, the entire result string fills with asterisks.

A successful conversion returns a zero in error. Test error for the
status code after every call to DI2ST. Use the error mnemonics
documented in DINT2ST.PAS for this purpose.

REAL2STR.PAS defines the RE2ST procedure, which converts a
single-precision real number to an ASCII string.

EXTERNAL PROCEDURE RE2ST
(INPUT : REAL;
WIDTH : INTEGER;
FSIZE : INTEGER;
VAR OUTST : STRING 32767 );

Two parameters control the formatting of the output: width and
fsize. The width parameter specifies the maximum number of
characters to output. Leading blanks are inserted when the width
exceeds the number of characters required for the numeric represen-
tation.

The fsize parameter determines the type of numeric representation.
If fsize is greater than O, a fixed-point notation is generated with
fsize digits after the decimal point. Otherwise, scientific (E) notation
is used. At most, seven non-zero digits are printed. When less than
seven digits are requested, the remainder is used for rounding.
When both width and fsize are 0, the default is scientific notation
with a width of 13 characters.

NOTE: No error is indicated if the requested numeric representation does not fit
into the designated output string. In this case, the output string contains the first
MAXLENGTH characters.



External Routines Supplied by DGC

SINT2ST.PAS defines the procedure SI2ST for converting a single-
precision integer to an ASCII string. (The SI2ST procedure definition
also appears in the source file DINT2ST.PAS, explained earlier, an
alternative include file when a double-precision integer to ASCII is
needed.)

EXTERNAL PROCEDURE SI2ST
(VAL,RADIX_FLAGS:INTEGER;
VAR OUTST: STRING 32767
VAR ERROR: INTEGER);

SI2ST converts the single-precision integer value, val, to an ASCII
output string, outst, in the indicated radix. The radix word must be
in the range 2 to 35. By default, the output is unsigned and the length
of the string will be set to the length of the result. If the output string
is a substring, the result is padded with trailing blanks to the end of
the substring.

You can modify the conversion by adding options to the radix word.
For signed conversion, use the option iZ2st_signd; then the output
string is prefixed by a + or — sign, as appropriate. To right-justify
the string, specify i2st_rjust. This extends the output string to its
maximum length (or the string piece to its current length) by filling
it with blanks (the default), or zeroes when the i2st_zextn option is
specified. The output number (with sign if specified) is right-justified
in the string. You can also specify an asterisk-fill on overflow with
i2st__astfl.

If the result of the conversion is too long, error returns i2st_overflow.
In this case, if you specified the iZ2st_astfl conversion option, the
entire result string fills with asterisks.

When the conversion is successful, error returns a zero. After every
call to SI2ST, test error for the status code. Use the error mnemonics
for this purpose.

STR2DINT.PAS defines the ST2DI procedure, which converts an
ASCII string to a double-precision integer. You must include the files
DOUBLE.PAS and STR2DINT.PAS, in that order, before using this
procedure in your program. STR2DINT.PAS also defines the proce-
dure ST2SI for converting ASCII to single-precision integer for
instances when both procedures are needed. (Refer to
STR2SINT.PAS, below.)

TYPE S2IN_RADIX = 2..35;

EXTERNAL PROCEDURE ST2DI
(INSTR: STRING 32767;
RADIX: S2IN_RADIX;

VAR RESLT: DOUBLE;
VAR NXTCH: INTEGER;
VAR ERCODE: INTEGER);

SINT2ST.PAS

STR2DINT.PAS

141

|
i



STR2REAL.PAS

External Routines Supplied by DGC

ST2DI converts an ASCII input string instr to a double-precision
integer value, reslt, in the indicated radix. Radix must be in the
range 2 to 35. Leading blanks and tabs, as well as an optional + or
— sign, can begin the input string. Alphabetic digits (for radices
greater than 10) can be entered as either upper-case or lower-case
characters.

The run-time conversion process stops if an invalid digit (not a legal
alphanumeric) is found in the user-supplied radix. After the conver-
sion is performed, the nxtch actual parameter contains the integer
index (character position) of the next character in the string. This
value is relative to the beginning of the string parameter passed.
(Note that this number would be greater than the length of the string
if the whole string were scanned.)

When the conversion succeeds, the returned status word ercode
contains a zero. If the conversion fails, ercode returns either of the
following values:

CONST
S2IN_OVERFLOW = 1;
S2IN_CONVRT_ERR = 2;

If instr is null, or its sign is not followed by a valid digit, or the input
radix is not in the allowable range, ercode returns the conversion
error (2). If the result is too large, ercode returns the overflow error
(1).

After every call to ST2DI, test ercode for the status code. Use the
error mnemonics for this purpose.

STR2REAL.PAS defines the ST2RE procedure, which converts an
ASCII input string to a single-precision real number.

EXTERNAL PROCEDURE ST2RE
(INSTR: STRING 32767;
VAR NXTCH: INTEGER;

VAR RESLT: REAL;
VAR ERROR: BOOLEAN);

Error returns true if an error occurs during conversion. An error
occurs if a null string is passed to the routine, if the passed string
does not contain a valid digit, or if an underflow or overflow occurs.

The nxtch actual parameter contains the integer index of the next
character in the string after conversion is performed. This value is
relative to the beginning of the string parameter passed. Note that
this number can be greater than the length of the string. The range



External Routines Supplied by DGC . “ .

of absolute values that can be represented is zero to 7.2 x 10175,
The smallest non-zero absolute value that can be represented is 5.4 x
10779,

STR2SINT.PAS defines the ST2SI procedure, which converts an STR2SINT.PAS
ASCII string to an integer value. (The ST2SI procedure definition

also appears in the source file STR2DINT.PAS, explained earlier, an

alternative include file when ASCII to double-precision integer is

needed.)

TYPE S2IN_RADIX = 2..35;

EXTERNAL PROCEDURE ST2SI
(INSTR: STRING 32767;
RADIX: S2IN_RADIX;

VAR RESLT: INTEGER;
VAR NXTCH: INTEGER;
VAR ERCODE: INTEGER);

The routine converts an ASCII input string instr to an integer value
reslt in the indicated radix. Radix must be in the range 2 to 35.
Leading blanks and tabs, as well as an optional + or — sign, can
begin the input string. Alphabetic digits for radices greater than 10
can be entered as either upper-case or lower-case characters.

Conversion stops as soon as an invalid digit is found in the
user-supplied radix. After the conversion is performed, the nxtch
actual parameter contains the integer index (character position) of
the next character in the string. This value is relative to the beginning
of the string parameter passed.

Consider the following example:

S := '000012EF’;
ST2SI (S <<<5:4>>, 10, R, N, E);

These statements would cause R, the result, to be set to 12. N would
be set to 3, not 7, because ST2SI is operating on a substring, not on
all of S. On the other hand:

S := '000012EF " ;
ST2SI (S, 10, R, N, E);

would result in N being set to 7, since all of S is being examined.
(Note that if the radix were 16 rather than 10, N would be set to 9,
since '000012EF’ is a valid hexadecimal number.)

When the conversion succeeds, the returned status word (ercode)
contains a zero. If the procedure fails, ercode has either of the two
following values:



Integers and Bit
Manipulation

INDEX.PAS

RANDOM.PAS

External Routines Supplied by DGC

CONST
S2IN_OVERFLOW = 1;
S2IN_CONVRT_ERR = 2;

When instr is null, or if its sign is not followed by a valid digit, or
the input radix is not in the allowable range, ercode returns the
conversion error (2). When the result is too large, ercode returns the
overflow error (1). After every call to ST2SI, test ercode for the
status code. Use the error mnemonics for this purpose.

Table 10.3 lists the functions described in this section:

RoutineName Operation

woEX
RANDOM
XAND |

Table 10.3 Miscellaneous integer and bit manipulation routines

INDEX.PAS defines the function INDEX, returning the index of one
string located within another string. The routine searches the
specified string (first argument) for the first occurrence of the second
argument string. When an instance of the second string is found,
INDEX returns the numerical character position at which the match
begins. For instance, the following example returns 2.

INDEX ('abcde’, 'bc’)

When INDEX does not find the second string within the first one,
the function returns a value of 0. '

The include file RANDOM.PAS defines the RANDOM function, which
generates a positive random integer value each time you call the
function, as follows:

EXTERNAL FUNCTION RANDOM : INTEGER;

RANDOM returns a positive random integer in the range of O to
32767. The function seeds itself from the system clock.



External Routines Supplied by DGC

BOOLEAN.PAS contains six functions that perform Boolean opera-
tions on integer values. These functions are XAND, XIOR, XXOR,
XSHFT, XEXTRACT, and XNOT.

XAND

This function performs a logical AND operation on x and y and
returns its integer bit-by-bit result.

EXTERNAL FUNCTION XAND
(X,Y :RECAST INTEGER):INTEGER;

XIOR

This function performs a logical inclusive OR operation on x and y
and returns its bit-by-bit result.

EXTERNAL FUNCTION XIOR
(X,Y:RECAST INTEGER):INTEGER;

XXOR

This function performs a logical exclusive OR operation on x and y
and returns its bit-by-bit result.

EXTERNAL FUNCTION XXOR
(X,Y:RECAST INTEGER):INTEGER;

XSHFT
XSHFT returns the shifted value of x.

EXTERNAL FUNCTION XSHFT
(X,S:RECAST INTEGER):INTEGER;

S specifies the direction and number of bit positions to be shifted:
positive values specify left shifts;

negative values specify right shifts.

XEXTRACT

This function returns the bit field in X which begins with bit s and
is of the length specified by len. Bits are numbered from left to right,
starting from zero.

EXTERNAL FUNCTION XEXTRACT
(X,S,LEN : RECAST INTEGER) : INTEGER;

The bits are right-justified in the result. For example, the following
call returns 5 (binary 101).

XEXTRACT (1—010—011—100—101—110R2, 10, 3)

BOOLEAN.PAS

145



DOUBLE.PAS

Double-Precision
Arithmetic

External Routines Supplied by DGC

XNOT

This function returns the logical bit-by-bit complement of x.

EXTERNAL FUNCTION XNOT
(X : RECAST INTEGER) : INTEGER;

DOUBLE.PAS defines double-precision unsigned arithmetic func-
tions. The file provides the routines listed in Table 10.4.

Table 10.4 Double-precision arithmetic functions

*Source file DDMATH.PAS required after DOUBLE.PAS is included.

The double-precision arithmetic functions define the DOUBLE type
and the double-precision integer arithmetic package.

The first item in the DOUBLE.PAS file is the following declaration
for the double-precision INTEGER type:

TYPE
DOUBLE =
RECORD
HI,LO: INTEGER;
END;

Using the following functions, you can add, subtract and invert the
signs of variables that are type-compatible with the double-precision
integer type. Double-precision integers are unsigned.

In the following descriptions, x, y and z are of type double, and i and
n are integers.

DDADD
The addition function DDADD returns the sum of its arguments.

EXTERNAL FUNCTION DDADD
(X;Y:DOUBLE):DOUBLE;
Z := DDADD (X,Y);



External Routines Supplied by DGC

DDSUB

The subtraction function DDSUB returns the difference of its
arguments.

EXTERNAL FUNCTION DDSUB
(X;Y:DOUBLE):DOUBLE;

Z := DDSUB (X,Y);
DDNEG

The sign inversion function DDNEG returns the negative of its
argument.

EXTERNAL FUNCTION DDNEG
(X:DOUBLE):DOUBLE;

Z := DDNEG (X);

DDCOM

The DDCOM function compares two double-precision arguments
| := DDCOM (X, Y);

so that I is the result of the unsigned comparison of x and y. If x< Y,
DDCOM returns —1; if x=y, it returns 0; if x>y, it returns 1.

EXTERNAL FUNCTION DDCOM
(X,Y;DOUBLE):COMPRESULT;

CONST
DOUBLE_LT = -1; {x<y, double-precision unsigned}
DOUBLE_EQ = 0; {x=y, double-precision}
DOUBLE_GT = 1; {x>>y, double-precision unsigned |
TYPE
COMPRESULT = DOUBLE.LT..DOUBLE_GT:

The DDMATH.PAS source file provides for the full unsigned double- DDMATH.PAS
precision multiply and divide functions.

DDDIV

The division function DDDIV returns the quotient of its arguments.
(Any remainder is discarded.)

EXTERNAL FUNCTION DDDIV
(X;Y:DOUBLE):DOUBLE;

Z := DDDIV (X,Y);

NOTE: DDDIV requires inclusion of the file DDMATH.PAS with DOUBLE.PAS.



Mixed Arithmetic

External Routines Supplied by DGC

DDMUL

The multiplication function DDMUL returns the product of its
arguments.

EXTERNAL FUNCTION DDMUL
(X;Y:DOUBLE):DOUBLE;

Z := DDMUL (X,Y);
NOTE: DDMUL requires inclusion of the file DDMATH.PAS with DOUBLE.PAS.

You can perform unsigned arithmetic using a mix of both single- and
double-precision expressions of type integer with the following
functions. Note that single-precision values are not sign-extended.

DSADD

The mixed type addition function DSADD returns the sum of its
arguments.

EXTERNAL FUNCTION DSADD
(X:DOUBLE;Y:INTEGER):DOUBLE;

Z := DSADD (Y, I);
DSSUB

The mixed type subtraction function DSSUB returns the difference
of its arguments.

EXTERNAL FUNCTION DSSUB
(X:DOUBLE;Y:INTEGER):DOUBLE;

Z := DSSUB (Y, I);
DSMUL

The mixed type multiplication function DSMUL returns the product
of its arguments.

EXTERNAL FUNCTION DSMUL
(X:DOUBLE;Y:INTEGER):DOUBLE;

Z := DSMUL (Y, I);



External Routines Supplied by DGC

DSDIV

The mixed type division function DSDIV computes the quotient and
remainder of its arguments. Then it sets the first argument to the
quotient, and returns the remainder as the result of the function.

EXTERNAL FUNCTION DSDIV
(VAR X: DOUBLE;
Y: INTEGER):INTEGER;

N := DSDIV (Y, I);






SP/Pascal Exception
Handling

Many simple programs become complex and hard to debug when
the programmer must add code to handle run-time errors and other
unexpected conditions. SP/Pascal addresses this problem by intro-
ducing the concept of exception handlers: statements that can be
automatically executed when an exceptional condition occurs.
SP/Pascal programs can handle all types of errors in a simple,
coherent manner.




SP/Pascal Exception Handling

Defining an
Exception
Handler

The term exception has come into fashion in the computer industry
as a polite word for “error.”” Actually, the new word has some merit,
since an “error” is not really “wrong” if the program is designed to
respond to it in a helpful way. At any rate, there are three types of
exceptions (or errors) that can occur in an SP/Pascal program:

e System errors. These are errors that are detected by the MP/AOS
system, such as FILE DOES NOT EXIST or INSUFFICIENT
MEMORY AVAILABLE. These errors are described in detail in
the MP/AOS System Programmer’s Reference, (DGC No.
093-40051).

e Run-time errors. These are errors that are detected within the
compiled code of your program, such as DIVISION BY ZERO or
STRING OVERFLOW. A complete list of these errors may be
found in Appendix B.

e User-defined errors. There may be times when one routine in
your program detects a condition that should be identified to the
rest of the program as an error. You can cause these conditions to
be handled in the same manner as system or run-time errors.

SP/Pascal provides a simple facility that handles all three types of
exceptions. You can use a reserved word, EXCEPTION, to define a
group of statements that will be executed automatically if an
exception occurs anywhere within a specific part of your program.
There is also an ERETURN statement and an ERROR_CODE function
that assist you in handling exceptions.

You can use the EXCEPTION keyword to associate an exception
handler with any compound statement, by expanding the normal
BEGIN ... END syntax in the following manner:

BEGIN
: { normal statements }
EX[-:EPTION
: { exception handling statements |

END

If an exception occurs anywhere within the normal statements,
control is immediately transferred to the exception handling state-
ments. If the normal statements execute successfully, then the
exception handler is skipped, and control passes in the usual fashion
to the first statement after the END.



An exception handler may contain any valid SP/Pascal statements.
It may use the ERROR_CODE function (described shortly) to
determine the cause of the exception. After the handler is executed,
control will pass to the first statement after the END, unless the
handler executes a RETURN, ERETURN, or EXITLOOP statement.
One of these statements can transfer control to some other point in
the program.

Exception handlers can be nested in the same manner as BEGIN-
END blocks. When an exception occurs, control is passed to the
innermost exception handler that is currently active, as shown in
the following example:

BEGIN { level 1 |
. | exceptions here will activate the level 1 handler }
BEGIN { level 2 |

exceptions here will activate }
. { the level 2 handler |

EX[':EPTION
: { this is the level 2 exception handler |
END; { end of level 2 |
: { exceptions here will activate the level 1 handler |
EX[.:EPTION
: { this is the level 1 exception handler }

END: { end of level 1 |

If an exception handler itself causes an exception, then control is
immediately transferred to the next-innermost handler. In the above
example, if the level 2 handler causes an exception, then control will
immediately pass to the level 1 handler.

Whenever an exception occurs for which you have not defined your
own handler, control passes to a default exception handler that is
built into all SP/Pascal programs. This handler will simply print a
short message and terminate the program. The message consists of a
line of text that identifies the exception, followed by the value of the
program counter when the error was detected. For example:

SP/Pascal Exception Handling

Nesting of Exception
Handlers

System Default
Exception Handler



SP/Pascal Exception Handling

Error Codes

User-Defined
Errors

DIVISION BY ZERO
AT LOCATION 076147

If your program uses multitasking (see Chapter 12), and an error
occurs in any task other than the program’s initial task, then the
error message will also identify the task which caused the error. For
example:

TASK 0004 AT 076147
ERROR: DIVISION BY ZERO

An exception always has an error code associated with it. This is an
integer value that identifies the cause of the exception. Your
exception handler can obtain the code by calling the integer function
ERROR_CODE. This function (which has no parameters) returns the
code for the currently active exception. (If no exception has occurred,
ERROR_CODE returns zero.)

The error codes for system errors have values that start at 40000g.
These values are declared in the include file, ERROR_CODES.PAS.
The codes for run-time errors have values that start at 43000g. These
values are declared in the file SPC_ERRORS.PAS. Data General
reserves error code values between Og and 77777g for system and
utility use.

The ERETURN procedure gives you the ability to create an exception
condition to serve a specific need for your application. ERETURN
causes immediate termination of a routine, in a manner similar to
RETURN. The difference is that ERETURN causes an exception to
occur in the calling routine, so that an exception handler will be
activated. The form of the ERETURN statement is:

ERETURN (number)

The number, an integer, identifies the type of exception. This number
will be returned by any subsequent calls to the ERROR_CODE
function.

Remember that ERETURN terminates the routine that executes it.
Thus the exception will occur, not in the routine that does the
ERETURN, but in the routine which is resumed. For instance, if a
procedure P calls a procedure Q, and Q does an ERETURN, then an
exception handler in P, not Q, will be activated.



SP/Pascal Exception Handling

Examples

Example 1

Example 1 deletes a file. Note that two errors are given specific
handling (ERPRM and ERFDE) while other errors are propagated.

ACO:= BYTEADDR(FILENAME)
BEGIN
SYSTEM (?DELETE,0,ACO,AC1,AC2)
EXCEPTION
IF ERRORCODE = ERPRM THEN BEGIN
WRITELN ('CAN'T DELETE PERMANENT FILES');
ERETURN(ERROR_CODE) ;
END ELSE IF ERRORLCODE = ERFDE THEN
WRITELN ('WARNING: ', FILENAME, ' NOT FOUND');
ELSE
ERETURN(ERROR_CODE) ;
END;

Example 2
This example illustrates the handling of a floating-point trap.

BEGIN
DBLREAL := VAL/VALUE1;
EXCEPTION
IF ERRORLODE = EPFUF THEN
DBL_REAL:=0.0
ELSE
ERETURN(ERROR-CODE) ;
END;

Example 3

The following example illustrates standard Pascal I/0 with exception
handling.

O0K:= FALSE;
REPEAT
BEGIN
WRITE('ENTER AN INTEGER: ');
READLN (INT);

0K:= TRUE;
EXCEPTION
IF ERRORLCODE = EPCUT THEN
READLN; %Cleans up rest of input line;

%stops at invalid integer.

e



[

SP/Pascal Exception Handling

Example 4
This example is a fragment of one program that copies a file.

DONE := FALSE;

WHILE NOT DONE DO BEGIN
READ (F,Q);
WRITE (6G,Q);

EXCEPTION
IF ERROR.CODE = EREOF THEN

DONE:= TRUE;

ELSE
ERETURN(ERROR-LODE) ;

END;



Multitasking

Multitasking is a powerful technique that enables you to divide a
program into a number of asynchronous subprograms called tasks.
The MP/AOS operating system provides a scheduling routine, the
task scheduler, that switches control among the tasks to create the
appearance of parallel processing. Multitasking can simplify the
code for any program that must do several things at the same time.




=y
E. ii?é? Multitasking

Tasks

Managing Tasks

Multitasking is similar to multiprogramming in that a task operates
independently from any other task(s). Still, all tasks are part of a
single program and share the same memory, I/O channels, and
other system resources. SP/Pascal programs can create, run, suspend,
and delete tasks at run-time. ’

Multitasking has been added to SP/Pascal as a set of external routines
with no structural change to the language. The external procedures
for tasking are provided as an include file, TASKING.PAS. Table
12.1 is a summary of the tasking procedures, and each procedure is
detailed in the remainder of this chapter. The routines used for
managing dynamic memory space within task space are described
in Chapter 9.

Table 12.1 External procedures for multitasking

Multitasking procedures allow you to create or delete tasks at run
time. You can assign different priorities to tasks to control which
one runs in response to a given event. You also can turn multitasking
off and on with procedure calls to ensure that a critical operation is
performed without interruption from other tasks. Tasks can use
procedure calls to communicate with each other and to suspend or
resume operations. The MP/AOS System Programmer’s Reference
(DGC 093-400051), describes how the MP/AOS system controls
multitasking.

You specify the maximum number of tasks your program requires
with the /TASKS=number keyword switch at bind time. The
number of tasks a program can use must be less than the process
maximum. The maximum number of tasks any program can use is
specified at system generation. Under MP/AOS, the maximum
number of tasks is limited only by the amount of memory available.
Under AOS with the call translator, the maximum number of tasks
is 30.



For the SP/Pascal run-time environment, each program'’s stack and
heap are allocated in available unshared memory space during
program initialization. (When a number of programs runs simulta-
neously, each program still maintains its independent logical process
memory area, with its own program stack and heap, since each
program executes within its own process space.)

A program'’s stack starts in low memory and grows upward; the heap
starts in high memory of the program space and grows downward.
When a program has one or more tasks, each task is allocated its
own private stack in available heap space when the task is activated.
Refer to Figure 12.1 for a conceptual representation of logical
memory showing a single program with two active tasks. During
execution the stack and heap grow toward each other: the program
stack is allocated incrementally into the free space, as long as
increasing the size does not cause the stack top to reach the bottom
of the heap; the heap grows at the bottom provided it does not run
into the top of the program stack.

(Other heap objects) —1 T8 -
— Ta
Free Q‘
— Tag
Task 1 stack B ng
— Tag
— Tag
Task2 stack .
—Tag
Bottom of heap (P?HP) ¢ :
Free space
Top of stack (S?MAX) f
.. Main program
stack
Global variables
Task data blocks
User’s program
ZREL P?TTB
o

Figure 12.1 Task memory allocation

Multitasking

Memory Management



Multitasking

Two SP/Pascal-defined run-time environment variables are used as
heap and stack markers: P?HP marks the low bound of the heap; and
S?MAX marks the high bound of the main program’s stack. The
internal storage management routines guarantee a small buffer area
between the stack maximum and the heap minimum. A subsequent
task, creating dynamic variables with the predefined NEW routine,
must know the main program'’s stack limit (S?MAX) to ensure an
accurate picture of free space.

NOTE: These details of implementation are provided for informational purposes
only. The programmer must not manipulate P?HP or S?MAX.

Heap Management

Each active task in a multitasking program has a private stack
allocated in the main program’s heap space. The task stack is used
for execution of the task code (for example, calling and returning
from procedures, local data storage). Independent task stacks enable
each task to execute in the same environment with other asynchro-
nous tasks.

The heap is managed by the boundary-tag method requiring two
words of overhead for each heap entry. (Figure 12.1 shows the tags
at the boundaries of the active tasks.) This method allows adjacent
blocks to be combined quickly. The tag contains a status flag and an
absolute block size value. The status flag is a negative value for a
block in use, and a positive value for a free block.

When a block is freed at the bottom of the heap, the P?HP 1is
increased; otherwise, the block is added to a list of free blocks.
When you perform a NEW operation, the list is scanned first to
check for availability of the requested storage; if a block of sufficient
size is found on the free list, that block is used. Otherwise, P?HP is
reduced, and the new variable instance is allocated at the bottom of
the heap.

Generally, the heap is managed for you by the multitasking routines.
If you are manipulating the heap with the NEW, DISPOSE, MARK,
or RELEASE routines (described in Chapter 9), you must be careful
not to de-allocate any part of the heap that is being used by some
task.

Task Stack Management

A four-word data block is allocated for each task by the program
initialization routine. When the task is activated, the data block is
loaded with task-specific information. These words identify the task
ID, the task’s stack base and the stack limit within the program
heap, and the task’s lock chain (a list of resources acquired by the
task). This information is used to release any owned resources when
a task is killed. The task data block is pointed to by the ZREL
location P?TTB. (Refer to Figure 12.1.) Zero entries in the task ID
field indicate unused tasks.



The following sections describe task initialization, scheduling, and
task interaction.

WARNING: SP/Pascal does not check to be sure that only unnested
(global) routines with no parameters can be called as tasks. If
parameters are present, they are not passed. If the routine is not
global, the task within which the routine nests can terminate
independently and can have undesirable effects on program execution.

A task stack overflow is fatal. Tasks use a separate stack overflow
handler and error reporter. The SP/Pascal-defined variable P?TSK
is set at zero during program initialization, if multi-tasking is not
required by the program. (Program initialization determines the
multi-tasking status flag from the binder variable ?NTAS. The
SP/Pascal binder macro switch /TASKS= allows you to specify the
number of tasks when you bind the program.) Testing P?TSK during
execution allows routines that manipulate global databases to avoid
executing task scheduling calls (?DRSCH and ?ERSCH). All SP/Pascal
run-time routines preserve the task scheduling state.

At run time you create tasks by invoking the following function:

EXTERNAL FUNCTION FORK
(VAR ID: ?TASK_.ID;
PSTK : INTEGER;
PPRI : ?TASK_PRI): BOOLEAN

The procedure arguments are described further in this section.

The recommended method for using a FORK call is illustrated in
this example:

PROCEDURE TASK 1;

BEGIN
IF FORK(TASK1ID,4000,127) THEN RETURN;
{start of code for TASK 1

RETURN; [TASK 1 is killed on encountering]
{ RETURN}
END; |end of TASK 1

When you use this format, FORK works like a subroutine executed
in parallel to the main routine. FORK returns true to the forking
task and false to the newly created task. Any local variables of the
calling task are copied into the new task’s stack space.

Multitasking

Creating Tasks: FORK
Procedure



Multitasking

The variables ID, PSTK and PPRI, serving as arguments to FORK,
are associated with the values for task identifier, task stack size and
task priority, respectively, for the ?CTASK system call.

Task Identifier - id

When you create a task, the system assigns it a task identifier. This
is a 16-bit number you use with procedure calls for referring to the
task. The task identifier, which should be set up as a global variable,
is then available to both the forking and forked tasks.

Task Stack Size - pstk

You supply an integer stack size when calling FORK, because each
task requires its own stack space. To determine the stack size required
for a given task, use the /STACK switch at compile time. The
/STACK switch displays the minimum stack size needed for each
procedure in the program (see Chapter 13).

The size of the task stack is the largest sum of stack space required
by each active routine in any calling sequence path from the
procedure calling FORK. (A routine is active from the time it is
called until it returns to the calling routine or until it is killed.) Refer
to the program listing, (Example 1) to reconstruct the calling
sequence. Using the stack size figures provided by the program
listing, you can determine the task stack size (see Table 12.2).

Example 1. Task stack size calculation

SP/Pascal Rev. 1.00 Thursday April 18, 1982 1:51:04 PM
Compiling STK.PAS

1. PROGRAM STK;
2. %l-
3. INCLUDE TASKING.PAS;
50.
51. VAR
52. ID: ?TASKID;
53. STKSIZ: INTEGER;
54.
55. PROCEDURE ONE(P11:INTEGER; P12: REAL);
56. VAR
57. V11,V12: ARRAY[1..20] OF INTEGER;
58. BEGIN
59. %code. ..
60. END; %procedure one
61.
62. PROCEDURE TWO(P21: INTEGER; P22: REAL);
63. VAR
64. V21,V22,V23: ARRAY[1..5] OF REAL;

65. BEGIN



66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

%code. ..
END;  ‘%procedure two

PROCEDURE THREE;
VAR
V31,V32: REAL;

BEGIN

IF FORK(ID,STKSIZ,127) THEN RETURN;

ONE(10,100.001) ;
TWO(10,100.001);
END;  %procedure three

BEGIN %main program
THREE ;
END.

Stack allocation summary

Procedure ONE beginning on line 58

Total save size = 45

Local vars Stack offset
V12 26
V11 6

Procedure TWO beginning on line 65

Total save size = 35

Local vars Stack offset
V23 26
v22 16
V21 6

Procedure THREE beginning on line 73

Total save size = 10

Local vars Stack offset

Type kind

array
array

Type kind
array

array
array

Type kind

Multitasking

163



Multitasking

V32 8
V31 6

Program STK beginning on line 79

Total save size = §

0B generation summary

Total program code size = 36
Total program literal size = 2
Dispatch tables size = 0

Zrel size = 0

Unshared code size = 2
Unlabeled commonsize = 0

real
real

81 source lines were compiled in 18 seconds

No Compilation Errors

Table 12.2 Determination of task stack size

Note that the stack size required for procedure TWO is not included
in the calculation of stack size needed for the task, because procedure
TWO is not active at the same time as procedure ONE; since ONE is
larger than TWO, you choose the largest possible path. Although the
determination of task stack size often is more complex than the
example (for instance, when recursive calls are involved), the

approach remains essentially the same.



After determining stack size and making the assignment statement
to the appropriate variable (here, STKSIZ), recompile the program.

Task Priority - ppri

A task priority is a number between 0 and 255; lower numbers
represent higher priority. The system always runs higher-priority
tasks first. Lower-priority tasks are run only when all higher-priority
tasks are blocked from running.

NOTE: When you start a program, the system assigns a priority of 127 to its initial
task.

You specify a task's priority when you create the task by supplying
the priority number as an argument to the FORK call.

A task can change its priority by invoking the SETPRIORITY
procedure. The SETPRIORITY procedure is supplied by DGC in
TASKING.PAS. The declaration for this procedure is as follows:

EXTERNAL PROCEDURE
SETPRIORITY(pri : ?TASK_PRI);

The tasks created by FORK are deleted (killed) when any of the
following occurs:

* A RETURN procedure call from the forking procedure.
* The end of the forking procedure.

* Aninvocation of the KILL procedure specifies the task ID returned
by the FORK.

The following program sample illustrates the first two conditions.

MODULE TASK;
[s1-}
INCLUDE TASKING.PAS;

VAR
ID, STKSIZ: INTEGER;
CONDITION: BOOLEAN;

PROCEDURE TASK;

BEGIN
IF FORK(ID,STKSIZ, 127) THEN RETURN;
{This return is executed only by the forking|
{procedure, since FORK returns FALSE in the|
{task; therefore, the task is not killed.}

Multitasking

SETPRIORITY
Procedure

Deleting Tasks:
RETURN and KILL



Multitasking

Task Scheduling

Intertask
Communication

{Task code|

IF CONDITION THEN RETURN;
{This return kills the|
{task when the condition is TRUE, since|
{the task has no ‘‘return destination.’’|

{Task code |

END; {End of procedure calling the task; task is}
|killed, since END statement forces a return.}

The KILL procedure is declared as follows:
EXTERNAL PROCEDURE KILL(id:?TASK_ID);

This procedure ignores errors (since the only possible error is an
invalid identifier signifying the task is already deleted). It also
releases all Jocks owned by the task. Locks are described later in this
chapter.

At times you need to suspend multitasking activity; for instance, you
might need to read and modify a critical memory location without
having some other task modify the same location at the same time.
You might have a routine, such as a procedure that performs I/0 to
a global file. The routine could be shared by several tasks, but can be
executed only by one task at a time. LOCK and UNLOCK, described
further on in this section, are special-purpose alternatives to suspend-
ing multitasking.

The external procedures DRSCH and ERSCH support these activities.
DRSCH disables the task scheduler, ensuring that no task can run
except the one that executed the DRSCH. The task uses the ERSCH
procedure to re-enable the scheduler when it completes the critical
activity. These procedures correspond to the MP/AOS ?DRSCH and
?ERSCH system calls.

Two sets of procedures make it possible to control task operation and
task synchronization. They are the procedures LOCK/UNLOCK and
PEND/UNPEND.



When tasks share a common set of global variables, you must be
capable of ensuring that only one task at a time updates them.
Similar control of task operation is needed in connection with any
SP/Pascal I/0 if more than one task is writing to a given file.

The procedures LOCK and UNLOCK provide the security of mutual
exclusion without having to disabling the task scheduler. These
procedures are declared as follows:

EXTERNAL PROCEDURE LOCK(g :?TASK_LOCK);
EXTERNAL PROCEDURE UNLOCK(g :?TASK_LOCK);

A ?TASK_LOCK is automatically initialized to the unlocked state.
When LOCK is called, unlocked ?TASK_LOCKs are placed in the
locked state, and the calling task continues. If ?TASK_LOCK already
is locked when LOCK is called, the calling task is suspended.

Only the task calling the LOCK can UNLOCK it. Any attempt at
unlocking by another task results in a run-time error.

Once procedure UNLOCK is called, the task longest suspended by the
lock on the ?TASK__LOCK resumes.

NOTE: Any of the methods described earlier for terminating a task unlock all of a
given task’s locks before deleting that task.

The use of locks to control access to shared variables is illustrated in
the following example:

VAR GLOBAL : RECORD
LOCK: ?TASKLOCK;

END;
BEGIN
{code ...}
LOCK (GLOBAL .LOCK) ; {Global is a structure
shared among tasks. |

{modify GLOBAL at will

UNLOCK (GLOBAL .LOCK) ; {allow other tasks access
to GLOBAL|

END.

Multitasking

Procedures
LOCK/UNLOCK



Multitasking

Procedures
PEND/UNPEND

Program
Examples

Tasks are able to control each other’s actions. The system enables
tasks to synchronize their activities with the procedures PEND and
UNPEND. These procedures correspond to the MP/AOS ?PEND and
?UNPEND system calls and are declared as follows:

EXTERNAL PROCEDURE PEND{e :?TASK_EVENT);
EXTERNAL PROCEDURE UNPEND(e :?TASK_EVENT);

When a task executes a PEND, that task is blocked from running
until a particular event occurs. The event is specified by a 16-bit
number (event code). If PEND is issued while the scheduler is
disabled, scheduling is re-enabled after the PEND call returns.

The event specified in the 16-bit number must be used by some other
task in an UNPEND call. This call signals the occurrence of the
specified event and allows resumption of the task waiting for it.

Event number values must be between zero and ?EVMAX. The
values between zero and ?EVMIN are reserved for system-defined
events. You can specify these reserved values on a PEND, but not on
an UNPEND. Values between ?EVMIN and ?EVMAX can be specified
on either PEND or UNPEND. ?EVMIN and ?EVMAX are defined in
the MP/AQS System Programmer’s Reference, (DGC No. 093-400051).
They are declared in the include file TASKING.PAS.

NOTE: If locks are used, then events between 40000g and EVMAX are reserved.

Console Interrupt Tasks

It is possible to interrupt an executing SP/Pascal program by typing
the CTRL-C CTRL-A sequence on your keyboard. To receive this
interrupt, the program must create a task that pends on an event
number equal to ?EVCH plus the channel number of the console
keyboard (usually ?2INCH). The task is unpended when you type the
CTRL-C CTRL-A sequence. Then the program can accept a command
from you or shut itself down.

Example 2, below, illustrates the use of multitasking, task manage-
ment, scheduling and intertask communication. The program'’s
function is to copy buffers of the number and length the user
specified.



SP/Pascal  Rev. 1.00 Thursday April 8, 1982 4:48:32 PM
Compiling FCOPY.PAS

w P

50.
122.
124.
71.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.

MODULE FCOPY;

{s1-

INCLUDE TASKING.PAS;
INCLUDE IQLCALLS.PAS;
INCLUDE SYSLIB.PAS;
INCLUDE FILE-PARS.PAS;
INCLUDE ERROR-CODES.PAS;

CONST
NOBUFFER = 0;
BUF_LOUNT = 3;

BUFLENGTH = 1024;
EMPTY_PENDKEY = 1000;
FULL_PENDKEY = 1001;

TYPE
BUF_INDEX = NOBUFFER. .BUF_COUNT;

BUF-TYPE = RECORD
NEXT: BUF-INDEX;
ENDF: BOOLEAN;
BUF: STRING BUF_LENGTH;
END;

HEADER = RECORD
HDR: BUF_INDEX;
LOCKS: 2TASKLOCK;
KEY: ?TASK_EVENT;
END;

VAR
INCHAN, OUTCHAN: CHANNEL ;
EMPTY,FULL: HEADER;
BUFFER: ARRAY [1..BUF_COUNT] OF BUFTYPE;

FUNCTION NEXT_BUFFER(VAR Q:HEADER): BUF_INDEX;
%get next buffer from linked list

VAR
ACTIVE: BUF_INDEX;

BEGIN
ACTIVE := NOBUFFER;
WITH Q DO

Multitasking




Multitasking

307. WHILE ACTIVE = NO_BUFFER DO

308. BEGIN

309. LOCK(LOCKS) ; %only one task can modify the header at a time
310. ACTIVE := HDR;

3N. IF ACTIVE = NOBUFFER THEN

312. BEGIN

313. DRSCH: %make sure the other task doesn’t run until we're pended
314. UNLOCK (LOCKS) ;

315. PEND(KEY); %pend renables scheduling

316. END

317. ELSE

318. BEGIN

319. HDR := BUFFER[ACTIVE].NEXT;

320. UNLOCK (LOCKS) ;

321. END;

322. END; % while active = nobuffer

323. NEXT_BUFFER := ACTIVE;

324. END; % nextbuffer

325.

326. PROCEDURE ADD_BUFFER(VAR Q: HEADER; BP: BUF_INDEX);
327. % add buffer to linked list

328.

329. VAR

330. ACTIVE: BUF-INDEX;

331.

332. BEGIN

333. NITH Q DO

334. BEGIN

335. LOCK(LOCKS); % only one task can modify the header at a time
336. ACTIVE := HDR;

337. IF ACTIVE = NO_BUFFER THEN HDR .= BP

338. ELSE

339. BEGIN

340. WHILE BUFFER[ACTIVE].NEXT < > NOBUFFER DO
341. ACTIVE := BUFFER[ACTIVE].NEXT;

342. BUFFER[ACTIVE].NEXT := BP;

343. END;

344. BUFFER[BP].NEXT := NO_BUFFER;

345. UNPEND(KEY); % signal there is a buffer in the linked list
346. UNLOCK (LOCKS);

347. END; % with g

348. END; % add-buffer

349.

350. PROCEDURE INPUTF;
351. % input task



352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.

VAR
TASKID: ?TASKJID;
BP: BUF_INDEX;
STATUS: INTEGER;

BEGIN
IF FORK(TASKID,100,127) THEN RETURN;
WHILE TRUE DO % loop forever
BEGIN
BP := NEXT_BUFFER(EMPTY);
WITH BUFFER[BP] DO
BEGIN
ENDF := FALSE;
CHARREAD (INCHAN,BUF_LENGTH,BUF,STATUS) ;
IF STATUS < > 0 THEN
IF STATUS = EREOF THEN ENDF := TRUE
ELSE ?EXIT(STATUS, 'INPUT FILE READ');
END;
ADD_BUFFER(FULL,BP);
IF BUFFER[BP].ENDF THEN RETURN;
END;
END;

ENTRY PROCEDURE COPY(INP,OUT: PATHNAME);

VAR
BP: BUF_INDEX;
STATUS: INTEGER;

BEGIN
OPENFILE(INCHAN,INP,0,0,0,STATUS);
IF STATUS < > 0 THEN ?EXIT(STATUS, INPUT FILE OPEN’);
OPENFILE(OUTCHAN,QUT,DE+EX, 2DUDF,4,STATUS);
IF STATUS < > 0 THEN ?2EXIT(STATUS, OUTPUT FILE OPEN');
EMPTY.HDR := 1;
EMPTY.KEY := EMPTY_PENDKEY;
FULL.HDR := NO_BUFFER;
FULL.KEY := FULL_PENDKEY;
FOR BP := 1 TO BUF_COUNT - 1 DO
BUFFER[BP].NEXT := BP11;
BUFFER[BUF_COUNT].NEXT := NO_BUFFER;
INPUTF;
WHILE TRUE DO % buffer output loop
BEGIN

Multitasking

W P

s

I

.

Sl



Multitasking

397. BP := NEXT_BUFFER(FULL);

398. WITH BUFFER[BP] DO

399. BEGIN

400. CHARWRITE(OUTCHAN, BUF , STATUS) ;

401. IF STATUS < > O THEN ?EXIT(STATUS, OUTPUT FILE READ'):
402. IF ENDF THEN EXITLOOP;

403. END;: % with buffer[bp]

404. ADDLBUFFER(EMPTY ,BP) ;

405. END;

406. CLOSEFILE(INCHAN, STATUS);

407. IF STATUS < > O THEN ?EXIT(STATUS,’ INPUT FILE CLOSE');
408. CLOSEFILE(OUTCHAN, STATUS) ;

409. IF STATUS < > O THEN ?EXIT(STATUS, OUTPUT FILE CLOSE');
410. END; % copy

Stack allocation summary
Function NEXT_BUFFE beginning on line 304
Total save size =7
Local vars Stack offset  Type kind
ACTIVE 6 subrange
Procedure ADDBUFFER beginning on line 332
Total save size =7
Local vars Stack offset  Type kind

ACTIVE 6 subrange
Procedure INPUTF beginning on line 358

Total save size = 10

Local vars Stack offset  Type kind
STATUS 8 integer
BP 7 subrange
TASKID 6 subrange

Procedure COPY beginning on line 382



Multitasking

Total save size = 10

Local vars Stack offset Type kind
STATUS 7 integer
BP 6 subrange

0B generation summary

Total program code size = 417
Total program literal size = 64
Dispatch tables size = 0

Zrel size = 0

Unshared code size = 1560
Unlabeled commonsize = 0

410 source lines were compiled in 58 seconds

No Compilation Errors






Operating
Procedures

This chapter describes the development process for SP/Pascal
programs. It provides instructions for operating the SP/Pascal
compiler and for binding, debugging, and executing SP/Pascal
programs under the MP/AOS and AOS operating systems. The
program development phases covered are:

compiling an SP/Pascal source unit
binding an SP/Pascal program
debugging an SP/Pascal program
executing an SP/Pascal program

Where appropriate, references to other manuals in the MP/AOS
documentation set indicate additional program development infor-
mation.



Operating Procedures

Compiling The compiler, a program called SPC, can be invoked at the CLI level
with the XEQ SPC command. The command line syntax requires
that no space or comma delimiters appear in the designation of the
compiler name and switches.

The command line for compiling an SP/Pascal source file is
XEQ SPC[/L[=listfile]] [/E=errorfile] [/O=objectfile] [/STACK] [/OPT=opt-char[+ | —[...opt-charl + | —1[/A[ =asmfile]] [/NOLEF][/N]  sourcefile
Following are three examples of compilation command lines:

XEQ SPC/L=MY_LIST/A=ASMLST MY_MOD
SPC MY_PROG
XEQ SPC/L/0=ROUTINE233/STACK/NOLEF/N MY_PROG

Compiler Switches
Conditional Code Generation

The SP/Pascal compiler does not generate code for unreachable
statements in the program. This feature allows you to insert
debugging or diagnostic statements into the program text and to
direct the compiler to generate code for these statements only in
certain circumstances. For example,

IF DEBUG THEN BEGIN
special statements for debugging purposes}

END;

When the identifier DEBUG is a Boolean constant, code for the
special statements is generated only when DEBUG has the value
true. A typical use would define DEBUG in an INCLUDE file, and
then, using either the searchlist or appropriate link, you can pick up
the appropriate definition.

Compiler Program Listing

When you include the /L switch, a list file is generated to the line
printer. If you use the keyword switch (/L=1Iistfile), the listing is
generated to the specified file. If the file doesn't already exist, it is
created; if the file already exists, the listing is appended to it. If you
omit the optional /L switch, the compiler does not produce a program
listing.



Compiler Error File

When you use the keyword switch /E=errorfile, the list is generated
to the specified file, as well as appearing at the end of the program
listing file when that file is specified. If the error file doesn’t already
exist, it is created; if the file does exist the listing is appended to it.

If you omit the optional /E switch, no separate error file is created.

Compiler Object File

If no errors are found in the source program during compilation, the
compiler produces an object file that can be used as input to the
binder. No object file is created when compilation errors exist.

When you include the /O=objectfile switch, the name of the object
tile is objectfile. If the file doesn't already exist, it is created; if the
file does exist the new object file overwrites the old.

When you omit the optional /O switch, the default for the object file
is to create the file in the originating directory. The file has the same
name as the source program with the .OB extension, rather than
.PAS. When the default object file already exists, the new file
overwrites the old.

Compiler Stack Calculation

When you use the /STACK switch, the compiler generates a table at
the end of the listing file. The table contains one line for each
routine that is defined in the compilation unit. The line provides the
routine name, the line number of the start of the statement section
for that routine, and the stack size to be allocated when the routine
is executed. For each routine, the compiler also displays the names
stack offset, and type class of every local variable. If you do not
specify the /STACK switch, the compiler omits the table.

Compiler Options Override

When you include the /OPT=opt-char keyword switch, you can
override the compiler’s default options. If you omit this keyword
switch and its option characters, the existing defaults are in effect.

The opt-char specified can be any of the single-character mnemonics
representing the options described under “Compiler Options,” further
on in this chapter. Each option character must be followed by either
a plus (+) or a minus (—) sign. The plus sign forces the option on
throughout the program; the minus sign turns the option off
throughout the program.

You can specify multiple options. For example:
SPC/OPT=S-V-P- sourcefile

Operating Procedures



Operating Procedures

This command directs the compiler to omit generating run-time
checks for array subscripts, record variants, and pointer references.

Program Debugging

For SP/Pascal, a separate process debugger can be used during test
execution of the program. The compiler switch /A= asmfile produces
a disassembler listing, a symbolic assembly language listing of the
generated code for each SP/Pascal source line. Use the disassembler
listing when operating with the process debugger. The process
debugger is described in MP/AOS Debugger and Performance
Monitoring Utilities (DGC No. 069-400205).

When you use the /A switch alone, the symbolic assembly listing is
produced with the listfile (or to the console). When you use the
keyword switch /A=asmfile, the listing is generated to the specified
file. If the file doesn't already exist, it is created; if the file does exist
the listing is appended to it.

Compiler LEF Instructions

Use the /NOLEF switch to indicate to the compiler that short
(single-word) LEF instructions cannot be used in the object code.
(The two-word extended LEF instruction ELEF always is permitted.)
This switch is necessary for system programs that must issue I/0
instructions; short LEF instructions generated by the SP/Pascal
compiler would be misinterpreted as 1/0 instructions. When you do
not specify the /NOLEF switch, short LEF instructions are used
where appropriate. The SP/Pascal runtimes do not use short LEF
instructions.

Compiler Syntactical Check Only

The /N switch indicates that no object file is to be produced by the
compiler. Instead, the source file is analyzed for syntactic and
semantic errors only.

Program or Module Source File

The source file name is a required argument in the compiler
command line. If you provide a .PAS extension to your the compiler
searches for a file called sourcefile. If you don’t provide an extension,
the compiler tries to read text from sourcefile.PAS, and, if this fails,
tries to read source text from sourcefile. If both attempts are
unsuccessful, the compiler issues an error message and returns you
to the CLI. We suggest you always use the .PAS extension.



You can instruct the compiler to generate code according to certain
options. For example, you can request insertion or omission of code
for run-time error detection, or you can suppress a listing of include
files. The following compiler options are available:

I List all INCLUDE files. (Default=0FF)

L=518110 Specify truncation of the identifier for object file
external or entry names to a length of either five,
eight, or ten characters (default =10).

N Generate line numbers (not supported) (MP/Pascal
compatibility only).

0 Generate code to check for overflow on all integer
arithmetic operations (default=OFF).

P Generate code to initialize to zero all pointers and
structures containing pointers. Check all pointer refer-
ences for a value of nil (default=O0N).

R Generate code to check all subrange assignments (de-
fault=COFF).

S Generate code to check all array subscripts (de-
fault=0N).

T Generate code to check range on current set members
(default=O0FF).

v Generate code to check all variant references (de-
fault=0ON).

w Generate code to check whole and integer ranges in

assignment and value parameter contexts (checking that
whole-to-integer assignments do not exceed MAXINT
and that negative values are not assigned to whole
variables) (default=OFF).

Z Set divide-by-zero checking (default=0ON).

To summarize, the options P, S, V, and Z are on (+) by default, and
all other options are off (—).

Specifying Options Within the Source Code

When a compilation unit requires special compiler options, you can
set up a directive in the source file to establish specific options for
that unit, and then you can clear those options with another directive.
(The options that can be specified are those described in the preceding
list and specified initially to the compiler with the /OPT= switch.)

The directives are specified in the source program as a comment
with a dollar sign ($) as the first character of the comment. Comma
delimiters are required between individual option mnemonics. The
options directive format is

Operating Procedures

Compiler Options

S

b, H
%mﬁ

Pl
S



Operating Procedures

$[<stack directive>>]<option list>>
< delimiter>><any comment>>]

NOTE: No spaces are allowed in the options string.
For example,

$1— .5+ v+

updates the current option list so that INCLUDE files are not listed,
but subscripts and variants are checked.

To change the compiler options again or to restore them to their
former state you can insert another comment in the source code.
The following directive is used when the checking no longer is
required but when the include files listing still is suppressed:

$S— V—

Alternatively, you could use the option stack directive as explained
in the following paragraphs.

Saving Options

When an include file or a portion of a compilation unit requires
special compiler options, the existing set of options can be saved in a
stack-like fashion and later reinstated by using the push and pop
stack directives to save and restore the option set. The beginning
directive starts with a push character (a greater-than sign (>))
followed by the option mnemonics and on-off signs. (After a push, all
options are off.)

To clear one or more of the options specified with the push directive,
you can pop the options with an ending directive comment with a
dollar sign followed by the pop character (a less-than sign (<)) and
any new options.

If you then wanted to list portions of INCLUDE files, you would
specify:

$>1+

Later in the program, you can pop the original option list, to suppress
include file listings as follows:

$<

The listing control option allows for insertion of the | or © character
as the first character of a comment string to force a page eject in the
listing file.



The compiler generates a list of error messages with total error
count and appends the list to the end of the program listing. Each
message lists the number of the source line that triggered the message.
The total error count is displayed at the terminal when compilation
finishes. Appendix B lists the compiler error messages.

The object module produced by the compiler can stay in the specified
directory or can be made part of a library of compilation units in
object form. Use the library editor to establish libraries of object
modules. For more information on the MP/AOS library editor, refer
to MP/AOS Macroassembler, Binder, and Library Utilities (DGC No.
069-400210).

The object module produced by the compiler must be bound before it
can become an executable program. The binder resolves external
calls within the program, locates required routines in the library,
and binds in any specified separate compilation units stored in
object form.

Under the MP/AOS operating system, you bind a program using the
following Command Line Interpreter (CLI) bind macro,
(SPCBIND.CLI), which is supplied with the SP/Pascal compiler.

SPCBIND[switches] objectfile [file-1 [file-2[...file-n]]]

The program name assigned to the binder output is the same as that
of the first object module (objectfile) in the macro command line.
The binder provides the .PR extension to the name.

Objectfile must be an object module file. File-1 through file-n can be
either object file names or the names of the user libraries containing
the necessary object files. All user libraries and compilation units
that are required by the program must be specified in the binder
macro.

For example,

SPCBIND MYPROG

SPCBIND MYPROG MOD1 MOD2

SPCBIND MYPROG MYMODLIB

SPCBIND PROG2 !* OVY_ONE ! OVY_TWO *!
SPCBIND ROOT !* MOD-A MOD-B ! MOD-G *!

The SPCBIND macro produces a binder listing containing the
program load map and any binder error messages. The listing file is
placed in the working directory and given the same name as objectfile
along with a .BLS extension.

o
Operating Procedures i

Compiler Error
Messages

Storing Compiler
Output

Binding



Operating Procedures

Executing
Programs

To use multitasking with an SP/Pascal program, use the /TASKS=
switch when binding the program. Task control blocks (TCB's) are
not allocated unless you specify the /TASKS=number-of-tasks
switch. For example,

SPCBIND/TASKS =3 PROG1

The /STD binder macro switch, specific to SP/Pascal, allows you to
request run-time detection of certain non-standard SP/Pascal extend-
ed features, such as reading and writing to the same file, or extended
syntax for real numbers. (The /STD switch changes the setting of
P?STD from the default (0) to a 1. P?STD is described further in
Chapter 7.) When you omit the /STD switch, the SP/Pascal extensions
are permitted, and the SP/Pascal run-time routines do not flag
instances of these extended features. For example,

SPCBIND/STD TESTPROG
would detect and flag uses of these non-standard extensions.

The following binder switches can also be used with the SPCBIND
macro:

/LIBLIST for an individual listing of all modules loaded from a
library,

/ALPHA to include a list of global symbols sorted in alphabeti-
cal order,

JNUMERIC for a list of global symbols sorted by numeric value.

For details on these and additional binder switches, refer to MP/AOS
Macroassembler, Binder, and Library Utilities (DGC No. 069-400210).

For binding AOS cross-development programs, refer to Appendix D.

SP/Pascal programs can be executed with the CLI command XEQ
followed by the program name. For example,

XEQ MYPROG

If a run-time error occurs during program execution, the program
aborts, and the associated error message is printed. (The SP/Pascal
exception-handling facility provides execution error support. Refer
to Chapter 11.)

With system run-time error handling, the message text is preceded
by the memory address (program counter value) of the instruction
executing when the error occurred (the location of the call to the
error routine). For example,

AT LOCATION 20114
ERROR FROM PROGRAM
ERROR: HEAPLIMIT EXCEEDED.



The following list shows the run-time error messages that can be
generated by a program. Some of these errors are generated only
when certain checking options have been turned on. (Appendix B
lists both the compiler error messages and the run-time error
messages.)

Implementation error

Subscript out of range

Invalid pointer reference

Invalid variant tag

Range error

Heaplimit exceeded

Integer overflow/underflow

Invalid set element

Invalid case selector

Undefined routine

Stacklimit exceeded

Invalid string length

Uninitialized string

String parameter too long

Invalid string index

String overflow

Real overflow/underflow

Integer division by zero

File not opened with reset/rewrite
File not opened for reading

File not opened for writing

Input conversion error

Record size does not match file type
Bad stack (display links increasing)
Illegal to supply substring here
Invalid width specification
Lock/unlock error

Hardware stacklimit exceeded

Failure in fork

LN of a non-positive number

EXP argument out of range

Negative SQRT argument
Floating-point overflow trap
Floating-point underflow trap
Floating-point zero-divide trap
Floating-point mantissa overflow trap
Fork VAR parameter not declared locally
Invalid format for File of String

In addition to these specific errors, other system error messages also
can be produced. (See MP/AOS System Programmer’s Reference,
DGC No. 093-400051, for a list of these messages.)

Operating Procedures







KEY
DECIMAL OCTAL HEX SYMBOL MNEMONIC

KEY
DECIMAL OCTAL HEX SYMBOL

ez ol ]

KEY
DECIMAL OCTAL HEX SYMBOL

-65: 101[:41] A ]

ASCII Character Set

KEY
DECIMAL OCTAL  HEX SYMBOL

“68 104
69 105 45

I n 1107 47

. 72 110

m

73 (111| a9 ] 1
[~7'~4|112| 4]

108] 152 ll

[75]113] 48] K |
(el 2]

(o5 ] v ]
DECEE

l‘?'IIHSI 4[5] M

109]155] 6D [ m]

78 [116| 4E | N

[79]117]45‘] o |

[111]157]73?] o |

[ 80]120]50] P |

[12]160] 70T |

!*a;t ‘1121 ‘,51‘} Q|

(82 [122] 52 ] R ]

[83]123] 53] 5 |

[‘84]124[‘5’4] T |

T[] 73] + |

116|164 | 74

[52‘ 064] 34 4 |

| 85 [125] 55

117[165| 75 |

52 [oss[ %] 5 |

IBB]126[ 56| V |

118]166] 76

[54 Joes[ 36 ] 6 |

[87]127] 57 w]

[119]167 77w

[55 Joe7[37] 7]

I 88’]130! 58‘] X

[12(}1170[vr78 x |

58 [oro[ %] o ]

[8]131]s9] v |

2] 7] v |

07139 | 9

|~90]132 SA] z |

[122]172 A 2

(e [o2[3A]
[5a Jors[38] ]
&0 o[ %] <]
s ] -

e[ [







Compiler Error
Diagnostics

This appendix describes four categories of compiler error detection,
and a series of tables show the error messages the compiler can issue
in each phase of its operation. These error messages are listed
alphabetically within each category, along with a brief explanation
of each message.

Run-time error messages appear at the end of Chapter 13, "Operating
Procedures.”



Compiler Error Diagnostics

Error Message
Occurrence

The SP/Pascal compiler error detection and reporting capabilities
are divided among three phases of the compilation process: syntax
analysis, semantic analysis, and code generation. The compiler
identifies errors in the earliest possible phase. When an error is
detected, a description is written to the listfile and to the file given
with /E=filename, if any. These errors are separated into four
categories, according to the possible actions the compiler may take
at the point the error is detected. The four possible actions are:

1. Issue a warning message and continue.
2. Issue an error message, attempt to correct the error and continue.
3. Issue an error message, but do not generate an object file.

4. Issue an error message and abort execution of the compiler.

When the SP/Pascal compiler completes without detecting any
errors, it returns a message to the CLI consisting of the characters
"0K"; otherwise it returns a null termination message.

Category One warnings are issued when the compiler detects a
potential inconsistency in an implementation-defined aspect of the
language, or when it cannot guarantee that an assertion it has used
for the compilation of the program will be inviolate. These situations
do not impair the generation of code, but may affect the execution of
the program. The user is informed that this condition exists and the
compiler ignores the error.

Category Two errors are detected only during syntax analysis. The
compiler attempts to perform certain recovery actions when a syntax
error is detected. If this action resolves the error condition, then the
compilation continues with semantic analysis, but no code is
generated. This action is intended to provide a more thorough error
analysis of the source text.



Category Three errors are violations of the language requirements
serious enough to prevent the compiler from proceeding to the next
compilation phase. Both syntactic and semantic errors fall into this
category. When a Category Three error is detected, the compiler
finishes the compilation phase that is currently executing and then
stops the compilation process. Thus, if non-recoverable syntactic
errors are present, the source program will not be analyzed for
semantic errors. When a Category Three error is detected, no object
file is produced.

Category Four errors are issued for internal compiler errors or
overflow of compiler data bases required to proceed further. The
compiler performs run-time checks to guarantee the integrity of its
internal state and to check against limits of its data structures. When
it detects a Category Four error, the compiler halts execution.

The texts of the error messages are listed alphabetically in Tables
B.1 through B.7, in order by compilation phases.

Error Message Explanation

Il!éga‘l octal number in angle brackets  An octal value enclosed in angle brackets in a string constant is greater than 377g

or contains a non-octal digit.

Compiler Error Diagnostics

Syntax Phase
Messages

lilegal pﬁ,sh/bop option command A pop operation on an empty option stack has been detected.

Unknown option ‘ ~_An option character in an option comment is not one of the defined characters.

(P,R,S.T.V.O00W,ZN,L)

Table B.1 Syntax phase messages, Category 1 warnings



Compiler Error Diagnostics

Messages

Syntax error before xxx Recovery inserted yyy before zzz

Syntax error before xxx Recovery replaces yyy by 22z

Syntax error before xxx Recovery deletes yyy and replaces www with 2zz
Syntax error before xxx Parse restarted on line yyy with zzz

Table B.2 Syntax phase messages, Categories 2 and 3

In all cases in the error messages shown in Table B.2, the location of
the error is correct. The recovery actions given are included only as
hints as to what construct might be correct in this context. Use the
“Syntactic error before xxx" phrase to localize the error on the line
in question. Use the recovery action given to help in deciding how to
repair the error.



Compiler Error Diagnostics

*Efrofr;fMesiSégégl . ‘ ’ Expl;an'ation‘

. 51The comptler limit on nesting of xnciude files has been exceeded.

. An ummpiemented feature of standard Pascal has been used. Examples: a
GQTO statement ora routine definition with parametric procedures.

- f‘,fA,n und@fmed character has been used in the source text.
_ An internal error in the parser has occurred.
‘ 1~The radnx for a non—dec«mal constant is outside the permissible range.
 The exponent part of a real constant is outside the representable range.
f The vaiue of a real ccnstant is outside the representable range.

The source fﬂe contains characters beyond the point where the compiler has
‘ ~determmed it should end.

- The compﬂer limit on nestmg of control and compound statements has been
‘ exceeded

T helcqmpzle,r limit of expressions in a list has been exceeded.
. An kinsju’de file name cannot be opened at compile time.

. A comment has not baen properly termmated before the end of the source
~ input. Comments that begm with ‘{* must be terminated with '}, and
, commams that begin in “(* must be terminated with '*)’.

- A stﬂng constant has not been properly terminated before the end of the
_current line.

Table B.3 Syntax phase messages, Categories 3 and 4



Compiler Error Diagnostics

Semantic Phase
Messages

Error Message

Bit fields(s) do not end on word boundary

Control var not dééiargd'iec‘é&y ‘.‘

Explanation

 The compiler generates this message when it must ieave 'space at the

end ofa component in a structure to satisfy the akgnment requirements
of the next component or to msura that the structure ends on a word
boundary ' ‘ ‘ o ,

This message warns that a variable used as the cantroi variabfe in a FOR
loop is not local to the routine containing the FOR statement. The

- compiler asserts that the control vanable is nat modif!ed within the FOR

Files in the heap have global persistence

Incomplete vanant defmmon

Only ' mput“ “’output“ deﬂned as extemal fﬂes

_ the pumter vanable is deallocated.

statement

This message 1s generated for pomter type deﬂmtions w&th obgect types

containing a fi 1@. If the file is opened, it wsll not be cfosed ;mpkcmy when

This message is generated in a variant recbrd deﬁnmon when the set of
variant Fabels is not equal to the set of variant vaiue

This message appxears when argumems other than mput or output

_ were supplled m the program headmg
Whole < => intggqf ‘Qge[ands Vinexpressron ,

This message wams you when a binary operatzon between an integer
type value and a whoie type value will be performed The language rules
state that the operatson will be signed.

Table B.4 Semantic phase messages, Category 1 warnings



Error Mes‘sage ‘

p'is not allowed
an opefand must be set for lN operator

Arg not compat:bie in predBfmed routme with
id xox

Afgument may na‘t be passed as a var parm

‘ Argument may not be recasted

Argument nat companbte with parameter with
id xxx ;

Argament ,ﬁetconipatibl'e with te);t file

Bit qualifier not in 1 .. 16
Call name is not a procedure with id xxx

Call name must be a functton wsth id xxx
CASE label not. compaubte with selector
CASE selector type must be scalar
Constant. DN/MOD by zero

Constant exp OUISlde set bounds

. Constant subscnpt outsnde array bounds
Constant value outs:de subrange bounds

Control var cannot be a parameter

Control var must be bfdihal type
‘Controf var used in nested FOR
Data representatuon exceeds bit quahﬂer

Entry deciatanom; must be at global level
Enumeratnan hst exceeds 255 names
ERROR COQE refarence not in exceptnon block

Error m redeﬁmng eﬁumeratmn type

[ex'p exp} hot a!lowed as array subscnpt
Expresston must be mteger or whole type
Expresswm must be ordinal constant

Table B.5 Semantic phase messages, Category 3 errors

Compiler Error Diagnostics

Explanation

A self-referencing pointer definition is prohibited.

~ The second operand to an ‘IN’ operator is not a set expression.
~ An argument to the named predefined routine is not compatible with its

definition.

A constant, expression or value parameter may not be passed as a VAR
parameter. ,

A string piece may not be passed as a recasted argument.

The identifier is the name of the parameter in the routine declaration to

wh;ch the corresponding argument is not compatible.

An argument in a READ, READLN, WRITE, or WRITELN procedure must
be scalar, real, or string for text files.

The bit qualifier may not exceed the number of bits in a word.

An identifier used in a proéedure call statement has not been declared as
a procedure.

The identifier in a function reference was not defined as a function.
Each label constant must be compatible with the selector type.
The selector expression in a CASE statement must be scalar type.

A constant divisor of O was detected in an expression.

A member designator in a named set constant is outside the bounds of
the set base type.

Constant array subscripts are checked at compile-time.

‘An ordinal constant in a structured-constant definition is outside the

bounds of the associated ordinal type.

The control variable in a FOR loop must be a simple variable that is not a
parameter. ~

Only ordinal type control vanables are permitted in FOR Ioops
Nested FOR loops must employ unique control variables.

The number of bits necessary to store the values in the bit qualified type
exceed the declared size. E.g., 0..255 bit 5

Only global variables may be shared between modules.

The compiler limit on enumeration size has been exceeded.

The predefined functlon ERROR_CODE may be invoked only in an
exception block.

The number or name of each enumeratmn constant does not agree with
a previous declaration. . '

_ This form is valid only for named set constants
The expression in an ERETURN. statement must be integer or whole.

A constant expression must have an ordinal result type.



Compiler Error Diagnostics

Error Message

Expression not compatible with control var

Expression not compile-time constant
File buffers are not supported

File element type must not be file
File of pointers not allowed

File parameters must be defined VAR
Files may not be compared

File types not allowed in variant part

FORWARD definitions may not be repeated

Fraction width only valid for reals

Global file vars not permitted in overlays
lllegal assignment to function result

llegal width specifier in arg list
llegal width specifier in argument list

XXX
Integer constant not in —32768..32767
Invalid constant structure definition

Invalid context

Invalid pointer object type
Invalid variable access

Left side not assignable
Min exceeds max in CASE label range

Min exceeds max in subrange déclafatipn
Missing array subscript :

Missing function result type '
Multi-declared field name with id xxx
Multi-defined name with id xxx
Multi-defined parameter with id xxx
Multi-defined variant label ;

Multiply defined CASE label on line xxx with
ordinal value yyy

Incorrect arg list in predefined routine with id

Explanation

The initial value express:on ina FOR statement is not compauble with
the type of the control variable.

A non—constant expressmn is used in a deciarat}on
A dereferenced file variable, e.g., F”‘ haa been used Fﬁe buffers are not

~ implemented in SP/Pascal.

A component of a file may not mclude another ﬁ!e
A file of pomtefs is an unsafe construct and is prohibtted
File vanables may not be passed as vaiue parameters

The operands for a relational operator may not be fue types or contain
components of file type.

- An implementation restriction on file types m record structures.

Only one FORWARD declaration per routine is permntted

The form x:width:fraction is only permxtted when xis of type real or
double_real.

Non-stattc giobal file variables are not permmed in ‘d\kaﬂav mo‘dﬂles.

‘ An assxgnment to a functvon td&nttﬁe" ;s ’defmed outmde the scope of the

function body. , ;
A constant w:dth specsf;er is negat:ve in the argument hst.

A width speceﬂer on an argument t to. pmcedure th ts:not the predefmed
procedure WRITE or WRITELN has been detected.

 The number of arguments to the nameé,predeﬁ ‘ ,d mutme does not

agree with its defxmtmn. , ,
A mgned constam is outside the ranrge for mteger types

 Arecord or array constant is mcomplete m contams values that do not
- match the assocaated type in the structure defmmo .

A type name or expression appearmg in an executable statement is used

incorrectly. For example, WORDABDR af a type name or expression
evokes thzs er 'or, fesponse

The identifier in a pointer defmctaon os n: a type 1dentmer.
The left side of an asstgnment statement xs not a vanable or functlon

ndentaﬁer

The left side vanable isa value parameter or ather constant that may not
be mod:ﬁed

A duphcate CASE labet value has baén d medm T'CASE statément.

Table B.5 Semantic phase messages, Category 3 errors (continued)



Error Message

Name already used in current scope with id xxx
Named WITH type size < > variable size

Name is referenced while being deﬁned with id
XXX

Operand is not byte addressable
Operand not compatible with set base type

Operands are not compatible in arith exp
Operand(s) must be Boolean
Operand(s) not compatible in constant exp

Operands nbt compatible for assignment

Operands nbt compatible in relational exp
Result type may not be file

Routine does not match FORWARD def
Routine redefinitions do not match

Set base type must be ordinal

Set bounds not in 0 .. 255

Set constants must be typed

Set operands are not compatible

Standard file has not been defined with id xxx

Strict inecjuatity not allowed on sets
String file buffe’r size exceeds 9995

String Iength mt in1. 32767
Structured ccmstant must be array or set

‘ Stmctur‘ed CQnStant must be record
Subrange bounds not compatible
Too many or too few arguments

Type must be jofdinal:}

Compiler Error Diagnostics

Explanation

A name that is being redefined in the current scope has also been used in
another declaration in the same scope. A name must have only one
defining point in each scope.

The recasted type is not the same size as the type of the variable in a
type-recasted WITH statement. For example, in the statement WtTH x:t
= y DO ..., the sizelt} << > size(typeofly)).

A name may not be used in its own definition, except as part of a pomter
definition.

The argument to BYTEADDR is a bit field or bit array address.

The first operand to an IN operator is not compatible with the set base
type of the second operand.

The operands for an arithmetic operator must be arithmetic.
The operands for a Boolean operator must be Boolean.

- A compatibility error was encountered while evaluating a constant

expr BSSIOH

The left side variable is not assignment compatible with the right side
expression.

The operands for a relational operater are not compatible.

The result type of a functton may not be a file type, or a type containing
a file component.

A repeated argument list of a FORWARD declared routine does not
match the initial FORWARD declaration.

A repeated EXTERNAL or ENTRY routme definition is not equivalent to

the existing definition.

Only ordinal types may be used in sét; declarations,

The range of the set base tvbe is"eutsivde the compiler limits.
Anonymous set constants may not be used in constant definitions.
The operands for a set operamr must have compatible base types.

A default reference to INPUT or OUTPUT is specified, but the referenced
file has not been declared in the program heading.

The relational operators <* and '>' are not defined for set' operénds

A file of string has been declared with a strmg type that has a maximum
length greater than 9995, ,

Strmg lengths may not be O or negatwe

The identifier in a structured constant defmmon of the form id[ ... |
must be an array or set type. '

The identifier in a structured constant definition of the form :d( )
must be a record type. ,

The expression types of the min and max beunds in a subrange definition

are not compatible.

The number of arguments in a routine reference does not agree with the
number of parameters in the routine declaration.

Ordinal types are integer, whele. CHAR Boo!ean subrange, and

enumeration. Certain type definitions require ordmal types, for example,
the index type of an array declarataon

Table B.5 Semantic phase messages, Category 3 errors (continued)



Compiler Error Diagnostics

Error Message

Type name expected
Type of bit qualifier not ordinal
Type of file must be text

Type of expression is not Boolean

Type of operands must be integer or whole
Type of variable is not array

Type of variable is not pointer

Type of variable is not record

Type of variable is not string

Undefined field name with id xxx
Undefined name reference with id xxx

Unresolved FORWARD declaration

Unresolved pointer type

Variant label not compatible with tag type
Variant label outside tag type bounds
Variant tag range must be in 0 ..127 '
While evaluating predefined function

Width specifier must be integer or whole
WITH variable must be record type
ZREL declarations must be at global level

Explanation

An identifier is required to be a type name.
Only ordinal types may have a bit qualifier.

The file argument to a READLN, WRITELN, or EOLN routine must be a
text file.

The conditional expression in an IF, WHILE, or REPEAT statement must
have a Boolean value.

For example, in certain arithmetic expressions.

A non-array variable is qualified with an array subscript.

A non-pointer variable is qualified with a dereference operation.
A non-record variable is qualified with a field selector.

A non-string variable is qualified with a string character or string piece
expression.

The field name in a record qualification is not defined.

Reference to a name that has not been defined. This error is suppressed
on subsequent references.

A FORWARD declared routine has not been defined in the scope of the
FORWARD declaration.

An object type specified in a pointer type definition has not been defined
in the current scope. The object type must be defined in a type declaration
section that precedes any variable or routine declarations.

The type of a variant label constant is not compatible with the tag type.
A variant label value is outside the range of tag type values.
The range of variant tag values is outside the compiler limits.

A domain error in a constant argument to a predefined function has been
detected.

The type of a width specifier must be integer or whole.
A WITH variable must specify a record except in a type-recasted WITH.
Only global variables may be allocated in the ZREL partition.

Table B.5 Semantic phase messages, Category 3 errors (continued)



Compiler Error Diagnostics

Error Message - *"E*ﬂéhﬁ!ﬁ?"g

. Ccmpcier hmlt on nestmg af FGR‘« and Wm-i'?statements has been exceeded.

rate emporanes has been exceeded.
xpress ons am:! may ba prevented by

~FOR/WITH statement nestmg e.xceeds 15
Pseudo temp overﬂow in exp ‘ ‘

Record declaratlon nestmg > 15 !evels - Computer hmnt on nestmg of écord dé mmo:ns has been exceeded

& Record vanant nestmg exceeds 5 ieve!s - Compder m:t on nestmg ef recerd vaﬂants _has been exceeded
Routine declaration nestmg >8 leveis . Comptierhmct on nesting ofmutme deﬁmt:ohs has been exceeded.

Table B.6 Semantic phase messages, Category 4 errors

Code Generation Errors

d fdrk the sy;stem
Table B.7 Code generation errors

NOTE: Some runtime routines use a small amount of ZREL, so that it is possible to
compile programs which will give Binder warnings due to ZREL overflow.






Calling and Interface
Conventions

This appendix describes how SP/Pascal uses the accumulators and
stack in passing parameters to and from routines. You will need this
information if you are writing assembly language routines that will
call or be called by SP/Pascal routines. This appendix will also be
useful if you are debugging a program with the System Debugger.



Activation Record
Format

Calling Sequences

Calling and Interface Conventions

When an SP/Pascal routine is invoked, an area on the top of the
hardware stack (called the activation record) is allocated for the
routine. The activation record contains storage for local variables,
temporaries needed for expression evaluation, and five special
purpose locations. These locations are defined as follows:

Mnemonic Frame Usage

Offset
- 1 Reserved for future use
- 2 Reserved for future use
S?VCT 3 Exception handler address
S?ERR 4 Returned error code
S?LVL 5 Static nesting level

The S?VCT location contains the address of the currently active,
local exception block. If no exception block is active in the routine,
then S?VCT is initialized to — 1. The S?ERR location is used to store
the value of the error condition that caused the last exception to
occur. This value may be examined with the predefined function
ERROR_CODE. The S?LVL location is needed for accessing non-local
variables from nested routines. External routines written in other
languages need not conform to this structure unless you wish to use
the SP/Pascal exception-handling mechanism (described in Chapter
11).

NOTE: If this is not a nested routine, S?LVL is not allocated and the activation
record is only four words long.

SP/Pascal supports three calling conventions:

e The primary or default convention, which is normally used for
EXTERNAL routines, as well as those that are internal to a program
or module.

e The ASSEMBLY calling convention, which is used for routines
that are declared EXTERNAL ASSEMBLY.

e The Common Language Runtime Environment (CLRE) convention,
which is used for routines that are declared EXTERNAL CLRE.

Parameters are passed in such a way that only one word is required,
even if the parameter is an array or other multi-word item. In most
cases, this is done by passing an address, rather than actual data.
The only exception is for value parameters (those not declared as
VAR). Routines will pass the actual value of such a parameter,
provided it is an integer or other item that will fit into a 16-bit word.
Table C.1 details the handling of various types of value parameters.



Calling and Interface Conventions

Argument Type ~ Passing Convention

lnteger, whaie, Boolean,  Actual single-word value

CHAR, pomter., sets (smgle— - . ~

word) , - - - -
Real and doubie...real ; "Address ofreal-va%ued frame temporary
Sets (muttxp#e—word) 7Address of variable or temporary

Stnngs, arrays, records *Address of variable

Table C.1 Passing conventions for argument types

The result from a FUNCTION routine is treated as a “zero’th
parameter.” It is placed where the first parameter would have been,
and all other parameters are moved forward.

On return from an external routine, AC3 must contain the frame
pointer of the caller (saved frame pointer). All other accumulators
are undefined. The state of the floating-point unit also is undefined
on return from an external routine.

The default SP/Pascal calling convention passes arguments in
registers if at all possible (filling AC2 through ACO in that order). If
more than three arguments are present, then the last three arguments
are passed in the accumulators and the first n—3 arguments are
used on the stack in order (first argument pushed first). The calling
routine is responsible for adjusting the stack depth after a call if any
arguments are pushed.

SP/Pascal stack layout and accumulators at point of routine entry:

Argument O (functions only) — OId stack top
Argument 1

Argument 2 Program stack
Argument n-3 «— New stack top

ACO = argument n—2
AC1 = argument n—1
AC2 = argument n

AC3 = return address

Default Convention



ASSEMBLY
Convention

CLRE Convention

Examples

Calling and Interface Conventions

The ASSEMBLY calling sequence (detailed in MP/Pascal Program-
mer’s Reference, DGC No. 069-400031) is a convention in which AC2
points to the last argument in an argument list. ACO and ACI are not
used. This sequence is preserved to expedite the conversion of
MP/Pascal programs to SP/Pascal.

NOTE: Because the implementation of sets in MP/Pascal is not identical with
SP/Pascal, you should not use sets as parameters to routines that expect the
ASSEMBLY calling convention.

The CLRE calling sequence is a set of specifications for inter-language
routine interfacing. The CLRE sequence is included in SP/Pascal for
future interfacing with those languages that use this convention. It
is also for use with DG-supplied run-time library packages that
require this convention. Additionally, the CLRE qualifier can be
used with SP/Pascal entry routines to permit these routines to be
called from the other CLRE languages.

Under the CLRE convention, all parameters are pushed on the stack
in reverse order; i.e., the first parameter is at the top of the stack.
AC2 contains an address that is one less than the location of the last
parameter on the stack; in other words, the contents of AC2 are
equal to the value of the stack pointer before the parameters were
pushed. ACO and AC1 are unused.

Tables C.2, C.3, and C.4 compare the three calling sequences (default,
assembly, and CLRE) for the following routine declarations.

PROCEDURE P(VAR ARG1:INTEGER; ARG2:INTEGER);
PROCEDURE Q(ARG7:SOME_RECORD; ARG2:STRING 10; ARG3,ARG4:WHOLE);

FUNCTION F(ARG:REAL):BOOLEAN;

Sample Call  Accumulators ~ Hardware Stack
PlJ+1)  AC2 =valieof J+1  Not modified
. ~ AC1 = address of | , .
- _ ACO —unused . =
QRSNM)  AC2 = valueofM  @SP = address of R

 AC1 = valueof N
_ ACO ~ address of S ~
F(X/Y) ~ AC2 = address of frame  Not modified
. temporary for X/Y .
- AC1 = address for function
 result .
ACO = unused

Table C.2 Default calling sequence



Sample Call

PU,J+ 1)

Q(R,S,N.M)

F(X/Y)

Accumulators
AC2 = SP - 1
AC1 = unused
ACO = unused
AC2 = SP -3
AC1 = unused
ACO = unused

AC2 = SP - 2 (temporary

for X/Y)
AC1 = unused
ACO = unused

Table C.3 Assembly calling sequence

Calling and Interface Conventions

Hardware Stack

@SP = address of |
@SP-1 = value of J-1

@SP = address of R

@SP-1 = address of S

@SP-2 = value of N

@SP-3 = value of M

@SP = address for function
result ‘

@SP-2,SP-1 = single-precision
value of X/Y

NOTE: The ASSEMBLY calling sequence pushes arguments on the stack in reverse
order. All arguments are accessed by positive offsets from AC2. In SP/Pascal, real
values are passed as two-word (single-precision) arguments.

~Sémplé Call

PUJ+H1)

Accumulators

AC2=5P-2
- AC1 = unused
. ACQ"“'unﬁéed
QRSNM ;
L RG = gnised

AC2=SP-4

Table C.4 CLRE calling sequence

Hardware Stack

@S‘P = address of |

(@SP-1 = address of frame

temporary for J+1

‘ @SP address of R

@SP-1 = address of S

@SP-2 = address of temparary
for Value of N .

@SP-S = address of temporary‘
for value of M - A

~ @SP = address for function

result ,
@SP-1 = address of temporary:
for X/Y ~ .







Cross Development
under AOS

SP/Pascal programs can be compiled and executed under the AOS
system. The operating procedures for the compiler are identical to
those procedures given for MP/AOS in Chapter 13. To execute the
compiler, an AOS compilation macro SPC is supplied with the
SP/Pascal release.




Cross Development under AOS

Binding under
AOS

To prepare an SP/Pascal program that can be executed under the
AOS system, bind the program using the CLI bind macro,
SPCLINK.CLI, which is supplied with the SP/Pascal compiler. The
macro format is as follows:

SPCLINK][/switches] objectfile [file-1 [file-2 [...file-n]]]

The program name assigned to the binder output is the same as that
of the first object module objectfile in the macro command line. The
binder provides the .PR extension to the name.

Objectfile must be an object module file. File-1 through file-n can be
either object file names or can be the names of the user libraries
containing the necessary object files. All user libraries and compila-
tion units required by the program must be specified in the binder
macro. For example:

SPCLINK MYPROG

SPCLINK MYPROG MOD1 MOD2

SPCLINK MYPROG MYMODLIB

SPCLINK PROG2 !* OVY-ONE ! OVY_TWO *!
SPCLINK ROOT !* MOD-A MOD-B ! MOD-C *!

The SPCLINK macro produces a binder listing containing the
program load map and any binder error messages. The listing file is
placed in the working directory and given the same name as objectfile
along with a .BLS extension.

To use multitasking with an SP/Pascal program, use the /TASKS=
switch when binding the program. Task control blocks (TCB's) are
not allocated unless you specify the /TASKS=number-of-tasks
switch. For example:

SPCLINK/TASKS=15 PROG1 TASK—MOD

The SP/Pascal-specific /STD binder macro switch allows you to
request run-time detection of certain non-standard SP/Pascal extend-
ed features, such as reading and writing to the same file, or extended
syntax for real numbers. (The /STD switch changes the setting of
P?STD from the default (0) to 1. P?STD is described further in
Chapter 7.) When you omit the /STD switch, the SP/Pascal extensions
are permitted, and the SP/Pascal run-time routines do not flag
instances of these extended features. For example:

SPCLINK/STD TESTPROG

would detect and flag uses of non-standard extensions.

The following switches also can be used with the SPCLINK macro:



Cross Development under AOS

e /MODSYM for a module by module symbol list,

e /ALPHA to include a list of global symbols sorted in alphabetical
order,

e /NUMERIC for a list of global symbols sorted by numeric value.

For details on these and additional switches, refer to AOS Link
User’s Manual, (DGC No. 093-000254).

The AOS environment also affects certain program-related actions.
Specifically, the precise timing of task scheduling and the require-
ments for initialization of the hardware floating-point unit are
different under AOS. In a multitasked program, the user is responsi-
ble for initializing the floating-point unit in each task that uses it. To
perform the initialization, the user should call the DG-supplied
routine IFPU defined in IFPU.PINC. The handling of default files
also is different under AOS. The predefined SP/Pascal file variable
INPUT is opened on the AOS generic file ‘@INPUT’, and the
predefined SP/Pascal file variable OUTPUT is opened on the AOS
generic file '@OUTPUT".

The SP/Pascal program built by the SPCLINK macro contains the
MP/AOS System Call Translator. This translator emulates both
MP/AOS and MP/OS system calls under AOS. Since the AOS
environment is somewhat different than the MP/AOS or MP/0S
environments, there are some minor differences in the actions of
some of the system calls. Therefore, only a subset of MP/AOS and
MP/O0S system calls can be executed. The remainder of this appendix
describes the differences in system calls.

Under the AOS environment, the system call translator converts
AOS error codes into their MP/AQOS counterparts. If the error code
has no MP/AOS counterpart, your program receives the AOS code.
You should be aware that a different error could be returned by the
call translator than by MP/AOS.

The RETURN call with the BX option uses the AOS convention for
the break file name:

?pid.time.BRK

where pid is your process I.D. and time is the current time of day.
Also, a program terminated with a ?RETURN BK cannot pass a
message to another program.

The ?EXEC call, where the complete pathname given to ?EXEC is
CLI.PR, invokes AOS CLI with the appropriate message format. The
user’s message must be in the MP/AOS CLI format with the CLI as
the zero'th argument.

AOS-MP/AOS
Differences

MP/AQS System
Call Translator

Translated System
Calls

Program Management
Calls



Cross Development under AOS

Multitasking

File Management Calls

NOTE: Attempting to use ?EXEC on any program named CLI.PR other than AOS
CLI.PR causes the program to fail on start-up. -

Due to AOS restrictions, some or all the messages passed by ?EXEC
are capitalized.

A program activated with ?EXEC fails if it attempts to use a channel
exclusively opened by another program.

The ?BOOT call does not perform a bootstrap; it attempts to return to
the user’s CLI. The message gives the reason for returning and the
name of the specified bootstrap device or file in one of two forms:

Emulator shutdown
Emulator booting: <<file name>=>

Under the call translator, ?ERMSG reads from MERMES. Therefore,
MERMES must be locatable through the searchlist.

The system call translator’s handling of overlays does not use a
channel internally. You should also be aware that overlay node
sizing is larger under the call translator. Therefore, programs with
many nodes that fit under MP/AOS might not fit under the call
translator.

The call translator limits a program to 30 tasks.

The allocation scheme for task identifiers used under the call
translator is unrelated to that used under MP/AOQS.

Avoid running tasks at priority zero (0), since such tasks compete
with call translator tasks running at priority zero and could cause
them to function incorrectly.

Task scheduling under the system call translator is different than
under MP/AOS. Therefore, care should be taken to force scheduling
of tasks through ?PEND and ?DRSCH calls, and through setting
different priorities.

The ?PEND call for a CTRL-C CTRL-A works only for @ TTIO.

AOS supports file type numbers which are somewhat different from
MP/AOS file types. The system call translator converts MP/AOS file
types to their AOS counterparts when you create files Italso converts
AOS file types to their MP/AOCS counterparts when you open files
created by AOS programs. The correspondences between file types
are summarized in Tables D.1 and D.2.



Cross Development under AOS &

Table D.1 Conversion of MP/AOS file types when creating files under AOS

NOTE: All file types not mentioned in Table D. 1 are converted to ?FUDF.

Table D.2 Conversion of AOS file types when opening files with MP/AOS programs
NOTE: All file types not mentioned in Table D.2 are converted to ?DUDF.

Under AOS the system call RENAME is not supported across
directories.

When you use the 20PEN call with a CR (create) option, the system
call translator does not use the element size supplied with the call.
Instead, the default element size one is used.

No more than three non-pended calls can run concurrently. You
must specify additional TCB's (task control blocks).

Under the call translator, the searchlist has a maximum length of
511 characters, and no error is produced if the searchlist contains
more than five pathnames.

Due to AOS restrictions, the call translator allows no more than
eight directory tree levels.

The call ?FSTAT CH on a disk unit where the channel is exclusively
open returns an incorrect file length.

File attributes also are handled differently on the two systems. The
MP/AOS system call translator intercepts the references in your
program to all file attributes except permanence and translates them
into elements on the access control list (ACL) of the file. The ACL is



Cross Development under AOS

I/0 Device
Management Calls

a file protection feature provided by AOS, which is described fully
in the AOS Programmer’s Manual (DGC No. 093-000120).

The correspondences between attributes and access types are summa-
rized in Table D.3.

NOTE: There is a reversal in polarity between the two systems: setting the
MP/AOS read-protect attribute for a file means that it cannot be read:; i.e, setting
this attribute has the same effect as removing the AOS read-access privilege (R).
Conversely, setting the AOS (read access privilege) for a file means that it can be
read. (This conversion is handled by the translator.)

O : owner access
Table D.3 Reversal in polarity between MP/AOS attributes and AOS access privileges

The permanence attribute is handled identically under the AOS and
MP/AOS systems.

The AOS and MP/AOS systems have different formats for device
characteristics. The ?GCHAR and ?SCHAR calls perform the conver-
sion between characteristics, so that the difference is transparent to
your program. Note, however, that if you use the HC option with
?GCHAR or ?SCHAR, the following occurs: the ?GCHAR call returns
a zero, and the ?SCHAR call executes successfully but ignores the HC
option.

Special caution also is in order when you use the ?GCHAR and
?SCHAR calls with @TTI and @ TTO. (Refer to description following
Table D.5.) 2SCHAR with the LL option and a line length set to —1
allows only 256 characters per line. Under AOS, the maximum line
length is 256 characters.

Table D.4 summarizes the correspondences between device charac-
teristics for AOS and MP/AOS.



Cross Development under AOS

MP/AOS AOS Name
Name .

2CBIN Supported for @TTI @TTO @TTH @TTOT @LPT
2CECH  ?CEOC '

2CEMM  7CEOS

2CESC  ?CESC

2CICC  Not supported

?CLST  Not supported

CNAS  ?CNAS -
?CNED  Supported for @TTI, @Tro @1, @Trm @LFT
6ST 68T -
2CUCO  7CUCO

2C605  2C605

?2C8BT  Supported for @TTI, @TTO @TTH @TT01 @LPT

Table D.4 Correspondences between device characteristics

?DSTAT does not store information in the packet. It simply validates
its input parameters and then exits.

The following calls are unimplemented and produce an error return
with code ERISC (illegal system call) when attempted:

?ALMP ?GTPID ?PROC
?ASEG ?IDEF ?PURGE
?BLOCK ?IFPU ?RCV
?CLEAR ?IRMV ?RCVA
?CSEG ?IUNPEND ?RDMEM
?DCLR ?IPEND ?RDST
?DEMP 2AXIT ?REPLY
?DSEG ?KILL ?SD.R
?DHIS ?LDEF ?SEND
?DISMOUNT ?LKUP ?SINFO
?DSBL ?LRMV ?STMP
?EHIS LXIT ?TPORT
?EINFO ?MOUNT ?UNBLOCK
?ENBL ?MSEG WRMEM
?EQT ?0BITS ?WRST
?GIDS ?WSIG
?GMRP

There is mapping between the MP/AOS system and AOS for the
various devices, shown in Table D.5. The system call translator
recognizes the MP/AOS device name and converts it to its AOS
counterpart.

dhes A




B,
Lt

L

o

Cross Development under AOS

Table D.5 Device name mapping

Because the characteristics for @ TTI and @ TTO both map into the
generic AOS device @CONSOLE, you should exercise caution when
using the calls ?GCHAR and SCHAR.

Setting any of the characteristics usable by both input and output on
@TTI also affects @ TTO, and vice versa. In particular, the following
sequence causes problems.

?GCHAR @TTO
?SCHAR @TTO ; new characteristics
?GCHAR @TTI
?SCHAR @TTI ; new characteristics

?SCHAR @TTO ; restore characteristics
?SCHAR @TTI ; restore characteristics

This sequence does not restore characteristics properly, since the
SCHAR @TTO call changes some of the characteristics of @TTI
before the GCHAR @TTI saves them.

Instead, use this sequence for both @ TTI and @ TTO:

?GCHAR @TTO
?GCHAR @TTI
?SCHAR @TTO
?SCHAR @TTI

?SCHAR @TTO ; restore characteristics
?SCHAR @TTI ; restore characteristics



&

Cross Development under AOS ggwﬁ

Programs that have been developed to run under AOS using the Transpor tlng AQOS
system call translator can be moved to the MP/AOS system with no

modifications except for a rebind. To rebind a program developed programs to

under AOS for execution under MP/AOS, use the SPCBIND macro MP / AOS

described in Chapter 13. Because the system call translator is bound

in with the AOS version of the program, the total program size is

different for the two systems. Some programs can be executed under

MP/AOQS, but not under AOS, because of size considerations.






Assembly Language
Parameters Specific
to SP/Pascal

This appendix contains a listing of SPASC.SR, the assembly language
parameter file for SP/Pascal. This file contains symbol definitions
that will be useful to you if you are writing assembly language
routines that will interface with SP/Pascal routines. The file defines
the formats of internal structures such as string descriptors and task
control blocks. Definitions also appear for all error codes produced
by SP/Pascal routines.

If you will be using this file frequently, you may wish to add it to
your assembler’s permanent symbol table file. For information on
how to do this, see MP/AOS Macroassembler, Binder, and Library
Utilities (DGC No. 069-400210).



E

0001 SPASC
02
03
04
05
06
07
08 000001
09 000002
10 000003
"
12
K]
14 000004
15
16 000000
7 000001
18 000002
19 000003
20 000004
21 000005
22 000006
23 000007
24 000010
25 000011
26
27 000012
28
29
30
Ky
32 000040
33
34 000040
35 000041
36 000042
37 000043
38 000044
39 000045
40 000046

Assembly Language Parameters Specific to SP/Pascal

MP/0S ASSEMBLER REV 99.99

.title

spasc ; PS file for SP/Pascal

j mmmmmmmmmmommoo- The predefined stack layout ----------------------
. offsets 1,2 are reserved for future use

. exception vector (-1 => none)

v

err code in exception routine

=3 . procedure level (-1 => end of list)

T it The Pascal file

.dusr s?vct
.dusr  s?err
.dusr s?lvl
.dusr vfhsz
.dusr elem=
.dusr chan=
.dusr stus=
.dusr  link=
.dusr strt=
.dusr curr=
.dusr endp=
.dusr ecnt=
.dusr  fpshi=
.dusr  fpslo=
.dusr frcsz
; Definitions
; of the file
.dusr stbtb
.dusr  opnbt
.dusr rwfbt
.dusr  tmpbt
.dusr  bufbt
.dusr clobt
.dusr ntxbt
.dusr  modbt

0
elemt1
chant1
stust1
1ink+1
strt+1
curr+1
endpt1
ecnt+1
fpshit1

= fpslo-elemt1

descriptor layout ---------------

size of header for File of String

element size [bytes]

; file channel number

file status word

; ptr linking open files
; byte addr of start of buffer

current buffer byte address
ending buffer byte address
elements per buffer

; hi file position
; low file position

’

size of file record

of the flag bit values from the start
record (in offset STUS) for BTO/BTZ use

stus*16.

= stbtb

= stbtbt1
= stbtbt2
= stbtbt3
= stbtbt4
= stbtbt5

= stbtb16

; base

’

true if file open
true if write
true if temp file

. true if multi-buffered

true if doing close
non-text I/0 bit,
forces dynamic read
true if buffer modified



41
42

43
44
45
46
47
48
49
50
51
52
53
54
S5
56
57
58
59

000057

000000
000001
000002

000000
000001
000002

Assembly Language Parameters Specific to SP/Pascal

.dusr eofbt = stbtbt15. ; true if eof

; A SP/Pascal string descriptor looks like this

.dusr stlen =0 ; length
.dusr stmax =1 ; maximum length
.dusr stdat =2 ; Where the data begins

; Note: if the contents of offset stmax are < 0, then the
following template is used (a substring descriptor)

.dusr stind =0 ; index

.dusr stpln =1 ; length of string piece

.dusr stadr =2 ; location of string descriptor
.eject



Assembly Language Parameters Specific to SP/Pascal

0002 SPASC

01
02
03
04
05
06
07
08
09
10
"
12
gk

14
15
16
7
18
19
20
21
22
23
24

25
26
27

000000
000001
000002
000003

000004

000000
000001
000002

. SP/Pascal task block offsets.
. The task block is pointed to by the
ZREL location P?TTB, allocated at
. initialization, and contains ?NTASK entries
. Each entry has the following layout:

.dusr pt?id =0 ; Task ID, zero => vacant slot

.dusr pt?lc =1 . Lock chain, used to release locks

.dusr pt?sb =2 . Base of stack for this task

.dusr pt?sl =3 . Limit of stack (used to get ID
w/0 system call)

.dusr pt?ln =4 ; Length of per-task block

; the structure of a SP/Pascal task lock

.dusr p?lln =0 ; link
.dusr p?lpc = p?1llnt1 ; pend code
.dusr p?1fl = p?lpct1 ; flag (0 - unlocked,

locker—id - locked)

.eject



Assembly Language Parameters Specific to SP/Pascal LY

0003 SPASC

01

02 ;

03 it

04 ; SP/Pascal error codes ....

05 ; Note: Group is same as MP group as are

06 ; the first 'n’ error codes

07

08

03 043000 .dusr  ernum = 43000 ; pascal group = 43

10

1 043001 .dusr  epimp= ernumt1 ; implementation error

12 043002 .dusr  epsrg= epimpt1 ; subscript range error

13 043003 .dusr epptr= epsrgt1 ; invalid pointer reference

14 043004 .dusr  epvnt= epptr+1 ; invalid variant tag

15 043005 .dusr  eprge= epvntt1 ; range error

16 043006 .dusr  ephep= eprget1 ; heaplimit exceeded

17 043007 .dusr epiov= ephept1 ; integer overflow/underflow
18 043010 .dusr epset= epiovt1 ; invalid set element

19 043011 .dusr  epcas= epsett1 ; invalid case selector

20 043012 .dusr  epudr= epcast1 ; undefined routine

21 043013 .dusr  epstk= epudr+1 ; stacklimit exceeded

22 043014 .dusr  epsgl= epstkt1 ; invalid string length

23 043015 .dusr  epusg= epsglt1 ; uninitialized string

24 043016 .dusr  epspl= epusgt1 ; string parameter too long

25 043017 .dusr  epsgi= epsplt1 ; invalid string index

26 043020 .dusr  epsov= epsgit1 ; string overflow

27 043021 .dusr  epfpt= epsovt1 ; real overflow/underflow

28 043022 .dusr epdiv= epfpt+1 ; division by zero

29 043023 .dusr  epopn= epdivt1 ; file not opened with reset/rewrite
30 043024 .dusr  epord= epopnt1 ; file not opened for reading
31 043025 .dusr  epowt= epordt1 ; file not opened for writing
32 043026 .dusr epcvt= epowtt1 ; input conversion error

33 043027 .dusr  eprsz= epcvtt1 ; record size does not match file type
34 043030 .dusr  epbsk= eprszt1 ; bad stack (display links increasing)
35 043031 .dusr  episs= epbskt1 ; illegal to supply substring here
36 043032 .dusr epwid= episst1 ; invalid width specification
37 043033 .dusr  eplok= epwidt1 ; lock/unlock error

38 043034 .dusr  ephso= eplokt1 ; hardware stacklimit exceeded
39 043035 .dusr  epfrk= ephsot1 ; failure in fork

40 043036 .dusr  epfln= epfrk+1 ; LN of a non-positive number

41 043037 .dusr  epexp= epflnt1 ; EXP argument out of range



#
4
H
s

i

Assembly Language Parameters Specific to SP/Pascal

42 043040 .dusr epsqr= epexpt1 ; negative SQRT argument

43 043041 .dusr epfov= epsqrt1 ; Floating point overflow trap

44 043042 .dusr epfuf= epfovt1 ; Floating point underflow trap

45 043043 .dusr epfdz= epfuf+1 ; Floating point zero divide trap

46 043044 .dusr epmov= epfdzt1 ; Floating point mantissa overflow trap
47 043045 .dusr eppfr= epmovt1 ; Parameter to FORK not local variable
48 043046 .dusr epvfm= eppfr+1 ; Invalid format for File of String

49

**00000 TOTAL ERRORS, 00000 PASS 1 ERRORS



SP /Pascal Formal
Syntax

The formal syntax for SP/Pascal is presented in a slightly modified
BNF (Backus-Naur form), shown in Table F.1.

Table F.1 Modified BNF

For ease of reference, the productions for identifier, unsigned
number, etc., are given; these are intended for reference only since
the rules for white space and comments are not presented here, (see
Chapter 2).



SP/Pascal Formal Syntax

Ietter—char { letter-char | dlg;t ]1'
A | B’ Ziaib!
e

; o E 10102 3467
.hex__mgxt { hex,.d;g:t br unsigned_.int.
AimlLiElalbL T
'hex__letter | dcgit

octal—dtgntf 8| 8l

‘mglt { digit }
nsigned—re i unsagned»mt uns:gned—mt | unsigned-int [ ".
. . unsngned-mt]sca!e—factor
unsrgned-num - ~ unstgned—mt | unsngned-reat | based_int.
' [ scale—factor -  ('E’|’¢) sign unsigned-int .
\ sngn-—,—x. - 1 B ;
~ character-lit — “ phafécter v
' yét'ring;-‘lift;e‘-) ** ~ { character } " ' /
,Gﬁaradtér,f—; ‘ fe di‘giia*‘{digitg}l > 1" "lany printing

character except’.
Table F.2 BNF syntax of SP/Pascal building blocks

The rules above describe the general building blocks of the language.
Note that white space is not allowed in the definitions in Table F.2.

In the following rules, case indifference is assumed, and the spacing
and comment rules given in Chapter 2 apply. At times descriptive
prefixes are attached to previously declared non-terminals. For
example, constant_identifiers, type_identifiers, and function
identifiers are all produced by the same rules as given for identifiers.

*For the string_type production, remember that string is not a reserved word and
constant must be either an unsigned integer or an identifier which denotes an
unsigned integer.

compilation_unit — proghead block *." | modhead decl_list.
modhead — [[OVERLAY'] ‘"MODULE’ identifier ";".
proghead — 'PROGRAM’ identifier [ "(" id_—list )" 1"}’
block — [ decl_list ] compound_stmt.
id_list — identifier { *," identifier |.
constant — exp.
type — simple_type ['BIT’ constant] | pointer_type |
string_type | [[PACKED’] structured_type.
pointer__type — (@' |'") type_identifier.
string_type* — 'STRING' constant.
simple_type — type_identifier | enumeration_type |
subrange__type.
enumeration_type — identifier *,” identifier { ’," identifier }
subrange__type — constant '.." constant.
structured__type — "ARRAY’ ‘[ simple_type_list ']" "OF" type |

'RECORD’ [ field_list ] 'END’ | ‘FILE’ "OF’ type |
‘SET’ 'OF’ simple_type.



simple_type_list —
field_list —
fixed_part —
record_section —
variant_part —
tag_part —
variant —
constant__list —
variable —

var_qual —

index_member_exp —
exp —
simple_exp —
term —
factor —

set__constructor —

vfactor —

vfact —
function_invocation —
relation_op —

add_op —
mul_op —
stmt —

l_stmt —
stmt_list —
compound_stmt —

procedure__call —
parg —
case_list —

case__elements —
case_element —
with__list —

SP/Pascal Formal Syntax

simple_type { "," simple_type }

(fixed__part [';* variant_part]| variant_part) [*;"].
record_section { ;" record_section }

id_list ":" type.

'CASE’ tag_part ‘OF variant { ;" variant }

[ tag_identifier ":" ] type_identifier.
constant_list " *(" [ field—list ] °)".

constant { ‘," constant }

identifier | variable var__qual | variable ' << <<' exp
[exp] >>".

(@' |'™) 1. field—identifier | '[" index_mem-
ber_exp { '," index_member__exp } T.

exp lexp .. exp.

simple_exp [ relation_op simple_exp ].

[sign] term { add_op term }.

factor { mul_op factor }

unsigned__num | set__constructor | vfactor |
"NOT’ factor | (" exp )" | 'NIL".

[’ [index_member_exp { *," index_mem-
ber_exp }]") T.

vfact | vfactor var_qual | vfactor "<<<"exp [ ":’
exp] ' >>".

identifier | string__lit | function_invocation.
function_identifier (" exp { ", exp } ).

<> lr= > <=" =< > =
["=>"|"IN".

"+ 1"—"1"0OR".

“*[7/"1'DIV'| 'MOD’ | 'AND".

[ variable ":=" exp | procedure_call |

compound_stmt | ‘IF* exp "THEN' ]_stmt [
'ELSE’ |_stmt ]| 'CASE’ exp 'OF’ case_list
‘END’ |

"WHILE’ exp ‘DO’ ]_stmt | 'REPEAT’ stmt_list
"UNTIL" exp | ‘FOR’ identifier ':=" exp (‘'TO’ |
‘DOWNTO’) exp ‘DO’ ]_stmt |

"WITH’ with_list ‘DO’ ]_stmt | ‘EXITLOOP’ |
'RETURN’ | 'ERETURN""(" exp *)' | ‘GOTO’ label ].
[ label ":" ] stmt.

l_stmt { ;" |_stmt |.

‘BEGIN’ stmt_list [ 'TEXCEPTION’ stmt_list ]
‘END’.

procedure_identifier [ (" parg { ", parg | *)’ ]
exp[[ ' exp] ' expl

case_elements [ ;" ] | case_elements ;"
‘OTHERWISE' stmt__list.

case_—element { ;" case_element }
constant_list ;" |_stmt.

with_ref { ‘" with_ref }

b

o ™
Lo

%)



SP/Pascal Formal Syntax

with_ref —
decl_list —
declaration —

label__list —
label —
const_decl__list —

type_decl_list —
zqual —
var_decl_list —
rstg__qual —
frstg_qual —

pfhead —

ptype —
parm_list —
formal_parm
recast__type_id —
fblock —

[ identifier [ ":" type_identifier ] ‘=" ] variable.
declaration { declaration }

‘LABEL’ label_list ;" "CONST’ const_decl_list
"I "TYPE’ type_decl_list ";" |

zqual var_decl_list ;" | rstg_qual pfhead *;

fblock ;" I rstg_qual function__identifier *;" block
"." | frstg_qual pfhead ;.

label { *," label |.

integer__const.

identifier “=" constant { ;" identifier ‘="

constant}

identifier "=" type { ;" identifier '=" type }

[ CEXTERNAL' | 'ENTRY’) ] ['ZREL’] ‘'VAR'.
id_list 2" type { s id_list "’ type}.

['ENTRY’ ['CLRE]].

"EXTERNAL’ [ ('CLRE’' | 'ASSEMBLY’) ]I
[ENTRY’ ['CLRE’]] 'FORWARD".
'PROCEDURE’ identifier [ '(" parm_list ')'] |
'FUNCTION' identifier [ "(" parm_list *)" ] "’

ptype.

type_identifier | string_type.

formal_parm { ;" formal_parm }

['VAR’] id_list ":" recast_type_id { pfhead.

ptype | ‘'/RECAST’ type_.identifier.

[ 'FORWARD’ ].



Differences Among
Data General Pascal
Compilers

Data General provides three Pascal compilers. MP/family computer
systems use MP/Pascal or SP/Pascal; these two compilers can also
run under AOS. MV/family computer systems use AOS/VS Pascal.
This appendix summarizes the differences among the three compil-
ers.

In general, SP/Pascal and AOS/VS Pascal are both supersets of
MP/Pascal. Therefore, in the text we take the viewpoint that
MP/Pascal is the “basic’” version, and we describe those features of
the larger systems that are extensions to MP/Pascal.



Reserved Words

Data Types &
Declarations

Characters & Strings

Differences Among Data General Pascal Compilers

SP/Pascal has the reserved words of MP/Pascal except STRING, as
well as BIT, CLRE, ERETURN, EXCEPTION, LABEL, GOTO, and
ZREL.

AOS/VS Pascal has all the reserved words of MP/Pascal. However,
AOS/VS Pascal supports the ENTRY, EXITLOOP, EXTERNAL, MOD-
ULE, and RETURN keywords, although they are not reserved.

SP/Pascal requires that enumeration types have more than one
identifier. For example,

TYPE
E1 = (ONE, TWO, THREE); { legal |
E2 = (ONE); | illegal |

Memory for set type data is allocated as words: for example; a set
with 20 elements will occupy two full words (32 bits).

SP/Pascal supports constants in any radix from 2 to 16.

AOS/VS Pascal handles the PACKED attribute as described in the
Pascal standard. (Under MP/Pascal and SP/Pascal, the PACKED
word has no effect on data storage, although it is checked for
compatibility between items.)

AQS/VS Pascal uses a different internal form for sets, integers,
characters, pointers, and packed structures.

SP/Pascal supports both single- and double-precision real numbers.

SP/Pascal automatically converts items of type CHAR to type
STRING 1, and vice versa.

SP/Pascal does not require that the length of a string argument be
less than the maximum length of the formal parameter.

SP/Pascal considers strings to be compatible with character arrays
only if the array

is declared PACKED,
has a subscript range starting with 1, and
is an array of CHAR, not a subrange such as ‘A" .. 'Z

’

Both SP/Pascal and AOS/VS Pascal support the CHAR type as a full
8-bit range of values (0 to 255).

AOS/VS Pascal does not have a string type.



Differences Among Data General Pascal Compilers

SP/Pascal permits files to be RECAST parameters.

Under both AOS/VS and SP/Pascal, all DG-supplied external
routines use the normal calling convention, i.e., they should be
declared EXTERNAL, not EXTERNAL ASSEMBLY.

AO0S/VS Pascal does not support the RECAST and OVERLAY features.

AOS/VS Pascal passes value parameters by copying, and permits
new values to be assigned by the called routine.

PS/Pascal permits the RESET, REWRITE, and FILEAPPEND proce-
dures to have an optional third parameter for specifiying buffering.

SP/Pascal file variables have a fixed size, and buffer space is allocated
on the heap when the file is opened.

Optionally, SP/Pascal programs can read and write to the same file.

SP/Pascal string files have a different record format and maximum
record size (for AOS compatibility). '

An SP/Pascal program does not cause an error if, in reading from a
text file into a string, it reads a line that is too long to fit into the
string.

Under AOS/VS Pascal, a REWRITE to an open file causes
repositioning to the beginning of the file, and deletion of its previous
contents.

SP/Pascal does not generate code for unreachable statements. Also,
it does not generate references to external routines or variables if
they are declared but not used.

SP/Pascal permits the use of NEW, DISPOSE, MARK, and RELEASE
in the same program.

Some implementation limits are higher under SP/Pascal (see Appen-
dix H).

SP/Pascal has four additional compiler switches (L, T, W, and Z).
AOS/VS Pascal does not support the following features:

¢ Nested comments
e Multitasking

e The memory management routines FREESPACE, MARK, and
RELEASE

e The N and O compiler switches

Routines &
Parameters

Files & Input/Output
Operations

Miscellaneous
Features






SP /Pascal
Implementation
Limits

The maximum length of identifiers is 135 characters.

The maximum length of a string constant is 132 characters.
Enumeration types can contain up to 256 elements.

The range of numeric values for integer constants is —32768..32767.
The range of numeric values for whole constants is 0..65535.

The range of absolute values for real constants is approximately
0..7.2x 10775,

The smallest positive real value is approximately 5.4 x 10~ 79.
The range of variant tag fields is 0 .. 127.

The maximum set cardinality is 256.

The range of ordinal values for set elements is 0..255.

The maximum possible length of a string in a type declaration is
32,767 characters.

The maximum depth for nested routines is eight levels.
The maximum depth for nested record definitions is 15 levels.

The maximum depth for nested record variants is five levels.



SP/Pascal Implementation Limits

The maximum depth for nested FOR and WITH statements is 15.

The maximum depth of nesting for include files is eight levels (seven
levels plus the original include file).



Index

$ $ (for compiler options) 179 @ @ (at-sign)
defines pointer resolution-type 29

% % (as comment delimiter) 10

[ [ ] (square brackets)
’ enclosing index_type of array 22

fsm;l;lle quote) s denoting empty set 27
in character constants in array references 37

in string constants 16

A
. ~ (up arrow)
* o comments) 10 defines pointer resolution-type 29
- ENTO 101 { { | (as comment delimiters) 10
.= 49 A aBs 37,13
-ERMES 136 Absolute value (ABS) 113
Access privileges, differences between MP/AQOS and
<>> (angle brackets) A0S 210
in character constants 15 Access control list 209
in string piece 35 ACL 209
Activation record 200
Address-returning functions
? ?DRSCH 161, 166 (BYTEADDR,WORDADDR) 123
?ERSCH 161, 166 Alignment See also Data storage 31, 32, 45
?EVCH 169 AND (Boolean operator) 42
EVMAX 169 AND 42
?EVMIN 169 Angle-bracket notation
?7EXIT 138 character constant 15
?INCH 75, 131 string piece 35
?MESSAGE 136 Anonymous types 20
?0PEN 131 ANSI standard file format 91
?0UCH 131,75 AOS 206
NTAS 161 bind macro (SPCLINK.CLI) 206
?PEND 168
7SPOS 82

2SYS 126, 137
?TASK_LOCK 167
?UNPEND 168



AOS Pascal 225
AOS/VS Pascal
APPEND 119
ARCTAN 113
Arithmetic operators See Operators
ARRAY 21
Array 21,37,42

constants 22

element 21

of arrays 22, 37

packed 76

reference 37

subscript or array-index 21
ASCII character set 8

ASCII-7 15,186

ASCII-8 18
ASSEMBLY 98, 127, 200, 202
Assembly language interface 98, 215
Assembly language listing 178
Assign a character 50
Assignment statement 49
Assignment compatibility 44, 50
Asterisks ( *) 10
Asynchronous subprograms
At-sign 29
Attributes

225

157

210

Backus-Naur formal syntax 221
Bad stack (display links increasing)
Base type of set 27
BEGIN 51

Benign redefinition
Binary constants 13
Binary files 74
Binary operations 42
Binder switches

183

12, 100

list global symbols alphabetically (/ALPHA) 182
list global symbols numerically (/NUMERIC) 182
list library modules (/LIBLIST) 182

number of tasks (/TASKS=) 182

set P?STD to 1 (/STD) 182 C

Binding a program
AOS macro (SPCLINK.CLI)
error messages 181
listing file (BLS) 181

206

MP/AOQS macro (SPCBIND.CLI)

181
102
182

output
overlays
switches
BIT 45, 46
Bit alignment 32
Bit qualifier (BIT) 31, 45
Bit-qualified type 45
Bit shifting 32
BITSIZE 32, 125
Block,procedure or function
BNF syntax 221
Boolean constants
false 16, 18
true 16,18
Boolean functions
XAND 145
XEXTRACT
XIOR 145
XNOT 146
XSHFT 145
XXOR 145
Boolean operators
AND 42
NOT 42
OR 42
Boolean type 18
Buffer,file 77, 78, 80, 81
Buffer dynamic I/0 133
Buffering 75, passim
BYTEADDR 124, 133
Byte alignment 32
BYTEREAD 133
BYTESIZE 32,125
BYTEWRITE 133

145

Calling conventions
Calling sequences
Carriage Return
CASE 24

Case indifference 8

200
10, 76

66

201, 200



CASE 56
Channel 131
Channel close (CLOSEFILE,CLDELFILE) 132
Channel open (OPENFILE) 131
CHAR 16, 31, 32, 39, 76
Character (CHAR) 18
append to string (APPEND) 119
assignment compatibility 44
character count
LENGTH 119
MAXLENGTH 119
SETCURRENT 120
maximum character value 15
refer to single character within string 39
Character constants 15
Character sets 8
ASCII 15,18
foreign 18
standard SP/Pascal 8
CHARREAD 133
CHARWRITE 133
CHR 37,115
CLDELFILE 132
CLOSE 81
CLOSEFILE 132
CLRE 98, 200
Comment 10
as delimiter 10
Common,unlabelled 102
Common Language Run-time Environment 98, 202
Comparison operators 43
Compatibility rules 44
Compatibility,parameter list 70
Compilation units 94
Compiler,SPC program See also Compiling 175
command line 176
error detection 187
error file 177
error messages 181
listing 176
object file 177
options 179
check array subscripts (S) 179
check for division by zero (Z) 179
check for integer arithmetic overflow (0) 179
check range on current set members (T) 179
check subrange assignments (R) 179
check variant references (V) 179
check whole and integer ranges (W) 179
generate line numbers (N) (MP/Pascal only) 179
initialize to zero all pointers (P) 179

by
fﬁ ?ﬁ‘
Gt

Index ol

list include files (I) 179
override 177
pop character (a less-than sign <) 180
push character (a greater-than sign > ) 180
specifying within source code 179
truncate external or entry identifiers (L=518110) 179
stack calculation 177
storing output 181
switches 176
program listing (/L[=listfile]) 176
create separate error file (/E=errorfile) 177
provide object file pathname (/O = objectfile) 177
calculate stack table (/STACK) 162, 177
override default options (/OPT=opt-char) 177, 179
create disassembler listing (/A=asmfile) 178
disallow short LEF instructions (/NOLEF) 178
check syntax only (/N) 178
Compiling 176
for use with process debugger 178
Components 78, 80, 81
of record 23
Compound statement 51
Conditional code generation 176
Conditional statements 55
Console interrupt tasks 168, 208

CONST 12
Constant 36
array 22
binary 13
Boolean 16
character 15
case in 16

declaration 12
definition 36
double_real 15
hexadecimal 14
integer 13
MAXINT 13
non-numeric 15
numeric 13
underscores in 13
octal 14
pointer 16
real 14
record 26
set 28
signed 20
string 16
case in 16
in type declarations 36
maximum length of 16
whole 13



Index

Control transfer (Table 5.3) 60 real 19
CcOS 113 recasting
Cosine (COS) 113 named-WITH extension 54
Cross development under AOS record 23 ‘
AOS - MP/AOS differences 207 redefinition benign 34
binding (SPCLINK.CLI) 206 resolution 29
file management 208 scalar 17
set 27

1/0 device management 210
maximum number of tasks (30) 158, 208 simple 17
MP/AOS calls not supported 211 size (in bits or bytes) 124
system call translator 207 string 29
transporting programs 213 file of 91
CTRL-C CTRL-A 168, 208 structured 21
Curly braces (as comment delimiters) 10 subrange 20

text 31,79
type-handling routines
Data channel printer control 134 PRED 118
Data-sensitive file See also File 76 SucCc 118
Data-sensitive I/0 77, 132 whole 18
Data storage Data type coercion
bit alignment 32 standard Pascal 115
bit qualifier (BIT) 31 CHR 115
packed (not word-aligned) 45 ORD 115
qualifiers SP/Pascal 116
ENTRY 97 DOUBLE_REAL 117
ENTRY ZREL 97 REAL 117
EXTERNAL 97 summary (Table 9.2) 111
EXTERNAL ZREL 98 WHOLE 116
ZREL 97 WITH (named-with extension) 53
record in file of type string 91 STR (MP/Pascal compatibility) 120
word alignment 32 TRUNC 115
Data type whole and integer types 45
anonymous 20 DATE 138
array 21 DDADD 146
benign redefinition 34 DDCOM 147
Boolean 18 DDDIV 147
character (CHAR) 18 DDMUL 148
coercion See Data type coercion DDNEG 147
compatibility 44 DDSUB 147
bypassing 25 Debugging 22, 176, 178
declarations 17, 18, 20 Declaration section 12, 94, 95
double_real 19 Declaring
enumeration 19 constants 12
file 30,75 data types 18
integer 18 anonymous 21
mixed See Mixed arithmetic array 21
pointer 29 array constant 22
referring to pointer variables 39 Boolean 18
unresolved pointer types 30 character (CHAR) 18

double_real 19
enumeration 19



file 30, 75
integer 18
pointer 29
real 19
record 23
record constant 26
set 27
set constant 28
string 97
subrange 20
variable 30
variant record 24
whole 18
DELETE 134
Deleting tasks 166
Delimiters 10, 76, 83, 85
between compiler options 179
DI2ST 139
Disassembler listing 178
DISPOSE 30, 123
DIV 41
Division 42
by a negative number 42
by zero 42
DO 53,57, 58
Dollar sign ($) (for compiler options) 179
Double-precision 14, 117
Double-precision assignment 41, 49
Double-precision conversion to string (DI2ST) 139
Double-precision conversion from string
(ST2DI) 141
Double-precision unsigned arithmetic functions
DDADD 146
DDCOM 147
DDDIV 147
DDMUL 148
DDNEG 147
DDSUB 147
DSADD 148
DSDIV 149
DSMUL 148
DSSUB 148
Double- to single-precision (FLOAT) 114
DOUBLE_REAL 117
Double_real 19, 41
Double_real,assignment compatibility with real 44
Double_real constants 15
DOWNTO 58
DRSCH 167
DSADD 148
DSDIV 149

Index

DSMUL 148

DSSUB 148

Dynamic I/0 77

Dynamic memory allocation 29
Dynamic string variables 135
Dynamic variable pointers 121

E (scientific) notation 14
ELEF 178
Element

of array 21

of set 27
Element_type See Array, Set
ELSE 55
Empty set 27
END 23, 24, 51, 56, 95, 96
End-of-line character 75, 76
ENTRY 97, 96, 99, 100
ENTRY CLRE 98
Entry variables

INPUT 31

OUTPUT 31
Enumeration data types 19
EOF 77,79, 83, 86
EOLN 83, 84, 85
ERETURN 60, 154
Error

code 136, 154

condition 52

detection 187

file 177

handlers

nesting 153
system default 153

handling 52, 60, 152

messages - compiler 181

messages - run-time 183
ERROR_CODE 154, 200
ERSCH 167
Event 168
EXCEPTION 52, 152
Exception condition handling See Error han-

dling 52
Executable section 94
Executing programs (XEQ) 182
Exiting a program (?EXIT) 138
EXITLOOP 59
EXP 113
Expression

definition 36

type compatibility rules 44




Index

Exponent field (scientific notation) 14 INPUT 31, 75, 83, 84
Exponentiation (EXP) 113 OUCH 131
Extensions to standard Pascal 9 OUTPUT 31, 75, 86
ASSEMBLY 9 ?INCH 31, 75, 131
BIT 9 ?0UCH 31, 75, 131
CLRE 9 string 74, 76, 91
ENTRY 9 text 74, 84
ERETURN 9 use of heap 123
EXCEPTION 9 variable-length record format 74, 76, 81, 91
EXITLOOP 9 variables 68, 75, 82
EXTERNAL 9 word size (FRCSZ) 76
INCLUDE 9 FILEAPPEND 80, 86
MODULE 9 File positioning procedures
OTHERWISE 9 FILEAPPEND 80
OVERLAY 9 FGPOS 81
RECAST 9 FSPOS 82
RETURN 9 GPOSFILE 133
ZREL 9 SPOSFILE 134
EXTERNAL 96, 97, 100, 200 FILEAPPEND 80
EXTERNAL ASSEMBLY 98 Fixed-point notation 87
EXTERNAL CLRE 98 FLOAT 41,114
EXTERNAL ZREL 98 Floating-point 41
External assembly 98 Flow of control
External routines summary (Table 10.1) 129-30 CASE 56

ERETURN 60
EXCEPTION 52

F  FALSE (Boolean constant) 16, 18 EXITLOOP 59
FGPOS 81, 82 FOR 58
Field IF 55
of record 23, 37 REPEAT 57
padding and placement (variant record) 33 RETURN 59
width (number of columns in file) 87 WHILE 57
FILE 30,75 WITH 53
File 30, 43, 65 FOR 58,70
append (FILEAPPEND) 80 FORK 161
buffer 74, 75, 78, 80, 81 Form Feed 10, 76
declaration 30, 76 Formal parameter 68
field width extension 87, 89 Formal syntax 221
field width defaults (Table 7.2) 87 FORWARD 98, 99
initialization FRCSZ 76
RESET 77 FREESPACE 122
REWRITE 79 FSPOS 82
name extension FUNCTION 65, 99
.BLS 181 Function 49, 65
.OB 177 call 60
.PAS See also Include files 177, 178 declaration 65
PR 181 designator 41, 65
management 134 ERROR_CODE 154, 200
pointer 79, 80, 84, 86 initial values 67
positioning 81 recursive 67
predefined reentrant 67
INCH 131 result 66

scope 66



GETARG 136
GETMESSAGE 135
GETSWITCH 136
Global 66, 97, 100, 102
GPOSFILE 133
Greater than (MAX) 125

Heap 60, 81, 121, 159, 160
low boundary (P?HP) 123
Heap management routines
DISPOSE 123
FREESPACE 122
- MARK 123
NEW 122
RELEASE 123
summary (Table 9.4) 112
Hexadecimal constants 14
History of Pascal 4

I/0 operations 31, 83
with multiple file elements 77
1/0 procedures (Table 7.1) 74
I/0 routines 130
Pascal-type vs SP/Pascal-type 131
Pascal-type
close file (CLOSE) 81
initialize file for reading (RESET) 77
initialize file for writing (REWRITE) 79
open file (FILEAPPEND) 80
read in data (READ) 84, 91
read in data (READLN) 86
return file pointer position (FGPOS) 81
set file pointer position (FSPOS) 82
terminate print line (WRITELN) 89
test for end of file (EOF) 83
test for end of line (EOLN) 83
write data to file (WRITE) 86, 91
write Form Feed (PAGE) 90
SP/Pascal-type
buffer-dynamic I/0 (BYTEREAD and
BYTEWRITE) 133
close and delete file on specified channel
(CLDELFILE) 132
close data channel printer (PCLOS) 134
close file on specified channel (CLOSEFILE) 132
delete file (DELETE) 134
get file position (GPOSFILE) 133
open a channel (OPENFILE) 131
open data channel printer (POPEN) 134
read data-sensitive (LINEREAD) 132

Index .

rename file (RENAME) 134

set file position (SPOSFILE) 134

string-dynamic I/0 (CHARREAD and
CHARWRITE) 133

write data-sensitive (LINEWRITE) 132

write to data channel printer (PWRIT) 134

Identifiers 9, 66

declaration of 12, passim

IF 55

Implementation limits 229
IN 43,44

INCH 131

INCLUDE 101, 127
Include files

BOOLEAN.PAS 145
DCLP.PINC 134
DDMATH.PAS 147
DINT2ST.PAS 139
DOUBLE.PAS 146
FILE_PARS.PAS 132
GET_MESSAGE.PAS 135
HEADER.PAS 138
IFPU.PINC 207
INDEX.PAS 144
IO_CALLS.PAS 130, 132
MESSAGE.PAS 136
MP/AOS system calls (summary Table 10.2) 138
NEWSTR.PAS 135
OVLY.PAS 102, 137
RANDOM.PAS 144
REAL2STR.PAS 140
SINT2ST.PAS 141
STR2DINT.PAS 141
STR2REAL.PAS 142
STR2SINT.PAS 143
SYSCALL.PAS 126, 137
SYSLIB.PAS 138
TASKING.PAS 158

INDEX 144

INPUT 31, 75, 83, 84, 94
Input formatting 85
Input/output operations 73
Integer 18

assignment compatibility with whole 44, 45
constants 13

Interrupt,console 168, 208
Iterative statements 55

FOR... DOWNTO... DO... 58
FOR... TO... DO... 58
REPEAT... UNTIL... 57
WHILE... DO... 57



Index

K KILL 166 MAXLENGTH 37,91, 120, 140
Memory management See also Data storage 159
Memory organization (Figure 9.1) 122

L LEF instructions 178 MERMES 208
LENGTH 37,119 Messages
Less than (MIN) 125 inter-program
Libraries of object modules 181 place command line in message
Limits 229 (GETMESSAGE) 135
Line printer control 134 examine argument in message (GETARG) 135
Line terminators 76, 87 examine switch to argument in message
LINEREAD 132 (GETSWITCH) 135
LINEWRITE 132 run-time error 183
Linked data structures 29 system error (?MESSAGE) 136
Literal compiler time error 181
set 40 MIN 125
string 15 Minimum limits 229
LN 114 Miscellaneous routines 125
Load map 181 Mixed arithmetic 148
Local 66 whole-integer functions 41, 45
LOCK 167 real-double_real functions 41
Logarithm (EXP) 113 MOD 41, 42
Logarithm (LN) 114 MODULE 96, 101
Loop 58 Module 94, 95
Lower-case 8,9 MP/AOS bind macro (SPCBIND.CLI) 181

MP/Pascal 98, 225 ff
) MPARU.SR 137
M Managing tasks 158 multidimensional arrays 22

MARK 30, 123 Multitasking See also Task 157, 158, 182

Masking 32 summary of procedures (Table 12.1) 158
Mathematical functions
ABS 113
ARCTAN 113 N Names See Identifiers,Designators 10
COs 113 Nested
EXP 113 arrays 22
FLOAT 114 Include files 101
LN 114 records 24
ODD 114 routines 66
ROUND 114 NEW 30, 39, 122, 161
SIN 114 New Line 10
SQR 115 NEWSTR 135
SQRT 115 NIL (pointer constant) 16, 39, 40, 67
summary (Table 9.1) 111 Node,overlay 102
TRUNC 115 NOLEF 178
MAX 125 Non-numeric constants See Constants
Maximum limits 229 NOT (Boolean operator) 42
MAXINT (constant) 13, 20, 179 Null character in string 16

Null set 44
Numeric constants See Constants
Numeric string conversion 139



O Object file 177

Object module 94
Octal constants 14
OoODD 37,114
OF 24, 27, 30, 56, 75
OPENFILE 131
Operator precedence 44
Operators 41
arithmetic
binary (+,—,*,/,DIV,MOD) 42
Boolean (AND,OR,NOT) 42
relational (=,<<,>,< >,>= or =>,
<=or=>) 43
set ( <=,>=,+,* — IN) 43

unary (+,—) 42

OR (Boolean operator) 42
OR 42

ORD 37,116
OTHERWISE 56
OUCH 131

OUTPUT 31, 75, 84, 86, 94
OV?LD 102,103, 137,103
OV?RL 102, 103, 137
Overflow checking 41
OVERLAY 101
Overlaying technique 102
Overlay management
load an overlay (OV?LD) 137
release an overlay (OV?RL) 137
Overlay node 102

P?HP (bottom-of-heap) 123, 160, 161

P?STD 75, 78, 79, 80, 81, 84, 85, 87, 182

P?TSK 161
P?TTB 160
PACKED 31
Packed component (not word-aligned)
Packed structures 45
Packing data 31, 34
Padding 33
PAGE 87, 90
Parallel processing 157
Parameter 68, 99
actual 68
formal 68
value 68
VAR 68
passing conventions 201
recasting 71

Index

reference 68
repeated 99
Parameter list compatibility 70
PCLOS 134
PEND 168
Percent sign 10
Pointer See also File,and Heap management rou-
tines 29, 68
constant See Constant
creation of (NEW) 122
initialized to NIL 39
referring to 39
removal of (DISPOSE) 123
summary (Table 9.4) 112
unresolved type 30
POPEN 134
Position 81, 82
Powerset 27, 40
PRED 37,119
Predecessor (PRED) 119
Predefined identifiers 9
Predefined routines (Tables 9.1 - 9.7) 111-112
Predefined text files (INPUT and OUTPUT) 75
Printer control 134
PROCEDURE 64, 99
Procedure 60, 64
call 60, 64
declaration 64
initial values 67
parameters 68
recasting parameters 71
recursive 67
reentrant 67
scope 66
Process debugger 178
PROGRAM 94
Program 94
block 95
heading 94
initialization 161
qualifiers 96
revision number (REVISION) 139
source file 178
stack 159
S?MAX - high bound,main program’s stack 160
structure 93
Push See also Compiler options 180
Push character (a greater-than sign (>)) 180
PWRIT 134




Index

Qualifier

bit 45
routine 72, 98
variable 96
Question-mark 9

R notation (radix 2,8,or 16) 13-14
Radix 13, 84, 139, 142, 143
RANDOM 144
Random access 81
Random number generator (RANDOM) 144
RE2ST 140
READ 77
non-text-files 91
text files 84
READLN 86
REAL 117
Real 19
assignment-compatible with double_real 44
constants 14
writing reals in fixed-point notation 87
RECAST 68,71
Recast 54
routine parameters 71
using WITH 53
RECORD 23
Record data type 23, 24
Record 43
constants 26
expanding scope of (WITH) 53
field alignment 32
in string file 91
nesting 24
referring to fields of 37, 53
subrange notation 25
tag field 24
variants 24
nested 26
untagged 24
Recursive routines 67
Reentrant routines 67
Reference parameter 68
RELEASE 30, 123
RENAME 134
REPEAT 57
Reserved words 8
RESET 77, 86
Resolution type See Pointer 29
RETURN 59, 165
control transfer (Table 5.3) 60

REVISION 138
REWRITE 79, 86
ROUND 41,114
Routine
declaration 69
designators 100
initial values 67
invocation 60
kinds of 64
parameters 68
predefined 110
qualifiers 98
recursive 67
Run-time error 152, 182
messages 183
Run-time library 202
Run-time routines 75, 182

S?MAX - high bound of main program'’s stack
Scalar 17
used in constants 12
used in sets 27
Scientific (E) notation 14
Scope 66
of identifiers 68
of overlay variables 102
of record (WITH) 54
of routines (ENTRY,EXTERNAL) 100
of variables (ENTRY,EXTERNAL) 97
Selector See also CASE 56
Separate compilation units 93
Sequence functions (PRED,SUCC) 118
SET 27
Set 40
comparisons 43
compatibility 44
constants 28
elements 27
literals 40
operators 43
subrange notation 27
SETCURRENT 120
SETPRIORITY 165
SI2ST 141
Single quotes
in character constants 14
in string constants 16
Signed constants 20
SIN 114
Sine (SIN) 114

160



Single precision 41, 117
assignment 49
conversion (FLOAT) 114
integer from string (ST2SI) 143
integer to string (SI2ST) 141
real number from string (ST2RE) 142
Source program 95
Sourcefile 178
SPASC.SR 215
SPC program (SP/Pascal compiler) 176
SPCBIND.CLI (MP/AOS bind macro) 181
SPCLINK.CLI (AOS bind macro) 206
Special characters 8
Special symbols 8
SPOSFILE 133
SQR 37,115
SQRT 115
Square (SQR) 115
Square brackets denoting
index-type of array 22
empty set 27
set elements 27
array references 37
Square root (SQRT) 115
ST2DI 141
ST2RE 142
ST2SI 143
Stack
memory allocation 159

S?MAX - high bound of main program's stack

size 177

task stack
base 160
management 160
overflow 161
overflow handler 161
size (FORK) 162
size (SPC/STACK) 162

Statement section 95
Statements

assignment
summary (Table 5.1) 48
syntax 49

compound
EXCEPTION 52
summary (Table 5.1) 48
syntax 51
WITH 53

flow of control
CASE 56
ERETURN 60

160

Index

EXITLOOP 59
FOR 58
IF 55
REPEAT 57
RETURN 59
summary (Table 5.3) 49
WHILE 57
Stopping a program (?EXIT) 138
Storage allocation See Data storage
STR 120
STRING 29
String
assignment 50
assignment compatibility 44, 50
constant 16
current length 29
expression 50
file 74, 76, 91
maximum length (132 characters) 16
parameter compatibility 71
record in 91
references 38
routines
APPEND 119
DI2ST 138
INDEX 144
LENGTH 119
MAXLENGTH 119
NEWSTR 135
RE2ST 140
SETCURRENT 120
SI2ST 141
ST2DI 141
summary of predefined routines (Table 9.3)
ST2RE 142
ST2SI 143
STR 121
single character within string 39
string dynamic I/0
CHARREAD 133
CHARWRITE 133
substring cannot be RECAST parameter 72
variable I/0 85
Structured constants 12
array 22
set 28
Structured data types 21
Subrange
of set 27
notation 40
of simple data type 20

111



Subscript of array 21, 37
succ 37,119
Successor (SUCC) 119
Suspend a task
LOCK 167
PEND 168
Symbols,SP/Pascal special 8
SYSID.SR 137
SYSPASCAL.SR 76
SYSTEM 126, 137
System call
corresponding include files (Table 10.2) 138
2SYS 137
SYSTEM 126
under AOS 207
System errors 152
System interfacing 135

Tab 10
Tag field See also Record,variants 24, 32
Tangent (ARCTAN) 113
Task 157, 158
communication between tasks 167
control blocks 182
creation (FORK) 161
deletion
KILL 166
RETURN 165
identifier 160, 162
lock chain (list of resources) 160
priority 165
scheduler 157, 166
scheduling 167
set number of tasks (/TASKS= binder macro
switch) 182
stack 160, 163
overflow 161
overflow handler 161
size 162
base and stack limit 161
suspension
LOCK/UNLOCK 167
PEND/UNPEND 168
using heap 123
using overlays 103
Terminate a program (?EXIT) 138
Test and branch: CASE 56
Test then execute: WHILE 116
Test after execution: REPEAT 57
TEXT 31,76
Text file 21, 74

Text files,predefined (INPUT and OUTPUT) 75

Text file 83, 86
THEN 55

TIME 138

TO 58

To symbol (..) 20

transitive closure
True (Boolean constant)

TRUNC

41, 115

44

16, 18

Truncate from real to integer (TRUNC) 115

TYPE 1

8

Type See Data type
Type coercion See Data type coercion

Unary op

erations

42

Unconditional statements 55
Underscore character

Unlabelled common

UNLOCK
UNPEND

167
168

13

102

Unresolved pointer types See Pointer 30
Unsigned value (whole)
Untagged variant See also Record 25

UNTIL

57

Up-arrow 29
Upper-case 8, 9

User-defined errors
User-defined identifiers

116

152

9

User-defined simple data types
User-written routines

Value parameter
VAR 30, 76, 68, 97
VAR parameter
Variable declarations
Variable-length record file format
Variable length string

Variable qualifiers 96

Variable
address

BYTEADDR 1

WORD
file 75
pointer

ADDR

39, 121

Variant record
definition 24

nested

26

63

68, 78, 81

45, 68

24
124

reference to field 37
storage allocation and alignment

tagged
Vector

24
23, 32

30

135

19

74, 76, 81, 91

32



Index

W wHILE 57
WHOLE 116
Whole 13,18, 41
assignment compatibility with integer 44
Window 30
WITH 53
to change data type temporarily 54
Wirth, Dr. Niklaus 4
Word-aligned See also Data storage 32
WORDADDR 124
WRITE (text files) 86, 87
WRITE (non-text files) 91
WRITELN 87, 89

X  XAND (Boolean function) 145
XEQ (CLI command) 182
XEXTRACT (Boolean function) 145
XIOR (Boolean function) 145
XNOT (Boolean function) 146
XSHFT (Boolean function) 145
XXOR (Boolean function) 145

Z  Zerorelative partition 97
maximum size 216 words 97
ZREL 75, 96, 97






DG OFFICES

NORTH AMERICAN OFFICES

Alabama: Birmingham
Arizona: Phoenix, Tucson
Arkansas: Little Rock

California: Anaheim, El Segundo, Fresno, Los Angeles, Oakland, Palo Alto, Riverside,

Sacramento, San Diego, San Francisco, Santa Barbara, Sunnyvale, Van Nuys
Colorado: Colorado Springs, Denver

Connecticut: North Branford, Norwalk

Florida: Ft. Lauderdale, Orlando, Tampa

Georgia: Norcross

Idaho: Boise

lowa: Bettendorf, Des Moines

Illinois: Arlington Heights, Champaign, Chicago, Peoria, Rockford
Indiana: indianapolis

Kentucky: Louisville

Louisiana: Baton Rouge, Metairie

Maine: Portland, Westbrook

Maryland: Baltimore

Massachusetts: Cambridge, Framingham, Southboro, Waltham, Wellesley, Westboro,

West Springfield, Worcester

Michigan: Grand Rapids, Southfield
Minnesota: Richfield

Missouri: Creve Coeur, Kansas City
Mississippi: Jackson

Montana: Billings

Nebraska: Omaha

Nevada: Reno

New Hampshire: Bedford, Portsmouth
New Jersey: Cherry Hill, Somerset, Wayne
New Mexico: Albuquerque

New York: Buffalo, Lake Success, Latham, Liverpool, Melville, New York City,

Rochester, White Plains

North Carolina: Charlotte, Greensboro, Greenville, Raleigh, Research Triangle Park
Ohio: Brooklyn Heights, Cincinnati, Columbus, Dayton
Oklahoma: Oklahoma City, Tulsa

Oregon: Lake Oswego

Pennsylvania: Blue Bell, Lancaster, Philadelphia, Pittsburgh
Rhode Island: Providence

South Carolina: Columbia

Tennessee: Knoxville, Memphis, Nashville

Texas: Austin, Dallas, El Paso, Ft. Worth, Houston, San Antonio
Utah: sait Lake City

Virginia: McLean, Norfolk, Richmond, Salem

Washington: Bellevue, Richland, Spokane

West Virginia: Charleston

Wisconsin: Brookfield, Grand Chute, Madison

INTERNATIONAL OFFICES

Argentina: Buenos Aires

Australia: Adelaide, Brisbane, Hobart, Melbourne, Newcastle, Perth, Sydney
Austria: Vienna

Belgium: Brussels

Bolivia: La Paz

Brazil: Sao Paulo

Canada: Calgary, Edmonton, Montreal, Ottawa, Quebec, Toronto, Vancouver,
Winnipeg

Chile: santiago

Columbia: Bogata

Costa Rica: San Jose

Denmark: Copenhagen

Ecuador: Quito

Egypt: Cairo

Finland: Helsinki

France: Le Plessis-Robinson, Lille, Lyon, Nantes, Paris, Saint Denis, Strasbourg
Guatemala: Guatemala City

Hong Kong

India: Bombay

Indonesia: Jakarta, Pusat

Ireland: Dublin

Israel: Tel Aviv

Italy: Bologna, Florence, Milan, Padua, Rome, Tourin
lapan: Fukuoka, Hiroshima, Nagoya, Osaka, Tokyo, Tsukuba
Jordan: Amman

Korea: Seoul

Kuwait: Kuwait

Lebanon: Beirut

Malaysia: Kuala Lumpur

Mexico: Mexico City, Monterrey

Morocco: Casablanca

The Netherlands: Amsterdam, Rijswijk

New Zealand: Auckland, Wellington

Nicaragua: Managua

Nigeria: Ibadan, Lagos

Norway: Oslo

Paraguay: Asuncion

Peru: Lima

Philippine Islands: Manila

Portugal: Lisbon

Puerto Rico: Hato Rey

Saudi Arabia: Jeddah, Riyadh

Singapore

South Africa: Cape Town, Durban, Johannesburg, Pretoria
Spain: Barcelona, Bibao, Madrid

Sweden: Gothenburg, Malmo, Stockholm

Switzerland: Lausanne, Zurich

Taiwan: Taipei

Thailand: Bangkok

Turkey: Ankara

United Kingdom: Birmingham, Bristol, Glasgow, Hounslow, London, Manchester
Uruguay: Montevideo

USSR: Espoo

Venezuela: Maracaibo

West Germany: Dusseldorf, Frankfurt, Hamburg, Hannover, Munich, Nuremburg,
Stuttgart






¢»DataGeneral

Ordering
Technical Publications

rs 1hat makes ordefmg technical
scause TtPS is a central supplier of
d fast because TIPS specaahzes in

How to Get in .
Touch with TIPS et in t | ,admiq:strator dlrecﬂy by calling

‘ “"-uf: Los Angeles Educatmn Center

st Algonquin Road
Arlingt (n‘Hexghts. lllinois 60005
t(3 12) 354 3045







CUT ALONG DOTTED LINE

Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

Technical Products

Publications

Comment Form

Title:

Document No. _969-400203-00

Yes No

O You (can, cannot) find things easily. O Other:
i 2
= o Is this manual easy to read O Language (is, is not) appropriate.
O Technical terms (are, are not) defined
as needed.
O Learning to use the equipment O To instruct a class.
In what ways do you find this manual useful ?
O As a reference O Other:
O As an introduction to the
product
O Visuals (are,are not) well designed.
o 0O Do the illustrations help you?
O Labels and captions (are,are not) clear.
O Other:
0 O Does the manual tell you all you need to know?
What additional information would you like?
O Qg Is the information accurate?
{If not please specify with page number and
paragraph.)
Name: Title:
Company: Division:
Address: City:
State: Zip: Telephone: Date:
DG-06895

¢vDataGeneral

Data General Corporation, Westboro. Massachusetts 01580




FOLD FOLD

TAPE TAPE

FOLD FoLD

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

¢vDataGeneral

ATTN: Technical Products Publications (C-138)
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES



CUT ALONG DOTTED LINE

¢vDataGeneral

gr°up Installation Membership Form

Name Position Date
Company, Organization or School
Address City State Zip
Telephone: Area Code No. Ext.
1. Account 0 OEM 5. Mode of O Batch (Central)
Category O End User Operation O Batch (Via RJE)
O System House O On-Line Interactive
0O Government
0O Educational
2. Hardware Qty. Installed | Qty. On Order 6. Communications O HASP O CAM
M/600 0O RJE8O 0O XODIAC
COMMERCIAL ECLIPSE O RCX 70 O Other
SCIENTIFIC ECLIPSE
AP/130 Specify
CS Series
Mapped NOVA
Unmapped NOVA = o ,
b 7. Application
microNOVA L. O
Description
Other
(Specity)
3. Software O A0S O RDOS —
. : O DOS O Other 8. Purchase From whom was your machine(s)
purchased ?
O MP/OS
) 0O Data General Corp.
Specify O Other
Specify
4. L&ngllﬂges ' 0 Algol O Assembler —
. 4 O DG/L O Fortran 9, USCI‘S Gﬂmp Are you interested in joining a
! e g
0O Cobol ORPG 1 : special interest or regional
0O PASCAL 0O PL/1 Data General Users Group ?
D Business BASIC O Other o
0O BASIC
Specify

¢v»DataGeneral

Data General Corporation, Westboro, Massachusetts 01580, (617) 366-8911



FOLD FOLD
TAPE TAPE
FOLD FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee

¢y DataGeneral

ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES






¢vDataGeneral

Data General Corporation, Westboro, Massachusetts 01580 069-400



