
SPjPascal

Programmer's Reference

t. DataGeneral

NOTICE Data General Corporation (DGC) has prepared this document for use
by DGC personnel, customers, and prospective customers. The
information contained herein shall not be reproduced in whole or in
part without DGC/s prior written approval.

DGC reserves the right to make changes in specifications and other
information contained in this document without prior notice, and
the reader should in all cases consult DGC to determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC
HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT­
W ARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE­
SENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN
THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE­
MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR­
MANCE/ SUIT ABILITY FOR USE OR PERFORMANCE OF PROD­
UCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRAN­
TY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY
OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENT AL,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSO­
EVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARIS­
ING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFOR­
MATION CONTAINED IN IT/ EVEN IF DGC HAS BEEN ADVISED,
KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS,
microNOVA, NOVA, PROXI, SUPERNOVA, ECLIPSE MV /8000,
TREND VIEW, MANAP, and PRESENT are U.S. registered
trademarks of Data General Corporation, and AZ-TEXT, DG/L,
ECLIPSE MV /6000, REV-UP, SWAT, XODIAC, GENAP, DEFINE,
CEO, SLATE, microECLIPSE, BusiPEN, BusiGEN, and BusiTEXT
are U.S. trademarks of Data General Corporation.

Ordering No. 069-400203
© Data General Corporation, 1982
All Rights Reserved
Printed in the United States of America
Rev. 00, June 1982

This manual documents an extended Pascal for system programmers.
SP /Pascal has all of the features of MP /Pascal as well as extensions
to implement the MP / AOS and AOS operating systems. Chapter 1
provides an overview of the entire language.

Preface

Preface

Related Manuals

Chapters 2 through 5 describe the language conventions and syntax.

Chapters 6 and 7 describe SP /Pascal routines and I/O, followed by
the rules on program structure in Chapter 8.

Chapters 9 and 10 describe predefined and external routines,
respectively.

Chapter 11 covers the new SP /Pascal exception handling feature.
Chapter 12 reviews the multitasking features.

Chapter 13 describes the CLI commands and macros that invoke the
compiler and Binder, and that execute your programs.

A series of appendices provide information on error messages,
interfacing to other languages, using the system call translator under
AOS, comparisons with other Data General versions of Pascal, and
other useful reference information.

An Index follows the appendices.

In addition, the following forms appear at the back of the book:

DG Offices: list of all Data General facilities world-wide.

How to Order Technical Publications: provides the addresses and
phone numbers of agencies from which order forms and manuals
can be obtained.

Technical Products Publications Comment Form: invites you to assist
DGC in improving future publications by evaluating this manual.

Users' Group Membership Form: brings DGC software users together,
with group meetings and publications, to exchange ideas, applica­
tions, problems, and solutions.

The following manuals also belong to the series of books published
on the MP / AOS operating system.

MP j ADS Concepts and Facilities (DGC No. 069-400200) provides a
concise but thorough introduction to the MP / AOS operating system
for users who want to assess the system's advantages.

MPjAOS System Programmer's Reference (DGC No. 093-400051)
documents MP / AOS system structure and provides a complete
dictionary of system calls and library routines.

MPjAOS Command Line Interpreter (CLI) (DGC No.069-400201)
describes the interactive CLI program, the user's primary interface
to the MP / AOS system. A command dictionary provides command
descriptions, formats, and examples.

Loading MP/ADS (DGC No. 069-400207) describes how to install
MP / AOS software on ECLIPSE-line computers and how to load
tailored systems.

MP / ADS System Generation and Related Utilities (DGC No.
069-400206) describes the generation of an MP / AOS system tailored
to specific applications. It also describes the following utilities,
including sample dialogues as appropriate:

• SYSGEN, the interactive system generation utility;

• DINIT, the disk initializer;

• FIXUP, the disk repair utility;

• SPOOLER, which controls line printer operations;

• ELOG (error logger), the utility for interpreting the system log file.

MP / ADS Debugger and Performance Monitoring Utilities (DGC No.
069-400205) describes the following utilities, providing a dictionary
of debugger commands and sample dialogues as appropriate:

• FLIT, the process debugger;

• PROFILE, which measures execution-time performance;

• OPM, the process monitor that displays current system resource
allocation and status.

MP / ADS Macroassembler, Binder, and Library Utilities (DGC
069-400210) documents the MP / AOS macroassembler and binder as
well as the library file editor (LED) and system cross-reference
analyzer (SCAN). It includes programming examples and a dictionary
of assembler pseudo-ops.

MP / ADS Advanced Program Development Utilities (DGC 069-400208)
describes the following utilities:

• Text control system (TCS)' a method for managing different
versions of a single file;

• BUILD, which creates a new version of a file from existing files,
thus minimizing effort and errors in program development;

• FIND, which locates occurrences of strings in text files.

MP/ADS SPEED Text Editor (DGC No. 069-400202) documents the
features of SPEED, the MP / AOS character-oriented text editor.

MP / ADS SLA TE Text Editor (DGC 069-400209) documents the
features of SLATE, a screen- and line-oriented text editor.

MP / ADS File Utilities (DGC No. 069-400204) describes the following
utility programs, providing sample dialogues for each:

Preface

Preface

• FED IT , a file editor that permits modification of system files,
including program and data files;

• FDISP, which can display the address and data contents of a file
or compare two files, displaying the parts that differ;

• SCMP, which can compare two source programs line by line;

• MOVE, which allows the transfer of files among directories;

• AOSMIC, which allows manipulation of MP lAOS and MP lOS
disks and files on an AOS system;

• FOXFIRE, which permits the transfer of files among MP lOS,
MP I AOS, and AOS systems over asynchronous communication
lines.

Books on three additional programming languages supported by
MP I AOS have previously been published as part of the bookset for
the MP I OS operating system:

MPjPascal Programmer's Reference (DGC No. 069-400031) docu­
ments for system programmers a Pascal-based language targeted for
the MP I OS operating system.

MPjFORTRAN IV Programmer's Reference (DGC No. 069-400033)
documents for system programmers a language based on ANSI 1966
standard FORTRAN with extensions.

MP jBasic Programmer's Reference (DGC No. 069-400032) documents
for new users a programming language based on ANSI standard
Basic with extensions.

MPjOS

For information on Microproducts and a bibliography of documenta­
tion on the Microproducts line, see Introduction to Microproducts
(DGC No. 014-000685).

For information on cross development between MP lOS and MP lAOS,
see MPjOS System Programmer's Reference (DGC No. 093-400001).

Throughout this manual we use the following conventions to illustrate
instruction formats:

Preface

Conventions and
Abbreviations

Contents

Type Declarations . 17

Preface Data Types 17
Declaring a Data Type 18

Related Manuals ii Predefined Simple Data Types .18
Conventions and Abbreviations. iv Integer. 18

Whole .18
1. Introduction Character (CHAR) 18

History of Pascal 4 Boolean 19

Language Features 4 Real. 19

Advanced Support 4 Double_Real 19

Compiler Features 5 User-Defined Simple Data Types. 19

Operating Environment 5 Enumeration Data Type 19
Subrange 20

Lexical Structure Structured Data Types 21 2. Array Structured Data Type .21
Character Set. 8 Array Constants 22

Standard Character Set 8 Record Structured Data Type 23
Reserved Words 8 Record Constants 26

Identifiers 9 Set Structured Data Type. 27
Predefined Identifiers 9 Set Constants 28
U ser-Defined Identifiers 9 String Structured Data Type 29

Delimiters 10 Pointer Types 29
Comments 10 Variable Declarations 30

File Declarations 30

3. Data Declarations User-Controlled Data Storage 31
Bit Qualifier 31

Constant Declarations . 12
Storage Allocation and Alignment 32 Numeric Constants 13

Benign Redefinition 34 Integer Constants. 13
Whole Constants 13
Real Constants . 14
Double_Real Constants 15

Non-Numeric Constants 15
Character Constants 15
String Constants 16
Boolean Constants . 16
Pointer Constant 16

4. Expressions
Operands 36

Constants. . .. 36
Referring to Array Variables. 37
Referring to Fields of Records. 37
Referring to Strings and Substrings 38
Referring to Pointer Variables 39

Set Literals. 40
Function Designators. · . .41
Operators. · . .41

Arithmetic Operators
Boolean Operators .
Relational Operators .

· .41
.42

. 43
Set Operators 43

Operator Precedence
Compatibility Rules.

.44
.44

Compatibility of Two Operands · . .44
Whole and Integer Types. 45
Packed Structures45

5. Program Statements
Assignment Statement ..

Assignment Compatibility
Compound Statement.

EXCEPTION.
WITH Statement .

Flow of Control.
IF Statement
CASE Statement.
WHILE Statement
REPEA T Statement.
FOR Statement.
EXITLOOP Statement .

............... . 49
.............. . 50

. 51

· 52
................ 53

............. 55
.... 55

· .. 56
· 57
· 57
· 58
· 59

RETURN Statement · 59
ERETURN Statement

Routine Invocations
..... 60

................ 60

6. SP / Pascal Routines
Kinds of Routines 64
Procedures .. 64
Functions
Scope of Routines
Routine Parameters ..

..... 65
................ 66

U sing Parameters
Examples
Parameter List Compatibility
Recasting Routine Parameters.

Routine Qualifiers .

7. Input/Output

....... 68

68
.69
70

.71
.... 72

File Formats ... 74
I/O Extensions ... 75
Files.

Predefined Text Files .
Declaring Files .
Text Files.
String Files .
File Variables
Multi-Element I/O Operations .

I/O Procedures .
RESET ..
REWRITE.
FILEAPPEND
CLOSE ..

. 75
· .. 75

· .75
. 76

. ... 76
76
77

........ 77

77
· .79
· .80
· .81

File-Positioning (Random-Access) . . .81
FGPOS. . 81
FSPOS ..
Text File Position-Testing
EOF.
EOLN

I/O Procedures (Text Files)
READ (Text Files Only)
READLN (Text Files Only)
WRITE (Text Files Only)
WRITELN (Text Files Only)
P AGE (Text Files Only)

..... 82

· .. 83
........ 83

· .83
· .. 83

84

· .86
........ 86

89
.... 90

I/O Procedures (Non-Text Files) .. .91
READ
WRITE
Files of Type String.

· .91
· .91

· 91

8. SP / Pascal Program Structure
Source Program Components.

Separate Compilation Units ..
Program Components.
Module Components

Program Qualifiers . .
Variable Qualifiers

.. 94
. .. 94

· .94
· 95

.96
· ... 96

Routine Qualifiers 98
Include Facility 101
Overlay Facility 10 1

Overlaying SP /Pascal Programs 102
Managing Program Overlays - ?OVLOD
and ?OVREL.I02

Source Program Example ..

9. Predefined Routines
Introduction
Mathematical Functions . .

ABS.
ARCTAN.
COS
EXP.
FLOAT ..
LN
ODD ..
ROUND.
SIN
SQR.
SQRT ..
TRUNC .

Type-Handling Routines.
Standard Type Coercion .
SP / Pascal Type Coercion .
Standard Sequence Functions .

String Manipulation

103

.......... 110
.113

· ... 113
113

· .113
· .. 113

114
· .. 114

. 114
· .114

114
.115

· 115
· ... 115

· 115
· .115
· .116

· .. 118
119

Dynamic Variable Pointers 121
FREESPACE.
NEW
DISPOSE
MARK.
RELEASE

122
· .122

· .. 123
· .123
· .123

Address-Returning Functions
BYTEADDR
WORDADDR

Returning Field Size
BITSIZE and BYTESIZE .

Miscellaneous Routines
MIN ..

· .. 123
· .124

..... 124
124

· .125
· 125

· .125
MAX 125
SYSTEM. · .126

10. External Routines Supplied by
DGC
Routine Categories .
I/O Routines . .

Channel Open Procedure
Channel Close.
Data-Sensitive I/O.
String Dynamic I/O
Buffer Dynamic I/O .
File-Position .

. 128
. 130

131
. 132

· 132
· .133

133
. 133

File Management. 134
Data Channel Printer Control 134

Dynamic String Variables 135
System Interfacing. 135

GET_MESSAGE.PAS. 135
MESSAGE.PAS. 136
OVLY.PAS. 137
SYSCALL.P AS .
SYSLIB.PAS .
HEADER.PAS ..

Numeric String Conversion .
DINT2ST.PAS
REAL2STR.P AS .
SINT2ST.PAS.
STR2DINT.P AS .
STR2REAL.P AS ..
STR2SINT.P AS

. ... 137
· .. 138

· 138
· .. 139

· 139
· 140

. 141
· 141

.142
............ 143

Integers and Bit Manipulation . 144
INDEX.P AS 144
RANDOM.PAS .
BOOLEAN.PAS.
DOUBLE.PAS .

. 144
· 145

. 146
Double-Precision Arithmetic 146
DDMATH.PAS 147
Mixed Arithmetic 148

11. SP / Pascal Exception Handling
Defining an Exception Handler. 152

.153
153

Nesting of Exception Handlers ...
System Default Exception Handler

Error Codes 154
........ 154 User-Defined Errors.

Examples. 155

12. Multitasking
Tasks .. 158
Managing Tasks 158

Memory Management. . .. 159
Creating Tasks: FORK Procedure ... 161
SETPRIORITY Procedure 165
Deleting Tasks: RETURN and KILL. . 165

Task Scheduling 166
Intertask Communication. 166

Procedures LOCK/UNLOCK. 167
Procedures PEND /UNPEND . 168

Program Examples. .168

13. Operating Procedures
Compiling.

Compiler Switches.
Compiler Options.
Compiler Error Messages.

Storing Compiler Output.
Binding
Executing Programs

A. ASCII Character Set

B. Com piler Error Diagnostics
Error Message Occurrence

Syntax Phase Messages.
Semantic Phase Messages
Code Generation Errors

C. Calling and Interface
Conventions
Activation Record Format .

.176
176
179

.181
.... 181

181
... 182

.185

. .188
.189

. ... 192
.197

.200

Calling Sequences
Default Convention
ASSEMBLY Convention
CLRE Convention

Examples

200
201

.202
202
202

D. Cross Development under AOS
Binding under AOS . ' 206
AOS-MP / AOS Differences. 207
MP / AOS System Call Translator. . . 207

Translated System Calls . 207
Program Management Calls. . 207
Multitasking 208
File Management Calls . 208
I/O Device Management Calls. . .. 210

Transporting AOS programs to MP / AOS .. 213

E. Assembly Language Parameters
Specific to SP / Pascal 215

F. SP / Pascal Formal Syntax 221

G. Differences Among Data General
Pascal Compilers

Reserved Words. . 226
Data Types & Declarations. .226
Characters & Strings. 226
Routines & Parameters. 227
Files & Input/Output Operations. 227

Miscellaneous Features. . .227

H. SP /Pascal Implementation
Limits 229

Index 231

DG Offices
How to Order Technical
Publications

Technical Products Publications
Comment Form

Users' Group Membership Form

Figures
9.1 Memory organization
12.1 Task memory allocation.

... 122
. 159

Tables
2.1 Special MP /Pascal symbols
2.2 SP /Pascal reserved words
5.1 SP /Pascal statement categories: assignment

8
9

and compound. 48
5.2 SP /Pascal statement categories:

flow of control . 49
5.3 RETURN control transfer. 60
7.1 Input/output procedures. . .. 74
7.2 Default values for WRITE field width . 87
9.1 Predefined routines, mathematical

functions (* means compile-time evaluable) III
9.2 Predefined routines, type-handling

functions (*means compile-type evaluable) . III
9.3 Predefined ASCII string routines (* means

compile-time evaluable) III
9.4 Predefined routines, pointers for dynamic

variables (* means compile-time evaluable) 112
9.5 Predefined routines for returning addresses 112
9.6 Predefined routines for returning field

size (*means compile-time evaluable) 113
9.7 Predefined miscellaneous routines 113
10.1 External routines supplied by DGC 129
10.1 External routines supplied by DGC

(continued) . 130
10.2 MP / AOS system calls and corresponding

parameter files. 138
10.3 Miscellaneous integer and bit manipulation

routines. 144
10.4 Double-precision arithmetic functions. 146
12.1 External procedures for multitasking 158
12.2 Determination of task stack size 164
B.1 Syntax phase messages, Category 1 warnings189
B.2 Syntax phase messages, Categories 2 and 3 . 190
B.3 Syntax phase messages, Categories 3 and 4 . 191
B.4 Semantic phase messages, Category 1

warnings 192

B.5 Semantic phase messages, Category 3 errors 193
B.5 Semantic phase messages, Category 3

errors (continued) 194
B.5 Semantic phase messages, Category 3

errors (continued)
B.5 Semantic phase messages, Category 3

.. 195

errors (continued) 196
B.6 Semantic phase messages, Category 4 errors 197
B. 7 Code generation errors 197
C.1 Passing conventions for argument types .. 201
C.2 Default calling sequence. .203
C.3 Assembly calling sequence 203
C.4 CLRE calling sequence 204
D.1 Conversion of MP / AOS file types when

creating files under AOS 209
D.2 Conversion of AOS file types when opening

files with MP / AOS programs .. 209
D.3 Reversal in polarity between MP / AOS

attributes and AOS access privileges 210
D.4 Correspondences between device

characteristics . . 211
D.5 Device name mapping .212
F.1 Modified BNF. 221
F.2 BNF syntax of SP /Pascal building

blocks .222

Introduction

This manual describes SP /Pascal, a Pascal compiler that runs under
the MP / AOS operating system on Data General's ECLIPSE computers.
SP /Pascal combines the elegant structure of the original Pascal
language with a number of enhancements that greatly improve its
usefulness in advanced "real-world" applications.

Introduction

History of Pascal

Language
Features

Advanced Support

The Pascal language was created by Dr. Niklaus Wirth at the Institut
fur Informatik in Switzerland. Wirth named the language for Blaise
Pascal (1623 - 1662), the French philosopher, mathematician, and
inventor of the adding machine. First published in 1971, Pascal was
quickly accepted in both the academic and business worlds. More
than a decade later, it is still widely regarded as the state of the art
in general purpose programming languages. It is available on
everything from 8-bit microprocessors to huge mainframes, including
most Data General computers.

Pascal is conceptually based on ALGOL 60, from which it obtains
features such as block structuring, explicit declaration of all vari­
ables, and efficient control statements such as IF-THEN-ELSE and
REPEAT-UNTIL. Pascal expands on ALGOL in ways that are
harmonious with the basic structure, not tacked on haphazardly. Its
most important improvements are its data structuring and input/out­
put facilities.

Data General's SP /Pascallanguage embodies a number of extensions
to standard Pascal. These extensions make the language more
powerful and easier to use. Some of the most important features are
listed below.

• A program may be divided into a number of source files which
can be compiled separately. This is especially important when
several people are working concurrently on a large program.

• An exception handling feature allows all types of error conditions
to be trapped by the program and handled in an orderly manner.
The EXCEPTION keyword defines a st.atement, or series of
statements, that are executed whenever an error occurs within a
specified part of the program. The built-in ERROR_CODE function
allows the program to find the specific cause of an error.

• A built-in STRING data type provides for efficient text processing.

• SP /Pascal routines can easily call, and be called by, routines
written in other languages, including assembler language.

• A RECAST facility allows the programmer to bypass Pascal's
normal strict type-checking of data; for example, to do arithmetic
with pointers (memory addresses) by recasting them as integers.

In addition to the above, SP /Pascal has a number of special features
that give the programmer detailed control over the program's use of
memory and other system resources. The SP /Pascal programmer
has access to virtually all the features of the ECLIPSE hardware and
the MP / AOS operating system. In many cases, this power eliminates
the need to write programs in assembler language, since programs
can have the run-time efficiency of assembler as well as the
"programmer-time" efficiency of Pascal. In fact, most MP / AOS

system utilities are written in SP /Pascal. Some key features are
listed below.

• SP /Pascal supports multitasking, to simplify programs that must
"do several things at once."

• A ZREL keyword allows data to be placed in page zero of the
ECLIPSE memory. (Page zero can often be accessed more efficient­
ly than other memory.)

• A WHOLE data type supports unsigned arithmetic on 16-bit words.

• An OVERLAY facility allows the creation of programs that are too
large to fit into main memory.

• Built-in functions are provided for allocating and releasing blocks
of memory at run time.

• A built-in SYSTEM routine gives the program direct access to all
functions of the MP / AOS operating system.

The SP /Pascal compiler is a state-of-the-art program that generates
very efficient machine code. It performs many types of optimization,
and exploits the entire ECLIPSE instruction set in order to make the
compiled program small and fast. The generated code is in the form
of a relocatable object module, which is then processed by the
MP / AOS Binder to produce an executable program. The Binder can
combine the program with other routines that are written either in
SP /Pascal or other Data General languages.

In addition to the object module, the compiler can produce a listing
of the source program, with messages to indicate any errors that are
detected. Optionally, the compiler can also produce a listing of the
machine instructions that comprise the generated code. This can be
very useful when debugging a program at the instruction level.

The SP /Pascal compiler will run on any ECLIPSE line computer
that supports the MP / AOS operating system. The computer must
contain the floating-point and character instruction set options.

Since the MP / AOS operating system is a functional subset of AOS,
SP /Pascal programs can be developed and run under AOS with the
MP / AOS system call translator. A program can be moved from one
system to the other with no modifications, although it must be
re-bound with the AOS or MP / AOS Binder.

MP /Pascal, which runs on Data General's MP /series computers, is a
functional subset of SP /Pascal. MP /Pascal programs can be compiled
by SP /Pascal, and transported to OZMOS or AOS systems, with little
or no modification.

Compiler
Features

Introduction

Operating
Environment

Lexical Structure

This chapter introduces the basic elements of the SP /Pascallanguage.
It describes the character set and the basic symbols that make up an
SP /Pascal program.

Lexical Structure

Character Set

Standard Character
Set

Reserved Words

All SP /Pascal statements must be made up from the following
standard and special characters. Characters not specified here are
illegal and are not accepted by the compiler, except as part of a
character or string constant.

The standard ASCII character set for SP /Pascal includes the follow­
ing alphanumeric characters:

A - Z, a - z, 0 - 9, $, 7, _ (underscore)

In general, the compiler treats upper-case and lower-case characters
as equivalent; i.e., WHILE, while, and While are equivalent. There
is only one exception to this case indifference: all characters in
string literals represent themselves. Appendix A lists the complete
ASCII character set.

Special Symbols

Special symbols within the character set serve as delimiters and
operators. The special SP /Pascal symbols are listed below. Their
uses are explained and illustrated in the chapters that follow.

+ « @

(*) A

* *) [Blank

/ .=] Tab

{ Form Feed

<> I Carriage Return

< , (comma) » New-Line

> %

<= or =<
>= or => ' (quote)

Table 2.1 Special MP/Pascal symbols

Certain reserved words in the language have fixed meanings and
can be used only as defined. For instance, you cannot use reserved
words as identifiers. The reserved words for SP /Pascal are as follows:

AND END MOO REPEAT

ARRAY *ER€TURN *MODULE *RETURN

*ASSEMBLY * EXCEPTION NIL SET

BEGIN * EXITLOOP NOT THEN

*BIT *EXTERNAl OF TO

CASE FILE OR TYPE

*CLRE FOR *OTHERWISE UNTIL

CONST FORWARD *OVERLAY VAR

DIV FUNCTION PACKED WHILE

00 IF PROCEDURE WITH

DOWNTO IN PROGRAM *ZREL

ELSE *INCLUDE * RECAST

*ENTRY RECORD

Table 2.2 SP/Pascal reserved words

• These words are DGC extensions to standard Pascal.

An identifier is a name that denotes either a variable, a type, a
procedure, a function, a program, a module or a constant. An
identifier must be unique within its scope of validity.

There are two kinds of identifiers:

• predefined identifiers that have a specific definition in the
language, but that, unlike reserved words, can be assigned a
different meaning by the user;

• user-defined identifiers that you specify and that are specific to

your program.

The predefined identifiers name routines, constants, files, and data
types. If you wish, you can redefine any identifier as something
specific to your application. Some examples of predefined identifiers:

ARCTAN. EOLN. FALSE. INTEGER. READ. TEXT

Identifiers can be composed of upper-case or lower-case alphabetics,
digits, underscores (_), question marks (?) and dollar signs ($). (Note
that the question-mark character is used extensively as a character
in system identifiers; to prevent conflict, avoid using it in a
user-defined identifier.)

An identifier must begin with an alphabetic; decimal digits can be
used but not as the first character. Imbedded blanks are not permitted
in identifiers. The compiler treats the characters ?, $, and _
(underscore) as letters. For example, SEMI_TOTAL, A123456, and
SETUP$CALL could be used as legal identifiers.

Lexical Structure

Identifiers

Predefined Identifiers

User-Defined
Identifiers

Lexical Structure

Delimiters

Comments

An SP /Pascal identifier can be up to 135 characters long. The first
ten characters of externally visible routine, module, and external
variable names and the first five characters of external assembly
language routine names must be unique. (The SP /Pascal compiler's L
option can be used to specify truncation of an externally visible
identifier. Refer to Chapter 13, "Operating Procedures.")

Identifiers, reserved words and arithmetic constants in a program
must be separated by one or more delimiters. Legal delimiters include
the Blank, Tab, Form Feed, Carriage Return and New Line characters.
All delimiters are equivalent, except within string literals where all
characters represent themselves. A comment is equivalent to a single
delimiter.

The SP /Pascal compiler provides for explanatory text about any
statement in the program. A comment can contain any legal ASCII
characters except the comment delimiter. Comments in a program
can be of any length.

The SP /Pascal compiler accepts comments that are pair-delimited,
either by curly braces II II or by asterisks within parentheses ((**)),

as follows:

I comment I, or

(* comment*)

A comment delimited by curly braces can be nested within a
comment delimited by asterisks and parentheses, and vice versa.
But you cannot nest braces within braces or asterisks within
asterisks. For example:

Legal nesting: (* I I *)

Illegal nesting: I I I I
SP /Pascal introduces the percent sign (%) as a single comment
delimiter. The percent sign indicates that the rest of the line is a
comment. A comment delimited by a percent sign can follow code
on a line or can stand alone on a line. For example, both of the
following two lines are legal.

IF 5T ATU5 < > 0 THEN RETURN; %Checl< for success
% Generate summary report after file analysis.

NOTE: A comment can also be used as a compiler directive instructing the

compiler with various options from within the source program. This option is

described with the other compiler options in Chapter 13.

Data Declarations

This chapter describes the methods for declaring data in an SP IPascal
program. SP IPascal provides a variety of ways to define constants,
data types, and variables. It provides some features, such as array
and record constants, that are a significant enhancement over the
standard Pascal language.

Data Declar atlons

Constant
Declarations

Any identifier that is not a reserved or predefined word must be
declared in the program's declaration section before the identifier
can be used in the program. The declaration section of a typical
program includes constant, variable, and type declarations. Addition­
ally, user-written routines (procedures and functions) must be defined
in the declaration section before they can be called in the executable
portion of the program. (User·defined routines are described in
Chapter 6.) This section defines the various language conventions
and rules for SP IPascal declarations.

Any number of declarations can appear in any order. For example,
you can alternate several variable, constant, and type declarations.
However, when declarations of the same kind are grouped together,
the program is easier to read and understand, and documentation
comments can be reduced.

SP /Pascal permits any declaration to occur in several places in a
source program, provided that they are all equivalent. This feature
is a convenience when assembling a number of source files into a
single large program. For more information on this feature, see
"Benign Redefinition" at the end of this chapter.

A constant declaration introduces an identifier and assigns to it a
known value that cannot be redefined. The SP /Pascal syntax allows
scalar expressions to be used in constant definitions. However, such
expressions must be compile-time evaluable; i.e., all operands used
in the expression must be defined before use. (Compile-time evalua­
tion of expressions involving real constants is not supported.)

Additionally, SP /Pascal allows structured constants for use as
constants or literals.

The form of a constant declaration is:

CONST
identifier = expression;

{. .. identifier = expression;]

The value for a constant can be numeric (integer, whole, real,
double_real), non-numeric (character, string, Boolean, pointer), or a
user-defined or structured value or expression. Following are some
examples of constant declarations.

CONST
LETTER = "A';

MINUS1 = -1;
FACTOR = SUMl12;

BLANK = ' ';

PI = 3.14159262;
MASK = OFFFFR16;

Once you declare it, you can use the constant identifier to denote the
named literal value in your program. (The only limitation is the
scope of the identifier when you do not declare it as global to the
entire program. Scope is detailed in Chapter 6.) The value of the
identifier cannot be changed throughout the program.

SP IPascal numeric constants can represent integer and real numbers.
Integers can be either signed or unsigned (WHOLE). Real numbers
can be either single or double precision.

NOTE: The underscore character may be used for clarity in numeric constants: for

example, you can write one million as '- 000._000, rather than 1000000. The

underscore has no effect on the value of a numeric constant.

Integer constants represent signed values ranging from -32,768 to
+ 32,767. Decimal points and commas are illegal in integer numbers;
the plus sign is optional; the minus sign is required for negative
numbers. The values for integer constants can be entered in radices
of 2 through 16. The decimal radix is the default.

An integer constant is written as a signed string of decimal digits.
The following are valid integer constants:

+3256 017632R8
-1 111LD000R2
+40 MAXINT

The predefined or standard constant MAXINT denotes the system's
largest available integer constant. You need not declare it before
using it. For SP IPascal, MAXINT is defined as + 32,767.

Whole constants represent unsigned values in a range from 0 to
65,535. The whole type is provided to allow the generation of
unsigned arithmetic and comparison operations. Specific rules for
using it are detailed further on, under "Predefined Simple Data
Types".

Binary Constants

Binary constants can be used in place of integers, whole constants,
or literals. The range of binary constants is the same as the range of
integers and wholes. Binary constants consist of one to 16 binary
digits followed by R2 or 1'2. For example, 1011._11 11_00l0R2.

Data Declarations

Numeric
Constants

Integer Constants

Whole Constants

Data Declarations

Real Constants

Octal Constants

Octal constants can be used in place of integers, whole constants, or
literals. The range of octal constants is the same as the range of
integers and wholes. Octal constants consist of one to six octal digits
followed by R8 or r8. For example, 17777R8.

Hexadecimal Constants

Hexadecimal constants can be used in place of integers, whole
constants, or literals. The range of hexadecimal constants is the
same as the range of integers and wholes. Hexadecimal constants
consist of one to four hexadecimal digits followed by RIB or rIB. For
example, 12BRIB.

Note that the hexadecimal digits are 0 through 9 and A through F.
The first character of a hexadecimal constant must be numeric. For
example, FFFFRIB is an identifier; OFFFFRIB is a numeric literal.

An SP /Pascal real number can assume absolute values between
approximately zero and 7.2 x 1075; they are precise to approximately
seven decimal places. The smallest positive real value is approximate­
ly 5.4 x 10-79• Double-precision numbers (double_real type) have the
same ranges, but have a greater precision (to 15 decimal places).

A real number must contain either a decimal point, an exponent, or
both. Optionally, the number can be preceded by a sign. A large real
number can be entered in scientific (E) notation as a floating-point
number. For example, the following are legal real numbers:

1.500 77.876503
0.003 123-456.0
3.0 8E4
65E-4

E notation can be used with an exponent field directly after the last
digit. The exponent field, denoted by E or e, multiplies the number
to its left by the power of 10 specified by the integer to the right of
the E. The exponent field is an optionally signed integer.

Real number syntax is one of the following:

[+1-]d{d ... d}.d{d ... d}

[+1-]d{d ... d}['d{d ... d]E[+1-]d{d ... d}

Note that, if the E notation is not used, the decimal point (.) is
required. The point must be both preceded and followed by digits.
The point is optional if E notation is used.

All real constants are converted to double-precision values by the
compiler. However, in arithmetic operations, real constants are
coerced to the precision of the other operands in the expression to
allow single-precision operations to use real constants. Compile-time
evaluation of expressions involving real constants is not supported.

SP /Pascal introduces a new predefined numeric data type, dou­
ble_real, for double-precision (four-word) quantities. The dou­
ble_real value range is the same as that for real (0 to 7.2 x 1075);

however, a double_real value is precise to 15 rather than 7 decimal
places. The rules for writing double_Teal constants are the same as
for real constants.

Non-numeric constants permitted by SP /Pascal include character,
string, Boolean, and pointer constants. These are described in the
following subsections. (SP /Pascal structured constants are detailed
under the subhead, "Structured Data Types," further on in this
chapter.)

A character constant must be enclosed in single quotes n. The
character can be any single printing character (plus blank) in the
ASCII-7 character set. By enclosing the relevant octal code in angle
brackets, you can include carriage control and other non-printing
characters as character constants. For example, '< 12>' represents
New Line. Within character constants, two consecutive single quotes
are used to represent the single quote character; for example, ""
represents a character constant with a value of the single quote.
With angle-bracket notation, you can generate any eight-bit charac­
ter.

The following examples illustrate character constants:

CONST
ZERO = '0';
QUOTE = "";
NEWJLINE = '<12>';
ODDLPARITYJNL = '<212>';

When the characters between the angle brackets are not octal digits,
or when the converted value of the octal digit sequence exceeds the
maximum character value (377R8), the entire sequence of characters
between the angle bracket characters (including the angle brackets
themselves) is treated as a string literal. Each of the illegal character
constants in the following actually would be defined in SP /Pascal as
a string constant.

Data Declarations

Double_Real
Constants

Non-Numeric
Constants

Character Constants

Data Declarations

String Constants

Boolean Constants

Pointer Constant

CONST
ODDJPARITY-FF = '<200R8 + 14Ri>'; \ illegal: expressions not allowed I
NINE = '<9>'; !illegal: non-octal digitI
TOOJBIG = '<400>'; !illegal: outside range of CHARI
RUBOUT = 177R8;
DELETE = '<RUBOUT>'; \ illegal: symbolic values not allowedl
NOT-EQUAL = '< >'; \ illegal: no octal value supplied I

You represent string constants by enclosing a group of characters in
single quotes. All characters within a string constant are significant.
To insert special characters (the single quote and non-printing
characters), use the method described under "Character Constants,"
above.

The maximum length of a string constant is 132 characters. String
constants containing only a single character are considered to be of
type CHAR rather than type string.

The compiler generates all string constants so that they terminate
with at least one null character; the null character is not counted in
the length of the string. Examples of string and character constants
follow.

CONST
SAMPLE = 'YELLOW';
MESSAGE = 'IT' 'S TOO LATE!<12>';
LIGHT = 'GO';
TAB = '<11>';
EMPTY = ";

NOTE: For benign redefinition, string literals are equivalent when they are textually
identical. Case is significant in string and character literals.

The values true and false are predefined Boolean constants. For
example,

CONST
TESTING= FALSE;
DEBUGGING = FALSE;
PRODUCTION = NOT (TESTING OR DEBUGGING);

The reserved word NIL is the only pointer constant. For example,

CONST
EMPTY-LIST = NIL;

In SP /Pascal, every variable in a program must be of one specific
type that is either predefined or user-defined. The type determines
the set of allowable values a variable of that type can have and the
operations that can be performed on that variable.

Much of the checking for type consistency is done during compilation.
Programming errors, such as assigning a Boolean value to an integer
variable, are detected by the compiler. Early error detection is one
of the major advantages of the language's emphasis on typing.

In general, legal data type categories are:

1. Simple types (basic scalar values that cannot be subdivided),

2. Structured types (complex values made up of grouped simple
types)

3. Dynamic pointer types.

Each of these categories is described further in the following
paragraphs. Details of each specific data type are provided further
on in this section; for information on using references to structured
data types in expressions, refer to Chapter 4, "Expressions". The use
of the SP /Pascal extended capability, the bit qualifier, is described
in the section called "User-Controlled Data Storage" at the end of this
chapter.

There are six predefined simple data types: INTEGER, REAL, CHAR,
BOOLEAN (all standard Pascal) along with WHOLE and DOU­
BLE_REAL, (SP extensions). Each simple data type represents an
ordered set of values. For example, integer type represents the whole
numbers in sequential order from - 32768 to + 32767 so that 2 is
less than 3, and so forth; character type denotes the ASCII character
set in its standard sequence so that F comes after E. (See Appendix A
for ASCII order.)

Two kinds of user-defined simple data types, enumerated and
subrange, allow you to set up your own ordered sets of values. You
define an enumerated data type by listing the elements in the set in
their own order; for example, type RACE and its enumerated list
(WIN, PLACE, SHOW). A sub range is a contiguous subset of an
existing simple data type (either predefined or user-defined enumera­
tion). You define a subrange data type by listing the low and high
limits of the subset, such as a sub range data type GRADES as character
cons tan ts 'A' .. 'F'. Details of these types are provided further on in
this chapter.

In SP /Pascal, there are five predefined structured data types:
ARRA Y, RECORD, SET, FILE (standard Pascal data types) and
STRING, (an SP extension). Each structured data type is made up of
simple data values, such as an array of real numbers or a string of
single ASCII characters.

Data Declarations

Type Declarations

Data Types

