
-. Data General
Software Documentation

MP/BASIC
Reference Manual

093-400005-01

MP/BASIC
Reference Manual

093-400005-01

For the latest enhancements. cautions. documentation changes. and other information
on this product. please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-400005
CData General Corporation, 1980, 1983
All Rights Reserved
Printed in the United States of America
Revision 01, October 1983
Licensed Material - Property of Data General Corporation

NOTICE
DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS
THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE DGC
LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT
LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUIT­
ABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE
DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY
OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPER­
NOVA, PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/SOOO, TRENDVIEW, SWAT,
GENAP, and MANAP are U.s. registered trademarks of Data General Corporation, and AZ-TEXT, DG/l,
DG/GATE, DG/XAP, ECLIPSE MV/10000, GW/4000, GDC/1000, REV-UP, UNxIVS, XODIAC,
DEFINE, SLATE, microECLIPSE, DESKTOP GENERATION, BusiPEN, BusiGEN and BusiTEXT are U.S.
trademarks of Data General Corporation.

Revision History:

MP/BASIC
Reference Manual

093-400005

Original Release - August 1980
First Revision - October 1983

Effective with:

MP /BASIC Rev. 2.0

Preface

We have produced this manual with the needs of a diverse
readership in mind. In the first nine chapters, the detailed
discussion and examples giving hands-on practice should
help the new programmer master the rudiments of
programming in MPjBASIC. Chapters 10, 11, and 12
describe programming options for the advanced MP jBA­
SIC programmer: segmentation, exception handling, and
use of assembly language subroutines, respectively. The
experienced BASIC programmer will find speedy, effi­
cient reference tools in the summary chapter (Chapter
13), the detailed dictionary (Chapter 14), and the appen­
dixes.

MP/BASIC
MP jBASIC is an implementation of the BASIC language
as developed by Dartmouth College and standardized by
the American National Standards Institute (American
National Standard for Minimal Basic, ANSI
X3.60-1978).

The following major enhancements to the ANSI Standard
are made available in MP jBASIC (in every instance,
enhancements are clearly identified as such in the text):

• Long variable names

• String dimensioning

• String concatenation

• Substrings

• Long array names

• RESTORE to a specific data line

• Eight additional math functions

• Nine string functions

• Fixed and variable-length file manipulation

• MP jBASIC assembly language interface.

• Program segmentation

• Exception handling

• ON ... GOSUB statement

• ELSE clause in ON ... GOTO, ON ... GOSUB, and
IF ... THEN statements

In addition, MP jBASIC supports integer as well as real
and string data types.

Future revisions of MP jBASIC will continue conforming
to ANSI standards.

MP jBASIC can be used under other Data General
operating systems in addition to MP JOS. This manual
includes the commands necessary to use MP jBASIC
from MPjAOS, MPjAOS-SU, AOS, and AOSjVS.

Organization of the Manual
Chapters 1 through 9 provide a detailed introduction to
MPjBASIC.

Chapter 10 describes program segmentation of large
programs.

Chapter 11 describes an optional method of exception
handling.

Chapter 12 discusses calling assembly language subrou­
tines from MP jBASIC.

Chapter 13 summarizes the material in the preceding 12
chapters, thus serving as review and overview.

Chapter 14 is a dictionary of all MP jBASIC statements,
commands, and functions.

Appendix A lists the text of the error messages, and
describes exception codes.

Appendix B describes overlay and non-overlay MP /BA­
SIC.

Appendix C describes MP /BASIC internal data formats.

Appendix D describes run-only MP /BASIC.

Using This Manual
This document addresses both the new and the experi­
enced programmer. Use the following table to determine
which portions of this manual will be most helpful to you.

093·400005 Licenaed Meterial·Property of Data General Corporation iii

If You •..

are learning to program in BASIC

are an experienced BASIC programmer

are writing a very long program and need to segment it

want to handle exception codes within your program

want to use assembly language subroutines with MP /BASIC

want to learn about overlay versus non-overlay MP/BASIC

are interested in internal data formats

receive an error message

Related Manuals
This section describes software manuals related to
MP IBASIC. The manuals cover operating systems, utili­
ties, editors, languages, and communications software.

System Topics
The following manuals describe the MP lAOS,
MP/AOS-SU, and MP/OS operating systems.

MP/AOS-SU

MPIAOS-SU Programmer's Manual (DGC No.
093-000348) documents the MP I AOS-SU structure and
provides a dictionary of system calls and library routines.

MPjAOS-SU Command Line Interpreter (CLI) (DGC
No. 093-000349) describes the CLI program, the user's
primary interface with the MP I AOS-SU system. The
manual provides a command dictionary containing de­
scriptions of command functions, formats, and examples.

Loading and Generating MPjAOS-SU (DGC No.
093-000354) describes how to install MP I AOS-SU soft­
ware on microECLIPSE(TM) and DESKTOP GENER­
A TIONTM computers. The manual also describes the
following utilities, including sample dialogs, as appropri­
ate:

• SYSGEN, which generates custom tailored systems.

• DIN IT, which initializes disks.

• FIXUP, which repairs disks.

• MAKEBOOT, which prepares stand-alone programs
and systems for booting.

MPjAOS Macroassembler, Binder, and Library Utilities
(DGC No. 069-400210) documents the MP lAOS macro­
assembler and binder as well as the library file editor

Then Read ...

Chapters 1 through 9

Chapters 13 and 14

Chapter 10

Chapter II and Appendix A

Chapter 12

Appendix B

Appendix C

Appendix A

(LED) and system cross-reference analyzer (SCAN). The
manual includes programming examples and a dictionary
of assembler pseudo-ops.

MPjAOS-SU Debugger (DGC No. 093-000350) de­
scribes DEBUG, the system utility that aids in detecting
and correcting program runtime errors. The manual
provides a command dictionary that contains command
functions, formats, and examples.

MPjAOS and MPjAOS-SU Advanced Program Develop­
ment Utilities (DGC No. 069-400208) describes the
following utilities:

• TCS (Text Control System), which can maintain
multiple versions of a file.

• BUILD, which creates a new version of a file from
existing files, thus minimizing effort and errors in
program development.

• FIND, which locates occurrences of strings in text
files.

MPjAOS and MPjAOS-SU File Utilities' (DGC No.
093-000351) describes the following utility programs,
providing sample dialogues for each:

• AOSMIC, which allows manipulation of MP j AOS,
MP j AOS-SU, and MP lOS disks and files on an AOS
system.

• FDISP, which can display the address and data content
of a file or compare two files, displaying parts that
differ.

• FLED, a disk file editor that allows examination and
modification of executable and data files, using a
variety of formats.

• FOXFIRE, which permits the transfer of files among
MP lOS, MP lAOS, MP I AOS-SU, and AOS operat­
ing systems.

iv Licensed Material·Property of Data General Corporation 093·400005

• MOVE, which allows the transfer of files among
directories and performs the system backups.

• REFIT, which cross-references in multi-module sym­
bols on high-level-language sources or listing files.

• SCMP, which can compare two source programs, line
by line. I

I

• TCOPY, which allows the transfer of data to and from
tapes.

• VAMP,a user-oriented me patch utility for building
patch files and installing patch code.

MP/AOS

MPjAOS Concepts and Facilities, (DGC No.
069-400200) provides a concise but thorough introduction
to the MP / AOS operating system for users who want to
assess the system's advantages.

MP/AOS System Programmer's Reference (DGC. No.
093-400051) documents MP / AOS system structure and
provides a complete dictionary of system calls and library
routines.

Loading MP/AOS (DGC No. 069-400207) describes how
to install MP / AOS software on ECLIPSE®-line comput­
ers.

MPjAOS Command Line Interpreter (CLI) (DGC No.
069-400201) describes the interactive CLI program, the
user's primary interface to the MP / AOS system. A
command dictionary provides command descriptions,
formats, and examples.

MPjAOS System Generation and Related Utilities (DGC
No. 069-400206) describes the generation of an MP / AOS
system tailored to specific applications. It also describes
the following utilities, including sample dialogs as appro­
priate:

• SYSGEN, the interactive system generation utility;

• DlNIT, the disk initializer;

• FIXUP, the disk repair utility;

• SPOOLER, which controls line printer operations;

• ELOG (error logger), the utility for interpreting the
system log file.

MPjAOS Debugger and Performance Monitoring Utili­
ties (DGC No. 069-400205) describes the following
utilities, providing a dictionary of debugger commands
and sample dialogues as appropriate:

• FLIT, the process debugger;

• PROFILE, which measures execution-time perfor­
mance;

• OPM, the process monitor that displays current system
resource allocation and status.

MPjAOS Macroassembler, Binder, and Library Utilities
(DGC No. 069-400210). See description under
MP/AOS-SU.

MPjAOS and MPjAOS-SU Advanced Program Develop­
ment Utilities (DGC No. 069-400208) See description
under MP/AOS-SU.

MP/AOS and MP/AOS-SU File Utilities (DGC No.
093-000351) See description under MP / AOS-SU.

MP/OS

An Introduction to MP/OS (DGC No. 014-000658)
presents an overview of the MP lOS operating system's
structure and capacities.

Installing Your Microproducts System (DGC No.
069-400001) provides instructions both for installing
Microproducts hardware and for beginning to run the
MP lOS software and making backup copies of it.

MPjOS System Programmer's Reference (DGC No.
093-400001) describes the MP/OS operating system in
detail and tells you how to call system routines from your
programs. It includes a dictionary of system calls and
library routines.

MP/OS Utilities Reference (DGC No. 093-400002)
describes the utility programs available with the MP lOS
system.

MPjOS File Management Utilities Reference (DGC No.
093-400009) describes the use of the following file
management programs for assembly language program­
mers:

• MP /ISAM (Micro Products/Indexed Sequential Ac­
cess Method), a data base management system

• ACORN, the MP/ISAM file cration utility

• SORT /MERGE, an MP lOS utility for sorting records
within a single file and merging records from two or
more files into a single file

MPT Software System Guide (DGC No. 093-400011)
provides a summary of system hardware and software for
the experienced programmer who will be developing
programs by use by other users on MPT and Enterprise
workstations.

Editors
MPjAOS and MPjAOS-SU Slate Text Editor (DGC
No. 069-400209) documents the features of SLATE, a
screen- and line-oriented text editor.

093·400005 Licensed Material·Property of Data General Corporation v

MP/AOS SPEED Text Editor (DGC No. 069-0400202)
documents the features of SPEED, the MP / AOS and
MP I AOS-SU character- oriented text editor.

Languages
SP/Pascal Programmer's Reference (DGC No.
069-400203) documents an extended Pascal for 'system
programmers. SP /Pascal has all of the features of
MP IPascal as well as special features targeted for the
MP/AOS, MP/AOS-SU, and AOS operating systems.

MP/FORTRAN IV Programmer's Reference (DGC No.
069-400033) documents for system programmers a lan­
guage based on American National Standard (ANS)
FORTRAN (X3.9-1966) plus extensions.

MP/Pascal Programmer's Reference (DGC No.
069-400031) documents for system programmers a
Pascal-based language for the MP lOS operating system.

Communications
MP/HASP Reference (DGC No. 069-400050) describes
the MP IHASP II Workstation Emulator, a program that
supports the simultaneous transmission of up to five files
between two computers linked by telecommunication
lines.

MP/RJE80 Reference (DGC No. 069-400040) describes
the Remote Job Entry Program that supports the batch
transfer of files between two computers linked by telecom­
munication lines.

MP/3270 Reference (DGC No. 069-400041) describes a
program that permits terminals on any Data General
system to emulate IBM Model 3277 terminals and
exchange data with remote IBM or IBM-emulating
systems.

MSCP Programmer's Reference (DGC No. 093-400012)
describes the MP Synchronous Communications Package
(MSCP), a set of program calls that allow communication
with a remote station over a synchronous line. MSCP is
required for MP IRJE80, MP IHASP, MP /3270, and
user-defined communications programs using the Binary
Synchronous Communications protocol.

Typesetting Conventions
We use these conventions for command formats in this
manual:

COMMAND required [optional] ...

Where Means

COMMAND You must enter the command as shown.

required

[optional]

You must enter some argument (such as
a filename). Sometimes, we use:

required 1 I required2

which means you must enter one of the
arguments. Don't enter the vertical bar;
it only sets off the choice.

You have the option of entering this
argument. Don't enter the brackets; they
only set off what's optional.

You may repeat the preceding entry or
entries. The explanation will tell you
exactly what you may repeat.

Other conventions we use are as follows:

ESC

CTRL-X

*

Escape character (ESC on your key­
board). (See Chapter 1 or Chapter 13
for instructions on using this character.)

Control character. Depress and hold
CTRL key while striking another key
(represented by X). Echoed as -X on
your terminal.

NEW LINE, carriage return, or line
feed symbol.

BASIC prompt.

Abbreviations
We use the following abbreviations in the descriptions of
BASIC keywords:

Abbreviation Term

var
expr
str-expr
log-expr
str lit
val
line no.
col
control var
svar

filename

numeric variable
numeric or string expression
string expression
logical expression
string literal
numeric value
line number
column
control variable
string variable

a disk filename or device

Contacting Data General
• If you have comments on this manual, please use the

prepaid Remarks Form that appears after the Index.
We want to know what you like and dislike about this
manual.

vi Licensed Material·Property of Data General Corporation 093·400005

• If you need additional manuals, please use the enclosed
TIPS order form (USA only) or contact your Data
General sales representative.

• If you experience software problems, please notify Data
General Systems Engineering.

End of Preface

093·400005 Licensed Material·Property of Data General Corporation vii

093·400005

Contents

Chapter 1 - Fundamentals of Programming
Characters 1-1

Internal Representation of Characters. 1-1
Statements. 1-3

Keywords 1-3
Immediate and Delayed Execution. 1-3
Line Numbers 1-3

Programs 1-4
Logging On. 1-4
Logging Off: The BYE Command. 1-4
Clearing Memory Area:
The NEW Command.. 1-5

Program Organization .. 1-5
Explanatory Remarks: The REM Statement 1-5
Terminating the Program:
The Keyword END
Listing the Program:
The LIST Command

Modifying the Program
Correcting Typographical Errors.
Deleting Program Lines:
The DELETE Command
Inserting New Lines into the Program
Renumbering Program Lines

Saving and Retrieving the Program.
Naming the Program.
Saving the Program.
Saving Program Revisions.
Recalling Saved Programs: The ENTER Command

Executing the Program ..
The RUN Command ..
Interrupting Program Execution:

· 1-5

. 1-5
· 1-6
· 1-6

. 1-7
. 1-7

. 1-8
. 1-9

· .. 1-9
. 1-9

· .. 1-9
......... 1-10

. .. 1-10
. 1-10

The Keyword STOP 1-10
Aborting Program Execution ..
Resuming Program Execution:

. ... 1-11

The CON Command. 1-11
Printed Output: PRINT 1-12

PRINT as a Keyword 1-12
PRINT in Immediate Mode. 1-12
Spacing the Output:
Printing Numbers 1-13
Zone Spacing of Printed Output:
The Comma 1-13
Compact Spacing of Output:
The Semicolon · .1-14

Licensed Material·Property of Data General Corporation ix

x

Spacing with TAB .. 1-15
Spacing to the Next Line .. 1-15

Formatted Output:
The PRINT USING Command ... 1-16
Determining Memory Used:
The MEMORY Command ... 1-17

A Complete BASIC Session .. 1-18
Keywords in Chapter 1 ... 1-19

Chapter 2 - Numeric Expressions: Variables, Constants and
Operators

Variables ... 2-1
Numeric Variables ... 2-1
Assigning Variable Values: The LET Statement ., 2-2
Initializing Variables ... 2-3

Numeric Constants ... 2-4
Representing Numeric Constants 2-4
Numeric Data Types ... 2-5

Arithmetic Operators ... 2-5
Operator Precedence ... 2-6

Keywords in Chapter 2 .. 2-7

Chapter 3 - Character Strings
String Variables ' 3-1

String Variable Names ... 3-2
Assigning a Variable Value .. 3-2
Length of String Variables .. 3-2
Initializing String Variables:
The Null String ... 3-3
Writing Character Strings: The Use of Quotation Marks 3-3
Referencing Substrings ... 3-3
Assigning Values to Substrings 3-4

String Constants ... 3-4
Length of String Constants .. 3-4

Keywords in Chapter 3 .. 3-4

Chapter 4 - The INPUT and READ DATA Statements
The INPUT Statement ... 4-1

Using Prompt Lines ... 4-2
The INPUT Statement with
Several Variables .. 4-2
The LINPUT Statement ... 4-4

READ Data .. 4-5
Use of Commas and
Quotation Marks .. 4-6
Proper Matching of Data;
Multiple DATA Lines ... 4-6
RESTORE ... ~8

Keywords in Chapter 4 ... 4-8

Licenaed Material·Property of Data General Corporation 093-400005

Chapter 5 - Control Statements: Branching and Loops
Unconditional Branching . 5-1

The GOTO ... Statement .. 5-1
Infinite Loops ... 5-3

Conditional Branching .. 5-3
The IF ... THEN ... Statement. .. 5-3
Relational Operators .. 5-3
Using IF ... THEN ... 5-4
The IF ... THEN ... ELSE Statement 5-6
LogicalOperators ... 5-6

Multiple Branching ... 5-9
The ON ... GOTO ... Statement 5-9

Repeated Operations: Loops ... 5-12
Looping with Counters .. 5-13
Looping with FOR ... NEXT .. 5-14
Looping with STEP for Increments Different from 1 5-17
Nested Loops .. 5-17

A Practical Application .. 5-22
Compound Interest
Varying Capital, Time,
and Interest Rates .. 5-23
Roll over, Roll over ... 5-25

Keywords in Chapter 5 ... 5-26

Chapter 6 - Subroutines
GOSUB ... and RETURN .. 6-1
A Program Example .. 6-2
The ON ... GOSUB ... ELSE Statement 6-5
Keywords in Chapter 6 .. 6-6

Chapter 7 - Arrays and Subscripted Variables
One-Dimensional Arrays .. 7-1

Subscripts .. 7-1
Numeric and String Arrays ... 7-2
Naming Arrays ... 7-2
Assigning Values to Members of an Array 7-2
Referencing Members of an Array 7-4
Declaring an Array:
The DIM Statement ... 7-6
Declaring an Array:
The OPTION BASE Statement 7-6
A Program Example ... 7-7

Two-Dimensional Arrays
(Double Subscripts) .. 7-8

Declaring a Two-Dimensional Array 7-9
Referencing Elements of a Two-Dimensional Array 7-9
Program Example ... 7-9

String Arrays ... 7-10
Keywords in Chapter 7 ... 7-11

093·400005 Licenaed Material·Property of Data General Corporation xi

xii

Chapter 8 - Functions

Implementation-Defined Functions ..
Parts of a Function
Calling a Function
Order of Execution
Mathematical Functions.
RND: The Random Number Function:
RANDOMIZE
String Functions

User-Defined Functions ..
Parts of a User-Defined Function ..
Referencing a User-Defined Function ..

Keywords in Chapter 8

Chapter 9 - File Input and Output

Records
Fixed-Length Records.
Variable-Length Records
Accessing Records: Random versus Sequential Access

File Modes.
Mode 0 ...
Mode 1
Mode 2: The Write/Append Facility.
Mode 3

File Commands
File Number
Filename.

.............. 8-1
....... . .8-1

·8-1
· .. " 8-2

................ 8-3
· 8-3
· 8-3

· .8-5
· .8-9

.... 8-9
. 8-10

..8-10

· .9-1
· .9-2
· .9-4
· .9-4

· .. 9-5
. 9-5

· .9-5
· 9-5

· .9-5
· .9-5

· 9-6
· 9-6

WRITE FILE.. · .. 9-8
· .9-9 CLOSE FILE ...

Appending Data to an Existing File:
WRITE FILE, Mode 2 ..
READ FILE
Application: Access and Search a Sequential File
DELETE..
OPEN FILE, Fixed-Length,
Random-Access File
Extracting Data from a Random Access File:

· .. 9-9
· ... 9-10

.9-11
. 9-12

.9-13

READ FILE with Location Index 9-14
............ 9-16 Application: Comparing Data from Two Files

Data Formats.9-18
PRINT FILE.
INPUT FILE.
LINPUT FI.LE

.9-18

.9-19

.9-19
Keywords in Chapter 9 9-19

Chapter 10 - Program Segmentation

Saving Program Segments: The SAVE Command ..
Linking to the Next Segment: The CHAIN Command
Loading a Program Segment: The LOAD Command
Swapping the Current Segment: the SWAP Statement

Data Independence

Licensed Material-Property of Data General Corporation

.10-1

.10-2

.10-2
· ... 10-2

.10-2

093-400005

093-400005

Transferring Data Between Segments 10-3
Running Under Different Versions of MP/BASIC 10-3
Debugging ... 10-3
Keywords in Chapter 10 .. 10-3

Chapter 11 - Exception Handling
Implementing Exception Handling 11-1

Defining an Exception Handler:
the HANDLER and
END HANDLER Statements 11-1
Enabling and Disabling the Handler:
The ENABLE HANDLER and
DISABLE HANDLER Statements 11-2
Determining the Type of Error:
The EXTYPE Function ... 11-2
Exiting from the Handler .. 11-2
Determining the Location of an Error:
the EXLINE Function .. 11-3
Generating an Exception:
The CAUSE Command ... 11-3
Handling ACAA Interrupts ... 11-3

Keywords in Chapter 11 .. 11-4

Chapter 12 - Using Assembly Language Subroutines with
MP/BASIC

Calling an Assembly Language Subroutine: The SUMMON Command 12-1
Writing a Subroutine to be Called from MP/BASIC 12-1

Finding the Subroutine: the Subroutine Table 12-2
Passing Parameters ... 12-4
Saving and Restoring the Accumulators 12-5
Returning an Exception Code 12-5
Creating the Program File ... 12-5
Using Longer Names for Subroutines 12-6
Calling Routines Written in Other Languages 12-6

Chapter 13 - Summary
Fundamentals of Programming (Chapter 1) 13-1

Characters .. 13-1
Line Numbers ... 13-1
Logging On and Off .. 13-1
Clearing Memory Area .. 13-1
Program Organization ... 13-1

Numeric Expressions: Variables, Constants, and Operators (Chapter 2) 13-2
Numeric Variables .. 13-2
Numeric Constants ... 13-2
Numeric Data Types .. 13-2
Arithmetic Operators .. 13-3

Character Strings (Chapter 3) ... 13-3
String Variables .. 13-3
String Constants ... 13-4
Writing Character Strings: The Use of Quotation Marks 13-4
String Operations ... 13-4

Licensed Material-Property of Data General Corporation xiii

INPUT and READ DATA (Chapter 4). 13-4
INPUT ... 13-4
READ and DATA .. 13-4
RESTORE .. 13-5

Control Statements; Flowcharts (Chapter 5) 13-5
Unconditional Branching ... 13-5
Conditional Branching ... 13-5
Multiple Branching ... 13-5
Loops ... 13-5
Flowchart Symbols ... 13-5
Logical Operators .. 13-5

Subroutines (Chapter 6) 13-5
Subscripted Variables (Chapter 7) 13-5

Naming Arrays .. 13-5
Array Size .. 13-5

Functions (Chapter 8) 13-6
Implementation-Defined Functions 13-6
User-Defined Functions. 13-6

File Input and Output (Chapter 9) 13-6
File Modes 13-6
File Records 13-6
Data Formats of Files 13-7

Program Segmentation (Chapter 10) 13-7
Exception Handling (Chapter 11) 13-7
Using Assembly Language Subroutines with MP/BASIC (Chapter 12) 13-7

Chapter 14 - Dictionary of Statements, Commands, and Functions
ABS(X) 14-2
*ALL............................ 14-2
ATN(X)....................... 1~2
*BSTR$(V,R) 14-2
*BVAL(A$,R). 14-3
*BYE 14-3
*CAUSE 14-4
*CHAIN ... 14-4
*CHR$(M) 14-5
*CLOSE FILE. 14-5
*CON.1~6

*CONTINUE 14-6
COS(X) 14-6
DATA 1~7
*DATE..... 14-7
*DATE$..............................14-8
*DECLARE INTEGER. 14-8
*DECLARE REAL. 14-9
DEF FNa(d) .. 14-10
*DEG(X) 14-10
DELETE [FIRST TO LAST] 14-11
DIM ... 14-12
*DISABLE [KEY] HANDLER. 14-13
*ELSE 14-13
*ENABLE [KEY] HANDLER .. 14-13
END. 14-14
*END HANDLER. 14-14
*ENTER 14-14
*EXLINE 14-15

xiv Licensed Material-Property of Data General Corporation 093-400005

EXP(X) .. 14-15
*EXTYPE .. 14-15
*FIRST .. 14-15
FOR and NEXT ... 14-16
*FP(X) ... 14-17
GOSUB and RETURN ... 14-18
GOTO ... 14-19
*HANDLER .. 14-19
IF ... THEN ... ELSE ' .. 14-20
INPUT, INPUT PROMPT, INPUT FILE 14-21
INT(X) .. 14-22
*IP(X) ... 14-23
*LAST ... 14-23
*LEN(A$) .. 14-23
LET ... 14-24
*LINPUT, LINPUT PROMPT, LINPUT FILE 14-24
*LIST [FIRST TO LAST] .. 14-25
*LOAD .. 14-26
LOG(X) .. 14-27
*MEMORY .. 14-27
*MOD(X,Y) .. 14;..27
*NEW ... 14-28
NEXT ... 14-28
ON ... GOSUB. .. ELSE ... 14-28
ON ... GOTO ... ELSE '" ... 14-29
*OPEN FILE ... 14-29
OPTION BASE ... 14-30
*ORD(A$) .. 14-31
*PI .. 14-31
*POS(A$,B$) ... 14-32
*POS(A$,B$,M) ... 14-32
PRINT ... 14-33
*PRINT FILE .. 14-35
*RAD(X) ... 14-36
RANDOMIZE .. 14-37
READ ... 14-37
*READ FILE ... 14-38
REM .. 14-39
*REM(X,Y) .. 14-39
*RENUMBER [AT STEP] .. 14-40
RESTORE .. 14-41
*RESUME ... 14-42
*RETRY ... 14-42
RETURN .. 14-42
RND ... 14-42
*RUN ... 14-43
*SA VE ... 14-44
SGN(X) .. 14-44
SIN .. 14-45
SQR(X) .. 14-45
STEP , ... 14-45
STOP .. 14-46
*STR$(X) .. 14-46
*SUMMON .. 14-47
*SWAP .. 14-47
T AB(X) .. 14-48
TAN ... 14-48

093·400005 Licensed Material·Property of Data General Corporation xv

xvi

*TIME ... 14-48
*TIMES .. 14-49
*TO ... 14-49
*VAL(AS) .. 14-49
WRITE FILE ... 14-50

Appendix A - Run-Time Error Messages
MPjBASIC Error Mesages ... A-l
System Error Messages ... A-2

Appendix B - MP /BASIC with Overlays

Appendix C - Data Formats
Integers .. C-l
Real Numbers ... C-l

Sign .. C-2
Exponent .. C-2
Mantissa .. C-2

Strings ... C-2
Arrays ... C-2

Appendix D - Run-only MP /BASIC

Licenaed Material-Property of Data General Corporation 093-400005

Illustrations

Figure

1-1 ASCII Character Codes .. 1-2
1-2 Sample MP/BASIC Program ... 1-4
1-3 Print Zones ... 1-13
1-4 Zone Spacing of Printed Output 1-14
1-5 Zone Spacing of Printed Output: Output Continued to Next Line 1-14
1-6 Zone Spacing of a Long Item .. 1-14
1-7 Effect of Commas on Zone Spacing 1-14
1-8 Complet BASIC Session ... 1-18

3-1 String Variable ... 3-1

5-1 Program to Convert Degrees Fahrenheit to Degrees Centigrade , 5-1
5-2 Temperature Conversion Program Incorporating a GOTO Statement 5-2
5-3 Effect of the GOTO Statement .. 5-2
5-4 Flowchart for Temperature Conversion Program 5-2
5-5 Decision Box ... 5-3
5-6 Temperature Conversion Program Using an IF ... THEN 5-5
5-7 Flowchart for IF ... THEN Version of Temperature Conversion 5-6
5-8 Sample Run of Temperature Conversion Program (IF ... THEN Version) 5-7
5-9 Flowchart Symbols .. 5-8
5-10 Music Quiz Program ... 5-10
5-11 Flowchart of Music Quiz Program 5-11
5-12 Sample Dialog with Music Quiz Program of Figure 5-10 5-12
5-13 Temperature Conversion Program Using a Counter '.' 5-13
5-14 Sample Run of Temperature COnversion Program (Counter Version) 5-14
5-15 Flowchart for Counter Version of Temperature Conversion Program 5-14
5-16 Temperature Conversion Program with FOR ... NEXT loop 5-15
5-17 Sample Run of Temperature Conversion Program (FOR. .. NEXT Version) ... 5-16
5-18 Flowchart for Temperature Conversion Program (FOR ... NEXT Version) 5-16
5-19 FOR and NEXT Symbols ... 5-17
5-20 Backward Counting .. 5-17
5-21 Program with Two Consecutive Loops 5-18
5-22 Output from Program in Figure 5-21 5-18
5-23 Variation in Output from Loop Program 5-18
5-24 Program with Nested Loops .. 5-18
5-25 Flowchart of Program with Nested Loops 5-20
5-26 Modification of Loop Program to Produce T-shape 5-20
5-27 Output of Program in Figure 5-26 5-21
5-28 Output of Program in Figure 5-29 5-21
5-29 Modification of Loop Program to Produce I-shapes 5-21
5-30 Program to Calculate Interest at Different Rates 5-22
5-31 Output from Program in Figure 5-30 5-23
5-32 Program to Calculate Interest, with Various Interest Rates and Principal

Amounts .. 5-24
5-33 Output of Program in Figure 5-32 5-25
5-34 Program to Produce Output in Figure 5-20 5-26

093-400005 Licensed Material-Property of Data General Corporation xvii

6-1 Flow of Control To and From a Subroutine 6-2
6-2 Music Quiz Program Using a Subroutine 6-3
6-3 Subroutine in Music Quiz Program of Figure 6-2 6-4
6-4 Sample Run of Music Quiz Program 6-5
6-5 Nested Subroutines .. 6-5
6-6 Music Quiz Program with ON ... GOSUB ... ELSE Statement 6-6

7-1 Subscripted Variable (Element of an Array 7-1
7-2 Subscripted Variable Names in Array C 7-2
7-3 Values for Subscripted Variables in Array C 7-3
7-4 Program to Read Values (Cape Prices) into Array C 7-2
7-5 Output from Array (Cape House) Program 7-3
7-6 Array Search Added to Cape House Program 7-4
7-7 Sample Run of Program of Cape House (Array Search Version) 7-5
7-8 Three Arrays for Bird Surveying Program 7-7
7-9 Bird Surveying Program (Using Three Arrays) 7-8
7-10 Output from Bird Surveying Program (Using Three Arrays) 7-7
7-11 Matrix References both Regions and Seasons 7-8
7-12 Bird Surveying Program Using a Two-Dimensional Array 7-9
7-l3 Nested Loops in Bird Surveying Program (Two-Dimensional Array Version) .7-10
7-14 Output from Bird Surveying Program (Two-Dimensional Array Version) 7-10
7-15 A Two-Dimensional String Array 7-10
7-16 Revision of Cape House Program to Create and Print a Two-Dimensional

String Array .. 7-11

8-1 Parts of a Function . 8-1
8-2 Calling a Function .. 8-2
8-3 The RND Function .. 8-3
8-4 Generating Random Integers .. 8-3
8-5 Effect of RANDOMIZE Command 8-4
8-6 One Run of Random Number Program Using RANDOMIZE 8-4
8-7 Another Run of Random Number program Using RANDOMIZE 8-5
8-8 BSTR$ Function '.' .. 8-5
8-9 LEN (AS) Function .. 8-7
8-10 STR$(X) Function .. 8-8
8-11 V AL(A$) Function .. 8-8
8-12 Output from the V AL(A$) Function 8-9
8-l3 Parts of a User-Defined Function 8-9

9-1 Fuel File with Two Records ... 9-2
9-2 Fuel File with Two Records ... 9-2
9-3 Calculating Record Length ... 9-3
9-4 OPEN FILE Command .. 9-7
9-5 Magazine Subscription Program 9-8
9-6 Excerpt from Magazine Subscription Program 9-8
9-7 Program to Update SUBSCRIPTIONS File 9-10
9-8 Program to Reopen, Read, and Print SUBSCRIPTIONS File 9-10
9-9 Contents of the SUBSCRIPTIONS File 9-11
9-10 Program to Ccheck Expiration Dates in SUBSCRIPTIONS File 9-11
9-11 Output from Program in Figure 9-10 9-12
9-12 Fuel Program, Illustrating Random Access 9-14
9-l3 Program to Read and Print Out Table Generated by Program in Figure 9-12.9-15
9-14 Program to Read Data froma Random Access File 9-15
9-15 Program to Create a File for Comparison 9-16
9-16 Fule Comparison Program: Two Files 9-17
9-17 Output from Fuel Comparison Program 9-17

xviii Licensed Material-Property of Data General Corporation 093-400005

093-400005

12-1 An Assembly Language Subroutine that Can Be Called from an MP/BASIC
Program 12-2

12-3 A ?SUM Table for Three Subroutines 12-3
12-2 Offsets and Macro Definitions from BASIC_USER.sR (concluded) 12-4
12-3 A ?SUM Table for Three Subroutines 12-4

14-1
C-2
C-3
C-4

Zone Spacing of Output
Representation of Floating-Point Format .. .
Representation of Strings
Representation of Arrays

. 14-33
. C-l
............ C-2

.......... C-3

Licensed Material-Property of Data General Corporation xix

xx

Table

1-1
1-2

2-1
2-2
2-3
2-4

3-1
3-2

5-1
5-2

6-1

7-1

8-1
8-2
8-3

9-1
9-2
9-3

10-1

11-1

13-1

C-l

Tables

Image Characters for PRINT USING Statement
Keywords in Chapter 1

Numeric Variable Names
Arithmetic Operators
Rules of Operator Precedence
Keywords in Chapter 2

Symbols Used in Character Strings
Keywords in Chapter 3

Relational Operators
Keywords in Chapter 5

Keywords in Chapter 6

Keywords in Chapter 7 .

Predefined Mathematical Functions
Predefined String Functions
Keywords in Chapter 8

summarizes the modes and their functions.
File Input and Output Commands
Keywords in Chapter 9

Keywords in Chapter 10

Keywords in Chapter 11

Use of Quotation Marks with String Characters

Excess 64 Representation of Exponents ..

· 1-17
· 1-19

......... 2-2
· .2-5
· .2-6

..... 2-7

.......... 3-2
... 3-4

............... 5-4
.5-26

· 6-6

.. 7-11

· .8-2
.................... 84

.8-10

· .9-5
.9-18

· 9-19

.10-3

.... 11-4

.13-4

.. C-2

CLI Calls to Execute Run-Only MP /BASIC ~1

Licensed Material-Property of Data General Corporation 093-400005

Chapter 1
Fundamentals of Programming

Programs are collections of statements to the computer.
Statements in turn are composed of characters which you
generate from your keyboard. This chapter describes how
programs are created, used, and maintained. We have
organized this information as follows:

1. We identify the different characters available to
you.

2. We explain the structure and syntax of program
statements.

3. We describe how you interact with your terminal to
create, modify, run, and save your programs for
later use.

Characters
As a computer user, you have at your disposal a total of
128 characters with which to communicate with the
system.

Each of these characters is represented inside the comput­
er by a numeric code. There are several such codes called
character codes or character sets.

MP jBASIC is designed to utilize the American Standard
Code for Information Interchange, commonly referred to
as the ASCII code. Figure 1-1 shows the complete set of
ASCII character codes.

The first 32 characters are known as control characters.
You can generate these characters (NEW LINE, for
example) from your keyboard, but you cannot print them
out visibly, in the same way that you can print out a
letter, digit, or punctuation mark. These characters
control the operation of the terminal (for instance, a line
feed or a carriage return) or the information exchange
between two terminals. The latter category is of no direct
concern to us here.

Control characters are described in the leftmost group of
columns in Figure 1-1. Within this group, the fourth
column from the left shows the key symbol corresponding
to each character, while the fifth column shows the
mnemonic for that character. For example, BS
(backspace) is the mnemonic for key symbol TH.
It is important to understand that, although the control
characters are not visible in print, they are considered as

any other character and are included in the total character
count of a given word or line.

The remaining 96 characters are all printable and consist
of alphabetic, numeric, and punctuation characters, as
well as such symbols as the percent sign (%), dollar sign
($), and arithmetic operators.

Internal Representation of Characters
The numeric ,value of each character in the ASCII set is
expressed in decimal, octal, and hexadecimal notation in
the leftmost three columns of each group of columns in
Figure 1-1.

Notice that ASCII has different representations for
uppercase and lowercase letters of the alphabet. The
former run from decimal 65 through 90, while the latter
run from decimal 97 through 122.

Also note that the digits 0 through 9 are internally
represented by codes with decimal values ranging from
48 through 57.

093-400005 Licensed Material·Property of Data General Corporation 1-1

DG-05495

1-2

KEY
DECIMAL OCTAL HEX SYMBOL MNEMONIC

1/9"J 000 M~i! t @ fr~~"·1
liH 001 (do)<1 t A I:;~·l

f.~1 002 r~()~tl t B tj~'I'~/·l

I a·l 0031~;'23.'1 t C 1·· .. Eil~il
I '!~'.l 004 t,g",,!t D fZ'~liH
li3~1 005 t'~l t E li.a
I·H~·;1 006 W'2~:.l t F t",,*~~xl
~;;;~q 007!;j()?i! t G f'!~~@1

Ff~01 010 k~jl t H ~iJ
t'<$/J 011 lX~~il t I trif~~n;1
ftitp;l 012 M()~1 t J ri/u'Iz:j
1·.· Jv.it1 013 I.JOB'!j: t K '/'!(T'·l. _ >"<' __ ~ k·,o,;,;_"_'<"<. ~,~J~ __

tt1i~<J 014 [;.9"~t.1 t L [hRl
[Eytl;,l 0151;7P:c¥YI t M ~=~.I
l§l~t;I 016 h.'2«.l t N tj~Pi.J
1··,16/1 017 r·;~~!,j t 0 r<~(/£Y·I

kl·~fi1 020 !v£();·j t p M~E!j
E:!.7·1 021 ~/1tII t Q K~~·'llijl
r~~·J 022 h~~~;<1 t R r·c¥~~{{j
t;t:~1 023 W;j,~.l t S 1;:c¥«~\1
t·;~~:l 024 r;;).~j:l t T W~~I

t!~·jm 0251YiI.tf.ll t u WtiiJ<1
i<~~<1 026 h;J.~;1 t V k;~tl\i;<1

1<.2~.1 027 1'·1;7".1 t w r~~ml

r,2~1 030 r·.18.11 t X F«~.I
L·i~fl 0311li?;~NI t y !·~~:;.1
!;~8Jl 0321it~1 t z t:·~ti~;1
li~?1 033 [d~i! ESC f~~~l

li!2~£j 034 f·:f¢l t \ Uf~; ·1
Iz~:1 035 ['tprj t 1 p~~ '1

Ifs<fl 036 r·l~.l t t r~~·l
li3'll 037 riFI t - \\'I.S I

KEY
DECIMAL aCT AL HEX SYMBOL

Iz~~.1 040 1<~f1"l SPACE I
I:'~~<{I 041 h.Zj1)j ! 1
I~~!hl 042l;~~!I(.:Q

b~fJil 0431,;~~'1 #

ri3'~Zl 044 ~Z~fll $

I}~~"I 045 H;~$j11 o~

I.~~itl 046 M~~.I &

P~~;;l 047 r;~~f1IIA;"s) I
1'/4lj·;·1 050 li/iaH) (_:,;-"v,-,<~t -":i'~_o(,,,,-,,;~

I~~;;l 051 1'.i~W;J)
I~~.!l 052 r:!#~;il *
n1~;;j 053 M~J!j +

f;~iZI 054 bly·l"o=..., 1
F~$jl[l 055 t;Y~.c¥il - I
li~~l~ 056 r;z~';;'l ''':)00) 1
r;tt~:i;1 05 7 t!!~~ill I I
li~;¥l 060 Pftmil 0
!iij.ghj 061 Vl~~;;l 1

1'~!1 062 !{I~MJ 2
t7l%fi:l 063 ~j~~i~ 3
rf~;j 064 H~¥ti;1 4
IiglfY'1 065 V~~j.l 5

~~"H;l 066 H~~iil 6
Il~~f.l 067 W~tl 7

f!~~:!.1 070 I;(~$;;I 8 I
if?/.I 071 I·;~'l 9 I
H~\!~ 072 r.i~~J : I
I;~~;;;l 073 tf~J ;
t.~~ijj 07 4 fl.~~·.J <
h~.1i;1 075 t~p;1 -
[*~q.l 076 t:~E.l >
f·.~;fl 077 U:~~M ?

1.~ilfI1 00 t;'#dJiI @

KEY
DECIMAL OCTAL HEX SYMBOL

W~~UI1 01 WR¥~.A A I
k6~:11 02 k4t~1 B I
li~s/11 03 r;~tll C I
f;~~l! 1 041;~~1 D I
lilR~i 10511i>fI E

t·.Nil 1 061(if~;1 F

!;lJ!ll 071/~:?;;I G

ITJ1t.111 0 M;4tlf'j H

1z.1~lllll r/49.J I

1;141112 !:;~l J

b¥:tml11 3 F",~l K

W~~Dl11 41'.4«1 L

[;:1:7i11151'~~1 M

I'J~:1116 f/4~tJ N

W?f!id l17 H~~l 0

tiA~I;f:l120 ~~~~.fl P

1";$;' .. 11 21 h/~11 Q

!1.8* .. 11221/5;2.j R

If:~~d 1 23 h/fi~'il S

1!.:1J~'1124 [ti~~.!j T

1'{~H 125 r{~5;J u

!j.S~~J 126l~~1 V
b~7~1127 15;7) .. 1 W

E;~~1130 IJfl~1 X

F~~21131 f)~til y

[j~J 132 L&i!d z

1"~1.1133 r·~~;1 [
(:';9.,21134 rl?"~·l \
b~tlI1351~Q;1 1
~~41136 t"~f!;.l t 0'A

li~I137 E§fzj;;-­
l;f~9m 140 1'~Qid (G,:," 1

Figure 1-1_ ASCII Character Codes

Licensed Material-Property of Data General Corporation

Hi~tI·1173Iii{~/~ {
Flt~117 41.t~";1 I

t·t~~j 1 75 WiiPiil 1
Isf~I¥:J 17 6 t"fi!~i.~ ,;;:,;;,,, 1
"';1 li"SI DEL I '1,2:7, 177) .. l~u~ .uwun

093-400005

Statements
Statements are the computer equivalent of English
sentences. They are used to instruct the computer to
perform some desired operation. Like sentences, state­
ments follow a special syntax.

Each BASIC statement performs a single, well-defined
step of an operation. A statement may be up to 156
characters long. Statements of this length, however,
should be the exception rather than the rule. You
terminate each program statement by striking the NEW
LINE key.

Keywords

Statements always begin with a special word called a
keyword. The keyword identifies the type of the statement
and also tells BASIC the kind of operation the statement
is to perform and how to treat the data (if any) following
the keyword.

BASIC, like other computer languages, has a special list
of keywords, which we summarize for you in Chapter 14.
As we move through the chapters of this manual, we
discuss specific keywords and their operation in detail.

Immediate and Delayed Execution

BASIC distinguishes between those statements intended
for immediate execution and those intended for delayed
execution. The distinction is based entirely on the absence
or presence of a line number in front of the statement. A
statement preceded by a number, for instance,

• 150 PRINT X, V J

is identified as being intended for delayed execution.
Programs are composed of a series of numbered state­
ments, which are not executed until the appropriate
command is typed.

Conversely, the absence of a line number in a statement
such as

• LIST J

causes the computer to execute it as soon as you type the
keyword LIST and strike the NEW LINE key. We say
such statements are executed in immediate mode.

Some keywords can be used only in statements appearing
within a program (for example, END). Others are used
only in immediate mode (e.g., ENTER, LIST, NEW);
sometimes we refer to keywords of this type as commands.
Still other keywords may be used within a program as
well as in immediate mode (e.g., PRINT, LET). In
practice, you will find it easy to use each keyword
appropriately, once it has been explained.

The list of keywords at the end of each chapter identifies
the appropriate context for each keyword.

The syntax of BASIC recognizes some program state­
ments in which the keyword stands by itself. For example,

• 10 PRINT J

is a legal statement. Other statements contain keywords
that require arguments. For example, in the line

• 10 INPUT X,V J

X and V are arguments to the keyword INPUT.

Line Numbers
Each BASIC statement within a program is always
preceded by a line number that you assign to it. This
number identifies the line and is unique to it; you cannot
assign the same line number to two different statements.

The line number is followed by the keyword (with a space
before it for legibility) and by the rest of the statement.
When you have finished typing the line, you signal that
fact by striking the NEW LINE key. The downarrow
symbol (J) you will find in the examples we use in this
chapter denotes the NEW LINE key. Thus,

• 150 PRINT "HELLO" J

means that the NEW LINE character follows after the
word "HELLO".

Your program statements are executed according to the
order of their line numbers, moving from low to high. In
special cases, this sequence is temporarily interrupted by
control statements such as GOTO ... and GOSUB (See
Chapters 5 and 6.)

You should, therefore, number your lines in the order in
which you wish to have them executed; observe the
ascending sequence of line numbers in the program
displayed in Figure 1-2.

093-400005 Licensed Material-Property of Data General Corporation 1-3

You need not necessarily enter the program lines in exact
order into your terminal. If we had typed line 40 before
line 20 in Figure 1-2, the program would automatically
rearrange these lines in proper sequence.

• 'NEW
.10 REM PROGRAM SAMPLE
* 20 PRINT "ADDITION"
* 30 PRINT
* 40 LET A=2
* 50 LET B=2 * 60 PRINT "TWO AND TWO MAKE", A + B

* 70 END

DG-06648

Figure 1-2. Sample MP/BASIC Program

Line numbers can range from 1 to 65534. Note that you
may not begin a line with zero. No space should precede
the number or be included within it. For example,

75

is not a valid line number. For the sake of legibility,
however, a space should follow the line number. (In fact,
the system will supply the space if you forget to type it.)

It is generally good practice to number your program
lines at intervals of 10, as we have done in Figure 1-2.
This allows you to insert forgotten or additional lines
without retyping or otherwise renumbering your entire
program. See "Inserting New Lines into the Program."

Programs
BASIC programs are collections of statements containing
instructions and functioning as self-contained units.

Each program statement includes a keyword, preceded
by a line number, and followed as necessary by an
argument. As we have said, the instructions embodied in
program statements are not executed at the time you type
them: you call on commands which are not part of the
program proper to perform actions such as executing,
saving, and retrieving the program.

Programming involves several steps, such as writing the
program (also described as coding the instructions),
typing the program into the terminal, checking for errors
and correcting them (known as debugging), and running
or executing the program.

Below, we discuss the organization of a program and the
conventions involved in performing all operations from
typing through saving a given program.

Our sample program in Figure 1-2 illustrates most of the
concepts we consider in this chapter. We suggest you
copy this program on your terminal as soon as you are
familiar with the log-on procedures and that you tryout
the various modifications of it we will be suggesting as we
go along.

Logging On

When you work on your terminal you are said to be
on-line. Logging on to the computer is the first step in an
on-line session. Logging on puts you in communication
with the CLI (Command Line Interpreter), which is the
program that gives you access to all other programs. To
enter BASIC once you are logged on and in the CLI
mode, type the command

BASIC j

NOTE: If you are using MP /BASIC from an operating
system other than MP lOS, you will need to type a slightly
different version of this command as follows:

For this
operating system

Type this name to
reach MP/BASIC

MP/OS BASIC

MP/AOS or MP/AOS-SU OBASIC

AOS MBASIC

AOS/VS MVSBASIC

The Asterisk Prompt

Once you have entered MP /BASIC, an asterisk (*) will
appear at the beginning of the line. This symbol is a
prompt, indicating that you can now enter a command or
a program statement. The prompt appears at the begin­
ning of each line throughout your BASIC on-line session.

If you are logged on at this time, practice at the keyboard
by copying the sample program in Figure 1-2.

Logging Off: The BYE Command

Logging off means signalling your terminal that you are
ending your current session.

If you have just copied the sample program, you may
want to postpone trying the log-off procedure until we
have shown you how to save programs; otherwise, logging
off will erase everything you have typed.

1-4 Licensed Material-Property of Data General Corporation 093-400005

To log off from BASIC, type the command BYE followed
by a NEW LINE character, as follows:

• BYE J

Clearing Memory Area:
The NEW Command
NEW is the first word you encountered as you copied our
sample program. You should type this command every
time you begin a BASIC session, and every time you
switch from one program to another during a session.

The NEW command clears your work area in computer
memory by erasing all data not explicitly saved. This
ensures that no leftover statements or data from previous
programs will intrude accidentally into your current
program.

Format

NEW does not become part of the program; nor does it
require a line number. It appears on a line by itself,
followed immediately by a NEW LINE character, as
follows:

• NEW J

Program Organization
Having dealt with the preliminaries involved in beginning
an on-line session, we are now ready to consider the
overall structure of a program.

In general, programs contain three broad types of num­
bered statements:

1. Explanatory statements, which are not executed;

2. The body of the program, consisting of statements
which the system reads and executes;

3. An END statement terminating the program.

Below, we discuss explanatory remarks and the END
statement before describing the various executable state­
ments that compose the body of a program.

Explanatory Remarks: The REM Statement
The abbreviation REM stands for remark. This keyword,
preceded by a line number, can be followed by any
comment or explanatory remark you wish to insert into a
program. (See line 10 in Figure 1-2.)

Very often REM statements are placed at the beginning
of a program to indicate its general purpose. But you can
insert remarks throughout the program to explain the
purpose of any statement sequence. Appropriate use of
remarks will clarify your program structure, and make it
easy for other people to understand it.

As we have said, REM statements do not affect the way
your program is executed. They will not appear as part of
the output when the program is run; but if you request
BASIC to display a list of your program, REM statements
will be included in the list along with the executable
program statements.

Format

Remarks may extend over more than one line (each line
must start with a line number and the keyword REM).
Remarks need not be enclosed in quotation marks, and
they may contain any characters you wish. For example,

• 10 REM REMARKS THROUGHOUT A PROGRAM J
• 20 REM HELP EXPLAIN THE PURPOSE OF J
• 30 REM COMMANDS AND STATEMENTS. REMARK J
• 40 REM LINES ARE NOT EXECUTED. J
• 50 PRINT "END." J

Terminating the Program:
The Keyword END
As its name implies, this keyword signals the end of the
program, and terminates execution when the program is
run.

When used, END must appear as the last (highest
numbered) line in a program, followed by a NEW LINE
character. For example,

• 150ENDJ

ANSI Minimal BASIC requires the use of END to
terminate each program. In MP /BASIC, however, use of
this keyword is optional.

Listing the Program:
The LIST Command
This command writes to the screen or to a file a complete
list of your program, but with the lines appearing in
correct sequence (ascending order).

The LIST command does not execute your program, but
merely displays it for your information. You can then
check its text and logic to determine what changes, if
any, are needed.

After you have finished copying the sample program,
type

• LIST J

093·400005 Licensed Material-Property of Deta General Corporation 1-5

The entire program will appear, followed by a prompt
which signifies that the system is now ready to accept
additional commands.

The computer will tidy up each line in your program (for
example, by inserting spaces, inserting or deleting paren­
theses, converting any keywords you entered in lowercase
to uppercase, and so forth). This will not change the
substance of your program, but will just make it easier
for you to read.

Sometimes you will want to look at individual lines, rather
than at an entire program. In this case, type the LIST
command followed by the line number you wish to see.
For example,

• LIST 60 j

will result in a list of line 60.

The related keywords, FIRST, LAST, and TO, enable
you to ask for a list of several consecutive lines. FIRST
and LAST refer to the first and last lines of a program,
respectively. Thus, the command

o LIST j

which produces a list of the entire program, is the
equivalent of

o LIST FIRST TO LAST j

The command,

o LIST FIRST TO 60 j

will output all lines from the first line through line 60 in
the current program, and the command,

LIST 20 TO LAST j

will result in a list of lines 20 through the final line in the
current program.

To list any intermediate lines in a program, you separate
the first and last lines you want listed with the keyword
TO, for example,

o LIST 20 TO 60 j

You can request a list any time while typing a program.
The portions you have typed so far will then be displayed.

The LIST command is also used to save programs. See
"Saving and Retrieving the Program."

Modifying the Program
It is normal for programs to undergo a great deal of
restructuring as they are tested and used. Such alterations
may range from simple typographical corrections to
substantive changes involving deletions and insertions of
entire statement blocks.

Correcting Typographical Errors
If you misspell a keyword, or if you make a typographical
error in typing a line number, the system will not accept
the line on which the mistake was made and will print a
message to notify you of the error. (See "Error Mes­
sages.")

You can correct this type of error by retyping the entire
line, including the line number and the NEW LINE
character at the end. When you do this, your old line is
erased, because the new line is written over it. The system
retains only the latest version of a line.

Spelling mistakes and typographical errors unrelated to
MP jBASIC statement syntax may not be detected by
the system. It is, therefore, essential that you check the
typed program as well as the program output carefully
for typing and logic errors.

To alter the text of a typed line:

1. If you have already struck the NEW LINE key and
are no longer on the line which contains the error,
retype the entire line.

2. If you have not yet struck the NEW LINE key,
either delete the entire current line (see "Deleting
Program Lines") or use the DEL key to back up to
the place where the error occurred.

Suppose, for instance, that in line 20 of the sample
program, you typed "Asdition" instead of "Addi­
tion". Your cursor is now positioned just beyond the
closing quote of the word. If you strike the DEL key,
the cursor will erase the character immediately to its
left (i.e., the quotation marks) and back up one
space. Continue striking the DEL key until the cursor
is under the letter "s". At this point, all the characters
to the right of the letter "A" have been erased, and
you can retype the word correctly.

3. If you are using the AOS or AOSjVS versions of
MP jBASIC, and you have not yet struck the NEW
LINE key, you may use the following AOS screen­
editing keys to correct the line:

1-6 Licensed Material·Property of Data General Corporation 093·400005

Keys*

CTRL-A

CTRL-B

CTRL-E

CTRL-F

CTRL-H or
HOME

CTRL-K or
ERASE EOL

CTRL-U

Function

Move cursor one character to the left

Move cursor one character to the right

Move cursor to end of line or, on a new line,
retype the last statement

Move cursor to the last character of the
previous word

Insert one or more characters before the
cursor. Press "E again to stop inserting

Move cursor to the first character of the next
word

Move cursor to beginning of line

Erase all characters to the right of the cursor

Erase all characters you have typed since the
last NEW LINE

·CTRL-X means that you press and hold down the CTRL key while you press
the character following the dash (-);i.e., CTRL-F means press and hold the
CTRL key while pressing the F key.

Deleting Program Lines:
The DELETE Command
This command will erase one or more lines whose numbers
you specify.

Format

To delete a single line, type the command followed by the
number of the line you want to delete and, of course, the
NEW LINE character. For example,

• DELETE 10 J

will delete line 10. Actually, you can omit the DELETE
command and simply type the line number to be deleted.
The command

• 10 J

is the equivalent of

• DELETE 10 J

Note that this shorthand notation works only when you
delete a single line.

The related keywords, FIRST, LAST, and TO, which we
have already encountered in connection with the LIST
command, enable you to delete several consecutive lines.
FIRST and LAST refer to the first and last lines of a
program, respectively. Some examples are

• DELETE FIRST TO 40 J
• DELETE 40 TO LAST J

• DELETE 20 TO 40 J

You can use the DELETE command during and after the
typing of a program, as well as during interruptions in
program execution.

In a later section, we discuss the deletion of an entire
program, after you have named and saved it.

Other Methods of Deletion

If you are on the line you want deleted and have not yet
struck the NEW LINE key, you can hold down the
CTRL key while striking the C and A keys in succession.
This will delete the entire current line. Our notation for
this operation is CTRL-C, CTRL-A. On the terminal,
this command will be displayed as "'C' A.

BASIC will respond with a prompt after the CTRL-C,
CTRL-A sequence has been executed.

For example, type

• 20 PRINT "TESD CTRL-C CTRL-A J

You will see this echoed on your terminal as

• 20 PRINT "TESD "'C"'A J

To check whether line 20 has indeed been deleted, type

• LIST

The resulting list should display any previous program
lines you may have typed, with the exception of line 20. If
line 20 was the only line you typed so far, then only a
prompt should appear in response to the LIST command.

If you wish to use the ESC key instead of "'C'" A, type the
following while in the CLI (before bringing up BASIC):

CHARACTERISTICS / ON / ESC

Another option to delete a line before you have struck the
NEW LINE key is to use CTRL-U.

Inserting New Lines into the Program
It is often necessary to insert additional statements into a
program after it has been typed or executed.

Assume, for example, that you wish to insert a line into
our sample program to print out the message

THIS IS THE END

between lines 60 and 70. The line number for this insertion
should be a number between 60 and 70.

093-400005 Licensed Material-Property of Data General Corporation 1-7

Since we have numbered our lines by increments of 10,
nine intermediate line numbers are now available for
insertions between any two statements throughout the
program. Thus, our proposed one-line insertion presents
no particular problem: we merely choose a number
between 60 and 70, say, 65, and type our new line as
follows:

• 65 PRINT "THIS IS THE END" j

List the program to check whether it contains the above
addition.

If the number of new statements exceeds the line numbers
available between existing statements, you can make more
intermediate line numbers available by renumbering the
existing lines.

Renumbering Program Lines
The command RENUMBER and its related keywords
enable you to change the increments between line numbers
as well as the line numbers themselves. This command is
only used in immediate mode; i.e., it cannot constitute a
program statement.

There are several ways of renumbering, and we suggest
that you try them all with the current sample program.
List the program after executing each version of the
command to see the difference in the results produced.

RENUMBER

This command will renumber all the lines in your
program, assigning 100 to your first line and incrementing
subsequent line numbers by 10.

If you try this with the current program, to which, as you
recall, you added a line numbered 65, you will find that
line number changed to 160, and the last line of the
program, formerly line 70, changed to 170. In this way,
you are back to increments of 10 after an insertion, and
you have created additional space for future insertions
should they become necessary.

What if you felt like starting your first program line at 50
and incrementing succeeding line numbers by 25? The
related keywords, AT and STEP allow you to replace the
preset starting and increment values of 100 and 10 by
any other values you wish to use.

RENUMBER AT 01

This command will renumber the entire program, as­
signing the number you have specified as nl to the first
line, and incrementing subsequent lines by 10.

If you type

• RENUMBER AT 20 j

beneath the sample program, the first line will now be
numbered 20 and the others will follow by increments of
10. The last line number should be 90.

RENUMBER STEP 02

This command assigns the number 100 to the first line in
the program and increments subsequent lines by the
number you have specified in n2. For instance,

• RENUMBER STEP 5 j

If you have been trying these commands as we have gone
along, your first and last program lines are now numbered
100 and 135, respectively.

RENUMBER AT 01 STEP 02
RENUMBER STEP 02 AT 01

Either of these versions renumbers program lines so that
the first one corresponds to the number you have specified
in nl and line increments correspond to the interval you
have specified in n2. For example,

• RENUMBER AT 150 STEP 50 j

or

·RENUMBER STEP 50 AT 150 j

Your first line is now changed to 150 with subsequent
program lines incremented by 50, as you specified. As
you can now see, the command

• RENUMBER j

is equivalent to the command

• RENUMBER AT 100 STEP 10

The AT and STEP portions need not be spelled out, since
they automatically assume the values of 100 and 10 in
the absence of user-specified values. Such preset values
are known as default values, and we will encounter several
more of them later on.

As a final move in this renumbering session, try returning
to a line sequence which begins with 10 and prof;:eeds by
increments of 10.

See Chapter 14 for a more detailed descriptioll of the
renumbering command.

1-8 Licensed Material·Property of Data General Corporation 093-400005

Saving and Retrieving the Program
If you have written a program that you'll want to reus~,
you need a way of saving it so you won't need to retype It
before each use. It would be uneconomical and ultimately
impossible to store all programs not presently in use. in
the computer's working memory; hence, we resort to disk
storage for programs and data not in active use.

These programs or data are organized as separate files in
the disk device, and they are transferred to the computer's
main memory whenever they are needed for execution.
The process of saving a program in disk memory involves
creating a new disk file, which will be explained soon.

Naming the Program

Assigning a name to a program is part of the process of
saving it, and these two actions occur on the same
command line; naming a program permits you to create a
file capable of being stored and retrieved. We refer to
program names asfilenames.

Legal Filenames

Program names can be from 1 to 15 characters long if
you are using MP lOS or MP / AOS; names can be 31
characters long for other operating systems. Program
names may include a combination of alphabetic, numeric,
and other characters, as follows:

A through Z

a through z (this will automatically be
converted to uppercase)

o through 9

. (period)

$ (dollar sign)

_ (underscore)

? question mark

The following are examples of legal filenames:

TESTFILE

SURVEY.79

ACCOUNT$.REC

As you see from the second and third sample filename,
you can create filenames containing a period and a suffix.
Such suffixes, also known as file extensions, often serve
as an efficient means of identifying a given file's contents.
(For example, the name SURVEY.79 easily distinguishes
the survey file for 1979 from a similar file for the year
1978.) The only restriction on filenames extensions is
that they must be made up of the legal characters we
have listed.

Saving the Program

Once you have chosen a name for your program, you can
save it in a disk file by typing the command

• LIST "filename")

where filename (which should be enclosed in quotation
marks) is the name of your program.

Suppose we decide on SAMPLE as the name for the
sample program we have been working with so far; to
save that program, we would type

• LIST "SAMPLE")

This will simultaneously name and save the program.

To delete a saved program, use the DELETE command
followed by the filename in quotation marks and a NEW
LINE. For example,

• DELETE "SAMPLE")

(Do not delete program SAMPLE right now, as you still
need it for the rest of this chapter; if you have deleted it
by mistake, just retype, name and save it.)

Once a filename has been saved, the system will not allow
you to duplicate it; that is, you cannot use an existing
filename for a new program. You will see shortly why
this is important.

Saving Program Revisions

If you modify a saved program and wish to preserve t.he
revised version, you must resave the program; otherwise
your changes will be lost at the end of your current
session .

Suppose you have just deleted the END statement from
your saved program, SAMPLE, and you want to keep
this changed text of the program.

If you now type

• LIST "SAMPLE")

the system will not accept this command; instead, you
will receive an error message stating

File already exists.

You are, in effect, trying to identify two different
programs by the same filename. To replace your former
program with a revised version, you must first discard the
original text (i.e., the old program file), after which you
can reassign the filename to your present text. As we
mentioned before, you delete a file by typing the DELETE
command, followed by the filename. So, if you type

• DELETE "SAMPLE")

093·400005 Licensed Material·Property of Data General Corporation 1-9

your original file, SAMPLE, will no longer exist. You
can then save your changed program in a new file,
SAMPLE, in the usual way by typing

• LIST "SAMPLE" J

Another way to save program files is with the SA VE
command. This creates a different type of file, however,
and should only be used for program segmentation and
run-only BASIC (see Chapter 10).

Recalling Saved Programs: The ENTER
Command

To retrieve a program that you have saved, you begin, as
always, by typing

• NEW J

followed on the next line by the command ENTER and
the name of the program you are recalling, enclosed in
quotation marks.

If you do not type the NEW command before ENTER,
any program lines already in your work area will be
merged with the lines in the program you are recalling.

To recall our sample program, you would type:

• NEW J
• ENTER "SAMPLE" J

The name must correspond exactly to the filename you
used when saving the program. Any imprecision, such as
an extra space between characters, a misspelling, or the
omission of any character, will prevent the system from
finding the file, and it will send you a message to that
effect.

If the system succeeds in finding your file, it will enter it
into the computer's main memory, and respond with a
prompt when it is ready. The program is now available
for you to work with.

Note that the text of the program will not appear on the
screen or line printer: you have merely instructed the
system to load the program internally.

You can now type the LIST command (not followed by a
filename) to see the text of your program displayed.

Executing the Program

The RUN Command

When you are ready to execute your program, type the
command

• RUN J

BASIC then runs the program, starting from the state­
ment with the lowest number, performs all operations
you specified (provided it encounters no program errors),
and outputs to your screen or to a file all the results you
requested by means of PRINT statements.

When run, our sample program will produce the output
shown below.

• RUN J
ADDITION

TWO AND TWO MAKE 4.

*
Try to run this program on your own terminal. Note the
difference between the output produced by the LIST
command and that produced by the RUN command.

You can run a program any number of times.

Interrupting Program Execution:
The Keyword STOP

You may sometimes want the program to stop execution
before it reaches the END statement, so that you can
check your results or make some program changes.

You can build an interruption into your program code
with a line containing only a line number and the keyword
STOP; thus, for example, you could insert the line

• 35 STOP J

into program SAMPLE (see Figure 1-2)

When you run this program, you will see the following:

• RUN J
ADDITION

Stop at line 35.
*
The program carried out the instructions in lines 20 and
30 and then printed a message to tell us the last line
number it executed. This is a useful reminder, since a
long program may contain several STOP commands.

Next, the system will produce a prompt to indicate that it
is ready to accept further instructions. You may then
modify your program, have material printed out, or
perform calculations. (See "Immediate Mode.") When
you are ready to resume normal execution, you instruct
the program to continue. (See "Resuming Program
Execution. ")

We can try making a simple change in SAMPLE. After
execution of the program has been interrupted, type the
following:

• 40 LET A = 3 J

1-10 _ Licensed Material-Property of Data General Corporation 093-400005

This version of line 40 will replace the original version of
that line for the duration of this session (as well as
permanently, if you resave the changed program). You
will see the result of the change when the program
continues.

Aborting Program Execution
To stop a program at any time during execution, use the
CTRL-C, CTRL-A sequence we discussed earlier. (See
"Other Methods of Deletion.")

Used during a program run, CTRL-C, CTRL-A will stop
execution. When you want to run the program again, you
can use the RUN command, and execution will restart
from the beginning. Or you can use the CON command
(described in the next section) or RUN n (described in
Chapter 14) to continue execution at the line following
the interruption.

CTRL-C, CTRL-A is particularly useful for interrupting
reiterated program operations such as loops. (See Chapter
5.) Short programs are normally executed so rapidly as to
forestall intervention by this command.

Errors and Error Messages
In addition to the interruptions you have programmed,
you will often get interruptions from the system. Such
interruptions are caused by errors that prevent BASIC
from completing a program run.

When this happens, the system prints a message indicating
the type of error that occurred. Appendix A contains a
complete list of MP /BASIC error messages.

In many error situations, the next line will display your
erroneous program statement with a caret ("') placed
beneath the area where the mistake occurred, to help you
localize your search. We illustrate an error message at
the end of this section.

When you have found and corrected your error, you may
be able to continue running the program (see "Resuming
Program Execution" below), or you can restart at the
beginning.

Many errors are detected as soon as you enter your
program into the terminal; in such cases, the system
displays an error message immediately after you have
terminated the erroneous statement with a NEW LINE.
(Appendix A lists all MP /BASIC Run-time Error Mes­
sages.)

Type the following program statement (missing closing
quotation mark), and note the resulting error message
sequence.

• 10 PRINT "BYE)
End of string requires " in line 10.
10 PRINT "BYE

*
While the caret may not point precisely to the location of
the error, it will draw your attention to the general area,
thereby making it easy for you to identify the error (in
this example, the caret points to the unmatched quotation
mark). Retype the entire line correctly, and then proceed
as usual.

Resuming Program Execution:
The CON Command
CON is an abbreviation of CONTINUE. Type

CON)

whenever you are ready to have a program continue
execution after an interruption. In the previous section,
for instance, we interrupted our program at line 35, after
which we changed line 40. Now we will continue running
the program.

The original interrupted run, the modification of line 40,
the CON command, and the subsequent run are shown
below.

• RUN)
ADDITION

STOP AT LINE 35.
• 40 LET A = 3)
• CON)
TWO AND TWO MAKE 5.
*
The program responded to the CON command by resum­
ing execution where it left off, that is, immediately after
line 35. It took account of the change we made in line 40,
(two and two now make five!), and since it encountered
no other STOP commands, it ran without interruption
until it reached the end.

If you use CON when the program is not running, the
system will respond with a prompt.

093·400005 Licensed Material·Property of Data General Corporation 1-11

Printed Output: PRINT
This command makes the result of computer operations
visible to you by displaying it on your terminal.

PRINT is both a keyword and a command. Used on a
numbered line within a program, it is a program state­
ment; used on an unnumbered line, it functions as a
command that is executed as soon as it has been typed
and followed by the NEW LINE character.

NOTE: MP /BASIC allows you to use a semicolon (;) as
a shorthand notation for PRINT. This is an extension to
ANSI Minimal BASIC, which requires the user to type
out the word PRINT.

PRINT as a Keyword
Below, we take examples from SAMPLE to show the
major ways in which this keyword functions within a
program.

1. Print a message enclosed in quotation marks.

Line 20 in SAMPLE contains such a message, i.e.,

• 20 PRINT" ADDITION" J

This command could also have been typed as

• 20; "ADDITION" J

The quotation marks are not part of the message; they
serve only as delimiters to indicate its beginning and end.
When the program is run the quotation marks are
removed, and the message appears exactly as you typed
it.

Print messages enclosed by quotation marks can contain
any characters you wish (letters, digits, punctuation
characters, spaces, and so on) except for quotation marks.
The following line, for instance, would be illegal:

• 20 PRINT "CALLING "SO LONG", SHE LEFT." J

Try changing the message in line 20 in different ways;
then run the program to see what is printed out.

The length of a line with a print message may not exceed
156 characters. If your message is longer, continue it by
typing a NEW LINE followed by a new line number, a
new PRINT command and the remainder of your mes­
sage.

2. Print the result of a computation.

If we split the PRINT command of line 60 in SAMPLE
into two separate commands, we might have a line such
as

• 60 ; "TWO AND TWO MAKE"; J
65 PRINT A + B J

Line 65 would result in a printed output of the sum of
values represented by A and B.

You can instruct the program to print out the result of
any computation, or the current value of several variables
and constants. (See Chapter 2.)

3. Print both a message and the result of a computa­
tion.

A single PRINT statement may serve to output several
items per line, provided they do not exceed 156 characters.
Such items may include a quoted message as well as the
result of calculations, or current values of variables and
constants.

The example we gave above (from line 60 of SAMPLE)
shows such a combined operation.

See "Spacing of Output" for ways to separate items on a
single print line.

4. Print a blank line.

As you have observed from the run of SAMPLE, there is
an empty line between the heading

ADDITION

and the message

TWO AND TWO MAKE 4

We created this space for the sake of legibility by typing
a PRINT command without a list of print items or
punctuation on line 30, as follows:

• 30 PRINT J

When executed, this printed a blank line, creating space
between two adjacent lines of output. You can create
additional space by adding as many PRINT or ; com­
mands as you wish. Try it.

PRINT in Immediate Mode
A line such as

• 50 PRINT "HELLO!" J

will be executed only when the entire program of which it
is a part is run.

If this line is changed to read

• PRINT "HELLOI" J

or

• ; "HELLO!" J

then the message

HELLO!

will appear immediately after you strike the NEW LINE
key. You have thus used PRINT in the immediate mode
of execution.

1-12 Licensed Material·Property of Data General Corporation 093-400005

In this mode, the PRINT command allows you to interact
with a program before, during, or after execution to obtain
computation results or current program values.

Assume you have programmed a STOP command into
SAMPLE. Upon interruption of the run you could type

* PRINT A J

and the program would immediately respond with

2

Or you could type

• ; A, 5 + A J

and the program would print

2 7

In a long program, you could build STOP statements at
several key points, print out current values and test
calculations, make any necessary corrections, and then
resume execution. This feature makes it possible to track
down errors and correct them while the program is
actually being executed; we refer to this process as
dynamic debugging.

In addition, you can use PRINT to perform and print
calculations unrelated to any particular program; hence,
we sometimes refer to immediate mode as the desk
calculator mode.

Spacing the Output:
Printing Numbers
BASIC prints numbers in the following form:

sign number

The sign is either minus (-) or plus (a blank).

Unlike nonnumeric characters, which are printed without
intervening spaces, positive numbers are always preceded
by a blank space; in this way, they may be printed in
closely packed format without running into each other.

Compare, for example, the printing of the characters A
and B and the numbers 5 and 6 in the output of this short
example:

* 20 PRINT "A";"B" J
* 25 LET X=5 J
* 30 LET Y=6 J

• 40 PRINT X;Y J

* RUN J
AD
5 6

*

Zone Spacing of Printed Output:
The Comma
The spacing of items on a print line is determined by the
punctuation separating them. Any spaces you insert in
the print statement itself will not affect the appearance of
the output, unless they are enclosed in quotation marks.
For example, regardless of whether you write

• 40 PRINT X;Y J

or

• 40 PRINTX;Y J

or

* 40 PRINT X;Y J

the output will appear spaced as follows:

5 6

The determining factor is the punctuation between X and
Y, and the fact that this punctuation is a semicolon (;)
rather than a comma (,).

As Figure 1-3 shows, the print line on a terminal is
divided into five print zones, each of which is 14 characters
wide.

11 f415 f829 42143 56157 7°1 71

['ZaM2ZaMLIJ
DG·06649

Figure 1-3. Print Zones

80

A comma (,) between items in a PRINT statement list
causes the next item to be printed in the leftmost position
of the next printing zone available. For example,

• 10 LET A = 3 J
* 20 LET B = 2 J
* 30 PRINT A, B, A+B, A-B, A*B J
* 40 END J

When executed, this program would produce the output
shown in Figure 1-4.

093-400005 Licensed Material-Property of Data General Corporation 1-13

*RUN

32516

LJ~",1~3LJ_5
DG·oee50

Figure 1-4. Zone Spacing of Printed Output

If there are no more printing zones on the current line, or
if the item to be printed is longer than the remaining
space on that line, printing continues in the first printing
zone on the next line.

If, for example, line 30 had read

" 30 PRINT A, B, A+B, A-B, A "B, B-A J

the output would be as shown in Figure 1-5.

Carried
over, from
prevIous
line

*RUN

3 2 5 6

/1- 1

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

DG·06851

Figure 1-5. Zone Spacing of Printed Output: Output
Continued to Next Line

If an item requires more than one print zone, the next
item in the list is printed in the next free print zone. For
example, the program below would generate the output
shown in Figure 1-6.

" 10 LET A = 3 J
" 20 LET B = 2 J
" 30 PRINT "THIS IS A LONG MESSAGE", A, B J
" 40 END J

*RUN

THIS IS A LONG MESSAGE 3 2

Zone 1 Zone 2 Zone 3

DG·06652

Figure 1-6. Zone Spacing of a Long Item

If the PRINT command is followed by more than one
comma, the corresponding number of print zones is
skipped. For example,

" 10 PRINT "DOUBLE",,"SPACE" J

would print the word "space" in zone three, rather than
in zone two, as shown in Figure 1-7.

DG·06653

*RUN

IDoUbie I lS::t~:
comma
causes Zone 2
to be
skipped

Zone 1 Zone 2 Zone 3

Figure 1-7. Effect of Commas on Zone Spacing

If, however, skipping print zones would cause the next
item to be printed beyond the allowable line width, the
item is printed on the next line.

Compact Spacing of Output:
The Semicolon
A semicolon (;) between items in the PRINT statement
list causes the next item to be printed at the next character
position. If the item is a positive number, a blank space is
reserved for the plus (+) sign.

1-14 Licensed Material-Property of Data General Corporation 093·400005

In line 60 of Figure 1-2, we used a semicolon to separate
the two items on our print line, and this caused the
number 4 to appear adjacent to the printed message. The
program statement was

• 60 PRINT "TWO AND TWO MAKE" ; A + B J

and the printed output was

TWO AND TWO MAKE 4.

Look at the following program lines.

• 10 LET A = 3 J
• 20 LET B = 5 J
• 30 LET C = 4 J
• 40 PRINT A; B ; A+ 1 ; B+ 1 ; C ; C+ 1
• 50 PRINT A. B. C J
• RUN J

The output of line 40 will be spaced as follows:

354645

The output of line 50 will be spaced as follows:

3 5 4

Using a combination of commas and semicolons is an
easy way to tabulate your output. Consider how the layout
is handled in this example. (Don't worry about any parts
of line 20 that may, at this point, seem unfamiliar; just
focus on the spacing instructions.)

• 20 PRINT "TOY #:" ; N. "COLOR: " ; B$. "# IN
STOCK:" ; S J

• RUN J

TOY#: 859 COLOR:RED#

Spacing with TAB

IN STOCK: 675

When spacing with commas is too wide, and spacing with
semicolons too compact, you can use the TAB function to
set the exact intervals you need. Functions are discussed
in Chapter 8, but we are anticipating a little to allow you
greater flexibility in controlling the appearance of your
output.

TAB resembles a tabulator in a typewriter, in that it
advances the cursor on the line to the column (character
position) specified by the user. This function is always
used in conjunction with the PRINT keyword. For
example,

• 50 PRINT "TAB 25 IS AT" ; TAB(25) ;"A" J

The word TAB must always be followed by a numeric
argument in parentheses that tells the system in what
column to start printing. Column count begins with 1;

i.e., the first column on a line is number I. The column
count specified by the numeric argument of TAB is always
relative to column 1.

You can set the argument of TAB to any number you
wish, with the following qualifications:

• If the argument is less than 1, the system will
automatically set it to 1.

• If your TAB call brings you beyond the end of the line,
it will wrap-around and print in the corresponding
column on the same line;

• If that column already contains a a printed character,
printing will resume in the corresponding column of
the next line.

The TAB call should be followed by a semicolon (;).

Assuming that no other PRINT statements preceded the
TAB function in our example, and assuming that the
cursor is presently on a lower column number than 25,
line 50 would result in the following output:

• RUN J

TAB 25ISAT A

*
If the cursor happened to be on a higher column number
than 25, printing would be executed on column 25 of the
next line. If, for example, your line read

• PRINT TAB(10); "A"; TAB(30); "C"; TAB(25); "B" J

A and C would appear on the same line, while B would
appear in column 25 of the next line, as follows:

• RUN J
A C

B

*
As you gathered from the previous example, several TAB'
commands can be combined on the same print line, just
like ordinary PRINT statements. For example, a state­
ment such as

50 PRINT
X;TAB(1);Y;T AB(30);Z;TAB(38);"OUNCES" J

would produce a tabulated output, provided the system
has values for X, Y, and Z.

Spacing to the Next Line
When the last item in a print list has been printed, BASIC
moves to the line immediately below by outputting a
carriage return and a line feed, unless the last item in a
list is followed by a comma (,) or semicolon (;).

093·400005 Licensed Material·Property of Data General Corporation 1-15

In this case, the carriage return and line feed are not
output, and the next item in a subsequent PRINT
command is printed on the same line according to the
spacing dictated by the comma or semicolon punctuation.
Notice, for example, the effect of the semicolon and the
comma following lines 40 and 50 below.

• 10 LET A = 5 J
• 20 LET 8 = 6 J
• 30 LET C = 3 J
• 40 PRINT "A =" ; A ; J
• 50 PRINT "8 =" ; 8 , J
• 60 PRINT "AND C =" ; C J
• 70 END J

• RUN J

A = 5 B = 6 AND C = 3

If, however, the comma or semicolon would cause the
next item to be printed beyond the allowable line width, a
carriage return and line feed are output, and printing
continues on the next line.

Formatted Output:
The PRINT USING Command

Printed output can also be formatted with the PRINT
USING statement. In this statement, you specify the
image of the output as you want it to appear, in addition
to the information you want to display. The image
specification lets you left- or right-justify information,
insert dollar signs, asterisks, commas, and decimal points
into numbers, suppress or print leading zeros, indicate
positive and negative numbers, and control the spacing of
your information display. Note that PRINT USING is
an enhancement to ANSI standard.

For example, to replace a leading zero with a space, use
the number sign (#) in the image. To print 010 without
the leading zero, type

• PRINT USING "###":010 J

The result is :

10

Let's take a moment to look at the PRINT USING
statement in the above example. The asterisk is the
MP jBASIC prompt. It is followed by the PRINT USING
keywords. If this were a program statement, we would
have inserted a line number after the asterisk. The
characters within quotation marks (in this case ###) are
the image. 010 is the information to be output. A colon
separates the image from the output information.

In addition to suppressing leading zeros, the number sign
reserves space for the output value. Because we specified
three number signs, three characters (including spaces)
will be displayed. For example:

• PRINT USING "###":10 J
10

As you can see, BASIC displayed a space and then 10.

You can also use the number sign to reserve space in an
image for alphabetic characters. For example:

• PRINT USING "####":"NO" J
NO

Notice that BASIC displayed a space before the word
NO. This is because BASIC will center alphabetic
characters within the image. To left-justify the word NO,
type:

• PRINT USING "<###":"NO" J
NO

To right-justify the word NO within four spaces reserved
for the word, type:

• PRINT USING ">###":"NO" J
NO

Notice that the right-justify image character (» also
reserves a space for the word.

To print two values on a line type:

• PRINT USING "<###>###":"NO","YES" J
NO YES

You can also specify, within the image, additional infor­
mation to be displayed. For example:

• PRINT USING "ENTER <## OR <##":"NO","YES"
J
ENTER NO OR YES

There are several more characters (summarized in Table
1-1) used to format the printing of numbers. These are
the asterisk (*), the percent sign (%), the dollar sign ($),
the plus sign (+), the minus sign (-), the comma (,), and
the decimal point (.).

The asterisk replaces any leading zeros with asterisks.
For example,

• PRINT USING"· • • • ": 1 J
***1

The percent sign displays any leading zeros. For example,

• PRINT USING "%%% %%%":01,1 J
001 001

A dollar sign can be placed only in the left-most position
of the image. The result is a floating dollar sign preceding
the first displayed digit. For example,

1-16 Licensed Material·Property of Data General Corporation 093·400005

• PRINT USING "$###":10 J
$10

The plus sign displays a plus sign if the number is positive,
and a minus sign if the number is negative. Type:

• PRINT USING .. +### +###":10,-10 J
+10 -10

The minus sign displays a blank if the number is positive,
and a minus sign if the number is negative. For example:
• PRINT USING "-### -###":10, -10 J

10 -10

The comma inserts appropriate commas in numbers, while
the decimal point forces a decimal point. Consider the
following example:

PRINT USING "##,###.## ##,###.##
##,###.##":-10,10,1000.10 J

-10.00 10.00 1,000.10

Now, let's combine the dollar sign, asterisk, comma, and
decimal point to format the display of dollar amounts.

PRINT USING "$','" .##
$·,···.##":1000.10,222.22 J
$1,000.10 $**222.22

You can also use variables within the PRINT USING
statement. For example:

• LET A$= .. $·, .. ·.##" J
• LET B= 1000.10 J
• PRINT USING A$:B J
$1,000.10

Notice that the variable name of the image is A$. This
means that it is a string variable; it contains alphanumeric
characters. String variables are described in Chapter 3.

Table 1-1 contains a brief description of the image
characters used in the PRINT USING statement. For
more information about this statement, refer to Chapter
14.

Table 1-1. Image Characters for PRINT USING
Statement

Image
Character

*
%

$

+

Meaning

Replaces leading zeros with spaces

Replaces leading zeros with asterisks

Displays leading zeros

Places a dollar sign before the left-most
digit

Prints a plus sign immediately to the left of
a positive number; prints a minus sign
immediately to the left of a negative num­
ber

Prints a minus sign immediately to the left
of a negative number; prints a space to the
left of a positive number

Prints a comma in the specified position if
there is a significant digit to the left of that
position

Prints a decimal point in the specified
position

Determining Memory Used:
The MEMORY Command

To determine how much memory space a given program
takes up, type the command

MEMORYJ

In response, BASIC displays the number of words of
memory used by the current program, as well as the
number of words of memory still available for use.

(As you may know, a word of memory consists of two
units called bytes; a byte in turn consists of eight units
called bits [binary digits]. Thus, one word of memorv is
composed of two 8-bit bytes, or 16 bits.)

For example:

• MEMORY J

PROGRAM AREA: 70 words.
DATA AREA: 24 words.
AVAILABLE AREA: 12535 words.

The program area and data area together make up the
total memory space used by your current program.
Available area indicates how many words of memory are
remaining and available for use.

093·400005 Licensed Material·Property of Data General Corporation 1-17

A Complete BASIC Session
Figure 1-8 shows an entire BASIC session: logging on,
typing a new program, running the program, and logging
off. Observe that this program makes generous use of the
TAB function. Its other statements may mystify you at
the moment, but the next few chapters will supply the
necessary information. Before long, you may find yourself
returning to this program and tinkering with
improvements in its design.

DG·06654

1-18

*BASICJ
* NEWJ
* 15 PRINT TAB(30); "*"J
*20 FOR 1=1 TO 10J
* 25 PRINT TAB(30-1); "*"";J
* 30 PRINT TAB(30+1); "*""J
* 40 NEXT IJ
* 50 FOR I = 1 TO 9J
60 PRINT TAB(20+1); """;J
* 70 PRINT TAB(40-1); "*""J
* 80 NEXT IJ
* 90 PRINT TAB(30); "*""J
* 160 ENDJ
* RUNJ

*BYEJ
)-

Figure 1-8. Complet BASIC Session

Licensed Material·Property of Data General Corporation 093·400005

Keywords in Chapter 1
Table 1-2 lists the keywords introduced in Chapter 1.

Table 1-2. Keywords in Chapter 1

Can be used in

Keyword Program Immediate
Statement Mode

BYE No Yes

CON No Yes

DELETE No Yes

DELETE FIRST TO LAST No Yes

END Yes No

ENTER No Yes

LIST No Yes

LIST FIRST TO LAST No Yes

MEMORY No Yes

NEW No Yes

PRINT Yes Yes

PRINT USING Yes Yes

REM Yes No

RENUMBER No Yes

RENUMBER AT ... STEP ... No Yes

RUN No Yes

STOP Yes No

End of Chapter

093-400005 Licensed Material-Property of Data General Corporation 1-19

Chapter 2
Numeric Expressions: Variables, Constants and

Operators

A numeric expression is a combination of one or more
data elements placed in relationship to each other by
means of arithmetic operators.

Numeric expressions in MP IBASIC look slightly differ­
ent from conventional algebraic expressions, because they
must be written in a straight line; that is, expressions like
A I B (A divided by B) and T2 (T squared), must be
written AlB and TA2 respectively, so that everything
appears on the same level on the line.

The data elements within an expression can be variables,
constants, and function references (discussed in Chapter
8). With the addition of strings (see Chapter 3), these
elements constitute the main building blocks with which
you will be constructing your MP IBASIC programs.

In this chapter we will deal in order with each of the
ingredients of an expression, i.e. numeric variables, nu­
meric constants, and arithmetic operators.

NOTE: In the programming examples we use in this and
subsequent chapters, we omit both the prompt
(*) and the NEW LINE symbol (J).

Variables
A variable is a data item whose value can be changed
during the execution of the program.

There are several kinds of variables, namely:

• simple numeric variables (discussed in this chapter)

• simple character string variables (see Chapter 3)

• subscripted numeric and string variables, or arrays
(see Chapter 7)

You are allowed a maximum of 255 variables in one
program (each numeric variable, string variable, numeric
array and string array counts as one variable).

Numeric Variables
A numeric variable is represented by a name to which a
value is assigned during the execution of the program.

Suppose we have the following program lines:

10 LET X = 15
20 PRINT X
30 LET X = X + 3
40 PRINT X

The statement in line 10 above creates a variable, X, and
assigns the value 15 to it.

What this actually means is that the machine puts the
value 15 into a location in memory to which it gives the
name X, as Figure 2-1 shows.

.------.
I X

I
15 I I

L ______ !

LocL ~tents
name

DG·06413

Figure 2-1. Numeric Variables

This location is now the exclusive preserve of X, and no
values other than values specifically assigned to X may
be placed into it.

A statement such as

15 LET Y = 35

for example, will place 35 into a completely different
location in memory called Y. The two pieces of data in X
and Yare totally separate from each other.

If we now execute line 20 of our program,

20 PRINT X

we will get a value of 15 for X.

Line 30 on the preceding page

30 LET X = X + 3

says that we want the new value of X to be equal to the
old value of X plus 3.

093-400005 Licensed Material-Property of Data General Corporation 2-1

In executing this command, the computer will cause the
new value of X (i.e., 18) to be written into location X, as
shown in Figure 2-2.

r-------:
: x :
L _____ J

18

/ Old value

New value "overwrites" old

DG·08414

Figure 2-2. Changing Variable Values During
Execution

What has happened to 15, the previous value of X? As
you might have guessed, any new values which X assumes
are written on top of the old values; as soon as this
happens, the old values are erased and are no longer
available to us.

To put it another way, at any given moment during the
execution of a program, a numeric variable is associated
with a single numeric value, although that value can be
changed by the execution of statements within the pro­
gram. Any new values then overwrite (replace) those
which preceded them.

The command

40 PRINT X

will now print 18 as the value of X.

Naming Numeric Variables
A numeric variable name must begin with an alphabetic
character, which can be followed by any combination of:

• alphabetic characters, a through z or A through Z
(there is no difference between upper- and lowercase
characters, i.e., area3 and AREA3 are the same
variable)

• digits (0 through 9)

• the underscore character (_)

The length of the variable name is limited by the
computer's memory. We suggest that you keep your
variable names short so that they are easier to type and to
prevent line length problems. For compatibility with
AOS/VS BASIC, we suggest a maximum of 32 charac­
ters in your variable names.

A few examples of valid and invalid numeric variable
names are listed in Table 2-1.

Table 2-1. Numeric Variable Names

Valid Numeric
Variable Names

PI

A

payrolLamount

Invalid Numeric
Variable Names

C 7 (space not val­
id)

10_FOLD (digit
as first character)

Please note that ANSI presently supports only a single
letter, or a single letter followed by a digit, for variable
names.

Assigning Variable Values: The LET
Statement

The LET keyword (of which you had a sneak preview in
the last section) is one command you can use to assign a
value to a variable. (The INPUT and READ keywords
are two additional ways as you will see in Chapter 4.)

As you already know, a command such as

10 LET X = 15 + 3 • Y

means: let whatever value X previously held be replaced
by the value(s) listed to the right of the equals sign.

Note the format of the command line: you can have only
one variable to the left of the equals sign; but you can
have several numbers and/or variables to the right of the
equals sign.

Once assigned, the value of X will not change until the
program encounters another LET statement (or any of
the other keywords discussed in later chapters).

Values for variables can be generated by the program as
a result of calculations executed within it.

Consider, for instance, the following:

10 LET X = 5
20 LET Y = 7

60 LET Z = X + Y

80 LET Z = Z - 2

2-2 Licensed Material-Property of Data General Corporation 093·400005

As Figure 2-3 shows, until the program reaches line 60,
location Z will contain no value.

I
r -- --,

I I
I

X
I

I I 5 L ____ I

I I
r----'

I
I I
I Y I 7 L ___ ...J

r- - - - -1

: z 1 L ____ '

N~ ,",iI Ii" 60

OG-06415

Figure 2-3. Variable Has No Value Before
Assignment Statement

When the program reaches line 60, it reads the values of
X and Y from their respective locations in memory, adds
them up, and places the resulting value (12) into variable
location Z. Figure 2-4 shows how the variables now look.

Note that X and Y have so far retained their original
values, since we have only read these values from their
location in memory, without writing anything else in.

I I
r- -- ---,

I
I I
I X I 5 L _____ J

I I
~------,

I
I I 7 I Y I L _____ J

,------,
I I Z L _____ J 12

V,," of Z 'f'" ,L of "" 60
OG-06416

Figure 2-4. Variable After Assignment of a Value

In line 80, the value of Z changes once again. The program
is asked to subtract 2 from the current value of Z and to
assign the result (10) to Z as its new value.

At the end of the program run, variables X, Y, and Z will
hold the values indicated in Figure 2-5.

I I
r----- -"I

I : x : 5
L- ______ J

I I I
r-------,
I I

: Y : 7
______ .J

,-----_.
I I
I Z I 10 L _____ J

Value of Z at ~am
OG-06417

Figure 2-5. Change in Variable Z's Value

Initializing Variables
The term initializing variables refers to assigning begin­
ning (initial) values to all variables used within a program.
To explain this, let's refer back to the program excerpt
we used earlier.

In that example, we created three variables, X, Y, and Z.
X and Y were assigned their values fairly early in the
program (lines 10 and 20 respectively), but Z, as you
recall, received no value at all until the program reached
line 60. Had we tried to use Z before we assigned it a
value, we would have received an error.

A very important general rule is that you should not
reference a variable before you have assigned it a value.
Sometimes you will use an initializing statement near the
beginning of your program to set a variable to an initial
value, just to assure that it will have a value when it is
referenced.

The initializing statement works just like an ordinary
assignment statement, through the use of the keyword
LET. The following could be the initializing statement
for variable Z:

5 LET Z = 0

093-400005 Licensed Material-Property of Data General Corporation 2-3

Numeric Constants
A constant is an entity whose value does not change
during the execution of a program.

Numbers within a program are called numeric constants.

If you write, for example

LET N = 3 + X

the value of N and X may change during the execution of
the program, since N and X are variables. But the value
3 will remain unchanged.

Constants can be positive or negative. For example, + 2
and - 56 are acceptable constants.

The positive (+) sign is optional, that is, in the absence
of a plus (+) sign, the number is understood to be positive.
The minus (-) sign, on the other hand, must always be
written.

The range of numeric constants on MP jBASIC is
-7.237E + 75 to +7.237E + 75

Representing Numeric Constants

You can write numeric constants in two different ways:
decimal notation and scientific notation.

In decimal notation you write decimal digits, with or
without the decimal point. Some examples are:

5.5978
-296.00
50

A program can contain numeric constants that have an
arbitrary number of digits. MP jBASIC truncates the
values of such constants to a precision of 15 decimal
digits.

Scientific notation is a shorthand for writing very large or
very small numbers.

If, for example, we ask the computer to print out the
result of

50 • 30 • 100000

it will print

1.5£ + 08

This means 1.50000 x 108, or 150000000.

Breaking this down, we know that

102 = 10 x 10 = 100
103 = lOx lOx 10 = 1000

and so on.

Hence,

1.5 x 102 = 150
1.5 x 103 = 1500

and so on.

Thus we see that multiplying 1.5 x 103 is the same as
moving the decimal point three places to the right:

1.5 x 103 = 1500.

In the same way, 1.5 x 108 = 150000000.

In scientific notation, this is expressed as

1.5E + 08

where

• The letter E means "times 10 to the power."

• The number following the letter E is called the
exponent;

• E followed by an exponent N indicates "times 10 to
the power of N." (In our previous example, the
exponent is positive: N = 8.)

E08 means "move the decimal point eight places to the
right." E followed by any positive number means "move
the decimal point to the right the number of spaces the
exponent indicates."

You will notice that scientific notation illustrates the
convention of writing expressions on a straight line:
instead of writing 108, the computer writes E08.

In the case of a positive exponent, we don't need to write
out the plus (+) sign; we can, instead, write the exponent
number immediately after the E, thus: 1.5E08.

If you have a negative exponent, e.g.,

1.5 x 10-3

it is the same as moving the decimal point three places to
the left. So,

1.5 x 10-3 = .0015

As with positive exponents, 1.57828E -08 means 1.57828
x 10-8 which is the same as .0000000157828.

Note that the negative sign must always be written out.

You can use exponents as high as + 99 or as low as - 99
when entering constants in scientific notation as long as
the limits of -7.237E + 75 to +7.237E + 75 are
observed.

2-4 Licensed Material-Property of Data General Corporation 093-400005

To summarize:

• A positive exponent is written with an optional plus
sign (+) after the E, and it indicates moving the
decimal point to the right;

• A negative exponent is written with a minus sign (-)
immediately after the E, and it indicates moving the
decimal point to the left.

Numeric Data Types
MP /BASIC supports two types of numeric data, INTE­
GER and REAL. (ANSI presently supports numeric data
of type REAL only.)

As its name implies, an INTEGER is a positive whole
number (1, 2, 3, ...), a negative whole number (-1, -2,
- 3, ...) or zero (0). An integer does not have a decimal
point and cannot have a fractional part. The range of
integer values is -32,767 to 32,767, inclusive.

A REAL number is a signed number which is written
with a decimal point and may contain a fractional part.

MP /BASIC, without special declarations to the contrary,
treats all numbers as REAL numbers. To declare part or
all of your data as type INTEGER, use one of the
following statement forms:

10 DECLARE INTEGER C, F, X(25), Z(12, 15), C$ • 6
10 DECLARE ALL INTEGER

The variables following the first statement are a data list
of the specific numeric and array variables you want
treated as integers. All other data will remain unchanged
and will be treated as REAL. (Note that this statement
may also serve as your DIM statement for arrays and
strings. See Chapters 3 and 7.)

The second form of the statement specifies that all data
be treated as integers. Hence, there is no need for a data
list following the keyword.

Working with integers offers several advantages:

• Integers occupy less memory space.

• Arithmetic operations are performed faster.

• Execution of FOR ... NEXT loops is considerably speed­
ed up when the initial value, the control variable, the
increment and the limit are all integers.

Corresponding forms of these statements allow you to
declare some or all of your data as real. The forms are:

10 DECLARE REAL X, Y, Z, A(50), B(20,20)
10 DECLARE ALL REAL

In the first statement, the keyword is followed with a
data list; in the second, all data are declared as real.

These statements declare single-precision (6-digit) real
numbers. You can achieve the same result by using the
following forms:

DECLARE REAL·4 X,Y,Z,A(50),B(20,20)
DECLARE ALL REAL • 4

To declare double-precision (1S-digit) real numbers, use
the forms:

DECLARE REAL·8 X,Y,Z,A(50),B(20,20)
DECLARE ALL REAL • 8

The differences between single- and double-precision
numbers is described in Appendix C.

As just explained, the declaration statement affects only
variables following it.

Once a variable has been declared to be of a particular
data type (either implicitly by the computer or explicitly
through a DECLARE statement) in your program, you
cannot change it to another data type.

Arithmetic Operators
MP /BASIC makes it possible for you to perform numer­
ous kinds of calculations. This is done through the use of
the standard arithmetic operations of addition, subtrac­
tion, multiplication, division, and exponentiation.
(MP /BASIC also includes a number of mathematical
functions, discussed in Chapter 8.)

The standard arithmetic operations are denoted by sym­
bols called operators, which we summarize in Table 2-2.

Notice that MP /BASIC uses special symbols for multipli­
cation and exponentiation.

You cannot write PRINT AB nor can you write PRINT
AxB; rather, you must use the asterisk (*) which is the
special symbol for multiplication.

You must use the circumflex to denote exponentiation.

Table 2-2. Arithmetic Operators

Operation

Addition

Subtraction

Multiplication

Division

Exponentiation

MP/BASIC
Operator

+

*
/
'"

Sample
MP/BASIC
Expression

A+9

M- 8

C * 6

X/Y

Z"'3

093-400005 Licensed Material-Property of Data General Corporation 2-5

Operator Precedence
When an expression contains two or more operations, the
sequence which MP /BASIC follows in the execution of
these operations is determined by the rules of operator
precedence.

These rules are summarized in Table 2-3, and explained
in the text following the table.

It is important that you understand these rules, so you
will be able to write your expressions in a way that will
give you the results you want.

Table 2-3. Rules of Operator Precedence

Operator Operation Order of Precedence

() Parenthe- Evaluated first
ses

A Exponenti- Evaluated second (if
ation there are several, they are

evaluated from left to
right)

Unary + Identity Evaluated third

Unary - Sign inver- Evaluated third
sion

• and / Multiplica- Evaluated fourth (if there
tion and di- are several, they are eval-
vision uated from left to right)

+ and- Addition Evaluated last (if there
and sub- are several, they are eval-
traction uated from left to right)

Parentheses
Expressions or parts of expressions which are contained
inside pairs of parentheses () are executed first.

For example, the program would execute the expression
(5 + 6) * 2 in the sequence indicated in Figure 2-6.

(5 + 6) • 2

Step 1 Step 2

Step1:5+6= 11

Step 2: 11 • 2 = 22
DG·06418

Figure 2-6. Operations within Parenthesis are
Executed First

In the absence of parentheses, however, the order of
execution would be different, as shown in Figure 2-7.

DG-06419

5 + 6 • 2

~-I
Step 1: 6 • 2 = 12

Step 2: 12 + 5 = 17

Figure 2-7. Sequence of Operations with Parenthesis
Removed

In effect, then, the use of () enables you to bypass the
normal rules of precedence and thus to control the order
in which you wish to have operations executed.

In cases where you have more than one set of parentheses
(nested parentheses), the innermost set of parentheses is
evaluated first.

2-6 Licenaed Material-Property of Data General Corporation 093·400005

Thus, the expression

(3 + 5 * (2 + 6)) * 2

would be evaluated as follows:

Step 1 : 2 + 6 = 8
Step 2 : 5 * 8 = 40
Step 3 : 3 + 40 = 43
Step 4 : 43 * 2 = 86

When you type in an expression as part of a program
statement and then LIST that line, the LISTed version
may have a different configuration of parentheses. As we
mentioned in Chapter 1, this does not change the sub­
stance of the statement; in this case, it just shows you
exactly how MP /BASIC will evaluate the expression.

Exponentiation

This operation is second in order of precedence. If several
cases of exponentiation occur within an expression, they
are executed in order, moving from left to right.

For example,

2"'4 + 10 * 3"'2

would be executed in the following sequence:

Step 1 : 2"'4 = 16
Step 2: 3"'2 = 9
Step 3 : 10 * 9 = 90
Step 4 : 16 + 90 = 106

Multiplication and Division - These two opera­
tions are of equal priority; they have the same level of
precedence. If there are several of them in an expression,
they are executed in order, moving from left to right.

For example,

10/2 * 5

yields 25 if executed according to the rules of precedence:

Step 1 : 10/2 = 5
Step 2 : 5 * 5 = 25

If your intent is to divide 10 by 2*5 (which, in effect,
would make you reverse the order of precedence and
move from right to left), then you must use parentheses
and write the expression thus:

10/(2 * 5)

Addition and Subtraction
These come last in the order of precedence. If there are
several of them, their order is determined by moving
from left to right.

Keywords in Chapter 2
Table 2-4 lists the keywords introduced in Chapter 2.

Table 2-4. Keywords in Chapter 2

Can be used in

Keyword Program Immediate
Statement Mode

DECLARE [ALL] INTEGER Yes Yes

DECLARE [ALL] REAL Yes Yes

LET Yes Yes

End of Chapter

093·400005 Licensed Material·Property of Data General Corporation 2-7

Chapter 3
Character Strings

So far you have familiarized yourself with numerical
data. MP /BASIC also allows you to process information
in the form of character strings.

A character string is a sequence of characters which is
treated as a unit. Strings may be composed of any of the
following, in any combination:

• uppercase alphabet characters, A through Z

• lowercase alphabet characters, a through z

• digits 0 through 9

• any of the characters in Table 3-1

Each of the items below is a string:

"BILLY THE KID"
"PT. 109"
"AUGUST"
"30 RIVERSIDE DRIVE"
"* /$+ = & ?#!"

Note that each of these strings begins and ends with
quotation marks. The quotation marks are not a part of
the string, but are used to indicate to the computer that
the intervening characters compose a string.

You have already encountered one use of character strings
in REM comment statements. In this chapter we intro­
duce you to the use of strings as data in the form of string
variables and string constants. Chapters 5 and 8 describe
string relational operations and string functions, respec­
tively.

String Variables
A string variable, like a numeric variable, is a data item
whose value can change during the execution of a
program.

The program line

10 LET ST1$="FOOT"

creates a string variable, STI $, and assigns a current
value (the character string consisting of the four charac­
ters F, 0, 0, and T) to it. Just as with numeric variables,
what this means is that the machine puts the string
"FOOT" into a location in memory to which it gives the
name ST 1 $, as shown in Figure 3-1.

i------l

I ST1$ I
I I
L ______ .J

t
Location name Contents

10-00766

Figure 3-1. String Variable

093·400005 licensed Material-Property of Data General Corporation 3-1

Table 3-1. Symbols Used in
Character Strings

Character Symbol

Space

Exclamation point

Number sign #
Dollar sign $

Percent sign %

Ampersand &

Apostrophe

Left parenthesis

Right parenthesis

Asterisk *
Plus +
Comma

Minus

Period

Slash /
Colon

Semicolon

Less than <
Equal

Greater than >

Question mark ?

Circumflex

Underline

String Variable Names
As with numeric variables, a string variable is represented
by a name to which a value is assigned during the
execution of the program. String variable names must
begin with an alphabetic character and end with a dollar
sign ($). The dollar sign tells MP jBASIC that the
variable is a string. Between the initial alphabetic charac­
ter and the ending $, you can use any combination of
uppercase and lowercase alphabetic characters, digits and
the underscore character (_).

The length of the variable name is limited by the
computer's memory. We suggest that you keep your
variable names short so that they are easier to type and to
prevent line length problems. For compatibility with

AOSjVS BASIC, we suggest a maximum of 32 charac­
ters in variable names. The use of long variable names is
an extension provided by MP jBASIC: the ANSI stan­
dard permits a string variable name to consist of only a
single alphabetic character, plus the dollar sign ($), with
an optional intermediate single digit (for example A$ or
P3$).

Remember that the computer treats uppercase and lower­
case characters the same. Thus, the names titlel$ and
TITLEl $ represent the same variable.

You can use the same base name for a numeric and a
string variable within one program. MP jBASIC recog­
nizes that COUNT and COUNTS, for example, are
different. However, see Chapter 7 for restrictions on using
the same variable name in single and double subscripted
arrays.

Assigning a Variable Value
You can assign values to string variables through the
LET statement. For example,

20 LET A$ = "APPLEPIE"

The INPUT and READ statements discussed in Chapter
4 are two additional ways of assigning values to string
variables.

MP jBASIC also allows you to concatenate string vari­
ables. That is, you can combine the values of two or more
string variables and assign the resulting value to another
string variable. For example,

40 LET A$ = "BREAD"
50 LET B$ = "BASKET"
60 LET C$ = A$ & B$
70 PRINT C$
• RUN BREADBASKET

Notice that the ampersand (&) serves as the operator
performing the string concatenation.

Length of String Variables
The ANSI standard sets the size of string variables in the
range of null (0 characters) to a maximum of 18
characters. MP jBASIC expands this provision by al­
lowing you to write string variables of any length.

Declaring String Variable Length:
The DIM Statement

In order to write a string variable exceeding 18 characters,
you must use a special statement called the DIM state­
ment (short for dimensioning) to specify the dimension,
i.e., the maximum number of characters your string may
contain.

3-2 Licensed Material·Proparty of Data General Corporation 093-400005

Assume, for instance, that you wish to work with a string
variable, W$, which is to contain up to 23 characters.
Your dimensioning declaration for this string would read
as follows:

20 DIM W$ • 23

The effect of the DIM statement is to reserve memory
space corresponding to the number of characters you
have specified for your string. We have just reserved 23
such memory locations for string W$ in our sample
dimensioning declaration above. In the absence of a DIM
statement, the program automatically reserves a maxi­
mum of 18 memory locations for your string variables.
We refer to this number as the default size of string
variables (i.e., their size in default of a user-specified
length).

Each string variable larger than 18 characters must be
dimensioned separately, although several such statements
may be combined on a single line, i.e.,

130 DIM A$'26, C1$'22, T3$'30

You may also wish to dimension string variables smaller
than 18 characters in order to save memory space. If, for
example, you are working with string A$, whose value
may be either YES or NO, 15 of the 18 default memory
locations made available for this string variable will
remain unused. To ensure that you work only with the
amount of memory you will actually need, it is good
practice to dimension strings shorter than 18 characters,
i.e.,

130 DIM A$'3

although this is not required by the system.

To repeat, you must dimension all string variables exceed­
ing 18 characters; you may dimension string variables
shorter than 18 characters in order to save memory.

In the case of strings that have been explicitly dimen­
sioned, the program should encounter the DIM declara­
tion before you ask it to execute any operations involving
those strings.

Initializing String Variables:
The Null String
In our discussion of numeric variables, we stressed the
necessity of initializing all your variables to zero at the
beginning of each program.

String variables, however, are automatically initialized
by MP /BASIC. Their starting value is set to null (a
string of 0 length) until such time as you supply other
values to the program. You represent a null string by two
adjacent quotation marks" ".

Writing Character Strings: The Use of
Quotation Marks
A major convention in the writing of character strings
relates to the use of quotation marks: all character strings
must be within quotation marks (" ") except in REM,
LINPUT, and DATA statements (see Chapter 4). There­
fore, we suggest that you always use quotation marks to
surround a string and, thus, prevent confusion.

You cannot imbed a quotation mark within a character
string, except in the REM and LINPUT statements. In
all other cases, MP /BASIC requires that you use quota­
tion marks only to indicate the beginning and end of a
string. To embed a quote within a string, use an apostrophe
(') for the quoted portion, and enclose the whole string in
quotation marks. For example,

20 PRINT "The missing word is 'money'."

would be printed as: The missing word is 'money'.

Referencing Substrings

Once you have created a string variable, MP /BASIC
allows you to refer to selected portions or substrings of
that string.

This means you can extract any part of a string by
specifying its first and last character positions within the
string. For example, assume you have created a string,
C$, and assigned it the value "CASH FLOW". To
reference the substring FLOW, you would write

40 PRINT C$(5:8)

BASIC then prints a string of four characters, starting
with the fifth character in "CASH FLOW", the F, and
ending with the eighth, the W.

To extract the substring "CASH", you would write

50 PRINT C$(1:4)

The system will respond with a four-character substring,
beginning at the first character of string C$ and ending
with the fourth.

You may have noticed that "CASH FLOW" contains
only eight characters. If you request a substring whose
last character position exceeds the length of your string,
for example,

50; C$(2: 10)

BASIC will ignore the erroneous ending reference and
will print

ASHFLOW

a substring ranging from position 2 of C$ through it~
entire length, in this case, from 2 through 8.

093·400005 Licensed Material·Property of Data General Corporation 3-3

If you request a substring beginning at zero character of
your string, for example,

50; C$(0:4)

BASIC will ignore the zero and extract the substring
beginning from character 1 of your string, namely,

CASH

Finally, should you request a substring beginning after
the last character of your string, for example,

50 ; C$(9: 12)

the system will respond with a null string.

Similarly, if the starting and ending character positions
of your substring are reversed for example,

50; C$ (5:4)

the system will return a null.

Assigning Values to Substrings
You can also assign a value to a selected portion of a
string. This is an extension of MP jBASIC; it is not
allowed in the ANSI standard. As with extraction of a
substring, you must specify the first and last character
position. For example,

LET STRING$="ABCDEF"
LET STRING$(3:4) = "XX"
PRINT STRING$
ABXXEF

As you can see, the characters previously in positions 3
and 4 (CD) are replaced with xx.
If you specify a starting position which is greater than the
number of characters currently in your string, your
specified values are appended to your string. For example,

LET STRING$(8:9) = "YY"
PRINT STRING$
ABXXEFYY

If you use character zero as your starting posItIon,
MP jBASIC will ignore the zero and begin the replace­
ment at the first character. For example

LET STRING$(0:4) = "ZZZZ"
PRINT STRING$
ZZZZEFYY

String Constants
A string constant (also called a literal) is a string whose
value does not change during program execution.

We have already encountered string constants (although
we didn't identify them as such) when we tried simple
PRINT messages in Chapter 1.

Type the two program lines below, and substitute your
name for the string variable assigned to N$:

30 LET N$ = "JAMIE"
40 PRINT "MY NAME IS "; N$

Here the message (MY NAME IS) printed by line 40 is
a string constant, whereas N$ is, clearly, a string variable.

Notice that we left a space after "is" at the end of line 40;
if we had omitted it, the run would have produced an
output like this:

MY NAME ISJAMIE

Length of String Constants
A string constant can only be as long as the length of a
program line; in MP jBASIC the program line, as we
have noted earlier, is 156 characters long.

Keywords in Chapter 3
Table 3-2 lists the keywords in Chapter 3.

Table 3-2. Keywords in Chapter 3

Keyword Can Be Used In

Program Immediate
Statements Mode

DIM Yes Yes

End of Chapter

3-4 Licensed Material-Property of Data General Corporation 093-400005

Chapter 4
The INPUT and READ DATA Statements

In Chapter 2 we saw that a statement such as

LET X = 20

is one way of assigning values to program variables. We
will now show you two additional ways of accomplishing
the same thing.

The INPUT Statement
Suppose you have been given $5,000, and you want to
find out how much yearly interest this money would earn
you under each of several savings plans offered by your
local bank.

Your formula for computing interest income is

I = C * R/lOO

where

I = Interest income
C = Your capital
R = Interest rate

Using one of the available options, say a 5% interest rate,
you could then write the following program:

10 LET C = 5000
20 LET R = 5
30 LET 1= COR/ 100
40 PRINT "YEARLY INCOME
FROM";C;"AT";R;"%= ";1

and then run the program:

RUN

Yearly Income From 5000 At 5% = 250

You'd probably think that the return on your investment
is too low, so you'd try the 6% and 7% options, even
though these would tie up your money for prolonged
periods. To try these options, you must now rerun your
program twice more, each time retyping line 20 so as to
assign R its proper value:

first

20 LET R = 6

then

20 LET R = 7

Copying a whole line when only a small portion of it
requires changing does seem like overkill, though. And
what if you were trying out ten or fifteen different interest
rates, instead of only three? Clearly this approach is
impractical.

Here the INPUT statement neatly resolves our difficul­
ties, because it will allow us to change values during the
execution of a program without retyping any program
lines.

To see how this works, change line 20 to read

20 INPUT R

and run the program.

What will happen now is that the computer prints a
prompting question mark (?) when it reaches line 20.

This question mark tells you that the computer is waiting
for you to feed it a piece of information. It will continue
to wait until you supply (INPUT) the value requested
(the value of R), followed by a NEW LINE character.

After you've typed in the value of R, the program will
store it and use it as needed in continuing execution. The
value of R you have just INPUT will thus supersede any
previous value of R stored in your program.

So, when you now run the program your dialog with the
computer will be as follows:

RUN
?6
Yearly income from 5000 At 6% = 300

After you typed 6 in response to the prompting ? and
struck the NEW LINE key, the program proceeded as
before, and printed out the result of its calculation using
a 6% interest rate.

Now try running the program while you input a 7%
interest rate:

RUN
17
Yearly income/rom 5000 At 7% = 350

In this way, you can painlessly try endless values for R by
simply running the program and responding to the
prompting? with new values each time around.

093·400005 Licensed Material·Property of Data General Corporation 4-1

You should type your value on the same line as the
question mark, but if you strike the NEW LINE key
before you input your value, the computer will consider­
ately print another question mark and wait for your
response.

Using Prompt Lines

To remind yourself during a run exactly what information
your program is expecting you to supply, it is a good idea
to have it print out a message spelling out exactly what
data are needed at this time. The INPUT statement may
easily be extended to include such a prompt line. This
facility is an extension to the ANSI standard.

To illustrate with the interest calculating program we are
working with, an INPUT line containing a prompt
message might look as follows:

15 INPUT PROMPT "TYPE IN THE RATE OF INTER­
EST": R

Instead of simply typing

15 INPUT R

you type

15 INPUT PROMPT

followed by your message within quotes. A colon (:)
follows the ending quotes; after the colon you list the
variable(s) you wish to input.

At this point we should list our complete program to see
where everything is (notice that, in line 30 below, the
computer has added extra parentheses to clean up the
format):

LIST

10 LET C = 5000
20 INPUT PROMPT "TYPE IN THE RATE OF
INTEREST": R
30 LET 1= (C*R)/100
40 PRINT "YEARLY INCOME FROM ";C; "
AT";R;"% = ";1

If we run the program now, the prompt line will be
printed before the input is accepted.

RUN

Type in the rate of interest6
Yearly income from 5000 at 6 = 300

Notice how efficiently our prompt line reminds us precise­
ly how to respond to the input request which follows it.
When you write lengthy programs containing many
INPUT statements, you will come to depend a great deal
on such aids to memory.

A further advantage of this device is that it allows even
persons unfamiliar with programming techniques to use
any of your programs: all they need to do is to respond to
the instructions you have built into the prompt lines.

Your message following INPUT PROMPT can be any
string expression. In the example above, the message was
a string constant, but you could have used a string variable
or a concatenation of string variables and constants. For
example, the statements

12 LET MSG1$="TYPE IN "
14 LET MSG2$="THE RATE OF INTEREST"
20 INPUT PROMPT MSG1$ & MSG2$: R

would produce the same prompt message as the statement
on line 20 of the former example.

You may have noticed also that no question mark followed
the INPUT PROMPT statement; if you want a question
mark displayed, you simply include it in your prompt
message.

The INPUT Statement with
Several Variables
A program may contain more than one INPUT statement;
also, you can use a single INPUT statement to enter a
number of different variables at once. These variables
may be of several types; that is, they may be string
variables as well as numeric variables. Moreover, they
may be listed in any order you please.

To illustrate this point, if several persons want to use
your interest program, you can change it so as to input
the person's name, the capital amount, and the interest
rate.

Your program may now look somewhat similar to Figure
4-1. (Incidentally, lines 15 and 20 of this program show
you a different way to write prompt lines. This version
separates the prompt message from the INPUT state­
ment.)

Notice that we typed a comma after each of the variables
in line 20, except for the last one, which is followed by a
NEW LINE character. If you look at the output of the
program (see Figure 4-2), you will see that we also use
commas to separate the items we typed in response to the
prompting question mark.

The reason is that commas and the NEW LINE character
act as delimiters: that is, they allow the computer to
distinguish the individual items within a list.

As a general rule, then, we must always use commas to
separate items in a list.

As we said before, in line 20 of your program you could
have listed the variables you wanted to input in any order
whatsoever: you could, for instance, have written

4-2 Licensed Material-Property of Data General Corporation 093-400005

15
20
30
40

PRINT "TYPE IN NAME, CAPITAL AMOUNT, AND INTEREST RATE"

INPUT A$ fC 0 R
LET I = C * 13/100
PRINT A$; "-/yEARLY INCOME FROM"; C; "AT"; R; "% ="; I

DG-06468

Figure 4-1. INPUT with Multiple Variables

RUN ~_t_li_ne __ __

TYPE IN NAME, CAPITAL AMOUNT, AND INTEREST RATE

?PAT,4000, 7~---------------------------f
PAT - YEARLY INCOME FROM 4000 AT 7% = 280

Comma between values

DG'06469

Figure 4-2. Dialog from Running Program in Figure 4-1

20 INPUT C, A$, R

or,

20 INPUT R, C, A$

But once you list the variables you'll want to input, the
computer will expect to receive their values in exactly the
same order as you listed them. Figure 4-3 shows how the
values you input are associated with their corresponding
variables when the program is run.

DG·06470

20 INPUT A$. C. R

30
40

RUN

Figure 4-3. Correspondance Between Items as Input
and Output

As you see, the process is very much like matching socks.
Since A$ is the first item on your list, the computer

expects the first value it sees in response to the question
mark to be a character string constant which it can store
in A$.

Moving from left to right, the computer will then expect
numeric constants so that it can store them in C and R
respectively.

Figure 4-4 shows what will happen if you mistakenly type

4000, PAT,6

DG'06471

20 INPUT A$, C, R
30
40

RUN

\
\

\
\
\
\
\

#--~ ... ,
('-'f~)

No match

Figure 4-4. An Error Condition from Mismatched
Data Items

093-400005 Licensed Material·Property of Data General Corporation 4-3

Since 4000 may be considered as a character string, the
computer will assume that this is the value of A$. Next, it
sees PAT, but since that value does not correspond to a
numeric constant, the computer is unable to make the
proper match between your second input and variable C.
It is equally unable to assume the initiative of rearranging
your values in proper order. You will therefore get the
following error message:

Illegal data type in line 20

A new question mark (?) will then appear immediately
below the error message; you must now re-input the entire
data list from the beginning.

The best way to avoid such mishaps is to have your
program print out prompt lines such as those we discussed
in the previous section.

Figure 4-2 on the preceding page shows how the prompt
line Type in name, capital amount, and interest rate in
that program jogs your memory about the values required
and the sequence in which you should list them.

In addition to inputting the values in their proper order, it
is, of course, very important to supply the same number
of values as the number of variables which your program
specifies.

If you input

• more values than variables, or

• fewer values than variables for which values are needed

you will receive an error message, followed by the display
of a ? If that happens, you will need to re-input the
entire list of your values, just as though you were
beginning the process for the first time.

The L1NPUT Statement
The LINPUT (line input) statement enters an entire line
of string data and assigns it to a string variable. LINPUT
differs from the INPUT statement in the following ways:

• LINPUT accepts only string data (if you erroneously
give LINPUT a number as data, it will interpret the
component digits as characters in a string);

• LINPUT accepts an entire line of data as it stands,
including characters normally treated in special ways,
such as quotation marks, commas, and apostrophes.

Normally you would terminate strings entered with
LINPUT by pressing the NEW LINE character.
LINPUT also accepts a carriage return, form-feed, and
the null character as terminators.

If you do use quotation marks to enclose the character
string for LINPUT, the quotation marks will be included
in the string. Thus,

·10 PRINT "WHAT IS YOUR DESTINATION";
• 20 LlNPUT DESTINATION$
• 30 PRINT DESTINATION$
·RUN
WHAT IS YOUR DESTINATION? "KANSAS"
"KANSAS"

To use one LINPUT line to accept several lines of input,
specify variable names separated by commas in the
LINPUT statement. For example:

• 10 DIM A$·SO, B$·SO, C$·SO, D$·SO
• 15 DIM E$·SO, F$·SO, G$·SO
• 20 LlNPUT A$, B$, C$, D$, E$, F$, G$
• 30;
• 40; A$
• 50; B$
• 60; C$
• 70; D$
• SO; E$
• 90; F$
• 100; G$
• RUN ?THE DODO SAT FOR A LONG TIME IN
THOUGHT,
?WITH ONE FINGER PRESSED AGAINST ITS
?FOREHEAD (THE POSITION IN WHICH YOU
?USUALL Y SEE SHAKESPEARE, IN THE PIC­
TURES
?OF HIM,) WHILE THE REST WAITED IN SI­
LENCE.
?AT LAST THE DODO SAID, "EVERYBODY HAS
?WON, AND ALL MUST HAVE PRIZES."

THE DODO SAT FOR A LONG TIME IN
THOUGHT,
WITH ONE FINGER PRESSED AGAINST ITS
FOREHEAD (THE POSITION IN WHICH YOU
USUALLY SEE SHAKESPEARE, IN THE PIC­
TURES
OF HIM,) WHILE THE REST WAITED IN SI­
LENCE.
AT LAST THE DODO SAID, "EVERYBODY HAS
WON, AND ALL MUST HAVE PRIZES."

Using LINPUT PROMPT will allow you to combine a
prompt message with your line input. The format is the
same as that for the INPUT PROMPT command.

In a slightly different format, the INPUT and LINPUT
statements may also be used with data files. (See Chapter
9.)

LINPUT is an extension to the ANSI standard.

4-4 Licensed Material-Property of Data General Corporation 093-400005

READ Data
This is yet another way of feeding information to your
computer: you list all your data in special lines called
DAT A lines, which you then instruct the computer to
READ.

Let's illustrate this with a short program to read and
process your weekly expenses. Since you'll want to classify
these expenses by category, you need to read two kinds of
variables:

• a string variable, indicating category of expense (food,
etc.),

• a numeric variable, indicating dollar amount spent on
a given category.

To simplify, we'll use only three expense categories and
the variables shown in Table 4-1.

Table 4-1. Variables for Weekly
Expenses Program

Expense
Category

Food

Gas

Recreation

String
Variable
(Category)

F$

G$

R$

Numeric
Variable
($'s
Spent)

F

G

R

After it reads these variables, the program will tabulate
your expenses by category, add them up, and calculate
each individual expense as a percentage of the total
amount you spent.

You'll need the following formulas:

S = F + G + Rand
PI = F * 100/S
P2 = G * 100/S
P3 = R * 100/S

where

S = the sum of your expenses

PI, P2, and P3 = individual cost as percentage of total
cost in each category.

Your program is now shown in Figure 4-5.

Before we run this program, we should point out some
things about the format of the READ and DATA lines.

10 REM PROGRAM TO READ WEEKLY EXPENSES
20 READ F$. F. G$. G. R$, R_-----,
30 LET S = F+G+R

35 REM PRINT TABLE HEADINGiSS:;~~~;;;J?=~;=:=--
40 PRINT "CATEGORY". "$'5 SPENT", "% OF TOTAL"
45 PRINT
50 PRINT F$, F, F* 100/S
60 PRINT G$. G, G* 100/S
70 PRINT R$, R, R*100/S
75 PRINT
80 PRINT "TOTAL SPENT:". S
90 DATA FOOD, 7 ,GAS, 30. RECREATION, 10

Data ______
line

DG'06472

Figure 4-5. Weekly Expenses Program

093-400005 Licensed Material-Property of Data General Corporation 4-5

Use of Commas and
Quotation Marks
We use commas to separate the variables in line 20, and
the data in line 90. (See the discussion in the INPUT
section.)

We use no quotation marks around strings in our DATA
line. Even if a string consists of several words (e.g., Food
and Drink), no quotation marks are necessary as long as
the string does not include any of the characters requiring
quotation marks (see Table 4-2).

If, for example, you want a list such as Food, Drink,
Cigarettes to be read as a single string, you must enclose
it in quotation marks.

As you can guess, without the quotation marks, the
computer, seeing the commas between the words would
read three separate strings instead of one. (See the
discussion in the INPUT section.) But when you type

"Food, Drink, Cigarettes"

the quotation marks around these words will lead the
machine to ignore the commas and to see a single string.

Table 4-2. Quoted Strings in
DA T A Statement

Character

Ampersand

Apostrophe

Asterisk

Circumflex

Right parenthesis

Colon

Comma

Dollar sign

Equal sign

Exclamation point

Greater than

Less than

Number sign

Left parenthesis

Percent sign

Question mark

Semicolon

Slash

Underline

Symbol

&

*

$

>

<

(

%

?

/

Proper Matching of Data;
Multiple DATA Lines
During execution, a program reads data in exactly the
same way as it reads values which you input. Moving
from left to right, much like a pointer, the computer will
match the first variable on its READ list with the first
value on the DATA line, the second variable with the
second value, and so on. Figure 4-6 illustrates this.

Hence, values must be listed in the DATA line(s) in
exactly the same order as in the READ statement. This
does not mean, however, that all your data must be listed
on a single line: you can list data on as many lines as you
wish, provided the order of their enumeration matches
the order in which you will want to have the data read.
The usefulness of this will become apparent in the next
section. When a program encounters a DATA line it does
not need at the moment, it will simply ignore it and move
on to the following line. But regardless of how many
DA T A lines it has bypassed, the program will always
find its way back to the DATA line whose turn it is to be
read next.

It is, nonetheless, good practice to place your DATA lines
close to their corresponding READ statements.

If your DATA line contains more values than the program
needs to read, the excess data is simply ignored (see
Figure 4-7).

If, however, you ask the program to read variables for
which it can find no values in the OAT A line (i.e., if, as
in Figure 4-8, your READ list is longer than your data
list), then the program will stop executing, and you will
get an error message.

The computer will not accept gaps in DATA lines: even if
you intend the value of, say, your last numeric variable to
be a zero, you must type that zero into your DATA line,
so that the program can read it.

Having finished reading the data, the program will
continue normal execution. The output in our example
might be as shown in Table 4.3.

Table 4-3. Output from Program in Figure
4-5

Category

FOOD

GAS

RECREATION

TOTAL SPENT:

$'S Spent

70

30

10

110

% of Total

63.6364

27.2727

9.09091

4-6 Licensed Material-Property of Data General Corporation 093-400005

DG-06473

DG-06474

DG-06476

093-400005

20 READ

30

40

45

G$, G,
...

R$,

90 DATA

Figure 4-6_ Proper Matching of Data

20 READ

30

40

45

90 DATA

Figure 4-7_ Data Mismatched: Excess Data Ignored

20 READ F$, F, R$,

30

40

45

90 DATA

R

R,

R

+ I
I
I
i
I
I
I
I
I
I
I
I
I
I .. --'-'

(TRIPS) _-..."..",

D$
J..

,~ "
.... _--""

Figure 4-8_ Data Mismatched: Missing Data Causes an Error Condition

Licensed Material-Property of Data General Corporation 4-7

RESTORE
An interesting feature of READ DATA is that you can
repeatedly re-read data by means of a RESTORE
command. This command resets the pointer from the
position it has reached on a given DATA line all the way
back to the first OAT A statement in the program. In this
way, you are then able to read the data once again.
Figure 4-9 illustrates this.

10 READ A
20
30 READ A
40
50
60
70
80
90
100
110
120
130
140

DG·06476

READ A
PRINT A, A * 100iT
READA~ A=50
PRINT A, A* 100iT ~

READ A...... ---EV
PRINT A, A * 100iT A = 20
DATA 50, 90, 20

Figure 4-9. Using RESTORE to Re-read Data

Here we are using a single variable, A, and reading three
values for it, without retaining them in memory, In other
words, each time we read A, it loses its previous value
and takes on the value which is next on the data line.

As we read each value of A we add it to a variable, T,
which computes a cumulative total of A.

Once we have that total, we want to see what percentage
of the total each value of A represents. Using the
RESTORE command, we then re-read A, and print its
value, as well as the percentage of the total it represents
(lines 70 - 130).

RESTORE is useful in cases where you read a very large
number of values without retaining them after you have
performed the desired calculations with them. You might
then want to reread your data in order to perform further
analysis which would utilize the result of your previous
calculations, and the RESTORE command allows you
great flexibility in doing this.

Another useful feature of this command is that it can
take a line number indicating which OAT A statement is
to be used for the next READ. (This is an MP /BASIC
extension which is not at present included in ANSI
Minimal BASIC)

You can only RESTORE to the beginning of a DATA
line. But by splitting data across lines (a practice we
mentioned earlier), the successive READs can be made
to start anywhere you wish.

In the example below, for instance, the line

40 RESTORE 30

causes the READ to begin on line 30. This way you can
have only the value(s) on that DATA line re-read and
assigned.

10 READ A,S,C
20 DATA 1,2
30 DATA 3
40 RESTORE 30
50 READ D

Keywords in Chapter 4
Table 4-4 lists the keywords introduced in Chapter 4.

Table 4-4. Keywords in Chapter 4

Can be used in

Keyword Program Immediate
Statement Mode

DATA Yes No

INPUT Yes No

INPUT FILE Yes No

INPUT PROMPT Yes No

LINPUT Yes No

LINPUT PROMPT Yes No

READ Yes No

RESTORE Yes No

End of Chapter

4-8 Licensed Material-Property of Data General Corporation 093-400005

Chapter 5
Control Statements: Branching and Loops

So far, our programs have been executed straight down in
the order of their line numbers. Most of the time, however,
you will need the flexibility of building alternate execution
options into your programs. You might, for example,
want to branch temporarily to other parts of a program,
or you might want to keep re-executing a given set of
commands for a specified number of times.

To do any of these things, you need a mechanism which
allows you to control the flow of your program, and to
interrupt and resume straight sequential execution at
will.

Collectively, the control statements we discuss in this
chapter constitute such a mechanism: temporary branch­
ing away from the main program is made possible by
unconditional and conditional branching commands,
while repeated execution of specific commands is accom­
plished by means of loops (single, consecutive, or nested).

In this chapter we also introduce you to some basic aids
to good programming, such as flowcharting, and we use
flowcharts to illustrate the new material presented here.

Unconditional Branching

The GOTO ... Statement
Suppose you want to write a program that will let you
input the daily temperature (in Fahrenheit) for each of
the first seven days of a given month, after which it will
convert that temperature to Centigrade and print out
both the Fahrenheit and its Centigrade equivalent.

10 PRINT "TYPE TEMPERATURE (FAHRENHEIT)";
20 INPUT F
30 LET C = (F-32)*5/9
40 PRINT F; "FAHRENHEIT ="; C; "CENTIGRADE"

The formula for converting Fahrenheit to Centigrade is:

C = (F-32) * 5/9

where

C = Centigrade

F = Fahrenheit

One way to write this program would be as shown in
Figure 5-1.

As you see, the basic program consists of only three
one-line instructions, namely: input the temperature,
convert it, print the result. However, in order for us to
process each of our seven temperatures, we must retype
these three instructions (lines 20, 30, and 40) seven times,
thus expanding the original three lines of our program to
twenty-one.

We need a way to keep recycling our original set of
instructions in lines 20-40 as many times as necessary,
without having to retype them.

One solution is to build in some signal which would
return us to line 20 (INPUT F), each time we reach the
end of line 40 (PRINTF,C).

The GOTO ... statement is such a signal. It tells the
program to interrupt its normal sequence of execution,
and to branch to a line number which you specify; this
line number may refer to a line occurring much earlier or
much later in the program.

50 INPUTF G D 60 LET C = (F-32)*5/9 "';-------_________ ~ Repeat
70 PRINT F; "FAHRENHEIT ="; C; "CENTIGRADE" !ormula
80 INPUT F

220 PRINT F; ooFAHRENHEIT=oo;C;ooCENTIGRADEoo
DG,06477

Figure 5-1. Program to Convert Degrees Fahrenheit to Degrees Centigrade

093-400005 Licensed Material-Property of Data General Corporation 5-1

1 REM -- THE GOTO ... STATEMENT

10 PRINT "TYPE TEMPERATURE (FAHRENHEIT)";
20 INPUT F ----------------,
30 LET C = (F-32)*5/9
40 PRINT F; "FAHRENHEIT ="; C; "CENTIGRADE"
50 GOTO 20
70 PRINT "THAT'S THE END"

DG.()6478

Figure 5-2. Temperature Conversion Program Incorporating a GOTO Statement

In our example, a GOTO ... command (written as a single
word), would appear immediately after line 40 and would
look as follows:

50 GOTO 20

Our revised, and radically shortened, program is now as
shown in Figure 5-2.

Figure 5-3 illustrates the effect of the GOTO statement:
each time the program reaches line 50, it is redirected
back to line 20. This certainly solves our original difficulty
of having to retype all instructions the same number of
times as the number of data we want to process.

'TPUTF

)
50 GOTO 20

DG·08479

Figure 5-3. Effect of the GOTO Statement

Looking at this figure, though, you might well wonder
how you de-activate the GOTO 20 command, once you
have input all your data: judging by this diagram, we
seem to be locked into an endless circle here. That is
indeed the case, and we will deal with it very shortly. But
first, let us illustrate the GOTO command yet another
way, by introducing the concept of the flowchart.

Flowcharts

Flowcharts are a visual layout of the logic of your
program, represented in a set of boxlike symbols. As your
programs get more complex, you will find that diagram­
ming them in flowcharts will help you avoid any number
of procedural and logical mistakes.

In Figure 5-4 we have drawn a flowchart of our sample
program in Figure 5-2.

C=
(F-32) x 5/9

40

Print F.C

DG·06480

Figure 5-4. Flowchart for Temperature Conversion
Program

If you compare the flowchart with the program, you will
see that each box in the diagram represents a major
logical step in the program; notice also that over each box
we place the corresponding program line number(s) for
ready reference. The arrows connecting the boxes show
the order in which program execution proceeds.

Disregard for the moment the shapes of the flowchart
boxes. These are determined by the type of process the
box indicates (input, print, etc.) and are explained in
Figure 5-9. For now, follow the arrows and note that the
program flows sequentially from its start to the PRINT
F, C box r.epresenting line 40.

5-2 Licensed Msterisl-Property of Oats General Corporation 093-400005

At this point, rather than having a separate box for the
GOTO 20 statement, we use an arrow to indicate the
direction of the branch from line 40 back up to line 20.

Infinite Loops
Notice that no arrows connect the last two boxes in the
flowchart (lines 40 through 70). This highlights the
problem we have mentioned earlier: as now written, the
program will never reach line 70, the line which should
print out THA T'S THE END. Instead, it will be endlessly
redirected to line 20, where it will keep printing question
marks in expectation of input.

The reason for this is that we have specified no set of
conditions that would render the GOTO 20 statement
inoperative and prevent it from being executed.

A GOTO ... of this type is called an unconditional control
statement; the exitiess, endlessly circular program flow it
created in this example is known as an infinite loop.

To exit from an infinite loop, you must stop the program's
execution by striking the CTRL-C, CTRL-A key combi­
nation. (As we mentioned in Chapter 1, you can use the
ESC key instead of the CTRL-C, CTRL-A combination
by typing the CHARACTERISTICS/ON/ESC com­
mand from the CLI, prior to entering MP /BASIC.)

We see from the above that, in order to make a control
statement really useful, we should always use it in
conjunction with specific conditions under which it can
be deactivated. One way of achieving this is through
conditional branching.

Conditional Branching

The IF ••• THEN ••• Statement
The IF ... THEN ... statement is a built-in test that allows
the program to determine automatically which of two
alternative routes it should choose during execution.

This statement can be translated as follows:

• IF condition X is True, THEN do Z;

• IF condition X is False, THEN do Y.

Any valid BASIC statement may serve as the object of a
THEN clause, e.g.,

IF X = 10 THEN PRINT X
IF X = 10 THEN LET Y = 0
IF X = 10 THEN READ Y

The Decision Box
Flowcharts illustrate the operation of the IF ... THEN ...
statement by means of a diamond shaped box called the
decision box, as shown in Figure 5-5. .

Yes

No

DG·06481

Figure 5-5. Decision Box

As you can see, the decision box functions much like the
roadside signpost which points the traveller to two alter­
nate destinations: if the statement in the box is True, the
YES arrow points the program to one branch; if False,
the NO arrow directs the program to a different set of
operations.

NOTE: In our example, the NO arrow will cause the
program to continue normal sequential
execution, whereas the YES arrow diverts it to a
branch; but there is no set rule about this
placement which depends entirely upon your own
convenience.

Relational Operators
The test of whether or not a given condition is True is
performed by means of relational operators.

These operators allow us to perform comparisons that
determine the relationship of variables, constants, or
expressions to each other.

Relational operators (as well as logical operators, which
we will discuss below) connect constants, variables, and
expressions to form logical expressions. A logical expres­
sion has one of two values: True or False.

There are six relational operators, and we summarize
them in Table 5-1.

093-400005 Licensed Material-Property of Data General Corporation 5-3

Table 5-1. Relational Operators

Relational
Operator·

<>

>

<

>= or
=>

<= or
=<

Example Meaning

A=B A is equal to B

A<>B A is not equal to B

A>B A is greater than B

A<B A is less than B

A>= B A is greater than or equal to
A=>B B

A<= B A is less than or equal to B
A=<B

"The relational operators => and =< are an MP/BASIC feature not
presently included in ANSI Minimal BASIC.

String Comparisons
You can use the relational operators to perform compari­
sons between two strings, asking, for example, whether
A$ = B$. In normal alphabetizing, the reader would
order words according to the sequence of the letters in the
alphabet, i.e., BACON before BATTER, CHERRY
before CHOCOLATE, and so on.

You recall that all characters are represented inside the
computer by numeric codes. These are listed in the ASCII
character set. (See Figure 1-1.)

The sequence in which these characters are ordered is
known as the ASCII collating sequence. In the case of
letters, this sequence corresponds to conventional alpha­
betic sequence.

In performing string comparisons, the computer does a
left-to-right comparison based on the ASCII collating
sequence of the numeric codes making up the characters
of the strings being compared (including such characters
as leading and trailing spaces).

It follows that any two character strings can be compared,
regardless of whether or not they are alphabetic charac­
ters. The computer will, for example, consider the charac­
ter ! to be less than the character % since! precedes % in
the ASCII collating sequence. A% is thus greater than
A!.

The following considerations apply in the comparison of
strings:

1. To be considered equal, the two strings must be of
the same length and must contain an identical
sequence of characters, including spaces. For exam­
ple,

"ALPHABET"

would not be equal to

"ALPHABET"

2. If one string is equivalent to the leftmost portion of
another string, the shorter precedes the longer in
alphabetical sequence. If, for example,

A$ = "PIN"
B$ = "PINPOINT"

then A$ will precede B$ in alphabetical sequence. In
other words the condition A$<B$ will be True.

3. Upper and lowercase alphabetic characters are not
considered equal. Notice that the upper case alpha­
betic characters precede the lower case alphabetic
characters in ASCII collating sequence. For exam­
ple,

"PIN"

would precede

"pin"

and

"ZEBRA"

would precede

"antelope"

String comparisons are useful in connection with control
statements. You will find an example of this in Figures
5-10 and 5-11 later in this chapter.

Using IF ... THEN
If you use the IF ... THEN ... statement in conjunction
with a branching command, you will make the branch
conditional on the result of the relational operation test,
rather than automatic (unconditional), as it was in our
previous program.

We will reuse the conversion program (Figure 5-2) to
illustrate.

As you recall, we input daily temperatures in Fahrenheit,
converted them to Centigrade, and printed out the results,
using the GOTO 20 command to repeat this sequence.

Now we will add one further instruction, causing the
program to recognize a given value of F, say 120, as the
condition for ignoring the GOTO 20 command and
resuming normal execution instead.

We write this as follows:

5-4 Licenaed Material-Property of Data General Corporation 093·400005

10 PRINT 'TYPE TEMPERATURE (FAHRENHEIT)--TYPE 120 TO STOP"; ... "",....-__ --{ "~:mpt
1 REM -- THE IF ... THEN STATEMENT CJ ~

20 INPUT F _ _
30 IF F = 120 THEN GOTO 70
40 LET C = (F-32)*5/9
50 PRINT F; "FAHRENHEIT ="; C; "CENTIGRADE"
55 PRINT~
60 GOTO 20 ______ ~

70 PRINT "THAT'S THE END"

DG·08482

Figure 5-6. Temperature Conversion Program Using an IF ... THEN

20 INPUT F
30 IF F = 120 THEN GOTO 70
40 LET C=(F-32)*5/9
50 PRINT F;" FAHRENHEIT =";C;" CENTIGRADE"
60 GOTO 20
70 PRINT "THAT'S THE END"

Now, each time the program reaches line 30, it will test
the value (2) of F you have just input in line 20, by
asking:

Is F = 120?

If this condition is True, i.e., if you have just input 120 as
the value of F, the program reads and executes the second
part of line 30, i.e., the THEN clause, which directs it to
branch to line 70.

Thus, the program will now go directly to line 70,
bypassing lines 40 through 60 and exiting from what was
previously an infinite loop.

If .you have input a value other than 120 for F, the
condition F= 120 is False. In such a case, the program
will not reach the THEN clause of line 30. It will, instead,
move to the line immediately following line 30, eventually
reaching and executing the GOTO 20 statement (2) of
line 60, which will repeat the entire cycle once again.

Note that there are only two possibilities: the condition
can be either True or False. Hence, the program interprets
an IF ... THEN ... statement as follows:

IF condition X is True, THEN do Z; otherwise, proceed
normally.

This does not mean that you must formulate your
statement so as to test for equality only; you could, for
example, also write line 40 as follows to test for inequality:

30 IF F <> 120 THEN GOTO 20

(Note that in this version we need to rephrase the
instructions, contingent upon the test results: the GOTO
20 instruction of line 60 has now been incorporated into
the second half of line 30; hence, line 60 can be eliminated.
The LET and PRINT statements must also be moved
from lines 40 and 50 back to line numbers preceding line
30, in order to get a printed output of daily temperatures.)

Now the program will test each value of F you input to
see if the condition

F is not equal to 120

is True. If it is, the THEN clause of line 30 will be
executed, sending the program back up to line 20.

If the condition is False, and you have input 120 as the
value of F, the program will ignore the rest of line 30,
moving in normal sequence directly to line 70.

In addition to testing for equality and inequality, you
can, with appropriate program modifications, formulate
your IF ... THEN ... line so as to apply any of the six
relational operators in Table 5-1.

The GOTO statement is optional in line 30; you can just
type

30 IF F <> 120 THEN 20

When the system formats your program, it will insert the
keyword GOTO after THEN, so that a listing of the
program will display the IF ... THEN ... statement in its
extended form.

Example
In Figure 5-6 we relist our former program, now modified
through use of the IF ... THEN ... statement.

A flowchart for Figure 5-6 could look like the one shown
in Figure 5-7.

093·400005 Licensed Material·Property, of Data General Corporation 5-5

OG-08483

20

Print
>-_ "THAT'S THE

70

END"",,'_' __

e = (F-32l * 5/9

Print
F.e

50

Figure 5-7. Flowchart for IF ... THEN Version of
Temperature Conversion

Line 30, which tests whether F= 120, is represented by
the decision box in the flowchart. The YES and NO
arrows point to the alternative flow directions, contingent
upon the result of the relational operation performed on
F.
We will test the program by running it and typing in
temperature values for 10 days of any given month (see
Figure 5-8).

The IF ... THEN ... statement worked as expected: as soon
as we input 120 for the value of F, the program ignored
lines 40 through 60, proceeded to line 70, printed THA T'S
THE END, and terminated the program.

You can build into your programs as many of these
conditional branching statements as you wish; be wary,
however, of overusing this device, since too many
deviations from normal sequence may make your program
logic difficult to follow.

The IF ••• THEN .•• ELSE Statement

You may want to perform one action if a condition is
True, perform another if it is False, and then proceed
with normal program execution in both cases. You can do
this by adding an ELSE clause to the IF ... THEN
statement. The ELSE clause can contain any BASIC
statement that can be in the THEN clause.

For example, assume you want to input two numbers,
subtract the second from the first, and print a message to
tell you if the result is positive or negative. You could
write it as follows:

10 INPUT PROMPT "ENTER A NUMBER:":A
20 INPUT PROMPT "ENTER A NUMBER:":B
30 IF (A-B» =0 THEN PRINT "POSITIVE"
40 PRINT "NEGATIVE"
50 PRINT "FINISHED"

If the result is positive, however, you will receive both
messages because the computer executes the THEN
clause and then executes the next statement. To avoid
this problem, you can combine statements 30 and 40 as
follows:

30 IF (A-B» =0 THEN PRINT "POSITIVE" ELSE PRINT
"NEGATIVE"

Now, the program works properly.

Note that both the THEN and ELSE clauses could
contain GOTO statements; in such a case, the next
sequential line would not be executed unless it is used in
another GOTO statement somewhere in the program.
You will see the use of this type of IF ... THEN ... ELSE
statement when we discuss subroutines in Chapter 6.

Logical Operators
As we mentioned earlier in this chapter, you can use
logical operators and relational operators to connect
constants, variables, and expressions into logical expres­
sions. The logical operators are AND, OR, and NOT.

Suppose, in our temperature conversion program, we want
to see if the temperature entered is a reasonable fahrenheit
number (we'll define reasonable to be between 0 and
100). We could add the following statements to our
program in Figure 5-6:

32 IF F>=O THEN GOTO 34 ELSE GOTO 36
34 IF F=<100 THEN GOTO 40
36 PRINT "UNREASONABLE TEMPERATURE - TRY
AGAIN"
38 GOTO 20

In these statements, we are checking to see if the number
entered is greater than or equal to zero and also less than
or equal to 100 (a number which is greater than zero
could also be greater than 100). The logical operator
AND would permit us to combine the effect of the four
statements above into the following:

32 IF F>=O AND F<= 100 THEN GOTO 40
34 PRINT "UNREASONABLE TEMPERATURE - TRY
AGAIN"
36 GOTO 20

5-6 Licensed Material·Property of Data General Corporation 093·400005

TYPE TEMPERATURE (FAHRENHEIT)--TYPE 120 TO STOP
? 47-------------------------(

47 FAHRENHEIT = 8.33333 CENTIGRADE

? 41
41 FAHRENHEIT = 5 CENTIGRADE

? 49
49 FAHRENHEIT = 9.44444 CENTIGRADE

? 56
56 FAHRENHEIT = 13.3333 CENTIGRADE

? 63
63 FAHRENHEIT = 17.2222 CENTIGRADE

? 42
42 FAHRENHEIT = 5.55556 CENTIGRADE

? 40
40 FAHRENHEIT = 4.44444 CENTIGRADE

? 59
59 FAHRENHEIT = 15 CENTIGRADE

? 67
67 FAHRENHEIT = 19.4444 CENTIGRADE

? 61
61 FAHRENHEIT = 16."" CENTIGRADE

? 120----------------------~
THAT'S THE END

DG·06484

Figure 5-8. Sample Run of Temperature Conversion Program (IF ... THEN Version)

093·400005 Licensed Material·Property of Data General Corporation 5-7

FOR symbol

START •.• END symbol o C ___)
NEXT symbol

o
D

PROCESS symbol
Indicates any type of calculation
and steps normally performed by

the 'LET' command
Yes

PRINT symbol

Used to
input information
via the terminal D DECISION symbol

Indicates need for
decision as to direction
of program flow.

To instruct
computer to
print information

OG·06485

Figure 5-9, Flowchart Symbols

The logical expression formed by connecting two or more
relational comparisons by the logical operator AND is
True only if all of the component relational comparisons
are True, and is False in all other cases, Thus, the logical
expression

F>=O AND F<=lOO

is True for all numbers between 0 and 100 (including 0
and 100), and is False otherwise.

A logical expression consisting of two or more logical
expressions connected by the logical operator OR is True
if at least one of the component logical expressions is
True, and is False only if all components are False, Thus,
the logical expression

F<O OR F>lOO

is False for all numbers between 0 and 100 (inclusive)
and is True otherwise. Using the OR operator, another
alternative to the lines we just wrote would be:

32 IF F<O OR F> 100 THEN GOTO 34 ELSE GOTO 40
34 PRINT "UNREASONABLE TEMPERATURE - TRY
AGAIN"
36 GOTO 20

The logical operator NOT reverses the truth of an
expression. For example, if A = B then the logical expres­
sion

A=B

is True, and the expression

NOT (A=B)

is False. Notice the use of parentheses in this example.
NOT is considered a unary operator and requires paren­
theses in much the same way as the unary + and -
arithmetic operators.

Thus, the NOT operator suggests yet another variation
on our example:

32 IF NOT (F<O OR F> 100) THEN GOTO 40
34 PRINT "UNREASONABLE TEMPERATURE - TRY
AGAIN"
36 GOTO 20

Flowchart Symbols

At this point we have already shown you the most common
box shapes used in flowcharting. These are summarized
in Figure 5-9. You should be aware, however, that these
symbols are not yet consistent throughout the industry.
Figure 5-9 thus represents our usage, rather than an
agreed-upon standard.

In Figure 5-9, only the FOR and NEXT symbols should
be unfamiliar to you at this point. You will encounter
them later in this chapter,

5-8 Licensed Material·Property of Data General Corporation 093·400005

Multiple Branching

lhe ON ... GOIO ... Statement
As we have seen, the IF ... THEN ... statement is efficient
for testing whether a given condition is True or False.
But to take advantage of this statement, we must formu­
late our problem in terms of only two alternatives (such
as, is F= 120, or is it not?)

The ON ... GOTO ... statement gives us more leeway, since
it permits the program to respond to multiple choices.
The branching here is not determined by a True/False
test. Instead, the program identifies a given alternative
among a sequentially arranged series of choices, and
matches up that specific choice with the set of instructions
pertinent to it.

To illustrate, we use a very simple music quiz program,
giving the user a choice between three types of questions,
which we code as follows:

Easy = 1
Intermediate = 2
Advanced = 3

We'll use the following variables:
N = Question type selected (lout of possi-

ble 3)
A$= User's answer to quiz question
After it asks the user to indicate his choice of question by
typing either 1, 2, or 3, we want the program to branch
automatically to the appropriate line containing the
question type the user selected.

If we use the IF ... THEN ... test to accomplish this, the
beginning of our program will look as follows:

10 PRINT "TYPE 1 FOR EASY, 2 FOR INTERMEDIATE,"
11 PRINT "3 FOR ADVANCED"
12 INPUT N
15 IF N = 1 THEN 30
20 IF N = 2 THEN 120
25 IF N = 3 THEN 200
30 PRINT "EASY QUESTION"

120 PRINT "INTERMEDIATE QUESTION"

200 PRINT "ADVANCED QUESTION"

As you see, we needed three test lines to determine the
value of N and to send the program to line 30, 120, or
200, depending on whether N = 1,2, or 3.

The ON ... GOTO ... statement, on the other hand, elimi­
nates the necessity of separate lines for each of our

alternatives, a process which would become cumbersome
if we had a larger number of alternatives than the three
we presently have.

Instead, we can condense everything into one single line,
as follows:

20 ON N GOTO 30, 120, 200

When the program reaches line 20, it has the value of N
which you, the user, have input in response to line 10.

Line 20 instructs the program as follows:

• If N = 1 [THEN] GOTO the first of the line numbers
listed here.

• If N = 2 [THEN] GOTO the second of the line
numbers listed here.

• If N = 3 [THEN] GOTO the third of the line numbers
listed here.

To put it another way, the statement says

GOTO the Nth line of those lines listed.

If you type 1, line 20 will send the program to line 30,
where the sequence for the easy quiz begins.

If you type 2, the program will bypass everything from
line 20 up to line 120, where the intermediate sequence
begins.

Finally, if you type 3, the program will branch directly to
the advanced quiz sequence beginning on line 200 and
will ignore all the intervening lines.

What if you mistakenly input a number other than 1, 2,
or 3? Suppose, for example, that you typed in 5 as your
question type choice.

The program will then look for a fifth branch on the line
containing the ON ... GOTO ... statement, and, not finding
it (since there are only three branches), it will print out
an error message, as follows:

Invalid number of ON. .. GOTO line numbers in line 20.
Stop at line 20

To avoid receiving such an error, add an ELSE clause to
your ON ... GOTO ... statement. An example is

20 ON N GOTO 30, 120, 200 ELSE GOTO 25
25 PRINT "PLEASE TYPE 1 2 OR 3 ONLY"
28 GOTO 10

The ELSE clause in statement 20 is executed if a number
other than 1, 2, or 3 is entered. In line 25, we clarify the
choices, and in line 28, we return to the original question.

It follows that, like the READ DATA statement, the
ON ... GOTO ... is a relatively uncomplicated matching
process, which, however, must be set up with absolute
precision in order to function.

093·400005 Licensed Material-Property of Data General Corporation 5-9

1 REM -- THE ·ON ... GOTO· STATEMENT
5 PRINT TAB(20); "MUSIC QUIZ"
6 PRINT
7 PRINT

10 PRINT "TO SELECT YOUR QUESTION. TYPE 1 FOR EASY. 2 FOR INTERMEDIATE"
12 PRINT "OR 3 FOR ADVANCED" __ - __

15 INPUT N
16 PRINT
17 PRINT
20 ON N GOTO 30. 120. 200 ELSE GOTO 25
25 PRINT "PLEASE TYPE 1. 2. OR 3 ONLY"
28 GOTO 10
30 PRINT TAB(30); "EASY QUESTION"~----{
40 PRINT
50 PRINT "WHO WROTE THE PASTORAL SYMPHONY? GIVE LAST NAME ONLY"
60 INPUTA$~----------------------~
65 PRINT
70 IF A$ = "BEETHOVEN" THEN GOTO 100
80 PRINT "NO. THE COMPOSER IS BEETHOVEN."
90 GOTO 270

100 PRINT "THAT'S RIGHT. GOOD FOR YOU! f----_______________ _

110 GOTO 270~-----_________ _

<
oil

120 PRINT TAB(30); "INTERMEDIATE QUESTION"
125 PRINT
130 PRINT "WHAT 19TH CENTURY COMPOSER LEFT ONE OF HIS SYMPHONIES"
135 PRINT "UNFINISHED? GIVE LAST NAME ONLY"
140 INPUT A$
145 PRINT
150 IF A$ = "SCHUBERT" THEN GOTO 180
160 PRINT "SORRY. IT WAS SCHUBERT"
170 GOTO 270
180 PRINT "TERRIFIC! TRY THE BIGGIE NEXT TIME AROUND."
190 GOTO 270
200 PRINT TAB(30); "ADVANCED QUESTION"
205 PRINT

< 210 PRINT "WHAT MODERN BRITISH COMPOSER SET THE MEDIEVAL PLAY";
oil ~ 215 PRINT "OF NOAH TO MUSIC? GIVE LAST NAME ONLY"
cr ~ 220 INPUT A$

~ 1 g. 225 PRINT
~ ~ 230 IF A$ = "BRITTEN" THEN GOTO 260
~ 240 PRINT "NOPE. BRITTEN DID."
~ 250 GOTO 270

260 PRINT "DYNAMITE! YOU SURE KNOW IT ALL
270 END

DG·06486

Figure 5-10. Music Quiz Program

answer se­
quence is
terminated

If you are very careful to observe the following rules, you
will avoid any problems in working with the
ON ... GOTO ... statements.

Here, now, is our program (Figure 5-10), followed
immediately by its flowchart (Figure 5-11) for easier
interpretation.

• Enumerate as many possible branches as the alterna­
tive choices available.

• List the branch lines in precisely the same order as you
want them identified by the program; i.e., list the first
branch first, the second branch second, and so on.

• Add an ELSE clause to handle unanticipated alterna­
tives.

Follow the arrows in the flowchart and identify each of
our three main branches, i.e., lines 30, 120, 200.

Next, note that each of these locations contains a
minisequence of its own which follows these identical
steps:

• Identify the question type chosen.

• Print the question.

• User inputs answer.

5-10 Licensed Material·Property of Data General Corporation 093·400005

DG·06487

093-400005

Print
positive

I
I
I
I
I
I
I
I

r-.J
I

L __________ ...J

Figure 5-11. Flowchart of Music Quiz Program

Licenaed Material·Property of Data General Corporation

30-50

5-11

• Test whether answer = correct answer. (Note that we
used a string comparison for this purpose.)

• Also note: since the answer can be only right or wrong,
we use a simple IF ... THEN ... to determine the next
appropriate sequence.

• If the answer is correct, branch to a line which prints
congratulatory message and then branch to end of
program.

• If the answer is incorrect: print a negative comment
and branch to end of program.

When you run this program, your output will be as shown
in Figure 5-12. (Actually, we show you several consecutive
runs here, so that you can go through all of the question
types, as well as through some right and wrong answers.
As the program is written, a single run will, of course,
take you through only one question/answer/comment
sequence.) Remember that string comparisons are sensi­
tive to the difference between upper and lowercase, so if
you type in your answers as lowercase, you're sure to get
the wrong answer!

This program still contains some redundancies (you will
see how to get rid of them in Chapter 6); it does, however,
demonstrate the increased range of possibilities available
through use of the ON ... GOTO ... statement either by
itself or, as here, in combination with other control
statements.

We also wish to point out that this statement does not
always require a user input, as it did here. In many
instances, the program itself will be able to generate the
data it needs to use in an ON ... GOTO ... statement.

TO SELECT YOUR QUESTION, TYPE 1 FOR EASY, 2 FOR
INTERMEDIATE, OR 3 FOR ADVANCED
? 1

EASY QUESTION

WHO WROTE THE PASTORAL SYMPHONY? GIVE LAST NAME ONLY
BEATLES

NO, THE COMPOSER IS BEETHOVEN.

MUSIC QUIZ

TO SELECT YOUR QUESTION, TYPE 1 FOR EASY, 2 FOR
INTERMEDIATE, OR 3 FOR ADVANCED
? 2

INTERMEDIATE QUESTION

WHAT 19TH CENTURY COMPOSER LEFT ONE OF HIS SYMPHONIES
UNFINISHED? GIVE LAST NAME ONLY
SCHUBERT

TERRIFIC! TRY THE BIGGIE NEXT TIME AROUND.

MUSIC QUIZ

TO SELECT YOUR QUESTION, TYPE 1 FOR EASY, 2 FOR
INTERMEDIATE, OR 3 FOR ADVANCED
? 3

ADVANCED QUESTION

WHAT MODERN BRITISH COMPOSER SET THE MEDIEVAL PLAY
OF NOAH TO MUSIC? GIVE LAST NAME ONLY
WALTON

NOPE. BRIDEN DID.

MUSIC QUIZ

TO SELECT YOUR QUESTION, TYPE 1 FOR EASY, 2 FOR
INTERMEDIATE, OR 3 FOR ADVANCED
? 3

ADVANCED QUESTION

WHAT MODERN BRITISH COMPOSER SET THE MEDIEVAL PLAY
OF NOAH TO MUSIC? GIVE LAST NAME ONLY
BRITTEN

DYNAMITE! YOU SURE KNOW IT ALL. ..

DG·06488

Figure 5-12. Sample Dialog with Music Quiz
Program of Figure 5-10

Repeated Operations: Loops
As we have already indicated, there are occasions when
you need to repeat the same operation a specified number
of times. Here we automate the process by applying the
concept of the True/False test to check whether or not
the desired number of repeats has been performed.

In an earlier program (Figure 5-6), we input the
temperatures in Fahrenheit and used the IF ... THEN ...
statement to test whether the value we input was a
termination signal for the program (F = 120).

Now, we will show you yet another way of formulating
your program so as to control its branching. (Figure 5-13
incorporates this technique into our original program.)

5-12 Licensed Material·Property of Data General Corporation 093·400005

Looping with Counters

Let's assume that, instead of testing each of your input
values until you get the value signalling that you have run
out of data, you want to terminate the program after you
have processed a specific number of values.

In our case, we know that we have data for 10 days; thus,
we want to perform our input, conversion, and print
operations a total of 10 times.

If we could get the program to keep count of the number
of times it has performed the above operations, then we
could use the IF ... THEN statement to test whether or not
our count has reached the desired limit of 10 (or 20, or
whatever).

How do we build a counter into our program?

This is a very simple process: we begin by taking a variable
letter we have not yet used in our program, for example,
I, and designating it as the variable to hold our counter
values.

First we will initialize the value of I to 0 to ensure that it
will hold no other values than those generated during the
execution of our program. (See Chapter 2.)

30 LET 1= 0

As you recall, the other variables in our program are

F = Temperature in Fahrenheit

C = Temperature in Centigrade

We will make one further minor but convenient change
in the program: rather than using INPUT to enter our
temperature values for each of the 10 days, we will enter
all our values at once into a DATA line to be read by the
program. This will eliminate the need for interacting
with the program during execution.

Here are our 10 daily temperatures in their proper
sequence:

160 DATA 47,41,49,56,63,42,40,59,67,61

When the program reads the first value of F (i.e., 47),
our counter should reflect this fact by also changing its
value (i.e., from 0 to 1). Increasing the value of the
counter is called incrementing the counter. Line 100 of
the program shown in Figure 5-13 instructs the program
to increment our counter I:

100 LET I = I + 1

This causes the value of 1 to be added to the previous
value of I. Since the previous value of I was 0, the value
of I after we have reached line 100 for the first time is 1.

Each time we read an additional data item, we move
through line 100, where the value of I is incremented by

one. This means that, at any point in the program, the
current value of I reflects the number of data items we
have already read.

Thus, when

F = 47 : I = 1
F = 41 : I = 2
F = 49: 1= 3
F = 56: 1= 4
F = 63: I = 5
F = 42: 1= 6
F=40:1=7
F = 59: 1= 8
F = 67: I = 9
F = 61 : I = 10

Now that we have a counter to keep track of the number
of items we have processed, all we need to do is to build in
an IF ... THEN ... which asks:

Is I < 10?

If the value of counter I is less than 10, more data remain
to be read; the program returns to line 80 to read the next
value of F. If the counter value is not less than 10, all
data have been read and the program terminates.

The IF ... THEN ... statement might read as follows:

150 IF 1< 10 THEN GOTO 80

Figure 5-13 displays our modified program with explana­
tory REM lines added.

10 REM -- LOOPING WITH COUNTER
20 REM -- SET COUNTER TO ZERO
30 LET 1= 0
40 REM -- PRINT TABLE HEADINGS
50 PRINT "MONTH". "DAY". "TEMP "TEMP."
60 PRINT .. "FAHRENHEIT", "CENTIGRADE"
70 PRINT
80 READ F
90 REM -- INCREMENT COUNTER
100 LET I = I + 1
110 REM -- CONVERT FAHRENHEIT TO CENTIGRADE
120 LET C = (F-32)*5/9
130 PRINT "APRIL". I,F,C
140 REM -- TEST IF COUNTER HAS REACHED END OF DATA
150 IF 1< 10 THEN GOTO 80
160 DATA47,41, 49,56,63,42,40,59,67,61
170 END

DG·06489

Figure 5-13. Temperature Conversion Program Using
a Counter

So as to illustrate the operation of the counter more
vividly, we directed the program in line 130 to print out

093-400005 Licensed Material-Property of Data General Corporation 5-13

the counter's value (the value of I), along with the values
of F and C.

As you see from the run (Figure 5-14) this results in a
neat tabulation, whereby the days of the month (we picked
April), are automatically numbered from 1 to 10 before
each day's temperature is printed out.

MONTH DAY TEMP. TEMP.
FAHRENHEIT CENTIGRADE

APRIL 1 47 8.33333
APRIL 2 41 5
APRIL 3 49 9.44444
APRIL 4 56 13.3333
APRIL 5 63 17.2222
APRIL 6 42 5.55556
APRIL 7 40 4.44444
APRIL 8 59 15

APRIL 9 67 19.4444
APRIL 10 61 16.1111

DG·06490

Figure 5-14. Sample Run oJ Temperature COnversion
Program (Counter Version)

As the run shows, the program correctly performed a
total of 10 times the operations READ F, increment
counter, convert F to C, and PRINT.

Such a repeated set of identical operations is a loop, in
our case, a loop performed by means of a counter. (In
Figure 5-2 we executed a loop by means of a GOTO ...
statement, while in Figure 5-6 we looped with an
IF ... THEN ... statement.)

The flowchart shown in Figure 5-15 illustrates looping
with a counter.

DG·06491

Set counter
to zero
LET 1= 0

50-60

Print
headings

Increment
counter
1=1+

Convert
Fahr. to
Cent.

80

100

120

130

170

End

Figure 5-15. Flowchart Jor Counter Version oj
Temperature Conversion Program

Looping with FOR ..• NEXT
To execute our loop with counter, we needed three special
lines:

• Line 30 to set the counter at o.
• Line 100 to increment the counter after value was

read.

5-14 Licensed Material·Property of Data General Corporation 093-400005

REM - LOOPING WITH FOR ... NEXT 10
20
25
30
40
50
60
70
80
90

PRINT ·'MONTH··. "DAY" ... TEMP "TEMP ... }
PRINT .. "FAHRENHEIT". "CENTIGRADE"

DG.()8492

PRINT
FOR I = 1 TO 10---------,

READ F
LET C = (F-32)*5/9
PRINT "APRIL". I.F.C
NEXTI~---------~

DATA 47. 41. 49. 56.63.42.40. 59.67.61

Figure 5-16. Temperature Conversion Program with FOR ... NEXT loop

• Line 150 to test the value of the counter and to redirect
the program to line 80 if the counter value was less
than 10.

All of this works perfectly, and there are many cases
where it is useful to have a separate counter built into the
program.

But under normal conditions we can execute a loop by
condensing all the above lines into two:

• The first to specify the counter's beginning and ending
values;

• The second to signal the end of the operation(s) to be
repeated.

In this version, the counter will increment itself automati­
cally; similarly, the IF ... THEN ... test checking whether
the maximum value has been reached is automatic
without being explicitly written in a separate instruction
line.

The program we are working with requires the counter, I,
to increment itself from 1 to 10. To have this happen
automatically, we formulate our instruction as follows:

40 FOR I = 1 TO 10

80 NEXT I

Translated, the FOR statement means using I as your
counter, and beginning your count with 1, perform all the
instructions you will find listed below, until you find the
instruction

80 NEXT I

Then increment I and check to see if I > 10.

If I is not greater than 10, go back to the first line
following line 40 and repeat all the operations as previous­
ly.

Each time you reach line 80, increment I and test whether
I> 10. When you reach the point where I> 10, proceed
to the line immediately below the NEXT and follow the
new instructions listed therein.

When I = 10, the loop will still be executed, since the
value of I has not yet exceeded the specified limit of 10.
This will only happen at the following NEXT statement
when I is incremented to 11. The value of I upon
termination of the loop will thus be 11 rather than 10.

Everything between the FOR line and the NEXT line is
called the loop body. In our example, the body of the loop
is contained between lines 40 and 80:

40 FOR I = 1 TO 10

80 NEXT I

The FOR and NEXT statements are intended to appear
together; you shouldn't have one without the other.
(Without the FOR you wouldn't have a loop; without the
NEXT you would not be returned to the beginning of the
loop to rept(at the required operations.)

The program in Figure 5-16 illustrates how the loop with
automatic counter works.

Notice that the instructions in the body of the loop (lines
50, 60, and 70) in Figure 5-16 are indented, for clarity.
You might want to get into the habit of indenting loop
bodies as you type them in. In any case, MP /BASIC will
do this formatting for you, so the proper indentation will
appear whenever you get a copy of your program typed
out by the LIST command.

Lines 40 and 80 set up the loop counting from 1 to 10, by
means ofthe FOR ... NEXT statements we have discussed.

The rest of the loop sequence is exactly as before. You
can verify this by comparing Figure 5-17 with Figure
5-14. The flowchart in Figure 5-18 further underscores
the similarity in process.

093-400005 Licensed Material-Property of Data General Corporation 5-15

MONTH DAY TEMP. TEMP.
FAHRENHEIT CENTIGRADE

APRIL 47 8.33333
APRIL 2 41 5
APRIL 3 49 9.44444
APRIL 4 56 13.3333
APRIL 5 63 17.2222
APRIL 6 42 5.55556
APRIL 7 40 4.44444
APRIL 8 59 15
APRIL 9 67 19.4444
APRIL 10 61 16.1111

DG·06493

Figure 5-17. Sample Run oJ Temperature Conversion
Program (FOR ... NEXT Version)

DG-06494

Read F.
Convert F
to C

-<2YOfl:V

Figure 5-18. Flowchart Jor Temperature Conversion
Program (FOR. __ NEXT Version)

The program

• Reads the value of F from the data line;

• Converts that value to its Centigrade equivalent;

• Prints the month (April), day (value of I), daily
temperature in Fahrenheit and Centigrade;

• Increments the counter

• Tests whether the counter exceeds 10 (I > 10). If the
answer is Yes, it terminates the loop; if the answer is
No, it returns to re-execute the body of the loop.

This sequence will be repeated 10 times; yet, as you see,
this program is far shorter than its predecessor in which
we used a counter and the IF._.THEN statement.

If you look at the program or the flowchart, you will
notice that we placed the instructions for our headings
(lines 20-25) outside our loop_ If we had included these
instructions inside the body of the loop, the headings
would have been printed 10 times, once in each succeeding
pass of the program.

Determining what you must exclude from the loop body
is, therefore, just as important as knowing what you want
to include in it.

Loop execution is considerably speeded up if you use the
MP /BASIC facility of declaring your initial value, count­
er variable, increment and limit values to be of type
INTEGER. (See Chapters 2 and 14.)

Flowchart FOR •.• NEXT Symbols

As you looked at our last flowchart, you probably noticed
that we used two new symbols, the FOR symbol, and the
NEXT symbol,which we illustrate for you in Figure 5-19.
(See also Figure 5-9.)

These symbols are useful merely as a form of shorthand,
since the logic of the program is conveyed quite as
accurately by the longer flowchart of Figure 5-15, which
does not use them.

5-16 Licensed Material-Property of Data General Corporation 093-400005

FOR symbol

8
NEXT symbol

()

DG·06495

Figure 5-19. FOR and NEXT Symbols

Looping with STEP for Increments
Different from 1
An added feature of looping with FOR ... NEXT ... is that
we need not confine our count to one-step increments;
rather, we can set up a counter to increment itself by any
intervals we choose, such as by increments of 3, 10, or
whatever.

Suppose we wanted only the temperature for every second
day in April, starting with April 1. We would then write
something like

40 FOR I = 1 to 9 STEP 2

The STEP ... statement tells the program by how many
units to increment the counter after each operation. In
the absence of such a statement, the counter automatically
increments itself by 1.

With a loop as set up by line 40 above,

For day #1 I = 1

For day #3 I = 3

For day #5 I = 5

For day #7 I = 7

For day #9 I = 9

When you are stepping forward, the smaller number you
begin with comes first, and the larger number comes
next. (We move from 1 to 9).

But you need not always count forwards. Use a STEP
command with a negative increment, and the computer
will count backward. For instance,

40 FOR I = 9 TO 1 STEP - 2

will take you from 9 down to 1 by twos.

NOTE: In STEP with a negative increment, the larger
number you are counting down from must be
listed first, followed next by the smaller number
you are moving towards. That is exactly the
opposite of the way you list the numbers when
counting forward.

A popular children's song cleverly acts out backward
counting. Figure 5-20 reproduces the first and last stanzas
together with the intervening countdown.

DG·06496

THERE WERE TEN IN THE BED ANO THE LITTLE ONE SAID,
'ROLL OVER, ROLL OVER.'
SO THEY ROLLED OVER AND ONE FELL OUT.

THERE WERE 9. IN THE BED AND ..

THERE WERE 8 .. .

THERE WERE 7 .. .

THERE WERE 6 .. .

THERE WERE 5 .. .

THERE WERE 4 .. .

THERE WERE 3 .. .

THERE WERE 2 .. .

SO THEY ALL ROLLED OVER AND ONE FELL OUT.

THERE WAS ONE IN THE BED, AND THE LITTLE ONE SAID,
'GOOD NIGHT.'

Figure 5-20, Backward Counting

You might enjoy reconstructing the program which
produced this output. Ours appears at the end of this
chapter.

Nested Loops
Figure 5-21 represents a program with two loops which
will print out the design shown in Figure 5-22.

093·400005 Licensed Material·Property of Data General Corporation 5-17

10
20 FOR I = 1 TO 4
30
40 NEXT 1--------'

50 FORJ=1T05
60 PRINT TAB(4);"""
70 NEXT J __ ------'

OG-08497

Figure 5-21. Program with Two Consecutive Loops

OG-08498

:::::::: } __ ---f
* •••••••
••••••••

.. } ••
••
•• ..

Figure 5-22. Output from Program in Figure 5-21

This design consists of the following:

• Eight asterisks forming a horizontal line, which the
I-loop is instructed to print four consecutive times;

• Two asterisks which the J-Ioop is instructed to print
five consecutive times, thus forming a vertical line.
(Strictly for looks, we use a tab to center the two
asterisks beneath the horizontal line.)

10 REM -- NESTED LOOP

Since the J-Ioop is executed only after the entire 1- loop is
finished, these two loops are described as being consecu­
tive.

Suppose now that instead of four horizontal lines and a
single vertical, we want our design to alternate horizontals
and verticals four times each, as in Figure 5-23.

••
••

..
•• ..
••

OG-08499

Figure 5-23. Variation in Outputfrom Loop Program

20 FOR I = 1 TO 4----------...,
30 PRINT

40 FOR J = 1 TO 5---,
50 PRINT TAB(4); "
60 NEXT J - - - - - _J
70 NEXTI----------~---~

OG·08!iOO

Figure 5-24. Program with Nested Loops

5-18 Llcenaed Material-Property of Data General Corporation 093-400005

To produce such a design, we need the same two loops as
before, but we must change their relationship to each
other. Instead of allowing the I-loop to be completely
executed, we must intercept it during each of its single
passes and cause it to detour through the complete
J-Ioop,printing a vertical line before resuming its own
re-execution. In this way, we can alternate the printing of
horizontal and vertical lines.

We can accomplish this very easily, by moving the J-Ioop
from its former independent position after the end of the
I-loop, placing it instead within the body of the I-loop.

This type of arrangement, whereby a loop incorporates
one or more subsidiary loops within itself, is referred to as
nesting.

In Figure 5-24 we modify our program of Figure 5-21 so
as to nest the J-Ioop inside the I-loop.

We will now take a closer look at the way nested loops
work.

As you see in Figure 5-24, the I-loop is now the main or
outer loop, since its body, which goes from line 20 to line
70, contains within it a second loop, the J-Ioop.

The J-loop is now the inner loop, since its body (lines 40
to 60) is entirely contained within the body of the I-loop.

Again, note the indentations used to set off the loop
bodies; MP /BASIC will do this indenting for you as part
of its formatting.

Let us work through the instructions of this program as
though we were duplicating the computer's steps.

As we begin the I-loop, weare instructed to

30 PRINT II

As soon as we have carried out that instruction, we
encounter our inner loop, the J-Ioop, which instructs us to

50 PRINT T AB(4); II

and which immediately thereafter directs us to

60 NEXT J

causing us to reprint "**,, until such time as we have
printed "**,, five times (until J = 6).

Only at this point, when the entire J-Ioop has been
executed, do we reach the

70 NEXT I

command, which returns us to the next pass of our I-loop,
allowing us to print another horizontal line as specified
by line 30.

Thereupon we re-encounter the J-Ioop, and re-execute it
five more times before returning to the next pass of our
I-loop, and so on.

Thus, when I = 1

J = 1

J = 2

J = 3

J=4

J = 5

When 1= 2

J = 1

J=2

J = 3

J=4

J = 5

When 1= 3

J = 1

J = 2

J = 3

J=4

J = 5

When 1= 4

J = 1

J=2

J = 3

J=4

J = 5

The I-loop goes through four passes (I = 1 TO 4). The
J-Ioop goes through 20 passes (J = 1 TO 5 for each of the
four passes of the outer I-loop). .

We will use a flowchart one final time in this chapter
(Figure 5-25) as an additional illustration of nested loops.

093·400005 Licensed Material-Property of Data General Corporation 5-19

Q.
Q

oS
Qi

Q.
'5 Q
Q oS
Q "g

(II

c ti:
'i;j (II

~
c
Q
Qi
c
.5

DG·06501

Print
"********"

Print
"**"

Keeping in mind that the inner loops are always executed
before the outer loops, you must be sure to have your
NEXT ... commands in proper sequence, inner before
outer or, as here,

60 NEXT J

before

70 NEXT I

Confusion of this sequence is a frequent cause of difficulty
with loop execution; hence, great care and doublechecking
are always advisable.

You can vary the shape of your design by means of a few
simple modifications in your nested loops.

Would you like a T-shaped figure? All you have to do is
to insert two blank lines between your outer and inner
loops as in Figure 5-26. This will separate your vertical
line from the next horizontal line and produce the Ts
shown in Figure 5-27.

Figure 5-25. Flowchart of Program with Nested
Loops

00·06502

5-20

10
20
30
40
50
60
65
67
70

REM -- NESTED LOOP
FOR I = 1 TO 4 -------------,

PRINT "********"
FORJ=1T05

PRINT TAB(4);"**"
NEXT J ------'
PRINT }....-2 blank lines between
PRINT inner and,outer loops
NEXTI-------------~

Figure 5-26. Modification of Loop Program to Produce T-shape

Licensed Material·Property of Oats General Corporstion 093·400005

******.*

..
••

..
•••••••• *

••
••
•• ..

OG-08503

Figure 5-27_ Output of Program in Figure 5-26

Don't, however, insert your blanks within your J-Ioop, as
this will simply create spaces between your successive
vertical asterisks. As we've already pointed out, deciding
what belongs inside or outside a loop is often tricky
business. Working the steps of your program out on paper
and flowcharting are good ways of catching any misplaced
instructions.

To get an I-shaped figure (see Figure 5-28), we instructed
the computer to print one single horizontal line of
asterisks, plus two blank lines at the end of each J-Ioop
before proceeding to the next pass of the I-loop. Our
program is shown in Figure 5-29.

10 REM - NESTED LOOP
20 FOR 1= 1 TO 4
30 PRINT

40 FORJ=1T05
50 PRINT TAB(4);"""
60 NEXT J
65

PRINT """"""} 67 PRINT
68 PRINT
70 NEXT I

00-08506

** ~ ..
••
••

Single
PRINT command ** •• * ••• ~------~

........ ~ ..
•• Next I ..

........
*** ••• **

• •
• •

• •
••

•••••• **

..
•• ..

**** •• **

OG-08504

Figure 5-28. Output of Program in Figure 5-29

You can insert any number of commands within as well
as between your nested loops; the main consideration is to
keep your outer and inner loops straight.

Figure 5-29. Modification of Loop Program to Produce I-shapes

093·400005 Licensed Material-Property of Data General Corporation 5-21

10 REM - NESTED LOOPS: COMPOUND INTEREST, FIXED CAPITAL/VARYING INT. RATES
20 LET C = 5000-+--------_______",-

30 PRINT "YEAR"', ,"PRfNCIPAL AND COMPOUND INTEREST'
35 PRINT

... 1- 40 O:J
PRINT " ____________ _

D. 45 \oj I-
Z:J 50
j:0

55 I-Q
< ... 60
~I-
III:~ 65
0111: 70 ... D.

PRINT
PRINT "N";TAB(9); "C";

FOR H = 5 TO 6.5 STEP .5}
PRINT, H; ---{

NEXT H
PRINT

75 PRINT " ____________ _

80 PRINT
90 FOR N = 1 TO 5 ----------------------. ... 100

O~ 110
1-<
111:111: 120
::\oj 130
zO
-III: 140
<D.

150 ~
160

PRINT N; TAB(6); C,
Z = 12* N
FOR J = 5 TO 6.5 STEP .5~---.

LET 1= C*(l + J/1200lT Z
PRINT I,

NEXTJ~--------~----~

170 NEXTN~~----~~------------~--~

200 END

DG-06S06

Main N-Ioop
controls number of
years for which
I is calculated
(here, 5 yrs.)

Figure 5-30. Program to Calculate Interest at Different Rates

A Practical Application
In Chapter 4 we wrote a program to find out the income
on a capital of $5,000 invested at different rates of interest.

We can apply the concept of nested loops to enhance the
usefulness of that program. Specifically, we can now
calculate principal and interest at different interest rates
over a period of several years. We will assume interest
rates of from 5% to 6.5% at intervals, and a time period
of from 1 to 5 years.

The formula for compounding interest monthly is

I = C * (l + J/1200) A (l2 *N)

where

I = principal plus interest

C = capital amount (here 5000)

J = interest rate (here 5% to 6.5%)

N = number of years invested for (here 1 to 5)

To increase the efficiency of our program, the above
formula can be rewritten as follows:

I = C * {l + J/1200)AZ

where

Z=12*N

This part of the formula computes the total number of
months for which the capital is invested. (The reason for
this modification will shortly become apparent.) We can
now write the program shown in Figure 5-30.

Up to line 90, the program prints and underlines the
various headings we need for a clear output. (Note that
in lines 55-65 we use a loop to print out the interest rate
headings.) The working part of the program actually
consists of its last nine lines (90-170), which contain two
nested loops.

The N-Ioop is our main, or outer loop. It moves from 1 to
5, which corresponds to the number of years the capital is
invested for. Here we compute the quantity

Z = 12 * N

converting the investment period from years into months.

There are two reasons for performing this calculation
within the N-Ioop rather than within the J-loop, where
the rest of the compound interest formula is calculated:

5-22 Licensed Material-Property of Data General Corporation 093-400005

YEAR PRINCIPAL AND COMPOUND INTEREST

N C 5 5.5 6 6.5

5000 5255.81 5282.04 5308.39 5334.86
5000 5524.71 5579.99 5635.8 5692.14
5000 5807.36 5894.74 5983.4 6073.36
5000 6104.48 6227.25 6352.45 6480.1
5000 6416.79 6578.52 6744.25 6914.09

DG·06507

Figure 5-31. Output from Program in Figure 5-30

• The product 12 * N is independent of the other
variables in the compound interest formula.

• Since we are calculating compound interest for five
years (N = I to 5), we need to compute Z = 12 * N
no more than five times, i.e., once for each changing
value of N. Hence, the N-Ioop is the logical place for
this segment of the compound interest formula.

In the course of program execution, then, for each year,
starting with N = 1:

• N is printed out, indicating what year we are working
with.

• C is printed out as a reminder of what our original
capital is. (Later on, when we vary capital amounts as
well as interest rates, printing the value of C will be
necessary anyway.)

At this point, we encounter the J-Ioop, or inner loop. This
loop represents the various amounts of possible interest
rates, from 5% to 6.5%, at one half of one percent intervals.

For each of these steps, the J-Ioop

• calculates I (Principal + Interest).

• prints I consecutively along the same line under
appropriate interest rate headings.

In other words, all the interest rates specified by the
J-Ioop are calculated for one year before the N-Ioop
resumes and proceeds to the following year. (The entire
J-Ioop is executed prior to the next pass of the N-Ioop.)

Year 1 (N = 1):

J = 5

J = 5.5

J=6

J = 6.5

Year 2 (N = 2):

J = 5

J = 5.5

J = 6

J = 6.5

and so on.

Each time we move to a new value of N, we move through
the entire J-Ioop again, to recalculate the various values
of I at different values of J (and, naturally, of I and N).

Therefore,

• the N-Ioop will go through 5 passes (N = 1 TO 5);

• while the J-Ioop will go through 20 passes (J = 1 TO 4
for each of 5 N-Ioop passes).

Had we left the calculation of 12 * N within the J-Ioop,
this operation would have been repeated 20 times instead
of the necessary five times, a redundancy both inefficient
and costly.

This example stresses yet again the need for careful sifting
of loop operations to ensure repeated execution only when
such repetition is meaningful.

If we run the program, it will look like Figure 5-31.

Compound Interest
Varying Capital, Time,
and Interest Rates

As we've said before, you can have several loops nested
within each other. A quick addition to our compound
interest program will highlight the usefulness of this
feature:

093-400005 Licensed Material-Property of Data General Corporation 5-23

DG·06508

10 REM -- NESTED LOOPS: COMPOUND INTEREST, CAPITAL & INTEREST RATES VARY
30 PRINT "YEAR",,"PRINCIPAL AND COMPOUND INTEREST"
35 PRINT
40 PRINT " __________ _

45 PRINT
50 PRINT "N"; TAB(9); "C";
55 FOR H=5 TO 6.5 STEP .5
60 PRINT, H;
65 NEXT H
70 PRINT
75 PRINT " __________ _

80 PRINT
85 FOR C = 5000 TO 8000 STEP 1000 ~------,

FORN=1T05
PRINT N; TAB(6); C,
Z = 12*N
FOR J = 5 TO 6.5 STEP .5 ~---,

LET I = C*(1 + J/1200lT Z

90
100
110

120
130
140
150
160
170
180
190

PRINT I,

NEXTJ~-I-r------~
PRINT

PRINT NEXTN / \ \

NEXTC_j +------+-\--~---,
200 END ,.------

I-loop is nested
inside N-Ioop.
Calculates I at various
interest rates for each
year (N) and each new
value of capital (C).

Must be completely
executed each time
Nand C change.

N-Ioop is nested
inside C-Ioop.
Controls number of years
for which I is cal-
culated at any given
value of capital (C).

Must be completely
executed each time
the value of C
changes.

C-Ioop
is main loop.
Controls
changes in
capital amounts.

Figure 5-32. Program to Calculate Interest, with Various Interest Rates and Principal Amounts

So far we have calculated the principal plus interest for a
fixed capital of $5,000 invested at varying rates of interest
for five years (i.e., the capital amount remained the same
and only the interest rates changed).

85 FOR C = 5000 TO 8000 STEP 1000

190 NEXT C
Now we would like to change the capital amounts as well
as the interest rates. That is, we want to create a table to
show compound interest earned over a given period by
various capital amounts invested at a number of different
interest rates. Would this involve major modifications in
our program?

Our existing N- and J-Ioops produced values of I (princi­
pal and interest) for various values of J (J = 5 to 6.5
STEP .5) over a period of five years (N = 1 TO 5), for a
single value of C (C= 5000).

We can create such a table by the mere addition of two
lines that will constitute a new outer loop, the C-Ioop; this
loop will specify the capital amounts for which we want
the compound interest calculated. Let's use amounts from
$5,000 to $8,000 at $1,000 increments.

Our new outer loop would look like this:

The new outer C-Ioop causes the N- and J-loops to be
executed in their entirety for each new value of C (C =
5000 TO 8000 STEP 1000). In this way, we can easily
obtain values for I, while varying both our capital (C)
and our interest rates (J).

5-24 Licensed Material·Property of Data General Corporation 093·400005

YEAR PRINCIPAL AND COMPOUND INTEREST

N C 5 5.5 6 6.5

5000 5255.81 5282.04 5308.39 5334.86
2 5000 5524.71 5579.99 5635.8 5692.14
3 5000 5807.36 5894.74 5983.4 6073.36
4 5000 6104.48 6227.25 6352.45 6480.1
5 5000 6416.79 6578.52 6744.25 6914.09

1 6000 6306.97 6338.45 6370.07 6401.83

2 6000 6629.65 6695.98 6762.96 6830.57

3 6000 6968.83 7073.69 7180.08 7288.03
4 6000 7325.37 7472.7 7622.93 7776.12

5 6000 7700.15 7894.22 8093.1 8296.9

1 7000 7358.13 7394.86 7431.75 7468.8
2 7000 7734.59 7811.98 7890.12 7969
3 7000 8130.3 8252.64 8376.77 8502.7
4 7000 8546.27 8718.15 8893.42 9072.14
5 7000 8983.51 9209.93 9441.95 9679.72

1 8000 8409.3 8451.26 8493.42 8535.77

2 8000 8839.53 8927.98 9017.28 9107.43

3 8000 9291.78 9431.59 9573.45 9717.37

4 8000 9767.16 9963.61 10163.9 10368.2
5 8000 10266.9 10525.6 10790.8 11062.5

I-.

C-Ioop

DG·06509

Figure 5-33. Output of Program in Figure 5-32

The J-loop is still nested inside the N-loop, but now the
N-loop itself is nested inside the C-loop.

In other words,

When C = 5000
N = 1

J = 5
J = 5.5
J = 6
J = 6.5

N = 2
J = 5
J = 5.5
J = 6
J = 6.5

N = 3
J = 5, etc.

N = 4
J = 5, etc.

N = 5
J = 5, etc.

With every change in the value of C, the above process is
repeated. In total,

• the C-loop will go through 4 passes;

• the N-loop will go through 20 passes;

• the J-loop will go through 80 passes.

Figure 5-32 displays our program. As you see, It IS
identical to the program in Figure 5-30, with the exception
of lines 85 and 190 (and line 180, which causes a blank
line to be printed between the N- and the C- loops, for
the sake of visual clarity).

Our compound interest table appears in Figure 5-33; here
we show compound interest for capital amounts ranging
from $5000 to $8000 at interest rates ranging from 5% to
6.5% for a period of from 1 to 5 years.

Roll over, Roll over ...
In Figure 5-20 we illustrated the output resulting from a
STEP command with a negative increment. You've
doubtless experienced no difficulty in reconstructing the
program which generated that output. Here is our version
(Figure 5-34).

093-400005 Licensed Material-Property of Data General Corporation 5-25

10 REM COUNTING BACKWARD"

20 PRINT "THERE WERE TEN IN THE BED AND THE LITTLE ONE SAID,"
30 PRINT" 'ROLL OVER, ROLL OVER: ..
40 PRINT "SO THEY ROLLED OVER AND ONE FELL OUT."
50 PRINT
60 PRINT "THERE WERE 9. IN THE BED AND
70 FOR 1- 8T02STEP-l
80 PRINT
90 PRINT "THERE WERE"; TAB(13);I;
100 NEXT I
110 PRINT
120 PRINT "SO THEY ALL ROLLED OVER AND ONE FELL OUT."
130 PRINT
140 PRINT "THERE WAS ONE IN THE BED. AND THE LITTLE ONE SAID."
150 PRINT" 'GOOD NIGHT: ..

DG·06510

Figure 5-34. Program to Produce Output in Figure
5-20

Keywords in Chapter 5
Table 5-2 lists the keywords introduced in Chapter 5.

Table 5-2. Keywords in Chapter 5

Can be
used in

Keyword Program Immediate
Statement Mode

FOR ... NEXT Yes No

GOTO ... Yes No

IF ... THEN ... ELSE Yes No

ON ... GOTO ... ELSE Yes No

End of Chapter

5-26 Licensed Material·Property of Data General Corporation 093·400005

Chapter 6
Subroutines

In our previous chapter we used a Music Quiz program
(Figure 5-10) to demonstrate the ON ... GOTO ... state­
ment. As you may recall, the user was given a choice of
three questions ranging from easy to advanced, and was
asked to choose a question by typing a number from 1 to
3.

Thereafter, the statement

20 ON N THEN GOTO 30, 120, 200 ELSE GOTO 25

transferred the user to the appropriate section in the
program where the chosen question was printed out.

As a glance at the flowchart of Figure 5-11 will show, a
precisely identical sequence of events then took place
within each of the three question groups, regardless of
their type, namely:

• User inputs answer, A$.

• A$ is compared against the correct answer.

• If A$ was incorrect, inform user accordingly and
transfer to the end of the program.

• If A$ was correct, branch to a line where congratulato­
ry message is printed and transfer to the end of the
program.

In our program we had to type in this entire sequence
three times, once for each of our three questions. This
created quite a bit of unnecessary repetition, but at the
time we had no other alternative.

In such situations it is often more practical to treat a
distinct sequence of reiterated program steps as a subrou­
tine. That is, rather than retyping the sequence each time
we need it in our program, we can isolate all of it as a
semi-independent unit within the main program.

We create a subroutine by assigning to the sequence a set
of line numbers outside the range of those of the rest of
the program. In addition, we must provide appropriate
commands to allow for the transfer of control to and from
this code.

Whenever necessary, we can then branch from any
location within the main program to the line number
denoting the beginning of this subroutine, work through
all its steps, and when we have finished, transfer control
back to the main program.

The concept of subroutines is thus an advanced applica­
tion of the control statements we have discussed in
Chapter 5.

Creating a subroutine enables us to type a given sequence
of program steps only once, while allowing us to use that
sequence an endless number of times from different parts
of the program.

GOSUB ... and RETURN
To reach a subroutine from a program (this is described
as calling a subroutine), you use the GOSUB command
followed by a line number. For instance:

60 GOSUB 300

This command, in essence an extension of the GOTO ...
statement, tells the program to go to the subroutine
beginning on line 300.

The program then branches to line 300, where it begins
executing, in order, all the statements it finds on that line
and following lines until it encounters a statement
directing it to exit the subroutine. This is the RETURN
statement, which we write as follows:

350 RETURN

The return command brings execution back to the main
program. But, rather than returning to the line from
which we left, namely

60 GOSUB 300

the RETURN always brings us back to the line directly
below it (see Figure 6-1).

093-400005 Licensed Material-Property of Data General Corporation 6-1

~ 60 GOSUB 300 __ Return to line 70
70 r--

~ 300

350 RETURN __ f--

DG·06511

Figure 6-1. Flow of Control To and From a
Subroutine

After the return, the program continues sequential execu­
tion unless it encounters other control statements.

Your program can contain any number of subroutines. In
fact, as we shall see later in the chapter, you can also nest
subroutines; that is, a subroutine can call a number of
other subroutines, which, in their turn, may call more
subroutines. (See Figure 6-5.)

Unlike the GOSUB. .. command, the RETURN command
is not followed by a line number. The reason for this is
readily apparent. Since a subroutine will likely be used
several times within a program, the destination of the
return command will necessarily vary, depending on the
location of the latest GOSUB ... command from which
the program is exiting.

BASIC itself supplies the destination for each particular
return. Each time it branches to a subroutine (from the
main program or from within another subroutine), it
keeps track of its departure point. When instructed to
return, it always brings us back to the line below the last
GOSUB. .. statement it just executed, ignoring any previ­
ous or subsequent GOSUB. .. commands.

This is the major distinction between a GOTO ... and a
GOSUB. ... A GO ... TO command is a major change of
direction in a program: it is a a one-way trip making no
provision for a return; and it does not remember its place
of origin. The GOSUB... branch, on the other hand,
being only a set of subsidiary operations rather than a
change of routing, is a round trip with a guaranteed·
return to its place of origin.

This brings up a cautionary note. You must be sure that
every single GOSUB... command in your program is
equipped with its matching RETURN command.

A Program Example
We will modify our former Music Quiz program (Figure
5-10) to take advantage of the efficiency provided by
subroutines.

Instead of giving the user a choice of questions, let's ask
him this time to answer all three questions; let's also use
counters to keep track of how many questions the user
answers correctly and how many incorrectly.

We'll need the following variables:

C$ = correct answer to a given question;

A$ = user's answer to a given question;

W = counter for number of wrong answers;

C = counter for number of correct answers.

We suggest that you consult the diagrams in Figures 6-2
and 6-3 while you read the explanations below.

The main part of the program now prints out each question
in turn and records in C$ the correct answer against
which it will compare the user's answer.

After each question is printed, the program branches to a
subroutine set off from the rest of the program by having
a totally different line sequence; i.e., 300-390. (The main
program lines are numbered 10-170.)

Follow the arrows on the left side of Figure 6-2 to identify
the occurrences of the GOSUB 300 command.

The subroutine performs the following steps (illustrated
in detail in Figure 6-3).

• User inputs answer (A$);

• Compare A$ to correct answer stored in C$;

• If A$ was incorrect, tell the user and supply the correct
answer, increment the counter W (wrong answer),
branch to the penultimate line of subroutine which
will print a blank line to separate program parts and
then lead to a RETURN;

• If A$ was correct, branch to a line congratulating the
user, increment the counter, C, which keeps track of
the number of correct answers, and RETURN to the
main program.

As Figure 6-2 shows, we repeat this sequence three times,
each time entering the subroutine from a different part of
the main program. Follow the arrows on the left side of
Figure 6-2 to trace the subroutine entries.

6-2 licensed Material·Property of Data General Corporation 093·400005

10 REM -- QUIZ PROGRAM WITH SUBROUTINE
20 PRINT TAB(22);"MUSIC QUIZ"
25 PRINT
26 PRINT
30 PRINT "HI THERE! EACH OF THE FOLLOWING 3 QUESTIONS WILL ASK YOU"
32 PRINT "FOR THE NAME OF A COMPOSER. PLEASE ANSWER BY TYPING THE"
35 PRINT "COMPOSER'S LAST NAME ONLY."
40 PRINT

42 REM--INITIALIZE COUNTERS
44 LET W=O
46 LET C=O

50 PRINT "QUESTION 1: WHO WROTE THE PASTORAL SYMPHONY?"
60 LET C$ = "BEETHOVEN"

~
70 GOSUB 300

80 PRINT "QUESTION 2: WHAT 19th c. COMPOSER LEFT AN UNFINISHED"
85 PRINT "SYMPHONY?"
90 LET C$ = "SCHUBERT"

<b
100 GOSUB 300

1

110 PRINT "QUESTION 3. WHAT MODERN BRITISH COMPOSER SET THE"
115 PRINT "MEDIEVAL NOAH PLAY TO MUSIC?"

~ 120 LET C$ = "BRITIEN"
130 GOSUB 300

3 140 PRINT "YOU HAD";C"'ANSWERS CORRECT AND";W;"ANSWERS INCORRECT" ~
150 PRINT
160 PRINT "** * ** * **. ** * *** * *** * * **. ***. *** * * *** * * ***. * ** * ** * •• **"
170 STOP

3

300 REM -- SUBROUTINE TO PROCESS QUIZ ANSWERS
310 INPUT A$
320 IF A$ = C$ THEN GOTO 360
330 PRINT "SORRY, IT WAS ";C$
340 LETW = W + 1
350 GOTO 380
360 PRINT "VERY GOOD."
370 LET C = C + 1
380 PRINT
390 RETURN

OG-06S12

Figure 6-2. Music QUiz Program Using a Subroutine

093-400005 Licensed Material-Property of Data General Corporation 6-3

We GOSUB 300 from

line 70 after Question 1,

line 100 after Question 2,

line 130 after Question 3.

Similarly, we execute three returns from the subroutine,
each time re-entering the program in a different place,
one line below the specific command line which sent us to
the subroutine. (Follow the arrows on the right side of
Figure 6-2 to trace the returns.)

From 70 GOSUB 300 RETURN to line 80 where
Question 2 is printed.

From 100 GOSUB 300 RETURN to line 110 where
Question 3 is printed.

From 130 GOSUB 300 RETURN to line 140 where user
is given the total of correct and wrong answers and the
program is terminated.

Looking at the last part of the program, you may have
noticed the STOP statement on line 170. We have placed
this command there as a preventive measure.

As it moves down in direct sequence, the program will, in
due time, automatically reach line 300 where the subrou­
tine begins, and thus enter the subroutine to no purpose.
The STOP command effectively guards the subroutine
from such unwarranted intrusion by the program.

Now take a quick look at the subroutine detail in Figure
6-3. Short as it is, our subroutine contains two branching
statements:

• At line 320, where we branch to sequence for processing
correct answers;

• At line 350, where we branch to line 380 (print blank
line and return).

The point to emphasize is that subroutines may contain
any number of control statements, in the same way that
they can contain other subroutines.

300 REM -- SUBROUTINE TO EVALUATE QUIZ ANSWERS I

DG·06513

6-4

Input
answer 1..----- 310

320
INPUT A$ Check answer

(A$)

sequence
for
wrong
answer

IF A$ = C$ THEN GOTO 360 -----I against the
correct

PRINT "SORRY, IT WAS ";~$ answer (C$)
LETW = W + 1
GOTO 3BO

U60 370

380

390

Supply correct
answer.

PRINT "VERY GOO
LET C = C + 1

PRINT

RETURN I

Increment count of
wrong answelS (W).
Skip over sequence
for processing correct
answer.
Note: Subroutine may
contain several
GOIO ...
statements.

Processing

D." sequence
for
correct
answer

Print blank
, line to

precede
next entry

I
Confirm that input
answer was correct.
Increment count
of correct
answer (C).

Figure 6-3. Subroutine in Music Quiz Program of Figure 6-2

Licenaed Material·Property of Data General Corporation 093-400005

Figure 6-4 displays a run of our Music Quiz program.

MUSIC QUIZ

HI THERE! EACH OF THE FOLLOWING 3 QUESTIONS WILL ASK
yqu FOR THE NAME OF A COMPOSER. PLEASE ANSWER BY
TYPING THE COMPOSER'S LAST NAME ONLY,

QUESTION 1: WHO WROTE THE PASTORAL SYMPHONY?
BEETHOVEN
VERY GOOD.

QUESTION 2: WHAT 19th c. COMPOSER LEFT AN
UNFINISHED SYMPHONY?
SCHUBERT
VERY GOOD.

QUESTION 3: WHAT MODERN BRITISH COMPOSER SET THE
MEDIEVAL NOAH PLAY TO MUSIC?
WALTON
SORRY, IT WAS BRITTEN

YOU HAD 2 ANSWER(S) RIGHT AND 1 ANSWER(S) WRONG

OG-06S14

Figure 6-4. Sample Run of Music Quiz Program

When subroutines are nested, a GOSUB ... originating
from a subroutine will return to the appropriate line
within the parent subroutine.

Note that only nine GOSUB statements may be executed
without executing a RETURN. An error will be generated
when the tenth is attempted. This, in effect, limits the
number of nested subroutines to nine.

Nesting is illustrated in Figure 6-5 with two levels of
nesting. We have deliberately selected a simple, somewhat
contrived example, so as to dramatize the flow of control.
As in Figure 6-2, the arrows on the left indicate GOSUB
commands, those on the right RETURN commands.

A program can also contain several independent subrou­
tines, identified by the line number which follows the
GOSUB command, and returning directly to the main
program.

OG-06982

.-----10 GOSUB 40

20 PRINT "EXAMPLE" ,.---,
30 STOP

40 PRINT "NEST";
50 GOSUB 80
60 PRINT "INE ";
70 RETURN

80 PRINT "ED ";

90 GOSUB 120
100 PRINT "ROUT";
110 RETURN

120 PRINT "SUB";
130 RETURN

140 END

*RUN

NESTED SUBROUTINE EXAMPLE
STOP AT LINE 30

Figure 6-5. Nested Subroutines

The ON ... GOSUB ... ELSE Statement
As with GOTO, there may be occasions when you want
to execute one of several subroutines based on a value or
variable. This is accomplished with the
ON ... GOSUB ... ELSE statement. This statement func­
tions exactly like ON ... GOTO ... ELSE except that pro­
gram execution returns to the next statement when the
subroutine has finished executing.

Again, we will modify our Music Quiz program to use
ON ... GOSUB ... ELSE. We will again give the user a
choice of questions. The program is shown in Figure 6-6.
We describe the program here.

In this example, the main body of the program is contained
in lines 10 through 95. Line 40 accepts the user's selection,
and line 50 sends control to one of these subroutines (or
back to the question if a number other than 1,2, or 3 was
entered).

093-400005 Licensed Material-Property of Data General Corporation 6-5

Each subroutine prints the appropriate question and
assigns the correct answer to the variable C$. When the
subroutine is finished, program execution continues with
statement 60. There, we input the user's response. If the
answer is correct, we print a congratulatory message. If
the answer is wrong, we tell the user the correct answer.
The user is then given the option to select another question.
If the user chooses to select another question, the process
is repeated. Otherwise, the program stops.

10 REM "QUIZ PROGRAM WITH ON ... GOSUB ... •
20 PRINT "TO SELECT YOUR QUESTION, TYPE 1 FOR EASY, 2 FOR'
30 PRINT "INTERMEDIATE, OR 3 FOR ADVANCED:'
40 INPUT N
50 ON N GOSUB 100,200,300 ELSE GOTO 20
60 INPUT A$
70 IF A$=C$ THEN PRINT "CORRECT-VERY GOOD' ELSE PRINT "SORRY-IT WAS ';C$
80 PRINT "WOULD YOU LIKE TO SELECT ANOTHER QUESTION? TYPE 'Y' OR 'N':'
90 INPUT S$
95 IF S~Y' THEN GOTO 20 ELSE STOP
100 PRINT "QUESTION 1: WHO WROTE THE PASTORAL SYMPHONY?'
110 LET C~BEETHOVEN'
120 RETURN
200 PRINT "QUESTION 2: WHAT 19TH C. COMPOSER LEFT AN'
205 PRINT "UNFINISHED SYMPHONY?'
210 LET C~SCHUBERT'
220 RETURN
300 PRINT "QUESTION 3: WHAT MODERN BRITISH COMPOSER SET THE MEDIEVAL'
310 PRINT "NOAH PLAY TO MUSIC?'
320 LET C$="BRITTEN'
330 RETURN

Figure 6-6. Music Quiz Program with
ON. .. GOSUB ... ELSE Statement

Keywords in Chapter 6
Table 6-1 lists the keywords introduced in Chapter 6.

Keywords in Chapter 6

Can be used in

Keyword Program Immediate
Statement Mode

GOSUB ... Yes No

RETURN Yes No

ON ... GOSUB ... ELSE Yes No

End of Chapter

6-6 Licensed Material·Property of Data General Corporation 093-400005

Chapter 7
Arrays and Subscripted Variables

Assume that you are selling real estate and that among
your listings you have nine Cape-style houses ranging in
price from $43,500 to $138,900. You would like to store
this information in your computer.

You begin by selecting nine variable names, one for each
of your Capes, thus:

C = Cape #1
D = Cape #2

K = Cape #9

Next you need to write nine separate assignment lines to
associate the price of each house with its corresponding
variable:

100 LET C = 119000
110 LET D = 43500

180 LET K = 96800

This process, which causes you to select and use up a
large number of variable names and to repeatedly type
single assignment statements for each variable, is unrea­
sonably cumbersome. (Imagine what it would mean if
you wanted to record information on 60 Capes instead of
only on 9.)

There is a better way of dealing with a large number of
variables of the same type.

It is possible to take all nine of your variables and group
them together under one single variable name which will
serve as a designation for the whole group. At the same
time, this single variable will also be capable of storing
each of your separate components individually, so that
you can have direct access to them.

Such a group of variables is known as an array. In this
chapter we will introduce you to two kinds of arrays:
one-dimensional and two-dimensional.

One-Dimensional Arrays

Subscripts
We will use the letter C (for Cape) as our array name
(that is, this variable will now denote your whole group of
nine Capes). Within C we can think of each specific
Cape by the numbers I through 9 (for example, Cape I,
Cape 2, etc.).

Now we can represent the price of house I (where I is any
number between I and 9), by the notation C(I).

The variable in parentheses (I) immediately after the
variable name is known as the subscript.

We can now describe C as a subscripted variable. And
since the array has only one subscript, (I), we refer to it
as a one-dimensional array. See Figure 7-\.

DG·06515

Figure 7-1. Subscripted Variable (Element of an
Array

Each subscript represents one single array member. In
our case, each subscript denotes one of the nine members
of array C. It is much less confusing to refer to each of
your Capes as C(I) ... C(9), rather than as C, D, E, or
whatever.

When pronouncing the names of individual elements of
an array, e.g., C(I), C(2), ... ,C(I), etc., we often say "C
sub I", "C sub 2", or "C sub I", etc., as a sort of verbal
shorthand to identify the subscripted elements.

093·400005 Licensed Material·Property of Data General Corporation 7-1

Numeric and String Arrays
There are two types of arrays in MP /BASIC: numeric
arrays and string arrays. As you might guess, numeric
arrays are composed of elements that are numbers, while
string arrays are composed of elements that are character
strings. You cannot mix character strings and numbers
within the same array. (There are ways, however, to
indirectly accomplish this mixture, one of which IS

illustrated in the example at the end of this chapter.)

Naming Arrays
As we have mentioned, a subscript always appears within
parentheses following a variable name. The presence of
the parentheses distinguishes an ordinary variable from a
subscripted variable. Thus, Cl is an ordinary variable
name, whereas C(1) denotes the first member or element
of array C, and C 1 (1) denotes the first element of array
Cl.

You may not use the same name as both a simple variable
name and as an array name within the same program. In
our example, you can use the letter C as your array name
only if you have not already used it earlier as an ordinary
variable.

The same rules apply for array names as for variable
names of the same type. That is:

• the name of a numeric array consists of an alphabetic
character followed by any combination of alphabetic
characters, digits, and the underscore character;

• the name of a string array consists of an alphabetic
character followed by any combination of alphabetic
characters, digits, and the underscore character, with
a dollar sign as the terminating character.

(This is an enhancement to the ANSI standard, which
allows array names to be composed only of a single letter
for numeric arrays, and a single letter followed by an
optional digit and the dollar sign for string arrays.)

Figure 7-2 is a visual representation of array C, which
holds nine elements.

Subscripted
variable

DG-06516

- Array C

C(1) --Value
C(2)

C(3)

C(4)

C(5)

C(6)

cm
C(8)

C(9)

Figure 7-2. Subscripted Variable Names in Array C

Assigning Values to Members of an Array
Figure 7-2 showed us the elements of array C, but these
elements have not as yet been assigned any values, that
is, no sales price is as yet associated with each of the nine
houses represented by CO) through C(9). We would like
the array to hold the values shown in Figure 7-3.

Array C

C(1) = 119000

C(2) = 43500

C(3) = 138000

C(4) = 62300

C(5) = 87000

C(6) = 89200

cm = 52400

C(8) = 101000

C(9) = 96800

DG-06517

~ House #1
is priced at
$119,000

Figure 7-3. ValuesforSubscripted Variables in Array
C

Assigning a value to each member of an array is very
easy.

Since we have a single variable name for all the Cape
houses, and since each house is designated by a single
subscript, we need only create a loop that will go from 1
to 9, read the price of each house from data lines, and
store that information in the appropriate array element.
We call this reading values into an array.

Figure 7-4 shows a program that reads our values (Cape
prices) into array C, using only four instruction lines
(60-90) instead of the original nine we would need to
write separate LET statements for each of the nine
variables. Moreover, this kind of simple loop will serve to
read values into any array, regardless of its size.

7-2 Licensed Material·Property of Data General Corporation 093-400005

NOTE: In the program in Figure 7-4, we were able to
create array C simply by referring to it in line
70. This was possible due to special conditions
(to be explained later) pertaining to the array's
small size. Normally, however, you would create
an array by using a special declaration statement.
(See DIM and OPTION BASE statements,
below.)

Up to now we have been using the letter I as a subscript
for array C. In the program in Figure 7-4 we also use I as
our loop counter.

As you know, you can use any letter you wish as your
loop counter but, as long as you are within the loop, you
must be sure to use that same letter as your subscript. If,
for instance, your loop statement had read

60 FOR T = 1 TO 9

you would designate your array elements as C(T):

70 READ C(T)
80 PRINT C(T)

This is because the value of your subscript at any given
time is keyed to the value of your loop counter; without
such a correspondence, the subscript would have no
specific value attached to it.

It is thus conceivable that your array subscripts would
change several times within a program, depending on the
letters you use as loop counters. You might, for example,
designate your array elements as C(I) and subsequently
as C(J), and C(Z).

10 REM READ VALUES INTO AN ARRAY

But no matter how many different letters you use as
subscripts, the order and contents of your array elements
remain unaffected. C(3) is always the third element of
array C, regardless of whether you call it C(T), C(Z), or
whatever (as long as the subscript corresponds to the loop
counter or has been assigned the proper value outside of a
loop).

The program in Figure 7-4 will execute as follows.

On its first pass, it will read the first value on the data
line, namely 119000 (the sale price of Cape number 1),
and store it in location C(I) which corresponds to location
C(1) since 1= 1.

On the second pass, C(I) will now correspond to location
C(2), since I = 2; the program will store in this subscript
the second value on the data line. This continues until the
program has read and stored all the data.

At the end of the loop, our array C will contain nine
different values, each tucked away in the location corre­
sponding to its individual element number. The resulting
printed output will look like Figure 7-5.

20 PRINT "ARRAY 'C': CAPE HOUSES ON MARKET"
30 PRINT
50 PRINT "CAPE", "PRICE"
60 FOR I = 1 TO 9
70 READ cm
80 PRINT I,CO)
90 NEXT I
95 PRINT
99 PRINT

100 DATA 119000,43500, 138000,62300,87000,89200,52400, 101000,96800
110 END

DG-06518

Figure 7-4. Program to Read Values (Cape Prices) into Array C

093-400005 Licensed Material-Property of Data General Corporation 7-3

DG·06519

ARRAY 'C': CAPE HOUSES ON MARKET

CAPE

1
2
3
4
5
6
7
8
9

PRICE

119000~
43500 ~
138000

Figure 7-5. Output from Array (Cape House)
Program

10 REM READ VALUES INTO AN ARRAY
20 PRINT "ARRAY 'C': CAPE HOUSES ON MARKET'
30 PRINT
50 PRINT "CAPE", "PRICE"
60 FOR 1= 1 TO 9
70 READ C(I)
80 PRINT I,C(I)

90 NEXT I
95 PRINT
99 PRINT

100 DATA 119000, 43500, 138000
110 DATA 62300, 87000, 89200
120 DATA 52400, 101000,96800
150 REM SEARCH AN ARRAY
160 PRINT "HOUSES OVER $90000:"
170 LET F = 0
180 FOR H = 1 TO 9
190 IF C(H) < 90000 THEN GOTO 220
200 PRINT "CAPE #"; H; "="; C(H)
210 LET F = F + 1
220 NEXT H
230 IF F<>O THEN GOTO 250
240 PRINT "NO HOUSES IN THAT PRICE RANGE"
250 END

DG·06520

Referencing Members of an Array
Referencing (sometimes also described as addressing)
means referring to a specific data item in your program.
(When you type, for example, PRINT Z, you are
referencing that variable, and the computer will print out
its current value.)

You can retrieve any member of your array by referring
to its subscript, which is its individual address within the
array. When added to the program, a line such as

105 PRINT "C(4) = "; C(4)

will produce the following output:

C(4) = 62300

Change line 105 a few more times to reference other
members of array C.

Figure 7-6. Array Search Added to Cape House Program

7-4 Licensed Material·Property of Data General Corporation 093·400005

Your subscripts can also occasionally be expressions, and
you can reference them as such. For instance, assume
that you are writing a loop to compare the price difference
between each of your nine houses and the one preceding
it, beginning with house number 2.

On each pass of the loop, the current house will then be
designated as C(I) and its predecessor as C(I-I).

Searching an Array
Often, especially in working with large arrays, you may
not know which element contains the data you are looking
for. Suppose, for example, that you want a list of all
Capes priced over $90,000 without knowing their location
within the array.

You would reference these elements by having the
computer search the entire array and apply an
IF ... THEN ... test to retain only the desired elements.

That is, you write a loop which will look at each single
element, C(I) (where I = 1 to 9), test whether it falls in
your price range, and print out only those elements for
which the test is true.

Figure 7-6 illustrates this addition to the program. (Lines
10-120 correspond to the original program in Figure
7-4.)

You will find this type of array search extremely useful
any time you are faced with the need of retrieving a set of
data from an array.

Flags
In lines 170,210, and 230 of the program in Figure 7-6,
we performed several operations with variable F without
explaining them first.

The idea behind these operations was to build into the
program a signal to tell us whether the array search was
successful or not.

Had we been able to use a visual signal such as a flag, we
might agree that "flag down" would mean "nothing was
found", whereas "flag up" would mean that the search
turned up at least one item.

We can use variable F to function internally as such a
flag: if the value of F is zero, this will mean that nothing
was found; any value of F greater than zero will signal
that some houses were found and will tell us how many.
In this way, F can serve simultaneously as a flag and as a
counter.

We set F to ° before searching the array (line 170).
When the program encounters a house priced over
$90,000, it will reach line 210, where it will increment
the value of F by 1. (If the array contains no houses over
$90,000, the value of F will remain 0, since the program
will never reach line 210.)

Subsequent passes of the loop will alter the value of F to
reflect the number of additional houses found.

At the end of the program, we check the value of F by
means of an IF ... THEN ... statement. If that value is not
equal to zero, this means that at least one house in the
desired price range was found and listed for the user and,
therefore, the program can terminate. If, however, the
value of F has remained at zero, this means that no
houses were found. In that case, the program will print
out a message such as the one in line 240:

NO HOUSES IN THAT PRICE RANGE

In searches involving large numbers of items it may also
be useful to have the program print a message giving the
value of F (i.e., total number of items found).

Figure 7-7 illustrates the result of the array search,
wherein four of the Cape houses have been referenced
and listed as being in the right price range.

HOUSES OVER $90000 :

CAPE # 1 = 119000}
CAPE # 3 = 138000
CAPE # 8 = 101000
CAPE # 9 = 96800

DG·06521

Figure 7-7. Sample Run of Program of Cape House
(Array Search Version)

Try running the program and changing line 190 so as to
look for houses in a nonexistent price range. For example,
test for houses under $40,000 (change the wording of the
heading in line 160 as well). In this way you will see how
the flag operates to signal negative results.

093·400005 Licensed Material·Property of Data General Corporation 7-5

Declaring an Array:
The DIM Statement
An array declaration is a statement that tells the program
how many elements your array is to contain. Then the
appropriate number of spaces is reserved for that array
and made available to it. In a moment you will see why
this was not necessary in our previous example.

To declare an array, you use a DIM statement. (We have
previously encountered this statement in Chapter 3 in
connection with declaring string variable length.) A DIM
statement for arrays lists the name of your array and its
last subscript number, thus:

5 DIM 0(12)

This is interpreted as meaning that you are creating
array D which is to contain up to 13 elements, with
subscripts ranging from 0 to 12. The element count always
starts with 0 unless otherwise specified. (See OPTION
BASE, below.) The program will then allow you to
reference up to 13 elements in array D.

The ANSI standard specifies that your DIM statement
must appear on a lower-numbered line than your first
reference to this array. MP /BASIC, however, requires
only that program execution pass through the DIM
statement before the array is referenced; thus, your
dimensioning declaration may appear anywhere in the
program, provided the appropriate control statements
cause it to be reached before you reference the array.

Once you have declared an array, you cannot revise its
dimensions. That is, having explicitly dimensioned array
D for 13 elements by means of a DIM statement, you
cannot later in the program use a second DIM statement
to redimension the array to some other number of
elements. An array can be dimensioned only once in a
program.

The maximum size of one-dimensional arrays is 32,767,
although the actual size usable is somewhat less than this
maximum.

If your program has several arrays, each array must be
dimensioned separately, although you can combine sever­
al declarations on a single line. For example:

5 DIM A(30), 0(80), X(15)

You need not actually use up all the elements you have
reserved in your DIM statement. Thus, you might choose
to assign values to only 20 out of the 31 members of array
A above. But the program will allow you to address any
element between 0 and 31. The function of the dimension
statement, then, is to set the maximum size of any
particular array.

Should you, on the other hand, attempt to refer to a 35th
element, A(35), in an array dimensioned for only 31
elements, you will get an error message.

Default Values of DIM

When the program finds a reference to an array that has
not been preceded by a dimensioning statement, it auto­
matically reserves 11 spaces for that array, with subscripts
ranging from 0 through 10. This is described as a default
value (assigned in default of any other declaration on
your part).

It follows that you must explicitly dimension all arrays
exceeding 11 elements.

Now the reason for our undeclared array in Figure 7-4
becomes clear. Array C, which we used there, referenced
only nine elements; hence the default size allocated to
that array in the absence of an explicit DIM statement
was sufficient for our purposes.

Thus, if your array contains fewer than 11 elements, a
dimensioning declaration is optional. Yet omitting that
declaration results in wasted memory space, since the
default value may allocate you more space than you need
or want available.

Declaring an Array:
The OPTION BASE Statement

As we noted earlier, the first element in any array
corresponds to, i.e., I = 0 where I is the subscript of the
array. Our loop to read and print out array C (the list of
nine houses and their sale prices) in Figure 7-4 could thus
have been written

60 FOR I = 0 TO 8

rather than

60 FOR I = 1 TO 9

But since we were also printing out the value of the
subscript, this would have caused the printed list of Capes
to begin with Cape number 0, a bizarre number for a
house priced at $119,000!

As a result of such aesthetic considerations, element 0 of
array C has remained unused (as has default element 10
at the array's upper bound).

If we want to avoid wasting that extra Oth element, we
can assign a different lower bound to our arrays; that is
to say, we can cause the beginning of an array to be set at
either I = 1 or at I = O.

This is done through an OPTION BASE declaration.

Thus,

7-6 Licensed Material-Property of Data General Corporation 093-400005

5 OPTION BASE 1
10 DIM 0(7). W(29)

means that arrays D and Ware to contain 7 and 29
members, numbered from 1 to 7 and from 1 to 29,
respectively.

In the absence of an OPTION BASE statement, the
default value of the array's lower bound would be O.

The OPTION BASE statement establishes the lower
bound for all arrays in a program. It should be used only
once in a program, and should be executed before the
first DIM statement.

In summary:

• A DIM statement declares the upper bound of an
array subscript;

• An OPTION BASE statement declares the lower
bound of all array subscripts in your program.

A Program Example
In this example, we are helping the Audubon Society
with a bird survey. They have divided the country into
three regions, and they would like a program that will
record the number of bird species sighted in each region
during each of the year's four seasons. The program
should also compute the average number of species sighted
in each region per season.

We begin by creating three one-dimensional arrays, NI,
N2, N3, one for each of the three regions. Each of these
arrays will contain four elements indicating the number
of species sighted in each of the four seasons in region
one, two, and three. (The program will read the values
for these array elements from data lines.)

SEASON ARRAY N1
REGION 1

SPRING N 1 (1)

SUMMER 2

FALL 3

DG-06522

Figure 7-8 illustrates the three arrays NI, N2, and N3.

Reading along Figure 7-8 horizontally, we see that

NI(1), N2(1), N3(1) =

NI(2), N2(2), N3(2) =

and so on.

number of species sighted
during season 1 (spring) in
regions 1, 2, and 3;

number of species sighted
during season 2 (summer)
in regions 1, 2, and 3;

This is also the way in which our program will read the
data, so we should enter our values in that same order;
i.e., we should list all the data for a given season, I, for
regions 1 through 3 before moving on to the next season.

Since it will be necessary to total the number of species
sighted in each region regardless of season, 'we'll also
need the formula

SI = SI + NI(I)
S2 = S2 + N2(I)
S3 = S3 + N3(I)

where

SI = the sum total of species sighted in region 1
S2 = the sum total of species sighted in region 2
S3 = the sum total of species sighted in region 3

Lastly, to determine the average number of species per
region, we simply divide the total for each region S 1, S2
and S3 by 4 (the number of seasons):

Average for region 1: SI/4
Average for region 2: S2/4
Average for region 3: S3/4

ARRAY N2 ARRAY N3
REGION 2 REGION 3

N2(1) N3(1)

N2(2) N3(2)

N2(3) N3(3)

Figure 7-8. Three Arrays for Bird Surveying Program

093-400005 Licensed Material-Property of Data General Corporation 7-7

5
10
20
30
40
50
60
70
80
90

REM ONE DIMENSIONAL ARRAY: BIRD SURVEY (ALL SPECIES. 3 REGIONS. 4 SEASONS)
FOR I = 1 TO 4----- I = Season

READ N 1 (I). N2(1). N3(1)-------- Season I - all regions

LET S 1 = S 1 + N 1 (I) } Increment total number of species
LET S2 = S2 + N2(1)------- per region (all seasons)
LET S3 = S3 + N3(1)

NEXT I

100

PRINT "AVERAGE # OF SPECIES SIGHTED IN REGION 1 =";S1/4
PRINT "AVERAGE # OF SPECIES SIGHTED IN REGION 2 =";S2/4
PRINT "AVERAGE # OF SPECIES SIGHTED IN REGION 3 =";S3/4 °71\0, 92, 40, 70,180,315,200,60,53

Nl(l) N2(1) N3(1)

DG·06523

Figure 7-9. Bird Surveying Program (Using Three Arrays)

Our program (Figure 7-9), will read the data into the
three arrays, then total and average them for each array.

This will produce the output shown in Figure 7-10.

AVERAGE # OF SPECIES SIGHTED IN REGION 1 = 136.75
AVERAGE # OF SPECIES SIGHTED IN REGION 2 = 86.75
AVERAGE # OF SPECIES SIGHTED IN REGION 3 = 124.25

DG-06524

Figure 7-10. Output from Bird Surveying Program
(Using Three Arrays)

Two-Dimensional Arrays
(Double Subscripts)

The bird survey program in Figure 7-9 called for three
separate one-dimensional arrays, Nl, N2 and N3, one
for each region. Each array contained four elements,
indicating the number of species sighted in each of the
four seasons.

Thus, arrays Nl, N2, and N3 corresponded respectively
to regions 1, 2 and 3, and the subscript I denoted the Ith
season.

Since all the above arrays deal with similar data, it would
certainly be helpful to combine them into a single array
capable of distinguishing among regions as well as among
seasons. Figure 7-11 illustrates such an arrangement.

N1 N2 N3

(I) ~ SEASON (J)
1 2 3

SPRING 1 67 15 89

SUMMER 2 210 92 40 ~2nd

FALL 3 70 180 315
row

WINTER 4 200 60 53

t
1st column

DG·06525

Figure 7-11. Matrix References both Regions and
Seasons

By placing our previous arrays Nl, N2 and N3 side by
side, as before, we obtain a two-dimensional arrangement
of elements. Such an arrangement is called a matrix.

As you look at this matrix, you notice rows of elements
(horizontal), and columns of elements (vertical). Figure
7-11 has four rows, each corresponding' to one of the
seasons, and three columns, one for each region.

If we use the subscript I to denote rows (e.g., 1=1
corresponds tq spring, 1=2 to summer, etc.), and the
subscript J to designate the columns (J = 1 to 3 for regions
1 to 3), then any element in row I and column J represents
the number of species sighted in season I and region J.

We can represent such a value by using an array with two
subscripts, i.e., N (I,J)

7-8 Licensed Material·Property of Data General Corporation 093·400005

05 REM TWO-DIMENSIONAL ARRAY, BIRD SURVEY 3 REGIONS, 4 SEASONS
10 DIM N(4,3), S(3) 0(Declare arrays
20 FOR I = 1 TO 4 _ -Outer loop

FOR J = 1 TO 3 - - - --.-I+--+----Inner loop
READ N(I,J)~;-:;:::;;~:-~-t-________ _

30
40

LET S(J) = S(J) + N(I,J)--I.J Number of species
- __ Increment total Season I, Region J

NEXT J - - - - - --
50
60
70

NEXT I _________ ---' number of species
per region

80 FOR J = 1 TO 3
90 PRINT "AVERAGE NO. OF SPECIES FOR REGION"; J; "="; S(J)/4

100 NEXT J
120
130

DATA 67,15,89,210,92,40,70,180,315,200,60,53
END

OG·06526

Figure 7-12. Bird Surveying Program Using a Two-Dimensional Array

Declaring a Two-Dimensional Array
You declare a two-dimensional array by using a DIM
declaration in which you list both of the array's subscripts.

The statement

5 DIM N(4,3)

means that you are reserving space for a 5 x 4 matrix, or
a total of 20 elements, including the initial zero. This
gives you five rows and four columns.

NOTE: You cannot use the same variable name for a
one-dimensional and a two-dimensional array:
C(I) cannot be reused in the same program as
C(I,J).

Default Size of Two-Dimensional Arrays
In the absence of a DIM declaration, the default size
assigned to a double-subscripted array is 121 elements,
i.e., an 11 x 11 matrix, 0 to 10, in each dimension.

Referencing Elements of a
Two-Dimensional Array
To address any member of a two-dimensional array, we
must refer to both its subscripts. Thus, the number of
species sighted in the fall in region 2 could be expressed
as N(3,2)

Similarly, you could express the number of species sighted
in the spring in region 1 as N (1,1) and so on.

Moving from left to right, the first subscript denotes rows
(here, I), and the second denotes columns (here, J).

Program Example
We will now modify the bird survey program by replacing
its original three arrays with a single two-dimensional
array.

We will include a nested loop in the program to read the
data. Since the program will read the data by rows, I will
be the main, or outer loop.

For each value of I (going from 1 to 4) we will read 3
values of J (going from 1 to 3); i.e., for every season
represented by I, we will read in the number of species
sighted in that season in each of the three regions, J.

Hence, J will be the inner loop.

Since the regions are now represented by a separate
subscript, J, the three variables, SI, S2, and S3 (which
we needed to compute the totals and averages of species
per region) can now be replaced by a single array S, in
which the element S(J) denotes the total number of species
sighted in region J.

Figure 7-12 shows our new bird survey program. Figure
7-13 shows how the nested loops will work during
execution.

093-400005 Licensed Material·Property of Data General Corporation 7-9

00-08527

Region
Number of
species sighted

~:::~: : ~; J
J = 3 N(l,3) =¥

;'(

11=11 ~=1
J = 2

Season 1 Region 3

J = 1
J = 2
J = 3

J = 1
J=2
J = 3

J = 1
J=2
J=3

N(2,l) = 210
N(2,2) = 92
N(2,3) = 40

N(3,l) = 70
N(3,2) = 180
N(3,3) = 315

N(4,l) = 200
N(4,2) = 60
N(4,3) = 53

Figure 7-13. Nested Loops in Bird Surveying Program
(Two-Dimensional Array Version)

The computer passes through the I loop 4 times; on each
of these passes, the J loop is run 3 times. Thus, the J loop
is run a total of 12 times.

Figure 7-14 displays the program's output.

AVERAGE NO. OF SPECIES FOR REGION 1 = 136.75
AVERAGE NO. OF SPECIES FOR REGION 2 = 86.75
AVERAGE NO. OF SPECIES FOR REGION 3 = 124.25

DG-08528

Figure 7-14. Output/rom Bird Surveying Program
(Two-Dimensional Array Version)

Naturally, the results of this printout are exactly the
same as those obtained with our earlier program (Figures
7-10 and 7-14 are identical). But we arrived at these
results more efficiently when we used two-dimensional
arrays.

If we had been dealing with 200 regions instead of only
three and working with one-dimensional arrays, we would
have needed 200 such arrays (N1...N200) as well as 200
program lines to increment two hundred variables
(S1...S200) representing the totals for each region.

But by using two-dimensional arrays you can handle any
amount of data by means of the same half dozen lines we
used for our I and J loops in Figure 7-12.

String Arrays
So far, in this chapter, we have discussed numeric arrays.
Arrays may also contain string data.

String arrays work just like numeric arrays. They can be
one- or two- dimensional. Each individual element in a
string array can accommodate a maximum of 18 charac­
ters.

Let's go back to our Cape house example. In addition to
the price of a particular house, we might also want to
save the street address. We accomplish this by using a
two-dimensional array of 2 columns with 9 elements in
each column. Column one will contain the address, column
two will contain the price. Figure 7-15 illustrates this
array.

ARRAY 'CAPESS':CAPE HOUSES ON MARKET

ADDRESS

14 MAIN ST.
17436 FARMING ST.
2 KINGSIAY CT.
4638 JONES AVE.
345 CENTER ST.
26 CHURCH LN.
1629 LAKE ST.
100 BEACH LN.
226 I. 26TH ST.

PRICE

119000
43500
138900
62300
87000
89200
52400
101000
96800

Figure 7-15. A Two-Dimensional String Array

7-10 Licensed Material·Property of Data General Corporation 093-400005

The program shown in Figure 7-16 creates, and then
prints, this array.

10 REM 'CREATE AND PRINT A STRING ARRAY"
20 DIM CAPES$(9,2)
30 FOR 1=1 TO 9
40 FOR)=1 TO 2
50 READ CAPES$(I,J)
60 NEXT J
70 NEXT I
80 PRINT 'ARRAY 'CAPES$':CAPE HOUSES ON MARKET"
90 PRINT

100 PRINT 'ADDRESS PRICE"
110 PRINT
120 FOR 1=1 TO 9
130 FOR)=1 TO 2
140 PRINT CAPES$(I ,J),
150 NEXT J
160 PRINT
170 NEXT I
180 STOP
190 DATA '14 MAIN STREET" ,'119000" ,'17436 FARMING ST."
200 DATA '43500",'2 KINGSWAY COURT",'138900"
210 DATA '4638 JONES AVE." ,'62300" ,'345 CENTER ST."
220 DATA '87000",'26 CHURCH LANE",'89200"
230 DATA '1629 LAKE STREET",'52400",'100 BEACH LANE"
240 DATA '101000",'226 W. 26TH ST.",·96800"

Figure 7-16. Revision a/Cape House Program to Create
and Print a Two-Dimensional String Array

The array is created in statements 20 through 70, using
the DATA statements in lines 190 through 240. The
array is printed in lines 100 through 170.

Notice the use of the DIM statement in line 20. Without
this statement, the program would still work, but we
would be wasting memory space.

The data in one array must be all numeric or all string;
you cannot have an array which contains a mixture of
string and numeric data. Notice that we got around this
restriction in the program shown by treating the prices as
character strings. If you want to expand the program in
Figure 7-16 to perform some arithmetic calculation on
the prices (for example, calculate the average price), you
can use the VAL function (described in Chapter 8) to
extract the numeric value represented by the character
strings in the second column of the arrray CAPE$.

Individual elements in a string array can accommodate a
maximum of 18 characters.

Keywords in Chapter 7
Table 7-1 lists the keywords introduced in Chapter 7.

Table 7-1. Keywords in Chapter 7

Can be used in

Keyword Program Immediate
Statement Mode

DIM Yes Yes

OPTION BASE Yes Yes

End of Chapter

093-400005 Licensed Material-Property of Data General Corporation 7 -11

Chapter 8
Functions

Functions are independent programs stored in the com­
puter that perform specific mathematical or string opera­
tions. A user program can call a function program
whenever it needs to have any of these operations execut­
ed.

BASIC, like other systems, makes available to you a
repertoire of functions, which you can use throughout
your programs at will. Such a collection saves you, as a
programmer, a great deal of coding time and enables you
to use a function without having to know the details of
the code that produced it.

In this chapter we discuss two kinds of functions:
implementation-defined functions made available to you
by the system and user-defined functions, which you can
create yourself.

Implementation-Defined Functions
There are two types of implementation-defined functions:

Mathematical functions

String functions

Parts of a Function
Figure 8-1 illustrates the parts of a function; these are
common to mathematical and to string functions alike.

OG-06655

/1\
Function Argument Always
name in

parentheses

Figure 8-1. Parts of a Function

Let us consider each of these parts very briefly.

The function name is usually followed by an argument;
this may be either a constant, a variable, or an expression
which you supply at the time you call for the function, for
example,

SQR(100)

SQR(A"'2 + 8"'2)

Note that the argument must always be enclosed in
parentheses.

You must ensure, of course, that your variables have
been assigned specific values before the computer reaches
the line on which you wish the function to be executed.
The value of the function is the result that the function
returns after it has been executed.

Calling a Function

Calling a function (also described as invoking or referenc­
ing a function) is the process whereby you cause the
system to execute a function as part of your program.

To call a function, you name that function and list its
argument within the program line where you wish it
executed. For example,

100 LET X = SQR(100)

or

100 PRINT LEN(A$)

After you have invoked the function, the program will
retrieve the function for execution and transfer its result
(the value) into your program. Thereafter, it will resume
ordinary execution according to normal line order.

We illustrate briefly with the SQR(X) function. This is a
mathematical function, but the process is the same for
string functions.

Our sample program in Figure 8-2 asks you to INPUT a
total area, A, after which it calls the SQR(A) function to
give you the dimension of one side of a square capable of
containing that area. We show the output immediately
following the program.

You can call a function any number of times within a
program.

093-400005 Licensed Material-Properly of Data General Corporation 8-1

Order of Execution
10 REM CALLING A FUNCTION The parts of a function are executed in the following

order: 20 PRINT "WHAT IS YOUR TOTAL AREA ";
30 INPUT A
40 S = SQR(A) • Function 1. Operations within the argument are taken care of.
50 PRINT "YOUR SQUARE SHOULD BE"; S;" BY"; S called
RUN

2. The function is evaluated.

WHAT IS YOUR TOTAL AREA? 144
YOUR SQUARE SHOULD BE 12. BY 12.

3. All other arithmetic operations in the statement are
done in their normal order of precedence. (See
Chapter 2.)

DG·08856

Figure 8-2. Calling a Function

Function

ABS(X)

ATN(X)

COS(X)

*DATE

*DEG(X)

EXP(X)

* FP(X)

INT(X)

*IP(X)

LOG(X)

*MOD(X,Y)

*PI

*RAD(X)

*REM(X,Y)

RND

SGN(X)

SIN (X)

SQR(X)

TAN (X)

*TIME

Table 8-1. Predefined Mathematical Functions

Function Value

The absolute value of X.

The arctangent of X in radians, that is, the angle whose tangent is X. The range of the function is
-(pi/2)<ATN(X)«pi/2) where pi is the ratio of the circumference of a circle to its diameter.

The cosine of X, where X is in radians.

The current date in decimal form YYDDD, where YY represents the last two digits of the year and
DDD is the number of days elapsed in the year; for example, the value of DATE on May 9, 1977
was 77129. See also the string function DATE$.

The number of degrees in X radians.

The exponential of X, that is, the value of the base of natural logarithms (e=2.71828 ...) raised to
the power X; if EXP(X) is less than machine infinitesimal, then its value shall be replaced by zero.

The fractional part of X: X - IP(X); for example, X = 1.345, FP(X) = .345.

The largest integer not greater than X; for example, INT(1.3) = 1 and INT(-1.3) = -2.

The integer part of X: X - FP(X); for example, X = 1.345, IP(X) = I.

The natural logarithm of X; X must be greater than zero.

Modulo function. X-Y * INT(X/Y) if Y is nonzero; generates an error message if Y is zero.

The constant 3.14159 ... which is the ratio of the circumference of a circle to its diameter.

The number of radians in X degrees.

Remainder of the division X/Yo X-Y * IP(X/Y) if Y is nonzero; generates an error message if Y is
zero.

The next pseudorandom number in an implementation-supplied sequence of pseudorandom numbers
uniformly distributed in the range O<=RND<l.

The algebraic "sign" of X:-l if X<O, 0 if X=O, and + 1 if X>O.

The sine of X, where X is in radians.

The nonnegative square root of X; X must be nonnegative.

The tangent of X, where X is in radians.

The time elpased since the previous midnight, expressed in seconds; for example, the value of TIME
at 11:15 AM is 40500. See also the string function TIME$.

'MP /BASIC extensions to ANSI standard functions.

8-2 Licensed Material·Property of Data General Corporation 093-400005

Mathematical Functions
Table 8-1 summarizes the mathematical functions avail­
able in MP/BASIC.

Note that the variable X appearing in this table as an
argument for each function is a "dummy" variable. That
is, when you invoke any particular function, you may
replace variable X by any other variable, constant, or
expression (as previously illustrated) provided always that
you have already defined these in your program.

Most of the functions listed in Table 8.1 are well known
and well defined, except for the RND function. Further
explanation of this function is supplied in the next two
sections.

RND: The Random Number Function:
Each time it is invoked, this function produces a random
number greater than or equal to zero, but smaller than
one.

Observe that this function does not take an argument.

The RND function will produce an identical sequence of
random numbers each time you run a given program. But
this predictability can be eliminated by means of the
RANDOMIZE command. (See the following section.)

As Figure 8-3 shows, the RND function (which we
invoked within a loop) generated 10 random decimals.

10 REM GENERATE RANDOM NUMBERS
20 PRINT "RANDOM NUMBERS" Loop will
30 FOR 1=1 TO 10 f-------- generate

10 random
40 PRINT RND""",--- numbers
50 NEXT I ____ Calling the
60 END function

• RUN

RANDOM NUMBERS

.442246

.902405

.453201

.457184

.727097

.32666

.574478
6.35682E-02

DG-08867

. 759018

.486267

Figure 8-3. The RND Function

You are, however, by no means limited to that particular
range; you can obtain random numbers within any range
of your choice.

Thus, assuming you wish a random number in the range
A to B, the general formula you would use is

(B - A) • RND + A

Hence, if A = 1 and B = 6, you would write

(5 • RND + 1)

to get random numbers from 1 to (but not including) 6.

You have equal latitude in terms of determining whether
your random numbers should be decimals or integers.

Should you wish random integers, you would combine the
RND function with the INT function. Thus, in order to
generate a random integer between A and B, use the
formula:

INT«B - A + 1) • RND) + A

To illustrate, the program in Figure 8-4 below generates
10 random integers ranging from 1 through 6.

DG-08658

10 REM GENERATE RANDOM INTEGERS
20 PRINT "RANDOM INTEGERS"
30 FOR I = 1 TO 10
40 PRINT I T(6*R D + 1)
50 NEXT I
60 END

RUN

RANDOM INTEGERS

3
6
3
3
5
2
4
1
5
3

INT
function
combined
with RND

function

Figure 8-4. Generating Random Integers

RANDOMIZE
As we mentioned earlier, the RND function will produce
an identical sequence of numbers every time you run a
given program .

This predictability is an advantage while you are trying
to debug (correct errors in) your programs, but it can be
a distinct liability otherwise.

The RANDOMIZE statement allows you to bypass the
predefined sequence of random numbers and to generate
new and unpredictable sequences each time you execute
a given program.

093-400005 Licensed Material-Property of Data General Corporation 8-3

10 RANDOMiZE.... Place before
20 FOR 1= 1 TO~5f------------ RND function

in program
:~ ~~~;I .. VALUE .. ;I; .. IS ";RN~D

DG·06659

RND with randomize command
will produce
disimilar
random numbers

Figure 8-5. Effect of RANDOMIZE Command

To use this facility, you merely type the command
RANDOMIZE (preceded, of course, by a line number if
you want it executed as a statement in your program).
Place this command so that it precedes your first use of
the RND function in the program.

The program in Figure 8-5 illustrates the effect of the
RANDOMIZE command.

DG·06660

VALUE 1 IS .587479
VALUE21S .128571
VALUE 3 IS 8.40302E-02
VALUE 41S .111328
VALUE 5 IS .497818

Figures 8-6 and 8-7 represent two separate runs of the
above program. Note that each run produced a different
sequence of random numbers.

Figure 8-6. One Run of Random Number Program
Using RANDOMIZE

Function

*BSTRS(V,R)

*BV AL(BS,R)

*CHRS(M)

*DATES

*LEN(AS)

*ORD(AS)

*POS(AS,BS)

*POS(AS,BS,M)

*STRS(X)

*TIMES

*VAL(AS)

Table 8-2. Predefined String Functions

Function Value

The string representing the value of the binary number V in base (radix) R. Complements
BV AL(BS,R).

The 16-bit unsigned binary value (in base R) of the number represented by the string BS.

The string character for which M is the ASCII numeric representation. Complements ORD(AS).

The date, expressed as the string yy/mm/dd. See also the numeric function DATE.

The number of characters in the string AS.

The decimal number which is the ASCII code for the single character AS. Complements
CHRS(M).

The position of the first

occurrence (if any) of string BS within string AS. If BS does not occur within AS, returns O. If M
is specified, the search begins at position M in AS (characters in positions 1 through M-l are
ignored).

The string representation of the decimal value of expression x. Complements V AL(AS).

The time of day, as the string NN:MM:SS. See also the numeric function TIME.

The value of the first block of numeric characters (if any) within the string AS. Complements
STRS(X).

°MP /BASIC extensions to ANSI standard functions.

8-4 Licensed Material-Property of Data General Corporation 093-400005

VALUE 1 IS .59053
VALUE 2 IS .143829
VALUE 3 IS .160324
VALUE 4 IS .492798
VALUE 5 IS .405167

OG-06661

Figure 8-7. Another Run of Random Number
program Using RANDOMIZE

String Functions
Table 8-2 summarizes the string functions available in
MP /BASIC. These functions are described in the follow­
ing sections. All MP /BASIC string functions are exten­
sions to the ANSI standard.

*BSTR$(V,R)
This function returns a string which is the representation
(in radix, or base, R) of the value of the 16-bit unsigned
binary integer V. The binary number V is expressed in
the function in its decimal representation; it is rounded to
the nearest integer before the conversion is made. R can
be any value from 2 through 16.

For example:

BSTR$(7,2) = "111"
BSTR$(12,6) = "15"
BSTR$(12.4,6) = "15"

This function complements the $BV AL function.

One application of the BSTR$ function is in manipulating
bit-string patterns.

Another application of the BSTR$ function is in the
conversion of numbers from decimal to some other base.
Figure 8-8 shows a program which lists a decimal
number's string representation in bases 2 (binary) through
16 (hexadecimal), along with a sample run.

• 10 REM BASE-CONVERSION PROGRAM
• 20 INPUT PROMPT "WHAT NUMBER, PLEASE? ":N
• 30 PRINT
• 40 PRINT "FOR THE NUMBER ";N;":"
• 50 PRINT
• 60 PRINT "BASE","REPRESENTATION"
• 70 FOR 1=2 TO 16
• 80 PRINT I, BSTR$(N,I)
• 90 NEXT I
• 100 END
• RUN

WHAT NUMBER, PLEASE? 58

FOR THE NUMBER 58 :

BASE REPRESENTATION
2 111010
3 2011
4 322
5 213
6 134
7 112
8 72
9 64
10 58
11 53
12 4A
13 46
14
15
16

OG-026127

42
3D
3A

Figure 8-8. BSTR$ Function

093-400005 Licensed Material-Property of Data General Corporation 8-5

*BVAL(B$,R)

This function complements the BSTR$(Y,R) function.
B$ is the string representation of a number in radix
(base) R. BYAL returns the 16-bit unsigned binary
integer value of that number.

For example:

SVAL("110",2) = 110
SVAL("5S",16) = 0101 1011
SVAL("10",10) = 1010

NOTE: if you PRINT the value of a result of BY AL, it
will look like a decimal number. This is because
the PRINT command treats the binary number
as a decimal INTEGER. For example:

PRINT SVAL("5S",16)
91

because 91 is the decimal equivalent of the binary
number 0101 lOll.

R can be any number from 2 through 16, and B$ must
consist of the valid characters used in string
representations of numbers in the base R. For example, if
R =2 (binary numbers), B$ must consist of the characters
o and 1; if R = 8 (octal numbers), B$ must consist of the
characters 0,1, 7; if R = 16 (hexadecimal numbers), B$
must consist of the characters 0,1, ... 9,A,B, ... F.

*CHR$(M)

Returns the string character for which M is the ASCII
(decimal) numeric representation (see Figure 1-1). M
must be a decimal number in the range 1 to 255. The
ASCII decimal representations range from 0 through
127; if M is in the range 128 through 255, the character
returned is the one represented by MOD(M,128).

For example:

CHR$(53) = "5"

CHR$(65) = "A"

CHR$(193) = "A"

The above function is complemented by the ORD(AS)
function.

*DATE$

Indicates the date in the string representation
YY /MM/DD. For example, the value of DATE$ on
May 9, 1977 was 77/05/09.

*LEN(A$)

This function returns the length of string A$, i.e., the
number of characters currently in that string. For exam­
ple,

10 LET CCHAR$ = "CRAS"

80 PRINT LEN(CCHAR$)
90 END

RUN
4

Note the use of variable CCHAR$, with which we
replaced the "dummy" variable A$ used in the section
heading.

The LEN function will include in its count of string
length non-alphabetic characters, such as spaces, punctu­
ation, or any of the other characters defined as character
strings in Table 3-1. Thus, LEN CS would have resulted
in a value of 5 if we had defined C$ as "CRAB?".

Among other things, the LEN(A$) function makes it
possible for you to compare strings to each other in terms
of their respective lengths.

Our sample program in Figure 8-9 uses this function, in
combination with an IF ... THEN ... statement, to identify
and print out a list of words of more than six characters
from a sentence in the United States Constitution. The
output appears immediately following the program.

*ORD(A$)

This function complements the CHR$(M) function. It
converts a one-character string, A$, into its numeric
decimal ASCII representation (see Figure 1-1). A$ may
be any single ASCII character. For example:

ORD(" A") = 65
ORD("a") = 97
ORD("5") = 53

*POS(A$,B$)

This function compares two strings. If it finds string B$
contained within string AS, it returns the position in A$
where B$ begins, i.e., the position in A$ of the first
character of B$. If A$ does not contain B$, the function
returns O. For example:

A$ = "PANCAKE"
S$ = "CAKE"
POS(A$, S$) = 4

8-6 Licensed Material·Property of Data General Corporation 093-400005

Only the first occurrence of B$ within A$ is returned;
later occurrences are ignored. For example:

A$ = "BOBOLINK"
B$ = "BO"
POS(A$,B$) = 1

If B$ is a null string, the function returns a value of 1.
For example:

A$ = "SUPER"
B$ = " "
POS(A$,B$) = 1

*POS(A$,B$,M)
This function searches for string B$ within A$, beginning
from position M in A$. It returns zero if it does not find
B$ in A$. For example:

A$ = "GRANDSTANDING"
B$ = "AND"
POS(A$,B$,5) = 8
POS(A$,B$,1) = 3
POS(A$,B$,9) = 0

If M is out of range of the length of A$, the function will
return O.

10 REM THE LEN(A$) FUNCTION

*STR$(X)
This function complements the V AL(A$) function: it
converts the numeric value of an expression to a string.
For example,

STR$(5+9) = "14"

Ordinarily, BASIC leaves a space before and after each
number it writes out. These spaces are not included when
you invoke the STR$(X) function, as we see in the
program and accompanying output of Figure 8-10.

This function is thus particularly useful for generating
tightly formatted output.

20 PRINT ''WORDS OF 6 CHARACTERS AND OVER:"

DG·06662

093·400005

30 PRINT
40 DIM A$*15
50 READ A$
60 IF A$="." THEN GOTO 130

Test for
period:termination
signal

70 IF LEN(A$)<6 THEN GOTO 50 f-------_____ Test string
80 PRINT A$ length
90 GOTO 50

100 DATA "THE", "CONGRESS", "SHALL", "HAVE", "POWER", "TO"
110 DATA "ENFORCE","THIS","ARTICLE","BY","APPROPRIATE" Period is
120 DATA .. LEGISLATION","." '-----__________ final data

130 END item

*RUN

WORDS OF 6 CHARACTERS AND OVER:

CONGRESS
ENFORCE
ARTICLE
APPROPRIATE
LEGISLATION

Figure 8-9. LEN(AS) Function

Licensed Material·Property of Data General Corporation 8-7

5 REM THE STR$(A) FUNCTION
10 LET A=5
30 LET B=9
50 LET A$ = STR$(A)

50 LET B$=STR$(B) Id· I
90 PRINT A- B enllca

110 PRINT ' ________ PRINT co":,mands
130 PRINT A$' B$ ~ produce different
150 END' results

*RUN

5 9
L Normal
----_____ spacing of

59

\
Spacing with
STR$(X) function:
no space between
numbers

contiguous
numbers

*TIME$
Returns the time of day in twenty-four hour notation, in
the representation HH:MM:SS. For example, the value
of TIME$ at 11:15 AM is 11:15:00.

*VAL(A$)
You can use this function to extract the numeric portion
of a character string and convert it to numeric data.

Your string argument must begin with a number, which
may include leading plus or minus signs, digits, decimal
points, or the letter E for scientific notation.

Nonnumeric characters appearing after the number por­
tion of the string are ignored by this function. For
example, a string such as

"123ABC"

would be read as "123".

DG·06665

If the evaluation of the string's numeric portion results in
an underflow (i.e., a number too small to be represented),
the value returned will be o. For example,

DG·06663

8-8

Figure 8-10. STR$(X) Function
VAL("2.E-99")

is zero.

If A$ does not contain a numeric value, an error is
generated. For example,

5 REM THE VAL(A$) FUNCTION.
10 DIM A(SO)

20 PRINT "STRING", "NUMERIC"]
30 PRINT "DATA","PORTION"
40 PRINT" ", "OF DATA". Headings
50 PRINT "(A$)", "(A(I)"
50 PRINT Test for '
70 READ ~~ " .:.-------- period:termination signal

so IF A$- . THEN GOTO 150 Initialize subscript
90 LET 1=1.

100 LET A(I)=VAL(A$). Read VAL(A$)
110 PRINT A$,A(I) into array A(I)
120LETI=I+l"""~--__________________________ __

130 GOTO 70 Increment subscript
140 DATA "12S.FG.NT","3S7FT.VY","S12.FV,X","S7S.50T.ZX","."

150END \

Figure 8-11. VAL(A$) Function

Period is
final data
item

Licensed Material·Property of Data General Corporation 093-400005

A$ = "CVS"
; VAL(A$)
Illegal data type.

VAL(A$) can be used in situations where INPUT data
may be either alphabetic or numeric. These values may
be assigned to a string variable the user can examine; if
the string is a number, it can then be converted by means
of the V AL(A$) function.

The sample program in Figure 8-11 scans a series of
strings, A$, and stores only their numeric portion, which
it extracts, converts to numeric data, and reads into array
A(I). Figure 8-12 shows the output of this program.

STRING NUMERIC
DATA PORTION

OF DATA
(A$) (A(I))

126.FG.NT 126
387FT.YY 387
812.FV.X 812
678.50T.ZX 678.5

DG·06664

Figure 8-12. Output from the VAL(A$) Function

The VAL (A$) function complements the STR$(X)
function.

User-Defined Functions
In addition to providing the predefined functions we have
discussed, BASIC also allows you to define and call your
own functions within a program.

When creating a user-defined function, you can use only
one statement written on a single line. Functions of this
type return a single value.

DG·06666

Parts of a User-Defined Function
Figure 8-13 demonstrates the parts of a user-defined
function.

DEF

This command indicates that the statement following it
contains a function definition.

Since a function must be defined before it can be called
for execution, ANSI requires the DEF statement to
appear in your program on a lower-numbered line than
any statements calling the function it defines. In MP jBA­
SIC, however, the only constraint is that program execu­
tion should pass through the DEF statement before you
call the function.

Once you have defined a function, you can redefine it
later in your program.

When the program reaches a line containing a DEF
statement, it does not execute the function just defined
but proceeds instead to the next line without any further
effect. The function is executed only when you call it.

In your function definition you may refer to other
functions, provided they have already been defined; you
may not, however, refer to the function you are currently
defining.

For example,

10 DEF FNF(K) = K*FNF(K-1)

is not permissible in BASIC.

FNx
The name of the function comes immediately after the
word DEF. All function names for user-defined functions
must begin with the letters FN, followed by a single
letter.

It follows that you can define a maximum of 26 functions
(FNa ... FNz) in your BASIC programs.

= expression

Figure 8-13. Parts of a User-Defined Function

093·400005 licensed Material-Property of Data General Corporation 8-9

Argument

User-defined functions are limited to a sjngle optional
argument.

If used, the argument follows the function name and is
always enclosed in parentheses ().

Your function call must correspond to your function
definition with respect to argument use: don't omit the
argument from your call if you used it in the DEF
statement, and don't call a function with an argument if
your definition did not use one.

The variable in the argument is, once again, a dummy
variable; when you call the function, it will be evaluated
with the value of the argument you list in the call, rather
than with the argument listed in the DEF statement.

In the example below, we define FNA with dummy
argument X, but in line 30 we call the function with the
actual argument we want to use, namely, K.

10 DEF FNA(X) = (40 - X)/(10 - X)
20 FOR K = 0 TO 5
30 PRINT FNA(K)
40 NEXT K
50 END

RUN
4
4.33333
4.75
5.28571
6
7

You should also keep in mind the fact that the variable
you use as an argument in your DEF statement is local to
that definition; that is, the variable X we just used in our
example has no relationship whatsoever to any variable X
we might have used elsewhere in the body of our program.

Expression

The arithmetic expression following the equal sign defines
the calculation to be performed by the function we have
defined. It may contain the argument and, if it does, the
value of the argument is local to the function, as we have
just explained.

The expression may also contain variables other than the
argument. These variables are global; that is, they are
identical to program variables of the same name.

For example, the variables A and B in the DEF statement
below are global values, identical to the program variables
A and B defined in lines 20 and 30 of the same program.

10 DEF FNC(X) = (A-X)/(8-X)
20 LET A = 40

30 LET 8 = 10
40 FOR K = 0 TO 5
50 PRINT FNC(K)
60 NEXT K
70 END

RUN
4
4.33333
4.75
5.28571
6
7

Referencing a User-Defined Function
Once you have defined a function, you can call it as often
as you wish throughout the program, in the same way
that you would call system-defined functions.

The statement in which you call a user-defined function
can contain that function name combined with numbers,
variables, other functions, or mathematical expressions.
See, for example, line 30 below.

10 DEF FNA(X) = X/(1-X)
20 FOR N = 2 TO 5
30 Z = 20'FNA(1 /N)'EXP(-N/5) 40 PRINT Z
45 NEXT N
50 END

RUN
13.4064
5.48812
2.99553
1.8394

Keywords in Chapter 8
Table 8-1 lists the keywords introduced in Chapter 8.

Table 8-3. Keywords in Chapter 8

Can be used in

Keyword Program Immediate
Statement Mode

DEF Yes No

RANDOM- Yes Yes
IZE

End of Chapter

8-10 Licensed Malerial-Property of Data General Corporation 093·400005

Chapter 9
File Input and Output

Up to this time, you have been saving your programs, but
you have been unable to save the data you processed in
these programs.

If, for example, you wanted to retrieve the elements of an
array you created in an earlier session, you first had to
recreate that array by re-executing your original program.
You could save the program, but you were unable to save
the array itself.

Computer files enable you to save data and retrieve them
as needed. File capability is, therefore, one of the signifi­
cant special resources made available by MP /BASIC as
an extension of ANSI Minimal BASIC.

A file is a collection of related data kept in one place and
treated as a unit; it is like a drawer subdivided into
compartments, each of which is a storage location for
information. MP /BASIC files automatically accommo­
date their length to the amount of data we want to store
in them, expanding or telescoping themselves as needed.

The operations you can perform with a file include
creating it, writing into it, updating, reading, editing,
printing, and deleting it.

While working with files is not difficult, it does involve a
number of new interrelated concepts, such as records,
modes, and random versus sequential file access.

Records are special ways of grouping-and accessing file
data. Record structures constitute one of the most power­
ful aspects of files, and they are our first topic in this
chapter.

Next we take up the subject of file modes, which
determine what operations can be performed with a given
file.

Following that, we discuss file commands, presenting
them within the context of program examples. This
constitutes the major part of the chapter.

Records
A record is a single data item or several data items that
together constitute a separate unit within a file.

For example, one record in a file containing a list of a
company's employees might be composed of a given
employee's name, address, telephone number, social secu­
rity number, and name of next of kin (five different data
items identifiable as a single unit).

Or, as in our example in Figure 9-1, a single record in a
file of yearly fuel expenses might contain the name of the
month, number of gallons of fuel used, and the price per
gallon (three different data items).

You can treat any number of data as a single record,
depending on the way you define record size.

And since each record has a distinct location within the
file (analogous to the first, second, third, ... compartment
inside a drawer), you can easily reach a particular record
by reference to its location. We will elaborate on this
later, in our discussion of random access files.

(The experienced user can redefine the composition of his
or her file records at will by using diverse record
declarations in processing a given file. We will, however,
confine our discussion to less complex levels of record
use.)

Please note that the first record location in a file is O.
That is, we store our first record of data in file compart­
ment number 0 rather than in file compartment number
1. (See Figure 9-1.)

Figure 9-1 is an example of a hypothetical fuel file
containing two records, one stored in record location #0
and the other stored in record location # 1. Each record
consists of three pieces of information, namely, month,
gallons of fuel, and price per gallon.

Notice that our record contains a mixture of character
strings and numbers. These are dissimilar data types
ordinarily requiring separate storage. An array, for
example, can be composed only of either numbers or
strings (but not a mixture of both); similarly, it would be
incorrect to use a numeric variable for processing a string
variable, and vice versa. Records thus offer great flexibili-

093-400005 Licensed Material-Property of Data General Corporation 9-1

ty by permitting meaningful data combinations and
storage, regardless of data type.

There are two major types of file records:

1. Fixed-length records

2. Variable-length records

That is, the size of the file subdivisions to which your
records correspond may be of either uniform (fixed)
length, much like the uniform drawers in a file cabinet,
or variable length, something like the diverse sizes of
compartments in a tool box.

Month

Gallons
of
fuel

Price per
gallon

''-___ ---, ___ --I, '\\ ____ - ___ -'1 - v- V-
Record #0 Record #1

DG·06735

Figure 9-1. Fuel File with Two Records

DG-D6736

~::::::~~
Byte ~ ~

~~

String data: Real numbers: empty
1 byte per char. 4 bytes per bytes
+ 1 null char. data item

Your choice of record type is determined by your antici­
pated use of the file. (We will elaborate on this later.) In
any case, as we have said, record types do not remain set
over the life of the file, since it is possible to process a file
assuming different record characteristics for it each time
around.

When we speak of a record's length, or of the length of
data within a record, we mean the amount of space being
occupied by that record inside the file. We measure this
amount of space in terms of the number of bytes used. (A
byte is a unit of information occupying space in computer
memory).

Each record in a file can be from 0 to 32,767 bytes long.
See "Calculating Record Length" for further details.

Fixed-Length Records
Figure 9-2 shows the same two records we used in Figure
9-1.

Looking at these records, we notice that there seem to be
empty spaces at the end of each, and that these empty
spaces have been padded with nulls (four and three nulls,
respectively) .

As a result of this padding, each of our two records
occupies exactly the same amount of space (20 bytes) in
the file, despite the fact that the actual data in them
varies in length (16 and 17 bytes, respectively). This is
what is meant by fixed-length records.

FEBRUARY 250 .89

'\1..._-----...... r-----II
V

Single record
length '=

~

Figure 9-2. Fixed-Length Records

9-2 Licensed Msterial·Property of Dsla Genersl Corporslion 093-400005

Calculating Record Length

Figure 9-3 illustrates how we determine the number of
bytes a given record requires.

• String data occupy one byte per character, plus one
byte for a null character serving as a delimiter at the
end of the string.

Hence, our first data item (January) will occupy a total
of eight bytes (seven for the seven characters in the
string, plus one for the null delimiter).

• Integers occupy two bytes per data item. For now, we
are working only with real numbers. (See Chapter 2 for
converting integers to real numbers and vice versa.)

• Real numbers occupy either four bytes per data item
(for single-precision numbers) or eight bytes per data
item (for double-precision numbers).

Recall that real numbers differ from integers in having
fractional parts.

In the absence of any declaration to the contrary,
MP /BASIC treats all numbers as though they were
single-precision real rather than integer or double­
precision real numbers. 200 (number of gallons), and
.79 (price per gallon) in our example are both treated as
single-precision real numbers occupying four bytes each.

Each element of an array occupies the number of bytes
that corresponds to the type of data in the array. For
example, an array of integers occupies two bytes per
element. In calculating the space occupied by an entire
array, recall that arrays almost always begin with element
0, unless the OPTION BASE statement has been speci­
fied.

Total record length =

DG·06737

Applying these byte requirements, we can now determine
the size of the first record in Figure 9-3 (Record # 0) as
follows:

January 8 bytes

200 4 bytes

.79 4 bytes

Total bytes in Record # 0: 16 bytes

If we define the fixed length of our records to be 20 bytes,
there will be four bytes not used up by data in Record
number o.
Try calculating the number of bytes needed for the next
record (1) in Figure 9-3, and see if your figures correspond
to ours.

Creating a Fixed-Length Record

You declare a file as containing fixed-length records by
specifying the length of your record in your OPEN FILE
statement (to be discussed later). The number indicating
record length is the last item in that statement. For
example:

10 OPEN FILE (1,1), "FUEL", 20

You have now created a file number 1 named "FUEL,"
with a fixed record length of 20 bytes. The records
illustrated in Figure 9-2 would have been created by
means of a statement similar to the one above.

To use the fixed-length record capability, you must write
or read your data by reference to a specific record number.
This will indicate to BASIC at what exact byte number
in the ~ile it should begiq writing or reading. (See
"Accessmg Records.")

Total record length =

Figure 9-3. Calculating Record Length

093·400005 Licensed Material·Property of Data General Corporation 9-3

If your processing instructions (such as WRITE or
READ) don't specify a record number, the system will
disregard your fixed-length record declaration and pro­
cess the data sequentially in variable-length records.

Variable-Length Records
In Figure 9-3, we used the same two records as in Figure
9-2. But in Figure 9-3 the records differed in size, since
they contained only their respective data items without
any empty spaces left over.

Thus, in variable-length records, the space allocated for
each record corresponds exactly to the amount of space
needed for the data that particular record holds.

It follows that records of variable length offer a more
efficient use of space. On the other hand, a file containing
this type of record can only be accessed sequentially: to
reach any record within it, you must move past all
preceding records starting from the first (record 0), until
you reach the place you want. (See "Accessing Records.")

Figures 9-5 through 9-11 illustrate variable-length,
sequential-access file operations.

Accessing Records: Random versus
Sequential Access
As already stated, the great advantage of working with
fixed-length records is that they allow you go directly to
any record within the file.

Sequential access is a somewhat more cumbersome pro­
cess if you wish to reach only specific records rather than
the entire contents of a file. To understand how this
works, we need to explain the operation of a device called
the file pointer.

The File Pointer

Although we do not see it, the file pointer is a mobile
device that indicates our current location within a file,
much as one would use a finger to keep track of one's
place on a page.

When you open a file, the pointer is at the first compart­
ment, or subdivision, of the file; as soon as you begin
moving into other compartments for purposes of writing
into the file or reading from it, the pointer moves right
along with you to the compartment you are currently
working on. When you finish working and close your file,
the pointer ceases to exist.

When you specify a record number for reading or writing,
the file pointer moves directly to the appropriate byte at
the start of that record. For example, if you've declared
record length as 10 bytes, and you instruct BASIC to
read record number five, then pointer would move directly
to byte number 50 in the file and read bytes 50 to 59. If
your next instruction specifies no record number, reading
will proceed sequentially from the current location of the
pointer at byte 60, and so on, until you specify another
record number.

In this way, record numbers create pointer addresses,
enabling us to move back and forth to specific file locations
(random access).

You should be careful not to write a record that is longer
than the space allotted for it in the file. Consider for
example the following case:

• You declare a record length of 10 bytes.

• You write into record number 3 (Le., beginning at byte
30) a data item occupying 15 bytes.

• Bytes 30-44 are now filled; your pointer is at the end of
byte 44.

• If you now instruct BASIC to write a lO-byte item into
record number 4 (Le., beginning at byte 40) the pointer
will move to that location and will overwrite the data
presently in bytes 40-44.

The best safeguard here is to make adequate provision
for the maximum number of bytes your records are likely
to contain, and to monitor your processing instructions so
that you know where you have placed your data.

Processing a file sequentially rather than by reference to
specific record locations requires using program instruc­
tions to move the file pointer in sequence along all records
in the file from record number 0 to record number 2, and
so on, until it reaches the location you want.

Hence, in spite of an inevitable waste of space (which you
can, however, minimize by accurate calculation of your
record length), fixed-length records are your best choice
if you anticipate many random-access operations, and if
you know the exact location of your data in the file.

See Figures 9-12 through 9-14 and accompanying discus­
sion for further illustrations of the concept of random­
access files.

9-4 Licensed Material-Property of Data General Corporation 093-400005

File Modes
We must declare a file mode as part of the statement
creating a file.

There are four possible file modes, and they are expressed
by numbers ranging from ° to 3. Each of these modes
serves to identify the specific function of a file. All four
file modes permit random access, provided a fixed record
length has been declared in the OPEN FILE statement.

Table 9-1. summarizes the modes and their
functions.

Operations Possible

File Mode Write Write/ Read
Append

0 Yes No Yes

1 Yes No No

2 No Yes No

3 No No Yes

Mode 0
As Table 9-1 shows, Mode ° is the most versatile of the
four modes. When you open a file in Mode 0, you can
write into it or read from it, whereas in Modes 1,2, and 3
you are limited to only one of these operations. (Modes 1
and 2 allow only writing, while Mode 3 allows only
reading.)

When you open a file in Mode 0, the system checks
whether the file specified already exists. If the file does
not exist the system creates it.·

Mode 1
Mode 1 is, as we have said, limited to writing operations.

When you open a file in Mode 1, the system checks
whether this file already exists. If it finds the file, it
deletes it, and then creates a new (empty) file to be
written into. You should therefore use Mode 1 only to
create a new file, never to reopen an old one.

Mode 2: The Write/Append Facility
Mode 2 is also limited to writing operations. This mode is
normally used to reopen a file you have previously created,
since its main purpose is to allow you to add to existing
data. If, however, the file you are opening does not already
exist, a new file will be created.

When you open or reopen a file in Mode 2, the file
pointer moves automatically to the end of the file, thus
enabling you to append to existing data. This Write/ Ap­
pend feature is unique to Mode 2. Without it, you would
have to go through the process of moving the file pointer
to the first empty location before writing additional data.

Mode 3
Mode 3 files can be used only for reading; consequently,
this mode will only allow you to open a previously created
file. If you try to create a new file for reading, you will
generate an error message stating

* File does not exist in line ...

where line ... is the line number of your erroneous OPEN
FILE command.

It is entirely possible to open a file in Mode 3 using a
record type different from the record type of the original
file; that is, you can write a file with one record type, and
read it with another record type. But the inexperienced
user is advised to be consistent in the use of record types:
if your original file in Modes 0, I or 2 processed the data
by reference to fixed-length record locations, your Mode
3 file should be opened declaring the same record length,
and read by means of references to specific record
locations. If you reopen the file with a different record
length, the individual record locations and boundaries
will not match up, and you will not be able to read the
data correctly.

File Commands
File commands are the program instructions that enable
you to create new files and to write to and to read from
your files. The eight file commands available in MP /BA­
SIC and covered in this chapter are (in order of discussion)
OPEN FILE, WRITE FILE, CLOSE FILE, READ
FILE, DELETE, PRINT FILE, INPUT FILE, and
LINPUT FILE.

093-400005 Licensed Material-Property of Data General Corporation 9-5

Before we discuss these commands, we must introduce
two file attributes that allow the system to identify your
files. These are file number and filename.

File Number
Whenever you open a file, you assign it an identifying
number. This number may range from 0 to 7. You can
have no more than eight files open at any given time.

In an OPEN FILE statement, the file number is always
the first number inside the parentheses following the
word FILE. (The second number refers to the file mode.)
For example,

10 OPEN FILE (1,0), ...

See also Figure 9-4.

The format of all file commands requires that a file
number be included in any subsequent references to an
opened file, so the system can identify it correctly.

Filename
For identifying purposes, each of the files you create
must have a name as well as a number.

Filename Format
As you see from Figure 9-4, the filename appears within
quotation marks immediately after the file number and
the file mode.

The filename is preceded by a comma. In our example,
the filename is followed by another item (a number
indicating record size), and thus has a comma after it as
well as preceding it. When the filename is the last item
on the OPEN FILE command line, however, no comma
follows it. For example,

10 OPEN FILE (1,1), "INVENTORY"

Filename Length
Maximum filename length depends on the operating
system. Filenames may be a maximum of 15 characters
on MP lOS or MP / AOS, and a maximum of 31 charac­
ters on AOS.

Legal Filenames
What follows is a quick review of material discussed in
Chapter l.

You can create filenames from any combination of the
alphanumeric characters (character strings and numbers)
listed below:

• A through Z

• a through z (converted to uppercase by the operating
system)

• 0 through 9

• . (period)

• $ (dollar sign)

• _ (underscore)

Filename Extensions
Since BASIC does not recognize any special alphanumer­
ic extensions (suffixes), you can create filename exten­
sions to suit your own needs. For example, later on we
will create some files of fuel expenses for 1978 and 1979.
We will call each file FUEL and use the extension .78 or
.79 to indicate the year it contains.

"FUEL. 78" (Fuel file for 1978)

"FUEL. 79" (Fuel file for 1979)

In this way you can use a file extension as a quick index
to file content.

The following are examples of legal filenames:

FILE_NAME.NEW

FILE$.SR

LIFE.JAN.S

The file we have created in Figure 9-4 has been assigned
the number 1 and named LIBRARY. OPEN FILE

The OPEN FILE command is the first step in any file
transaction. By correlating a filename with a file number,
this command creates new files, or reopens previously
created files for further processing.

Figure 9-4 illustrates the format of the OPEN FIlfE
command.

9-6 Licensed Material-Property of Data General Corporation 093-400005

10 open file (1,0). "library", 35

DG-06738

Figure 9-4. OPEN FILE Command

Observe that four items follow the words OPEN FILE.
Each of these items is a specific file attribute, serving
either to identify the file (file number and filename), or
to define its type and function (record length and file
mode).

The order in which each item appears on the command
line is extremely important, i.e.:

file number

file mode

filename

record length (optional)

Being already familiar with all four of these file attributes,
you will be able to interpret Figure 9-4 as follows:

File number =

File mode =

Filename =

o (You may write into the file, or
read from it.)

"Library"

Record type = Fixed-length record of 35 bytes; ran-
dom access permitted.

The format of the OPEN FILE command is the same
whether you are creating a new file or reopening an old
one. Recall, however, that if you use Mode 1 to reopen an
existing file for writing, you will lose its contents, since
the system will delete the file before recreating it. We
will present the WRITE FILE, CLOSE FILE, and
READ FILE commands within the framework of a
program example dealing with variable-length records.

Later program examples will demonstrate these com­
mands in the context of fixed-length records. Assume you
want to create a short file to contain a list of your magazine
subscriptions with their expiration dates. You expect to
use this file for several purposes:

1. To provide an instant, up-to-date listing of all your
current subscriptions.

2. To search for the status of any given magazine, or
group of magazines,

3. To search for upcoming magazine expirations.

4. To group subscriptions by category (e.g., by expira­
tion date, alphabetically by magazine title, by subject
matter).

Each of the records in your file is to contain information
on a single magazine consisting of the magazine's name
and its exact expiration date (month, day, and year). We
need four variables to hold these four values in each
record:

M$ = magazine name

M = month of expiration

D = day of expiration

Y = year of expiration

Next we decide to work with a sequential file and
variable-length records. This will save us the work of
calculating record length. (As you recall, in variable­
length records, the size of each record corresponds
automatically to the amount of space, in bytes, actually
occupied by the data.)

We will begin with five magazines and with no particular
order in mind for their sequence within the file. This
being the case, we simply enter our four values for each
magazine (M$, M, D, and Y) into data lines and write a
loop that will read them and write them into the file.
Figures 9-5 and 9-6 show the program and an extract
from it highlighting the file commands we've used.

093-400005 Licensed Msterial-Property of Data General Corporation 9-7

DG·06739

DG·06740

-LIST l
10 REM - CREATE A SEQUENTIAL VARIABLE LENGTH RECORD FILE
20 OPEN FILE (1,1l. "SUBSCRIPTIONS"

40 READ M$,M,D,y~,,---------=:::==::::------- Read
30FORI=1T05 CE0
50 WRITE FILE (1l.M$,M,D,Y data
60 NEXT I
70 CLOSE FILE (1)

100 DATA "WORLD",6,19,1979,"SKI",3,27,1980,"TRAVEL".4,16,1979

~_ ... 1_10-.DATA ·74.7.'979:'CRICKEr.5.15.'980

Figure 9-5. Magazine Subscription Program

~~ ./ ~ File mode
20 OPEN FILE (1, tl. "SUBSCRIPTIONS' 1 (write)

.. tt. c;;) \~-----___ File
number

50 WRITE FILE (1), M$,M,D,Y {File . ,
+ ~

70 CLOSE FILE (1) "~----------_~
~

Figure 9-6, Excerpt from Magazine Subscription Program

WRITE FILE The file number is immediately followed by a list of the

This command (line 50 in our program) places data into
a file. Its format is simple: the words WRITE FILE need
only be followed by the file number within parentheses,
so that the program, which may have up to eight files
open simultaneously, will identify the correct file to be
written into.

data you want written into the file.

Our loop (lines 30 - 60) reads the data pertaining to a
single record (line 40) and writes them into the file.

At the same time, the file pointer moves from its previous
position to the end of the record just filled.

9-8 Licensed Material·Property of Data General Corporation 093·400005

In the next pass of the loop, the program will write the
new set of data it has just read into the next empty
location indicated by the pointer. In this way, data are
entered in sequential order, and the moving pointer
ensures that new material is written next to and not on
top of older material.

After execution of the loop, the pointer is set at the end of
the last record written into, and all the data are perma­
nently stored in the file.

The format of WRITE FILE is slightly different when
you are writing into fixed-length records. You must
specify the location of the record you are writing to. We
discuss this later in this chapter.

CLOSE FILE
This command disables the relationship between a file­
name and a file number, indicating that the file in question
will no longer be processed. When a file is closed, that
file's pointer also ceases to exist.

You must close all your open files at the end of every
program.

You can execute a CLOSE FILE whenever you need to
return to the beginning of a sequential file.

You might, for example, want to read a file you have just
written using Mode 1. To do so, you first CLOSE the file.
Then you reopen it in Mode 0 or 3, which places the
pointer in front of Record O. Now you can read the file
from its beginning.

If the file you want to reread contains fixed-length records,
you need not close it in order to reset the pointer; ask the
program to read record number 0, and the pointer will
automatically return to the beginning of the file.

Format
Like the WRITE FILE command, the CLOSE FILE
'command requires only the file number in parentheses
immediately after the words CLOSE FILE. The file
number identifies the specific file you want closed, in
case you happen to have several files open.

You can, however, simply use the keyword

CLOSE

by itself, without the word FILE or a file number. This
version of the command will automatically close all files
opened so far during the execution of your program.

Note that CLOSE FILE and CLOSE may be used in
immediate mode as well as within a program statement.
The same is true of all file commands, except DELETE,
which may be used only in immediate mode.

The keyword BYE at the end of a BASIC session also has
the effect of closing all files opened during the current
session.

Appending Data to an Existing File:
WRITE FILE, Mode 2
Assume you have just enlarged your subscription list by
four additional magazines, which will necessitate up­
dating your SUBSCRIPTIONS file by appending the
new data to it.

You do this by reopening your file, SUBSCRIPTIONS
in Mode 2, WRITE/APPEND. This will preserve the
contents of your original file (reopening in Mode I would
delete them) and will position the pointer at the end of
the last filled record, so that writing may continue from
that point on, either sequentially or to specified record
numbers, as the case may be.

The procedure for reading the new data and writing them
into the end of our SUBSCRIPTION file is precisely the
same as the procedure we used to create the original file,
with the single exception of the OPEN FILE statement,
which now reads:

20 OPEN FILE (1,2), "SUBSCRIPTIONS"

This indicates that we are reopening an already existing
file number I named SUBSCRIPTIONS and that we
are going to use Mode 2 (WRITE/APPEND). The
complete program appears in Figure 9-7.

Since we have four new magazines, our loop for reading
the data from data lines and writing them into the file
will go from I to 4.

Within this loop, we again read the values for variables
M$, M, D, and Y from data lines, and write them into
the file, just as we did before.

At the end of the program we again close the file.

After you have run this program, your file should contain
a total of nine records, namely, the original five, and the
four you have just appended to them.

093-400005 Licensed Material-Property of Data General Corporation 9-9

If you have just tried to run this program, you may have
been disconcerted to note that no output appeared on
your screen or printer. This is just as it should be: you
have instructed the program to place its output into the
special file you have created, rather than into a device
(screen or printer) that has no storage capabilities.

To see what is in your file, you must open it and read its
contents.

READ FILE
We will now write a program to reopen your
SUBSCRIPTIONS file, read its contents, and print them
out under appropriate headings. Figure 9-8 displays that
program.

A quick reference to the mode summary in Table 9-1 will
remind you that, in order to read a file, you must open it
in either Mode 0 or Mode 3. (Modes 1 and 2 permit
writing into a file but not reading from it).

The OPEN FILE statement in line 20 specifies Mode 3
as the file mode. This is the only change we made in that
statement.

Line 60 is the line executing the READ FILE command:

60 READ FILE (1), M$, M, D, Y

As in the case of the WRITE FILE command, we need
only follow the word FILE with the file number we wish
to read, enclosed in parentheses. (The slightly different
format for random-access files will be discussed later.)
We follow the file number with a list of the variables that
constitute a single record to be read.

As each record in the file is read, the pointer moves along
it, just as it does when you write. Thus, it will at any
given time indicate the last file location we read; we can
return the pointer to the beginning of the file by closing
the file and then reopening it.

10 REM - UPDATA SEQUENTIAL VARIABLE LENGTH RECORD FILE

20 OPEN FILE (1,), "SUBSCRIPTIONS"
30 FOR 1= 1 TO 4

40 READ M$,M,D,Y. ~;::~;:::::= ___________ ...:::::::::=::::::::~_~
50 WRITE FILE (1)'M$,M,D,Y
60 NEXT I
70 CLOSE FILE (1)

100 DATA "GARDENS", 1.30, 1981,"PLAYERS",2, 1 1,1980, "MONEY",4,20, 1979
1 10 DATA "PIPEDREAMS",4, 15, 1979

DG·06741

Figure 9-7. Program to Update SUBSCRIPTIONS File

10 REM - READ SEQUENTIAL VARIABLE LENGTH RECORD FILE

20 OPEN FILE (1 .3), .. SUBSCRIPTIONS" .. :--------....... -~~-_
30 PRINT "MAGAZINE" "EXPIRATION DATE· ... ' .. ;-.---____ --i
40 PRINT
50 FOR 1= 1 TO 9
60 READ FILE (11.M$,M,D,Y

:~ :~~;,M"MD:C ~
90 CLOSE FILE (1) ~::se

DG-<l6742

Figure 9-8. Program to Reopen. Read. and Print SUBSCRIPTIONS File

9-10 Licensed Material·Property of Data General Corporation 093·400005

Figure 9-9 displays a listing of the contents of
SUBSCRIPTIONS; the records you placed into that file
in the course of two separate sessions are all present and
accounted for here.

MAGAZINE EXPIRATION DATE

WORLD 6 19 1979
SKI 3 27 1980
TRAVEL 4 16 1979
DISCO 4 7 1979
CRICKET 5 15 1980
GARDENS 1 30 1981
PLAYERS 2 11 1980
MONEY 4 20 1979
PIPEDREAMS 4 15 1979

DG·06743

Figure 9-9. Contents of the SUBSCRIPTIONS File

Working with a sequential, variable-length record file,
you have so far done the following:

• Created a new file for writing (OPEN FILE MODE
1);

• Placed data in the file (WRITE FILE);

• Reopened your file for update (OPEN FILE MODE
2);

• Updated the file (WRITE FILE);

• Reopened your file for reading (OPEN FILE MODE
3);

• Read the file (READ FILE);

• Closed the file (CLOSE FILE).

Application: Access and Search a
Sequential File
You can now apply these file access concepts to search
for and process material in your file in a variety of ways,
some of which we suggested a few pages earlier. We will
illustrate one file application as an example.

You want to write a program that will search your file
and print out a list of all magazines expiring on a given
date.

We need two new variables:

X-expiration month

Z-expiration year

These variables denote the expiration month and year for
which you will be searching the file. (We will ignore the
expiration day.)

10 REM SEARCH SEQUENTIAL, VARIABLE LENGTH RECORD FILE
20 REM "**********" FIND MAGAZINES EXPIRING IN MONTH X, YEAR Z"
30 INPUT PROMPT "TYPE EXPIRATION MONTH & YEAR":X,Z
40 PRINT

50 PRINT _----------:::::=:::-----'
60 OPEN FILE(1,3). "SUBSCRIPTIONS':"
70 PRINT "MAGAZINES EXPIRING DURING";X;Z -----!
80 PRINT
90 FOR 1= 1 TO 9
100 READ FILE(l).M$,M,D,Y ---------------~
110 IF Y=Z THEN IF M=X THEN GOTO 130
120 NEXT I
125 REM "HH*HH" END OF LOOP; TERMINATE PROGRAM"
128 GOTO 150
130 PRINT M$;"EXPIRES - ";M;D;Y
140 GOTO 120

150 CLOSE FILE(1) ~----1

DG·06744

Figure 9-10. Program to Ccheck Expiration Dates in SUBSCRIPTIONS File

09~·400005 Licensed Material·Property of Data General Corporation 9-11

The program will ask you to input the values for X and Z,
after which it will read each record in the subscription
file in sequence, compare its expiration year and month
(Y and M) against those you have specified in X and Z,
and print out those dates that match yours. See Figure
9-10.

In addition to the INPUT statement (line 30), the
program uses one loop (lines 90-120), one IF ... THEN ...
statement (line 110), and two GOTO ... statements (lines
110, 140) to control program flow.

When you run the program in figure 9-10, the output
appears as in Figure 9-11.

TYPE EXPIRATION MONTH & YEAR 4. 1979

MAGAZINES EXPIRING DURING 4 1979
TRAVEL EXPIRES - 4 16 1979
DISCO EXPIRES - 4 7 1979
MONEY EXPIRES - 4 20 1979
PIPEDREAMS EXPIRES - 4 15 1979

DG·08745

~
~

Figure 9-11. Output from Program in Figure 9-10

The detailed sequence of events is as follows.

1. An INPUT PROMPT line (30) asks you to input
your expiration month and year, in that order.

2. You type 4, 1979, i.e., April, 1979, in response.

3. File SUBSCRIPTIONS is reopened in Mode 3
(READ, line 60).

4. A heading followed by a blank line is printed (lines
70-80). Note that the heading appears outside the
loop.

5. A loop reads each record in the file starting from the
first. In each pass, an IF ... THEN ... control statement
compares Y, the expiration year in the record, with
Z, the expiration year you have input.

If the years do not match, i.e., if Y <> Z, that
record is passed over, and the program reads the
next record. If the years match (Y = Z), you have
found a magazine expiring during the year you want
(here, 1979).

6. Now the program must determine whether the
expiration month for that magazine is April, i.e.,
whether M = X.

The second IF clause of the IF ... THEN statement
performs this comparison. In our example, this test
will look for a value of 4 for both M and X.

If the expiration months do not match, the program
will branch back to the loop and read the next record.

If the values of M and X do match, the program
branches to line 130, which prints out the name of
the magazine, along with its expiration date.

7. Thereafter, the program will branch back into the
loop and repeat the process of reading and testing
each record, until every record in the file has been
read, compared to the information you have input,
and either printed out, or passed over.

(Building in control statements to return the program
to the loop at the right junctures is one of the
prerequisites for correct program flow here.)

8. File SUBSCRIPTIONS is closed before execution
is terminated.

Try running this program with a variety of other expira­
tion dates. You might also try building in a test sequence
that will print out an appropriate message, if no magazines
expire on the date you have specified.

DELETE
We discussed the DELETE command in Chapter 1 in
connection with deleting program statements as well as
entire saved programs.

When you no longer need a file, you erase it by typing the
command DELETE followed by the name of the file.
Thus, you could delete file SUBSCRIPTIONS by typing

• DELETE "SUBSCRIPTIONS"

Note that deletion of a program affects only the program,
but not the files processed by that program; any such files
remain intact until you explicitly delete them.

Now that you know how to use sequential files, we will
illustrate how you work with fixed-length records and
how you take advantage of the random-access features of
files containing such records.

9-12 Licensed Material'Property of Data General Corporation 093·400005

OPEN FILE, Fixed-Length,
Random-Access File
In Figures 9-2 and 9-3 we used a hypothetical fuel file as
an example of records. We would now like to create such
a file with records of fuel expenses for the year 1978.

Naturally, we will need to have a complete set of data for
each month, but it will save a great deal of time if we
don't need to sort the months chronologically.

Our program should read the fuel data for the entire year
in random order, then sort them out and write them into
records in the proper sequence of months, moving from
January through December.

With a random-access file, this is a simple matter.

Each file record will consist of three data items, as follows:

M$ name of month

G gallons of fuel used that month

P price per gallon of fuel used.

Since we want to use the random-access features of our
file, we will have to work with fixed-length records. So
our next step is to determine their size.

G and P are real numbers; therefore, they will require
four bytes each.

M$ will require a different number of bytes each month,
depending on the number of characters in a given month's
name. (Recall that each string character requires one
byte, plus one extra byte at the end of the string for the
null character serving as a delimiter.)

The maximum number of bytes we will need for M$ will
thus correspond to the number of characters in the longest
month of the year. That month happens to be September,
which has nine characters; we, therefore, need a maximum
of ten bytes for variable M$ (up to nine bytes for the
characters, plus one byte for the null character).

The total number of bytes we will need for each record is
thus:

M$ 10 bytes

G 4 bytes (numeric data item)

P 4 bytes (numeric data item)
18 bytes total

Now we can create our fuel file by means ofthe statement,

30 OPEN FILE (1,0), "FUEL.78", 18

where

is the file number.

o is the file mode (fixed length,
WRITE/READ).

FUEL.78 is the filename (with extension designating
file for 1978).

18 is the maximum record length (in bytes).

Determining Record Location:
WRITE FILE, Random Access - Next we turn to the
problem of ordering the records within the file. As we
have said, we want to enter the data randomly and let the
program sort them out so that the record for January
should appear in the file before the record for February,
June should appear before July, and so on.

We can achieve this by assigning each of our records an
index number corresponding to the location in which that
record should appear in the file, i.e.:

January = 0
February = 1

December = 11

We will use the variable J to hold these index values.

Next, we'll list the value of J at the beginning of each
record as we enter it in the data line. For example,

150 DATA 2, MARCH, 170, .55,9, OCTOBER, 150, .56

and so on, where the number 2 preceding MARCH means
that March belongs in the record number 2, and the
number 9 preceding OCTOBER means that this record
belongs in record number 10 (beginning our record
location count from 0).

The program will read J along with M$, G, and P and, if
so instructed, it will write M$, G, and P directly into the
file location indicated by the value of J. (J itself will not
appear anywhere, since it serves only as an index.)

When the WRITE FILE statement includes a record
number, that number appears in parentheses immediately
after the file number. For example,

60 WRITE FILE (1, J), M$, G, P

where 1 is the file number and J is the index specifying
the record number within the file.

You can, of course, also refer to records directly, without
using an index. The format is the same; for example,

• 150 WRITE FILE (1,7), X

where 7 is the number of the record you want to process.

093·400005 Licensed Material-Property of Data General Corporation 9-13

30 OPEN FILE (1,0))"~'~'F~U~EL:.::78~,:.:."...!1~8_-:;::;:::::::;:S=::::
40 FOR 1=0 TO 1 ~
50 READ J,M$,G,P.~-___ ---4
60 WRITE FILE (1 ,J) M$,G,P
70 NEXT I
80 CLOSE FILE (1)

150 DATA 2,"MARCH", 170,.55,9,"OCTOBER", 150,.56
155 DATA 0, "JANUARY", 150,.5, 11,"DECEMBER",210,.59

160 DATA 1 ,"FEBRUARY", 190,.53,7,"AUGUST',60,.52,5,"JUNE"

165 DATA 90,.52,4,"MAY",98,.55,3,"APRIL", 100,.56

170 DATA 6,"JULY",74,.52, 10,"NOVEMBER", 180,.57
175 DATA 8,"SEPTEMBER",80,.53

@
DG·06746

Figure 9-12. Fuel Program, Illustrating Random Access

In an ordinary WRITE FILE operation, the pointer, you
recall, moves in sequence, processing data as though you
were dealing with records of variable length.

In random-access execution, however, the pointer will
move back and forth from one record location designated
by J to the next. In our example, the pointer will move to
the beginning of record number 2 (byte 36) where the
data for March will be written; from there it will move to
the beginning of record number 9 (byte 162), where the
October data will be entered, returning from there to the
beginning of record 0 (byte 0) for the January data, and
so on.

The program appears in Figure 9-12.

To test whether all 12 records for the year appear in
correct order, you can write a short program to reopen
your FUEL.78 file in Mode 0 or Mode 3 (we chose the
former), read its contents sequentially in a loop, and print
them out under an appropriate heading.

To have your records read correctly, you should reopen
the FUEL. 78 file with the same record-length declaration
you used in creating the file. Moreover, even though you
are reading sequentially, your READ FILE statement
should specify the record location of the data, so that the
reading begins at the byte number corresponding to the
beginning of your data.

The format for indicating record location in the READ
FILE statement is identical to that of the WRITE FILE
statement. For example,

• 60 READ FILE (a, I), M$, G, P

where I is a location index. If you refer directly to a
record location, that number appears in the same place as
the index would.

Since you are reading the data in a loop, you can use your
loop counter, I, as an index to specify record location.
This will cause sequential reading of your first, second,
third, through twelfth records in FUEL.78.

Figure 9-13 lists a program to read and print out the
contents of FUEL. 78 and shows the resulting output.

Extracting Data from a Random Access File:
READ FILE with Location Index
Addressing any individual record (or part of it) is a
simple matter, once you know its location. Figure 9-14
illustrates a program to read any given item from a
random-access file. The user inputs the location index for
the data he wishes to see; the system responds by
extracting and displaying the data at the specified byte
number. We are still using the FUEL.78 file, and J as the
location index to records in that file; but, as we've already
stated, you could also refer to records directly by their
number, if you have that information.

In a sequential file you would have to instruct the
computer to read the contents of your file up to the item
you want, so as to move the file pointer sequentially to
the desired location. In a random-access file such as the
one we are working with, the file pointer is automatically
moved to the location you specify, saving you several
coding instructions.

9-14 Licensed Material·Property of Data General Corporation 093-400005

DG-06747

DG-06748

093-400005

10 REM - READ FIXED LENGTH RECORD FILE
30 OPEN FILE (1.0). "FUEL.7S ... 1S -------------;
40 PRINT ·'MONTH". "FUEL (GALS.)". "PRICE P/GAL:'

45 PRINT
50 FOR 1=0 TO 1 1
60 READ FILE(1.0. M$.G.P
70 PRINT M$.G.P
SO NEXT I

90 CLOSE FILE (1)~
Close

RUN file

MONTH FUEL (GALS.) PRICE P/GAL.

JANUARY 150 .5
FEBRUARY 190 .53
MARCH 170 .55
APRIL 100 .56
MAY 9S .55
JUNE 90 .52
JULY 74 .52
AUGUST 60 .52
SEPTEMBER SO .53
OCTOBER 150 .56
NOVEMBER 1S0 .57
DECEMBER 210 .59

Figure 9-13. Program to Read and Print Out Table Generated by Program in Figure 9-12

10 REM - EXTRACT DATA FROM RANDOM ACCESS FILE

30 OPEN FILE (1.0)."FUEL.7S".1S
40 PRINT "TYPE CODE NUMBER FOR MONTH YOU WANT"
50INPUTJ~.~--------------------------·------------------_1

60 PRINT
70 READ FILE (1.J) M~$:.-. G.::..:..,:P ________ -;
SO PRINT M$.G.P
90 CLOSE FILE(1)

RUN

TYPE CODE NUMBER FOR MONTH YOU WANT

?7

AUGUST 60 .52

Figure 9-14. Program to Read Datafroma Random Access File

Licensed Material-Property of Data General Corporation 9-15

Application: Comparing Data from Two
Files
Assuming you have kept separate fuel files over a number
of years, you could use them to obtain comparative figures
on amounts of fuel used and prices paid.

To suggest the range of possibilities inherent in file
comparisons, we create a FUEL. 79 file for the first six
months of 1979. See Figure 9-15.

DG·06749

10 REM WRITE FUEL FILE FOR 1979
20 OPEN FILE (0,0)' "FUEL. 79",18
30 FOR 1=0 TO 5
40 READ M$,G,P
50 WRITE FILE (O,I),M$,G,P
60 NEXT I
70 CLOSE FILE (0)

100 DATA "JANUARY", 160,.57,"FEBRUARY"

110 DATA 210,.62,"MARCH",200,.68
120 DATA "APRIL", 170,.71 ,"MAY"
130 DATA 94,.67,"JUNE",90,.67

Figure 9-15. Program to Create a Filefor Comparison

This program is essentially the same as the one we used
to create the FUEL.78 file (for expediency, however, we
have entered the data in order by month and have
dispensed with the ordering index J). We retain the
"FUEL" part of the filename, adding a new extension to
indicate the year 1979,

Now we can write a program to open both files, read
them, and print out a table comparing gallons of fuel
used and price per gallon for January through June of
1978 and 1979, along with totals and an average price
per gallon for each of these periods. This program appears
in Figure 9-16.

Note that each file is reopened in a separate statement
(lines 20, 30).

We then print headings for our comparative table (lines
40,50).

We write a loop (lines 60-160), to read the first six
records in one file, once more using the loop counter as a
location index. The loop totals the number of gallons used
(G) and the prices paid for them (P), calculates an average
price per gallon paid during the first six months of 1978,
and then repeats these operations with the first six records
of the next file.

The formulas below supply our total and average figures:

T=T+G

S=S+P

A = Sj6

where

T = Cumulative total, 1978 file: number of gallons
used for first six months of year.

S = Cumulative total, 1978 file: price per gallon paid
during first six months of year.

A = Average price per gallon, 1978 file: total price
paid, divided by number of months.

For the FUEL.79 file, we use the following variables to
designate the same cumulative operations as above:

T2 = T2 + G2

S2 = S2 + P2

A2 = S2j6

where

T2 = Cumulative total, 1979 file: number of gallons
used for first six months of year.

S2 = Cumulative total, 1979 file: price per gallon paid
during first six months of year.

A2 = Average price per gallon, 1979 file: total paid,
divided by number of months.

Note that the output from this program appears in Figure
9-17.

9-16 Licensed Material·Property of Data General Corporation 093·400005

DG·08750

DG·08751

093-400005

10 REM READ TWO FUEL FILES

20 OPEN FILE(1.01."FUEL.78".18::=========--{
30 OPEN FILE(2.01. "FUEL. 79".18
40 PRINT ""."FUEL (GALS.)"."PRICE P/GAL." ..
45 PRINT ··MONTH"."1978 ";" 1979 ... "1978:--:.~.;::-"~1i99i77:g9";7 .. : .. ;:::::::::::;;;;;;;;;::::...-Gprint;)
50 PRINT ~eadings

51 LETT=O _ _
52 LET S=O
53 LET A=O
54 LETT2=0
55 LET S2=0
56 LET A2=0

60 FOR 1=0 TO 5
70 READ FILE(1.Il.M$.G.P
80 LET T=T+G ____________ -{

90 LET S=S+P

100 LET A=S/6 ~~:;;;:===_-------.::::::::~=:::~
110 READ FILE(2.o.M2$.G2.P2
120 LET T2=T2+G2
130 LET S2=S2+P2
140 LET A2=S2/6
150 PRINT M$.G;· .. ·;G2.P;" .. ;P2
160 NEXT I
170 PRINT
180 PRINT "TOTAL FUEL USED: 1978
190 PRINT "AVG. PRICE P/GAL.: 1978
200 CLOSE

";T;" 1979 = ";T2
";A;" 1979 = ";A2

Figure 9-16. Fule Comparison Program: Two Files

FUEL (GALS.) PRICE P/GAL.

MONTH 1978 1979 1978 1979

JANUARY 150 160 .5
FEBRUARY 190 210 .53
MARCH 170 200 .55
APRIL 100 170 .56
MAY 98 94 .55
JUNE 90 90 .52

TOTAL FUEL USED: 1978 = 798 1979 = 924

AVG. PRICE P/GAL.: 1978 = .535 1979 = .653333

Figure 9-17. Output from Fuel Comparison Program

Licensed Material-Property of Data General Corporation 9-17

Table 9-2. File Input and Output Commands

Function

Move data from your work area into a file.

Move data from a file into your work area.

Data Formats
We have now covered the most common file concepts and
commands, as well as some basic file uses. The data
transfer statements we have covered so far in this chapter
(READ FILE and WRITE FILE) read and write data
from and to files in the format illustrated in figures 9-2
and 9-3. This is known as binary format. We can also
read and write from and to files in ASCII format, using
the three related commands PRINT FILE, INPUT
FILE, and LINPUT FILE. These commands are the
same as the PRINT, INPUT, and LINPUT commands,
except that they input or output from or to a file rather
than from or to your terminal.

The relation between these commands is summarized in
Table 9-2.

Numerical data is more efficiently stored in binary format
than in ASCII format. In ASCII format, all data is
stored as ASCII strings, one byte per character plus a
terminator. For example, the number 123.456 would be
stored in ASCII as the string "123.456", which would
require 7 bytes (at one byte per character) plus 1 byte for
the terminator, for a total of 8 bytes. The same number,
stored as a single-precision real number in binary format,
would require only 4 bytes.

Also, programs using binary files usually run faster than
programs using ASCII files.

On the other hand, data stored in binary format is not
directly accessible to programs that require all informa­
tion to be stored in ASCII format. For example, you
cannot use a CLI command to output a binary-formatted
file to the line printer.

Data written into a file in binary format cannot be read
back into your work area by an instruction for reading
ASCII data, and vice versa. When you want to store your
information in a file for later use, you should choose the
type of data format based upon your anticipated use of
the data. As you become a more sophisticated program­
mer, you will possibly consider several criteria in this
selection, but for now, the following guidelines may be
helpful:

Instruction for a
binary file

WRITE FILE

READ FILE

Instruction for an
ASCII file

PRINT FILE

INPUT FILE or
LINPUT FILE

• If you expect to only be reading the data back into
your work area for use in an MP jBASIC program,
then use the binary format (i.e., use the WRITE FILE
and the READ FILE statements).

• If you intend to use a CLI command to print the data
on the line printer, or on your terminal, as well as to
read the data back into your work area for use in an
MP jBASIC program, then use the ASCII format (i.e.,
use the PRINT FILE and the INPUT FILE or
LINPUT FILE statements).

The important thing to remember is that a file created
with the PRINT FILE statement cannot be read with the
READ FILE statement, and a file created with the
WRITE FILE statement cannot be read with the INPUT
FILE or the LINPUT FILE statements.

PRINT FILE
This command writes data into a file in ASCII format,
rather than in binary. For example, the program state­
ment 20 PRINT FILE(1), A writes the current numeric
value of the variable A into file 1 as an ASCII character
string, just as the statement 20 PRINT A outputs the
current value of A to your screen as an ASCII character
string.

Data written into a file with the PRINT FILE command
may be output to a line printer or to a disk file for later
printing.

As with the PRINT statement described in Chapter 1,
you can add the USING keyword to the PRINT FILE
statement, to achieve formatted output. For example:

PRINT FILE(l), USING "###":010

9-18 Licensed Material-Property of Data General Corporation 093-400006

INPUT FILE
A file created with the PRINT FILE command, cannot
be read with the READ FILE command. Instead, use the
INPUT FILE or LINPUT FILE commands.

The format for the INPUT FILE, PRINT FILE, and
LINPUT FILE commands is the same as for other file
commands: the command is followed by the file number
in parentheses.

For example:

INPUT FILE(1). X.Z

This command will read the first two numeric variables
in the file (provided, of course, that the file has been
properly opened).

If you wish to read a given record in the file, specify its
number immediately after the file number, just as you do
with random-access READ FILE or WRITE FILE
commands. (Remember to specify fixed record length
when opening a file for random access.)

For example:

INPUT FILE(1.5). X.Z

This command will read record number five in the file.

As we mentioned above, the INPUT FILE statement is
the same as the INPUT statement, except for the source
from which the data is input (from a file for INPUT
FILE, from your keyboard for INPUT). Thus, when you
create a file to be read by the INPUT FILE statement,
you must make sure that the content of the file is the
same as if you had given an on screen response to the
INPUT statement. This means that, if your INPUT FILE
command requests several variables, then the data items
in the file must be separated by literal commas which you
enter within quotes when creating the file. For example,
assume you create a file, "S.OUT," into which you enter
three numeric values. You would code the instructions so
that a comma follows each of the values entered into the
file, as in line 50 below:

• 10 OPEN FILE(1.0). "S.OUT"
• 20 LET X = 5
• 30 LET Y = 10
• 40 LET Z = 20
• 50 PRINT FILE(1). X; ;Y; ;Z
• 60 CLOSE FILE(1)

The file created in this fashion can now be read by the
INPUT FILE statement, as follows:

• 70 OPEN FILE(1.0). "S.OUT"
• 80 INPUT FILE(1). R.S.T
• 90 PRINT R.S.T
• 100 CLOSE FILE (1)

• RUN
51020
*

LlNPUT FILE
The LINPUT FILE command functions exactly as the
LINPUT command described in Chapter 4. Its format
corresponds to that of the INPUT FILE command.

Change lines 80 and 90 in the above example to read as
follows:

• 80 LlNPUT FILE(1). A$
• 90 PRINT A$

The output would now consist of the string A$, as follows:

5,10,20

Since the LIN PUT FILE command accepts all data up
to a NEW LINE, carriage return, form feed, or null
character, the special considerations discussed with re­
gard to the INPUT FILE command do not apply; you
need not include literal commas as data separators when
creating files to be read with LINPUT FILE.

Keywords in Chapter 9
Table 9-3 lists the keywords introduced in Chapter 9.

Table 9-3. Keywords in Chapter 9

Can be used in

Keyword Program Immediate
Statement Mode

CLOSE Yes Yes

CLOSE FILE Yes Yes

DELETE No Yes

INPUT FILE Yes Yes

LINPUT FILE Yes Yes

OPEN FILE Yes Yes

PRINT FILE Yes Yes

READ FILE Yes Yes

WRITE FILE Yes Yes

End of Chapter

093·400005 Licensed Material·Property of Data General Corporation 9-19

Chapter 10
Program Segmentation

You may need to write programs that are too large to fit
into memory. You can divide such programs into seg­
ments, and then load and execute each program segment
in sequence to perform the desired overall programming
task.

This is sometimes called the chaining facility.

MP /BASIC provides four commands for program seg­
mentation: SAVE, CHAIN, LOAD, and SWAP.

Suppose you are writing a large program that will process
masses of data to generate a report, and then print that
report. Because of the size of the program, you decide to
break it into two parts:

• a main program segment to process the data and
generate the information for the report;

• a second program segment to print the report.

Weare not concerned here with the details of the actual
processing of the data or the printing of the report, but
just with how the two program segments interrelate.
Therefore, we will present only those parts of each
segment that set up the segmentation.

The first step is to write and type in each segment and
store it in a file. Let us store the main program segment
in file MAINPRG and the second program segment in
file PRNTREP.

Saving Program Segments: The SAVE
Command

You can type in and store the segments in any order; in
this example, let us start by typing in the second program
segment:

10 REM THIS IS THE SECOND PROGRAM SEGMENT
20 PRINT "PRNTREP IS STARTING"
30 REM
40 REM
50 REM Statements to
60 REM actually prepare
70 REM and print the
80 REM report would
90 REM go here.
100 REM

110 REM
120 PRINT "PRNTREP IS FINISHING"
130 END

We store the second program segment for later execution
by using the command

SAVE "PRNTREP"

This saves our program, along with its data area, in a
special format, in file "PRNTREP".

The format of the file made by the SAVE command is
different from the format of a file made by the LIST
command (discussed in Chapter 1). The file made by
LIST (called a source file) consists of just the program
statements, character by character, in ASCII format.
The file made by SAVE saves a data area (containing,
for example, the current values of any variables and other
data required by MP /BASIC) as well as the statements.

The segmentation commands CHAIN, LOAD, and
SW AP all work with programs that have been stored by
the SAVE command.

Once we have saved the second segment, we type in the
main program segment. The SA VE "PRNTREP" com­
mand does not delete the second program segment from
working memory, so we should use the NEW command
to clear our memory area before typing in the main
program segment.

We type in the main program segment as follows:

10 REM THIS IS THE MAIN PROGRAM SEGMENT
20 PRINT "MAIN PROGRAM SEGMENT IS STARTING"
30 REM
40 REM
50 REM Statements to actually process the
60 REM data and prepare the information
70 REM for the report would go here.
80 REM
90 REM PRINT "LINK TO SECOND SEGMENT"
100 CHAIN "PRNTREP"

Next, we save this segment in file "MAINPRG" by
using the command

SAVE "MAINPRG"

093-400005 Licensed Material-Property of Dsta Genersl Corporation 10-1

Linking to the Next Segment: The
CHAIN Command

When the main program segment is executed later on,
the statement

100 CHAIN "PRNTREP"

deletes the main program segment from working memory
(as if a NEW had been executed), loads the second
segment from its SAVE file and begins executing the
second segment at its first line.

Notice that both the main program segment and the
second segment use some of the same line numbers. Since
only one segment is in memory at a time, there is complete
independence of statement numbers between the segments
(as we will discuss in more detail below, there is also
independence of variables between segments).

Loading a Program Segment: The
LOAD Command

We can now try running our program, as follows:

" NEW
" LOAD "MAINPRG"
" RUN
MAIN PROGRAM SEGMENT IS STARTING
LINK TO SECOND SEGMENT
PRNTREP IS STARTING
PRNTREP IS FINISHING

The command LOAD "MAINPRG" brings the main
program segment (along with its stored data area) into
memory. The RUN command executes the main segment,
beginning at its first line. At the end of the main segment,
the statement

100 CHAIN "PRNTREP"

clears the main program from memory, and calls in and
executes the second program segment. The program
terminates at the END statement in the second segment.

After the program terminates, the second segment re­
mains in your memory area until you delete it or replace
it with something else.

Swapping the Current Segment: the
SWAP Statement

Suppose we wanted our main program segment to perform
other operations after the completion of the second
segment. For example, after printing the report we might
want to store the date that the source data was processed
and printed. We can return control back to the main

program segment by using a SWAP statement instead of
a CHAIN statement in line 100 of the main program,
and including additional statements as follows:

100 SWAP "PRNTREP"
110 PRINT "MAIN PROGRAM SEGMENT IS CONTINU­
ING"
120 REM additional processing
130 REM statements could
140 REM go here
150 PRINT "MAIN PROGRAM SEGMENT IS FINISHED"
160 END

When executed, the SWAP statement on line 100 would
SA VE the main segment, and load and execute the second
segment. When the second segment terminates with a
STOP or END, then the main segment (along with its
SA VEd data area) will be LOADed back into memory
and execution would continue at the line in the main
program segment following the SWAP statment (in this
case, line 110).

If we now run, we will get

"LOAD "MAINPRG"
"RUN
MAIN PROGRAM SEGMENT IS STARTING
PRNTREP IS STARTING
PRNTREP IS FINISHING
MAIN PROGRAM SEGMENT IS CONTINUING
MAIN PROGRAM SEGMENT IS FINISHED

Data Independence
Notice that the SWAP statement in the example just
above saves the data area of the main program segment,
and loads this area back into memory upon completion of
the second segment. Therefore, any values of variables
assigned during the execution of the main segment prior
to the SWAP are retained after the completion of the
SWAP.

The important thing to remember is that each program
segment has a data area that is saved by the SAVE
command and the SWAP statement; whenever the data
area is loaded back into memory, the variables will retain
their former values.

Because only one program segment (and its data area) is
in memory at one time, there is independence between
the names and current values of variables used in linked
segments. Thus, changing the values of variables in one
segment will not have any effect upon the values of
variables in another linked segment, even if two variables
in different segments have the same name.

This data independence also means that no data is passed
directly between segments linked by CHAIN or SWAP.

10-2 Licensed Material-Property of Data General Corporation 093-400005

Transferring Data Between Segments
You can transfer data between linked segments through
files. In the example above, the main program segment
must pass the information for the report to the second
segment. This can be done by having the main program
segment write the necessary information into a file that
the second segment reads.

CHAIN and SWAP do not close any open files before
deleting the calling program segment, nor do they reset
any file pointers. This means that the file pointer will
remain where it was set by the previous segment.

Running Under Different Versions of
MP/BASIC

In order to permit future enhancement of MP /BASIC,
files generated by SAVE under one version of MP /BA­
SIC will not be compatible with a later version of
MP /BASIC. The SAVE file format contains an MP /BA­
SIC revision number so that incompatable SAVEd files
can be detected.

You can, however, update your SAVE format files for
compatibility, quite simply. If you have a source file
(generated by the LIST command) of your program
segments, then, operating under the new version of
MP /BASIC, use ENTER to load the source file into
memory. Then use the SAVE command to create a new
file, which will be compatible with the new version. If you
do not have a source file, then you can create one from
the SAVEd file. Under the old version of MP /BASIC,
LOAD in the program segment and then use the LIST
command to create the source file. Source files are
compatible between versions of MP /BASIC.

Debugging
One of the advantages of segmenting is that you can
write and debug each program segment relatively inde­
pendently. Once you have SAVEd a segment, you can
use the LOAD command to call it back into memory.
This is especially useful when you need to modify a
segment, but the source code is not readily available.

Keywords in Chapter 10
Table 10-1 lists the keywords introduced in Chapter 10.

Table 10-1. Keywords in Chapter 10

Can be used in

Keyword Program Immediate
Statement Mode

CHAIN YES No

LOAD NO YES

SAVE YES YES

SWAP YES NO

End of Chapter

093·400005 Licensed Material·Property of Data General Corporation 10-3

Chapter 11
Exception Handling

Suppose you need to find out how many records there are
in a sequential data file consisting of people's names. One
way of obtaining this information would be through the
following program fragment:

320 OPEN FILE(1,3),"NAMES"
340 LET COUNT=O
350 REM READ A RECORD FROM THE FILE
360 READ FILE(l),LAST$,FIRST$
380 LET COUNT = COUNT + 1
400 GOTO 350

The statements on lines 350 through 400 form a loop, in
which a counter is incremented once for each record in
the file. When the end-of-file marker is reached, the
value of COUNT will be equal to the number of records
in the file.

However, when the end-of-file marker is reached,
MP /BASIC will terminate your program and print an
error message. You probably needed the number of
records in the file in order to carry out another task, so
you do not want your program terminated immediately
after the counting task.

What you would like to do in this situation is to
temporarily circumvent MP /BASIC's normal error han­
dling code and to substitute your own instructions for
regaining control after the end-of-file. You can do this by
using the MP /BASIC exception handling facilities (er­
rors are sometimes called exceptions).

The commands provided to handle exceptions are EN­
ABLE HANDLER, DISABLE HANDLER, HAN­
DLER, END HANDLER, RESUME, CONTINUE,
RETRY, and CAUSE. MP/BASIC also provides the
functions EXLINE and EXTYPE.

Implementing Exception Handling
You need to do two things to implement the MP/BASIC
exception handling facilities. First, you need to tell the
computer what you want done if an error occurs; then
you need to temporarily divert control from MP /BASIC's
normal error-handling code to your own error-handling
code.

You accomplish the first task by writing an exception
handler, which is a block of statements in your program
that tells the computer what you want done if an exception
occurs.

Defining an Exception Handler:
the HANDLER and
END HANDLER Statements
The block of statements that is the exception handler is
set off from the rest of your program by the statements
HANDLER and END HANDLER.

An exception handler for our example above is:

600 HANDLER HNDEOF
620 IF EXTYPE<> 16399 THEN GOTO 680
640 PRINT "REACHED END OF FILE.";COUNT;"
NAMES IN FILE"
660 CONTINUE
680 PRINT "FILE ERROR: NOT EOF"
700 CONTINUE
720 END HANDLER

Let us temporarily disregard the statements on lines 620
through 700, which make up the body of the handler. We
will discuss them below. Weare concerned here with
statements 600 and 720.

The HANDLER statement on line 600 marks the begin­
ning of the exception handler, and also indicates the
name (in this case HNDEOF) by which the handler can
be referenced from the rest of the program. The name of
the handler must begin with an alphabetic character,
which can be followed by any combination of alphabetic
and numeric characters, to a maximum of six characters.

The END HANDLER statement marks the end of the
error handling code.

093·400005 Licensed Material'Property of Data General Corporation 11-1

An exception handler can be placed anywhere in your
program; the block of statements beginning with HAN­
DLER and ending with END HANDLER will not be
executed if they are encountered in the normal numerical
sequence of your program; they are intended to be
executed only when an exception occurs. You should not
transfer control into a handler by a GOTO statement
from somewhere outside the handler.

Enabling and Disabling the Handler:
The ENABLE HANDLER and
DISABLE HANDLER Statements
The second requirement in implementing an exception
handler, as we mentioned above, is to temporarily divert
control from the default MP /BASIC error-handling
procedures to your exception handling code. The state­
ment

355 ENABLE HANDLER HNDEOF

activates the handler named HNDEOF. Whenever an
exception occurs, then control will be transferred to that
handler. If another handler is already enabled, it is
disabled and the one mentioned in the new ENABLE
statement becomes effective.

The statement

365 DISABLE HANDLER

deactivates the current exception handler, if any, and
enables MP /BASIC's default exception handling code.
Notice tha t the name of the current handler is not included
as part of the DISBLE HANDLER statement.

If we add the ENABLE HANDLER and DISABLE
HANDLER statements to our opening example, then all
errors occuring between statements 355 and 365 are
directed to the exception handler named HNDEOF. We
should emphasize here that control will be passed to
HNDEOF in all cases of error-not just in the end-of-file
case we are specifically looking for here. This means that
our exception handler must be written to handle all
possible error conditions, a requirement that we discuss
in more detail below. We need to keep this requirement
in mind, however, when enabling the handler, and to
leave the handler enabled only for the statement(s) in
which we expect our parti«ular exception to occur.

You can have several different exception handlers in your
program, each with a different name. You can also enable
a single handler at more than one point in your program.
Hovever, only one handler may be in effect at a time.
Also, you cannot nest handlers (that is, you cannot have
an ENABLE HANDLER statement within a HAN­
DLER ... END HANDLER block).

When your program is not running, MP /BASIC does all
the exception handling.

Determining the Type of Error:
The EXTYPE Function
Now let us consider the statements within handler
HNDEOF in the example above. Statement 620 deter­
mines if the error is an end-of-file error. It does this by
examining the error type, which is a code corresponding
to the kind of error that occurred. (Error types are
summarized in Appendix A.) The function EXTYPE
returns as a value the error type. End-of-file is a system
error, with corresponding error code 16399. Thus, the
statement on line 620 tests to see if the exception was
something other than an end-of-file; if so, then it sends
control to line 680. If the exception is an end-of-file, then
statement 640 prints an appropriate message, and passes
control to line 660. The CONTINUE statement returns
control to the main program, at the next line after the one
in which the exception occurred.

Exiting from the Handler
There are four ways to exit from an error handler, and
each has a different effect on where execution continues
after the handler is done.

The first option is in lines 660 and 700 of the example
above. The CONTINUE statement continues execution
at the line following the one that caused the exception (in
this case, the exception occurred at line 360, so control
would pass to line 365).

In some situations, you might want to reattempt the
statement that caused the exception. In these cases, you
would use a statement

660 RETRY

This second method of exiting from an error handler
returns control to the main program at the same line in
which the exception occurred.

A third exit option is to use the RESUME statement,
which causes execution of the main program to continue
at a line which is determined when you enable the handler.
Using RESUME requires an extended form of the
ENABLE HANDLER statement. Consider, for example,
the statement

555 ENABLE HANDLER CH 1 04, RESUME AT 800

in the main program and the statement

940 RESUME

within the exception handler named CHI04. Execution
of line 940 would pass control to line 800.

11-2 Licensed Material·Property of Data General Corporation 093-400005

The final exit option is the END HANDLER statement.
We have already seen that this statement marks the last
line of the handler's instructions. If the END HANDLER
statement is encountered in the normal course of execu­
tion, then the handler is disabled and control goes to the
next statement in numerical sequence after the END
HANDLER statment.

Determining the Location of an Error:
the EXLINE Function

When an exception occurs, the function EXLINE has as
a value the line number of the line in which the exception
occurred. For example, executing the statement

650 PRINT "ERROR OCCURRED ON LlNE";EXLINE

within the exception handler HNDEOF will print the
following message upon the occurrence of end-of-file:

ERROR OCCURRED ON LINE 360

Generating an Exception:
The CAUSE Command

The statement

315 CAUSE 16399

would generate an end-of-file condition. Likewise, using
any exception code listed in Appendix A in place of the
16399 would generate the corresponding error condition.
Thus, CAUSE is useful in debugging a program that
contains exception handlers.

As we mentioned above, an exception handler must
provide a way of processing all possible errors-not just
the one or two conditions you are specifically looking for.
Suppose, for instance, that the handler HNDEOF was
reached because one of the names in file NAMES was
too long for the variable LAST$, instead of because of an
end-of-file. In this case, the program would transfer
control to HNDEOF, which would print the message
FILE ERROR: NOT EOF and return control to line 380.

Another way of handling this situation is to refer all
errors other than the one(s) we are specifically interested
in back to the default MP /BASIC error handler. We can
do this by using the following statements:

670 PRINT "ERROR ON LlNE";EXLINE
680 DISABLE HANDLER
690 CAUSE EXTYPE

By deactivating our exception handler, and using the
CAUSE statement to simulate the same error condition
which originally passed control to HNDEOF, we can
send all error situations other than end-of-file back to the
default handler.

The statement on line 670 above prints the line on which
the original error occurred, since the default handler will
return the line number as 690.

Handling "'C" A Interrupts
Exceptions generated by the CTRL-C, CTRL-A sequence
(or the ESC key, if the CHARACTERIS­
TICS/ON/ESC command was given prior to entering
MP /BASIC) are handled separately from the other
exceptions.

The statement

220 ENABLE KEY HANDLER HNDESC

activates the handler named HNDESC to respond to a
CTRL-C, CTRL-A sequence. The statement

250 DISABLE KEY HANDLER

deactivates the key handler.

30 INPUT PROMPT "TYPE S TO START, E TO END:":S$
40 IF S$="S" THEN GOTO 80
50 IF S$="E" THEN GOTO 190
60 PRINT "PLEASE ENTER ONLY S OR E"
70 GOTO 30
80 ENABLE KEY HANDLER HNDKEY,RESUME AT 30
90 LET COUNT 1 = 0
100 LET COUNT 1 = COUNT 1 + 1
110 LET COUNT2=0
120 FOR 1= 1 TO COUNT1
130 LET COUNT2 = COUNT2 + 1
140 NEXT I
150 GOTO 100
190 STOP
300 HANDLER HNDKEY
305 PRINT
310 PRINT ""'CrA
COUNT1 =";COUNT1;"COUNT2=";COUNT2
320 PRINT "RETURNING TO BEGINNING"
330 DISABLE KEY HANDLER
340 RESUME
350 END HANDLER
360 END

The key handler operates independently from any other
handlers in your program. That is, you can have both a
key handler and a (regular) handler enabled at the same
time.

093-400005 Licensed Material-Property of Data General Corporation 11-3

Keywords in Chapter 11
Table 11-1 lists the keywords introduced in Chapter 11.

Table 11-1. Keywords in Chapter 11

Can be used in

Keyword Program Immediate
Statement Mode

CAUSE YES No

CONTINUE YES NO

DISABLE HANDLER YES NO

DISABLE KEY HANDLER YES NO

ENABLE HANDLER YES NO

ENABLE KEY HANDLER YES NO

END HANDLER YES NO

EXLINE YES YES

EXTYPE YES YES

HANDLER YES NO

RESUME YES NO

RETRY YES NO

End of Chapter

11-4 Licensed Materisl-Property of Oats General Corporation 093-400005

Chapter 12
Using Assembly Language Subroutines with

MP/BASIC

This chapter describes how to call assembly language
subroutines from an MP /BASIC program. In order to
use this feature of MP/BASIC, you must be an experi­
enced assembly language programmer.

You may want to call an assembly language subroutine
directly from an MP /BASIC program. For example, you
might have a special device (such as an alarm or a
temperature sensor) on your system, for which the device
driver exists only as an assembly language subroutine.
Or, you might need to do a mathematical or logical
operation that could be more efficiently performed in
assembly language.

Calling an Assembly Language
Subroutine: The SUMMON

Command
Suppose you have an assembly language program named
CRINKL. You can call that program from MP/BASIC
by using the statement

100 SUMMON "CRINKL"

SUMMON can be used either directly from the terminal
(in immediate mode) or as a program statement.

You can also pass parameters to the assembly language
subroutine, for example:

100 SUMMON "BUNGLE" [12, FADDR$, FDATE]

This statement calls the assembly language routine BUN­
GLE with three parameters:

• the numerical constant 12

• the string variable F ADDR$

• the numerical variable FDA TE.

Note the use of square brackets here. In our notation in
this manual, we ordinarily use square brackets to indicate
an optional part of a statement. Parameters are, indeed,
optional in a SUMMON statement; however, if they are
included they are enclosed in square brackets rather than
in parentheses.

You can pass as parameters any legal MP/BASIC
expression. You can also pass an array as a parameter.
To pass an array as a parameter, use the syntax for
formal arrays. A formal array is simply a means of
referring to an entire array with a single construct; the
format is the array name followed by adjacent paired
parentheses. For example:

40 DIM LlST$(5, 10)
50 SUMMON "FILL_LlST$" [A$,LlST$(),7]

Writing a Subroutine to be Called
from MP /BASIC

The assembler processes a source file (containing your
assembly language instructions) and produces an object
file (containing absolute, or relocatable, code). Then the
binder processes the object files of all the assembly
language subroutines that are to be executed together,
and produces a program file that the computer can
execute.

We will first describe how you write an assembly language
subroutine so that it can be called from MP /BASIC, and
then tell how to include it in the BIND line.

We will use an example of an assembly language routine
that can be called from MP /BASIC to illustrate some
points you should know when writing a subroutine of
your own.

Figure 12-1 shows a routine that performs a bit-by-bit
logical AND on two integers. This operation is not directly
available within MP/BASIC (the MP/BASIC operation
AND returns a value of 0 or 1 based on each of the two
integers as wholes, whereas the assembly language in­
struction AND produces an integer, each bit of which is
the logical AND of the corresponding bits in each of the
two operands).

093·400005 Licensed Material·Property of Data General Corporation 12-1

.TITLE LANDER ;Logically AND two integers

.ENT ?SlIIt

.NREL

;This routine will take two integers passed as argUients, AND them
; together, and return the result in a third integer variable.
;It is called from MP/BASIC with the statement

100 SUMMON "ANDER" [A,B,C]
;where A, B, and C are all integer variables. A and B are the integers
;to be ANDed, and the result is returned in C.

;Subroutine table
?SlIIt: ?SlNtON ANDER

-1 ;end of subroutine table

ANDER: SAVE 0 ;save the accumulators and the return address

;Get the two argunents passed froa MP/BASIC

LOA
LOA

O,O?AR01,3
1,O?AR02,3

;ACO = "A"
;AC1 = "B"

;Perfonl the AND and return the result to MP/BASIC

AND

STA
RTN

1,0

O,O?AR03,3

;ACO = "A" AND "B"

;return the result in "CO
;return to MP/BASIC

Figure 12-1. An Assembly Language Subroutine that Can Be Called from an MPjBASIC Program

In order to set up the connections between the assembly
language subroutine and your MP /BASIC program, you
will need to do three things when you write the subroutine:

• provide a way for your program to find the subroutine;

• provide a way to pass parameters between the subrou-
tine and your program;

• save and restore the accumulators.

The macro definition and frame pointer offsets necessary
for the first two tasks are contained in the parameter file
BASIC_USER.SR, which is supplied with MP /BASIC
(you include BASIC_USER.sR along with your source
code when you assemble your subroutine). The definitions
and offsets in BASIC_USER.sR are shown in Figure
12-2. You can obtain additional information about the
usage of BASIC_USER.sR by listing the file.

Finding the Subroutine: the Subroutine
Table
You provide a way for your program to find the subroutine
by creating a subroutine table (also called a ?SUM table).
This is an identifying table that associates the name in
the SUMMON statement with the entry point of the
subroutine. A ?SUM table appears at the beginning of
the example in Figure 12-1.

The ?SUM table uses the ?SUMMON macro. ?SUM­
MON is defined in the parameter file BASIC_USER.SR

12-2 Licensed Materisl·Property of Dsta General Corporation 093·400005

The subroutine table for the example in Figure 12-1 is
included with the source code for the subroutine. If you
want, you can write and assemble a ?SUM table separate­
ly and include it in the BIND line.

You can have only one subroutine table referenced in a
BIND line, but it can include several subroutines, as
shown in figure 12-3. In this example, the title MUSH is
the name which you will later supply to the binder (if you
are assembling the table separately) .

. TITLE BASIC-USER ;BASIC user subroutine parameters

;The ?SUMMON macro is used to create the subroutine name table.
;Remelber that the table must be terminated with a -1.

. MACRO ?SlJMlN
** . NOCON 1
** . PUSH . NOCON

.+3*2 ;BA(ROUTINE NAME)
L$;A(NEXT ENTRY)

** .00 "'2'="
"1 ; A (SLijROUTINE)

** .ENDC
** .00 '''2'0''

"2 ;A(SUBROUTINE)
** .ENDC

. TXT /"1/
L$:
** . NOCON .POP

"
;The addresses of the arguments passed to the subroutine called by
;the SUMMON statement are all placed on the hardware stack, and can
;be found by using the fOllowing symbols with the frame pOinter.

. DUSR ?AR01= -5 ;Offset to the first argument

. DUSR ?AR02= ?AR01-1 ;Offset to the second argument

. DUSR ?AR03= ?AR02-1

. DUSR ?AR04= ?AR03-1

. DUSR ?AR05= ?AR04-1

. DUSR ?AR06= ?AR05-1

. DUSR ?AR07= ?AR06-1

. DUSR ?AR08'" ?AR07-1

. DUSR ?AR09= ?AR08-1

. DUSR ?AR1!F ?AR09-1

;The address of arguaent eleven is found by subtracting one from
; ?AR10 , twelve is found by sUbtracting one from argument eleven and so on.

093·400005

Figure 12-2. Offsets and Macro Definitions from BA­
SIC_USER.SR (continues)

Licensed Material·Property of Data General Corporation 12-3

;These par8l8ters define the area pOinted to by AC2 on the
;successful cOlPlet1on of a ?FYAR call or by the addresses in the list
;passed by the SUMMON statement. (See above)

;Def1n1t1on of the area for string variables.

. DUSR

.DUSR
?DTCl= 0
?DTMI..= 1

;offset to current length
;offset to Iax1lU1 length

;Def1n1t1on of the area for array variables.

.DUSR

.DUSR
1OTD1= 0
?DTD2= 1

;offset to d1lens1on 1
;offset to d1lens1on 2

;Th1s paraleter defines the offset to the start of the data for
;both strings and arrays .

. DUSR ?DTAD= 2 ;offset to the array or string data

Figure 12-2. Offsets and Macro Definitions from BASIC_USER.sR (concluded)

.TITl MUSH

. ENT ?Sill ; Table nale lUst be ?SIII

?SIII: ?SUMMON CRINKl ;Th1s is the entry point for the routine CRINKl

?SUMMON ROUT2 ;Th1s is the entry point for the routine ROUT2

?SUMMON ROUT3 ;Th1s is the entry point for the routine ROUT3

-1 ;The table lUst be terminated with a -1.

Figure 12-3. A? SUM Table for Three Subroutines

Passing Parameters
Notice the offsets used in ANDER (?AR01, ?AR02, and
?AR03) to retrieve the addresses of the passed parame­
ters. These frame pointer offsets are necessary for your
subroutine to retrieve the addresses of the passed parame­
ters; they are defined in the parameter file BA­
SIC_USER.sR (see Figure 12-2).

The hardware stack pointer points to the address of
argument one, the value of the stack pointer minus one
points to the address of argument two, and so forth. The
address of the argument depends on the type of data in
the argument (for more information on the internal
representation of data, see Appendix C). For a REAL or
INTEGER number, the address is the address of the
data. For a string, the address is the address of the
two-word string descriptor that precedes the string. For
an array, the address is the address of the two-word array
header that precedes the array data.

12-4 Licenaed Material·Property of Data General Corporation 093·400005

Constants and the results of expressions can be passed
provided that there is a sufficient amount of memory
space available that is unused by either the program or
data sections. Numeric results require two words, and the
address passed to the user is the address of the data.
String constants require two words plus enough words to
contain the string characters, and the address passed is
similar to that for string variables (except that the offset
that normally contains the maximum string length will
contain a 0). Substrings cannot be passed to subroutines.

Saving and Restoring the Accumulators
When control is transferred to the subroutine, the accu­
mulators will contain the following:

ACO 0

ACI undefined

AC2 the address of a word containing the number of
parameters in the SUMMON statement; if there
are no parameters, then this word will contain 0

AC3 the return address

The first instruction in your subroutine should save the
contents of the accumulators (use SAY for MP/OS, or
SAVE for MP/AOS, MP/AOS-SU, AOS, and
AOS/VS). Likewise, the last instruction at each exit of
your subroutine should reload the accumulators (use RET
for MP/OS, RTN for MP/AOS, MP/AOS-SU, AOS,
and AOS/VS).

Returning an Exception Code
In addition to the three primary tasks mentioned above,
you might also want to provide a way for your subroutine
to indicate that an error or exceptional condition has
occurred.

One way to do this is for your subroutine to pass the
name of a variable in the parameter list. The subroutine
can then place the exception code in the variable, and the
MP /BASIC program can check it when the subroutine
returns. This means that you must include an error­
parameter in the SUMMON statement in your program.
This method of passing an exception code is completely
controlled by the user.

An alternate method of returning an exception code takes
advantage of the fact that MP /BASIC has special
conventions for the use of ACO upon entering and leaving
a subroutine. Recall that, when control passes from
MP /BASIC to the assembly subroutine, ACO has been
set to O. When the subroutine is finished, if ACO contains
anything other than a 0, MP /BASIC will act as if an
error occurred in the SUMMON statement. This error
can then be handled by the MP /BASIC exception
handling facilities.

Also, recall that the RET (or RTN) instruction will
reload the contents of the accumulators that were saved
by the SA V (or SAVE) instruction. In order for the
subroutine to pass back a value in ACO, you must use a
code sequence similar to the following (assume ACl
contains the exception code):

LOA 3,41 ;Load AC3 with the frame pointer
ST A 1, ?OACO,3 ;Store exception code for return to
RTN BASIC

;Return to MP / BASIC

?OACO is defined in MPARU.sR, so when the subrou­
tines are assembled, you should include MPARU.sR/S
before BASIC_USER.SR in the command line to the
assembler. For example:

X MASM MPARU.SRIS BASIC_USERSRIS <user
routine>

Creating the Program File
After you have assembled your subroutine(s) and table,
you can create your BASIC.PR file by an EXECUTE
MBIND command to the CLI. The exact format of this
command will depend upon the operating system, whether
you want a version with or without overlays, whether or
not your computer has hardware/firmware floating point
arithmetic and whether or not you want a run-only
version.

The command lines for each situation are presented below.
The file names must be listed in the same order as shown
in each command. The notation <user subroutines> in
each command is where you should insert the list of
names of the subroutine(s) (.OB's) to be bound into
MP /BASIC (be sure to include the name of the file
containing the subroutine table).

The commands below all assume hardware/firmware
floating point. For software floating point, substitute
SWBASIC wherever HWBASIC occurs.

MP/OS Overlays Not Run-only
EXECUTE MBINO I N I REV = 3.00 I L = BASIC.MP&
I P = BASIC,HWBASIC 1.LB, <user subroutines> ,&
!. HWBASIC2.LB ! HWBASIC3.LB .! HWBASIC4.LB,&
MSL.LB,INIT

093-400005 Licenaed Material-Property of Data General Corporation 12-5

MP/OS No Overlays Run-only
EXECUTE MBINO I N I REV = 3.00 I L = BASIC.MP&
I P = BASIC,HWBASIC 1.LB, <user subroutines> ,&
HWBASIC3.LB,ROBASIC,HWBASIC4.LB,&
MSL.LB,ROINIT

MP/OS No Overlays Not Run-only
EXECUTE MBINO I N I REV = 3.00 I L = BASIC.MP&
IP=BASIC,HWBASIC1.LB, <user subroutines>,&
HWBASIC2.LB,HWBASIC3.LB,HWBASIC4.LB,&
MSL.LB,INIT

AOS Overlays Not Run-only
EXECUTE MBINO I N I REV = 3.00 I AOS&
I L = MBASIC.MP I P = MBASIC,MICREM.OB,&
HWBASIC 1.LB, <user subroutines> ,&
! °HWBASIC2.LB!HWBASIC3.LB·!&
HWBASIC4.LB,MMSL.LB,URT.LB,INIT

AOS No Overlays Run-only
EXECUTE MBINO I N I REV = 3.00 I AOS&
IL=MBASIC.MP/P=MBASIC,MICREM.OB,&
HWBASIC 1.LB, < user subroutines> ,&
HWBASIC3.LB,ROBASIC, HWBASIC4.LB,&
MMSL.LB,URT.LB,ROINIT

MP/ AOS Overlays Not Run-only
EXECUTE MBINO I N I REV = 3.00 I MPAOS&
I L =OBASIC.MP I P= OBASIC,HWBASIC 1.LB,&
<user subroutines>,!· HWBASIC2.LB !&
HWBASIC3.LB .! HWBASIC4.LB,&
OSL.LB,INIT

MP / AOS No Overlays Run-only
EXECUTE MBINO I N I REV = 3.00 I MPAOS&
I L = OBASIC.MP I P = OBASIC,HWBASIC 1.LB,&
<user subroutines>, HWBASIC2.LB,ROBASIC,&
HWBASIC4.LB, OSL.LB,ROINIT

Using Longer Names for Subroutines
Subroutine entry points are limited to six alphabetic
characters. However, an option in the ?SUMMON macro
allows you to call an assembly language routine by a
name other than its entry point. Using this option, you
can use any legal string constants as subroutine names in
your MP /BASIC program. To use this option, add a
second argument that specifies the entry point name if it
is different from the call name. For example, the macro
call

?SUMMON GET_REMOTE_TEMP, RMOT

in the subroutine table causes the MP /BASIC statement

100 SUMMON "GET _REMOTE_TEMP" [3, BCOUNT]

to transfer control to the assembly language routine whose
entry point is RMOT.

Calling Routines Written in Other
Languages
The SUMMON statement passes arguments using the
Data General Common Language Runtime Environment
(CLRE) format. This means that you can use· routines
written in other Data General programming languages
that support the CLRE format.

For example, you can call SP/PASCAL routines from
MP/BASIC. You must declare the SP/PASCAL routine
to be CLRE entrant (see the SP/PASCAL Programmer's
Reference manual for more information on external
CLRE declaration). The statement

EXTERNAL CLRE PROCEOURE MOLE;

declares the SP/PASCAL routine MOLE to be CLRE
entrant.

End of Chapter

12-6 Licensed Material·Property of Data General Corporation 093·400005

Chapter 13
Summary

This chapter summarizes the key points in Chapters 1
through 12. Together with the information contained in
Chapter 14, "Dictionary of Statements, Commands, and
Functions" provide the experienced BASIC programmer
with a complete overview of MP jBASIC.

Fundamentals of Programming
(Chapter 1)

Characters
Figure 1-1 contains the ASCII character code with
decimal, octal, and hexadecimal notation.

Line Numbers
Line numbers may range from 1 to 65534.

Logging On and Off
To enter MPjBASIC from MPjOS, type

BASIC)

The commands for reaching MP jBASIC from other
operating systems are listed in Chapter 1.

An asterisk (*) prompt will appear at the beginning of
the line upon completion of the log-on procedure and
throughout the MP jBASIC session to indicate that the
system is ready to accept instructions.

Log off by typing BYE.

Clearing Memory Area
To clear memory area, type the command NEW before
typing new programs or recalling old ones. To obtain
current information about the number of memory words
used and the number still available, type the command
MEMORY.

Program Organization
Use the REM statement for explanatory comments.

Typing a line number followed by NEW LINE will cause
that line to be deleted. The DELETE command, followed
by a line number, will also cause that line to be deleted.
To delete several lines, use the DELETE command with
specific line numbers, and with the related keywords
FIRST, TO, and LAST as needed.

Current program lines may be deleted by using the
CTRL-C, CTRL-A keys (displayed on the console as
"'C"A). MPjBASIC will respond with a prompt.

To use the ESC key instead of CTRL-C, CTRL-A, type
the following before logging on to BASIC:

CHARACTERISTICS / ON / ESC

You can use the DEL key to back up to a typing error on
the current line, and then retype the line from the
correction to the end.

Program lines may be renumbered by means of the
RENUMBER command and its related keywords, AT
and STEP.

Default values are 100 for the first line number and 10
for the STEP increment.

The END statement is mandatory in ANSI Minimal
BASIC, but optional in MP jBASIC.

Naming a Program

See "Legal Filenames" in Chapter 9 for a description of
legal filenames.

Saving and Retrieving a Program

To save a program, type

LIST "filename"

where "filename" is the name of your program.

To retrieve a program, type

ENTER "filename"

where "filename" is the name of your program.

093·400005 Licensed Material·Property of Data General Corporation 13-1

Interrupting Program Execution

Interruptions to program execution may be built into the
program by means of STOP statements. The command
CON allows program execution to continue from the
point of interruption.

Program execution may be stopped at any time by striking
the CTRL-C, CTRL-A keys. The program may then be
re-excuted by means of the RUN command, or execution
may be resumed from the point of interruption by using
the CON command.

The Printed Output
Numbers are printed with leading spaces reserved for the
sign. Negative signs are always printed; positive signs are
not.

Unless otherwise stated (see DECLARE INTEGER in
Chapter 14), all numbers are treated as REAL numbers.

There are five print zones of 14 characters each.

The spacing of printed output is determined by the
punctuation separating items on a print line: a comma
sends the output to the next available print zone, while a
semicolon results in adjacent printing of items.

The TAB function allows spacing of output anywhere
along the line.

No carriage return and line feed are output if a print list
ends with a comma or semicolon, unless this would bring
the output beyond the allowable line width.

A semicolon (;) may be used instead of the word PRINT
in a PRINT command. This is an extension to the ANSI
standard.

PRINT may be used in immediate mode for dynamic
debugging, as well as for performing calculations
unrelated to any specific program.

PRINT USING enables you to print numerical data in a
formatted output (left- or right-justified; with inserted
dollar signs, asterisks, commas and decimal points; sup­
pression or printing of leading zeros; indication of positive
and negative numbers; control of spacing).

Error Messages
Error messages are followed by a display of the erroneous
line, beneath which a caret ("') localizes the area where
the mistake occurred.

Numeric Expressions: Variables,
Constants, and Operators (Chapter

2)

Numeric Variables
Numeric variables can be simple or subscripted.

Naming Numeric Variables

Numeric variable names may be composed of alphabetic
characters, digits, and the underscore character; the first
character must be alphabetic. For compatability with
AOS/VS BASIC, we suggest a maximum of 32 charac­
ters in a variable name.

Table 2-1 illustrates valid and invalid numeric variable
names.

Assigning a Value to Numeric Variables

This is done by means of the LET statement, (Chapter
2), the READ/DATA or INPUT statements (Chapter
4), or the READ FILE statement (Chapter 9).

Initializing Numeric Variables

Do not reference numeric variables before assigning them
a value or initializing them to zero.

Numeric Constants
Numeric constants can be positive or negative. The
positive plus (+) sign is optional, whereas the minus (-)
sign must always be included.

The range of numeric constants is -7.237E+75 to
+ 7 .237E + 75. In entering constants in scientific notation,
you can use exponents as high as + 99 or as low as - 99
as long as the limits of +7.237E + 75 or -7.237E + 75
are not exceeded.

Writing Numeric Constants

Numeric constants may be written in decimal notation or
in scientific notation.

In decimal notation, the value of numeric constants is
truncated to 15 decimal digits.

Numeric Data Types
MP/BASIC supports numeric data of type INTEGER,
in addition to those of type REAL supported by ANSI.
(Default type is REAL.) The range of integer values is
-32,768 to +32,767, inclusive. You may specify part or
all of your data to be of either type by using one of the
following statements:

13-2 Licenaed Material·Property of Data General Corporation 093-400005

line no. DECLARE INTEGER list of data
line no. DECLARE REAL list of data

where list of data may be numeric variables, dimensioned
strings, or arrays. These statements may also serve as
dimensioning statements for strings and arrays.

If you wish all your data to be of a given type, use one of
the following statements:

line no. DECLARE ALL INTEGER
line no. DECLARE ALL REAL

These statements may not be followed by a data list.

REAL numbers can be single- or double-precision. The
default is single-precision. You can specify the precision
of REAL numbers by using the following forms of the
DECLARE statements:

line no. DECLARE REAL • n list of data
line no. DECLARE ALL REAL • n

where n is 4 for single-precision and 8 for double-precision.

Working with integers results in faster arithmetic opera­
tions and loop executions and saves memory space.

Only the variables following the DECLARE ... statements
are affected by them.

Arithmetic Operators
The standard arithmetic operators and the rules of
operator precedence are summarized in Tables 2-2 and
2-3, respectively.

Character Strings (Chapter 3)
Character strings in the form of string variables and
string constants may be used as data.

A character string may consist of any of the following, in
any combination:

• uppercase alphabet characters, A through Z;

• lowercase alphabet characters, a through z;

• digits 0 through 9;

• one or more of the characters in Table 3-1.

String Variables

Naming String Variables
String variable names may be composed of alphabetic
characters, digits, and the underscore character, and must
be terminated by a dollar sign; the first character must be
alphabetic. This is an MP /BASIC extension to ANSI
Minimal BASIC, which only permits use of the 26 letters
of the alphabet followed by a dollar sign. For
compatability with AOS/VS BASIC, we suggest a maxi­
mum of 32 characters in a variable name.

Assigning Values to String Variables
Values are assigned to string variables by means of the
LET, INPUT, LINPUT, and READ/DATA statements.

Length of String Variables
String variables are automatically initialized to null, i.e.,
to a length of o.
ANSI Minimal BASIC specifies 18 characters as the
maximum length of a string variable. MP /BASIC allows
you to create string variables of indefinite length.

MP /BASIC default length of string variables is 18.
Longer string variables must be dimensioned, and shorter
ones may be dimensioned, using the DIM statement. For
example,

DIM A$ • 25, B$ • 8

Referencing Substrings
MP /BASIC allows you to reference portions of a string
variable. A statement such as

20 PRINT A$(3:6)

references a portion of A$ beginning at the third character
within A$, and ending with the sixth.

If you request a substring longer than your string, the
excess length will be ignored, and the substring will
terminate at the last character in your string. For example:

60 A$ = "SUPERSTAR"
70; A$(6: 11)

will produce a printout reading

STAR

093·400005 Licensed Material·Property of Data General Corporation 13-3

If the beginning of the substring is set at character 0 of
the string, BASIC displays a substring beginning at the
first character of the string. Using the previous example,
if we type

70; A$(0:5)

BASIC will display

SUPER

You can also assign a value to a selected portion of a
string. For example:

LET ITEM$ = "JELLYROLL"
LET ITEM$(6:9) = "JAR"
PRINT ITEM$

will produce the output

JELLYJAR

If the beginning of your substring is the last character of
the string, or if the starting and ending character positions
are reversed, a null string is returned.

String Constants
The length of a string constant must not exceed the
length of a program line, i.e., 156 characters.

Writing Character Strings: The Use of
Quotation Marks
Quotation marks around character strings are mandatory
in some cases, optional in others. Table 13-1 summarizes
these conventions. See also Table 4-2, which lists all
quoted characters.

Table 13-1. Use of Quotation Marks with String
Characters

Quotes
Optional

A period (.)
A plus sign (+)
A minus sign (-)

REM statements

Quotes Mandatory

When string contains comma (,) or
other special characters; see Table
3-2 for complete list
To preserve leading or trailing
spaces
When string contains embedded
quotes

String Operations
The ampersand (&) is the concatenation operator; for
example:

CSTR$ = ASTR$ & BSTR$

This is an MP jBASIC extension to the ANSI standard.

INPUT and READ DATA (Chapter 4)

INPUT
This statement can take several numeric and string
variables, separated by a comma. You must enter the
corresponding values in the same order in which they are
requested by the INPUT line.

Excess values as well as insufficient values will generate
an error message. In that event, a new question mark will
appear, and the entire list of values must be re-entered.

The following variations of the INPUT statement are
extensions of the ANSI standard.

The INPUT PROMPT statement allows the inclusion of
a prompt message in the INPUT statement. Upon
execution, the prompt message is printed before the input
is accepted. The prompt message can be any string
expression.

The LINPUT statement takes only string arguments,
assigning them to a string variable. It accepts a line of
data literally, including characters normally receiving
special treatment, e.g., comma, embedded quotes, or
quoted characters. The NEW LINE, carriage return,.
form feed, and null characters are recognized as delim­
iters.

INPUT and LINPUT may also be used with file opera­
tions. (See Chapter 9.)

READ and DATA
Variables appearing on a data line are separated by
commas; the order of their appearance must match the
order in which they are to be read.

It is permissible to split data among several data lines,
provided the order of enumeration matches the order of
reading.

Data lines should be placed close to their corresponding
read statements.

Insufficient data will generate an error message; excess
data are ignored.

13-4 Licensed Material-Property of Data General Corporation 093-400005

RESTORE
Used without arguments, this keyword resets the pointer
to the beginning of the first DATA statement in the
program. If followed by a program line number, for
example,

• 200 RESTORE 120

this keyword will reset the pointer to the beginning of the
data line whose number you have specified. Successive
reads can thus begin anywhere you wish. This feature is
an extension to ANSI Minimal BASIC.

Control Statements; Flowcharts
(Chapter 5)

Unconditional Branching
This type of branching results from the use of the GOTO ...
statement.

Conditional Branching
The IF ... THEN ... ELSE statement makes branching con­
tingent on the result of relational operations performed
on numeric and string expressions.

The ELSE clause (here as well as in the
ON ... GOSUB. .. ELSE and ON ... GOTO ... ELSE state­
ments) is an MP /BASIC extension to the ANSI standard.

Relational Operators
Table 5-1. summarizes the six relational operators, all of
which may be applied to numeric variables.

MP /BASIC extends the ANSI standard by accepting
the formats

=> for >=
=< for <=

To be considered equal, two strings must contain an
identical sequence of characters, including spaces. String
comparisons are sensitive to the difference between upper­
and lowercase alphabetic characters.

Nested IF ... THEN ... ELSE statements are permitted.

Multiple Branching
The ON ... GOTO ... ELSE ... statement permits the selec­
tion of the appropriate branch from among several
choices.

Loops
Looping can be controlled by means of a counter or by
means of the FOR and NEXT statements.

Nested loops as well as simple loops are permissible.

The optional STEP keyword specifies the size of the
FOR ... NEXT ... increment (the default increment is 1).
The increment specified by STEP can be positive (for an
ascending FOR ... NEXT sequence) or negative (for a
descending FOR. .. NEXT sequence).

Declaring the initial value, the counter variable, the
increment, and the limit of a FOR ... NEXT statement as
integers (see Chapters 2 and 14), speeds execution of the
loop.

Flowchart Symbols
These are summarized in Figure 5-9.

Logical Operators
The logical operators in MP /BASIC are AND, OR, and
NOT.

Subroutines (Chapter 6)
Branching to and returning from a subroutine are con­
trolled by the GOSUB... and RETURN statements,
respectively. The GOSUB may be part of an
ON ... GOSUB ... ELSE statement.

Subroutines can be nested to nine levels.

Subscripted Variables (Chapter 7)
One- and two-dimensional arrays may be created with
numeric or string variables. You cannot combine numbers
and strings within a single array.

Naming Arrays
MP /BASIC expands the ANSI standard by allowing as
an array name any name which is valid as the name of a
string or numeric variable.

You may not use the same name for both a simple variable
and an array within the same program. Neither can you
use the same name for both a one-dimensional array and
a two-dimensional array within the same program.

Array Size
The DIM statement determines the upper bound of an
array. When you declare a two-dimensional array, both
subscripts must be included in the DIM statement. You
need not use all the elements you have reserved in the
dimensioning declaration.

093·400005 Licensed Msterial·Property of Data General Corporation 13-5

A one-dimensional array has a default size of 11 elements
with subscripts ranging from 0 through 10. A two­
dimensional array has a default size of 121 elements.
Dimensioning declarations are optional for arrays that do
not exceed default size.

Each array must be dimensioned separately, but several
arrays may be dimensioned in the same statement. The
ANSI standard requires DIM statements to appear on a
lower numbered program line than the reference to the
array. MP /BASIC expands on the standard by specifying
only that program execution pass through the DIM
statement before the array is referenced.

An array can be dimensioned only once in a program.

The OPTION BASE statement determines the lower
bound of an array as 0 or 1; the default lower bound is O.

Functions (Chapter 8)
MP /BASIC offers the user implementation-defined func­
tions as well as the option of creating user-defined
functions.

Implementation-Defined Functions
This group includes mathematical and string functions.

Mathematical Functions
Table 8-1 summarizes the implementation-defined math­
ematical functions. Starred functions represent the
MP /BASIC expansions of the ANSI Minimal BASIC
standard.

Mathematical functions are executed in the following
order: operations within the argument of a function are
done first; next the function is evaluated; thereafter, all
other arithmetic operations in the statement are done in
their normal order of precedence.

String Functions
Table 8-2 summarizes the implementation-defined string
functions, all of which are extensions of the ANSI
standard.

User-Defined Functions
A user-defined function can return only a single value. A
user-defined function definition is limited to one state­
ment typed on a single line.

Defining a Function

The DEF statement declares and defines a function
created by the user. ANSI requires that a function be
defined on a lower-numbered line than its reference;
MP /BASIC specifies only that program execution pass
through the DEF statement before the function is refer­
enced.

User-defined functions may be redefined in a program.

A user-defined function definitions may refer to other
functions but not to the function currently being defined.

Naming the Function

A user-defined function name consists of the characters
FN followed by a single alphabetic character.

A maximum of 26 functions, (FNa ... FNz) may be defined
by the user.

Arguments

User-defined functions may contain a single, optional
argument.

File Input and Output (Chapter 9)
MP /BASIC file operations are an extension of the ANSI
standard. File operations include creating a new file,
writing into it, appending new data, reading the file, and
printing its contents. The user may have up to eight files
open at anyone time.

File attributes such as filename and filenumber are
described in the OPEN FILE statement in Chapter 14.

File Modes
The mode in which a file is opened determines the kind of
operation that can be performed with that file as well as
the type of access permitted to it. Some files may be
accessed sequentially, while others allow random as well
as sequential access.

Four possible file modes are expressed by numbers
ranging from 0 to 3. See Table 9-1 and the OPEN FILE
statement in Chapter 14.

File Records
MP jBASIC files can contain two types of records:
fixed-length records and variable-length records. These
types may not be mixed within a single file.

Records may contain alphanumeric data.

All data in a single record must be processed in a single
write or read statement. The first record location within a
file is record number O.

13-6 Licensed Material-Property of Data General Corporation 093-400005

Record length is expressed in terms of bytes and may
range from 0 to 32,767 bytes.

When record size is declared and data are written into a
specific record location, any empty bytes in that record
are left vacant.

Examples of random access are provided in Chapter 14 in
connection with the WRITE FILE and READ FILE
statements.

Data Formats of Files
MP /BASIC supports two formats for data in files: binary
format and ASCII format.

READ FILE and WRITE FILE read and write data
from and to files in binary format. INPUT FILE,
LlNPUT FILE, and PRINT FILE read and write data
from and to files in ASCII format.

File Data in ASCII Format
To write data into a file in ASCII format, use the PRINT
FILE command. Files of this type can be read with the
INPUT FILE and the LIN PUT FILE statements, but
not with the READ FILE statement.

INPUT FILE and LlNPUT FILE are forms of (and
therefore function like) the INPUT and LlNPUT com­
mands described in Chapter 4. (INPUT and LlNPUT
read data from your terminal; INPUT FILE and
LIN PUT FILE read data from a file).

To be read with the INPUT FILE, the file must match
the appearance of a user-entered INPUT statement:
literal commas must be entered between data items when
the file is created, if the INPUT FILE statement requests
several variables.

LlNPUT FILE accepts only strings as arguments.

Program Segmentation (Chapter 10)
Program segmentation is an MP /BASIC extension to the
ANSI standard.

Program segments are stored (by the SAVE statement)
in a special format which includes a data area. This
format is compatable with all the segmentation com­
mands.

You can load the first segment by using the LOAD
command.

You can chain from segment to segment by the CHAIN
statement (which passes control to the next segment with
no explicit provision for returning to the current segment)
or the SWAP statement (which returns control to the
current segment upon completion of the SWAPped
segment).

The SAVEd data area is loaded back into your work area
each time you LOAD, CHAIN, or SWAP a segment;
thus, you can preserve values of variables between
occurrences of a segment.

There is independence between variables used in linked
segments. You transfer data between linked segments
through files. CHAIN and SWAP do not close any open
files or reset any file pointers when chaining between
segments.

Exception Handling (Chapter 11)
User-defined exception handlers are an MP /BASIC
extension to the ANSI standard.

The block of statements comprising an exception handler
is set off by the HANDLER and END HANDLER
statements.

Exceptions that can be handled by user-defined handlers
are in two categories: the KEY exception, which is the
"'C" A interrupt and all other exceptions.

Only one handler can be enabled at one time to handle
each category. If no user-defined handler is enabled for a
category, then the MP /BASIC default error handler is
enabled.

The ENABLE [KEY] HANDLER and DISABLE
[KEY] HANDLER statements enable and disable a
handler, respectively.

Handlers cannot be nested.

Control is returned from an exception handler by a
RETRY, RESUME, or CONTINUE statement.

The CAUSE statement simulates an error condition.

The functions EXTYPE and EXLINE return, respective­
ly, the exception code (listed in Appendix A) and the line
number of the statement where the exception occurred.

Using Assembly Language
Subroutines with MP /BASIC

(Chapter 12)
Calling assembly language subroutines from MP /BASIC
is an extension to the ANSI standard.

The SUMMON statement enables you to call an assembly
language subroutine directly from an MP /BASIC pro­
gram.

You can" optionally, pass parameters (including arrays)
to and from a subroutine.

To be called from an MP /BASIC program, an assembly
language subroutine uses a subroutine table, which must
be included with the subroutine in the BIND line.

093-400005 Licensed Material-Property of Data General Corporation 13-7

The subroutine table macro definition and the frame
pointer offsets for passing parameters are included in file
BASIC_USER.SR, which is supplied with MP jBASIC.

You can call a subroutine from MP jBASIC by a name
that is longer than the six-character upper limit on
assembly language subroutine entry points. To do this,
use an option for the ?SUMMON macro when you
construct the subroutine table.

This facility can also be used to call routines written in
other Data General programming languages that support
the CLRE format.

End of Chapter

13-8 Licensed Material·Property of Data General Corporation 093·400005

Chapter 14
Dictionary of Statements, Commands, and

Functions

This chapter lists in alphabetical order all statements,
commands, and functions. In each case, the purpose is
stated and the format is given, with an explanation of the
arguments used. Where appropriate, examples are sup­
plied.

Starred functions and commands (i.e., *DEG) represent
extensions to ANSI Minimal BASIC (note that the * is
not a part of the statement or function).

We use the following conventions in the format portion of
each description:

KEYWORD required, (choice 1 I choice2)

where

KEYWORD

required

[option] I option21
option3}

[,(option] I option2 I option3)} ...

means

You must type the KEYWORD
exactly as shown.

You must enter some argument
here.

You have the option of entering the
material enclosed in the brackets.
Don't enter the brackets; they only
set off what is optional (the excep­
tional cases where the brackets are
to be entered are noted in the indi­
vidual descriptions).

You enter one element among the
two or more choices joined by the
vertical line. In the example above,
you must enter a value for either
choice1 or choice2, and you may
enter a value for either option],
option2, or option3.

(choice 1 I choice2) The enclosed material constitutes
an element of a statement. In some
cases the parentheses should be en­
tered as a part of the command or
function. In other cases the paren­
theses set off an element of the
command or function and should
not be entered. The "Remarks" and'
"Examples" sections will show the
appropriate use in each case.

You may repeat the preceding entry
or entries. The "remarks" and "Ex­
amples" sections will tell you exact­
ly what you may repeat.

In the examples, an asterisk (*) at the beginning of a line
indicates the MP /BASIC prompt and a single right
parenthesis ()) indicates the CLI prompt.

093·400005 Licensed Material·Property of Deta General Corporation 14-1

ABS(X)

Format
ABS (expr)

Returns the absolute (positive) value of expr.

Arguments
expr is a numeric expression.

Examples

• LIST
10 PRINT ABS(- 30)
'RUN
30
*

*ALL

Always used in conjunction with other keywords. See
DECLARE INTEGER, DECLARE REAL.

ATN(X)

Format

ATN (expr)

Calculates the angle (in radians) whose tangent is expr.
Range of the function is -pi/2 < ATN(X) < pi/2.

Arguments

expr is a numeric expression.

Examples

"LIST
10 REM-CALCULATE ANGLE WHOSE TAN=2
20 PRINT ATN(2)
'RUN
1.10715
*

*BSTR$(V,R)

Format

BSTR$(expr,base-expr)

Returns the string representation of the valUle of the
binary number Y in base (radix) R.

Arguments

expr is a numeric expression that evaluates to a 16-bit
unsigned integer.

base-expr is a numeric expression that evaluates to an
integer value in the range 2 through 16.

Remarks

BSTR$ complements the BY AL(A$,R) function.

Examples

BSTR$(8,2) = "1 000"

14-2 Licensed Material-Property of Data General Corporation 093-400005

*BVAL(A$,R)

Format
BVALCstr-expr,base-expr)

Returns the 16-bit unsigned binary value (in base R) of
the number represented by the string B$.

Arguments
str-expr is a string expression that evaluates to the string
representation of a number in base (radix) base-expr.

base-expr is a numeric expression that evaluates to an
integer value in the range 2 through 16.

Remarks
BV AL complements the BSTR$ function.

When evaluated, str-expr can consist only of the charac­
ters that are valid as numbers in base R. For example, if
R=2 (binary) then the string can consist of characters 0
and 1, if R = 16 (hexadecimal) then the string can consist
of characters 0 through 9 and A through F.

If you PRINT the value of BV AL, it will look like a
decimal number. This is because the PRINT command
treats the binary value returned by BV AL as a decimal
INTEGER. Thus, BVAL("SB",16) has a value
"01011011 ", but would be PRINTed as the decimal
number 91.

Examples
BVALC"3A",16)=00111010

*BYE

Format
BYE
Signs off from MP /BASIC and returns to the CLI.

Remarks
When used at the end of a BASIC session, BYE closes all
open files.

Examples
·BYE
)

093-400005 Licensed Material-Property of Oats General Corporation 14-3

*CAUSE

Format
CAUSE expr

Generates an exception.

Arguments
expr is a numeric expression that evaluates to one of the
error codes listed in Appendix A.

Remarks
CAUSE is useful in debugging a program containing an
exception handler.

CAUSE can be used only as a statement in a program; it
cannot be used as a command in immediate mode.

Examples
200 CAUSE 28

This statement simulates a file not open error.

*CHAIN

Format
CHAIN "seg-file-name"

Loads and begins execution of a program segment.

Arguments
seg-file-name is the name of the file, expressed as a
string literal, in which the program segment is stored.

Remarks
CHAIN clears your work area, loads the segment from
file "seg-file-name", and begins execution at the segment's
first line.

The program segment must have been previously stored
in file "seg-file-name" by a SAVE command.

CHAIN does not close any open files or reset any file
pointers when switching between segments.

CHAIN can be used only as a statement in a program; it
cannot be used as a command in immediate mode.

Examples
CHAIN "CKWRIT"

CHAIN "SEGTWO"

For more extensive examples, see Chapter 1 O.

14-4 Licensed Material·Property of Data General Corporation 093-400005

*CHR$(M)

Format
CHR$ (expr)

Returns the string character for which expr is the ASCII
decimal representation.

Arguments
expr is a numeric expression that evaluates to a positive
integer in the range of 1 to 255.

Remarks
If expr is in the range from 128 to 255, the character
returned is the character corresponding to the ASCII
code MOD(expr,128).

CHR$(M) complements the ORD(A$) function.

Examples

• LIST
10 REM CONVERT NUMERIC DATA TO STRING
20 FOR M = 65 TO 68
30 PRINT CHR$(M)
40NEXTM
• RUN
A
B
C
D
*

*CLOSE FILE

Format
CLOSE [FILE (file)]

Disables the relationship between a filename and a file
number so that the file can no longer be referred to.

Arguments
file is a numeric expression that evaluates to a number in
the range from 0 to 7 and that corresponds to the number
associated with a filename in the OPEN FILE statement.

Remarks
When a file is closed, the file pointer no longer exists.

You can use the CLOSE FILE statement to close a file
and then reOPEN it with a new mode argument.

The CLOSE form of the statement closes all open files.

Examples
• 150 CLOSE FILE(1)
*300 CLOSE

093·400005 Licensed Material·Property of Data General Qorporation 14-5

*CON

Format
CON

Continues the execution of a program after a STOP
statement in the program has been executed, the CTRL-C
CTRL-A keys have been struck, or an error has occurred.

Remarks
The CON command causes the continuation of the
program from the point where it stopped.

If a run-time error is encountered within the program,
you may correct the error and issue the CON command
to begin execution from the statement following the one
in which the error occurred.

Examples
°LlST
10 PRINT "PRINCIPAL INT(%)";
20 PRINT "TERM(YRS) TOTAL"
30 READ P,I, T
35 IF T=O THEN GOTO 80
40 LET A=P*(J+I/100rT
50 PRINT P;TAB(J 2);1;
55 PRINT TAB(21);T;TAB(32);A
60 GOTO 30
70 DATA 1000,5,10,0,0,0
80 PRINT
90 PRINT "CHANGE DATA AT LINE 70"
100 STOP
105 RESTORE
110 GOTO 10
°RUN

PRINCIPAL INT(%) TERM(YRS) TOT AL
10005101628.89
CHANGE DATA AT LINE 70
Stop at line 100
°70 DATA 2500,3,10,1459,6,12,0,0,0
°CON
PRINCIPALINT(%) TERM(YRS) TOTAL
2500 3 10 3359.79
1459 6 12 2935.79
CHANGE DATA AT LINE 70
Stop at line 100

*

*CONTINUE

Format
CONTINUE

Returns control from an exception handler to the state­
ment following the one in which the exception occurred.

COS(X)

Format
COS (expr)

Calculates the cosine of an angle expressed in radians.

Arguments
expr is a numeric expression specified in radians.

Examples
° LIST
10 REM PRINT COSINE OF 30 DEGREES
20 LET P = PI/180
30 PRINT COS(30*P)
° RUN
.866025
*

14-6 Licensed Material·Property of Data General Corporation 093·400005

DATA

Format
DATA (vall "str lit")[,(vall "str lit")]' ..

Provides values for variables specified in a READ state­
ment.

Arguments

val and str lit are elements that can form a list of numeric
constants and string literals.

Remarks
You can use more than one DATA statement in a
program.

The DATA statement is a nonexecutable statement. The
values appearing in a DATA statement or statements
form a single list. The first element of this list is the first
item in the lowest numbered DATA statement. The last
item in this list is the last item in the highest numbered
DATA statement.

Both numbers and string literals may appear in a DATA
statement and each value in the DATA statement list
must be separated from the next value by a comma.

Quotation marks are required around str lit only if it
contains one or more of the characters listed in Table 4-2.
Quotation marks are optional in all other cases.

Examples
100 DATA 1, 17, "AB,CD", -1.3E-13

See the READ statement for usage and additional
examples.

*DATE

Format
DATE

Returns the current date.

Remarks
The current date is returned in the decimal form YYDDD,
where YY is the last two digits of the year and DDD
represents the number of days elapsed in the year.

See also the string function DATE$.

Examples
The value of DATE on May 9,1977 was 77129.

093-400005 Licensed Material-Property of Data General Corporation 14-7

*DATE$

Format
DATE$ Returns the current date in the string representa­
tion YY /MM/DD.

Remarks
See also the numeric function DATE.

Examples
DATE$ for May 9, 1977 was 77/05/09.

*DECLARE INTEGER

Format
DECLARE ALL INTEGER DECLARE INTEGER ~ar I
array(m)[*nj I
array(row,col) [*nj I svar·n) [(, var I array(m)[*nj I
array(row,col) [*nj I svar*n)j ...

Specifies the numeric variables and arrays in the data list
as being 16-bit integer variables or arrays, and dimensions
the string variables and arrays in the data list.

Arguments
var is a numeric variable name.

array is a BASIC numeric variable name.

m is an expression for the number of elements in a
one-dimensional array.

row is an expression for the number of rows in a
two-dimensional array.

col is an expression for the number of columns in a
two-dimensional array.

svar is a string variable.

n is an expression for the maximum number of characters
in a dimensioned string variable.

Remarks

In the absence of a declaration, MP /BASIC treats all
numeric data as single-precision real.

The declaration of numeric data type may serve as a
dimensioning statement for arrays and string variables
(see also DIM).

Examples
·10 DECLARE ALL INTEGER

Declares all numeric variables used in the program as
being integers.

• 10 DECLARE INTEGER X,Y,A(40),B(20,20), A$ • 26

Declares the numeric variables X and Y and the numeric
arrays A and B as INTEGERs; dimensions the numeric a
A and B and the string A$.

14-8 Licensed Material'Property of Data General C~tlon 093-400005

*DECLARE REAL

Format
DECLARE ALL REAL[*pJ

DECLARE REAL[*pJ (var I array(m)[*nJ I array(row,eol)
[*nJ I svar* n) [(, var I array(m)[*nJ I array(row,col) [*nJ
I svar*n)J .,.

Specifies the numeric variables and arrays in the data list
as being 32-bit or 64-bit floating point values.

Dimensions the string variables and arrays in the data
list.

Arguments
p is the number 4 or 8, indicating single or double
precision, respectively.

var is a numeric variable name.

array is a BASIC numeric variable name.

m is an expression for the number of elements in a
one-dimensional array.

row is an expression for the number of rows in a
two-dimensional array.

eol is an expression for the number of columns in a
two-dimensional array.

svar is a string variable.

n is an expression for the maximum number of characters
in a dimensioned string variable.

Remarks
In the absence of a declaration otherwise, MP /BASIC
treats all numeric data as single-precision real.

The declaration of numeric data type may serve as a
dimensioning statement for arrays (see also DIM).

Examples
* 10 DECLARE ALL REAL

Declares all numeric variables used in the program as
being of type real.

10 DECLARE REAL *8
X, Y ,A(40), B(20,20),NAMES$(1 0,30)

Declares the numeric variables X and Y as double­
precision real numbers, the numeric arrays A and B as
containing double-precision real numbers; dimensions the
numeric arrays A and B and dimensions the string array
NAMES$.

093·400005 Licensed Material·Property of Data General Corporation 14-9

DEF FNa(d)

Format

DEF FNa[(d)] = expr

Permits you to define as many as 26 different functions
that can be repeatedly referred to throughout a program.

Arguments

a is a single letter from A to Z.

d is a dummy arithmetic variable that may appear in
expr.

expr is an arithmetic expression that may contain the
dummy variable d.

Remarks

Each function returns a numeric value.

BASIC does not relate the dummy variable named in the
DEF statement to variables in the program with the same
name; the DEF statement simply defines the function
and does not cause any calculation to be carried out.

In the function definition, expr can be any legal arithmetic
expression and may include other user-defined functions.

Function definition is limited to a single-line DEF state­
ment. Complex functions requiring more than one pro­
gram statement should be constructed as subroutines.

Once you have defined a function, you can redefine it
later in your program.

Examples
• LIST
10 DEF FNE(J) = (r'2) + 2*J+ 1
20 LET Y=FNE(5)
30 PRINT Y
• RUN
36
*
In line 10 the FNE function is defined. In line 20 the
FNE function is referred to and evaluated with numeric
argument 5.

The following example illustrates the nesting of user­
defined functions.

• LIST
10 DEF FNR(X)=X*PIj180

20 DEF FNS(X)=SIN(FNR(X))
30 DEF FNC(X) = COS(FNR(X))
40 FOR X=O TO 45 STEP 5
50 PRINT X,FNS(X),FNC(X)
60 NEXT X
• RUN

0 O. 1.

5

10

15

20

25

30

35

40

45

*

*DEG(X)

Format
DEG (expr)

8.715578E-02

.173648

.258819

.34202

.422618

.5

.573577

.642788

.707107

Converts expr to degrees.

Arguments

.996195

.984808

.965926

.939693

.906308

.866026

.819152

.766045

.707107

expr is a numeric expression specified in radians.

Examples
• LIST
10 REM CONVERT RADIANS INTO DEGREES
20 PRINT "DEG(X) = "; DEG(PIj2)
• RUN
DEG(X) = 90

*

14-10 Licensed Material·Property of Data General Corporation 093·400005

DELETE [FIRST TO LAST]

Format

DELETE

'Jilename"
nl
FIRST
FIRST TO LAST
FIRST to n2
nl to LAST
nl to n2

Removes a file from your directory; deletes a line or a
group of lines from your current program. FIRST and
LAST refer to the first and last program lines, respective­
ly.

Arguments
'Jilename" is a file in your directory, expressed as a
string literal or string variable, that is not protected.

nl is the first program line you wish to delete.

n2 is the last program line you wish to delete.

Variations
DELETE n1

Delete the entire line numbered n 1.

DELETE FIRST TO n2

Delete all lines from the first program line through n2.

DELETE n 1 TO n2

Delete from line number n 1 through line number n2.

DELETE n 1 TO LAST

Delete lines from n 1 through the last program line.

DELETE FIRST TO LAST

Delete the entire program.

Remarks
After the DELETE "filename" command, BASIC
searches your directory and deletes the file named "file­
name."

An error message is returned if the file cannot be found,
or is not in your directory.

Examples
"DELETE "TEST.SR"

BASIC removes file TEST.SR from your directory and
frees the disk blocks which it occupied.

"DELETE 10

Deletes line 10 from your current program.

"DELETE 10 TO 90

Deletes line numbers 10 through 90 from your current
program.

" DELETE FIRST TO 90
" DELETE 30 TO LAST
" DELETE FIRST TO LAST

093-400005 Licensed Material-Property of Data General Corporation 14-11

DIM

Format
DIM array(m)[*nj I array(row,col)[*nj I svar • n
[,array(m)[*nj I ,array(row,col)[*nj I ,svar * n j ...

Defines the size of one or more arrays; defines the limits
to a string variable.

Arguments
array is an MP jBASIC numeric or string variable name.

m is an expression for the number of elements in a
one-dimensional array.

row is an expression for the number of rows in a
two-dimensional array.

col is an expression for the number of columns in a
two-dimensional array.

svar is a string variable name.

n is the maximum length of a string variable.

Remarks
The concept of arrays is described in Chapter 7. The
DIM statement can declare the upper bound (highest­
numbered element) other than the default (10) for each
dimension. For example,

·10 DIM A(13), B(7,7), C(20,5)

Any variable or expression that you use for a subscript
must have a value ranging from 0 or 1 on the lower bound
(see OPTION BASE) up to the value specified in the
DIM statement. For example,

• 1 DIM A(5,5)
·5 X=2
·10 PRINT A(1,X"'2)

If the variable or expression subscript does not evaluate
to an integer, BASIC will round it to an integer.

If a subscript evaluates to a larger integer than the upper
bound of the dimension for the array, a subscript error
condition occurs.

An array can be dimensioned only once within a program.
(Redimensioning within a program will generate a run­
time error.)

Dimensioning Strings
The DIM statement can declare the size of a string
variable to be different from the default size of 18
characters.

A string variable may be dimensioned to any number of
characters. This is an extension to ANSI Minimal
BASIC, which specifies a maximum of 18 characters.

Example
10 DIM A$ • 3, B$ • 25

14-12 Licensed Material·Property of Data General Corporation 093·400005

*DISABLE [KEY] HANDLER

Format
DISABLE [KEY] HANDLER

Disables an exception handler.

Remarks
Deactivates the current exception handler, if any, and
enables MP /BASIC's default error handling code.

If the KEY option is specified, then the exception handler
enabled by the most recently executed ENABLE KEY
HANDLER statement is disabled from handling "'C'" A
interrupts. The handling of all other exceptions will not
be affected.

If the KEY option is not specified, then the exception
handler enabled by the most recently executed ENABLE
HANDLER statement is disabled from handling excep­
tions other than "'C'" A interrupts. The handling of "'C'" A
interrupts will not be affected.

Examples
See Chapter 11 for examples of context.

*ELSE

Always used in conjunction with other keywords. See
IF ... THEN ... ELSE, ON ... GOTO ... ELSE, and
ON ... GOSUB. .. ELSE.

*ENABLE [KEY] HANDLER

Format

ENABLE [KEY] HANDLER handler-name [,RESUME
AT line-no]

Enables an exception handler.

Arguments
handler-name is the name of an exception handler.

line-no is the line number of a statement at which control
is to be returned by any RESUME statment(s) in the
exception handler.

Remarks
Deactivates MP /BASIC's default error handling code
and enables the named exception handler.

If the KEY option is specified, then the named exception
handler will be executed in the event of a "'C'" A interrupt.
The handling of all other exceptions will not be affected.

If the KEY option is not specified, then the named
exception handler will be executed in the event of an
exception other than a "'C"'A interrupt. The handling of
"'C'" A interrupts will not be affected.

If another handler is enabled when this statment is
executed, the first handler will be disabled and the handler
named in the current ENABLE [KEY] HANDLER
statement will be enabled.

Only one KEY handler and one non-KEY handler can be
active at anyone time.

Examples
130 ENABLE HANDLER OVRFLO

180 ENABLE KEY HANDLER, RESUME AT 200

093-400005 Licensed Material·Property of Data General Corporation 14-13

END

Format
END

Terminates execution of the program and returns to
interactive mode.

Remarks

ANSI Minimal BASIC requires the use of END to
terminate each program. This keyword is optional in
MPjBASIC.

*END HANDLER

Format
END HANDLER

Identifies the end of the block of code comprising an
exception handler.

Remarks
If the END HANDLER statement is encountered in the
normal course of execution, then the handler will be
disabled and control will go to the next statement in
numerical seauence following the END HANDLER
statement.

Examples
See Chapter 11.

*ENTER

Format
ENTER "filename"

Transfers and merges BASIC statement lines from file­
name into your current program storage area.

Arguments
"filename" is a string expression representing a device or
a disk file.

Remarks
If "filename" is a disk file, BASIC first searches for it in
your directory.

When a statement line from a "filename" entered in this
way has the same statement number as a line in the
current program, the entered statement replaces the
current program statement.

Examples
"NEW
"ENTER "TEST1.SR"
"ENTER "TEST2.SR"
"LIST "FINAL.SR"

Your storage area is cleared and source programs
TEST1.SR and TEST2.sR are ENTERed and merged.
The resultant program is LISTed to your directory as
FINAL.SR.

14-14 Licensed Material·Property of Data General Corporation 093·400005

*EXLINE

Format
EXLINE

Returns the line number of the line in which an exception
occurred.

Examples
320 PRINT "ERROR ON LINE "; EXLINE

EXP(X)

Format
EXP (expr)

Calculates the value of E (2.71828) to the power of expr.

Arguments
expr is a numeric expression from approximately - 178
through 175.

Examples
• LIST
10 REM-CALCULATE VALUE OF e'I.5
20 PRINT EXP(J.5)
• RUN
4.48169
*

*EXTVPE

Format
EXTYPE Returns the exception code.

Remarks
EXTYPE returns one of the error codes listed in Appendix
A.

Examples
200 PRINT "ERRORCODE "; EXTYPE; "ON LINE ";
EXLINE

*FIRST

Refers to the first line in a program. Always used in
conjunction with other keywords. See DELETE, LIST.

093-400005 Licensed Material-Property of Data General Corporation 14-15

FOR and NEXT

Format

FOR control var = expr1 TO expr2
[STEP expr3]

. Block of statements

NEXT control var

Execute a block of statements a specified number of
times.

Arguments

control var is a non subscripted numeric variable.

expr 1 is a numeric expression that defines the initial
(first) value of control var.

expr2 is a numeric expression that defines the limiting
value of control var.

exprJ is a numeric expression that defines the increment
or decrement added to control var each time the loop is
executed.

The block of statements consists of any statements which
may also contain FOR ... NEXT loops.

Remarks

A program loop begins with a FOR statement providing
the specifications for repetition, a block of statements
executed by BASIC during each repetition of the program
loop, and a NEXT statement denoting the end of the
loop.

The initial, limiting, and incremental values for control
var determine the number of times the statements con­
tained in a FOR ... NEXT loop are to be executed. The
loop is repeated until the value of the control var meets
the termination condition.

If none of the initial, limiting, and incremental values for
control var involve fractional parts, then it is a good idea
to declare control var to be of data type INTEGER; this
can speed up the execution of a loop.

The FOR statement performs an initial termination­
condition test. All subsequent incrementing and testing
are done at the NEXT statement (the FOR statement is
executed only once).

Rules

Every FOR or NEXT statement should have a matching
NEXT or FOR statement. If a FOR statement doesn't
have a matching NEXT, then MP /BASIC will assume
everything following the FOR is part of a loop, and will
execute each line in sequence through the end of the
program, and then stops. A NEXT without a matching
FOR will be accepted when you type in your program,
but a run-time error will occur if a NEXT statement is
executed without the corresponding FOR statement.

control var must not be subscripted .

expr 1, expr2, and exprJ may have positive or negative
values; exprJ should not be zero. If you omit STEP
exprJ from the FOR statement, then exprJ is assumed to
be 1.

The termination condition for a FOR ... NEXT loop de­
pends on the values of expr1 and exprJ. The loop
terminates if

• exprJ is positive and the next value of control var is
greater than expr2;

• expr3 is negative and the next value of control var is
less than expr2.

If the value of expr1 (the initial value) meets the
termination condition, then the loop is not performed
even once. (See "Example 3.")

When the termination condition is met, the loop is exited;
control var equals the first value not used in the loop.

Program Loop Operation

1. The expressions expr 1, expr2, and exprJ are evalu­
ated. If you omit expr3, it is assumed to be I.

2. The control var is set to the value of expr 1.

3. If exprJ is positive and control var is greater than
expr2, then the termination condition is satisfied
and control passes to the statement following the
corresponding NEXT statement. The value of con­
trol var then equals the first value not used in the
loop, i.e., control var + exprJ.

If exprJ is negative and control var is less than
expr2, then the termination condition is satisfied
and control passes to the statement following the
corresponding NEXT statement. The value of con­
trol var then equals the first value not used in the
loop; i.e., control var + exprJ.

Otherwise, the system performs the following steps.

4. BASIC executes the statements in the FOR ... NEXT
block.

14-16 Licensed Material·Property of Data General Corporation 093·400005

5. When the corresponding NEXT statement is execut­
ed, control var is set to the value of control var +
expr3.

6. Repeat step 3 (control passes to FOR statement).

Nesting Loops
You can nest FOR. .. NEXT loops. The FOR statement
and its terminating NEXT statement must be completely
contained within the loop in which it is nested.

Legal Nesting Illegal Nesting

FORX= ... FORX= ...
FOR Y= ... FOR Y= ...

FOR Z= ... NEXT X
NEXT Z NEXTY

NEXTY
NEXT X

Example 1
o LIST
10 FOR 1=] TO 9
20 NEXT I
30 PRINT I
o RUN
10
*
I (control var) equals first value not used in the loop.

Example 2
o LIST
40 FOR)=] TO 9 STEP 3
50 NEXT)
60 PRINT)
o RUN
10
*
Final value of J when terminating value (expr2) was
exceeded.

Example 3
o LIST
10 FOR 1=] TO 3 STEP-]
20 PRINT "SHOULD NOT ENTER HERE"
30 NEXT I
40 PRINT I
o RUN
]

*

*FP(X)

Format
FP (expr)

Returns the fractional part of expr, where expr is a real
number.

Arguments
expr is a numeric expression.

Examples
o LIST
10 REM PRINT FRACTIONAL PART OF A NUM­
BER
20 LET X =].345
30 PRINT "FP(X) = "; FP(X)
o RUN FP(X) = .345
*

093-400005 Licensed Material·Property of Dsta General Corporation 14-17

GOSUB and RETURN

Format
GOSUB line no.
RETURN

GOSUB directs program control to the first statement of
a subroutine. RETURN exits the subroutine and returns
program control to the next statement following the
GOSUB statement.

Arguments
line no. is a program line number.

Remarks
A subroutine is a group of program statements entered
via the GOSUB statement and exited via the RETURN
statement. Instead of repeating the statements each time
they are required, you write the statements into the
program only once and access them by GOSUB state­
ments. The RETURN statement returns control to the
statement following the last executed GOSUB statement.
In this manner, the program continues at the appropriate
place after the subroutine has been executed.

A subroutine must always be entered by using a GOSUB
statement. Otherwise, the error message,

RETURN with no GOSUB in line xxx

is printed when the RETURN statement is executed.

You may use more than one RETURN statement in a
subroutine if program logic requires the subroutine to
terminate at one of a number of different places.

Although the subroutine may appear anywhere in a
program, it is good practice to place it so that it is distinctly
separate from the main program. To prevent inadvertent
entry to the subroutine by other than a GOSUB state­
ment, the subroutine should be preceded by a STOP or
GOTO statement directing control to a line number
following the subroutine.

Subroutines may be nested. Nesting occurs when a
subroutine is called during the execution of a subroutine.
Upon execution of the first RETURN statement, control
passes to the statement immediately following the last
executed GOSUB statement. The next RETURN state­
ment causes control to pass to the next to last executed
GOSUB statement, and so on. Subroutines may be nested
to a level of 9.

Example 1

• LIST
10 LET A=6
20 GOSUB 100
30 LET A=1O
40 GOSUB 100
50 STOP
100 FOR 1= 1 TO A STEP 2
110 PRINT I.
120 NEXT I
130 PRINT
140 RETURN
• RUN
1 3 5
1 3 5 7 9
STOP AT LINE 50.
*

Example 2

• LIST
10 GOSUB40
20 PRINT "EXAMPLE"
30 STOP
40 PRINT "NEST";
50 GOSUB80
60 PRINT "INE ";
70 RETURN
80 PRINT "ED ";
90 GOSUB 120
100 PRINT "ROUT";
110 RETURN
120 PRINT "SUB";
130 RETURN
• RUN
NESTED SUBROUTINE EXAMPLE
STOP AT LINE 30
*

14-18 Licensed Material-Property of Data General Corporation 093-400005

GOlO

Format
GOTO line no.

Unconditionally transfers control to the statement with
the specified line number.

Arguments
line no. is a program statement line number.

Remarks
If control passes to an executable statement, that state­
ment and those following it are executed.

If control passes to a nonexecutable statement (e.g.,
DATA), program execution continues at the first execut­
able statement following the nonexecutable statement.

If line no. is not a line number in the program, an error
will occur.

Examples

• LIST
10 READ X
20 ;X
30 GOTO 10
40 DATA 1,2,3,4,5
50 DATA 20,21,23
• RUN
1
2
3
4
5
20
21
23
Incorrect number of data items in line 50.
Stop at line 50.

*

*HANDLER

Format
HANDLER handler-name

Identifies the beginning of the block of code comprising
an exception handler.

Arguments
handler-name is the name of the handler. It must be
from one to six alphanumeric characters, the first of
which must be alphabetic.

Remarks
The HANDLER statement cannot occur within a HAN­
DLER. .. END HANDLER block. This means that excep­
tion handlers cannot be nested.

Examples
600 HANDLER OVRFLO

093-400005 Licensed Material-Property of Data General Corporation 14-19

IF ... THEN ... ELSE

Format
IF (log-expr I expr) THEN statement
[ELSE statement]

Executes a statement on the basis of whether a logical
expression is True or False, or whether a numeric
expression is zero or nonzero.

Arguments
log-expr is a logical expression as defined in Chapter 5.

expr is a numeric expression.

statement is any MP jBASIC statement (This is an
extension of the ANSI standard.)

Remarks
MP jBASIC evaluates the logical expression, log-expr. If
it is True, then MP jBASIC executes statement following
the THEN. If the expression is False, the THEN clause
is ignored, and program execution continues at the
statement following the ELSE; if there is no ELSE, then
program execution continues at the statement following
the IF ... THEN ... statement.

You can use a numeric expression (expr) instead of a
logical expression (Iog-expr). The numeric expression is
considered False if it has a value of 0 and True if it has a
nonzero value.

The ELSE clause is an addition to the ANSI standard.

Example 1

• LIST
5 IF A = B THEN 100
10 IF A = B THEN GOTO 100
20 IF A-B < = 5 THEN C = 0
30 IF A*B < 50 THEN GOSUB 300
*
Lines 5 and 10 are equivalent variations of the
IF ... THEN ... statement.

Example 2

• LIST
5 REM -START
10 LET N = 10
20 INPUT PROMPT "X=": X
30 IF X THEN GOTO 50
40 GOTO 100
50 IF x> = N THEN GOTO 80
60 PRINT X. "X IS LESS THAN 10"
70 GOTO 20
80 PRINT X. "X IS GREATER OR EQUAL TO 10"
90 GOTO 20
100 PRINT X. "X=O"

*
·RUN
X=5
5 X IS LESS THAN 10
X=7
7 X IS LESS THAN 10
X= 12
12 X IS GREATER THAN OR EQUAL TO 10
X = 10
10 X IS GREATER THAN OR EQUAL TO 10
X=O
OX= 0

*
Lines 30 and 40 in this example can be combined into one
equivalent statement:

30 IF X THEN GOTO 50 ELSE GOTO 100

Example 3
Note the nested IF statement in the following example.

• LIST
lOLET X= 5
20 LET Z = 6
30 IF X=5 THEN IF X * Z = 30 THEN PRINT Z
*
• RUN
6
*

14-20 Licensed Material·Property of Data General Corporation 093·400005

INPUT, INPUT PROMPT, INPUT FILE

Format

INPUT (svar I var) [,(svar I var)]. ..
INPUT PROMPT string expression: (svar I var) [,(svar I
var)] ...
INPUT FILE (file lfile,record), (svar I var) [,(svar I var)]. ..

Requests data from your terminal or from a device and
assigns the values you supply to a list of variables.

Arguments

string expression is the prompt message.

var and svar are numeric and string variables.

file is a numeric expression that evaluates to the number
of a file opened for sequential or random access.

record is a numeric expression that evaluates to the
number of a record in a file opened for random access.

Remarks

You can use the INPUT statement to enter numeric
data, string data, or both to a program. Strings including
characters other than letters, digits, minus sign, plus sign,
period, and embedded spaces require quotation marks
around the string.

svar and var can be array elements.

Numeric data may include digits, plus and minus signs,
decimal points, and the letter E (exponential notation).

When an INPUT statement is executed, a question mark
is output as an initial prompt. If the INPUT statement is
preceded by a PRINT line ending with a semicolon, the
question mark appears immediately at the end of the
printed message (Example 1).

If your INPUT statement incorporates a prompt message
INPUT PROMPT, .no question mark appears. The
prompt message is displayed before the response to the
INPUT statement is accepted. (Example 2.)

You respond by typing a list of data, separating each
data item from the next by a comma. End the list with a
carriage return.

If you type a carriage return before supplying a value for
each variable in the INPUT statement, an error message
will be generated, followed by a new question mark. You
must then re-input the entire data list. (Example 3).

The data that you input in response to the prompt must
be of the same type (numeric or string) as the variable in
the INPUT statement list for which the data is being
supplied. Variables in the INPUT statement list may be
subscripted array elements or strings.

If the data you input from the terminal does not match
the type of a variable in the INPUT statement list, an
error message is displayed, followed by a new question
mark. Your entire data list must then be re-input.
(Example 4).

If you supply more items than there are variables in the
INPUT list, an error condition occurs.

The INPUT FILE statement reads files created with the
PRINT FILE statement. (Example 5.) To be read as an
input such files must be formatted in the same way as a
user-entered response to an INPUT statement, with the
data items separated by commas. (See PRINT FILE)

The INPUT PROMPT and the INPUT FILE statements
are extensions of the ANSI standard.

Example 1

• LIST
10 PRINT "YEAR, MONTH, DAY";
20 INPUT Y, M, D
30 PRINT Y, M, D

• RUN
YEAR, MONTH, DAY? 1979, 10,5
1979105
*
In this example, the question mark is on the same line as
the printed message.

Example 2

• LIST
10 INPUT PROMPT "ENTER YEAR, MONTH, DAY"
:Y,M,D
20;Y, M, D

*
• RUN
ENTER YEAR, MONTH, DAY 1979,10,5
1979105
*
This example illustrates the use of the INPUT PROMPT
statement.

093-400006 Licensed Material·Property of Data General Corporation 14-21

INPUT, INPUT PROMPT, INPUT FILE
(continued)

Example 3
* LIST
10 INPUT A.B.C.D.E
20 PRINT A+B. C+D. D+E
*
* RUN
? 1.2
Wrong number of items in input reply in line 10.
? 1.2.3.4.5
379
*
User entered fewer data items than requested in the
INPUT statement. An error message was displayed, and
the entire list of data had to be input from the start.

Example 4
* LIST
10 INPUT A$. B. C
20 PRINT A$. B. C
*RUN
? 75. 3. "fred"
Illegal data type in line 10.
? "fred". 3. 124
fred 3124

The user mistakenly input a string variable instead of the
numeric variable specified in the INPUT data list. After
the error message was displayed, the entire data list was
re-input.

Example 5
* LIST
10 INPUT FILE (I). A$. B. C
20 PRINT A$. B. C
* RUN
fred 3124

Rather than being typed in by the user, the values
requested were read from a file in response to the INPUT
FILE statement.

INT(X)

Format
INTJexpr)

Returns the value of the largest integer less than or equal
to expr.

Arguments
expr is a numeric expression.

Remarks
The INT(X) function returns the largest integer which is
less than or equal to the argument.

Examples
* LIST
10 PRINT "INT(J 5.8) = "; INT(J 5.8)
20 PRINT "INT(-15.8) = "; INT(-15.8)
30 PRINT "INT(15.8+.5) ="; INT(15.8+.5)
*RUN
INT(15.8) = 15
INT(-15.8) = -16
INT(J5.8+.5) = 16
*
Line 30 of this example demonstrates a technique for
rounding real numbers to the nearest integer.

14-22 Licensed Material-Property of Data General Corporation 093-400005

*IP(X)

Format
IP (expr)

Calculates the integer part of a real number.

Arguments
expr is a numeric expression.

Examples

• LIST
10 REM PRINT INTEGER PART OF NUMBER
20X = -123.456
30 PRINT "IP(X) = "; IP(X)?
• RUN
IP(X) = -123
*

*LAST

Refers to the highest numbered line in a program.

Always used in conjunction with other keywords. See
DELETE and LIST.

*LEN(A$)

Format
LEN (str-expr)

Returns a value equal to the number of characters in the
current value of the string expression str-expr.

Arguments
str-expr is a string expression.

Remarks
Nonalphabetic characters such as spaces and punctuation
are included in the count of LEN(A$).

Examples

• LIST
5 DIM A$*80, B$*80
10 INPUT A$, B$
20 LET B=LEN(A$)
40 IF B>LEN(B$) THEN GOTO 60
50 GOTO 100
60 PRINT "LENGTH OF A$ ="; LEN(A$)
70 PRINT "LENGTH OF B$ ="; LEN(B$)
80 PRINT "A$ IS LONGER THAN B$"
90 GOTO 110
100 PRINT "B$ IS SAME OR LONGER THAN A$"
·RUN
? CHEESE, CAKE
LENGTH OF A$ = 6
LENGTH OF B$ = 4
A$ IS LONGER THAN B$

*
• RUN
? SPA C E , SPACE
LENGTH OF A$ = 9
LENGTH OF B$ = 5
A$ IS LONGER THAN B$
*

093·400005 Licensed Material-Property of Data General Corporation 14-23

LET

Format
LET (var I svar) = expr

Evaluates expr and assigns the resultant value to var or
svar.

Arguments
var is a numeric variable name, or array reference.

svar is a string variable name.

expr is an arithmetic or string expression.

Remarks
The variables var and svar may be subscripted.

String expressions may be assigned to string variables.

Example 1
• 10 LET C = 0

Variable C is initialized to the value of zero.

Example 2
·10 LET A = A + 1

Variable A is assigned a value one greater than it was
before.

Example 3
·20 LET A(2,1) = 8"'2+ 10

The element in row 2, column 1 of array A is assigned the
value of expression B"'2 + 1 O.

Example 4
·10 LET C$ = A$ & 8$

String variable C$ is assigned the value resulting from
the concatenation of string variables A$ and B$.

*LlNPUT, LlNPUT PROMPT,
LlNPUT FILE

Format
LlNPUT svar I.svari ...
LlNPUT PROMPT string expression: svar I. svar i ...
LlNPUT FILE (file ~ile,record), svar I. svar i ...
Requests string data from your terminal or from a device,
and assigns the values received to a string variable.

Arguments
string expression is the prompt message.

file

record

svar

Remarks

is a numeric expression that evalu­
ates to the number of a file opened
for sequential or random access.

is a numeric expression that evalu­
ates to the number of a record in a
file opened for random access.

is a string variable.

Only string data may be used as arguments.

LINPUT and LINPUT FILE read a line of string data
including characters normally receiving special treat­
ment. The entire line as it stands is assigned to a string
variable.

The NEW LINE, carriage return, line feed, and null
characters are recognized as delimiters.

A prompt message may be combined with the input
request by using the LINPUT PROMPT command.

The LINPUT, LINPUT PROMPT, and LINPUT FILE
statements are extensions to the ANSI standard.

14-24 Licenaed Material·Property of Data General Corporation 093·400005

Example 1
o LIST
10 DIM A$*80
20 OPEN FILE(l,O), "APHORISMS"
30 FOR I = 1 TO 3
40 LINPUT A$
50 PRINT FILE(J), A$
60 NEXT I
70 CLOSE

o RUN
? 'SOAP AND EDUCATION ARE NOT AS SUDDEN
? AS A MASSACRE, BUT THEY ARE MORE DEADLY
? IN THE LONG RUN.' [TWAIN]

In this example, a loop requests the user to enter three
lines of text into the terminal, and the text so input is
then printed to a file.

Example 2
o LIST
10 DIM A$*80
20 OPEN FILE(l,O), "APHORISMS"
30 FOR I = 1 TO 3
40 LINPUT FILE(J), A$
50 PRINT A$
60 NEXT I
70 CLOSE

o RUN
'SOAP AND EDUCATION ARE NOT AS SUDDEN
AS A MASSACRE, BUT THEY ARE MORE DEADLY
IN THE LONG RUN. ' [TWAIN]

Here the program reads text lines from the file and
displays them on the screen. Single quotes and a comma
were preserved as part of the string.

*LlST [FIRST TO LAST]

Format
LIST "filename"
LIST n 1 ["filename"]
LIST n 1 TO n2 ["filename"]
LIST n 1 TO LAST ["filename"]
LIST FIRST ["filename"]
LIST FIRST TO n2 [''filename'']
LIST FIRST to LAST [''filename'']

Outputs part or all of your current program in ASCII to
the disk file or device specified by ''filename'' or to your
terminal if ''filename'' is not specified.

FIRST and LAST refer to the first and last program
lines, respectively.

Arguments
''filename'' is a disk file or device expressed as a string
literal.

n 1 is the line number of the first or only statement to
be listed.

n2 is the line number of the first or only statement to
be listed.

Variations
You can use the LIST command in the following ways:

LIST

List the entire program from the lowest numbered
statement.

LIST n1

List only the single statement at line number nl.

LIST FIRST TO n2

List from the lowest numbered line through line number
n2.

LIST n1 TO n2

List from line number nl through line number n2.

LIST n 1 TO LAST

List from line number n I through the highest numbered
line in the program.

LIST "filename" Write lines to disk file or device ''file­
name."

093·400006 Licensed Material·Property of Data General Corporation 14-25

*LlST [FIRST TO LAST] (continued)

Remarks
When you include the "filename" argument, the LIST
command writes the specified lines to the disk file or
device called "filename" in ASCII format.

If "filename" is a disk file that already exists in your
directory, BASIC will print the message:

File already exists.

In that case, you must delete the old "filename" before
you save the new one.

The file created by the LIST command can be read back
into the program storage area by the ENTER command.

Examples
°LlST "TEST.SR"

Outputs your current program in ASCII to your directory
with the filename, TEST.SR (provided TEST.SR does
not duplicate another file with that name).

° LIST

Lists your current program on your terminal.

° LIST 20

Lists line number 20 on your terminal.

° LIST 700 TO 9999

Lists line numbers 700 through 9999 at the terminal.

°LlST 100 TO 200 "TEMP"

Lists line numbers 100 through 200 to disk file TEMP
(providing this filename does not already exist).

° LIST FIRST TO 90

Lists program lines from the first line through line 90.

° LIST 100 TO LAST

Lists line numbers 100 through the last line in the
program.

*LOAD

Format
LOAD "seg-file-name"

Loads (but does not begin execution of) a program
segment.

Arguments
seg-file-name is the name of the file, expressed as a
string literal, in which the program segment is stored.

Remarks
LOAD loads the segment from file "seg-file-name" into
your work area. LOAD does not clear your work area
before loading in the segment.

Use LOAD to load in the first segment of a chain of
program segments.

LOAD is also useful in loading in a segment for debug­
ging.

The program segment must have been previously stored
in file "seg-file-name" by a SAVE command.

LOAD can be used only as a command in immediate
mode; it cannot be used as a statement in a program.

Examples
°NEW
° LOAD "FRSTSEG"
°RUN

For more extensive examples, see Chapter 10.

14-26 Licensed Material-Property of Data General Corporation

LOG(X)

Format
LOG (expr)

Calculates the natural logarithm of expr.

Arguments
expr is a numeric expression.

Examples

• LIST
10 REM -CALCULATE THE LOG OF 959
20 PRINT LOG(959)
'RUN
6.86589

*

*MEMORY

Format
MEMORY

Prints the number of words used by the program and the
total number of words still available.

Remarks
The number of words used is broken down into two groups:

• the number of words used for the program segment;
the number of words used for the data segment.

• The total number of words left is reported.

Examples
MEMORY
Program area: 0 words.
Data area: 7 words.
Available area: 7630 words.

*MOD(X,Y)

Format
MOD (expr, expr)

Calculates X modulo Y.

Arguments
expr is a numeric expression.

Remarks
This function is calculated as X - Y * INT(XjY) if Y is
nonzero; an overflow error will be generated if Y is zero.

Examples

• LIST
10 REM CALCULATE 50 MODULO 8
20 LET X = 50
30 LET Y = 8
40 PRINT "MOD(x'Y) = "; MOD(X,Y)
• RUN
MOD(X,Y) = 2

*

093-400005 Licensed Material·Property of Data General Corporation 14-27

*NEW

Format
NEW

Clears the program and variables currently stored in your
program storage area and closes any open files.

Remarks
You must clear your storage area with a NEW command
before entering a new program, to avoid intermixing lines
from previous pr9grams with it.

NEW cannot be used as a program statement, but
functions only in immediate mode.

Examples

• NEW
• ENTER "SQUARE"
• LIST
10 LET A = 5
20 PRINT SQR(AA2+75)
*

NEXT

Always used in conjunction with other keywords. See
FOR.

ON ... GOSUB ... ELSE

Format
ON expr GOSUB line no.[,line no.] ... [ELSE statement]

Transfers control to one of several subroutines in a
program depending on the value of an expression at the
time the statement is executed.

Arguments
expr is a numeric expression evaluated to an integer.

line no. is a list of line numbers of first lines of subroutines
in the current program, whose positions in the argument
list are numbered from 1 through n.

statement is any MP /BASIC statement.

Remarks
This statement functions the same as the
ON ... GOTO ... ELSE statement with the exception that
the subroutine call GOSUB is performed instead of the
GOTO statement.

The expression expr is evaluated and rounded to an
integer, if it is not an integer.

The program transfers control to the subroutine whose
position in the argument list corresponds to the computed
value of expr.

If expr evaluates to an integer greater than the number
of entries given in the argument list or less than or equal
to zero, the program transfers control to the statement
following ELSE; if ELSE is not specified, then an error is
returned.

The ELSE clause is an extension to the ANSI standard.

14-28 Licensed Material·Property of Data General Corporation 093·400005

ON ... GOTO ... ELSE

Format

ON expr GOTO line nO.[,line no.j. .. [ELSE statement]

Transfers control to one of several lines in a program
depending on the value of an expression at the time the
statement is executed.

Arguments

expr is a numeric expression evaluated to an integer.

line no. is a list of line numbers in the current program
whose positions in the argument list are numbered from 1
through n.

statement is any MP /BASIC statement.

Remarks

The expression expr is evaluated and rounded to an
integer, if it is not an integer.

The program transfers control to the line number whose
position in the argument list corresponds to the computed
value of expr.

If expr evaluates to an integer greater than the number
of entries given in the argument list or less than or equal
to zero, then the program transfers control to the state­
ment following the ELSE; if ELSE is not specified, then
an error is returned.

The ELSE clause is an extension to the ANSI standard.

Example 1

• LIST
10 ON M-5 GOTO 500,75,1000

If M-5 evaluates to 1, 2, or 3 then control passes to
statement 500, 75, or 1000, respectively. IfM-5 evaluates
to any other value, an error is returned.

Example 2

• LIST
10 ON (SGN(M-5) +2) GOTO 100,200,300

This statement is equivalent to the following three state­
ments:

·10 IF M-5<0 THEN GOTO 100
·20 IF M-5=O THEN GOTO 200
• 30 IF M-5>0 THEN GOTO 300

*OPEN FILE

Format
OPEN FILE (file,mode), "filename" [,record size]

Assigns a file number and access mode to "filename" for
future referencing in file I/O statements in your program.

Arguments
file is a numeric expression that evaluates to a number
from 0 through 7. BASIC uses this number to simplify
the reference to "filename" in other file I/O statements.

mode is a numeric expression that evaluates to a number
from 0 to 3. This number specifies the access mode of the
file. (The modes are described under "Remarks," below.)

"filename" is a string expression that evaluates to a
filename.

record size is an optional numeric expression that evalu­
ates to a fixed length (in bytes) for each record in a file.
Record size may be any value from 1 to 32,767.

There are two types of records: fixed length and variable
length.

If the output has more bytes than was specified for the
record, then output continues until the end of the data.

Remarks
You can calculate record length as follows:

Integers: 2 bytes per data item.

Real numbers: 4 bytes per data item for single­
precision, 8 bytes per data item for
double-precision.

String data: 1 byte per character in string, plus 1
byte for string delimiter.

093·400005 Licenaed Material·Property of Oala General Corporation 14-29

*OPEN FILE (continued)
Modes 0 to 3 are as follows:

Mode 0 Input and output (read and write). Only disk
files may be opened in random mode for
reading and writing. If the disk file named
"filename" does not exist in your directory,
BASIC creates it.

Mode I Output (creates a new file for writing). You
can open either a disk file or an appropriate
output device in Mode 1. Only writes are
permitted. If "filename" already exists in your
directory, the previous copy is deleted from
the disk. In either case, a new file is created
(initialized with 0 length).

Mode 2 Output (appends to an existing file). You can
use this mode to open any file previously
opened in Mode 1 or Mode 2. When an
existing file is opened in Mode 2, the file
pointer moves to the end of the file so that
subsequent data written to the file will extend
it. If the file does not exist in your directory, it
will be created. Only writes are permitted.

Mode 3. Input (for reading only). You can open either
a disk file or appropriate input device in Mode
3. If a disk file is opened in this mode, the file
must already exist. Only reads are permitted
from a file opened in Mode 3. If the file is not
found in your directory, BASIC searches for
it in your CLI searchlist (refer to the CLI
manual).

Examples
*100 OPEN FILE (1,1), "NETSAK.JR"

This statement opens file 1, named NETSAK.JR, as an
output file.

*100 OPEN FILE (2,0), "RESSEHC.TO", 20

This statement opens the file named RESSEHC.TO as
file number 2 for either read or write. Records are 20
bytes long.

OPTION BASE

Format
OPTION BASE expr

Sets the lower bound of an array to 0 or 1.

Arguments
expr is a numeric expression, which can be 0 or 1 when
evaluated.

Remarks
In the absence of an OPTION BASE statement, the
default value of an array's lower bound is O.

This is an extension to the ANSI standard, which does
not allow the use of an expression.

Examples
10 OPTION BASE 1
20 DIM A(25)

14-30 Licensed Material·Property of Data General Corporation 093-400005

*ORD(A$)

Format
ORO (str-expr)

Returns the ASCII decimal representation of str-expr.

Arguments
str-expr is a string expression

Remarks
When str-expr is evaluated, it can be any single ASCII
character.

ORD(A$) complements the CHR$(M) function.

Examples

• LIST
10 REM CONVERT UPPER TO LOWER CASE WITH
ORD FUNCTION
20 FOR I = 1 TO 7
30 READ A$
40 PRINT A$, ORD(A$), CHR$(ORD(A$)+ 32)
50 NEXT I
60 DATA "e", "0", "N", "V", "E", "R", 1fT"
• RUN

• LIST

C

o
N

V

E

R

T

*

67

79

78

86

69

82

84

10 LET H$= "BCADEF"
20 PRINT ORD(H$(3:3))
• RUN

65

c

o

n

v

e

r

t

*PI

Format
PI

Returns the constant 3.14159 ... which is the ratio of the
circumference of a circle to its diameter.

Remarks
The value of PI will be accurate to 15 digits for
hardware/firmware floating point systems, or to 6 digits
for software floating point systems.

Examples

• LIST
10 REM CALCULATE THE AREA OF A CIRCLE OF
RADIUS R
20 LET R = 10
30 PRINT "AREA ="; PI * R" 2
• RUN
AREA = 314.159

*

093-400005 Licensed Material-Property of Data General Corporation 14-31

*POS(A$,B$)

Format
P~S (str-expr,str-expr)

Returns the position of the first character of B$ in A$.

Arguments
str-expr is a string expression.

Remarks

This function will return a value only if the entire string
B$ is contained within string A$. Otherwise, it returns a
value of O.

Only the first occurrence of B$ within A$ is considered;
later occurrences, if any, are ignored.

If B$ is a null string, the function returns a value of 1.

Examples

• LIST
10 LET A$ = "HEAVYWEIGHT"
20 LET B$ = "WEIGH"
30 PRINT POS(A$,B$)
• RUN
6
*
• LIST
10 LET P$ = "ULULA TIONS"
20 LET G$ = "UL"
30 PRINT POS(P$,G$)
• RUN
1
*
• LIST
10 LET A$ = "BEARPA W"
20 LET B$ = "PEAR"
30 PRINT POS(A$,B$)
• RUN
o
*

*POS(A$,B$,M)

Format

P~S (str-expr,str-expr,expr)

Searches A$ for B$, starting at position M and returns
the position of the first character of B$ within A$.

Arguments

str-expr is a string expression

expr is a numeric expression.

Remarks

Returns 0 if B$ is not in A$ from position M onward.

If M is out of range of the length of A, the function will
return O.

Examples
• LIST
10 LET A$ = "PERSt,'VERANCE"
20 LET B$ = "SEVER"
30 ; "STARTING POINT OF SEARCH WITHIN
STRING";
40 INPUT M
50 P = POS(A$,B$,M)
60 IF P > 0 THEN GOTO 120
70 IF M > LEN(A$) THEN GOTO 100
80 PRINT "B$ IS NOT IN A$"
90 GOTO 130
100 PRINT "SEARCH IS OUT OF RANGE"
110 GOTO 130
120 PRINT "B$ STARTS AT POSITION"; P; "IN AS"
130 END
• RUN
STARTING POINT OF SEARCH WITHIN STRING?
3
B$ STARTS AT POSITION 4 IN A$
*
• RUN
STARTING POINT OF SEARCH WITHIN STRING?
7
B$ IS NOT IN A$
*
• RUN
STARTING POINT OF SEARCH WITHIN STRING?
13
SEARCH IS OUT OF RANGE
*

14-32 Licensed Material-Property of Data General Corporation 093-400005

PRINT

Format
(PRINT I;) [expr J [(,I;)[expr]J ...

(PRINT I ;) USING svar:(expr)[,[exprJ]. ..

Performs print operations at your terminal.

The semicolon (;) is a synonym for the keyword PRINT.
(This is an extension of the ANSI Standard.)

Arguments
svar is a string variable whose value consists of image

characters for formatted output (see Table 1-1).

expr is a numeric or string expression.

Remarks
This keyword may be used in immediate mode and as a
program statement.

The following PRINT operations are possible:

1. Print the result of a computation.

2. Print verbatim the characters in a string literal or
string variable.

3. Print a combination of operations 1 and 2.

4. Print a blank line (skip a line).

Zone Spacing of Output

The print line on a terminal is divided into five print
zones of 14 characters each (see Figure 14-1). The first
columm on a line is column one.

A comma (,) between items in the PRINT statement list
causes the next item to be printed in the leftmost position
of the next printing zone. If there are no more printing
zones on the current line, printing continues in the first
printing zone on the next line. If an item requires more
than one print zone, the next item in the list is printed in
the next free print zone. (See Example 1.)

1 14 15 28 29 42 -- 14 -- -- 14 -- -- 14 --

columns columns columns

10.00787

Before each item is printed, its length is compared with
the space remaining on the line. If insufficient space
remains on the current line, the item is moved to the next
line.

Compact Spacing of Output

A semicolon (;) between items in the PRINT statement
list causes the next item to be printed at the next character
position. Note that a space is reserved for the plus (+)
sign even though it is not printed (Example 2), and there
is always a trailing space.

Spacing to the Next Line

When the last item in a print list has been printed, BASIC
outputs a carriage return and line feed unless the last
item in the list is followed by a comma (,) or semicolon
(;). In this case, the carriage return and line feed are not
output and the next item is printed on the same line,
according to the comma or semicolon punctuation. (See
Example 3.)

If, however, the comma or semicolon would cause printing
of the next item to occur beyond the allowable line width,
a carriage return and line feed are output.

Printing Blank Lines

A PRINT statement with no list of print items or
punctuation will output a carriage return and line feed.
(See Example 4.)

Formatted Output

The USING option allows you to format numeric output.
You specify the format using a string composed of image
characters (see Table 1.1). The format can include left­
and right-justification, the insertion of dollar signs, aster­
isks, commas, and decimal points, the suppression or
printing of leading zeros, the indication of positive and
negative numbers, and control of the spacing of the
numeric display.

For details of the implementation of the USING option
and examples, see Chapter 1.

The USING option is an enhancement to the ANSI
standard.

For more printing versatility, see the TAB (X) function.

43 56 57 70 71 80 -- 14 -- -- 14 -- -- 10 --

columns columns columns

Figure 14-1. Zone Spacing of Output

093·400005 Licensed Material·Property of Oats General Corporation 14-33

PRINT (continued)

Example 1

* LIST
10 LET X=25
20 PRINT "SQUARE ROOT OF X IS: ",SQR(X)
* RUN
SQUARE ROOT OF X IS: 5
*
" "
1 15 29

The column positions print out at intervals of 14 spaces.

Example 2

* LIST
10 LET X = 5
20 PRINT X;(X*2)"6;X*2;(X*2)"4;
30 PRINT X-25;(X*2)"8;X-100
* RUN
5 1000000 10 10000 -20 1Et08

-95
*

" " " " " "
24 1316 2226

The printout is displayed at positions 2, 4, 13, 16,22,26,
on the first line, and position 1 on the second line.

Example 3

* LIST
10LETX=5
20 PRINT X,(X*2)"6,
30 ; X"4
40 ; "FIN"
* RUN
5

FIN
*

"
2

1000000

"
15

625

"
30

The printout appears in columns 2, 15, and 30.

Example 4

* LIST
10 LET X=5
20 PRINT X;(X*2)"6,X*2
30 PRINT X-25;(X*2)"8
40; X-100
50 PRINT
60; "DONE"
*RUN
5 1000000 10

-20 1E+G8
-95

DONE
*

" " "
2 4 16

The output is printed in positions 2, 5, and 16 of the first
line.

In line 20, the comma and semicolon spacing characters
are both used. Line 50 outputs a blank line before printing
"DONE".

14-34 Licensed Material-Property of Data General Corporation 093-400005

*PRINT FILE

Format
(; I PRINT) FILE (file I file,record), [exprJ[(,I;)[exprJj. ..

(; I PRINT) FILE USING svar: (expr) [,[exprJJ ...

Writes data in ASCII format into a sequential- or
random-access file.

Arguments
file is a numeric expression that evaluates to the

number of a file opened for sequential or random
access.

record is a numeric expression that evaluates to the
number of a record in a file opened for random
access.

expr is a numeric or string expression.

svar is a string variable whose value is composed of
image characters for formatted output (see
Table 1-1).

Remarks
This statement is intended for outputting to an ASCII
device such as a line printer, or to a disk file for later
off-line printing.

Each item in the expression list must be separated from
the next by a comma, semicolon, or carriage return.
Output formatting is identical to that discussed in
Remarks under the PRINT statement.

The USING option functions in the same way for PRINT
FILE as for PRINT.

The first record number in a random-access file is O.

Files created with the PRINT FILE statement may be
read with the INPUT FILE and the LINPUT FILE
statement. (Example 3.)

If a list of variables is to be read with an INPUT FILE
statement, the file contents must be formatted in the
same way as a user-entered INPUT statement: literal
commas must be entered in the file as data separators.
(Example 4.)

Example 1
'10 OPEN FILE(3,1), "$LPT"
'100 PRINT FILE(3), "OUT6"
'200 PRINT FILE(3), "X ="; X, "X SQUAREO="; X"-2
• 300 PRINT FILE(3), A; B; C
'400 CLOSE

Example 2
'10 OPEN FILE(3,1), "$LPT",80
'100 FOR 1= 1 TO 10000
'110 PRINT FILE(3),I;
'120 NEXT I
'130 CLOSE

Example 3
°LlST
10 OPEN FILE (3,0), "TEST", 4
20 FOR I = 0 TO 10
30 PRINT FILE (3,1) , I
40 NEXT I
50 FOR I = 0 TO 10
60 INPUT FILE(3,l), Z
70 PRINT Z
80 NEXT I
90 CLOSE
• RUN
1
2
3
4
5
6
7
8
9
10
*

093·400005 Licensed Material·Property of Data General Corporation 14-35

*PRINT FILE (continued)

Example 4
• LIST
10 OPEN FILE(6,0), "STATS"
20 LET H$ = "HEIGHT"
30 LET H = 6
40 LET W$ = "WEIGHT"
50 LET W = 250
60 PRINT FILE(6),H$;", ";H;", ";W$;", ";W
70 CLOSE
80 OPEN FILE(6,0), "STATS"
90 INPUT FILE (6) , H$, H, W$, W
100 PRINT H$; H, W$; W
110 CLOSE
• RUN
HEIGHT 6 WEIGHT 250

*
This example formats a file so that several variables may
be read with a single INPUT statement.

*RAD(X)

Format
RAD (expr)

Converts X degrees to radians.

Arguments
expr is a numeric expression specified in degrees.

Examples

• LIST
10 REM CALCULATE NUMBER OF RADIANS IN X
DEGREES
20 LET X = 35
30 PRINT "RAD(X) = "; RAD(X)
• RUN
RAD(X) = .610865

*

14-36 Licensed Material-Property of Data General Corporation 093-400005

RANDOMIZE

Format
RANDOMIZE

Causes the random number generator to start at a
different point in the sequence of random numbers
generated by the RND function.

Remarks
The RANDOMIZE statement resets the random number
generator based on the time of day, thereby producing
different random numbers each time a program using the
RND function is run.

Wihout RANDOMIZE, the same sequence of random
numbers is generated by the RND function each time a
program is run. This feature is useful for debugging
programs. When the program runs successfully, the
RANDOMIZE statement should be included in the
program before the first occurrence of a RND function if
you desire different starting points in the sequence.

Examples
This program will print different values each time it is
run. I

• 10 RANDOMIZE
• 20 FOR I = 1 TO 3
• 30 PRINT RND;
·40 NEXT I
·50 PRINT
·RUN
.619604 .298047 .698036

·RUN
.776468 7.84348E-02 .603916

·RUN
. 784302.117651.800002

·RUN
.956853 .98038 9.41276E-02

·RUN
.10981 .7607836.31819E-06

*

READ

Format
READ (var I svar) [(, var I, svar)] ...

Reads values from the DATA list (DATA statements)
and assigns them to variables.

Arguments
var and svar are numeric and string variables, separated
by commas.

Remarks
READ statements must always be used in conjunction
with DATA statements.

The variables listed in the READ statement may be
subscripted or non subscripted and may be numeric or
string.

The order in which variables appear in the READ
statement is the order in which values for the variables
are retrieved from the DATA list.

A data element pointer is moved to the next available
value in the DATA list as values are retrieved for variables
in READ statements. If the number of variables in the
READ statement exceeds the number of values in the
DATA list, BASIC prints an error message reading,
Incorrect number of data items.

The type of variable (numeric or string) in the READ
statement must match the type of the corresponding
DATA element value, or else BASIC prints an error
message reading, Illegal data type

The RESTORE statement can be used to reset the data
element pointer to the first item of the lowest numbered
DATA statement or to the first item of a specific DATA
statement .

093-400005 Licenaed Material·Property of Data General Corporation 14-37

READ (continued)

Examples
• LIST
10 READ A,B,C
20 READ D(1),D(2),D(3)
30 PRINT C"2,D(2)""2
40 READE
50 .. E
60 READ F$
70 .. F$
80 DATA 1,2,3,4,5,6,7, "ABC"
90 END
*
• RUN
925
7
ABC
*
In this example the variables are assigned values as
follows:

Variable Value

A I
B 2
C 3
DO) 4
0(2) 5
0(3) 6
E 7
F$ ABC

*READ FILE

Format
READ FILE (file I file,record), (var I svar)
[,(var I svar)] ...

Reads data in binary format from a file sequentially or
randomly accessed.

Arguments
file is a numeric expression that evaluates to the number
of a file opened for random or sequential access.

record is a numeric expression that evaluates to the
number of a record in a file opened for random access.

var and svar are numeric variables and string variables.

Remarks
The type of variable in the READ FILE variable list
must correspond to the data type of the corresponding
item being read from the record.

The number of the first record in a random-access file is
o.
In random-access files, records that have not been written
into will contain all zeros when read. An attempt to read
a record coming after the .last record written will cause
an end-of-file condition.

Example
• LIST
1 REM - READ FILE
10 OPEN FILE (1,0), 'TESTFILE", 20
20 FOR I = 1 TO 12
30 READ FILE(1,l),B
45 PRINT B,
50 NEXT I
60 CLOSE
70 END
• RUN
36333027 24 21
181512 9 6 3

*
This program uses the file TESTFILE created in the
program example provided with the WRITE FILE state­
ment.

14-38 Licenaed Material·Property of Data General Corporation 093·400005

REM

Format
REM [message]

Inserts explanatory remarks within a program.

Arguments
message is a text comment. It can contain any charac­
ters, incuding quotation marks.

Remarks
REM statements do not affect program execution. BASIC
stores them with a program and outputs them with each
program listing.

If control is transferred to a REM statement from a
GOTO ... or GOSUB ... statement, then execution contin­
ues with the next executable statement. If no executable
statement follows the REM statement, then the program
will end and control will return to interactive mode.

Remarks can extend over more than one line. Each line
must start with a line number and the keyword REM.

Example
o LIST
10 REM REMARKS IN A PROGRAM.
20 REM HELPS EXPLAIN THE PURPOSE OF
30 REM STATEMENTS. LINES 10, 20, 30
40 REM AND 40 AREN'T EXECUTED.
50 PRINT "END"
°RUN
END
*

*REM(X,V)

Format
REM (expr,expr)

Returns the remainder of X/Yo

Arguments
expr is a numeric expression.

Remarks
This function is calculated as X - Y * IP(X/Y) if Y is
nonzero. If Y is zero, an overflow error will be generated.

Examples
o LIST
10 REM CALCULATE THE REMAINDER OF XjY
20 LET X = -50
30 LET Y = 8
40 PRINT "REM (x'Y) = "; REM(X,Y)
o RUN
REM(X,Y) = -2
*

093·400005 Licensed Material·Property of Data General Corporation 14-39

*RENUMBER [AT STEP]

Format
RENUMBER [AT nIl AT nl STEP n2
I STEP n2]

Renumbers the statements in the current program.

Arguments
nl is the initial line number for the current program.

n2 is the desired increment between line numbers.

Variations
The RENUMBER command has several variations, as
follows:

'RENUMBER

Renumber the current program, assigning default line
number 100 to the first line, and using a default increment
of 10 between line numbers.

• RENUMBER AT n 1

Renumber the current program, assigning the number
specified in n1 to the first line and incrementing subse­
quent line numbers by 10.

'RENUMBER STEP n2

Renumber the current program, assigning default number
100 to the first line and incrementing line numbers by n2.

• RENUMBER AT n 1 STEP n2
RENUMBER STEP n2 AT n1

Renumber the current program, assigning n1 to the first
line and incrementing line numbers by n2.

Remarks

Line numbers are limited to five digits. If a RENUMBER
command causes a line number to exceed 65,534, an
error results.

The RENUMBER command modifies the line numbers
specified in IF ... THEN ... , GOTO ... , and GOSUB ... state­
ments to agree with the new line numbers.

Example

• LIST
10 LET 1=1
13 READ A(I)
17 IF A(I)=O THEN GOTO 25
191=1+1
20 GOTO 13
25 FOR J=1 TO 1-1
27 PRINT J,A(J)
29 NEXT J
30 DATA 90,95,82,61,40,0
50 END
• RENUMBER AT 10 STEP 5
• LIST
10 LET 1=1
15 READ A(I)
20 IF A(I)=O THEN GOTO 35
251=1+ 1
30 GOTO 15
35 FOR J= 1 TO 1-1
40 PRINT J,A(J)
45 NEXT J
50 DATA 90,95,82,61,40,0
55 END
*

14-40 Licensed Material·Property of Data General Corporation 093·400005

RESTORE

Format
RESTORE [line no.}

Resets the position of the data element pointer.

Arguments
line no. is a DATA statement line number.

Remarks
If you use the RESTORE statement without a line
number argument, the data element pointer is reset to the
beginning of the data list.

If you use the RESTORE statement with an argument
giving the DATA statement line number, the data element
pointer is moved to the first value in the specified DATA
statement line. This feature is an extension of ANSI
standard BASIC.

If line no. is not a DATA statement, the data element
pointer will point to the first DATA statement following
line no. If line no. does not exist in the program, an error
message is displayed.

Example
·5 READ A,B,C
·10 READ D,E,F
• 15 RESTORE 50
• 20 READ G,H,I
·25 RESTORE
• 30 READ J,K,L
·40 DATA 2,4,6
·50 DATA 8,10,12

In the above example the variables are assigned values as
follows:

Variable Values

A 2
B 4
C 6
D 8
E 10
F 12
G 8
H 10
I 12
J 2
K 4
L 6

093-400005 Licensed Material-Property of Data General Corporation 14-41

*RESUME

Format

RESUME

Returns control from an exception handler to a predeter­
mined line number in your program.

Remarks

RESUME returns control to the statement indicated in
the RESUME option of the most recently executed
ENABLE [KEY] HANDLER statement.

*RETRY

Format

RETRY Returns control from an exception handler to the
statement which caused the error.

Remarks

RETRY causes your program to reattempt execution of
the statement which caused the exception.

RETURN

Format

RETURN

Exits a subroutine and returns control to the next
statement following the GOSUB statement.

Remarks

Always used in conjunction with GOSUB. See the
GOSUB statement for discussion.

RND

Format
RND

Produces a pseudo-random number, n, such that 0 < =

n < 1.

Remarks
Each time the RND function is called, it provides a
pseudorandom number, n, which is greater than or equal
to zero, and smaller than one.

Each occurrence of the RND function in a program
yields the value of the next random number in the list.

Each time you issue a NEW or RUN command, BASIC
returns to its original starting place in the sequence of
random numbers. Because the sequence is fixed, and the
starting place is the same for each run, the RND function
will provide the same numbers each time you execute
your program. The capability of reproducing the sequence
can be a useful debugging aid.

To alter the starting point in the sequence, use the
RANDOMIZE statement described in Chapter 8. That
statement resets the starting place based on the time of
day, thus providing a different sequence for each run.

For random numbers in a given range A to (but not
including) B, use the formula

(B - A)* RND + A

Example 1

• LIST
10 FOR 1=1 TO 4
20 PRINT RND
30 NEXT I
• RUN
.4442246
.902405
.453201
.457184

*
Running the above program a second time will produce
the same five random numbers.

14-42 Licensed Material-Property of Data General Corporation 093-400005

Example 2
• LIST
10 FOR R = 10 TO 15
20 PRINT (6*RND+ 1)
30 NEXT R
• RUN
3.65347
6.41443
3.71921
3.7431
5.36258
2.95996

*
The above program produces six random numbers in the
range 1 to 7.

Example 3
• LIST
10 FOR J=1 TO 4
20 PRINT INT(1O*RND)
30 NEXT J
• RUN
4
9
4
4

*
This program produces four random integers in the range
o to 9.

*RUN

Format
RUN [n]

Executes a program from either the first line or a specified
line. Arguments

n is the line in the current program from which
execution is to begin.

Variations
You may use the RUN command with the following
variations:

RUN

Clear all variables, undimension all arrays, do a RE­
STORE, initialize the random number generator, and
then run the current program from the first line number.

RUN n

Run the program from line n. This form of the RUN
command allows resumption of program execution re­
taining current values of all variables and parameters. It
may be used after a STOP or after an error and will
incorporate any alterations you make to the program
after the STOP or error occurred.

Examples
• RUN

• RUN 250

093-400005 Licensed Material-Property of Data General Corporation 14-43

*SAVE

Format
SAVE "seg-file-name"

Stores a program segment for later execution.

Arguments
seg-file-name is the name of the file, expressed as a

string literal, in which the program seg­
ment is to be stored.

Remarks
SA VE stores whatever program is currently in your work
area.

The program segment (along with a data area, which
includes current values of any variables) is stored in a
special format that can be accessed only by a CHAIN,
LOAD, or SWAP statement.

SA VE does not delete the program segment from memory.

SA VE can be used either as a statement in a program or
as a command in immediate mode.

Examples
SAVE "CKWRIT"

SAVE "SEGTWO"

For more extensive examples, see Chapter 1 O.

SGN(X)

Format
SGN (expr)

Returns a value representing the sign of an expression.

Arguments
expr is a numeric expression.

Remarks
The value returned is:

1 if positive
o if 0
-1 if negative

Examples
• LIST
10 LET A = -3
20 LET B = 8
30 PRINT "SGN(";A;") ="; SGN(A)
40 PRINT "SGN(";B;") ="; SGN(B)
'RUN
SGN(-3) = -1
SGN(8) = 1
*

14-44 Licensed Material-Property of Data General Corporation 093·400005

SIN

Format
SIN (expr)

Calculates the sine of an angle that is expressed in radians.

Arguments
expr is a numeric expression specified in radians.

Examples

• LIST
10 REM - PRINT SINE OF 30 DEGREES
20 PRINT SIN(30*PI/180)
·RUN
.5
*

SQR(X)

Format
SQR (expr)

Computes the square root of expr.

Arguments
expr is a nonnegative numeric expression.

Examples

• LIST
10 LET A=5
20 PRINT SQR(AA2+75)
·RUN
10
*

STEP

Controls counter increments when they are different from
1 (in the For ... NEXT statement) or from 10 (in the
RENUMBER statement). Always used in conjunction
with other keywords. See FOR ... NEXT and RENUM­
BER.

093·400006 Licensed Material·Property of Data General Corporation 14-45

STOP

Format
STOP

Terminates execution of the current program and returns
control to interactive mode.

Remarks
You can place STOP statements anywhere in the program
to terminate execution. When STOP is encountered,
BASIC prints the following message on your terminal:

Stop at line XXXX

*
where XXXX is the line number of the STOP statement.

After resumption of interactive mode, you can modify the
program if you wish. To restart the program from the
beginning, use RUN; to continue from the STOP state­
ment, use CON or RUN line no.

H a program segment that was called by the SWAP
statement executes a STOP, then MP /BASIC will return
control to the program that executed the SWAP and
continue running at the statement following the SWAP
statement.

Examples
·L1ST
10 REM - TERMINATE PROGRAM BY STOP
20 INPUT A
30 IF A<O THEN GOTO 50
40 GOTO 20
50 STOP
·RUN
? 1

?3
? -5
STOP AT LINE 50
*

*STR$(X)

Format
STR$ (expr)

Converts the numeric value of an expression to string.

Arguments
expr is a numeric expression.

Remarks
This function eliminates leading and trailing spaces.
Hence, it allows the generation of tightly formatted
numeric output.

Examples

• LIST
10 READ A
15 IF A=O THEN STOP
20 LET A$=STR$(A)
30 IF A$(4:6) = "222" THEN GOTO 50
40 GOTO 70
50 PRINT A;" -THIS IS MODEL 222"
60 GOTO 10
70 PRINT A;" -THIS ISN'T OUR MODEL"
75 GOTO 10
80 DATA 111222,212222,1 23456,0
• RUN
111222. -THIS IS MODEL 222
212222. -THIS IS MODEL 222
123456. -THIS ISN'T OUR MODEL
*

14-46 Licensed Material·Property of Data General Corporation 093-400005

*SUMMON

Format
SUMMON "sub-name" (par (,par] ...]

Calls an assembly language subroutine from MP jBASIC.

Arguments
sub-name is the name of the subroutine being called.

par is the name of a parameter being passed to
or from the subroutine.

Remarks
The parameter list is optional. If it is included, however,
it must be contained in square brackets (see Examples
below),

SUMMON can be used either as a statement in a
program, or as a command in immediate mode.

You can pass any legal MPjBASIC expression as a
parameter. You can also pass an array as a parameter by
specifying it as a formal array (see Chapter 12).

The called subroutine must conform to certain specifica­
tions. Refer to Chapter 12 for details.

Examples
100 SUMMON "SHIFT_LFT" [STR1$]

120 SUMMON "GET_CHAR" [lTEM,CHAR$,LENG]

140 SUMMON "PUTTER"

*SWAP

Format
SWAP "seg-file-name"

Saves the current program segment, loads and executes a
second segment, then restores and continues execution of
the first segment.

Arguments
seg-file-name is the name of the file, expressed as a

string literal, in which the second seg­
ment is stored.

Remarks
sw AP first performs a SA VE on the program segment
currently in your work area. Then it loads and executes
the program segment in file "seg-file-name". When this
program segment terminates with a STOP or END, then
SWAP clears the work area, LOADs the original program
segment and continues execution at the line following the
SWAP statement.

The program segment must have previously been stored
in file "seg-file-name" by a SAVE command.

SW AP does not close any open files or reset any file
pointers when switching between segments.

SW AP can be used as a statement in a program, but not
as a command in immediate mode.

Examples
SWAP "CKWRIT"

SWAP "SEGTWO"

For more extensive examples, see Chapter 10.

093-400005 Licensed Materisl-Property of Data General Corporation 14-47

TAB(X)

Format
TAB (expr)

Tabulates to column number specified by X.

Arguments

expr is a numeric expression rounded to the nearest
integer.

Remarks
The TAB function can be used only in conjunction with
the PRINT statement. It cannot be used with any other
BASIC statement.

If expr evaluates to less than 1, it will be set to 1 (an error
message will be printed, but the program will continue).

The first column on a line is column 1. The column
number specified by expr is always relative to column 1.

The position at which BASIC prints an item in the print
list depends on the value of expr and on the punctuation
(; or ,) following the T AB(X) function.

If expr evaluates to a column number lower than that of
the current cursor position, the cursor will be moved to
the specified position on the line below.

If expr evaluates to a column number greater than the
page width, then the cursor will wrap-around and print in
column number MOD(expr-l,width-of-iine) + 1 on the
same line; if that column already contains a printed
character, then printing will resume in the corresponding
column on the next line.

More than one T AB(X) function may appear on a print
line.

Examples

* LIST
10 REM SPACING WITH THE TAB FUNCTION
20 LET A = -6
30 LET B = 5
40 PRINT TAB(B); A; TAB(2*B); 2*A
* RUN

-6 -12

1 5 10

TAN

Format
TAN (expr)

Calculates the tangent of an angle that is expressed in
radians.

Arguments
expr is a numeric expression specified in radians.

Examples
° LIST
10 REM - PRINT TANGENT OF X DEGREES
20 PRINT "X DEGREES";
30 INPUT X
40 LET P = PI/I80
50 PRINT 'TANGENT = ";TAN(X*P)
°RUN
X DEGREES? 45
TANGENT = 1

*

*TIME

Format
TIME

Returns the time elapsed since the previous midnight,
expressed in seconds.

Remarks
See also the string function TIME$.

Examples
The value of TIME at 11: 15 A.M. is 40500.

14-48 Licensed Material·Property of Data General Corporation 093·400005

*TIME$

Format
TIME$

Returns the time of day in 24-hour notation In the
representation HH:MM:SS.

Remarks
See also the numeric function TIME.

Examples
The value of TIME$ at 11:15 a.m. is 11: 15:00.
The value of TIME$ at 3 p.m. is 15:00:00.

*TO

Always used in conjunction with other keywords. See
FOR, DELETE, LIST.

*VAL(A$)

Format
VAL (str-expr)

Returns the numeric representation of a string value.

Arguments
str-expr is a string expression which, when evaluated,

begins with a number.

Remarks
The value of the argument to the VAL function must
begin with a number or else an error message will be
output. The number may include digits, plus and minus
signs, decimal points, and the letter E (scientific notation).
Any nonnumeric characters appearing after the number
portion of the string (as well as any numeric characters
after the first nonnumeric character) are ignored. For
example:

"+35.5E-03ABCD7N"

Substring" + 35.5E-03" is returned as a numeric value
and substring "ABCD7N" is ignored.

Misplaced signs terminate the input scan in a similar
fashion:

"123 + 47 - 17"

Substring "123" is returned as a numeric value and
"+ 4 7 - 17" is ignored.

A zero is returned if the evaluation of the string's numeric
portion results in an underflow.

If A$ does not contain a numeric value, an error is
generated.

Examples

• LIST
10 LET A$= "12345ABCD"
20 LET B= 54321
30 LET C= VAL(A$)
40 LET D=B+C
50 PRINT D
• RUN
66666
*

093·400005 Licensed Material·Property of Data General Corporation 14-49

WRITE FILE

Format
WRITE FILE (file I file,record), (expr) f,expr} ...

Writes a record of data in binary format into a sequential­
access file or a random-access file.

Arguments
file is a numeric expression that evaluates to the number
of a file opened for random or sequential access.

record is a numeric expression that evaluates to the
number of a record in a file opened for random access.

expr is a numeric or string expression

Remarks
The first record number in a random-access file is O.

Data files you created using WRITE FILE statements
can be accessed by READ FILE statements.

Each expression in the list is evaluated and written as a
separate record in the file.

If the output has more bytes than the number of bytes
specified in the record, then output continues until the
end of the data.

Example

• LIST
10 DIM A(3,4)
20 FOR I = 1 TO 3
30 FOR J = 1 TO 4
40 LET A(I,J) = ((I-I) * 4+J) * 3
45 PRINT A(I,J)
50 NEXT J
60 NEXT I
80 PRINT
90 OPEN FILE(1,O), "TESTFILE",20
100 FOR II=1 TO 3
110 LET 1=4-II
120 FOR JI=1 TO 4
130 LET J=5-JI
140 LET R=(3-1) * 4+ (5-J)
150 WRITE FILE(1,R),A(I,J)
160 PRINT A(I,J),
170 NEXT JI
180 PRINT
190 NEXT II
200 CLOSE
• RUN
3
6
9
12
15
18
21
24
27
30
33
36
36 33 30 27
24 21 18 15
12 9 6 3

End of Chapter

14-50 Licensed Material·Property of Data General Corporation 093·400005

Code

2
3
4
5
7
8

11
12
13
15
16
17
18
20
21
22
23
24
25

26
27
28
30
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48

Appendix A
Run-Time Error Messages

MP /BASIC Error Mesages
Text

Illegal data type
Number is too big
Incorrect number of data items
Number too large to convert to integer
RETURN with no GOSUB
Line number for CONTINUE lost. Use RUN to
restart
I don't know what this is
(At least one) missing right parenthesis
Can't find subroutine
No such line number
Insufficient memory for program
Insufficient memory for data
Program statement is too long
Not a valid line number
Wrong number of items in input reply
Improper numeric expression
New line numbers will exceed maximum
GOSUB with no RETURN
The expression doesn't point to one of the line
numbers
Expression can't be assigned a value
String is too large for variable
File is not open
End of string requires"
File number already in use
Improper string expression
Illegal data for operand or function
Variable or array is being improperly used
Illegal BASE value
Illegal FOR ... NEXT variable
File was not OPENed for random access
Subscript value is out of range
User function calls itself
Invalid file mode
REAL loop values can't be used with INTEGER
variable
File wasn't opened for this type of operation
Array is too large
Data type has already been declared or defaulted
Illegal data
NEXT with no FOR
Invalid file number

49

50

51
53
54
55
56
57
59
60

61

62

63
64
65

66
67
68

69
70
71
72

73

74
75

Negative numbers can only be raised to integer
powers
LOG function can't have a negative or zero
argument
User function has not been defined
Incompatible operands
Zero can't have a negative exponent
Line numbers aren't valid
Handler cannot be found
Incorrect number of parameters
File is not an MP jBASIC save file
Save file wasn't created with this version of
MPjBASIC
A subscripted string can't be passed by the
SUMMON statement
Program stored with SA VE command. Use
LOAD to retrieve
Variable has not been assigned a value
Expression is too complicated or recursive
FATAL ERROR: Too many GOSUB statements
have been executed
Keyword cannot be used as a variable name
Program limit of 255 variables has been exceeded
There are characters after the end of the state­
ment
FILE reference is not correct
SQR can't have a negative argument
There's an illegal character in the USING string
There's an illegal format field in the USING
string
is too long for the format field in the USING
string
There isn't any format field in the USING string
Your version of MPjBASIC does not include
this feature

093-400006 Llcenaed Material·Property of Data General Corporation A-1

System Error Messages
Code Text
16385 Argument does not exist
16386 Buffer extends into system space
16387 Buffer too short
16388 Cannot delete permanent file
16389 Renaming error (file is open, cross device)
16390 Invalid device code
16391 Device is in use
16392 Fatal device error
16393 Device is off line
16394 Device read error
16395 Device write error
16396 Directory delete error
16397 Disk label does not match disk name
16398 Disk requires fixup
16399 End of file
16400 Extant user interrupt handler
16401 File already exists
16402 File does not exist
16403 File is in use
16404 File is attribute protected
16405 File name is too long
16406 Illegal file type
16407 Illegal option combination
16408 Invalid stack definition (too small, system space)
16409 Insufficient file space
16410 Invalid address
16411 Multiple waiters for single NPSC
16412 Invalid attributes
16413 Invalid channel number
16414 Invalid character in path name
16415 Invalid characteristics
16416 Invalid event number (<076> ?EVMAX or

<074> ?EVMIN)
16417 Invalid memory request
16418 Invalid operation for device
16419 Invalid priority
16420 Invalid starting address
16421 Invalid task identifier
16422 Line is too long
16423 No debugger present
16424 No free channels
16425 No free TCB available
16426 No such user interrupt service routine exists
16427 Non-directory entry in path name
16428 Non-system name specified
16429 Pend timeout
16430 Range error
16431 Read access denied
16432 Searchlist overflow
16433 Switch not found
16434 Task in progress
16435 Write access denied

16436 Program internal error
16437 Illegal system call
16438 Internal error
16439 No available resource
16440 Console interrupt ('''C''A)
16441 Son terminated via "C"B
16442 Illegal packet type
16443 Call aborted due to program management call
16444 Program file format revision not supported
16445 Device not mounted
16446 Maximum link depth exceeded
16447 Invalid overlay descriptor
16449 Attempt to exceed maximum swap level
16450 No overlays defined for this program
16451 Specified overlay is not currently in use
i6452 All tasks have died
16453 User and system debuggers can not coexist
16454 Not enough memory
16455 Son terminated via "C"E
16456 Invalid element size
16457 Invalid file format
16458 User PC is equal to zero
16459 Condition already exists
16460 Illegal word count (<074> 2)
16461 Bad or runaway tape, or format error
16462 Uncorrectable tape data error
16463 Fatal tape hardware error
16464 Odd number of characters read from tape
16465 Tape drive is write-locked
16466 Illegal tape record number
16467 Illegal tape file number
16468 Logical end of tape encountered
16469 Tape drive not opened
16470 Physical end of tape encountered
16471 Unexpected beginning of tape encountered
16472 Too many records in tape file (<076> 65,536)
16473 Indecipherable dump format
16474 Comm. device break received
16475 Comm. device framing error
16476 Comm. device parity error
16477 Comm. device receiver overrun
16478 Device or line does not exist
16479 Invalid mailbox number
16480 No message waiting
16481 ?XMT to a mailbox currently in use
16482 Attempt to read blank tape

End of Appendix

A-2 Licensed Material·Property of Data General Corporation 093·400005

Appendix B
MP jBASIC with Overlays

MP /BASIC uses overlays to provide a significant increase
in the amount of space available for user programs and
data.

Once a program starts running with the version of
MP /BASIC with overlays, it will run as fast as with a
non-overlay version. Because of the way the overlays
have been written, the part of MP /BASIC required to
run a program is loaded into the computer when you type
a RUN command and remains in memory until the
program ends.

If your computer uses MP /BASIC from a floppy disk,
you may notice a slight delay when you type an MP /BA­
SIC interactive command such as

PRINT 2+2

This delay is because the execution overlay must be loaded
from disk. If this delay is not acceptable, you may use the
alternate version of MP /BASIC with no overlays called
NO_OV _BASIC.PR (for MP / AOS-SU users, the non­
overlay version is called ONO_OV _BASIC.PR). In this
version, there are no delays between entering a command
from the keyboard and its execution, but you will have
less space available for your program and data.

The important points to remember are:

• Once a program starts running, it will run equally fast
under either the overlay or non-overlay version of
MP/BASIC.

• In executing certain commands in immediate mode,
there may be slight delays using MP /BASIC with
overlays. On the other hand, the version with overlays
gives you more space for your programs and data. For
most situations, you would probably want to use
MP /BASIC with overlays.

End of Appendix

093·400005 Licensed Material·Property of Data General Corporation 8-1

Appendix C
Data Formats

Integers
We represent an integer as a two's complement number
in a 16-bit word. The format is shown in Figure C-l. The
first bit positon (bit 0) contains the sign of the number (0
for positive, 1 for negative), and bits 1-15 contain the
magnitude.

Magnitude

o 15

Figure C-I. Representation of Integers

We represent positive numbers in true binary form, with
the sign bit set to zero. We represent negative integers in
two's-complement notation, with the sign bit set to one.

The two's-complement form of a number is obtained by
inverting each bit of the number and adding a one in the
low-order bit position. Thus, the two's-complement form
for the decimal number - 34 is:

S

representation 0
of +34

inverted
Add 1

representation
of -34

Magnitude

000000000100010

111 1111 1101 1101
1

111111111011110

Real Numbers
We represent a real number in a floating-point format,
using four bytes (for single precision) or eight bytes (for
double precision). The 4- or 8-byte aggregate contains 3
fields (see figure C-2):

• A fractional part called the mantissa, which, at the
end of all floating-point operations, is always adjusted
to be greater than or equal to 1/16 and less than 1
(this is called normalization);

• An exponent, which is adjusted to maintain the correct
value of the number;

• A sign.

Single precision (4 bytes)

t:l!irn ~ CEIl c::5]]
o 7 8 15 16 23 24 31

1 E~' Mantissa 16 hex digits) J

Sign

l Word aligned for all floating point operations:

Double precision (8 bytes)

~ 0i!iJJ ~ []ii[]
o 1 7

f
8 15 16 23 24 31

~ []iill [5]J m!I]
32 39 40 47 48 53 54 63

..
Mantissa (14 hex digits)

Sign

l Word aligned for all floating point operations:

DG-05496

Figure C-2. Representation of Floating-Point Format

Operations on numbers in memory employing the
floating-point arithmetic instructions require that the
number be word-aligned, that is, bit 0 of the first byte of
the number is bit 0 of the first word of a 2-word or
4-word area in memory.

The magnitude of a floating-point number is defined to
be:

I

MANTISSA X 16(true value of the exponent)

The magnitude of a single- or double-precision number is
thus on the range, approximately:

-7.237 x 10+75 to 7.237 x 10+75

We represent zero in floating-point by a number with all
bits zero, known as true zero. When a calculation results
in a zero mantissa, the number is atomatically converted
to a true zero.

093-400005 Licensed Material-Property of Data General Corporation C-1

Sign
Bit ° of the first byte is the sign bit. If the sign bit is 0, the
number is positive. If the sign bit is 1, the number is
negative.

Exponent
The seven right-most bits of the first byte contain the
exponent. We use excess 64 representation. For both
positive and negative exponents, the value is 64 greater
than the true value of the exponent. Table C-l illustrates
this.

Table C-1. Excess 64 Representation of Expo­
nents

Exponent Field True Value of Exponent

064 127 -64063

Mantissa
Bytes 1-3 (single precision) or bytes 1-7 (double preci­
sion) contain the mantissa. By definition, the binary point
lies between byte ° and byte 1 of a floating-point number.
In order to keep the mantissa in the range of 1/16 to 1,
the results of each floating-point calculation are normal­
ized by shifting it left one hex digit (4 bits) at a time,
until the high-order four bits (the left-most four bits of
byte 1) represent a nonzero quantity. For every hex digit
shifted, the exponent is decreased by one.

o

String {
descriptor

Character # 1

Strings
We store a string in a series of 8-bit bytes, one character
(in ASCII format) per byte. The bytes containing the
characters in the string are preceeded by a two-word
string descriptor (see figure C-3): the first word contains
the current length (in number of characters) of the string,
and the second word contains the maximum string length
(this is the value that is set by the DIM command.

Arrays
The representation of an array in MP /BASIC begins
with a two-word header (see figure C-4). The first word
contains the first dimension of the array (this word is set
to zero for a one-dimensional array), and the second word
contains the second dimension of the array.

The header is followed by the array data. The array data
is stored by row: the array elements appear sequentially
in memory in the following order: A(O,O), A(O,l), A(0,2),
... ,A(O,N), A(l,O), A(l,l), ... , A(l,N), ... ,A(M,N).

7 8 15

Current length

Maximum length

Character #2

Character #3 Character #4

,.~ r J ,.~

1 Character #n I
10.(J()768

Figure C-3. Representation of Strings

C-2 Licenaed Material-Property of Data General Corporation 093-400005

The format of the array data depends on the kind of data
in the array. Each data element is stored in the format
described above for the corresponding data type. The
number of words occupied by each data element in the
data portion of the array representation is as follows:

• For integer data, each element is stored in one word in
the data portion of the representation. If an element
does not exist, its contents are undefined.

• For real data, each element is stored in two (for single
precision) or four (for double precision) consecutive
words in the data portion of the representation. If an
element does not exist, its contents are undefined.

• For string data, the address of the first word of the
string descriptor (see figure C.4) is stored in the
corresponding element in the data portion of the array
representation. If the element is vacant, the address is
set to -1.

The representation for a one-dimension array is the same
as for a two-dimension array; for a one-dimension array,
the first header word (dimension one) is set to zero.

Array

header

Array

data

portion

10-00769

1 Dimension # 1

Dimension #2

Element (0,0)

Element (0,1)

Element (0,2)

Element (0,3)

rl" rl"

r~ rl-'

Element (m,n - 1)

Element (m,n)

Figure C-4. Representation of Arrays

End of Appendix

093-400005 Licensed Material-Property of Data General Corporation C-3

Appendix 0
Run-only MP /BASIC

There may be times when you would like to run an
MP /BASIC program directly from the CLI.

For example, after you have finished debugging a pro­
gram, there is no need to first call MP /BASIC from the
CLI and then to run your program. Using a run-only
version of MP /BASIC, you can call your MP /BASIC
program directly from the CLI by using a single CLI
command.

To use run-only MP /BASIC, you first write and debug
your program, and store it using the SAVE command.
Do all this using a regular (not run-only) version of
MP /BASIC. Then, using a run-only version of MP /BA­
SIC, you can use a single CLI command to run your
program from the CLI.

For example, suppose you have written a program and
SA VEd it in the file named PULVERIZE. You could
then run that program directly from the CLI by typing
the command

X ROBASIC PULVERIZE

(Note that the command to execute run-only MP /BASIC
is slightly different depending upon the operating system;
see Table D-1.)

Table D-1. CLI Calls to Execute Run-Onl)"
MP/BASIC

Operating System CLI Command for
Run-Only MP /BASIC

MPjOS X ROBASIC
<SA VE-file-name>

MPjAOS X ORO BASIC <SA VE-file-
MPjAOS-SU name>

AOS X MROBASIC <SA VE-file-
name>

AOSjVS X MVSROBASIC <SA VE-file-
name>

When the above command is executed, the CLI calls in
the run-only version of MP /BASIC, which will, in turn,
call in the program in file PULVERIZE, and execute it.
When the MP /BASIC program reaches a STOP or END
statement, control returns to the CLI.

Because run-only MP /BASIC does not have any accessi­
ble immediate mode facilities, and because the program
work area is destroyed after the MP /BASIC program
finishes execution, the run-only version of MP /BASIC
also prevents unauthorized tampering or examination of
your MP /BASIC program.

Run-only MP /BASIC does not use an overlay, since it
requires less space than the complete MP /BASIC; there­
fore, there is only a non-overlay version.

End of Appendix

093·400005 Licensed Material-Property of Data General Corporation 0-1

Index

Within this index, "r' or "fr' after a page number means
"and the following page" (or "pages"). Commands, calls,
and acronyms are in uppercase letters (e.g., CREATE);
all others are lowercase.

A

abbreviations used in manual vi
aborting program execution 1-11
ABS(x) 8-2, 14-2
absolute value function (ABS) 8-2, 14-2
access, see files (random access, sequential access)
addition 2-5ff
addressing, see also referencing
ALL, see DECLARE
ampersand, as concatenation operator 3-2, 13-4
AND 5-6ff
ANSI standard, engancements to iii
arctangent function (ATN) 8-2, 14-2
arguments 8-1
arithmetic functions, see functions, mathematical
arithmetic operations, advantages of using integers in 2-5
arithmetic operators 2-5ff

precedence 2-6
array member, see arrays, element
arrays 7-lff, 13-5f

array header C-2f
column 7-8
declaring 7 -6ff, 7-9

DECLARE 14-8f
dimensioning

DECLARE 2-5, 13-3, 14-8f
default 7-6f
DIM 7-6f, 13-5f, 14-12

elements 7-1 ff, 7-1 Of
assigning values to 7-2
setting lower bound (OPTION BASE) 7-6f, 14-30
space occupied in a record 9-3

internal format C-2f
naming 7-2, 13-5
numeric 7-2
one-dimensional 7-1 ff
OPTION BASE 7-6f
reading 7-3, 7-9f
referencing elements of 7-4f
row 7-8
searching 7-5

size 13-5f
default 7-6f, 7-9
maximum 7 -6f

string 7-2, 7-10f
element size 7-11

subscripts 7-lff, 7-8ff
two-dimensional 7-8ff
types of data in 7-2, 7-11

ASCII character code 1-1
used in string comparisons 5-4

ASCII character code function (ORD) 8-4,8-6, 14-31
ASCII character function (CHR$) 14-5
ASCII format, file data in 9-18, 13-7
assembly language subroutines

accumulators, saving and restoring 12-2ff
calling (SUMMON) 12-lff, 13-8f, 14-47
exception code, returning 12-5
finding the subroutine 12-2ff
parameters, passing 12-2ff
program file, creating 12-5f
subroutine table 12-2ff
writing 12-lff

assigning values to variables
see variables, assigning values to

asterisk
as arithmetic operator 2-5ff
as indicator of BASIC extension 14-1
as MP/BASIC prompt 14-1
as prompt vi, 1-4, 13-1
in declaring number precision 14-9

AT, in RENUMBER command 1-8
ATN(x) 8-2, 14-2

B

binary format, file data in 9-18, 13-7
binary string function (BSTR$) 8-4f, 14-2
binary value function (BY AL) 8-4, 8-6, 14-3
bit-string patterns, manipulating (BSTR$) 8-5
brackets, see square brackets
branching 5-1 ff

conditional
IF ... THEN ... 5-3f, 13-5
IF ... THEN ... ELSE 14-20
ON ... GOSUB. .. 6-5f, 14-28
ON ... GOSUB. .. ELSE ... 6-5f, 14-28
ON ... GOTO ... 5-9ff, 14-29

093-400005 Licenaed Material-Property of Data General Corporation Index-1

ON ... GOTO ... ELSE ... 5-9ff, 14-29
unconditional (GOTO) 5-lff, 13-5, 14-19

BSTR$(v,r) 8-4f, 14-2
BVAL(b$,r) 8-4, 8-6, 14-3
BYE 1-4f, 13-1, 14-3

used to close files 9-9
bytes 9-2ff

C

calling a function 8-1
calling a subroutine

GOSUB 6-lff
ON ... GOSUB ... 6-5f

caret
as arithmetic operator 2-5ff
in error message 1-11

CAUSE 11-3f, 13-7, 14-4
CHAIN 10-2f, 13-7, 14-4
chaining, see program segmentation
character strings, see strings
characters 1-1, 13-1
characters, control 1-1
CHR$(m) 8-4, 8-6, 14-5
circumflex, see caret
clearing memory area (NEW) 1-5, 14-28
CLOSE 9-9, 14-5
CLOSE FILE 9-9, 9-19, 14-5

see also CLOSE
column 7-8
comma

in a data line (DATA) 4-6ff
in INPUT with multiple variables 4-2ff, 14-21
in LINPUT with multiple variables 4-4
in output format (PRINT) 1-13ff, 14-33
in printed output 13-2

command format conventions 14-1
commands 1-3

dictionary of 14-1 ff
file 9-5f

comparisons, string 5-4f
compatability between different MP /BASIC versions

(segmentation) 10-3
CON 1-19, 13-2, 14-6, 14-46
concatenation 3-2, 13-4
conditional branching, see branching, conditional
constants

numeric
range of values 2-4, 13-2
representation of 2-4
signs in 13-2
writing 13-2

string 13-4
length of 3-4, 13-4

CONTINUE 11-2, 11-4, 13-7, 14-6
continuing program execution (CON) 1-11

control
characters 1-1
statements 5-lff
variable 13-5
variable, see loops (FOR ... NEXT)

conventions
command and statement format 14-1
typesetting vi

correcting typographical errors 1-6
COS (x) 8-2, 14-6
cosine function (COS) 8-2, 14-6
counters, in loops 5-13f
CTRL-A 1-7
CTRL-B 1-7
CTRL-C CTRL-A

continuing from (CON) 14-6
interrupt handling 11-3
interrupts, handling 13-2, 13-7
interrupts, see also exception handler
to abort program execution 1-11
to delete current line 1-7, 13-1
to exit from an infinite loop 5-3

CTRL-E 1-7
CTRL-F 1-7
CTRL-H 1-7
CTRL-K 1-7
CTRL-U 1-7
CTRL-X vi

o
data

matching between DATA and READ 4-6ff, 13-4f
reading (INPUT) 4-lff
reading (READ) 4-5ff
reading a string (LINPUT) 4-4
space for B-1

DATA 4-5ff, 13-4f, 14-7, 14-37
use of comma in 4-6ff
use of quotation mark in 4-6ff

data area 10-1, 13-7
data element pointer, see data pointer
data formats C-lff

see also files, data formats
data independence (between program segments) 10-2
data lines (DATA) 4-5ff, 13-4f

multiple 4-6ff
rereading from (RESTORE) 4-8

data pointer 13-5, 14-37, 14-41
data types, numeric 2-5, 13-2
DATE 8-2,14-7
date function

DATE 8-2,14-7
DATE$ 8-4, 8-6, 14-8

DATE$ 8-4, 8-6, 14-8
decimal notation 2-4, 13-2

Index-2 Licensed Material·Property of Data General Corporation 093·400005

decimal string function (STR$) 8-4, 8-7f, 14-46
decimal value function (VAL) 8-4, 8-8f, 14-49
decision box, in flowcharts 5-3f
DECLARE 2-7
DECLARE ALL INTEGER 2-5, 2-7,14-8
DECLARE ALL REAL 2-5, 2-7,14-9
DECLARE INTEGER 2-5, 13-3, 14-8
DECLARE REAL 2-5, 13-3, 14-9
declaring arrays 7-6ff, 7-9
DEF 8-9f, 13-6, 14-10
DEG(x) 8-2, 14-10
degrees function (DEG) 8-2, 14-10
DEL key vi, 13-1
DELETE 1-19,9-12,9-19, 13-1, 14-11
DELETE "filename" 1-9
deleting a program (DELETE) 1-9
deleting program lines (DELETE) 1-7
dictionary of statements, commands, and functions 14-1 ff
DIM 3-4, 7-11,13-3, 13-5f, 14-12

placement of, in program 7-6
dimensioning arrays (DIM) 7-6ff

DECLARE 2-5, 13-3, 14-8
default 7-6f
DIM 14-12

dimensioning strings (DECLARE) 2-5, 13-3
DISABLE HANDLER 11-2, 11-4, 13-7
DISABLE KEY HANDLER 11-3f, 13-7, 14-13
division 2-5ff
double subscripts 7-8
double-precision, see numbers, double-precision

E

e, in scientific notation 2-4f
elements 7-10f

of an array, see arrays, element
ellipsis (...), in commands and statements 14-1
ELSE, see IF ... THEN ... ELSE ... , ON ... GOTO ... ELSE ... ,

ON ... GOSUB ... ELSE
ENABLE HANDLER 11-2, 11-4, 13-7
ENABLE KEY HANDLER 11-3f, 13-7, 14-13, 14-42
END 1-19, 10-2, 13-1, 14-14
END HANDLER 11-If, 11-3f, 13-7, 14-14
enhancements to ANSI standard iii
ENTER 1-10, 1-19, 13-1, 14-14, 14-26
ERASE EOL key 1-7
error codes A-If
error handling, see exception handling
error messages 13-2

MP/BASIC A-I
system A-2

error, runtime, recovering from (CON) 14-6
errors, typographical, correcting 1-6
ESC 11-3

ESC key vi, 1-7, 13-1
defining (HANDLER and END HANDLER) II-If,

14-14, 14-19
disa bling 14-13

DISABLE HANDLER 11-2
enabling 14-13

ENABLE HANDLER 11-2
exiting from

CONTINUE 11-2, 14-6
END HANDLER 11-3
RESUME 11-2, 14-42
RETRY 11-2, 14-42

see also CTRL-C CTRL-A interrupt handling
exception handling 11-1 ff, 13-7

CTRL-C CTRL-A interrupts 11-3
determining location of an error (EXLINE) 11-3,

14-15
determining type of error (EXTYPE) 11-2, 14-15
ESC interrupts 11-3
generating an exception (CAUSE) 11-3
key handlers 11-3

exception, generating (CAUSE) 14-4
executing a program (RUN) 1-10
EXLINE 11-3f, 13-7, 14-15
EXP(x) 8-2, 14-15
exponential function (EXP) 8-2, 14-15
exponentiation 2-5ff
expressions

as subscripts 7-5
logical 5-3f, 5-6ff
logical, in IF ... THEN ... ELSE ... 14-20
numerical, in IF ... THEN ... ELSE ... 14-20
string, in INPUT PROMPT 4-2
string, in LIN PUT PROMPT 4-4

extensions to minimal BASIC iii
EXTYPE 11-2, 11-4, 13-7, 14-15

F

file commands 9-5f
file input 9-1 ff
file mode, in OPEN FILE 9-6f, 9-13
file modes 9-5
file number 9-6

in CLOSE FILE 9-9
in OPEN FILE 9-6f, 9-13
in READ FILE 9-1 Of
in WRITE FILE 9-7ff, 9-13f

file output 9-Iff
file pointer 9-4

in CLOSE FILE 9-9
in READ FILE 9-1 Of
in WRITE FILE 9-7ff, 9-13f

filename
in CLOSE FILE 9-9
in OPEN FILE 9-6f
see files, naming

filename extensions, see files, filename extensions

093-400005 Licensed Material-Property of Data General Corporation Index-3

filenames, see files, naming
files 9-1£f

closing
BYE 9-9
CLOSE 14-5
CLOSE FILE 9-9, 14-5

data formats 9-18, 13-7
ASCII 9-18
binary 9-18
criteria for choosing 9-18

deleting (DELETE) 9-12
filename extensions 9-6f
input and output 13-6f

modes 13-6, 14-29f
naming 9-6f
opening (OPEN FILE) 9-5ff, 14-29f
printing (PRINT FILE) 9-18
random access, determining record location (WRITE)

9-13f
opening (OPEN FILE) 9-13
reading (READ FILE) 9-14f
see also records, fixed-length

reading data from
INPUT FILE 9-19
LIN PUT FILE 9-19

records 9-1 ff, 13-6f
length 13-7
numbering 13-6f
types 13-6

sequential access
reading (READ FILE) 9-10f
searching 9-11£
writing to (WRITE FILE) 9-7ff
see also records, variable-length

types, criteria for choosing 9-14
used in transferring data between program segments

10-3
writing into (PRINT FILE) 9-18

FIRST, see DELETE, LIST
fixed-length records 13-6

see also files, random access
see also records, fixed-length

floating-point representation C-1£
flowcharts 5-2f

symbols 5-8
FNx, see functions, user-defined
FOR ... NEXT 5-14ff, 5-26, 14-16f, 14-45

with STEP 5-17
see also loops (FOR ... NEXT)

formatted output (PRINT USING) 1-16f
formatting of program (by MP /BASIC) 1-6
FP(x) 8-2, 14-17
fractional part function (FP) 8-2, 14-17

functions 8-1£f, 13-6
calling 8-1
defining 14-10
dictionary of 14-1£f
implementation-defined 8-1, 13-6
invoking 8-1
mathematical 13-6

ABS(x) 8-2, 14-2
ATN(x) 8-2
COS (x) 8-2, 14-6
DATE 8-2, 14-7
DEG(x) 8-2, 14-10
EXP(x) 8-2, 14-15
FP(x) 8-2, 14-17
INT(x) 8-2, 14-22
IP(x) 8-2, 14-23
list of 8-2f
LOG(x) 8-2, 14-27
MOD(x,y) 8-2, 14-27
PI 8-2, 14-31
RAD(x) 8-2, 14-36
RANDOMIZE 14-37
REM(x,y) 8-2, 14-39
RND 8-2f, 14-42f
SGN(x) 8-2, 14-44
SIN (x) 8-2, 14-45
SQR(x) 8-2, 14-45
TAN(x) 8-2, 14-48
TIME 8-2, 14-48

order of precedence in evaluating 8-2
parts of 8-1
string 13-6

BSTR$(v,r) 8-4f, 14-2
BVAL(b$,r) 14-3
BVAL$(b$,r) 8-4, 8-6
CHR$(m) 8-4, 8-6, 14-5
DATE$ 8-4, 8-6, 14-8
LEN(a$) 8-4, 8-6f, 14-23
list of 8-4f
ORD(a$) 8-4, 8-6, 14-31
POS(a$,b$) 8-4, 8-6f, 14-32
POS(a$,b$,m) 8-4, 8-7, 14-32
STR$(x) 8-4, 8-7f, 14-46
TIME$ 8-4, 8-8, 14-49
V AL(a$) 8-4, 8-8f, 14-49

TAB (x) 1-15, 1-18, 14-48
user-defined 8-9f, 13-6

defining (DEF) 8-9f, 13-6, 14-10
parts of 8-9f

G

GOSUB 6-1£f, 13-5, 14-18, 14-42
see also ON ... GOSUB .. .
see also ON ... GOSUB ... ELSE ...

GOTO 5-1£f, 5-26, 13-5, 14-19
preceding a subroutine 14-18
see also ON ... GOTO ... , ON ... GOTO ... ELSE ...

Index-4 Licensed Msterial·Property of Data General Corporation 093·400005

H

HANDLER II-lf, 11-4, 13-7, 14-19
handler, see exception handlers, exception handling
HOME key 1-7

IF ... THEN ... 5-3f, 5-4ff, 13-5
in searching an array 7-5
nested 13-5

IF ... THEN ... ELSE ... 5-6, 5-26, 14-20
image, output (PRINT USING) 1-16f
Immediate mode 1-3
implementation-defined functions

see functions, implementation-defined
increment 13-5
infinite loops 5-3
initializing a variable 2-3
INPUT 4-lff, 4-8, 13-4, 14-21

with several variables 4-2ff
INPUT FILE 4-8, 9-19,13-7, 14-2lf
INPUT PROMPT 4-2, 4-8, 13-4, 14-21
inserting new lines into a program 1-7
INT(x) 8-2, 14-22
!nteger function (INT) 8-2, 14-22
mteger part function (IP) 14-23
integers 2-5, 13-2f

advantages of using 2-5, 13-3, 13-5
internal format C-l

!nterr.upting program execution (STOP) 1-10f
mvokmg a function 8-1
IP(x) 8-2, 14-23

K

KEY exception 13-7
key handler, see exception handlers, exception handling
KEY, see ENABLE KEY HANDLER, DISABLE KEY
HANDLER
keywords 1-3

tables 1-19, 2-7, 3-4, 4-8, 5-26, 6-6, 7-11,
8-10,9-19, 10-3, 11-4

L

LAST, see DELETE, LIST
left -arrow key 1-7
LEN(a$) 8-4, 8-6f, 14-23
LET 2-7, 14-24
LINE FEED character vi
line numbers 1-3, 13-1
lines, deleting (DELETE) 14-11
LINPUT 4-4, 4-8, 13-4, 14-24f

use of quotation marks in 4-4
LINPUT FILE 9-19,13-7, 14-24f
LIN PUT PROMPT 4-4, 4-8, 14-24f
LIST 1-5f, 1-19, 13-1, 14-25f

LIST "filename" 1-9f
format of file created by 10-1

listing a program (LIST) 1-5f
LOAD 10-2f, 13-7, 14-26
loading a program (ENTER) 1-10
LOG (x) 8-2, 14-27
logarithm function, natural (LOG) 8-2
logging off (BYE) 1-4f, 13-1, 14-3
logging on 1-4, 13-1
logical expressions 5-3f, 5-6ff
logical operators 5-6ff, 13-5
loops 5-1 ff, 5-12ff
loops (FOR ... NEXT) 5-14ff, 13-5, 14-16f

advantages of using integers in 2-5
control variable 14-16f
detailed operation 14-16f
for reading an array 7-2f, 7-9f
infinite 5-3

exiting from 5-3
nested 5-17ff, 14-16f

M

math.ematical functions, see functions, mathematical
matnx 7-8
member of an array, see arrays, element
MEMORY 1-17, 1-19, 14-27
memory area

clearing (NEW) 1-5, 13-1, 14-28
space inquiry (MEMORY) 13-1 14-27

minus sign, as arithmetic operator 2-5ff
MOD(x,y) 8-2, 14-27
modes, file 9-5
modulo function (MOD) 8-2, 14-27
MP /BASIC program, running directly from the CLI

D-l
multiplication 2-5ff

N

naming
a program 1-9
arrays 7-2
files 9-6f

natural logarithm function (LOG) 8-2, 14-27
nested loops, see FOR ... NEXT
nested subroutines 6-2, 6-5
nested, s~e IF ... THEN ... , FOR. .. NEXT loops, subrou­

tmes
NEW 1-5, 1-19, 13-1, 14-28
NEW LINE key

as statement terminator 1-3
representation in examples vi, 1-3

NEXT, see FOR ... NEXT
NOT 5-6ff
null string 3-3, 13-3

093-400005 licensed Material-Property of Data General Corporation Index-5

numbers
double-precision 2-5, 13-3
declaring (DECLARE REAL) 14-9
internal format C-l f
space occupied in a record 9-3

integers, space occupied in a record 9-3
printed format (PRINT) 1-13
real 13-3

floating-point representation C-lf
space occupied in a record 9-3

single-precision 2-5, 13-3
declaring (DECLARE REAL) 14-9
internal format C-lf
space occupied in a record 9-3

numeric
array 7-2
constant, see constants, numeric
data types

integer 2-5
real 2-5

expression, see expressions, numeric
.functions, see functions, mathematical
operators, see arithmetic operators
variable, see variables, numeric

o
ON ... GOSUB ... 14-28
ON ... GOSUB ... ELSE ... 6-5f, 6-6, 14-28
ON ... GOTO ... 5-9ff, 14-29
ON ... GOTO ... ELSE ... 5-9ff, 5-26, 14-29
OPEN FILE 9-5ff, 9-9, 9-13, 9-19, 14-29f
operators

arithmetic 2-5ff
logical 5-6ff, 13-5
relational 5-3ff, 13-5
string 3-2, 13-4

OPTION BASE 7-6f, 7-11, 13-6, 14-30
OR 5-6ff
ORD(a$) 8-4, 8-6, 14-31
order of execution, see order of precedence
order of precedence, in functions 8-2
organization of manual iii
organization, program 1-5, 13-1
other languages, calling from MP /BASIC 12-6
output

format
comma (PRINT) 1-13ff
semicolon (PRINT) 1-14ff
spacing (PRINT) 1-13
TAB function 1-15, 14-48
zone spacing 14-33, 14-33f

PRINT 1-13ff
formatted (PRINT USING) 1-16f, 13-2, 14-33f
image (PRINT USING) 1-16f
printed 13-2

PRINT 1-12ff
comma 13-2

print zones 13-2
semicolon 13-2
signs 13-2
TAB function 13-2

overlays B-1
p

parentheses
in commands and statements vi, 14-1
in logical expressions 5-8
in numeric expressions 2-6f
used to enclose argument of function 8-1

Pascal, calling from MP /BASIC 12-6
PI 8-2, 14-31
plus sign, as arithmetic operator 2-5ff
pointer, see file pointer
POS(a$,b$) 8-4, 8-6f, 14-32
POS(a$,b$,m) 8-4,8-7,14-32
PRINT 1-12ff, 1-19, 14-33f

with TAB function 1-15
PRINT FILE 9-18f, 13-7, 14-35f
PRINT USING 13-2
print zones 13-2
printed output (PRINT) 1-12ff
printing data (PRINT) 14-33f
program 1-1, 1-4

continuing execution (CON) 13-2, 14-6
deleting (DELETE) 1-9
executing (RUN) 1-10, 14-43
formatting of (by MP /BASIC) 1-6
inserting new lines into 1-7
interrupting execution of

CTRL-C, CTRL-A 13-2
STOP 13-2

listing (LIST) 1-5f, 14-25f
loading (ENTER) 1-10, 13-1, 14-14
MP /BASIC, running directly from the CLI D-l
naming 1-9
re-executing (RUN) 13-2
running (RUN) 14-43
saving (LIST "filename") 1-9f, 13-1, 14-25f
space for B-1
terminating 14-14

END 1-5
STOP 14-46

program execution
aborting 1-11
continuing (CON) 1-11
interrupting of (STOP) I-I0f
resuming (CON) 1-11
starting (RUN) 1-10

program lines
deleting (DELETE) 1-7, 13-1, 14-11
numbers 1-3
renumbering (RENUMBER) 1-8, 13-1, 14-40

Index-6 Licensed Material·Property of Data General Corporation 093·400005

program organization 1-5, 13-1
program security D-l
program segmentation 10-1 ff, 13-7

da ta independence 10-2, 13-7
linking to the next segment (CHAIN) 10-2
loading a segment (LOAD) 10-2, 14-26
loading and executing a segment (CHAIN) 14-4
running a segment (RUN) 10-2
saving a segment (SAVE) 10-1, 14-44
swapping current segment (SWAP) 10-2, 14-47
transferring data between segments 10-3

program speed B-1
prompt lines

with INPUT 4-2
with LINPUT 4-4

Q
question marks

as INPUT prompt 14-21
in INPUT 14-21

quotation marks
as delimiter in PRINT 1-12
in a data line (DATA) 4-6ff, 14-7
in LINPUT 4-4
in strings 3-1, 3-3
in writing strings 13-4

R

RAD(x) 8-2, 14-36
radians function (RAD) 8-2, 14-36
radix 14-2
random access, see files, random access
random number function

RANDOMIZE 8-3f, 14-37
RND 8-2f, 14-42f

RANDOMIZE 8-3f, 8-10, 14-37, 14-42f
READ 4-5ff, 4-8, 13-4f, 14-37f
READ FILE 9-10f, 9-14f, 9-19,13-7,14-38
reading

arrays 7-3
data

INPUT 4-1ff
READ 4-5ff, 14-37f
READ FILE 14-38

string data (LINPUT) 4-4
real numbers 2-5, 13-2f, 13-3

converting to integers 14-22
internal format C-l

record number, in WRITE FILE 9-13f
records 9-lff

file pointer to 9-4
fixed-length

creating 9-4
declaring 9-4
referencing 9-4f

length, calculating 9-3
fixed 9-2ff
in OPEN FILE 9-7
variable 9-2ff

types of 9-2
criteria for choosing 9-4

variable-length 9-4ff
referencing

a variable 2-2f
elements of an array 7-4f

related manuals iv
relational operators 5-3ff, 13-5
REM 1-5, 1-19, 13-1, 14-39
REM(x,y) 8-2, 14-39
remainder function (REM) 8-2, 14-39
remarks, explanatory (REM) 1-5, 14-39
RENUMBER 1-8, 1-19, 13-1, 14-40, 14-45
renumbering program lines (RENUMBER) 1-8
repeated operations, see loops
RESTORE 4-8, 13-5, 14-37, 14-41
RESUME 11-2, 11-4, 13-7, 14-42
resuming program execution (CON) 1-11
RETRY 11-2, 11-4, 13-7, 14-42
RETURN 6-1ff, 6-6, 13-5, 14-18, 14-42
right-arrow key 1-7
RND 8-2f, 14-42f
row 7-8
RUN 1-10, 1-19, 10-2, 13-2, 14-43, 14-46
run-only MP IBASIC D-1
run-time error messages A-If

S

SAVE 10-1,10-3,13-7,14-4,14-44, D-l
saving a program (LIST "filename") 1-9f
scientific notation 2-4f
searching arrays 7-5
security, program D-1
segmentation, see program segmentation
segments, see program segmentation
semicolon

as shorthand for PRINT 1-12, 13-2, 14-33
in output format (PRINT) 1-14ff, 13-2, 14-21, 14-33

sequential access, see files, sequential access
SGN(x) 8-2, 14-44
sign function (SGN) 8-2, 14-44
signs, in numeric constants 13-2

in printed output 13-2
SIN (x) 8-2, 14-45
sine function (SIN) 8-2, 14-45
single-precision, see numbers, single-precision
slash, as arithmetic operator 2-5ff
spacing output, see output format
SQR(x) 8-2, 14-45

093-400005 Licensed Material-Property of Data General Corporation Index-?

square brackets
in commands and statements vi, 14-1
used in SUMMON 12-1

square root function (SQR) 8-2, 14-45
statement format conventions 14-1
statements I-If

control 5-1 ff
dictionary of 14-1 ff

STEP 14-45
in RENUMBER command 1-8
see FOR ... NEXT

STOP 1-10f, 1-19, 10-2, 13-2, 14-46
continuing from (CON) 14-6
preceding a subroutine 14-18

STR$(x) 8-4, 8-7f, 14-46
string

array element size 7-11
arrays 7-2, 7-10f
character function (CHR$) 8-4, 8-6, 14-5
comparisons 5-4f
constant, see constants, string
data, reading (LIN PUT) 4-4
descriptor C-2
expressions

in INPUT PROMPT 4-2
in LIN PUT PROMPT 4-4

functions
list of 8-4f
see functions, string

length function (LEN) 8-4, 8-6f, 14-23
variable, see variables, strings

strings 3-1 ff
character 13-3
dimensioning (DECLARE) 2-5, 13-3
internal format C-2
operator (concatenation) 3-2, 13-4
quotation marks, use in writing 13-4
space occupied in a record 9-3
substrings 3-3f

referencing 13-3f
subroutine table 12-2ff, 13-8f
subroutines 6-1£f, 13-5

assembly language; see assembly language subroutines
calling

GOSUB 6-1£, 14-18
ON ... GOSUB ... 6-5f

creating 6-1 f
nested 6-2, 6-5, 13-5
returning from (RETURN) 14-18, 14-42

subscripted variables, see arrays

subscripts 7-1£f, 7-8ff
double 7-8

substring position function (POS) 8-4, 8-6f, 14-32
substrings

referencing 13-3f
referencing (extracting of and assigning values to)

3-3f
subtraction 2-5ff
?SUM table, see subroutine table
summary of manual 13-1 ff
SUMMON 13-8, 14-47
?SUMMON macro, see subroutine table
SWAP 10-2f, 13-7, 14-47
system error messages A-2

T

TAB function 1-15, 1-18
in printed output 13-2

TAB (x) 14-48
TAN(x) 8-2, 14-48
tangent function (TAN) 8-2, 14-48
terminating a program (END) 1-5
THEN, see IF ... THEN ... 0
TIME 8-2, 14-48
time function

TIME 8-2, 8-4, 14-48
TIME$ 8-8, 14-49

TIME$ 8-4, 8-8, 14-49
TO, see DELETE, FOR. .. NEXT, LIST
two's complement representation C-l
typesetting conventions vi

u
unconditional branching, see branching, unconditional
user-defined functions 8-9f

defining (DEF) 8-9f
parts of 8-9f
see functions, user-defined

using this manual iiif

v
VAL(a$) 8-4, 8-8f, 14-49
variable

initializin8-a 2-3
referencin8-a 2-2f

variable-length records 13-6
see files, sequential access
see records, variable-length

Index-8 Licensed Material·Property of Data General Corporation 093·400005

variables
assigning values to 13-2f

INPUT 4-1ff, 14-21
INPUT FILE 9-19, 14-2lf
INPUT PROMPT 14-21
LET 2-2f, 3-2, 14-24
LINPUT 4-4, 14-24f
LIN PUT FILE 9-19, 14-24f
LINPUT PROMPT 14-24f
READ 4-5ff, 14-37f
READ FILE 9-lOf, 9-14f, 14-38

dummy 14-10
kinds of 2-1
numeric 2-lff, 13-2

changing value of 2-1 f
declaring (DECLARE) 14-8f
initializing 13-2
naming 2-2, 13-2

specifying values for (DATA) 14-7
string, dimensioning (DECLARE) 14-8f

dimensioning (DIM) 3-2f, 13-3, 14-12
initializing 3-3
length 3-2, 13-3
naming 3-2, 13-3

subscripted, see arrays
vertical line character, to indicate choice vi, 14-1

W

WRITE FILE 9-7ff, 9-13f, 9-19,13-7,14-50
writing data (WRITE FILE) 14-50

Z

zone spacing in output (PRINT) 1-13ff
zones, print 13-2, 14-33, 14-33f

End of Index

093-400005 Licensed Material-Property of Data General Corporation Index-9

J I
: 1
J 1

11

: 1
) 1
II
)
• 1

i 1
J
: 1
• 1

II

4. Data General
users
gpoup Installation Membership Form

Name _______________ Position _________________ _ Date _____ _

Company. Organization or School ___________________________________ _

Address ______________ _ City ___________ State ______ Zip _____ _

Telephone: Area Code ______ No. ____________ Ext.

o OEM
o End User
o System House
o Government

Qty. Installed I Qty. On Order

0 AOS 0 RDOS

0 AOS/VS 0 DOS

0 AOS/RT32 0 RTOS

0 MP/OS 0 Other

0 MP/AOS

Specify

o ALGOL 0 BASIC

o DG/L 0 Assembler

o COBOL 0 FORTRAN 77

o Interactive 0 FORTRAN 5

COBOL 0 RPG II

o PASCAL 0 PL/l

o Business 0 APL
BASIC o Other
Specify ______ _

o Batch (Central)

o Batch (Via RJE)

o On· Line Interactive

0 HASP 0 X.25

0 HASP II 0 SAM

0 RJE80 o CAM

0 RCX 70 o XODIACTM

0 RSTCP o DG/SNA

0 4025 o 3270

o Other

Specify

0 _________ _

From whom was your machine(s)
purchased?

o Data General Corp.
o Other

Specify ______ _

Are you interested in joining a
special interest or regional
Data General Users Group?

0 ________ _

~. DataGeneral
Data General Corporation, Westboro. Massachusetts 01580. (617) 366-8911

FOLD

TAPE

FOLD

"""
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 26 SOUTHBORO. MA. 01772

Postage will be paid by addressee:

t. DataGeneral
ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

FOLD

TAPE

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

_. Data General TP ____ _

TIPS ORDER FORM
Technical Information & Publications Service

BILL TO: SHIP TO: (if different)

COMPANY NAME COMPANY NAME

ADDRESS ADDRESS

CITY CITY

STATE ZIP STATE ZIP

ATTN: ATTN:

DESCRIPTION UNIT LINE TOTAL
QTY MODELl PRICE DISC PRICE

(Additional items can be included on second order form) [Minimum order is $50.00] TOTAL

Tax Exempt II Sales Tax
or Sales Tax (if applicable)

Shipping

TOTAL

METHOD OF PAYMENT --------- SHIP VIA
o Check or money order enclosed 0 DGC will select best way (U.P.S or Postal)

For orders less than $100.00
o Other:

o Charge my 0 Visa 0 MasterCard o U .P.S. Blue Label
Acc't No. ____ Expiration Date ___ _ o Air Freight

o Other
o Purchase Order Number: _______ _

NOTE: ORDERS LESS THAN SlOO,lNCLUDE S5.00 FOR SHIPPING AND HANDLING. ------~

Person to contact about this order ____________ Phone _____ _

Mail Orders to:

Data General Corporation
Attn: Educational ServicesffIPS F019
4400 Computer Drive
Westboro, MA 01580
Tel. (617) 366-8911 ext. 4032

DISCOUNTS APPLY TO
MAIL ORDERS ONLY

Buyer's Authorized Signature
(agrees to terms & conditions on reverse side)

Title

DGC Sales Representative (If Known)

012-1780

Extension

Date

Badge II

(~l

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation (uDGC") provides its Technical Information and Publications Service (TIPS) solely in accordance with the following
terms ana conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or
as specified on an authorized DGC quotation in force at the time of receipt by DC'.>C of the Order Form shown on the reverse hereof Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT
Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.O.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

5. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT­
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC­
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN­
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con­
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi­
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES

DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

User Documentation Remarks Form
Your Name ____________________ Your Title _______________ _

Company ___ __

Street _______________________________________ __

City ___ State __________ Zip __________ _

We wrote this book for you, and we made certain assumptions about who you are and how you would use it. Your
comments will help us correct our assumptions and improve the manual. Please take a few minutes to respond.
Thank you.

Manual Title _________________________ Manual No. _________ _

Who are youl D EDP Manager

D Senior Systems Analyst

D Analyst/Programmer

DOperator

DOther ________ _

What programming language(s) do you usel ___________________________ _

How do you use this manuaU (List in order: 1 = Primary Use) ____________________ __

_ Introduction to the product _ Tutorial Text _ Other
_ Reference _ Operating Guide

About the manual: Is it easy to readl
Is it easy to understandl
Are the topics logically organized?
Is the technical information accurate?
Can you easily find what you wanH
Does it tell you everything you need to know
Do the illustrations help youl

Yes Somewhat
D D
D D
D D
D D
D D
D D
D D

No
D
D
D
D
D
D
D

If you have any comments on the software itself, please contact Data General Systems Engineering.
If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Remarks:

Date

II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

POSTAGE WILL BE PAID BY ADDRESSEE

t. DataGeneral
User Documentation, M.S. E-111
4400 Computer Drive
Westborough, Massachusetts 01581

v99-v£l

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Data General Corporation, Westboro, MA 01580 1111111 1I1111111111111111111111

093-400005-01

