
r r
Ii

\'

"

!

,

t'
~,

\

f
t i
~ j , ;

j

" .

r ':
ii,
I

!,'
\, .
l

\

.' : ~'.-.'
" ., ,

t. Data General
""i\

1

1
I

1

i'

'.i

\

j'-

" \

'i
I
\,

,
\

~.~!~I
"

l

\
I
,I

\

COBOL

Reference Manual

(AOS)

093-000223-01

For the latest enhancements, cautions, documentation changes, and other information on this product,
please see the Release Notice (085-series) supplied with the software.

Ordering No, 093-000223
© Data General Corporation, 1979, 1980
All Rights Reserved
Printed in the United States of America
Revision 01, November 1980
Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

Revision History:

093-000223

COBOL
Reference Manual

(AOS)
093-000223

Original Release - June 1979

First Revision - November 1980 (COBOL (AOS) Rev. 3.00)

This manual supercedes the AOS portion of 093-000180-02. A vertical bar or an asterisk
in the margin of a page indicates substantive change or deletion, respectively, from
revision 00.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks
DATAPREP NOVA AZ-TEXT ECLIPSEMV/8000 SWAT
ECLIPSE SUPERNOV A DASHER microNOV A XODIAC
INFOS DG/L o

, ,
\

)
I

\

\

\
(
1

\
1(1

;

\
\

~

Preface

We have written this manual for experienced COBOL programmers (or those with experience in a
COBOL-like language) who need familiarity with Data General's ECLIPSE® COBOL programming
langul!ge. The manual describes all aspects of ECLIPSE® COBOL and shows you how to code, compile,
debug, and execute your COBOL programs. ECLIPSE® COBOL runs under Data General's Advanced
Operating System (AOS).

We have organized this manual as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

discusses the ANSI Standard conventions we have implemented (ANSI X3.23-1974), the
general structure of a COBOL program, language extensions to the ANSI Standard, and
special facilities provided by Data General's COBOL.

describes COBOL language concepts and defines COBOL terms.

describes the Identification Division.

describes the Environment Division, presenting details about its two sections (the Configuration
Section and the Input-Output Section), and discusses the organization, access, and declaration
of COBOL files.

describes the Data Division and discusses COBOL data types, telling you how to declare, define,
and edit data in your program.

describes the Procedure Division and discusses its features including procedure statement
clauses, expressions, subprogramming, file formatting, indexed file record selection, and I/O
exception conditions.

gives a detailed description of all Procedure Division statements, arranged in alphabetic order.

describes the COBOL COPY statement which allows you, at compile time, to include source
code from another file as part of your program.

Chapter 9 describes the COBOL source-level debugger and its commands.

Chapter 10 describes how to use COBOL with the Data General Database Management System
(DG/DBMS).

Chapter 11 tells you how to compile, bind, and execute your COBOL program under AOS.

Appendix A contains a list of COBOL key words.

Appendix B describes differences between AOS COBOL and CS Interactive COBOL.

Appendix C tells you how to write COBOL-callable assembly language routines for AOS.

Appendix D contains a table of the ASCII character set and one of the EBCDIC character set.

Appendix E tells you how to create and read unlabeled magnetic tape files using COBOL in AOS.

Appendix F tells you how to upgrade your RDOS COBOL programs to run on AOS.

093-000223-01 Licensed Material-Property of Data Gene.al Corporation iii

Required Manuals
You should supplement your reading of this manual with the following: INFOS ™ Storybook (69-000019),
AOS Programmer's Manual (93-000120), INFOS ™ System User's Manual (AOS) (93-000152), Sort/Merge
Utility User's Manual (AOS) (93-000155), DG/DBMS Reference Manual (93-000163), and A Guide to Using
DG/DBMS (69-000025).

Reader, Please Note
We use the following conventions for COBOL statement formats in this manual:

Where

KEYWORD

KEYWORD OPTIONWORD required [optional]. ..

Means

This is a COBOL reserved word which you must specify in the statement which contains it.
You must spell it as shown or use one of the abbreviations or variant spellings, if any are
given.

OPTIONWORD This is an optional COBOL reserved word. You may include or omit it, but if you specify it
you must spell it (or its abbreviation) exactly as shown.

required

[]

This is a generic term which you must specify in the clause or option that contains it. (It may
be a COBOL word, literal, picture string, comment entry, or complete syntactic entry.)
Sometimes we use:

required-l

which means you may specify more than one of the generic terms indicated.

Brackets enclose optional key words, generic terms, and clauses. Do not enter the brackets;
they merely set off the option.

Braces often enclose one or more arguments, clauses, phrases, or options. They indicate that
you must specify one of these (in the case of options, specify one or none). Braces may also
delimit a set of clauses. Do not enter the braces; they only set off the choices.

The ellipsis indicates that you may repeat the single element or set of choices which
immediately precedes it.

Additionally, we use certain symbols in special ways:

Symbol Means

J Press the NEW LINE key on your terminal's keyboard.

o Be sure to put a space here. (We use this only when we must; normally, you can see where to put
spaces.)

All numbers are decimal unless we indicate otherwise; e.g., 35 8 •

Finally, in examples of system interactions, we use:

THIS TYPEFACE TO SHOW YOUR ENTRYJ
THIS TYPEFACE FOR THE SYSTEM RESPONSE

We show the punctuation characters comma (,) and semicolon (;) in some formats for clarity. You may use
them anywhere you use a space in your COBOL program, or you may omit them.

As required by the ANSI Standard COBOL language, periods (.) appear in the text after all section headers,
paragraph names, Procedure Division sentences, and conditional statements and at the end of the last sentence
or statement in a paragraph or section.

End of Preface
\ .

iv Licensed Material-Property of Data General Corporation 093-000223-01

0
(

!c
!

('

(

(
I

~
r
\
)

)

~
\
f

0
\

\
\
)

(

i
)

l
r
i
I

\ ,
I

l!
}
j

i
I
)
i

()
,- ..-'-

,
)

\

i

\
\

,
'l ,

\
(
\

\

\

n
\

Contents

Chapter 1 - Introduction

General Description of ECLIPSE COBOL 1-1
COBOL Program Structure .. 1-1
Language Extensions ... 1-2

110 Extensions ... 1-2
Data Extensions ... 1-2
COBOL-Level Debugger 1-2

Sample Program .. 1-3

Chapter 2 - Language Concepts

The Character Set . 2-1
Separators. 2-1
COBOL Words ... 2-1

Key, Optional, and Special Character Words 2-2
Figurative Constants .. 2-2
Special Register ... 2-2

User-Defined Words ... 2-3
Literals 2-3

Numeric Literals .. 2-3
Alphanumeric Literals 2-4

Source Formats .. 2-4
Lines, Statements, and Sentences. 2-4

Debug Lines 2-5
Comment Lines 2-5
Continuation Lines 2-5

Clauses and Phrases ~ . 2-6
The A-Margin .. 2-6

Chapter 3 - The Identification Division

093-000223-01 Licensed Material-Property 01 Data General Corporation v

vi

Chapter 4 - The Environment Division

Structure .. 4-1
Configuration Section ... 4-2

The Source-Computer Paragraph 4-2
The Object-Computer Paragraph 4-2
The Special-Names Paragraph 4-2

File Organizations. 4-5
Sequential Files ... 4-5
Relative Files' . '. 4-6
Indexed Files . 4-6
Sort/Merge Files . ; 4-7
Database Files. 4-7

File Access Modes 4-8
Sequential Access Mode. 4-8
Random Access Mode. 4-8
Dynamic Access Mode 4-8

Input-Output Section .. ' ... 4-9
The File-Control Paragraph: 4-9

SELECT Clause . 4-9
OPTIONAL Clause 4-14
ASSIGN Clauses. 4-14
RESERVE Clause 4-15
ORGANIZATION Clause 4-16
ACCESS MODE Clause 4-16
FILE STATUS and INFOS STATUS Clauses 4-18
PARITY Clause 4-18
ALLOW SUB-INDEX and LEVELS Clauses 4-18
KEY COMPRESSION Clause. 4-19
SELECT Clause Examples 4-20

The I-O-Control Paragraph 4-21

Chapter 5 - The Data Division

Structure. 5-1
File Section ... 5-2

File Description Entry 5-3
Block, Node, and Record Sizes 5-7
RECORDING MODE Clause 5-8
LABEL RECORDS Clause 5-9
VALUE OF Clause 5-10
DATA RECORD Clause 5-11
LINAGE Clause 5-11
CODE-SET Clause 5-13
FEEDBACK Clause 5-13
PAD Clause ... 5-14
MERIT Clause . 5-14
PARTIAL RECORD Clause 5-14

Working-Storage Section .. 5-15
Virtual-Storage Section ... 5-15

CSIZE .. 5-17
The /M Switch. 5-17

Linkage Section . 5-18

Licensed Material-Property of Data General Corporation 093-000223-01

;;;;

I'
I

i
I

o

\

(
\.

(\
\'
(,
(

\

oj
'.~ I

~
I
)

-,)

I

'~

\
I

Screen Section ' 5-18
The DISPLAY and ACCEPT Commands 5-18

DISPLAY .. 5-19
ACCEPT ... 5-19
Syntax .. 5-20

CPRINT ' 5-25
Data Types .. 5-26

Numeric Data ... 5-26
The Data Description Entry 5-28

Level Numbers .. 5-29
REDEFINES Clause 5-30
OCCURS Clause5-31

Examples of Array Declarations. 5-32
PICTURE Clause .5-33

Defining Alphabetic Items .5-33
Defining Alphanumeric Items 5-33
Defining Alphanumeric Edited Items. .5-33
Defining Numeric Items 5-34
Defining Numeric Edited Items ' 5-35
Examples. ' ... 5-35

Data Editing .5-36
Alphanumeric/ Alphabetic Editing 5-36
Numeric Editing 5-36

USAG E Clause 5-40
SIGN Clause .. 5-41
SYNCHRONIZED Clause 5-41

JUSTIFIED Clause 5-42
BLANK WHEN ZERO Clause 5-42

VALUE Clause 5-42
Examples of Data Description Entries.5-43

The REN AMES Entry5-44
The Condition Name Entry.5-45

Chapter 6 - The Procedure Division

Structure and Concepts .. 6-1
Name Qualification .. 6-2

Procedure Name Qualification 6-2
Data Name Qualification 6-3
Condition Name Qualification 6-3
Array Name Qualification. .6-4

Handling Arithmetics ... 6-5
Common Arithmetic Phrases 6-6

The ROUNDED Phrase 6-6
The SIZE ERROR Phrase 6-6
The CORRESPONDING Phrase 6-7

Arithmetic Expressions .. .6-8
Conditional Expressions 6-9

Simple Expressions. 6-9
Compound Expressions. ~ .. 6-10

Subprogramming .. 6-12
Segmentation ... 6-13
Print File Formatting 6-13

093-000223-01 Licensed Material-Property of Data General Corporation vii

:
. ~--~--------------==--=-----===================--------------==--~~

viii

Indexed File Record Selection6-15
The Position Phrase. .6-15
The Relative Option Phrase ; 6-15
The KEY Series Phrase. .6-17

Indexed File Record Options. .6-18
Handling 110 Exception Conditions 6-19

The AT END Phrase .6-19
The INVALID KEY Phrase. 6-19
The Declaratives Section. .6-19
COBOL File Status Data Items 6-20
INFOS Status Data Items 6-21

Chapter 7 - Procedure Statements

ACCEPT ... 7-4
ACCEPT DATE/DAY/TIME 7-6
ADD ... 7-7
ALTER ... 7-9
CALL ... 7-10
CALL PROGRAM ... 7-12
CANCEL ... 7-14
CLOSE .. 7-15
COMPUTE .. 7-16
DEFINE SUB-INDEX ... 7-17
DELETE ... 7-19
DELETE FILE .. 7-21
DISPLAY ... 7-22
DIVIDE .. 7-23
EXIT .. 7-24
EXIT PROGRAM .. 7-25
EXPUNGE .. 7-26
EXPUNGE SUB-INDEX 7-27
GO ... 7-28
IF ... 7-29
INSPECT ; 7-31
LINK SUB-INDEX ... 7-36
MERGE .. 7-38
MOVE ... 7-40
MUL TIPL Y 7-43
OPEN .. 7-44
PERFORM .. 7-46
READ for a Sequential File 7-49
READ for a Relative File 7-50
READ for an Indexed File 7-51
RELEASE .. 7-53
RETRIEVE .. 7-54
RETURN ... 7-56
REWRITE for a Sequential File 7-57
REWRITE for a Relative File 7-58
REWRITE for an Indexed File 7-59
SEARCH ... 7-61
SEEK ... 7-63
SET .. 7-64
SET UP/DOWN ... 7-65
SORT ... 7-66
ST ART for a Sequential File 7-69
START for a Relative file 7-70

Licensed Material-ProperlY. of Data General Corporation 093.-000223-01

0

()

)
f

\

Ii
(

I,

(
i
\
!
\
j,
\
(

f

)
\
i

(
\

(:
\

,.
i,

tl

i
11 \.
\
<.

~,

it
b •••••• l'!

START for an Indexed File. <. • • •••• 7-71
STOP .. 7-72
STRING .. 7-73
SUBTRACT .. 7-75
TRUNCATE ... 7-77
UNDELETE ... 7-78
UNLOCK 7-80
UNSTRING .. 7-81
USE ... 7-83
WRITE for a Sequential File 7-85
WRITE for a Relative File 7-87
WRITE for an Indexed File. 7-88

Chapter 8 - The COpy Facility

Structure 8-1
Replacement Strings ... 8-2

Chapter 9 - The COBOL Interactive Debugger

Operating Instructions .9-1
Comment Lines '. 9-1
Debug Lines 9-1
Debugger Features 9-2

Using Breakpoints ... 9-2
Checking Program Status 9-2
Controlling Program Execution 9-2
Using Other Programs and Files 9-2

Debugger Commands .. 9-2
AUDIT .. 9-3
CLEAR ... 9-4
CLI ... ' 9-5

in COMPUTE ... 9-6
CON ... 9-7
COPY ' .. 9-8
DISPLA Y .. 9-9
ENV ' 9-10
MOVE ' 9-11
SET .. 9-12
STOP .. 9-13
WALKBACK ... 9-14

Chapter 10 - The Data General Database Management System
(DGfDBMS) Interface

Compiling and Binding DG/DBMS With a COBOL Program 10-1
DG/DBMS Subschemas In The Data Division 10-2

The SYSTEM Record Type 10-7
Set Types . 10-7
Declaring Free Cursors. 10-10

093-000223-01 Licensed Material-Property 01 Data General Corporation ix

~-----------~======~~=============-=====-=-----------------------------~j

Overview of DML Statements in The Procedure Division 10-11
READY .. 10-13
INITIATE. .10-13
FIND .. 10-13
STORE, GET, MODIFY, ERASE, CONNECT,
DISCONNECT, RECONNECT, and the ASSIGN Clause 10-13
COMMIT ... 10-13
ROLLBACK ... 10-14
FINISH .. 10-14

Positioning Within a Database 10-14
Error Handling .10-14
Subprograms. ... ' 10-15
DML Statement Reference Section 10-15
Opening and Closing a Subschema 10-16

READY .. 10-16
FINISH .. 10-17

Transaction Statements .. 10-18
INITIATE ... 10-18
COMMIT ... 10-19
ROLLBACK ... 10-20

Manipulating Set Connections 10-21
CONNECT .. 10-21
DISCONNECT .. 10-22
RECONNECT .. 10-23

Manipulating Record Occurrences. .10-24
STORE ... 10-24
GET10-25
MODIFY ... 10-26
ERASE ... 10-27

Condition Checking .. 10-28
IF .. 10-28
CHECK .. 10-29 (I

" Locating a Record Occurrence 10-30
FIND (positional) .. 10-30
FIND (using data items) 10-31
FIND (duplicates) 10-32
FIND (current) .. 10-33
FIND (owner) .. 10-34

Sample COBOL Programs Using DG/DBMS 10-35 (
\

Chapter 11 - How to Use COBOL Under AOS

Compiling, Binding, and Executing 11-1
Using the Compiler .. 11-1
Calling the Compiler 11-2
Virtual Code .. 11-2 q

A Word About Overlays 11-2
ANSI Standard Segmentiltion 11-2

~
Ii

Compiling A Program Using Virtual Code 11-3
Compiler Switches ... 11-4 ~

Global Switches 11-4
Local Switches .. 11-4
Example .11-4

~
~

The COBOL Map Switch 11-5
Error Messages. .11-9
Warning Messages11-9

0 1
'~

Binding Program Files . 11-10 4
~

x Licensed Material-Property of Data General Corporation 093-000223-01 ~
~

I

I"

CBIND Global Switches 11-10
CBIND Local Switches. 11-11

Binding Programs (CBIND) Using Virtual Code or ANSI
Segmentation ... 11-12

\ { The INODEFILE Switch 11-15
Splitting the Loading Process 11-15
Executing Your COBOL Program. .11-15
Executing in the Debugger 11-16

Runtime Errors ... 11-16
Error Messages. .11-17

Nonfatal COBOL Program Errors 11-17
Fatal CO BO L Program Errors. .11-17

Trace Information 11-18
Example ... 11-18

Appendix A - COBOL Reserved Words

\

Appendix B - CS Compatibility

AOS-CS Differences B-1
Identification Division Incompatibilities : B-1
Environment Division Incompatibilities B-2

\0
Procedure Division Incompatibilities B-3

Transporting Files From your Interactive COBOL System To AOS B-4

Appendix C - Writing COBOL-Callable Assembly Language Routines

Appendix D - ASCII and EBCDIC Character Sets

Appendix E - Handling Unlabeled Magnetic Tape

Appendix F - Language Upgradability From RDOS to AOS

Identification Division (Chapter 3). F-1
Environment Division (Chapter 4) F-1
Data Division (Chapter 5) .. F-1
Procedure Division (Chapters 6 and 7) F-2

093·000223·01 Licensed Material-Property of Data General Corporation xi

Tables

Table Caption

2-1 COBOL Character Set ... 2-1
2-2 User-defined Words .. 2-3
2-3 Indicator Characters .. 2-5

4-1 COBOL File Handling .. .4:8
4-2 SELECT Clause .. 4-11

5-1 FD Entry Clauses .. 5-5
5-2 COBOL Screen Section Function Delimiter Keys 5-19
5-3 COBOL Line and Column Positioning 5-22
5-4 Sign Overpunch Characters 5-26
5-5 Binary Number Storage 5-27
5-6 PICTURE Editing Symbols 5-37
5-7 Suppression Symbol Examples 5-38
5-8 Floating Insertion Editing Examples 5-39

6-1 . Arithmetic Operators .. 6-8
6-2 LogicalOperators ... 6-11
6-3 Relative Access .. 6-18
6-4 COBOL File Status Indicators 6-20

7-1 INSPECT Table Structure for Example 7-33
7-2 MOVE Rules .. 7-41

10-1 Data Manipulation Language Statements 10-11

11-1 1M Switch Output ... 11-5

B-1 Differences in FILE STATUS Error Codes B-2

xii Licensed Malerial-Property 01 Data General Corporalion 093-000223-01

fi

°i \
!
(
<.
t,

(!
)

°1 \
\
~
(

,.r1'

\

\

il'

Illustrations

Figure Caption

1-1 COBOL Sample Program1-3

5-1 LINAGE Clause Example 5-12
5-2 Internal Data Structure .. 5-15
5-3 COBOL Program Using Screen Formatting 5-24

6-1
6-2

Multilevel Indexed File .. 6-15
Relative Access .. 6-16

7-1 IF Statement Example .. 7-30
7-2 PERFORM Example ... 7-48

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10

11-1

11-2
11-3

A DG/DBMS Subschema in a COBOL Program 10-2
Structure of Data in the Figure 10-1 Subschema 10-4
COBOL/DBMS Subschema Record Type Description 10-6
The Function of the U ser Work Area (UW A) . 10-7
COBOL Subschema Set Relationship 10-8
Owner-Member Record Diagram _ 10-9
Cursor Positions ... 10-15
Sample Program Number 1 10-35
Logical Diagram of Sample Program Number 1. 10-38
Sample Program Number 2 10-39

Sample COBOL Source Program Lising (produced with IL
compiler switch) . ; .. 11-7
COBOL Map Produced by Program in Figure 11-1.11-9
Example of an Overlay and Overlay Area Structure with Two
Object Modules ... 11-12

C-1 AOS Assembly Language Ro~tine Example C-3

E-1 Creating an Unlabeled Magnetic Tape File E-2
E-2 Reading an Unlab~led Magnetic Tape File E-3

093-000223-01 Licensed Malerial-Property of Data General Corporation xiii

i~~ ________ -===-===========================~ ______ -= ____ ~1

r
\

r
()),

l
\

t
\

{

r

i
i
(
\
-I'

f
\

)
)
i

I

\
\
t
\

Chapter 1
Introduction

General Description of ECLIPSE COBOL
Data General ECLlPSE® COBOL is a complete COBOL language processing system. It includes the COBOL
compiler and runtime library, full debugging support through an interactive COBOL-level debugging
program, thorough English language error diagnostics, and a full range of program listings: source listing,
cross-reference table, program map, generated code listing, and compilation statistics. It provides full access to
Data General's INFOS ™ file system and Sort/Merge facility.

ECLlPSE® COBOL is based on the 1974 ANSI Standard ("American National Standard Programming
Language COBOL," ANSI X3.23-1974). It implements the following modules of the ANSI Standard:

Nucleus
Table' Handling
Sequential I/O
Relative I/O
Indexed I/O
Sort/Merge
Segmentation
Library
Interprogram Communication (Subprogramming)

COBOL Program Structure
. A COBOL program is comprised of four divisions, named and ordered as follows:

IDENTIFICATION DIVISION.

identification division body

ENVIRONMENT DIVISION.

environment division body

DAT A DIVISION.

data division body

PROCEDURE DIVISION.

procedure division body

093-000223-01 Licensed Material-Proper1Y of Data General Corporation 1-1
~ __ ~t

Language Extensions
I/O Extensions
Data General COBOL includes significant extensions in the three input/output modules, particularly in the
indexed I/O module where an extensive set of structured database capabilities is available. Data General
COBOL provides the full standard indexed I/O capability including primary plus alternate indexes. In
addition, we provide extremely powerful and efficient database management capabilities under INFOS and
DG/DBMS via structured, multilevel indexing. You may dynamically define and create subindexes, each of
which is linked to one or to many data records. The I/O verbs provide easy movement upward an.d downward
through the index levels, as well as forward and backward within a single index level.

We provide many extra index key features, for example, we allow variable length keys, and we support partial
records associated with keys. Also, you may specify approximate key references and generic key references.
You may reference duplicate keys not only sequentially, but also randomly by occurrence number. And,
because the keys are stored separately from the data records, access time is minimized.

You may delete indexed records logically (locally, globally, or both) as well as physically. Then you may
restore the logically deleted records. Also indexed files are organized in such a way that they do not require
frequent maintenance.

With sequential I/O, COBOL supports four record formats: fixed-length, variable-length, undefined-length,
and data-sensitive. The code-set translation capability, which includes optional EBCDIC translation, allows
you to select the fields you want translated so that you may process records containing packed decimal and
binary data.

Data Extensions
ECLIPSE COBOL provides the following data types in addition to the standard alphabetic, alphanumeric,
and decimal character data types:

variable-length binary
packed decimal
floating point
external (character) floating point

COBOL uses ASCII code for internal character data and runs most efficiently with external character data in
ASCII code as well. However, we provide code-set and coUating-sequence conversion for other codes,
particularly EBCDIC.

COBOL-Level Debugger
In place of the ANSI Standard debug module, which requires writing and compiling separate debug code,
ECLIPSE COBOL provides an on-line, interactive COBOL-level debug module.

This module allows you to set and clear breakpoints at runtime. These breakpoints interrupt program
execution; you may examine and/or modify data items at that point, then continue program execution. With
these and other advanced features you can substantially reduce debugging time.

1-2 Licensed Material-Property of Data General Corporation 093-000223-01

\
I

ir-...
It'
~

\
I

(

'-

Sample Program
Figure 1-1 is a sample program that illustrates some of the features of ECLIPSE COBOL. The program
calculates and displays a mortgage payment schedule. Simply enter it using a Data General text editor,
compile it, bind it, and then execute it. (Chapter 11 contains complete operating procedures.) The messages
displayed on the console will be:

ENTER PRINCIPAL:
INTEREST RATE (%):
YEARS TO PAY:
FUNCTION (0 = SUMMARY. 1 = FULL SCHEDULE):

After each colon, the system will await your response. When you have answered all questions, the system will
calculate the requested schedule and then output it to the line printer.

093-000223-01

IDENTIFICATION DIVISION.
PROGRAM-ID. MORTPROG.
AUTHOR. JOE SCHMOE.
DATE-~RITTEN. b OCT 1977.
ENVIRON~ENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. ECLIPSE.
OBJECT-COMPUTER. ECLIPSE.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT OUTFILE, ASSIGN TO PRINTER.
DATA DIVISION.
FILE SECTION.
FD OUTFILE, BLOCK CONTAINS
01 OUTREC.

02 CUT-PAYMT-NUM
02 FILLER
02 OUT-MON-INT
02 FILLER
02 OUT-MON-PRIN
02 FILLER
02 OUT-BALANCE
02 FILLER
02 OUT-INT-TO-DATE
02 FILLER

WORKING-STORAGE SECTION.
01 CRT-INPUTS.

01

02 PRINCIPAL
02 PERCENT
02 YEARS
02 FUNCTION
02 REPEAT-FLAG

TEMPS.
02 MONTHLY-INT-RATE
02 MONTHS
02 MONTHS-LEFT
02 MONTHlY-PAYMT
02 LOAN-BAL
02 INT-TO-DATE
02 PAYMT-NUM
02 INT-PAYMT
02 PRIN .. PAYMT

512 CHARACTERS.

PIC ZZZ9.
PIC X(b).
PIC $(4)9.99.
PIC X(3).
PIC $(b)9.99.
PIC X(3l.
PIC $(b)9.99.
PIC X(8l.
PIC $(b)9.99.
PIC X(10).

PIC 9(b)V99.
PIC 99V99.
PIC 99.
PIC 9.
PIC 9.

USAGE COMP-l.
PIC 9(4).
PIC 9(4).
PIC 9(4)V99.
PIC 9(b)V99.
PIC 9(blV99.
PIC 9(4), USAGE
PIC 9(4)V99.
PIC 9(4)V99.

Figure 1-1. Sample Program (continues)

Licensed Malerlal-ProperlY of Data General Corporallon

COMPo

1-3

1-4

01

01

01

01

01

SUMMARY-LINE 1.
02 FILLER PIC X(1b), VALUE "PRINCIPAL =
02 SUMMARY-PRIN, PIC 5(6)9.99.
02 FILLER PIC X(S0), VALUE SPACES.
SUMMARY-LINE2.
02 FILLER PIC X(20), VALUE "INTEREST RATE =
02 SUMMARY-RATE, PIC 9.9(4).
02 FILLER PIC X(S0), VALUE SPACES.
SUMMARY-LINE3.
02 FILLER PIC X(18), VALUE "LCAN LIFE =
02 SUMMARY-YEARS, PIC Z9.
02 FILLER PIC X(b), VALUE" YEARS".
02 FILLER PIC X(S0), VALU~ SPACES.
SUMMARY-LINE4.
02 FILLER PIC X(18), VALUE "MONTHLY PAYMENT
02 SUMMARY-PAYMT, PIC 5(4)9.99.

02 FILLER

HEADLINE

PIC X(S0), VALUE SPACES.

PIC X(80),

= "

VALUE " NUM
" BAL

INTEREST PRIN. PAY PRIN.
INTEREST PAID TO DATE".

PROCEDURE DIVISION.
INIT. OPEN OUTPUT OUTFILE.
OPERATOR.

*

DISPLAY "ENTER PRINCIPAL: 5" WITH NO ADVANCING.
ACCEPT PRINCIPAL.
DISPLAY "INTEREST RATE (X): " WITH NO ADVANCING.
ACCEPT PERCENT.
COMPUTE MONTHLY-INT-RATE = PERCENT I 100 I 12.
DISPLAY "YEARS TO PAY: " WITH NO ADVANCING.
ACCEPT YEARS.
COMPUTE MONTHS = YEARS * 12.
DISPLAy "FUNCTION (0zSUMMARY, l=FULL SCHEDULE): "

WITH NO ADVANCING.
ACCEPT FUNCTION.
COMPUTE MONTHLY-PAYMT ROUNDED =

PRINCIPAL * MONTHLY-I NT-RATE *
(1 t MONTHLY-INT-RATE) ** MONTHS I --... -....... -.-_._---_._-._.-..••.. _ .. .

«1 t MONTHLY-INT-RATE) ** MONTHS - 1).
PERFORM SUMMARY-OUTPUT.
IF FUNCTION NOT = 0,

PERFORM DETAIL-OUTPUT.

" •

"

II •

•

DISPLAY "TYPE 1 TO REPEAT, 0 TO STOP: " WITH NO ADVANCING.
ACCEPT REPEAT-FLAG.
IF REPEAT-FLAG NOT = 0, GO TO OPERATOR.
CLOSE ·OUTF ILE.
STOP RUN.

Figure 1-1. COBOL Sample Program (continued)

Licensed Material-Property of Date General Corporation 093-000223-01

o

j
(
(

01

i'
i
J'
!

\
!;
\

I

\

SUMMARY-OUTPUT.
MOVE PRINCIPAL TO SUMMARY-PRIN.
WRITE OUTREC FROM SUMMARY-LINE1 BEFORE ADVANCING 1.
COMPUTE SUMMARY-RATE = PERCENT I 100.
WRITE OUTREC FROM SUMMARY-LINE2 BEFORE ADVANCING 1.
MOVE YEARS TO SUMMARY-YEARS.
WRITE OUTREC FROM SUMMARY-LINE3 BEFORE ADVANCING 2.
MOVE MONTHLY-PAYMT TO SUMMARY-PAYMT.
WRITE OUTREC FROM SUMMARY-LINEq BEFORE AQVANCING 2.

DETAIL-OUTPUT.
MOVE PRINCIPAL TO LOAN-BAL.
MOVE MONTHS TO MONTHS-LEFT.
MOVE 0 TO INT-TO-DATE.
WRITE OUTREC FROM HEADLINE BEFORE ADVANCING 2.·
MOVE SPACES TO OUTREC.
PERFORM DO-DE TAIL-LINE

VARYING PAYMT-NUM FROM 1 BY 1
UNTIL PAYMT-NUM > MONTHS.

DO-DETAIL-LINE.

•
COMPUTE PRIN-PAYMT ROUNDED =

LOAN-BAL * MONtHLY-INT-RATE I _--... --... -----... -_ ... _---_ _---
((1 t MONTHLY-INT-RATEl ** MONTHS-LEFT - 1).

SUBTRACT 1 FROM MONTHS-LEFT.
COMPUTE INT-PAYMT = MONTHLY-PAYMT - PRIN-PAYMT.
SUBTRACT PRIN-PAYMT FROM LOAN-BAL.
ADD INT-PAYMT TO INT-TO-DATE.
MOVE PAYMT-NUM TO OUT-PAYMT-NUM.
MOVE INT-PAYMT TO OUT-MON-INT.
MOVE PRIN-PAYMT TO OUT-MQN-PRIN.
MOVE LOAN-BAL TO OUT-BALANCE.
MOVE INT-TO-DATE TO OUT-INT-TO-DATE.
WRITE OUTREC BEFORE ADVANCING 2.

• END OF PROGRAM

Figure 1-1. Sample Program (concluded)

End of Chapter

093-000223-01 Licensed Material-Property of Data General Corporation 1-5

.. 1

I

() I
, . u

q

\

",-~

\
l

i

1

\
\

Chapter 2
Language Concepts

The Character Set
Tht:,COBOL character set consists of the characters listed in Table 2-1. Comma and 'semicolon are equivalent
to a space. In text format, the characters tab, NL (NEW LINE), and CR (caJriagF return) are also equivalent
to a space. Wherever a COBOL program requires a space, you may include any \~umber of spaces. COBOL
recognizes lowercase alphabetic characters only in literals and user-defined \OBOL words. Lowercase
characters are not permitted in the PROGRAM-ID paragraph. \

You may use the entire ASCII character set (except for null, rubout, NL, and CR) in alphanumeric literals.

Table 2-1. COBOL Character Set

Character Name Character Name

0-9 digits , comma

A-Z letters , semicolon

space period, decimal point

+ plus sign
..

quotation mark

,
- minus sign or hyphen apostrophe

* asterisk (left parenthesis

/ slash) right parenthesis

= equal sign > greater than symbol

$ dollar sign < less than symbol

Separators
The elements of a COBOL source program (words, lit~rals, etc.) are delimited by separa£ors. The separators
are space, comma, or semicolon, and a period followed by either a space or any space equivalent.

COBOL Words
A word is a string of up to 30 characters selected from the set of valid COBOL letters (A through Z), the set
of valid COBOL digits (0 through 9), and the hyphen (-). A word may not begin or end with a hyphen.

093-000223-01 Licensed Material-Property of Date General Corporation 2-1

Key, Optional, and Special Character Words
Key words are reserved words you must include in your COBOL program. (They are underlined and
uppercase in the source formats.) Optional words may appear in your program at your discretion. (They are
uppercase but not underlined in the source formats.) If you do include optional words in your program, you
must spell them exactly as given. Special character words are =, +, -, >, <, *, j, **, (, and). In order to
avoid confusion with other symbols (e.g.,2), we do not underline them in the source formats. However, these
characters have the same status as key words, and you must specify them. A list of all ECLIPSE COBOL key
words appears in Appendix A.

Figurative Constants
Figurative constants are COBOL key words that represent specific constants. The singular and plural forms
are equivalent, and you may use them interchangeably. The COBOL figurative constants are:

ZERO
ZEROS
ZEROES

SPACE
SPACES

Represents the value 0 or one or more of the character 0, depending on the context.

Represents one or more of the character space.

HIGH-VALUE Represents one or more of the character that is highest in the program collating sequence
HIGH-VALUES (ASCII 3778).

LOW-VALUE Represents one or more of the character that is lowest in the program collating sequence (null
LOW-VALUES in ASCII).

QUOTE
QUOTES

CR

ALL literal

Reprel>ents one or more of the character ". You cannot use the word QUOTE or QUOTES in
place of a quotation mark to delimit an alphanumeric literal.

Represents one or more NEW LINE characters.

Represents one or more of the string of characters comprising literal. The literal must be
either an alphanumeric literal or a figurative constant other than the word ALL. When you use
a figurative constant, the word ALL is redundant and merely enhances readability.

When a figurative constant represents a string of one or more characters, the context determines the length of
the string according to the following rules. If the figurative constant is associated with a data item, the string
of characters specified by the figurative constant is repeated character by character from left to right until the
size of the resultant string is equal to the length of the associated data item. COBOL does this without
interpreting any JUSTIFIED clause in the data description entry for the data item. If the figurative constant
is not associated with a data item, the length of the string is one character.

You may use figurative constants interchangeably with literals in a source format unless the literal is numeric.
If the literal is numeric, you can only use the figurative constant ZERO (ZEROS, ZEROES). The characters
associated with the figurative constants HIGH-VALUE and LOW-VALUE depend on the program collating
sequence you specify in the Object-Computer paragraph of the Environment Division.

Special Register
LINAGE-COUNTER is a special register associated with a print file. You establish the counter by specifying
the LINAGE clause in the print file's FD entry in the Data Division. You may specify this register in the
Procedure Division, but you may not modify it. COBOL automatically creates and modifies the
LINAGE-COUNTER for each print file. The LINAGE-COUNTER contains the number of the current line
on the current page.

2-2 Licensed Material-Property of Date General Corporation 093-000223-01

r

~

('\J
"

\
I

I
(
I
\

I

User-Defined Words
User-defined words are names you declare to specify various entries in your program. The types of names that
you may declare are listed in Table 2-2.

We refer to both paragraph names and section names as procedure names. All names except procedure names
must contain at least one alphabetic character.

Table 2-2. User-defined Words

Type Use it to name Reference

Alphabet name A code set or a collating sequence Chapter 4

Channel name An output device control channel Chapter 4

Condition name A switch status or a value of a data item Chapters 4 and 5

Data name A record or other data item Chapter 5

Filename A data file Chapters 4 and 5

Mnemonic name A Data General system name Chapter 4

Paragraph name A Procedure Division paragraph Chapter 6

Program name The source program Chapter 3

Section name A Procedure Division section Chapter 6

Switch name A system switch Chapter 4

Literals
A literal is a constant whose value is determined by the characters which form it. Literals may be either
numeric or alphanumeric.

Numeric Literals
You may specify numeric literals in any of the following forms:

Integer ± ddd.

In this form, ddd is a string of 1 to 18 digits. The decimal point is optional. If you do not specify a
sign, positive is assumed.

Decimal ±ddd.ddd

You may specify no more than 18 digits for this type. The digit string to the left of the decimal point
is optional. If you do not specify a sign, positive is assumed.

Floating ±ddd.dddE±dd
Point

The left part of a floating point literal, ±ddd.ddd, is the mantissa, M, and may be either a decimal
or an integer literal. It may have no more than 16 digits. The right part, E+dd, is the exponent, e;
you must specify both digits and the sign. The value of the literal is calculated as:

M x 10·

093-000223-01 Licensed Mahlrl"I-Property of Dahl General Corporation 2-3

Alphanumeric Literals
An alphanumeric literal is a string of up to 132 characters delimited on both ends by a special character. The
beginning and ending delimiters must both be either apostrophes (') or quotes ("). If the delimiters are quotes,
COBOL treats an apostrophe within the literal as an ordinary character. If the delimiters are apostrophes,
COBOL treats a quotation mark within the literal as an ordinary character. If you want the delimiter
character to appear within the literal, specify two, contiguous instances of the delimiter character.

The value of an alphanumeric literal within the object program is the string of characters itself, with the
following exceptions:

1. COBOL does not interpret the delimiters.

2. Program compilation replaces each imbedded pair of delimiter characters by a single instance of the
character.

3. You may not specify null, CR (carriage return), NL, or rubout within a literal.

4. If you specify the global jE compilation switch, you may include any character in the literal by inserting
its octal ASCII code delimited by angle brackets « and». For example:

To Indude Insert

carriage return <015>
< <074>
> <076>
null <000>
rubout <177>

<042>
, (apostrophe) <047>
A <101>
line feed (NEW LINE) <012>
form feed <014>

If you enclose a nonoctal code within the angle brackets, COBOL signals an error at compile time. If you
enclose an octal code outside the range 0 to 377 8 within angle brackets, COBOL ignores the number and
the angle brackets and no error is signaled. (For a table of the ASCII character set, see Appendix E.) For
example, if you specify the jE compilation switch, the literal

"AB'CD""EF<046>GH<401 >IJ"

has the compiled value

AB'CD"EF&GHIJ

Source Formats
Always code source text for ECLIPSE COBOL in ASCII if you are using Data General's input devices.
COBOL ignores the null and ruboutcharacters. The COBOL compiler accepts two source text formats:
terminal-oriented text format and industry-compatible card format.

Lines, Statements, and Sentences
In text format, a line consists of 0 to 255 characters, followed by a NEW LINE or form feed. COBOL
compiles the entire line as source text. An indicator character (one of the characters listed in Table 2-3) may
be the first character of any line.

In card format, a line is also a NEW LINE or form feed preceded by 0 to 255 characters. COBOL treats the
first six characters of the line (the sequence number field) as a comment. COBOL also treats any characters
after the 72nd character in a line as a comment. Column 7 is the indicator field. It must contain either a space
or one of the characters listed in Table 2-3.

2-4 Licensed Material-Property of Data General Corporation 093-000223-01

o

0

o

(I
\

Table 2-3. Indicator Characters

Indicator Character Meaning

D Debug Line

* or I Comment Line

At least four spaces A-Margin is Blank
(or a tab).

- Continuation Line

A statement is a valid combination of words and symbols that you write in the Procedure Division of your
program. It begins with a COBOL verb and optionally ends with a period.

A sentence is a sequence of one or more statements followed by a period.

Debug Lines

You indicate a debug line by inserting the character D in the first character position of the source line in text
format, or in column 7 in card format. COBOL compiles debug lines if you specify the global jD switch in the
compilation command line. Otherwise, it treats them as comment lines. In text format, a space or tab must
immediately follow the D, or COBOL will treat the D as a source character.

Comment Lines

A COBOL comment line is a blank line or a line that contains *, j, or D (if you do not specify jD in the
compilation command line) in the indicator field, and is followed by any combination of COBOL characters.
The character j advances the source program listing to a new page before printing the comment. You must
follow the character D by a space or a tab; this is not required for * or j. Comment lines will appear in your
output listing, but the compiler will ignore them.

Continuation Lines

Ordinarily a line-terminating character is syntactically equivalent to a space (except for its special function of
advancing to the next line). However, if the indicator character of the next source line is a hyphen (-), then
COBOL ignores the line terminator and interprets the following line as a continuation of the previous line. The
rules for continuation lines are:

I. If the preceding line ended with an incomplete alphanumeric literal (e.g., "ABCD), the first nonblank
character of the continuation line must be the delimiter character (that is, , or ", whichever you used in the
preceding line). The characters immediately following must be the next characters in the continued literal,
ending with the delimiter (e.g., "EFGH").

2. If the preceding line did not end with an incomplete alphanumeric literal, then the first non blank character
of the continuation line is the immediate successor of the last nonterminator character on the previous line.

Examples:

Line 1 O MO
Line 2 -OOVE

COBOL compiles the word MOVE.

Line 1
Line 2

O AB
-OOO .. CO

COBOL compiles the literal "A BCD"

093-000223-01 Licensed Material-Property of Data General Corporation 2-5

=

i

b

Clauses and Phrases
A clause is an ordered set of consecutive COBOL character strings. It specifies an attribute of an entry.

A phrase takes the same form as a clause, but it is either a portion of a COBOL Procedure Division statement
or of a COBOL clause.

The A-Margin
The A-margin is the leftmost part of the source line. Paragraph and section names in the Procedure Division
must begin in the A-margin. In text format, the A-margin is the first 4 characters of the source line excluding
the indicator, if any. In card format, the A-margin is columns 8 through 11 of the complete line. A tab
anywhere in the A-margin (in card format, a tab in column 7) causes COBOL to compile the remaining
characters of the source line as if they were immediately to the right of the A-margin.

End of Chapter

2-6 Licensed Material-Property of Date General Corporation 093-000223-01

0
(I
ij

~
~

d
[I

~
~I
I,

i!

!
J!
j! ,.

fi
):
?i
I!
\

1:

r
0 \

(I
i
11

~:
"

Chapter 3
The Identification Division

The Identification Division identifies the entry point for your program. It also allows you, at your option, to
include special documentary information. It takes the following format:

IDENTIFICATION DIVISION.
PROGRAM-ID. progname.

[AUTHOR. [comment entry] •••]

[INSTALLATION. [comment entry] .:.]

[DATE-WRITTEN. [comment entry] •••]

[DATE-COMPILED.[comment entry] •••]

[SECURITY. [comment entry] •••]

All paragraphs in this division are optional except the PROGRAM-ID paragraph. Progname not only identifies an
entry point in the COBOL program unit, but also identifies three debugger files (progname.DB. progname.DL.
and progname.DS). The names of your source and object files need not be the same as progname. However,
progname should not be the same as another program's source filename.

You may present the optional paragraphs in this division in any order. The compiler ignores the comment
entry text strings. However, if you specify the DATE-COMPILED paragraph, the compiler will print the current
date on the listing between DATE-COMPILED and the comment entry.

End of Chapter

093-000223-01 Licensed Material-Property of Data General Corporation 3-1

I

Chapter 4
The Environment Division

Structure
The Environment Division supplies information about the physical characteristics of your computer system. It
is comprised of two sections which have different functions. The first, the Configuration Section, deals with the
characteristics of your source and object computer. The second, the Input-Output Section, contains
information pertinent to the transmission and handling of data between external media and. your object
program. The Environment Division takes the following format:

093·000223-01

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

[SOURCE-COMPUTER.]
source computer body

[OBJECT-COMPUTER. 1
object computer body

[
SPECIAL-NAMES.

special names body

INPUT-OUTPUT SECTION.

[
FILE-CONTROL.]

file control body

]

[
I-O-CONTROL.]

input output control body

Licensed Material-Property of Data General Corporation 4-1

~----------------==--------------

Configuration Section
The Configuration Section consists of three paragraphs: the Source-Computer paragraph, the
Object-Computer paragraph, and the Special-Names paragraph.

The Source-Computer Paragraph
The Source-Computer paragraph identifies the computer on which you will compile your program and has the
format:

[SOURCE-COMPUTER. [comment entry I ••. I

The Object-Computer Paragraph
The Object-Computer paragraph identifies and describes the computer on which you will execute your object.
program. It has the format:

OBJECT-COMPUTER • emt-entry [{ WORDS} 1 MEMORY SIZE into} CHARACTERS
MODULES

[{
ASCII } j STANDARD-l

PROGRAM COLLATING SEQUENCE IS NATIVE [SEGMENT-LIMIT IS int-21.
. EBCDIC

a/ph

Where:

emt-entry is any comment that is not a COBOL reserved word; it represents the object computer.

int-l is a positive integer literal that specifies the size of memory in WORDS, CHARACTERS, or
MODULES, whichever you specify. COBOL ignores this clause.

a/ph is an alphabet name indicating that this program will use the collating sequence associated with
the a/ph you define in the Special-Names paragraph.

int-2 is an integer literal in the range 1 through 49, inclusive, that specifies a segment limit.

The ECLIPSE COBOL system does not require you to specify a MEMORY SIZE clause. If you do specify one,
the value is ignored by the compiler.

The program collating sequence is the relational order of the data characters which COBOL encounters
internally during your program's execution. When COBOL compares character strings (alphanumeric data
items or alphanumeric literals) in explicitly stated relational conditions and relational conditions implied by
condition names, this order determines the outcome of those comparisons. It also applies to character string
comparisons that are implicit in SORT and MERGE operations unless you specify another collating sequence
for a particular SORT or MERGE. It does not apply to character string comparisons implicit in other
statements, such as STRING and UNSTRING.

If you do not specify the PROGRAM COLLATING SEQUENCE clause or if you specify ASCII,
STANDARD-I, or NATIVE, the program collating sequence is the standard ordering of the ASCII character
set as specified in Appendix E. If you specify EBCDIC, the program collating sequence is that of the EBCDIC
character set, as in Appendix F.

4-2 Licensed Material-Property of Data General Corporation 093-000223-01

o

The SEGMENT-LIMIT clause indicates which segments of your program are bound in the root context. You
assign a segment number in the section header for each segment in the Procedure Division. If you omit this
clause, COBOL assumes that all segments to which you assigned segment numbers between 0 and 49 inclusive
are resident; those with segment numbers between 50 and 99 inclusive are overlay segments. If you do specify
this clause, those segments with numbers from 0 up to, but not including, int-2 are resident segments; those
with segment numbers from int-2 through 99 inclusive are overlay segments. See the section on virtual code in
Chapter 11.

The Special-Names Paragraph
The Special-Names paragraph specifies filenames and mnemonic names for special program elements aI).d
relates alphabet names to a specific character code set and/or collating sequence. It has the format:

SPECIAL-NAMES.

[lit-J .!§..id-J h .. [CHANNEL in! IS id-2 I ... [SWITCH lit-2 [~id-3 I [ON STATUS ~id-4 I [OFF STATUS ~ id-511 •••

ASCII
Si'ANbARD-1
NATIVE
EBCDIC

aJph~

{
[{ THRU }.]}

[CURRENCY SIGN IS lit-61 [DECIMAL-POINT ~ COMMA I.
THROUGH "t-4

Iit-3 •••

{ ALSO lit-5 } •••

Where:

lit-I is an alphanumeric literal that specifies the name of a system I/O device or file.

id-I is a mnemonic name that you use in your program to reference lit-I.

int is an integer literal that specifies a channel number with a value from 1 through 12.

id-2 is the channel name you use in your program to reference the channel associated with into

lit-2 is a single alphabetic character literal that specifies the program execution switch.

id-3 is the internal switch name for lit-2.

id-4. are condition names associated with the ON and OFF STATUS conditions.
id-5

alph is an alphabet name.

lit-3. are numeric or alphanumeric literals. If numeric, they must be unsigned integers, with values from 1
lit-4. through 256. If alphanumeric, and you specify THROUGH or ALSO, they must be one character in
lit-5 length.

lit-6 is a single-character alphanumeric literal that specifies the currency character.

You use the device clause (the items lit-I and id-I) with ACCEPT and DISPLAY Procedure Division
statements.

093-000223-01 Licensed Material-Property 01 Data General Corporation 4-3

The CHANNEL clause declares a line printer control channel. You may use channel names in the
ADVANCING clause of a WRITE statement to format data for printed forms. The actual interpretation of a
given channel number depends on the channels specified to the VFU utility (if your printer uses a
programmable data channel VFU), or the punches in the channel on the paper control tape mounted in the
line printer.

The SWITCH clause declares the ON and/or OFF STATUS conditions for a program execution switch. Never
reference the internal switch name (id-3) in your COBOL program; if you specify it, it serves as
documentation only. You may specify the ON and OFF clauses in any order, if you specify them both.

For example, if you declare switches in the Special-Names paragraph of program PAYROLL as:

SWITCH "F" ON STATUS IS FIRST-OF-MONTH,
SWITCH "B" ON IS Y-TO-D, OFF IS NO-Y-TO-D

you can then give the following execution commands:

Command

PAYROLLIF IB (or IB/F)
PAYROLLIB
PAYROLLIF
PAYROLL

Meaning

Both switches on
Bon, F off
Fon, B off
Both off

The alphabet clause defines a specific character code set and/or collating sequence. When referenced by the
PROGRAM COLLATING SEQUENCE clause in the Object-Computer paragraph, or the COLLATING
SEQUENCE clause of a SORT or MERGE statement, a/ph represents a collating sequence. When referenced
by the CODE-SET clause of a file declaration, it represents a character code set. If you specify ASCII,
STANDARD-1, or NATIVE, a/ph represents the ASCII code set/collating sequence in Appendix D. If you
specify EBCDIC, a/ph represents the EBCDIC code set/collating sequence also in Appendix D. If you specify
THROUGH or ALSO, i.e., if you define a/ph by a series of contiguous literals, you may reference a/ph only as a
collating sequence. You must not specify a single character or number more than once in the alphabet clause.
THRU is equivalent to THROUGH.

You define the collating sequence identified by the literal phrase according to the following rules:

1. The order in which you specify the literals in the alphabet clause determines the ordinal position in
ascending sequence of the characters ,within the collating sequence.

2. If the literal is numeric, its value represents the ASCII code of the character whose ordinal position
corresponds to that value.

3. If the literal is a single alphanumeric character, it defines the ordinal position of that character within the
ASCII character set. If you specify a multicharacter alphanumeric literal, COBOL assigns the next
position (in ascending order) in the collating sequence to each character in the literal, starting with the
leftmost.

4. Any character that you do not explicitly specify in the literal phrase assumes a position in the collating
sequence greater than that of any explicitly specified character. The relative order within the set of these
unspecified characters i~ their order in the ASCII sequence.

5. If you specify THROUGH, and if lit-3 is less than lit-4, COBOL assigns successive ascending positions in
the collating sequence to the contiguous characters in the ASCII set beginning with the character specified
by lit-3 and ending with the character specified by lit-4. If Iit-3 is greater than Iit-4 COBOL assigns
successive ascending positions (reverse order) in the collating sequence to the contiguous characters in the
ASCII set. Assignment begins with lit-3 and continues backward through lit-4.

6. If you specify ALSO, COBOL assigns the same position in the collating sequence to the characters of the
ASCII set within lit-3 and lit-5.

4-4 Licensed Material-Property of Date General Corporetlon 093-0(10223-01

1

1

Examples:

AL-1 IS "A" "1" "B" "2"

specifies the collating sequence:

A. 1. B. 2. NULL. lA. lB •...

<T before a letter means CONTROL.) NULL, lA. etc., follow 2 because they are the first characters of the
ASCII code set.

AL-2 IS 65 49 66 50

specifies the same collating sequence as above, because these numbers are the decimal ASCII equivalents to
the literals specified above.

AL-3IS "A" THRU "Z". "9" THRU "0"

specifies the collating sequence:

A.B •.... Y. Z. 9. 8. 7 •...• O. NULL. lA. lB •...

AL-4IS "DdEeFf". "0123456". "GgHh"

specifies the collating sequence:

D. d. E. e. F. f. O. 1.2.3.4.5.6. G. g. H. h. NULL. lA. lB ...

AL-5 is "R". "A" ALSO "Z". "M" THRU "Q". "B" ALSO "F". "E"

specifies the collating sequence:

R. {~} • M. N. O. p. Q. {I~ } . E. NULL.IA.IB •...

If you want to use a character other than $ in picture strings to signify the currency symbol, specify the
CURRENCY SIGN clause. The character you specify will be the character COBOL stores during data editing.
The currency symbol may be any of the letters, E,F,G,H,I,J,K,M,N,O,Q,T,U,W,Y, or any of the special
characters: !, @' #. $, %, :, &, ,and - (hyphen). If you do not specify the CURRENCY SIGN clause,
CURRENCY SIGN IS $ is assumed.

The DECIMAL-POINT IS COMMA clause reverses the use of comma and period in a picture string and in
numeric literals.

File Organizations
The structure of data on a physical file is called the file's organization. A file's organization remains fixed for
the life of,the file. The ECLIPSE COBOL system provides four types of file organization: sequential, relative,
indexed, and database. It also provides one special kind of file called a sort/merge file.

Sequential Files
A sequential file is a string of logical records whose order you establish by the sequence in which you record
them at the file's creation time. COBOL reads these records in the order that you wrote them. When you write
additional records to a sequential file, COBOL appends them to the end of the existing file, again adding them
in the order in which you write them. No reference keys exist for records in sequential files.

093-000223-01 Licensed Malerlal-Property of Data General Corporation 4-5

If you record data on a sequential access device (e.g., magnetic tape), or if you want to output data to a
sequential device (e.g., line printer), you should use sequential file organization to create and process the data.

With sequentially organized files, you can choose any of four formats for your records: fixed-length,
variable-length, 'undefined-Iength, or data-sensitive, whichever is appropriate to your application. (See Chapter
5 for more information on record formats.) You can create a sequential file on any Data General peripheral
device, including labeled and unlabeled tape. Because COBOL anticipates your data requirements and
automatically brings buffers in as they are needed to process data, you can process sequentially organized files
with great time efficiency.

With a sequentially organized file, you can use COBOL Procedure Division statements to open, close, and
delete the file (OPEN, CLOSE, EXPUNGE); read, write, and rewrite records (READ, WRITE,
REWRITE); position the record pointer in the file (START); terminate I/O operations on records from the
current logical block (TRUNCATE); and define procedures for I/O error handling (USE).

~~

You declare a sequentially organized file with the clause ORGANIZATION IS SEQUENTIAL in the file's
SELECT clause.

Relative Files
A relative file consists of logical records that the COBOL program identifies by a relative record number,
which you assign. You can think of this file as a string of areas, each area capable of holding one logical
record. Each of these areas is identified by a relative record number, with the first record of the file numbered
I, the second numbered 2, etc. The sequence in which COBOL writes the records has no bearing on the
sequence in which you retrieve them. Because you store and retrieve the records on the basis of their relative
record numbers, you may access them non sequentially if you want. Relative file organization is allowed only
on disk devices.

Keep in mind that you should assign relatively low numbers to your records, because COBOL assigns a record
to a physical area which corresponds to that record's relative number. For example, COBOL will write record
number 500 into area number 500. If 500 is your lowest record number, it takes time as COBOL passes areas 1
through 499.

When you build a relative file, you associate a relative record number with each record. These numbers are the
keys by which COBOL references the records. When you want to access a relative file's record, you simply
specify the record's relative number and COBOL goes directly to that record.

With a. relative file, you can use COBOL Procedure Division statements to open, close, and delete the file
(OPEN, CLOSE, EXPUNGE); read, write, and rewrite records (READ, WRITE, REWRITE); position the
record pointer in the file (START); position the I/O system at a record (SEEK); and define procedures for
I/O error handling (USE).

You declare a relative file with the clause ORGANIZATION IS RELATIVE in the file's SELEC,T clause.

Indexed Files
ECLIPSE COBOL provides four types of indexed file capabilities:

• simple indexing,
• indexing with alternate record keys,
• multiple indexing, and
• multilevel indexing.

4-6 Licensed Material-Property 01 Date General Corporation 093-000223-01

o

o
l'
I

)

1

The first two types are standard COBOL features. The last two are ECLIPSE COBOL extensions based on
the INFOS file management system.

In general terms, an indexed file contains logical records which a COBOL program identifies by the value of a
key, rather than by their physical or logical position. A key is a shorthand way of telling the system which
record you want. It can be any piece of data within a record or an element external to the record. When you
create an indexed file, you associate a key with each record. You may then randomly reference these keys to
locate or process data, or you may reference data sequentially in ascending order of the keys.

A key may consist of numbers, letters, or both, and can vary in length to give you storage efficiency. COBOL
automatically maintains key/data association, allowing you fast access to your data and enabling your file to
grow or shrink without restrictions.

A record description may include one or more keys, each associated with an index. This index provides a
logical path to the database records based on the contents of the key for that index. So you may have several
indexes for different orders (inversions) and/or subsets of the file. (We define inversion later in this section.)
And you may build a hierarchy of subindexes within an index, identifying each level by a key.

COBOL stores an indexed file as two directories or more containing the file's index and database. As you write
each database record, you supply a key for that record. Then the system automatically keeps track of the
location of that key's database record. Remember, you supply the keys; they have no meaning to the system
except for their association with your database records. When you want to retrieve a record, you supply the
key and the system gives you the database record.

With an indexed file, you can use COBOL Procedure Division statements to open, close, and delete the file
(OPEN, CLOSE, EXPUNGE); read, write, rewrite, and remove records (READ, WRITE, REWRITE,
DELETE); restore previously deleted records (UNDELETE); position the record pointer in the file (START);
create, delete, and provide shared subindexes (DEFINE SUB-INDEX, EXPUNGE SUB-INDEX, LINK
SUB-INDEX); obtain information about a key (RETRIEVE); and define procedures for I/O error handling
(USE).

You declare an indexed file by specifying ORGANIZATION IS INDEXED in the file's SELECT
clause. You can access an indexed file only on disk devices.

Sort/Merge Files
A sort/merge file can participate in a SORT and/or MERGE operation. You may not specify input/output
operations for such a file. You declare the sort/merge file in an SD entry in the Data Division of your
program. With a sort/merge file, you can use COBOL Procedure Division statements to sort one or more files
(SORT), to combine two or more files (MERGE), to pass a record to the sort operation (RELEASE), and to
retrieve a record from the sort or merge operation (RETURN).

Database Files
COBOL uses the DG/DBMS (Data General Database Management System) to handle database files.
Chapter 10 gives a full description of how to use DG/DBMS.

093-000223-01 Licensed Material-Property of Data General Corporation 4-7

*

~,----------~~~~~~~~~~~~==~========~========--------------

File Access Modes
COBOL supplies you with three modes for getting at your data: sequential access, random access, and
dynamic access. Table 4-1 illustrates the access modes available for the three file organizations, the file
handling systems which implement the access modes, and certain device considerations.

Sequential Access Mode
If you want to access data in the order in which you recorded it, use the sequential access mode. The order of
the file (which is the order you wrote the records when you first created the file) determines the order in which
COBOL references the records.

You may specify the ACCESS IS SEQUENTIAL clause in the SELECT clause for files with sequential,
relative, or indexed organization.

Random Access Mode
The random access mode permits you to read and write any record in your file without accessing any other
records. Because you read and write records according to relative record numbers or index key values, the
sequence in which COBOL stores the records has nothing to do with the sequence in which you access them.
Random access is the quickest and easiest access method.

You may specify the ACCESS IS RANDOM clause in the SELECT clause for a relative or indexed file.

Dynamic Access Mode
The dynamic access mode combines the sequential and random access modes and allows you to switch from
one to the other by using the various forms of COBOL input/output statements.

You may specify the ACCESS IS DYNAMIC clause in the SELECT clause for a relative or indexed file.

Table 4-1. COBOL File Handling

Access Mode
File Handling

Device
File

System

Organization AOS Line
Inter-

Card Sequential Random ,iynamic AOS Disk Tape active
INFOS Printer Terminal Reader

Sequential yes no no yes no yes yes yes yes yes

Relative yes yes yes yes no yes no no no no

Indexed yes yes yes no yes yes no no no no

Multilevel no*
Indexed

yes no* no yes yes no no no no

i

* You may process a given index sequentially or dynamically, but your program must direct the movement between the indexes.

4-8 Licensed Material-Property of Data General Corporation 093-000223-01

()

I'
i
r:
\

1,
I , ,
l
\
(

I'
(

(
(,

(

1
(

i

() \

I
\
\
\
\

~
j
I

~
(

I
(

o

\
\

•
I
'> ,

(n
i
\
\

(
\

\

{
,
\
\

(
(

"

'"

Input-Output Section
The Input-Output Section consists of two paragraphs which supply information needed to control the
transmission and manipulation of data between external media and your object program. They are called the
File-Control paragraph and the I-O-Control paragraph.

The File-Control Paragraph
In this paragraph you name the files you will use in your program and associate them with system devices or
external files. The File-Control paragraph takes the format:

[
FILE-CONTROL.]

. SELECT clauses

SELECT Clause
You must specify one SELECT clause for each file. In each clause, you name a file; you may also specify other
file-related information. For each file you specify in this paragraph, you must include a file description entry
in the Data Division (see Chapter 5).

The information you may provide in a SELECT clause depends on the organization of the file you are
declaring. The SELECT clause takes one of four forms.

Format for a sequential file:

{id-Iit-l [VOLUME SIZE IS int-2 [CONTIGUOUS II NO llNITIALIZATION lll} ...
PRINTER [id-Iit-ll

,
SELECT [OPTIONAL 1 idol . ASSIGN TO

[DISK [id-Iit-lll
,-.-

[DISPLAY id-Iit-J)

[PRINTER-1 [id-lit-lll

[KEYBOARD id-lit-ll

[RESERVE ;"'-. {::~:s}] [ORGANIZATION IS SEQUENTIAL] [ACCESS MODE IS SEQUENTIAL[

[FILE STATUS IS id-5l [INFOS STATUS IS id-6l [PARITY IS {~~~N}] [INDEX SIZE IS int-9l [DATA SIZE IS int-lOl.

093-000223-01 Llcen~ed Material-Property of Data General Corporation 4-9

I

Format for a relative file:

SELECT idol ASSIGN TO { id-lit-J[VOLUME SIZE IS int-2 [CONTIGUOUS II NO]INITIALIZATION III } •••

[,{AREA }] RESERVE mt-6 AREAS

,.,0,

ORGANIZATION IS RELATIVE

[AdCESS MODE is {

SEQUENTIAL [RELATIVE KEY IS id-21 }]

{ RANDOM}
DYNAMIC RELATIVE KEY IS id-2

[FILE STATUS IS id-51 [INFOS STATUS IS id-61 [INDEX SIZE IS int-91 [~SIZE IS int-1DI.

Format for an indexed file:

SELECT idol ASSIGN INDEX TO {id-lit-l [MERIT int-l) [VOLUME SIZE IS int-2 [CONTIGUOUS [[!:!9)INITIAlIZATION III } •••

[
HIERARCHICAL] [TEMPORARY) [SPACE MANAGEMENT) [ROOT MERIT IS int-3) LRU

[ASSIGN DATA TO {id-lit-2 [MERIT int-4) [VOLUME~IS int-5 [CONTIGUOUS [[NO) INITIALIZATION III } •••

[SPACE MANAGEMENT) [RESERVEint-6 INDEX {~=~~S}] [RESERVEint-7 DATA {~=~~S}]

ORGANIZATION IS INDEXED [ACCESS MODE IS {~~~g~~TlAL}J
~ DYNAMIC

[ALTERNATE) RECORD {~~~~SARE} { id-3[KEY LENGTH IS id-lit-3) [WITH DUPlICATES[OCCURRENCE IS id-4Jl } •••

{ [KEYCOMPRESSION)[DATACOMPRESSION)} [FILE STATUS IS id-5) [INFOS STATUS IS id-6) [ALLOW SUB-INDEX [~ IS int-8 Jl [COMPRESSION] ==-. :..:.:::::==,

[INDEX SIZE IS int-9) [DATA SIZE IS int-10) • -- --

4-10 Licensed Malerial-Property of Dala.General Corporalion 093-000223-01

I'

o

)'
4'

{f
~i

<I
\

il

~i
1

I
i
I
{
f

Ol
!

(

1

I
1

I
(

1

0- [
'. I
. 1

I

Format fora sort/merge file: .

SELECT id-l ASSIGN TO id-lit-l,

Because the SELECT clause is so complex, we present it by discussing each of its clauses separately_ You may
specify all of the major clauses in any order, with one exception: the ASSIGN clause must occur where shown_
Table 4-2 lists all of the major SELECT clauses, along with any subordinate clauses. It also tells which file
organizations use the clause, what the default is if you omit the clause, and any restrictions on the clause's use.

You may not specify any of the SELECT clause data items in the File Section or Linkage Section of the Data
Division.

In the SELECT clause, you may qualify any reference to a data item of any form, but you may not subscript it.

Table 4-2. SELECT Clause

Clauses and Options
Sequential Relative Indexed Sort/Merge

Default Restrictions Files Files Files Files

OPTIONAL X File must be open
for input.

ASSIGN X X X X

MERIT X Merit factor
equals I.

VOLUME SIZE X X X Disk files only.

CONTIGUOUS X X X COBOL will
alloca te blocks
randomly.

INITIALIZATION Initialization. COBOL ignores
this clause.

PRINTER X @LPT

TEMPORARY COBOL ignores
this cla use.

SPACE X No space
MANAGEMENT management.

ROPT MERIT X COBOL assigns COBOL ignores
root node priority. this clause.

HIERARCHICAL / LRU

DISK X X X X fn

DISPLAY X

PRINTER-1 X @LPT1

KEYBOARD X

(continues)

093-000223-01 Licensed Material-Property 01 Data General Corporation 4-11

Table4-2. SELECT Clause ()
Clauses and Options Sequential Relative Indexed Sort/Merge Default Restrictions Files Files Files Files

RESERVE (DATA) COBOL ignores
this. clause.

RESERVE (INDEX) COBOL ignores
this clause. ,

ORGANIZATION X X X Sequential.

ACCESS X X X Sequential.

RELATIVE KEY X Current record
pointer
determines
current record for
sequential access.
This clause is not
optional for
dynamic or
random access.

RECORD KEY IS X Not optional.

KEY LENGTH X COBOL assigns a
maximum key
length equal to
the length
specified in the
key item's
PICTURE clause.

DUPLICATES X COBOL sends an
error message if
you attempt to
write a key that
already exists.

OCCURRENCE X None

AL TERNATE RECORD

KEY IS X If your file has You must specify
alternate record all alternate
keys, this clause is record keys
mandatory. associated with

your file. The key
items must be
stored in the
records of your
file.

KEY LENGTH X COBOL assigns a
maximum key
length equal to
the longest key
specified for the
file.

(continued)

4-12 Licensed Material-Property 01 Date Genaral Corporation 093-000223-01

f·

Table4-2. SELECT Clause

Clauses and Options
Sequential Relative Indexed Sort/Merge

Default Restrictions
Files Files Files Files

ALTERNATE RECORD
(cont.)

DUPLICATES X COBOL sends an
error message if it
encounters a
duplicate
alternate key.

OCCURRENCE X None.

FILE STATUS X X X You cannot check
the file status
after I/O
processing.

INFOS STATUS X X X You cannot check
for an
INFOS/operating
system error after
I/O processing.

PARITY COBOL ignores
this clause.

ALLOW SUBINDEX X No subindexing You cannot
allowed. specify this option

if you have
alternate record
keys.

LEVELS X Maximum
number of levels is
32.

KEY COMPRESSION X Redundant key
information will
be stored.

OAT A COMPRESSION X Redundant data
record
information will
be stored.

COMPRESSION X Redundant key
and data
information will
be stored.

INDEX SIZE COBOL ignores
this clause.

DATA SIZE COBOL ignores
this clause.

(concluded)

093-000223-01 Licensed Material-Property of Data General Corporation 4-13

"i,..

OPTIONAL Clause

[OPTIONAL 1 id-l

Where:

id-l is a symbolic name that specifies the name you use to reference the file in your program.

You may specify the OPTIONAL clause only for sequential files OPENed for input. This clause is required for
a file that may not necessarily be present each time you execute your object program. If you specify this clause
and the file is not present at execution time, the first READ executed for the file signals an end-of-file
condition (see the section "I/O Exception Conditions" in Chapter 6).

ASSIGN Clauses

Where:

id-lit-l,
id-lit-2

int-l,
int-4

int-2,
int-5

int-3

4-14

ASSIGN INDEX TO

id-lil-l [MERIT inl-l) [VOLUME SIZE IS int-2 [CONTIGUOUS [[NO)lNITIALIZATIONlll

[DISK [id-lil-lll

[DISPLAY id-lil-Il

[PRINTER [id-lil-lll

[PRINTER-1 [id-lil-lll

[KEYBOARD id-lil-l)

[TEMPORARY) [SPACE MANAGEMENT) [ROOT MERIT IS int-3) [~ARCHICAL]

[ASSIGN DATA TO {id-lit-2 [MERIT int-4) [VOLUME SIZE IS int-5 [CONTIGUOUS [[NO) INITIALIZATION III }

[SPACE MANAGEMENT)]

is an alphanumeric literal or an alphanumeric or alphabetic data item whose value, when you
OPEN the file, specifies the system file containing the data records and/or index entries of the
logical COBOL file id-l.

is a positive integer literal that specifies the priority of a volume.

is a positive integer literal that specifies a number of blocks.

is a positive integer literal that specifies which volume priority has the highest level root node.

Licensed Malerial-Property of Data General Corporalion 093-000223-01

()

\
I

"\'

The ASSIGN clause is composed of several subordinate clauses. Its purpose is to associate the file id-l with a
storage medium and say something about its physical makeup.

You must specify at least one symbolic name id-lit-l to identify your file. Because COBOL files are organized
in logical volumes, you must specify a symbolic name for each volume of your file. The order in which you
specify the volumes determines their logical order within the file. The name you specify for the first volume of
the file becomes the file's symbolic name. If you do not specify more than one name, COBOL assumes the file
has only one volume.

For sequential and relative files, you only need to specify the ASSIGN clause for volumes of the file's database.
However, if you created the file as a new indexed file or as a new inversion of an existing indexed file, or if you
intend to EXPUNGE an indexed file, you must also specify the ASSIGN DATA clause with the data record file
system names to define the database filename. Otherwise, the default is <filename>.DB.

You must use the VOLUME SIZE clause in conjunction with CONTIGUOUS, or it has no effect. VOLUME
SIZE sets the number of contiguous disk blocks allotted to the file. Each time the allotment is full, AOS
allocates another chunk of that size to the file. Large volume sizes permit fast access to information, but
unused areas in the allotment waste disk space.

For sequential files, you may specify the PRINTER clause to indicate that the file is a print file. Whenever you
write data using this file, the output goes to the line printer or the file associated with the id-lit-l you specify.
For specific information on print file formatting, see Chapter 6.

The SPACE MANAGEMENT clause (for indexed files only) optimizes the size of an INFOS file, saving
space at a slight increase in overhead.

The MERIT clause (indexed files only) assigns a merit factor to an INFOS database file. Later, when you
write records to the file, you can specify a record merit factor which will place the record on a volume with the
same (or if no match exists, lower) merit factor. You can replace these volumes in the database with links to
files on different logical disks, thus assigning specific records to specific disks. However, creating this link
structure requires AOS CLI intervention.

The ROOT MERIT clause (indexed files only) assigns a merit factor to the INFOS system index root node.
Read the INFOS System User's Manual (AOS) for details on index node merit factors. To use this facility
effectively, you must create a link structure in the same manner as for database volumes.

COBOL always ignores the TEMPORARY, and LRU clauses.

'RESERVE Clause

[RESERVE ;nt-6INDEX { AREA }]
AREAS .

[RESERVE ,.t-lDATA { AREA }]
AREAS

Where:

int-6 is an integer literal that specifies the number of input/output buffers you want to allocate for your
file's indexes.

int-J is an integer literal that specifies the number of input/output buffers you want to allocate for your
file's database.

COBOL always ignores this clause.

093-000223-01 Licensed Material-Property 01 Data General Corporation 4-15

....

ORGANIZA liON Clause

ORGANIZATION IS {
SEQUENTIAL }
RELATIVE .
INDEXED

The ORGANIZATION clause specifies the logical structure of your file. When you create a file, you establish its
organization and cannot later change it. If you omit this option, the default is SEQUENTIAL. ORGANIZATION
IS INDEXED defines an INFOS system file.

ACCESS MODE Clause

[

. { SEQUENTIAL [RELATIVE KEY IS id_l)}]
ACCESS MODE IS {RANDOM } .

DYNAMIC RELATIVE KEY IS idol

[ALTERNATE) RECORD {~~~~SARE } {id-3[KEY ~ IS id-/it-3) [WITH DUPLICATES [OCCURRENCE IS id-411} •••

Where:

id-2 is an unsigned integer data item that specifies the relative record number of a key.

id-3 is an alphabetic, alphanumeric, or unsigned numeric data item that specifies the name of a prime
record key or an alternate record key in an indexed file.

id-lit-3 is a positive integer literal or an unsigned integer data item that specifies a key length. It serves
several functions which we discuss later in this section.

id-4 is an unsigned integer data item that receives an occurrence number.

The ACCESS MODE clause determines the manner (sequential, random, or dynamic) in which COBOL will
access records from your file. If you omit this option, the default is SEQUENTIAL.

When you specify SEQUENTIAL access, COBOL accesses the records in your file in the sequence determined
by the file's organization. In a sequential file, you establish the record' sequence by the order in which you
write the records when you create or extend the file. In a relative file, the sequence is determined by the
ascending relative record numbers of the existing records in your file. In an indexed file, the sequence is
determined by the ascending record key values within a given index or subindex.

If you specify RANDOM access for a relative file, COBOL accesses the record with the value of the relative
key data item (id-2) When randomly accessing an indexed file, COBOL accesses the record with the same
value as the record key data item (id-3).

You only need to specify one record key for a simple indexed file. For a multilevel indexed file, you may
specify as many record key items as required to make the various references in the program.

4-16 Licensed Material-Property 01 Date General Corporation 093-000223-0t

Ii
~

~
j
('

0
(,

~
~

~
~

I'
\:
n

Ii
Ii
~ ,I
I,

" (i
\
(i
('

Ii
() II

d
(!
\,

21

~;

il
j!

1:
\:
{i

,

1

l
)

I,

I
)

\
I
\
\
~
1
)

)
\

i

~0
t
\
>

~

If you specify DYNAMIC access for a relative or indexed file, COBOL may access the file sequentially and/or
randomly.

For example, if your program needs a reference of the form:

READ id-J KEY id-3, ...

then you must specify at least two record key items. However, if all the references in your program have the
form:

READ id-J [position phrase] KEY id-3

then you need to specify only one record key item, even though there may be many levels of indexing.

COBOL makes no association between the particular key items and the levels of the index. You may use any
of the key items to specify a key in any level of the index.

If you want to provide an alternate access path to records in an indexed file (using an ANSI standard
approach rather than the more general INFOS independent inversion technique), you must observe the
following rules when specifying the ALTERNATE RECORD KEYS clause:

1. You may specify only one record key, called the prime record key. It need not be contained in the file's
record area.

2. You must specify all alternate record keys associated with the file, whether your program uses them or
not. The alternate key data items must be contained in the records of the file. You define the number and
the location of the alternate keys within the records when you create the file; you cannot change this after
file creation.

You may specify a KEY LENGTH clause for any record or alternate record key. If you do specify this clause,
the key length items id-lit-3 have several functions depending on the context in which they appear:

I. When you OPEN a file for output, the value of id-lit-3 (for the first id-3 at that time is the maximum key
length for the main level of that file's index.

2. When you specify a WRITE statement, the value of id-lit-3 at that time represents the number of
characters (leftmost) in id-3 which will be stored as the value of that record's index.

3. When you specify;a READ statement whose KEY LEN~TH clause contains a GENERIC clause, the value
of id-lit-3 at that 'time represents the number of characters (leftmost) in id-3 which must be matched in
order to have access to a given record.

If yqu want to use one key to access a group of data records, you may specify the WITH DUPLICATES,clause
for the record key or alternate record key. If you specify this clause, you can execute a WRITE statement that
references the associated key item (id-3) even though there may already be a record in the file with that same
key. If you specify the OCCURRENCE clause, the system automatically assigns occurrence numbers to your
keys.

After executing a WRITE statement, COBOL updates the value of the occurrence number data item (id-4) to
contain the occurrence number of the last record written which had the specified key value. You can obtain
the value of the occurrence number and key length data items by issuing a RETRIEVE KEY statement in the
Procedure Division.

093-000223-01 Licensed Material-Property of Data General Corporallbn 4-17

FILE STATUS and INFOS STATUS Clauses

[FILE STATUS IS id-5] [INFOS STATUS id-6]

Where:

id-5 is a 2-character alphanumeric data item that receives the COBOL file status item.

id-6 is a 4-character, alphanumeric data item that receives the INFOS file status item which you must
define in the Working Storage Section of the Data Division.

If you specify the~FILE STATUS clause, you establish a data item id-5 which COBOL ·updates to indicate the
completion status of each I/O statement's execution. The values returned are described in the section
"Handling I/O Exception Conditions" in Chapter 6.

If you specify the INFOS STATUS clause, you also set up a data item id-6 which COBOL updates to contain
the error code that INFOS returned on completion of each I/O statement's execution. INFOS clears the data
item on a normal return.

PARITY Clause

[PARITY IS {~~~N}]

COBOL always ignores this clause; parity is always odd.

ALLOW SUB-INDEX and LEVELS Clauses

[ALLOW SUB-INDEX [LEVELS IS int-8]]

Where:

int-8 is a positive integer literal that specifies the maximum number of index or subindex levels the file will
have.

In a multilevel indexed file, you may want to break your index structure into more manageable, smaller units
of records. You accomplish this by building subindexes within your index structure. Subindexing allows you to
structure your file by establishing logical relationships between records.

You must specify ALLOW SUB-INDEX for any indexed file which already has subindexing or for which you are
going to define subindexing. You cannot specify this statement if you specified alternate record keys.

4-18 Licensed Material-Property of Data General Corporation 093-000223-01

Specify the LEVELS clause when you are creating an indexed file, and you want to indicate the expected
maximum number of index and subindex levels that the file will have. ~lil;ql'l~~hN;I'St;l;whem
~~tJm:m;t~J¥Mije'hlff 1(W~~~~29a Note: Omitting the LEVELS clause
causes the ALLOW SUB-INDEX clause to have no effect.

COBOL uses the ALLOW SUB-INDEX and LEVELS clauses to define the maximum number of subindex
levels permitted. You can only set this option when creating an INFOS file. Do not redefine the maximum
number of levels in an existing INFOS file if you expect to increase this maximum.

KEY COMPRESSION Clause

[KEY COMPRESSION]

Enabling KEY COMPRESSION saves space in INFOS system indexed files. Keys with duplicate suffixes use
pointers to eliminate duplication of characters in the same subindex.

[DATA COMPRESSION]

Enabling DATA COMPRESSION saves space in INFOS system data files. The INFOS system compresses
data records with duplicate information.

[COMPRESSION]

Specifying COMPRESSION enables both KEY and DATA COMPRESSION.

INDEX SIZE Clause

[INDEX SIZE IS int-9]

COBOL always ignores this clause.

DA T A SIZE Clause

[DATA SIZE IS int-JO]

COBOL always ignores this clause.

093-000223-01 Licensed Material-Properly of Date General Corporation 4-19

I,

SELECT Clause Examples

Example 1:

FILE-CONTROL.
SELECT FILE 1

ASSIGN TO "SET21"
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

Example 2:

FILE-CONTROL.
SELECT FILE2

ASSIGN TO PRINTER.

Example 3:

FILE-CONTROL.
SELECT FILE3

Example 4:

ASSIGN TO "SET25"
ORGANIZATION IS RELATIVE,
ACCESS IS RANDOM,

KEY IS KEY05.

FILE-CONTROL.
SELECT FILE4

4-20

ASSIGN INDEX TO "MYINDEX"
ASSIGN DATA TO "MYDATA"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEYS ARE

RS-GRADE KEY LENGTH IS W 1-LENG
RS-WIDTH WITH DUPLICATES,

OCCURRENCE IS W2-0CCR
STATUS IS RS-STATUS
INFOS STATUS IS RS-INFOS
ALLOW SUB-INDEX, LEVELS IS 2.

Licensed Materlal-Property of Date Ganaral Corporation 093-000223-01

I

~
I
(
\

~
~
~

\
\

f
i

The I-O-Control Paragraph
You use the I-O-CONTROL paragraph to specify certain relationships among your files. It takes the form:

I-O-CONTROL •

[{
RECORD} 1 SAME SORT AREA FOR id-J. ••• • ••
SORT-MERGE

I MULTIPLE FILE TAPE CONTAINS {id-2IPOSITION int l} ... 1

Where:

id-J is a symbolic name that specifies a file.

id-2 is a symbolic name that specifies a labeled tape file or a system file specifier that specifies an unlabeled
tape file.

int is an integer that specifies the position of a magnetic tape file.

Note that a period is required at the end of this paragraph.

Only the SAME RECORD AREA clause is necessary in the ECLIPSE COBOL system, because the system
itself automatically provides efficient memory management, including buffer reuse whenever possible. Other
forms are redundant and COBOL ignores them.

The SAME RECORD AREA clause specifies that the record area declared for the second through n files begin
at the same character position in memory as those declared for the first file, thereby redefining the record area
declared for the first file.

Any or all of these files may be open at the same time. You must specify at least two files in each SAME
RECORD AREA clause. However, they need not have the same organization or access.

The MULTIPLE FILE clause is never required in ECLIPSE COBOL and, when specified, is ignored. If more
than one file is stored on a single reel of tape, and the tape is labeled, you identify the files by name in the
ASSIGN clause of the SELECT clause. If the tape is unlabeled, you identify the files by system file specifiers
in the ASSIGN clause.

End of Chapter

093-000223-01 Licensed Malerlal-Property of Dale Genaral Corporation 4-21

\~.-----------------=======================================~==================------------------~

o

()

c
(

r

{
f

i
i
~

~
j
\
(

i

~ ,
< ,
(

.,
:
\.

Structure

Chapter 5
The Data Division

The Data Division describes the data that your program will accept as input, and will create, manipulate, or
produce as output. You may specify that data belongs to a file or direct COBOL to store it in working storage.
You may also request that data be formatted for output. Or you may simply specify data as constants for
COBOL to use in calculations.

The Data Division consists of six sections: the File Section, the Subschema Section, the Working Storage
Section, the Virtual Storage Section, the Linkage Section, and the Screen Section.

The File Section defines the structure of each of your data files by a file description entry (an SD entry for
sort/merge files, an FD entry for all other file types) and one or more record descriptions. Descriptions of any
subordinate data items follow these.

Use the Subschema Section in conjunction with Data General Database Management System (DG/DBMS)
databases. See Chapter 10 for details.

The Working Storage Section describes the records and subordinate data items that COBOL will develop and
process internally. These elements function as general, temporary, data storage items during the execution of
your program. They are not part of external files.

The Virtual Storage Section places variables on disk during the run unit without the need for user controlled
I/O. With this, you can have very large amounts of data maintained in your program.

The Virtual Common Section is a Virtual Storage Section that subprograms in the same run unit can use
globally.

You specify the Linkage Section if your program is a subprogram under the control of a CALL statement
which contains a USING phrase. This section may contain one or more record and subordinate data item
descriptions. However, no space is allocated in the program for data items referenced by data names in the
program's Linkage Section. The system resolves this at runtime by equating the reference in the called
program to the location used in the calling program. Linkage Section data items receive the parameters passed
by the calling program.

The Screen Section displays CRT oriented screen formatted output. Variables in the Screen Section reference
Working Storage variables.

093-000223-01 Licensed Material-Property 01 Data General Corporation 5-1

The Data Division has the following format:

DATA DIVISION.

[
FILE SECTION •]

FD and SO entries with associated record descriptIons.

[
SUBSCHEMA SECTION • j
COPY subschema name.

[
WORKING-STORAGE SECTION.:]

various record descriptions.

[
VIRTUAL-STORAGE SECTION.]

virtual data record descriptions.

[
LINKAGE SECTION •]

global record descriptions.

[
SCREEN SECTION •]

screen section body.

File Section
The File Section consists of FD and SD entries containing record descriptions which define the storage areas
COBOL uses to transfer data to and from files. An FD or SD entry continues a file declaration that the
SELECT clause began. You must specify one FD or SD entry for each file you declared in a SELECT clause.
You specify an FD entry for files upon which you want COBOL to perform input/output operations. You
specify an SO entry for sort/merge files, that is, files that are the object of a SORT or a MERGE statement.

One or more record descriptions (OI-Ievel data descriptions) must follow each FD or SD entry. These record
descriptions define the record area for the file. If you specify more than one record description for a file, they
all implicitly redefine the same physical record area. The length of the record area is the length of the longest
record you defined for the file. We discuss record descriptions in detaill,ter in this chapter.

5-2 Llcenaed Material-Property of Date General Corporation 093-000223-01

(

1

~.

I
\
j
1
(

I
\
i
,~

File Description Entry
A file description entry may take one of four forms.

Format for a sequential file:

FDid-1 [BLOCK CONTAINS !tit-l TOllit-2 {~~~~~g~ERS}] [RECORD CONTAINS [int-2 TOlint-3 CHARACTERS I

[RECORDING MODE IS
{

,FIXED

VARIABLE '
{DATA-SENSITIVE [DELIMITER IS Iit-71}

UNDEFINED

NATIVE [int-41

[
. {ASCII }J

. LABEL RECORDS ARE STANDARD
EBCDIC [int-51
OMiTfED

VALUE OF [OWNER IS id-31

[EXPIRATION DATE IS id-41

[SEQUENCE NUMBER IS id-51

[GENERATION NUMBER IS id-61

[ACCESSIBILITY IS id-71

[OFFSET IS id-81

[VOLUME STATUS IS id-91

r { LABEL IS }'] l USER VOLUME LABELS ARE Id-IO, • ••

r {LABEL IS}] LUSER HEADER LABELS ARE id-Il, •••

r { LABEL IS}]
lUSER TRAILER LABELS ARE id-12, • •• ,

[RECORD LENGTH IS "'-21 } l

[{ RECORD IS }'] [LINAGE IS id-Iit-l LINES [WITH FOOTING AT id-lit-21
DATA RECORDS ARE Id-13, • • • [LINES AT TOP id-lil-31 [LINES AT BOTTOM id-lit-41

[CODE-SET IS
' STANDARD-l FIELD IS

{
ASCII } l ~ . [{ FIELDS ARE } id-I4 ••• J [FEEDBACK IS id-151 [PAD CHARACTER IS id-lil-51 •
EBCDIC -_ '
a~h .

01 id-18 I •••

093-000223-01 Licensed Material-ProperlY of Dam General Corporation 5-3

Format for a relative file: ()

FD idol [BLOCK CONTAINS liit-1 TO llit-2 { RECORDS }]
CHARACTERS

[RECORD CONTAINS [int-2 TO I int-3 CHARACTERSI [RECORDING MODE IS FIXEDI

[{ RECORD IS } STANDARD] [{ RECORD IS }.
LABEL RECORDS ARE OMITTED DATA RECORDS ARE /d-J3 , . ..]

[FEEDBACK IS id-J51 [PAD CHARACTER IS id-lil-51.

01 id-18, •••

Format for an indexed file:

FD id-1 [INDEX BLOCK CONTAINS [lit-3 TO I/it-4 CHARACTERS] [DATA BLOCK CONTAINS [/it-5 TO llit-6 { ~~~~~g~ERS}] o
[INDEX NODE SIZE IS int-l CHARACTERS I [RECORD CO NT AINS [int-2 TOI int-3 CHARACTERSI

[RECORDING MODE IS VARIABLE [RECORD LENGTH IS id-2))

[{ RECORD IS } {STANDARD}]
LABEL RECORDS ARE . OMITTED [DATA {RECORD IS}] RECORDS ARE id-13, • ••

[FEEDBACK IS id-151 [MERIT IS id-161 [PARTIAL RECORD IS id-l71.

01 id-18,

Format for a sort/merge file:

SO id-1 [BLOCK CONTAINS Iit-1 TO lit-2 {~~~~~g~ERS }] [RECORD CONTAINS [int-2 TO I int-3 CHARACTERS I

01 id-18 I •••

5-4 Licensed Material-Property 01 Date General Corporation 093-000223-01

,
\

In all formats, id-l is a symbolic name that specifies the name of the internal file you specified in the file's
SELECT clause; and id-18 is the name of an OI-Ievel data record. id-18 and id-l must have different names.

We will present the file description entry by separately discussing each of its clauses. You may specify all of
the major clauses in any order you choose. Table 5-1 lists all of the major file description entry clauses along
with any subordinate clauses. It also presents the file organizations which use the clause, the default if you
omit the clause, and any restrictions on the clause's use.

In the file description entry, you may qualify any reference to a data item of any form, but you may not
subscript it.

Table 5-1. FD Entry Clauses

Clauses and Options Se.quential Relative Indexed Sort/Merge Default Restrictions
Files Files Files Files

BLOCK CONTAINS X X X Maximum size is
one record.

INDEX BLOCK X Maximum size is
CONTAINS 2048 characters.

iNDEX NODE SIZE X System calculates
size.

RECORD CONTAINS X X X X None.

RECORDING MODE X X X FIXED for
sequential and
relative files;
V ARIABLE for
indexed files.

RECORD LENGTH X X Maximum length
is that of the file's
record area.

DELIMITER X X Delimiters are
CR, NL, FF, and
NULL.

LABEL RECORDS X X X ANSI Standard For sequential
level 3 .. magnetic tape

files only.

VALUE OF

OWNER X None. For labeled
magnetic tape
files only.

EXPIRATION DATE X
.

GENERATION X
NUMBER

ACCESSIBILITY X

OFFSET X

VOLUME STATUS X

(continues)

093-000223-01 Licensed Material-Property 01 Data General Corporation 5-5

~---========----------------------===------------------------

Table 5-1. FD Entry Clauses 0
Clauses and Options Sequential Relative Indexed Sort/Merge Default Restrictions

Files Files Files Files
U
4
rl
Ii

USER VOLUME LABEL X None. For magnetic tape
files only.

~

~
USER HEADER LABEL X

:i
~

USER TRAILER LABEL X

DATA RECORDS COBOL ignores
this clause.

LINAGE X No automatic File must be a
formatting sequential
provided. PRINTER file.

1
J

4

f
ii
jl
.1

~!
)1
\!

FOOTING X No footing area. r:
11

TOP X No top margin.
(!
(I

\i
BOTTOM X No bottom

margin.

~
g
(,

CODE-SET X ASCII

FIELD IS X All data is
translated.

FEEDBACK X Cannot access
feedback

it
(i

;:

0 ~I
\,
(I
,I

~l
information. il

il

MERIT X Merit factor is I.

PARTIAL X None.

PAD Pad character is COBOL ignores
null. this clause.

I!
~I
{:

}!
Ii

(concluded)
II
Ii
it
(!

11
(I

<!
II
~i
~!
Ii
\1
q
II
'I II
II

0
jl
~ ! ,.

l!
11
Ii

5-6 Licensed Material-Property 01 Data General Corporation 093-000223-01

J .1

Block, Node, and Record Sizes

[SLOCK CONTAINS [lit-1 TOllit-2 { ~~~~~g~ERS }]

[INDEX BLOCK CONTAINS [lit-3 TO llit-4 CHARACTERS I [DATA BLOCK CONTAINS [lit-5 TO) Iit-6 {~~~~~g~ERS }]

[INDEX NODE SIZE IS int-J CHARACTERS) [RECORD CONTAINS [int-2 TO) int-3 CHARACTERS)

Where:

int-l, is a positive integer literal that specifies the maximum number of characters which a logical block in
int-2 a sequential or relative file may contain.

lit-3, is a positive integer literal that specifies the maximum number of characters which a logical block in
lit-4 an indexed file may contain.

lit-5, is a positive integer literal that specifies the maximum number of characters or records which a
lit-6 logical block in a data file may contain.

int-l is a positive integer literal that specifies the number of characters in an index node.

int-2,
int-3

is a positive integer literal that specifies the number of characters in a data record.

The BLOCK CONTAINS clause determines the number of physical disk blocks the operating system will
transfer to or from its buffers on each I/O operation for a data file. Careful selection of the block size can
result in improved performance. For example, if you want to access a file sequentially, you might specify
BLOCK CONTAINS 1024 CHARACTERS in the file's FD entry. AOS would then access two blocks for
each READ operation, which would cut down on disk access time.

The INDEX BLOCK CONTAINS clause specifies the size, in characters, of your index file's logical block.
COBOL always ignores lit-3. The block size is equal to the number of characters specified in lit-4. If you omit
this option, the default size is 2048 characters.

For both of the above clauses, if you are processing disk files, the system will transfer your data in multiples of
512 characters. For other devices, if you don't specify a size, the system will use the size of one record.

AOS permits the following block sizes (in characters):

for a tape (sequential files only):
for a disk (sequential or random files):
for indexed files:

upt08192
up to 8192
2048 or 4096 only

The INDEX NODE SIZE clause specifies the size, in characters, of an index node in an indexed file. The node
size must be large enough to hold three keys. If you omit this option, the system calculates the size according
to the maximum key length, the partial record length, and whether or not you allow subindexing. You define
subindex node sizes in the DEFINE SUB-INDEX statement (see Chapter 7).

Because you define the size of each data record within the record description entry, COBOL never requires the
RECORD CONTAINS clause to specify the data record's size. However, you may use it if you want COBOL to
check that the data records you define for this file fall within the range int-2 through int-3, inclusive.

093-000223-01 Licensed Material-Property 01 Data Ge~eral Corporation 5-7

RECORDING MODE Clause

RECORDING MODE IS

Where:

FIXED

{~~~~~~~SITIVE [DELIMITER IS Iit-71} [RECORD LENGTH IS id-2]

UNDEFINED

lit-7 is an alphanumeric literal which specifies a character that delimits the end of a record, replacing the
default delimiters.

id-2 is an integer data item that either specifies or receives a number of characters (see the following
paragraphs).

The RECORDING MODE clause specifies the record format used in the file. There are four different record
formats available through COBOL:

• fixed-length,
• variable-length,
• data-sensitive, and
• undefined-length.

If you specify FIXED, all records will have the same number of characters, the length of which is determined
by the size of the file's record area.

If you specify VARIABLE, you must specify a maximum length for the records in the RECORD LENGTH
clause. No two records in the file need to be the same length. However, they may not exceed the maximum
length (id-2), and they must never be less than 1. The system keeps track of both the maximum and the actual
length of your record. VARIABLE is the only record format you may use with simple and multilevel indexed
files.

If you specify OAT A-SENSITIVE, the length of a record is determined by the occurrence of some special
character(s) (lit-7). If you do not specify a delimiter character, the default characters are carriage return, line
feed, null, or new line. You may also set a maximum length for a data-sensitive record by specifying the
RECORD LENGTH clause. Count the delimiter as part of the record. COBOL uses the delimiter as the last
character in the record. Your program must remove the delimiter when necessary.

5-8 Licensed Material-Property 01 Data General Corporation 093-000223-01

()

()

If you specify UNDEFINED, you may treat your file as a sequence of bytes rather than a sequence of records
with a specific length. In this way, you may read any section within the file, regardless of the individual *
records' size. For each READ operation, COBOL reads one physical block. You can only use UNDEFINED
for an input magnetic tape file.

In all appropriate cases, if you omit the RECORD LENGTH clause, a record may not be more than the length
of the file's record area. If you do specify this clause, COBOL will store the number of characters read on
record input in id-2. On output in variable record format, id-2 will specify the number of characters you want
to write. On output in data-sensitive record format, id-2 specifies the maximum number of characters you
want to write and receives the number actually written.

If you omit the RECORDING MODE clause, the default is FIXED for sequential and relative files and
V ARIABLE for indexed files.

LABEL RECORDS Clause

Where:

[{
ASCII}] NATIVE [int-4]

LABEL RECORDS ARE S'fAiiIDARD
EBCDIC [int-5]
OMiffED

int-4 is a positive integer literal that indicates the level number of the tape, either 1, 2, or 3.

int-5 is a positive integer literal that indicates the level number of the tape, either 1 or 2.

For magnetic tape files (which must be sequential), the LABEL RECORDS clause specifies the kind of labels
you use for the file. COBOL supports ANSI Standard tape labels in levels 1 and 3, and IBM format tape
labels in levels 1 and 2. STANDARD means ANSI Standard labels; EBCDIC means IBM format labels. The
default levels (int-4 and int-5) are the highest for each type (3 for STANDARD, 2 for EBCDIC). Specifying the
highest level allows you to read any level on input. If you specify OMITTED, all records in the file are database .
records.

For all files except magnetic tape files, COBOL ignores the LABEL RECORDS clause. If you omit this clause
for a magnetic tape file, the default is STANDARD.

093-000223-01 Licensed Material-Property of Data General Corporation 5-9

VALUE OF Clause

VALUE OF [OWNER IS id-31

[EXPIRATION DATE IS id-41

[SEQUENCE NUMBER IS id-51

[GENERATION NUMBER IS id-61

[ACCESSIBILITY IS id-71

[OFFSET IS id-81

[VOLUME STATUS IS id-91

[USER VOLUME {~~~~~~SARE} id-JO, • ••]

[{ LABEL IS } .] USER TRAILER LABELS ARE /d-12, •••

Where:

id-3 is a I4-character alphanumeric data item that specifies the owner identification (lO characters for
EBCDIC).

id-4 is a 6-character data item that specifies the date after which the file is no longer valid. It takes the form
BYYDDD, where B is a space, YY is the year"in-century, and DDD is the day of the year.

id-5 is a 4-digit unsigned numeric DISPLAY data item that specifies the number of a volume in a volume
set.

id-6 is a 4-digit unsigned numeric DISPLAY data item that specifies a number to identify this file among
successive generations ofthe file.

id-7 is a I-character alphanumeric data item that specifies the restrictions placed on access to the file.

id-8 is a 2-digit unsigned numeric DISPLAY data item that specifies the number of characters you want
ignored at the beginning of each block.

id-9 is a 4-character alphanumeric data item that receives the current status of volume and label processing.

id-lO is a 76-character alphanumeric data item that specifies volume label information.

id-ll is a 76-character alphanumeric data item that specifies file label header information.

id-12 is a 76-character alphanumeric data item that specifies file trailer label information.

5-10 Licensed Material-Property of Date General Corporation 093-000223-01

()
1
~
~
4
~
4
l)
~
~
Ii

~i
Ii

1
I!
{
(I
(,

J!
~!
(!
/i
<,
ii
(I

() ~:
):

I

\
I
J

l

I
l
\ \0
\
\
\

t
\

I
(
I
)

I
l
\
)

}
i

\
\

I .

You.must declare id-lO, id-ll, and id-12 contiguously in working storage.

Use the VALUE OF clause to retrieve or write some of the information stored in the labels of a labeled
magnetic tape file. For all other files, COBOL ignores this option. COBOL always ignores the OWNER IS
and SEQUENCE IS options. The OFFSET IS option does not apply to EBCDIC labels.

Note that you specify volume and file identifiers for labeled magnetic tape files in the ASSIGN clause of the
file's SELECT clause.

The VOLUME STATUS clause receives a 0 or a 1 in each character position of id-9 following the execution of
every READ or WRITE statement, depending on whether the following conditions are false or true,
respectively:

Character 1: Volume change indicator. A transition from one volume to another has been made. The next
record accessed will be in the new volume.

Character 2: The system has processed a user trailer label.

Character 3: The system has processed a user header label.

Character 4: The system has processed a user volume label.

Volume transition and user label processing require no program or operator intervention, but you may monitor
the VOLUME STATUS item to give operator instructions or to modify the contents of the label items that will
be written on each volume.

DA T A RECORD Clause

COBOL always ignores this clause.

LINAGE Clause

[LINAGE IS id-II'-1 LINES [WITH FOOTING AT id-/;'-2 [[LINES A TTOP id""-1I [LINES AT BOTTOM id-II,-41]

Where:

id-lit-l is a positive integer literal or an unsigned integer data item that specifies the number of lines in the
page body.

id-lit-2 is a positive integer literal or an unsigned integer data item that· specifies the line number in the
page body where the footing area begins.

id-lit-3 is a Jsitive integer literal or an unsigned integer data item that specifies the number of lines in the
top m~rgin of the logical page.

id-lit-4

093-000223-01

is a positive integer literal or an unsigned integer data item that specifies the number of lines in the
bottom margin of the logical page.

Licensed Material-Property of Data General Corporation 5-11

*

i-

The LINAGE clause defines the format of a logical page in the file id-l. If you specify this clause, COBOL
assumes that the file is a print file, even if you did not specify PRINTER in the file's SELECT clause in the
Environment Division.

The LINAGE clause consists of four specifications:

• the body (id-Iit-l),
• the footing (id-lit-2),
• the top (id-lit-3), and
• the bottom (id-lit-4).

COBOL calculates the total logical size of a page as id-lit-3 + id-lit-l + id-lit-4. No correspondence is
established between a logical page and the physical size of the forms you are printing.

The size you specify for id-Iit-l includes the lines which COBOL may write or explicitly space per page by
executing ADVANCING clauses (which appear in output procedure statements).

COBOL automatically spaces the top and bottom margins according to what you specify in id-lit-2 and
id-lit-4. The value of an unspecified margin (either top or bottom) is zero.

The footing area of a page is generally the last few lines in the page (excluding the bottom margin). It is
usually used for printing end-of-page information (e.g., page numbers, footnotes, etc.). The value you specify
for id-lit-2 must be greater than zero, but less than or equal to id-lit-l. If you omit this clause, COBOL does
not create a footing area for any page in the file.

For example, if you specify the clause

LINAGE 7, FOOTING 5, TOP 2, BOTTOM 2

COBOL outputs what is shown in Figure 5-1.

If you omit the LINAGE clause, COBOL does not provide automatic formatting; it outputs characters as
specified by the I/O operations. For more information on formatting, see the section "Print File Formatting"
in Chapter 6.

5-12

--------_ .. - ... -----

_________________ } top margin

1----------------
2----------------
3----------------
4----------------

~~~~~~~~~~~~~~~~~} footing 
7 ----------------
-----------------
_________________ } bottom margin 

page body 

Figure 5-1. LINAGE Clause Example 

Licensed Material-Property 01 Date General Corporation 093-000223-01 



" 

I 
~ 

\ 
• I 

; 
) 
\ 
I 
I 
) 
I 
) 
\ 

> 

\ 

1 
i 

CODE-SET Clause 

( CODE-SET IS {

ASCII } Sl'ANDARD-1 
NATIVE FIELD IS 
EeCDIC [ {rn~j])"s ARE } 
a/ph 

id-14, ..• ] ] 

Where: 

a/ph is an alphabet name indicating that this file will use the collating sequence associated with the a/ph 
you defined in the Special-Names Paragraph of the Environment Division. 

id-14 is an alphabetic, alphanumeric, unsigned numeric, or group data item that is contained in one of the 
record descriptions you declared for the file and that specifies the data fields you want translated. 

The CODE-SET clause specifies the code set you want COBOL to use for a sequential file. If you omit this 
clause, COBOL will use the ASCII code (as specified in Appendix E). This is the code which the file system 
normally uses and which ECLIPSE COBOL programs use internally. ASCII, STANDARD-'!, and NATIVE also 
indicate that the system will record the file in ASCII code. EBCDIC means that the system will record the file 
in EBCDIC code (see Appendix E). If you specify EBCDIC, COBOL will translate data to or from ASCII 
when the COBOL program reads or writes the file records. 

If you specify the FIELDS clause, and you have selected EBCDIC to ASCII translation, COBOL will translate 
the data fields specified in this clause and will not translate any others. The fields you specify must be from 
only one record. If you omit the FIELDS clause, COBOL will translate all the data in the file. When you 
reference a field that is an array, COBOL will only translate the first data item. You must specify a higher 
level group name containing the array to reference the entire array. 

For EBCDIC to ASCII translation, you need not declare a packed decimal field in the CODE-SET clause if 
the field's encoded sign follows the same format as Data General's packed decimal with USAGE COMP-3. 

FEEDBACK Clause 

[FEEDBACK IS id-151 

Where: 

id-15 is a 4-byte data item that receives feedback information concerning the location of an indexed file's 
records. 

The FEEDBACK clause allows you to access specially formatted feedback information concerning the location 
of records in an indexed file. If you save the information obtained from one access to a file, you can use it to 
speed up future file accesses. You need feedback when you are writing a record in an inversion of an indexed 
file (see the READ, REWRITE, and WRITE statements in Chapter 7). 

093-000223-01 Licensed Material-Property of Data General Corporation 

l~ ________________ -======================================================---------~------~~---



1-

For example, if you declared id-I5 with PIC X( 4) for file FIL, then the following sequence of commands will 
insert the record in an inversion: 

READ FIL. 

(id-I5 now contains the 4-byte block of information.) 

WRITE FIL-INV INVERTED. 

The system uses the information contained in id-I5 to write the inversion. id-I5 is unmodified. 

You never need to explicitly reference the FEEDBACK item. 

PAD Clause 

[PAD CHARACTER IS id-lit-51 

Where: 

id-lit-5 is a single-character alphanumeric literal or data item that should specify a character to fill unused 
portions of a logical block. 

If you specify this clause, COBOL will always pad unused portions of your logical block with nulls (regardless 
of the character you specify). 

MERIT Clause 

[MERIT IS id-161 

Where: 

id-I6 is an integer data item that specifies the record. 

This clause specifies the merit factor of a record. If your INFOS file has Optimized Record Distribution 
enabled, the INFOS system will then select the volume that matches the record merit factor according to 
INFOS system conventions. The selected volume is usually the volume with a merit factor equal to or closest 
to, but lower than, the record merit factor. The INFOS system places the record on the selected volume. For 
more information on Optimized Record Distribution, see the INFOS System User's Manual (AOS). 

PARTIAL RECORD Clause 

[PARTJAL RECORD IS id-17 I 

Where: 

id-17 is an alphanumeric data item whose length defines the length of partial record data. It receives the 
partial record on every operation that accesses a data record (unless the partial record is suppressed). 

Through multilevel indexing, you can set up partial record index entries to hold frequently used data in an 
INFOS system index file. This saves time because you can access this information without accessing the 
database file. 

The size of the data item you specify in id-17 determines the length any partial record can have. This length 
cannot be larger than the maximum size of the partial record set at index or subindex creation time (up to 255 
characters). When COBOL accesses a data record for this file, it will return the partial record, if one exists, to 
id-17. 

5-14 Licensed Material-Property 01 Date General Corporation 093-000223-01 

o 



, 
\" 

Working-Storage Section 
Use the Working-Storage Section to describe data items that do not need an external file. Usually, you only 
need these items during program execution. 

Working-Storage as well as File Section entries use a hierarchical structure. Levels, starting with 01, describe 
records. Levels "nest", that is, a lower-level item is a component (analogous to a substring) of the data names 
physically above it in the source listing with lower-level numbers. 

For example: 

01 ALPHA 
02 BETA PIC XX. 
02 GAMMA PIC X(5). 

defines the record shown in Figure 5-2. 

The level numbers 01, 77, 66, and 88 have special meanings. 

Level 01 defines a new record. 

Level 77 defines a new record without any hierarchical structure permitted. 

Levels 66 and 88 are defined later in this chapter. 

You define the length of a record with its lowest level data items only. See "the Data Description Entry" later 
in this chapter for more details. 

ALPHA 

~~--.... -,~~--.... ~" 
~~ ..... ~.~ .. ~~~--........ ~~~ .......... -~~ 

BETA GAMMA 

80-02460 

Figure 5-2. Internal Data Structure 

Virtual-Storage Section 
You use the Virtual-Storage Section if your program must handle large amounts of data, more data than you 
can fit into available memory. To use virtual data, you must specify a Virtual-Storage Section immediately 
after your Working-Storage Section. Essentially, the Virtual-Storage Section is a Working-Storage Section 
that the compiler breaks up into 2K-(or more) byte pages and stores in a file. When your program needs one of 
these data items, it moves the entire page containing the data into an area in memory reserved for this purpose. 
When you reference another data item, the page containing the new information overwrites the old page in 
memory. 

093-000223-01 Llcenaed Material-Property of Date General Corporation 5-15 



* 

t 

All the rules that apply to an ordinary Working-Storage Section also apply to the Virtual-Storage Section. 
Please note these restrictions: 

• Your elementary (lowest level) data items cannot be more than 32,767 characters each. 

• You cannot access a group item greater than 32,767 characters. 

• You cannot use a virtual data item in a SELECT clause, or in an FD or SD entry. 

• You cannot use virtual data items in a CALL USING statement. 

Specifying a Virtual-Storage Section automatically activates the feature; you need take no action at compile or 
bind time. However, you may get a runtime error as a result of your Virtual-Storage Section: ERROR IN 
SHARED PARTITION SET. We have to explain more about what the system is doing to tell you what this 
error message means. 

When you specify a Virtual-Storage Section, the COBOL compiler creates a file called filename.VM. The 
compiler sets up all the section's initial values in this file. At runtime, the system must allocate to all the 
portions of your program the amount of main memory they will need. The system allocates what remains of 
your 64K bytes of available address space to Virtual-Storage in 2K-byte chunks. Then the system copies your 
.VM file into a temporary file called ?pid.CBL.VM.TMP. This temporary file, by the way, protects your 
virtual data frorn being accidentally modified by another user running the same program, and it may delay the 
start of your program's execution slightly while the system is creating it. 

At compilation time, the COBOL compiler looks at all the commands in your COBOL program that require 
virtual data. The system then checks whether the space it has reserved for virtual data is large enough to 
contain the virtual data it needs to execute your program's commands. COBOL must be able to load all the 
data items involving anyone command into memory simultaneously. For example, the MOVE statement 
requires that both the source and destination data areas fit into memory. Note that the space COBOL needs is 
not necessarily all the space implied by the statement. For instance, COBOL expands the statement MOVE A 
TO B, C, D into three statements: MOVE A TO B, MOVE A TO C, and MOVE A TO D. Therefore, 
COBOL does not require space in memory to fit all four data items simultaneously. 

To further complicate matters, the largest data item will not necessarily be the item that requests the most 
space in your program. The COBOL compiler breaks up virtu~l data items into 2K-byte sections (exactly 
2,048 bytes) contiguously in the source program list. The system places these overlays contiguously in a special 
file. 

If one data item sits on the border of two pages, the compiler will place it on both pages. When the program 
references that "split" data item, the program will contiguously load both 2K-byte pages in their entirety. If 
that data item is not on a page border, the system will load only the page on which it resides. Therefore, the 
largest data items are essentially those which cross the largest number of page borders. Consequently, you will 
find that reordering your data items and placing dummy fillers in the Virtual-Storage Section may enable a 
program that previously failed to successfully run. 

COBOL characters are all one byte long; however, COBOL always places level 01 and 77 data items on full 
word boundaries. This means that if you want to compute the placement of your data on its virtual pages, you 
must allow one byte per character and if a level 01 or 77 data item would have been on an odd-numbered byte, 
add 1. COBOL does not use the missing byte. 

For example, suppose we have 4K bytes of available memory space for Virtual-Storage (4,096 bytes). We then 
put four group items in the section: ALPHA-RECPTS, WK-TOTL, NRECS, and MO-TOTL. 
ALPHA-RECPTS is a group item with a fixed size of exactly 2,000 bytes. WK-TOTL cOntains 50 bytes, 
NRECS has 1,500 bytes, and MO-TOTL also has 1,500 bytes. 

'5-16 Licensed Meterlal-Property 01 Data General Corporation 093-000223-01 

o 



If you place the four groups in the Virtual-Storage Section in their above order, WK-TOTL will overlap a 
page border by 2 bytes. ALPHA-RECPTS will occupy the first 2,000 bytes of page O. (We call the first page 
page 0; ALPHA-RECPTS has the byte numbers 0 to 1,999). WK-TOTL will occupy the next 48 bytes of the 
first page (byte numbers 2,000 to 2047) as well as the first 2 bytes in page 1 (byte numbers 0 to 1). NRECS 
will then occupy the next 1,500 bytes in page 1 (byte numbers 2 to 1501), and MO-TOTL will overlap pages 1 
and 2. 

Thus, WK-TOTL and MO-TOTL both require 4K bytes of memory for the system to load them. WK-TOTL, 
the smallest physical item, needs the largest area of virtual memory space. Further, to load both MO-TOTL 
and WK-TOTL requires 6K bytes of memory (they share one page). Therefore, this program will generate an 
error at runtime (assuming only 4K is available). If, however, we create two dummy data items and insert 
them in the program, the program will run. 

Let's c,all the first dummy data item DUMMY-l and make it 48 bytes long. Now, we place this item between 
ALPHA-RECPTS and WK-TOTL. WK-TOTL will now reside entirely on page 1. Similarly, placing another 
dummy data item of 500 bytes between NRECS and MO-TOTL will place MO-TOTL entirely on page 2. 

Now, we have "wasted" 548 bytes in our virtual data file. However, we can now run our program with only 4K 
bytes of available memory. Also, when the system needs a virtual data item, it never needs to read in more 
than one virtual data page. In reality, we did not actually waste any space, since the system will always read in 
a 2K-byte page whether it is full or not. In effect, all we did was fill an undefined empty area in page 2 with a 
defined empty area. 

COBOL provides you with two utilities that can help you to optimize virtual data in your program: CSIZE 
and the 1M switch. 

CSIZE 
Use this format to invoke the CSIZE utility: 

CSIZE program name [.PR] 

If your program is a COBOL program, CSIZE will return the following: 

I. The number of shared pages your program uses. 
2. The number of unshared pages your program uses. 
3. The number of virtual pages in memory that your program requires to run. 

If your program is not a COBOL program, CSIZE will still return 1 and 2, but instead of 3, it will return the 
message NOT A COBOL PROGRAM. 

The CSIZE output looks like this: 

The program file programname.PR uses m unshared and n shared 0 byte pages for a total of p pages. 
The number of pages needed for virtual data is q. (m, n, 0, p, and q are integers.) 

The 1M Switch 
You may also specify the 1M switch at compile time to check your data. The 1M switch provides information 
about the location of all your data; it also tells you exactly how much your data overlaps a page boundary. See 
"The COBOL Map Switch" in Chapter 10 for details. 

Keeping track of where your page borders are in this fashion is a complicated task at best. However, this 
should make you understand how a seemingly innocuous rearrangement or deletion of a data item from your 
Virtual-Storage Section may cause a runtime error. This problem should arise only when your program and 
your data are both very large. We suggest that a more efficient solution would be to use ANSI standard 
segmentation to shrink the amount of memory you need for your program. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 5-17 

l 



Linkage Section 
You use the Linkage Section only if your program is a subprogram under the control of a CALL statement in 
another program, and if that CALL statement contains a USING phrase. The Linkage Section's structure is 
the same as that of the Working-Storage Section. It contains data description entries for items that are 
referred to by both the calling and called programs. COBOL does not allocate space in the program for these 
data items, but resolves them at runtime by equating the reference in the called program to the location in the 
calling program. The CALL statement in Chapter 7 and the section "Subprogramming" in Chapter 6 describe 
the COBOL subprogramming environment. 

Screen Section 
Data General's COBOL screen management Section allows you to control the position and appearance of the 
screens your program displays. You use a new Section in the Data Division, called the Screen Section, to do 
this. The Screen Section appears immediately after the Linkage Section. 

The Screen Section defines the appearance of data items on the screen and the position of data item inputs 
from the screen. You must initially define each of these data items in either your Working-Storage Section, 
Virtual Storage Section, or File Section. (However, you need not define literal strings in these sections). The 
Screen Section refers to these data names and displays them in their specified positions. You can also specify: 

• that the screen display will blink or the terminal bell will ring (audio tone) as the data items (or literals) are 
displayed, 

• that the user must fill each entry field on the screen, 

• that the user must entirely fill each entry field, and 

• that the user need not strike NEW LINE after completing a field to move onto the next field. 

You cannot reference an array in the Screen Section. The rules for a standard Data Division Section apply to 
the Screen Section. You can write all the clauses except the screen name, which must follow the level number, 
in any order. 

Do not use V or P in the PICTURE clause of a screen item. However, you can use V or P in a screen item's 
corresponding working-storage item. 

The DISPLAY and ACCEPT Commands 
Once you have defined your screens in the Data Division, use the DISPLAY and ACCEPT commands to 
display the screen you defined and accept data from the screen, respectively. Specify the name you gave to the 
screen in the Screen Section as the argument for DISPLAY or ACCEPT. You can specify either an 
elementary or a group item; COBOL will follow normal principles for which items to use. Use screen items 
with ACCEPT and DISPLAY commands only. Do not use them with any other commands under any 
circumstances. 

We discuss the DISPLAY and ACCEPT commands in Chapter 7. Read that chapter for a description of the 
full syntax and general use of the commands. The commands involve some special considerations when you use 
them with screens; we discuss them here. 

5-18 Licensed Material·Property of Data General Corporation 093·000223·01 

o 

o 

! 
\ 

! 
( 
\ 
\ 
1: y 
j 
I 



DISPLAY 

You will find descriptions of the FROM, TO, and USING clauses later in this section. DISPLAY acts in a 
special manner depending on these clauses. 

When you DISPLAY a screen group or item, an implicit move occurs for each elementary item. If the 
elementary item is an output item, your program moves data from the identifier or literal referenced in your 
FROM id or USING id clause to the screen field. If the elementary screen item has a TO clause but no 
FROM clause, then your program will move underscores to the field. These implicit moves follow normal 
COBOL MOVE rules with two exceptions: we allow numeric edited to numeric and numeric edited to numeric 
edited moves. 

When you DISPLAY a screen item that contains a FROM or USING data item clause, be sure to initialize 
data items before you DISPLAY them. Otherwise you will receive a runtime error. 

COBOL always executes screen DISPLAYs without automatic line advancing. 

ACCEPT 

When your program performs an ACCEPT-, an implicit move occurs for each elementary item; your program 
moves data from the screen field to the corresponding TO or USING data item. This implicit move follows 
normal COBOL MOVE rules with two exceptions: we allow numeric edited to numeric and numeric edited to 
numeric edited moves. 

When your program executes a screen ACCEPT, it displays the values that are currently in the screen 
section's data names as defaults. The program then positions the cursor at the beginning of the first field, and 
moves on to successive fields when the user strikes a delimiter key. If the user does not enter new data, but 
strikes a delimiter, the program retains the default. If the user does not completely overwrite the default 
information, the program retains the remaining trailing characters in the data item. You can avoid these 
situations with the ESC, CR, and EOL keys. You can also use different delimiter function keys to control your 
program. 

You may wish to use the ESCAPE KEY clause in the ACCEPT command within your program. The 
ESCAPE KEY clause represents a system-defined 2-digit data item. The number contained within the data 
item depends on which key was used to terminate the screen line. NEW LINE, ESCape, and the 8 unlabeled 
function keys across the top of a 6052 or 6053 keyboard are all valid terminators, generating different codes. 
Further, the function keys (not NL or ESC) will generate other codes if you strike the CTRL, SHIFT, or both 
keys along with a function key. Table 5-2 lists the terminators you can use and the codes they generate. 

Table 5-2. COBOL Screen Section Function Delimiter Keys 

Used with Function Key 

Fl F2 F3 F4 F5 F6 F7 F8 

Fn. Key only 02 03 04 05 06 07 08 09 
Shift key 10 11 12 13 14 15 16 17 
Control key 18 19 20 21 22 23 24 25 
CTRL & Shift 26 27 28 29 30 31 32 33 

ESC generates code 01. 
CR, FF, or Tab generates code 00. 

'--

093-000223-01 Licensed Material-Property 01 Data General Corporation 5-19 



Note that we use abbreviations in the text for some of the delimiter keys: 

Key 
Escape 
NEWLINE 
Form Feed 
Carriage Return 

Abbreviation 
ESC 
NL 
FF 
CR 

The EOL, CR, ESC, and function keys perform special functions when using the screen. EOL will initialize 
the field. If you do not wish to use the default field, pressing EOL will clear the default value. CR is a 
delimiter that clears all the characters to the right of the cursor from the current cursor position. However, be 
careful when you use it. If you type CR at the beginning of a field, you will delete the default information and 
fill the field with blanks; also, the program will move on to the next field unless you are using the REQUIRED 
clause for the field. If you are using the SECURE clause for a field, COBOL does not permit you to use a 
default value; the program will always display underscores. Striking the ESC or a function key enters all the 
information for the current ACCEPT up to and including the current entry. The ACCEPT command then 
terminates; the program will not accept information for the rest of the fields specified in the ACCEPT, and 
control passes to the next executable statement. 

Do not strike the BREAK key while executing a COBOL screen program; it will cause your process to hang. 

Your program always executes screen ACCEPTs without automatic line advancing. 

Syntax 

Here is the full format for the Screen Section; an explanation of each clause follows it. 

For Group Items: 

{ 01 screen-name [VIRTUAL] } 

level-no screen-name 

[AUTO] 
[SECURE] 
[REQUIRED] 
[FULL] 

For Literals: 

{ 
01 screen-name [VIRTUAL] } 

level-no screen-name 

[BLANK SCREEN] 
[BLANK LINE] 
[BELL] -
[BLINK] 
[LINE [NUMBER IS [PLUS] int]] 
[COLUMN [NUMBER IS [PLUS] int)) 
[VALUE IS lit] --

5-20 

For an Elementary Item: 

{ 
01 screen-name [VIRTUAL] } 

level-no screen-name 

[BLANK SCREEN] 
[BLANK LINE] . 
[BELL] 
[BLINK] 
[LINE [NUMBER IS [PLUS] int]] 
[COLUMN [NUMBER IS [PLUS] int]] 

PICTURE ISjOmwt { 

[BLANK WHEN ZERO] 
[JUSTIFIED RIGHT] 
[SECURE] 
[AUTO] 
[REQUIRED] 
[FULL] 

[FROM id-Iit] 
[TO id] 
[USING id] }] 

Licensed Material-ProperlY of Data General Corporation 093-000223-01 

o 

o 



Where: 

screen-name is any valid COBOL data name (that is not a reserved word) that specifies a screen name; if you 
omit the name, the item is a filler. 

level-no is a level number ranging from 01 to 49; it behaves exactly as in the other Data Division 
Sections. 

int is an integer that specifies a line or column position. 

lit is a literal you want to display. 

id-lit is a data item or literal that specifies an output field. 

id is a data item that specifies an input field. 

[VIRTUAL] 

This clause (on an 01 item only) places the screen in Virtual-Storage. See the "Virtual-Storage Section" 
earlier in this chapter for details. 

[BLANK SCREEN] 

This clause clears the screen and positions the cursor to line 1, column 1. COBOL always executes this clause 
first regardless of the positions of the other attributes in the screen item. This occurs only when DISPLAYing 
a screen. 

[LINE [NUMBER IS [PLUS] int ]] 

[COLUMN [NUMBER IS [PLUS] int ]] 

These clauses position the cursor on the screen. Four different possibilities exist for each clause: 

1. No instruction 

2. Only the command: LINE or COLUMN 

3. The command with a number: LINE m or COLUMN n 

4. The command with a plus: LINE PLUS m or COL PLUS n 

Furthermore, using one form of one clause may affect the other clauses. Table 5-3 shows the relationships 
between and the results of the different possibilities for these clauses. 

Note that the compiler resolves relative positions, therefore, line plus 1 refers to the previous item in the screen 
section, NOT the current cursor position. Items at level 01 default to line 1, colI. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 5-21 

l~ ____________________ ~======================================== ____________________________ __ 



Table 5-3. COBOL Line and Column Positioning 

LINE Clause COLUMN Clause Resulting Cursor Position On Screen 

No Instruction No Inst No Change 

COL Same Line, Column plus 1 

COLn Same Line, Column n 

COL PLUS n Same Line, Column plus n 

LINE No Inst Line plus I, Column 1 

COL Line plus I, Column plus 1 

COLn Line plus I, Column n 

COL PLUS n Line plus I, Column plus n 

LINE m No Inst Line m, Column 1 

COL Line m, Column plus 1 

COLn Line m, Column m .. 
LINE PLUS m 

COL PLUS n Line m, Column plus n 

No Inst Line plus m, Column 1 

COL Line plus m, Column plus 1 

COLn Line plus m, Column n 

COL PLUS n Line plus m, Column plus n 

COBOL always executes this clause after a BLANK SCREEN clause, if one exists, and before any other 
clause on a command line, regardless of its position on the line. 

[BLANK LINE] 

This clause erases all characters on the same line as the cursor from the cursor's current position to the end of 
the line. Using this clause does not change the position of the cursor. COBOL always executes this clause after 
executing BLANK SCREEN and Line/Column positioning clauses, if any exist, regardless of its position on 
the line. This occurs only when DISPLAYing a screen. 

[PICTURE IS format] 

This half of the PICTURE clause is identical to the standard COBOL PICTURE clause. However, in the Screen 
Section you must use the PICTURE clause in conjunction with one of the three following clauses: 

[FROM id-litJ 

This clause specifies the field as an output field. When a DISPLAY clause that references this command line 
appears in the Procedure Division, COBOL will display the data specified by id-/it on the screen at half 
intensity (dim). If an ACCEPT clause in the Procedure Division references this command line, COBOL will 
ignore the entire Screen Section command line and continue execution of the other screen items. 

5-22 Licensed Material-Property 01 Date General Corporation. 093-000223-01 

(j 

C)", 
" 



[TO id] 

This clause specifies the field as an input field. The clause follows rules for use that are opposite to those for 
the FROM clause. If you do not use a FROM clause on the same command line as the TO clause, when a 
DISPLAY clause that references this command line appears in the Procedure Division, COBOL will display 
underlines on the screen for the length specified by the Screen Section PICTURE clause at full intensity 
(bright). 

Use an ACCEPT command to enter data from the screen into id. 

[USING idJ 

This clause specifies the field for either input or output or both. The Procedure Division statement that 
references this clause determines its function. If an ACCEPT s.atement references it, the clause behaves in the 
same manner as the TO clause. If a DISPLAY statement references it, the clause behaves in the same manner 
as the FROM data-name clause, except that COBOL will display USING items at full intensity. 

You can use both the FROM and TO clauses on the same command line. This will give you the equivalent of a 
USING clause with the ability to enter data into a different data name from the data name containing your 
screen output. You may not use the USING clause on the same command line as either a FROM or a TO clause. 

[VALUE IS lit ] 
IJ· 

Use this clause to specify a literal that you wish to display. You must enclose the literal in quotes (literals are 
only alphanumeric fields). You cannot specify a PICTURE clause on the same command line with a literal 
string. 

[BLINK] 

This clause causes an output display to blink for elementary items. BLINK is not a group option. BLINK does 
not affect input fields. 

[BELL] 

This clause rings the terminal audio tone when DISPLAYing the field. 

[SECURE] 

As the user enters data into an input field, this clause echoes asterisks, instead of the actual characters, on the 
screen. COBOL echoes one asterisk for each character. If you use SECURE on an output field, COBOL will 
ignore the clause. If you use SECURE on a group item, all its subordinate items are SECURE. The user may 
not use a default value for a SECURE field. 

[AUTO] 

By specifying this clause, as soon as you fill an input field, the cursor will automatically move to the next field; 
you won't need to type NL. If there are no more input fields left, the ACCEPT statement automatically 
completes. If you use AUTO on an output field, COBOL will ignore the clause. If you use AUTO on a group 
item, all its subordinate items are AUTO. 

[REQUIRED] 

This clause requires you to enter at least one character into the input field. If you use REpUIRED on an output 
field, COBOL will ignore the clause. If you use REQUIRED on a group item, all its !\ubordinate items are 
REQUIRED. . 

093-000223-01 Licensed Materlal-Property of Date General CorporatIOn 5-23 



[FULL] 

This clause requires you to fill the entire length of the input field, or COBOL will ignore your NL. If you use 
FULL on an output field, COBOL will ignore the clause. If you use FULL on a group item, all its subordinate 
items are FULL 

[BLANK WHEN ZERO] 

This clause functions in the Screen Section in the same manner as it functions in the PICTURE clause. 

[JUSTIFIED RIGHT] 

This clause functions in the Screen Section in the same manner as it functions in the PICTURE clause. 

Figure 5-3 is an example of a COBOL program using screen formatting. Please note that #W in this program 
is a CALL PROGRAM option. For further information, see the CALL statement in Chapter 7. 

5-24 

IDENTIFICATION OIVISION. 
PROGRAM-ID. LOGON. 

* THIS IS THE STANDARD LOGON PROGRAM SUPPLIED ~ITH AOS COBOL. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 

DATA DIVISION. 
~ORKING-STORAGE SECTION. 
77 LINE-NUMBER PIC 99. 
77 PROGRAM-NAME PIC X(20). 
fill DATE-NO~. 

fIl3 YY PIC 99. 
03 MM PIC 99. 
fIl3 DO PIC 99. 

01 TIME-NO~. 
fIl3 HH PIC 99. 
fIl3 MA PIC 99. 
fIl3 SA PIC 99. 
fIl3 FILLER PIC 99. 

SCREEN SECTION. 
01 DATE-TIME-MENU. 

03 BLANK SCREEN" ". 
fIl3LINE 1 COLUMN 20 "AOS COBOL STANDARD LOGON PROGRAM". 
fIl3 LINE PLUS 2 COLUMN 28. 
fIl3 "DATE:". 
fIl3 PIC Z9 FROM MM OF DATE-NO~. 
fIl3 "I". 
fIl3 PIC 99 FROM DO. 
fIl3 "I". 
fIl3 PIC 99 "FROM YY. 
fIl3 LINE COLUMN 28 "TIME: ". 
fIl3 PIC Z9 FROM HH. 
fIl3 "I". 
fIl3 PIC 99 FROM MA. 
03 "I"". 
fIl3 PIC 99 FROM SA. 
03 LINE COLUMN 28 "TERMINAL NUMBER: " 
fIl3 PIC Z9 FROM LINE-NUMBER. 

Figure 5-3. COBOL Program Using Screen Formatting (continues) 

Licensed Material-Property 01 Date General Corporation 093-000223-01 



CPRINT 

01 MENU-l. 
03 LINE q COLUMN 28. 
03 "RUN PROGRAM: ". 
03 PIC X(20) USING PROGRAM-NAME. 

01 NO-PROGRAM-LIN~. 
03 LINE 23 BELL "PROGRAM NOT fOUND" BLINK. 
03 COLUMN 75 VALUE " " BELL. 

PROCEDURE DIVISION. 
B~GIN. 

ACC~PT DAT~-NOW FRO~ DAT~. 
ACCEPT TIME-NOw FROM TIME. 
ACCEPT LIN~-NUMBER FROM LINE NUMBER. 
DISPLAY DATE-TIME-M~NU. 

MOVE SPACES TO PROGRAM-NAME. 
DISPLAY MENU-1. 

ACC~PT MENU-1. 
IF PROGRAM-NAME: SPACES THEN 

GO TO B~GIN. 

CALL PROGRAM PROGRAM·NAM~. 
DISPLAY NO-PROGRAM-LINE WITH NO ADVANCING. 
CALL PROGRAM "#w". 
GO TO BEGIN. 
STOP RUN. 

Figure 5-3. COBOL Program Using Screen Formatting (concluded) 

The CPRINT utility allows you to print a hard copy of a screen image created with COBOL screen 
formatting. To print the screen image, your program must first send it to a filename. Use the command 

DISPLA Y screen-name UPON { "filename" } 
dev 

in your program. If you use dev, you must define a COBOL data name in your program in the Special-Names 
section that references an AOS filename. dev must take the form of a data name. This command causes your 
program to place a copy of the screen-name screen image in the file filename. However, filename will contain 
unprintable CRT-control characters; the line printer cannot format your screen correctly from this file. To 
create a file that you can print, specify this command from the AOS CLI: 

CPRINT[ / L = list filename J source filename 

This command tells the CPRINT utility to take the unprintable CRT-control characters in source filename 
and use them to format a printable output file. CPRINT places this output in list filename. If you do not 
specify the f L switch, CPRINT outputs the file directly to @LPT. 

093-000223-01 Licensed Material-Properly of Data General Corporation 5-25 



Data Types 
ECLIPSE COBOL provides five types of elementary data. (We describe data editing later on in this chapter.) 

• Alphabetic data consists of character strings that COBOL stores in 8-bit bytes of ASCII code. It may 
contain letters (A through Z) and spaces only. 

• Alphanumeric data consists of character strings, is stored like alphabetic data, and may contain any valid 
ASCII characters and <200> thru <377>. It is stored as a string of consecutive 8-bit bytes. 

• Alphanumeric edited data consists of ASCII character strings, is stored like alphabetic data, and provides a 
special mechanism to specify certain kinds of editing for data output. 

• Numeric data consists of character strings containing any combination of the numbers 0 through 9 and 
space. A space is equivalent to zero. The nine forms of numeric data are discussed below. 

• Numeric edited data consists of character strings containing any combination of the numbers 0 through 9, 
and provides a special mechanism to specify certain kinds of editing for data output. 

Numeric Data 
ECLIPSE COBOL provides nine types of numeric data: 

An unsigned decimal datum is an unsigned string of not more than 18 ASCII digits. (COBOL handles 16 or 
fewer digits more efficiently than it handles 17 or 18 digits.) This is the most efficient numeric data type. 

A decimal with trailing sign overpunch datum is a string of not more than 18 ASCII digits. The sign is 
indicated in the right-most (low-order) digit according to Table 5-4. The sign is handled by the hardware; you 
never manipulate it. However, you may examine the sign character if you write it to a file. This is the most 
efficient signed data type. 

A decimal with leading sign overpunch datum is the same as a decimal with trailing sign overpunch datum 
except that you indicate the sign overpunch in the leftmost (high-order) digit. 

Table 5-4. Sign Overpunch Characters 

Digit Positive Negative 

1 A J 

2 B K 

3 C L 

4 0 M 

5 E N 

6 F 0 

7 G P 

8 H Q 

9 I R 

0 <173> <175> 

5-26 Licensed Material-Property 01 Data General Corporation 093-000223-01 

o 



A decimal with trailing separate sign datum is a string of not more than 18 digits, plus one additional 
character position immediately to the right of the rightmost digit. This additional position contains a + if the 
datum is positive and a - if the datum is negative. 

A decimal with leading separate sign datum is similar to a decimal with trailing separate sign, but you specify 
the sign character immediately to the left of the leftmost digit. 

In all of the numeric forms above, the space character in any digit position represents a 0 digit. 

COBOL stores a packed decimal datum as a string of 4-bit half-bytes. Each half-byte, except the rightmost, 
contains a hexadecimal digit of 0 through 9; the remaining half-byte contains a hexadecimal C if the datum is 
signed or F if the datum is unsigned, or D if the value of the datum is negative. Because the string is always 
aligned on an 8-bit byte boundary, COBOL will pad the string on the left with an undefined half-byte if there 
are an odd number of half-bytes (in order to align the string). 

If you reference this data item as a numeric item, COBOL ignores the half-byte. Results are unpredictable if 
you reference this data item as a string of bytes or use it as a record key for an indexed (INFOS system) file. 
You can avoid this problem by always defining packed decimal items with an odd number of digits. 

A byte-aligned binary datum is a signed number that COBOL stores as a single, two's complement binary 
integer. COBOL uses as many 8-bit bytes as it needs to store the maximum numeric value of the datum. If a 
number is nonnegative, the leftmost bit is O. If it is negative, COBOL stores the two's complement of the 
number. The number of bytes required to store binary numbers for various decimal digit lengths is shown in 
Table 5-5. 

A byte-aligned floating point datum is a signed number in ECLIPSE hardware double-precision floating point 
format. COBOL may store it on any 8-bit byte boundary. 

An external floating point datum is an 8-byte signed number that COBOL stores as a string of 8-bit ASCII 
characters in the format 

{ +} 9(i).9(f)E+99 

where i and f are the number of integer and fractional digits, respectively. The number of integer and 
fractional digits must not exceed 16. 

COBOL regards several contiguous data items as a single data item which we call group data. You may group 
these data items t9 form larger groups, thus forming a hierarchical structure of data items. When you 
reference a group name (unless otherwise noted), COBOL treats the items of the group as alphanumeric data 
when MOVEing it. 

Table 5-5. Binary Number Storage 

Number of Decimal Digits Bytes Required 

1 or 2 1 

3 or 4 2 

5 or 6 3 

7,8,or9 4 

10 or 11 5 

12, 13, or 14 6 

15 or 16 7 

17 or 18 8 

093-000223-01 Licensed Material-Property of Data General Corporation 5-27 

* 



The Data Description Entry 
You must declare every data item in your program in a data description entry. In each entry, you specify a 
level number, a name, and a series of optional clauses that fully describe the data item. 

The data description entry has the format: 

into} {~tLER} [REDEFINES id-2] 

[ OCCURS [int-2 TO] int-3 TIMES [ DEPENDING ON id-3] [{ ~~~~~~6~~G} KEY IS id-4 •• • j [INDEXED BY id-5 • ••• ] ] 

[ 

~IS 

DISPLAY 
COMPUTATIONAL 
COMP 
COMPUTATIONAL-l 
COMP-l 
COMPUTATIONAL-2 
COMP-2 
COMPUTATIONAL-3 
COMP-3 
INDEX 
CuRSOR 

{ LEADING} [~IS] . TRAILING [SEPARATE CHARACTER] ] 

[ { SYNCHRONIZED} [LEFT ] ] 
SYNC RIGHT 

[ { JUSTIFIED} RIGHT ] 
JUST 

[~WHEN ZERO] 

[~ISid-litl. 

The data description entry consists of several optional clauses, which we will discuss separately. You must 
specify the level numbc;r, the data item name or the word FILLER, and either the PICTURE clause or the 
USAGE IS clause. Each data item name (id-I) you specify must be unique. The reserved word FILLER specifies 
an elementary data item in a record. You may never reference a FILLER item explicitly in your program. 

You may specify the clauses of a data description entry in any order with two exceptions: the data item name 
(id-I) or FILLER must immediately follow the level number, and, if you specify the REDEFINES clause, it must 
immediately follow the data item name. 

5-28 Licensed Material-Property 01 Date General Corporation 093-000223-01 

o 



. f\ 
\ 

Level Numbers 

. {idol } 
tnt-l FILLER 

Where: 

int-l is an integer with the value 01 to 49, or 77. It specifies either the hierarchy of the item within a logical 
record, or that the item is an elementary data item not part of a record. 

id-J is a data name that specifies the item you are declaring. 

y 0U specify level numbers to establish hierarchical relationships between data items. Increasing level numbers 
indicate decreasing positions in the hierarchy. You must state the level number as the first element in each 
data description. 

Independent data items are called records and may be either group or elementary items. You use level number 
01 to indicate a record. The maximum level number in a hierarchy is 49. The level numbers 01, 02, ... 09 are 
equivalent to 1,2, ... 9. ECLIPSE COBOL requires the leading zero to support tradition. 

When you declare a record and its data items, the subordinate items must immediately follow the group 
(higher level) item declaration, and must have level numbers greater than the number used to describe the 
group item. For example: 

01 A 
02 B 
02 C 

03 D 
04 E 
04 F 

03G 
03H 

02 K 
01 L 
01 M 

05 N 
10 P 

041 
04 J 

15 Q 

In this example, data items B, E, F, G, I, J, K, L, and Q are elementary items; none of them have subordinate 
items. All the others are group items. The elementary items E and F are subordinate to the group D; the 
groups D and H and the elementary item G are subordinate to the group C, which in turn is subordinate to A. 
The three items A, L, and M are independent items; they are not subordinate to anything else (except possibly 
an FD or SD entry) and they are not hierarchically related to each other. 

COBOL assigns special level numbers to identify certain entries where there is no real concept of levels. Level 
number 77 identifies noncontiguous elementary data items in the Working Storage or Linkage Section, and is 
equivalent to an OI-Ievel number. Level number 66 identifies a data item in a RENAMES entry. Level 
number 88 identifies a data item in a condition name entry. (Both level numbers 66 and 88 are discussed later 
on in this chapter.) 

093-000223-01 Licensed Material-Property of Data General Corporation 5-29 



REDEFINES Clause 

[ REDEFINES id-21 

Where: 

id-2 is a data name specifying the data item whose storage area you want to redefine. 

The REDEFINES clause allows more than one data name item to reference the same computer storage area 
even if the structure of each item is different. If you specify the REDEFINES clause, it must immediately 
follow id-J. In addition, the data item whose storage area you are redefining (id-2) must have the same level 
number as id-J. You may specify several successive redefinitions of id-2. each of which may reference either 
id-2 itself or one of the items that redefines id-2. You may not declare any data item with the same level 
number as id-2 and id-J between the declarations of id-2 and id-J (except those items which are other 
redefinitions of id-2). 

When you use REDEFINES at the 01 or 77 level, the number of character positions you declare does not have 
to be the same as the previous declaration of that storage area. The number of character positions allocated for 
the record is the number required by the largest record description given for that storage area. However, 
redefinitions of subordinate data items must specify the same number of character positions as the item you 
are redefining. 

For successive record descriptions following an FD or SD entry in the File Section, REDEFINES is 
automatically assumed; an explicit REDEFINES clause is not allowed at the 01 level in the File Section. You 
may not specify a REDEFINES clause for an item that has an OCCURS clause in its description. However, you 
may specify a REDEFINES clause for an item subordinate to an item declared with an OCCURS clause. In the 
latter case, COBOL references id-2 in the REDEFINES clause without subscript references. 

When you specify REDEFINES. neither the declaration of id-J nor the declarations of any of its subordinate 
items may contain a VALUE clause. Also, you cannot declare an OCCURS DEPENDING clause for either 
id-2, id-J, or any of their subordinate items. 

An example of record-level storage area redefinition is as follows: 

01 A 
02 B 

03C 
03D 

02 E REDEFINES B 
03 F 
03G 

04H 
041 

03 J REDEFINES G 
04K 
04 L 

02 M REDEFINES B 
03N 

(5 characters) 
(5 characters) 

(2 characters) 

(4 characters) 
(4 characters) 

(3 characters) 
(5 characters) 

(10 characters) 

In this example, COBOL allocates 10 character positions for A. The entire storage is defined in three ways (B, 
E, and M); and the last 8 positions of E are defined in two ways (G and J). 

The following is not permitted: 

01 A 
01 B 
01 C REDEFINES A 

because B declares intervening character positions. 

5-30 Licensed Material-Property 01 Data General Corporation 093-000223-01 

o 

o 



('1 
\ 

OCCURS Clause 

[ OCCURS [;"., TO I ;,,·3 TIMES [DEPENDING ON ~·3 [ [{ ~~~~~~:::~G} KEY IS ~·4, •• j [INDEXED BY ;d·5, ••• [ ] 

Where: 

int-2 is a positive integer literal used by the DEPENDING clause. 

int-3 is a positive integer literal that specifies the number of occurrences of dn as an entry in an array. 

id-3 is an unsigned integer data item that specifies a variable number of entries in an array. You may 
qualify it, but you cannot subscript it. 

id-4 is the name of the entry that contains the OCCURS clause or of an entry subordinate to that entry. You 
may qualify it, but you cannot subscript it. 

id-5 is an integer data item that receives information generated by COBOL. This name must be unique 
within your program. You must not declare it in the Working-Storage Section; COBOL declares it 
automatically. 

To declare an array, you must specify the OCCURS clause. If you want to declare an array with several 
dimensions or a subarray within an array, you may specify nested OCCURS clauses. The OCCURS clause 
indicates that the data item is repeated a number of times to form an array. 

An array is composed of elements which may be elementary or group data items, or both. All entries in the 
array, including all items subordinate to the data item being declared, have the same form. There is no limit to 
the number of elements a COBOL array may have. You reference each of these elements by appending a 
subscript either to a data name that specifies an individual element in the array or to a condition name 
associated with an array element. The value of the subscript must not be 0 and must not exceed the specified 
subscript limit (int-3). Subscripted references may appear in the Procedure Division of your program (see the 
section "Array Name Qualification" in Chapter 6). All references to elements in an array must be subscripted 
references. 

If you specify the DEPENDING clause, the associated data item must be the last item of its level in the record. 
For example, no item at the same level as E in this array follows E in record A: 

01 A. 
02 B PIC XXX. 
02 C. 

03 D PIC XX. 
02 E OCCURS 1 TO 50 TIMES DEPENDING ON J. 

03 E1 PIC X. 
03 E2 PIC XX. 

COBOL treats any group data item containing an OCCURS DEPENDING array as if it were a variable-size 
item. When you reference the group,item, your program references only that part of the array specified by the 
current value ofid-3 (i.e., from the t)rst through the nth entries, where n is the value of id-3). In the preceding 
example, if J contains 28 when a character string is moved into record A. only the first 28 E entries will receive 
data; the remaining 22 entries will be unchanged. A is (28*3)+5 characters long. 

If you specify the DEPENDING clause, you must specify int-2 and it must be less than int-3. When you execute 
your compiled program, the value of id-3 must not be less than int-2 nor greater than int-3. The value of id-3 
(or of int-2) does not affect subscripted references to items in an OCCURS DEPENDING array. 

The data item declared with the OCCURS DEPENDING clause must not be subordinate to an item declared 
with an OCCURS clause. Furthermore, you may not describe any subordinate item within the OCCURS 
DEPENDING array as an array. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 5-31 



t· 

In ANSI Standard COBOL, you specify the KEY clause for arrays used by a SEARCH statement. However, 
the SEARCH statement in ECLIPSE COBOL places no restrictions on data items that you may reference in 
the conditionals of a WHEN clause. Therefore the KEY clause is never required. If you specify it, COBOL 
checks for syntax, but otherwise ignores it. . 

The INDEXED 8Y clause automatically generates the data items id-5/, ... id-5. in the Working-Storage 
Section as if you had explicitly declared them as: 

01 IX-1 PIC 9(4) COMPUTATIONAL. 
01 IX-2 PIC 9(4) COMPUTATIONAL. 

Examples of Array Declarations 
01 AA OCCURS 5 TIMES, PICTURE X. 

A is an array of 5 single-character alphanumeric data items. 

01 A 
02 8 OCCURS 3 TIMES. 

03 C OCCURS 2 TIMES, PICTURE X. 

This two-dimensional array has the following structure: 

A: 8(1) 8(2) 8(3) 

C(1) 1,1 2,1 3,1 

C(2) 1,1 2,2 3,2 

01 A. 
02 8 OCCURS 5 TIMES. 

03 C PIC 99 COMPo 
03 D PIC X(12). 
03 E OCCURS 4 TIMES PIC 9. 
03 F PIC X. 
03 G OCCURS 10 TIMES. 

04 H OCCURS 8 TIMES. 
051 PIC XX. 
05 J PIC X. 

02 K PIC X(24). 

Item A includes a single item K plus an array B of 5 entries. Each of these entries includes a C item, a D item, 
an array of 4 E items, an F item, and an array of 10 G items. The G items are each composed of 8 I and J item 
pairs. B(I) is the first entry in the B array; J(5, 10, 8) is the last J item; E(5,I) is the first E item in the last B 
entry. 

5-32 Licensed Ma.rlal-Property of Da. General Corporation 093-000223-01 

() 



J 
r 

I 
I 
t 
\ 
i 

I 
\ 

\ 
\ 

PICTURE Clause 

[ {~URE} ISfo,mat ] 

Where: 

format is a valid combination of characters in the COBOL set. It specifies the size and type of the elementary 
data item id-l. 

The PICTURE clause specifies the length and data type of the elementary data item id-l. There are five 
categories of data for which you can specify the PICTURE clause: alphabetic, alphanumeric, alphanumeric 
edited, numeric, and numeric edited. Data editing is described later on. 

You must specify the PICTURE clause for all elementary data items with USAGE DISPLAY, 
COMPUTATIONAL, and COMPUTATIONAL-3. Use of this clause for elementary data items with 
USAGE COMP-i, COMP-2, CURSOR, and INDEX is prohibited. Use of the clause with group data items is 
also prohibited. 

The maximum number of characters you may write in a PICTURE string is 30. PIC is an equivalent name for 
PICTURE. 

Defining Alphabetic Items 
The PICTURE clause of an alphabetic item may contain only the picture symbol A and the editing symbols B, 
j, and o. It has the format: 

A(n) 

where n is an integer that specifies the length in characters of the item. You may specify the form as shown; 
for example, A(5), or you may write it out as AAAAA, or you may use a combination such as A(3)AA. 

Defining Alphanumeric Items 
The PICTURE clause of an alphanumeric item may contain only the picture symbols A, X, and 9. It has the 
format: 

X(n) 

where n is an integer that specifies the length in characters of the item. The string must include at least one X. 
You may specify the form as shown; for example X(4), or you may write it out as XXXX; or you may use a 
combination such as XXX(2). You may also coinbine the symbols A, X, and 9, such as: 

XA9X(2)A 

In this context, COBOL interprets As and the 9 as Xs, so the above example is equivalent to X(6). 

Defining Alphanumeric Edited Items 
The PICTURE clause of an alphanumeric edited item may contain only the picture symbols A, X, and 9 and 
the editing symbols B, 0, and j. It has the same format as an alphanumeric item, but must include at least one 
editing symbol. 

093-000223-01 Licensed Material-Property of Data General Corporation 5-33 



Defining Numeric Items 

The PICTURE clause of a numeric item may contain only the picture symbols 9, P, S, V, E, -, and +. Certain 
combinations of these symbols are allowed to create the various forms of this clause for numeric declarations. 
In all forms, the maximum length of the string is 30 characters, which may specify no more than 18 digits. 

If you are declaring a numeric data item that is an unsigned integer (i.e., that has no fraction or exponent 
part), use the format: 

9(n) 

where n is an integer that specifies the length in digits of the item. You may specify the form as shown; for 
example, 9(6), or you may write it out as 999999, or you may use a combination such as 9(4)99. 

The form to use for a signed numeric data item that is a signed integer is: 

89(n) 

COBOL allocates a character position for the symbol S, depending on the exact data type of the numeric data 
item (see the section "Numeric Data" earlier in this chapter). COBOL does not count the S in the size of the 
data item unless you specify the SIGN SEPARATE clause, described later on in this chapter. 

The form to use for a numeric data item which is a signed or unsigned real number, that is, it has a fractional 
and (optionally) a whole part, is: 

[8][9(n)]V9(m) 

where n is an integer that specifies the number of digits to the left of an implicit decimal point, and m is an 
integer that specifies the number of digits to the right of an implicit decimal point. 

The symbol V represents an implicit decimal point; that is, COBOL does not reserve space for it when storing 
the data item, but all calculations involving the item recognize the implied number of decimal places in the 
value. COBOL does not count the V in the size of the data item. 

The sign symbol S is optional when you are specifying a real number and COBOL treats a sign as it does in a 
simple numeric form. 

You may include scale factoring in the PICTURE clause of a signed/unsigned numeric data item by using the 
form: 

[8]9(n)P(m) or [8]P(m)9(n) 

where n is an' integer that specifies the number of digits to the left of an implicit decimal point and m is an 
integer that specifies the number of digits to the right of an implicit decimal point; or where m+n is the 
number of digits to the right of an implicit decimal point. 

The P symbol is an implicit decimal point that specifies leading or trailing digits (m) which are not present in 
the data item, but whose presence affects all calculations involving the data item. It scales the number by 
powers of 10. 

The symbol P may occur to the right or the left of 9s but not on both sides. The implicit decimal point is to the 
right of the rightmost P if there are Ps to the right of the 9s; it is to the left of the leftmost P if there are Ps to 
the left of the 9s. The V is redundant when used with Ps, but you may include it for readability. Thus, the 
picture strings 

99PP, PP99, and VPP99 

are valid, but 

PP99V, V99P, and PP9P 

are illegal. 

5-34 Licensed Material-Property 01 Data General Corporation 093-000223-01 

() 



~ 
\ 

The string 

999P(6) 

represents a number in the millions, though only the three leftmost digits are stored. 

P(3)9 

(equivalent to VPPP9) represents a number in the range of one to nine ten-thousandths, but COBOL stores 
only the single rightmost digit in the data item. 

You may describe a numeric data item in external floating point representation by using the format: 

+ 9(n)V9(m)E + 99 

where n is an integer that specifies the number of digits to the left of the implicit decimal point, and m is an 
integer that specifies the number of digits to the right of the implicit decimal point. 

The + indicates the position in which you may specify a sign (+ or -). If you omit the sign, COBOL stores a 
+. 
The E represents a character position occupied by the character E. You must specify the + and two digits 
following the E. They represent the sign and two digits of the number's exponent part. 

Defining Numeric Edited Items 

The PICTURE clause of a numeric edited item may contain only the picture symbols 9, P, S, V, E, -, +, and 
the editing symbols B, j, Z, 0, , (comma), . (period), *, CR (credit), DB (debit) and $. It has the same format 
as any of the numeric items, but must include at least one editing symbol. 

COBOL stores the value with decimal-point alignment, and with zero fill or truncation on either end as 
required Uust as it stores a value in ordinary numeric data items). COBOL bases the alignment on the picture 
and editing symbols that represent digit positions in the description. You may specify a maximum of 18 digits 
in any numeric edited item. 

Examples 

PICTURE IS A(10) 

Item is alphabetic and 10 characters long. 

PIC IS X(15) 

Item is alphanumeric and 15 characters long. 

PICTURE XA9 

Item is alphanumeric and 3 characters long. 

PIC 9999 

Item is unsigned numeric and 4 digits long 

PIC IS S9(6) 

Item is signed numeric and 6 digits long. 

PICTURE IS 9(5)V9(2) 

Item is unsigned numeric with 5 digits to the left of the implicit decimal point and two digits to the right. 

093-000223-01 Licensed Material-Property of Date General Corporation 5-35 



PIC IS S9(4)P(3) 

Item is signed numeric and 4 digits long, with scaling to a number in the millions. 

PICTURE +9(6)V9(4)E+03 

Item is external floating point and 10 digits long. 

Data Editing 
COBOL provides special editing features that you may include in the PICTURE clause of an alphabetic, 
alphanumeric edited, or numeric edited data item. All edited data items are character string items. The five 
basic editing operations are: 

• simple insertion, 
• special insertion, 
• fixed insertion, 
• floating insertion, and 
• zero suppression. 

Alphanumeric/Alphabetic Editing 

COBOL allows simple insertion editing with alphabetic and alphanumeric data items. The three editing 
symbols COBOL provides are: 

B Insert a space character. 

/ Insert a slash character. 

o Insert a zero digit. 

COBOL counts each of these editing symbols as occupying one character position in the data item. 

When COBOL transfers a character string into an alphabetic or alphanumeric edited item, it stores the 
characters into the positions of the data item (represented by picture symbol Xs) in turn from left to right. 
Positions of the data item pictured by insertion characters do not receive characters from the source string. 
Instead, COBOL stores a space, slash, or zero in the appropriate position(s). If you declared the edited item as 
purely alphabetic (all As) except for the insertion characters, COBOL also checks the source characters to 
verify that they are all letters and spaces. 

Examples: 

Source Characters 

"ABCDEFGH" 
"XYZ" 

Numeric Editing 

Picture for 
Data Item 

XXBXX/XXOXX 
ABA 

Data Item 
Result Value 

ABCD/EFOGH 
XY 

For all numeric edited items, COBOL provides the simple insertion characters B, /,0, and, (comma) as well 
as the special insertiQn character. (decimal point), the fixed insertion characters +, -, CR (credit), DB 
(debit), and $, the zero suppression characters Z and *, and the floating insertion characters +, -, and $. 

Table 5-6 lists the editing symbols allowed in the PICTURE clause of a numeric edited data item. All the 
numeric editing characters count as character positions in the data item. 

5-36 Licensed Malerial-Property 01 Data General Corporallon 093-000223-01 

() 

() 

I 

1 
\ 

oj 
I 
l 
) 



Table 5-6. PICTURE Editing Symbols 

Picture Symbol Editing 
Character Definition Function 

B Letter B Space insertion· 

/ Slash Slash insertion 

0 Zero Zero insertion 

. Decimal point Decimal point 
insertion 

, Comma Comma insertion 

+ Plus sign + insertion 

- Minus sign Blank or-
insertion 

CR Credit sign CR insertion 

DB Debit sign DB insertion 

$ Dollar sign Currency symbol 
insertion 

Z Letter Z Zero suppression 
by space 

* Asterisk Zero suppression 
by asterisk (*) 

The simple insertion characters B, /, and 0 function just as they do in alphanumeric edited items. The 
insertion character, inserts a comma at its position in the data item. It must not be the last character in a 
picture string. 

You may use the special insertion character. (explicit decimal point) in place of V (implicit decimal point) to 
represent the position of the decimal point in the number's value. COBOL will perform decimal alignment on 
the value it is storing (as with V) and will' insert the. character itself in the data item at the character position 
it defines. You must not use the P character if you use the explicit decimal point. Also, the period must not be 
the last character in a picture string. 

You may specify only one of the fixed insertion characters +, -, CR, or DB in a given picture string. If you 
specify the character + in the picture string, COBOL inserts a + or - character in the data item, depending 
on whether the value .being stored is negative or nonnegative. A single minus character in the picture string 
functions the same as the plus character except that COBOL inserts a space if the value is nonnegative. 

The + or -, if used, must represent either the leftmost or the rightmost character position in the data item. 
The CR or DB, if used, must represent the rightmost two character positions. 

If the value being stored is negative, the character pair CR in the picture string inserts the letters CR at the 
two character positions which it defines; otherwise, it inserts two spaces. The character pair DB functions the 
same as CR except that COBOL inserts DB if the value is negative. 

093-000223-01 Licensed Material-Property of Data General Corporation 5-37 



* 

If you specify the fixed insertion character $, it must represent the leftmost character position of the data item 
(except you may precede it by a single + or -). If you defined a different character as the program's currency 
symbol in the CURRENCY SIGN IS clause of the Special-Names Paragraph (the Environment Division), 
use that character as the currency symbol in the picture string. 

Both Z and * represent digit positions in the data item. You may use suppression symbols to represent either 
all of the digit positions in the data item, or any of the leading digit positions to the left of the decimal point. 

If the suppression symbols appear only to the left of the decimal point, COBOL replaces any leading zero in 
the data which appears in the position of a suppression symbol. Suppression terminates at the first nonzero 
digit in the data item or at the decimal point, whichever COBOL encounters first. COBOL also suppresses 
cominas or simple insertion characters which appear between or immediately to the right of suppression 
symbols if no nonzero digit has been stored to the left of their position. 

If you represent numeric character positions on both the left and right of the decimal point in the picture 
string by suppression symbols and the value of the data item is not zero, the result is the same as if the 
suppression characters were only to the left of the decimal point. If the value of the data item is zero and the 
suppression symbol is Z, COBOL will represent the entire data item as spaces. If the value is zero and the 
suppression symbol is *, COBOL will represent the data item as all *s except for the decimal point. For 
examples of the use of suppression symbols, see Table 5-7. 

Table 5-7. Suppression Symbol Examples 

Source Picture for Data Data Item 
Characters Item Resultant Value 

156 999VBOO 15600 

031475 99/99/99 03/14/75 

-2153.88 $9,999.99CR $2,153.88CR 

-3452000 9,999PPP+ 3,452-

-3452000 -$9,999PPP -$3,452 

26 $9990B $02600 

8950 $ZZZ,ZZZ.99 $008,950.00 

0.36 $ ••• , •• •. 99 $ •••••••. 36 

0 $ZZ9.99 $000.00 

52.5 +ZZZ.ZZ +052.50 

0 ZZZ.ZZ 000000 

0 • •• • 0 ..... 
456 ZZ/ /ZZ/ /99 000004//56 

56 ZZ/ /ZZ/ /99 0000000056 

5-38 Licensed Material-Property of Date General Corporation 093-000223-01 

o 

o 



F\ 
\ 

Floating insertion editing is a form of zero suppression in which One of the characters $, + or - "floats" across 
the suppressed zeros; COBOL inserts this character immediately before the' first unsuppressed digit. For 
example, moving the values 2000, 200, and 20 into an item with picture $$$$$ gives the results $2000, #$200 
and ##$20, respectively. You may use the following three kinds of floating insertion: 

+ (n) COBOL float-inserts a - or + character, depending on whether the value stored is negative or 
nonnegative. 

-(n) COBOL float-inserts a - character if the value stored is negative; otherwise only zero suppression by 
spaces occurs. 

$(n) COBOL float-inserts a $ character. If you defined a different character as the currency symbol (in the 
Special-Names Paragraph), you use that character in the picture string and COBOL inserts it in the 
data item instead of $. 

where n is greater than 1. 

The floating insertion characters must occur in strings of at least two characters. You may insert commas or 
simple insertion characters between floating insertion characters. COBOL counts commas or simple insertion 
characters which appear in or immediately to the right of the rightmost floating insertion character as part of 
the field through which the insertion character floats. Each position you fill with a floating insertion character 
represents a digit position, except for one -- COBOL reserves one position for the floating insertion character 
itself. 

There are two ways you' can define a floating insertion character: it can represent either all the digit positions 
in a picture string, or only those digits to the left of the decimal point. If the floating insertion characters are 
only to the left of the decimal point in the picture string, COBOL will place a single floating insertion 
character in the character position immediately preceding either the decimal point or the first nonzero digit in 
the data item (whichever is the leftmost). COBOL inserts spaces in all character positions to the left of the 
floating insertion character, except for those positions occupied by a fixed insertion character (+, -, CR, or 
DB). 

If floating insertion characters represent all numeric character pOSitIOns in the picture string, the result 
depends upon the value of the datum. If the value is zero the entire data item will contain spaces. If the value 
is not zero, the result will be the same as if the floating insertion characters are to the left of the decimal point. 

To avoid truncation, the minimum size of the picture string for a resultant data item must be the number of 
characters in the sending data item, plus the number of non floating insertion characters specified for that 
item, plus one for the floating insertion character. 

You may not combine zero suppression editing with floating insertion editing. For examples of floating 
insertion editing, see Table 5-8. 

Table 5-8. Floating Insertion Editing Examples 

Source Picture for Data Data Item 
Characters Item Resultant Value 

256 $$,$$$.99 $256.00 

-3170.50 $$,$$$.$$CR $3,170.50CR 

-8.5 ++++99.99 -08.50 

23456 ++++++ +23456 

-123456 -(6) -23456 

345 +$(3)999 +00$345 

093-000223-01 Licensed Material-Property of Data General Corporation 5-39 



USAGE Clause 

USAGE IS 

DISPLAY 
COMPUTATIONAL 
COMP 
CC5MPUT ATIONAL-1 
COMP-1 
COMPUTA TlONAL-2 
COMP-2 
COMPUTATIONAL-3 
COMP-3 
INDEX 
CURSOR 

The USAGE clause specifies the representation of a numeric data item in computer storage. The terms used in 
this clause and their meanings are: 

Usage 

DISPLAY 

COMPUTATIONAL 

Data Type 

Decimal or external floating point 

Binary 

COM PUT A TIONAL-l or Internal floating point (no PICTURE clause permitted) 
COMPUT A TIONAL-2 

COMPUT A TIONAL-3 

INDEX 

CURSOR 

Packed decimal 

Equivalent to PIC 9(4) USAGE COMPUTATIONAL 

Free cursor for DGjDBMS 

If you omit the USAGE clause, the default is USAGE IS DISPLAY. You may specify USAGE IS DISPLAY for 
alphabetic and alphanumeric data items, but the system will ignore it. . 

COMP, COMP-1, COMP-2, and COMP-3 are abbreviations for COMPUTATIONAL, COMPUTATIONAL-1, 
COMPUTATIONAL-2, and COMPUTATIONAL-3, respectively. 

If you specify the USAGE clause for a group data item, COBOL treats all items subordinate to that group item 
as if you had declared them with the same USAGE. If you explicitly declare a USAGE clause for one of the 
subordinate items, it must agree with the USAGE you gave at the higher level. 

If you specify USAGE IS INDEX for a group or elementary data item, you may not use the 
SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, or BLANK WHEN ZERO clauses in the data 
item's description entry. 

5-40 Licensed Material-Property of Data General Corporation 093-000223-01 

OJ 
j 

! 
1 

1 
~! 
11 

(I 

II 
~I 
I 
I 

.1 
(i 
<I 

11 .1 

ol! 
II 
li 
i i 
Ji 

li 
Ii 

~ i .1 
I' 

i! 
i 
! 

i 
1 

! 
\i 

Ii 
n 
!! 

1! 

I! 

() l! 
'- 1 

\ 



i , 
) 

1 
\ 
\ 
\ 
i 
\ 

! 
) 
\ 

\ 
" 

, 
\ 
\'. 

SIGN Clause 

[ {SIGN IS) { LEADING} 
TRAILING [SEPARATE CHARACTER) ] 

Indicate the SIGN clause when you must explicitly state the manner of sign representation in numeric data 
items for which you specified the S picture symbol and ~hich have USAGE IS DISPLAY. You may not specify 
the SIGN clause for a packed decimal, internal floating point, or binary numeric data item. The terms used in 
this clause and their meanings are: 

Sign Clause Sign Type 

SIGN LEADING Decimal with leading sign overpunch 

SIGN TRAILING Decimal with trailing sign overpunch 

SIGN LEADING SEPARATE Decimal with leading separate sign 

SIGN TRAILING SEPARATE Decimal with trailing separate sign 

If you omit the SIGN clause, the default is SIGN TRAILING. 

If sign overpunch data is called for, only the proper overpunch characters, A through R, <173>, and 
< 175> may occur in the overpunch fields. (COBOL does not treat any of the digits 0 through 9 as an implied 
positive sign if they occur in the overpunch field.) 

If you specify the SIGN clause for a group data item, then COBOL treats all items subordinate to that group 
item as if you had declared them with that same SIGN clause. If you explicitly declare a SIGN clause for one of 
the subordinate item~, it must agree with the SIGN clause you gave for the higher level. 

SYNCHRONIZED Clause 

[{ SYNCHRONIZED 
SYNC 

COBOL always ignores the SYNCHRONIZED clause. 

} [ LEFT ] . RiGHT 

093-000223-01 Licensed Malerial-Property 01 Data General Corporation 

] 

5-41 



JUSTIFIED Clause 

[ { JUSTIFIED} RIGHT ] 
JUST 

The JUSTIFIED clause specifies nonstandard positioning for an elementary alphabetic or alphanumeric data 
item (no editing specification is allowed). 

When you specify JUSTIFIED for a receiving data item that is smaller than the sending item, COBOL 
truncates the leftmost characters when MOVEing it. When you specify JUSTIFIED for a receiving data item 
that is larger than the sending data item, COBOL moves the data, aligning it with the rightmost character 
position, and space-fills the extra, leftmost character positions. 

You may not specify the JUSTIFIED clause for a data item described with the USAGE IS INDEX clause. 

The JUSTIFIED clause applies only to the MOVE verb. 

BLANK WHEN ZERO Clause 

[ BLANK WHEN ZERO 1 

The BLANK WHEN ZERO clause substitutes spaces for a numeric or numeric edited data item whose value is 
zero. 

You may not specify the BLANK WHEN ZERO clause for a data item described with the USAGE IS INDEX 
clause. 

VALUE Clause 

[ VALUE IS id-lit 1 

Where: 

id-lit is an alphanumeric literal or a figurative constant that specifies the initial value of id-J. 

The VALUE clause assigns an initial value to a data item. If the data item is an alphabetic, alphanumeric, 
alphanumeric edited, numeric edited, external floating point, or group data item, the VALUE clause must 
specify an alphanumeric literal. COBOL stores the initial value in the data item by performing a simple 
character string MOVE with no editing or right justification. Nonnumeric literals in a VALUE clause must not 
exceed the size of the item defined by the associated PICTURE clause. 

If the data item is a numeric item in a form other than external floating point, the VALUE clause must specify 
a numeric literal. COBOL stores the initial value in the data item according to MOVE rules. The literal may 
be a floating point literal only if you specify USAGE IS COMpo! or COMP-2. The value of a numeric literal 
in a VALUE clause must be within the range of values indicated by the associated PICTURE clause (including 
any sign), and must not have a value that would require truncation of nonzero digits. 

You may not specify the VALUE clause with group or elementary data items described with the USAGE IS 
INDEX clause. 

5-42 Licensed Material-Property of Data General Corporation 093-000223-01 

0 

() 

(\ 

ri 
i 
>.' 
i' )! 
\i 
(i 
(! 

\' 
j: 
(I 

\1 
(i 
~I 
Ii 
I' 
(I 

j! 
( 
(i 
Ii 
Ii ,i 
(I 

tl 

jit 

( 

! 
II 
Ii 

Ii 
1 , 
1 
<, 
I 

1 

( 

(! 

~ , 
l 
\ 

1 
\' 

1 
! 
( 
\ 
\ 

, 
\ 
(: , 
! 
I' , ' 



\ 
\ 
} 
I 

1 
\ 
l 
\ 
) 
\ 
} 

t 

\ 

In 
\ 

I 

Examples of Data Description Entries 
01 CUST-NAME, PIC X(16). 

Some values that could be stored in CUST-NAME are "JOHN WILLIAMSON" and "VANDERBILT, 
FRED". 

01 TOT-AMT, PIC S9(5)V99. 

The USAGE of TOT-AMT is implicitly DISPLAY and the sign is implicitly trailing overpunch. It is a 
7-character data item with the possible values: 

Real Value 

256.38 

-3200.85 

Stored 

002563H 

032008N 

01 TOT-AMT, PIC S9(5)V99, SIGN LEADING SEPARATE. 

has the possible values: 

Real Value Stored 

256.38 

-3200.85 

+0025638 

-0320085 

01 MILLIONS, PIC 9(3)P(6). 

has the possible values: 

Real Value Stored 

526,000,000 526 

01 TEN-THOUSANDTHS, PIC SVPP99. 

has the possible values: 

Real Value 

+0.0044 

-0.0033 

Stored 

4D 

3L 

01 NUM-GROUP. 
02 A, PIC S9(8)V999, 
02 B, PIC S9(12), 
02 C, 

USAGE COMPo 
USAGE COMP-3. 
USAGE COMP-2. 

In this example, A is a binary item requiring 5 bytes of storage. B is a packed decimal item filling 14 
half-bytes. If B contains the value -123456789012, COBOL stores it as the hexadecimal string 01, 23, 45, 67, 
89,01, 2D. Item C is a floating point biQary item requiring 8 bytes of storage. 

093-000223-01 Licensed Meterlal-Property of Date General Corporation 5-43 



01 EFP, PIC +99.99E+99. 

This is an external floating point item; it may contain values such as: 

Real Value Stored 

2.46 X 108 +02.46E+08 

88.5 X 10.2 +88.50E-02 

-3.24 X 10.16 -03.24E-16 

The RENAMES Entry 
The RENAMES entry permits alternate groupings of elementary data items by providing an alternate name. It 
has the format: 

66 id-J RENAMES id-2 [{ THRU } id-3 ] 
THROUGH 

Where: 

id-J is a data name that specifies the item you are declaring. 

id-2 is a data name that specifies a subordinate data item. It is part of the same record as id-3. 

id-3 is a data name that specifies a subordinate data item. It is part of the same record as id-2. 

The words THRU and THROUGH are equivalent. 

The RENAMES entry is actually a combination of a data description entry with a level number of 66, and a 
RENAMES clause. 

You may specify more than one RENAMES entry for a logical record. All RENAMES entries referring to data 
items within a given record must immediately follow the description of the last data item in that record. 

If you specify id-3, the data item id-J is the name of a group data item containing all character positions from 
the first position of id-2 through the last position of id-3. 

However, no data item may be subordinate to id-J if you specify the RENAMES clause. If you omit id-3, id-J 
is simply an alternate name for id-2. 

The character positions you define for id-3 (if you specify it) must be to the right of those defined for id-2. 
You must not have defined either item with an OCCURS clause or made either subordinate to an item with an 
OCCURS clause in its data description entry. 

You may qualify referen~es to id-J (see the section "Data Name Qualification" in Chapter 6) only by the 
name of the record (Ol-level item) or file with which it is associated. You may not use id-J itself as a qualifier. 

A 66-level entry cannot rename another 66-level entry, nor a 77-, 88-, or Ol-level entry. 

5-44 Licensed Material-Property 01 Data General Corporation 093-000223-01 



I 
\ 
I 
) 

\ 10 

I 
\ 
~ 

t 
) 

t 

\ , 

An example of data description entries which specify RENAMES entries is: 

01 A. 
02 B PIC X. 
02 C. 

030 PIC X. 
03 EPIC X. 

02 F PIC X. 
02 G. 

03 H PIC X. 
031 PIC X. 

66 Q RENAMES C. 
66 R RENAMES E THRU H. 
66 S RENAMES B THRU E. 

In this example, Q is 2 characters long, redefining D and E. R is 3 characters long, redefining E, F, and H. S is 
3 characters long, redefining B, D, and E. 

The Condition Name Entry 
Condition names provide a method for testing variables that gives greater readability in the Procedure 
Division. Set up a condition name by using a level 88 statement in the Data Division. 

88 id { VALUE IS } {. [{ VALUES ARE la-J 

Where: 

id is a condition name specifying a data item. 

THRU 
THROUGH 

lit-/ specifies the minimum value for id that gives a "true" result. 

lit-2 specifies the maximum value for id that gives a "true" result. 

} 1i1-2 n ... · 

The condition id is true if the preceding data item falls within the range of the literal(s) specified. 

End of Chapter 

093-000223-01 Licensed Material-Property of Data General Corporation 5-45 





1 

\ 

Chapter 6 
The Procedure Division 

Structure and Concepts 
The Procedure Division contains the algorithms that your program performs. It may contain both declarative 
and nondeclarative procedures. 

The Declaratives section is a set of procedures that, if specified, must appear at the beginning of the Procedure 
Division, must be preceded by the key word DECLARATIVES ,(followed by a period), and must end with the 
key words END DECLARATIVES (followed by a period). 

A nondeclarative procedure may consist of a paragraph, a group of successive paragraphs, a section, or a group 
of successive sections. We refer to both paragraph names and section names as procedure names. 

The following is a list of all the elements that may appear)n the Procedure Division, along with a definition of 
each: 

A section consists of a section header with the format: 

section name SECTION segment number. 

followed by one or more paragraphs, or zero or more sentences. The segment number refers to ANSI standard 
segmentation. The number indicates whether the section is resident or overlayable. It must be an integer literal 
in the range 1 through 99 inclusive. All segments with numbers 0 through 49 are resident; all those with 
numbers 50 through 99 are overlay segments. If you don't specify a segment number, 0 is assumed. You can 
alter the ranges of numbers which indicate resident and overlay segments by specifying a SEGMENT-LIMIT in 
the Object-Computer paragraph of the Environment Division (see Chapter 4). Segmentation concepts are 
discussed later on in this chapter. A section ends immediately before the next section, at the end of the 
Procedure Division, or, if it resides in the declaratives portion, at the key words END DECLARATIVES. 

A paragraph consists of a paragraph name, followed by a period, and zero or more statements or sentences. A 
paragraph ends immediately before the next paragraph name or section name, at the end of the Procedure 
Division, or, if it resides in the declaratives portion, at the key words END DECLARATIVES. 

A sentence consists of one or more statements followed by a period. 

A statement is a syntactically valid combination of COBOL words and symbols. It begins with a COBOL 
verb, and may (optionally) end with a period. It is the smallest executable unit of a COBOL program. If a 
statement begins with an imperative verb, one that unconditionally specifies an action for the system to take, 
we call it an imperative statement. We describe all Procedure Division statements in full detail in Chapter 7. 

A phrase is an ordered set of consecutive COBOL character strings that constitutes a portion of a COBOL 
Procedure Division statement. 

Generally, you should specify a section header or paragraph name in the A-margin of your program. Ho~ever, 
if you terminated the immediately preceding section or paragraph by a period, you may indent the section 
header or paragraph name. Do not write any other information (user-defined words, key words, etc.) in the 
A-margin of your program. 

093-000223-01 Licensed Malerlal-Property of Data Ganeral Corporation 6-1 



You may have either a simple or a sectioned Procedure Division in your program. A simple Procedure Division 
has the format: 

PROCEDURE DIVISION [USING id-J •. ../. 
paragraph-1 
paragraph-2 

paragraph-n 

A sectioned Procedure Division has the format: 

Where: 

PROCEDURE DIVISION [ USING idol • ••• I. 
t declaratives subdivision I 
section-1 
section-2 

sectlon-n 

id-J is a 01- or 77-level data item which you define in the Linkage Section of the Data Division and which 
specifies an argument. -

You specify the USING phrase only when the program functions as a subprogram with arguments, which is 
under the control of a CALL statement that passes parameters. We discuss subprogramming later on in this 
chapter. 

The declaratives subdivision is a series of procedures that your program invokes whenever I/O exception 
conditions occur. We discuss this subdivision, along with other error-handling mechanisms, later on in this 
chapter. 

Name Qualification 
Each user-defined name you include in your COBOL program must reference one element uniquely, either by 
the spelling of its name, or by its position within a unique hierarchy of elements. You reference the higher level 
elements in a hierarchy to qualify a user-defined name that appears in your program more than once. You 
must qualify each user-defined name sufficiently to make it unique. 

Procedure Name Qualification 
Paragraphs in the Procedure Division may have the same name if they appear in different sections. If you want 
to reference a paragraph that appears more than once in your program, you must qualify the paragraph name 
with the name of the section in which it appears. Use the format: 

If, in any given section, you reference an unqualified paragraph name which appears more than once in your 
program, COBOL assumes you are referencing that paragraph in the current s~ction. 

6-2 Licensed Material-Property of Dete General Corporation 093-000223-01 



\ 

i 

Data Name Qualification 
All datanames in the Working-Storage, Virtual-Storage, Screen, Subshema, and Linkage Sections and of 
index items defined in the INDEXED BY phrase of an OCCURS clause must be unique in a COBOL 
program. You may qualify the name of a subordinate data item in a hierarchy with the names of the higher 
level group items which contain it. You may qualify the name of a File Section record by the name of the file 
with which you associate it. The format for such qualification is: 

Id-/ [ { ~ } Id-2 ] • • • [{ ~ } firename ] 

You may specify a data name for more than one data item in a program if that name identifies data items at 
the same level. When you reference one of these data items, you must qualify it sufficiently to give it a unique 
identification. To do this, you specify a series of data names at successively higher levels. You need not include 
the names of data items at every level of the hierarchy, but must include enough to identify the data name 
uniquely. 

You may use a filename qualifier for those data items listed in the File Section of your program's Data 
Division. 

Given the following data description entries, 

01 A 
02 B 

03C 
040 

03 E 

02 F 
03C 

040 

some valid data name qualifications would be: 

OOF E 
o OF C OF B OF A 
EOF A 

some invalid data name qualifications would be: 

COF A 
OOF B 

Condition Name Qualification 
The switch status condition names in your program must be unique. As with data names, you must identify 
duplicate condition names in a form which makes them unique. The format to do so is: 

id-J [ {~} id-2 ] 

The data name may be the name of the data item with which the condition is associated, or the name of any 
group item to which that data item is subordinate. You may also qualify the data name itself according to the 
rules for data name qualification. 

093-000223-01 Licensed Ma1erlal-Proper\y of Da1e General Corporation 6-3 



* 

Array Name Qualification 
You use subscripts to reference an individual element in an array, a condition name associated with an array 
element, or an element in a table. The format to reference these items is: 

{id} (expr-l ,,,.) 

Where: 

id is a data item that specifies a data name or condition name. 

expr-l is any arithmetic expression that evaluates to an integer not less than I nor more than the number of 
occurrences you specified in the OCCURS clause associated with this item. 

You may qualify, but not subscript, the data name or condition name specifying the qualification before the 
left parenthesis of the subscript. For example, it is valid to write: 

C OF B OF A (I,J). 

If an OCCURS clause appears at only one level in a hierarchy, you specify one and only one subscript to 
reference elements or subordinate elements (or condition names associated with these) within that array. If 
two OCCURS clauses appear at nested levels within a hierarchy, then you must use two subscripts to 
reference items at and below the level of the second OCCURS clause. References to items at or below the first 
level of the OCCURS clause (but above the second) require one subscript. Similarly, with more than two 
OCCURS clauses at nested levels, COBOL associates the rightmost subscript with the innermost array; the 
next subscript to the left with the next higher level array, and so on. 

For example, given the data description entries: 

01 A 
02 B OCCURS 2 TIMES 

03C 
03 D OCCURS 3 TIMES 

04 E 
04 F OCCURS 2 TIMES 

The data structure is as follows: 

r 
B(l) 

I 
.A. 

C(l) D(1,2) 
D(1,I) 

A " , , , 
E(l,I) E(l,2) 

F(l,I,I) F(l,2,I) 

F(l,1,2) F(l,2,2) 

6-4 

A 

A 

" 
, 

D(l,3) C(2) 
D(2,I) 

~ A , , 
E(I,3) E(2,I) 

F(l,3,1) F(2,1,1) 

F(I,3,2) F(2,1,2) 

Licensed Malerial-Property of Dala General Corporalion 

, 
B(2) 

A , 
D(2,2) D(2,3) 

, " , ~ 
E(2,2) E(2,3) 

F(2,2,I) F(2,3,I) 

F(2,2,2) F(2,3,2) 

093-000223-01 

o 



\ 
I 
1 . 

Handling Arithmetics 
You may use the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements to perform 
arithmetic functions. COBOL automatically supplies you with several mechanisms to handle your data during 
calculations made in any of these arithmetic statements. They include the following: 

1. If the data descriptions of the operands in an arithmetic operation are not the same, COBOL performs any 
necessary conversion and decimal point alignment. 

2. During the execution of an arithmetic statement that involves more than one operation, such as 

COMPUTE A = (A + B) • (C + D) 

COBOL obtains intermediate results. The maximum number of digits of accuracy that COBOL can store 
for an intermediate result is 18. COBOL truncates any digits that exceed this number from the high-order 
end of the value. 

For example, let opl have the form 9(il).9(dl) and op2 the form 9(i2).9(d2). Then the number of decimal 
places in an intermediate result is determined by the following formulas: 

Operation Number of Decimal Places in Intermediate Result 

opl + op2 the maximum of d 1 and d2. 

opl * op2 dl + d2 

opl/op2 dl - d2 or the maximum number of decimal places in the result operands, whichever is 
greater. 

opl ** op2 dl * op2 if op2 is an integer; if op2 is not an integer, the intermediate result is a floating 
point value with 16 digits of true accuracy. 

3. The maximum size of any operand is 18 decimal digits. In an arithmetic operation, the composite of 
operands (which is a hypothetical data item resulting from the superposition of specified operands in a 
statement aligned on their decimal points) must not be longer than 18 decimal digits. 

4. In any COBOL arithmetic statement, you may specify more than one resultant item. If you do so, COBOL 
performs all calculations necessary to determine a result, and stores this result in a temporary location . 

. COBOL then transfers and/or combines the value of this temporary location with each individual 
resultant item. COBOL treats the resultant items in a left-to-right sequence. 

For example, the result of the statement 

ADD A, B, C TO C, D(C), E 

is equivalent to the statements: 

ADD A, B, C GIVING TEMP 
ADD TEMP TO C 
ADD TEMP TO D(C) 
ADD TEMP TO E 

where TEMP is an intermediate resultant item. 

093-000223-01 Licensed Material-Property of Data General Corporation 6-5 



5. When COBOL sends or receives items in an arithmetic, INSPECT, MOVE, SET, STRING, or 
UNSTRING statement, and these items share (overlap) part of their storage areas, the result of the 
statement's execution is undefined. An example of such a statement is: 

01 A. 
02 B. 

03 C PIC X. 
030. 

04 EPIC X. 
04 F PIC X. 

MOVE B TO D. 

6. Except in the case of ALPHABETIC and NUMERIC class conditions (described later on), when you 
reference a data item in the Procedure Division and the contents of that data item are not compatible with 
the class specified in the item's data description entry, the result of the reference is undefined. 

Common Arithmetic Phrases 
There are three optional phrases which may appear in the arithmetic statements of your program. They are 
designed to give you more control over the accuracy of the results that COBOL generates. 

The ROUNDED Phrase 

You may specify ROUNDED for any result of an arithmetic operation in the statements ADD, COMPUTE, 
DIVIDE, MULTIPLY, and SUBTRACT. COBOL calculates the result of an arithmetic operation and aligns 
the decimal point for storage in the resultant item. Then if the number of fractional places computed is greater 
than the number of fractional positions you allowed for, COBOL truncates the result to fit the resultant item. 
When you specify ROUNDED in an arithmetic statement, COBOL adds a 1 to the rightmost digit of the result 
if the most significant digit of the result's truncated portion is greater than or equal to 5. 

COBOL handles exponentiation using more than 18 digits in floating point notation. Rounding these results 
should improve accuracy. 

COBOL ignores the ROUNDED option when processing internal floating point items (COMP-l or COMP-2 in 
the PICTURE clause). 

For example if you store 1.284 in an item with PICTURE 9V99 with or without rounding, the result is 1.28. If 
you store 1.285 in the same item with rounding, the result is 1.29; without rounding the result is 1.28. 

If you store 2549 in an item with PICTURE 99PP with or without rounding, the result is 25. If you store 2550 
with rounding, the result is 26; without rounding the result is 25. 

The SIZE ERROR Phrase 

You may specify the SIZE ERROR phrase in the arithmetic statements ADD, COMPUTE, DIVIDE, 
MULTIPLY, and SUBTRACT. 

During the execution of an arithmetic statement, when the absolute value of any result, after decimal point 
alignment, is too large to fit in the number of decimal places allowed in the resultant item, a size error 
condition occurs. In this case, COBOL leaves the resultant item unchanged, but execution of the statement 
continues until COBOL has performed all operations and stored all satisfactory results. Then, if you specified 
the SIZE ERROR phrase, control will pass to the first statement in the SIZE ERROR phrase. 

If a size error occurs and you did not specify a SIZE ERROR phrase, the value of the resultant item(s) affected 
is undefined. 

If no size error condition occurs or if you omit the SIZE ERROR phrase, program control goes to the statement 
following the entire arithmetic sentence (including the statements in the SIZE ERROR phrase). 

6-6 Licensed Malerlal-Properly of Date General Corporallon 093-000223-01 

o 

o 



'" ; 

For example, given the data description ent~ies: 

01 A PIC S99, VALUE 60. 
01 B PIC S99, VALUE 60. 
01 C PIC S999, VALUE 260. 

and the procedure statements 

ADD A TO B, C; 
SIZE ERROR DISPLAY .. SE 1 ", 

STOP RUN. 

program execution proceeds as follows: 

1. A + B = 120; 
2. Note size error condition; 
3. B is left unchanged; 
4. A + C = 320; 
5. Store 320 in C; 
6. Display "SE1"; 
7. Halt. 

The CORRESPONDING Phrase 

You may specify the CORRESPONDING phrase in the Procedure Division statements ADD, MOVE, and 
SUBTRACT. If you specify this phrase, COBOL will process all items subordinate to the two group items you 
specify, if the names of those items correspond. For example, given the two group items dl and d2, a pair of 
their items correspond if: 

1. The word FILLER does not designate a data item in dl or a data item in d2. 

2. Both data items have the same data name and the same qualifiers up to, but not including, dl and d2. 

3. In an ADD or SUBTRACT statement, both data items are elementary numeric data items. In a MOVE 
statement, at least one of the data items is an elementary data item. 

4. No data items subordinate to dl and d2 contain REDEFINES, RENAMES, or OCCURS clauses 
(however, dl and d2 may contain REDEFINES or OCCURS clauses). 

For example, given the data description entries, 

01 A 1. 
02 C PIC X. 
02 D. 

03 EPIC X. 
03 F1. 

04 G PIC X. 
04 H PIC X. 

03 J PIC X. 
02 K PIC X. 

AND 

01 A2. 
02 K PIC X. 
02 D. 

03 EPIC X. 
03 F1 PIC XX. 
03 F2. 

04 H PIC X. 
041 PIC X. 

03 G PIC X. 
02 C PIC X. 

the MOVE CORRESPONDING statement 

MOVE CORR A 1 TO A2. 

is equivalent to 

MOVE C OF A1 TO C OF A2; 
MOVE E OF A1 TO E OF A2; 
MOVE F1 OF A1 TO F1 OF A2. 

093-000223-01 Licensed Material-Property of Data General Corporation 6-7 



Arithmetic Expressions 
An arithmetic expression can be 

• a numeric data item, 

• a numeric literal, 

• a combination of numeric data items and numeric literals separated by arithmetic operators, 

• two arithmetic expressions separated by an arithmetic operator, 

• an arithmetic expression preceded by a unary operator, or 

• an arithmetic expression enclosed in parentheses. 

Table 6-1 contains the COBOL arithmetic operators and their meanings. 

The unary plus operator has no effect on an operand. The unary minus negates the value of its operand. If you 
specify exponentiation and the number of fractional digits times the exponent exceeds 18, COBOL performs 
the operation in floating point, which results in approximations. If you specify ROUNDED on the result, you 
may improve the accuracy in items with DISPLAY usage. 

If you enclose an arithmetic expression in one or more sets of parentheses, the expression must have a balanced 
set of left and right parenthesis pairs. 

You must delimit all operators with separators. 

When you specify a series of data items and literals with intermixed operators and parentheses, the priority for 
evaluating the expression is: 

1. Elements within parentheses 
2. Negation 
3. Exponentiation from left to right 
4. Multiplication and division from left to right 
5. Addition and subtraction from left to right 

Examples of arithmetic expressions are: 

A 
(-OA) 
(A + 2) • 3 
1 + 2' 3" 2 (the value is 19) 

Table 6-1. Arithmetic Operators 

Operator Meaning 

+ addition or unary plus 

- subtraction or unary minus 

* multiplication 

/ division 

** exponentiation 

6-8 Licensed Material-Property of Data General Corporation 093-000223-01 I 

\; 
Ii 



I 
J 

Conditional Expressions 
COBOL provides both simple and compound conditional expressions. 

Simple Expressions 
A simple conditional expression is an expression that COBOL evaluates to either a true or false value. The 
kinds of simple conditional expressions that COBOL provides are relation, class, condition name, and switch 
status conditions. 

COBOL evaluates a relation condition as true or false depending on the operator you select and the result of 
the comparison. A relation condition has the format: . 

expr-llS [NOT] 

Where: 

EQUAL TO 
> 
GREATER THAN 
< 
LESS THAN 

expr-2 

expr-l. is an arithmetic expression, an alphanumeric literal, or an alphabetic or alphanumeric data item that 
expr-2 specifies an operand. 

If the operands are arithmetic expressions, the relational operators have their normal algebraic meanings. If 
the operands are alphanumeric items, COBOL compares the two items character by character, from left to 
right, until it either reaches the end of both items or finds a pair of different characters. In the former case, the 
expressions are equal; in the latter, they are not equal. If the characters of one item are exhausted before those 
of the other, COBOL uses spaces to continue the comparison. If the operands are mixed (numeric and 
alphanumeric), COBOL copies the numeric item to a temporary location and performs an alphanumeric 
comparison. 

If COBOL determines that a pair of characters is unequal, it tests for the conditions greater than or less than. 

Unfess you specify otherwise, COBOL executes the entire comparison using the character values defined by 
the program collating sequence in the Object-Computer paragraph of the Environment Division. 

If you specify NOT, COBOL inverts the evaluated result. 

You specify a condition name condition simply by stating the condition name. Its value is true if the value of 
the data item you associated with the condition name in its data description entry is equal to one of the values 
listed for that condition name; otherwise it is false. (For more information, see the section "The Condition 
Name Entry" in Chapter 5.) 

A condition name condition has the format: 

[ NOT] 0 condition name 

If you specify NOT, COBOL inverts the evaluated result. 

093-000223-01 Licensed Material-Property of Data General Corporation 6-9 

'~'--==--------------=============================================================================-------------



A class condition determines whether an operand is alphabetic or numeric, or, if it is numeric, whether it is 
positive, negative, or zero. A class condition has the format: 

idlS [NOT]O 

Where: 

ALPHABETIC 
NUMERIC 
POSITIVE 
NEGATIVE 
ZERO 

id is an alphabetic, alphanumeric, or numeric data item. 

If you specify ALPHABETIC, the condition is true if id is either alphabetic or alphanumeric with every 
character a letter or space. Otherwise, the condition is false. 

If you specify NUMERIC, the condition is true if id is either numeric or alphanumeric with every character a 
number. Otherwise, the condition is false. 

If you specify POSITIVE, NEGATIVE, or ZERO, and id is numeric, the condition is true if id has the stated 
algebraic value. Otherwise, the condition is false. 

If you specify NOT, COBOL inverts the evaluated result. 

A switch condition determines the status (ON or OFF) of a program switch. You specify the switch by a 
condition name in the Special-Names paragraph of the Environment Division, where you associate it with the 
ON or OFF status. In the execution command line of your program, you may specify switches I A, IB, IC, 
···IZ. If you append a switch to your program name, that switch has the status ON. Any switch you omit has 
the status OFF. A switch condition evaluates to true if the command-line switch is in the state corresponding 
to the switch's condition name. Otherwise, the condition is false. 

A switch condition has the format: 

[NOT] 0 id 

Where: 

id is the switch name. 

If you specify NOT, COBOL inverts the evaluated result. 

Compound Expressions 
You may combine the preceding types of simple conditional expressions into compound conditional 
expressions. These include 

• a conditional expression enclosed in parentheses (the parentheses must occur in balanced left-right pairs), 

• a conditional expression preceded by the unary operator NOT, or 

• two conditional expressions separated by one of the logical operators AND or OR. 

6-10 Licensed Material-Property 01 Date General Corporation 093-000223-01 

o 

o 



I , , 

\ 

I, 

In a series of conditional expressions with intermixed parentheses and logical operators, the order of 
precedence in the evaluation is: 

1. Elements within parentheses 
2. Negation (NOT) 
3. Conjunction (AND) 
4. Disjunction (OR) 

The logical operators and their meanings are shown in Table 6-2. 

Table 6-2. Logical Operators 

Operator Meaning 

NOT Logical negation: the value is true if the condition is false, and false if the 
condition is true. 

AND Logical conjunction: the value is true if both of the conjoined conditions 
are true, and false if one or both of the conjoined conditions are false. 

OR Logical inclusive OR: the value is true if one or both of the included 
conditions is true, and false if both included conditions are false. 

COBOL evaluates operators in this order: arithmetic, then relational, then logical. 

Given A= 1, B=2, C=3, D=3, and COND-I = true, the following occurs: 

Condition Value 

COND-1 AND A<B true 

COND-1 AND C<B false 

COND-1 OR C<B true 

NOT COND-1 false 

NOT B>D true 

NOT (A=B OR C=D) false 

NOT (A=B OR B=C) true 

You may abbreviate a compound conditional expression only if it contains simple conditional operands and 
logical operators. If the first' operand in each of the relational operations is the same, you may omit all but the 
first. Further, if all the relational operators are the same, you may also omit all but the first. 

For example, the statement; 

A=B AND A>C OR A NOT <D 

can be abbreviated as: 

A=B AND >C OR NOT <D 

093-000223-01 Licensed Material-Property of Data General Corporation 6-11 



The statement: 

A NOT=B AND A NOT=C 

can be abbreviated as: 

A NOT=B AND C 

You may not use parentheses in abbreviated compound conditional expressions. 

Subprogra~ming 
The COBOL subprogramming facility allows you to pass parameters from a calling program to the called 
subprogram. You establish parameter correspondence between calling and called programs by specifying 
USING phrases in both the CALL statement and the subprogram's Procedure Division header. 

The calling program's USING phrase contains the actual parameters that COBOL passes to the called 
subprogram. For example, given the calling program statement, 

CALL "SUBPRO" USING P1, P2, P3. 

P 1, P2, and P3 are data items declared in the Working-Storage Section of the calling program's Data 
Division. They specify the parameters you want to pass to the called subprogram. "SUB PRO" must be the 
program-id of the subprogram. 

The parameters in the called subprogram's USING phrase are dummy arguments that merely receive the 
parameters passed by the calling program. The names of the dummy arguments need not match those of the 
passed parameters. However, the number of parameters in the calling program must match the number of 
dummy arguments in the called subprogram. Parameter/argument correspondence is established on the basis 
of relative position within the USING phrases. 

Take the calling program statement we have previously indicated and the following section of the called 
subprogram, "SUBPRO". 

LINKAGE SECTION. 
01 A1 .. . 
01 A2 .. . 
01 A3 .. . 
PROCEDURE DIVISION USING A 1, A2, A3. 

A 1, A2, and A3 are argument data items declared in the Linkage Section of the called subprogram's Data 
Division. They must be 01- or 77-level items. They correspond to the parameters of the calling program in this 
manner: A 1 to P 1, A2 to P2, and A3 to P3. 

The sizes of corresponding parameters and arguments must be the same. However, the descriptions of the 
argument items given in the subprogram's Linkage Section does not have to exactly match that of the passed 
parameters. For example, you might describe P 1 as PIC X(50), but describe A 1 as an array of 24 
two-character entries with PIC 99 preceded by an independent PIC XX item. 

COBOL does not allocate any storage for the Linkage Section items. These items merely describe the 
subprogram's interpretation of data that resides in another program. The parameters are not physically passed 
to the subprogram. Instead, COBOL makes an association between the addresses of the parameters in the 
calling program and the descriptions of the arguments in the subprogram. Any change the subprogram makes 
to the data will also alter that data for the calling program, since control returns to the calling program after 
execution of the subprogram's EXIT PROGRAM statement. This means that the subprogram may return 
data to the calling program as well as receive it from the calling program. 

6-12 Licensed Material-Property of Data General Corporation 093-000223-01 

() 



. 
\ 
lr"\ 
~ ( , 

Segmentation 
Segmentation allows you to reduce a program's memory requirements by overlaying various procedures. When 
you use segmentation, you assign each section a segment number between 0 and 99; you assign this number in 
the section header (described earlier in this chapter). The number you assign determines whether COBOL will 
handle the segment as resident or overlayable. You may also use the SEGMENT LIMIT Clause of the 
Environment Division (see Chapter 4) to specify which segments of your program will be resident. All sections 
with the same segment number are a single segment. Resident segments are bound into the root context of the 
program file. Overlayable segments must share the same memory space, so COBOL brings segments into 
memory as needed. COBOL brings overlay segments into memory as you reference them for execution. 

Print File Formatting 
Because COBOL must intersperse printer control characters in output records, you must identify those files in 
your program that you want to be print files. You do this either by specifying PRINTER in the ASSIGN 
clause of the file's SELECT clause (in the Environment Division) and/or by specifying the LINAGE clause in 
the file's FD entry (in the Data Division). 

COBOL provides three format control features: the ADVANCING and AT END-OF-PAGE phrases in the 
WRITE statement for a sequential file, and the LINAGE clause in the FD entry for a sequential file. 

'The ADVANCING phrase specifies when and how much printer formatting should be done upon execution of 
a WRITE statement for the file. The file must be a print file. This phrase offers several options: 

1. Advancing to a position x lines ahead of the current position; 

2. Advancing to the next position on the line printer control channel; 

3. Advancing to the next form, or to the next logical page; 

4. Outputting the data before outputting the control information; 

5. Outputting the data after outputting the control information. 

For example, given the program: 

MAIN PRO. 
OPEN OUTPUT REP. 
WRITE REC FROM PHEAD AFTER ADVANCING O. 
PERFORM NEWGROUP. 
PERFORM REGULAR 2 TIMES. 
PERFORM SUBTOT. 
PERFORM NEWGROUP. 
PERFORM REGULAR. 
PERFORM SUBTOT. 
WRITE REC FROM PHEAD AFTER ADVANCING PAGE. 
PERFORM NEWGROUP. 
PERFORM REGULAR 3 TIMES. 
PERFORM SUBTOT. 
CLOSE REP. 
STOP RUN. 

NEWGROUP. 
WRITE REC FROM ITEM AFTER ADVANCING 3. 

REGULAR. 
WRITE REC FROM ITEM. 

SUBTOT. 
WRITE REC FROM TOTALS AFTER ADVANCING 2. 

093-000223-01' Licensed Material-Property of Date General Corporation 6-13 



COBOL outputs a report that looks like this: 

PHEAD (page 1) PHEAD (page 2) 

ITEM ITEM 
ITEM ITEM 
ITEM ITEM 

ITEM 
TOTALS 

TOTALS 

ITEM 
ITEM 

TOTALS 

The particulars of the ADVANCING phrase are fully explained in the section "WRITE for a Sequential 
File" in Chapter 7 . 

.If you specify the LINAGE clause in the print file's FD entry, COBOL automatically generates a special 
register called the LINAGE-COUNTER, which is defined as if you had declared it with the clause PICTURE 
9(6} USAGE DISPLAY. COBOL updates it to contain the number of the line within a page body where the 
print file is currently positioned. You may reference this register by specifying LINAGE-COUNTER and by 
qualifying it with the associated print filename. The following actions affect the LINAGE-COUNTER 
register: 

1. When you open a file, it is positioned at the first line of the logical page and LINAGE-COUNTER is set 
to the value 1. 

2. Upon execution of a WRITE statement, if you specify AFTER ADVANCING, COBOL positions the file 
ahead the number of lines you indicate, outputs the record, and then updates LINAGE-COUNTER to the 
new value of the current line. 

3. Upon execution of a WRITE statement, if you specify BEFORE ADVANCING, COBOL outputs the 
record, positions the file ahead the number of lines you indicated, and updates LINAGE-COUNTER to 
the new value of the current line. 

4. Upon execution of a WRITE statement, if you specify AFTER/BEFORE ADVANCING PAGE or 
AFTER/BEFORE ADVANCING x LINES, where x is larger than the number of lines available on the 
page, COBOL positions the file at the first line of the next logical page, and resets LINAGE-COUNTER 
to 1. 

We describe in detail how to specify the LINAGE clause in the section "S,ELECT Clause" in Chapter 4. 

You may specify the AT END-OF-PAGE phrase only if you specify the LINAGE clause. You use this phrase 
if you want to execute special statements should an end-of-page condition occur during an output operation. 
The execution of a WRITE statement that contains this phrase passes control to the first statement in the AT 
END-OF-PAGE phrase under two conditions: if the WRITE operation left the file positioned at a line in the 
footing area of the logical page, or if a page overflow occurred (more lines were specified for the page than 
were available). Chapter 7 discusses the use of the AT END-OF-PAGE phrase in the section "WRITE for a 
Sequential File". 

6-14 Licensed Material-Property 01 Date General Corporation 093-000223-01 

0" 
" 



\ 

\­
) 

t 
\ 
t 
t 
( 
; 
j 

n 
\ 

10 
) 

) 
\ 
I 
\ 
\ 

Indexed File Record Selection 
To reference records in an indexed file, you can use either keyed access, relative access, or a combination of 
both. COBOL provides three I/O statement options to perform both types of access for indexed file record 
selection: the position phrase, the relative option phrase, and the key series phrase. 

For example, you could use READ KEY Al to retrieve a record in a simple indexed file, and READ NEXT to 
retrieve the next record whose key value is greater than that of the last record referenced. In the complex 
multilevel indexed file in Figure 6-1, the statement READ KEYS AI, B2 obtains the record with key B2. If 
the file's record pointer is already positioned at the record with key BI or B2, the statement READ STATIC 
KEY B2 obtains the same record. The statement READ RETAIN POSITION, KEYS A2, B3 would get the 
record with key B3 without changing the file's record pointer from its setting at the record with key AI. 

SO-01088 

The Position Phrase 

MAIN 
LEVEL 
INDEX 

} 
SUBORDINATE 
LEVEL 
SUBINDEXES 

Figure 6-1. Multilevel Indexed File 

The position phrase allows you to override COBOL's automatic positioning of the record pointer to set a 
current position for a file. The position phrase has the format: 

[ {~AIN} POSITION] 

If you specify FIX, COBOL sets the record pointer for the file to the record referenced by the statement. If you 
specify RETAIN, COBOL leaves the record pointer for the file unchanged (i.e., at the position where it was last 
fixed). 

When COBOL executes a READ or RETRIEVE statement, it sets the file's record pointer to the record it 
accessed. You may override this by specifying RETAIN POSITION. 

When COBOL executes a DEFINE SUB-INDEX, EXPUNGE SUB-INDEX, LINK SUB-INDEX, 
REWRITE, VNDELETE, or WRITE statement, the record pointer remains on the last record for which it 
was set. You may override this by specifying FIX POSITION. The DELETE statement always sets the record 
pointer to the record before the one just DELETEd. The START statement always sets the record pointer to 
the record that is referenced. 

If you omit the POSITION phrase in a READ or RETRIEVE statement, the default is FIX; if you omit it in a 
DEFINE SUB-INDEX, EXPUNGE SUB-INDEX, LINK SUB-INDEX, REWRITE, or WRITE statement, 
the default is RETAIN. These default conditions permit programs using ANSI Standard COBOL features 
(without ECLIPSECOBOL I/O extensions) to run without modification. 

093-000223-01 Licensed Material-Property of Date Genaral Corporation 6-15 



The Relative Option Phrase 
Each time you access a key (and its associated database record), you can set a new current position at that 
key. Thus, by setting the current position with each processing operation, you may read a file sequentially 
using relative motion. Since all positioning in your file thereafter will be relative to your current position, we 
call this relative access or relative position processing. 

The relative option phrase references records in an indexed file, relative to the last setting of the file's record 
pointer. The format is: 

NEXT 
FORWARD 
BACKWARD 
UP 
DOWN 
UP FORWARD 
UP BACKWARD 
DOWN FORWARD 
STATIC 

NEXT and FORWARD are equivalent; they position the record pointer to the key with the next greater value in 
the current index. BACKWARD positions the record pointer to the next lower key in the current index. UP 
positions the record pointer up one index level to the entry which points to the current (subordinate) index. 
DOWN positions the record pointer down to the subordinate index pointed to by the current index entry. UP 
FORWARD, UP BACKWARD, and DOWN FORWARD are combinations of hierarchical motion followed by 
lateral positioning. STATIC retains the current position, letting you access the same key without changing 
position (see Table 6-3). 

50-01087 

6-16 

} 
INTERMEDIATE 
SUBINDEX 

Figure 6-2. Relative Access 

, 

} 
LOWEST 
SUBINDEX 

Licensed Material-Properly of Data General Corporation 093-000223-01 



For example, in Figure 6-2 the record pointer is positioned at B2. Exercising each of the relative options on 
that index will yield the following: 

Option 

FOR WARD (NEXT) 
BACKWARD 
UP 
DOWN 
UP FORWARD 
UP BACKWARD 
DOWN FORWARD 
STATIC 

The KEY Series Phrase 

Position 

B3 
BI 
A2 
Beginning of C index 
A3 
Al 
CI 
B2 

Keys explicitly reference a particular database record in an indexed file. The format of the KEY series phrase 
is: 

[ 
Where: 

KEY IS 
{KEYSARE} [ APPROXIMATE] } ••• ] 

GENERIC 

id is an alphabetic, alphanumeric, or unsigned numeric data item that specifies a record key associated with a 
file defined in a SELECT clause in the Environment Division. 

The value of the key data item at the time COBOL executes the I/O statement specifies the record being 
referenced. . 

For a simple indexed file or a simple inversion of an indexed file, you may specify only one key in any I/O 
statement referencing the file. For an indexed file with ALTERNATE RECORD KEYS, you may specify 
only one key. The key data item indicates which inversion of the file you want COBOL to use. In either case, 
you. may not use the relative option phrase. 

For a multilevel indexed file, you may specify several keys in a single I/O statement. Assuming that you do 
not specify the relative option phrase, the value, at the time COBOL executes the statement, of the first key 
data item specified indicates the entry in the highest index level of the file. The value of the second key 
specified indicates the entry in the subordinate index pointed to by the main-level entry; the value of the third 
key specified is the entry in the next lower level of the index, and ~o on. The example at the beginning of this 
section (READ KEYS AI, B2) illustrates this. 

If you specify APPROXIMATE for any key, the index entry accessed will be the one whose value exactly 
matches the value specified, if such an entry exists. Otherwise, it will be the entry whose value is the next 
larger. If you specify GENERIC for any key, the index entry accessed will be the first one in the index whose. 
leading characters match the value of the specified key. 

093-000223-01 Licensed Materlal-Property of Date General Corporation 6-17 



If you specify a KEY LENGTH item (in the file's SELECT clause) for a particular key data item, the value 
of the key length item determines how many of the leading characters of the key data item COBOL will use to 
determine a match in the key reference. 

Table 6-3 indicates where you may use the various relative options, and what effect the KEY series will have, if 
specified. 

Table 6-3. Relative Access 

Use with 
Option Position Without KEY Series Position With KEY Series 

ISAM DRAM 

FORWARD (or NEXT) X X Next entry in current index. --

BACKWARD X X Previous entry in current index. --

UP X Entry in higher level index that Same as without key series, then apply 
references current subindex. key series. 

DOWN X Position before the first record Subordinate index referenced by current 
in the subindex. index entry, then apply key series. 

UP FORWARD X UP, then next entry in that index. --

UP BACKWARD X UP, then previous entry in that --
index. 

DOWN FORWARD X First entry in subindex --
referenced by current index entry. 

STATIC X X Remain at current entry in current Apply key series in current index. 
index. 

Indexed File Record Options 
You use the RECORD options phrase with indexed files to tell the system to suppress the input or output of 
either the data record information or the partial record information (stored with the index entry), or both. The 
RECORD option phrase has the format: 

[SUPPRESS [PARTIAL RECORD] [DATA RECORD]] 

If you specify SUPPRESS PARTIAL RECORD in a READ, REWRITE, or WRITE statement, execution will 
not input or output the partial record associated with the referenced index entry. If you specify SUPPRESS 
DATA RECORD in a READ, REWRITE, or WRITE statement, execution will not input or output the data 
record associated with the referenced index entry. 

You may suppress both partial record and data record information in either order. You can use a READ 
statement specifying both partial and data record suppression to position the record pointer. A WRITE 
statement specifying both will make an index entry with no data; an entry that references only a subindex. Use 
record suppression to generate inversions for an indexed file. 

6-18 Licensed Material-Property 01 Date General Corporation 093-000223-01 

1 
~ 

~ 
i 

1; 

0·· I I! 

.. ) 



\ 

\ 

\ 

\0 

\ 

Handling I/O Exception Conditions 
COBOL can detect three exception conditions in the I/O statements of your program's Procedure Division: 

• reaching the end of a file during sequential processing, 
• supplying an invalid key when making a keyed reference to a file 
• encountering I/O error conditions, such as device errors and data errors. 

There are two facilities available to handle these errors. You may specify the AT END and INVALID KEY 
options in the appropriate I/O processing statements for a file. You may also specify the Declaratives Section 
at the beginning of the Procedure Division to process all exception conditions for any files or sets of files. 

The AT END Phrase 
You may specify the AT END phrase in a READ, START, or RETURN statement that is sequentially 
processing the data in a file. If an end-of-file condition should occur, normal processing will terminate and 
control will pass to the first statement in the AT END phrase. The end-of-file condition occurs when you reach 
the end of any subindex. In a SEARCH statement, an end-of-file condition occurs when the index exceeds the 
highest permitted occurrence number of the array you are searching. 

For the format and position of this option, see the specific Procedure Division statement in Chapter 7. 

The INVALID KEY Phrase 
You may specify the INVALID KEY phrase with any statement making a relative or keyed access to a file. 
Normal statement processing will terminate: 

• if a key does not exist upon execution of a READ, 
• if the key value is not numeric for a relative file, or 
• if a key already exists upon execution of a WRITE. 

Control will then pass to the first statement in the INVALID KEY phrase. 

Other invalid key conditions include referencing a relative position outside the bounds of a file and specifying 
an improperly formed key. 

For the format and position of this option, see the specific Procedure Division statement in Chapter 7. 

The Dedaratives Section 
COBOL invokes declarative procedures (specified as sections in a separate subdivision at the beginning of the 
Procedure Division) whenever I/O exception conditions occur. The two exceptions are if an end-of-file 
condition occurs in a statement containing an AT END phrase, or if an invalid key in a key series is 
encountered in a statement containing an INVALID KEY phrase. After execution of the Declaratives section, 
control passes to the point in the program following the statement whose processing encountered the exception 
condition. 

The format for the Declaratives section is: 

DECLARATIVES. 

{
section header , 

USE stateme~t 
section body.' 

END DECLARATIVES. 
section name. 

} 

The USE statement defines the conditions under which COBOL executes the associated Declaratives 
section(s). Each USE statement must be in a separate section. This statement is described along with other 
Procedure Division statements, in Chapter 7. 

093-000223-01 Licensed Material-Property of Data General Corporation 6-19 



I/O exception conditions that invoke declarative procedures are: 

• when the file system detects an I/O error (e.g., an error occurring when OPENing or CLOSEing a file), 

• when COBOL encounters an end-of-file condition while sequentially processing a file, or 

• when you supply an invalid key in the reference to a record in a relative or indexed file (including a relative 
position outside the bounds of the file, a key not present in an indexed file, or an improperly formed key). 

AOS COBOL permits referencing procedure names outside a section from inside that section and vice-versa. 
Exercise caution if you use this feature. This is a Data General extension to the ANSI Standard. 

COBOL File Status Data Items 
A file status data: item is a two-character data item that you specify in a file's SELECT clause (in the 
Environment Division). If you specify a file status data item, then any time you execute an I/O statement for 
that file, COBOL will store a status indicator in this data item. The values stored are shown in Table 6-4. 

Table 6-4. COBOL File Status Indicators 

Value Meaning 

00 Successful completion. 

02 Successful completion -- duplicate key entry written. 

10 End-of-file condition. 

22 Invalid key condition -- duplicate key not permitted. 

23 Invalid key condition -- selected record does not exist. 

24 Invalid key condition -- relative key value is too large. 

30 I/O error (such as data check, parity error, or transmission error). 

34 Disk overflow or physical end of file (end of a reel of tape). 

91 File does not exist (OPEN error). 

92 On access, file not open or not open in correct mode; on OPEN, file locked by previous CLOSE with 
LOCK option or file already open. 

93 WRITE verification error. 

94 On access, record locked; on OPEN, file already opened EXCLUSIVE; on OPEN EXCLUSIVE, file 
already opened. 

95 OPEN labeled tape error. On output, indicates volume specifier does not match tape; on input, indicates 
inconsistent label information. 

96 On access, record accessed has been previously marked as logically deleted, either locally or globally. 

97 REWRITE or DELETE attempted without executing previous READ for an indexed file with sequential 
access. 

99 INFOS error has occurred for which there is no corresponding file status code. The INFOS error code is 
in the INFOS status item, if you specified one in the file's SELECT clause. 

6-20 Licensed Material-Property of Data General Corporation 093-000223-01 

o 

( 
\ 

I 
( 
.... ,~. 

f! 

01 
~ 



\ 
\ 
I 
\ 

I 
\ 

\ 

If a nonstandard error occurs (an error with the status code 99) and you specified'-ll Declaratives section, 
control passes to this section to execute its procedures, then returns to the point in the program following the 
statement that caused the exception. If you did not specify a Declaratives section, the program terminates 
after displaying a fatal error message. 

INFOS Status Data Items 
An INFOS status data item is a data item you specify in a file's SELECT clause (in the Environment 
Division). If you specify one, then any time COBOL executes an 1/0 statement for the file, the INFOS status 
data item will contain the exception code that INFOS or the operating system returns. It will contain zero on a 
normal return. 

End of Chapter 

093-000223-01 Licensed Material-Property of Data General Corporation 6-21 



t 

()~ ..... I 
)1 

~ 

I 
" {I 

~I 

~I 
)1 
(i 
'I 

/1 
\1 
~, 
,I 
jl 
~I 

O /1 ... (! 

I! 
Ii 
Ii 
)! 
~ j 

!I 
1 i 
(I 

II 
~! 
il 
jl 
~! O· Ii 

\cc> \ ! 

jl 
!I 
JI 



) 
! 
I 

t 

I 
\ 

Chapter 7 
Procedure Statements 

This chapter includes a detailed description of all DGC COBOL procedure statements, arranged 
alphabetically by the COBOL verb that begins each statement. We present the purpose and format of each 
statement along with a discussion of its execution. References to several Procedure Division phrases and 
features appear in this chapter. We describe the basics of these features, but suggest you read Chapter 6 for 
more specific details. 

The following is a functionally organized summary of the procedure statements contained in this chapter. 

Arithmetic Operations 
ADD Sum two or more operands. 

COMPUTE Evaluate arithmetic expression. 

DIVIDE Divide one operand into others. 

MUL TIPLY Multiply one operand by others. 

SET UP/DOWN Variant form of ADD and SUBTRACT. 

SUBTRACT Subtract sum of one operand set from another set. 

Data Manipulation and Editing 
INSPECT Search and substitution within character string. 

MOVE Copy contents of data item with optional editing. 

SEARCH Search table for match with data item. 

SET Inverted form of MOVE. 

STRING Concatenate character strings. 

UNSTRING Parse a character string. 

093-000223-01 Licensed Material-Property of Date General Corporation 7-1 



Transfer of Program Control 
ALTER 

CALL 

CALL 
PROGRAM 

CANCEL 

EXIT 

EXIT 
PROGRAM 

GO 

IF 

PERFORM 

STOP 

Change the destination of a GO statement. 

Transfer control to a subprogram. 

Chain to a specified program. 

Restore subprogram to its initial state. 

Document end of PERFORM-type subroutine. No action performed. 

Return from called subprogram. 

Transfer of program control. 

Conditional transfer of program control. 

Execute subroutine with optional iteration. 

Terminate or suspend execution of a program's run. 

Console Input/Output 
ACCEPT 

DISPLAY 

File Handling 
CLOSE 

DEFINE 
SUB-INDEX 

DELETE 

DELETE 
FILE 

EXPUNGE 

EXPUNGE 
SUB-INDEX 

LINK 
SUB-INDEX 

OPEN 

7-2 

Input data from a device. 

Output data to a device. 

Terminate processing of files. 

Create subindex in indexed file. 

Remove record from indexed me. 

Delete a disk file. 

Delete a disk file (same as DELETE FILE). 

Delete subindex from indexed file. 

Provide shared subindex in indexed file. 

Initialize files for processing. 

Licensed Material-Property 01 Date General Corporation 093-000223-0 I 



0 READ" 

RETRIEVE 

REWRITE" 

SEEK 

START" 

TRUNCATE 

UNDELETE 

UNLOCK 

USE 

WRITE" 

Sort/Merge 
MERGE 

RELEASE 

RETURN 

SORT 

Miscellaneous 
ACCEPT 
DAYIDATEI 
TIME 

Input record from a file. "'C_'). 

Obtain information about a key in an indexed file. 

Write over existing record in a file. 

Position I/O system at next record in a relative file. 

Position record pointer in a file. 

Terminate record access in current sequential file block. 

Restore previously deleted record in indexed file. 

Unlock all the records of a file your process locked. 

Define procedures for I/O error handling. 

Output record to a file. 

Combine two or more files in sorted order. 

Output sort record. 

Input next sort/merge record. 

Sort one or more files in sorted order. 

Obtain calendar and time information. 

* These statements have separate descriptions for sequentially organized files, relative files, and indexed files. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-3 



ACCEPT 
Makes low-volume data (in particular, console input) available for input to a 
specified data item. 

Format 

ACCEPT {id-/ } [FROM id-lit 1 [lJiME-OLJTAFTER~ECONDSl [PN ESCAPE stmt 1 
screen-name ~ 

'''---

Where: 

id-l is a numeric or alphanumeric data item that receives the input. If id-l is a numeric data item, 
COBOL interprets the input data as external format numeric data (external floating point, 
except that the leading sign and exponent are optional). If id-l is not numeric, COBOL 
interprets the input data as an alphanumeric string. 

screen-name is a COBOL Screen Section screen-name. 

id-lit is an alphanumeric literal or a mnemonic name that specifies an operating system input device 
or file. 

id-2 is a data item that specifies the number of seconds you want COBOL to wait for a response. 

stmt is any COBOL imperative statement. 

Statement Execution 
The input data consists of a single line of characters, excluding the line terminator, or any beyond the 132nd 
character if you do not specify a line terminator. The ACCEPT statement transfers the input data to id-l. and 
converts it and edits it if necessary according to MOVE rules. (See the MOVE statement later on in this 
chapter.) 

If you specify a mnemonic name as the input device, you must define that name in the Special-Names 
paragraph of the Environment Division. If you do not specify an input device, the default is the current input 
console. 

If id-l is larger than the transferred data, COBOL left justifies the data when storing it. If id-l is smaller than 
the transferred data, COBOL stores only the leftmost characters of the data and ignores those characters that 
do not fit. 

If id-l is numeric, and the input data has more digits than are specified for id-l. COBOL decimal aligns the 
number and truncates the extra digits on the left as in a MOVE operation. This is a Data General extension to 
ANSI COBOL. 

7-4 Licensed Material-Property of Data General Corporation 093-000223-01 

o 



\ 

If you specify the TIME-OUT clause, COBOL will wait id-2 seconds for a response terminated by NEW-LINE. 
If the program does not receive a response in time, the ACCEPT terminates and control passes to the ON 
ESCAPE clause. COBOL will return code 99 in ESCAPE KEY. COBOL uses an extra task for the time-out 
routine. 

LINE NUMBER is a 2-digit number representing the console at which the pmgram is currently running. 

ESCAPE KEY contains a 2-digit code generated by a termination key. 

LINE NUMBER and ESCAPE KEY are designed primarily for use with COBOL screen management. 

Examples 
Example 1 

ACCEPT YOUR-NAME FROM READ-ER. 

Upon execution of this statement, the program pauses. It waits for you to input a string of characters (possibly 
null) followed by a NEW LINE, from the device associated with READ-ER in the Special-Names paragraph 
of your program's Environment Division. 

Example 2 

ACCEPT IN-NAME. 

If you input ME at the input console, and IN-NAME is defined as PICTURE X(4), COBOL stores ME## in 
IN-NAME. 

Example 3 

ACCEPT NUMBR. 

If you input 012345 at the input console, and NUMBR is defined as PICTURE 9(4), COBOL stores 2345 in 
NUMBR. 

093-000223-01 Licensed Materlal-Proper1Y 01 Data General Corporation 7-5 



ACCEPT DA TE/oA Y ITIME 
Obtains calendar and time-of-day information current at the execution 
of the statement. 

Format 

Where: 

DATE 
DAY 

ACCEPT idFROM TIME 
LINE NUMBER 
ESCAPE KEY 

id is a data item which receives the day, date, or time, and whose length depends on the function selected. 

Statement Execution 
DATE, DAY, and TIME are unsigned integer data items automatically supplied by the operating system. This 
statement transfers the specified data item to id according to MOVE rules. (See the MOVE statement later on 
in this chapter.) 

DATE is a 6-digit number representing the current date in the form YYMMDD, where YY is the year, MM is 
the month, and DD is the day. For example, you would interpret 770901 as September 1, 1977. 

DA Y is a 5-digit number representing the current Julian date in the form YYDDD, where YY is the year and 
DDD is the day of the year. For example, you would interpret 77244 as September 1,1977. 

TIME is an 8-digit number representing the time of day, based on a 24-hour clock. The form is HHMMSSOO, 
where HH is the hour, MM is the minute, SS is the second, and 00 are hundredths of a second. For example, 
you would interpret 16350000 as 4:35 P.M. Hundredths of a second are always zero. 

LINE NUMBER and ESCAPE KEY are useful with COBOL screen management. LINE NUMBER is a 
2-digit number representing the terminal at which the program is currently running. ESCAPE KEY contains 
the 2-digit code generated by the last termination key you used. 

Example 
ACCEPT TO-DAY FROM DATE. 

If the current date is October 17, 1977, and you defined TO-DAY as PICTURE 9(6), the value stored in 
TO-DAY is 771017. 

7-6 Licensed Material-Property of Data General Corporation 093-000223-01 

o 

o 

o 



ADD 
Sums two or more operands and stores the result. 

Formats 

ADD TO: 

ADD id-lit, • •• TO {id-l [ ROUNDED] } ••• [ ON SIZE ERROR stmt] 

ADD GIVING: 

ADD id-lit, • •• GIVING { id-2 [ROUNDED] } ••• [ON SIZE ERROR stmt] 

ADD CORRESPONDING: 

ADD {CORRESPONDING} id-3 TO id-4 [ROUNDED] [ON SIZE ERROR stmt] 
CORR 

Where: 

id-lit is a numeric literal or a numeric data item that specifies an addend. 

id-J is a numeric data item that specifies an addend and receives the result of an ADD TO operation. 

stmt is an imperative statement to which control passes if a size error condition occurs. 

id-2 is a numeric data item or a numeric edited data item that receives the result of an ADD GIVING 
operation. 

id-3 is a group item containing addends that are numeric data items. 

id-4 is a group item containing numeric data items corresponding to those in id-3. 

Statement Execution 
An ADD TO statement sums the addends and then maintains their sum as a constant through the remainder of 
the operations. Execution proceeds by adding this constant to the current value of id-J and storing the result in 
id-J according to MOVE rules. (See the MOVE statement later on in this chapter.) This process repeats itself 
for each operand following the word TO. 

An ADD GIVING statement sums the addends and stores the result, according to MOVE rules, in each id-2 
that follows the word GIVING. 

An ADD CORRESPONDING statement adds data items in id-3 to corresponding data items in id-4 storing the 
results in the id-4 data items according to MOVE rules. COBOL operates on each pair of data items as if you 
had specified an ADD TO for that pair. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 7-7 



ADD (continued) 

Correspondence occurs according to the rules for the CORRESPONDING phrase (see the section "The 
CORRESPONDING Phrase" in Chapter 6). CORR is an abbreviation for CORRESPONDING. 

If you specify ROUNDED, and COBOL truncates the result of this operation to fit the given resultant item, it 
performs the rounding as follows: COBOL adds a 1 to the rightmost digit in the result item if the most 
significant digit of the truncated portion is equal to or greater than 5. 

If you specify the SIZE ERROR phrase and if the absolute value of any result, after decimal point alignment, is 
too large to fit in the number of decimal places you allowed in the resultant item, then the resultant item 
remains unchanged. The ADD statement completes any remaining operations, stores all satisfactory results, 
and then transfers control to sImI. If you omit this phrase or if no size error condition occurs, control passes to 
the first executable statement following the ADD sentence. 

Examples 
Example 1 

ADD A TO B. 

If A = 4 and B = 3, the result is B = 7. 

Example 2 
.. 
ADD A1, A2, A3 TO B1, B2. 

If Al = I,A2 = 2,A3 = 3,BI = 4,andB2 = 5, the result is BI = IOandB2 = 11. 

Example 3 

ADD A 1, A2, A3 GIVING B 1, B2. 

If Al = 1, A2 = 2, A3 = 3, BI = 4, and B2 = 5, the result is BI = 6 and B2 = 6. 

Example 4 

ADD CORRESPONDING A TO B. 

If 

01 A. 
02 A 1 PIC 99 VALUE 1. 
02 A2 PIC 99 VALUE 2. 
02 A3 PIC 99 VALUE 3; 

01 B. 
02 A1 PIC 99 VALUE 4. 
02 B2 PIC 99 VALUE 5. 
02 A3 PIC 99 VALUE 6. 

the result is Al of B = 5, A3 of B = 9, and B2 of B is unchanged. 

Licensed Material-Property of Date General Corporation 093-000223-01 



ALTER 
Changes the destination of a GO TO statement. 

Format 

Where: 

para 

para-sect 

ALTER {paraiTO [PROCEED TO] para-sect} ••• 

is the name· of a paragraph in the Procedure Division that contains a single sentence consisting of 
a simple GO TO statement. 

is the name of a paragraph or section in the Procedure Division. 

Statement Execution 
The ALTER statement modifies the GO TO statement in each para you specify so that subsequent executions 
of these paragraphs will transfer control to the corresponding para-sect. 

CAUTION: Do not use ALTER in new program development because this statement will most likely be 
deleted from the next revision of the ANSI COBOL standard. It is also poor programming 
style. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-9 



CALL 
Transfers control to a specified subprogram. 

Format 

{ 
id-J } 

CALL "lit" [USING id-2, ••• J [ ON OVERFLOW stmt J 

Where: 

id-J is an alphanumeric data item that specifies the program id of a COBOL subprogram you want to 
transfer control to. 

lit is an alphanumeric literal that specifies the program id of a subprogram you want to transfer control 
to. 

id-2 is a data item that is defined in the Working-Storage Section, File Section, or Linkage Section and 
that specifies a parameter you want to pass to the called subprogram. 

stml is an imperative statement to which control passes if an overflow condition occurs. 

Statement Execution 
A called subprogram is in its initial state the first time you CALL it within a specific execution of your 
program and the first time you CALL it after a CANCEL statement is executed for that subprogram. (See the 
CANCEL statement later on in this chapter.) On all other entries during that execution, the state of the called 
program, (including all data items, the status and positioning of all files, and all alterable GO TO statements,) 
remains unchanged from its state when last exited. The exception is that EXIT PROGRAM (see next 
paragraph) clears all outstanding PERFORM loops. You can't call subprograms recursively. 

If a CALL statement executes successfully, control passes to the called subprogram. Execution of the 
subprogram continues until COBOL encounters an EXIT PROGRAM statement. Then control returns to the 
first executable statement following the CALL sentence in the calling program. 

If you wantto pass parameters to a called subprogram, you must specify the USING phrase. In addition, you 
must specify dummy arguments in the Procedure Division header of the called subprogram in order to 
establish a correspondence between the calling and called programs. The USING phrase must contain the same 
number of parameters as the called subprogram contains of dummy arguments. Parameter/argument 
correspondence is based on relative position. For information on COBOL subprogramming, see the 
"Subprogramming" section in Chapter 6. 

If you failed to load the specified subprogram, and you specify the OVERFLOW phrase, control passes to sImI. 
If you omit this phrase, or if no overflow condition occurs, control passes to the first executable statement 
following the CALL sentence in the calling program. 

7-10 Licensed Material-Property of Data General Corporation 093-000223-01 

o 

\ 
-' ~ ; 
" 
)' 
I' 
?: 
l! 

0 
~ : 
ii 
I: 
\ 
l' 
~ 

I' 
I 
( 
\ 
i: 
1 : 
l' 
\ 
" I' 

) ~ 
\' 
( , 

l, 
~ , 

\ 
j, 

1 
\ , 

) 

i 
1 
) 

~ 
0 

<\ 

( 



Examples 
Example 1 

PROGRAM-ID. A-PROG. 

WORKING-STORAGE ,SECTION. 

01 NUM PIC S9(5)V99 COMP-3. 
01 AGROUP. 

02 A-1 PIC X(10). 
02 TAB-ITEM OCCURS 150. 

03 T PIC X. 
03 S PIC 99. 

PROCEDURE DIVISION. 

CALL 'SUBPROG' USING NUM, AGROUP. 

PROGRAM-ID. SUBPROG. 

LINKAGE SECTION. 
01TABL. 

02 FILLER PIC X(10). 
02 T A OCCURS 150 TIMES. 

03 FILLER PIC X. 
03 T PIC 99. 

01 N PIC S9(5)V99 COMP-3. 

PROCEDURE DIVISION USING N, T ABL. 

Example 2 

PROGRAM-ID. A-PROG. 

WORKING-STORAGE SECTION. 
01 NUM PIC S9(5)V99 COMP-3. 
01 AGROUP. 

02 TAB-ITEM OCCURS 150. 
03 T PIC X. 
03 S PIC 99. 

01 P-NAME PIC X(?) VALUE IS "SUBPROG". 

PROCEDURE DIVISION . 
. . 

CALL P-NAME USING NUM, AGROUP. 

Example 3 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MAIN. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 A 1 PIC X(5) VALUE "HELLO". 
PROCEDURE DIVISION. 

CALL "SUB 1" USING A 1. 
STOP RUN. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SUB 1. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
LINKAGE SECTION. 
01 S1 PIC X(5). 
PROCEDURE DIVISION USING S 1. 

DISPLAY S1 "FROM SUB11". 
CALL "SUB2" USING S1. 
EXIT PROGRAM. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SUB2. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
LINKAGE SECTION. 

01 S2 PIC X(5) 
PROCEDURE DIVISION USING S2. 

DISPLAY S2 "FROM SUB21". 
EXIT PROGRAM. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-11 



CALL PROGRAM 
Chains to a specified program, overwriting the original program. 

Format 

id-J 

CALL-PROGRAM 

u#A" 
"#0 id-J" 
u#L" 
"#M" 
U#P" 

[USING id-2 (id-2 ••• ]) [ON EXCEPTION stmt] 

Where: 

"#8" 
"#W" 
"# a/ph" 

id-J is the name of the called program. 

id-2 is a data item that is defined in the Working-Storage Section and that specifies a parameter which you 
want to pass to the called subprogram. 

sImI is an imperative statement to which control passes if the calling program cannot find or execute the 
called program. 

alph is any alphabetic character not listed among the" # letter" options. 

Statement Execution 
CALL PROGRAM functions in the same manner as the CALL statement, with the following exceptions: 

1. EXIT PROGRAM will not return control to the calling program. 

2. The CANCEL statement has no meaning to CALL PROGRAM; all called programs are always initialized 
with the CALL PROGRAM statement. 

The CALL PROGRAM statement performs a chain to the called program. See the AOS Programmer's Manual 
for a description of chain functionality. If you wish to return to the original program, use another CALL 
PROGRAM statement in the new program. 

When you return to the original program, it will have its initial values. 

7-12 licensed Material-Property 01 Date General Corporation 093-000223-01 

o 

() 



The " # letter" options in CALL PROGRAM represent system calls. They do not necessarily chain to another 
program. The meanings of these system calls are: 

CALL FUNCTION 

"#A" Chain to LOGON.PR. 

"#M" Chain to LOGON .PR. 

"#P" Chain to LOGON .PR. 

"#L" Chain to LOGON .PR. 

" #H" Equivalent to a COBOL STOP RUN statement. 

" #S" Equivalent to a COBOL STOP RUN statement. 

"#W" Pause program execution for 3 seconds. 

.. #D id-J" Chain to id-J using the debugger . 

.. # alph" No effect, control passes to the next executable statement. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-13 



CANCEL 
Restores a previously called subprogram to its initial state. 

Format 

CANCEL id-lit, ••• 

Where: 

id-Iit is an alphanumeric literal or alphanumeric data item that specifies the program id of a subprogram 
you want to cancel. 

Statement Execution 
This statement resets all data items, the status and positioning of all files, and all alterable GO TO statements 
to the values they had before execution of the subprogram. 

You cannot specify a CANCEL statement within the subprogram you want to CANCEL. You cannot CANCEL 
a subprogram that has not yet executed an EXIT PROGRAM statement. No action occurs if you try to 
CANCEL a subprogram that your program did not call in this run unit or one that you already cancelled. 
Control simply passes to the next executable statement. 

7-14 Licensed Malerial-Property of Dala General Corporalion 093-000223-01 

l 

~ 
II 
\' 



\ 
1 

\ 

\ 

i, 

\ 
(1 

CLOSE 
Terminates the processing of files or file volumes. 

Format 

CLOSE 

Where: 

id 

WITH { NO REWIND} 
LOCK 

{ REEL} [FOR REMOVAL ] 
UNIT WITH NO REWIND 

id is a filename that specifies the file you want to close. 

Statement Execution 

. . . 

If you specify more than one file in a CLOSE statement, the files do not need to have the same organization or 
access, but they cannot be sort/merge files. 

If you specified LABELS STANDARD in the FD entry for a file or file volume on magnetic tape, the CLOSE 
statement writes an end-of-file or end-of-volume label. 

COBOL always ignores REMOVAL, REEL, UNIT and NO REWIND. COBOL never rewinds. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-15, 



COMPUTE 
Assigns the value of an arithmetic expression to one or more data items. 

Format 

COMPUTE {id [ROUNDED 1 } , o. 0 = expr [ON SIZE ERROR sImI 1 

Where: 

id is a numeric or numeric edited data item. 

expr is any legal arithmetic expression (see the section "Arithmetic Expressions" in Chapter 6). 

stmt is an imperative statement to which control passes if a size error condition occurs. 

Statement Execution 
A COMPUTE statement evaluates the expr and stores it in id according to MOVE rules. (See the MOVE 
statement later on in this chapter.) If you specify more than one data item, this statement successively stores 
the value of the expr as'the new value of each data item. 

If you specify ROUNDED, and COBOL truncates the result of this operation to fit the given result item, it 
performs the rounding as follows: COBOL adds 1 to the rightmost digit in the resultant item if the most 
significant digit of the truncated portion is equal to or greater than 5. 

You may combine any number of arithmetic operations in a COMPUTE statement. This differs from the ADD, 
SUBTRACT, MULTIPLY, and DIVIDE statements where you can specify only one operation. 

If you specify the SIZE ERROR phrase, and if the absolute value of any result, after decimal point alignment, 
is too large to fit in the number of positions you allowed in the resultant item, then the resultant item remains 
unchanged. The COMPUTE statement completes all operations, stores all satisfactory results, and then 
transfers control to stmt. If you omit this option or if no size error condition occurs, control passes to the first 
executable statement following the COMPUTE sentence. 

Example 
COMPUTE A, B ROUNDED ="NUM 1 + NUM2 • NUM3 

If A and B are both defined as whole numbers, and NUM1 = 6.lO, NUM2 = lO.70, and NUM3 = 2.50, then 
the result is A = 32 and B = 33. 

7-16 Licensed Material-Property of Data General Corporation 093-000223-01 

() 



DEFINE SUB-INDEX 
Creates a subindex in an indexed file and associates it with a specified index 
entry in that file. ' 

Format 

DEFINE SUB-INDEX id-J 

NEXT 

[ {~~TAlN} POSITION ] 

FORWARD 
BACKWARD 
UP 
DOWN 
'lJP'FORWARD 
UP BACKWARD 
DOWN FORWARD 
STATIC 

[{ KEY IS } {'d-2 [APPROXIMATE]} ••• ] 
KEYS ARE I GENERIC 

[FROM id-3] 

[INDEX NODE SIZE IS int-J ] [PARTIAL RECORD LENGTH IS id-4] [MAXIMUM KEY LENGTH IS int-l] 

[KEY COMPRESSION] [ALLOW SUB-INDEX] [ALLOW DUPLICATES] [INVALID KEY stmt] 

Where: 

id-J is a filename that specifies an indexed file OPENed for output or I/O and SELECTed for ALLOW 
SUB-INDEX. 

id-2 is an alphanumeric data item that specifies a record key associated with id-J. 

id-3 is an alphanumeric data item which contains data in the form of an INFOS subindex definition packet 
and which is defined in working storage. 

int-J is an integer data item that specifies the size of a subindex node. 

id-4 is an alphanumeric data item that specifies the partial record length for the subindex. 

int-2 is an integer literal or an integer data item that specifies the maximum key length for a subindex. 

stmt is an imperative statement to which control passes if you specify invalid record selection indicators. 

093-000223-01 Licensed Ma1erlal-Proper\y of Data Generel Corporetlon 7-17 



DEFINE SUB-INDEX (continued) 

Statement Execution 
COBOL determines the location of the index entry with which you want to associate the subindex according to 
what you specify (explicitly or implicitly) in the position phrase, the relative options phrase (NEXT, 
FORWARD, etc.), and the key series phrase. 

By specifying FIX POSITION, you set the record pointer to the record specified by this statement. If you specify 
RETAIN POSITION. you do not change the current position of the record pointer (i.e., it points to the record for 
which you last set it). If you omit this option, the default is RETAIN POSITION. 

When you specify a relative option, you reference a record in the indexed file, relative to the current position of 
the file's record pointer. If you omit both this option and the KEY series option, the default is STATIC. 

If you specify the KEY series phrase you must have declared each key (id-2) in the SELECT clause for this file. 

For more information on these options, see the section "Indexed File Record Selection" in Chapter 6. 

You may specify the subindex definition in one of two ways. If you specify the FROM phrase, the data 
contained in id-3 will define the subindex. id-3 is 16 characters long. The second way to define the subindex is 
to specify the INDEX NODE phrase. Here you must define the node size (int-l) and the maximum key length 
(int-2) for the subindex. If you want partial records stored in the subindex, you must specify the PARTIAL 
RECORD option. If you want key compression and/or subordinate subindexing for the specified subindex, you 
must specify KEY COMPRESSION and/or ALLOW SUB-INDEX. respectively. 

Be sure to specify the ALLOW DUPLICATES phrase if you intend to specify duplicate keys for the new 
subindex you are defining. 

If you specify record selection indicators that reference a record already associated with a subindex or that 
result in a key positioning error, execution of the DEFINE SUB-INDEX statement terminates and control passes 
to stmt. If you omit this option or if no invalid key condition occurs, control passes to the first executable 
statement following the DEFINE SUB-INDEX sentence. 

Examples 
Example 1 

Given the definition packet: 

01 SUB-INDX-PKT PIC X(16) 
VALUE <000> < 105> <007> <372> 
<000> <012> <000> <000> <000> <000> 
< 100> <000> <000> <000> <000> <000>. 

you might write the statement: 

DEFINE SUB-INDEX CUSTMER-FIL FROM SUB-INDX-PKT. 

Example 2 

DEFINE SUB-INDEX 
INDEX NODE SIZE IS 2042 
MAXIMUM KEY LENGTH IS 10. 

7 -1 8 Licensed Material-Property 01 Data General Corporation 093-000223-01 

~ 
I 
I 
i 
( 
{ 

1 

I 
01 

l 
l 



("""\ 
\ DELETE 

Removes the link between a key and its associated data record, either 
physically or logically. 

Format 

DELETE idol 

NEXT 
Fc5RWARD 
BACKWARD 
UP 
DOWN 

PHYSICAL 

RECORD 
UP FORWARD 
UP BACKWARD 
DOWN FORWARD 
STATIC 

LOGICAL {~~g~~L } 
LOCAL GLOBAL 

[{ KEYIS } { . 
KEYS ARE id-2 [ APPROXIMATE] } ] 

GENERIC • [INVALID KEY stmd 

Where: 

id-J is a filename specifying an indexed file that you OPENed for I/O. 

id-2 is an alphanumeric data item that specifies a record key associated with id-J. 

stmt is an imperative statement to which control passes if you specify invalid record selection indicators. 

Statement Execution 
COBOL determines which record and/or key the DELETE statement will act upon according to what you 
specify (explicitly or implicitly) in the relative options phrase (NEXT, FORWARD, etc.) and the KEY series 
phrase. When you specify a relative option, you reference a record in id-J relative to the current position of the 
file's record pointer. If you omit this option, the default is the first (primary) key in the SELECT clause. 

If you specify the KEY series phrase, you must have declared each key (id-2) in this file's SELECT clause. 

You can delete only in a file OPENed for 1-0. 

For more information on these options, see the section "Indexed File Record Selection" in Chapter 6. 

There are four types of deletion. A PHYSICAL deletion deletes the key you specify and its associated data 
record, reducing the data record's use count by 1 (see the INFOS System User's Manual (A OS)). If you 
reduce the use count to zero, you delete the data record itself so that it is no longer in the file or inversion. 

A LOGICAL LOCAL deletion marks the partial record as logically deleted. Then whenever you access a record 
or key through this index, you will receive a file status of 96 (see the section "COBOL file status Data Items" 
in Chapter 6). You can restore the partial record by using the UNDELETE statement described later qn in 
this chapter. 

093-000223-01 Licensed Malerial-Property of Data General Corporallon 7-19 

= 



DELETE (continued) 

A LOGICAL GLOBAL deletion marks the data record as logically deleted. Then whenever you access the data 
record through any index, you receive a file status of 96. However, you can still access the index entry, 
including partial record data and any subindex, without receiving a 96. You can restore the data record by 
using the UNDELETE statement. 

A LOGICAL LOCAL GLOBAL deletion accomplishes both a LOGICAL LOCAL deletion and a LOGICAL 
GLOBAL deletion: it logically deletes the partial record and the data record. You can restore the partial 
record and data record by using the UNDELETE statement. 

If you do not specify a deletion type, the default is PHYSICAL. If you want a LOGICAL deletion, you must 
specify LOCAL or GLOBAL or both. Be careful! You can still access and modify a logically deleted record. Be 
sure to check for file status code 96 in your program. 

If you want to know whether a record has been deleted, use the RETRIEVE statement (described later on in 
this chapter). 

A DELETE statement does not change the current position of the record pointer unless the pointer's current 
position is at the deleted record. If this is the case, the record pointer points to the record immediately before 
the deleted record. 

If you specify record selection indicators which reference a record that does not exist or one that results in a 
key positioning error, an invalid key condition occurs. If you specify the INVALID KEY option and an invalid 
key condition occurs, execution of the DELETE statement terminates and control passes to stmt. If you omit 
this option, or if no invalid key condition occurs, control passes to the first executable statement following the 
DELETE sentence. See the Declaratives section in Chapter 6. 

Example 
DELETE MYFILE NEXT RECORD LOGICAL GLOBAL. 

This statement marks as logically deleted the data record in MYFILE that immediately follows the record 
pointed to by the current record pointer. 

7-20 Licensed Material-Property of Data General Corporation 093-000223-01 

o 



n , , 

~ 

~ 
\ 

\ 
\ 

DELETE FILE 
Deletes disk files. 

Format 

Where: 

id specifies an unopened disk file. 

Statement Execution 

DELETE FILE id, ••• 

For each id you name, AOS deletes all disk files named in the associated ASSIGN clause. 

If id is an indexed file, you must specify the ASSIGN DATA clause in the SELECT clause for that file, or the 
operating system will not delete the associated data file. 

This statement is identical to the EXPUNGE statement. 

093-000223-01 licensed Materlal-Property of Date General Corporation 7-21 

... 



DISPLAY 
Makes low-volume data available for output to a specified hardware device or 
file. 

Format 

Where: 

id-lit 

DISPLAY { id-Iit } 
screen-name ' ••• [ UPON dey 1 [WITH NO ADVANCING 1 

&,.... fl... 
,'.1.-1...+ 

is any data item or literal that you want to display on a device or transfer to a file. 

dey is an alphanumeric literal or a mnemonic name which is defined in the Special-Nagtes 
paragraph of the Environment Division and which specifies an operating system output device 
or file. 

screen-name is a COBOL Screen Section screen-name. 

Statement Execution 
This statement transfers the source(s) (id-lit) to the output device or file in the order you specify them. It 
transfers them as a continuous string of characters with no separati~etween them. If you specify NO 
ADVANCING, COBOL does not output an end-of-line character following the last source. 

If the total length of the sources is greater than the physical record length of the output device, COBOL sends 
the output as a series of as many successive records as is necessary to contain the sources without any special 
formatting by the system. 

If a source is a figurative constant, it represents a single-character alphanumeric literal. If a DISPLAY 
statement contains a source (including the external floating point data type and all numeric literals) which has 
a DISPLAY usage, it outputs the source as a character string without modification. If a DISPLAY statement 
contains a source that has COMPUTATIONAL usage, it moves the source to a temporary location according 
to MOVE rules (see the MOVE statement later on in this chapter), then outputs the temporary value. For 
information on DISPLAY and COMPUTATIONAL usage see the section "USAGE Clause" in Chapter 5. 

The types of temporary storage are: 

Source Type 

COMP or COMP-3 

COMP-2 

Temporary Type 

DISPLAY, SIGN LEADING SEPARATE, same PICTURE 

External floating point PICTURE +9(l5)E+99 

If you omit the UPON option, the default is the current output console. 

Examples 
Example I 

DISPLAY "PRINCIPALORATEOISO", PRIN. 

Example 2 

DISPLAY "OVERFLOWOOCCURRED". 

Example 3 

DISPLAY PDQ UPON PRINT-ER NO ADVANCING. 

7-22 Licensed Material-Property of Data General Corporation 093-000223-01 

o 



\-
\. 
L, 

DIVIDE 
Divides one operand into another or others, and stores the quotient and 
(optionally) the remainder. 

Formats 

Simple DIVIDE -

DIVIDE id-lit-l INTO {id-l [ROUNDED] } ••• [ON SIZE ERROR stmt] 

DIVIDE GIVING -

DIVIDE {id-Iit-l INTO id-lit-2} GIVING {id-2 [ROUNDED I } ••• [REMAINDER id-31 [ON SIZE ERROR stmt I 
--- id-lit-2 BY id-Iit-l 

Where: 

id-lit-J is a numeric literal or a numeric data item that specifies a divisor. 

id-J is a numeric data item that specifies a dividend and receives the quotient of a simple DIVIDE. 

stmt is an imperative statement to which control passes if a size error condition occurs. 

id-lit-2 is a numeric literal or a numeric data item that specifies a dividend. 

id-2 is a numeric or numeric edited data item that receives a quotient. 

id-3 is a numeric or numeric edited data item that receives a remainder. 

Statement Execution 
A simple DIVIDE statement divides a divisor into each dividend/quotient and stores the result of each division 
in the respective divident/quotient according to MOVE rules. (See the MOVE statement later on in this 
chapter.) 

The DIVIDE GIVING statement divides the divisor into the dividend and stores the result according to MOVE 
rules in each quotient you specify. You can only specify one ROUNDED clause if you specify the GIVING 
clause. 

If you specify ROUNDED, and COBOL truncates the result of this operation to fit the given result item, it 
rounds in the following manner: COBOL adds a 1 to the rightmost digit in the resultant item if the most 
significant digit of the truncated portion is equal to or greater than 5. 

If you specify the SIZE ERROR phrase, and if the absolute value of any result, after decimal point alignment, 
is too large to fit in the number of decimal places you allowed in the resultant item or if you attempt to divide 
by zero, then the DIVIDE statement completes all operations and transfers control to stmt. If you omit this 
phrase or if no size error condition occurs, control passes to the first executable statement following the DIVIDE 
sentence. 

Examples 
Example 1 

DIVIDE A INTO B, C 

If A = 2, B = 10, and C = 20, 
the result is B = 5·and C = 10. 

093-000223-01 

Example 2 

DIVIDE A BY B GIVING C REMAINDER D. 

If A = 12, B = 7, C = 0, and D = 0, 
the result is C = 1 and D = 5. 

Licensed Malerial-Property 01 Data General Corporation 7-23 



EXIT 
Documents the end of a PERFORM-type subroutine. 

Format 

EXIT 

Statement Execution 
The EXIT statement is a nonexecutable statement. Consequently, COBOL will not signal an error if the EXIT is 
not the only statement in a sentence or the only sentence in a paragraph. 

The existence of an EXIT statement in a subroutine that is not under the control of a PERFORM statement 
has no effect on your program. 

7-24 Llcen~d Material-Property 01 Date General Corporation 093-000223-01 

o 



~ 
\ 

EXIT PROGRAM 
Returns control to the point in the calling program immediately following the 
CALL statement. 

Format 

EXIT PROGRAM 

Statement Execution 
The EXIT PROGRAM statement does not have to be the only statement in a sentence or the only sentence in a 
paragraph. Upon execution of an EXIT PROGRAM statement, the currt(J1t state of the program remains the 
same except that it clears all active PERFORM loops. 

Execution of an EXIT PROGRAM statement in a program which is not under the control of a CALL statement 
has no effect. 

093-000223-01 Licensed Material-Property of Date General Corporation 7-25 



EXPUNGE 
Deletes disk files. 

Format 

EXPUNGE id .... 

Where: 

id is a filename that specifies an unopened disk file. 

Statement Execution 
For each id you name, the operating system deletes all disk files named in the associated ASSIGN clause. 

If id is an indexed file, you must specify the ASSIGN DATA clause in the SELECT clause for that file, or the 
operating system will not delete the associated data file. 

This statement is identical to the DELETE FILE statement. 

7-26 . Licensed Material-Property 01 Data General Corporation 093-000223-01 



~ 
\ 

r 
" 

EXPUNGE SUB-INDEX 
Deletes a subindex from an indexed file. 

Format 

EXPUNGE SUB-INDEX id-J 

NEXT 

[ {~AIN} POSITION] 

F'ORWARD 
BACKWARD 
UP 
DOWN 
'iJP'FORWARD 
UP BACKWARD 
DOWN BACKWARD 
S'fA'ffc 

[ { ~ IS } {id-2 [APPROXIMATE] } ••• ] 
KEYS ARE GENERIC 

[INVALID KEY stmtl 

Where: 

id-l is a filename that specifies an indexed file OPENed for output or I/O and SELECTed for ALLOW 
SUB-INDEX. 

id-2 is an alphanumeric data item that specifies a record key associated with id-l. 

stmt is an imperative statement to which control passes if you specify invalid record selection indicators. 

Statement Execution 
COBOL determines the location of the subindex you want to delete according to what you specify (explicitly 
or implicitly) in the POSITION phrase, the relative options phrase (NEXT, FORWARD, etc.), and/or the KEY 
series phrase. 

By specifying FIX POSITION, you set the record pointer to the record specified by this statement. If you specify 
RETAIN POSITION, you do not change the current position of the record pointer (i.e., it points to the record for 
which you last set it). If you omit this option, the default is RETAIN POSITION. 

When you specify a relative option, you reference a record in an indexed file, relative to the current position of 
the file's record pointer. If you omit both this option and the KEY series option, the default is the first key in 
the SELECT clause. 

If you specify the KEY series phrase, you must have declared each key (id-l) in this file's SELECT clause. 

For more information on the options, see the section "Indexed File Record Selection" in Chapter 6. 

If you specify record selection indicators which reference a key that does not exist, and if you specify the 
INVALID KEY option, then execution of the EXPUNGE SUB-INDEX statement terminates and control passes to 
stmt. If you omit this option, or if no invalid key condition occurs, control passes to the first executable 
statement following the EXPUNGE SUB-INDEX sentence. 

Example 
EXPUNGE SUB-INDEX MYFILE. 

This statement deletes the subindex in MYFILE which is pointed to by the file's current record pointer. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 7-27 



GO 
Transfers control from one point in the Procedure Division of your 
program to another. 

Formats 
Simple GO TO -

GO TO DEPENDING -

Where: 

GO TO [para-sect I 

GO TO para-sect, ••• DEPENDING ON int 

para-sect is a paragraph name or a section name. 

int is an integer data item that specifies which para-sect you want to transfer control to. 

Statement Execution 
A simple GO TO statement transfers control to para-sect unless you previously modified this GO TO statement 
by an ALTER statement. If you do not specify para-sect you must specify an ALTER statement referring to 
this GO TO statement. That ALTER statement's execution must occur prior to the GO TO statement's 
execution in order to affect the execution of the GO TO statement. 

A GO TO DEPENDING statement transfers control to the para-sect argument that occupies the relative 
position corresponding to the value of into If the. value of int is anything other than 1,2, ... , or n, no transfer 
occurs and control passes to the first executable statement following the GO TO DEPENDING sentence. 

Examples 
Example 1 

GO TO PARAGRAPH-9. 

Control passes to PARAGRAPH-9, unless a previously executed ALTER statement changed the destination. 

Example 2 

GO TO PARA-9, PARA-10, PARA-11 DEPENDING ON TRANS. 
GO TO PARA-ERR. 

If TRANS is 1, control passes to PARA-9; if it is 2, control passes to PARA-10, etc. If TRANS is not equal to 1, 
2, or 3, the next statement is executed and control passes to PARA-ERR, (unless a previously executed ALTER 
statement changed this statement's destination). 

7-28 Llcenaed Material-Property of Date General Corporation 093-000223-01 

o 

o· 



IF 
Evaluates a condition, then transfers control to one of two statements 
depending on whether the value of the condition is true or false. 

Format 

.it exprTHEN [ {~~~~ SENTENCE} ] [ELSE {~~~~ SENTENCE} ] 

Where: 

expr is any legal conditional expression. 

stmt-l, is any legal Procedure Division statement, including another IF statement. 
stmt-2 

Statement Execution 
A true expr transfers control to stmt-l (if it exists) and executes it. If you specify NEXT SENTENCE or omit 
the whole option, control passes to the first executable statement following the IF sentence. 

A false expr transfers control to stmt-2 (if it exists) and executes it. If you specify NEXT SENTENCE or omit 
this whole option, control passes to the first executable statement following the IF sentence. 

After the execution of either of the above conditions, control passes to the first executable statement following 
the IF sentence, unless a GO TO statement passes control out of the IF statement. 

If the ELSE NEXT SENTENCE clause would be the last clause in the IF sentence, you need not specify it. 

Example 
IF A = B THEN 

MOVE XTO Y, 
IF C = o THEN 

MOVE OTO Z, 

ELSE 

ELSE 
MOVE X TO Z, 
IF E = F THEN 

NEXT SENTENCE, 
ELSE 

MOVE -1 TO Z. 

MOVE OTO Y. 

Figure 7-1 shows how the above IF statement works. 

093-000223-01 Licensed Material-ProperlY 01 Data General Corporation 7-29 

* 



IF (continued) 

TRUE 

MOVEXTOY MOVEOTOY 

TRUE FALSE 

MOVEOTOl MOVE XTOl o 

MOVE -1 TOl 

Next executable statement 

SO-01086 

Figure 7-1. IF Statement Example 

7-30 Licensed Material-Property of Data General Corporation 093-000223-01 



'0 
INSPECT 

Counts, replaces, or counts and replaces occurrences of specified character 
strings in a data item. 

Formats 
INSPECT TALLYING -

INSPECT id-J TALLYING 

{ Od-2FOR {{{*DING} id-Iit-J} [{~E} INITIAL id-lit-2 ]} •• } ••• 
CHARACTERS 

INSPECT REPLACING -

INSPECT id-J REPLACING 

CHARACTERS BY id-lit-3 [{ ~~~~~E} INITIAL id-lit-2 ] 

{ {~NG} {",-{;'-1 BY Id-6,-3 [{ :~~~E} INITIAL ",-/1'-2 ] } ••• } ••• 

INSPECT TALLYING and REPLACING -

INSPECT id-J TALLYING 

{ {{{ALL} id-lit-J} 
id-2 FOR LEADING 

CHARACTERS 
[ n~~~E} INITIAL "'-lit-2 ] } •• -} • • • 

REPLACING 

CHARACTERS BY id-lit-3 [ {~~~~~E} INITIAL id-lit-2 ] 

{ H~r} {",-{;'-1 BY Id-{;,-3 [n~~~E} INITIAL ",-{;,-2 J} ... } ... 

093-000223-01 Licensed Malerlal-Property of Data General Corporallon 7-31 



INSPECT (continued) 

Where: 

id-I is an alphanumeric or numeric data item that specifies the item you want to inspect. 

id-2 is a numeric data item that the INSPECT statement increments every time it finds a matching 
string. 

id-lit-I is an alphanumeric literal or a numeric data item that specifies the character string you want to 
match. 

id-lit-2 is an alphanumeric literal or a numeric data item that specifies an operation delimiter. 

id-lit-3 is an alphanumeric literal or a numeric data item that specifies a replacement string. 

Each id-I, id-lit-I, id-lit-2, and id-lit-3 must have DISPLAY usage in their data descriptions. If you specify 
any of these as data items, COBOL interprets them as alphanumeric. If you specify any as figurative 
constants, COBOL interprets them as single-character, alphanumeric literals. 

Statement Execution 
An INSPECT statement searches a data item (id-I) for a character string(s), which may occur between 
boundaries determined by a delimiter you may optionally specify (id-lir-2). INSPECT compares this string to a 
string you specify (id-lit-I) and, if there is an exact match within the boundaries, then INSPECT tallies or 
replaces the string, or both. This is a simple way to state the function of this complex COBOL statement. The 
following sections give you the details you need to efficiently use the statement and all its options. 

INSPECT TALLYING 
An INSPECT TALLYING statement must set up boundaries before the comparison cycle (discussed below) can 
take place. The options you specify in an INSPECT TALLYING statement determine the boundaries of each 
operation that 'participates in the cycle. The beginning and ending boundary characters and the string of 
characters in between comprise the string that will be considered for tallying. 

As you can see, the INSPECT statement contains several options. We will discuss each of the five operations in 
the above example separately to point out the effect of these options. We can separate the INSPECT options 
into two groups. In the first group are the ALL id-lit-I LEADING id-lit-I and CHARACTERS options. You 
must include one of these options in each operation of an INSPECT statement. In the second group are the 
BEFORE and AFTER options. You may specify one of these with each operation of an INSPECT statement, but 
you need not specify either of them. 

For the remainder of this discussion, we will use the following example to demonstrate the actions of an 
INSPECT TALL YING statement: 

INSPECT IT TALLYING C-1 FOR ALL "AB", 
C-2 FOR LEADING "Z", 
C-3 FOR ALL "33" BEFORE INITIAL "Q", 
C-4 FOR ALL "6"AFTER INITIAL "B", 
C-5 FOR CHARACTERS. 

7-32 Licensed Material-Property olData General Corporation 093-000223-01 

o 



'The item to INSPECT is: 

IT = ZZZABZ336APB330AB633 

t t 
position 1 position 20 

Table 7-1 shows the table-like structure that COBOL sets up before it scans IT and tallies the appropriate 
strings. 

Table 7-1. INSPECT Table Structure for Example 

Operation 
INSPECT IT TALL VING ••. 

Character Position 
Matches Order Boundaries 

1 C-1 FOR ALL "AS" 1,20 2 

2 C-2 FOR LEADING "Z" 1,20 3 

3 C-3 FOR ALL "33" BEFORE 1,14 2 
INITIAL "0" 

4 C-4 FOR ALL "6" AFTER 6,20 2 
INITIAL "B" 

5 C-5 FOR CHARACTERS 1,20 7 

In the first operation of the preceding example, C-1 FOR ALL" AB", the INSPECT process increments C-1 for 
every occurrence of the string AB in IT because of the ALL option. When you specify ALL, the string INSPECT 
considers in the comparison cycle is always the entire data item. 

In the second operation, C-2 FOR LEADING "Z", the LEADING option indicates that INSPECT will increment 
C-2 if Z is the leftmost (first) character in IT and then will increment for each contiguous Z thereafter. If Z 
was the first character of the string, but there were no contiguous Zs following, then INSPECT would 
increment the tally item once. However, in the above example, Z, the first character in IT, is followed by two 
contiguous Zs; INSPECT, therefore, increments C-2 three times. 

In the third operation, C-3 FOR ALL "33" BEFORE INITIAL "0", the BEFORE option indicates that INSPECT 
will increment C-3 for every match of 33 BEFORE it encounters the first 0 in IT. The string that INSPECT 
considers in this operation is from the beginning of IT up to, but not including the first occurrence of O. In this 
example, the string 33 appears in IT three times, but only two of those occurrences are before the first Q. So, 
INSPECT increments C-3 twice. 

If you specify the BEFORE option with a delimiter that doesn't exist in the data item you are INSPECTing, the 
comparison cycle will take place as if you had not specified the BEFORE option (i.e., INSPECT will consider 
the entire string in the comparison cycle). 

093-000223-01 Llcenaed Material-Property 01 Data Gan.ral Corporation 7-33 



INSPECT (continued) 

In the fourth operation, C-4 FOR ALL "6" AFTER INITIAL "B", the AFTER option indicates that INSPECT 
will increment C-4 for every match of 6 that occurs AFTER the first occurrence of B. The first B occurs at 
character position 5. There are two occurrences of 6 after that position, so INSPECT increments C-4 twice. 

If you specify the AFTER option with a delimiter that does not exist, the operation is never eligible to 
participate in the comparison cycle. 

In the iinal operation, C-5 FOR CHARACTERS, the CHARACTERS option indicates that INSPECT will 
increment C-5 for each single character that has not been tallied in a previous operation in this statement. Up 
to now in this example, we have tallied two occurrences of AB, three Zs, two 33s, and two 6s. The characters in 
IT that have not participated are (in order) Z, A, P, B, Q, 3, and 3. INSPECT, therefore, increments C-5 seven 
times. 

The Comparison Cycle 
The INSPECT statement scans id-J from left to right. It considers the operations in the statement in the order 
you specify them. Each operation is eligible for consideration only within the boundaries that COBOL 
determines for it before the comparison cycle takes place (as shown previously in Table 7-1). 

The comparison cycle begins by considering the leftmost character in id-J for a match, then continues 
scanning character by character until it considers the rightmost character in id-J for a match. This action 
completes the comparison cycle. Note that the INSPECT statement does not initialize any of the tally items 
to zero before the comparison cycle takes place. 

Using the previous example and the data item IT will best illustrate the actions of a comparison cycle. 
Scanning begins at the leftmost character, Z. INSPECT then checks the operations in order. 

The following is the type of question/answer procedure the comparison cycle generates: 

• Is this character within the boundaries of the first operation? Yes. 

• Is it a possible AB match? No. 

• Is it within the boundaries of the second operation? Yes. 

• Is it a leading Z? Yes. 

• Increment C-2. 

INSPECT then considers the next character In IT and goes back to the first operation in the INSPECT 
statement. 

• Is this character within the boundaries of the first operation? Yes. 

• Is it a possible AB match? No. 

• Is it a leading Z? No. 

• Is it a contiguous Z? Yes. 

• Increment C-2. 

This cycle continues until it considers the final character, 3, in IT. For each character in IT, the INSPECT 
statement asks the above questions for each of its operations until it finds a match or until it has considered all 
operations. 

7-34 Licensed Malerial-Property of Data General Corporalion 093-000223-01 

o 

1 o 

o 

1. 



INSPECT REPLACING 

An INSPECT REPLACING statement first establishes boundaries for the comparison cycle in the same manner 
as the INSPECT TALLYING statement. However, the beginning and ending boundary characters, and the 
string of characters in between, comprise the string that will be considered for replacing, instead of tallying. 
The comparison cycle is the same as in an INSPECT TALLYING statement, except that it accomplishes 
replacement. 

The ALL and LEADING options function the same as in INSPECT TALLYING but instead of tallying a match 
with id-lit-l INSPECT REPLACING replaces each match with the associated id-lit-3. The lengths of each pair 
of id-lit-l and id-lit-3 must be the same. 

If you specify the FIRST option, INSPECT REPLACING replaces only the first occurrence of id-lit-l in id-l. 

The CHARACTERS option functions the same as in INSPECT TALLYING except that it replaces the 
appropriate characters rather than tallying them. 

INSPECT TALLYING and REPLACING 

An INSPECT TALLYING and REPLACING statement functions as two separate statements, INSPECT 
TALLYING and INSPECT REPLACING, in that order. 

Example 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 CAT PIC X(20) VALUE IS 

"ZOXY JJMORZJXYAZZZXY A". 
a 1 DOG PIC X(4) VALUE IS "XYZA". 
01 BIRD PIC X(4) VALUE IS "PPPA". 

01 11 PIC 99 COMP VALUE IS O. 
01 12 PIC 99 COMP VALUE IS O. 
01 13 PIC 99 COMP VALUE IS 80. 
01 14 PIC 99 COMP VALUE IS O. 
01 15 PIC 99 COMP VALUE IS O. 
0116 PIC 99 COMP VALUE IS O. 

PROCEDURE DIVISION. 
INSPECT CAT TALLYING 11 FOR ALL "XY", 

ALL "J" BEFORE "OR", 
LEADING "Z" AFTER "A", 
12 FOR CHARACTERS. 

INSPECT DOG TALLYING 13 FOR ALL "XY", 
14 FOR ALL "YZ". 

INSPECT BIRD TALLYING 15 FOR ALL "PA", 
16 FOR LEADING "P". 

The results of this example are: 

11 = 8 12 = 9 13 = 81 
14 = a 15 = 1 16 = 2 

093-000223-01 Licensed Material-Property of Data General Corporation 7-35 



LINK SUB-INDEX 
Links a file subindex to another index entry so that the subindex can be shared. 

Format 

LINK SUB-INDEX id-J 

SOURCE 

NEXT 
FORWARD 
BACKWARD 
UP 
DOWN 
UP"FciRw AR D 
!l£' BACKWARD 
DOWN FORWARD 
STATIC 

[ { KEY IS } {id-J [APPROXIMATE]} 0 0 0 J 
KEYS ARE GENERIC 

NEXT 

DESTINATION [ {~I:TAIN} POSITION ] 

FORWARD 
BACKWARD 
UP 
DOWN 
UPTc5'Rw ARD 
UP BACKWARD 
DOWN FORWARD 
STATIC 

[ { KEY IS } { d-J [APPROXIMATE]} 00 oJ 
KEYS ARE I GENERIC 

[ INVALID KEY SImI] 

Where: 

id-J is a filename that specifies an indexed file OPENed for output or I/O and SELECTed for ALLOW 
SUB-INDEX. 

id-2 is an alphanumeric data item that specifies a record key associated with id-J. 

sImI is an imperative statement to which control passes if you specify invalid record selection indicators. 

Statement Execution 
The relative options phrase (NEXT, FORWARD, etc.) and KEY series phrase in the SOURCE phrase specify the 
location of the subindex that will be linked. COBOL then transfers the link information to the index entry 
specified by the POSITION phrase, the relative options phrase, and the KEY series phrase in the DESTINATION 
phrase. This must be the first subindex to which you give this DESTINATION entry. 

By specifying FIX POSITION, you set the record pointer to the record specified by this statement. (Note that 
you may specify the POSITION phrase only in the DESTINATION phrase.) If you specify RETAIN POSITION, 
you do not change the current position of the record pointer (i.e., it points to the record for which you last set 
it). If you omit this option, the default is RETAIN POSITION. 

When you specify a relative option, you reference a record in an indexed file, relative to the current position of 
the file's record pointer. If you omit both this option and the KEY series option, the default is the first key in 
the SELECT clause. 

7-36 Licensed Material-Property 01 Data General Corporation 093-000223-01 

() 

o· 

~. 
I 
1 
~ I 

l 
()1 

I 



If you specify the KEY series phrase, you must have declared each key (id-2) in this file's SELECT clause. 

For more information on these options, see the section "Indexed File Record Selection" in Chapter 6. 

If you specify record selection indicators which reference a key that does not exist, and if you specify the 
INVALID KEY option, then execution of the LINK SUB-INDEX statement terminates and control passes to sImI. 
If you omit this option or if no invalid key condition occurs, control passes to the first executable statement 
following the LINK SUB-INDEX sentence. 

Example 
LINK SUB-INDEX FILE 1 SOURCE 

DESTINATION DOWN FORWARD 
INVALID STOP RUN. 

This statement transfers the link information from the subindex pointed to by the current record pointer in 
FILE 1 to FILE 1'5 subordinate index entry. If the key referenced does not exist, the program will terminate. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-37 



MERGE 
Combines two or more sorted files in a sorted order according to a set of 
specified keys. 

Format 

Where: 

id-I 

[ COLLATING SEQUENCE IS {
ASCII }] NATiVE 
STANDARD-1 
EBCDIC 
a/ph 

USING id-3, ••• 

OUTPUT PROCEDURE IS sect-l [ { THROUGH} t-2 ] THRU sec 

GIVING id-4 

is a filename that specifies a sort/merge file described in a sort/merge file description entry in the 
Data Division. 

• 
id-2 is an alphanumeric data item that specifies a key described in records associated with id-I. 

a/ph is an alphabet name indicating that this file will use the collating sequence associated with the 
alph you defined in the Special-Names Paragraph of the Environment Division. 

id-3 

sect-I, 
sect-2 

id-4 

is a filename specifying a file that is not a sort/merge file, does not have subindexing or alternate 
record keys, is not open at the time of the MERGE operation's execution, and must have been 
sorted according to specified keys. 

is a Procedure Division section name that specifies an output procedure executed 'as part of the 
MERGE operation. 

is a filename that specifies either an existing but closed indexed file with no subindexing, or a 
nonexistent sequential file to be created by an implicit OPEN OUTPUT. 

Statement Execution 
Execution of a MERGE statement combines all re~ords in the files specified in the USING phrase, sorts them 
according to the keys you specify, and then releases them to an output procedure or output file. All files must 
be closed prior to execution of the MERGE statement. The MERGE operation automatically opens and closes 
these files as necessary during its operation. 

You must specify ASCENDING or DESCENDING to indicate the comparison you want performed by the 
MERGE operation when it arranges the records. When comparing the key values in two records, COBOL uses 
the rules for evaluating relational expressions in which there are three comparisons: greater than, less than, 

7-38 Licensed Material-Property of Data General Corporation 093-000223-01 

o 

I, 
I 

0 1: , I 
I 
i 



\ , 

\ 
) 

;~ 
h.~: : 

and equal to. If you specify ASCENDING, the MERGE operation arranges the records so that those with lesser 
key values will come first. If you specify DESCENDING, MERGE arranges the records so that those with 
greater key values come first. If the MERGE statement encounters two records with identical keys, it writes the 
records to id-4 or returns them to the output procedure (whichever you specify), in the order in which you 
specified the input files in the USING phrase. 

The kt<ys you specify represent the portion of the data records used in the comparison process. The first key 
you specify is the most important key. It is the first key the MERGE operation uses when comparing two 
records. The second key you specify is the next most significant key; the third key is the third most significant 
key, and so on. The MERGE operation uses these keys only if the value of the first key in the records it is 
comparing is the same. 

If you specify the COLLATING SEQUENCE phrase, the sequence specifiers have the same meanings as the 
specifiers used in the PROGRAM COLLATING SEQUENCE clause of the Environment Division (see the 
section "The Object-Computer Paragraph" in Chapter 4), except that they apply only to comparisons made 
during the MERGE statement's execution. If you omit this option in the MERGE statement, the MERGE 
operation uses what you specified in the PROGRAM COLLATING SEQUENCE in the Environment 
Division. If you omit both options, the default is ASCII. 

If you specify the OUTPUT PROCEDURE clause, it must consist of one or more sections or paragraphs that 
appear contiguously in your program and it must include at least one RETURN statement. It is the 
RETURN statement that requests the next record for processing. MERGE executes the sections of the output 
procedure according to the rules for a simple PERFORM (see the PERFORM statement earlier in this 
chapter). You must not pass control out of the output procedure, which may include any process necessary to 
select, modify, or copy records that the MERGE operation is returning from id-J. The words THROUGH and 
THRU are equivalent. 

If you specify the GIVING clause, control transfers all merged records from id-J to id-4. 

The logical records in the id-3 and in id-4 must be equal in size to the logical records in id-J. 

MERGE statements may appear anywhere in your program's Procedure Division except in the Declaratives 
section or in an input or output procedure associated with a SORT or MERGE statement. 

After completion of the MERGE operation, control passes to the first executable statement following the 
MERGE statement. 

Example 
MERGE CUST-FINAL ON ASCENDING KEY NAME, ADDR, PHONE 

USING CUST1, CUST2, CUST3 
OUTPUT PROCEDURE IS UPDATE. 

UPDATE. 
MOVE CURR-DATE INTO CUST-DATE. 
ADD 1 TO FLAG. 
RETURN CUST -FINAL. 

The above statements will combine the sorted files CUST 1, CUST2, and CUST3 into the single file 
CUST-FINAL according to three keys: customer name, customer address, and customer phone number, in that 
order. Before each record is stored in CUST-FINAL, a date field will be updated and a special flag set to l. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-39 



MOVE 
Transfers data from one data item to one or more other data items, with 
format conversion and editing as required. 

Formats 
Simple MOVE -

MOVE CORRESPONDING -

Where: 

MOVE id-lit TO id-l • ••• 

{ CORRESPONDING} id-2 TO id-3 
CORR 

id-lit is any data item or literal that specifies a data source you want to move. 

id-J is any data item that receives a data source. 

id-2 is a group data item that specifies data sources you want to move. 

id-3 is a group data item that receives a group of data sources. 

Statement Execution 
A simple MOVE statement moves the data source to the first (or only) destination item, then to the second, if 
you specified one, etc. This statement evaluates any subscripting or indexing associated with id-J before 
moving the data. 

If you specify a group data item as either the source or destination of a simple MOVE st.atement, the MOVE 
executes as a character string move with no editing. 

A MOVE CORRESPONDING statement moves data i~ems in id-2 to corresponding data items in id-3. 

This operation. is the same as if you specified a separate MOVE statement for each pair. 

Correspondence occurs according to the rules for the CORRESPONDING phrase (see the section "The 
CORRESPONDING Phrase" in Chapter 6). CORR is an abbreviation for CORRESPONDING. 

Character String Move 
A MOVE statement moves the characters of the source to the character positions of the destination. For 
left-justified destinations, COBOL moves the first source character to the first destination position, the second 
source character to the second destination position, etc. If the source is shorter than the destination, COBOL 
space-fills the extra (rightmost) positions of the destination. If the source is longer than the destination, 
COBOL does not move the extra (rightmost) source characters. 

If you define the destination as JUSTIFIED RIGHT in its PICTURE clause, COBOL moves the last source 
character to the last destination position, the next-to-last source character to the next-to-last destination 
position, etc. If the source is shorter than the destination, COBOL space-fills the extra (leftmo!>t) positions of 
the destination. If the source is longer, COBOL does not move the extra (leftmost) source chara~ters. 

7-40 Licensed Material-Property 01 Data General Corporation 093-000223-01 

n . - ~ 

o 

,I 



1 

\ 

\ 
\ 
\/\ 

If thel source is numeric, COBOL moves an unsigned decimal equivalent of the source's value to the 
destination, according to the rules for a character string move. For example, when moving an item with 
PICTURE S9(4) USAGE DISPLAY or COMP VALUE -563 to an item with PICTURE X(3), the result is 
"056" . 

If the destination is an alphanumeric edited data item, COBOL moves the characters of the source to the 
character positions of the destination in a left to right manner as in a typical character string move, except that 
editing takes place according to the PICTURE of the destination (see the section "Data Editing" in Chapter 
5). 

Numeric Move 

A MOVE statement containing numeric data items stores the algebraic value of the source in the destination 
item. The source and destination may be any of the nine numeric types; COBOL performs any necessary type 
conversion automatically. If the source is alphanumeric, it must be a simple digit string (e.g., "00590"). 
COBOL treats it as an unsigned decimal data item. 

COBOL aligns the value stored in the destination on the destination decimal point. If the source has excess 
digits either to the left or right of the decimal point, COBOL truncates the extra (leftmost and/or rightmost) 
digits. If the source has too few places to the left or right of the decimal point, COBOL zero-fills the extra 
(leftmost and/or rightmost) positions of the destination. 

If the destination is a numeric edited data item, the MOVE statement stores the algebraic value of the source 
in the destination, just as in a numeric move, except that editing takes place according to the PICTURE of the 
destination (see the section "Data Editing" in Chapter 5). 

Table 7-2 shows the techniques used when moving elementary data types in a MOVE statement. The gray 
squares signify illegal moves. 

Alphanumeric 

Alphanumeric 
Edited 

Alphabetic 

Numeric 
(all types) 

Numeric 
Edited 

093-000223-01 

Table 7-2. MOVE Rules 

Alphanumeric 
Alphanumeric 

Alphabetic !Edited 

character character character 
string move string move string move 

with editing 

character character character 
string move string move string move 

with editing 

character character character 
string move string move string move 

with editing 

character edited 
string move character 
after string move 
conversion after 

conversion 

character character 
string move string move 

with editing 

Licensed Material-ProperlY of Data General Corporation 

Numeric 
(all types) 

numeric 

Numeric 
Edited 

numeric 
move move 

with editing 

7-41 



MOVE (continued) 

Examples 
Example 1 

MOVE "STRING" TO FLO. 

If FLO is defined as PIC X(5), the result is FLO=STRIN. 
If FLO is defined as PIC X(7), the result is FLO = STRING D. 
If FLO is defined as PIC X(5) JUSTIFIEP RIGHT, the result is FLO=TRING. 
If FLO is defined as PIC X(7) JUSTIFIED RIGHT, the result is FLO= DSTRING. 

Example 2 

MOVE "59032" TO NBR-FLO. 

If NBR-FLO is defined as PIC 9(3)V9(2), the result is NRB-FLO containing the value 590.32. (Remember that 
the decimal point is an implicit one.) 
If NBR-FLO is defined as PIC9(2)V9(1), the result is NBR-FLO containing the value 03.2. 
If NBR-FLO is defined as PIC 9(4)V9(3), the result is NRB-FLO containing the value 0059.032. 

7-42 Licensed Material-Property 01 Oats General Corporation 093-000223-01 

(~ 
) 

r 
1 
f 
t 
I 
i 
I 



'\ 
J 

'I-

i 
1 

I 

\~ 

\ 

MULTIPLY 
Multiplies one operand by one or more others and stores the result. 

Formats 
Simple MULTIPLY -

MUL TlPL Y id-lit-l BY { id-l [ROUNDED 1 } • •• [ON SIZE ERROR stmt 1 

MULTIPLY GIVING -

MUL TIPL Y id-lit-l BY id-lit-2 GIVING { id-2 [ROUNDED 1 } •• • [ON SIZE ERROR stmt 1 

Where: 

id-lit-l is a numeric literal or a numeric data item that specifies a multiplicand. 

id-l is a numeric data item that specifies the multiplier and receives the result of a simple MUL TIPL Y 
operation. 

stmt is an imperative statement to which control passes if a size error condition occurs. 

id-lit-2 is a numeric literal or a numeric data item that specifies a multiplier. 

id-2 is a numeric or numeric edited data item that receives the result of a MUL TIPL Y GIVING operation. 

Statement Execution 
A simple MUL TIPL Y statement multiplies the multiplicand (id-lit-l) by each multiplier/result (id-l) and stores 
each result in the corresponding id-l according to MOVE rules. (See the MOVE statement earlier in this 
chapter.) 

A MUL TIPL Y GIVING statement multiplies the multiplicand by the multiplier and stores the product in each 
result (id-2) according to MOVE rules. 

If you specify ROUNDED and COBOL truncates the result of this operation to fit the given resultant item, it 
rounds in the following manner. COBOL adds a 1 to the rightmost digit in the resultant item if the most 
significant digit of the truncated portion is greater than or equal to 5. 

If you specify the SIZE ERROR phrase and if the absolute value of any result, after decimal point alignment, is 
too large to fit in the number of decimal places you allowed in the result item, then the MUL TIPL Y statement 
completes all operations and transfers control to stmt. If you omit this phrase or if no size error condition 
occurs, control passes to the first executable statement following the MUL TIPL Y sentence. 

Examples 
Example 1 

MULTIPLY FLO 1 BY FLD2 ROUNDED, FLD3. 

If FLDI = 9.873, FLD2 = 1.1, and FLD3 = 5 
(and FLD2 and FLD3 are defined as PIC 9(3)V9), 
the result is FLD2 = 10.9 and FLD3 = 49.3. 

Example 2 

MULTIPLY A BY B GIVING C, D. 

If A = 4, B = 5, C = 6, and D = 7, 
the result is C = 20 and D = 20. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-43 



OPEN 
Initializes files for input and/or output operations. 

Format 

OPEN [EXCLUSIVE] . 

INP~T { m-lIWITH NO REWIND] [ ONLY ] 
EXCLUDE id-2, •••. }o.o 

OUTPUT [INDEX I {ld-3 [WITH { VERIFY } ] 
NO REWIND [

ONLY 
EXCLuDE id-2, • •• no 0 0 

• • • 

1-0 {ld-4[WITHVERIFY] [~DEm-1, 000] }o 0 0 

EXTEND {m-5[WITHVERIFY] [~DE Id-1, 00 J }o 00 

Where: 

id-J is a filename that specifies a file you want to open for input. 

id-2 is a filename that specifies an index you want to suppress buffer space for. 

id-3 is a filename that specifies a file you want to create for output. 

id-4 is a filename that specifies a file you want to open for input and output. 

id-5 is a filename that specifies a sequential file you want to open for extension. 

Statement Execution 
An OPEN statement puts a file in the open mode, where it remains until you issue a CLOSE statement for it. 
You may not request any input or output operations for a file unless it is open. You may not issue an OPEN 
statement for a file that your program has already opened. 

You may specify the EXCLUSIVE option for sequential and relative files only. If you specify EXCLUSIVE and 
another program is using the specified file, COBOL cannot open that file. The file status field for that file will 
receive the error condition (see the section "COBOL File Status Data Items" in Chapter 6). If you specify this 
option for a file that is not in use, statement execution opens the file and will not allow any other program to 
open it until you close it. 

7-44 Licensed Material-Property 01 Data General Corporation 093-000223-01 

() 

(1 
\. 

~ 
I 
\ 
J 

~ 

( 

I 
I 
I 



r 
,~ 

If you want only input operations performed on a file, specify the INPUT clause. Statement execution will set 
the current record pointer to the first record in the file. 

If you want only output operations performed on a file, specify the OUTPUT clause. The file you specify must 
not already exist. 

If you want to create an additional index (an inversion) for an indexed file, specify OUTPUT INDEX. In this case, 
the file specified must already exist. 

If you want both input and output operations performed on a file, specify the 1-0 clause. The file you specify 
must exist. Statement execution will set the record pointer to the first record in the file. 

If you want to write additional records to the end of a sequential file, specify the EXTEND clause. Statement 
execution will set the record pointer to the position immediately following the last logical record of that file. 

INFOS System users note: OPENing an indexed file automatically performs a down-forward movement 
positioning you on the kirst key in the top level index if the ACCESS MODE is SEQUENTIAL DYNAMIC. (The 
INFOS system starts users above their top level index.) 

COBOL always ignores the ONLY, EXCLUDE, VERIFY, and NO REWIND options. 

Examples 
Example I 

OPEN 1-0 MAINTAIN. 

This statement opens the file named MAINTAIN for input and output. 

Example 2 

OPEN EXCLUSIVE INPUT SAMFILE. 

This statement opens the file named SAM FILE for input. If SAMFILE is OPENed by another program, this 
statement will not execute. SAMFILE must be an INFOS SAM or RAM file. 

093-000223-01 Licensed Malerial-Property 01 Data General'Corporalion 7-45 



PERFORM 
Transfers control explicitly to an internal subroutine, executes it simply 
with looping, and returns control (implicitly) whenever execution of 
the specified procedure completes. 

Format 

PERFORM para-sect-I' [ {-=UGH} para-sect-2 ] 

{ 

int TIMES 

UNTIL expr-I 

VARYING id-I FROM id-lit-I BY id-lit-2 UNTIL expr-2 [AFTER id-2 FROM 

Where: 

para-sect is the name of a procedure paragraph or section you want to transfer control to. 

or 

int is an integer literal or an integer data item that specifies the number of times you want to execute 
the range of the PERFORM. 

expr is any legal conditional expression (see the section "Conditional Expressions" in Chapter 6). 

id is a numeric data item that specifies a counter. 

id-lit-l is a numeric literal or a numeric data item that specifies an initial value. 

id-lit-2 is a nonzero numeric literal or numeric data item that specifies an increment. 

Statement Execution 
The range of a PERFORM statement is from the first statement in para-sect-l to the last statement in 
para-sect-2 (if you specify it). If you omit para-sect-2 the last statement in para-sect-l is the end of the range. 

If you specify a simple PERFORM statement (one without the TIMES clause, UNTIL clause, or VARYING 
phrase), the range of the PERFORM executes once. Control then passes to the first executable statement 
following the PERFORM sentence. 

If you specify a TIMES phrase, the PERFORM statement executes the range of the PERFORM the number of 
times specified by into If int is zero or negative, COBOL never executes the range of the PERFORM and 
control passes to the first executable statement following the PERFORM sentence. If int is a literal, it must not 
exceed 32767. 

7-46 Licensed Material-Property of Data General Corporation 093-000223-01 

1 
(i 

1 



If you specify the UNTIL clause, the PERFORM statement executes the range of the PERFORM until the value 
of expr is true. When the condition is true, control passes to the first executable statement following the 
PERFORM sentence, even if control has just entered the PERFORM statement. 

You specify the VARYING phrase to augment the values referenced by one or more data items in an orderly 
fashion during the execution of the PERFORM statement. If, in addition, you specify one or more AFTER 
phrases, the range of the PERFORM is within a nested loop. The innermost loop is the loop defined in the last 
AFTER phrase you specify. 

As soon as the expr in the VARYING phrase is true, control passes to the first executable statement following 
the PERFORM sentence. If the condition is false, COBOL executes the range of the PERFORM unless you 
specify an AFTER phrase or phrases. In this case, COBOL evaluates the condition in the first AFTER phrase. 
If it is true, COBOL re-evaluates the data items of the VARYING phrase and its condition. If the first AFTER 
phrase's condition is false, COBOL evaluates the condition in the next AFTER phrase, and so on. If all 
conditions are false the first time through a complete cycle, the innermost loop will vary most. See the 
flowchart in Figure 7-2 for a visual explanation. 

PERFORMS may follow complicated interlocking structures; for example, a PERFORM loop may include 
another PERFORM loop and share code. However, these structures are dangerous and unclear. We do not 
recommend using them. A nested, active PERFORM statement may not pass control to the exit of another 
active PERFORM statement. No nested PERFORM statement may share a common exit with another 
PERFORM statement. 

Example 
PERFORM P VARYING C1 FROM B1 BY S1 UNTIL C1>50 

AFTER C2 FROM B2 BYS2 UNTIL C2>70 
AFTER C3 FROM B3 BY S3 UNTIL C3>90. 

Figure 7-2 is a flowchart that shows the logical flow of the above example. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 7-47 



PERFORM (continued) 

ENTRANCE PERFORM 

+ 
'2' 

SetC1 = 81 
C2 = 82 
C3 = 83 

~ -
Pass control to the 

YES • first executable ~50 statement following 
the PERFORM 
sentence . 

.. NO --, 

(j C2 > 70 
YES 

? 

NO 

NO;?,> 90 
? 

YES 
If ~ ,Ir 

Execute P Set C3 to 83 Set C2 to 82 

Ir If If 

Add S3toC3 AddS2 toC2 Add S1 to C1 

SO-01085 

Figure 7-2. PERFORM Example 

7-48 Licensed Melarlal-Property of Data General Corporation 093-000223-01 



READ for a Sequential File 
Makes a record available from a sequentially organized file. 

Format 

READ id-J NEXT RECORD [ LOCK ] 
UNTI5CK [ INTO id-21 [AT END stmtl 

Where: 

id-J is a filename that specifies a sequential file OPENed for input or I/0. 

id-2 is any data item specifying a destination that receives the file's record area. 

stmt is an imperative statement to which control passes if an end-of-file condition occurs. 

Statement Execution 
A READ statement for a sequential file reads into the specified file's record area the first record after the last 
one read. If you specify the INTO option, the READ will move the file's record area to id-2 according to MOVE 
rules. (See the MOVE statement earlier in this chapter.) If this is the first READ, it reads the first record of 
the file. 

If you specify the AT END option and the READ operation reaches the end of the file, control passes to stmt. If 
you omit this option, or if no end-of-file condition occurs, control passes to the first executable statement 
following the READ sentence. See "The Declaratives Section" in Chapter 6. 

COBOL always ignores the LOCK option. 

Example 
READ INVENTORY LOCK INTO WORKAREA. 

This statement reads the next record in INVENTORY and moves it into WORKAREA. 

093-000223-01 Licensed Material-Properly of Data General Corporation 7-49 



READ for a Relative File 
Makes a record available from a relative file. 

Format 

[ LOCK ] READ id-J [NEXT)RECORD UNLOCK [WAIT) [INTOig-2) 
( 

[ ATEND ] 
INVAiJDKEY stmt 

Where: 

id-J is a filename that specifies a relative file OPENed for input or I/0. 

id-2 is any data item specifying a destination that receives the file's record area. 

sImI is an imperative statement to which control passes if an end-of-file condition occurs or if you specify 
invalid record selection indicators (depending on which option you select). 

Statement Execution 
If you specify the NEXT option, a READ statement for a relative file reads into the specified file's record area 
the first record after the last one read. If this is the first READ, it reads the first record of the file. 

If you do not specify the NEXT option, COBOL determines the record to read by an integer, n, specified in the 
file's relative key. The READ statement reads the nIh record, counted from the beginning of the file, into the 
file's record area. 

If you specify the INTO option, the READ will move the file's record area into id-2 according to MOVE rules. 
(See the MOVE statement earlier in this chapter.) 

COBOL always ignores the LOCK and WAIT options. 

If you are reading the file in sequential order, you may specify the AT END phrase to capture control if a 
READ reaches the end of the file. If you specify this option and an end-of-file condition occurs, control passes 
to sImI. If you omit this option, or if no end-of-file condition occurs, control passes to the first executable 
statement following the READ sentence. See "The Declaratives Section" in Chapter 6. 

If you are reading the file in random order, you may specify the INVALID KEY phrase to capture control if the 
record selection indicators are invalid (i.e., if they reference a record or key that does not exist). If you specify 
this option and an invalid key condition occurs, execution of the READ statement terminates and control passes 
to sImI. If you omit this option, or if no invalid key condition occurs, control passes to the first executable 
statement following the READ sentence. See "The Declaratives Section" in Chapter 6. 

Example 
READ NAMES INTO LOC100 

INVALID KEY DISPLAY "KEY DOES NOT EXIST". 

This statement reads the record in NAMES which is specified by the current value of the relative key, and 
moves the file's recor-d area into LOC 1 00. If the record or key referenced does not exist, the message "KEY 
DOES NOT EXIST" is displayed on the user terminal. 

7-50 Licensed Materlat-Property of Data General Corporation 093-000223-01 

'~ 



READ for an Indexed File 
Makes a record available from an indexed file. 

Format 

NEXT 
Fc5RviiARD 
BACKWARD 

READid-l [ {~I:TAIN} POSITION] 
UP 
DOWN 
"O'P"'FO'Rw AR D 

[ RECORD ] 
SUPPRESS I PARTIAL RECORD I I DATA RECORD I 

[ LOCK ] 
liNi:OCK IINTOid-21 

Where: 

UP BACKWARD 
DOWN FORWARD 
S'fAilc 

[{ KEY IS } {. [APPROXIMATE] } ] [{ ATEND } ] 
KEYS ARE Id-3 GENERIC • • • INVAUDKEY sImI 

id-J is a filename that specifies an indexed file OPENed for input or I/O. 

id-2 is any data item specifying a destination that receives the file's record area. 

id-3 is an alphanumeric data item that specifies a key used to determine a record's location. 

stmt is an imperative statement to which control passes if an end-of-file condition occurs or if you specify 
invalid record selection indicators (depending on which option you select.) 

Statement Execution 
A READ statement for an indexed file reads a record into the file's record area. COBOL determines the record 
according to what you specify (explicitly or implicitly) in the POSITION phrase, the relative options phrase 
(NEXT, FORWARD, etc.), and the KEY series phrase. If you specify the INTO option, the READ will move the 
file's record area to id-2 according to MOVE rules. (See the MOVE statement earlier in this chapter.) 

By specifying FIX POSITION, you set the record pointer to the record specified in the KEY series phrase or the 
relative options phrase (discussed below). If you specify RETAIN POSITION, you do not change the current • 
position of the record pointer (i.e., it points to the record for which you last set it). If you omit this option, the 
default is FIX POSITION. 

When you specify a relative options phrase, you reference a record in an indexed file, relative to the current 
position of the file's record pointer. If you omit both this option and the KEY series option, the default is the 
first (primary) key in the SELECT clause. 

If you specify the KEY series phrase, you must have declared each key (id-3) in this file's SELECT clause. 

For more information on these options, see the section "Indexed File Record Selection" in Chapter 6. 

If you specify the LOCK option, you are the only one who can access the block containing the referenced 
record until you issue an I/O statement with UNLOCK for that record, or until you CLOSE the file which 
automatically UNLOCKs the record. If you SUPPRESS DATA RECORD, locks are ignored. 

093-000223-01 Licensed Material-Property of Date General Corporation 7-51 



READ for an Indexed File (continued) 

If you specify SUPPRESS PARTIAL RECORD, COBOL will not retrieve the partial record associated with the 
referenced index entry from the file's partial record area (which you defined in the file's FD entry in the Data 
Division). If you specify SUPPRESS DATA RECORD, COBOL will not input the data record associated with 
the referenced index entry to the file's record area. You may specify both of these options in any order. 
Specifying them both lets you position the record pointer and updates the FEEDBACK item in the FD entry 
for this file; this is one way you can generate a new inversion in an indexed file. 

If you are reading the file in sequential order, you may specify the AT END phrase to capture control if the 
READ reaches the end of the file or subindex. If you specify this option and an end-of-file condition occurs, 
control passes to stmt. If you omit this option, or if no end-of-file condition occurs, control passes to the first 
executable statement following the READ sentence. 

If you are reading the file in random order, you may specify the INVALID KEY phrase to capture control if the 
record selection indicators are invalid (i.e., if no record is found that has a key value equal to that of the key of 
reference). If you specify this option and an invalid key condition occurs, execution of the READ statement 
terminates and control passes to stmt. If you omit this option, or if no invalid key condition occurs, control 
passes to the first executable statement following the READ sentence. 

Example 
READ FILE-09 FIX POSITION 

SUPPRESS DATA RECORD 
KEY IS REM02. 

This statement reads the partial record of key REM02 into FILE-09's partial record area (declared in the 
SELECT statement) without reading the data record associated with that key. The record pointer is set at this 
key entry. 

7-52 Licensed Materlal-Property 01 Data Genaral Corporation 093-000223-01 

n 



I 
) 

I 
l 
I 
\ 
~ 
I 

\ 

I 
\ 

RELEASE 
Passes records to the initial phase of a SORT operation. 

Format 

RELEASE id [ FROM id-lit] 

Where: 

id is an alphanumeric data item specifying a record from the sort/merge description entry which is 
given in the controlling SORT statement. 

id-Iit is any data item or literal that specifies a source you want to pass. 

Statement Execution 
A RELEASE statement releases the contents of id as an input record to the initial phase of the SORT 
operation. If you specify the FROM option, RELEASE moves the contents of id-lit to id according to MOVE 
rules prior. to performing the RELEASE operation. (See the MOVE statement earlier in this chapter.) 

You may issue a RELEASE statement only within the range of an input procedure associated with a SORT 
statement. id and id-Iit must not reference the same storage area. 

Example 
RELEASE REeO 1. 

093-000223-01 Licensed Malerial-Property of Data General Corporation 7-53 ' 



RETRIEVE 
Obtains information about an indexed file. 

Format 

{ 
STATUS } 

RETRIEVE id-J [HIGH I KEY 
SUB-INDEX 

NEXT 

[ {~~AIN} POSITION ] 

FC5'RWARD 
BACKWARD 
UP 
DOWN 
UP"Fc5RWARD 
UP BACKWARD 
DOWN FORWARD 
STATIC 

[ {~IS } {id-2 [APPROXIMATEJ} ••• J 
KEYS ARE GENERIC 

lli!Q.. id-3 [INVALID KEY sImI I 

Where: 

id-J is a filename that specifies an open indexed file. 

id-2 is an alphanumeric data item that specifies a record key associated with id-J. 

id-3 is any data item specifying a destination that receives record or key status information. 

stmt is an imperative statement to which control passes if you specify invalid record selection indicators. 

Statement Execution 
COBOL determines the record interpreted by a RETRIEVE statement according to what you specify (explicitly 
or implicitly) in the POSITION phrase, the relative options phrase (NEXT, FORWARD, etc.), and/or the KEY 
series phrase. 

By specifying FIX POSITION, you set the record pointer to the record specified by this statement. If you specify 
RETAIN POSITION, you do not change the current position of the record pointer (i.e., it points to the record for 
which you last set it). If you omit this option, the default is FIX POSITION. 

When you specify a relative option, you reference a record in id-J, relative to the current position of id-J 
record pointer. If you omit both this option and the KEY series option, the default is the first key in the 
SELECT clause. 

If you specify the KEY series phrase, you must have declared each key (id-2) in the SELECT statement for 
id-J. 

For more information on these options, see the section "Indexed File Record Selection" in Chapter 6. 

The type of information you receive from the execution of a RETRIEVE statement depends on which of four 
types you select: STATUS, HIGH KEY, KEY, or SUB-INDEX. If you specify STATUS, COBOL interprets id-3 as 
a four-character data item and stores either a 1 (if the condition is true) or a 0 (if the condition is false) in 
each character position, to signify the following conditions: 

1st character (leftmost) - a LOGICAL LOCAL DELETE was executed for this record; 

7-54 Licensed Material-Property of Data General Corporation 093-000223-01 

I 
i 

J 

I 
I) 
\, 

~ 

I 
r-\.' ! 
i, ) I 

J 

1 



\ 
\ 
\ 

2nd character - the key is a duplicate; 

3rd character - reserved; 

4th character (rightmost) - a LOGICAL GLOBAL DELETE was executed for this record. 

If you specify HIGH KEY, RETRIEVE moves the value of the highest key in the subindex associated with the 
selected record into id-3 (which therefore, must be large enough to contain the largest key). 

If you specify KEY, RETRIEVE moves the key value of the selected record into id-3. 

If you specify either HIGH KEY or KEY, completion of the RETRIEVE statement will update two variables in 
the KEY IS phrase of the SELECT statement associated with id-J: 

1. The id-3 data item in the SELECT clause that names either the last id-2 you specified in the KEY IS 
option of the RETRIEVE statement or, if you omitted this option, 

2. The first key (id-3) you specified in the KEY IS phrase of the SELECT statement. 

The variables that RETRIEVE updates are id-lit-3 which will contain the length of the RETRIEVEd record's 
key, and id-4 which will contain the occurrence number of the RETRIEVEd key. 

If you specify SUB·INDEX,RETRIEVE moves into id-3 the I2-character subindex definition packet associated 
with the key you specified in the KEY series phrase. 

If you specify record selection indicators which reference a record that does not exist, and if you specify the 
INVALID KEY option, execution of the RETRIEVE statement terminates and control passes to stmt. If you omit 
this option, or if no invalid key condition occurs, control passes to the first executable statement following the 
RETRIEVE sentence. 

Examples 
Example 1 

MOVE 1 TO KEYO 1 . 
RETRIEVE IND02 KEY, KEY IS KEY01 INTO DEST. 

This statement retrieves the key from file IND02 whose value is equal to one, and moves the contents of that 
key to DEST. You might use this implementation of a RETRIEVE statement to ensure that your current 
position in the file is at the record whose key is equal to one. 

Example 2 

RETRIEVE IND02 SUB·INDEX DOWN KEY IS KEYO 1 INTO SUB 1. 

The subindex definition packet for the subindex associated with KEY01 is returned in SUB1. (This example 
assumes that a subindex exists for KEYO 1.) 

Example 3 

RETRIEVE IND02 STATUS KEY IS KEY011NTO STAT1. 

If after execution of this statement STAT 1 = 0100, KEY01 is a duplicate key. 

093·000223·01 Licensed Materlal·Property of Date General Corporation 7-55 



RETURN 
Obtains sorted records from the final phase of a SORT operation or merged 

_ records during a MERGE operation. 

Format 

RETURN id-J RECORD [INTO id-21 [AT END stmtl 

Where: 

id-J is a filename that specifies a sort/merge file given in the controlling SORT or MERGE statement. 

id-2 is any data item specifying a destination that receives the file's record area. 

sImI is an imperative statement to which control passes if an end-of-file condition occurs. 

Statement Execution 
A RETURN statement transfers the next record from the final phase of the SORT or MERGE operation into 
the record area associated with id-J. 

If you specify the INTO clause, RETURN moves the contents of the file's record area to id-2 according to 
MOVE rules, after successful execution of the RETURN statement. (See the MOVE statement earlier in this 
chapter.) However, this move will not occur if there is an end-of-file condition. 

You may issue a RETURN statement only within the range of an output procedure associated with a SORT or 
MERGE statement. id-J and id-2 must not reference the same storage area. 

If no logical record exists for the file at the time of the RETURN statement's execution and if you specify the 
AT END option, control passes to sImI and the contents of the file's record area rema'in undefined. After 
execution of slmt, you may not specify any RETURN statements in the current output procedure. If you omit 
this option or if no end-of-file condition occurs, control passes to the first executable statement following the 
RETURN sentence. See "The Declaratives Section" in Chapter 6. 

Example 
RETURN MRG-FILE RECORD. 

This statement passes the next record to be processed to the record area for MRG-FILE, a name specified in the 
controlling SORT or MERGE statement. 

7-56 Licensed Material-Property 01 Date Ganaral Corporation 093-000223-01 

o 

o 



REWRITE for a Sequential File 
Writes a new version of a record already existing in a sequentially organized file. 

Format 

REWRITE id [FROM id-lit I 

Where: 

id is a data name that specifies a logical record associated with a file declared in the File Section of the 
Data Division and OPENed for I/O. 

id-lit is any data item or literal that specifies the source you want to write. 

Statement Execution 
A REWRITE statement for a sequential file rewrites the last record COBOL read from that file. Following the 
REWRITE, the current record is the record after the one just written. If you specify the FROM option, COBOL 
moves the contents of id-lit to id according to MOVE rules, prior to performing the REWRITE operation. (See 
the MOVE statement earlier in this chapter.) After execution, COBOL updates the value of the file status 
register, if you specified it in this file's SELECT statement. (See the section called "COBOL File Status Data 
Items" in Chapter 6.) 

id-lit and id must not reference the same storage area. The number of character positions in id must be the 
same as the number of characters in the record you are rewriting. 

Example 
REWRITE INFO FROM NEW-INFO. 

This statement moves the contents of the record NEW-INFO to the record INFO. COBOL then rewrites the 
record last read in the sequential file associated with the record INFO. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-57 



REWRITE for a Relative File 
Writes a new version of a record associated with a key that already exists in a 
relative file. 

Format 

REWRITE id [IMMEDIATE I [FROM id-litl [INVALID KEY stmtl 

Where: 

id is a data name that specifies a logical record associated with a file declared in the File Section of the 
Data Division and OPENed for I/O. 

id-Iil is any data item or literal that specifies the source you want to write. 

slmt is an imperative statement to which control passes if the record selection indicators are invalid. 

Statement Execution 
A REWRITE statement for a relative file that you are accessing sequentially rewrites the record that COBOL 
last read. Following the REWRITE, the current record is the record after the one just written. If you specify the 
FROM option, COBOL moves the contents of id-Iil to id according to MOVE rules, prior to performing the 
REWRITE operation. (See the MOVE statement earlier in this chapter.) After execution, COBOL updates the 
value of the file status register, if you specified it in this file's SELECT statement. (See the section called 
"COBOL File Status Data Items" in Chapter 6.) 

id-Iit and id must not reference the same storage area. The number of character positions in id must be the 
same as the number of characters in the record you are rewriting. 

A REWRITE statement for a relative file that you are accessing randomly rewrites the record specified by the 
value of the relative key for this file. 

An invalid key condition occurs if, in random or dynamic access mode, the record specified by the key does not 
exist in the file. If you specify the INVALID KEY option and if the above condition occurs, the REWRITE 
statement terminates and control passes to sImI. If you omit this option or if no invalid key condition occurs, 
control passes to the first executable statement following the REWRITE sentence. Do not specify the INVALID 
KEY phrase for a relative file that you are accessing sequentially. See "The Declaratives Section" in Chapter 
6. 

The IMMEDIATE clause immediately writes the block containing the record to the disk file. This option 
trades I/O efficiency for extra data security. 

Example 
REWRITE COMP 1 IMMEDIATE INVALID KEY DISPLAY "KEY ERROR". 

Before processing any other I/O operations, COBOL rewrites the contents of the last record it read in the 
current relative file to contain COMP 1. If the relative key that is referenced does not exist, the message "KEY 
ERROR" is displayed on the user terminal. 

7-58 Licensed Material-Property 01 Data General Corporation 093-000223-01 

i 

1 

01 

I 
I 

1 
I 
l 

n.···· ~ 
~ 

I 

o 



REWRITE for an Indexed File 
Writes a new version of a record associated with a key that already exists 
in an indexed file. 

Format 

REWRITE [INVERTED I id-J [IMMEDIATE I 

[ {~AIN } POSITION J 
NEXT 
FORWARD 
BACKWARD 
~ 
DOWN 
UP FORWARD 

[ SUPPRESS [PARTIAL RECORD I [DATA RECORD I ] 

[ LOCK ] 
Uiim5CK 

UP BACKWARD 
DOWN FORWARD 
STATIC 

[FROM id-lit I [ { ~~~~SARE} {id-2 

[INVALID KEY stmt I 

Where: 

[ APPROXIMATE]} ••• J 
GENERIC 

id-J is a data name that specifies a logical record declared in the File Section of the Data Division and 
OPENed for I/O. 

id-lit is any data item or literal that specifies the source you want to write. 

id-2 is an alphanumeric data item that specifies a record key associated with the current indexed file. 

stmt is an imperative statement to which control passes if you specify invalid record selection indicators. 

Statement Execution 
If you specify INVERTED, the REWRITE statement does not write a data record. You use this feature to link an 
existing index entry with no data record to a currently existing data record. To use this option you must specify 
the FEEDBACK phrase in the FD entry for this file. 

If you do not specify INVERTED, COBOL writes a record in a location determined by what you specify 
(explicitly or implicitly) in the POSITION phrase, the relative option phrase (NEXT, FORWARD, etc.), and the 
KEY series phrase. If you specify the FROM option, COBOL moves the contents of id-lit to id-J according to 
MOVE rules, prior to performing the REWRITE operation. (See the MOVE statement earlier in this chapter.) 
After execution, COBOL updates the value of the file status register, if you specified it in this file's SELECT 
statement. (See the section called "COBOL File Status Data Items" in Chapter 6.) 

id-lit and id-J must not reference the same storage area. The number of character positions in id-J must be 
the same as the number of characters in the record you are rewriting. 

By specifying FIX POSITION, you set the record pointer to the record specified in the KEY series phrase 
(discussed below). If you specify RETAIN POSITION, you do not change the current position of the record 
pointer (i.e., it points to the record for which you last set it). If you omit this option, the default is RETAIN 
POSITION. 

093-000223-01 Licensed Material-Property 01 Date General Corporation 7-59 



REWRITE for an Indexed File (continued) 

When you specify a relative option, you reference a record in an indexed file, relative to the current position of 
the file's record pointer. If you omit both this option and the KEY series option, the default is STATIC . 

. If you specify the KEY series phrase, you must have declared each key (id-2) in this file's SELECT clause. 
However, if the indexed file has alternate record keys, the system keys the REWRITE operation by the prime 
record key (defined in the RECORD KEY clause of this file's SELECT clause). You need not specify this key 
in the KEY series phrase. 

For more information on these options, see the section "Indexed File Record Selection" in Chapter 6. 

If you specify the LOCK option, you are the only one who can access the referenced record until you issue an 
I/O statement with UNLOCK for that record, or until you CLOSE the file which automatically UNLOCKs the 
record. If you SUPPRESS DATA RECORD, COBOL ignores a lock on the record. 

If you specify SUPPRESS PARTIAL RECORD, COBOL will not output the partial record associated with the 
referenced index entry to the file's partial record area (which you specified in the file's FD entry in the Data 
Division). If you specify SUPPRESS DATA RECORD, COBOL will not output the data record associated with 
the referenced index entry to the file's record area. The current value of the feedback item was set by a 
previous access to this file. 

An invalid key condition exists when, in sequential access mode, the value contained in the prime record key 
data item of the record to be rewritten is not equal to the value of the prime record key of the last record read 
from this file. It exists in random or dynamic access mode, when the value contained in the prime record key 
data item does not equal that of any record stored in the file. If you specify the INVALID KEY option and any 
of the above conditions occur, execution of the REWRITE statement terminates and control passes to stmt. If 
you omit this option or if no invalid key condition occurs, control passes to the first executable statement 
following the REWRITE sentence. See "The Declaratives Section" in Chapter 6. 

COBOL always ignores the IMMEDIATE option. 

Example 
REWRITE CUST01 FIX SUPPRESS PARTIAL RECORD FROM NEW-CUST KEY IS KEY01. 

This statement moves the contents of NEW-CUST to CUSTO 1, sets the record pointer to the record referenced 
by KEY01, and rewrites the contents of that record with the contents of CUST01, suppressing partial records. 

7-60 Licensed Material-Property 01 Data General Corporation 093-000223-01 



SEARCH 
Locates an element in a table that satisfies specified conditions. 

Format 

{ [ALL] id. } 
SEARCH idlVARYING int]· [AT END stmt-l ] { { stmt-2 }} 

WHEN exP'NEXT SENTENCE • • • 

Where: 

id is an unsubscripted array name whose data description must contain an OCCURS clause specifying 
the INDEXED BY phrase. 

int is an integer data item that specifies an index item. 

stmt-I is an imperative statement to which control passes if elemt contains a value greater than the highest 
possible occurrence number. 

exp' is any legal conditional expression (see the section "Conditional Expressions" in Chapter 6). 

stmt-2 is an imperative statement to which control passes if all specified exprs are satisfied. 

Statement Execution 
If you reference a table element that is less than or equal to the maximum number of occurrences which you 
specified in the OCCURS clause of id data definition, then the SEARCH statement will evaluate the expr in 
the order in which you write them. If none of the conditions is true, COBOL increments the table element to 
reference the next occurrence. The SEARCH statement then repeats this whole process for the new table 
element, unless it is greater than the highest possible occurrence number. For more information on the 
OCCURS clause, see the section "OCCURS Clause" in Chapter 5. 

If you specify or attain a table element that is greater than the highest possible occurrence number, the 
SEARCH operation terminates immediately. If you specify the AT END option, control passes to stml-I. If you 
omit this option or if you do not go outside the legal range, control passes to the first executable statement 
following the SEARCH sentence. 

If one of the exprs in a SEARCH operation is true, the search terminates immediately and control passes to the 
imperative statement associated with that condition. The table element remains set at the occurrence which 
satisfied the condition. Control then passes to the first executable statement following the SEARCH sentence, 
unless the imperative statement transfers control elsewhere. 

If you specify the ALL option, COBOL initializes the index item (i-I in the INDEXED BY phrase of id's 
OCCURS clause) to 1. 

If you specify- VARYING int and if int is one of the index items listed in id INDEXED BY phrase, then the 
SEARCH operation varies that index item instead of i-I. If inl is not one of the index items for id or if you omit 
the VARYING phrase, then the SEARCH operation will use i-I as the index, and COBOL will increment int 
every time it increments i-I. 

If you specify the NEXT SENTENCE phrase, it performs no operation, but passes control to the first executable 
statement following the SEARCH sentence. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 7-61 



SEARCH ( continued) 

Example 
Given the data descriptions: 

01 A. 
02 B OCCURS 200 TIMES INDEXED BY I,J. 

03 B 1 PIC S99. 
03 B2 PIC x., 

you might write the statements: 

SEARCH 8 VARYING J 
AT END DISPLAY "NOT FOUND", 

STOP RUN; 
WHEN 81 (J) > - 12 

MOVE 8(J) TO REC, 
WRITE REC; 

WHEN 82 (J) = "A" AND 81(J) NOT = 0 
SET A-CTR UP 8Y 1, 
MOVE -1 TO 81(J). 

SEARCH 8 VARYING K 
WHEN 82(1) = "C" 

SET TA8 (K) TO 1. 

7-62 Licensed Malerial-Property 01 Dala General Corporalion 

o 
093-000223-01 



SEEK 
Positions the 1/0 system at that record in the relative file which is indicated 
by the current value of the file's relative key. 

Format 

SEEK id RECORD [INVALID KEY stmtl 

Where: 

id is a filename that specifies a relative file OPENed for input or I/0. 

sImI is an imperative statement to which control passes if record selection indicators are invalid. 

Statement Execution 
COBOL always ignores the SEEK statement. 

093-000223-01 Licensed Matarlal-Property of Data General Corporation 7-63 



SET 
Is an inverted form of the MOVE statement. It sets one or more data items 
equal to another data item. 

Format 

SET id, ••• TO id-lit 

Where: 

id is an index, numeric, or alphanumeric data item that receives a data source. 

id-lit is an index, numeric, or alphanumeric data item or literal that specifies a data source you want to 
move. 

Statement Execution 
A SET statement moves the data source to the first (or only) destination item, then to the second (if it exists), 
etc. COBOL evaluates any subscripting or indexing associated with id before moving the data. 

If you specify a group data item as either the source or destination, COBOL executes the SET statement as a 
character string move with no editing. 

See the MOVE statement for examples and a detailed explanation of character string and numeric moves. The 
format of the SET statement is equivalent to: 

MOVE id-lit TO id, ... 

7-64 Licensed Material-Property of Data General Corporation 093-000223-01 

() 
::: -- ~-



SETUP/DOWN 
Adds an operand to or subtracts an operand from one or more operands and 
stores the results. 

Format 

SET id ,... {~6WN } BY id-lit 

Where: 

id is a numeric data item that specifies an addend or minuend and that receives the result of the addition 
or subtraction. 

id-lit is a numeric literal or a numeric data item that specifies an addend or subtrahend. 

Statement Execution 
A SET UP statement adds the addend (id-lit) to each addend/result (id) and stores each result in the 
corresponding id according to MOVE rules. (See the MOVE statement earlier in this chapter.) The SET UP 
statement is equivalent to the statement: 

ADD id-lit TO id, ... 

A SET DOWN statement subtracts the subtrahend (id-lit) from the minuend/result (id) and stores each result 
in the corresponding id according to MOVE rules. The SET DOWN statement is equivalent to the statement: 

SUBTRACT id-lit FROM id ... 

Examples 
Example I 

SET RES 1, RES2 UP BY A. 

If RESI = 4, RES2 = II, and A = 3, the result is RESI = 7 and RES2 = 14. 

Example 2 

SET A, B, C DOWN BY D. 

If A = 2, B = 4, C = 6, and D = 1, the result is A = 1, B = 3, and C = 5. 

093-000223-01 Licensed Material-Property 01 Date General Corporation 7-65 



'-----

SORT 
Arranges one or more files in a sorted order according to a set of specified keys. 

Format 

Where: 

id-J 

lit 

id-2 

id-3 

a/ph 

7-66 

SORT id-l [lit [CREATE MAXIMUM RECORDS id-21 [SAVE I] 

[ COLLATING SEQUENCE IS {
ASCII }] NATiVE 
STANDARD-1 
EBCDIC 
a/ph 

INPUT PROCEDURE IS para-sect-l [ {~UGH} para-sect-2 ] 

USING id-4 I •• 0 

OUTPUT PROCEDURE IS para-sect-3 

GIVING id-5 

[ {. THROUGH} para-sect-4 ] 
THRU 

is a filename that specifies a sort/merge file described in a sort/merge file description entry in 
the Data Division. 

is an alphanumeric literal that would specify a work file or data item. COBOL ignores this 
specification. 

is a numeric data item that specifies the number of records you want to allocate for lit. 
COBOL ignores this specification. 

is an alphanumeric data item that specifies a key described in a record associated with id-J. 

is an alphabetic name indicating that this file will use the collating sequence associated with 
the a/ph you defined in the Special-Names Paragraph of the Environment Division. 

Licensed Material-Property of Data General Corporation 093-000223-01 

o 

o 



('I 

para-sect-l, 
para-sect-2 

id-4 

para-sect-3, 
para-sect-4 

id-5 

is a Procedure Division section or paragraph name specifying an input procedure which 
COBOL executes as the initial phase of the SORT operation. 

is a filename specifying a file which is not a sort/merge file, does not have subindexing or 
alternate record keys, and is not open at the time of the SORT operation's execution. 

is a Procedure Division section or paragraph name specifying an output procedure which 
COBOL executes as the final phase of the SORT operation. 

is a filename specifying a sequential file that either does not already exist, or exists but is a 
closed, empty inversion of a currently existing indexed file. 

Statement Execution 

You must specify ASCENDING or DESCENDING to indicate the comparison you want the SORT operation to 
perform when it arranges the records. When comparing the key values in two records, COBOL uses the rules 
for evaluating relational expressions in which there are three comparisons: greater than, less than, and equal 
to. If you specify ASCENDING, the SORT operation arranges the records so that those with lower key values 
will come first. If you specify DESCENDING, SORT arranges the records so that those with greater key values 
will come first. The sorted order of records is undefined if the SORT operation compares two records where all 
keys are identical. 

The keys you specify represent the portion of the data records COBOL uses in the comparison process. The 
first key ,you specify is the most important key. It is the first key the SORT operation uses when comparing two 
records. The second key you specify is the next most significant key, the third is the third most significant key, 
and so on. The SORT operation uses these keys only if the value of the first key in the records it is comparing 
is the same. 

If you specify the COLLATING SEQUENCE phrase, the sequence specifiers have the same meanings as the 
specifiers used in the PROGRAM COLLATING SEQUENCE clause of the Environment Division (see the section 
"Object Computer Paragraph" in Chapter 4), except that they apply only to comparisons made during the 
SORT statement's execution. If you omit this option in the SORT statement, the SORT operation uses what 
YOll specified in the PROGRAM COLLATING SEQUENCE in the Environment Division. I.f you omit both 
options, the default is ASCII. 

If you specify the INPUT PROCEDURE and OUTPUT PROCEDURE clauses, SORT executes the specified 
procedures according to the rules for a simple PERFORM (see the PERFORM statement earlier in this 
chapter). Each set of sections you specify for the input and the output procedures must appear contiguously in 
your program. You must not pass control out of either the input or output procedure. The words THRU and 
THROUGH are equivalent. 

The logical records in the para-sect-l and para-sect-2 and in id-5 must be equal in size to the logical records of 
id-l. 

SORT statements may appear anywhere in the Procedure Division of your program, except in the Declaratives 
section or in an input or output procedure associated with a SORT or MERGE statement. 

After completion of the SORT operation, control passes to the first executable statement following the SORT 
statement. 

093-000223-01 Licensed Ma1erial-Property of Data General Corporation 7-67 



SORT (continued) 

Example 
PROCEDURE DIVISION. 
1-1. 

SORT SORTFILE-1 A 

1-2. 

ON ASCENDING KEY KEY 1, KEY2 
ON DESCENDING KEY KEY3, KEY 4 
INPUT PROCEDURE IS INSORT 
OUTPUT PROCEDURE IS OUTP 1 THRU OUTP2. 

STOP RUN. 

IN SORT SECTION. 
IN-1. 

SUBTRACT 1 FROM QUANTITY. 
RELEASE S-RECORD. 
MOVE 9999 TO ORDER-FLO. 
RELEASE S-RECORD. 

IN-2. 
PERFORM IN-3 2 TIMES. 
GO TO IN-EXIT. 

IN-3. 
MOVE CURDATE TO UPDATE-FLO. 
IF UPDATE-FLO IS GREATER THAN 

LAST-DATE GO TO IN-EXIT. 
RELEASE S-RECORD. 

IN-EXIT. 
EXIT. 

OUTP1. 
IF DELETE-CNT IS EQUAL TO ZERO 

MOVE "NO" TO ERROR-TOTAL ELSE 
MOVE DELETE-CNT TO ERROR-TOTAL. 

MOVE IN-PART TO OUT-PART. 
MOVE IN-NUM TO OUT-NUM. 
MOVE INFO-LINE TO DUMMY-RECORD. 
WRITE DUMMY-RECORD AFTER 

ADV ANCING 3 LINES. 

OUTP2. 
IF ERROR-COUNTER IS EQUAL TO 

ZERO GO TO OUTP3. 
RETl!RN SORTFILE-1 A. 

OUTP3. 
CLOSE SORTFILE-1 A. 
EXIT. 

7-68 Licensed Material-Property of Date Oeneral Corporation 093-000223-01 

o 

o 



START for a Sequential File . 
Positions the record pointer in a sequentially organized file. 

Format 

START idRECORD id-lit-l [CHARACTER id-lit-21 [AT END stmtl 

Where: 

id is a filename that specifies a sequential file on a direct access device, OPENed for input or I/O. 

id-lit-l is an integer literal or an integer data item that specifies a record number. 

id-lit-2 is an integer literal or an integer data item that specifies a character offset within id-lit-l. 

stmt is an imperative statement to which control passes if you specify a position that is not within the 
given file. 

Statement Execution 
A START statement for a sequential file positions the file so that the next READ issued for that file will return 
the record number in id-lit-l plus one, offset by id-lit-2 character position(s), if specified. 

The first record in a sequential file is numbered 1. If you do not specify id-lit-2, the default value is o. 

If you specify the AT END option, and the position you indicate is outside this file, then control passes to stmt. 
The position of the record pointer remains undefined. If you omit this option, or if no AT END condition occurs, 
control passes to the first executable statement following the START sentence. (See "The DecIaratives 
Section" in Chapter 6.) 

Example 
START MYFILE RECORD 6. 

After execution of this statement, the next READ issued for MYFILE will begin at the seventh record. 

093-000223-01 Licensed Malerlel-Property 01 Data General Corporation 7-69 

I 



SI ARI for a Relative file 
Positions the record pointer in a relative file. 

Format 

START id-J 

Where: 

KEY 

IS EQUAL TO 
IS= 
IS GREATER THAN 
IS> 
IS NOT LESS THAN 
IS NOT--Z--

id-2 

id-J is a filename that specifies a relative file OPENed for input or I/O. 

[ INVALID KEY stmt 1 

id-2 is an integer data item specifying a key that appears in the RELATIVE KEY phrase of the file's 
SELECT clause. 

stmt is an imperative statement to which control passes if the record selection indicators are invalid. 

NOTE: We do not underline the required relational characters >. <. and = in order to avoid confusion 
with other symbols such as > (greater than or equal to). 

Statement Execution 
A START statement for a relative file positions the file to the beginning of the record indicated by the KEY 
phrase. If you specify EQUAL. START positions the file at the record indicated by id-2. if it exists. If you 
specify GREATER. START positions the file at the record whose key is the next key higher than the one 
indicated by id-2 if it exists. If you specify NOT LESS. START positions the file to the record indicated by 
id-2. If you omit the KEY phrase, the default is EQUAL. 

The START statement updates the value of the file status register, if you specified it in the SELECT statement 
for this file (see the section called "COBOL File Status Data Items" in Chapter 6). 

If you specify the INVALID KEY option and no existing record satisfies the stated comparison, control passes to 
stmt. The position of the record pointer remains undefined. If you omit this option, or if no invalid key 
condition occurs, control passes to the first executable statement following the START sentence. (See "The 
Declaratives Section" in Chapter 6.) 

Example 
START INC99 KEY GREATER IT. 

This statement positions the record pointer in INC99 to the record whose key is the next key greater than IT. and 
of the same length as IT. 

7-70 Licensed Material-Property of Data General Corporation 093-000223-01 

n 

(J 



START for an Indexed File 
Positions the record pointer in an indexed file. 

Format 

START id-J KEY 

Where: 

IS EQUAL TO 
IS-
IS GREATER THAN 
IS> 
IS NOT LESS THAN 
IS NOT-<-

id-2 [INVALID KEY stmtl 

id-J is a filename that specifies an indexed file with sequential or dynamic access and OPENed for input 
or I/O. 

id-2 is an alphanumeric data item that specifies either a record key associated with id-J or a subordinate 
data item whose leftmost character position corresponds to the leftmost character position of a record 
key data item. 

stmt is an imperative statement to which control passes if the record selection indicators are invalid. 

NOTE: We do not underline the required relational characters >. <. and = in order to avoid confusion with 
other symbols such as > (greater than or equal to). 

Statement Execution 
A START statement for an indexed file positions the file to the beginning of the record indicated by the KEY 
phrase. If you specify EQUAL. START positions the file at the record indicated by id-2. if it exists. If you 
specify GREATER. START positions the file at the record whose key is the next key higher than the one 
indicated by id-2 and of the same length as id-2. if it exists. START also updates the value of id-2 to the value 
of the new key. If you specify NOT LESS. START positions the file to the record indicated by id-2. or, if that 
does not exist, to the record whose key is the next key higher. START also updates the value of id-2 to the 
value of the new key. If you omit the KEY phrase, the default is EQUAL and COBOL uses the data item you 
specified in the first record key clause associated in this file's SELECT clause for comparison. 

If id-2 and the record key it references are of unequal length, START truncates the longer one on the right so 
that its length is equal to the shorter one's and the relational comparison proceeds. 

A START statement updates the value of the file status register, if you specified it in this file's SELECT 
statement (see the sections on File Status Registers in Chapter 6). 

If you specify the INVALID KEY option and no existing record satisfies the stated comparison, control passes to 
stmt. The position of the record pointer remains undefined. If you omit this option, or if no invalid key 
condition occurs, control passes to the first executable statement following the START sentence. (See "The 
Declarative Section" in Chapter 6.) 

In a multilevel indexed file, the key refers to the top file level. 

Example 
START MYFILE KEY IS GREATER THAN KEYO 1. 

If the keys in this index are AA, AAO, AA 1, BB, BBO, and BB 1, and KEYO 1 is equal to AA, the record pointer 
will be positioned at the beginning of the record with thekey BB. (AAO and AAI are not of the same length.) 

093-000223-01 Licensed Material-Property of Date General Corporation 7-71 



STOP 
Terminates or temporarily suspends execution of the currently executing 
program. 

Format 

STOP { RUN} 
-- lit . 

Where: 

lit is a numeric literal, alphanumeric literal, or figurative constant. that specifies a message. 

Statement Execution 
A STOP RUN statement closes all open files and terminates the current run unit. 

A STOP lit statement displays lit and suspends execution of the current run unit. If your program is executing 
at your console, it will display lit on the program console. Type any character except ESC to continue 
execution; typing ESC will terminate the program. If your program is executing in the batch stream, it will 
display lit on the OP console (PID2) and block itself if the operator status is ON, otherwise, the program 
aborts with the error message: "OPERATOR NOT A V AILABLE." The operator can then unblock the 
process to continue execution or terminate the process to abort execution. 

If you specify a message that is a numeric literal, it must be an unsigned integer. 

Example 
STOP "ENTER ANY CHARACTER TO RESTART". 

7-72 Licensed Material-Property 01 Data General Corporation 093-000223-01 



STRING 
Concatenates the contents or part of the contents of one or more data items 
into a single data item. 

Format 

STRI NG {M-I;'- I, ••• DELIMITED BY { ~1~2} } , • " INTO Id-J[ WITH POINTER Id-21 ION OVERFLOW "md 

Where: 

id-lit-/ 

id-lit-2 

id-/ 

id-2 

stmt 

is an alphanumeric literal or a numeric or alphanumeric data item that specifies a source field, and 
that has DISPLAY usage stated or implied by its data definition. 

is an alphanumeric literal or a numeric or alphanumeric data item that specifies a string delimiter, 
and that has DISPLAY usage stated or implied by its data definition. 

is an alphanumeric data item that specifies the destination field in which concatenation occurs, and 
that has DISPLAY usage stated or implied by its data definition. 

is an unsigned integer data item that specifies the character position in id-/ at which the -STRING 
operation begins. 

is an imperative statement to which control passes if an overflow condition occurs. 

If you specify a id-lit-/ or id-lit-2 data item as a numeric data item, the STRING statement interprets it as 
alphanumeric. 

If you specify a id-lit-/ or id-lit-2 data item as a figurative constant, it represents a single-character, 
alphanumeric literal. Do not use the optional word ALL when specifying a figurative constant. 

Do not specify editing symbols or the JUSTIFIED clause in the data definition of a id-J data item. 

Statement Execution 
A STRING statement transfers selected characters from specified source fields (id-lit-/) to a destination field 
(id-/ ). 

COBOL processes the source fields in the order in which you write them, and scans the characters in each 
field from left to right. When COBOL has selected the appropriate source characters, it transfers them to the 
destination field according to the MOVE rules governing alphanumeric to alphanumeric moves (see the 
MOVE statement earlier in this chapter). Even if the set of source characters transferred is smaller than the 
size of the destination field, the STRING statement does not provide space-filling. That portion of the 
destination field not referenced by the transfer of source characters will contain the characters that were 
present before execution of the STRING statement. For example, if the destination field contains ABCD and 
you transfer the source characters 12, the resulting destination field is 12CD. 

The characters that the STRING statement selects to transfer depends on what you specify in the DELIMITED 
BY phrase. If you specify id-lit-2 in the DELIMITED BY phrase, COBOL transfers the characters in each 
source field from the leftmost character up to, but not including, the first occurrence of id-lit-2 (the delimiter). 
If you specify a delimiter that does not exist, COBOL transfers the entire contents of the appropriate source 
field(s). If you specify a delimiter that indicates the leftmost character(s) of a source field, no transfer occurs. 
Execution terminates after COBOL transfers the selected characters from all source fields or when it reaches 
the last character in the destination field. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-73 



STRING (continued) 

If you specify SIZE in the DELIMITED BY phrase, COBOL transfers the entire contents of each source field to 
the destination field. Execution terminates after COBOL transfers all source field characters or when it 
reaches the last character in the destination field. 

COBOL uses an internal value, called the destination index, to determine where in the destination field data 
transfer should begin. You can override this value by initializing a pointer (id-2) If you do not specify the 
WITH POINTER phrase, the destination index default value is 1. After data transfer to the destination field is 
complete, COBOt updates the value of the destination index to the number of characters transferred plus 1. 
Then, if you specified it, COBOL transfers this value to id-2, according to MOVE rules. The id-2 data item 
must be large enough to contain a value equal to the number of characters in id-J plus 1. 

An overflow condition occurs if, at any point in the execution of a STRING statement, the value of id-2 or the 
destination index is less than 1 or greater than the length of the destination field plus 1. If you specify the ON 
OVERFLOW option and an overflow condition occurs, data transfers to the destination field terminate and 
control passes to stmt. If you omit this option, or if no overflow condition occurs, control passes to the first 
executable statement following the STRING sentence. 

Example 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
a 1 DES PIC X(26) 

VALUE" ABCDEFGHIJKLMNOPQRSTUVWXYZ". 
01 SOURCES. 

02 S 1 PIC X(4) VALUE "a 123". 
02 S2 PIC X(4) VALUE "4567". 
02 S3 PIC X(6) VALUE ALL "89". 
02 S4 PIC X(4) VALUE "#! 0&". 
02 S5 PIC X(5) VALUE SPACES. 
02 S6 PIC X(7) VALUE "@%$". 
02 S7 PIC X(6) VALUE" ABCABC". 
02 S8 PIC X(5) VALUE "AAAAA". 
02 S9 PIC X(3) VALUE "333". 
02 S10 PIC X(3) VALUE "EXD". 

01 ONEC PIC X VALUE "C" .. 
01 THREE PIC X VALUE "3". 
01 EXEX PIC XX VALUE "XX". 
01 DEL PIC XX VALUE "12". 
01 PPIC99VALUE 1. 

PROCEDURE DIVISON. 

STRING S 1,S2 DELIMITED BY DEL, 
S3 DELIMITED BY SIZE, 
S4,S5,S6 DELIMITED BY SPACES, 
S7 DELIMITED BY ONEC, 
S8,S9 DELIMITED BY THREE, 
S10 DELIMITED BY EXEX, 

INTO DES, POINTER P, 
ON OVERFLOW DISPLAY "OVERFLOW". 

Execution of the above STRING statement 
produces the following results: 

DES = 04567898989#!@%$ABAAAAAEXD 
P = 27 

No overflow occurred. 

7-74 Licensed Material-Property of Data General Corporation 093-000223-01 

n 



, 

~i 

SUBTRACT 
Subtracts one operand or the sum of two or more operands from one or more 
other operands and stores the result. 

Formats 
Simple SUBTRACT -

SUBTRACT id-Iit-l, ••• FROM {id-J[ROUNDED I} •• • [ON SIZE ERROR stmtl 

SUBTRACT GIVING -

SUBTRACT id-Iit-l, ••• FROM id-lit-2 GIVING { id-2 [ROUNDED I } • • • [ON SIZE ERROR stmt I 

SUBTRACT CORRESPONDING -

SUBTRACT {CORRESPONDING} id-3 FROM id-4 [ROUNDED I [ ON SIZE ERROR stmt I CORR 

Where: 

id-lit-l is a numeric literal or a numeric data item that specifies a subtrahend. 

id-l is a numeric data item that specifies a minuend and receives the result of a simple SUBTRACT 
operation. 

stmt is an imperative statement to which control passes if a size error condition occurs. 

id-lit-2 is a numeric literal or a numeric data item that specifies a minuend. 

id-2 is a numeric or numeric edited data item that receives the result of a SUBTRACT GIVING operation. 

id-3 is a group data item that specifies subtrahends. 

id-4 is a group data item that specifies minuends and that receives the results of a SUBTRACT 
CORRESPONDING operation. 

Statement Execution 
A simple SUBTRACT statement sums the subtrahends, if you specify more than one, and maintains this sum as 
a constant through the remainder of the operations. Its execution then proceeds by subtracting this sum from 
the current value of id-l. and storing the result in id-l according to MOVE rules (see the MOVE statement 
earlier in this chapter). This process repeats itself for each operand following the word FROM. 

A SUBTRACT GIVING statement sums the subtrahends, and then maintains this sum as a constant through the 
remainder of the operations. If you specify more than one subtrahend, this statement subtracts their sum from 
the minuend. SUBTRACT then stores the result, according to MOVE rules, in each id-2 following the word 
GIVING. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-75 



A SUBTRACT CORRESPONDING statement subtracts data items in id-3 from corresponding data items in 
id-4, storing the results in the id-4 data items according to MOVE rules. The operation on each pair of data 
items is the same as if you specified a simple SUBTRACT for that pair. Correspondence occurs according to the 
rules for the CORRESPONDING phrase (see the section "The CORRESPONDING Phrase" in Chapter 6). 
CORR is an abbreviation for CORRESPONDING. 

If you specify ROUNDED, and COBOL truncates the result of this operation to fit the given result item, it 
performs the rounding as follows: COBOL adds 1 to the rightmost digit in the result item if the most 
significant digit of the truncated portion is equal to or greater than 5. 

If you specify the SIZE ERROR phrase and if the absolute value of any result, after decimal point alignment, is 
too large to fit in the number of decimal places you allowed in the r~sult item, then the SUBTRACT statement 
completes all operations and transfers control to stmt. If you omit this phrase or if no size error condition 
occurs, control passes to the first executable statement following the SUBTRACT sentence. 

Examples 
Example I 

SUBTRACT A FROM B. 

If A = 4 and B = 7, the result is B = 3. 

Example 2 

SUBTRACT A, B, C FROM D GIVING E. 

If A = 5, g = 4, C = 3, D = IS, and E = 10, the result is E = 3. 

Example 3 

SUBTRACT CORR GRPA FROM GRPB. 

If 

01 GRPA. 
021TM1 PIC 99 VALUE 1. 
02 ITM2 PIC 99 VALUE 1. 
02 ITM3 PIC 99 VALUE 1. 

01 GRPB. 
02 ITM 1 PIC 99 VALUE 3. 
02 ITM2 PIC 99 VALUE 4. 
02 RAT PIC 99 VALUE 5. 

the result is ITM I of GRPB = 2, ITM2 of GRPB = 3, and RAT of GRPB is unchanged. 

7-76 Licensed Materlal-Property of Date General Corporation 093-000223-01 

o 

() 

o 



TRUNCATE 
Terminates input/output operations on records from the current logical 
block of a sequential file, so that the next input/output operation executed on 
that file will start at the beginning of the next logical block. 

Format 

TRUNCATE id BLOCK 

Where: 

id is a filename that specifies an open, sequentially organized file. 

093-000223-01 Licensed Material-Properly of Data General Corporation 7-77 



UNDELETE 
Restores a record that you logically deleted from an indexed file. 

Format 

NEXT 

UNDELETE id-J ({ ~AIN} POSITION J 
FORWARD 
BACKWARD 
UP 
DOWN 
~WARD 
UP BACKWARD 
DOWIIJ FORWARD 
STATIC' , 

[ { LOCAL}] RECORD LOGICAL GLOBAL 
LOCAL GLOBAL 

[{ KEYIS } {. 
KEYS ARE td-2 

Where: 

[ APPROXIMATE] } ••• J 
GENERIC 

[INVALID KEY sImI I 

id-J is a filename that specifies an open, indexed file. 

id-2 is an alphanumeric data item that specifies a record key associated with id-J. 

sImI is an imperative statement to which control passes if you specify invalid record selection indicators. 

Statement Execution 
COBOL determines which record the UNDELETE statement will restore according to what you specify in the 
POSITION phrase, the relative options phrase (NEXT, FORWARD, etc.), and/or the KEY series phrase. 

By specifying FIX POSITION, you set the record pointer to the record specified in the relative options phrase 
and/or the KEY series phrase (discussed below). If you specify RETAIN POSITION, you do not change the 
current position of the record pointer (i.e., it points to the record for which you last set it). If you omit this 
option, the default is RETAIN POSITION. 

When you specify a relative option, you reference a record in an indexed file, relative to the current setting of 
the file's record pointer. If you omit both this option and the KEY series option, the default is STATIC. 

If you specify the KEY series phrase you must have declared each key (id-2) in the indexed file's SELECT 
clause. 

For more information on these options, see the section "Indexed File Record Selection" in Chapter 6. 

If you specify LOGICAL LOCAL, COBOL marks the key as logically restored, canceling the effect of any 
previously issued DELETE LOGICAL LOCAL. 

If you specify LOGICAL GLOBAL, COBOL marks the data record as logically restored, canceling the effect of 
any previously issued DELETE LOGICAL GLOBAL. 

7-78 Licensed Material-Property 01 Data General Corporation 093-000223-01 

o 

o 



If you specify LOGICAL LOCAL GLOBAL, COBOL marks the key and data record as logically restored, 
canceling the effect of any previously issued DELETE LOGICAL LOCAL GLOBAL. 

If you do not specify the type of restoration, COBOL defaults to LOGICAL LOCAL GLOBAL. 

If you specify record selection indicators which reference a record that does not exist, and if you specify the 
INVALID KEY option, then execution of the UNDELETE statement terminates and control passes to stmt. If you 
omit this option, or if no invalid key condition occurs, control passes to the first executable statement following 
the UNDELETE sentence. (See "The Declaratives Section" in Chapter 6.) 

If you specify record selection indicators which reference a record that exists but is not marked for deletion, 
COBOL signals a runtime error. 

Example 
UNDELETE MYFILE RETAIN LOGICAL LOCAL. 

This statement marks as logically restored the key pointed to by the current record pointer in MYFILE. 

093-000223-01 Licensed Material-Property of Date General Corporallon 7-79 



UNLOCK 
Unlocks all the records of a file locked by your process. 

Format 

. [{ RECORD }] UNLOCK ~ RECORDS 

Where: 

id is the name of the file containing the records you wish to UNLOCK. 

Statement Execution 
This statement unlocks all the records in id which were locked (with READ statements) by any program 
running under your process. 

COBOL always ignores the RECORD and RECORDS clauses. 

7-80 Licensed Material-Property 01 Data General Corporation 093-000223-01 



UNSTRING 
Separates contiguous data located in a single source field and moves it to one or 
more destination fields. 

Format 

UNSTRING id-l [DELIMITED BY [ALL I id-Iil-l [OR BY [ALL I id-IiI-21 ••• I 

Where: 

id-l 

id-lit-l. 
id-lit-2 

id-2 

id-3 

id-4 

INTO {id-2[DELIMITER IN id-31 [COUNT IN id-41} • • • [WITH POINTER id-51 [TALLYING IN id-61 

[ ON OVERFLOW sImI I 

is an alphanumeric data item that specifies a source field. 

is an alphanumeric data item or an alphanumeric literal that specifies a string delimiter. 

is an alphanumeric, alphabetic, or numeric data item specifying a destination field that receives all 
or part of the source field, and that has DISPLAY usage stated or implied by its data definition. 

is an alphanumeric data item that receives a string delimiter. 

is an integer data item that receives the number of characters transferred in one iteration of the 
UNSTRING operation. 

id-5 is an integer data item that specifies the character pqsition in id-l where the UNSTRING operation 
begins. 

id-6 is an integer data item that receives the number of iterations the UNSTRING operation performs. 

stmt is an imperative statement to which control passes if an overflow condition occurs. 

If you specify any data item in the UNSTRING statement as a figurative constant, it represents a 
single-character literal. Do not use the optional word ALL when spedfying a figurative constant. 

COBOL evaluates any subscripting for id-I. id-5. or id-6 only once, at the beginning of the UNSTRING 
operation. COBOL evaluates any subscripting for id-lit-l. id-lit-2. id-2. id-3. or id-4 immediately before 
transferring data to that item. 

Statement Execution 
An UNSTRING statement transfers selected characters from a source field (id-I) to one or more destination 
fields (id-2). The UNSTRING operation is an iterative process that performs one UNSTRING operation for each 
destination field. It scans the source field from left to right and passes the selected characters to the destination 
fields in the order in which you specify them. If there are characters to pass, COBOL transfers them to the 
appropriate destination field according to the MOVE rules governing an alphanumeric to alphanumeric move 
(see the MOVE statement earlier in this chapter). If there are no characters to pass, COBOL space-fills or 
zero-fills the appropriate destination field, depending on whether the field is nonnumeric or numeric, 
respectively. 

The characters that the UNSTRING statement selects to transfer to a particular destination field depend on 
whether or not you specify the DELIMITED BY phrase. If you do specify this phrase, UNSTRING transfers the 
characters in the source field from the leftmost character up to, but notinc1uding, the first occurrence of the 
delimiter. If you specify the DELIMITER IN phrasl;: and a delimiter match exists, COBOL interprets the 

093-000223-01 Licensed Malerial-Property of Data General Corporation 7-81 



UNSTRING (continued) 

delimiter as an alphanumeric data item and transfers it to id-3. If there was no delimiter match, COBOL 
space-fills id-3. If you specify the COUNT IN phrase, COBOL stores the number of characters transferred in 
int-}, according to MOVE rules. You may specify the DELIMITER IN and COUNT IN phrases only if you also 
specify the DELIMITED BY phrase. Execution terminates when COBOL has transferred characters to all the 
destination fields or when it has reached the last character in the source field. 

COBOL uses an internal value, called the source scan base, to determine where in the source field scanning 
should start. You can override this value by initializing a pointer (id-5). If you do not specify the WITH 
POINTER phrase, the source scan base default value is 1. After scanning the source field and transferring 
selected characters to a destination field, COBOL updates the source scan base to the number of characters 
scanned plus one. This new value determines the point at which scanning will begin for the next iteration of the 
UNSTRING operation. If you specified the WITH POINTER phrase, COBOL transfers the new value of the 
source scan base to id-5, according to MOVE rules. The id-5 data item must be large enough to contain a value 
equal to the number of characters in id-2 plus 1. 

If you specify ALL in the DELIMITED BY phrase, the UNSTRING statement scans for not only the first 
delimiter match,·but for contiguous delimiter matches. It interprets this contiguous "string" of delimiters as 
one delimiter. When this occurs, COBOL updates the source scan base to the character position to the right of 
the last delimiter found. It then moves the entire string of delimiters to id-3 (if you specified it), and the 
number of contiguolls delimiters to id-4 (if you specified it). 

If you do not specify a delimiter, the UNSTRING operation transfers the number of source characters needed to 
fill the appropriate destination field(s). Execution terminates when COBOL has filled all destination fields or 
when it has reached the last character in the source field. 

If the UNSTRING statement terminates normally (if no overflow occurs) and if you specified the TALLYING IN 
phrase, COBOL adds the number of UNSTRING operations performed to the value in id-6. If you specified the 
WITH POINTER phrase, COBOL stores the current value of the source scan base in id-5, according to MOVE 
rules. 

An overflow conditiQn occurs if, at any point in the execution of an UNSTRING statement, the value of id-5 or 
the source scan base is less than 1 or greater than the length of the source field plus 1. If you specify the ON 
OVERFLOW option and the above condition occurs, data transfers to the destination fields terminate and 
control passes to stmt. If you omit' this option or if no overflow condition occurs, control passes to the first 
executable statement following the UNSTRING sentence. 

Example 
Given: 

01 SR PIC X(23) 
VALUE "141 AB,22/RP,06/MX,421 AY". 

01 PT PIC 99, VALUE 1. 
01 GR. 

02 DST AB OCCURS 50. 
03 OS PIC XXX. 

01 I PIC 99. 

Execute: 

UNSTRING SR DELIMITED BY " I" OR "," 
INTO I, DS(I), I, DS(I), I,DS(I) 
POINTER PT; 
ON OVERFLOW DISPLAY "UNDERFLOW". 

Results: 

DS(6) = MXO 
DS(14) = ABO 
DS(22) = RPO 

other DSU) unchanged, 
1=06 
PT = 19 
"UNDERFLOW" is displayed 

7-82 Licensed Malerial-Property 01 Dala General Corporalion 093-000223-01 



USE 
Defines procedures for input/output. error handling that are in addition 
to the standard procedures provided by the I/O control system. 

Format 

USE AFTER STANDARD { EXCEPTION } PROCEDURE ON { 6.i~t~jUT } 
ERROR ;;::-I-O=--=-'"-=-=-

EXTEND 

Where: 

id is a filename that specifies the file you want to associate with the USE mechanism. 

Statement Execution 
A USE statement must immediately follow a section name in the Declaratives section which is located at the 
beginning of your program's Procedure Division (see the section "The Declaratives Section" in Chapter 6). It 
may be followed by any number of procedural paragraphs defining the procedures to be used. A USE 
statement is not executable; it merely defines the conditions that will invoke the error-handling procedures. 

The words EXCEPTION and ERROR have the same meaning; you may use them interchangeably. 

Declarative procedures are invoked by the input/output system when the file system detects an I/O error 
(such as a device read error or a parity error), or when an end-of-file or invalid key condition occurs and the 
I/O statement involved does not contain an AT END or INVALID KEY phrase. Declarative procedure execution 
occurs when: 

• You specify INPUT and an exception condition occurs while COBOL is processing a file that is open for 
input; 

• You specify OUTPUT and an exception condition occurs while COBOL is processing a file that is open for 
output; 

• You specify 1-0 and an exception condition occurs while COBOL is processing a file that is open for I/O; 

• You specify EXTEND and an exception condition occurs while COBOL is processing a file that is open for 
extension; 

• You specify one or more id and an exception condition occurs while COBOL is processing one of the 
specified files. 

If you specify more than one declarative procedure, where one names a specific id and the other references one 
of the above opened modes, and if an exception condition occurs that satisfies both conditions, then COBOL 
executes the procedure naming the specific id. If the error occurs in the OPEN statement itself then the 
Declaratives section will only be called if you specified id. 

After execution of a USE statement, control passes to the first executable statement following the statement 
whose processing invoked the Declaratives section. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-83 



USE (continued) 

Example 
DECLARATIVES. 

SEC100 SECTION 2. 
USE AFTER ERROR PROCEDURE ON INPUT 

ADD 1 TO FLAG. 
MOVE COUNT TO ERR-SUM. 

END DECLARATIVES. 

This section will be invoked by any statement that causes an error when processing a file which is open for 
input. 

7-84 Licensed Materiel-Property oloate General Corporation 093-000223-01 

n 
.'-. '" 

I 
1 
; 

r\." 1 \ )j 



\ 

WRITE for a Sequential File 
Outputs records to a sequential file and includes format control if the file is a 
print file. 

Format 

1-11- LINES 

WRITE id [IMMEDIATE) FROM id-lil-J [ { 

"dl" 2 [{LINE }]}] 

{ BEFORE} ADVANCING [ AT {END-OF-PAGE } SImI] 
AFTER id-IiI-3 ~ 

Where: 

id 

id-Iit-/ 

id-lit-2 

id-Jit-3 

stmt 

PAGE 

is a data name that specifies a logical record in a sequential file OPENed for output or extension. 

is any data item or literal that specifies the source you want to write. 

is a nonnegative integer literal or an unsigned integer data item that specifies the number of lines 
you want to advance. 

is an alphanumeric literal that specifies the name of a line printer control channel that you specify 
in the Special-Names paragraph of the Environment Division. 

is an imperative statement to which control passes if an end-of-page or page-overflow condition 
occurs. 

Statement Execution 
A WRITE statement for a sequential file writes a record which follows the record previously written in the file. 
If you specify the FROM option, WRITE moves the contents of id-Iit-/ to id according to MOVE rules, prior to 
performing the WRITE operation. (See the MOVE statement earlier in this chapter.) id-lit-/ and id must not 
reference the same storage area. 

The I M MEDIATE option prohibits your program from continuing until AOS flushes the information to disk. 
Normally, AOS holds disk information in a buffer, filling the buffer before it performs any I/O. Use of 
IMMEDIATE allows you greater data security at the expense of performance. 

Both the ADVANCING and END-OF-PAGE phrases give you control over the vertical positioning of each line on 
a printed page. You may specify the ADVANCING option only for print files. If you omit this option, AFTER 
ADVANCING 1 LINE is the default. You may not specify id-lit-3 if you specified the LINAGE phrase in this 
file's FD entry. 

If you specify BEFORE ADVANCING, WRITE outputs the data record before processing the control 
information (described below). If you specify AFTER ADVANCING, WRITE processes the control information 
and then outputs the data record. 

The control information offers three choices. You specify id-lit-2 to advance the current position to a position 
id-lit-2 lines ahead. You specify id-lit-3 to advance the curr!!nt position to the next position on the line printer 
control channel associated with the specified channel name. You specify PAGE to advance the current position 
to the next form or to the next logical page, if you specified the LINAGE clause in the file's FD entry. 

For more information on the ADVANCING option, see the section "Print File Formatting" in Chapter 6. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 7-85 



WRITE for a Sequential File (continued) 

You may specify the END-OF-PAGE phrase only for a file whose FD entry contains the LINAGE phrase. EOP 
is an abbreviation for END-OF-PAGE. There are two conditions which, when they occur, send control to this 
option. An end-of-page condition occurs when execution of a WRITE statement causes printing or spacing 
within the footing area of a page body. (You defined the size of the page's foot in the LINAGE clause.) A 
page overflow condition occurs when the current page body cannot accommodate the execution of a given 
WRITE statement. (You define the size of the page's body in the LINAGE clause.) 

If you specify the END-OF-PAGE option and an end-of-page condition occurs, the WRITE statement completes 
its execution and control passes to sImI. If you specify this option and a page overflow condition occurs, 
execution outputs the current record BEFORE or AFTER repositioning the device to the first line on the next 
logical page. Control then passes to sImI. 

If you omit this option or if neither of the above conditions occur, control passes to the first executable 
statement following the WRITE sentence. 

Example 
WRITE GUST-INFO FROM NEW-REG AFTER ADVANGING 4 LINES AT EOP GO TO PARA-ERR. 

This statement moves the contents of NEW-REG to GUST-INFO, advances the current position in the 
PRINTER file four lines, and then outputs the data contained in GUST-INFO. If an end-of-page condition 
occurs, control passes to the paragraph PARA-ERR. 

7-86 Licensed Material-Property of Data General Corporation 093-000223-01 

() 



\ 

WRITE for a Relative File 
Outputs records to a relative file. 

Format 

WRITE id [IMMEDIATE 1 [FROM id-lil 1 [INVALID KEY sImI 1 

Where: 

id is a data name that specifies a logical record in a relative file OPENed for output or I/0. 

id-lit is any data item or literal that specifies the source you want to write. 

stmt is an imperative statement to which control passes if the record selection indicators are invalid. 

Statement Execution 
A WRITE statement for a relative file that you are accessing sequentially writes a record which follows the 
record previously written in the file. If you specify the FROM option, WRITE moves the contents of id-lit to id 
according to MOVE rules, prior to performing the WRITE operation. (See the MOVE statement earlier in this 
chapter.) id-lit and id must not reference the same storage area. 

WRITEing to a relative file that you access sequentially updates the relative key to contain the relative record 
number of the record you just wrote. WRITEing to a relative file that you access randomly or dynamically 
writes the record at the relative record position indicated by the value of the relative key. 

An invalid key condition occurs if, in random or dynamic access mode, the record selection indicators specify a 
record that already exists, or if you attempt to write beyond the boundaries of a file. If you specify the 
INVALID KEY phrase and one of the above conditions occurs, execution of the WRITE statement terminates and 
control passes to stmt. If you omit this option or if no invalid key condition occurs, control passes to the first 
executable statement following the WRITE sentence. (See "The Declaratives Section" in Chapter 6.) 

The IMMEDIATE option prohibits your program from continuing until AOS flushes the information to disk. 
Normally, AOS holds disk information in a buffer filling the buffer before it performs any I/O. Use of 
IMMEDIATE allows you greater data security at the expense of performance. 

Example 
WRITE DAT AREC IMMEDIATE FROM INFO 1. 

This statement moves the contents of INF01 to DATAREC and immediately writes DATAREC into the file, 
following the record previously written. It also updates the relative key to contain the relative record number of 
this newly written record. 

093-000223-01 Licensed Material-Property of Data General Corporation 7-87 



WRITE for an Indexed File 
Outputs records to an indexed file. 

Format 

WRITE [INVERTED 1 id-J [IMMEDIATE 1 

[ { ~AIN } POSITION G DOWN [
UP ] [SUPPRESS [PARTIAL RECORD 1 [DATA RECORD II 
STATIC 

[ LOCK ] [ FROM id-Iit 1 
UNLOCK 

[{ KEY IS }. J KEYS ARE /d-2,.. • [ INVALID KEY stmt 1 

Where: 

id-J is a data name that specifies a logical record in an indexed file OPENed for output or extension. 

id-lit is any data item or literal that specifies the source you want to write. 

id-2 is an alphanumeric data item that specifies a record key associated with a file. 

stmt is an imperative statement to which control passes if you specify invalid record selection indicators. 

Statement Execution 
If you specify INVERTED, the WRITE statement does not write a data record. You can use this feature to write 
an inversion of an existing indexed file. To use this option, you must specify the FEEDBACK phrase in this 
file's FD entry. 

If you do not specify INVERTED, WRITE writes il record into a location determined by what you specify 
(explicitly or implicitly) in the POSITION phrase, the relative options phrase (UP, DOWN, STATIC), and the 
KEY series phrase. If you specify the FROM option, COBOL moves the contents of id-lit to id-J according to 
MOVE rules, prior to performing the WRITE operation. (See the MOVE statement earlier in this chapter.) 
id-lit and id-l must not reference the same storage area. 

By specifying FIX POSITION, you set the record pointer to the record specified in the KEY series phrase or the 
relative options phrase (discussed below). If you specify RETAIN POSITION, you do not change the current 
position of the record pointer (i.e., it points to the record for which you last set it). If you omit this option, the 
default is RETAIN POSITION. 

When you specify a relative option, you reference a record in an indexed file, relative to the current setting of 
the file's record pointer. If you omit both this option and the KEY series option, the default is the first key in 
the SELECT clause. 

If you specify the KEY series phrase, you must have declared each id-2 in this file's SELECT clause. However, 
if the indexed file has alternate record keys, you must key the WRITE operation by the prime record key. You 
need not specify this key in the KEY series option. 

For more information on these options, see the section "Indexed File Record Selection" in Chapter 6. 

7-88 Licensed Material-Property of Date General Corporation 093-000223-01 



') 

I 

If you specify the LOCK option, you are the only one who can access the referenced record until you issue an 
I/O statement with UNLOCK for the same record, or until you CLOSE the file, which automatically 
UNLOCKs the record. You must issue the corresponding LOCK and UNLOCK statements in the same program. 
If you SUPPRESS DATA RECORD, Locks are ignored. 

If you specify SUPPRESS PARTIAL RECORD, WRITE will not output the partial record associated with the 
referenced index entry to the file's partial record area (which you defined in the file's FD entry in the Data 
Division). If you specify SUPPRESS DATA RECORD, WRITE will not output the data record associated with 
the referenced index entry to the file's record area. You may specify both of these options in any order. 
Specifying both options lets you create an index entry with which no data need be associated. 

An invalid key condition occurs when the record selection indicators specify a record that already exists, or 
when you attempt to write beyond the boundaries of the file. If you specify the INVALID KEY clause and any of 
the above conditions occurs, execution of the WRITE statement terminates and control passes to stmt. If you 
omit this option or if no invalid key condition occurs, control passes to the first executable statement following 
the WRITE sentence. 

COBOL always ignores the IMMEDIATE option. 

Example 
WRITE HD-PARTS FIX POSITION KEY IS KEY03. 

This statement writes the record information inHD-PARTS and associates it with the key value specified by 
KEY03. It then sets the current position of the record pointer at this key entry. 

End of Cha pter 

093-000223-01 Licensed Material-Property 01 Data General Corporation 7-89 



~ 

l , 
OJ 

j 

i 
; 
I 

, 
1 

J 
1 

I 
I 

oj 
1 
l 

1 

, 
1 

~~ 
(,,) :: 

-I 

Ii 

-

--------'---------,: 

" 
~ 

I 
l 



\ 

Chapter 8 
The COpy Facility 

The COBOL COpy statement directs the compiler to insert source code from another file into your compiled 
program. The COpy statement makes it possible for you to refer to frequently used program text by a name 
instead of writing its lines of code into your program. 

Unlike a subprogram, the COpy file becomes part of the main program file during compilation. Moreover, 
you can collect separate text files into a directory called a library. During compilation, the COBOL compiler 
will use only those library texts that your program refers to. 

A library may consist of library texts or a combination of library texts and files. For information on AOS file 
structures, see the AOS Programmer's Manual. 

The COBOL compiler also allows you to make textual substitutions as it copies. The COPY statement can 
specify up to ten substitutions of up to ten elements each. Using these replacements, you can tailor a single file 
to the needs of different data sets and programming strategies. 

When you compile your COBOL program, you must include in the compilation command line the names of 
any files or directories your program calls in to copy. See Chapter 10 for a discussion of compilation 
instructions. 

Structure 
A COPY statement may occur at any point in a source program where a language element is permitted, except 
within another COPY statement. You must terminate it with a period (which is considered part of the * 
statement). COpy statements in the Identification·Division must begin in the A-margin. A COPY statement 
has the following format: 

Where: 

id-l 

id-2 

id-lit-l 

id-lit-2 

COPY ;d-1 f { ~} hI-2] [REPLACING {hI-1;,-1 BY hI-};t-2 } ••• [ • 

is a symbolic name that specifies the name of the file you want to copy. You may use any valid file 
specifier. 

is a symbolic name specifying the name of the library directory (if one exists) that contains id-J. 

is a single COBOL word, a numeric or alphanumeric literal, a character string, or a pseudo-text 
that specifies source code in the file you want to COpy. 

is a single COBOL word, a numeric or alphanumeric literal, a character string, or a pseudo-text 
that specifies text with which you want to replace each occurrence of id-lit-l. 

Compilation of your program logically replaces any COpy statement with the source text of the files you 
specify. 

For texts located in libraries, you can also give the filename as id-2:id-l and omit the option OF / IN LIB. 

If all the characters in id-l or id-2 are letters, digits, periods, or embedded hyphens, you need not enclose the 
name in quotation marks; otherwise, you must. 

093-000223-01 Licensed Material-Property of Data General Corporation 8-1 



Some examples of simple COpy statements are as follows: 

COPY "LlBR:TEXT1.CO". 

COpy "TEXT1.CO" OF "LlBR". 

The two statements above illustrate equivalent uses of COPY. 

COPY DATA_TEXT OF LIB. 

This statement is incorrect because DATA-TEXT is not a legal COBOL name. 

Replacement Strings 
In the COpy statement's optional REPLACING clause, you can specify up to ten replacements. The word 
REPLACING occurs once, followed by the pairs of replacement texts. For each pair, the compiler will replace 
every occurrence of id-lit-l in your program's copy of the library file with id-lit-2. 

Each string can consist of ten elements: id-lit-l may not be a null, but id-lit-2 may. Otherwise, id-lit-l or 
id-lit-2 can consist of any of the following elements: 

• A single COBOL r¢served word, user-defined word, or undefined word 

• A single literal, either numeric or alphanumeric 

• A COBOL identifier (a text string) of the form: 

A IN/OF BIN/OF C ... (I, J, ... ) 

• A pseudo-text, that is, a string of COBOL elements delimited by double equal signs 

For example, when COBOL encounters the following in a source program: 

COPY "L TEST" REPLACING 
ABC BY = =SET A TO BC= = 
"LMN" BY MOVE 
X OF Y OF Z (3,A) BY "PQR" 
= =TRY TO FIT 26= = BY 26 
13 BY LOC. 

it inserts a file, L TEST, into that source program and makes four types of replacements. Under the above 
instructions, if L TEST contains the following: 

"LMN" TRY TO 
FIT 26 TO 13 
IF X OF Y OF M (3,A) = 

X OF Y OF Z (3,A), ABC. 

COBOL will insert the following into the compiled source file: 

MOVE 26 TO LOC 
IF X OF Y OF M (3,A) = "PQR", SET A TO BC. 

Notice that the order of the replacement pairs need not match the order in which they occur in the library text. 
Moreover, the replacement will be made for each occurrence of id-Iit-l. 

End of Chapter 

8-2 Licensed Material-Property of Data General Corporation 093-000223-01 

() 

() 
r 



\0 

Chapter 9 
The COBOL Interactive Debugger 

The ECLIPSE COBOL system provides a source-level debugging aid that allows you to debug programs 
interactively at the terminal. This debugger responds to COBOL-like commands as you issue them from the 
terminal. 

The debug 'Program allows you to set breakpoints in your program causing it to halt execution, then transfer 
control to the debugger. While in debug mode, you can examine and modify data items in the object program, 
and then return control to the execution of your program. 

After a debugging session, you will have to edit your program's source file to include the necessary changes, 
and then recompile it. 

Operating Instructions 
To use the debugger, you must first compile your source file. In the compilation command line, you must 
append the global switch /D, which tells the compiler to include the debug program with your code. Next, load 
the debugger and your program by appending the global switch /D to the CBIND command. 

You should also use the /L compiler switch to get a listing of the program. You will need the line numbers 
from the /L switch to set break points. 

When the system loads the debugger, it will increase the memory storage your program needs by about 500 
words. This block of storage includes the code for debugger commands and a symbol table (to keep track of 
your program's code). 

To use the debugger while executing your program, issue this CLI command: 

)OEB MAINPROGRAMJ 
+=USERJ .. 

When the debugger is loaded and ready, it will signa) you with the prompt character *. You may then issue 
your first command. The debugger will issue the prompt character each time it is ready to accept a new 
command. You must terminate each debugger command with a NEW LINE. 

Comment Lines 
Comments are useful for documenting debugger COPY files and for making notes in the audit file. To insert a 
comment line, begin the line with an asterisk and end it with a NEW LINE. 

Debug Lines 
You indicate a debug line in your source program by specifying the character D as the first character of the 
source line in text format, or by inserting it in column 7 in card format. In text format, you must also 
immediately follow the D with a space or a tab, or it will be treated as any other source character. When you 
compile your program, COBOL will compile these debug lines only if you specify the global switch /D in the 
command line. Otherwise, COBOL treats them as comment lines. 

093-000223-01 Licensed Material-Property 01 Dete General Corporation 9-1 

* 



Debugger Features 
The COBOL debugger includes a set of twelve commands you can use in a debugging session. These 
commands cover four basic debugging features: using breakpoints, checking program status, controlling 
program execution, and using other programs and files. 

Using Breakpoints 
The SET command allows you to specify breakpoints -- lines at which your program's execution will halt and 
pass control to the debugger. The CLEAR command removes either all or specific breakpoints that you 
previously set. 

Checking Program Status 
When a program's execution halts, you can direct the debugger to display data items with the DISPLAY 
command. You can also reset a data item. The MOVE command sets a data item to a specified value and the 
COMPUTE command sets a data item to the value of an arithmetic expression. By changing data values, you 
can define new tests for your program, check for internal consistency in data handling, and change faulty 
values before continuing execution. 

The W ALKBACK command displays information about the program's execution status. It lists all active 
CALL and PERFORM statements at the console. 

Controlling Program Execution 
The CON command resumes execution of the program, which will continue until it encounters a break, an 
error, or upon normal termination. 

In a multi program run unit, you can use the ENV command to specify a single program to which the debugger 
commands will apply. 

Typing STOP at the console terminates execution immediately. You will want to use this command to abort 
execution or to end a debugging session before a program has fully executed. 

Using Other Programs and Files 
The debugger offers a means by which you can use files outside of the debug program and object file. When 
the debugger has control, you can use the CLI command to temporarily enter the operating system's 
Command Line Interpreter and issue system commands. With the AUDIT command, you can save a record of 
the debugger/program interaction as it appeared at the console. You can enter comments in this file by 
beginning the string with an asterisk. Finally, during debugging you can execute a file containing a previously 
listed set of debug commands by using the command COPY. This command can save time and errors at the 
console and allows you to define standard debugging procedures. 

Debugger Commands 
The remainder of this chapter presents the COBOL debugging commands, in alphabetical order, along with a 
detailed description of each command. 

Please note that the COBOL interactive debugger does not process data names beginning with a numeric 
character. 

9-2 Licensed Material-Property 01 Data General Corporation. 093-000223-01 

o 

• q , 



"'1 
I 

\,-.... 
( \ 

AUDIT 
Saves terminal dialog of user, debugger, and object program. 

Format 
AUDIT [ "lit" 1 

Where: 

lit is,an alphanumeric literal that specifies the name of an operating system file (called the audit file). 

Description 
If you specify lit. the system opens that file and places in it a copy of all succeeding console interaction 
between the user, the debugger, and the object program. If you omit lit. the system closes the current audit 
file, if one exists, and terminates audit output. 

You may open only one audit file at a time. 

093-000223-01 Licensed Malerlal-Property of Data General Corporation 9-3 



CLEAR 
Removes breakpoints previously set with a SET command. 

Format 

CLEAR [lit, • o. 1 

Where: 

lit is an alphanumeric literal that specifies the name of a breakpoint defined in a previous SET command. 

Description 
If you specify a lit (or lit's) the system removes that particular breakpoint. If you omit lit altogether, the 
system removes all previously set breakpoints. 

9-4 Licensed Material-Property 01 Data General Corporation 093-000223-01 

, 
{~ 
\ 



eLi 
Allows you to enter the AOS Comm;iild Line Interpreter (CLI). 

Format 

Description 
Before you enter the CLI, the system saves the current state of your program. Re-enter the debugger with the 
AOS BYE command. For more information on the CLI, see the AOS Command Line Interpreter User's 
Manual (093-000122). 

093-000223-01 Licensed Meterlal-Property of Date General.Corporatlon 9-5 



COMPUTE 
Sets one or more data items to the value of an arithmetic expression. 

Format 

COMPUTE {id [ROUNDED 1 } •••• = expr 

Where: 

id is a numeric data item defined in the object program. 

expr is any valid arithmetic expression. 

Description 
The system evaluates the arithmetic expression and stores the result in the resultant item(s) you specify, 
according to the rules for the COBOL COMPUTE statement (see Chapter 7). 

You may qualify and/or subscript any id. as appropriate. 

9-6 Licensed Malerial-Property 01 Dala General Corporation 093-000223-01 

o 

o 



CON 
Either initiates execution of the object program or resumes program execution 
after encountering a breakpoint. 

Format 

CON [[ lit I int I 

Where: 

lit is an alphanumeric literal that specifies the name of a breakpoint defined in a previous SET command. 

int is a positive integer literal that specifies the number of times you want lit disabled. 

Description 
The first time you specify the CON command in a given run of your program, the system will begin execution 
at the first statement in the main program. Thereafter, object program execution will resume after each 
breakpoint. (Remember: you only interrupt the flow of control in your program when using the debugger; you 
do not alter it.) 

If you only specify lit, and lit is set at line n in the object program, then execution will resume and control will 
return to the debugger the next time line n is encountered. 

If you specify lit and int, and lit is set at line n in the object program, then execution will resume, but control 
will not return to the debugger until it has encountered line n the number of times specified by into 

If you omit both lit and int, the default breakpoint is the most recent one and the default repeat count is 1. 

This command only affects the specified trap or the implied one. Other traps are handled in the usual manner. 

Examples 
CON 

Repeat count for current breakpoint is 1. 

CON5 

Repeat count for current breakpoint is 5. 

CON BUG 10 

Repeat count for breakpoint BUG is 10. 

093-000223·01 licensed Material·Properly 01 Data General Corporation 9-7 



COpy 
Executes a series of debugger commands stored in a file that you set up. 

Format 

COpy "lit" 

Where: 

lit is an alphanumeric literal that specifies an operating system file containing a series of COBOL debugger 
commands. 

Description 
The COpy command takes the debugger commands from lit. and executes them in the order in which they 
appear. When the file is exhausted, control returns to the console, and the debugger awaits a new command. 

You may specify COpy statements within lit to a depth of 5 nested COpy commands. 

9-8 Licensed Material-Property of Date General Corporation 093-000223-01 

o 



.= 

DISPLAY . 
Outputs the contents of object program data items to the current console. 

Format 

DISPLAY id, ••• 

Where: 

id is any data item defined in the object program. 

Description 

Output occurs according to the rules for the COBOL DISPLAY statement (see Chapter 7) with the following 
exceptions: 

• the system displays each data item on a new line; 

• it displays items of more than 80 characters on multiple lines, 80 characters per line; 

• and it directs all output to the current console. 

093-000223-01 Licensed Material-Property of Data General Corporation 9-9 



ENV 
Names the program, in a multiple program environment, to which future 
debugger commands will apply. 

Format 

Where: 

id is the name of the main program ID or one of its COBOL subprogram ID in the current run unit. 

Description 
After you issue the ENV command, all further references to data items and line numbers in debugger 
commands will apply to the specified program. 

If you omit id, the default is the main program. This is what the debugger assumes when you begin execution 
of your program. 

Setting ENV enables you to check the variables in a program, which is in the current run unit and is not 
executing, when the run unit pauses at one of your breakpoints. You have access to 50 subprograms in the 
current run unit. CLEAR will clear all your breakpoints in all your subprograms, regardless of ENV. 

9-10 Licensed Material-Property of Data General Corporation 093-000223-01 



MOVE 
Sets data items in the object program to ~pecified values. 

format 

MOVE id-lit TO id, ••• 

Where: 

id-lit is a literal or data item defined in the object program. 

id is a data item defined in the object program. 

Description 
This command stores the value of id-lit in the destination items according to the rules for the COBOL MOVE 
statement (see Chapter 7). 

The debugger has a SOO-byte area that it uses for executing MOVE operations. If the area needed for a MOVE 
exceeds this limit, you will receive an error message at the console. 

093-000223·01 Licensed Material·Property of Data General Corporation 9-11 



SET 
Defines and enables a breakpoint. 

Format 

SET [lit-1. [id + llit-2 

Where: 

lit-/ is an alphanumeric literal that specifies the breakpoint you want defined and enabled. 

id is a symbolic name that specifies the object program. 

lit-2 is an integer literal that indicates the number of the line at which you want to define the breakpoint. 

Description 
The line number, lit-2. does not refer to the card format sequence number. It refers to the absolute number of 
a line in the source file, as numbered by the COBOL compiler in the source listing. 

If you specify id. the system sets a breakpoint at the line number indicated by lit-2 in id. If you omit id. the 
system sets a breakpoint at the line number indicated by lit-2 in the program last referenced in an ENV 
command. If you have not issued an ENV command, id is the current object program. (Note that this 
command does not change the current environment.) 

When the system encounters the specified line during execution of the object program, control immediately 
passes to the debugger, (unless altered by a previously issued CON command). The object program statement 
at that line is not executed until you issue a CON command for that breakpoint. 

You may have up to eight enabled breakpoints at a given time. 

If you issue a call to SET without any arguments, the system displays a list of the current breakpoints on the 
terminal. 

Examples 
SET 

Lists all currently defined breakpoints. 

SET BREAK5 50 

Defines a breakpoint named BREAK5 at line 50 in the current environment. 

SET XX PROGA + 150 

Defines breakpoint XX at line 150 in the program with the program ID PROGA. 

9-12 Licensed Material-PropertY of Data General Corporation 

, 

093-000223-01 



STOP 
Ends execution of the current program. 

Format 

STOP RUN 

Description 
This command has the same effect as the COBOL STOP RUN statement (see Chapter 7). 

093-000223-01 Licensed Material-Property 01 Data General Corporation 9-13 



WALKBACK 
Describes the current program control by listing active subroutine 
CALLs and PERFORMs. 

Format 

WALKBACK [intJ 

Where: 

int is an integer literal that specifies the number of CALLs and PERFORMs you want listed. 

Description 
If you specify int, the system lists the int most recent CALL statements and/or PERFORM statements 
executed in the current program environment. Otherwise, it lists them all. 

For a PERFORM, the listing has the form: 

PERFORM AT LINE # IN PROGRAM id; 
REPEAT COUNT IS n 

where n is the remaining number of times that the PERFORM will execute (in a PERFORM of the form 
PERFORM n TIMES). 

For a CALL, the listing has the form: 

PROGRAM id CALLED FROM LINE # IN 
PROGRAM id 

End of Chapter 

Licensed Material·Property of Data General Corporation 093·000223·01 

n 

o 

I 
~ 

I 



Chapter 10 
The Data General Database Management 

System (DG/DBMS) Interface 

The Data General Database Management System (DG/DBMS) is a Codasyl compliant, network structured, 
database management system. 

In general, a database is a collection of interrelated data stored in a way that eliminates redundancy, permits 
many distinct applications to use the information in different ways, stores the data in a method independent of 
the programs that use it, and controls access to the data. 

DG/DBMS is a system that manages and coordinates access to all the data in the database. You can set up 
your application so that information from different sources exists in the same database. Many programs can 
then access and modify the database simultaneously. In this way, the system need not store data redundantly, 
and all programs can access the most recent information about a subject. 

DG/DBMS also protects data by allowing only certain programs to access certain data. Some programs can 
modify data, others can only look at data. In addition, DG/DBMS can prevent more than one program from 
modifying the same piece of data simultaneously, and prevent a program from accessing information until 
another program finishes with it. 

The Data Base Administrator (DBA) in your organization will describe and create the entire database you 
will access. You cannot change the defined structure of the database or create a new one from your COBOL 
program. You must instruct your DBA to do this. However, the DBA also creates a special structure for your 
program which may allow you to change entries and the relationships between entries in the database. 

The discussions in this chapter use an example to explain using DG/DBMS. This example illustrates a 
hospital application where each doctor can have several patients, and each patient may be assigned several 
doctors. With this example structure, you can learn which doctors are treating a patient or, conversely, which 
patients are assigned to a doctor(s). 

This chapter tells you what statements and clauses you must add to your COBOL program in order to use 
DG/DBMS, and how to bind the DG/DBMS library with your COBOL program. Because we don't include a 
full discussion of DG/DBMS here, you should read the Data General/Database Management System 
(DG/DBMS) Reference Manual (093-000163) before you attempt to use this chapter. 

Compiling and Binding DC/DBMS With a COBOL Program 
You compile and bind a COBOL program that contains DG/DBMS statements as you normally would any 
COBOL program. However, you must bind the module ?DBMS.OB in with your program, as follows: 

CBINDI sw/sw ... filename/sw/sw ... ?DBMS.OB 

If a library contains ?DBMS.OB, you must specify that library name in the CBIND command line. 

093-000223-01 Licensed Material-Properly of Data Gene,al Corporation 10-1 



DG/DBMS Subschemas In The Data Division 
To use DG/DBMS statements in a COBOL program, you must include a description of your database in that 
program's Data Division. The Data Base Administrator (DBA) in your organization will build this description. 

First, the DBA uses the Data Definition Language (DDL) to describe and create the entire database. The 
DDL specifies the record structure of each record type, the connection criteria, the paths among records, and 
the access rights given to your program. This description is called the schema. Then, the DBA creates subsets 
of the schema, called subschemas. whose source code is compatible with a COBOL program. You will copy 
this source code into your COBOL program. 

Figure 10-1 shows an example of a subschema that we will use to illustrate using DG/DBMS in COBOL, and 
Figure 10-2 shows the structure of that data. Those lines that are preceded by an asterisk are comment lines 
used to provide information to the programmer; the DBA specified this information when defining the 
subschema. 

10-2 

* 
* 
* 
* 
* 
* 

SUBSCHEMA NAME IS ·PATIENT~SEARCH" 
WITHIN "IUDD:HARRIS:TREATMENT_DATABASE" 
ALLOWS ERASE GET MODIFY STORE 

SET NAME IS DOCTORS-BY-NAME 
ALLOWS RECONNECT 
OWNER 18 SYSTEM 
MEMBER IS DOCTOR 
AUTOMAT-IC MANDATORY 
ORDER IS SORTED BY KEY ASCENDING 

KEYS ARE: 
LAST-NAME 
FIRST-NAME 

DUPLICATES ALLOwED 
MEMBER LIMIT IS NONE 

SET NAME IS PATIENTS-BY-NAME 
ALLOWS RECONNECT 
OWNER IS SYSTE~ 
MEMBER IS PATIENTS 
AUTOMATIC MANDATORY 

* ORDER IS SORTED BY KEY ASCENDING 
* KEYS ARE: 
* LAST-NAME 
* FIRST-NAME 
* DUPLICATES ALLOWED 
* MEMBER LIMIT IS NONE 

SET NAME IS PATIENT-TREATMENTS 
ALLOWS RECONNECT 
OWNER IS PATIENTS 
MEMBER IS TREATMENTS 
AUTOMATIC MANDATORY 

* ORDER IS NEXT 
* MEMBER LIMIT IS NONE 

SET NAME IS DOCTOR-TREATMENTS 
ALLOWS RECONNECT 
OWNER IS DOCTOR 
MEMBER IS TREATMENTS 
AUTOMATIC MANDATORY 

* ORDER IS NEXT 
* MfMBER LIMIT IS NONE 

DBMS STATUS IS DBMS-STATUS. 

Figure 10-1. A DGIDBMS Subschema in a COBOL Program (continues) 

Licensed Materlal·Property 01 Date General Corporation 093-000223-01 

, 
, I 

()' 

() 



093-000223-01 

01 DOCTOR ALLOWS ERASE GET MODIFY STORE. 
05 LAST-NAME PIC X(25) 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

05 FIRST-NAME PIC X(20) 
USAGE IS DISPLAY 
ALLOWS GET MOOIFY. 

05 SPECIALTY PIC X(15) 
OCCURS 5 TIMES 
USAGE IS DISPLAY 
ALLOWS GET MOOIFY. 

05 INFO PIC X(80) 
USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

05 BEEPER PIC SCH II) 
USAGE IS DISPLAY 
SIGN IS TRAILING 
ALLOWS GET MODIFY. 

01 PATIENTS ALLOWS ERASE GET MODIFY STORE 
05 LAST-NAME PIC X(20) 

01 

05 FIRST-NAME PIC X(15) 

05 WARD PIC X(II) 

05 ROOM PIC S9(3) 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
SIGN IS TRAILING 
ALLOWS GET MODIFY. 

TREATMENTS ALLOWS GET MODIFY ERASE STORE 
05 DISEASE PIC X(100) 

05 MEDICATION PIC X(25) 

05 DIET PIC X(200) 

05 SPECIAL-INSTRUCTIONS PIC X(1I0) 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

OCCURS 5 TIMES 
USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

OCCURS 5 TIMES 
USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

Figure /0-1. A DGjDBMS Subschema in a COBOL Program (concluded) 

Licensed Material-Property of Data General Corporation 10-3 



0 
I SYSTEM I 
/ 

"" 
Ii 

DOCTORS PATIENTS \ 
by by " 

name name 

/ ~ 
DOCTOR PATIENT 

LAST-NAME LAST-NAME 
FIRST-NAME FIRST-NAME 
SPECIALTY WARD 

ROOM 

INFO 
BEEPER 

\ / 
DOCTOR PATIENT 

TREATMENTS TREATMENTS 

\ I 
TREATMENTS () 

DISEASE 
MEDICATION 

DIET _______ _ 

SPECIAL-INSTRUCTIONS 

80-02099 

Figure /0-2. Structure of Data in the Figure /0-1 Subschema 

c) 

10-4 Licensed Material-Property 01 Data General Corporation 093-000223-01 



Using a subschema is simple. Use the COBOL COpy statement to copy the subschema source code fiie into a 
special section within your program's Data Division. This special section is called the Subschema Section; it 
immediately precedes the Working-Storage Section. Your code for a subschema in the Data Division must 
follow this format: 

DATA DIVISION. 
FILE SECTION. 

file section body. I 

SUBSCHEMA SECTION. 
COPY "subschema-copy file". 

WORKING-STORAGE SECTION. 
Working-Storage Section body. 

DG/DBMS automatically produces a subschema copyfile when the DBA defines a subschema. If the DBA 
modifies a subschema, you must recompile your COBOL program with the new version of the copyfile. 
DG/DBMS deletes the old copyfile. 

Subschema copyfiles have special ACL controls which determine if a user has compile, retrieve, and/or update 
access for a subschema. So, if you get the message FILE ACCESS DENIED on a COpy statement, see your 
DBA about changing the subschema access privileges. The DGjDBMS Reference Manual contains complete 
information about subschema access rights. 

The subschema pathname is the AOS directory pathname for the database directory followed by either the 
subschema source code filename, a link, or the name of a file on your search list. Your DBA provides the 
subschema name. 

For example, for the database with the name TREATMENT_DATABASE using the subschema name 
PATIENT_SEARCH located in directory :UDD:HARRIS, specify 

COPY" :UDD:HARRIS:TREATMENT _DATABASE:PATIENT _SEARCH. COB" . 

Let's talk about our example subschema. We treat the subschema as two parts. The first part, an enhancement 
to COBOL syntax, describes interrecord relationships. The second part, which looks like an FD record 
definition in the Data Division, describes various record types for the database. 

A record type is an OI-level record definition and its associated elementary items (see Figure 10-1). Many 
records of the same record type may exist in the database; we call these records occurrences of the record type. 

Figure 10-3 shows the record type description of our database. This part of the subschema appears to define 
three group data items with a total of 13 elementary data items. This is true if you reference these data items 
with ordinary COBOL statements (MOVE, COMPUTE, etc.). But, if you use a special set of statements, 
called Data Manipulation Language (DML) statements, on those data items, the data structure becomes a 
window into the DG/DBMS database. 

When you COpy a subschema into your program, COBOL defines a storage area called the User Work Area 
(UW A) in the same manner as Working-Storage. Within the UW A, COBOL defines separate, physical 
storage areas for each record in the subschema. You use ordinary COBOL statements to move data between 
the UW A and other data areas in your program. You use D ML statements to transfer information between 
the UW A and the database. Figure 10-4 illustrates this. 

DML statements can transfer information between the record areas in the UWA and the database file. The 
record definitions in the Subschema Section describe the different types of data that a program can reference 
in the database. DG/DBMS extends the COBOL record definition by including an ALLOWS clause. This 
clause specifies the DML statements that you can use on a record type (01 level) and its subordinate items. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 10-5 



10-6 

01 DOCTOR ALLOWS ERASE GET ~ODIFY STORE 
05 LAST-NAME PIC X(25) 

05 FIRST-NAME PIC X(20) 

05 SPECIALTY PIC X(15) 

05 INFO PIC X(80) 

05 BEEPER PIC S9(4) 

USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

USAGE IS DISPLAY 
ALLO~S GET ~ODIFY. 

OCCURS 5 TI~ES 
USAG~ IS DISPLAY 
ALLO~S GET MODIFY. 

USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

USAG~ IS DISPLAY 
SIGN IS TRAILING 
ALLO~S GET MODIFY. 

01 PATIENTS ALLOWS ERASE GET MODIFY STORE 
05 LAST-NAME PIC X(20) 

05 FIRST-NAME PIC X(15) 

05 WARD PIC X(4) 

05 ROOM PIC S9(3) 

USAGE IS DISPLAy 
ALLO~S GET MODIFY. 

USAGE IS DISPLAY 
ALLO~S G~T ~ODIFY. 

USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

USAGE IS DISPLAY 
SIGN IS TRAILING 
ALLO~S GET MODIFY. 

01 TREATMENTS ALLO~S GET ~ODIFY ERASE STORE 
05 DISEASE PIC X(100) 

05 MEDICATION PIC X(25) 

05 DIET PIC X(200) 

05 SPECIALQINSTRUCTIONS PIC X(40) 

USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

OCCURS 5 TIMES 
L.:SAGE IS DISPLAy 
ALLU~S GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

OCCURS 5 TIMES 
USAGE IS DISPLAy 
ALLO~S GET MODIFY. 

Figure 10-3. COBOL/DBMS Subschema Record Type Description 

Licensed Materiai-Property of Data Generai Corporation 093-000223-01 



UWA 

Rec 1 

Rec2 

· 
· 
· 
· 

..- COBOL ~ 
Statements 

~ MOVE) 
COMPUTE 

etc. 

Database 
..-- DML ---. 

Statements 

( S~~~E) 
MODIFY 

· 
Recn 

50-02100 

Figure 10-4. The Function of the User Work Area (UWA) 

The SYSTEM Record Type 

Working 
Storage 

One record type in your subschema owns other records (it is never a member);it is called the SYSTEM record 
type. The SYSTEM record type has only one occurrence. The DG/DBMS system creates that occurrence and 
keeps header information in it for its own use; you cannot access that occurrence. As far as you are concerned, 
your DBA uses the SYSTEM record type when building a schema, to "hang" other record types from. All 
application programs wishing to access any part of the database structure must begin that navigation through 
a system set type via the SYSTEM record. 

Set Types 
The first part of a subschema defines relationships between record types (Ol-level data items) in the 
subschema. These record types are called sets. Figure 10-5 shows the set types in our example subschema. 

Each set type consists of the following: 

• An owner record type specification 

• 1\ member record type specification 

• Insertion/retention criteria for member records 

• A method for ordering member records 

• A clause determining whether or not duplicate sort key values are allowed 

• A maximum number of member occurrences (if desired) 

093-000223-01 Licensed Material-Property of Date General Corporation 10-7 



In the database, a set occurrence consists of at least one occurrence of the owner record type and zero or more 
member record occurrences. It is not necessary to have a member record occurrence in a set occurrence; but, if 
members are connected, they are part of the set occurrence. The rules for the set type define the 
owner /member relationships in the set occurrence. 

We want to remind you that all the aforementioned DG/DBMS terms and relationships are discussed in detail 
in the DGjDBMS Reference Manual. 

Using the analogy that Codasyl databases are "network" or "navigational" databases, you can consider set 
occurrences as the pathways that you travel and record occurrences as the destinations to which you go. Figure 
10-6 illustrates this principal. 

10-8 

* 
* 
* 
* 
* 
* 

SU~SCHE~A NA~E IS "PATIENT-SEARCH" 
wITHIN ":UDD:HARRIS:TREATMENT_DATABASE" 
ALLOWS ERASE GET ~ODIFY STORE 

SET NAME IS UOCTORS-BY-NA~E 
ALLOwS RECUNNECT 
OWNER IS SYSTE~ 
MEMBER IS DOCTOR 
AUTOMATIC MANDATORY 
ORDER IS SORTED BY KEY ASCENDING 

KEYS ARE: 
LASY.NA~E 
FIRST-NAt>'E 
DUPLICATES ALLOwED 

MEMBER LIMIT IS NONE 

SET NAME IS PATIENTS-BY-NA~E 
ALLOwS RECONNECT 
OwNER IS SYSTH, 
MEMBER IS PATIENTS 
AUTOMATIC MANDATORY 

* ORDER IS SORTED BY KEY ASCENDING 
* KEYS ARE: 
* LAST-NA~E 
* FIRST-NA"E 
* DUPLICATES ALLO~ED 
* MEMBER LIMIT IS NONE 

SET NAME IS PATIENT-TREATMENTS 
ALLOWS RECUNI';ECT 
OWNER IS PATIENTS 
MEMBER IS TREATt>'ENTS 
AUTOMATIC MANDATORY 

* ORDER IS NEXT 
* MEMBER LIMIT IS NONE 

SET NAME IS DOCTOR-TREATMENTS 
ALLOwS RECONNECT 
OwNER IS DOCTOR 
MEMBER IS TREATt>'ENTS 
AUTOMATIC MANDATORY 

* ORDER IS NEXT 
* MEMBER LIMIT IS NONE 

DBMS STATUS IS DBMS-STATUS. 

Figure /0-5. COBOL Subschema Set Relationship 

Licensed Material-Property of Data General Corporation 093-000223-01 

() 

() 

() 



1 
) 

'-

) 

\ 

SO-02101 

1-----
I 
I 
I 
I 
I 
I 
I 
I 

set 
occurrence 

I 
I 
I 
I 
I 
I 
I 
I L ___ _ 

I 
I 

Contents of 
one occurrence 

of the owner 
record. 

U 
I 

Contents of 
one occurrence 
of the member 
record type. 

owner records 

-
~ 

member records 
r-

I-

Figure 10-6. Owner-Member Record Diagram 

Let's look at the first pa'ft of Figure 10-5 and briefly discuss the components. A header appears before the set 
descriptions. It gives the name of the subschema: 

SUBSCHEMA NAME IS "PATIENT_SEARCH" 

The AOS filename for the subschema copyfile is always the subschema name with the extension .COB. The 
header also gives the database directoryname (AOS): 

WITHIN "TREATMENT_DATABASE" 

It also specifies the type of access that you have with this subschema in the clause: 

ALLOWS ERASE GET MODIFY STORE 

In the first part of the first set description, the clause 

SET NAME IS DOCTORS-BY-NAME 

identifies the name of the set type. The ALLOWS clause for this set type indicates that RECONNECT 
statements are allowed; CONNECT and DISCONNECT are not allowed. 

The next two lines of the example specify the two record types associated with the set type. One record type is 
always the OWNER, and another record type is always the MEMBER. A set type can have only one owner 
record type and only one member record type. 

The next clause defines insertion/retention criteria. Sets may have AUTOMATIC or MANUAL insertion 
modes and MANDATORY or OPTIONAL retention modes. AUTOMATIC and MANUAL options refer to 
set member connections. When you store a record occurrence, if the record.type is a member in an automatic 
set, then DG/DBMS automatically connects the new occurrence to the current owner. If you want to connect 
a member into a MANUAL set, you must specify a CONNECT statement. 

093-000223-01 Licensed Material-Property 01 Data General Corporation 10-9 



MANDATORY and OfTIONAL refer to set disconnections. If you specify MANDATORY, you may not 
disconnect a record from its owner in the set without erasing the record from the database. Application 
programs may move MANDA TOR Y record occurrences from one set occurrence to another within the same 
set type. If you specify OPTIONAL, you can disconnect a member from a set occurrence without erasing it. 
You should note, however, that any record occurrence disconnected from a set remains in the database, but 
may permanently disappear from view if that set is the only one in which the record was connected. 

You can always issue a RECONNECT statement for a record, regardless of its insertion or retention 
properties. That is, you can reconnect a record with a MANDA TOR Y retention characteristic, and 
DG/DBMS will disconnect the record from its old set occurrence and connect it to a new owner. 

The ORDER IS clause defines the relative ordering of member records within a set occurrence. It has five 
options. 

SORTED BY KEY ASCENDING KEY IS key - Sorts the members in a set occurrence by the designated key 
field(s) in the member record type 

FIRST - Places new record occurrences before the first member of the set occurrence 

LAST - Places new record occurrences after the last member of the set occurrence 

NEXT - Places new record occurrences immediately after the record occurrence (owner or member) you 
last accessed in the set occurrence; if current of set is on an owner, DG/DBMS inserts the record as the 
new first member 

PRIOR - Places new record occurrences immediately before the record occurrence you last accessed in the 
set occurrence; if current of set is on an owner, DG /DBMS inserts the record as the new last member 

The duplicates clause, DUPLICATES [NOT] ALLOWED, allows or prohibits the use of duplicate sort keys. 
The DBA can specify this only when specifying the SORTED BY KEY clause. 

The DG/DBMS error status clause, DBMS STATUS IS DBMS-STATUS, specifies a system defined data 
name of type X(5). It will contain the DG/DBMS error code if and when you receive an error. 00000 indicates 
no error. 

Declaring Free Cursors 
Free cursors are pointers that you can set in the database. You declare them in the Working-Storage section of 
your program. With a free cursor set, it is not necessary to have current of record or current of set positioned 
on that record to access it. See the section Positioning later in this chapter for the definitions of these terms. 

Use the following format to declare a free cursor in Workillg Storage: 

{~~ } fen [USAGE IS] CURSOR FOR reena. 

01 }CnOCCURS intTIMES [USAGE IS] CURSOR FOR reena. 

Where: 

fcn is the free cursor name. 

recna is the name of the record type thatfen is associated with. 

int is an integer constant from 1 to 255. 

Free cursors are only 01- or 77-level items; you do not specify a PICTURE clause for these items. DG/DBMS 
keeps all the information about the cursor in its own process space; COBOL has no control over the cursor 
information. You use DML statements to ASSIGN a free cursor to a record occurrence and to later refer to 
that free cursor. You cannot MOVE any information to or from a free cursor name. No data item can be 
subordinate to a free cursor name. 

10-10 Licensed Material-Property of Data General Corporation 093-000223-01 

() 

o 
d 

Ii 
U 



Overview of DML Statements in The Procedure Division 
As we said before, you access a database using Data Manipulation Language (DML) statements. Table 10-1 
lists all the DML statements you can specify in a COBOL program, along with their formats. 

Table 10-1. Data Manipulation Language Statements 

Opening and Closing a Subschema 

{ {EXCLUSIVE } RETRIEVAL} 
READY CONCURRENT UPDATE [AT ERROR slmtl ---

FINISH [AT ERROR slmtl ---

Transaction Statements 

[ {UPDATE } ] INITIATE TRANSACTION id USAGE MODE IS RETRIEVAL [AT ERROR slmtl 

COMMIT TRANSACTION [AT ERROR sImI) 

ROLLBACK TRANSACTION [AT ERROR sImI] 

--
Manipulating Set Connections 

CONNECT MEMBER {/en } reena TO SET selna [AT ERROR slmtl 

{fen } DISCONNECT MEMBER FROM SET selna [AT ERROR sImI) reena --

RECONNECT MEMBER/enTOSET setna [AT ERROR slmtl 

Manipulating Record Occurrences 

STORE reena [ASSIGN/en) [AT ERROR sImI) 

{reena} GET [id-l •... FROM) fi -- --- en [AT ERROR sImI) 

. {reena } MODIFY [id-l •... FROM] fen [AT ERROR SImI] 

{ reena } ERASE fen [AT ERROR stmt] 

(continues) 

093-000223-01 Licensed Materlal-Property 01 Data General Corporation 10-11 



10-12 

Table 10-1. Data Manipulation Language Statements 

Condition Checking 

~ [{ reena} ] fen IS [NOT) MEMBER WITHIN selna 

[ ~elna IS [NOT) 

>- THEN sImI 

{ MEMBER}] 
OWNER 

[ { 
reena} ] 

./Cn IS [NOT) NULL 
setna 

~ [selna IS [NOT) EMPTY) 

CHECK STATUS OF sIal id-i id-2 [AT ERROR sImI) 

Locating a Record Occurrence 

... 
FIRST 
LAST 

FIND ~ NEXT MEMBER reena WITHIN setna [ASSIGN/en) [AT ERROR sImI) 
PRiOR 
id 
in! 

{ FIRST} {SORT KEY} 
FIND LAST MEMBER reena WITHIN selna USING In-i. . .. 

[ASSIGN'/cn) [AT ERROR sImI) 

{
NEXT } { SORT KEY} 

FIND PRiOR. MEMBER reenaWITHIN selnaWITH DUPL1CATE /n-i.... . 

[ASSIGN /en) [AT ERROR sImI) 

{
fen } 

FIND CURRENT recna WITHIN selna [ASSIGN /en) [AT ERROR sImI) 

FIND OWNER reena WITHIN selna [ASSIGN/en) [AT ERROR sImI) 

Licensed Malerial-Property of Data General Corporalion 

(concluded) 

093-000223-01 

() 

o 
d 
A 
\' 



I 

\ 

The following discussion presents the DML statements in the order in which you are likely to use them. While 
the specific order of the statements depends on your particular program's needs, certain statements must 
precede or follow others. 

You must follow certain prerequisites when using DML statements in a COBOL program: You must READY 
a database before you can begin a transaction. You must begin (INITIATE) a transaction before you access 
the database. You must end (COMMIT) a transaction before you start another one (which also makes your 
modifications visible to other users). And you must perform a FINISH statement to close the database to 
yourself when you are done with it. 

READY 
The first DML statement you must use when you wish to access the database is the READY statement. Think 
of the READY statement as an OPEN statement for the database. The options for the READY statement 
exist because, unlike an ordinary file, many users may access a database simultaneously. 

You cannot specify the name of the database; your subschema provides the information needed to find the 
right database. This means that you cannot use more than one subschema in the same program. If you need 
access to more information in your database than anyone subschema provides, have your DBA create a new 
subschema for you. Most programs should execute a READY statement only once, because this statement uses 
a lot of overhead. 

INITIATE 
After you READY a subschema, you must INITIATE a transaction. A transaction is a user-defined set of 
DML and Procedure Division statements. You signal the end of a transaction with the COMMIT or 
ROLLBACK statement (described later), Each INITIATE-COMMIT sequence defines a DGjDBMS 
transaction. 

You must execute all DML statements, except READY and FINISH, from within a transaction; i.e., enclosed 
within an INITIATE-COMMIT pair. If you attempt to execute a DML statement outside a transaction, 
DG jDBMS rejects it. If you attempt to INITIATE a transaction when another one is in progress, DG jDBMS 
rejects the second INITIATE. In normal usage, you will follow READY by many INITIATE-COMMIT 
sequences. 

FIND 
Now that you have finished the preliminaries, you must position yourself somewhere in the database to begin 
work. Use a series of FIND statements to locate a particular member record occurrence in a set occurrence. 
We discuss this in more detail in the section Positioning later in this chapter. 

STORE, GET, MODIFY, ERASE, CONNECT, DISCONNECT, RECONNECT, and the 
ASSIGN Clause 
You use these statements and this clause to manipulate the database. A STORE is analogous to a WRITE. A 
FIND followed by a GET is analogous to a READ. MODIFY changes data in an existing record occurrence. 
An ERASE is analogous to a DELETE. CONNECT, DISCONNECT, and RECONNECT reorganize 
member record occurrences in set occurrences. ASSIGN assigns a free cursor. 

If you fail to position the relevant set and record cursors before using any of the statements, DGjDBMS 
returns a NULL CURSOR error. However, you can STORE into a system set without positioning first. See 
the DGjDBMS Reference Manual for a description of how each statement updates cursors. 

COMMIT 
COMMIT ends the series of DML statements that began with the last INITIATE. It also allows your updates 
to become visible to other users who INITIATE transactions after this COMMIT. 

093-000223-01 licensed Material-Properly of Data General Corporation 10-13 



ROLLBACK 
The ROLLBACK command discards all the modifications you have made to the database since your last 
INITIATE. Use this command to abort a transaction when your program has encountered inconsistent data or 
an error from which it cannot recover. 

FINISH 
When you are through with the database, FINISH closes it. If you do a FINISH while your last transaction is 
still active (you haven't done either a ROLLBACK or a COMMIT), DG/DBMS assumes that the transaction 
is still incomplete and internally issues a ROLLBACK. DG/DBMS does this in order to leave the database in 
a known, consistent state. 

Positioning Within a Database 
It is important that you understand positioning and how cursors affect database access. Therefore, you should 
read the section Cursors and Currency in Chapter 5 of the DGjDBMS Reference Manual before proceeding 
with this section. 

The database system uses cursors to keep track of your position in the database. A cursor is a type of pointer. 
There are, at any given time, several different cursors in your database. There are two categories for cursors: 
free cursors and system cursors. 

As mentioned earlier, free cursors are user-controlled cursors that you set to a particular record occurrence. 
Use free cursors to explicitly mark a position in the database so that you can reposition to that record later, 
regardless of where the system cursors point. Except for a few special cases, the system never alters free 
cursors. We list these exceptions under the appropriate statement descriptions given later in this chapter. 

All cursors initially point to nothing (null cursors). When you access a record, DG/DBMS sets system cursors. 
There are two types of system cursors: record cursors and set cursors. When you ac~ess a record occurrence, 
you position the record cursor to that occurrence. This then becomes the current of record for the record type 
involved. DG/DBMS positions set cursors on the last record accessed in each set type. Current of set can 
therefore be on either an owner or a member record. 

As illustrated by Figure 10-7, when we initially find an occurrence of record type ALPHA in set type 
SYSTEM-ALPHA, current of set for both sets SYSTEM-ALPHA and ALPHA-BETA points to that 
occurrence of ALPHA (position #1). 

When we subsequently find an occurrence in record type BETA, current of set for ALPHA-BETA points to 
that occurrence of BETA (position #2). Current of set for SYSTEM-ALPHA still points to position #1. 

The locations of your various cursors determine which occurrences the system will use for statements involving 
their related set/record types. For example, a CONNECT requires specifying a record occurrence to connect 
and a set type (assuming you do not use free cursors). DG/DBMS CONNECTs the member record 
occurrence to the owner record occurrence in the set occurrence marked by current of set for that set type. 
Current of set can point either to an owner record occurrence or to another member record occurrence. 
However, DG/DBMS always CONNECTs to the owner in the current set occurrence. 

Error Handling 
You always want to trap DGjDBMS errors when they occur during program execution. There are three ways 
to do this: 

1. Check the DBMS-STATUS data item 

2. Use the AT ERROR clause in statements that allow it 

3. Specify a Declaratives section 

10-14 Licensed Material-Property of Date General Corporation 093-000223-01 

n 

() 

() 

4 

~ 

~ 
l 

j 
~ 

11 

1 
1 
4 
I 

~ , 
i 
4 
I 

I , 
-j 



50-02102 

One 
Occurrence 

I 

...... 1--'--- System record type 
<System access only) 

Set type SYSTEM-ALPHA. 

position #1 ~ 

position #2 -----.. 

, 
I 
Occurrence of 

ALPHA 

I 
Set type ALPHA-BET A , 

I 
Occurrence of 

BETA -

Record type ALPHA, 
~ member in set type SYSTEM-ALPHA, 

owner in set type ALPHA-BETA. 

Record type BET A, 
~ -

member in set type ALPHA-BETA. 

Figure 10-7. Cursor Positions 

The best way to check for a specific or expected error (e.g., END-OF-SET) is to check the DBMS-STATUS 
data item located in the Data Division of your program. Using this method will trap all errors from those 
DG /DBMS statements that do not contain an AT ERROR clause. For a complete list of error codes, see the 
DC/DBMS Reference Manual. 

A more general approach is to use the AT ERROR clause. If specified for a particular statement, this clause 
traps any DG/DBMS error that occurs on that statement. 

You can also specify a COBOL Declaratives Section to trap on DG /DBMS errors. Follow the standard rules 
for setting up this section (see Chapter 6). In the USE statement, specify the following: 

USE AFTER DB-EXCEPTION 

If an error occurs on a DG/DBMS statement, the COBOL runtime system first checks if an AT ERROR 
clause is present in the statement that generated the error. If there is one, COBOL executes it. If there is none, 
COBOL looks for a DB-EXCEPTION clause; if one exists, COBOL executes it. 

Subprograms 
Separately compiled subprograms (invoked by a COBOL CALL statement) can access a database. If a 
subprogram contains DML statements, it must also contain a READY and a FINISH statement. If you 
attempt to READY the database in the main program or a subprogram and then issue DML statements in 
another subprogram, the results will be unpredictable. 

DML Statement Reference Section 
This section presents each DG/DBMS DML statement in detail; we have organized them functionally. 

093-000223-01 Licensed Material-Property of Data General Corporation 10-15 



Opening and Closing a Subschema 

READY 
Opens a database file. 

Format 

{{ EXCLUSIVE } 
READY CONCURRENT 

RETRIEVAL} 
UPDATE [AT ERROR stmtl 

Where: 

stmt is any valid COBOL statement. 

Statement Execution 
The READY statement opens a database, aIlIowing access to it through the subschema specified in the 
program's Subschema Section. 

EXCLUSIVE prevents any other user from accessing the database. You cannot specify READY EXCLUSIVE 
while another user has the database open. 

CONCURRENT permits other users to access the database while you are accessing it. 

UPDATE permits your program to modify the database. 

RETRIEVAL allows your program to examine the database. It does not, however, allow your program to modify 
the database. 

If you include the AT ERROR clause and DG/DBMS returns an error, control passes to stmt. 

The READY statement sets all cursors to null. 

10-16 Licensed Malerlal-Property 01 Data General Corporation 093-000223-01 

() 

I 
1 
I 

d 



FINISH 
Closes a database. 

Format 

FINISH [AT ERROR stmt I ---

Where: 

stmt is any valid COBOL statement. 

Statement Execution 
FINISH closes the database to your program. Note that that database itself will not close unless all users have 
closed it. 

If you include the AT ERROR clause and DG /DBMS returns an error, control passes to stmt. 

FIN ISH deletes all your free cursors, and sets your system cursors to null. 

093·000223·01 licensed Material·Property of Data General Corporation 10-17 



Transaction Statements 

INITIATE 
Starts a transaction. 

Format 

[ { UPDATE }] 
INITIATE TRANSACTION id USAGE MODE IS RETRIEVAL [AT ERROR sfmtl 

Where: 

id is a IO-digit numeric data item you defined in Working-Storage. 

stmt is any valid COBOL statement. 

Statement Execution 
INITIA TE starts a transaction in DG /DBMS. DG /DBMS returns a transaction number in id; the program 
may use this number as a backup/recovery aid. 

UPDATE allows the program to modify the database in this transaction. 

RETRIEVAL allows your program to examine the database. It does not, however, allow your program to modify 
the database. You may not INITIATE a transaction in UPDATE mode if you READYed your database in 
RETRIEV AL mode. 

If you include the AT ERROR clause and DG/DBMS returns an error, control passes to stmt. 

INITIATE has no effect on cursors. However, other programs' COMMITted transactions may change the 
records to which your cursors point. 

You can write all transaction numbers returned through INITIATE statements to an AOS sequential file. 
You may also include some key application data fields. If a crash occurs, you can use the AOS file (along with 
the CHECK command described later) to restart the application program at the appropriate place. 

10-18 Licensed Material-Property 01 Data General Corporation 093-000223-01 

1 



\ 
~. 

COMMIT 
Ends a transaction, making your modifications visible to all other users~. 
of the database who subsequently INITIATE a transaction. 

Format 

COMMIT TRANSACTION [AT ERROR sImI 1 

Where: 

stmt is any valid COBOL statement. 

Statement Execution 
Until you COMMIT a transaction, other users do not see the modifications you have made to the database. 
After the COMMIT, you need a new INITIATE command to further access or modify the database. 

If you include the AT ERROR clause and DG /DBMS returns an error, control passes to stmt. 

COMMIT has no effect on any cursors. 

Note that COMMIT is an "inexpensive" command. DG/DBMS made all the database modifications during 
the program transactions; COMMIT simply makes these modifications visible to other users. 

To end a transaction and abort all changes made during it, use the ROLLBACK command (described later). 

093-000223-01 Licensed Meterlel-Property of Date General Corporation 10-19 



ROLLBACK 
'Ends a transaction, aborting all changes made to the database in that transaction. 

Format 
ROLLBACK TRANSACTION [AT ERROR stmtJ 

Where: 

stmt is any valid COBOL statement. 

Statement Execution 
ROLLBACK discards changes made to the database file since the start of the transaction. You must 
IN ITIA TE a new transaction before you can again access the database. 

If you specify the AT ERROR clause and DG/DBMS returns an error, control passes to stmt. 

ROLLBACK resets all cursors to their values at the time the transaction was INITIATEd. 

10-20 Licensed Material-Property of Date General Corporalion 093-000223-01 

n 

o 
r 
I 
\ 

(' 



Manipulating Set Connections 

CONNECT 
Connects the named record occurrence to the current of set for the named set 
type. 

Format 

{ recna} 
CONNECT MEMBER .len TO SET selna [AT ERROR slmll 

Where: 

reena is a record name. 

fen is a free cursor name. 

setna is a set name. The current of set in setna defines the owner for the connection. 

stmt is any valid COBOL statement. 

Statement Execution 
DGjDBMS connects the record indicated by current of record or by a free cursor to the owner record within 
the current of set defined by setna. You must be positioned within an occurrence of setna and have either a 
record cursor or a free cursor on the member record. 

If you specified AT ERROR and DG jDBMS returns an error, control passes to stmt. 

CONNECT has no effect on free cursors. It sets the current of record cursor to the connected record 
occurrence. It sets the current of set cursor for setna to the connected record occurrence. 

093-000223-01 Licensed Material-Property of Data General Corporation 10-21 



DISCONNECT 
Disconnects the referenced member record from the named set. 

Format 

{ reena} 
DISCONNECT MEMBER .len FROM SET serna [AT ERROR sfmtl 

Where: 

recna is a record name. 

fcn is a free cursor name. 

setna specifies the set type from which DG/DBMS disconnects the record id. 

stmt is any valid COBOL statement. 

Statement Execution 
This statement disconnects the member record on which you are currently positioned or which you have 
marked by a free cursor from its owner in setna. 

You cannot disconnect an occurrence in a mandatory set type. (You may delete the member record 
occurrences. ) 

If you specified AT ERROR and DG/DBMS returns an error, control passes to stmt. 

DISCONNECT has no effect on free cursors. It sets current of record in the member record type to the 
disconnected record. It leaves current of set in the disconnected set on the new "hole" in the accessed set 
occurrence. 

10-22 Licensed Material-Property of Data General Corporation 093-000223-01 

o 



~! 

RECONNECT 
Disconnects and then connects an occurrence of a member record type 
within the same set type. Also updates current of set in the same set type. 

Format 

RECONNECT MEMBERjcn TO SET selna [AT ERROR SImI I 

Where: 

fcn is a free cursor name. 

setna is the name of the set type within which DG /DBMS moves the indicated record occurrence. 

stmt is any valid COBOL statement. 

Statement Execution 
DG/DBMS disconnects the record occurrence marked with free cursor fcn from set type setna and then 
connects it to the current of set in setna. 

If you specified the AT ERROR clause and DG/DBMS returns an error, control passes to stmt. 

RECONNECT has no effect on free cursors. It sets current of record to the reconnected member occurrence. 
It sets current of set to the reconnected member occurrence in its new set occurrence. 

In addition to using RECONNECT to change the owner of a member record occurrence, you can use it to 
reorder members in a set occurrence. For example: 

I OWNER I 

/l~ 
I MEMBER 1 I I MEMBER 2 1 1 MEMBER 31 

If ORDER IS NEXT, a free cursor is on MEMBER 1, and current of set is on MEMBER 2, then 
RECONNECTingfcn to selna will place MEMBER 1 after MEMBER 2 

093-000223-01 Licensed Material-Property 01 Data General Corporation 10-23 



Manipulating Record Occurrences 

STORE 
Stores the information residing in the User Work Area into the database. 

Format 

STORE reena [ASSIGNfen] [AT ERROR stmt] 

Where: 

reena is the name of a Subschema Section record item (OI-level). 

fen is a free cursor name. 

stmt is any valid COBOL statement. 

Statement Execution 
STORE creates a new occurrence of the record type reena. STORE affects only the fields that the subschema 
includes in reena (according to standard COBOL Data Division rules). For each AUTOMATIC set, 
DG jDBMS connects the occurrence in the position determined by the set's ORDER IS clause (FIRST, 
LAST, NEXT, PRIOR, KEY). DGjDBMS connects the new record to the set occurrence defined by current 
of set. The new record occurrence becomes current of record and current of set for all sets in which the record 
is an owner or AUTOMATIC member. STORE has no effect on free cursors. 

If you specify the ASSIGN clause, the free cursor marks the STOREd occurrence of the record type. 

If you specified the AT ERROR clause and DGjDBMS returns an error, control passes to stmt. 

10-24 Licensed Material-Property 01 Data General Corporation 093-000223-01 

() 

0 1 

o 



'" , 

GET 
Moves the record pointed to by the current of record or by a free cursor into 
the User Work Area. 

Where: 

id-J is a field in record type reena. 

reena is a record type. 

fen is a free cursor name. 

stmt is any valid COBOL statement. 

Statement Execution 
The GET command moves data from the database into the User Work Area. 

You must use the FROM clause if you specify field names in id-J. If you do not use the FROM clause, 
DG /DBMS retrieves the entire record. DG /DBMS retrieves information from the database at the current of 
record or free cursor position. 

Record types (reena) are 0 I-level items in the Subschema Section. 

If you specify the AT ERROR clause and DG /DBMS returns an error, control passes to stmt. 

GET has no effect on free cursors or set cursors. The current of record is set to the retrieved occurrence. 

093-000223-01 Licensed Material-Property of Data General Corporation 10-25 



MODIFY 
Replaces information in the database with information from the User Work Area. 

Format 

{ reena 'j 
MODIFY [id-l, ... FROM) fen [AT ERROR stmtl 

Where: 

id-l is a field in a record type. 

recna is a record type. 

fcn is a free cursor name. 

simi is any valid COBOL statement. 

Statement Execution 
MODIFY moves all fields specified in the command into the current of record or free cursor occurrence, 
overwriting the information in the database. If you specify fields for id-l, you must use the FROM clause; the 
other fields in the occurrence do not change. If you do not specify any fields for id-l, DG/DBMS reads the 
entire record (all the fields) from the User Work Area. 

If you specify AT ERROR and DG /DBMS returns an error, control passes to simi. 

MODIFY has no effect on free cursors. The current of record is set to the modified occurrence. The current of 
set is set to the modified record for all sets in which the occurrence is an owner or member. Note that 
DG/DBMS automatically reorders the members in a sorted set occurrence if you modify the sort key in a 
connected member. 

10-26 Licensed Material-Property of Date General Corporation 093-000223-01 

() 

() 

() 



f 

ERASE 
Deletes a record occurrence from the database. 

Format 

{ , recna } 
ERASE fen [AT ERROR sfmr] 

Where: 

reena is a record type, 

fen is a free cursor name, 

stmt is any valid COBOL statement. 

Statement Execution 
ERASE deletes the record occurrence indicated by current of record in reena or free cursor fen from the 
database. You cannot ERASE a record occurrence if it is the owner of another record occurrence in any set; 
you must ERASE all its member records first. 

If you specify the AT ERROR clause and DG/DBMS returns an error, control passes to stmt. 

ERASE sets the following to null: 

• free cursors that were pointing to the ERASEd occurrence 

• current of record for this record type 

• current of set for all sets that the ERASEd record owned 

ERASE sets the current of set for all sets in which the ERASEd record was a connected member to the "hole" 
the record left in the set occurrence. 

Note that a DG/DBMS ERASE always causes an immediate, physical deletion. The only way to undo an 
ERASE command is to ROLLBACK the transaction instead of COMMITting it. 

093-000223-01 Licensed Material-Property of Data General Corporation 10-27 

;~==~~----======================================--==~---------------------------------------------------



Condition Checking 

IF 
Tests the status of the datab~se with special clauses. 

Format 

[{ reena} ] fen IS [NOT] MEMBER WITHIN setna 

IF 

[ setna IS [NOT] { MEMBER}] 
OWNER 

THEN stmt 

[ { 
reena} ] 
fen IS [NOT] NULL 
setna 

[setna IS [NOT] EMPTY] 

Where: 

reena is a record type. 

fen is a free cursor name. 

setna is a set type. 

stmt is any valid COBOL statement. 

These clauses are extensions to the COBOL IF statement's format. This format does not include the entire set 
'Of optional clauses for the COBOL IF statement. Refer to the IF statement in Chapter 7 for a complete 
description of this statement. 

10-28 Llcenaed Ma\erlal-Property 01 Data General Corporation 093-000223-01 

o 



Statement Execution 
Use these four clauses to test the status of the database. 

I. 
[{ recna} ] fen ' IS [NOT] MEMBER WITHIN setna 

Tests to see if a record occurrence is connected in a set type. 

2. 
[ setna IS [NOT] { MEMBER}_] 

OWNER 

Tests to see if the current of set is on an owner or a member record. 

3. 

[ { 
recna} ] 
fen IS [NOT] NULL 
setna 

Tests to see if a free cursor, current of record, or current of set is null (not set to a specific occurrence in the 
set or record type). 

4. [setna IS [NOT] EMPTY] 

Tests to see if the current of set has member record occurrences. 

The IF statement never affects any cursors. 

093-000223-01 Licensed Material-Property of Data Ge~eral Corporation 10-29 



CHECK 
Check the status of a transaction. 

Format 

CHECK STATUS OF id-J id-2 [AT ERROR stmtl 

Where: 

id-J is a IO-digit numeric COBOL data item containing the transaction number. 

id-2 is a one-digit numeric COBOL data item into which DGjDBMS returns a transaction status 
number. 

stmt is any valid COBOL statement. 

Statement Execution 
When you issue the CHECK command, DGjDBMS returns a one-digit number describing the status of the 
transaction into id-2. The following is a list of these codes and their meanings: 

Code # Meaning 

o Unknown transaction 

Transaction currently active 

2 Transaction successfully completed 

3 Transaction backed out (ROLLBACK completed) 

4 System error; transaction exists but DGjDBMS cannot determine its status 

The CHECK command never affects any cursors. 

10-30 Licensed Malerial-Property of Data General Corporallon 093-000223-01 

~ 

~ 
(i 

Q 

V 
~ 

~ 
~ 

() 1 

! 

1 
~ 

() 



• , 

~ 
\ 

Locating a Record Occurrence 

FIND (positional) 
Locates record occurrences by relative positioning. 

Format 

FIND 

Where: 

FIRST 
LAST 

NEXT 
PRIOR 
id 
int 

MEMBER recna WITHIN setna [ASSIGN'/en I [AT ERROR stmt I 

id is a data item in the Working-Storage Section containing an integer value. 

int is a literal integer. 

fen is a free cursor name. 

reena is a record name. 

setna is the set type that should contain the selected member record. 

stmt is any valid COBOL statement. 

Statement Execution 
FIND positional moves you through occurrences of a record type within a given set occurrence. 

FIRST locates the first occurr'ence of the record type in the current set occurrence. 

LAST locates the last occurrence of the record type in the current set occurrence. 

NEXT locates the next occurrence of the record type from current of set within the current set occurrence. 

PRIOR locates the immediately previous occurrence of the record type from current of set within the current 
set occurrence. 

If you specify a positive id Or int, DBMS locates the record that is id or int occurrences from the beginning of 
the set. If you specify a negat.ive id or int, DBMS locates the record that is id or int from the end of the set. 

ASSIGN fen assigns a free cursor to the found record occurrence. 

If you specify the AT ERROR clause and DG/DBMS returns an error, control passes to sImI. 

FIND has no effect on free cursors. It sets current of record to the found record occurrence and sets current of 
set to the located record in all set types in which the record is an owner or a connected member. 

093-000223-01 lIcensed Meterlal-Property of Date General Corporallon 10-31 

I\~, ==== ___________ =======================================-__________________ ~ __________________________________ __ 



FIND (using data items) 
locates the occurrence of a record type containing a specific value(s) in one or 
more fields. 

Format 

Where: 

reena 

selna 

fnl... 

fen 

sImI 

{ FIRST} { SORT KEY} 
FIND LAST. MEMBER reena WITHIN setna USING In-I, ... 

[ASSIGN/en 1 [AT ERROR stmt 1 

is the name of the record type. 

is the name of the set type. 

is a list of one or more fields in the record. 

is a free cursor name. 

is any valid COBOL statement. 

Statement Execution 
Use this statement to FIND a record occurrence for which you know the contents of a specific field(s). 

FIRST gives you the first occurrence of the record in the current set occurrence where the values for the listed 
fields or sort keys match the values found in the User Work Area. 

LAST gives you the last occurrence of the record in the current set occurrence where the values for the listed 
fields or sort keys match the values found in the User Work Area. 

SORT KEY tells DG /DBMS to use the fields defined as sort keys in the subschema. Use this option for record 
types that are SORTED BY KEY only. 

ASSIGN fen assigns a free cursor to the found record occurrence. 

If you specify the AT ERROR clause and DBMS returns an error, control passes to sImI. 

FIN 0 has no effect on free cursors. It sets current of record to the found record occurrence. It sets current of 
set to the located record in all set types in which the record is an owner or a connected member. 

10-32 Lice.nsed Material-Property of Data General Corporation 093-000223-01 

1 



FIND (duplicates) 
Locates occurrences of records having identical fields. 

Format 

{
NEXT } { SORT KEY} 

FIND -- MEMBER reenaWITHIN sefnaWITH DUPLICATE /"1-1 
PRIOR --, " .. 

[ASSIGN/en I [AT ERROR sfmf I 

Where: 

reena is the data name of the record type. 

selna is the name of the set type. 

fn-l,... is a list of one or more fields in the record. 

fen is a free cursor name. 

sImI is any valid COBOL statement. 

Statement Execution 
DG IDBMS searches, from current of set, for the NEXT or PRIOR record occurrence that is within the 
current set occurrence and that has the same values for the specified field(s) as those found in the current of 
set record occurrence. Use this statement in conjunction with the FIND using data items statement. FIND 
using data items locates the first or last occurrence. FIND duplicates finds all other occurrences that have the 
same values for the specified field(s). 

ASSIGN assigns a free cursor to the found record. 

SORT KEY tells DG IDBMS to use the fields defined as sort keys in the subschema. Use this option for record 
types that are SORTED BY KEY only. 

If you specify the AT ERROR clause and DG/DBMS returns an error, control passes to sImI. 

FIND has no effect on free cursors. It sets current of record to the found record occurrence. It sets current of 
set to the located record in all set types in which the record is an owner or connected member. 

093-000223-01 Licensed Material-Property of Data General Corporation 10-33 

~';====~==~==================================--~-----------------------------------------------\, 



FIND (current) 
Locates the current of record, current of set, or the occurrence assigned to 
a free cursor 0 

Format 

{ fen }I 
FIND CURRENT I recna WITHIN serna [ASSIGN fen 1 [AT ERROR sImI 1 

Where: 

fen is a free cursor name. 

reena is the 0 I-level record name. 

setna is the desired set name. 

stmt is any valid COBOL statement. 

Statement Execution 
The FIND CURRENT statement is the only FIND that does not locate a new record occurrence. The 
statement resets all the system cursors associated with a particular record type to point to the same, previously 
known, record occurrence. Current of record, current of set, or a free cursor indicates this previously known 
record occurrence. 

FIND has no effect on free cursors. It sets current of record to the found record occurrence. It sets current of 
set to the located record in all set types in which the record is an owner or a connected member. 

Specify FIND CURRENT reena WITHIN setna to reposition all relevant cursors to the record pointed to by the 
current of set cursor (setna). If setna does not point to an occurrence of reena, DGjDBMS returns an error. 
(Remember: current of set can be on an owner or a member record occurrence.) 

Specify FIND CURRENT reena to reposition all relevant cursors to the record pointed to by the current of 
record cursor (reena). 

Specify FIND CURRENT fen to reposition all relevant cursors to the record pointed to by the free cursor (fen). 

ASSIGN assigns a free cursor to the found record. 

If you specify the AT ERROR clause and DGjDBMS returns an error, control passes to stmt. 

Licensed Material-Property of Data General Corporation 093-000223-01 

J 



FIND (owner) 
Locates the owner of an occurrence in a set type. 

Format 

FIND OWNER reena WITHIN setna [ASSIGN/en I [AT ERROR stmt I 

Where: 

recna is the 0 I-level record name of the owner record type. 

setna is the set name. 

fcn is a free cursor name. 

stmt is any valid COBOL statement. 

Statement Execution 
FIND OWNER locates the owner record of the set occurrence indicated by the current of set cursor for setna. 

ASSIGN assigns a free cursor to the found record. 

If you specify the AT ERROR clause and DG/DBMS returns an error, control passes to stmt. 

FIND has no effect on free cursors. It sets current of record to the found record occurrence. It sets current of 
set to the located record in all set types in which the record is an owner or a connected member. 

093-000223-01 Licensed Material-Property of Date General Corporation 10-35 



Sample COBOL Programs Using DG/DBMS 
The COBOL program in Figure 10-8 uses our hospital subschema example to find all the patients under the 
care of Dr. Brian Hackenbush and to output that information to the terminal. 

10-36 

IDENTIFICATION DIVISION. 
PROGRAM-ID. DBMS-~XAMPLE-I. 
AUTHOR. HARRIS CHASEN. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. ECLIPSE. 
OBJECT-COMPUT~R. ECLIPSE. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 
DATA DIVISION. 
FILE SECTION. 
SUBSCHEMA SECTION. 

COpy ":UDD:HARRIS:TREATMENT_DATABASE:PATIENT.SEARCH.COB". 
C SUBSCHEMA NAME IS "PATIENT-SEARCH" 
C ~ITHIN "IUDD:HARRIS:TREATMENT_DATABASE" 
C ALLO~S ERASE GET MODIFY STORE 
C 
C SET NAME IS DOCTORS-BY-NAME 
C ALLO~S RECONNECT 
C O~NER IS SYSTEM 
C MEMBER IS DOCTOR 
C AUTOMATIC MANDATORY 
C* ORDER IS SORTED BY KEY ASCENDING 
C* KEYS AREI 
C* LAST-NAME 
C* FIRST-NAME 
C* DUPLICATES ALLO~ED 
C* MEMBER LIMIT IS NONE 
C 
t SET NAME IS PATIENTS-BY-NAME 
C ALLO~S RECONNECT 
C O~NER IS SYSTEM 
C MEMBER IS PATIENTS 
C AUTOMATIC MANDATORY 
C* ORDER IS SORTED BY KEY ASCENDING 
C* KEYS ARE: 
C* LAST-NAME 
C* FIRST-NAME 
C* DUPLICATES ALLO~ED 
C* MEMBER LIMIT IS NONE 
C 
C SET NAME IS PATIENT-TREATMENTS 
C ALLO~S RECONNECT 
C O~NER IS PATIENTS 
C MEMBER IS TREATMENTS 
C AUTOMATIC MANDATORY 
C* ORDER IS NEXT 
C* MEMBER LIMIT IS NONE 
C 
C SET NAME IS DOCTOR-TREATMENTS 
C ALLOWS RECONNECT 
C O~NER IS DOCTOR 
C MEMBER IS TREATMENTS 
C AUTOMATIC MANDATORY 
C* ORDER IS NEXT 
C* MEMBER LIMIT IS NONE 
C 
C DBMS STATUS IS DBMS-STATUS. 

Figure /0-8. Sample Program Number I (continues) 

Licensed Materiai-Property of Data General Corporation 093-000223-01 I 

i 
i 

JI 



~ 

I 
'; 

\ 
( 
1 

L 
I 

l 

~ 

~ 
I 
i 
i 
) 

\ 

093-000223-01 

C 
C 01 
C 

DOCTOR ALLOWS ERASE GET MODIFY STORE 
05 LAST-NAME PIC X(25) 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

05 

05 

05 

05 

FIRST-NAME PIC X(20) 

SPECIAL TY PIC X(15) 

INFO PIC X(8") 

BEEPER PIC S9(4) 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

OCCURS 5 TIMES 
USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
SIGN IS TRAILING 
ALLOWS GET MODIFY. 

C 01 
C 

PATIENTS ALLOWS ERASE GET MODIFY STORE 
05 LAST-NAME PIC X(20) 

C 
C 
C 05 
C 
C 
C 05 
C 
C 
C 05 
C 
C 
C 
C 

FIRST-NAME PIC X(15) 

WARD PIC X(4) 

ROOM PIC S9(3) 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
SIGN IS TRAILING 
ALLOWS GET MODIFY. 

C 01 
C 

TREATMENTS ALLOWS GET MODIFY ERASE STORE 
05 DISEASE PIC X(100) 

C 
C 
C 05 MEDICATION PIC X(25) 
C 
C 
C 
C 
C 
C 
C 
C 
C 

05 DIET PIC X(200) 

05 SPECIAL-INSTRUCTIONS 

C 
WORKING-STORAGE SECTION. 
77 TX-NO PIC 9(10). 
77 FLAG PIC 9. 

PROCEOURE DIVISION. 
DECLARA TI VES. 
DB-ERROR SECTION. 

USE AFTER DB-EXCEPTION. 

PIC X(40) 

DISPLAY "DBMS ERROR: " DBMS-STATUS. 
STOP RUN. 

ERROR-END. 
EXIT • 

END DECLARATIVES. 

BEGIN. 

USAGE IS OISPLAY 
ALLOWS GET MODIFY. 

OCCURS 5 TIMES 
USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

OCCURS 5 TIMES 
USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

Figure 10-8. Sample Program Number I (continued) 

Licensed Material-Property of Data General Corporation 10-37 



MOVE ZEROES TO FLAG. 
MOVE ZEROES TO TX-NO. 

OPEN-DATA. 
* OPEN THE DATABASE FILE. 

READY RETRIEVAL. 

* START A TRANSACTION. 
INITIATE TX-NO USAGE RETRIEVAL. 

FIND-DOC. 
* WE KNOW THE DOCTOR'S NAME, FIND HIS OCCURRENCE IN THE SET. 

MOVE "HACKENBUSH" TO LAST-NAME OF DOCTOR. 
MOVE "BRIAN" TO FIRST-NAME OF DOCTOR. 
FIND FIRST DOCTOR WITHIN DOCTORS-BY-NAME USING SORT-KEY. 

* FIND THE TREATMENT FOR THE FIRST PATIENT ON THE DOCTOR'S LIST. 
FIND FIRST MEMBER TREATMENTS ~ITHIN DOCTOR-TREATMENTS 

AT ERROR GO TO ERROR-PARA. 

PERFORM GET-PAT THRU NEXT-PAT UNTIL FLAG = 1. 

* T~ANSACTION SUCESSFUL. END TRANSACTION~ 
COMMIT TRANSACTION. 
GO TO STOP-RUN. 

GET-PAT. 
* FIND THE PATIENT'S INFORMATION. 

FIND OWNER PATIENT ~ITHIN PATIENT-TREATMENTS AT ERROR GO TO ERROR-PARA. 

* PUT THE PATIENT INFORMATION INTO THE UWA AND OUTPUT IT. 
GET PATIENTS. 
DISPLAY PATIENTS. 

NEXT-PAT. 
* FIND NEXT GETS·US THE NEXT TREATMENT RECORD OWNED BY HACKENBUSH 
* WHEN WE RUN OUT OF MEMBERS, DBMS WILL RETURN AN END-OF-SET 
* ERROR AND WE STOP THE RUN. 

FIND NEXT MEMBER TREATMENTS WITHIN DOCTOR-TREATMENTS 
AT ERROR MOVE 1 TO FLA~. 

ERROR-PARA. 
DISPLAY "DATABASE ERROR, TRANSACTION ABORTED.". 
DISPLAY "TRANSACTION ID: " TX-NO " ERROR CODE: n DBMS-STATUS. 

* SINCE WE ARE NOT MODIFYING THE DATABASE INFORMATION 
* HERE, ROLLBACK IS REALLY UNNECESSARY. WE INCLUDE 
* IT FOR ILLUSTRATION. 

ROLLBACK TRANS·ACTION. 

STOP-RUN. 
* CLOSE THE DATABASE. 

10-38 

FINISH. 
STOP RUN. 

Figure 10-8. Sample Program Number I (concluded) 

Licensed Material-Property of Date General Corporation 093-000223-01 



\ 
) 

) 
\ 

I 
I 
I 
) 

I 

1 

10 
l 
) 
i 
? 
) 
~ 
f 
\ 
\ 
\. 

Figure 10-9 contains a diagram that shows the logic of our program. We first found the Hackenbush record in 
DOCTORS-BY-NAME. Then, we found Hackenbush's first member in set type DOCTOR-TREATMENTS. 
This member has another owner in set type PATIENT-TREATMENTS. The PATIENT-TREATMENTS 
owner is one of the doctor's patients. So, by sequentially looking up the treatment occurrences who are 
members attached to Hackenbush, and then finding their patient owners, we found all the patients under Dr. 
Hackenbush's treatment. 

In Figure 10-10, we reverse the program. Using the same logic and making only a few modifications, we can 
find all the doctors treating a patient; in this case, the patient is named John Kelley. Compare the two sample 
programs. Note that they both use the same subschema. 

80-02104 

Occurrence of 

1 system 1--The .,.tem .. coni type 

L..-----:--I" 

Set / " Set 
DOCTORS-BY-NAME PATIENTS-BY-NAME 

,....----=-.-I -----. ~ 
Record type - Hackenbush,B. 
DOCTOR 

Shea,D. 1 
Occurrence of 

.-- record type 
PATIENTS L-______ ..... 

se~ /set 
DOCTOR-TREATMENTS PATIENT -TREATMENTS 

'\ / 
Nervous 

Breakdown 
~ Record type 

TREATMENTS 

Figure 10-9. Logical Diagram of Sample Program Number 1 

093-000223-01 Licensed Material-Property 01 Date General Corporation 10-39 



10-40 

ID~NTIFICATION DIVISION. 
PROGRAM-ID. DBMS-~XAMPLE-II. 
AUTHOR. HARRIS CHASEN. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. ECLIPSE. 
OBJECT-COMPUTER. ECLIPSE. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 
DATA DIVISION. 
FILE SECTION. 
SUBSCHEMA SECTION. 

COpy ",UDD:HARRISITREATMENT_DATABASE:PATIENT_SEARCH.COB". 
C SUBSCHEMA NAME IS "PATIENT-SEARCHn 
C WITHIN ":UDD:HARRISITREATMENT_DATABASE" 
C ALLOWS ERASE GET MODIFY STORE 
C 
C SET NAME IS DOCTORS-BY-NAME 
C ALLOWS RECONNECT 
C OWNER IS SYSTEM 
C MEMBER IS DOCTOR 
C AUTOMATIC MANDATORY 
C* ORDER IS SORTED BY K~Y ASCENDING 
C* KEYS ARE: 
C* LAST-NAME 
C* FIRST-NAME 
C* DUPLICATES ALLOwED 
C* MEMBER LIMIT IS NONE 
C 
C SET NAME IS PATIENTS-BY-NAME 
C ALLOWS R~CONNECT 
C OWNER IS SYSTEM 
C MEMB~R IS PATIENTS 
C AUTOMATIC MANDATORY 
C* ORDER IS SORTED BY KEY ASCENDING 
C* KEYS ARE: 
C* LAST-NAME 
C* FIRST-NAME 
C* DUPLICATES ALLOwED 
C* MEMB~R LIMIT IS NONE 
C 
C SET NAME IS PATIENT-TREATMENTS 
C ALLOWS RECONNECT 
C OWN~R IS PATIENTS 
C MEMB~R IS TREATMENTS 
C AUTOMATIC MANDATORY 
C* ORDER IS NEXT 
C* MEMBER LIMIT IS NONE 
C 
C SET NAME IS OOCTOR-TREATMENTS 
C ALLOWS RECONNECT 
C OWNER IS DOCTOR 
C MEMBER IS TREATMENTS 
C AUTOMATIC MANDATORY 
C* ORDER IS NEXT 
C* MEMBER LIMIT IS NONE 
C 
C DBMS STATUS IS DBMS-STATUS. 
C 

Figure 10-10. Sample Program Number 2 (continues) 

Licensed Malerial-Property of Data General Corporation 

~ 
() 

l 
1 

~ 
i 

~ 
~ 
)1 

~ 

~ 
fl 
II 
II 
)1 
,I 

~ Ii 
\1 Ii 
~I 
II 
(! 

;1 
ii 
II 
(I 

I! 
II 

() 1! 
{! 
II 
\i 
I 
1 

,; 

(! 
" II 
)1 

\i 

Ii 
)! 
II 
; 1 

093-000223-01 



\ 
) 
) 

093·000223·01 
, 

C 01 
C 

DOCTOR ALLOWS ERASE GET MODIFY STORE 
05 LAST-NAME PIC X(25) 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

05 

05 

05 

05 

FIRST-NAME PIC X(20) 

SPECIALTY PIC X(15.) 

INFO PIC X(80) 

BEEPER PIC S9(") 

USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

OCCURS 5 TIMES 
USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

USAGE IS DISPLAY 
ALLOwS GET MODIFY. 

USAGE IS DISPLAY 
SIGN IS TRAILING 
ALLO~S GET MODIFY. 

C 01 
C 

PATIENTS ALLO~S ERASE GET MODIFY STORE 
05 LAST-NAME PIC X(20) 

C 
C 
C 0S 
C 
C 
C 05 
C 
C 
C 05 
C 
C 
C 
C 

FIRST-NAME PIC X(15) 

~ARD PIC XC,,) 

ROOM PIC S9 (3) 

USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

USAGE IS DISPLAY 
ALLOwS GET MODIFY. 

USAGE IS DISPLAY 
ALLOWS GET MODIFY. 

USAGE IS DISPLAY 
SIGN IS TRAILING 
ALLOWS GET MODIFY. 

C 01 
C 

TREATMENTS ALLO~S GET MODIFY ERASE STORE 
05 DISEASE PIC X(100) 

C 
C 
C 0S MEDICATION PIC X(25) 
C 
C 
C 
C 
C 
C 
C 
C 
C 

05 DIET PIC X(200) 

05 SPECIAL-INSTRUCTIONS 

C 
~ORKING-STORAGE SECTION. 
77 TX-NO PIC 9(5). 
77 FLAG PIC 9. 
PROCEDURE DIVISION. 
DECLARATIVES. 
DB-ERROR SECTION. 

USE AFTER DB-EXCEPTION. 

PIC X("0) 

DISPLAY ~DBMS ERROR: " DBMS-STATUS. 
STOP RUN. 

ERROR-END. 
EXIT • 

END DECLARATIVES. 

BEGIN. 
MOVE ZEROES TO FLAG. 
MOVE ZEROES TO TX-NO. 

OPEN-DATA. 

USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

OCCURS 5 TIMES 
USAGE IS DISPLAY 
ALLOwS GET MODIFY. 

USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

OCCURS 5 TIMES 
USAGE IS DISPLAY 
ALLO~S GET MODIFY. 

Figure 10-10. Sample Program Number 2 (continued) 

Licensed Material·Property of Data General Corporation 10-41 

~~.--------------------------------------------------------------------------------------------------------



* OPEN THE DATABASE FILE. 
READY RETRIEVAL. 

* START A TRANSACTION. 
INITIATE TX-NO USAGE RETRIEVAL. 

FIND-DOC. 
* WE KNOW THE PATIENT'S NAME, FIND HIS OCCURRENCE IN THE SET. 

MOVE "KELLEY" TO LAST-NAME OF PATIENTS. . 
MOVE "JOHN" TO FIRST-NAME OF PATIENTS. 
FIND FIRST PATIENT wITHIN PATIENTS-BY-NAME USING SORT-KEY. 

* FIND THE TREATMENT FOR THE PATIENT. 
FIND FIRST MEMBER TREATMENTS WITHIN PATIENT-TREATMENTS 

AT ERROR GO TO ERROR.PARA. 

PERFORM GET-DOC THRU NEXT-DOC UNTIL FLAG = 1. 

• TRANSACTION SUCESSFUL. END TRANSACTION. 

GET-DOC. 

COMMIT TRANSACTION. 
GO TO STOP-RUN. 

* FIND THE DOCTOR. 
FIND OWNER DOCTOR wITHIN DOCTOR.TREATMENTS AT ERROR GO TO ERROR-PARA. 

* PUT THE DOCTOR INFORMATION INTO THE UWA AND OUTPUT IT. 
GET DOCTOR. 
DISPLAY DOCTOR. 

NEXT-DOC. 
• FIND NEXT GETS US THE NEXT TREATMENT RECORD OWNED BY KELLEY (ANY OTHER 
• DOCTORS). WHEN WE RUN OUT OF MEMBERS, DBMS WILL RETURN AN END-OF-SET 
* ERROR AND WE STOP THE RUN. 

FIND NEXT MEMBER TREATMENTS WITHIN PATIENT-TREATMENTS 
AT ERROR MOVE 1 TO FLAG. 

ERROR-PARA. 
DISPLAY "DATABASE ERROR, TRANSACTION ABORTED.". 
DISPLAY "TRANSACTION 10: " TX-NO " ERROR CODE: " DBMS-STATUS. 

• SINCE WE ARE NOT MODIFYING THE DATABASE INFORMATION 
• HERE, ROLLBACK IS REALLY UNNECESSARY. WE INCLUDE 
• IT FOR ILLUSTRATION. 

ROLLBACK TRANSACTION. 

STOP-RUN. 
• CLOSE THE DATABASE. 

FINISH. 
STOP RUN. 

Figure 10-10. Sample Program Number 2 (concluded) 

End of Chapter 

10-42 Licensed Material-Property 01 Data General Corporation 093-000223-01 



. 
" \ 

\ 

("I 

Chapter 11 
How to Use COBOL Under AOS 

The ECLIPSE COBOL system includes a compiler, a runtime library, and a debug program. The compiler 
generates relocatable binary object files; the runtime library is a collection of modules that are necessary to 
execute system calls your program invokes; and the debugger program allows you to monitor your COBOL 
program, as well as make and test alterations to it interactively, while it executes. The debugger is discussed in 
detail in Chapter 9. 

The operating environment required for COBOL is a commercial ECLIPSE AOS system with an INFOS file 
management system. 

Compiling, Binding, and Executing 
There are four stages needed to bring your COBOL program to life. Using one of Data General's text editors, 
you create a program source file. The command, COBOL, compiles the source file you created, produces an 
object file, and reports any detected errors. The command, CBIND, names input object modules, directs the 
binder to build an executable program file with an optional overlay file, and scans the COBOL runtime library 
for modules the system will need to execute certain types of system calls associated with your program. Once 
you have compiled and bound your program, you are ready to execute it. 

Using the Compiler 
The COBOL compiler's main function is to produce an object file from your COBOL source program. It will 
also report any errors encountered during compilation. You may call on the compiler to produce a listing of 
your source file with true line numbers (as opposed to card sequence numbers) indicated in the left margin. 

In addition, the compiler can produce listings that describe different aspects of the program and the 
compilation. These optional listings include: 

• A listing of the generated code for the object file; 

• An address map, showing the relative locations of Procedure Division lines; 

• A map of data and procedures in the object file; 

• A list of statistics describing the compilation (such as the number of lines compiled, the speed of the 
compilation); 

• A source program cross-reference table. 

You may request the listing file as well as any of the above listings in the compilation command for your 
program. 

093-000223-01 Licensed Malerlal-Proper1Y 01 Dale General Corporation 11-1 



Calling the Compiler 
To compile a COBOL source file, issue the COBOL command to the AOS Command Line Interpreter (CLI). 
The command has the format: 

COBOL [/swlsw ••• 1 idol [id-2lL 1 [id-3lR 1 

Where: 

sw is a global switch to the compiler command that specifies an option you want to use in the 
compilation. See the list of global switches later in this chapter. 

id-/ is a filename that specifies the source program file you want compiled. 

id-2 specifies the file or device to which you want the listing file output. It may be the console 
(@OUTPUT), the line printer (@LlST), or a disk or tape file. 

id-3 is a filename that specifies the name you want assigned to the object file the compiler produces. If you 
do not supply a name, the compiler uses id-/ with the extension .08. 

You must supply the source filename. If you designate any other optional filenames, be sure to append the 
appropriate local switches (fL or IR). The filenames may appear in any order. Append any global switches 
you use to the command word and any local switches to the appropriate filename. These switches may also 
appear in any order. 

Virtual Code 
We summarize global compiler switches later in this chapter. Note that the IV switch listed there has some 
special uses and options. 

A Word About Overlays 
To use the information in this section, you should know what an overlay is. Briefly, an overlay is an area of 
code that exists as a unit within a larger, related unit. The system places an overlay on off-line storage (usually 
a disk) in an overlay file called filename.OL. When the computer executes a program and needs to use a 
section of the code in an overlay, it enters the entire overlay segment into a reserved overlay area in memory. 
Usually this involves overwriting another overlay that was in that area. Later, if the computer needs the first 
overlay again, it will overwrite the second overlay. This process of entering an overlay into memory is called 
paging. 

ANSI Standard Segmentation 
Virtual code is an alternative to ANSI Standard segmentation. If your program uses ANSI segmentation, you 
must specify a number after the section names in your program's Procedure Division. You then use the 
SEGMENT-LIMIT clause in your program's Object-Computer paragraph to select a boundary. All sections 
with numbers greater than or equal to this boundary will become overlays; the others will be memory resident. 
The SEGMENT-LIMIT default boundary number is 50; segment numbers can range from I to 99. You can 
find more information on ANSI Standard segmentation in Chapters 4 and 6. 

Virtual code eliminates your need to include this information in your program. When you specify the IV 
switch, the COBOL compiler automatically breaks the program up into a group of overlays. The default size 
of these overlays is 2K bytes each. At runtime, when Data General's Advanced Operating System needs to 
page in a new overlay, it will decide which overlays should remain in memory by paging out the least-recently 
used overlay. 

11-2 Licensed Material-Property 01 Data General Corporation 093-000223-01 



~ 
> \ I 

I 

\ 

t 
\ 
~ 
\ 

( 

I 
\ 
I 

10 

I 
I 

\ 
) 

I 
\ 
I 

i 

\ 

WARNING: As a default, the COBOL compiler will segment your entire program into 2K-byte chunks. The 
COBOL binder will create only one overlay area as a default; this means that only one 2K-byte 
segment can be in memory at anyone time. Therefore, virtual code using its defaults is not very 
efficient. 

Beware of situations where the system must execute code that is located physically far away in 
the source program, particularily for PERFORM statements. Every time the system executes a 
command specified by a PERFORM statement, the program must page in the overlay 
containing the PERFORM command, then page back again to execute the code. 

You can minimize these problems by using CBINO/C. Read "Binding Programs (CBINO) 
Using Virtual Code" or ANSI Standard Segmentation" later in this chapter. 

A well thought-out program using ANSI Standard segmentation will run far more efficiently 
than a virtual program. You should, therefore, use ANSI Standard segmentation whenever 
possible. 

Compiling A Program Using Virtual Code 

To compile your program using virtual code, specify the /V switch on the compile command line, in this 
manner: 

COBOL [IV) [/sw ... } sourcefile In/V} [listingfile/L} [objectfile/R} 

You can use either the local or global /V switch in the COBOL command. The first /V switch in the format is 
a global switch; the second one is a local switch. If you include the local /V switch, you need not specify the 
global switch; if you use both, the compiler will ignore the global switch. 

The global /V switch creates only 2K-byte overlays for your program. 

The n option using the local /V switch gives the size of the overlays where n is an integer that specifies the 
number of 2K bytes in each overlay. You can make n up to the amount of available memory ( n = available 
memory (bytes)/2). If n is too large, the AOS binder will return an error. 

The binder, instead of the compiler, returns this error because you specify the number of overlay areas you 
want in memory at bind time. As a result, the compiler has no way of knowing how big the total of your 
overlay areas will be. Also, separately compiled modules may require different overlay areas that you will not 
specify until all the modules are bound. 

You can use any other compiler switches in the compiler command along with the /V switch. 

After you have compiled your program using the virtual code ,option, the COBOL compiler has created a 
group of object files that you will bind together, using CBINO, to create a program file. You may bind 
together object files compiled at different times to form one large program (as long as you wrote the source 
files to work together). 

We discuss CBINO later in this chapter. For now, you should know that the COBOL compiler creates an 
object file called filename.OB and a group of files called filename.nnn that are numbered sequentially. If you 
use ANSI segmentation, COBOL creates files named filename.section-number. If you use virtual code, 
COBOL creates files starting at 100 (filename.IOO, filename.IOI, filename. 102, ... ). Each filename.nnn file 
contains one overlay segment. CBINO will bind all of these overlay areas together into one file called 
filename.OL, mentioned earlier. You use these filenames and the CBINO command line to change the default 
of one 2K-byte overlay area. "Binding Programs (CBINO) Using Virtual Code" or "ANSI Standard 
Segmentation", in this chapter, tells you how to do this. 

093-000223-01 Licensed Material-Properly of Data General Corporation 11-3 



* 

* 

Compiler Switches 
You specify global or local switches in the COBOL compilation command line. 

Global Switches 
Global switches give the compiler information about the nature of your source file, and instruct it about the 
kind of output you want it to produce. The following list contains all the options available for a COBOL 
compilation. 

I A Produce an address map of the relative locations of the Procedure Division lines. 

IC Source is in card format. If you omit this switch, the compiler assumes the source is in text format. (See 
Chapter 2 for details on format.) 

10 Compile debug lines and load the interactive debugger. Use this switch if your file includes debug lines 
and if you want COBOL to load the code for the debugger along with your source file code. (See Chapter 
2 for details on debug lines and Chapter 9 for details on the debugger.) 

IE Compile language extensions. Use this switch if you want octal values produced for alphanumeric literals 
(this conflicts with ANSI Standard COBOL features). 

IG List the generated machine code. (This switch overrides the I A switch.) 

IL List the source code at @LlST. 

1M List a map of data and procedure storage in the object file. 

I P Do not generate an object file. 

I Q Do not compile; simply scan the source file code and produce a cross-reference table. 

I S List compilation statistics (the number of lines, the speed of compilation, etc.) 

I V Compile for virtual code. 

IW Suppress warning messages. 

I X Include a cross-reference table in the listing. 

The compiler .normally produces its listing at either the line printer or the console. However, if you call for a 
listing of the source code, error messages, warning messages, generated code, map, compilation statistics, or 
cross-reference table, it will always be output to @LlST. 

Local Switches 
The local switches you may append to a COBOL filename in the compilation command line are IL and IA. 
The IL switch allows you to explicitly specify a list file. The jR switch allows you to explicitly specify your 
object file (filename) and virtual data file (filename .VM). 

Example 

The following command calls the COBOL compiler to compile a file named FILEl: 

)COBOLlLlX/W FILE1 FILE1.LS/U 

This command compiles the source file FILE1 and produces an object file named FILE1.0B (default name). 
The listing file FILE 1.LS will contain a source listing (jL), a cross-reference table (jX), and error messages 
(automatically). The compiler will suppress warning messages (jW). 

11-4 Licensed Material-Property of Data General Corporation 093-000223-01 

( 

01 
J 
i 
1 
t 

..J' 



) 
I 

\ 

1 

>~ ,~ 

The COBOL Map Switch 
The 1M switch provides you with a wide range of information about your COBOL program. 

Setting the 1M switch produces three different pages of information. Table 11-1 lists the types of information 
on each page. 

The first page of the map contains information about the type and structure of your program's Data Division. 

The second page of the map contains information about your files. 

The third page of the map contains information about the structure of your program's Procedure Division. 
Two types of information are presented: information about sections and information about paragraphs. 

Table 11-1. 1M Switch Output 

First Page 

Heading Meaning 

NAME The name of the data item as stated in your source program. 

TYPE The format of the data item: 

Abbreviation Meaning 

**** Undeclared Item 
N Numeric 
XN Extended Numeric 
FP Floating Point 
EFP Extended Floating Point 
AN Alphanumeric 
ANE Alphanumeric Edited 
A Alpha 
NE Numeric Edited 
GRP Group 

CLASS The type of data item: 

Abbreviation Meaning 

CHAR,LO Character, Low Overpunch Sign 
CHAR,HI Character, High Over punch Sign 
CHAR,TS Character, Trailing Sign 
CHAR,LS Character, Leading Sign 
CHAR,NS Character, No Sign 
PACKED Packed Decimal 
BINARY Binary 
FLOAT Floating Point 

LOC The displacement of the first byte in the data item. The location number is an octal number. 
COBOL uses position 000000 as the location of the first data item. When the data is virtual, 
COBOL uses position 000000 as the location of the first byte on each page. 

SIZE The size of the data item, in bytes. The size is a decimal number. 

SCL The scale factor of the data item (see Chapter 5). 

SIG The significance of a scaled data item. 

L A flag bit that indicates whether the data item is a linkage item. 

(continues) 

093'()00223-01 Licensed Material-Property 01 Date General Corporation 11-5 



Heading 

o 

J 

B 

F/B 

SON 

OF 

OS 

Table 11-1. 1M Switch Output 

First Page 

Meaning 

A flag bit that indicates whether the data item contains an OCCURS DEPENDING clause. 

A flag bit indicating that the data item is right justified. 

A flag bit indicating blank when zero. 

Father /Brother. If the sign is negative, the number indicates the father. If the sign is positive, the 
number indicates the brother. A father is the group data item containing the data item referred 
to by the F /B code. Father data items have lower level numbers than their sons and appear 
physically above their sons in the source code. A brother is a data item that is on the same level 
as the considered data item and that appears directly below it in the source code. The last item in 
a group of brothers contains the father's number. The numbers listed in the F /B column refer to 
the reference numbers that the map provides in the first column. 

The number of the first subordinate data item attached to the considered data item. The son 
number refers to the reference numbers in the first column of the map. 

Occurs Father. Similar to the father number in the F /B column, this column indicates that the 
data item referenced contains an OCCURS clause. 

Occurs Son. Similar to the son number, this column indicates that the data item referenced 
contains an OCCURS clause. 

If your program uses virtual data, COBOL provides additional information on the next line for each data item: 

Statement Meaning 

VIRTUAL DATA The item is virtual data. 

PAG En The number of the page on which the system has placed the data. 

OFFSET m The decimal location of the first byte in the data word, relative to the page containing the data. 

Heading 

FILES 

ACC 

ORG 

11-6 

Second Page 

The name of the file. 

The word FI LE appears on each line. 

File Access Type: 

Abbreviation Meaning 

SEQ 
RAN 
DYN 

Sequential 
Random 
Dynamic 

Meaning 

COBOL will indicate three different types of organization: 

Type 

SEQUENTIAL 
RELATIVE 
INDEXED 

Meaning 

Sequential access file. 
Relative access file. 
INFOS system indexed file (ISAM or DBAM). 

Licensed Material-Property 01 Data General Corporation 

(continued) 

093-000223-01 

\ 
! 



) 

) 

l 
~ 

l 
\ 

\, 

i 

\('1 
'\ 
\ 
\ 

\ 
I 

\ 
I 

Table 11-1. 1M Switch Output 

Second Page 

Heading Meaning 

RECORD The record specified for your file by a DATA RECORDS clause. 

PACKET ADDR. COBOL packet information is for internal use only. Do not attempt to access or modify the 
COBOL packet. Unpredictable results will occur. 

Third Page 

Header Meaning 

(none) The name of the section or paragraph. 

PARA The words PARA or SECT will indicate whether the item is a section or a paragraph. 
SECT 

SECTION If the item is a section, this column contains the name of the first paragraph in the section. If the 
FIRST PARA item is a paragraph, this column contains the name of the section it belongs to. 

LAST PARA If the item is a section, this column contains the name of the last paragraph in the section. The 
column is blank if the item is a paragraph. 

(concluded) 

Figure II-I shows a sample COBOL source program listing and Figure 11-2 shows the map the compiler 
produces for it. 

0001 IDENTIFICATION DIVISION. 
0002 PROGRAM-ID. CTSVIRT. 
0003 
00011 ENVIRONMENT DIVISION. 
0005 INPUT-OUTPUT SECTION. 
0006 FILE-CONTROL. 
0007 
0008 DATA DIVISION. 
000q FILE SECTION. 
0010 WORKING-STORAGE SECTION. 
0011 VIRTUAL-STORAGE SECTION. 
0012 
0013 * PAGE 0 
00111 01 FFA. 
0015 02 FF1 PIC X(10211). 
0016 02 FF2 Pl(. )((10211). 
0017 
0018 * PAGES 1,2 
001q 01 FFB. 
0020 02 FF3 PIC )((118). 
0021 02 FFII PIC )((2001). 
0022 
0023 * PAGES 2,3 
00211 01 FFC. 
0025 02 FF5 PIC X(20117). 
0026 02 FF6 PIC )((118). 
0027 02 FF7 PIC )((2000). 
0028 

Figure II-I. Sample COBOL Source Program Listing (produced with IL compiler switch) (continues) 

093-000223-01 Licensed Material-Property 0' Data General Corporation 11-7 



0029 '" MANY MORE PAGES 
0030 01 FFD. 
0031 02 FF8 PIC X(200i!). 
0032 D 02 FF9 PIC X (30000) • 
0033 
00311 01 FFE. 
1'035 02 FF10 PIC X(2000). 
01'30 D 02 FFll PIC X (30000) • 
0037 
0038 PROCEDURE DIVISION. 
0039 
00110 DISPLAy 'BEGIN VIRTUAL TEST'. 
00111 
00112 '" INI TIAL IZE DATA 
00113 MOVE ALL ' 1 ' TO FF1. 
001111 MOVE ALL '2 ' TO FF2. 
00115 MOVE ALL '3 ' TO FF3. 
01'110 MOVE ALL 'II' TO FF4. 
0047 MOVE ALL '5' TO FF5. 
1'1'118 MOVE ALL '0 ' TO FFo. 
00119 MOVE ALL '7 ' TO FF7. 
0050 MOVE ALL '? ' TO FFD. 
01'51 MOVE ALL '? ' TO FFE. 
0052 DISPLAY , 1 PAGE TESTS'. 
00';3 MOVE FF2 TO FF1. 
00511 MOVE FF7 TO FFo. 
0055 MOVE FF7 TO FFo. 
0050 
0057 DISPLAY , 2 PAGE TESTS'. 
0058 MOVE FFo TO FF3. 
0059 MOVE FF5 TO FF1. 
0000 
0001 DISPLAY , 3 PAGE TESTS'. 
0002 MOVE FF4 TO FF2. 
0003 MOVE FF5 TO FFo. 
00bll MOVE FF5 TO FFo. 
0005 
00bb * CHECK FOR ERRORS 
00b7 IF FFl NOT :: ALL '5' THEN DISPLAY 'ERROR 1 ' • 
00b8 IF FF2 NOT c ALL '4 ' THEN DISPLAY 'ERROR 2' • 
00b9 IF FF3 NOT :: ALL '7 ' THEN DISPLAY 'ERROR 3' • 
0070 IF FF4 NOT :: ALL 'II' THEN DISPLAY 'ERROR II ' • 
0071 IF FF5 NOT :: ALL '5' THEN DISPLAY 'ERROR 5' • 
0072 IF Ho NtlT :: ALL '5' THEN DISPLAY 'ERROR 0' • 
0073 IF FF7 NOT :: ALL '7 ' THEN DISPLAY 'ERROR 7' • 
0074 
0075 " MORE 3 PAGE TESTS 
007b MOVE FFB TO FFA. 
0077 MOVE FFC TO FFB. 
0078 
0079 '" CHECK FOR ERRORS 
0080 IF H2 NOT :: ALL 'II' THEN DISPLAY 'ERROR 8'. 
0081 IF FFB NOT c ALL '5' THEN DISPLAY 'ERROR 9' • 
0082 
0083 DISPLAY 'END OF VIRTUAL TEST'. 

Figure 11-1. Sample COBOL Source Program Listing (produced with jL compiler switch (concluded) 

11-8 Licensed Material-Property 01 Date General Corporation 09-3-000223-01 

(j 

n 

( 
/ 

I 
! 



. 
(\ 

I (\ 

1 

l 

FILE: CTSVIRT2 

DATA ITEMS 
NAME TYPE CLASS LOC SIZE SeL SIG LOJB FIB SON OF OS 

2 FF1 AN CHAR,NS 000000 1024 3 0 
VIRTUAL DATA PAGE 0 OFFSET 0 

14 FF10 AN CHAR,NS 003722 2000 -13 0 
VIRTUAL DATA PAGE 4 OFFSET 2002 

3 FF2 AN CHAR,NS 002000 1024 -1 0 
VIRTUAL DATA PAGE 0 OFFSET 1024 

5 FF3 AN CHAR,NS 0001/100 48 b 0 
VIRTUAL DATA PAGE 1 OFFSET 0 

b FF4 AN CHAR,NS 0000b0 2001 -4 0 
VIRTUAL DATA PAGE 1 OFFSET 48 

8 FF5 AN CHAR,NS 00"'002 2047 9 0 
VIRTUAL DATA PAGE 2 OFFSET 2 

9 FFb . AN CHAR,NS 000001 48 10 0 
VIRTUAL. DATA PAGE 3 OFFSET 1 

10 FF7 AN ChAR,NS 0000bl 2000 -7 1/1 
VIRTUAL DATA PAGE 3 OFFSET 49 

12 FF8 AN CHAR,NS 000002 2000 -11 0 
VIRTUAL OATA PAGE 4 OFFSET 2 

FFA GRP CHAR,NS 000000 2048 4 2 
VIRTUAL DATA PAGE 0 OFFSET 0 

4 FFB GRP CHAR,NS 000000 2049 7 5 
VIRTUAL DATA PAGE 1 OFFSET 0 

7 FFC GRP CHAR,NS 000002 41/195 11 8 
VIRTUAL DATA PAGE 2 OFFSET 2 

11 FFD GRP CHAR,NS 000002 2000 13 12 
VIRTUAL DATA PAGE 4 OFFSET 2 

13 FFE GRP CHAR,NS 003722 2000 0 14 
VIRTUAL DATA PAGE 4 OFFSET 20"'2 

Figure 11-2. COBOL Map Produced by Program in Figure 11-1 

Error Messages 
, 

The COBOL compiler always outputs a listing of all errors it detects in the source program during 
compilation. This error report appears either at the current console or in a listing file if you specify one in the 
compilation command line. If more than fifty errors occur in anyone phase of compilation, the compilation 
aborts. 

For each error, the report identifies the true line number and the element in the line where the error occurred, 
followed by an English language diagnostic message describing the errOr. The compiler defines words, literals, 
special characters, and periods as elements of a line; commas, semicolons, and blanks do not count as elements. 

In the following example, the input file contains an error in the declaration of a data item: 

01 OAT-ITEM, PICTURE $$$999.99C, 
USAGE DISPLAY. 

The compiler reports the error in this form: 

LINE ELEMENT ERROR 

0345 04 "R" MUST FOLLOW "C" IN PICTURE STRING 

If you requested a listing of the source file, the output will have the number 0345 next to the line in question. 
The fourth element, $$$999.99C, contains the error. 

Warning Messages 
Normally the compiler generates warning messages in addition to error messages (unless you suppress them 
with the /W global switch). Warning messages have the same format as error messages. 

093-000223-01 Llcenaed Material-Property of Date General Corporation 11-9 



The compiler signals a warning when it finds details in the program that are not incorrect syntactically, but 
are in some way inconsistent. For example, if you specify BLOCK CONTAINS n in a file's FD entry and n is 
less than the record length specified for the file, you will receive a warning message. You may safely ignore 
warning messages if you are sure your program will not create an error condition; you may, in fact, have 
reasons for apparently inconsistent coding. 

Compiler errors will prevent your program from executing; you must correct and recompile your source file, 
then load and execute it. Warnings will not prevent execution but may produce runtime errors or faulty 
computation. 

For a complete list of the COBOL compiler's error and warning messages, see Appendix D. 

Binding Program Files 
After your program has been successfully compiled, you must issue the CBIND command to build an 
executable program file from your object file(s). CBIND binds your main file and subprograms together into a 
single program image. 

The system normally places COBOL programs and runtime routines in shared memory partitions. Of course it 
always places data in unshared memory. 

Issue the CBIND command in the following format: 

CBIND [Iswlsw 000 ] idol [id-2 000 ] [JCALLJ 

Where: 

sw is a global switch if appended to CBIND. and a local switch if appended to idol. It is a literal that gives 
the loader information about the input files and specifies the format of the save file you want it to 
create. 

idol is a filename that specifies the main program. You must supply this argument first. If you do not 
include a filename extension, CBIND assumes that it is .OB. 

id-2 is a filename that specifies a subprogram you want included in the loaded program. 

ICALL is the COBOL interface to the INFOS system (supplied by INFOS) which you need if you use 
INFOS indexed files. Either use LFE on ICALL to add it to VRT.LB or include ICALL on the 
CBIND command line. 

CBINO Global Switches 
The following list contains all the global switches for the CBIND command word: 

IB 

ID 

IE 

IH 

II 

IK=n 

11-10 

List the symbol table in alphabetical and numerical order. 

Bind in the COBOL debugger program. Load the COBOL program modules as unshared code. 
(CBIND automatically supplies the /S switch on each object file or subprogram.) 

Output the load map to the @OUTPUT file, even though another listing file is specified. 

List all numbers in hexadecimal. 

Build a nonexecutable program file, lacking a UST, TCBs, and all other system databases (does 
not scan URT.LB). 

Allocate n TCBs for multi task use, regardless how many (if any) are specified in a .TSK 
statement. 

Licensed Material-Property 01 Date General Corporation 093-000223-01 

n 



I 
\ 
I 
I 

\ 

} 

\ 

\ 
\::, 

IL Produce a listing file, using the currently specified CLI @LlST file. 

I L = name Produce a listing file, using the file name. 

IN 

/0 

10 

IT=n 

IZ=n 

Do not scan the user runtime library, VRT.LB. 

Suppress error flags whenever bind overwrites occur. A bind overwrite occurs when one module 
places code in one or more locations and a succeeding module overwrites these locations. 

Terminate binding after creating the files name.CK and name.CM which contain the bind 
command. You may edit these files. (name.CK performs the bind.) 

Spycify the highest address in the shared partition. If n is not a multiple of 2048 bytes, the binder 
rounds it down to the next lower 2048-byte multiple. If you do 'not use this switch, your shared 
code partition will be placed at the top of the 64K-byte context. 

Specify the size of the stack for the default task. If you omit this switch, the system allocates a 
96-word stack (128 if you use the ID switch). 

CBIND Local Switches 
The following list contains all the local switches available with CBIND. You must append these to the 
appropriate filename or integer value. 

name/B 

IC 

ID 

IH 

10 

IR 

IS 

IU 

Bind the externally referenced routines from name, a shared library, into the root context. 

Specify the name of a command file (required when defining overlays using square 
brackets). 

Load nonshared code in this module as unshared data. This is currently the only way that 
you can create an unshared data partition, if you.are using the macroassembler. 

Load unshared code in this module as shared code. If you apply this switch to an unshared 
library, modules extracted from the library will be bound into the shared code partition. 
Note that the standard way you place code into the shared code partition when using the 
macroassembler is to use the .NREL I pseudo-op in your code. 

Allow overwrites in this module (see /0 function switch). 

Issue a warning if any code in this module is not position-independent. 

Convert shared code modules to unshared code modules. For example, COBOL currently 
produces shared code only; this switch lets a COBOL program be unshared. Note that you 
can also prevent or restrict file sharing by using the CLI ACL command, which employs 
the system's Access Control List facility. 

Load local symbols from this module into the symbol file. This switch will work only if you 
applied /V to this same module in the earlier macroassembler command. 

name I V = number Create an accumulating symbol, name, with absolute relocation, and initialize it to the 
value number. You can create more than one accumulating symbol by using this switch 
repeatedly. If you name an accumulating symbol that is also defined within a module as an 
accumulating symbol, there is no conflict; any value the .ASYM pseudo-op specifies will 
simply be added to the current sum of the accumulating symbol. 

n/Z 

093-000223-01 

Set the current ZREL base to n. If the current ZREL base exceeds n, then the current 
base remains and n is ignored. 

Licensed Malerlal-Property of Dala General Corporation 11-11 

" 

* 

* 



Link loading produces the following output: a listing of the file, a load map, a symbol table, and a list of any 
loading error messages. These will appear at the current output console unless you specify a listing file. You 
may also have the error messages printed at the console while the rest of the listing goes to a different file <IE 
switch). 

For a complete list of load error messages, see the AOS Binder User's Manual, 93-000190. 

Binding Programs (CBINO) Using Virtual Code or ANSI Segmentation 
Binding programs without making modifications to the compiler-created overlay structure is easy. Simply 
type: 

CBIND program name 

The AOS binder will then create an executable program file from your object file(s). Note that when you 
specified the IV switch in the COBOL compile command, the compiler created a series of files named 
programname.number. COBOL creates files with numbers less than 100 from ANSI segmentation numbers; 
the number of the file is the number you assigned to the segment in your program. The COBOL compiler 
creates files with numbers greater than 99; these numbers do not appear anywhere in the source program. 

These files define your overlay areas for programname's compiled module. When you bind your modules 
together, CBIND will create one overlay area in memory and place all the overlays in one contiguous file 
called filename.OL. When your program executes, it will page overlays from the overlay file into the 
program's reserved memory area only. Figure 11-3 illustrates a slightly more sophisticated environment with 
two overlay areas. 

SD-01497 

11-12 

Memory 

Overlay Area 
From First 
.OB Module 

Overlay Area 
From Second 
.OB Module 

Disk File 

Overlay 
#1 

Overlay 
#2 

Overlay 
#3 

Overlay 
#4 

Overlay 
#5 

First 
Overlay 
Area 
Overlays 

Second 
Overlay 
Area 
Overlays 

Figure 11-3. Example of an Overlay and Overlay Area Structure with Two Object Modules 

Licensed Material-ProperlY of Data Generel Corporation 093-000223-01 

J! 

i 
(I 

i 
l 
{ 

I , 
! 
\ 
\ 
I 
\' 

l' 
i 
{' 
1 

1 

n \ 
( 

i 
I 

I-
~ , 
I 

t 
\ ' 
1, 
1 : 



) 

\ 
l , 

) 

~ 
I 

i 
\ 

\ 
, 
( 

(0 
\ 

\ 
I 
\ 

i 
\ 

You can change an organization like the one shown in Figure 11-3, by using the IC (terminal) switch on the 
CBIND command line: 

CBIND / C [jsw /sw .. .} program 1 program 2 

Specifying the IC switch on CBIND will start an interactive dialog to reorganize your overlays. In the IC 
dialog, node is another term for overlay area. 

The IC dialog creates a nodefile, which is a record of your responses to the prompts. You can use the nodefile 
on future CBINDs to recreate this overlay structure. 

An explanation of the IC dialog follows: 

P ROG RAM: programname 
NODEFlLE: node filename 

OVERLAY SUMMARY 

programname HAS number OVERLAYS 

ANSWER THE FOLLOWING QUESTIONS WITH AN INTEGER OR A NEWLINE. 
NEWLINE SELECTS THE DEFAULT VALUE WHICH IS DISPLAYED WITHIN If. 

HOW MANY OVERLAY NODES SHOULD THIS PROGRAM HAVE? [1/ 

The default displayed always equals one. The binder initially creates only one overlay area for any given 
program. This command resets the number of overlay areas your program will contain in memory. 

HOW MANY BASIC OVERLAY AREAS IN OVERLAY NODE number? [1/ 

The computer will repeat this question for each overlay area. The first overlay area is overlay area O. A Basic 
Overlay Area is a quantity determined at compile time. If you are using ANSI segmentation, your Basic 
Overlay Area will equal the largest segment in your program. If you are using virtual code only, your Basic 
Overlay Area will equal the number you specified with the IV switch in the compiler command times 2,096 
(2K) bytes. If you did not specify a number with the IV switch, your Basic Overlay Area will equal 2K bytes. 

You may wish to create overlay areas that are larger than your overlays. If you do this, COBOL will enter as 
many overlays as it can into the overlay area. COBOL enters these overlays as the program needs them. When 
COBOL fills the overlay area, the next overlay needed in memory will cause COBOL to page out the least 
recently used overlay which is currently in memory to make room. Please remember how large you make your 
overlays and overlay numbers; you will need this information for the next section. 

ASSIGN A NODE NUMBER TO EACH OVERLAY. 
THE NODE NUMBERS MUST BE IN THE RANGE FROM 0 TO number. 
programname number [0/ 

Use this question to assign your overlays to an overlay area. Specify the number of the overlay area given in 
the previous question. If you have more than one overlay area for your program, the prompt program name 
number [0/ will repeat for each overlay in the program. 

DURING A FUTURE CBIND USING THIS NODEFILE. THERE MAY BE OVERLAYS PRESENT 
THAT ARE NOT PRESENT TODAY. THESE WILL BE ASSIGNED TO THE "DEFAULT OVERLAY 
NODE". ENTER THE DEFAULT OVERLAY NODE NUMBER. [0/ 

You use this statement in conjunction with the INODEFILE switch. If you plan to CBIND your program 
again later, using different object files, COBOL will assign these files to the default overlay area. Read the 
section "The INODEFILE switch," in this Chapter for details. 

093-000223-01 licensed Malerlal-Property 01 Dale General Corporation 11-13 



THANK YOu. 

Your input is complete 

You can also reorganize your overlay structure by editing your binder command line. Do this by using the /Q 
switch on CBIND. The binder will create a binder command line in a file called programname.CK and then 
stop without performing the bind. Later you will issue the AOS command [programname.CK]. This will cause 
the AOS binder to bind your programs. The section of the binder command line created by COBOL that we 
are concerned with looks like this: 

prog / [prog / . JOO.prog / . JO / .. .j. 

Here, progJ is your program and prog.JOO etc. are your overlays: The square brackets [] indicate your overlay 
areas; the overlays contained in a set of brackets are all assigned to the same overlay area. If you wish to 
increase the number of overlay areas, increase the number of sets of square brackets. If you wish to change the 
assignment of your overlays, place your .100 etc. files in different brackets. If you wish to increase the size of 
an overlay area, use the switch / AM = number after the close bracket] symbol for the overlay area you wish to 
increase. number is the number of Basic Overlay Areas included in the overlay area. 

NOTE: Assigning only one overlay to an overlay area makes that overlay memory resident. Assigning no 
overlays to an overlay area wastes memory space. Assigning no overlay area to an overlay will cause 
unpredictable results; your program will probably not run. 

For example, let's take the following program structure: 

Name of the program: WARREN 
Number of overlays: 5 
WARREN. 100 
WARREN.101 
WARREN.102 
WARREN. 103 
WARREN.104 

The original (compiler-generated) configuration is: 

• One overlay area (0). 
• All five overlays assigned to overlay area. 
• Size of overlay area set to 2K bytes. 

WARREN [WARREN.100.WARREN.1D1.WARREN.102.WARREN.103.WARREN.104] 

The new user-created configuration is: 

• Two overlay areas. 
• Three overlays assigned to overlay area O. 
• Two overlays assigned to overlay area I. 
• Size of overlay area 0 set to 4K bytes (2K words). 
• Size of overlay area 1 defaulted to 2K bytes. 

WARREN [WARREN.103.WARREN.101.WARREN.100]/ AM=2 [WARREN.102.WARREN. 104] 

11-14 Licensed Material-Property of Data General Corporation 093-000223-01 



I 

~ 

\ 
I 

\ 
i 
I 

) 
~ 

1 
) 
r 
; 

) 

i 
) 

\ 
~ 

1 

I 
I 
\ 

" 

\ 
Q 

The /NODEFILE Switch 
You can use the overlay specifications set in an earlier CBIND to bind a new program file. (See "Binding 
Programs (CBIND) Using Virtual Code or ANSI Segmentation" for information about how to do this.) use 
the /NODEFILE switch: 

CBIND/NODEFILE= node filename programname [programname ... } 

or 

CBIND I NODEFILE programname [programname ... } 

When you use the second format, COBOL will find the overlay specifications in the nodefile for the first 
program. When you first use CBIND/C to bind your program for Virtual Code, COBOL creates a file 
containing your overlay specifications, called programname.CN. The /NODEFILE switch tells COBOL to 
re-use this .CN file. 

If you bind new object files into the program, COBOL assigns these files' overlays to the default overlay node 
that you specified if you originally bound your program using the /C switch. 

Splitting the Loading Process 
The system loads your program in two stages. CBIND itself is a utility that creates a load command and stores 
it in the command files name.CK and name.CM. CBIND then passes control to the AOS binder (BIND) 
which actually loaps the object code. 

The CBIND global switch /Q allows you to split this two-step process. It instructs CBIND to stop after 
creating the command line, and before it passes control to BIND. Stopping the load operation allows you to do 
special load processing; you can edit the command file (name.CM). 

After editing the command file, execute the load with the command name.CK. For a full description of BIND 
and load processing, see the AOS Binder User's Manual, (93-000190). 

Example: 

CBIND/L=MYFILE.MP UPDATSUB HACKSUBJ 

The binder will link-load MYFILE.PR, the main program, and two subprograms, UPDATSUB and HACKSUB. 
The binder output listing will go to MYFILE.MP. If the load is successful, MYFILE will be ready for execution. 

Executing Your COBOL Program 
To execute a loaded COBOL object program, type XEQ programname at the terminal. Program execution 
will begin at the main program's entry point. You may, in addition, append execution switches to the program 
name. You declare these switches in the Environment Division of your program. See the section "The 
Special-Names Paragraph" in Chapter 4 for information on execution switches. 

The following examples show two calls that will execute the file NAMEFIL. The first calls for simple execution; 
the second uses execution switches declared in the program: 

)XEQ NAMEFILJ 

)XEQ NAMEFIL I C I AJ 

093-000223-01 Licensed Material-Property of Data General Corporation 11-15 



Executing in the Debugger 
The COBOL debugger is a program that allows you to check your program's effectiveness. Using the debug 
program, you can execute your program piecemeal, halt its execution to examine its performance, make 
changes to the object code if necessary, and resume execution. 

To use the debugger, load it along with your program and subprograms by using the /D switch in the CBIND 
command line. 

To begin program execution in the debugger, type DEB before the save filename: 

)DEB MYPROGJ 
+USERJ 

)DEB MYPROG/CI AJ 
+USERJ 

When the debugger is ready to accept a command, it will signal you with the prompt character *. See Chapter 
9 for a complete description of the COBOL interactive debugger. 

Runtime Errors 
A runtime error condition occurs when, during the execution of your program, the system cannot properly 
complete an instruction. Error conditions commonly involve inconsistencies in runtime calls, discrepancies 
between an instruction and the current state of memory or files, and conflicts which evolve from hardware and 
software limitations. 

There are two classes of errors: nonfatal and fatal. If a fatal error occurs, your program's execution terminates. 
Execution continues after a nonfatal error, but the results may t£' faulty. In a running COBOL program, the 
following five types of error conditions may occur. 

I/O Exception Conditions: These error conditions are defined in Chapter 6. If your program declares an 
error-handling procedure, control goes to the handler and then execution resumes at the first executable 
statement following the statement that invoked the error handler. If your program does not include special 
code to handle I/O exceptions, COBOL displays a warning message and continues execution as best as it can 
(COBOL treats the I/O exception as a successful operation). If you specified any of the following, COBOL 
assumes the program will handle the exception and does not display a warning: 

• INFOS system or COBOL status items 
• Declaratives section 
• Invalid Key (on Invalid-key type errors) 
• AT END (on end-of-file errors) 

Size Error, String/Unstring Overflow, Call Overflow, Search at End: The system does not output a message 
for these nonfatal errors. If your program declares an error-handling procedure, control goes to the handler 
and then execution resumes as it does for I/O exception conditions. 

Nonfatal Program Errors: These error conditions are listed below. There is no error-handler option; execution 
simply continues. However, the system outputs COBOL trace information to the console (described later on in 
this chapter). 

Fatal Program Errors: These error conditions are listed below. There is no error-handler option; the program's 
e'xecution terminates and control passes to the father process. The system outputs a COBOL error message 
and trace information (described later in this chapter) for the current program and the calling program. 

11-16 Licensed Material-Property 01 Date General Corporation 093-000223-01 

I 
J 

) 

!. 
I , 
!, 



\ 

Fatal System Errors: These error conditions are defined in the AOS Programmer's Manual. There is no 
error-handler option; the program's execution terminates and control passes to the father process. The system 
outputs an AOS error message and COBOL trace information (described later in this chapter) for the current 
program only. 

Error Messages 

The system displays error messages for COBOL program errors and system errors at the output console. For a 
list of all AOS system error messages, see the AOS Programmer's Manual. The following lists contain all 
COBOL runtime error messages for fatal and nonfatal program errors. 

Nonfatal COBOL Program Errors 

INTERMEDIATE OVERFLOW 

An arithmetic operation gives an intermediate result with more than 31 digits. Processing continues with the 
high-order overflow truncated. 

ILLEGAL ARGUMENT FOR EXP 

The base of an exponentiation operation exceeds 16 x 10 (**63). 

ILLEGAL EXPONENTIATION 

Attempt to raise zero to the zero power, or raise a negative number to a nonzero fractional power. 

INTEGER OVERFLOW ON CONVERSION 

Loss of high-order significance in conversion of an external floating point number to internal floating point. 

INVALID SIGN-NUMERIC 
INVALID CHARACTER-NUMERIC 

An invalid sign/invalid character has been detected in a numeric item. 

Fatal COBOL Program Errors 

STACK OVERFLOW 

The system stack has' overflowed its capacity. 

PROGRAM ENTRY WITH INVALID ARGS 

The arguments of a called program do not match the parameters passed by the calling program. 

SUBSCRIPT OUT OF BOUNDS 

A subscript item is outside the limits declared for the reference that contains it. 

OCCURS-DEPENDING OUT OF BOUNDS 

The depending data item contains a number exceeding the bounds of the occurrence item. 

093-000223-01 'Llcenaed Material-ProperlY of Date General Corporation 11-17 

~~,~, __________________________ -============================================================================-__ ~-J 



Trace Information 
A COBOL error report consists of the error message, program name, and COBOL trace information. They 
appear in the following form: 

Where: 

CALLED FROM (filename) 
SEGMENT ( number) 
RELATIVE LOCATION (/oc) 

filename is the filename you specified in the Identification Division to identify this program. 

number is the number of the segment containing the instruction. 

loc is the relative address of the instruction that caused the error. 

Example 

CALLED FROM 8 
SEGMENT 35 
RELATIVE LOCATION 563 

The message gives the name of the save file, filename.PR, the name of the subprogram, 8, which actually 
called the subroutine. The address given in the trace information is the relative address in filename.PR of the 
instruction that caused the error. 

If you compile the program with the / A global switch (omitting the /L global switch), you will receive a table 
containing the line numbers of your Procedure Division statements beside a table containing each statement's 
relative address. You then reference relative location 563 in the table to determine the number of the line in 
the program which contains the instruction that caused the error. (If you specify both the / A and /L global 
switches, the system will output the relative address table on the line printer following your source file output). 

End of Chapter 

11-18 Licensed Material-Property 01 Data General Corporation 093-000223-01 

1 

1 



ACCEPT 
ACCESS 
ACCESSIBILITY 
ADD 
ADVANCING 
AFlE~ 

ALL~ ALLOw 
ALLOWS 
ALPHABETIC 
ALSO 
ALTER 
AL TERNATE 
AND 
APPROXIMATE 
ARE 

~ AREA 
AREAS 

\ ASCENDING 
ASClI 

(\ ASSIGN 
AT 
AUTHOR 
AUTO 

I AUTOMA TIC I 

~ BACKWARD I 
I BECOMES ) 

~ BEFORE 
1 BELL 
I BIT 
\ BLANK 
I 

BLINK 
BLOCK 
BOTTOM 
BY 
CALL 
CANCEL 
CD 
CF 
CH 
CHANNEL 
CHARACTER 
CHARACTERS 
CHECK 
CLOCK-UNITS 
CLOSE 
COBOL 
CODE 
CODE-SET 
COL 
COLLATING 
COLUMN 
COM~A 
COMMIT 

(". COMMUNICATION 
COMP 
COMPRESSION 
COMPUTA TI ONAL 
COMP-l 

093-000223-01 
i 
\ 
\ 
\. ._' 

COMPUT A TI ONAL-l 
COMP-l 
COMPUTATIONAL-2 
COMP-! 
COMPUTATIONAL-! 
COMPUTE 
CONCURRENT 
CONFIGURATION 
CONNECT 
CONNECTED 
CONTAINS 
CONTIGUOUS 
CONTROL 
CONTROLS 
COpy 
CORR 
CORRESPONDING 
COUNT 
CR 
CREATE 
CURRENCY 
CURRENT 
CURSOR 
DATA 
DATA-SENSITIVE 
DATE 
DATE-COMPILED 
DATE-WRITTEN 
DAY 
DBMS 
DB-EXCEPTION 
DE 
DEBUG-CONTENTS 
DEBUG-ITEM 
DEBUG-LINE 
DEBUG-NAME 
DEBUG-SUB-l 
DEBUG-SUB-2 
DEBUG-SUB-! 
DEBUGGING 
DECIMAL-POINT 
DECLARA TI VES 
DEFINE 
DELETE 
DELIMITED 
DELIMITER 
DEPENDING 
DESCENDING 
DESTINATION 
DETAIL 
DISABLE 
DISCONNECT 
DISK 
DISPLAY 
DIVIDE 
DIVISION 
DOWN 
DUPLICATE 
DUPLICATES 

Appendix A 
COBOL Reserved Words 

DYNAMIC 1-0 
EBCDIC I-O-CONTROL 
EGI 10 
ELSE IDENTIFICATION 
F.MI IF 
EMPTY IMMEDIATE 
ENABLE IN 
END INDEX 
END-OF-PAGE INDEXED 
ENTER INDICATE 
ENVIRONMENT INFOS 
EOP INITIAL 
EQUAL INITIALIZATION 
ERASE INITIATE 
ERROR INPUT 
ESCAPE INPUT-OUTPUT 
ESI INSPECT 
EVEN INSTALLATION 
EVERY INTO 
EXCEPTION INVALID 
EXCLUDE INVERTED 
EXCLUSIVE IS 
EXIT JUST 
EXPIRATION JUSTIFIED 
EXPUNGE KEY 
EXTEND . KEYBOARD 
FD KEYS 
FEEDBACK LABEL 
FIELD LABELS 
FIELDS LAST 
FILE LEADING 
FILE-CONTROL LEFT 
FILLER LENGTH 
FINAL LESS 
FIND LEVELS 
FINISH LIMIT 
FIRST LIMI TS 
FIX LINAGE 
FIXED LINAGE-COUNTER 
FOOTING LINE-COUNTER 
FOR LINE 
FORwARD LINES 
FROM LINK 
FULL LINKAGE 
GENERATE LOCAL 
GENERATION LOCK 
GENERIC LOGICAL 
GET LOW-VALUE 
GIVING LOW-VALUES 
GLOBAL LRU 
GO MANAGEMENT 
GREATER MANDATORY 
GROUP MANUAL 
HEADER MAXIMUM 
HEADING MEMBER 
HIERARCHICAL MEMORY 
HIGH MERGE 
HIGH-VALUE MERIT 
HIGH-VALUES MESSAGE 

Licensed Material-Property 01 Data General Corporation A-1 

.-'"j:;;j 



MOOE PRINTER SAME TALL YING () 
MODIFY PRINTER-1 SAVE TAPE " 

MODULES PRINTING SCREEN TEMPORARY 
ii MOVE PRIOR SO TERMINAL {I 

MUL TIPLE PROCEDURE SEARCH TERMINATE II 
MULTIPLY PROCEDURES SECONDS TEXT 

11 
NAME PROCEED SECTION THAN Ii 
NA TI VE PROGRAM SECURE THEN (, 

NEGATIVE PROGRAM ... ID SECURITY THROUGH il 
NEXT PROTECTED SEEK THRU 

II NO QUEUE SEGMENT TIME 
NODE QUOTE SEGMENT-LIMIT TIME-OUT 
NONE QUOTES SELECT TIMES 
NOT RANDOM SEND' TO II 

NULL RD SENTENCE TOP II 
(I 

NUMBER READ SEPARATE TRAILER II 
NUMERIC READY SEQUENCE TRAILING ( 
OBJECT-COMPUTER RECE I VE SEQUENTIAL TRANSACTION (I 
OBTAIN RECONNECT SET TRUNCATE t 
OCCURRENCE RECORD SIGN TYPE il 
OCCURS RECORDING SIZE UNDEFINED \1 
ODD RECORDS SORT UNDELETE I: 

OF REDEFINES SORT-MERGE UNIT (' OFF REEL SOURCE UNLOCK 
OFFSET REFERENCES SOURCE-COMPUTER UNSTRING i' OMI TTED RELATIVE SPACE UNTIL 
ON RELEASE SPACES UP (I 

ONLY REMAINDER SPECIAL-NAMES UPDATE ~i OPEN REMOVAL STANDARD UPON 
OPTIONAL RENAMES STANDARD-1 USAGE {i OR REPLACING STANDARD-2 USE 
ORGANIZATION REPORT STANDARD .. ] USER ); 
OUT REPORTING START USING ~. 
OUTPUT REPORTS STAT IC VALUE {I 

OVERFLOW REQUIRED STATUS VALUES () /: OWNER RERUN STOP VARIABLE '.. , li PAD RESERVE STORE VARYING 
PAGE RESET STRING VERIFY ji 
PAGE-COUNTER RETAIN SUB-INDEX VIRTUAL {I PARITY RETRIEVAL SUB-QUEUE-1 VIRTUAL-COMMON 
PARTIAL RETRIEVE SUB-QUEUE·2 VIRTUAL·STORAGE ji 
PERFORM RETURN SUB· QUEUE ... ] VOLUME ! 

PF REVERSED SUBSCHEMA WAIT 
PH REWIND SUBTRACT WHEN 
PHYSICAL REWRITE SUM WITH 
PIC RF SUPPRESS WITHIN 

I, PICTURE RH SWITCH wORDS 

i: PLUS RIGHT SYMBOLIC WORKING-STORAGE 
POINTER ROLLBACK SYNC WRITE 
POSITION ROOT SYNCHRONIZED ZERO \ 
POSITIVE ROUNDED SYSTEM ZEROES I' PREVIOUS RUN TABLE ZEROS 

\' 
,I !, 

End of Appendix 
i, 
1; 
" (i 

{: 

\1 
)1 

~I 

0 
\ ri 

1 
A-2 Licensed Material-Property 01 Date General Corporation 093-00022,'3-01 f 

b 



) 

\ 

\ 

r 
} 

( 

\ 
'\ 

) 
} 
i 

\ 
~ 

~ 
) 
\ 

J 

I 
\ 
\ 
I 
') 

; , 

Appendix B 
CS Compatibility 

Data General's CS systems' Interactive COBOL is a subset of AOS COBOL. You can code programs to run 
on both systems with a minimum of difficulty. Since AOS COBOL is a superset of CS COBOL, you should 
use the CS Interactive Cobol manual to write programs coded for use on both types of systems, not the AOS 
COBOL Reference Manual. 

There are slight differences in syntax between the two "flavors" of this language. This appendix summarizes 
those differences and discusses how to transport programs and files between the two systems. 

When writing a program on either system that you wish to run on both systems, you should have the following 
available: 

• CSj AOS COBOL Compatibility manual. 

• The Data General Interactive COBOL Programmer's Reference Manual, 045-000-011; 

• This appendix; 

• The "Screen Section" in Chapter 5 of this manual; 

• "The COBOL Interactive Debugger," Chapter 9 in this manual; 

• "How To Use COBOL under AOS," Chapter 10 in this manual. 

You will probably want to keep this appendix with its equivalent in the CS Interactive COBOL manual. 

AOS-CS Differences 
We discuss the differences between AOS and CS COBOL in this section. We show the differences like this: 

PROBLEM: A description of the problem. 

AOS: 
CS: 
Fix: 

What the AOS system does. 
What the CS system does. 
What you should do to make your program compatible. 

Identification Division Incompatibilities 
PROBLEM: AOS will not accept hyphens in the program ID. 

AOS: 
CS: 

Converts hyphens to dollar signs. 
No action taken. 

Fix: None! Simply be aware that AOS will change all the hyphens in your program ID to dollar 
signs. 

093-000223-01 Llcansed Matarlal-Property 01 Data Oanaral Corporation 8-1 

~'~* •. ______________________________ ======================================================================== __ ~_~.J 



Environment Division Incompatibilities 
PROBLEM: The SELECT statement. 

AOS: 
CS: 
Fix: 

A literal must follow the DISPLA Y and KEYBOARD clauses. 
The literal is optional. 
Always specify a literal when using these clauses. 

WARNING: Opening the console as a file will override the AOS Screen Section characteristics, as a result, 
your screen may not work properly. Do not open the console as a file in a program that uses 
screen management. 

PROBLEM: Filenames. 

AOS: 
CS: 
Fix: 

Filenames can be up to 32 characters long. 
Filenames can be up to 10 characters long. 
Limit the length of your filenames to 10 characters. 

PROBLEM: Duplicate alternate keys. 

AOS: 
CS: 

Fix: 

Does not allow duplicate alternate keys unless you specify ALLOW DUPLICATES. 
Always allows duplicate alternate keys. Treats the ALLOW DUPLICATES clause as a 
comment field. 
Specify ALLOW DUPLICATES on every key (in the SELECT statement). 

PROBLEM: INDEX SIZE and DATA SIZE clauses. 

AOS: 
CS: 
Fix: 

Treats these clauses as comment fields. 
Determines the size of contiguous files. 
None! Although your file organization may be different on the two systems as a result, your 
programs will still run. 

PROBLEM: Some FILE STATUS codes have different meanings. 

Fix: Check Table B-1 for differences; code your program appropriately. 

Table 8-1. Differences in FILE STATUS Error Codes 

Code AOS Meaning CS Meaning 

02 Successful completion, duplicate key. None. 

21 None. Invalid key. 

24 Invalid key; key value too large. Index depth exceeded. 

95 OPEN labeled tape error. None. 

96 Record logically deleted. OPEN error (directory not initialized). 

97 Illegal REWRITE or DELETE attempted, indexed Record-lock limit exceeded. 

! 
file. 

99 Other IN FOS system error. Line printer access table full. 

8-2 Licensed Material-Property 01 Date General Corporation 093-000223-01 

..1: 



n Procedure Division Incompatibilities * , 
r PROBLEM: The ACCEPT id statement. ) 
) 

\ AOS: Does not prompt the user or allow corrections. 

\ CS: Prompts the user and allows corrections. 
Fix: Use the ACCEPT screen-name option instead of ACCEPT id. 

PROBLEM: ACCEPT statement error conditions. 
) 
\ AOS: Returns a code 99 to the ESCape key in the event of an ACCEPT error. 
\ CS: Does not return an error code. 
~ 

Fix: Be careful. 

~ 
PROBLEM: The ACCEPT id FROM EXCEPTION-STATUS command. 

) 
AOS: Does not recognize this clause. 
CS: Recognizes this clause. 
Fix: Do not use this clause in your ACCEPT statements. 

\ PROBLEM: The DELETE statement. 
} 

AOS: Defaults to a physical delete. 
j CS: Always performs a logical delete. 
~ Fix: Always specify logical deletes. Specify DELETE LOGICAL LOCAL GLOBAL. 

I 
PROBLEM: The DISPLAY id statement. \ 

) 

~ 
AOS: Displays the item(s) at full intensity (bright). 
CS: Displays the item(s) at half intensity (dim). 
Fix: If you desire consistency, use DISPLAY screen-name. 

\ PROBLEM: The OPEN EXTEND statement. ') 

AOS: Does not lock the file. 
CS: Locks the file (performs an Exclusive Open). 
Fix: Be careful when you open a file under AOS (lock all your records). 

PROBLEM: File Input-Output. 

\ AOS: Does not permit: 

I 1. Opening an existing file for output. 
2. Opening a nonexistent file for 1-0. 

\ 3. OPEN EXTEND for a nonexistent file. 

t 
CS: Permits all three. 

! 
Fix: Use the AOS conventions for opening files. 

\ PROBLEM: The STOP RUN Statement. 
I 

I AOS: Returns to the father process. 
I CS: Chains to logon (LOGON.PR). I 

l 
Fix: Use CALL PROGRAM "#A" instead of STOP RUN statements. 

PROBLEM: Attempting to read a locked record. 

AOS: Returns an error. 
CS: Does not return an error if you opened your file for input. 

0 Fix: Be careful. 

1 
1 093-000223-01 Licensed Material-Property 01 Data General Corporetlon 8-3 \ 
I 

\" 



PROBLEM: Logically deleted records. 

AOS: Reads the records and returns a warning flag. 
CS: Does not read logically deleted records. 
Fix: Code your programs to avoid using AOS logically deleted records. 

Transporting Files From your Interactive COBOL System To AOS 
ICOS ISAM files are not compatible with AOS INFOS ISAM files. The internal structure of the two files is 
totally different. As a result, to transport an ISAM database file, you must convert your files to sequential files 
on the CS system before you place them on a tape. Then, you will reconstruct your ISAM file on the AOS 
system. 

To create the sequential file on your CS System, you can use the ICOS REORG utility. Then, you can use the 
AOS Sort/Merge utility to recreate your ISAM file. Use the CS Interactive COBOL manual to find out about 
REORG. The AOS Sort/Merge User's Manual tells you how to use Sort. 

An example of how to perform this file conversion follows. Consult the two manuals mentioned above for a 
detailed explanation of all the commands. You must follow the syntax shown in the following example 
exactly; do not omit any commas, spaces, etc. or include any extra ones. Also, this example only places one 
database file on a physical tape. 

First, place a blank tape on your CS tape drive and specify on your ICOS system: 

REORGI Afi/ename/! MTa/T IU 

Copy all the information returned to you by REORG. Then, use the AOS INFOS system ICREATE utility to 
create an ISAM file with the same filename as your CS file. Consult the !NFOS System User's Manual 
(AOS) for information about ICREATE. 

Next, place the tape on your AOS tape drive, and specify on your AOS system: 

X SORT/C 
INPUT FILE IS • @ MT Ab', 
RECORDS ARE c CHARS. 
OUTPUT INFOS INDEX IS 'filename', 
RECORD IS 1 I c. 
KEY 1 I d. 
COPY. 
END. 

Where: 

a is the number assigned to the tape drive on your CS system. 

b is the number assigned to the tape drive on your AOS system. 

c is from REORG; it's the size of the records. 

d is from REORG; it's the length of your record's keys. 

Sequential files, random access files, and program source files need little modification. Modify your source 
programs in line with the exceptions listed in this appendix. Then, dump your files from your CS system, and 
X RDOS LOAD them onto your AOS System. 

End of Appendix 

8-4 Licensed Material-Property 01 Data General Corporation 093-000223-01 

J 

!)j 
j 
\ 

I 
l 
I 

I 
j 
\ 

()I -- ! 
I 
( , 



., 

Appendix C 
Writing COBOL-Callable Assembly 

Language Routines 

ECLIPSE COBOL programs can call routines written in assembly language, provided that these routines 
conform to COBOL runtime linkage conventions. 

The COBOL statement: 

CALL 'SUBX' USING ARG-1.ARG-2 •...• ARG-N 

generates the following code: 

JSR 
N+1 
.EXTN 
SUBX 

P.1 
P.2 

P.N 

@.CAL 

SUBX 
;ADDRESS OF CALLED ROUTINE 
;ENTRY POINT 
;ARG-1 POINTER 
;ARG-2 POINTER 

;ARG-N POINTER 

Where each pj is a word pointer to a byte pointer to the respective argument in the CALL statement. 

The CALL runtime routine pointed to by .CAL does the following: 

1. verifies that the called routine was loaded, 
2. saves the state of the calling routine on the stack, 
3. transfers control to the called routine. 

In order to correctly interface to the COBOL runtime system, your called routine must conform to the 
following conventions: 

1. The name used in the CALL statement must reference the routine as an entry point, in an .ENT 
statement. The entry point label must be five characters or less in length. 

2. The entry point must be an EJMP instruction. 

3. Your routine must declare .ENTR and .EXIT in an .EXTD statement. 

4. Your routine must obtain argument pointers by calling ENTR (JSR @.ENTR). 

5. Your routine must return to COBOL by calling EXIT (JSR @.EXIT). 

6. If your called routine uses the stack for temporary storage, take care to ensure that it also restores the 
stack correctly. If it fails to do so, the program will fail during return linkage. 

093-000223-01 
Licensed Material-Property 01 Data General Corporailon C-1 



For example, the following code will call .ENTR and copy pointers to the arguments passed by the COBOL 
program: 

JSR @.ENTR 
N ;# OF ARGUMENTS--MUST COUNT 

;IN THE CALL STATEMENT 
PLiST ;POINTER TO PARAMETER LIST 

The parameter list has the following form: 

PLlST: N 
P1: 0 

0 
0 

0 

P2: 0 
0 
1 
0 

P3: 

PN: 0 
o 
N-1 
o 

;BYTE PTR TO ARG PUT BY 
;ENTR 
;USED BY COBOL 
;SEQUENCE # OF ARG IN 
;CALL STATEMENT 
;USED BY COBOL 

Following the call to ENTR, byte pointers to each passed argument will appear in the first word of the 
four-word parameter list entry for each argument. 

Return to COBOL by calling EXIT: 

JSR@.EXIT 

Be careful not to put a start label on the .END statement at the end of your assembler routine. If you do, the 
binder will take the label as the starting address of the entire run unit instead of the COBOL entry point, and 
the program will likely trap on execution. 

An example of a COBOL-callable assembly language routine is shown in Figure C-l. 

C-2 Licensed Material-Property of Data General Corporation 093-000223-01 



I 
i 
1 

'r 

093-000223-01 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CTS~HO. 
* CAI.I.S ASSEMBLY LANGuAGE ROUTINE WHO TO 
* GET PROCESS 10 AND CONSOLE ,~A"E. 

ENVIRO~~ENT OIVISION. 

DATA DIVISION. 
WORKING-STORAGE 
01 PIO 
01 CONSOL~ 

SECTION. 
PIC qqq. 
PIC X (2) • 

PROCEDURE DIVISION. 
MOVE SPACES TO CONSOLE. 
CAI.I. "WHO" USING PID,CONSOI.E. 
DISPI.AY "PROCESS ID: ",FlO. 
DISPI.AY "CONSOI.E: ",CONSOLE. 
STOP RUN. 

.TITI.E WH02 

.ENT WHO 

THIS IS AN ASSEMBI.Y. I.ANGUAGE SUBPROGRAM OALLABLE FRO~ 
A COBOl. PROGRAM. IT RETURNS PROCESS 10 ~ND CONSOLE OR 
STRE'AW NAH. 
CAI.I.ING SEQUENCE: 

CAI.I. "~HO" USING ePIO-VARIABLE> <CONSOLE-VARIABLE> 

.EXTO 

.NREI. 

.ENTR .EXIT 

o ; u~SHAREC CODE 

, PARA~ETER TABI.E 
PI.1ST: 2 

.FID: 0 

.PIDA: 202 
o 
o 

.CON: 0 

.CONI.: 32. 
1 
o 

2 PARAMETERS 

BECOMES BYTE AODRESS OF PIC VARIABI.E 
CIS ATTR (TYPE=UhSIGNED,LEN=3) 
SEQUENCE~U"BER 
USED BY COBOL 

BECO~ES BYTE ADDRESS OF CCNSOI.E VARIABI.E 
BYTE LENGTH OF CONSOLE VARIA~LE 
SEQUE/,;CE NU"BER 
USED BY CGBOL 

, AOS PACKET FOR ?EXEC CALL 
APACK: 
** .00 ?XLTH 

o 
** .ENDC 

; TEMPORARY BUFFER FOR CONSOLE NAME 
.SUF: BUF*2 
BUF: .BLK lb • 

• NREL ; SrARED CCDE 

, lb WORD TRANSLATION TABLE FOR CMT I/,;STRUCTION 
; BIT FOR NULl. IS ON, AI.I. OTHERS ARE OFF 
TRANI 100000 
** .00 15. 

Figure C-I. AOS Assembly Language Routine Example (continues) 

Licensed Material-Property of Data General Corporation C-3 



C-4 

; SUBPROGRA~ STARTS HERE 
~~O: EJ~P ~H02 ; ~~ST START ~ITH EJ~P 

; I~ITIALIlATION OF PARA~ETER LIST 
~HU2: JSR ~.ENTR 

2 # PARA~ETERS 
PLIST ADDRESS GF PARAf'lETER LIST 

MAKE AOS CALL TO GET PROCESS ID 
SUB 0,0 ACIl GETS Il 
ADC 1,1 ACI GETS -1 
1PNAME 
J~P • +1 EI'ROR NGT POSSIBLE 

PID IS IN ACl, FLOAT TO FPACe 
FLAS I,ll 

STORE VARIABLE 
; CIS ATTRIEUTE OF FlO 

HE PID 
ELDA 
ELCA 
STI 

IN THE PID 
I,.PIDA 
3,~PID ; BYTE ADDRESS OF PID VARIABLE 
o 

MAKE AOS CALL TO GET CONSOLE NA"'~ TO BUF 
ELEF 2,APACK 
LEF 0,1XFSTS 
STA 0,1Xf<FNC,2 
ElDA 0,.BUF 
STA 0,1XFP2,2 
?EHC 
Jf'lP DO~E. 

MOVE CO~SOLE. NAf'lE FROM bUF 
MOVE CHARACTERS UNTIL NULL 

ACS PAlKET ADDRESS TO IlC2 
DEC FUNCTION IS 

TE~P E:!UFFEF BYTE 

QLIT IF ANY ERROR 

TO «CNSOLE> VARIABLE 
E~COUNTEREC 

SUTUS 

ADOI' lC PACKET 

fLEF 0,TRAN 
ElDA 1, .CONL 
fLDIl 2, .CUN 

TI'ANSLAT lOr. TABLE 1101'0 'ADOI' 
BYTE LENGTH OF CONSOLf VARIABLE 
DESTINATION BYTE AODR 

ElDA 3,.BUF SOURCE BYTE ADDRESS 
Cf'lT 

SUBPROGRA~ IS DONE, RETURN TO CALLING PI'CGRAM 
DONE: JSI' ~.EXIT 

.END 

Figure C-I. AOS Assembly Language Routine Example (concluded) 

End of Appendix 

Licensed Material-Property of Data General Corporation 

o 

1 
1 

093-000223-01 l 
\ 

J, 



(\ 

Appendix D 
ASCII and EBCDIC Character Sets 

ASCII Character Set 

To find the oual value of a character, locate the character, and 
combine the first two digits at the top of the character's column 
with the third digit in the far left column. 

DC1 

10 

DC2 
IR 

DC3 
IS 

DC4 
IT 

NAK 
IU 

SO-00217 Character code in octal at top and left of charts. 

LEGEND: 

Character code in decimal 

093-000223-01 Licensed Material-Property of Data General Corporation 

@ 

8 

9 

< 

> 

? 

1 means CONTROL 

0-1 



o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

o 

E 

F 

EBCDIC Character Set 

L 

0 16 32 48 64 80 96 112 128 

NUL DLE DS & -
SPACE MINUS 

1 17 33 49 65 81 97 113 129 

SOH DC1 SOS / a 

2 18 34 50 66 82 98 114 130 

STX DC2 FS SYN b 

3 19 35 51 67 83 99 115 131 

ETX TM c 

4 20 36 52 68 84 100 116 132 

PF RES BYP PN d 

5 21 37 53 69 85 101 117 133 

HT NL LF RS e 

6 22 38 54 70 86 102 118 134 

LC BS ETB UC f 

7 ,23 39 55 71 87 103 119 135 

DEL IL ESC EaT 9 

8 24 40 56 72 88 104 120 136 

CAN h 

9 25 41 57 73 89 105 121 137 

EM 
, 

i 
GRAVE 

10 26 42 58 74 90 106 122 138 

SMM CC SM ! 
I 
I . 

COLON 

11 27 43 59 75 91 107 123 139 

VT CU1 CU2 CU3 $ , # 
PERIOD COMMA 

12 28 44 ao 76 92 108 124 140 

FF IFS DC4 < * % @ 

13 29 45 61 77 93 109 125 141 - , 
CR IGS ENQ NAK ( ) UNDER APOS-

LINE TROPHE 

14 30 46 62 78 94 110 126 142 

SO IRS ACK + > -, 
15 31 47 63 79 95 111 127 143 

SI IUS BEL\ SUB I -, ? " 
QUOTE 

DECIMAL CHARACTER CODE IN UPPER LEFT CORNER OR EACH BOX. 
HEXADECIMAL CHARACTER CODE AT TOP AND LEFTOFCHART. 

SD-Ol084 

End of Appendix 

144 

145 

j 

146 

k 

147 

I 

148 

m 

149 

n 

150 

0 

151 

p 

152 

q 

153 

r 

154 

155 

156 

157 

158 

159 

0-2 Licenaed Material-Property of Date General Corporation 

~ 0··.·· (1 

. Ii , 

L 
160 176 192 208 224 240 

{ f \ 0 

161 177 193 209 225 241 --- A J 1 

162 178 194 210 226 242 

S B K S 2 

163 179 195 211 227 243 

t C L T 3 

164 180 196 212 228 244 

U D M U 4 

165 181 197 213 229 245 

v E N V 5 

166 182 198 214 230 246 

w F a w 6 

167 183 199 215 231 247 

x G P X 7 

168 184 200 216 232 248 

Y H Q Y 8 

169 185 201 217 233 249 

z I R Z 9 

170 186 202 218 234 250 

171 187 203 219 235 251 

172 188 204 220 236 252 

173 189 205 221 237 253 

174 190 206 222 238 254 

175 191 207 223 239 255 

093-000223-01 



, 
\ 

\ 

\ 

\ 

Appendix E 
Handling Unlabeled Magnetic Tape 

The following two programs show you how to create and read unlabeled magnetic tape files in the AOS 
system. The first program, MTAOUT.CO (Figure E-l.), creates a simple tape file. It has 200-character 
fixed-length records with 2000 characters per block. The second program, MTAINN.CO (Figure E-2), reads 
this tape file. 

The most important thing in this example is the form of the SELECT clause in the programs. 

SELECT OUTFILE ASSIGN TO "ANYTAPE:O". 

OUTFILE (INFILE in the second p~ogram)is the internal name used in that particular COBOL program. The 
ASSIGN clause specifies the system filename, i.e., the external filename, as ANYTAPE:O. ANYTAPE is a 
dummy name you use to communicate with the AOS system. It could be LOGICALNAME or FOO or any 
other handy string. The :0 indicates which file you want on the tape. If you want to read the second file on a 
tape, you could use ANYTAPE:l; if you want the tenth file, you could use ANYTAPE:9. The first file is 
always file number O. 

To run the two programs in Figures E-l and E-2, you proceed as follows: 

Type a command of the form--

MOUNT ANYTAPE <message> 

This command sends a message to the system operator telling him/her to mount a tape for you. A message like 
the following will appear on the operator's console: 

FROM PID #: (EXEC) ** UNIT MOUNT ** FROM USER your-name PID= # 
FROM PID #: REQUEST IS < message> 

The name ANYT APE in the mount command tells the AOS system what you and your programs want to call 
this magnetic tape. < message > is any text string you want the operator to read. For example, you might 
want to explain how to find the right tape and whether to write-enable it or not. Here is a sample: 

MOUNT ANYT APE FOR OUTPUT; USE TAPE MARKED "12/ 14/79" 

This sends to the operator the message: 

FROM PID #: REQUEST IS FOR OUTPUT; USE TAPE MARKED "12/14/79". 

In response, the operator will mount 'your tape (on magnetic tape unit 3), write-enable it, then type a message 
like this on the system console: 

CONTROL @EXEC MOUNTED @MTA3 

093-000223-01 Licensed Material-Property of Data General Corporation E-1 

.J 



At this point, the system will know that the tape which you call ANYTAPE is mounted on MTA unit 3. You 
will know that all this has been completed because, after you type the mount command, your process hangs 
without giving you the prompt character. When the operator has finished servicing the mount request, you will 
execute your programs in the normal way, i.e., 

X MTAOUT 
X MTAINN 

When you have finished with the magnetic tape, type the following command: 

DISMOUNT ANYT APE 

This breaks the connection between your logical name ANYT APE and the assigned unit. For example, if you 
try to run MTAOUT immediately after this, it will fail (unless you happen to have a disk subdirectory called 
ANYTAPE). This command also sends a message to the operator to remove your tape and free the unit for 
another use. 

1010101 IDE~TIFICATION DIVISIO~. 
1010102 PROGRAM-ID. MTAOUTPUT. 
eee3 * EXAMPLE 5HD~ING CR~~TION OF AN UNLABELED ~AG TAPE FILE 
e004 ENVIRONME~T DIVISION. 
00105 INPUT-OUTPUT SECTIUN. 
e0eb FILE-CONTRUL. 
100107 SELECT OUTFILE ASSIGN TO "A~YTAPE:e". 
1010108 DATA DIVISION. 
eeeq FILE SECTION. 
010110 FO OUTFILE, 
01011 BLOCK CONTAINS 210100 C~ARACTERS, 
0012 RECOROING ~ODE flXtC. 
101013 101 REC. 
101014 102 UP INTEGER PIC q(7). 
101015 ~2 FILLER PIC X(lQ3). 
ekHb 
101017 ~ORKING-STORAGE SECTION. 
101018 
0elQ PROCEDURE DIVISION. 
1010210 I~ITS. 

01021 OPEN OUTPUT OUTFILE. 
101022 MO~E ALL "." TO REC. 
01023 PcRFOR~ ~RITE-REC VARYING UPINTEGER 
101024 ~ROM 1 tiY 1 UNTIL UFINTEGER > lee. 
0025 CLOSE OUTFILE. 
002b STOP RUN. 
101027 
101028 ~RITE-REC. 
ee2Q wRITE REC. 
010310 

Figure E-1. Creating an Unlabeled Magnetic Tape File 

E-2 Licensed Msterlal-Property of Date General Corporation 093-000223-01 



\ 

\ 

\ 
\ 

093-000223-01 

0001 
0002 
i<l003 
0004 
0005 
000b 
0007 
0008 
"009 
0010 
0011 
~012 

0013 
IHl14 
011115 
001b 
0017 
0018 
~019 
0€20 
0021 
e022 
1Il~23 
flifi' 2 4 
0025 
~02c 
0027 
0028 
0f1l29 
0030 
~031 
0032 
~e33 

~034 

IDE~TIFICATION DIVISION. 
PROGRAM-ID. MTAINPuT. 
* EXAMPLE SHO~ING REAC GF Ah LNLABELED ~AG TAPE FILE 
ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE:-CONTROL. 

SELECT INFILE: ASSIGh TO "ANYTAPE:0". 
DATA DIVISION. 
FILE SECTION. 
FD INFILE, 

01 
02 
02 
02 

BLOCK CONTAINS 2000 CHARACTERS, 
RECORDING MODE FIXEC. 
REC. 
REC-BEGIN 
FILLER 
RH-END 

PIC X(10). 
PIC X(187). 
FIC XXX. 

~OR~ING-STORAGE SECTION. 

PROCEDURE DIVISION. 
INITS. 

OPEN INPuT INFILE. 
PERFORM READ-FILE T~RL READ-FILE:-ENe. 
IF NOT (~E:C-&FtlN : "000010f1l ••• " A~C 

REC-END = " ... ") 
THEN DISPLAY "?~TAI~N ERRCP". 
CLOSE INFILE. 
STOP RUN. 

READ-FILE: • 
HEAD INFILE:; AT Ehe GO TO RE:AD-FILE-END. 
GO TU READ-fiLE. 

REAC-FILE-E.ND. 

Figure £-2. Reading an Unlabeled Magnetic Tape File 

End of Appendix 

Licensed Malerial-Property of Data General Corporation E-3 

.. J 





Appendix F 
Language Upgradability From ROOS to AOS 

Identification Division (Chapter 3) 
None. 

Environment Division (Chapter 4) 
1. Under RDOS, sequential, random, indexed, and multilevel indexed files are handled by the RDOS INFOS 

file system. Under AOS, sequential and random files are handled by the AOS operating system, and 
indexed and multilevel indexed files are handled by the AOS INFOS file system. 

2. RDOS supports multivolume sequential and random files, AOS does not. 

3. In the SELECT clause: 

• Under AOS, you must specify CONTIGUOUS, so that the VOLUME SIZE clause will have meaning 
for the operating system. 

• RDOS supports INITIALIZATION of sequential, random, and indexed files; you may specify it in 
AOS, but it has no meaning. 

• You may create TEMPORARY indexes in RDOS; you may specify them in AOS, but they will not be 
temporary. 

• You may request a specific buffer management technique by specifying the HIERARCHICAL/LRU 
clause in RDOS; you may specify it in AOS, but it has no meaning. 

• You may RESERVE I/O buffers in RDOS; you may specify this for AOS, but it has no meaning. 

• You may specify either odd or even PARITY in RDOS; parity is always odd in AOS. 

• In RDOS, if you specify the OCCURRENCE clause, the system automatically assigns the first key an 
occurrence number of zero. It assigns an occurrence number of 1 to the first duplicate key you write, an 
occurrence number of 2 to the second duplicate key, etc., assigning incremental numbers to the records 
in the order in which you write them. Then you simply specify a READ statement for the duplicate key 
with an occurrence number of 0, and you can read the duplicate key records sequentially. 

In AOS, the occurrence numbers do not denote the occurrence of a particular key; they establish 
uniqueness among all keys of a subindex. If you are searching in a subindex that allows duplicates, AOS 
COBOL will return the occurrence number only if you are positioned on a duplicate key. 

• You may save room in an index by using KEY COMPRESSION in RDOS; you may specify it in AOS, 
but it has no meaning. 

• The RDOS INFOS status register data item is three characters in length; the AOS INFOS status 
register data item is four characters in length. 

Data Division (Chapter 5) 
In the FD entry: 
• You may specify your own PAD character in RDOS; AOS uses the null character. 

• In RDOS, you must specify BLOCK CONTAINS 512 CHARACTERS in a PRINTER file's FD entry if 
you later want to do a CLI XFER of that file. This is not necessary under AOS. 

093-000223-01 Licensed Material-Property of Data General Corporation F-1 

* 

* 



* 

* 

Procedure Division (Chapters 6 and 7) 
1. The following features function in an RDOS environment. You can use them in AOS, but they have no 

meaning: 

• REWINDing magnetic tape volumes (OPEN and CLOSE statements); AOS never rewinds; 

• Controlling buffer space allocation with the EXCLUDE/ONLY option (OPEN statement); 

• SEEK statement; 

• LOCKing file volumes (CLOSE statement); 

• REEL/UNIT specifications (CLOSE statement); 

• LOCKing sequential or relative file records (READ and WRITE statements); 

• REMOVAL of a file volume (CLOSE statement); 

• WAITing to see if a READ statement is attempting to access a locked record; 

• Setting up a work file in a SORT statement (default is WORK.WI); AOS uses the default work 
filename only. 

2. The features which function under AOS, but not under RDOS are: 

• End of file detected on relative file records; 

• Compilation of programs in BATCH mode; 

• ALLOW DUPLICATES option in the DEFINE SUB-INDEX statement. 

3. The features that exist in both RDOS and AOS, but behave differently are: 

• If you LOCK a record in RDOS, no one, including yourself, can access that record until it is 
UNLOCKed. In AOS, the process ID determines locked record access; no one can access the LOCKed 
record except the process ID that LOCKed it (CLOSE, READ, WRITE, REWRITE, and DELETE 
statements). 

In the AOS INFOS system any user can use RETRIEVE KEY successfully on a locked record. In 
RDOS, after encountering a locked record you can use a READ NEXT statement to continue with the 
next reeord. AOS will return the same locked record error (AOS will not move). You must RETRIEVE 
KEY NEXT before you READ NEXT to pass a locked record with relative access. 

• RDOS INFOS subindex definition packet is 12 characters in length; the AOS INFOS subindex 
definition packet is 16 characters in length (DEFINE SUB-INDEX statement); 

• If.the current position of a file's record pointer is at a record you delete, in RDOS the record pointer 
points to the record immediately following the deleted record. In AOS, the record pointer points to the 
record immediately before the deleted record (DELETE statement). 

• The /V switch in RDOS compiles virtual overlays which are paged in from extended memory; AOS 
compiles for virtual code. (See Chapter 5, "Virtual- Storage Section.") 

4. The Communications Access Manager (CAM) statements do not exist in AOS. 

End of Appendix 

F-2 Licensed Material-Property of Data General Corporation 093-000223-01 

n 

n 



I 

I 
l 
\ 
\ 

Within this index, the letter "f' means "and the 
following page"; "ff' means "and the following pages". 
Also, primary references are listed first. 

ai-level data description 5-29, 5-15, 5-20f 
66-level data description 5-44f, 5-15, 5-29 
77-level data description 5-29, 5-15 
88-level data description 5-45, 5-15, 5-29 

* (asterisk) indicator 
comment 2-2,2-5 

, zero suppression 5-37f 
$ currency symbol 5-36f, 2-1 
- (hyphen) 2-lf, 2-5 
\ (backslash) indicator 2-5 

A 
/ A global compiler switch 11-4, 11-18 
A-margin 2-6 
ACCEPT statement 7-4f, 5-18ff, 4-3 
ACCEPT DATE/DAY/TIME statement 7-6f 
ACCESS MODE clause 4-16f 
access modes 4-8 
ADD statement 7-7f 
addition 

ADD statement 7-7f 
operators 6-8 
SET UP/DOWN statement 7-65 

address map 11-1 
ADVANCING 

clause 5-12 
phrase 6-13f 

ALL figurative constant 2-2 
ALLOW SUB-INDEX and LEVELS clauses 4-18f 
alphabet 

clause 4-4 
name (table) 2-3 

alphabetic data 
edited 5-36 
nonedited 5-)3 

alphanumeric data 
edited 5-33, 5-36 
literal 2-4 
nonedited 5-33 

ALTER statement 7-9 

Index 

ALTERNATE RECORD clause 4-16f 
American National Standards Institute 1-1 (see ANSI) 
American Standard Code for Information Interchange 

(see ASCII) 
angle 'brackets ( < > ) 2-4, (table) 2-1 
ANSI (American National Standards Institute) 1-1, 

5-17,5-32, 11-2 
apostrophe(') 2-4, (table) 2-1 
APPROXIMATE, KEY series phrase 6-17 
arguments 

error message 11-17 
subprogramming 6-12 

arithmetic 
ADD statement 7-7f 
COMPUTE statement 7-16 
CORRESPONDING phrase 6-7 
DIVIDE statement 7-23 
error message 11-17 
expressions 6-8 
MULTIPLY statement 7-43 
operations 6-5f 
operators (table) 6-8 
referencing data items 6-6 
ROUNDED phrase 6-6 
SET UP/DOWN statement 7-65 
sharing storage areas 6-6 
SIZE ERROR phrase 6-6f 
statement summary 7-1 
SUBTRACT statement 7-75f 

array 
about 5-31 
declarations 5-3lf 
name qualification 6-4 

ASCII (American Standard Code for Information 
Interchange) 1-2,2-1,4-2,5-13, (table) D-l 

assembly language routines C-l ff 
ASSIGN clause 4-14f, 10-13 
asterisk (*) 

comment line 2-5, 2-2 
zero suppression 5-38, (table) 5-37 

AT END phrase 6-19 
AT END-OF-PAGE phrase 6-13f 
AT ERROR clause 10-15 
AUDIT command 9-3, 9-2 
AUTHOR paragraph 3-1 

093-000223-01 Licensed Material-Property of Date General Corporation Index-1 

l "",".~ _____________________________________ =-________ -====================================================---1 .--, 



B 

jB global binder switch 11-10 
B insertion character 5-36, (table) 5-37 
backslash (j) indicator 2-5 
BACKWARD, relative option phrase 6-16ff 
binary 

datum 5-27 
number storage (table) 5-27 
object file 3-1, 11-1 ff 

binding 11-1 Off 
about 11-10 
CBIND command 11-10 
DGjDBMS with a COBOL program 10-1 
switches 11-lOff (see also switches) 
using ANSI segmentation 11-12ff 
using virtual code 11-12ff 

BLANK WHEN ZERO clause 5-42 
BLOCK CONTAINS clause 5-7, 5-3ff 
block size 5-7 
brackets, angle ( < > ) 2-4 
breakpoint 1-2,9-2,9-4,9-12 

c 
jC 

global compiler switch 11-4 
local binder switch II-II, 11-3, 11-13 

calendar information 7-6 
CALL statement 6-12, 7-lOf 

in W ALKBACK command 9-14 
CALL PROGRAM statement 7-12f 
CANCEL statement 7-14 
card format 2-4, 11-4 
carriage return (CR) 2-1, 2-4 
CBIND 

command 11-10 (see binding) 
switches 11-lOf (see switches, binder) 

CHANNEL clause 4-4 
channel name (table) 2-3 
character 

ASCII 1-2,2-1,4-2,5-13, (table) D-I 
currency 4-3, 4-5 
EBCDIC 1-2,5-13, (table) D-2 
set 2-1 
string comparison 4-2 

CHECK statement (DGjDBMS) 10-30, (table) 10-12 
class condition 6-10 
clause 

about 2-6 
data description entry 

BLANK WHEN ZERO 5-42 
JUSTIFIED 5-42 
OCCURS 5-3lf 
PICTURE 5-33 
REDEFINES 5-30 
SIGN 5-41 
SYNCHRONIZED 5-41 
USAGE 5-40 
VALUE 5-42 

file-control paragraph 
SELECT 4-9ff, (table) 4-llff (see SELECT 

clause) 
file description entry 

CODE-SET 5-13 
DATA RECORD 5-11 
FEEDBACK 5-13f 
LABEL RECORDS 5-9 
LINAGE 5-llf 
MERIT 5-14 
PAD 5-14 
PARTIAL RECORD 5-14 
RECORDING MODE 5-8 
VALUE OF 5-IOf 

Object-Computer paragraph 
SEGMENT-LIMIT 4-3 
PROGRAM COLLATING SEQUENCE 4-2 

Special-Names paragraph 
alphabet 4-4 
CHANNEL 4-4 
CURRENCY SIGN 4-5 
DECIMAL-POINT IS COMMA 4-5 
SWITCH 4-4 

CLEAR command 9-4, 9-2 
CLI command 9-5, 9-2 
CLOSE statement 7-15 
COBOL 

compilation command 11-2ff 
concepts 2-1 ff 

character set 2-1 
literals 2-3ff (see literals) 
separators 2-1 
user-defined words 2-3 

extensions 1-2 
words 2-lff (see words) 

CODE-SET clause 5-13 
code set translation 4-3ff, 1-2 
collating sequence 

clause 4-2ff 
conversion 1-2, 2-2 

column positioning (table) 5-22 
comma (,) 

clause 4-5 
insertion character (table) 5-37 
separator 2-1 

commands 
ACCEPT 5-18ff 
AUDIT 9-3, 9-2 
CBIND 11-lOff, 11-3 
CLEAR 9-4, 9-2 
CLI 9-5, 9-2 
COBOL 11-2ff 
COMPUTE 9-6, 9-2 
CON 9-7, 9-2 
COPY 9-8, 9-2 
CPRINT 5-25 
debugger, about 9-2 
DISPLAY 9-9 
ENV 9-10, 9-2 
MOVE 9-11, 9-2 
SET 9-12, 9-2 

Index-2 Licensed Material-Property of Data General Corporation 093-000223-01 

o 

I 

I 
I 

O l 
. \' 

. . t 



f 
) 
I 
\ 
\ 
I 

i 
\ 

( 

t, 

STOP 9-13, 9-2 
WALKBACK 9-14, 9-2 
XEQ 11-15 

comment 
entry 3-1 
line 2-5, 9-1 

COMMIT statement (DG/DBMS) 10-19, 10-13, 
(table) 10-11 

compiling 
about 11-1 
command 11-2 
DG/DBMS with a COBOL program 10-1 
error messages 11-9 
switches 11-4ff 
using ANSI standard segmentation 11-2f 
using virtual code 11-2f 
warning messages 11-9f 

compound expressions 6-1 Off 
COMPUTATIONAL item 5-40 
COMPUTE 

command, debugger 9-6, 9-2 
statement 7-16 

CON debugging command 9-7, 9-2 
condition name 

condition 6-9 
entry 5-45, (table) 2-3 
evaluation (IF) 7-29f 
qualification 6-3 

conditional expressions 
compound 6-1 Off 
simple 6-9ff 

class condition 6-10 
condition name condition 6-9 
relation condition 6-9 
switch condition 6-10 

Configuration Section 4-2ff 
Object-Computer paragraph 4-2f 

SEGMENT-LIMIT clause 4-3 
Source-Computer paragraph 4-2 

PROGRAM COLLATING SEQUENCE 
clause 4-2 

Special-Names paragraph 4-3ff 
alphabet clause 4-4 
CHANNEL clause 4-4 
CURRENCY SIGN clause 4-5 
DECIMAL-POINT IS COMMA clause 4-5 
SWITCH clause 4-4 

CONNECT statement (DG/DBMS) 10-21, 10-13, 
(table) 10-11 

console input/output 
statement summary 7-2 
ACCEPT statement 7-4f 
DISPLA Y statement 7-22 

constant, figurative 2-2 
CONTIGUOUS clause 4-15 
continuation lines 2-5 
COPY facility 

about 8-lf 
command 9-8, 9-2 

CORRESPONDING phrase 6-7 
CPRINT utility 5-25 
CR 

as NEW LINE 2-1, 2-4 
credit sign insertion 5-37 

CS com pa ti bili ty B-1 ff 
CSIZE utility 5-17 
CURRENCY SIGN clause 4-5, 5-38 
currency sign insertion 5-36ff, (table) 5-37, (example) 

5-38 
cursors 

/D 

free 10-10, 10-14, 10-16ff 
system 10-14, 10-16ff 

o 

global binder switch 11-10 
global compiler switch 11-4 
local binder switch 11-11 

D debug line 2-5 
data 

description entry 5-28ff (see data description entry) 
editing 5-36ff (see editing) 
extensions 1-2 
floating point 2-3, 5-35 
handling 4-1 
map 11-4ff 
name 2-3, 6-3 
type 5-26f (see data type) 

Data Base Administrator (DBA) 10-1 
data description entry 5-28ff 

about 5-28 
BLANK WHEN ZERO clause 5-42 
examples 5-43 
FILLER 5-28 
JUSTIFIED clause 5-42 
level numbers 5-29 
OCCURS clause 5-3lf 
PICTURE clause 5-33ff (see PICTURE clause) 

data editing in 5-36ff 
defining items 5-33ff 

REDEFINES clause 5-30 
SIGN clause 5-41 
SYNCHRONIZED clause 5-41 
USAGE clause 5-40 
V ALUE clause 5-42 

Data Division 5-lff 
condition name entry 5-45 
data description entry 5-28ff (see data description 

entry) 
data type 5-26f (data type) 
File Section 5-2ff (see File Section) 
Linkage Section 5-8, 5-1 (see Linkage Section) 
Screen Section 5-18ff (see Screen Section) 
structure 5-1 
Subschema Section 10-2ff (see subschema) 

093-000223-01 Licensed Material-Property of Data General Corporation Index-3 

J 



Virtual-Storage Section 5-15ff (see Virtual-Storage 
Section) 

Working-Storage Section 5-15, 5-1 (see 
Working-Storage Section) 

data editing 5-36ff (see editing) . 
Data General/Database Management System Interface 

(see DG/DBMS interface) 
data manipulation and editing 

INSPECT statement 7-31ff 
MOVE statement 7-40ff 
SEARCH statement 7-6lf 
SET statement 7-64 
statement summary 7-1 
STRING statement 7-73f 
UNSTRING statement 7-8lf 

Data Manipulati~m Language (DML) 10-5, 1O-11ff (see 
DML) 

data name 6-3, (table) 2-3 
DATA RECORD clause 5-11, (format) 5-4 
data-sensitive record 1-2, 4-6, 5-7 
DATA SIZE clause 4-19 
data type 5-26f 

alphabetic 5-26 
alphanumeric 5-26 
alphanumeric edited 5-26 
numeric 5-26f 

database files 4-7, 10-lff 
DBA (Data Base Administrator) 10-1 
DEB command 9-1 
debit sign (DB) 5-36f, (table) 5-37 
debug line (D) 2-5 
debugger 

about 9-lf 
AUDIT command 9-3, 9-2 
binding in with COBOL program II-lOf 
CLEAR command 9-4, 9-2 
CLI command 9-5, 9-2 
comment lines 9-1 
COMPUTE command 9-6, 9-2 
CON command 9-7, 9-2 
COPY command 9-8, 9-2 
DISPLA Y command 9-9 
ENV command 9-10, 9-2 
executing the 11-16 
MOVE command 9-11, 9-2 
SET command 9-12,9-2 
STOP command 9-13r 9-2 
WALK BACK command 9-14, 9-2 

decimal point (.) insertion character 5-36, (table) 5-37 
DECIMAL-POINT IS COMMA clause 4-5 
Declaratives Section 6-19f, 10-15 
DEFINE SUB-INDEX statement 7-17f 
DELETE statement 7-19f 
DELETE FILE statement 7-21 
delimiters 2-4 
DEPENDING clause 5-31 
device clause 4-3 

DG/DBMS (Data General/Database Management 
System) interface 
about 10-1 
compiling and binding 10-1 
program, sample 1O-36ff, 1O-40ff 
statements, DML 1O-11ff (see statements, DML 

(DG/DBMS» 
subschema 10-2ff (see subschema) 

DISCONNECT statement (DG/DBMS) 10-22, 10-13, 
(table) 10-11 . 

DISPLAY 
debugging command 9-9 
statement 7-22, 5-18f, 5-25, 4-3 

DIVIDE statement 7-23 
DML (Data Manipulation Language) 10-5 

error handling 10-14f 
positioning within a database 10-14, (figure) 10-15 
program, sample 10-36ff, 1O-40ff 
statements (see statements, DML (DG/DBMS)) 

condition checking 10-28ff, (table) 10-12 
locating a record occurrence 10-3lff, (table) 

10-12 
manipulating record occurrences 10-24ff, 

. (table) 10-11 
manipulating set connections 1O-2lff, (table) 

10-11 
opening and closing a subschema 10-16f, 

(table) 10-11 
transaction statements 1O-18ff, (table) 10-11 

subprograms 10-15 
dollar sign ($) insertion character 5-36, (table) 5-37, 

(table) 2-1 
DOWN, relative option phrase 6-16ff 
DOWN FORWARD, relative option phrase 6-16ff 
DUPLICATES clause 4-16f, (format) 4-10, (table) 

4-13 
dynamic access mode 4-8 

E 

/E 
global binder switch 11-10 
global compiler switch 11-4, 2-4 

EBCDIC (Extended Binary-Coded-Decimal 
Interchange Code) 1-2,5-13, (table) D-l 

editing (data) 
alphanumeric/alphabetic 5-36 
BLANK WHEN ZERO clause 5-42 
examples 5-43 
floating insertion 5-39 
JUSTIFIED clause 5-42 
numeric 5-36ff 
PICTURE clause 5-33ff 
SIGN clause 5-41 
SYNCHRONIZED clause 5-41 
USAGE clause 5-40 
VALUE clause 5-42 

Index-4 Licensed Material-Property 01 Data General Corporation 093-000223-01 



\. -:===:-

elementary data item 5-29 
ENV command 9-10, 9-2 
Environment Division 

Configuration Section 4-2ff (see Configuration 
Section) 

file access modes 4-8 (see file, access modes) 
file organization 4-5ff (see file, organization) 
Input-Output Section 4-9ff (see Input-Output 

Section) 
structure 4-1 

ERASE statement (DG/DBMS) 10-27, 10-13, (table) 
10-11 

errors 
compiler messages 11-9 
DG/DBMS 10-14f 
fatal 11-16f 
runtime 

I/O exception conditions 6-19ff, 11-16 
program, fatal 11-16f 
program, nonfatal 11-16 
system, fatal 11-17 
trace 11-18 

execution, program 
about 11-15 
command (XEQ) 11-15 
debugger (/D) 11-16 
errors (see errors, runtime) 

EXIT statement 7-24 
EXIT PROGRAM statement 7-25 
Extended Binary-Coded-Decimal Interchange Code (see 

EBCDIC) 
exponentiation 6-8, 2-3 
expressions 

arithmetic 6-8 
compound 6-10ff 
conditional 6-9f 

EXPUNGE statement 7-26 
EXPUNGE SUB-INDEX statement 7-27 

F 

fatal errors 11-16f 
FD entry 5-3ff (see file description entry) 
FEEDBACK clause 5-13f 
field translation 5-13f 
figurative constant 2-2 
file 

about 5-lf 
access modes 4-8 
File Control paragraph, Environment Division 4-9ff 

ACCESS MODE clause 4-16f 
ALLOW SUB-INDEX and LEVELS clauses 

4-18f 
ASSIGN clauses 4-14f 
FILE STATUS clause 4-18 
INFOS STATUS clause 4-18 
KEY COMPRESSION clause 4-19 
OPTIONAL clause 4-14 
ORGANIZATION clause 4-16 

PARITY clause 4-18 
RESERVE clause 4-15 
SELECT clause 4-9ff, 5-2, 5-16 

file description (FD) entry, Data Division 5-3ff 
block size 5-7 
CODE-SET clause 5-13 
DATA RECORD clause 5-11 
FEEDBACK clause 5-13f 
indexed file format 5-4 
LABEL RECORDS clause 5-9 
LINAGE clause 5-1lf 
MERIT clause 5-14 
node size 5-7 
PAD clause 5-14 
PARTIAL RECORD clause 5-14 
record size 5-7 
RECORDING MODE clause 5-8f 
relative file format 5-4 
sequential file format 5-3 
sort/merge file format 5-4 
table of clauses 5-6 
VALUE OF clause 5-1 Of 

I/O 5-lff (see input/output) 
organization 4-5ff 

da ta base 4-7 
indexed (see also indexed file) 

about 4-6f 
format 4-10,5-4 
table 4-1lff, 5-5f 

relative (see also relative file) 
about 4-6 
format 4-10, 5-4 
table 4-1lff, 5-5f 

sequential (see also sequential file) 
about 4-5f 
format 4-9, 5-3 
table 4-11 ff, 5-5f 

sort/merge (see also sort/merge process) 
about 4-7 
format 4-11, 5-4 
table 4-1lff, 5-5f 

file-handling statements 
CLOSE 7-15 DEFINE SUB-INDEX 7-17f 
DELETE 7-19f 
DELETE FILE 7-21 
EXPUNGE 7-26 
EXPUNGE SUB-INDEX 7-27 
LINK SUB-INDEX 7-36f 
OPEN 7-44f, 4-7 
READ, indexed file 7-5lf 
READ, relative file 7-50 
READ, sequential file 7-49 
RETRIEVE 7-54f, 4-17 
REWRITE, indexed file 7-59f 
REWRITE, relative file 7-58 
REWRITE, sequential file 7-57 
SEEK 7-63 
START, indexed file 7-71 
START, relative file 7-70' 

093-000223-01 Licensed Msterlal-Property of Date General Corporation Index-5 
.J 



START, sequential file 7-69 
TRUNCATE 7-77 
UNDELETE 7-78f 
UNLOCK 7-80 
USE 7-83f 
WRITE, indexed file 7-88f 
WRITE, relative file 7-87 
WRITE, sequential file 7-85f 

File Section 5-3ff 
FILE STATUS clause 4-18 
file status data item 6-20f 
filename 2-3 
FILLER 5-28 
FIND statements (DG/DBMS) 

about 10-13 
current 10-34 
duplicates 10-33 
owner 10-35 
positional 10-31 
table 10-12 
using data items 10-32 

FINISH statement (DG/DBMS) 10-17, 10-14, (table) 
10-11 

fixed insertion e,diting 5-37 
fixed-length record 1-2, 4-6, 5-7 
floating insertion editing 5-39 
floating point data 

error message 11-17 
external representation 5-35 
literal 2-3 

footing area, page 5-11 f 
formatted data 4-3, 5-1 
FORWARD, relative option phrase 6-16ff 
free cursors 10-10, 10-14, 10-16ff 
function delimiter keys, Screen Section (table) 5-19 

/G global compiler switch 11-4 
GENERIC, KEY series phrase 6-17 
GET statement (DG/DBMS) 10-25, 10-13, (table) 

10-11 
global switches (see switches) 
GO statement 7-28, 7-9 
group data item 5-29, 5-31 

H 

/H 
global binder switch 11-10 
local binder switch 11-11 

hexadecimal format 11-10 
HIGH-VALUE(S) figurative constant 2-2 
hyphen (see also minus sign) 

continuation line 2-5 
in a word 2-1 

/1 global binder switch 11-10 
Identification Division 3-1 
IF statement 

COBOL 7-29f 
DG/DBMS 1O-28f, (table) 10-12 

imperative statement 6-1 
INDEX BLOCK CONTAINS clause 5-7 
INDEX NODE SIZE clause 5-4f, 5-7 
INDEX SIZE clause 4-19, B-2 
indexed file 

about 4-6f, 1-2 
file description entry (format) 5-4, (table) 5-5f 
KEY series phrase 6-17f 
multilevel indexed file 6-17, (table) 6-15, 1-2,4-6, 

5-8,5-14 
organization 5-4 
POSITION phrase 6-15 
record options 6-19 
record selection 6-15ff 
relative option phrase 6-16f 
SELECT clause (format) 4-10, (table) 4-1lff 
simple indexed file 6-17, 4-6, 5-8 
statements 

CLOSE 7-15 
DEFINE SUB-INDEX 7-17f 
DELETE 7-19f 
DELETE FILE 7-21 
EXPUNGE 7-26 
EXPUNGE SUB-INDEX 7-27 
LINK SUB-INDEX 7-36f 
OPEN 7-44f 
READ 7-5lf 
RETRIEVE 7-54f 
REWRITE 7-59f 
START 7-71 
UNDELETE 7-78f 
UNLOCK 7-80 
WRITE 7-88f 

indicator characters (table) 2-5 
INFOS 1-2,6-20, 11-1 
INFOS STATUS clause 4-18 
INFOS status data item 6-21 
INITIATE statement (DG/DBMS) 10-18, 10-13, 

(table) 10-11 
I/O (see input/output) 
Input-Output (I-O) Section 4-9ff 

File Control paragraph, SELECT clauses 4-9ff 
ACCESS MODE clause 4-16f 
ALLOW SUB-INDEX and LEVELS clauses 

4-18f 
ASSIGN clauses 4-14f 
DATA SIZE clause 4-19 
examples 4-20 
FILE STATUS clause 4-18 
INDEX SIZE clause 4-19 
INFOS STATUS clause 4-18 
KEY COMPRESSION clause 4-19 

Index-6 Licensed Material-Property 01 Data General Corporation 093-000223-01 

I 

li 
(I 

Ii 
\! 

Ii 
1! 

I! 
\: 

II 

O li 
11 .. 1j 
1! 



\ 
) 

\ 
) 
1('\ 
\ 
\ 
\ 

OPTIONAL clause 4-14 
ORGANIZATION clause 4-16 
PARITY clause 4-18 
RESERVE clause 4-15 

1-0 Control paragraph 4-21 
MULTIPLE FILE clause 4-21 
SAME RECORD AREA clause 4-21 

input/output 
device 4-3 
error handling (USE statement) 7-83f 
exception conditions 6-19ff 

AT END phrase 6-19 
Declaratives Section 6-19f 
file status data items 6-20 
INFOS status data items 6-21 
INVALID KEY phrase 6-19 

file 4-3, 5-1 
language extensions 1-2 
statements 

ACCEPT 7-4ff, 5-18ff, 4-3 
CLOSE 7-15 
DISPLAY 7-22, 5-18f, 5-25 
DEFINE SUB-INDEX 7-17f 
DELETE 7-19f 
DELETE FILE 7-21 
EXPUNGE 7-26 
EXPUNGE SUB-INDEX 7-27 
LINK SUB-INDEX 7-36f 
MERGE 7-38f, 4-2,4-4 
OPEN 7-44f, 4-7 
READ 7-49ff 
RELEASE 7-53, 4-7 
RETRIEVE 7-54f, 4-17 
RETURN 7-56, 4-7 
REWRITE 7-57f 
SEEK 7-63 
SORT 7-66ff, 4-2, 4-4 
START 7 -69ff 
TRUNCATE 7-77 
UNDELETE 7-78f, 4-7 
UNLOCK 7-80 
USE 7-83f, 6-19,4-6 
WRITE 7-85ff 

insertion editing 
fixed character 5-37 
simple character 5-36f 
special character 5-36ff 

INSPECT statement 7-3lff 
INSTALLATION paragraph 3-1 
integer 2-3 
interactive debugger 9-1 ff (see debugger) 
INVALID KEY phrase 6-19 
inversion, file 4-7 
ISAM B-4 

J 

JUSTIFIED clause 5-42, 5-28 

K 

/K=n global binder switch 11-10 
key 4-7 

about 4-7, 1-2 
approximate 6-17, 1-2 
compression 4-13, 4-19 
length (KEY LENGTH clause) 4-17, 6-18 

KEY COMPRESSION clause 4-19 
KEY LENGTH clause 4-17, 6-18 
KEY series J1hrase 6-17f 

APPROXIMATE 6-17 
GENERIC 6-17 
KEY LENGTH 6-18 

keyword (table) A-I, 2-2 

/L 

L 

global binder switch 11-11, 11-4 
global compiler switch 11-4, (figure) 11-7f 
local compiler switch 11-4 

/L=name global binder switch 11-11 
LABEL RECORDS clause 5-9 
labeled magnetic tape 4-6, 4-23, 5-9 
level numbers 5-29 
LEVELS clause 4-18f 
library, COPY file 8-1 
LINAGE clause 5-1lf, 6-13f, 2-2 
LINAGE-COUNTER 2-2, 6-14 
line 

about 2-4 
and column positioning (table) 5-22 
comment 2-5 
continuation 2-5 
debug 2-5 
number (LINAGE-COUNTER) 2-2,6-14 
sentence 2-5 
statement 2-5 
text format 2-4 

link loading 11-12f 
LINK SUB-INDEX statement 7-36f 
Linkage Section 5-18, 5-1 
listing file 11-2, 11-4 
literals 2-3 

alphanumeric 2-4 
numeric 2-3 

loading, link 11-12f 
local switches (see switches) 
logical 

block 5-7 
operators 6-11 
page 5-11 

LOW -V ALUE(S) figurative constant 2-2 

093-000223-01 Licensed Material-Property of Data General Corporation Index-7 

J 



M 

/M global compiler switch 11-5ff, 11-1, 11-4,5-17 
magnetic tape 

labeled 4-6, 4-23, 5-9 
unlabeled E-Iff 

main program 11-! 0 
Map switch (jM) 11-5ff, 11-1, 11-4,5-17 
margins, page 5-11 f 
MEMORY SIZE clause 4-2 
MERGE statement 7-38f, 4-2, 4-4 
MERIT clause 5-14, 4-15, 5-4, 5-6 
minus sign or hyphen (-) 

blank or insertion character 5-37 
continuation line 2-5 
within a word 2-1 f 

mnemonic name 2-3, 4-3 
MODIFY statement (DG/DBMS) 10-26, 10-13, (table) 

10-11 
MOVE 

statement 7-40ff 
command 9-11, 9-2 

multilevel indexed file 6-17, (table) 6-15,1-2,4-6,5-8, 
5-14 

MULTIPLE FILE clause 4-21 
multiplication 7-43 
MULTIPLY statement 7-43 

N 

/N global binder switch 11-11 
name 

about 2-3 
array 6-4 
condition 6-3 
data 6-3 
procedure 6-2 
qualification 6-2ff 

nlJ.me/V = number local binder switch 11-11 
NATIVE collating sequence 4-2,5-13 
NEW LINE (NL) 2-If, 2-4 
NEXT, relative option phrase 6-16ff 
node size, file description entry 5-7 
/NODEFILE 11-15,11-13 
nondeclaratives procedure 6-1 
nonexecutable program file 11-10 
nonfatal program errors 11-16f 
nonshared code 11-11 
null 2-4 
numeric data 

byte-aligned binary 5-27 
byte-aligned floating point 5-27 
decimal with leading separate sign 5-27 
decimal with leading sign overpunch 5-26 
decimal with trailing separate sign 5-27 
decimal with trailing sign overpunch 5-26 
defining items (PICTURE) 5-34ff 

/0 

edited 5-26 
error message 11-1 7 
external floating point 5-27 
group data 5-27 
literal 2-3 
packed decimal 5-27 
sign overpunch characters (table) 5-26 
unsigned decimal 5-26 

o 

global binder switch 11-11 
local binder switch 11-11 

Object-Computer paragraph 4-2 
PROGRAM COLLATING SEQUENCE clause 

4-2 
SEGMENT-LIMIT clause 4-3 

object file, binary 3-1, 11-1 ff 
occurrence number 1-2 
OCCURS clause 5-3If 
octal code 2-4 
ON/OFF STATUS 4-3f 
OPEN statement 7-44f, 4-7 
operating instructions 

about 11-1, 1-1 
binding 

about 11-10 
command (CBIND) 11-10 
switches (see switches, binder) 
using ANSI standard segmentation 11-12ff 
using virtual code 11-12ff 

compiling II-Iff 
about 11-1 
calling the compiler 11-2 
error messages 11-9 
overlays 11-12ff, 11-2 
switches (see switches, compiler) 
using ANSI standard segmentation 11-2f 
using virtual code (jV) 11-2f 
warning messages 11-9f 

executing 11-15 
with the debugger (jD) 11-16 

loading 11-15 
runtime errors (see errors, runtime) 

operators 
arithmetic (table) 6-8 
logical 6-lOf 

OPTIONAL clause 4-14 
ORGANIZATION clause 4-16f 
overflow error message 11-17 
overlay 11-12ff, 4-3 

p 

/Pglobal compile~ switch 11-4 
PAD clause 5-14,5-3,5-6 
paging 11-2 

Index-8 Licensed Malerial-Property of Dala General Corporalion 093-000223-01 



paragraph 
definition 6-1 
naming 2-6, (table) 2-3 

parameter, subprogramming 6-12 
PARITY clause 4-18 
PARTIAL RECORD clause 5-14, 6-18 
PERFORM statement 7-46ff 

example 7-48 
in WALKBACK command 9-14 

period 2-1, 2-3 
phrase 2-6 

AT END 6-19 
CORRESPONDING 6-7 
INVALID KEY 6-19 
KEY series 6-17f 
position 6-15 
relative option 6-16f 
ROUNDED 6-6 
SIZE ERROR 6-6f 

PICTURE clause 5-33f, 5-18, 5-22ff 
alphabetic items in 5-33 
alphanumeric edited items in 5-33 
alphanumeric items in 5-33 
data editing in 5-36ff 
numeric edited items in 5-35 
numeric items 5-34 

plus sign (+) 5-35, (table) 5-37, 2-2, (table) 2-1 
POSITION phrase 6-15 
positioning within a database W-14 
print file 2-2 
print file formatting 6-13f 

ADVANCING phrase 6-13f 
AT END-OF-PAGE phrase 6-13f 
LINAGE clause 6-13f 

PRINTER clause 4-9, 4-11, 4-14 
Procedure Division 6-lff, 7 -Iff 

about 6-Iff 
arithmetics 6-6ff 
declaratives 6-2 
exception conditions, I/O 6-19ff 

AT END phrase 6-19 
declaratives section 6-19f 
file status data items 6-20f 
INFOS status data items 6-21 
INVALID KEY phrase 6-19 

expressions 
arithmetic 6-8 
conditional, compound 6-1 Off 
conditional, simple 6-9f 
operators 6-1 Of 

indexed file (see indexed file) 
name qualification 6-2ff 

array 6-4 
condition 6-3 
data 6-3 
procedure 6-2 

paragraph 6-1 

phrases 
about 6-1 
AT END 6-19 
CORRESPONDING 6-7 
INVALID KEY 6-19 
KEY series 6-17f 
position 6-15 
relative option 6-16f 
ROUNDED 6-6 
SIZE ERROR 6-6f 

print file formatting 6-13f 
relative file (see relative file) 
sequential file (see sequential file) 
section 6-1 
segmentation 6-13, 6-1 
sentence 6-1 
statements 7-lff, 6-1 (see statements, Procedure 

Division) 
subprogramming 6-12 

program 
control, transfer of 

ALTER statement 7-9 
CALL statement 6-12, 7-10f, 9-14 
CALL PROGRAM statement 7-12f 
CANCEL statement 7-14 
EXIT statement 7-24 
EXIT PROGRAM statement 7-25 
GO statement 7-28 
IF statement 7-29f 
PERFORM statement 7-46ff 

in W ALKBACK command 9-14 
STOP statement 7-72 

execution switch 4-3 
name (table) 2-3 
sample 

COBOL 1-3 
DG/DBMS 10-35ff, 10-40ff, 10-39 

segmentation 4-2 
structure 1-1 . 

PROGRAM COLLATING SEQUENCE clause 4-2 
pseudo-text 8-2 

Q 

/Q 
global binder switch 11-11, 11-14 
global compiler switch 11-4 

qualification, name 
array 6-4 
condition 6-3 
data 6-3 
procedure 6-2 

quotation mark (") 2-4, (table) 2-1 
QUOTE(S) figurative constant 2-2 

i 

093-000223-01 Licensed Material-Property of Date General Corporation Ind~X-9 
:.._> ......... ~ __________ =====~=========:.il=~~) 



R 

/R 
local binder switch 11-11 
local compiler switch 11-4 

random access mode 4-8 
RDOS upgradability to AOS F-If 
READ statement 

indexed file 7-5If 
relative file 7-50 
sequential file 7-49 

READY statement (DG/DBMS) 10-16, 10-13, (table) 
10-11 

RECONNECT statement (DG/DBMS) 10-16, 10-13, 
(table) 10-11 

record 
area 5-2 

clauses 
RECORD CONTAINS 5-7 
RECORD LENGTH 5-8 

description 5-2, 4-7 
format 

data-sensitive 4-6, 1-2, 5-7 
fixed-length 4-6, 1-2, 5-7 
undefined-length 4-6, 1-2, 5-7 
variable-length 4-6, 1-2,5-7 

Input/Output statements 
DELETE 7-19f 
READ 7-49ff 
RELEASE 7-53, 4-7 
RETRIEVE 7-54f, 4-17 
RETURN 7-56, 4-7 
REWRITE 7-57f 
SEEK 7-63 
START 7-69ff 
TRUNCA TE 7-77 
UNDELETE 7-78f, 4-7 
UNLOCK 7-80 
WRITE 7-85ff 

pointer positioning 7-69ff 
RECORD phrase 6-19 
RECORD CONTAINS clause 5-7 
RECORD LENGTH clause 5-8 
RECORDING MODE clause 5-8 
REDEFINES clause 5-30 
relation condition 6-9 
relative file 

about 4-6 
access mode with (table) 4-8 
file description entry (format) 5-4, (table) 5-5f 
I/O 4-10ff 
organization 5-4 
relative record number 4-6 
SELECT clause (format) 4-10, (table) 4-11ff 
statements 

CLOSE 7-15 
DELETE FILE 7-21 
EXPUNGE 7-26 

OPEN 7-44f 
READ 7-50 
REWRITE 7-58 
SEEK 7-63 
START 7-70 
WRITE 7-87 
UNLOCK 7-80 

relative option phrase 
BACKWARD 6-16ff 
DOWN 6-16ff 
DOWN FORWARD 6-16ff 
FORWARD 6-16ff 
NEXT 6-16ff 
STATIC 6-16ff 
UP 6-16ff 
UP BACKWARD 6-16ff 
UP FORWARD 6-16ff 

RELEASE statement 7-53, 4-7 
RENAMES entry 5-44f 
REORG utility B-4 
replacement string 8-2 
RESERVE clause 4-15 
reserved word 

in COPY replacement string 8-2 
list A-If 

RETRIEVE statement 7-54f, 4-17 
RETURN statement 7-56, 4-7 
REWRITE statement 

indexed file 7-59f 
relative file 7-58 
sequential file 7-57 

ROLLBACK statement (DG/DBMS) 10-20, 10-14, 
(table) 10-11 

root context 11-11 
ROOT MERIT clause 4-15 
ROUNDED phrase 6-6 
rubout 2-4 
runtime 

/S 

errors 11-16ff (see errors, runtime) 
library 11-1 

s 

global binder switch 11-11 
global compiler switch 11-4 
local binder switch 11-11 

SAME RECORD AREA clause 4-21 
save file 11-18 
scale factoring 5-34 
Screen Section 

about 5-1 
clauses 

AUTO 5-23 
BELL 5-23 
BLANK LINE 5-22 
BLANK SCREEN 5-21 
BLANK WHEN ZERO 5-24 

Index-10 Licensed Material-Property 01 Data General Corporation 093-000223-01 

1 
5 

I 
1 

1 

()j 
1 

J 



l._ . 

BLINK 5~23 
COLUMN 5-21 
FROM 5-22 
FULL 5-24 
JUSTIFIED 5-24 
LINE 5-21 
PICTURE IS 5-22 
REQUIRED 5-23 
SECURE 5-23 
TO 5-23 
USING 5-23 
VALUE 5-23 
VIRTUAL 5-21 

commands 5-18ff 
ACCEPT, 5-18ff 
CPRINT 5-25 
DISPLAY 5-18f 

format 5-20ff 
elementary item 5-20 
example 5-24f 
group items 5-20 
literals 5-20 

function delimiter keys 5-19 
SD entry 5-lff, (format) 5-4, (table) 5-5f 
SEARCH statement 7-6lf 
section 

File 5-3ff (see File Section) 
Input-Output 4-9ff (see Input-Output Section) 
Linkage 5-18, 5-1 (see Linkage Section) 
name 2-6, (table) 2-3 
Procedure Division 6-1 
Screen 5-18ff (see Screen Section) 
Subschema 5-1, 10-2ff (see Subschema Section) 
Virtual-Storage 5-15ff (see Virtual-Storage Section) 
Working-Storage 5-15, 5-1 (see Working-Storage 

Section) 
SEEK statement 7-63 
SEGMENT LIMIT clause 6-13, 4-3 
segmentation, program 4-3, 6-13, 11-2f, 11-12ff 
SELECT clause 4-9ff, 5-2, 5-16,4-3 

ACCESS MODE clause 4-16f 
ALLOW SUB-INDEX clause 4-18 
ASSIGN clause 4-14f 
DUPLICATES clause 4-16f 
examples 4-20 
FILE STATUS clause 4-18 
format, indexed 4-10 
format, relative 4-10 
format, sequential 4-9 
INFOS clause 4-18 
KEY COMPRESSION clause 4-19 
LEVELS clause 4-18 
OPTIONAL clause 4-14 
ORGANIZATION clause 4-16 
PARITY clause 4-18 
RESERVE clause 4-15 
table 4-11 ff 
with unlabeled magnetic tape E-l 

semicolon (;) 2-1 
sentence 2-5, 6-1 
separators 2-1 
sequential access mode 4-8 
sequential file 

set 

about 4-5f 
file description entry (format) 5-3, (table) 5-5f 
format 4-6, 4-9, 4-1lff 
relative record number 4-6 
SELECT clause (format) 4-9, (table) 4-1lff 
statements 

CLOSE 7-15 
DELETE FILE 7-21 
EXPUNGE 7-26 
OPEN 7-44f 
READ 7-49 
REWRITE 7-57 
START 7-69 
TRUNCATE 7-77 
WRITE 7-85f 
UNLOCK 7-80 

occurrences 10-8f 
types 10-7f 

identifying name of 10-9 
insertion/retention criteria 10-9 
MEMBER 10-9 
ORDER IS 10-10 
OWNER 10-9 
reconnections 10-10 

SET 
statement 7-64 
command 9-12, 9-2 

SET UP/DOWN statement 7-65 
shared code 11-11 
SIGN clause 5-41 
sign overpunch characters (table) 5-26 
signed datum 5-34 
size error 11-16 
SIZE ERROR phrase 6-6f 
slash (j) 

comment line 2-5, (table) 2-1, 2-2 
insertion character 5-36f 

SORT 
command B-4 
statement 7-66ff, 4-2, 4-4 

sort/merge process 
about 4-7 
file description entry (format) 5-4, (table) 5-5f 
SELECT clause (format) 4-11, (table) 4-11 
statement summary 7-3 
statements 

MERGE 7-38f, 4-2, 4-4 
RELEASE 7-53, 4-7 
RETURN 7-56, 4-7 
SORT 7-66ff, 4-2, 4-4 

source file 11-1 
Source-Computer paragraph 4-1 

093-000223-01 Licensed Meterial-Property 01 Data General Corporation Index-11 



space 
insertion character 5-36, (table) 5-37 
separator 2-1 

SPACE(S) figurative constant 2-2 
SPACE MANAGEMENT clause 4-15 
Special-Names paragraph 4-3f 

alphabet clause 4-4 
CHANNEL clause 4-4 
CURRENCY SIGN clause 4-5 
DECIMAL-POINT IS COMMA clause 4-5 
SWITCH clause 4-4 

STANDARD-l collating sequence 4-2,5-13 
START statement 

indexed file 7-71 
relative file 7-70 
sequential file 7-69 

statement 2-5, 6-1 
statements, Procedure Division 7-lff, 10-1 Iff 

arithmetic operations 
ADD 
COMPUTE 7-16 
DIVIDE 7-23 
MULTIPLY 7-43 
SET UP/DOWN 7-65 
SUBTRACT 7-75f 

console Input/Output 
ACCEPT 7-4f 
DISPLAY 7-22, 4-3 

data manipulation and editing 
INSPECT 7-31ff 
MOVE 7-40ff 
SEARCH 7-6If 
SET 7-64 
STRING 7-73f 
UNSTRING 7-8If 

DG/DBMS Data Manipulation Language (DML) 
about 1O-13ff 
CHECK 10-30 
COMMIT 10-19 
CONNECT 10-21 
DISCONNECT 10-21 
ERASE 10-27 
FIND (current) 10-34 
FIND (duplicates) 10-33 
FIND (owner) 10-35 ' 
FIND (positional) 10-31 
FIND (using data items) 10-32 
FINISH 10-17 
GET 10-25 
IF 10-28f 
INITIATE 10-18 
MODIFY 10-26 
READY 10-16 
RECONNECT 10-23 
ROLLBACK 10-20 
STORE 10-24 
table 10-1 If 

file handling 
CLOSE 7-15 DEFINE SUB-INDEX 7-17ff 
DELETE 7-19f 

DELETE FILE 7-21 
EXPUNGE 7-26 
EXPUNGE SUB-INDEX 7-27 
LINK SUB-INDEX 7-36f 
OPEN 7-44f, 4-7 
READ, indexed file 7-5If 
READ, relative file 7-50 
READ, sequential file 7-49 
RETRIEVE 7-54f, 4-17 
REWRITE, indexed file 7-59f 
REWRITE, relative file 7-58 
REWRITE, sequential file 7-57 
SEEK 7-63 
START, indexed file 7-71 
START, relative file 7-70 
START, sequential file 7-69 
TRUNCATE 7-77 
UNDELETE 7-78f, 4-7 
UNLOCK 7-80 
USE 7-83f, 6-19, 4-6 
WRITE, indexed file 7-88f 
WRITE, relative file 7-87 
WRITE, sequential file 7-85f 

miscellaneous 
ACCEPT DAY/DATE/TIME 7-6f 

sort/merge 
MERGE 7-38f, 4-2, 4-6 
RELEASE 7-53,4-7 
RETURN 7-56, 4-7 
SORT 7-66ff, 4-2, 4-4 

summary 7-1 ff 
ST A TIC, rei a tive option phrase 6-16ff 
STOP 

command 9-13, 9-2 
statement 7-72 

STOP RUN statement B-3 
STORE statement (DG/DBMS) 10-24, 10-13, (table) 

10-11 
string 

comparison 4-2 
concatenation (STRING statement) 7-73f 
counting (INSPECT sta temeIlt) 7-3 Iff 
replacement (INSPECT statement) 7-3 Iff 
separation (UNSTRING statement) 7-8 Iff 

STRING statement 7-73f 
subindex 

create (DEFINE SUB-INDEX statement) 7-17f, 
4-7 

delete (EXPUNGE S\IB-INDEX statement) 7-27, 
4-7 

link (LINK SUB-INDEX statement) 7-36f, 4-7 
subprograms 6-12 

arguments 6-12 
CALL statement 6-12, 7-10 
CANCEL statement 7-14 
DG/DBMS 10-15 
EXIT statement 7-24 
parameters 6-12 
PERFORM statement 7-46ff 
USING phrase 6-12 

Index-12 Licensed Material-Property 01 Date General Corporation 093-000223-01 

() 

I 

l 
\ 

J 

l: 
i' 

I 
i 
( 

): 
~, 
~ , 
\ 
1 
(' 

i 
\ 

j, 

U,," ~ 
, , 1. 

j 
j 
\' 
) 

1 
I: 

e'".r' 



\ 

\ ....... 

subschema (DG/DBMS) 10-2ff 
about 5-1 
COPY 10-5 
data definition language (DDL) 10-2 
data manipulation language (DML) 10-5 
example 1O-2ff 
free cursors 10-10 
occurrences 10-5 
record type 10-5, (figure) 10-6, 10-9 
schema 10-2 
set types 10-7ff, 10-8 
SYSTEM record type 10-7 
user work area 10-5, (figure) 10-7 

subscript 6-4 
SUBTRACT statement 7-75f 
subtraction 

operator 6-8 
SET UP/DOWN statement 7-65 
SUBTRACT statement 7-75f 

suppression symbol, zero (table) 5-37 
suspend program execution (STOP statement) 7-72 
switch 

condition 6-10 
name (table) 2-3 

SWITCH clause 4-4 
switches 

binder, global 
/B 11-10 
/D 11-10 
/E 11-10 
/H 11-10 
/111-10 
/K=n 11-10 
/L 11-11, 11-4 
/L=name 11-11 
/N 11-11 
/011-11 
/Q 11-11, 11-14f 
/S 11-11 
/T=n 11-11 
/Z=n 11-11 

binder, local 
name/B 11-11 
/C 11-11, 11-3, 11-13 
/D 11-11, 11-16 
/H 11-11 
/011-11 
/R 11-11 
/S 11-11 
/U 11-11 
name/V=number 11-11 
n/Z 11-11 

/NODEFILE 11-15, 11-13 
compiler, global 

/ A 11-4, 11-18 
/C 11-4, 11-3 
/D 11-4 
/E 11-4, 2-4 
/G 11-4 
/L 11-4, 11-18 

/M 11-4 (see Map switch) 
/P 11-4 
/Q 11-4 
/S 11-4 
/V 11-4, 11-3, 11-12, 11-2 
/W.II-4,11-9 
/X 11-4 

compiler, local 
/L 11-4 
/R 11-4 
/M 11-5ff (see Map switch) 

SYNCHRONIZED clause 5-41 
symbols 

editing (table) 5-37 
zero suppression (table) 5-38 

system errors, fatal 11-17 
SYSTEM record type 10-7 

T 

/T=n global binder switch 11-11 
tab 2-5 
table searching (SEARCH statement) 7-61f 
temporary storage 5-1 
text format 2-1, 2-5 
textual substitutions 8-1 (see also COPY) 
trace information 11-18 
TRUNCATE statement 7-77 

u 

/U local binder switch 11-11 
undefined-length record 4-6, 1-2, 5-7 
UNDELETE statement 7-78f, 4-7 
unlabeled magnetic tape E-l ff 

creating E-2 
reading E-3 
SELECT clause E-l 

UNLOCK statement 7-80 
UNSTRING statement 7-8lf, 4-2 
UP, relative option phrase 6-16ff 
UP BACKWARD, relative option phrase 6-16ff 
UP FORWARD, relative option phrase 6-16ff 
USAGE clause 5-40 
USE statement 7-83f, 6-19, 4-6 
user-defined word 2-3 

in COPY replacement string 8-2 
USING phrase 6-12 

v 

/V global compiler switch 11-4, 11-3, 11-12, 11-2 
V ALUE clause 5-42 
VALUE OF clause 5-lOf 
variable-length record 1-2, 4-6, 5-7 
virtual code 11-2f 

ANSI standard segmentation 11-2f 
compiling (IV) 11-2f 
overlays 11-2, 11-12ff 

093-000223-01 . Licensed Material-Property of Data General Corporation Index-13 



Virtual-Storage Section 5-15ff 
about 5-1 
data item 5-16f 
files 5-16 
memory space 5-16f 
optimizing virtual data 5-17 

VOLUME SIZE clause 4-15 

w 

IW global compiler switch 11-4, 11-9 
WALKBACK command 9-14, 9-2 
warning messages, compiler 11-9f 
words (COBOL) 

in COPY replacement string 8-2 
figurative constants 2-2 

ALL 2-2 
CR 2-2 
HIGH-VALUE(S) 2-2 
length 2-2 
LOW-VALUE(S) 2-2 
QUOTE(S) 2-2 
SPACE(S) 2-2 

index-14 

used interchangeably with literals 2-2 
ZERO(E)(S) 2-2 

optional 2-2 
special character 2-2 
special register 2-2 

Working-Storage Section 5-15, 5-1 
WRITE statement 

indexed file 7-88f 
relative file 7-87 
sequential file 7-85f 

x 

IX global compiler switch 11-4 

z 

I Z local binder switch 11-11 
IZ=n global binder switch 11-11 
zero 

insertion character 5-36, (table) 5-37 
suppression 5-38, (table) 5-37 

ZERO(E)(S) figurative constant 2-2 

Licensed Material-Property of Data General Corporation 093-000223-01 

(j' 

o 

( 
I 

1 
\ 
{ 

1 
\ 

1 

i 
(j1 
'. ~ 

I 
" 
~ 

" 

i 
rtf "-" 



" 

\\ 
,I 

1 
·1 

:J 

~ .... 
\. } 

"- ,,>-, 

n 
'. 

j. ~_~_~~~l ... ) 
\ 

i , , 

I -, 

~,\. . 



r 
i 
I 
! 

:I 
I 

-'-_. __ . __ .. - -- --~-.--.. ---.-.. -----------------. 

Data General Corporation, Westboro, MA 01580 
\ 

'> ...... 


