

T

PR

/_\"*\\,
T \uf’—'

e

e —

e

COBOL
| Reference Manual
(AOS)

093-000223-01

For the latest enhancements, cautions, documentation changes, and other information on this product,
please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000223

© Data General Corporation, 1979, 1980

All Rights Reserved

Printed in the United States of America

Revision 01, November 1980

Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by

reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

COBOL
Reference Manual
(AOS)
093-000223

Revision History:
093-000223
Original Release - June ‘1979
First Revision - November 1980 (COBOL (AOS) Rev. 3.00)

This manual supercedes the AOS portion of 093-000180-02. A vertical bar or an asterisk
in the margin of a page indicates substantive change or deletion, respectively, from
revision 00.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks
DATAPREP NOVA AZ-TEXT ECLIPSEMV/8000 SWAT
ECLIPSE SUPERNOVA DASHER microNOVA XODIAC
INFOS DG/L

T T R e

P

e ———

- G e

i e

e

e

e T e

e e

Preface

We have written this manual for experienced COBOL programmers (or those with experience in a
COBOL-like language) who need familiarity with Data General’s ECLIPSE® COBOL programming
language. The manual describes all aspects of ECLIPSE® COBOL and shows you how to code, compile,
debug, and execute your COBOL programs. ECLIPSE® COBOL runs under Data General’s Advanced
Operating System (AOS).

We have organized this manual as follows:

Chapter 1

Chapter 2
Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

Appendix F

093-000223-01

discusses the ANSI Standard conventions we have implemented (ANSI X3.23-1974), the
general structure of a COBOL program, language extensions to the ANSI Standard, and
special facilities provided by Data General’s COBOL.

describes COBOL language concepts and defines COBOL terms.

describes the Identification Division.

describes the Environment Division, presenting details about its two sections (the Configuration

Section and the Input-Output Section), and discusses the organization, access, and declaration
of COBOL files.

describes the Data Division and discusses COBOL data types, telling you how to declare, define,
and edit data in your program.

describes the Procedure Division and discusses its features including procedure statement
clauses, expressions, subprogramming, file formatting, indexed file record selection, and I/O
exception conditions.

gives a detailed description of all Procedure Division statements, arranged in alphabetic order.

describes the COBOL COPY statement which allows you, at compile time, to include source
code from another file as part of your program.

describes the COBOL source-level debugger and its commands.

describes how to use COBOL with the Data General Database Management System
(DG/DBMS). ‘

tells you how to compile, bind, and execute your COBOL program under AOS.
contains a list of COBOL key words.

describes differences between AOS COBOL and CS Interactive COBOL.

tells you how to write COBOL-callable assembly language routines for AOS.
contains a table of the ASCII character set and one of the EBCDIC character set.
tells you how to create and read unlabeled magnetic tape files using COBOL in AOS.

tells you how to upgrade your RDOS COBOL programs to run on AOS.

Licensed Materiai-Property of Data General Corporation i

Required Manuals

You should supplement your reading of this manual with the following: INFOS ™ Storybook (69-000019),
AOS Programmer’s Manual (93-000120), INFOS ™ System User’s Manual (A0S) (93-000152), Sort/Merge
Utility User’s Manual (AOS) (93-000155), DG/DBMS Reference Manual (93-000163), and A Guide to Using
DG/DBMS (69-000025).

Reader, Please Note

We use the following conventions for COBOL statement formats in this manual:

KEYWORD OPTIONWORD required [optional]...

Where Means

KEYWORD This is a COBOL reserved word which you must specify in the statement which contains it.
You must spell it as shown or use one of the abbreviations or variant spellings, if any are
given.

OPTIONWORD This is an optional COBOL reserved word. You may include or omit it, but if you specify it
you must spell it (or its abbreviation) exactly as shown.

required This is a generic term which you must specify in the clause or option that contains it. (It may
be a COBOL word, literal, picture string, comment entry, or complete syntactic entry.)
Sometimes we use:

required-1
which means you may specify more than one of the generic terms indicated.

[] Brackets enclose optional key words, generic terms, and clauses. Do not enter the brackets;
they merely set off the option.

Braces often enclose one or more arguments, clauses, phrases, or options. They indicate that
you must specify one of these (in the case of options, specify one or none). Braces may also
delimit a set of clauses. Do not enter the braces; they.only set off the choices.

The ellipsis indicates that you may repeat the single element or set of choices which
immediately precedes it.

Additionally, we use certain symbols in special ways:

Symbol Means

) Press the NEW LINE key on your terminal’s keyboard.
O Be sure to put a space here. (We use this only when we must; normally, you can see where to put
spaces.)

All numbers are decimal unless we indicate otherwise; e.g., 355;.
Finally, in examples of system interactions, we use:

THIS TYPEFACE TO SHOW YOUR ENTRY)
THIS TYPEFACE FOR THE SYSTEM RESPONSE

We show the punctuation characters comma (,) and semicolon (;) in some formats for clarity. You may use
them anywhere you use a space in your COBOL program, or you may omit them.

As required by the ANSI Standard COBOL language, periods (.) appear in the text after all section headers,

paragraph names, Procedure Division sentences, and conditional statements and at the end of the last sentence
or statement in a paragraph or section.

End of Preface

I\ Licensed Material-Property of Data General Corporation 093-000223-01

T s e TN

TN e TN TNy

e NN

B .

o~

N i T

I e

P

Contents

Chapter 1 - Introduction

General Description of ECLIPSECOBOL. 1-1
COBOL Program Structure. “1-1
Language EXtensions e 1-2
I/O EXtensions e e 1-2
Data EXtensions. e 1-2
COBOL-Level Debugger e e e 1-2
Sample Program e 1-3

Chapter 2 - Language Concepts

The Character Set e 2-1
SePAratorS e 2-1
COBOL Words e 2-1
Key, Optional, and Special Character Words. 2-2
Figurative Constants e 2-2
Special Register e 2-2
User-DefinedWords e e e e e 2-3
Literals e 2-3
Numeric Literals e 2-3
Alphanumeric Literals e 2-4
Source Formats e 2-4
Lines, Statements, and Sentences 2-4
DebuglLines e 2-5
CommentLines e 2-5
Continuation Lines 2-5
Clausesand Phrases e 2-6

The A-Margin e e e 2-6

Chapter 3 - The Identification Division

093-000223-01 Licensed Material-Property of Data General Corporation

f

. 4

Chapter 4 - The Environment Division /_> (\
SITUCIUTE . . . o oo e 4-1 ,
Configuration Section. 4-2 ,)
The Source-Computer Paragraph 4-2)

The Object-Computer Paragraph 4-2 |

The Special-Names Paragraph 4-2 ¢

File Organizations 4-5 (‘:
Sequential Files 4-5 o
Relative Files 4-6 ¢
Indexed Files 4-6 i
Sort/Merge Files 4-7 {
Database Files. 4-7 {

File AccessModes 4-8 {‘
Sequential Access Mode. 4-8 !
Random AccessMode 4-8 \
Dynamic Access Mode 4-8 /
Input-Output Section 49 <
The File-Control Paragraph.., 4-9 5

SELECT Clausettt 4-9

OPTIONAL Clause s, 4-14 (

ASSIGN Clauses. 4-14 (
RESERVEClause 4-15 !
ORGANIZATIONCIause o e 4-16 {
ACCESSMODECIause i . 4-16 sf
FILESTATUS and INFOS STATUS Clauses 4-18 |

PARITY Clause e 4-18 {

ALLOW SUB-INDEX and LEVELS Clauses 4-18 <

KEY COMPRESSIONClause. e, 4-19 O 1

SELECT Clause Examples. i .. 4-20 S /"

The I-O-Control Paragraph 4-21 |

‘J

o o o {

Chapter 5 - The Data Division |
SITUCLUTE. oo 5-1 {
File Section, 5-2 [
File Description Entry 5-3 §
Block, Node, and Record Sizes 5-7 (
RECORDING MODEClause 5-8 ;

LABEL RECORDS Clause. 5-9 }
VALUEOFC Clause 5-10 {
DATARECORDClause 5-11 |
LINAGECIaUSe 5-11 (
CODE-SET Clause e, 5-13 |
FEEDBACKClause. 5-13 (

PAD Clause. 5-14 {

MERIT Clause 5-14 |
PARTIALRECORD Clause. 5-14 J
Working-Sterage Section L 5-15 |
Virtual-Storage Section 5-15]a
CSIZE 5-17 v
The/MSwitch. 5-17 (
Linkage Section, 5-18 (,5
O

. e a

|

?\ Licensed Material-Property of Data General Corporation 093-000223-01 {
»

AN Screen Section L e 5-18

' The DISPLAY and ACCEPT Commands 5-18

DISPLAY . . . e 5-19

ACCEPT . . . e 5-19

Syntax 5-20

CPRINT. . . e 5-25

Data Types o 5-26

NumericData e 5-26

The Data Description Entry 5-28

! Level Numbers 5-29

‘ REDEFINES Clause e e 5-30

OCCURS Clause e s e e 5-31

Examples of Array Declarations 5-32

, PICTUREClause e e e e 5-33

Defining AlphabeticItems 5-33

: Defining Alphanumericltems 5-33

N Defining Alphanumeric Edited Items. 5-33

. Defining Numericltems 5-34

! Defining Numeric Edited Items [5-35

\ Examples. 5-35

; Data Editing e 5-36

j Alphanumeric/Alphabetic Editing 5-36

\ Numeric Editing 5-36

: USAGEClause e 5-40

| SIGNCIause e 5-41

: SYNCHRONIZED Clause. e e 5-41

! JUSTIFIED Clause ittt 5-42

Vo BLANK WHEN ZEROCIause 5-42

h VALUEClause e 5-42

k ’ Examples of Data Description Entries. 5-43

j The RENAMES Entry 5-44

. The Condition Name Entry. e 5-45
3
|

’ Chapter 6 - The Procedure Division

) Structure and CONCEPLS. o . o v i e 6-1

Name Qualification 6-2

\ Procedure Name Qualification 6-2

' Data Name Qualification 6-3

| Condition Name Qualification, 6-3

Array Name Qualification 6-4

\ Handling ArithmeticS. o 6-5

! Common ArithmeticPhrases 6-6

{ The ROUNDED Phrase 6-6

The SIZEERROR Phrase 6-6

' The CORRESPONDING Phrase ovvie e, 6-7

: Arithmetic EXpressions e 6-8

1\ Conditional EXpressions e 6-9

Simple EXpressions.69

\ Compound EXpPIessionso vt L. .6-10

’ Subprogramming e e e e e 6-12

" Segmentation. e e 6-13

§ Print File Formatting 6-13

093-000223-01

Licensed Material-Property of Data General Corporation

vii

viii

Indexed File Record Selection 6-15
The Position Phrase e 6-15
The Relative Option Phrase e e 6-15
The KEY SeriesPhrase. 6-17
Indexed File Record Options e 6-18
Handling I/0 Exception Conditions. 6-19
The ATEND Phrase e 6-19
The INVALID KEY Phrase i 6-19
The Declaratives Section. e 6-19
COBOL File Status Dataltems 6-20
INFOS Status Dataltems e 6-21

Chapter 7 - Procedure Statements

ACCEPT . . . o e 7-4
ACCEPT DATE/DAY/TIME e e 7-6
ADD . e 7-7
ALTER e 7-9
CALL . . e 7-10
CALL PROGRAM e e 7-12
CANCEL e 7-14
CLOSE e 7-15
COMPUTE e e 7-16
DEFINE SUB-INDEX e s e 7-17
DELETE e 7-19
DELETEFILE. e 7-21
DISPLAY . . . e 7-22
DIVIDE . . . e 7-23
EXIT . . e 7-24
EXITPROGRAM. e e e 7-25
EXPUNGE 7-26
EXPUNGE SUB-INDEX e e e e 7-27
GO . o e e 7-28
IF e 7-29
INSPECT e 7-31
LINK SUB-INDEX e e 7-36
MERGE e 7-38
MOVE . . e 7-40
MULTIPLY . . . e 7-43
OPEN . . e 7-44
PERFORM e 7-46
READforaSequential File 7-49
READ foraRelative File e 7-50
READforanIndexed File e 7-51
RELEASE e 7-53
RETRIEVE e e 7-54
RETURN . . e 7-56
REWRITE foraSequential File. 7-57
REWRITE foraRelative File e 7-58
REWRITE foranIndexed File @ . i 7-59
SEARCH e 7-61
SEEK . . e 7-63
SET . . e 7-64
SET UP/DOWN s e 7-65
SORT . . 7-66
START foraSequential File. i 7-69
START foraRelativefile e 7-70
Licensed Material-Property of Data General Corporation 093-000223-01

R

s T

Y

T

e

N L

PR e RN

.

I e e Y

START foranIndexed File. 7-71
STOP . . . 7-72
STRING 7-73
SUBTRACT 7-175
TRUNCATE . . . 7-77
UNDELETE e 7-78
UNLOCK . . ., 7-80
UNSTRING 7-81
USE . . . 7-83
WRITE foraSequentialFile 7-85
WRITE foraRelative File 7-87
WRITE foranIndexed File. 7-88
Chapter 8 - The COPY Facility
SITUCLUTE o e e e e e 8-1
Replacement Strings e 8-2
Chapter 9 - The COBOL Interactive Debugger
Operating InStructions 9-1
CommentLines e 9-1
DebuglLines e 9-1
Debugger Features 9-2
Using Breakpoints 9-2
Checking Program Status 9-2
Controlling Program Execution 9-2
Using Other Programsand Files 9-2
Debugger Commands 9-2
AUDIT . . . e 9-3
CLEAR . . . e 9-4
CLI . . e SR 9-5
inCOMPUTE e 9-6
CON e 9-7
COPY....... e 9-8
DISPLAY. . . . e 9-9
ENV e 9-10
MOVE . . e 9-11
SET . 9-12
STOP . . . e 9-13
WALKBACK e 9-14
Chapter 10 - The Data General Database Management System
(DG/DBMS) Interface
Compiling and Binding DG/DBMS Witha COBOL Program 10-1
DG/DBMS Subschemas In The Data Division 10-2
The SYSTEM Record Type [, 10-7
Set Types e e 10-7
Declaring Free Cursors. e 10-10

093-000223-01

Licensed Material-Property of Data General Corporation

Overview of DML Statements in The Procedure Division 10-11
READY . . 10-13
INITIATE e e 10-13
FIND . . e 10-13
STORE, GET, MODIFY, ERASE, CONNECT,

DISCONNECT, RECONNECT, and the ASSIGNClause 10-13
COMMIT . . . 10-13
ROLLBACK . . . 10-14
FINISH . . . e 10-14

Positioning Withina Database 10-14

Error Handling e 10-14

SUbPrograms. e 10-15

DML Statement Reference Section 10-15

Opening and ClosingaSubschema., 10-16
READY . . . 10-16
FINISH . . . e 10-17

Transaction Statements e e e 10-18
INITIATE e 10-18
COMMIT . . e 10-19
ROLLBACK e 10-20

Manipulating Set Connections 10-21
CONNECT e 10-21
DISCONNECT. EE R 10-22
RECONNECT e e e s e 10-23

Manipulating Record Occurrences 10-24
STORE e 10-24
GET . . 10-25
MODIFY . . . 10-26
ERASE. . . e 10-27

Condition Checking 10-28
IF . 10-28
CHECK 10-29

Locatinga Record Occurrence ittt i 10-30
FIND (positional) e 10-30
FIND (usingdataitems) o o it e e 10-31
FIND (duplicates) o e e 10-32
FIND (Current) o 10-33
FIND (OWNEI) . . . o o e e e e 10-34

Sample COBOL Programs Using DG/DBMS 10-35

Chapter 11 - How to Use COBOL Under AOS

Compiling, Binding, and Executing 11-1
Usingthe Compiler e 11-1
Callingthe Compiler e 11-2
VirtualCode e e e 11-2

A Word AboutOverlays. e e 11-2
ANSI Standard Segmentation 11-2
Compiling A Program Using VirtualCode 11-3
Compiler Switches. e 11-4
Global Switches e 11-4
Local Switches. e 11-4
Example 11-4
The COBOL MapSwitch e 11-5
Error Messages. o o i e e e e 11-9
Warning Messages o e e 11-9
Binding Program Files 11-10
Licensed Material-Property of Data General Corporation 093-000223-01

e, e SIETA

e W

-

En SN

B

S Ny

S T

JRP

S . Y

CBIND Global Switches e e 11-10
CBIND LocalSwitches e 11-11
Binding Programs (CBIND) Using Virtual Code or ANSI
Segmentation e e e 11-12
The /NODEFILE Switch e 11-15
Splitting the Loading Process 11-15
Executing Your COBOL Program. 11-15
Executinginthe Debugger. 11-16
Runtime Errors e e 11-16
Error Messages o o v it e e e 11-17
Nonfatal COBOL Program Errors 11-17
Fatal COBOL Program Errors. 11-17
Trace Information e 11-18
Example. e 11-18

Appendix A - COBOL Reserved Words

Appendix B - CS Compatibility

AOS-CS Differences i e e B-1
Identification Division Incompatibilities e e B-1
Environment Division Incompatibilities B-2
Procedure Division Incompatibilities oo L. B-3

Transporting Files From your Interactive COBOL System To AOS B-4

Appendix C - Writing COBOL-Callable Assembly Language Routines

Appendix D - ASCIl and EBCDIC Character Sets

Appendix E - Handling Unlabeled Magnetic Tape

Appendix F - Language Upgradability From RDOS to AOS

Identification Division (Chapter3). F-1

Environment Division (Chapter4). e F-1

Data Division (Chapter 5) e F-1

Procedure Division (Chapters 6and 7) i F-2
093-000223-01 Licensed Material-Property of Data General Corporation

Xi

Xii

Tables

Table Caption

N N
N — W N

MMM({\ML}\‘J\M
O NH WN—

AN
W -

o] Pk) 9

i — o)

—_ ' v N —
— —

COBOL Character Set 2-1
User-defined Words 2-3
Indicator Characters 2-5
COBOL File Handlingo 48
SELECT Clause . . « .« . o oot e e e e e e s 4-11
FDEntry Clauses 5-5
COBOL Screen Section Function DelimiterKeys. 5-19
COBOL Line and Column Positioning 5-22
Sign Overpunch Characters 5-26
Binary Number Storage 5-27
PICTURE Editing Symbols 5-37
Suppression Symbol Examples 5-38
Floating Insertion Editing Examples. 5-39
CArithmeticOperators. 6-8
Logical Operators 6-11
Relative ACCeSS 6-18
COBOL File Status Indicators. 6-20
INSPECT Table Structure for Example, 7-33
MOVERules.o 7-41
Data Manipulation Language Statements 10-11
/M Switch Output 11-5
Differences in FILE STATUS Error Codes B-2
Licensed Material-Property of Data General Corporation 093-000223-01

P

e

e

e Tt e N e,

e,

R I T i 1 WU NI

\

IHlustrations

Figure Caption
1-1 COBOL Sample Program.
5-1 LINAGE Clause Example e
5-2 Internal Data Structure
5-3 COBOL Program Using Screen Formatting.
6-1 MultilevelIndexed File.
6-2 Relative ACCESS o o e
7-1 IF Statement Example
7-2 PERFORMExample
10-1 A DG/DBMS Subschemaina COBOL Program.
10-2 Structure of Data in the Figure 10-1 Subschema .,
10-3 COBOL/DBMS Subschema Record Type Description ., .,
d) 10-4 The Function of the User Work Area (UWA)
10-5 COBOL Subschema Set Relationship
10-6 Owner-Member Record Diagram.
10-7 CursorPositions
10-8 Sample Program Number 1
10-9 Logical Diagram of Sample Program Number 1.,
10-10 Sample Program Number2
11-1 Sample COBOL Source Program Lising (produced with /L
compilerswitch)
11-2 COBOL Map Produced by Program in Figure 11-1.
11-3 Example of an Overlay and Overlay Area Structure with Two
ObjectModules e e
C-1 AOS Assembly Language Routine Example
E-1 Creating an Unlabeled Magnetic Tape File,
E-2 Reading an Unlabeled Magnetic Tape File

093-000223-01 Licensed Material-Property of Data General Corporation

Xiii

T

N

N e 7 S i v et B e e

e

B S N e 4 /\J/

e T -

I e

e T A e

e e e

A e

v e o~

[

Chapter 1
Introduction

General Description of ECLIPSE COBOL

Data General ECLIPSE® COBOL is a complete COBOL language processing system. It includes the COBOL
compiler and runtime library, full debugging support through an interactive COBOL-level debugging
program, thorough English language error diagnostics, and a full range of program listings: source listing,
cross-reference table, program map, generated code listing, and compilation statistics. It provides full access to
Data General’s INFOS ™ file system and Sort/Merge facility.

ECLIPSE® COBOL is based on the 1974 ANSI Standard (‘“‘American National Standard Programming
Language COBOL,” ANSI X3.23-1974). It implements the following modules of the ANSI Standard:

Nucleus

Table Handling

Sequential I/O

Relative I/O

Indexed I/O

Sort/Merge

Segmentation

Library

Interprogram Communication (Subprogramming)

COBOL Program Structure

~ A COBOL program is comprised of four divisions, named and ordered as follows:

IDENTIFICATION DIVISION .
identification division body
ENVIRONMENT DIVISION .
environment division body
DATA DIVISION .
data division body
PROCEDURE DIVISION .

procedure division body

093-000223-01 Licensed Material-Property of Data General Corporation 1 = 1

#

Language Extensions
1/0 Extensions

Data General COBOL includes significant extensions in the three input/output modules, particularly in the
indexed I/O module where an extensive set of structured database capabilities is available. Data General
COBOL provides the full standard indexed I/O capability including primary plus alternate indexes. In
addition, we provide extremely powerful and efficient database management capabilities under INFOS and
DG/DBMS via structured, multilevel indexing. You may dynamically define and create subindexes, each of
which is linked to one or to many data records. The I/O verbs provide easy movement upward and downward
through the index levels, as well as forward and backward within a single index level.

We provide many extra index key features, for example, we allow variable length keys, and we support partial
records associated with keys. Also, you may specify approximate key references and generic key references.
You may reference duplicate keys not only sequentially, but also randomly by occurrence number. And,
because the keys are stored separately from the data records, access time is minimized.

You may delete indexed records logically (locally, globally, or both) as well as physically. Then you may
restore the logically deleted records. Also indexed files are organized in such a way that they do not require
frequent maintenance.

With sequential I/O, COBOL supports four record formats: fixed-length, variable-length, undefined-length,
and data-sensitive. The code-set translation capability, which includes optional EBCDIC translation, allows
you to select the fields you want translated so that you may process records containing packed decimal and
binary data.

Data Extensions

ECLIPSE COBOL provides the following data types in addition to the standard alphabetic, alphanumeric,
and decimal character data types:

variable-length binary

packed decimal

floating point

external (character) floating point

COBOL uses ASCII code for internal character data and runs most efficiently with external character data in
ASCII code as well. However, we provide code-set and collating-sequence conversion for other codes,
particularly EBCDIC.

COBOL-Level Debugger

In place of the ANSI Standard debug module, which requires writing and compiling separate debug code,
ECLIPSE COBOL provides an on-line, interactive COBOL-level debug module.

This module allows you to set and clear breakpoints at runtime. These breakpoints interrupt program
execution; you may examine and/or modify data items at that point, then continue program execution. With
these and other advanced features you can substantially reduce debugging time.

1 = 2 Licensed Material-Property of Data General Corporation 093-000223-01

)

t/r P A B PNR s P o A PNt Pt TN} A P e R s 2 TSR o e i AN e s § PN A T e AR o g SN

e o

ST A A

LTI A A A s T

A AM A S N NN T IN,

Sample Program

Figure 1-1 is a sample program that illustrates some of the features of ECLIPSE COBOL. The program
calculates and displays a mortgage payment schedule. Simply enter it using a Data General text editor,
compile it, bind it, and then execute it. (Chapter 11 contains complete operating procedures.) The messages
displayed on the console will be:

ENTER PRINCIPAL:

INTEREST RATE (%):

YEARS TO PAY:

FUNCTION (0=SUMMARY, 1=FULL SCHEDULE):

After each colon, the system will await your response. When you have answered all questions, the system will
calculate the requested schedule and then output it to the line printer.

T

ir

e e o e

L e e T e L NP,

S e o e L

e P N N A

P

IDENTIFICATION DIVISION,
PROGRAM=ID, MORTPROG,
AUTHOR, JOE SCHMOE,
DATE=-WRITTEN, 6 OCT 1977,
ENVIRONMENT DIVISION,
CONFIGURATION SECTION,

DATA DIVISION,
FILE SECTION,

SOURCE=COMPUTER, ECLIPSE,
OBJECT-COMPUTER, ECLIPSE,
INPUT=OUTPUT SECTION,
FILE«CONTROL,

SELECT OUTFILE, ASSIGN TO PRINTER,

FD OUTFILE, BLOCK CONTAINS 512 CHARACTERS,
21 OUTREC,
22 CUTePAYMT=NUM PIC z2z9.
@2 FILLER PIC X(6).
B2 OQUTeMON<INT PIC $(4)9,99,
@2 FILLER PIC X(3).
82 OQUT=MON=PRIN PIC $(6)9,99.
@2 FILLER PIC X(3),
82 OQUTeBALANCE PIC $(6)9.99.
82 FILLER PIC Xx(8),
@2 OUT=INT=TO-DATE PIC §(6)9.99.
A2 FILLER PIC Xx(1@),
WORKING=STORAGE SECTION,
01 CRT=INPUTS,
@2 PRINCIPAL PIC 9(6)V99,
@2 PERCENT PIC 99v99,
@2 YEARS PIC 99,
@2 FUNCTION PIC 9,
@2 REPEAT<FLAG PIC 9,
@1 TEMPS,
@2 MONTHLY-INT-RATE USAGE COMP-1,
@2 MONTHS PIC 9(4),
@2 MONTHSeLEFT PIC 9(4),
@2 MONTHLY=PAYMT PIC 9(4)Vv99,
02 LOAN-BAL PIC 9(6)V99,
82 INT=TO-DATE PIC 9(6)V99,
@2 PAYMT=NUM PIC 9(4), USAGE CoOMP,
P2 INT=PAYMT PIC 9(4)Vv99,
02 PRIN=PAYMT PIC 9(4)Vv99,

Figure 1-1. Sample Program (continues)

093-000223-01

Licensed Material-Property of Data General Corporation

1-3

01 SUMMARYeLINE 1,
@2 FILLER PIC X(16), VALUE "PRINCIPAL =
@2 SUMMARY=PRIN, PIC $(6)9,99,

82 FILLER PIC X(50), VALUE SPACES,
01 SUMMARYeL INEZ2,
@2 FILLER PIC X(20), VALUE "INTEREST RATE =

@2 SUMMARY=RATE, PIC 9,9(4).

02 FILLER PIC Xx(58), VALUE SPACES,
01 SUMMARYe-L INE3,
92 FILLER PIC X(18), VALUE "LCAN LIFE =
@2 SUMMARY-YEARS, PIC Z9,
82 FILLER P1C X(6), VALUE " YEARS",
82 FILLER PIC X(5@), VALUE SPACES,
@1 SUMMARY-L INE4,
@2 FILLER PIC X(18), VALUE "MONTHLY PAYMENT =

@2 SUMMARY-PAYMT, PIC $(4)9.99,
!

@2 FILLER PIC X(S5@), VALUE SPACES,
01 HEADLINE PIC x(808),
VALUE " NUM INTEREST PRIN, PAY PRIN,
- " BAL INTEREST PAID TO DATE",

PROCEDURE DIVISION,
INIT, OPEN OQUTPUT OUTFILE,
OPERATOR.

DISPLAY "ENTER PRINCIPAL:
ACCEPT PRINCIPAL,

DISPLAY "INTEREST RATE (%)
ACCEPT PERCENT,

COMPUTE MONTHLY-INTeRATE =
DISPLAY "YEARS TO PAY:

$" WITH NO ADVANCING,
" WITH NO ADVANCING,

PERCENT 7/ 100 / 12,
" WITH NO ADVANCING,

ACCEPT YEARS, :
COMPUTE MONTHS = YEARS =x 12,
DISPLAY "FUNCTION (@=SUMMARY,

1sFULL SCHEDULE): "

WITH NO ADVANCING,

ACCEPT FUNCTION,
COMPUTE MONTHLY-PAYMT ROUNDED

PRINCIPAL * MONTHLY<INT=RATE =
(1 + MONTHLY=INT*RATE) %% MONTHS /
* L X X X L A X X X X X X X & K L X & K X X L X X X &L & X & 24 & & & & X & & & X 21
((1 ¢+ MONTHLY=INT-RATE) %% MONTHS = 1),
PERFORM SUMMARY-OUTPUT,
IF FUNCTION NOT = 0,
PERFORM DETAIL-OUTPUT,

DISPLAY "TYPE § TO REPEAT, @ TO STOP: " WITH NO ADVANCING,

ACCEPT REPEAT=FLAG,

IF REPEAT=FLAG NOT = @, GO TO OPERATOR,
CLOSE QUTFILE,

STOP RUN,

1-4

Figure 1-1. COBOL Sample Program (continued)

Licensed Material-Property of Data General Corporation

093-000223-01

S U MY S e

s a A e

A N T e v e

o

S s e TN

T

P e T AN

A e

I U

o

L AP DU

-

o e

T

e e e~

SUMMARY=0OUTPUT,
MOVE PRINCIPAL TO SUMMARY=PRIN,
WRITE OUTREC FROM SUMMARY=LINE1 BEFORE
COMPUTE SUMMARY-RATE = PERCENT / 100,
WRITE OUTREC FROM SUMMARYe-LINE2 BEFORE
MOVE YEARS TO SUMMARYe=YEARS,
WRITE OUTREC FROM SUMMARY=LINE3 BEFORE
MOVE MONTHLY*PAYMT TO SUMMARY=PAYMT,
WRITE OUTREC FROM SUMMARY=LINE4 BEFORE

DETAIL-0UTPUT,
MOVE PRINCIPAL TO LOAN-BAL,
MOVE MONTHS TO MONTHS=LEFT,
MOVE @ TO INT=TO=DATE,

ADVANCING 1,
ADVANCING 1,
ADVANCING 2,

ADVANCING 2.

WRITE OUTREC FROM HEADLINE BEFORE ADVANCING 2.

MOVE SPACES TO OUTREC,
PERFORM DO-DETAIL-LINE
VARYING PAYMTeNUM FROM 1 BY 1

UNTIL PAYMTeNUM > MONTHS,

DO-DETAIL-LINE,
COMPUTE PRIN=PAYMT ROUNDED =
LOAN=BAL * MONTHLY=INT=RATE /

* TEXIXITII I AR R L L L R AR AN L A A L A A X L 0 X A A A d d X X 2 J

((1 + MONTHLY=INTeRATE) *%x MONTHS=LEFT = 1),

SUBTRACT 1 FROM MONTHS=LEFT,

COMPUTE INTePAYMT = MONTHLY=PAYMT e PRIN=PAYMT,

SUBTRACT PRIN=PAYMT FROM LOAN=BAL.
ADD INTePAYMT TO INT=TO=DATE.

MOVE PAYMTeNUM TO OUT=PAYMT=NUM,
MOVE INTePAYMT TO OUTeMON=INT,

MOVE PRIN=PAYMT TO OUTeMON=PRIN,
MOVE LOAN-BAL TO OUT=-BALANCE.

MOVE INTeTO=DATE TO OUT=INT-TO=DATE.
WRITE OUTREC BEFORE ADVANCING 2.

X END OF PROGRAM

Figure 1-1. Sample Program (concluded)

End of Chapter

093-000223-01 Licensed Material-Property of Data General Corporation

1-5

VI S R SRS G Sl SR et N S N G R R PR Rt N i Ny N S N e L N N o e e e r\)(./\((i?/?!L\{(J\.x//«\i\(.)1{1\(/\(}{.\5)\?1\\((7\/\//\(.(4\;

e , o C

Chapter 2
Language Concepts

The Character Set

The, COBOL character set consists of the characters listed in Table 2-1. Comma and semicolon are equivalent
to a space. In text format, the characters tab, NL (NEW LINE), and CR (ca;riagF return) are also equivalent
to a space. Wherever a COBOL program requires a space, you may include any number of spaces. COBOL
recognizes lowercase alphabetlc characters only in literals and user-defined COBOL words. Lowercase
characters are not permitted in the PROGRAM-ID paragraph. \

You may use the entire ASCII character set (except for null, rubout, NL, and CR) i1§ alphanumeric literals.

Table 2-1. COBOL Character Set

Character Name Character Name
0-9 digits s comma
A-Z letters ; semicolon
space . period, decimal point
+ plus sign “ quotation mark
- minus sign or"hyphen ’ apostrophe
* asterisk (left parenthesis
/ slash) right parenthesis
= equal sign > greater than symbol
$ dollar sign < less than symbol

Separators

The elements of a COBOL source program (words, literals, etc.) are delimited by separafors. The separators
are space, comma, or semicolon, and a period followed by either a space or any space equivalent.

COBOL Words

A word is a st}ing of up to 30 characters selected from the set of valid COBOL letters (A through Z), the set
of valid COBOL digits (0 through 9), and the hyphen (-). A word may not begin or end with a hyphen.

093-000223-01 Licensed Material-Property of Data General Corporation 2 = 1

Key, Optional, and Special Character Words

Key words are reserved words you must include in your COBOL program. (They are underlined and
uppercase in the source formats.) Optional words may appear in your program at your discretion. (They are
uppercase but not underlined in the source formats.) If you do include optional words in your program, you
must spell them exactly as given. Special character words are =, +, -, >, <, * /, ** (, and). In order to
avoid confusion with other symbols (e.g., >), we do not underline them in the source formats. However, these
characters have the same status as key words, and you must specify them. A list of all ECLIPSE COBOL key
words appears in Appendix A.

Figurative Constants

Figurative constants are COBOL key words that represent specific constants. The singular and plural forms
are equivalent, and you may use them interchangeably. The COBOL figurative constants are:

ZERO Represents the value 0 or one or more of the character 0, depending on the context.
ZEROS

ZEROES

SPACE Represents one or more of the character space.

SPACES

HIGH-VALUE Represents one or more of the character that is highest in the program collating sequence
HIGH-VALUES (ASCII 3773).

LOW-VALUE Represents one or more of the character that is lowest in the program collating sequence (null
LOW-VALUES in ASCII).

QUOTE Represents one or more of the character ““. You cannot use the word QUOTE or QUOTES in
QUOTES place of a quotation mark to delimit an alphanumeric literal.
CR Represents one or more NEW LINE characters.

ALL literal Represents one or more of the string of characters comprising literal. The literal must be
either an alphanumeric literal or a figurative constant other than the word ALL. When you use
a figurative constant, the word ALL is redundant and merely enhances readability.

When a figurative constant represents a string of one or more characters, the context determines the length of
the string according to the following rules. If the figurative constant is associated with a data item, the string
of characters specified by the figurative constant is repeated character by character from left to right until the
size of the resultant string is equal to the length of the associated data item. COBOL does this without
interpreting any JUSTIFIED clause in the data description entry for the data item. If the figurative constant
is not associated with a data item, the length of the string is one character.

You may use figurative constants interchangeably with literals in a source format unless the literal is numeric.
If the literal is numeric, you can only use the figurative constant ZERO (ZEROS, ZEROES). The characters
associated with the figurative constants HIGH-VALUE and LOW-VALUE depend on the program collating
sequence you specify in the Object-Computer paragraph of the Environment Division.

Special Register

LINAGE-COUNTER is a special register associated with a print file. You establish the counter by specifying
the LINAGE clause in the print file’s FD entry in the Data Division. You may specify this register in the
Procedure Division, but you may not modify it. COBOL automatically creates and modifies the
LINAGE-COUNTER for each print file. The LINAGE-COUNTER contains the number of the current line
on the current page.

2' 2 Licensed Material-Property of Data General Corporation 093-000223-01

e e £ ey

AT A e,

DN T T TR T

. e s et~ et T et et e o el

et g e e e e

e N e

R N

[e

User-Defined Words

User-defined words are names you declare to specify various entries in your program. The types of names that
you may declare are listed in Table 2-2.

We refer to both paragraph names and section names as procedure names. All names except procedure names
must contain at least one alphabetic character.

Table 2-2. User-defined Words

Type Use it to name Reference
Alphabet name A code set or a collating sequence Chapter 4
Channel name An output device control channel Chapter 4
Condition name A switch status or a value of a data item Chapters 4 and 5
Data name A record or other data item Chapter 5
Filename A data file Chapters 4 and S
Mnemonic name A Data General system name Chapter 4
Paragraph name A Procédure Division paragraph Chapter 6
Program name The source program Chapter 3
Section name >A Procedure Division section Chapter 6
Switch name A system switch Chapter 4

Literals

A literal is a constant whose value is determined by the characters which form it. Literals may be either
numeric or alphanumeric.
Numeric Literals

You may specify numeric literals in any of the following forms:

Integer + ddd.

In this form, ddd is a string of 1 to 18 digits. The decimal point is optional. If you do not specify a
sign, positive is assumed.

Decimal +ddd.ddd

You may specify no more than 18 digits for this type. The digit string to the left of the decimal point
is optional. If you do not specify a sign, positive is assumed.

Floating +ddd.dddE+dd
Point
om The left part of a floating point literal, +ddd.ddd, is the mantissa, M, and may be either a decimal

or an integer literal. It may have no more than 16 digits. The right part, E+dd, is the exponent, e;
you must specify both digits and the sign. The value of the literal is calculated as:

Mx10°¢

093-000223-01 Licensed Material-Property of Data General Corporation 2'3

Alphanumeric Literals

An alphanumeric literal is a string of up to 132 characters delimited on both ends by a special character. The
beginning and ending delimiters must both be either apostrophes (*) or quotes (*). If the delimiters are quotes,
COBOL treats an apostrophe within the literal as an ordinary character. If the delimiters are apostrophes,
COBOL treats a quotation mark within the literal as an ordinary character. If you want the delimiter
character to appear within the literal, specify two, contiguous instances of the delimiter character.

The value of an alphanumeric literal within the object program is the string of characters itself, with the
following exceptions:

1. COBOL does not interpret the delimiters.

2. Program compilation replaces each imbedded pair of delimiter characters by a single instance of the
character.

3. You may not specify null, CR (carriage return), NL, or rubout within a literal.

4. If you specify the global /E compilation switch, you may include any character in the literal by inserting
its octal ASCII code delimited by angle brackets (< and >). For example:

To Include Insert

carriage return <015>
< <074>
> <076>
null <000>
rubout <177>
“ <042>
* (apostrophe) <047>
A <101>
line feed (NEW LINE) <012>
form feed <014>

If you enclose a nonoctal code within the angle brackets, COBOL signals an error at compile time. If you
enclose an octal code outside the range 0 to 3775 within angle brackets, COBOL ignores the number and
the angle brackets and no error is signaled. (For a table of the ASCII character set, see Appendix E.) For
example, if you specify the /E compilation switch, the literal

“AB’CD"“‘EF <046>GH<<401>1J"
has the compiled value

AB’CD*‘EF&GHIJ

Source Formats

Always code source text for ECLIPSE COBOL in ASCII if you are using Data General’s input devices.
COBOL ignores the null and rubout characters. The COBOL compiler accepts two source text formats:
terminal-oriented text format and industry-compatible card format.

Lines, Statements, and Sentences
In text format, a line consists of 0 to 255 characters, followed by a NEW LINE or form feed. COBOL

compiles the entire line as source text. An indicator character (one of the characters listed in Table 2-3) may
be the first character of any line.

In card format, a line is also a NEW LINE or form feed preceded by 0 to 255 characters. COBOL treats the
first six characters of the line (the sequence number field) as a comment. COBOL also treats any characters
after the 72nd character in a line as a comment. Column 7 is the indicator field. It must contain either a space
or one of the characters listed in Table 2-3.

2 '4 Licensed Material-Property of Data General Corporation 093-000223-01

L/‘uﬂ« A AP P P e A A ANt s A i e e Ao e TN i e e i e

ONE I A e o

ST LTI T e, it

e T T e N A LN e ey A

JE U Y

e

e e e e e e T S J— S e s e e e =

B R I

T

Table 2-3. Indicator Characters

Indicator Character Meaning
D Debug Line
*or/ Comment Line
At least four spaces A-Margin is Blank
(or a tab).
- - Continuation Line

A statement is a valid combination of words and symbols that you write in the Procedure Division of your
program. It begins with a COBOL verb and optionally ends with a period.

A sentence is a sequence of one or more statements followed by a period.

Debug Lines

You indicate a debug line by inserting the character D in the first character position of the source line in text
format, or in column 7 in card format. COBOL compiles debug lines if you specify the global /D switch in the
compilation command line. Otherwise, it treats them as comment lines. In text format, a space or tab must
immediately follow the D, or COBOL will treat the D as a source character.

Comment Lines

A COBOL comment line is a blank line or a line that contains *, /, or D (if you do not specify /D in the
compilation command line) in the indicator field, and is followed by any combination of COBOL characters.
The character / advances the source program listing to a new page before printing the comment. You must
follow the character D by a space or a tab; this is not required for * or /. Comment lines will appear in your
output listing, but the compiler will ignore them.

Continuation Lines

Ordinarily a line-terminating character is syntactically equivalent to a space (except for its special function of
advancing to the next line). However, if the indicator character of the next source line is a hyphen (-), then
COBOL ignores the line terminator and interprets the following line as a continuation of the previous line. The
rules for continuation lines are:

1. If the preceding line ended with an incomplete alphanumeric literal (e.g., “ABCD), the first nonblank
character of the continuation line must be the delimiter character (that is, * or *“, whichever you used in the

preceding line). The characters immediately following must be the next characters in the continued literal,
ending with the delimiter (e.g., “EFGH”).

2. If the preceding line did not end with an incomplete alphanumeric literal, then the first nonblank character
of the continuation line is the immediate successor of the last nonterminator character on the previous line.

Examples:

Linel 0O......... MO
Line2 -O0OVE.......

Linel 0O........ “AB
Line2 -O00O0“CD”....

COBOL compiles the literal “ABCD”

093-000223-01 Licensed Material-Property of Data General Corporation 2 = 5

Clauses and Phrases
A clause is an ordered set of consecutive COBOL character strings. It specifies an attribute of an entry.

A phrase takes the same form as a clause, but it is either a portion of a COBOL Procedure Division statement
or of a COBOL clause.

The A-Margin

The A-margin is the leftmost part of the source line. Paragraph and section names in the Procedure Division
must begin in the A-margin. In text format, the A-margin is the first 4 characters of the source line excluding
the indicator, if any. In card format, the A-margin is columns 8 through 11 of the complete line. A tab
anywhere in the A-margin (in card format, a tab in column 7) causes COBOL to compile the remaining
characters of the source line as if they were immediately to the right of the A-margin.

End of Chapter

2 - 6 Licensed Material-Property of Data General Corporation 093-000223-01

)

B A PA A AR A S AR AI AT N TN A M S A TN b AL P I S e i P P N s I\ o ey P e, e A1 s P A Ao,

[ESNEEN

s

==

P

e et W W W= W

e T

et vt o e et

et

et ot e ——— A e et e e e e et e e N ey e T

o

e N i e G P ke i N W e e X v s e o

Chapter 3
The Identification Division

The Identification Division identifies the entry point for your program. It also allows you, at your option, to
include special documentary information. It takes the following format:

IDENTIFICATION DIVISION.
PROGRAM-ID. progname.

[AUTHOR. [comment entry] <.+]
[INSTALLATION. [commententry] «..]
[DATE-WRITTEN. [commententry] «..]
[DATE-COMPILED.[comment entry] ««.]

[SECURITY. [comment entry] <4]

All paragraphs in this division are optional except the PROGRAM-ID paragraph. Progname not only identifies an
entry point in the COBOL program unit, but also identifies three debugger files (progname.DB, progname.DL,
and progname.DS). The names of your source and object files need not be the same as progname. However,
progname should not be the same as another program’s source filename.

You may present the optional paragraphs in this division in any order. The compiler ignores the comment
entry text strings. However, if you specify the DATE-COMPILED paragraph, the compiler will print the current
date on the listing between DATE-COMPILED and the comment entry.

End of Chapter

093-000223-01 Licensed Material-Property of Data General Corporation 3' 1

TR SRR SR TR Y N T TR R AR, 4 R e A A e S e

e e A e Y o N e N P T £t 3 A AL e oS e P e

O C C

e e e e e N e A N e e e o s e e et e st i e et e el et e P N e P et e A e N e P e T N Nt WS S NS T et v @ s S = e

S S P

Chapter 4

The Environment Division

Structure

The Environment Division supplies information about the physical characteristics of your computer system. It
is comprised of two sections which have different functions. The first, the Configuration Section, deals with the
characteristics of your source and object computer. The second, the Input-Output Section, contains
information pertinent to the transmission and handling of data between external media and your object
program. The Environment Division takes the following format:

093-000223-01

ENVIRONMENT DIVISION .

CONFIGURATION SECTION .

i source computer body

OBJECT-COMPUTER.
| object computer body

SPECIAL-NAMES .
L special names body

INPUT-OUTPUT SECTION .

FILE-CONTROL.
file control body

L

[1-0-CONTROL.

SOURCE-COMPUTER . 1

input output control body

|

-

J 1

Licensed Material-Property of Data General Corporation

4-1

Configuration Section
The Configuration Section consists of three paragraphs: the Source-Computer paragraph, the
Object-Computer paragraph, and the Special-Names paragraph.

The Source-Computer Paragraph

The Source-Computer paragraph identifies the computer on which you will compile your program and has the
format:

[SOURCE-COMPUTER. [commententry] «..]

The Object-Computer Paragraph

The Object-Computer paragraph identifies and describes the computer on which you will execute your object .

program. It has the format:

WORDS
OBJECT-COMPUTER . cmt-entry MEMORY SIZE int-1 CHARACTERS
MODULES

PROGRAM COLLATING SEQUENCE IS <{ NATIVE [SEGMENT-LIMIT IS int-2].

Where:
cmt-entry is any comment that is not a COBOL reserved word; it represents the object computer.

int-1 is a positive integer literal that specifies the size of memory in WORDS, CHARACTERS, or
MODULES, whichever you specify. COBOL ignores this clause.

alph is an alphabet name indicating that this program will use the collating sequence associated with
the alph you define in the Special-Names paragraph.

int-2 is an integer literal in the range 1 through 49, inclusive, that specifies a segment limit.

The ECLIPSE COBOL system does not require you to specify a MEMORY SIZE clause. If you do specify one,
the value is ignored by the compiler.

The program collating sequence is the relational order of the data characters which COBOL encounters
internally during your program’s execution. When COBOL compares character strings (alphanumeric data
items or alphanumeric literals) in explicitly stated relational conditions and relational conditions implied by
condition names, this order determines the outcome of those comparisons. It also applies to character string
comparisons that are implicit in SORT and MERGE operations unless you specify another collating sequence
for a particular SORT or MERGE. It does not apply to character string comparisons implicit in other
statements, such as STRING and UNSTRING.

If you do not specify the PROGRAM COLLATING SEQUENCE clause or if you specify ASCII,
STANDARD-1, or NATIVE, the program collating sequence is the standard ordering of the ASCII character
set as specified in Appendix E. If you specify EBCDIC, the program collating sequence is that of the EBCDIC
character set, as in Appendix F.

4 = 2 Licensed Material-Property of Data General Corporation 093-000223-01

A A R e P A oy P e e i e e A

e A A e P A e P e e P

e« S e e B T R T U
N et et Nt A NN i s e o NN e S e i 2 s ek e e S i e bRt T ~ - ~

TR Ve e n et

v
'

e

The SEGMENT-LIMIT clause indicates which segments of your program are bound in the root context. You
assign a segment number in the section header for each segment in the Procedure Division. If you omit this
clause, COBOL assumes that all segments to which you assigned segment numbers between 0 and 49 inclusive
are resident; those with segment numbers between 50 and 99 inclusive are overlay segments. If you do specify
this clause, those segments with numbers from 0 up to, but not including, int-2 are resident segments; those

with segment numbers from inz-2 through 99 inclusive are overlay segments. See the section on virtual code in
Chapter 11.

The Special-Names Paragraph

The Special-Names paragraph specifies filenames and mnemonic names for special program elements and
relates alphabet names to a specific character code set and/or collating sequence. It has the format:

SPECIAL-NAMES.

[lit-1)1S id-1]5.. [CHANNEL int IS id-2], .. [SWITCH lit-2 [IS id-3] [ON STATUS IS id-4] [OFF STATUS IS id-5 1}...

B (" ascll) T

STANDARD-1
NATVE
EBCDIC
alph1$ < - > | [CURRENCY SIGN IS /ir-6] [DECIMAL-POINT IS COMMA].
THROUGH S '**
i3 |

L {MI&-S }...

7
L — — _
Where:
lit-1 is an alphanumeric literal that specifies the name of a system 1/O device or file.
id-1 is a mnemonic name that you use in yoﬁr program to reference /it-1.
int is an integer literal that specifies a channel number with a value from 1 through 12.
id-2 is the channel name you use in your program to reference the channel associated with int.
lit-2 is a single alphabetic character literal that specifies the program execution switch.
id-3 is the internal switch name for liz-2.

id-4, are condition names associated with the ON and OFF STATUS conditions.
id-5

alph is an alphabet name.

lit-3, are numeric or alphanumeric literals. If numeric, they must be unsigned integers, with values from 1
lit-4, through 256. If alphanumeric, and you specify THROUGH or ALSO, they must be one character in
lit-5 length.

lit-6 is a single-character alphanumeric literal that specifies the currency character.

You use the device clause (the items /it-I and id-1) with ACCEPT and DISPLAY Procedure Division
statements.

093-000223-01 Licensed Material-Property of Data General Corporation 4'3

The CHANNEL clause declares a line printer control channel. You may use channel names in the
ADVANCING clause of a WRITE statement to format data for printed forms. The actual interpretation of a
given channel number depends on the channels specified to the VFU utility (if your printer uses a
programmable data channel VFU), or the punches in the channel on the paper control tape mounted in the
line printer.

The SWITCH clause declares the ON and/or OFF STATUS conditions for a program execution switch. Never
reference the internal switch name (id-3) in your COBOL program; if you specify it, it serves as
documentation only. You may specify the ON and OFF clauses in any order, if you specify them both.

For example, if you declare switches in the Special-Names paragraph of program PAYROLL as:

SWITCH ““F”’ ON STATUS IS FIRST-OF-MONTH,
SWITCH ““B” ON IS Y-TO-D, OFF IS NO-Y-TO-D

you can then give the following execution commands:

Command Meaning
PAYROLL/F/B (or /B/F) Both switches on
PAYROLL/B B on, F off
PAYROLL/F F on, B off
PAYROLL Both off

The alphabet clause defines a specific character code set and/or collating sequence. When referenced by the
PROGRAM COLLATING SEQUENCE clause in the Object-Computer paragraph, or the COLLATING
SEQUENCE clause of a SORT or MERGE statement, alph represents a collating sequence. When referenced
by the CODE-SET clause of a file declaration, it represents a character code set. If you specify ASCII,
STANDARD-1, or NATIVE, alph represents the ASCII code set/collating sequence in Appendix D. If you
specify EBCDIC, alph represents the EBCDIC code set/collating sequence also in Appendix D. If you specify
THROUGH or ALSO, i.e., if you define alph by a series of contiguous literals, you may reference alph only as a
collating sequence. You must not specify a single character or number more than once in the alphabet clause.
THRU is equivalent to THROUGH.

You define the collating sequence identified by the literal phrase according to the following rules:

1. The order in which you specify the literals in the alphabet clause determines the ordinal position in
ascending sequence of the characters within the collating sequence.

2. If the literal is numeric, its value represents the ASCII code of the character whose ordinal position
corresponds to that value.

3. If the literal is a single alphanumeric character, it defines the ordinal position of that character within the

ASCII character set. If you specify a multicharacter alphanumeric literal, COBOL assigns the next -

position (in ascending order) in the collating sequence to each character in the literal, starting with the
leftmost.

4. Any character that you do not explicitly specify in the literal phrase assumes a position in the collating
sequence greater than that of any explicitly specified character. The relative order within the set of these
unspecified characters is their order in the ASCII sequence.

5. If you specify THROUGH, and if /it-3 is less than lit-4, COBOL assigns successive ascending positions in
the collating sequence to the contiguous characters in the ASCII set beginning with the character specified
by lit-3 and ending with the character specified by liz-4. If lit-3 is greater than lit-4 COBOL assigns
successive ascending positions (reverse order) in the collating sequence to the contiguous characters in the
ASCII set. Assignment begins with /it-3 and continues backward through /it-4.

6. If you specify ALSO, COBOL assigns the same position in the collating sequence to the characters of the
ASCII set within /it-3 and /it-5.

4- 4 Licensed Material-Property of Data General Corporation 093-000223-01

s N S o~

Q
A LS fama Anan sre

R e O S

9

A A A P A A A J P PR A NN et A N A S A L o AP TN R A N e o e e R SN I A N A e

= SR arin e g S

Aty

e Mf,«»«j?u

oo e N AN e et e et i et e A N e i et e st TN T T e e T i e XL AT N e ST v AT o e

el S e

oS e A St e et b et

e e e

Examples:

AL-11S “A” 1" »“B” 2"
specifies the collating sequence:
A, 1, B, 2, NULL, TA, TB,...

(] before a letter means CONTROL.) NULL, 1A, etc., follow 2 because they are the first characters of the
ASCII code set.

AL-2 1S 65 49 66 50

specifies the same collating sequence as above, because these numbers are the decimal ASCII equivalents to
the literals specified above.

AL-31IS “A” THR‘U “Z"”,''9” THRU “0”

specifies the collating sequence:

AB, ... Y, 2,987, ..0, NULL, A, TB, ...

AL-4 IS “DdEeFf", *‘0123456", ‘GgHh"”’

specifies the collating sequence:

D,d,E, e F,,0,1,2,3,4,5,6,G, g, H, h NULL, A, 1B...

AL-5is “R”, “A” ALSO “Z”’, “M” THRU “Q”’, “B” ALSO “F"”, “E”

specifies the collating sequence:

R, {;‘} ,M,N,O,P,Q, {F’} ,E,NULL,JA/B, ...

If you want to use a character other than $ in picture strings to signify the currency symbol, specify the
CURRENCY SIGN clause. The character you specify will be the character COBOL stores during data editing.
The currency symbol may be any of the letters, E,F,G,H,1LJ,LK,M,N,0,Q,T,U,W,Y, or any of the special
characters: !, @, #, $, %, :, &, , and - (hyphen). If you do not specify the CURRENCY SIGN clause,
CURRENCY SIGN IS § is assumed. ,

The DECIMAL-POINT IS COMMA clause reverses the use of comma and period in a picture string and in
numeric literals.

File Organizations

The structure of data on a physical file is called the file’s organization. A file’s organization remains fixed for
the life of the file. The ECLIPSE COBOL system provides four types of file organization: sequential, relative,
indexed, and database. It also provides one special kind of file called a sort/merge file.

Sequential Files

A sequential file is a string of logical records whose order you establish by the sequence in which you record
them at the file’s creation time. COBOL reads these records in the order that you wrote them. When you write
additional records to a sequential file, COBOL appends them to the end of the existing file, again adding them
in the order in which you write them. No reference keys exist for records in sequential files.

093-000223-01 Licensed Material-Property of Data General Corporation 4' 5

If you record data on a sequential access device (e.g., magnetic tape), or if you want to output data to a
sequential device (e.g., line printer), you should use sequential file organization to create and process the data.

With sequentially organized files, you can choose any of four formats for your records: fixed-length,
variable-length, undefined-length, or data-sensitive, whichever is appropriate to your application. (See Chapter
5 for more information on record formats.) You can create a sequential file on any Data General peripheral
device, including labeled and unlabeled tape. Because COBOL anticipates your data requirements and
automatically brings buffers in as they are needed to process data, you can process sequentially organized files
with great time efficiency.

With a sequentially organized file, you can use COBOL Procedure Division statements to open, close, and
delete the file (OPEN, CLOSE, EXPUNGE); read, write, and rewrite records (READ, WRITE,
REWRITE); position the record pointer in the file (START); terminate I/O operations on records from the
current logical block (TRUNCATE); and define procedures for I/O error handling (USE).

You declare a sequentially organized file with the clause ORGANIZATION IS SEQUENTIAL in the file’s
SELECT clause.

Relative Files

A relative file consists of logical records that the COBOL program identifies by a relative record number,
which you assign. You can think of this file as a string of areas, each area capable of holding one logical
record. Each of these areas is identified by a relative record number, with the first record of the file numbered
1, the second numbered 2, etc. The sequence in which COBOL writes the records has no bearing on the
sequence in which you retrieve them. Because you store and retrieve the records on the basis of their relative
record numbers, you may access them nonsequentially if you want. Relative file organization is allowed only
on disk devices.

Keep in mind that you should assign relatively low numbers to your records, because COBOL assigns a record
to a physical area which corresponds to that record’s relative number. For example, COBOL will write record
number 500 into area number 500. If 500 is your lowest record number, it takes time as COBOL passes areas 1
through 499. ' '

When you build a relative file, you associate a relative record number with each record. These numbers are the
keys by which COBOL references the records. When you want to access a relative file’s record, you simply
specify the record’s relative number and COBOL goes directly to that record.

With a relative file, you can use COBOL Procedure Division statements to open, close, and delete the file
(OPEN, CLOSE, EXPUNGE); read, write, and rewrite records (READ, WRITE, REWRITE); position the
record pointer in the file (START); position the I/O system at a record (SEEK); and define procedures for
I/0 error handling (USE).

You declare a relative file with the clause ORGANIZATION IS RELATIVE in the file’s SELECT clause.
Indexed Files

ECLIPSE COBOL provides four types of indexed file capabilities:

@ simple indexing,

@ indexing with alternate record keys,

@ multiple indexing, and
@® multilevel indexing.

4' 6 Licensed Material-Property of Data General Corporation 093-000223-01

A A T e &

e = N =N e N

e e e e e e e et e e e P e e e e A A A e e e e e e o

S

T e N vt b e i ¥

R S S S Y N S N S

e et o e e et

B e At e

e o

[

et e

i

The first two types are standard COBOL features. The last two are ECLIPSE COBOL extensions based on
the INFOS file management system.

In general terms, an indexed file contains logical records which a COBOL program identifies by the value of a
key, rather than by their physical or logical position. A key is a shorthand way of telling the system which
record you want. It can be any piece of data within a record or an element external to the record. When you
create an indexed file, you associate a key with each record. You may then randomly reference these keys to
locate or process data, or you may reference data sequentially in ascending order of the keys.

A key may consist of numbers, letters, or both, and can vary in length to give you storage efficiency. COBOL
automatically maintains key/data association, allowing you fast access to your data and enabling your file to
grow or shrink without restrictions.

A record description may include one or more keys, each associated with an index. This index provides a
logical path to the database records based on the contents of the key for that index. So you may have several
indexes for different orders (inversions) and/or subsets of the file. (We define inversion later in this section.)
And you may build a hierarchy of subindexes within an index, identifying each level by a key.

COBOL stores an indexed file as two directories or more containing the file’s index and database. As you write
each database record, you supply a key for that record. Then the system automatically keeps track of the
location of that key’s database record. Remember, you supply the keys; they have no meaning to the system
except for their association with your database records. When you want to retrieve a record, you supply the
key and the system gives you the database record.

With an indexed file, you can use COBOL Procedure Division statements to open, close, and delete the file
(OPEN, CLOSE, EXPUNGE); read, write, rewrite, and remove records (READ, WRITE, REWRITE,
DELETE); restore previously deleted records (UNDELETE); position the record pointer in the file (START);
create, delete, and provide shared subindexes (DEFINE SUB-INDEX, EXPUNGE SUB-INDEX, LINK
SUB-INDEX); obtain information about a key (RETRIEVE); and define procedures for 1/O error handling
(USE).

You declare an indexed file by specifying ORGANIZATION IS INDEXED in the file’s SELECT
clause. You can access an indexed file only on disk devices.

Sort/Merge Files

A sort/merge file can participate in a SORT and/or MERGE operation. You may not specify input/output
operations for such a file. You declare the sort/merge file in an SD entry in the Data Division of your
program. With a sort/merge file, you can use COBOL Procedure Division statements to sort one or more files
(SORT), to combine two or more files (MERGE), to pass a record to the sort operation (RELEASE), and to
retrieve a record from the sort or merge operation (RETURN).

Database Files

COBOL uses the DG/DBMS (Data General Database Management System) to handle database ﬁles
Chapter 10 gives a full description of how to use DG/DBMS.

093-000223-01 Licensed Material-Property of Data General Corporation 4‘ 7

File Access Modes

COBOL supplies you with three modes for getting at your data: sequential access, random access, and
dynamic access. Table 4-1 illustrates the access modes available for the three file organizations, the file
handling systems which implement the access modes, and certain device considerations.

Sequential Access Mode

If you want to access data in the order in which you recorded it, use the sequential access mode. The order of
the file (which is the order you wrote the records when you first created the file) determines the order in which
COBOL references the records.

You may specify the ACCESS IS SEQUENTIAL clause in the SELECT clause for files with sequential,
relative, or indexed organization.

Random Access Mode

The random access mode permits you to read and write any record in your file without accessing any other
records. Because you read and write records according to relative record numbers or index key values, the
sequence in which COBOL stores the records has nothing to do with the sequence in which you access them.
Random access is the quickest and easiest access method.

You may specify the ACCESS IS RANDOM clause in the SELECT clause for a relative or indexed file.

Dynamic Access Mode

The dynamic access mode combines the sequential and random access modes and allows you to switch from
one to the other by using the various forms of COBOL input/output statements.

You may specify the ACCESS IS DYNAMIC clause in the SELECT clause for a relative or indexed file.

Table 4-1. COBOL File Handling

File Handling .
] Access Mode System Device
File
Organization . Inter-
Sequential | Random namic | AOS &OF% s Disk | Tape :;".‘e active :a";
rinter Terminal | Reader
Sequential yes no no yes no yes | yes yes yes yes
Relative yes yes yes yes no yes | no no no no
Indexed yes yes yes no yes yes | no no no no
Multilevel * *
no es no no es es | no no no no
Indexed Y y y
* You may process a given index sequentially or dynamically, but your program must direct the movement between the indexes.

4- 8 Licensed Material-Property of Data General Corporation 093-000223-01

5

D S 2A LTER AT L Atae 3 o

S

L/\—hw‘« e A A A et AN A A e AN A PPN e S\ LA N e o NN F A PN AN PN e AN o N NN PN o £ NN A A N PN P P [N L,

7

P

s

S o

N e e T e wvm e~ = w

e et A e e e it i e ek NN N P et v e e e

e e

e e e

R

e

Input-Output Section

The Input-Output Section consists of two paragraphs which supply information needed to control the
transmission and manipulation of data between external media and your object program. They are called the
File-Control paragraph and the I-O-Control paragraph.

The File-Control Paragraph

In this paragraph you name the files you will use in your program and associate them with system devices or
external files. The File-Control paragraph takes the format:

FILE-CONTROL.
SELECT clauses

SELECT Clause

You must specify one SELECT clause for each file. In each clause, you name a file; you may also specify other
file-related information. For each file you specify in this paragraph, you must include a file description entry
in the Data Division (see Chapter 5).

The information you may provide in a SELECT clause depends on the organization of the file you are
declaring. The SELECT clause takes one of four forms.

Format for a sequential file:

7

S\
{id-lil-l [VOLUME SIZE IS int-2 [CONTIGUOUS [[NO] INITIALIZATION ll]}- o
PRINTER [id-lit-1]

[DISK [id-tit-111

SELECT [OPTIONAL] id-1 ASSIGN TO
[DISPLAY id-iir-1]

[PRINTER-1 [id-lit-1]]

L [KEYBOARD id-lit-11] J

[RESERVE int-6 { :FF:EQS }:I [ORGANIZATION IS SEQUENTIAL] [ACCESS MODE IS SEQUENTIAL]

[FILE STATUS IS id-5] [INFOS STATUS IS id-6] [PARITY IS {g\?EDN }J [INDEX SIZE IS int-9] [DATA SIZE IS int-10] .

093-000223-01 Licensed Material-Property of Data General Corporation 4' 9

Format for a relative file:

SELECT id-1 ASSIGNTO {id-l/‘t-] [VOLUME SIZE IS int-2 [CONTIGUOUS [[NO] INITIALIZATION]1] }- o

. AREA
RESERVE int-6 {AREAS } ORGANIZATION IS RELATIVE

SEQUENTIAL [RELATIVE KEY IS id-2]
ACCESS MODE S {

_——gemga?é } RELATIVE KEY IS id-2

[FILE STATUS IS id-5] [INFOS STATUS IS id-6] [INDEX SIZE IS int-9] [DATA SIZE IS int-10] .

Format for an indexed file:

SELECT id-1 ASSIGN INDEX TO {id—/il-l [MERIT int-1] [VOLUME SIZE IS int-2 [CONTIGUOUS [[NO] INITIALIZATION)| }. oo

LRU

[TEMPORARY] [SPACE MANAGEMENT] [ROOT MERIT IS int-3] [w]

[ASSIGN DATATO { id-lit-2 [MERIT int-4]1 [VOLUME SIZE IS int-5 [CONTIGUOUS [[NO] INITIALIZATION 111 }- oo

) AREA) AREA
[SPACE MANAGEMENT] [HESERVE int-6 INDEX {AREAS}] |:RESERVE int-7 DATA { AREAS }]

SEQUENTIAL
ORGANIZATION IS INDEXED ACCESS MODE IS RANDOM
M DYNAMIC

[ALTERNATE] RECORD { EEzsISARE } { id-3 [KEY LENGTH IS id-lit-3] [WITH DUPLICATES [OCCURRENCE IS id-41] } o

[FILE STATUS IS id-5] [INFOS STATUS IS id-6] [ALLOW SUB-INDEX [LEVELS IS int-81] { {gg;g:E%ngSISION JDATA COMPRESSION] }

[INDEX SIZE IS int-9] [DATA SIZE IS int-10] .

4- 1 0 Licensed Material-Property of Data General Corporation 093-000223-01

3 AN e A

= e oo

s o A

e e N e

o e N A e o A PN PO R PN, e e P S e e e A N\ A AN AL A

SN N

e A e Ay A e e A

P e Pt o AP A

> - e

[

N

e et P AT N et e A L Nt N A N e s+ o e

e S e e o e

e et A e e e e e .

e e

Format for a sort/merge file: -

SELECT id-1

ASSIGN TO id-lit-Iy +us &

Because the SELECT clause is so complex, we present it by discussing each of its clauses separately. You may
specify all of the major clauses in any order, with one exception: the ASSIGN clause must occur where shown.
Table 4-2 lists all of the major SELECT clauses, along with any subordinate clauses. It also tells which file
organizations use the clause, what the default is if you omit the clause, and any restrictions on the clause’s use.

You may not specify any of the SELECT clause data items in the File Section or Linkage Section of the Data

Division.

In the SELECT clause, you may qualify any reference to a data item of any form, but you may not subscript it.

Table 4-2. SELECT Clause

. Sequential | Relative | Indexed |Sort/Merge . e
Clauses and Options Files Files Files Files Default Restrictions
OPTIONAL X File must be open
for input.
ASSIGN X X X X
MERIT X Merit factor
equals 1.
VOLUME SIZE X X X Disk files only.
CONTIGUOUS X X X COBOL will
allocate blocks
randomly.
INITIALIZATION Initialization. COBOL ignores
this clause.
PRINTER X @LPT
TEMPORARY COBOL ignores
this clause.
SPACE X No space
MANAGEMENT management.
ROOT MERIT X COBOL assigns COBOL ignores
root node priority. | this clause.
HIERARCHICAL /LRU
DISK X X X X fn
DISPLAY X
PRINTER- 1 X @LPT1
KEYBOARD X

093-000223-01

Licensed Material-Property of Data General Corporation

(continues)

4-11

Table 4-2. SELECT Clause

Clauses and Options

Sequential
Files

Relative
Files

Indexed
Files

Sort/Merge
Files

Default

Restrictions

RESERVE (DATA)

COBOL ignores
this clause.

RESERVE (INDEX)

COBOL ignores
this clause.

ORGANIZATION

Sequential.

ACCESS

RELATIVE KEY

RECORD KEY IS

KEY LENGTH

DUPLICATES

OCCURRENCE

Sequential.

Current record
pointer
determines
current record for
sequential access.
This clause is not
optional for
dynamic or
random access.

Not optional.

COBOL assigns a
maximum key
length equal to
the length
specified in the
key item’s
PICTURE clause.

COBOL sends an
error message if
you attempt to
write a key that
already exists.

None

ALTERNATE RECORD

KEY IS

KEY LENGTH

If your file has
alternate record
keys, this clause is
mandatory.

You must specify
all alternate
record keys
associated with
your file. The key
items must be
stored in the
records of your
file.

COBOL assigns a
maximum key
length equal to
the longest key
specified for the
file.

4-12

Licensed Material-Property of Data General Corporation

(continued)

093-000223-01

e A AT =~

S smma 6

B N

A AN A A P2 NN AL S D

N

T TN T s T e O TR T A

e A AP A P Ay e A S\ AN N e PN Nt e

N A A e A A e A

e o e 2 =

e A S A e N e e e e e e TN A A e St NN et N e e T N T P TN T T e S T e T T S et T e e

et ot Y TV e e N~

Table 4-2. SELECT Clause

Sequential

Relative

Indexed

Sort/Merge

Clauses and Options Files Files Files Files Default Restrictions
ALTERNATE RECORD
(cont.)
DUPLICATES X COBOL sends an
error message if it
encounters a
duplicate
alternate key.
OCCURRENCE X None.
FILE STATUS X X X You cannot check
the file status
after [/O
processing.
INFOS STATUS X X X You cannot check
for an
INFOS /operating
system error after
1/0 processing.
PARITY COBOL ignores
this clause.
ALLOW SUBINDEX X No subindexing You cannot
allowed. specify this option
if you have
alternate record
keys.
LEVELS X Maximum
number of levels is
32.
KEY COMPRESSION X Redundant key
information will
be stored.
DATA COMPRESSION X Redundant data
record
information will
be stored.
COMPRESSION X Redundant key
and data
information will
be stored.
INDEX SIZE COBOL ignores
this clause.
DATA SIZE COBOL ignores

this clause.

093-000223-01

Licensed Material-Property of Data General Corporation

(concluded)

4-13

OPTIONAL Clause

[OPTIONAL] id-1

Where:

id-1 is a symbolic name that specifies the name you use to reference the file in your program.

You may specify the OPTIONAL clause only for sequential files OPENed for input. This clause is required for
a file that may not necessarily be present each time you execute your object program. If you specify this clause

and the file is not present at execution time, the first READ executed for the file signals an end-of-file
condition (see the section “I/O Exception Conditions” in Chapter 6).

ASSIGN Clauses

ASSIGN INDEX TO

id-lit-1 [MERIT int-1] [VQLUME SIZE 1S in1-2 [CONTIGUOUS [[NOJ INITIALIZATIONII]

[DISK [id-lit-11]

[DISPLAY id-lit-11] oo
[PRINTER [id-lir-1]]

[PRINTER-1 [id-fit-1]]

[KEYBOARD id-lit-11]

[TEMPORARY] [SPACE MANAGEMENT] [ROOT MERIT IS int-3] [HIERARCHICAL]

[ASSIGNDATATO {id-lit-Z [MERIT int-4] [VOLUME SIZE IS int-5 [CONTIGUOUS [[NO] INITIALIZATION]]]}

[SPACE MANAGEMENT]]

Where:

id-lit-1, is an alphanumeric literal or an alphanumeric or alphabetic data item whose value, when you
id-lit-2 OPEN the file, specifies the system file containing the data records and/or index entries of the
logical COBOL file id-1.

int-1, is a positive integer literal that specifies the priority of a volume.

int-4

int-2, is a positive integer literal that specifies a number of blocks.

int-5

int-3 is a positive integer literal that specifies which volume priority has the highest level root node.

4- 1 4 Licensed Material-Property of Data General Corporation 093-000223-01

oA mm -

SN L o8 S LN ST BET Asea A s

A

PP

P SN

L

o AL\ PN e At P A NSNS A P g N P o NN AN s £ P .

A P A e e P e TP po N iy P A P

T R,

e e e e TN T it e e i v s vt e A

T R T e e TN e S S i T TN S e e AT T e N el e et e A A e A e g P o e g

?,,

The ASSIGN clause is composed of several subordinate clauses. Its purpose is to associate the file id-1 with a
storage medium and say something about its physical makeup.

You must specify at least one symbolic name id-lit-1 to identify your file. Because COBOL files are organized
in logical volumes, you must specify a symbolic name for each volume of your file. The order in which you
specify the volumes determines their logical order within the file. The name you specify for the first volume of
the file becomes the file’s symbolic name. If you do not specify more than one name, COBOL assumes the file
has only one volume.

For sequential and relative files, you only need to specify the ASSIGN clause for volumes of the file’s database.
However, if you created the file as a new indexed file or as a new inversion of an existing indexed file, or if you
intend to EXPUNGE an indexed file, you must also specify the ASSIGN DATA clause with the data record file
system names to define the database filename. Otherwise, the default is <filename>.DB.

You must use the VOLUME SIZE clause in conjunction with CONTIGUOUS, or it has no effect. VOLUME
SIZE sets the number of contiguous disk blocks allotted to the file. Each time the allotment is full, AOS
allocates another chunk of that size to the file. Large volume sizes permit fast access to information, but
unused areas in the allotment waste disk space.

For sequential files, you may specify the PRINTER clause to ind<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>