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1.1
MACHINES

1.1.1
Physical Process
Machines

1.1.2
Intellectual
Process Machines

CHAPTER 1

INTRODUCTION TO MINICOMPUTERS

By just about any definition, a computer is a
machine. According to Marvin Minsky, professor

of electrical engineering at MIT, a machine may

be defined as "the realization in material of an
abstract concept."' Let's use an every day example.
Consider the simple act of cutting grass. A machine
called a lawn mower is what takes this abstract
concept and makes it very real. So the lawn mower
is the realization of the abstract concept of
cutting grass.

In its function of cutting grass, the lawn mower
is the mechanization of a process. The lawn mower,
like most other machines before the advent of the
computer, performed physical processes. That is,
the machine controlled the transformation and use
of energy.

With the advent of the computer came a machine
that would perform an intellectual process. That
is, the computer controls the transformation and
use of information. As an intellectual processor,
the computer must do three types of operations in
order to work with information. The computer must:

1. Get information from and give information
to the environment.

2. Transform information from one form to another.

3. Remember information for future recall.

1 Marvin Minsky, Computation - Finite and Infinite Machines.
Prentice - Hall, Englewood Cliffs, NJ, 1967.
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1.1.2
Intellectual
Process Machines
(Continued)

1.2
Computers

Relating these three types of operations
to ourselves as information processors,
consider the job of getting up in the
morning:

1. Ears hear an alarm.

2. Brain perceives this noise as much
louder than other noises; therefore,
it must be important.

3. Brain checks with memory for a record
of such noises.

4, Brain gathers all the available
memory data about such a noise, and
attempts to match a memory pattern
to the input noise.

5. After the match is found, the brain
directs the body to turn off the
alarm and get up.

The three types of operations that the
computer must do, as an intellectual
processor, in order to work with infor-
mation, can be directly related to the
three main sections of the computer:

1. Central Processing Unit (CPU)
transforms information from one
form to another.

2. Input/Output (I/0) interacts with
the environment; acts as the CPU's
sensors.

3. Main Memory remembers information
for future recall.

Figure 1.1 shows the relationship of these
three units to each other.



MEM  BUS

170 BUS

MEMoRY
Core
ROM
S.C.

32K

Figure 1.1 System Block Diagram

CPU

800
1200
NOVA 11
ECLIPSE

TTY

PTR

DSK

CAS

MTA

LP 7 CR
A-D/D-A
COMM

<3 64 un1QUE

DEVICE
CODES

1-3



102
COMPUTERS
(Continued)

1.2.1
Memory

1.2.1.1
Read Only

1.2.1.2
Read/Write

1-4

Because the computer has no intelligence
of its own, it must be told to perform
every task desired of it. It is the
Central Processing Unit (CPU) that is
the heart of the computer. The CPU is
the main director of computer operations
in that it deciphers all instructions to
the computer in such a manner as to
accomplish the desired task.

If the computer is to solve a problem or
perform a function, it must have avail-
able to it all the commands and additional
information necessary to accomplish the
task. This information is retained in

the main memory of the computer and is
available for access by the CPU.

Let us examine memory first, so that we
might better understand how it does its
job of remembering for future recall.

There are two basic types of main memory:
read/write and read only.

Read only memory (ROM) is analagous to

a reference manual. The information it
contains is accessible, but for practical
purposes, unalterable. Read only memory
might be used for storage of frequently
used constants and subroutines, or for
storing information permanently, where
the loss of the information would be
catastrophic. Because of the physical
nature of a ROM, execution of a program
stored in read only memory is usually
significantly faster than execution of
the same program stored in read/write
memory.

Read/write memory contains physical
elements that are capable of having
information read out of them, and of
having new information stored into them.
In other words, it is possible to read
from and write into this type of memory.



1.2.1.2
Read/Write
(Continued

A common read/write memory element is
the magnetic core. It is a donut-shaped
piece of ferromagnetic material with a
wire running through it. By passing a
direct current through the wire, it is
possible to magnetize the core.

By reversing the energizing current in

the wire, it is possible to change the
magnetization of the core. Thus, a

core magnetized in one direction has a
value of 1, and a core magnetized in the
other direction has a value of 0. We are
able to read from this memory by detecting
the polarity of magnetization, and we are
able to write into memory by energizing
the wire in the appropriate direction.

A commonly used analogy for understanding
read/write memories is that of the pigeon-
holes in the post office. In the following
statements, the underlined terms refer to
read/write memories, while information
within parenthesis refers to the pigeonhole
analogy.

In memory every location (box) has its own
unique address (7832 Franklin Park Circle).

What lives at that address (i.e., its
contents) is called data (the Joneses).

Many people come to 1432 Franklin Park
Circle, and visit with the Joneses (some

go away with a picture of the Joneses) but
when they go, (the Joneses are still there).
So too, you can read from memory without
changing its content.

If the stork comes, they may (gain a Jones)
or if the preacher comes they may (lose a

Jones); with such minor modifications they

are (still basically the Joneses).



1.2.1.2
Read/Write
(Continued)

However, if they fail to make their mortgage
payments, the Joneses may not live at

1432 Franklin Park Circle anymore; (the old
residents may be replaced by pnew ones).

The content of an address has been referred

to
it

a.

as data. Data can be one of three things;
depends upon who is calling:

An instruction (daddy). When the CPU
needs to know what to do next, it uses
the program counter to call on memory.

An address_ (husband). When the CPU

needs to know where to look, it uses
the instruction register or indeed the

content of one memory location to call
on another. It's sort of like going to
your mother's house to find out where

you live.

An operand (Tom). When the CPU has
decided that it is at the final
address, the content is the data to
be manipulated in accordance with
the instruction.

Daddy, husband, and Tom are all the same person;
it depends on who is calling as to how that
person will be addressed.



Table 1.A Summary of Pigeonhole Analysis

! Term ! Memory

] 1

e e
| location ! address

1 ]

1 ]

| content i data

| | instruction
| ! address

] ]

i i operand

1 1

1 1

| read ] unaltered

1 1

1 1

| modify ] plus one,

! 1 minus one

[ 1

1 1

| write ! new replaces old

Pigeonhole

:

1

!

i

The Joneses H
daddy i
husband |
Tom E

1

still live there 5
;

H

!

]

I

still basically
Joneses.

evicted for nonpayment



1.2.3
Central Processing
Unit

*
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Now let us take a closer look at the CPU
so that we might better understand how it
does its job. Figure 1.2 might represent
a typical CPU. The entries that we see
in this block diagram are as follows:

1. Program Counter (PC) - Holds the
address of the next instruction to
be executed.

2. Instruction Register (IR) - Holds a
copy of the current instruction for
decoding and execution.

3. Arithmetic and Logic Unit (ALU) =
That's where the number crunching
takes place; where all data manipu-
lation takes place.

4. Accumulators (AC) - An internal,
easily-accessible, limited-storage
area for the temporary storage and
manipulation of operands. This type
of storage is often referred to as
scratch-pad memory.

5. Carry (CRY) - An arithmetic extension
of the ALU used to indicate overflow;
a carry out of the most significant
digit.

6. Memory Address register* (MA) -
Keeps track of the last address that
was referenced.

7. Memory Buffer register* (MB) - Contains
the content of the last address that
was referenced.

8. Console ~ This term should not be
confused with the Teletype®¥*¥* keyboard.

Each memory also contains its own MA and MB registers.
*¥*% Teletype is a registered trademark of Teletype Corporation,

Skokie, Illinois.
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1.2.3 The console contains the switches for

Central Processing controlling the operation of the computer.
Unit There are switches for starting, stopping,
(Continued) resetting, and examining the various

components of the system. In addition,

a number of indicator lights are provided
on the console to allow the computer
operator to determine visually the status
of the computer at any time. As well as
being the manual control panel for the
computer, the console enables the programmer
to follow the execution of his program to
detect any flaws, or bugs, in the program.
The console is actually a manual control
panel connected to the input/output
facilities, supplying information to the
CPU, and displaying information from the

CPU.
1.2.4 The third section of the computer is the
Input/Output input/output interface. This is the
Interface section that connects the CPU with its

environment to provide the channel for
the flow of information from the outside
world into the computer, and vice versa.
This section connects to, and controls,
such devices as keyboards, printers,
paper tape punches, paper tape readers,
magnetic tape recorders, magnetic discs,
magnetic drums, CRT displays, analog to
digital converters, digital to analog
converters, card readers, card punches,
ete.,

Through the I/0 section, the CPU can
obtain and retain data and/or additional
instructions from the outside world.
This is known as the interactive portion
of the computer.

1-10



1.3
REVIEW QUIZ

1. The computer controls the transformation
and use of .

2. The three main sections of a computer are:
a.
b.
c.

3. The pigeonhole analogy is used to
illustrate that R/W memory was designed
by the post office. True or False.
(Circle one.)

4, The content of a memory location can
be one of three things:
a.
b‘
Co

5. "Scratchpad memory" is used to handle
the overflow from main memory.
True or False. (Circle one.)

6. The indicator for arithmetic overflow
is called .

7. The purpose of the console is
twofold:
a. manual control
bl

8. The term that applies collectively
to all I/0 devices is: ___ __ .

Check your answers on the next page.

1-11
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CHAPTER 2

BINARY - THE LANGUAGE OF THE COMPUTER

Since all of the information that passes
through a computer is in the form of numbers,
and since all of the instructions that the
computer executes are also in the form of
numbers, it is helpful to have a basic
understanding of the number systems that

a computer uses.

2.1 A number system is just one type of
NUMBERING information system. Information systems
SYSTEMS in general are simply abstract concepts

represented by symbols and interpreted
according to a set of rules. Table 2.A

below lists various systems of symbols

and their associated rules for interpretation.

Table 2.A Symbols and Rules

E Symbols E Rules E
g A-Z et.al. E Grammar E
i o= i Morse Code ;
i 0-9 et.al. E Mathematics i
E db (f) CL i Music E
—_ = !

To understand the symbols, you've got to learn
and adhere to the rules.

The number system that the computer uses,
called the binary numbering system, follows
the same set of rules as the number system
with which we are most familiar: the decimal
numbering system. The primary difference is
in the number of distinct marks or digits
that exist within each system. As their
names imply, the DECimal system has ten
distinct marks and the BInary system has

two distinct marks.



2.1
NUMBERING
SYSTEMS
(Continued)

2.2
DECIMAL
NUMBERING
SYSTEM

2.2.1
Digits

Before we look at the rules for interpreting
these numbering systems, why do you suppose
binary, a system with only two digits, became
the language of the computer? Actually, early
analog computers attempted to use the decimal
numbering system.

As you look around you'll notice that many
physical devices have two states:

The light bulb is on or off.

The door is open or closed.

e A memory core is magnetized in
one direction or the other.

e A switching circuit is either
saturated or cutoff.

e The answer to number five is
true or false.

e This is getting ridiculous,

yes or no.

The purpose of the last two entries is
to show that the two-state world is not
restricted to physical devices. Indeed,
some of the most complex problem-solving
can be broken down into a series of
yes-no questions.

Now down to the business at hand. To

more easily understand the binary numbering
system, let's start by reviewing the one
with which we are most familiar.

The decimal numbering system contains
ten distinct marks, called digits:

0’ 19 2’ 3’ u’ 5’ 6’ 7’ 8’9



2.2.1
Digits
(Continued)

2.2.2
Overflow and
Carry-In

2.2.3
Digit
Position

Each digit from left to right is the
result of increasing the value of the
previous digit by "1;" e.g.,

3 5 T 9
+1 +1 +1 +1
6 8 2

What happens when the largest digit, nine,
is increased by one? This is the very
basic concept that most of us missed in
learning by rote. Nine plus one is not
ten; when one is added to the largest
digit, it results in an overflow condition.
That is, a zero is recorded in this digit
position and a one is carried over to the
next highest digit position. There the
one becomes a carry-in, or is added into
the new position.

carry -—» 1
09
+01

10

The concepts of overflow and carry-in have
introduced a new concept: positional value.
The value of a digit depends upon the
digit's position within the number. In
the number 1234, the digit 2, although a
lesser digit than 4, has a greater value
because of its position within the number.

The value of a position, called its

weight, indicates a power of the base¥* or,
how many times the base¥ has been multiplied
by itself.

1234
1000 = 1 X 1000 = 1 X 103
200 = 2 X 100 = 2 X 102
30 = 3X 10 = 3 X 101
+ 4 = 4 X 1= 4X 102F—————-—
1234

* Base refers to the number of distinct digits; in decimal, it's ten.
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2.2.3
Digit Position
(Continued)

2-4

Let's take the analysis of digit versus
position one step further. In the previous
example, the digit 1 was raised to the third
base three times as follow:

1 X 10 X 10 X 10, to this quantity was
added
+ 2 X 10 X 10, to this quantity was
added
+ 3 X 10, to this quantity was
added
+ u,

Another way of writing the same procedure is:

1 Notice that by the time the total
X 10 has been reached, the original 1
gets multiplied by the base three-
10 times (which corresponds to its
+ 2 power of the base in the final

number: 1X103), the original 2 gets
12 multiplied by the base twice (its

X 10 power of the base: 2X102), the

original 3 once (3X10') and the

120 original 4 never gets multiplied

+ 3 by the base, just added in to the
total (corresponding to 4X100)
123
X 10
1230
+ 4
1234

This procedure has hidden in it another
basic concept that will be used shortly
to convert numbers between different bases.

Before we introduce new bases, let's
highlight the concepts we've discussed
about decimal.

1. Ten distinct marks.

2. Largest digit plus one results in
zero and a one carry to the next
digit position.

3. The value of a position indicates
its power of the base.

4, A digit's value depends upon its
position within the number.



2.3
BINARY
NUMBERING
SYSTEM

2.3.1
Digits

2.3.2
Overflow and
Carry=-In

203.3
Digit Position

Now let's apply the concepts to the
Binary numbering system.

The distinct marks, called digits, are:
0,1

Each digit is the result of increasing
the previous digit by "1;" e.g.,

0 1
+1 +1
1 ?

The largest digit plus one results in a
zero and a one carry to the next digit
position:

The value of a position indicates its
power of the base.

4 3 2 1 0
2 2 2 2

\\\\\10;01‘////

A digit's value depends upon its position
within the number.

10101
10000 = 1 X 10000 = 1 X 24——-—'\
0=0X 1000 =0 X2
100 = 1 X 100 = 1 X 2
0=0X 10 =1 X 2
1 =1X 1=1X2
10101

As in the decimal numbering system, the
power of the base can be thought of as the

number of zeroes to the right of the digit 1.
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2.2.3 For example:
Digit Position

(Continued) decimal binary
2 2
10 = 100 2 =100
3 3
10 = 1000 2 = 1000
4 4
10 = 10000 2 = 10000

The type of thinking applied in the previous
statement helps us over the hump of saying
22 =z 4 or 23 - 8., That type of thinking
was fine in decimal but becomes a stumbling
block when we go to other bases.

2.4 While the computer uses binary because of
OCTAL its simplicity, we as humans can't handle
NUMBERING all that simplicity all at once. In other
SYSTEM words, it becomes very cumbersome when you

have to represent even relatively small
quantities with binary numbers. For instance,
if you give me 11010, cents for a 39;, cent
item, one of us is getting a deal. What we
need is a system that will reduce all those

1s and Os into something more manageable.
There are actually two equally suitable
alternatives, a base sixteen numbering

system and a base eight numbering system.

This book is only going to deal with the

base eight numbering system, otherwise known
as octal. At this time we will introduce octal
using the same concepts that were established
for decimal and then used to introduce binary.
In the next section where we convert numbers
from one base into other bases, we will see
why octal is referred to as binary shorthand.

Now let's apply the concepts established for
decimal to the octal numbering system.
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2.4.1
Digits

2.4,2
Overflow and
Carry-In

2.4.3
Digit Position

The distinct marks, called digits, are:
0) 1’ 21 31 4’ 5! 6’ T

Each digit is the result of increasing the
previous digit by "1;" e.g.,

3 5 7
+1 +1 +1
Ty 6 K3

The largest digit plus one results in a
zero and a one carry to the next digit
position:

7
+

1
0

—_

The value of a position indicates its
power of the base.

83 82 81 8O
avog

A digit's value depends upon its position
within the number

1234
1000 = 1 X 1000 = 1 X 8= ”
200 =2 X 100 = 2 X 8=
30 = 3 X 10 = 3 X 8=
4 =4 X 1 =04 X 8=

Doesn't it look amazingly like decimall
Why shouldn't it? The digits are the

same (as far as they go; there is no 8

or 9 in octal), and the rules are the
same., If you have trouble accepting this,
I think what is probably blowing your mind
is the fact that:

82 = 100 not 64,
8; = 10 not 8,
8 = 1000 not 512.
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2.4.3
Digit Position
(Continued)

2.5
CONVERTING
NUMBERS
BETWEEN BASES

2.5.1
Converting
from Decimal
to Another
Base

Just as a point in passing for those who
have never seen it before, the distinct
marks of the hexadecimal numbering
system are:

0’ 17 2’ 37 L" 57 6’ 7’ 8’ 9’ A’ B
c, D, E, F.

Since most of us are used to working in
decimal, yet the computer "speaks" binary,
and octal is most often used as a compromise,
we are going to have to know how to convert
numbers of one base into other bases. So,
let's establish the rules.

The procedure for converting a decimal
number to some other base B is:

1. Divide the decimal number by B, and
separate the answer into a quotient
and a remainder.

2. Record the remainder.
3. Divide the quotient by B, and separate

the answer into another quotient and
a remainder.

4, Repeat Steps 2 and 3 until a quotient
of 0 is obtained.

5. Record the remainders in the reverse
order of their occurrence. The result
is the converted number.

Examples: Convert to base 2.

21 = 10101
10 2

[A\SH SR \CN VN V]

e A

O =N O}—
L, O mO -

reverse order of occurrence



2.5.1 Example: Continued

Converting
from Decimal 259 = 100000011
to Another 10 2
?ase ) §|$59 :
Continued 29 A

2 64 1

2| 32 0

2116 0

28 0

2y 0

2 2 0

21 0

0 1 reverse order of occurrence
17 = 10001
10 2

21

2 8 1

2l g 0

2l 2 0

2 1 0

0 1 reverse order of occurrence

Try it yourself.

39 =
10 2
2[ 39
Try another one.
123 =
10 2

2-9



2.5.1 Now let's take the same decimal numbers,

Converting and the same rules and convert to base 8.
from Decimal
to Another 21 = 25
Base 10 8
(Continued)
81 21
8 2 ST
0 2 reverse order of occurrence
Proof
25
|8 0
5X8 = 5 X1 = 5
10 10
1
2 X8 = 2X8 = 16
10 10 _10_
21
10
259 = 403
10 8
8259
8132 3
8 & 0
0 4 reverse order of occurrence
Proof:
403
0
3 X8 = 3X1 = 3
10 10
2
—>L4 X 8 = U4 X 64 = 256
10 10
259
10

2-10



2.5.1
Converting
from Decimal
to Another
Base
(Continued)

817
8 2 11
0 2

Proof:
21
8
0
1 X8 =
1
2 X 8

Try it yourself.

839

Try another one.

17 = 21
10 8

reverse order of occurrence

1X1 =1

=2 X 8 =16
17
10

39 =

10 8
123 =

10 8



2.5.2
Converting
from Other
Bases to
Decimal

2-12

Being able to convert decimal numbers into
other bases may prove helpful if you have
to enter information through the console
data switches. By the same token, if you
have to interpret the console data display,
it may prove helpful to convert numbers
from other bases B into their decimal
equivalent.

The procedure for converting a base B
number to decimal is:

1. Start with the most significant digit.
2., Multiply by B.

3. To the result, add the next least
significant digit. 0

4. Repeat Steps 2 and 3 until the B
digit gets added by Step 3. The
last step in the sequence is always
an addition.

If the procedure works, the least it
ought to do is convert base 10 numbers
to decimal. Let's give it a try:

1234
10

1 -
X 10
10

+ 2=
12
X 10
120

+ -
123
X 10
1230

+ -
1234

10



2.502
Converting
from Other
Bases to
Decimal
(Continued)

How about that, sports fans! If the

sequence doesn't look familiar, look
back on page 2-4, Now let's try it

for binary and octal.

25 21

21 17

403 = 259
8 10

+
w
A

259
10



2.5.2
Converting
from Other
Bases to
Decimal
(Continued)

Now it's your turn. Use the numbers that
you got as answers to the problems on
page 2-11.

39 = _______  and 123 =
10 8 10

Convert the missing octal numbers back
to decimal using the method shown above.

Given enough room, it works for binary also.

10101 = 21
2 10

1 =
X 2
2

+ 0 =
2
X 2
n

+ 1 =
5
X 2
10

+ 0 =
10
X 2
20

+ 1 =
21

10



2.5.2
Converting
from Other
Bases to
Decimal
(Continued)

100000011 = 259

10 2 10
1<——| 14——J
2 X 2
2 2
0 + 0
2 2
2 X 2
4 4
14— + 04————-——
5 4
2 X 2
10 8
0 «—— + 0 -—-
10 8
2 X 2
20 16
1 «—ro + 0 =——
21 16
10 X 2
32
+ Q=-—-—1—
32
X 2
64
+ 0 -
64
X 2
128
+ | —
129
X 2
258
+ 11—
259
10

Now it's your turn. Use the numbers that
you got as answers to the problems on page 2-11,
= ___ and 123 =
10 2 10 2
Convert the missing octal numbers back to decimal
by using the method shown above.



2.5.3 Of the various conversions between bases,

Converting the one we use most often hasn't been

Between discussed, yet it is the easiest conversion

Octal and Binary to do. The conversion of octal numbers to
binary and vice versa is based on one
simple fact: 2 = 8. Let's examine the

binary counting sequence alongside the
octal counting sequence

Binary Octal

0 = 0

+ 1
1 = 1

+ 1
10 = 2

+ 1
11 = 3

+ 1
100 = L

+ 1
101 = 5

+ 1
110 = 6

+ 1
111 = 7

+ 1
1000 = 10

If we take the binary numbers that have been
equated to octal numbers and append leading
zeroes to make all binary numbers three-digit
numbers, we observe the following:

Binary Octal

000
001
010
011
100
101
110
11

o ~omEWNH =0

3
1 000 =2 = 8 =

—_

2-16



2.5.3

Converting
Between

Octal and Binary
(Continued)

Even more interesting, at the same time that
the binary numbering system runs out of numbers
that it can record using three digits, so the
octal numbering system runs out of numbers that
it can record with one digit. This three-to-one
relationship is the whole key to binary to
octal conversion. The only thing you have to
"memorize" is the binary equivalent for 0 - Tg
shown above. Most people would tell you, "It's
as simple as one, two, three." But in this
case, it's as simple as three-to-one.

Examples:

100 011 010 001
100 011 010 001
4 3 2 18

On the previous pages you converted the same
decimal numbers into both binary and octal.
Now, by the method shown above, see if your
binary and octal answers agree with each
other. Don't be afraid to add leading zeroes
if necessary to maintain the three-to-one
relationship.

1. 210 010 101,
=2 5§
2. 25910 = 8
F—_—
3. 1T = 2
= 8
4. 391 = 8
= 2



2.5.3

Converting
Between

Octal and Binary
(Continued)

2.6
ARITHMETIC

2.6.1
Decimal
Addition

5. 1234,

Now that we have become so adept at
manipulating numbers from one base to
another, let's try performing arithmetic
operations on numbers of the same base.

The addition of binary numbers follows
the same procedure as the more familiar
addition of decimal numbers.

To add two decimal numbers, proceed as
follows:

1. Add the right-most digit of each
number to obtain a sum digit and
a carry digit.

2. Record the sum digit.

3. Add the next right-most digit of
each number, plus the carry digit
left from the previous addition,
and obtain another sum digit and
carry digit.

4, Repeat Steps 2 and 3, proceeding
from right to left, until all the
digits have been added.

5. The number constructed from the
individual sum digits is the final
sum.,



2.6.1
Decimal
Addition
(Continued)

Add the two decimal numbers 566 + 62U,

566
62U
6 + 4 = 10 .

1]
o

where Carry = 1 Sum

566
624

0 where Carry = 0 Sum = 9
01

566
624

0 +5+6 =11 90 where Carry = 1 Sum = 1
101
0566
0624

1 +04+0 =1 190 where Carry = 0 Sum = 1
101
0566
062u4=

1190

Thus 566 + 624 = 1190




2.6.2
Binary
Addition

2.6.3
Overflow and
Carry-In

2-20

Binary addition follows exactly the same five
steps used in decimal addition. But remember,
the binary numbering system has only two
digits (0 and 1). The following example
examines the addition of all possible operands
resulting from the addition of two binary
numbers:

Carry 0 0 0 0 1 1 1 1
Bit A +0 +0 +1 +1 +0 +0 +1 41
Bit B +0 +1 +0 +1 +0 +1 +0 41
Carry Sum 00 01 01 10 01 10 10 11

The next example shows the normal method of
keeping track of the sum and carry digits

ANAASANAN

1 0 1 1 0 0

Thus 10111 + 10101 = 101100,

Add the two binary numbers 1101 + 10.
0 0 0
ASANAN
0 0 1 0

0 1 1 1 1

Thus 1101 + 10 = 1111,

If the number of digits in the answer exceeds

the maximum allowable number of digits, the
answer is said to overflow, and the left-most
digit of the answer is called the overflow digit.

If, in the second example above, the maximum
allowable number of digits is five, then there
is an overflow, and the overflow digit is 1.
In the third example above, if the maximum
allowable number of digits is four, then there
is no overflow, so the overflow digit is O.



2.603
Overflow

and Carry-In
(Continued)

2.6.4
SUBTRACTION

2.6.4.1
Complementary
Arithmetic

The procedure for performing octal addition
is similar to that used for decimal and binary

addition. Keep in mind that the octal numbering
system has eight digits (0 through 7), and a carry

occurs when the sum exceeds 7.

In the following examples, assume the maximum
allowable number of digits is five.

Add the two octal numbers 23174 + 60165,
1 0 0 1 1

2 3 1 7 4
\6\0\1\6\5

1 0 3 3 6 1

Thws 23174 + 60165 = 103361,
NOTE: In this example, an overflow occurred.

Add the two octal numbers 7106 + T70T7.

1 1 0 1
IRNANANAN:

1 0 0 1 5
Thus 7106 + 707 = 10015.

NOTE: In this example, no overflow occurred
since the sum did not exceed the
maximum allowable five digits.

In the previous section, the concept of
"maximum allowable number of digits" was
introduced. This concept is of great
importance in the understanding of
complementary arithmetic.
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2.6.4.1
Complementary
Arithmetic

2-22

If the maximum allowable number of digits
is six, for example, then the decimal numbers

0 9 8 6 3 2 17
and 1 9 8 6 3 2 7

represent the same magnitude since the
left-most digit is an indication of over-
flow, and adds nothing to the value of the
right-most, maximum six digits.

The normal counting sequence from zero is
as follows:

[eNeNoNe)
[oNeoNoNe]
[oNoNoNe]
oo NoNe)
[oNeNoNe)
whnh—0O

1
1

O OWWO\O
[e N ejVe Ve Vo)
O OWWOWW
O OWWWY
O OWWw\Ww
- OW o

Notice that if 1 is added to the largest
number, 999999, zero is obtained and the
normal counting sequence is recycled.

What happens if the counting sequence
is reversed?

OWOOOOOoOo
OVOVOWOOOO
OWWOWWOWOOOO
OVWOOWOOOO
WVOOWOoOOOO
~NOWOWO =MW

Here, notice that when 1 is subtracted from
zero, the number simply cycles back to 999999.
To our way of thinking, 1 subtracted from zero
is a minus 1, or a negative one. Regardless
of what you call it, in a cyclic system of



2.6.4.1
Complementary
Arithmetic
(Continued)

counting, numbers equidistant from either side
of zero are referred to as complementary
numbers. Therefore, in the six digit system
shown here, 1 and 999999 (-1) are complementary
numbers, 2 and 999998 (or -2) are complementary
numbers. As a matter of fact, any pair of
numbers which added together total zero (in a
cyclic system) are complementary numbers.

To obtain the complement of a number, it is
not necessary to count forwards and backwards
from 000000, Simply subtract the number from
the largest possible number +1.

For the six-digit maximum numbers used here,
the largest possible number is 999999, and
the largest possible number +1 is 1000000,
Find the complement of 000004,

1 0 0 0 0 O O (largest possible number +1)
- 0 0 0 O O U4 (minus the number)

9 9 9 9 9 6 (complement of the number)

Find the complement of 923156.

1 0 0 0 0 O O
- 9 2 3 1 5 6 (number)

0 7 6 8 4 4 (complement)
Find the complement of 000000.
1 0 0 0 0 0 O
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