
ELF-STUDY COURSES

053-000039-00

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS

DOCUMENT FOR USE BY DGC PERSONNEL AND CUSTOMERS AS

A GUIDE TO THE PROPER INSTALLATION, OPERATION, AND

MAINTENANCE OF DGC EQUIPMENT AND SOFTWARE. THE

DRAWINGS AND SPECIFICATIONS CONTAINED HEREIN ARE

THE PROPERTY OF DGC AND SHALL NEITHER BE REPRODUCED

IN WHOLE OR IN PART WITHOUT DGC PRIOR WRITTEN APPROV-

AL NOR BE IMPLIED TO GRANT ANY LICENSE TO MAKE, USE,

OR SELL EQUIPMENT MANUFACTURED IN ACCORDANCE HERE-

WITH.

DGC reserves the right to make changes in specifications and other information

contained in this document without prior notice, and the reader should in all

cases consult DGC to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC

HARDWARE PRODUCTS AND THE LICENSING OF DGC SOFT-

WARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN

CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRE-

SENTATION OR OTHER AFFIRMATION OF ACT CONTAINED IN

THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATE-

MENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-

MANCE, SUITABILITY FOR USE OR PERFORMANCE OF

PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY

LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL,

INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSO-

EVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARIS-

ING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFOR-

MATION CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED,

KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH

DAMAGES.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS,

MANAP, microNOVA, NOVA, PROXI, SUPERNOVA, ECLIPSE

MV /4000, ECLIPSE MV /6000, and ECLIPSE MV/8000 are U’S. registered

trademarks of Data General Corporation. AZ-TEXT, DG/L, ECLIPSE

MV/10000, GW /4000, GDC/1000 GENAP, PRESENT, REV-UP, SWAT,

TRENDVIEW, DEFINE, SLATE, microECLIPSE, BusiPEN, BusiGEN,

BusiTEXT, and XODIAC are USS. trademarks of Data General Corporation.

Copyright © Data General Corporation, 1981, 1982, 1983

All Rights Reserved

Fundamentals of

@» DataGeneral

Small Computer |

Programming

\
LICENSED MATERIALS

eaugaiiee!

SELF-STUDY COURSE

053-000039-00

CHAPTER 1

CHAPTER 2

TABLE OF CONTENTS

INTRODUCTION TO MINICOMPUTERS

MAChHin€S sececcveseccsscccvccsesesessecees

Physical Process MachineS wecoesccvvcee

Intellectual Process MachineS weccesee

COMPUTELS covececveveseceesvevesccscsesece

MEMOVyY cecvevessccvesesccsccssceseeeece

Read Only ccccccvcvvevccsesscccvcessecce

Read/Write cevvcevecvccccvecessesceveree

Central Processing Unit ccoccccecscececes

Input/Output Interface weccccvccveccees

Review QuiZ cecoccvcevccveccvessccseccses

BINARY - THE LANGUAGE OF THE COMPUTER

Numbering SyStemS .ocvecvecsccccvevesseces

Decimal Numbering System wccocvrcccscevecs

DIQitS ceveccccrvvcccccrevessceserscccere

Overflow and Carrye-In wecccevccvcvccves

Digit PoSitiON crveceevecvevsecesccsece

Binary Numbering SyStem weccccccscccecnce

DIGitS cevecvevccvcvccvesesseseccesecsers

Overflow and Carry-In weccccvccvecccces

Digit POSITION ceccsvecvveveecrsessecvecs

Octal Numbering System ceccevrvccecrvccsses

DIZitS cevvecvessecccevsescerveesecsece

Overflow and Carry-In ceccccvccveveccecs

Digit PoOSItION cececvevvesccvevesecvces

Converting Numbers Between BaS€S .eccceoees

Converting from Decimal to Another

BASE cococccrcevsccsccsccsserveccscee

Converting from Other Bases to

Decimal ceeccccccccccvccscccccsvecccer

Converting Between Octal and Binary....

ArithMhmetic waccsccscccesccescccescscccces

Decimal Addition wcecccesccccensescvece

Binary Addition eeoeoeee<ee4o085ue0a0e083e¢ees74e#e#eee2s8ee48e# @

Overflow and Carry-In ceeccccvccccsevces

iii

=——-—OCO rr rehy—-~ ——wee eed ee ek ceed eed wed we od — ©

N PVN NNYRNMNVND CoO COS I ON 07 0 0 UT) Go) PO PO
2-12

2-16

2-18

2-18

2~20

2-20

CHAPTER 2

CHAPTER 3

CHAPTER 4

BINARY - THE LANGUAGE OF THE COMPUTER (Continued)

Subtraction oeeoe@#eeseeet7enteseeseenvseceenvnen7eeeeeee 6 €
Complementary Arithmetic crcccvcccseces

Ten's Complement ceocccccccscvcscccecece

Two's Complement wrcccccscccvvcvccsscces

Right's Complement cescvvccsvvscecsveves

Binary Subtraction wecccevccvvcvcecseces

Octal Subtraction weccccccccccveveseces

Signed Number Representation wecceeeseves

Sign Bit Definition cecccecccveceessece

Range of Signed NumberS ..crccccccccvccce

Logical AND wuceveevevcccccccccccccecseees

LOgical OR wevecccccvveseccvevecccsesveccs
Logical ExcluSive OR weccccccsccccvvccecs

PROGRAMMING FUNDAMENTALS AND BASIC CONCEPTS

Computer Program wocccccccccsccsesvcscece

Problem Definition ccccccvccccccevveces

ALZOrithm wioccccvvccccsecvsscccvrescsccceccs

FLOWCHArt cevecccccccvccccceescccscever
Basic Concepts wecsecvecsscvcveccveceseces

Tables eeosee@eseeeoeeeeseenseeee4ece#eVeeVeee¢eeneee @ eG ee 8 @

POINTEVS cocvcccccvcceseccccscesccenece

COUNTESS ceoceceevccesvecevccsccccesscees

THE INSTRUCTION SET

I/O InsStructions crccecesccvccsccccsececs

Special Mnemonic Instructions ..ccccees

Memory Reference Instructions ..ccccesecs

Addressing eeeenrv0esee0nvee0e0eese7@eseetesteee~eeeest ee @

DA eeoeeeoeseeoeeese@esensrmeseeseneenwesnvneseee ee 8 6 @ @

STA eeee74#2+2+nrte@eesteVnreestseeerps@e~eene@eeeseee eee eee ee ee ee ee

ISZ cccccvcvevccvecsscccessvecccvevseces

DSZ @eeeeeoee3eneree9e*eeeeee@esegs?sgse@eeeetceseseseseeeeoee8 eee ee @ @

JMP eeeevevoeveeverevneeeeeeeeonevoes eevee en een eeeeees

JSR oeeseoeoeseseoeeseeseeo@eseensweeseeseen@enee ee 8 e080 eo @

Indirect Addressing wrcccccccevvcvecscece

Auto Indexing eeoee405o7efeteeseeseeeseeeneesne#neweee

Arithmetic and Logic Instructions ...eccee

Parity and Masking cccccscvcscvesccvesece

iv

2-21

2-21

2-24

2-25

2-27

2-27

2-29

2-29

2-29

2-32

2-33
2~ 34

2-36

a) Gy) Us Os Uo Ud UO UW
!

23a Po

FPrererrerEEerFrFreE Fre ESi j WWW PM DP =] A A KH OO COM!NdWOMAN HON NAL

CHAPTER 5

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

I/O DEVICE HANDLING

Program InterruptS cevoevevsevcceveccvers

Example @eeoeeo4eose¢4¢e¢<ee9es4e7e0e4¢e¢e@e#e#?@ee0ee?eeee?eeesee@@ @

Power Monitor and Auto=ReStart ccccccececce

Data Channel @®eoeeeseeseeneeeeeeVnere@eeee7e71t 6 @¢ @ & 8&6 6 8

SAMPLE PROGRAMS

GCHAR eeereevreseeeoevevreveeeeeee eee eer ee eee ewe ee 8

PCHAR caccccccccccccccccccseeseeseveveves

PRINT eooseeeseeoene eee seeeoeeveeeee ee eee ee eee

BNOCT eeooeoeveeeevueeevesveeeeseseeee eee e ee eees

BNDEC eeeeoeeeeeeeseeeeeeeVeeeeseeeeeseseeeeesee ©

PROGRAMMING TRICKS

Programming Tricks eeoeeescteeseeteete#?#e#eeee##eeee

INSTRUCTION MNEMONICS

Numeric Listing eeoeeoeeeeev0eeeeeeeeneevse eee 8 @ @

Alphabetic Listing eee0eeecs#84$c#eeetese7e7eeesves¢#e@#+8 6

IN-OUT CODES

In-Out Devices eeeseeseeaeeeeseeeteeseseeeeneeeeee 0 @

Teletype Code eeoeeseeoeoeeseseeoeseseseoeeseeoeVeeeeestese @

CHAPTER 1

INTRODUCTION TO MINICOMPUTERS

1.1 By just about any definition, a computer is a

MACHINES machine. According to Marvin Minsky, professor

of electrical engineering at MIT, a machine may

be defined as "the realization in material of an

abstract concept."! Let's use an every day example.
Consider the simple act of cutting grass. A machine

called a lawn mower is what takes this abstract

concept and makes it very real. So the lawn mower

is the realization of the abstract concept of

cutting grass.

1.1.1 In its function of cutting grass, the lawn mower

Physical Process is the mechanization of a process. The lawn mower,

Machines like most other machines before the advent of the

computer, performed physical processes. That is,

the machine controlled the transformation and use

of energy.

1.1.2 With the advent of the computer came a machine

Intellectual that would perform an intellectual process. That

Process Machines is, the computer controls the transformation and

use of information. As an intellectual processor,

the computer must do three types of operations in

order to work with information. The computer must:

1. Get information from and give information

to the environment.

2. Transform information from one form to another.

3. Remember information for future recall.

| Marvin Minsky, Computation - Finite and Infinite Machines.
Prentice - Hall, Englewood Cliffs, NJ, 1967.

1-1

1.1.2

Intellectual

Process Machines

(Continued)

1.2

Computers

1-2

Relating these three types of operations

to ourselves as information processors,

consider the job of getting up in the

morning:

1. Ears hear an alarm.

2. Brain perceives this noise as much

louder than other noises; therefore,

it must be important.

3. Brain checks with memory for a record
of such noises.

4, Brain gathers all the available

memory data about such a noise, and

attempts to match a memory pattern

to the input noise.

5. After the match is found, the brain

directs the body to turn off the

alarm and get up.

The three types of operations that the

computer must do, as an intellectual

processor, in order to work with infor-

mation, can be directly related to the

three main sections of the computer:

1. Central Processing Unit (CPU)

transforms information from one

form to another.

2. Input/Output (1/0) interacts with

the environment; acts as the CPU's

sensors.

3. Main Memory remembers information
for future recall.

Figure 1.1 shows the relationship of these

three units to each other.

MEM BUS

CORE

ROM

S.C,

MEMORY

52K

Figure 1.1 System Block Diagram

I/0 BUS

CPU

800

1200

NOVA II

ECLIPSE

PERIPHERALS

5

TTY

PTR

DSK

CAS

MTA

LP / CR

A-D/D-A

COMM

3 64 UNIQUE

DEVICE

CODES

1-3.

1.2

COMPUTERS

(Continued)

1.2.1

Memory

1.2.1.1

Read Only

1.20122

Read/Write

1-4

Because the computer has no intelligence

of its own, it must be told to perform

every task desired of it. It is the

Central Processing Unit (CPU) that is

the heart of the computer. The CPU is

the main director of computer operations

in that it deciphers all instructions to

the computer in such a manner as to

accomplish the desired task.

If the computer is to solve a problem or

perform a function, it must have avail-

able to it all the commands and additional

information necessary to accomplish the

task. This information is retained in

the main memory of the computer and is

available for access by the CPU.

Let us examine memory first, so that we

might better understand how it does its

job of remembering for future recall.

There are two basic types of main memory:

read/write and read only.

Read only memory (ROM) is analagous to

a reference manual. The information it

contains is accessible, but for practical

purposes, unalterable. Read only memory

might be used for storage of frequently

used constants and subroutines, or for

Storing information permanently, where

the loss of the information would be

catastrophic. Because of the physical

nature of a ROM, execution of a program

stored in read only memory is usually

Significantly faster than execution of

the same program stored in read/write

memory.

Read/write memory contains physical

elements that are capable of having

information read out of them, and of

having new information stored into them.

In other words, it is possible to read

from and write into this type of memory.

1.2.1.2

Read/Write

(Continued

A common read/write memory element is

the magnetic core. It is a donut-shaped

piece of ferromagnetic material with a

Wire running through it. By passing a

direct current through the wire, it is

possible to magnetize the core.

By reversing the energizing current in

the wire, it is possible to change the

magnetization of the core. Thus, a

core magnetized in one direction has a

value of 1, and a core magnetized in the

Other direction has a value of O. We are

able to read from this memory by detecting

the polarity of magnetization, and we are

able to write into memory by energizing

the wire in the appropriate direction.

A commonly used analogy for understanding

read/write memories is that of the pigeon-

holes in the post office. In the following

Statements, the underlined terms refer to

read/write memories, while information

Within parenthesis refers to the pigeonhole

analogy.

In memory every location (box) has its own

unique address (T1432 Franklin Park Circle).

What lives at that address (i.e., its

contents) is called data (the Joneses).

Many people come to 1432 Franklin Park

Circle, and visit with the Joneses (some

go away with a picture of the Joneses) but

when they go, (the Joneses are still there).

So too, you can read from memory without

changing its content.

If the stork comes, they may (gain a Jones)

or if the preacher comes they may (lose a

Jones); with such minor modifications they

are (still basically the Joneses).

1-5

1.2.12

Read/Write

(Continued)

1-6

However, if they fail to make their mortgage

payments, the Joneses may not live at

1432 Franklin Park Circle anymore; (the old

residents may be replaced by new ones).

The content of an address has been referred

to as data. Data can be one of three things;
it depends upon who is calling:

ae An instruction (daddy). When the CPU

needs to know what to do next, it uses

the program counter to call on memory.

b. An address (husband). When the CPU

needs to know where to look, it uses

the instruction register or indeed the

content of one memory location to call

on another. It's sort of like going to

your mother's house to find out where

you live.

ec. An operand (Tom). When the CPU has

decided that it is at the final

address, the content is the data to

be manipulated in accordance with

the instruction.

Daddy, husband, and Tom are all the same person;

it depends on who is calling as to how that

person will be addressed.

Table 1.A Summary of Pigeonhole Analysis

| Term Memory
t {

[oe ee ae ea me oe em oe me | mmm

| location ! address
J |
(i

| content data

{ \ instruction

} address

operand
| I
t t

| read unaltered
J }
i I

{| modify plus one,

H minus one
{ {
{ i

| write new replaces old

Pigeonhole

1432 Franklin Park Circle

The Joneses

daddy

husband

Tom

still live there

still basically

Joneses. ——an COD ewe Se eee ance ee eee ene = ewes awe awe awe eeeevicted for nonpayment

1-7

Now let us take a closer look at the CPU

so that we might better understand how it

does its job. Figure 1.2 might represent

a typical CPU. The entries that we see

in this block diagram are as follows:

1.2.3

Central Processing

Unit

1.

ee

3.

4,

5.

6.

Te

8.

%

1-8

Program Counter (PC) - Holds the

address of the next instruction to

be executed.

Instruction Register (IR) - Holds a

copy of the current instruction for

decoding and execution.

Arithmetic and Logic Unit (ALU) -

That's where the number crunching

takes place; where all data manipu-

lation takes place.

Accumulators (AC) - An internal,

easily-accessible, limited-storage

area for the temporary storage and

manipulation of operands. This type

of storage is often referred to as

scratch-pad memory.

Carry (CRY) - An arithmetic extension

of the ALU used to indicate overflow;

a carry out of the most significant

digit. |

Memory Address register*® (MA) -
Keeps track of the last address that

was referenced.

Memory Buffer register*® (MB) = Contains

the content of the last address that

was referenced,

Console ~ This term should not be

confused with the Teletype®** keyboard.

Each memory also contains its own MA and MB registers.

** Teletype is a registered trademark of Teletype Corporation,

Skokie, Illinois.

MEMORY

ADDRESS

(MA) #

PROGRAM

COUNTER

(PC)

CARRY

(CRY)

INSTRUCTION

REGISTER

(IR)

MEMORY

BUFFER

(MB)

ARITHMETIC AND

LOGIC UNIT

(ALG)

ACCUMULATORS

(AC)

C O N S O L

* Each memory also contains its own MA and MB registers.

Figure 1.2 Typical CPU

1-9

1.2.3

Central Processing

Unit

(Continued)

1.2.4

Input/Output

Interface

1-10

The console contains the switches for

controlling the operation of the computer.

There are switches for starting, stopping,

resetting, and examining the various

components of the system. In addition,

a number of indicator lights are provided

on the console to allow the computer

operator to determine visually the status

of the computer at any time. As well as

being the manual control panel for the

computer, the console enables the programmer

to follow the execution of his program to

detect any flaws, or bugs, in the program.
The console is actually a manual control

panel connected to the input/output

facilities, supplying information to the

CPU, and displaying information from the

CPU.

The third section of the computer is the

input/output interface. This is the

section that connects the CPU with its

environment to provide the channel for

the flow of information from the outside

world into the computer, and vice versa.

This section connects to, and controls,

such devices as keyboards, printers,

paper tape punches, paper tape readers,

Magnetic tape recorders, magnetic discs,

magnetic drums, CRT displays, analog to

digital converters, digital to analog

converters, card readers, card punches,

etc.

Through the I/O section, the CPU can

obtain and retain data and/or additional

instructions from the outside world.

This is known as the interactive portion

of the computer.

1.3

REVIEW QUIZ

The computer controls the transformation

and use of °

The three main sections of a computer are:

ae

b.

C.

The pigeonhole analogy is used to

illustrate that R/W memory was designed

by the post office. True or False.

(Circle one.)

The content of a memory location can

be one of three things:

Ae

b.

Ce

"Scratchpad memory" is used to handle

the overflow from main memory.

True or False. (Circle one.)

The indicator for arithmetic overflow

is called e

The purpose of the console is

twofold:

ae manual control

b.

The term that applies collectively

to all I/O devices is: °

Check your answers on the next page.

1-11

Chapter 1

Review Quiz

Answers

1. Information

Oo. ae Input/output

be. CPU

c. Memory

False

a. Instruction

b. Address

ec. Operand

False

Carry or CRY

Display

Peripherals

1-12

2.1

NUMBERING

SYSTEMS

CHAPTER 2

BINARY - THE LANGUAGE OF THE COMPUTER

Since all of the information that passes

through a computer is in the form of numbers,
and since all of the instructions that the

computer executes are also in the form of

numbers, it is helpful to have a basic

understanding of the number systems that

a computer uses.

A number system is just one type of

information system. Information systems

in general are simply abstract concepts

represented by symbols and interpreted

according to a set of rules. Table 2.A

below lists various systems of symbols

and their associated rules for interpretation.

Table 2.A Symbols and Rules

Symbols Rules
t ' j
i { j

| AxZ et.al. | Grammar !
1 (i
t | i

1 ye | Morse Code
§ I i
| I j

| O-9 et.al. | Mathematics !
I t t
i ¢ o j i

| Music

et :<a e - ee « eeneeenene,

To understand the symbols, you've got to learn

and adhere to the rules.

The number system that the computer uses,

called the binary numbering system, follows

the same set of rules as the number system

with which we are most familiar: the decimal

numbering system. The primary difference is

in the number of distinct marks or digits

that exist within each system. As their

names imply, the DECimal system has ten

distinct marks and the Binary system has

two distinct marks.

em 1

2.1

NUMBERING

SYSTEMS

(Continued)

2.2

DECIMAL

NUMBERING

SYSTEM

Cec.

Digits

Before we look at the rules for interpreting

these numbering systems, why do you suppose

binary, a system with only two digits, became

the language of the computer? Actually, early

analog computers attempted to use the decimal

numbering system.

As you look around you'll notice that many

physical devices have two states:

The light bulb is on or off.

The door is open or closed.

@e <A memory core is magnetized in

one direction or the other.

e A switching circuit is either

Saturated or cutoff.

e The answer to number five is

true or false.

e This is getting ridiculous,

yes or no.

The purpose of the last two entries is

to show that the two-state world is not

restricted to physical devices. Indeed,

some of the most complex problem-solving

can be broken down into a series of

yes-no questions.

Now down to the business at hand. To

more easily understand the binary numbering

system, let's start by reviewing the one

with which we are most familiar.

The decimal numbering system contains

ten distinct marks, called digits:

0, 1, eC, 3, 4, Dy 6, 1; 8, 9

Cole l

Digits

(Continued)

Cele

Overflow and

Carry-In

2ele 3

Digit

Position

Each digit from left to right is the

result of increasing the value of the

previous digit by "1;" e.g.,

3 5 T 9
1 +1 +1 +1

4 6 8) a

What happens when the largest digit, nine,

is increased by one? This is the very

basic concept that most of us missed in

learning by rote. Nine plus one is not

ten; when one is added to the largest

digit, it results in an overflow condition.

That is, a zero is recorded in this digit

position and a one is carried over to the

next highest digit position. There the

one becomes a carry-in, or is added into

the new position.

carry —» 1

09
+01

—_eee

10

The concepts of overflow and carry-in have

introduced a new concept: positional value.

The value of a digit depends upon the

digit's position within the number. In

the number 1234, the digit 2, although a

lesser digit than 4, has a greater value

because of its position within the number.

The value of a position, called its

weight, indicates a power of the base* or,

how many times the base* has been multiplied

by itself.

3 2 1 0

1019 0 10 10

123 yam
3

1000 = 1 X 1000 = 1 X 10

2

200 = 2 X 100 = 2 X 10

1

30 = 3X 10 = 3 X 10

0

+ 4= 4 X 124 X 10<—_—___

1234

* Base refers to the number of distinct digits; in decimal, it's ten.

2-3

222.3

Digit Position

(Continued)

ony

Let!

posi

exam

base

1

+

+

+

s take the analysis of digit versus

tion one step further. In the previous
ple, the digit 1 was raised to the third

three times as follow:

X 10 X 10 X 10, to this quantity was

added

2X 10 X 10, to this quantity was

added

3 X 10, to this quantity was

4 added

Another way of writing the same procedure is:

1230

+ 4

1234

This

basi

to c

Befo

Notice that by the time the total

has been reached, the original 1

gets multiplied by the base three-

times (which corresponds to its

power of the base in the final

number: 1X107), the original 2 gets
multiplied by the base twice (its

power of the base: 2X10°), the

original 3 once (3X10!) and the
Original 4 never gets multiplied

by the base, just added in to the

total (corresponding to 4X10°)

procedure has hidden in it another

c concept that will be used shortly

onvert numbers between different bases.

re we introduce new bases, let's

highlight the concepts we've discussed

abou

1.

Ce

t decimal.

Ten distinct marks.

Largest digit plus one results in

zero and a one carry to the next

digit position.

The value of a position indicates

its power of the base.

A digit's value depends upon its

position within the number.

2.3

BINARY

NUMBERING

SYSTEM

2.3.1

Digits

23.2

Overflow and

Carry-In

2.3.3

Digit Position

Now let's apply the concepts to the

Binary numbering system.

The distinct marks, called digits, are:

Each digit is the result of increasing

the previous digit by "1;" e.g.,

0 1

+1 +1

—= =

The largest digit plus one results in a

zero and a one carry to the next digit

position:

The value of a position indicates its

power of the base.

4 3 2 1 0

2 2 2 2

She
A digit's value depends upon its position

within the number.

10101

10000 = 1 X 10000 = 1 X 5< | |
0 =0OxX 1000 = 0 X 2

100 = 1 X 100 = 1Xe

0 = 0 X 10 = 1X e

1 = 1X 12+1Xex=x

10101

As in the decimal numbering system, the

power of the base can be thought of as the

number of zeroes to the right of the digit 1.

2-5

2.3.3

Digit Position

(Continued)

24

OCTAL

NUMBERING

SYSTEM

For example:

decimal binary

2 2

10 <= 100 2 = 100

3 3
10 = 1000 2 = 1000

4 4

10 = 10000 2 = 10000

The type of thinking applied in the previous

Statement helps us over the hump of saying

2° = 4 or 23 = 8. That type of thinking
was fine in decimal but becomes a stumbling

block when we go to other bases.

While the computer uses binary because of

its simplicity, we as humans can't handle

all that simplicity all at once. In other

words, it becomes very cumbersome when you

have to represent even relatively small

quantities with binary numbers. For instance,

if you give me 11010. cents for a 39;) cent

item, one of us is getting a deal. What we

need is a system that will reduce all those

1s and OS into something more manageable.

There are actually two equally suitable

alternatives, a base sixteen numbering

system and a base eight numbering system.

This book is only going to deal with the

base eight numbering system, otherwise known

as octal. At this time we will introduce octal

using the same concepts that were established

for decimal and then used to introduce binary.

In the next section where we convert numbers

from one base into other bases, we will see

why octal is referred to as binary shorthand.

Now let's apply the concepts established for

decimal to the octal numbering system.

2.4.1

Digits

24.2

Overflow and

Carry-In

2.4.3

Digit Position

The distinct marks, called digits, are:

0, 1; Qy 3; 4, Dy 6, 1

Each digit is the result of increasing the

previous digit by "1;" e.g.,

3 5 T
+1 +1 +1

ho GHD

The largest digit plus one results in a

zero and a one carry to the next digit

position:

+ =~
1 ©

The value of a position indicates its

power of the base.

3 2 1 0

8 8 8 8

NN a
A digit's value depends upon its position

within the number

1234

1000 = 1X 1000 = 1X 8« J
200 = 2X 100 = 2 X 8«

30 = 3 X 10 = 3 X 8«

Hs 4 X 1*4X 8=<

Doesn't it look amazingly like decimal!

Why shouldn't it? The digits are the

same (as far as they go; there is no 8

or 9 in octal), and the rules are the

same. If you have trouble accepting this,

I think what is probably blowing your mind

is the fact that:

gs 100 not 64,
8 = 10 not 8,
8 = 1000 not 512.

24.3

Digit Position

(Continued)

2.5

CONVERTING

NUMBERS

BETWEEN BASES

2.5.1

Converting

from Decimal

to Another

Base

2-8

Just as a point in passing for those who

have never seen it before, the distinct

marks of the hexadecimal numbering

system are:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B

C, D, E, F.

Since most of us are used to working in

decimal, yet the computer "speaks" binary,

and octal is most often used as a compromise,

we are going to have to know how to convert

numbers of one base into other bases. So,

let's establish the rules.

The procedure for converting a decimal

number to some other base B is:

1. Divide the decimal number by B, and

separate the answer into a quotient

and a remainder.

2. Record the remainder.

3. Divide the quotient by B, and separate
the answer into another quotient and

a remainder.

4, Repeat Steps 2 and 3 until a quotient

of 0 is obtained.

5. Record the remainders in the reverse
order of their occurrence. The result

is the converted number.

Examples: Convert to base 2.

21 = 10101

10 2

PO PO PO PO PO
—|M

O —[PU1yjO}|— =O - Oo — reverse order of occurrence

2.5.1 Example: Continued

Converting

from Decimal 259 = 100000011

to Another 10 2

Base

(Continued) — iNMj No} Ne)

2 nlelal -“"“OA0O0000-—NM POP POP PO POP PO
reverse order of occurrence

17 = 10001

10 2

NO PO PM PPM
om

© —}M/]Co -"O0O0— reverse order of occurrence

Try it yourself.

39 =
10 2

2{ 39

Try another one.

123 =

10 2

e=9

25.1

Converting

from Decimal

to Another

Base

(Continued)

Now let's take the same decimal numbers,

and the same rules and convert to base 8.

a1 = 25

10 8

Bl 21

8[2 > |
0 2 reverse order of occurrence

Proof:

25

|° 0

5 x 8 = 5 X j = 5
10 10

1

2X 8 = 2X 8 = 16

10 10 __10_

21

10

259 = 403

10

8 [259
8[32 3
8, 4 0

0 4 reverse order of occurrence

Proof

403

0

3 xX 8 = 3X1 = 8
10 10

2

— rH xX 8 = 4 X 64 = 256

10 10

259

10

2.5.1

Converting

from Decimal

to Another

Base

(Continued)

8117
8[2. V4

0 2

Proof:

21

8

Pye’1X 8 =

1

2X 8 =

Try it yourself.

8/39

Try another one.

a1

order of occurrence

16

17

10

22502

Converting

from Other

Bases to

Decimal

2-12

Being able to convert decimal numbers into

other bases may prove helpful if you have

to enter information through the console

data switches. By the same token, if you

have to interpret the console data display,

it may prove helpful to convert numbers

from other bases B into their decimal

equivalent.

The procedure for converting a base B

number to decimal is:

1. Start with the most significant digit.

2. Multiply by B.

3. To the result, add the next least
Significant digit.

0

4, Repeat Steps 2 and 3 until the B

digit gets added by Step 3. The

last step in the sequence is always

an addition.

If the procedure works, the least it

ought to do is convert base 10 numbers

to decimal. Let's give it a try:

1234

10

|<

X 10

10

+ o<

12

X 10

420
+ 3<

123

X 10

1230

+ y—<«

1234

10

2.542 How about that, sports fans! If the

Converting sequence doesn't look familiar, look

from Other back on page 2-4. Now let's try it

Bases to for binary and octal.

Decimal

(Continued)

403 = 259

8 10

256

259

10

24542

Converting

from Other
Bases to

Decimal

(Continued)

Now it's your turn. Use the numbers that

you got as answers to the problems on

page 2-11.

39 = sand «123 =

10 8 10

Convert the missing octal numbers back

to decimal using the method shown above.

Given enough room, it works for binary also.

10101 = 21

2 10

1 ~<

X 2

2

+ O<«

2

X 2

y

+ 1 <_

5

Xx 2

10

+ O <«

10

X 2

20

+ 1 <<.

21

10

2.5.2

Converting

from Other

Bases to

Decimal

(Continued)

10101 21 100000011 = 259
| 2 10 2 10

L
nN — Ps nm —

+ ©

NO PO

Oo +|

>< Mm

CO C|

N) CO

|

N © —

© ov
NO _ —

NO OV10 X

32

P<

WW
NO PO

Ov

+ of

os

Ov

M &
—= Nh

— © A+

— NH

No
258

+ 1

259

10

Now it's your turn. Use the numbers that

you got as answers to the problems on page 2-11.

39 = ts——C arn O&A: 2°33 =

10 2 10 2

Convert the missing octal numbers back to decimal

by using the method shown above.

ait...
_

2.5.3 Of the various conversions between bases,

Converting the one we use most often hasn't been

Between discussed, yet it is the easiest conversion
Octal and Binary to do. The conversion of octal numbers to

binary and vice versa is based on one

simple fact: 23 = 8. Let's examine the
binary counting sequence alongside the

octal counting sequence

Binary Octal

0 = 0

+ 1

1 = 1

+ 1

10 = 2

+ 1

11 = 3

+ 1

100 = 4

+ 1

101 = 5

+ 1

110 = 6

+ 1

111 = 7

+ 1

1000 = 10

If we take the binary numbers that have been

equated to octal numbers and append leading

zeroes to make all binary numbers three-digit

numbers, we observe the following:

Binary Octal

000

001

010

011

100

101

110

111 © “NNO Wh — ©3
1000 =2 = 8 = 1

2.5.3

Converting

Between

Octal and Binary

(Continued)

Even more interesting, at the same time that

the binary numbering system runs out of numbers

that it can record using three digits, so the

octal numbering system runs out of numbers that

it can record with one digit. This three-to-one

relationship is the whole key to binary to

octal conversion. The only thing you have to

"memorize" is the binary equivalent for 0 —- [18

shown above. Most people would tell you, "It's

as Simple as one, two, three." But in this

case, it's as simple as three-to-one.

Examples;

100 011 010 001

100 011 010 001

4 3 2 1

2

On the previous pages you converted the same

decimal numbers into both binary and octal.

Now, by the method shown above, see if your

binary and octal answers agree with each

other. Don't be afraid to add leading zeroes

if necessary to maintain the three-to-one

relationship.

1. 2110 010 101,
=~ 2 5,

Ce 25940 = 8

= ———— 2

3. \Ti0 = 2
= 8

4. 3949 = 8

2.563

Converting

Between

Octal and Binary

(Continued)

2.6

ARITHMETIC

2.6.1

Decimal

Addition

5. 1234

Now that we have become so adept at

manipulating numbers from one base to

another, let's try performing arithmetic

operations on numbers of the same base.

The addition of binary numbers follows

the same procedure as the more familiar

addition of decimal numbers.

To add two decimal numbers, proceed as

follows:

1. Add the right-most digit of each

number to obtain a sum digit and

a carry digit.

2. Record the sum digit.

3. Add the next right-most digit of
each number, plus the carry digit

left from the previous addition,

and obtain another sum digit and

carry digit.

4, Repeat Steps 2 and 3, proceeding

from right to left, until all the

digits have been added.

5S. The number constructed from the

individual sum digits is the final

sum.

2.6.1

Decimal

Addition

(Continued)

Add the two decimal numbers 566 + 624,

Thus 566 + 624

566

624

—

566
624

01

566

624

90

101

0566

0624

190

101

0566

0624=

7190

1190

where

where

where

where

Carry

Carry

Carry

Carry

1 Sum

0 Sum

1 Sum

O Sum

2.6.2

Binary

Addition

2.6.3
Overflow and

Carry-In

Binary addition follows exactly the same five

steps used in decimal addition. But remember,

the binary numbering system has only two

digits (0 and 1). The following example

examines the addition of all possible operands

resulting from the addition of two binary

numbers:

Carry 0 0 0 0 1 1 1 1

Bit A +0 +0 +1 +1 #4+0 40 +1 = «+71

Bit B +0 +1] +0 +17 #+0 +1 #40 = +1

Carry Sum 00 01 01 #10 O1 10 10 11

The next example shows the normal method of

keeping track of the sum and carry digits

1 0 ‘ 1 1

NPASATAIAG
1 0 1 1 0 0

Thus 10111 + 10101 = 101100.

Add the two binary numbers 1101 + 10.

0 0 0

TKK
0 0 1 0

O 1 1 1 1

Thus 1101 + 10 = 1111.

If the number of digits in the answer exceeds

the maximum allowable number of digits, the

answer is said to overflow, and the left-most

digit of the answer is called the overflow digit.

If, in the second example above, the maximum

allowable number of digits is five, then there

is an overflow, and the overflow digit is 1.

In the third example above, if the maximum

allowable number of digits is four, then there

is no overflow, so the overflow digit is 0.

2.6.3

Overflow

and Carry-In

(Continued)

2.6.4

SUBTRACTION

2.6.4.1

Complementary

Arithmetic

The procedure for performing octal addition

is Similar to that used for decimal and binary

addition. Keep in mind that the octal numbering

system has eight digits (0 through 7), and a carry

occurs when the sum exceeds 7.

In the following examples, assume the maximum

allowable number of digits is five.

Add the two octal numbers 23174 + 60165.

1 0 0 1 1

MAAS

1 0 3 3 6 1

Thus 23174 + 60165 = 103361.

NOTE: In this example, an overflow occurred.

Add the two octal numbers 7106 + 707.

1 1 0 1

IATA S

1 0 0 1 5

Thus 7106 + 707 = 10015.

NOTE: In this example, no overflow occurred
Since the sum did not exceed the

maximum allowable five digits.

In the previous section, the concept of

"maximum allowable number of digits" was

introduced. This concept is of great

importance in the understanding of

complementary arithmetic.

2=21

2.6.4.1

Complementary

Arithmetic

If the maximum allowable number of digits

is six, for example, then the decimal numbers

0 9 8 6 3 2 7

and 1 9 8 6 3 2 7

represent the same magnitude since the

left-most digit is an indication of over-

flow, and adds nothing to the value of the

right-most, maximum six digits.

The normal counting sequence from zero is

as follows:

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 2

0 0 0 0 0 3

9 99 9 9 T

9 99 9 9 8
999 9 9 Y

10 0 0 0 0 0

1 0 0 0 0 0 =1

Notice that if 1 is added to the largest

number, 999999, zero is obtained and the

normal counting sequence is recycled.

What happens if the counting sequence

is reversed?

WwWowoononoo Wwwmomoddoo WOwmowodaodaono WOnowooedeonae Wwowooddoo —TM COLO © = MW
e

Here, notice that when 1 is subtracted from

zero, the number simply cycles back to 999999.

To our way of thinking, 1 subtracted from zero

is a minus 1, or a negative one. Regardless

of what you call it, in a cyclic system of

2.0.4.1

Complementary

Arithmetic

(Continued)

counting, numbers equidistant from either side

of zero are referred to as complementary

numbers. Therefore, in the six digit system

shown here, 1 and 999999 (-1) are complementary

numbers, 2 and 999998 (or -2) are complementary

numbers. As a matter of fact, any pair of

numbers which added together total zero (in a

cyclic system) are complementary numbers.

To obtain the complement of a number, it is

not necessary to count forwards and backwards

from 000000. Simply subtract the number from

the largest possible number +1.

For the six-digit maximum numbers used here,

the largest possible number is 999999, and

the largest possible number +1 is 1000000.

Find the complement of 000004.

1 0 0 0 0 0 O (largest possible number +1)
- 0 0 0 0 0 4 (minus the number)

9 9 9 9 9 6 (complement of the number)

Find the complement of 923156.

10 0 0 0 0 0

- 9 2 3 1 5 6 (number)

0 7 6 8 4 4 (complement)

Find the complement of 000000.

10 0 0 0 0 0

- 0 0 0 0 0 9

10 0 0 0 0 0

2.0.4.2

Ten's

Complement

The complementary numbers obtained in the

preceeding examples are more correctly

referred to as the 10's (ten's) complement
of the number (999996 is the 10's complement

of 000004, etc.). This further description

of the complement is used to indicate the value

from which the number was subtracted to obtain

the complement. The complement of a six-digit

number is obtained by subtracting that number

from 10®6, This value is the next power of
the base (in this case, base 10).

It is interesting to note that the original

number was subtracted from the largest possible

number +1 in order to obtain the 10's complement.

The same result could be obtained if the number

is subtracted from the largest possible number,

and 1 added to the answer.

Find the 10's complement of 923156.

9 9 9 9 9 Y (largest possible number)
-9 2 3 1 5 6 (number)

0 7 6 8 4 3

+ 1 (plus 1)

0 7 6 8 4 4 (10's complement)

NOTE: 076843 is known as the_9's complement

of 923156.

Therefore, an easier method of finding the

10's complement of a number is as follows:

10's complement of X = 9's complement of

X plus 1

Find the 10's complement of 900000.

2.6.4.2

Ten's

Complement

(Continued)

2.6.4.3

Two's

Complement

9 9 9 9 9 YQ (largest possible number)
-0 0 0 0 0 0 (X)

9 9 9 9 9 Y (9's complement of X)
+ 1 (plus 1)

10 0 0 0 0 0 (10's complement of X)

Now let's apply the general rules of

complementation to the binary number system.

In the binary number system, the complement

desired is the 2's complement of the number.

In the following examples, assume that the

maximum allowable number of BITs (BInary

digiTs) is 7.

Find the 2's complement of 0000011.

100 0 0 0 0 0 (largest possible

- 0 0 0 0 0 1 #1 + number* +1)

(2's complement

1 1 1 1 #1 +40 +41 + «or X*¥*)

* The largest possible number is 1111111.

** Direct binary subtraction follows the

same rules as direct decimal subtraction:

0-0 = 0; 1-0 = 1; 1-1 = 0; O-1 = 1

and borrow 1.

But aS was shown before, it is possible to

subtract the number from the largest possible

number and add 1 to the result.

Find the 2's complement of 0000011.

114 1 4 1 «1 1 (largest possible

number)

- 0 0 0 0 0 0 1 (X)

1 17 #717 71 FT FT = 0

+ 1 (plus 1)

1114 14 4 «71 ~27 (2's complement)

NOTE: 111110 is known as the 1's complement

of 0000011.

2.6,4.3

Two's

Complement

(Continued)

2-26

Therefore, the 2's complement of a binary

number may be obtained as follows:

2's complement of X = 1's complement of X,

plus 1

Find the 2's complement of 1011101.

1 1 4°74 +4 ~=«74~71 (largest possible

number)

- 10 71 1 1 0 1 (X)

0 1 0 0 QO —_ © (1's complement of X)
+ 1 (plus 1)

0 10 0 0 1 41 (2's complement of X)

Find the 2's complement of 0000000

1 4 1 1 1 = «1°71 (largest possible

number)

- 0 0 0 0 0 0 QO (XxX)

1 17 17 +7 +279 «+74 +74 +~° #«((14"s complement of X)
+ 1 (plus 1)

100 0 0 0 0 (2's complement of X)

Looking closely at the 1's complements of the

numbers in the last three examples, we see that

the 1's complement of the number is the number

with all the Os changed to 1s and the 1s

changed to Os.

Find the 2's complement of 1110110.

1 1 1 O 1 +14 = 0 (X)

0 00 1 0 0 1 (1's complement of X)

+ 1 (plus 1)

000 1 0 1 #0 (2's complement of X)

Find the 2's complement of 0000000.

0 0 0 0 0 0 90 (X)

1 11 1 1 1 «1 (1's complement of X)

+ 1 (plus 1)

10 0 0 0 0 0 0 (2's complement of X)

2.6.4.4

Eight's

Complement

2.6.5

Binary

Subtraction

Applying the rules of complementation to octal

numbers, we see that the 8's complement of a

number is the 7's complement of the number,

plus |.

Find the 8's complement of 77341.

7 7 7 7 T (largest possible number)

-7 7 3 41 (X)

0 0 4 3 6 (7's complement of X)

+ 1 (plus 1)

0 0 4 3 +7 (8's complement of X)

Find the 8's complement of 00000.

7 7 T fT T
-~ 0 0 O

~ 7 7 TT +T (7's complement)
+ 1

1 0 0 0 0 (8's complement)

By employing the techniques of complementary

arithmetic, it is possible to effect a

subtraction using the addition process.

To perform A - B, either of two methods

may be used:

1. Direct subtraction of B from A; or

2. The addition of A to the complement of B.

When using method 2, both A and B must contain

the same number of digits (use leading zeroes

where necessary) and the answer is contained

in the same number of digits (ignore the

overflow digit if it occurs).

Perform 783 = 25

10 10

Method 1: 783
-25

758

783-25 = 758

2-27

26,5

Binary

Subtraction

(Continued)

Method 2;

999-252+974 (9's complement of 25)

974 4+ 1 = 975 (10's complement of 25)

783 (A)
+ 97 5 (10's complement of B)

175 8

7783-25275 8

Perform 1101101 - 1011

2 2

NOTE: First add leading Os to make

numbers the same length.

Thus we are to perform 1101101 - 0001011

2 2

1 1 0 14 1 0 1 (A)
+1 17 71 0 1 0 +471 (2! Ss complement of B)

11 1 0 0 0 1 +0

~1101101 - 1011 = 1100010

Perform 101011 - 101011 (A-A)

2]

1 0 1 0 1 = «7 (A)

Oo 1 0 1 0 1 (2's complement of A)

0 0 0 0 0 0

Thus, a number plus its complement always

equals zero. This is an easy way to confirm

that you have the correct complement of

a number.

2.6.6

Octal

Subtraction

2.7

SIGNED NUMBER

REPRESENTATION

OeTel

Sign Bit

Definition

Octal subtraction (A - B) may be performed

by adding A to the 8's complement of B.

Perform alle - 31

Add leading O's 6275 - 0031,

627 5 (A)

+7 747 (8's complement of B)

1624 4

6275 = 31 = 6244

Perform 7000, - 76

7000 (A)

+7702 (8's complement of B)

16702

7000 - 76 = 6702

In many applications where the use of both

positive and negative numbers is required,

some method to indicate the sign of the

number must be employed. In written text,

this is done with the + and - signs. The

computer, however, works with binary numbers

and would not easily recognize a + or - sign.

Another method must be used to indicate the

Sign of the number. One possibility is to

define the left-most bit of the binary number

as the sign indicator or sign bit. A one (1)

in this position indicates that the

number represented by the bits to the right

is negative; a zero (0) indicates that

the number is positive. Using this technique

of signed number representation, the sign bit

is followed by the absolute value of the

number. Another method of representing

signed numbers employes the concept of

Celel

Sign Bit

Definition

(Continued)

2-30

complementary numbers, as described in the

previous section. It is this last method

that will be pursued further here.

If the maximum allowable number of bits is

4, then the following numbers are possible:

= Ss SSIs OOdDdOOOO -" ea SH SB OOO HH HSH HS oO d0O0O --—-3OO0-00--00—-— - O90 —-O-"O--$ Oo | oO-" XO | OS OO
This set of 16 numbers is cyclic because adding

1 to 1111 brings us back to 0000.

Also, subtracting 1 from 0000, gives us 1111.

If this set of numbers is said to contain only

positive values, then the range of values is:

O00 0 through 111 1

or

0 through 15

10 10

Suppose we divide this set in half, and define

one half as representing positive values, and

the other half negative values (column A). Also,
let's restack the set so that 0000 is at the center

(column B). Column C represents the decimal
equivalent of column B.

2e7el A B C

Signed Bit

Definition 0000 O11 1 1

(Continued) 000 1 0110 6
0010 010 1 5

0011 £Positive 0100 4

O10 0 Numbers 0011 3

010 1 0010 2

0110 000 1 1

0111 0000 0

1000 111 1 -1

100 1 1110 -2

1010 110 1 -3

1011 Negative 110 0 -4

1100 £xNumbers 101 1 =)

110 1 1010 -6

1110 100 1 -7

111 1 1000 -8

Notice that all the negative numbers have a

1 in the left-most bit position and all the

positive numbers have a 0 in the left-most

bit position. Thus, if 0000 is defined as

a positive number, there is the same quantity

of positive and negative values.

NOTE: If the programmer is using the left-most

bit for sign definition, care should be

taken not to overflow the range of values.

Perform 5 + (-4)

5 0101

+ (-4) + 1100

1 1 0001

Perform 6 + (-6)

6 0110

+ (+6) + 1010

0 1 0000

Perform 7 + 2

7 0111

+ 2 + 0010

9 0 1001

2-31

Oot.

Signed Bit

Definition

(Continued)

2eTee

Range of Signed

Numbers

2-32

Note that in this example the desired result

was not obtained because the range has been

exceeded. 1001 represents -7, not +9.

In the 4=bit number set of the previous

section, the range of unsigned numbers is

as follows:

0000 through 1111

or 0 through 15

10 1

or 0 through 17

8 8

0

If a number set contains 16-bit numbers, the

ranges are as follows:

UNSIGNED

0000000000000000 through 1111111111111111

or

0 through 65,535

10 10

or

0 through 177777

8 8

SIGNED

1000000000000000 through 0111111111111111

or

-32,768 through +32,767
10 10

or

~100000, through tOTTTTT

O.f.2

Range of Signed

Numbers

(Continued)

2.8

LOGICAL AND

If a number set contains 8-bit numbers, the

ranges are as follows:

UNSIGNED

00000000 through 11111111

or

0 through 255
10 10

or

0 through 377

8 8

SIGNED

10000000 through 01111111

or

-128 through +127
10 10

or

-200 through +177

8 8

In the binary number system, additional

Operations exist over and above addition,

subtraction, multiplication, and division.

These additional operations are known as

logical or Boolean operations.

One such logical operation is the AND

function.

Consider the drawbridge in the following

figure:

yo /3\—77

The bridge consists of two spans that can

be opened: A and B. Obviously, the path

across this bridge is continuous only if

both A and B are closed.

2.8

LOGICAL AND

(Continued)

2.9

LOGICAL OR

2-34

--00| >

SPAN A SPAN B BRIDGE

OPEN OPEN OPEN

OPEN CLOSED OPEN

CLOSED OPEN OPEN

CLOSED CLOSED CLOSED

If the two states of each span are assigned

the binary values OPEN = 0 and CLOSED = 1,

this can be rewritten.

> >
>=

mow>e
B

0

1

0
1 -—- OOO

Two binary numbers can be ANDed by simply

ANDing respective bits from each number.

¥

Perform 10111011 * 00011011

10111014 (A)

0001101 1 (B)

0001101 1 (A . B)

NOTE: Both corresponding bits in A and

B must be 1 for the resulting bit

A. Bto be al.

Consider two drawbridges spanning a river

as shown below:

aw

_/ B SNLA)
¥* = logical AND symbol.

2.9

LOGICAL OR

(Continued)

A path from one side of the river to the

other exists if A OR B or both is closed.

SPAN A SPAN B PATH

OPEN OPEN OPEN

OPEN CLOSED CLOSED

CLOSED OPEN CLOSED

CLOSED CLOSED CLOSED

If we assign binary values to the states

of each drawbridge, this can be rewritten

as follows:

> PP <+ 0 www

—_— — OC O | > =O—-O | two — — —3 C)
Notice that with the OR operation, if either

of the corresponding bits in A or Bis a1,

the resulting bit (A +B) is a1.

Two binary numbers can be ORed by simply

ORing respective bits from each number.

Perform 10111011 ys 00011011

101711101 1 (A)

0001101 1 (B)

10113101 1

Perform 10111011 V 01000100

This is equivalent to A V 1's complement of A.

1011101 ~+71 (A)

01000100 (1's complement of A)

1111111 «1 (A + 1's complement

of A)

* V = logical inclusive OR symbol.

2-35

2.10

LOGICAL

EXCLUSIVE OR

2-36

The logical OR function described in the

previous section is more precisely known

as the logical inclusive OR function.

The exclusive OR function can be defined as

follows: The resulting bit of A+ Bisa 1

if bit A does not equal bit B.

Bit A 001 1

Bit B 010 1

—_ ee oie ae

| | ante

* 4) = logical exclusive OR symbol.

3.1

COMPUTER

PROGRAM

CHAPTER 3

PROGRAMMING FUNDAMENTALS AND BASIC CONCEPTS

Now that we know what a computer is, and the

most elementary steps of talking to the computer,

it's time to start building on this until we can

get the computer to do what we want it to do.

The job that we want the computer to do is

called the computer program. The procedure

for writing computer programs can be broken

down into five parts:

1. Problem definition.

2. Formulation of an algorithm for solving

the problem.

3. Structuring of a detailed flowchart
solution to the problem.

4. Translation of the detailed solution

into a computer programming language.

5. Testing and debugging the computer

program.

The assemblage of information from these five

steps constitutes the documentation of the

program. From this documentation the definition

of problem could become a program abstract, an

entry in a library for use by others attempting

fo accomplish the same task.

The algorithm and flowchart are of particular

use to you when you write the program. They

help to ensure that all phases of the problem

are covered by instructions. The algorithm and

flowchart are also of particular interest to

you or the maintenance programmer who - six months

from now - has to remember or figure out what a

particular block of instructions might be doing,

as a "bug" has been discovered in the program

and a fix must be effected.

3.1.1

Problem

Definition

3-2

Now let's look at each of the five steps in

more detail.

The definition of the problem should not be

bypassed as a trivial step. In many instances,

avoiding this preliminary step results in wasted

time and effort on future steps. The purpose

of the program must be known before proceeding.

The definition should be explicit and complete;

State how many, or what to do if some phase

cannot be completed, or, as encountered, does

not conform.

Consider the following problem definitions

in terms of the criteria just described.

1. Paint a room.

2. sort 25 numbers.

3. Change a tire.

4. Convert binary numbers into

hexadecimal equivalents.

Obviously, these statements do not qualify as

definitions of problems to be solved. But,

let's take one of the statements and further

define it until it does qualify as the definition

of a problem.

Changing a tire.

The tire is mounted on a car. The car is in

your garage. There is a working bumper jack

available and a spare tire in good shape - full

of air. Remove the tire that is mounted on the

car and replace it with the available spare.

3.1.1

Problem

Definition

(Continued)

2.1.2

Algorithm

Try another one.

sort 25 numbers.

Given a table of known size containing random

positive entries, sort the entries into ascending

order. First, keep a copy of the original table;

then perform the Sort on the original table.

Of the two problem definitions given above,

the first one is beyond the scope of this

book in terms of Steps 4 and 5 of writing

computer programs. However, the second one

(Sort 25 numbers.) could be carried through
Step 4 (translation into programming language)

and would still be within the scope of this book.

The algorithm is a step-by-step sequence to the

solution of a problem. It should account for

every possible condition, including any

foreseeable what-ifs.

One thing you should bear in mind: there is

seldom, if ever, just one solution to a problem.

If the same problem were given to fifteen

programmers, there would likely be fifteen

algorithms to the solution of that problem.

So what follows is just one programmer's

solution to the problem. It may not be the

best solution, but its purpose here is just

to show you examples of algorithms.

Changing a Tire

1. Get the spare tire from the spare

tire mount.

2. Get the bumper jack and assemble it

at the corner of the car closest to

the tire to be changed.

3. Secure the car, so that the car may

be jacked up without danger of rolling.

3-3

3.1.2

Algorithm

(Continued)

3-4

12.

13.

14,

15.

16.

Remove the wheel cover and check the

ends of the lugs for a stamping of

L or R, indicating a left- or right-

hand thread.

Jack the car up enough so that the

pressure is off the lug nuts but the

tire is still on the ground.

Loosen the lug nuts (left-hand thread

loosens clockwise, right-hand thread

counter-clockwise) about 1/4 to 1/2

turn each.

Now jack the car up until the tire

clears the ground.

Remove the lug nuts the rest of the way.

Remove the tire.

Place the spare tire on over the lugs.

Replace the lug nuts snugly, tightening

them in a 1-3-2-4 pattern for four lugs,

or a 1-3-5-2-4 pattern for five lugs.

Do not tighten excessively at this time,

Since the force required might cause the

car to slip off the jack.

Lower the car until the tire has good

traction on the ground, but is not

bearing the total weight that it will

receive.

Now finish tightening the lug nuts in

the pattern established in Step 11.

Lower the car the rest of the way and

remove the bumper jack.

Replace the wheel cover.

Return the bumper jack from whence

it came.

2.1.2

Algorithm

(Continued)

3.1.3

Flowchart

10.

sort

Set up pointers and counters.

Transfer entry from Table 1 to Table e.

Repeat Step 2 until Table 2 looks like

Table 1.

Get first two entries from Table 1.

Put the smaller of the two entries

into the first position of Table 1.

If the last entry has not been tested

and positioned, get the next entry.

Test each entry against the larger of

the two values from the previous test.

Put the smaller of the two entries

into the next sequential position

of Table 1.

When the largest value is in the last

position, reduce the size of Table 1

by one and go to Step 4.

When the reduction of Step 9 indicates

that Table 1 is only one entry, you

are done.

The flowchart differs from the algorithm

in that the flowchart goes deeper into

exactly how the problem is going to be

solved. While the algorithm is general

enough to apply to anybody's computer,

the flowchart shows evidence of one

computer's instruction set.

3-5

3.1.3

Flowchart

(Continued)

Flowcharting is a language of symbols with

English and mathematical statements within

joined lines. Flowcharting may be broken

down into two categories: system flowcharting

and program flowcharting. |

System flowcharting consists of peripheral devices

represented by symbols with interconnections to show

the relationship of the device to the overall

program. The system flowchart is helpful

to you and the maintenance programmer because

it presents a big-picture overview of what

the program is going to do. It also serves

aS a reminder to you of which devices the

program uses to communicate.

Some of the symbols used in system

flowcharting are shown below.

@&
EE

| Mag Mag t~ 7 Documen

punched netic netic
ar tape Disc

NI”

3.1.3

Flowchart

(Continued)

These symbols may be combined to show, for

instance, a payroll program.

\ f
= Payroll

Program

a. \C

For the payroll program, the program itself

"lives" on the disc, the employee's old records

are on the magnetic tape, and the weekly time

sheets are converted into punched cards and fed

into the program. The program then prints

the employee's check, updates his year-to-date

information on the magnetic tape, and keeps a

copy of this run of the program on the disc.

Program flowcharting consists of brief

statements and questions within different

shaped boxes to graphically illustrate the

logical flow of the program. Some of the

symbols used for this purpose are shown on

page 3-8.

3.1.3
Flowchart

(Continued)

3-8

Process

Pre-

defined

Process

Decision

Terminal

Interrupt

C). J

Novices take note:

Defined operation(s)

causing change in value,

form, or location of

information.

Operations or program

steps specified in a

Subroutine or another

set of flowcharts.

An operation that deter-

mines which of a number

of alternative paths to

be followed.

Indicates start, stop,

halt, delay, or interrupt;

may Show exit from a

closed subroutine.

Exit to, or entry from,

another part of the

chart or page.

Regardless of the

complexity of the program, using the

symbols just presented, it can be broken

down into one or a combination of the

following types of program flow.

Program Flow

1. Straight line:

2. Branching:

3. Looping:

| No

4. Subroutine:

Yes No

Yes

Print

3-9

3.1.3
Flowchart

(Continued)

For our example of program flow, let's

examine the flowchart for the Sort

routine introduced during problem

definition and algorithm discussions.

3.1.3

Flowchart
(Continued)

START

!

Get the ad-

dress of

table l

t

Get the size

of table 1

!

Start table 2

at TABLI

plus SIZE

—}

Transfer

entries from

TABL1 to

TABL2

Entries

Transferred
No

TABL1

3.1.3

Flowchart

(Continued)

Save SIZE minus one as

a comparison counter

and aS a pass counter ©)

—_

Put lst entry of TABLI1

into TEMP]

Put next entry of

TABL1 into TEMP2

TEMP1
Yes

> TEMP2

Save TEMP2

Save TEMP1 in TABLI1

in TABL1 and

then MOVE

TEMP2 to

TEMP 1

Ww.

Bump the storage

pointer and decrement

the comparison

counter

©

3.1.3

Flowchart

(Continued)

No

Yes

Save TEMP] in

TABL1 and decre-

ment the Pass

Counter

No

Present value of Pass

Counter goes to Com-

parison Counter

Set pointer back to

start of TABLL

DONE

3.1.3

Flowchart

(Continued)

3.2

BASIC CONCEPTS

3.2.1

Tables

3.242

Pointers

In the flowchart just presented, the

process block tends to be on the wordy

Side. This was done intentionally so

that there would be no misunderstanding

of the intention of the block. However,

it is not a bad practice even when you

are writing it to yourself. You would

be surprised how much of a program you

can forget after six months; and then

there's the maintenance programmer who

has never seen the program before.

some of the basic concepts of programming

are so Simple (here it comes) that most

books wouldn't even mention them; these are

things that we do automatically, like saying

"nine plus one equals ten" when we know

it is really zero with a one carry. These

concepts are so basic that we often overlook

them in the flowcharting stage, and then

too often neglect them in the first pass

of the coding stage. Three such basic

concepts are: tables, pointers, and counters.

A table is a collection of similar data

generally stored in sequential locations.

Examples might be a table of random positive

numbers, or a table of ASCII characters, or

a table of addresses to various subroutines.

A pointer is an indicator of where the table

lives, or which was the last entry referenced.

If a pointer is going to be used over and

over, it generally does not want to be altered.

In this case, the programmer will obtain a

copy of the pointer, place it in a temporary

Storage cell, and work on it there, to

preserve the original pointer. This would

be true in the case of one program building

a table from a given start address, and a

second program operating on the same table

of operands. If the first program destroys

the pointer, then the second program will

have either no data or the wrong data.

3.2.2

Pointers

(Continued)

3.2.3

Counters

Relating this to the Sort routine, the

very first step tells us to "get the

address of TABL1." Here we are getting a

copy of the pointer to the beginning of

TABL1. Later on, when the flowchart

indicates "save TEMP2 in TABLi" and

"Bump the storage pointer," we are

incrementing our copy of the pointer.

This technique always keeps the original

pointer intact.

A counter is an indicator of how many.

For our purposes we will consider two

types of counters: event counters and

iteration counters. An event counter

starts at zero and increments by one

each time the event takes place. This

was the case when the original table was

built. As each entry was made, an event

counter was incremented so that when the

table is complete, the event counter is

an indicator of the size of the table.

The other type of counter is an iteration

counter. An iteration counter tells you

how many times to perform an operation or

process. This can be done by starting

with a specific value and decrementing the

iteration counter to zero, or by starting

at zero and incrementing until a pre-

determined value is reached. In the Sort

routine, three such counters were used.

The state of the first counter is being

tested when the flowchart asks, "All entries

transferred?" The second wants to know if

the comparison "Count=0?" and the third if

"Pass = O?"

Further discussion of basic programming

concepts appears in later chapters where

individual instructions or small routines

can better demonstrate the concept.

3.2.3

Counters

At this time let's pause and take inventory

of where we've been, and where we're going.

First, we looked at the computer as a machine

and got a bit of a feel for what the machine

needed (a program counter, an instruction register,

a console, memory and peripherals) to perform

tasks for us. Secondly, we looked at the language

(binary numbering systems) that the computer
could understand. Thirdly, we looked at

the elementary phases of program development.

The next step is the instruction set. By

placing various combinations of ones and zeros

in the instruction register, we can get the

computer to execute elementary operations, the

sum total of which will be our program. Rather

than having to enter these instructions in

the form of ones and zeros, we develop

software to facilitate the job.

The program development software will consist

of a text editor to allow us to generate the

source program and make corrections, deletions,

and insertions where we need them without having

to rewrite the entire program. The next phase

of program development software is the assembler.

One job of the assembler is to convert our

instruction mnemonics (symbols that are easier

for us to remember than binary ones and zeroes)

into the language that the computer understands:

binary. From the assembler phase we will go to

the binary loaders. The binary loader is a

program to read and decode the information into

its correct location in memory. After our

program is loaded, like all good programs, it

never runs the first time! This is where we

use the program development aid called debugger.

The debugger allows us to run portions of our

program and check results dynamically, and

where necessary make corrections, deletions,

and insertions dynamically. Chapter 4 deals with

the next phase of program development, the

instruction set.

* When reading this chapter, the

Reference Card.

CHAPTER 4

THE INSTRUCTION SET *

Back in Chapter 1, when we first established what a

computer is, we spoke of it as having three main

sections:

1. Central Processing Unit (CPU) - Where
all data manipulation takes place.

2. Main Memory = Where the instructions are stored.

Also where tables of addresses and operands may

be stored.

3. Input/Output

environment.

These three main

Shown below.

(I/0) - The CPU's link to its

sections are linked to each other as

Mem Bus

Memory

I/O Bus

CPU 1
T

|

Peripheral

Corresponding to these three main sections, the

instruction set may be divided into three categories

according to the sections with which they are primarily

concerned. The three categories,

each, are outlined below:

1. Input/Output.

L
:

and the operations of

Operations involve:

ae Starting and stopping a peripheral device.

b. Transfer of data from the device to an

accumulator in the CPU.

reader should refer to his Programmer's

4.1

T/0

INSTRUCTIONS

42

ec. Transfer of data from an accumulator in the

CPU to the device.

d. Testing the status of the device.

2. Memory Reference Instructions (MRI). Operations

involve:

a» Modifying the Program Counter (PC).

b.» Modifying an operand in memory.

ec. Transfer of data from memory to

an accumulator.

d. Transfer of data from an accumulator

to memory.

3. Arithmetic-Logic Class (ALC). Performs data
manipulations between the accumulators.

Each instruction within the instruction set consists

of a string of 16 bits or binary digits, numbered

O through 15. These sixteen bits make up a computer

"word." Each of the three categories of instructions

has its own unique "word" format as outlined below.

We will look at the I/O instructions first, for two

reasons. First, the majority of information that

enters the CPU (and then memory) comes from I/0

devices. And secondly, by choosing the Teletype as an

I/O device we can see some mechanical reaction to our

instructions.

To understand some of the restrictions or limitations

of the I/O instructions, let's begin by looking at an
I/O instruction as it appears in the instruction

register (IR). In terms of the instruction register

(IR), every I/O instruction has the following format:

011 | AC TRANSFER CONTROL DEVICE CODE

0 23 4 5 7 8 9 10 15

4.1

I/0

INSTRUCTIONS

(Continued)

Any transferring of data is done between a particular

device and a particular accumulator. The accumulator

involved is specified by bits 3 and 4. The device

involved is specified by the device code in bits 10

through 15. Bits 10 through 15 decode to 64 unique

possibilities; however, only 621, devices may be

addressed (01g through 763). Device code 00 is not

used, and 77, is a special function code denoting the

CPU.* In a device, there may be up to three data

buffers (A, B, and C). Bits 5 through 7, the transfer
field, specify the buffer involved and the direction of

the data transfer, whether IN or OUT. An IN transfer

implies a data transfer from the device buffer to

the processor. An OUT transfer implies a data transfer

from the processor to the device buffer.

Transfer

Field Transfer Mnemonic

0 No I/O transfer NIO

1 Data IN from buffer A DIA

2 Data OUT to buffer A DOA

3 Data IN from buffer B- DIB

4 Data OUT to buffer B DOB

5 Data In from buffer C DIC

6 Data OUT to buffer C DOC

T (Reserved for skip tests described
later.)

The format of an I/O instruction as the assembler looks

at it is:

Transfer Control AC,Device Code

To type the character in ACO on the Teletype:

* The complete cross-reference between device codes

and their associated mnemonics may be found in

Appendix D, In-Out Codes.

43

4.

I/0

INSTRUCTIONS

(Continued)

4H

DOAS 0,TTO
\~—~ A —~ device

AC

Control

transfer

The Teletype keyboard/reader (input) has a device

code 10, and the Teletype printer/punch (output) has

a device code 11. Both the Teletype input and output

have an 8-bit storage capacity in the form of an

8-bit long A buffer. These eight bits correspond to

the right-most eight bits of a 16-bit computer word.

Write an instruction that "transfers a unit of data

from AC1l to the A buffer of the Teletype output

device 11."

DOA 1,TTO

Write an instruction that "transfers a unit of data

to AC2 from the A buffer of the Teletype input

device 10."

DIA 2, TTI

It is possible to transfer data to or from any device.

It should be noted that these transfers have no effect

on the devices themselves; they serve only to pass

information. Before a device reacts to transferred

data, some control information must be issued by the

program. This control information acts to Start and

stop (Clear) the particular device involved.

Associated with every device are two one-bit storage

elements (flip-flops) called Busy and Done. If both

flip-flops are clear (reset), the device is in the

idle mode. To place the device in operation, the

Busy flip-flop must be set. After the device has

processed the unit of data on a DATA OUT instruction,

or when a device has information available in a buffer

register on a DATA IN instruction, the Busy flip-flop

is cleared and the Done flip-flop is set.

4.1

I/0

INSTRUCTIONS

(Continued)

Using the control field in an I/O instruction, the

following control functions can be specified by

appending the appropriate mnemonic to the instruction.

Mnemonic Control Function

~ No control.

S set the Busy flip-flop and

clear the Done flip-flop,

thus starting the device.

C Clear both the Busy and Done

flip-flops, thus idling the

device.

P Special pulse output for

customer application.

Write an instruction that "transfers a unit of data

from AC1 to the A buffer of the Teletype output

device 11," then "starts" that device, causing the

transferred character to be printed.

DOAS 1,TTO

The NIO mnemonic effects no transfer of data, but

it does allow for "control only" instructions.

Write an instruction that "idles" the Teletype

input (device 10).

NIOC TTI

It is not usually advisable to perform any I/0

operations on a device that is busy. Using the

Special transfer code 7, it is possible to test

the status of the Busy and Done flip-flops and

to conditionally skip the next instruction as a

result of the test.

45

43 Transfer Control

I/0 Mnemonic Field Code Operation

INSTRUCTIONS

(Continued)
SKPBN 7 0 Skip the next

instruction

if the Busy

flip-flop is

nonzero.

SKPBZ T 1 Skip the next

instruction if

the Busy flip-

flop is zero.

SKPDN T 2 Skip if the

Done flip-flop

is nonzero.

SKPDZ 7 3 Skip if the

Done flip-flop

is zero.

Each skip~on-flag function must designate a specific

device.

SKPDN TTI Tests the Done flag of the TTI.

SKPBZ 36 Test the Busy flag of Device 36.

Read a character from the TTY; wait until it is in

the Done state.

NIOS TTI sotart a read cycle.

SKPDN TTI sokip when TTI done.

(Could be SKPBZ TTI.)
JMP o=- 1 ;Continue sensing status.

DIAC 0,TTI sFetch the character and

sidle TTI.

Write a group of instructions that outputs the

character in AC2 to the Teletype printer.

SKPBZ TTO sls the Teletype printer

s(code 11) Busy?
JMP oo] ;Yes, test it again.

DOAS 2,TTO ;No, output the character and

;start the Teletype printer.

4.6

4.1

I/0

INSTRUCTIONS

(Continued)

Write a group of instructions that requests a character

from the Teletype keyboard or reader, waits until the

character is available, then brings it into AC2.

NIOS

SKPDN

JMP

DIA

NOTE:

TTI sotart the Teletype input (code

310), thus requesting a character.
TTI sls the Teletype input Done

;(i.e., is the character in the
>A buffer)?

o- 1 ;No, test it again.
2,TTI sYes, bring the character (con-

stents of the A buffer) into

;AC2.

The Teletype input and output are two unique

and separate devices. Each has its own A

buffer, Busy and Done flags, and device code.

When typing a character on a normal typewriter,

the user expects to see the character printed

(this is known as "echoing" a character). If

a character is typed on a Teletype keyboard,

it is only set into the CPU. The character

is printed (echoed) only if the program outputs

the character. This is called full duplex;

indeed, you can be typing one input and

completely different results may be printing.

Write a program that inputs and echoes characters from

the Teletype keyboard, thus making the Teletype appear

as a normal typewriter.

NIOS

SKPDN

JMP

DIA

SKPBZ

JMP

DOAS

JMP

TTI sotart the Teletype input.

TTI sHas a character been input

syet?

onl ;sNo, keep testing.

0,TTI ;Yes, bring character into ACO.

TTO sis the Teletype printer Busy?

oo ;sfes, keep testing.

0,TTO ;No, output the character in

;ACO.

on? ;Repeat this program.

4.1.1

Special

Mnemonic

Instructions

4.2

MEMORY

REFERENCE

INSTRUCTIONS

4.8

There does exist a special class of I/0O instructions

for which the device code (bits 10-15) is 77, or the
CPU. Since the CPU is not literally an I/0 device

with A, B, and C buffers, it is interesting to see

what happens when these instructions are executed.

Since these instructions are special, the assembler

accepts special mnemonics as their equivalent. At

this time we will only discuss those special mnemonic

instructions that are not associated with interrupts;

this is the topic of a later chapter on I/0 device

handling. Right now, consider the following:

READS AC = DIA AC,CPU ;Causes the contents

sof the console data

;SWitches to be

sread and loaded into

sthe specific AC.

IORST = DICC 0O,CPU ;Clears the control

sflip-flops (Busy,

sDone, and Interrupt

sDisable) in all

;devices connected

sto the I/O bus.

HALT DOC 0,CPU ;Terminates pro-

sgram execution.

Now that we have received the character from the

device's buffer, we need a place to store it before we

can accept too many more characters. For this reason

our next category of instruction will be the Memory

Reference Instructions (MRI). If we turn back to page

4-2, we can review the operations of this category of

instructions.

U2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

4.2.1

Addressing

Since the memory into which we are going to place this

data can be as large as 32,768 storage locations

(requiring a 15-bit address pointer), and since the IR
is only 16 bits long, some scheme had to be devised

whereby both the operation and its address could be

coded in the 16-bit instruction. Let's look at the IR

format of a MRI to see how this is accomplished.

The technique is known as indexed addressing.

Indexed addressing is accomplished by coding two

numbers into the MRI: an Index (X) Mode and a

Displacement (D).

IR FUNCT/AC | I| X | D |

BIT 01234 567 89 10 11 12 13 14 15

POSITION

The bits contained in bit positions 6 and 7 of the MRI

specify the Index (X) Mode, and those contained in bit

positions 8 through 15 of the MRI specify the Displace-

ment (D).

X can take on four possible values:

X

005 = Og

Olo = 18

Each of these four values for X instructs the CPU

to extract a 15-bit number (address) from somewhere

in the CPU.

4-9

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

In the CPU there are five accessible temporary storage

registers. Four of these storage registers are 16=bit
accumulators and the fifth is the 15-bit program

counter. (The PC is 15 bits long since any address can

be expressed with 15 bits.)

If X is: The extracted 15-bit number is:

0 00000

8

1 the 15-bit contents of the Program

Counter.

2 the right-most 15 bits of AC2.

3 the right-most 15 bits of AC3.

The Displacement (D) is an 8-bit number that can take

on the following octal values:

UNSIGNED: 000 through 377
SIGNED: -200 through +177

To use the concept of Index Addressing, the programmer

decides which location in memory the MRI is to

reference. The address of this location is known as

the Effective Address (E). The programmer then forms E

by referencing one of the four indexes to which will be

added or subtracted the displacement, such that:

E=(X) + D

Where, in this case, the notation (X) refers to the

extracted 15-bit number. It should be noted that if

X=0, then (X)=00000g and E will actually be the value

of D. Also, if X=1, then (X) equals the 15-bit

contents of PC. At the time that this MRI is being

executed by the computer, the PC contains the 15-bit

address of the location in memory where this MRI was

fetched. Thus the contents of the PC is sometimes

referred to as the "present location in the program,"

"present location," or "present address."

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

The Possible The Possible

If Then Values for D Effective

X Is; (X) Is: Are: Addresses (E):

0 00000 000 through 377 00000 through

00377

1 (PC) -200 through (Present loc-

+177 ation -200)

through

(Present
location +177

2 (AC2) -200 through [(AC2) -200]

+177 through

[(AC2) +177]

3 (AC3) -200 through [(AC3) -200]
through

+177 [(AC3) +177]

Notice that the possible effective addresses, resulting

when index mode 0 is used, are always between memory

locations, 0 and 377. This fixed, addressable area is

known as jpage O§ and the possible effective addresses,

resulting when index mode 1, 2, or 3 is used, are

dependent upon the contents of the PC, AC2, or AC3

respectively. Index mode 1 addressing is commonly

referred to as relative addressing, since the E

produced will be distance D relative to the present

address (PC). Index modes 2 and 3 addressing are

commonly referred to as base register addressing, since

the E produced will be a function of the contents of

the base register (accumulator) used. In base register

addressing, the contents of the base register

(accumulator) is commonly referred to as a memory
pointer, since it contains the 15-bit address of a

Location in memory, i.e., points to that location.

The procedure for calculating the address can be seen

in the flowchart on the next page.

GET DISPLACEMENT (BITS 8 - 15)

INDEX

MODE YES

(BITS 6 - 7)
= 0 ABSOLUTE

ADDRESS

NO

EXTEND DISPLACEMENT

WITH SIGN BIT (BIT 8)

EFA *# =

EXTEND DISPLACEMENT

WITH ZEROX

EXTENDED DISPLACEMENT + (X)

YES

--— BIT 5 1

NO

OPERAND = (EFA)

¥* EFA MEANS EFFECTIVE ADDRESS

Figure 4.1 Flowchart of Direct Address Calculations

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

000000

000100

000377

000600

AC2=001000

001177

004600

PC=005000

005177

012145

AC3=012345

012544

O77TTT

PAGE 0, ABSOLUTE

RANGE OF ADDRESSES DIRECTLY

ACCESSIBLE WHEN X=0

PAGE 1

RANGE SERVED BY ADDRESSES

RELATIVE TO THE CONTENTS OF

ACCUMULATOR TWO.

RANGE SERVED BY ADDRESS

RELATIVE TO THE LOCATION OF

THE INSTRUCTION: LDA O,D,1

RANGE SERVED BY ADDRESSES

RELATIVE TO THE CONTENT OF

ACCUMULATOR THREE,

TOP OF 32K OF CORE —

Figure 4.2 Memory Addressing Map

X=1

X=3

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

4.2.2

The FUNCT/AC field (bits 0-4) can code one of the

following instructions:

LDA AC

STA AC

ISZ

DSZ

JMP

JSR

The format of MRIs as interpreted by the assembler is:

FUNCT <AC,> D <,X >

where < > means optional entry. In other words, if the

FUNCT requires an accumulator (LDA and STA), the <AC,>

field must have an entry. Also, if no <,X> is

Specified, the default value of zero will be assumed.

Now let us examine the individual functions specified

above.

LoaD Accumulator

LDA - "LoaD the contents of a memory location into

an Accumulator."

The LDA instruction is used to transfer the contents of

a memory location to the CPU (one of the four

accumulators). For the CPU to execute an LDA

instruction, it must know which one of the four

accumulators is to receive the word (0, 1, 2, or 3),

and which memory location (E) contains the word to be

transferred. The instruction is in the form:

LDA AC,D,X

where: AC is the accumulator number (0, 1,

2, or 3)

D is the displacement (000 through

377) or (=200 through +177)
X is the index (0, 1, 2, or 3)

The combination of D and X form E, the memory address.

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

This technique takes advantage of the assembler's

capability to calculate displacements. More important,

however, it relieves you of worrying whether the

displacement should be stated in decimal or octal.

And secondly, it allows you to insert instructions

(as we are about to do) in any area of memory without
having to change all MRI displacements that might be

affected.

The other change that you should notice is that the

accumulators selected for input (DIAS 0,TTI) versus

output (DOAS 1,TTO) are different. This was done

with forethought, so that the instructions that we

will insert will be more meaningful, and less

redundant.

Now for the new instructions. After we input the

character from the Teletype, we want to store it in

a table, thereby freeing up the input accumulator to

receive the next character. Also, prior to outputting

a character we will get the character from the same

table. This may be done by modifying the program as

follows:

NIOS TTI

IN: SKPDN TTI

JMP oo

DIAS 0,TTI ;Get this char. and

;start the next.

STA QO,TABLE ;Save this char. in

; TABLE.

LDA 1,TABLE ;Get the char. for output.

OUT: SKPBZ TTO

JMP OUT

DOAS 1,TTO ;sOutput the char. for

sprinting

JMP IN sGo get next char.

TABLE: 0

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

4.2.3

STA

STore Accumulator

STA - "STore the contents of an Accumulator into a

memory location."

The STA instruction is used in a manner similar to

that of the LDA instruction. The difference is that

the STA instruction causes data to be transferred from

the CPU (one of the four accumulators) into a memory

location, whereas the LDA instruction causes data to

be transferred from a memory location to the CPU (one

of the four accumulators).

To apply these two instructions in a practical

situation, let's look back at the I/O program that

we wrote to "echo" characters (see page 4-7). In the

program as written, there is no provision to save one

character before inputting the next. Let's modify

this basic echo routine as follows:

NIOS TTI sotart the Teletype input.

IN: SKPDN TTI sHas character been input?

JMP onl sNo, test it again.

DIAS 0,TTI sfes, get this char. and

‘ sstart the next.

OUT; SKPBZ TTO sIs the Teletype printer

sbusy?

JMP OUT ;Yes, test it again.

DOAS 1,TTO ;No, output the character

sand start the printer,

JMP IN ;sGo get next character.

Before we discuss the instructions that we are going

to insert into this program, let's discuss the changes

that exist between this version and the one on page

4.7, Here we see that the location of the

SKP--instructions has been given a name (IN: and

OUT:). This relieves you of worrying about where the

instruction "lives" by allowing you to reference the

location by a name that you have chosen; a name that

has meaning to you. This name is then substituted in

the displacement field of the instruction:

JMP IN

Hee

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

The program now allows us to use accumulators zero and

one in the dot-dot-dot area without losing the

character that was input. However, the severe

restriction still exists that we can only input one

character. That is, we only have one memory location

(TABLE) designated to store characters. What would be
nice would be the ability to store many characters into

sequential locations and perhaps even keep a tally of

how many characters were input. Enter, the next two

instructions.

increment and Skip on a Zero result.

ISZ

The ISZ instruction causes the contents of a desired

memory location to be "Incremented" by one. The only

additional information that must be supplied to the

CPU is the address of the memory location whose

contents are to be altered (incremented). Thus, this

instruction takes the form:

ISZ D,X

The combination of D and X form E, the memory address.

The ISZ instruction provides an additional feature.

If, after being incremented by one, the new contents

of the altered memory location are 000000, then the

CPU skips the next instruction in the program --

"Increment and Skip on a Zero result."

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

OLD MEMORY INSTRUCTIONS

STATE EXECUTED

) ! SITIIIIIIII
307 | 000423 ISZ sor 0

306 177777 ISZ 306,0

305 106523 ISZ 05,0)
| : ISZ 306 ,0
| |)

ISZ 307 ,0
-a- eee ¥

NEW MEMORY

STATE

oF

! 3

307 000425

306 000001

305 106523

Decrement and Skip on Zero result.

DSZ

The DSZ -- "Decrement and Skip on a Zero result" --
instruction performs similarly to the ISZ instruction,
except that contents of the desired memory location
are "Decremented" by one, instead of being
"Incremented" by one as in the ISZ instruction.

It is important to realize that both of these
instructions are modifying the content of an address,
not the actual address. In other words, if we were to
insert this instruction:

ISZ TABLE

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

into our program, it would not serve our purpose. The

effect of this instruction would be to add one to the
character stored at location TABLE. What we need is

to have our address, TABLE, stored as the content of

another address. The technique for doing so might be:

ATABL: TABLE

Which may be read as

TABLE," or points to

the program again to

"location ATABL contains the value

location TABLE. Now let's modify

include the new features.

LDA O,ATABL sGet the address TABLE.

STA 0,TEMP soave it in a temporary

;location.

NIOS TTI sotart the Teletype

sinput.

IN: SKPDN TTI ;sHas the character been

sinput?

JMP o-1

DIAS 0,TTI
;No, test it again.

sYes, get this char-

;acter and start the

;sinput for the next.

LDA 2, TEMP sGet the address of

; TABLE.

STA 0,0,2 sotore the character

sin the table.

LDA 2,TEMP ;Get the address of

> TABLE.

LDA 1,0,2 ;Get the character from

OUT: SKPBZ TTO

JMP OUT

DOAS 1,TTO

;the table.

sis the Teletype printer

;busy?

sYes, test it again.

;sNo, output the char.

sand start printer.

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

4-20

TS8Z TEMP ,;Advance the table

;pointer.

ISZ COUNT sAdvance the tally

;counter.

TEMP: 0O ;

COUNT:0 ;sKeep a tally of the

snumber of entries.

ATABL: TABLE ;Pointer to the table.

TABLE:0 ;the table starts here.

Before we examine the additions that were made to the

program, remember under algorithms and flowcharting we

introduced the concepts of table, pointers, and

counters (refer to pages 3-14 through 3-17). Now we

see them implemented in instructions.

As was mentioned in the discussion on pointers, "The

programmer will obtain a copy of the pointer, place

it in a temporary storage cell, and work on it there

to preserve the original pointer." This is the purpose

of the first two instructions in our modified program:

LDA 0,ATABL

STA 0,TEMP

Locations ATABL and TEMP appear at the end of the

program where ATABL is initialized statically to the

value TABLE and TEMP is initialized statically to zero.

The program then dynamically reinitializes location

TEMP to the value TABLE.

When the program is ready to store or retrieve a

character, it is done with the following

two-instruction combinations:

LDA 2,TEMP

STA 0,0,2

LDA 2,TEMP

LDA 1,0,2

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

The operation of the STA 0,0,2 and LDA 1,0,2

instructions can be reviewed on page 4-19. The LDA

2,TEMP instruction is repeated to allow the

dot-dot-dot area of the program to use accumulator two.

After this character has been placed in the table, and

sufficiently massaged and output for printing, then the

pointer is advanced to the next sequential address in

the table:

ISZ TEMP

Also the tally counter is incremented:

ISZ COUNT

In both instances we never expect the "skip on zero

result" to take place. We are simply using the

increment memory portion of the instruction. Further

applications of these instructions will be seen as we

continue to modify the program.

As for the remaining MRIs, we have been using one of

them ever since we started applying the instructions.

Now we will formally define it.

SuMP

IMP

The JMP -- "JuMP" -- instruction is used specifically

to alter the flow of a program. The program that is

stored in memory is normally executed sequentially,

since the Program Counter (PC) is incremented by 1

following execution of an instruction.

It may be desirable, at some point in a program, to

branch to another group of instructions that resides

somewhere else in memory. To perform this branching,

it is necessary to provide the memory address where

the new block of instructions begins. Thus, JMP

instructions are of the form:

JMP D,X

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

4.2.7

JSR

4m 22

The combination of D and X form E, the memory

address where the new block of instructions begins.

The (PC) are replaced by E, causing program execution

to proceed sequentially from this new address. This

results in the branching of the program to a new

block of code.

JSR

The JSR -- "Jump to SubRoutine" -- provides branching

Similar to that of the JMP instruction; the main

difference between the JMP and JSR instructions is

that the JSR instruction not only branches to some

other group of instructions, but it also retains the

memory address that it jumped from. This feature is

extremely useful when writing groups of instructions

that perform specific tasks (subroutines).

For example, if the square root operation is used

many times in a program, it may be more advantageous

to write the square root subroutine as one block of

code. Whenever the square root of a number is desired,

simply do a JSR to the square root subroutine and have

the square root subroutine return to the calling

program when finished. For this purpose the CPU

puts the return address -- (PC)+1 at the time the JSR

instruction occurred -- into AC3.

The formal definition for JMP talks about branching

to a new block of code. However, as you can see from

our application of the JMP instruction, it works

equally well branching back to repeat a block of

code. As for the JSR instruction, we are not ready

for the square root subroutine; however, we can take

our program and make the input and output portions

of it into subroutines as follows:

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued) GET:

LDA

STA

JSR

LDA

STA

LDA

LDA

JSR

ISZ

ISZ

JMP

TEMP: O

COUNT:0

ATABL: TABLE

TABLE:0

GCHAR: NIOS

SKPDN

*JMP

DIAS

JMP

PCHAR: SKPBZ

* JMP .=-1 means "jump

to my current location

minus one."

JMP

DOAS

JMP

0, ATABL

0, TEMP

GCHAR

2,TEMP

0,0,2

2,TEMP

1,0,2

PCHAR

TEMP

COUNT

GET

TTI

TTI

o-

0,TTI

0,3

TTO

o- 1

1,TTO

0,3

sGet the address

; TABLE.

soave it in a

;temporary location.

sGet a CHARacter.

sGet the address of

>TABLE.

sotore the char. in

;the table.

sGet the address of

; TABLE.

sGet the char. from

;the table.

;Print the CHARacter.

;Advance the table

;pointer.

sAdvance the tally

;counter.

;Go get next char-

;acter.

sotart the Teletype

sinput.

;Has the char. been

sinput?

;No, test it again.

sYes, Get char. and

sstart input again.

;Return to the

;address saved in

;AC3 by the JSR

;instruction.

;Is the Teletype

sprinter busy?

‘Yes, test it again.

sNo, output char.

sand start printer.

;Return to the

;saddress saved in

;AC3 by the JSR

sinstruction.

4-23

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

4 2u

Program A

B;

LDA 0,@BA1 ;Program A's access

sto Argl.

JSR C ;Program A calls C

BA1;: CAA sindirect pointer to

sArgl.

Now that we have looked at all of the memory reference

instructions, let's pause for this reminder: The

following message is brought to you on behalf of the

assembler.

Hey, remember me! I'm the guy that

has to take these mnemonics and

convert them into something the CPU

can understand. As long as you

conform to prescribed rules, I can

do my job. I'm the guy that allows

you to give a name to a location

(GET:) and then to reference that
location by name (JMP GET). What

you have to remember is that I have

to code your reference into binary

bits. So keep your references

Within range, and we will get along

just great.

I think what he is trying to tell us is that it is

time to go back and take another look at bits 5

through 15 of the instruction register for a MRI.

Since we haven't given any numeric addresses for the

locations of our instructions, the references could

be to page zero (location 0-377,) or page one

(locations 400g to top of available memory). Figure
4.3 shows how the assembler will code bits 6-15

of the instruction.

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

-— NO

Y

ADDRESS =

0 TO 377

?

Y
ADDRESS=>BITS

8-15

OO->BITS 6+7

Figure 4.3 Formation of Effective Address for MR

DISPLACE-

Instruction

AN

ERROR

“ee

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

4.2.8

INDIRECT

ADDRESSING

426

Referring once again to the Memory Addressing Map on

page 4-13, it appears that of a total of 32K of

possible addresses, we only have access to a maximum

of 1K at any given point in time. In other words,

with specific values already in the PC, AC2, and

AC3, bits 8 through 15 can only displace these

values by a fixed range. One out of 32; wouldn't

it be nice if we could reach the other 31K without

having to alter the PC, AC2, or AC3? Behold, IR

bit 5! Up to this point, IR bit 5 has been a zero,

which defines IR bits 6 through 15 as the address

of an operand, or the final address. Now, if we

could just get bit 5 set to a 1, the CPU would

then interpret IR bits 6 through 15 as the address

of an address, or an indirect address. We have

already seen this concept in application when we,

in our program, statically set the content of address

ATABL equal to TABLE:

ATABL: TABLE,

and again when we dynamically set the content of

address TEMP equal to TABLE:

STA 0, TEMP

Without indirect addressing, we then picked up our

characters in the following sequence:

LDA 2, TEMP

LDA 0,0,2

Wouldn't it be nice if we could load accumulator

zero by simply going indirect through location

TEMP to arrive at the table. Hey assembler, what's

the procedure?

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

If you use the "at" symbol (@) anywhere in a MRI

instruction, I will interpret this to mean that

the address is indirect and will therefore set

bit 5 toa 1.

Example:

LDA 0,@TEMP

or LDA 0, TEMP@

or LDA @,0,TEMP

or @LDA 0, TEMP

or LDA@ O,TEMP

All of the above will be treated identically by the

assembler. What indirect addressing buys us is 16 bits

worth of address. Let me explain. While we were

confined to the instruction register, a portion of

the 16 bits had to specify FUNCT, a portion for AC,

a portion for Index mode, and finally eight bits for

Displacement. Once we leave the confines of the IR,

and begin obtaining our addresses from memory

locations, we have the full 16-bit content of the

memory location with which to specify a new address.

This difference can be seen in the diagram below.

Direct Addressing ~ IR bit 5 = 0

0 4 5 6 15

IR: [FUNCT]0O]| ADRS |

O Adrs_ 15

Memory: [_________ s/OQPERAND |

Indirect Addressing (@) = IR bit 5 = 1

0 4 5 6 15

IR: [FUNCT [1] ADRS |

OQ ADRS 15

Memory +[Address —
O Address 15

|Operand |Memory:

427

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

428

The question that you are undoubtedly waiting to ask

is, "I thought we only needed 15 bits to access any

address in the 32K range?"

The answer: Youtre absolutely correct! Therefore,

every time we extract a 15-bit address from memory,

we have a whole bit left over. What do you think

we should use it for? Sorry, the decision has been

made for us. Just as IR bit 5 begins the indirect

addressing chain, so memory bit O can be used to

perpetuate the chain.

Example:

0 4 5 6 15

IR: |FUNCT |1/ Adrs |

0 1 Adrs 15

Memory: >} 0} Address |

QO Address’ 15

Memory: Operand

4 5 6 155

[1| Adrs |

0 1 Adrs 15
Memory: 1} Address |

0 1 Adrs 15

0

IR: [FUNCT

Memory: 0} Address |

QO Address 15
Memory: | Operand

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

The chain, then, can be as long or as short as you

desire simply by setting bit O in those memory

locations that the chain references.

The way that the CPU calculates the address is

shown in the flowchart on the following page.

SSHYddW FZALILOddday Sueow Vd» +(Waa) = GNwaadoX FO uotRZeueTdXS saSyTHATONISSAYadY |—_—- —- —— (WHid) = Wd MUNON LE> Wad > OZLOA LTGNTI¥(X) + LNSWAOVIdSIA» GHONALXA = ~.WAId(8 LId) LId NOIS HLIMLNAWAOWIdSIG ANULXaSOYdZ HLIM LNAW~HOVIdSIG ANALXd(ST-O SLI) LNAWAOVIdSIAC La
Figure 4.4 Flow Chart of Indirect Address Calculations

4-30

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

Program B

B: ‘

LDA 0,@CA1 ;Program B's access

. sto Argl.

JSR ECT ;Call to next level

CA1: @BA1 sIndirect pointer

° sto Argl

Now consider that we are executing the LDA instruction

in Program B;

0 4 5 6 15

IR: | LDA [| @ | CA |

Memory: — ;Address of an
;address

Memory: @AA1 sAddress of an

;address

Memory: ;Address of

;oOperand

Memory: ‘operand

What is not shown in the block approach above is

how the indirect pointer at each level might be

done dynamically by each program before calling

the next level.

Let's return now to our program as we left it.

By uSing indirect addressing, it now appears

as follows:

431

4,2

MEMORY LDA O0,ATABL
REFERENCE STA O,TEMP

INSTRUCTIONS GET: JSR GCHAR

(Continued) STA O,@TEMP

LDA 1,@TEMP ;Get the character

;from the table.

JSR PCHAR ;Print the CHARacter.
ISZ TEMP ;Advance the table

;pointer.

etc.

etc.

4.2.9

AUTO

INDEXING

4m 32

Now that you are feeling comfortable with indirect

addressing, it's time for another one of those

"wouldn't it be nice" curves. Wouldn't it be nice

if the same instruction that gets the operand from

the table would also advance the table pointer, thereby

eliminating the need for a separate instruction to do
the job: ISZ TEMP. Dare we call on the assembler
again? No, this is a job for CPU. It is referred

to as auto-indexing, and it works as follows:

If at any level in the effective

address calculation locations

e0-37, are referenced indirectly

(i.e., their content is an address),
the content will be automatically

incremented or decremented by one

before use. The new value is both

written back into the auto-indexed

location and used as the next level

in the indirect addressing chain.

Addresses taken from locations

20-27, are incremented before use,

those from 30-37, are decremented

before use. To illustrate, consider

the following.

When referenced directly, locations 20-37
are no different from any other location.

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

Q 4 5 6 15
IR | LDA O|O{ 20 |

0 1

-—______» 20/ | OPERAND

Even after one level of indirect addressing, when
locations 20-37 are referenced directly, they are

no different from any other addresses.

0 4 5 6 15
IR | LDA 0 |] 1] 2000 |

QO. 1 15

> 2000//0 | 20 |

0 15

20/ | OPERAND

The auto-indexed location may be referenced indirectly

at the instruction register level:

First Level Auto-Indexing

0 45 6 15

IR | LDA 0 | 1 | 20 |

1 15

1777

0 15

[g}+200

1+

0

———» 20/|0

or at any level thereafter. The auto-indexed

location may contain a final address:

4-33

4,2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

0 4 5 6 15
IR | LDA O[1] 2000]

O41 4

2000/

0 1

-1 {OPERAND ~
or another indirect address; they are still
auto-indexed locations as long as the chain
is not broken.

0 4

IR | LDA 0

0 15

The following flowchart demonstrates how the computer calculates the address.

4-34

(W4H) = ANWUddoOneONT= S Ja _
SHA ONTISSaYadyLOGUIGNI«x (X) + LNAWFTOVIdSIGGHQNGLXa = xWAd(8 LId) LIG NOIS HLIMLNAWAOWIdSId GNALXaSOWGZ HLIM LNW“GHOWITdSIG ANaLXY

SHA

~9 SLId) AGOW

(ST-8) SLIG) LNAWHOWIdSIG LD Sd ;oo

ONIXAANIOLNAW
XJO uOTReURTAUXS BOS xySSHYdaqW TAI LOgddIa Ssueow VWI,I

(WId) =W4AId MON(Wid) INAW (W4d) LNAW

-AYONI | _-quoga: NaN;]SHA$ -3UONI LNaW° OLNYON
Figure 4.5 Complete Flowchart of Address Calculations

4-35

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

GET:

4-36

Modifying our program to implement the new technique,

we have the following:

LDA O,ATABL sGet the address TABLE.

STA 0,20 soave as auto~-index

;pointer.

DSZ 20 ;Back off for "incre-

sment before use."

STA 0,21 ;IiInput versus Output

;needs

DSZ 21 ;separate pointers.

JSR GCHAR sGet the CHARacter.

STA 0,@20 ;Store character and

‘ sadvance pointer.

LDA 1,@21 ;Get the character and

sadvance pointer.

JSR PCHAR ;Print the CHARacter.

ISZ COUNT sadvance the tally

;counter.

etc.

Notice that this technique requires additional

instructions to back off on the auto-indexed

locations before using them.

DSZ 20

DSZ 21

This can be overcome by using auto-indexed

addressing for all references to TABLE and then

Simply initialize location ATABL to one less than

the start address of TABLE. The program would then

look like the following:

4.2

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

GET:

COUNT:

ATABL:

TABLE:

To further enhance your

LDA

STA

STA

JSR

OTA

LDA

JSR

ISZ

JMP

0

TABLE-1

0

Q,ATABL ;Get the address of

0,20

0,21

GCHAR

0,@20

1,@21

PCHAR

COUNT

GET

s TABLE.

soave aS auto-index

;pointer

sfor both input and

;output.

;sGet the CHARacter

;advance pointer and

;store character.

;Advance pointer

;and get character.

;Print the CHARacter

;advance the tally

;counter.

;Go get next char-

;acter.

;Back off for

;"increment before

suse."

understanding of indirect

addressing, try the following program.

1. Fill in the comment column based on your
understanding of the instructions.

START:

LOOP:

TAD:

CON:

CNT

VAR:

LDA

STA

LDA

ISZ

STA

DSZ

JMP

HALT

@770

5
0

771

0,CON

0,CNT

0,VAR

TAD

0,@TAD

CNT

LOOP

(Continued)

Comments

wewe we WS we we Be WE

42

MEMORY

REFERENCE

INSTRUCTIONS

(Continued)

4.3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

4-38

2. Given:

Address/Content Address/Content

7171/7700 7774/7730

T72/7710 T75/TAD

773/7720 7176/0

3. Fill in the missing content.

Address/Content Accumulator = Content

7700/ ACO =

T710/

T720/

7730/

This concludes our immediate coverage of memory

reference instructions. However, we will be using MRIs

as we continue our coverage of the instruction set.

Thus far in the development of our program, we have

been able to input and output characters to a device.

Also, we have stored and retrieved these characters

from memory by building a table, using a pointer, and

keeping a tally. The third category of instruction,

the Arithmetic and Logic Class (ALC), will be used to

overcome some of the severe restrictions in our program

as developed thus far. For instance, wouldn't it be

nice if we could pack two 8-bit (ASCII) characters into

those 16-bit memory locations instead of wasting 50% of

memory? Wouldn't it be nice if we could sense for the

presence of a particular character to signify end-of-

input? Wouldn't it be nice if we could selectively

store or discard characters? For these and other

niceties, stay tuned as we present the Arithmetic

and Logic Class of instructions.

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

The basic format of ALC instructions as interpreted
by the assembler is:

FUNCT ACS,ACD

where: ACS means Source Accumulator (0-3)

ACD means Destination Accumulator

(0-3)

This information is contained in bits 0 through 7
of the instruction register in the following manner:

1 ACS ACD FUNCT

0/1 2|3 WY 5 6 7/| 8 15

A 1 in bit 0 indicates an ALC.

The mnemonics that the assembler will accept and their
associated descriptions are given on the following

page.

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

440

Mnemonic Description

COM ACS,ACD scompute the 1's comple-

sment of the number in ACS,

sand put the result into

;ACD.

NEG ACS,ACD scompute the 2's comple-

sment (negative) of the

snumber in ACS, and put

;the result into ACD.

INC ACS, ACD sadd one (increment) to the
snumber in ACS and put the

sresult into ACD.

MOV ACS, ACD scopy (move) the number in
;ACS into ACD.

ADD ACS, ACD sadd the number in ACS

sto the number in ACD and

sput the answer into ACD.

SUB ACS, ACD ssubtract the number in ACS

sfrom the number in ACD

sand put the answer into

;ACD. Subtract is per-

sformed by taking the i's

scomplement of the number

sin ACS, adding this to the

snumber in ACD, then adding

;1 to the result (2's

scomplement subtraction).

ADC ACS, ACD sadd the 1's complement

sof the number in ACS to

sthe number in ACD and put

;the answer into ACD.

AND ACS, ACD sperform a logical AND

;operation between the

snumber in ACS and the

snumber in ACD and put the

sresult into ACD.

Quite often it is convenient to start with a value of
zero in an accumulator. Since we don't have a CLEAR

instruction as such, this may be accomplished (without

the use of a constant from memory) by subtracting the

accumulator from itself. For instance, to clear AC2,

use the following:

SUB 2,2

4.3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4.3.1

OKIP

FUNCTIONS

Another convenient function would be that of comparing

two quantities. However, the comparison would be

meaningless unless we had a way of testing the outcome.

For this purpose the assembler will accept a skip

specifier in the form of a three-character mnemonic

following ACD. The table below gives the acceptable

mnemonics and their meanings.

Mnemonic

(None)

SKP

SZR

SNR

SZC

SNC

Meaning

Default condition; no test is made.

The next location in the program

sequence will be executed.

(Unconditional SKIP) The next
location in the program sequence

is unconditionally skipped.

(Skip on Zero Result) If the
16-bit result from the operation
is zero, the next location in the

program sequence is skipped.

(Skip on Nonzero Result) If the
16-bit result from the operation
is nonzero, the next location in

the program sequence is skipped.

(Skip on Zero Carry) If the carry
bit resulting from the operation is

zero, the next location in the

program sequence is skipped.

(Skip on Nonzero Carry) If the
carry bit resulting from the

operation is nonzero, the next

location in the program sequence

is skipped.

444

4.3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4.42

Mnemonic Meaning

SEZ (Skip if Either or both are Zero)

If either or both (Carry and Result)
are zero, the next location in the

program sequence is skipped.

SBN (Skip if Both are Nonzero) If both

(Carry and Result) are nonzero, the
next location in the program sequence

is skipped.

The assembler codes this information into bits 13
through 15 of the instruction as follows:

QO. 61 2 3 45 7 8 1213 15
i | ACS | ACD | FUNCT | | SKIP |

Now, to effect a comparison for equality we might use
the following program sequence.

Test to see if the input character is a carriage
return.

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4.3.2

NO-LOAD

FUNCTION

DIA 0,TTI sGet the character.

LDA 1,CR ;sGet the ASCII for

;carriage return.

SUB 0,1,SNR ;Test for equality.

JMP EQUAL sChar = CR.

° ;sExecute this pro-

;gram sequence only

;if Char = CR.

sExecute this pro-

- ;gram sequence

;only if Char = CR.

EQUAL:

CR; 215 ;ASCII for carriage

sreturn with even

sparity.*

Additional comparisons will be made after we have the
entire 16 bits of instruction with which to work.

During the execution of the SUB 0,1,SNR instruction,

the original content of the source accumulator is

unaltered; however, the original content of the

destination accumulator is destroyed. This means

we have to reload the CR character every time we

want to test a new input character. Wouldn't it

be nice if we could load it once and perform all

tests without having to reload the test character

again? Hey assembler, what have you got in your

back of tricks?

Funny you should ask. It just so happens

that if the number sign (#) appears

anywhere in an ALC instruction, I will

interpret this to mean "do not deliver

the result to the destination accumulator."

I will therefore use this information to

set bit 12 of the instruction.

* For a discussion on parity, see page 4-51.

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4.3.3.

SHIFT

FUNCTION

y-4y

Isn't he wonderful folks? Let's hear it for the

assembler. So now the instruction register looks like

the following:

| a) 45 78 11 +12 ~«13 15
} | | Acs | ACD | FUNCT | jno load SKIP

Another very common test that is performed is that of
testing for positive versus negative numbers; i.e.,
testing the sign of a number. In signed number

representation, the most significant bit (bit 0) is

the sign bit. Since we don't have a skip specifier

to test bit 0, we will just have to position bit 0

Where it can be tested. How about if we move it

into the Carry bit? The table below shows how this

is done.

The Shift Field (Bits 8 and 9)

Mnemonic Effect

(none) Default value. No effect.

L, All bits are shifted one
position to the left;

0 15

R All bits are shifted one

position to the right:

0 15

l

4.3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

The Shift Field (Bits 8 and 9)

Mnemonic Effect

9 A byte swap occurs:

| c | | 0 7 | 8 i

we 15
fc] [8 1570 7 |

The instruction register now looks like the following:

QO 1 2. 3 4 2 7 8 9 11 12 13 15

1 ACS ACD FUNCT SHIFT no lead SKIP

Now, with our new found capabilities we can do the

following:

MOVL# 0,0,SNC ;Test the sign.

JMP POS sIf positive (=0) JMP

next instruction;Do this if negative.

;(40)3

Notice that by combining the shift operation with

NO LOAD feature,we can perform the test without

destroying the original content of the accumulator.

The same technique may also be used to test odd versus

even numbers by shifting in the other direction.

MOV R# 0,0,SZC ;Test for odd versus

;even.

JMP ODD ;lf odd,JMP.

next instruction;Do this if even.

44S

u, 3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4-46

Let us consider now the third possibility: a swap.

Remember the Teletype, that 8-bit ASCII device? Since

it only deals in eight bit quantities, it will always

send and receive information in bits 8 through 15.

Therefore, if we have two characters in an accumulator,

we would output them in the following manner.

LDA 0,@21 ;Advance the pointer and

;get two char.

JSR PCHAR ;Print CHAR in low-byte

;position.

MOVS 0,0 ;Reposition the bytes.

JSR PCHAR ;Print the second CHAR.

Notice in the example above, the No-Load switch (#)

is off. Therefore, the result will be delivered to

the destination accumulator. The shift left and shift

right operations could also be used to multiply a

number by two or divide a number by two. There is only

one drawback. If the carry bit that gets shifted into

the number is a1, it destroys the integrity of the

number. What we need iS more control over the carry

bit. Aside from the fact that shifting left or right

alters carry, carry is also affected by overflow

resulting from certain arithmetic operations.

Overflow will result from any of the following:

INSTRUCTION CONDITION CAUSING OVERFLOW

ADD ACS,ACD where (ACS) + (ACD) > 2!© 1

INC ACS,ACD where (ACS) = 2'® -1

NEG ACS,ACD where (ACS) 0

SUB ACS,ACD where (ACS) < (ACD)

ADC ACS,ACD where (ACS) < (ACD)

4.3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4.3.4

CARRY

FUNCT ION

The effect that overflow has on carry is to

complement the value of the carry bit. For this

reason, the assembler provides a means for you to

force the carry bit used in the operation to a

known state before the operation takes place (known

as the base value of carry). This base value is

established by appending a fourth letter onto the

instruction mnemonic. The acceptable letters and

their associated base values are given in the

table below.

If the Letter Is: Then the Base Value Will Be:

(absent) (Default value) The present
state (1 or 0) of carry at

the time the instruction is

encountered.

C The Complement of the present

state of carry at the time

the instruction is encountered.

Z Forced as a Zero.

0 Forced as a One.

447

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4-48

You must bear in mind that what you are doing is

establishing a base value for carry that will be

complemented if the arithmetic/logic result produces

overflow.

For example:

ADD 1,2

ADDC 1,2

ADDZ 1,2

ADDO 1,2

*The base value of the Carry

;bit is whatever the value of

sthe Carry bit happens to be

sat the time this instruction

;i1s encountered. An overflow

;causes this base value to

;be complemented.

;the base value of the Carry

;bit is the complement of what-.

sever the value of the Carry

sbit happens to. be at the time

;this instruction is encountered.

sAn overflow causes this base

;value to be complemented.

;the base value of the Carry

sbit is forced to a zero. An

;overflow causes the Carry bit

sto become 1.

;The base value of the Carry

sbit is forced to a 1. An

soverflow causes the Carry bit

sto become zero.

Now let's go back to our technique for clearing an

accumulator. Realizing that subtraction by two's

complement addition will produce overflow and

thereby complement the base value established for

carry, we can use this to effect the following:

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

SUB 1,1 sClear AC1 and complement the

| ;present state of carry.

SUBC 2;2 ;Clear AC2 and preserve the

;present state of carry.

SUBO 3,3 ;Clear AC3 and clear carry.
SUBZ 0,0 ;Clear ACO and set carry.

Now our instruction is complete,

O 12 34 5 7 8 9 10 11 12 13 15
1} ACS | ACD | FUNCT | SHIFT CARRY | no load| SKIP |

and our mnemonic representation looks like the

following:

FUNCT<C><S><#> ACS, ACD<,SKIP>

where < > denotes optional entries, and # is a floating

Symbol that may appear anywhere in the instruction.

Also notice that contrary to its position in the

instruction register, if both Shift and a Carry

Specifier are given, the carry must precede the

shift.

MOV ZL 0,2,SKP
es ee

FUNCTion Carry Shift ACS ACD test

mnemonic

SUBO 1,1 ;Clear AC1 and clear Carry.

ADDCS 0,1,SZC ;Since there can be no

;overflow, and since Swap

;sdoes not affect Carry,

sCarry will get set.

This technique will be used in a later discussion of

a concept called packing.

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

450

Wow! With all of this going on at once, how does it

ever produce a result? Would you believe it's all

done with mirrors? The exact sequence of events can

be seen by following the data in a clockwise direction

through the diagram below.

mirror mirror

#1, 17 bits . #2

4 Y

FUNCTION GENERATOR| (2) SHIFTER | (3)

h J A

1 16 16 17 bits

bit bits bits

@ Y
CARRY ACCUMULATORS SKIP SENSOR (4)

1 A 6) A416

bit bits 17 bits

o
mirror

/ #3
‘LOAD/NO LOAD

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4.3.5

BYTE

MANIPULATION

Notice that all manipulations of carry (base value

versus overflow) are performed within the function

generator, and then the 17-bit result is passed on to

the shifter.

Now with all the bells and whistles accounted for,

let's go back and make some enhancements on our

program. First of all, after we get the character, and

before we store it in memory, let's pack two 8-bit

characters into one 16-bit accumulator. To do this we

will need an extra accumulator in which to do the

packing, and, secondly, some technique for detecting

the fact that two characters have been input. The

following program will accomplish the job.

TEST; 177777 ;Minus 1 for ISZ

sinstruction.

SUBO 1,1 ;Clear AC1 and clear

sCarry.

NIOS TTL sotart the Teletype

;reader.

SKPDN TTI sIs the character

sready?

JMP = sNo, test it again.

DIAS O0,TTIL sYes, get the char-

;acter.

ADDS 0,1 ;ADD char to AC1

sand swap bits.

ISZ TEST sHave two characters

sbeen input?

MOVS 1,1,SKP ;Yes, reposition

;bytes.

;AC1 =
JMP -6 sNo, go get second

;character.

STA 1,@20 sotore two char-

;acters in the

° ; table.

451

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

452

Now let's analyze the program. About the only point

of merit is that the last four instructions show the

application of the unconditional skip (SKP) feature

of an ALC instruction. Aside from that, the program

only works for the first two characters. After that,

location TEST will not produce a zero result (ISZ TEST)

for another 2'© characters. It would require no less
than two additional instructions to restore location

TEST to its initial value of minus one. Secondly, we

are using an entire 16 bits to detect whether or not

the second character has been input. The same thing

could be accomplished with one bit and at the same

time greatly simplify the program. The technique is

to start with the carry bit in a known state (which

we have already done) and then test the state of

carry to determine if both characters have been

input. Let's use the input subroutine (GCHAR) that

we wrote back on page 4-23.

SUBO 1,1 ;Clear AC1 and clear

;Carry.

JSR GCHAR ;Get the CHARacter.

ADDCS 0,1,S5SZC ;Position char. Is it

;second char?

JMP o-2 sNo, go get second

;character.

MOVS 1,1 ;fes, reposition bytes.

ACT’ =
STA 1,@20 sotore two characters

;in the table.

The purpose of repositioning the bytes | 1st | 2nd |
before storing them is to be compatible with some

existing software which, when outputting from a

table, will always output the high byte first.

4.3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4.3.6

Parity and

Masking

Before we further modify our program, let's discuss the

Teletype parity bit and a technique known as masking.

In the field of data transmission (especially serial

data transmission), it is imperative that the integrity

of the character be checked to ensure that nothing was

lost during transmission; so that the character

received is indeed the character that was transmitted.

For this purpose, Teletype appends onto its 7-bit code

an eighth bit called the parity bit. The parity used

can be either even parity or odd parity. For even

parity, the parity bit will be set when the 7-bit code

contains an odd-number of one bits, or clear when the

{-bit code already contains an even number of one bits.

This technique allows the receiving device to simply

check the number of one bits against the type of parity

being used. For even parity, all characters will have

an even number of one bits; for odd parity, an odd

number of one bits. Since you don't want to be

bothered with which characters will have the parity bit

set, and which will not, or whether it's even parity

or odd, we will use a technique called masking to strip

off the parity bit leaving only the 7-bit code. This

technique of masking is done with the logical AND

instruction and may be used to isolate any number

of sequential or randomly located bits within a word.

Remember, the logical AND function will save anything

that is ANDed with a binary 1, and discard anything

that is ANDed with a binary 0.

4-53

4.3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

454

Example: Assume AC2 contains the information
we are interested in.

MASK1: 177

MASK2: 3400

MASK3: 160000

LDA 1,MASK1 ;Get the mask.

AND 2,1 ;lsolate the low-

;order seven bits.

LDA O,MASK2e ;Get the mask.

AND 2,0 ;lsolate bits 5-7.

LDA 3,MASK3 ;Get the mask.

AND 2,3 ;lsolate bits 0-2.

In many applications, 8-bit words -- bytes --

are sufficient data word blocks, such as for storage

of 8-bit Teletype character strings.

Because the address of any 16-bit word requires only

15 bits, the remaining bit can be used to specify the
left or right byte of the contents of a memory

location.

A memory capacity of 32K words contains 64K bytes,

where each memory cell contains two bytes.

0 7 8 15

Remember the technique we used to perpetuate indirect
addressing:

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4.3.7

BYTE

POINTERS

0 1 15

Ty 15-bit word address |

Where: I = 0, bits 1-15 = address of

operand.

I= 1, bits 1-15 = address of an

address.

Similarly, byte addresses or byte pointers are of
the form:

0 14 15

15-bit word address | 8 |

where: B=0 specifies the left byte (A)

B=1 specifies the right byte (B)

Thus, incrementing the byte pointer addresses first

the left byte and then the right byte of sequential

memory locations.

Right shifting the byte pointer leaves a memory

address. Following this with program skipping based on

the Carry flag designates the specific byte.

One technique for accomplishing this in our program

is as follows:

LDA 2,ATABL ;Get the address

;of TABLE.

INCZL 2,2 ;Generate a byte

. ;pointer.

ATABL: TABLE-1 ;Minus 1 for auto-

;indexing before

;use.

TABLE: 0 ;the table starts

;here.

455

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

456

The purpose of the INC is to compensate for the fact

that ATABL is initialized to TABLE-1 for auto-indexing

purposes. The purpose of the L (shift Left) is to

multiply by two. The purpose of the Z (base value of

Carry) is to ensure that a zero gets shifted into bit

15. As a result of all this,

0 14 15

AC2 = | TABLE | 0 |

In our program we keep track of how many characters

were in the table by using a tally counter. Another

method that is commonly used is to always end a table

with a null (all bits zero) character. With this

method, the output routine simply checks each character

until it finds the null, and then terminates. After

the table has been built, the output routine might look

something like the following.

Main Program

LDA 1,ATABL ;Get the address of

;TABLE.

INCZL 2,2 ;Generate a byte

;pointer.

JSR PRINT ;Go print the table.

ATABL: TABLE-1
TABLE. 0

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

subroutine Print

PRINT STA 3,SAC3 ;Save the return

;address.

MOVZR 2;3 ;Address to bits

31-15, byte pointer

;to Carry.

LDA 0,0,3 ;Get first two

;characters.

MOV 0,0,SNC ;Which byte?

MOVS 0,0 ;Carry = 0, move

shigh to low.

LDA 3,MASK ;Get low byte mask.

AND 3,0 ;Mask out bits 0-8,

JSR PCHAR ;GO print the char-

;acter.

MOV 0,0,SNR ;Was character a

;null?

JMP @SAC3 ;Yes, return to

;main program.

INC 2;2 ;No, advance char-

sacter pointer.

JMP PRINT+1 ;Go get more char-

;acters.

SAC3:; 0 soave return address

;here.

MASK; 177 ;Mask to save bits

9-15.

The PCHAR routine is the same one that we used back on

page 4-23. The purpose of the AND 3,0 instruction is

to ensure that there are zeroes in the high byte when

the MOV 0O,0,SNR instruction checks for the null byte.

The purpose of the MOV 0,0,SNC is to check the state

of carry based on the previous MOVZR 2,3, which in

turn compensates for the INCZL 2,2 that we did back in

the main program. Notice that the combination of INC

2,2 and the MOVZR 2,3 will retain the same address for

two go'rounds, but will alternate the state of carry to

first print the high byte, then the low.

43

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

458

Ninety-nine percent of the software applications

requesting keyboard input from the operator will echo

the input back to the printer so that the operator will

have "proof" of what key was stuck. One application

where the input is not echoed would be "Signed in" on a

time-sharing system. So that unauthorized users cannot

use your identification code, the system does not echo

the code as you enter it. A slightly modified version

of this is used in the program that follows.

Problem: Write a program that will input characters

from the Teletype keyboard and pack them two characters

per location in memory. If the character is a carriage

return (CR), store a line feed (LF) along with it. Use

the ESC character to signify end-of-input. Only after

receiving the ESC character are the contents of the

table to be echoed.

ALGORITHM

1. Initialize pointers for input and output.

2. Input a character and strip off parity.

3. If the character is an ESC, store a NULL
character in the table, terminate the

input and go to Step 6.

4, If the character is a CR, store it plus

a LF in the table and go back to Step e.

5. Pack all characters two per location.

6. Output the table.

7. Return to Step 1.

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

(start >

Y

Init. pointers

for input

and output.

Figure 4.6 Flowchart

Y

|
Clear AC

for packing

GCHAR

4.3

ARITHMETIC

AND LOGIC
E (ccuar —)INSTRUCTIONS

.
(Continued)

Start

Get entry Input
from table Device

Input the

CHAR

Output

the CHAR

f

(Return
Figure 4.7 Flowchart (Cont.)

4.60

©
v

Strip off

Yes
2nd CHAR O°

Pack NULL

with lst

CHAR

Pack CR Pack a Pack with

CHAR

{ Store in

Store in Table

Table

Store in

Table

5 © © &

Figure 4.8 Flowchart (Cont.)

4-614

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

4-62

ATABL:

START:

FIRST:

SECND:

C177:

C33:
C15:

CR:

C12:

CRLF:

LF:

OUT:

TABLE-1

LDA

OTA

STA

SUBO

JSR

LDA

AND

LDA

SUB#

JMP

SUBC

ADDS

STA

JMP

177

33
15

LDA

SUB#

JMP

ADDCS

JMP

STA

JMP

ADDCS

JMP

STA

SUBO

LDA

ADDCS

JMP

STA

JMP

SUBO

2,C15

0,2,SNR

CRLF

0,1,SZC

SECND

1,@20

FIRST

0,1,SZC

LF

1,@20

0,C12

0,1,SZC

SECND

1,@20

FIRST

0,0

sGet address of

;lable.

sinitialize for

sinput and Output.

;Clear AC1 and

;Carry.

sGet a CHARacter.

;Get the mask.

sotrip off parity.

sGet ASCII ESC.

;CHAR = ESC?

sNo, try CR.

;fes, NULL to ACO,

sretain carry.

;Pack the NULL.

;otore in table.

;Go to output

;routine.

sMask to strip off

sparity.

sASCII ESC.

sASCII CR.

sGet ASCII CR.

;CHAR = CR?

sYes, process it.

sNo, Is it end

;Char?

sNo, go get 2nd

;char.

;Yes, store in

;table.

sGo get next char.

sASCII LF

sIs it 2nd Char?

sNo, add a LF.

sYes, store in

;table.

sClear AC1 and

;Carry.

sGet ASCII LF.

-Is LF 2nd Char?

sNo, go get 2nd

;Char.

;Yes, store in

;table.

sGo get next Char.

sClear ACO and

;Carry.

4.3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)
SWAP:

GCHAR:

PCHAR:

TABLE:

LDA

MOV

MOVS

LDA

AND

JMP

JSR

MOVC

JMP

JMP

NIOS

SKPDN

JMP

DIAC

JMP

SKPBZ

JMP

DOAS

JMP

0

e END

0,@21

0,0,SKP

0,0

2,C177

0,2,SNR

START

PCHAR

0,0,SZC

SWAP

OUT

TTI

TTI

o- 1

0,TTI

0,3

TTO

o-1

0,TTO

0,3

START

;sGet first char-

;acters.

;Output low byte

;first.

sowap for 2nd char-

;acter.

;Get low byte mask.

sByte = NULL?

sYes, go back for

sinput.

sNo, Print the byte.

;Was it 2nd byte.

sNo, position 2nd

,;character.

sYes, get more

;characters.

sotart INPUT device.

;Character Ready?

;No, test again.

;input Char., idle

;device.

;Return to main

;program.

;Device Busy?

;Yes, test again.

sNo, Output Char

sand Start device.

;Return to main

;program.

;lABle starts here.

;Program is load

sand go.

The preceding program communicates with the Teletype

via programmed instructions; i.e., the program is

dedicated to the device. Considering the instruction

execution rate (approximately two microseconds per

instruction) versus the speed of the Teletype (100

milliseconds per character), the program could have

executed approximately 50,000 instructions while

waiting for a single Teletype character. Rather

inefficient use of CPU time wouldn't you say?

In the following chapter, I/0 Device Handling, we will

discuss more efficient methods of communicating with

I/O devices.

Included are

instructions

some additional special mnemonic

as promised (see page 5-2).

4-63

4,3

ARITHMETIC

AND LOGIC

INSTRUCTION

(Continued)

4m 64

Before we leave the instruction set, we have an
unfinished program to write. In our discussion of
algorithms and flowcharts, we introduced the SORT
routine; a routine for arranging random entries into
ascending order. While there are many algorithms for
Sorting information (depending upon how many entries
there are, and whether time is a consideration, et.

al.), we have chosen a rather middle-of-the-road
approach, suitable for tables of moderate length, in
our algorithm and flowcharts (see pages 3-11 through

3-13). Here now is the coded solution to that problem.

4,3

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

SIZE:12

ATBL1:

ATBL2:

ASORT:

START:

SORT:

REPT:

FIRST:

NEXT:

»ZREL

TABL1

0

SORT

» NREL

LDA

LDA

STA

DSZ

STA

ADD

STA

STA

DSZ

LDA

STA

DSZ

JMP

LDA

NEG

COM

OTA

STA

LDA

STA

DSZ

STA

DSZ

LDA

LDA

SUB2#

JMP

eTITL SORT

eENT ASORT START SORT DONE

SIZE ATABL1 TABL1

O,ATBL1 ;Get adrs of

;TABL1.

1,SIZE ;Get size of

;TABL1.

0,20 ;oet pointer to

20 ;.ABL1 minus one.

1,XFER ;Save size of

;XFER count.

1,0 sBegin TABL2 at

0,ATBL2 ;TABL1 plus size.

0,21 ;»et pointer to

21 ;.ABL2 minus one.

0,020 ;lransfer entry

0,021 ;From TABL1 to

;TABL2.

XFER ;All transferred?

3 sNo, go get next.

O,SIZE ;Yes, initialize

0,0 ;Pass-count and

0,0

O,PASS ;Compare kount

; to

O,KOUNT ;size minus one.

O,ATBL1 ;Initialize

;pointers

0,20 ;back to the

20 ;beginning of

0,21 ; TABL2.

0,020 ;sGet first entry.

1,020 ;sGet next entry.

1,0,SNC ;AC1 less than

sACQO?

LESS ;No, ACO less

sthan AC1.

(Continued)

43

ARITHMETIC

AND LOGIC

INSTRUCTIONS

(Continued)

466

GRATR:

LESS:

BUMP:

DONE:

PASS:

KOUNT:

XFER:

TABLE1:

STA

JMP

STA

DSZ

JMP

STA

DSZ

JMP

JMP

LDA

STA

JMP

0

0

0

32

14

27

12

53

35
42

11

62

20

«END

1,021

BUMP

0,021

KOUNT

NEXT

0,021

PASS

o+2

DONE

0,PASS

0,KOUNT

REPT

START

sYes, save AC1 in

;TABL2.

sGo to bump kount.

ssave ACO in TABL2.

sMove AC1 to ACO.

sOne less to com-

spare.

sNot done this pass.

;If done, ACO to

>TABL2.

sLast pass?

;No, adjust

;pointers.

;Yes, done.

;oet new kount.

;From old pass.

;Go for next pass.

sLoad and go.

PROGRAM

INTERRUPTS

CHAPTER 5

I/O DEVICE HANDLING

Although peripheral devices may be serviced by the

processor on a dedicated basis, as previously

discussed, this usually results in extremely

inefficient use of processor time and/or temporary

neglect of all other devices.

To overcome this, a device interrupt and servicing

facility is available. This facility provides for

enabling and disabling devices from requesting service,

establishing 16 levels of priority interrupts, and

servicing devices only when they request service.

In addition to the BUSY and DONE flip-flops, every

device has an Interrupt Disable flip-flop and an

Interrupt Request flip-flop arranged logically as

follows:

INTERRUPT INTERRUPT | INTR

DISABLE REQUEST (Inter-

rupt

Request

Signal)

BUSY DONE

5-1

5.1

PROGRAM

INTERRUPTS

(Continued)

Within the processor is an interrupt system status

flag (ION). When the flag is reset, indicating that

the interrupt system is disabled, no device can

interrupt the processor. When the flag is set and

the interrupt system is on, selected devices may

request service via an interrupt.

The interrupt system is enabled by the instruction

INTEN (NIOS CPU) and disabled by the instruction

INTDS (NIOC CPU). The status of the interrupt

system can be monitored by the ION indicator on

the front panel or by the instructions:

SKPBZ CPU SKIP NEXT INSTRUCTION if

interrupts are disabled.

SKPBN CPU SKIP NEXT INSTRUCTION if

interrupts are enabled.

Thus, the following conditions must be met before

a device can interrupt the processor.

1. The ION flag must be set. (Interrupts

enabled.)

2. The device's Interrupt Disable flip-flop

must be reset. (Interrupts allowed from

the device.)

3. The device's DONE flip-flop must be set.

(Device is ready for service.)

The commands for controlling the ION flag are:

INTEN Interrupt Enable (set ION flag)

INTDS Interrupt Disable (reset ION flag)

The command for controlling the individual Interrupt

Disable flip-flops is:

MSKO AC sMASK OUT

5.1

PROGRAM

INTERRUPTS

(Continued)

5.1.1

Example

When a MSKO AC command is given, the Interrupt Disable

flip-flop of every device is effectively connected to

one of the 16 bit positions in accumulator AC. If

the bit position contains a 1, all Interrupt Disable

flip-flops connected to it are set, thus disabling

those devices from requesting interrupts. If the bit

position contains a 0, all Interrupt Disable flip-

flops connected to it are reset, thus enabling those

devices to request interrupts.

Because accumulator AC has 16 bit positions, there

are 16 possible levels of interrupt priority.

A program is used for dedicated service as a

controller for a lathe. However, it will permit only

the Teletype keyboard input to request an interrupt.

Enable the interrupt request facility for this device.

(Assume the TTI Interrupt Disable flip-flop is
connected to data line 14 on the I/O bus.)

LDA O,MASK

MSKO 0

INTEN DOBS O,CPU

NIOS TTI

MASK:177775 3171117111/111/111/101

disables all devices but

those connected to data

line 14 on the I/O bus.

The preceding example has taken care of two of the

four preliminary steps in programmed interrupts. To

use the programmed interrupt feature, you must prepare

for it by doing the following:

5-3

5.1.1

Example

(Continued)

5-4

1. Prepare location O to hold the return address

while in an interrupt routine. This means if

you have information in location O that you

don't want to lose, save it somewhere else.

LDA 0,0

STA 0,SAVO

2. store in location 1 the address of the interrupt

handler routine. The reason for this and the

previous step will be detailed as we step

through the interrupt sequence.

2. Set ION flip-flop by executing the INTEN
instruction. This allows the CPU to acknowledge

the interrupt when it occurs.

4, Initiate an operation in the device.

Steps 3 and 4 are handled in the preceding example by

the last two instructions shown.

INTEN sINTerrupt ENable sets ION

flip-flop.

NIOS TTI;Start the low-speed reader

to assemble a character in

the device's data buffer.

After these preliminary steps have been taken care of,

the program continues executing instructions (approx.

50,000 in the case of TTI) while waiting for the

interrupt. Every time the program references memory

to fetch an instruction, an address, or an operand,

it also queries all devices with, "Does anybody want

service?" A device requesting service on an interrupt

basis does so for one of two purposes; to inform the

program that:

ae "I have completed what you told me to do," or,

b. "I was unable to complete what you told me

me to do."

5.1.1

Example

(Ccontinued)

The latter is only possible from more sophisticated

devices such as magnetic tape drives and magnetic

disc drives and will be discussed later under the

topic Data Channel. When the interrupt request

comes in, the program will complete the instruction

currently being executed; then, CPU, what's your job?

"First, I will clear the ION flag, thereby

disabling any further interrupts. This

will allow the programmer to determine

who is generating this interrupt and handle

it accordingly without further interrupts."

"Secondly, I will take the current value

in the program counter (PC) and save it

in location zero. This will allow the

programmer to return to the interrupted

program after servicing this device."

"Lastly, I will execute a JMP @1 instruction,

thereby transferring program control to

what should be an interrupt handler routine."

That's it folks; the hardware has done its thing. The

rest is up to you.

What are the types of things that your interrupt

handler should do? Perhaps the first thing it should

do is to determine who is generating this interrupt.

The technique for doing so is partly a function of how

many devices are connected to the I/O bus, and secondly

the type of interrupt priority structure that you

desire. One technique called "polling," will test each

device's Done flag, looking for that device whose Done

flag is set. This technique establishes the device

you test first. The sequence on the following page

illustrates this technique.

5=5

5.1.1

Example 0O/ 0

(Continued)

sLocation O prepared to

shold return address.

5-6

1/ HNDLR sLocation 1 contains the

saddress of the interrupt

shandler routine.

HNDLR: SKPDZ CPU ;sHighest priority is

sgiven to the

JMP PWRDN ;Power-fail-Auto-

;Restart option.

;if the interrupt

sis from this option,

;control is trans-

sferred to the PoWeR

;DowN routine.

SKPDZ PTR sNext priority is

shigh-speed Paper

sTape Reader.

JMP PTRSV ;Xfer to PTR service

sroutine.

SKPDZ TTI slf all devices have

JMP TTISV ;been tested and

JMP ERROR snone of them respond,

;we should be pre-

spared to handle

;this situation

-(false interrupt).

Depending upon how sophisticated you want to be, the

ERROR routine might:

a. Simply HALT the program;

b. Type a suitable message to the operator:

ERROR: FALSE INTERRUPT and then HALT; or,

c. Attempt to investigate and correct the

Situation and ultimately return to the

program from whence it came. The polling

technique is satisfactory for a system

with relatively few devices.

5.1.1

Example

(Continued)

The second and third techniques generally work

together. The second technique, called "broadcasting,"

asks the interrupting device to identify itself by

asserting its unique device code. This code is loaded

into the specified accumulator and can be used as a

displacement in a table of service routine addresses.

The broadcasting technique is implemented by the

Special mnemonic instruction INTA AC. Since the

power/fail-auto/restart option, although acting like an

I/O device, is not assigned a device code, the

broadcasting technique should be preceded by a check

on the CPU Done flag.

HNDLR: SKPDZ CPU sCheck power failure

;first.

JMP PWRDN sIf yes, go to PoWeR

;DowN routine.

INTA 0 ;Code of interrupting

sdevice goes to ACO.

LDA 2,JTAB ;Get start address

sof Jump TABle.

ADD 0,2 ;Add device code as

sa displacement

JMP @0,2 sJump to the inter-

;rupting device's

;service routine.

JTAB; ERROR ;Displacement of

;zero means code

swaS zero.

JTAB+10 TTISV ;sDisplacement of ten

;indicates inter-

;rupting device was

sTeletype input (key-

sboard or reader).

JTAB+11 TTOSV sDevice code 11 is

sTeletype output

*(printer/punch).

JTAB+30 ERROR ;No device currently

sasSigned code 30.

=

5.1.1

Example

(Continued)

5-8

NOTE: The labels JTAB+nn are for demonstration

only. The assembler would reject any label

containing an arithmetic operator.

The broadcasting technique, also referred to as "who

are you," establishes device priority on the basis

of electrical proximity; devices closest to the

CPU have a higher priority. All devices are connected

serially by a hand-holding scheme called a daisy-chain.

When a device requests an interrupt, it does so by

INTA >|

cpu— | pev al-pev 3 fons clL_pEv DH | ev |
raising its hand, thereby breaking the chain. If two

devices request simultaneously, the closest device to

the CPU is serviced first, since the second device

never receives the "who are you" signal.

After the device has been identified by either the

polling or the "who are you" technique, and before

the interrupt system is turned on again by the INTEN

instruction, you might want to employ the third

technique of priority structure; priority on the

basis of who you will allow to request interrupt

service. This is done with the MSKO AC instruction.

Our sample program (page 5-3) did this before the

interrupt system was turned on.

5.1.7

Example

(Continued)

Similar to the jump table that was used with the

INTA AC instruction, so too the interrupting device's

code can be used as a displacement into a table of

mask words. Basically the question being answered

is, "If the interrupt is from device X, then, while

servicing device X, what other devices do I want to

acknowledge?" As previously pointed out, a zero in

the mask bit enables the device; a one disables it.

(See example, page 5-3.)

Between the interrupt handler routine and the

individual device's service routine we have thus far

determined who is generating this interrupt and, on

that basis, who we will allow to generate further

interrupts. Since we are going to allow further

interrupts while servicing this one, it becomes

extremely important to save the content of location

zero. This and other housekeeping chores may include

any combination or all of the following:

1. Save all or some combination of the accumulators.

If you are always going to save all of them, it

could be a function of the handler routine. Or,

based on the complexity of the device's service

routine, some combination of accumulators might

be saved.

2. save the state of carry. If the program you are

coming from relies on carry for branching

decisions, then the original state of carry must be

returned to that program. Saving carry can be done

in conjunction with saving the 15-bit return

address now in location OQ.

5=<9

5.1.1

Example

(Continued)

5-10

save location 0. Location 0 could contain the

return address to the main program or to a previous

level of interrupt. After the accumulators have

been saved, the return address and carry may be

saved in one location by the following instruction

sequence:

LDA 0,0 sGet the return

saddress.

MOVL 0,0 sohift Carry into

sbit 15.

STA O,SAVE ;Save both as

0 14 15

| ret. address | C]

Save the current mask. Since each level of

interrupt and the main program has its own priority

mask, this information should be saved before

proceeding to another level.

Save the stack pointer. A stack is just another
table set aside in memory where information is

generally accessed on a last-in-first-out (LIFO)

basis. The stack pointer usually points to

the first available location on the stack. The

stack technique is used in the accompanying

program to do the saving mentioned above.

After saving all the necessary parameters, and before

actually servicing the device, the interrupt system is

again enabled with an INTEN instruction.

5.1.1

Example

(Continued)

The actual servicing of the device generally consists

of a check on the device's status register (if

applicable) to determine the reason for the interrupt.

If Error is set, the device is telling you, "I was

unable to complete what you told me to do." If in

processing this interrupt, the interrupting device has

not been masked out (MSKO), then the device's Done flag

must be cleared prior to enabling the interrupt system.

After servicing the device, and before restoring all

of the information that was saved, the interrupt system

should be disabled with an INTDS instruction so that

the restoration can take place without possible loss of
data. From the time the interrupt system is enabled

(INTEN), the CPU guarantees you the execution of one

instruction before it will acknowledge another

interrupt. This one instruction is generally the JMP

that returns you to the previous level of program.

The following program incorporates the techniques just

discussed. It does not, however, carry the program to

the individual device service routine level; rather, it

shows the possible handling of false interrupts.

00001

00400

00401

00402

00403

OO404

00405

00406

00407

00410

00411

00412

00413

00414

00415

00416

00417

00420

00421

00422

00423

00424

00425

00425

00427

00430

00431

00432

00433

00434

000000

000001

000002

000003

000004

000005

000006

000001

000400

000400

056464

034463

041401

O45402

051403

102560

041404

020000

041405

020456

041406

030455

157000

O54447

061477

030446

113000

031000

050445

034443

117000

072177

007400

060277
034434

030437

156400

031406

072077

SAMPLE INTERRUPT HANDLER ROUTINE

sLAYOUT OF STACK ENTRY

SAC 3=0

SACO=1

SAC1=2

SAC2=3

SCRY=4

SRIN=5

SMSK=6

ISR:

ISR1:

sSAVE

sOAVE

sSAVE

DOBS

INTDS

LDA

LDA

SUB

LDA

MSKO

FOR AC3

FOR ACO

FOR AC1

FOR AC2

FOR CARRY

FOR RETURN ADDRESS (WORDO)

FOR CURRENT MASK

1

400 sLOAD IN SECOND PAGE

3,@ADSTK sNO-SAVE AC3 IN STACK

3,ADSTK sAC3 ADDRESS OF STACK

0,SACO,3 sSAVE ACCUMULATORS

1,SAC1,3

2,5AC2, 3

0,0 sSAVE CARRY

0,SCRY, 3

0,0 ;oAVE RETURN ADDRESS

0,SRTN, 3

0, CMASK ;SAVE CURRENT MASK

0,SMSK, 3

2,cIZE ;PUSH STACK

2,3

3,ADSTK

0 ;ACO=DEVICE CODE

2,AMTAB ;AC2=ADDR-1 OF MASK

;TAB

0,2 ;AC2=ADDRESS OF MASK

2,0,2 ;AC2=NEW MASK

2,CMASK ;oET CMASK TO NEW MASK

3,AJTAB ;AC3=ADDR-1 OF JUMP TAB
0,3 ~3AC3=ADDR OF ADDR WORD

2,CPU sMSKO AND TURN ON INT

60,3 sEXIT TO ROUTINE

;sDISABLE INTERRUPTS

3,ADSTK ;POP STACK

2,S5IZE

2,3

2,5MSK, 3 sAC2=OLD MASK

2 ;ISSUE OLD MASK

00435

00436

00437

OO440

0044)

OO442

OO443

OO444

OO44H5

OO446

OO447

00450

00451

00452

00453

OO454

00455

00456

00457

00460

00461

00462

00463

00464

00465

00466

00467

00470

061477

101004

000760

054424

050426

021405

040000

021404

101220

021401

025402

031403

036413

060177

002000

O24405

123000

O40401

000000

001400

060200

063077
000771

000545

00047 4

000506

000000

000007

INTA 0
MOV 0,0,SZR

JMP ISR1

STA 3, ADSTK

STA 2,CMASK

LDA 0,SRTN, 3

STA 0,0

LDA 0,SCRY,3

MOVZR 0,0

LDA 0,SACO,3

LDA 1,SAC1,3

LDA 2,SAC2,3

LDA 3, @ADSTK

INTEN

JMP @0

;ROUTINE TO IGNORE INTERRUPTS.

IGNOR LDA 1,CLEAR

ADD 1,0

STA O, +1

0

JMP 0,3

CLEAR: NIOC 0

>ERROR HALTS.

ERROR: HALT

JMP IGNOR

_3;STORAGE AND ADDRESS CONSTANTS.

ADSTK: STACK

AMTAB: MTAB-~-1

AJTAB: JTAB-=1

CMASK: 0O

SIZE: 7

“GET DEVICE CODE

“SKIP IF NO INTS

-PROCESS PENDING INT

-UPDATE POINTER

-UPDATE MASK

“RESTORE RETURN ADDRESS

sRESTORE CARRY

sRESTORE ACO THRU AC2

sRESTORE AC3

-ENABLE INTERRUPTS

-RETURN TO ROUTINE

-LOAD NIOC COMMAND

-ADD IN DEVICE CODE

-STORE IN NEXT

-EXECUTE NIOC COMMAND

*RETURN TO ROUTINE

sADDRESS OF PUSHDOWN

» STACK

>ADDR-1 OF MASK TABLE

:ADDR-1 OF JUMP TABLE

-STORAGE FOR CURRENT

> MASK

-SIZE OF STACK ENTRY

:(7 WORDS)

00471

OO4T2

00473

OO474

00475

00476

OO4TT

00500

00501

00502

00503

00504

00505

00506

00507

00510

00511

00512

00513

00514

00515

00516

00517

00520

00521

00522

00523

00524

00525

00526

00527

00530

00531

00532

00533

00534

5-14

sMASK TABLE.

177777 «=ALL=177777

WWTTTT

VWTTTT

WTTTTT
77777

W7TTTT

77777

W7T7TT

W777T7

W7TTTT

W777T7T

000464

000464

000464

000464

000464

000464

000464

000464

000464

000464

000464

024420

O447 46

126400

O44747

020415

024415

030415

034741

054020

034740

054021

042021

046020

151404

000775

063077

MTAB; ALL

ALL

ALL

ALL

ALL

ALL

ALL

ALL

ALL

ALL

-JUMP TABLE.

ERR=ERROR

JTAB:

_jINITIALIZATION ROUTINE.

INIT:

INIT1:

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

LDA

STA

SUB

STA

LDA

LDA

1,ASTK

1,ADSTK

1,1

1,CMASK

0,ADERR

1,MALL

2,M12

3, AMTAB

3,20

3, AJTAB

3,21

0,021

1,020

2,2,SZR

INIT1

-MASK TO DISABLE ALL

- INTERRUPTS.

sINITIALIZE POINTER

-ZERO CURRENT MASK

sACO=A (ERROR ROUTINE)

-AC1=FULL MASK

sAC2=10

*MEM(20)=A(MTAB)=1

-MEM(21) =A(JTAB)-1

sENTER IN JTAB

sENTER IN MTAB

-LOOP 10 TIMES

00535

00536

00536

00540

000545

000464

W7WTTTT

177766

000043

ASTK:

ADERR:

MALL:

Mi2:

STACK:

STACK

ERROR

ALL

-12

» BLK

eo END

sADDRESS OF STACK

:ADDRESS OF ERROR ROUTINE

sMASK TO ENABLE ALL INTS

*MINUS 10

5*7

As a logical extension of the topic interrupts,

Something should be said about the power

monitor-auto restart option.

D2

POWER MONITOR

AND AUTO-

RESTART

* PWRDN - power down

PWRUP =~ power up

The optional power monitor warns a program when

power is failing by setting the Power Failure flag.
If a system contains this option, the monitor will

appear as any other I/0 device to the interrupt

system, except that it does not respond to an INTA

command and must be serviced by:

SKPDN CPU

or

SKPDZ CPU

The first function of the interrupt service routine

should be to test this Power Failure flag. If this

is the interrupting device, the program has 1 to 2

milliseconds to save the contents of the accumulators,

Carry, and the contents of location 0, to put a JMP

to the desired restart address in location 0, and

then to HALT.

With the power switch in the LOCK position, when

POWER UP occurs, the instruction in location 0 will

be executed.

Additional Suggestions:

1. If the system is of any size it probably has

a Real Time Clock. * PWRDN should record time

of failure and PWRUP should print "Power

Failed at HH:MM:SS."

2. A location in core should keep track of active

I/O devices. PWRUP could then print "The

following devices were active:"

3. PWRUP should clear all device flags before

enabling interrupts. This could be one

instruction: DICS 0,CPU = IORST INTEN.

53
DATA

CHANNEL

The final aspect of I/O device handling allows fast

devices direct access to memory (DMA) for high speed

data transfers. The term we use for DMA is Data

Channel.

As an example of a data channel device, let's look

at the fixed-head disc. The mnemonic for fixed-head

disc is DSK, the device code is 20, and the priority

mask bit is 9. As a data channel device, the DSK is

given the memory address involved in the transfer,

and the disc address involved in the transfer, and

told in which direction the transfer is to take place.

The direction is specified as a read (transfer from
disc to memory) or a write (transfer from memory to

disc). To understand the concept of dise address,

we need to know something about how data is stored

on the disc.

The disc surface is divided into eight pie-shaped

wedges called sectors. Each sector is divided into

bands, called tracks, which start toward the outside

edge and work toward the center. The tracks are

concentric bands as opposed to a phonograph record,

which has a single groove that spirals toward the

center. On each track within each sector, there are

256 16-bit words recorded serially.

5.3 track 177 track 0 256DATA KL \ \ 16-bit
CHANNEL \o 4 NY words(Continued) aS ae written

<1] | serially
per track

one sector

128 tracks

Additionally, one dise controller can handle up to

eight disc drives. So, in providing the controller

with a disc address, you must specify which disc

unit, which track, and which sector. This may be

accomplished with the DOA AC,DSK instruction where

the content of the specified accumulator provides

the following information:

1 of 8 1 of 128 1 of 8

not

used disc
j | |

track sector
l ! } I] j 1

0123456789 10 11 12 13 14 15

The second requirement, providing the disc with the

first memory address involved in the transfer, is

accomplished with a DOB AC,DSK instruction. In

this case, the specified accumulator should contain

a zero in bit 0. (A one in bit O places the

controller in diagnostic mode.)

The third factor, specifying a read or write, is

done with the I/O S and P pulses.

5.3

DATA

CHANNEL

(Continued)

Example: NIOS DSK ;initiate a read

Operation.

or NIOP DSK sinitiate a write

operation.

Just for the sake of explanation, let us assume the

disc has been initiated to do a read operation. After

the controller finds the proper unit, track, and

sector, the first 16-bit word begins serially shifting

into the data buffer register. When the word is fully

assembled, it does a parallel transfer into the output

data buffer register.

Coinciding with this parallel transfer, the controller

raises its data channel request (DCHR) flag. While

this is taking place in the disc controller, the CPU

continues to fetch and execute instructions. Just

as it did for interrupt requests, every time the CPU

references memory it also asks, "Does anybody want

service?" If both an interrupt request and a data

channel request (two different devices) occur

simultaneously, the data channel request has a higher

priority. If two data channel requests occur

simultaneously, a daisy chain priority scheme, similar

to the interrupt daisy chain, acknowledges the closest

device first. When the CPU acknowledges the

DCHR, the requesting device then passes to the CPU

the memory address involved and also the direction

in which the data transfer is to take place. This

information is then followed by the actual data word.

At the end of this single word DCH transfer, the disc

controller increments its memory address buffer

(B buffer) in preparation for the next single word
transfer, and decrements its word count buffer (more

on that later). Meanwhile, back at the data buffer,

the second 16-bit word has been serially shifting in

5.3

DATA

CHANNEL

(Continued)

5-20

behind the first. If this second word is ready to do

its parallel transfer to the output buffer before the

first word is transferred to memory, there is going

to be a loss of data as the second word overwrites the

first. This is called a "data late" error. On some

CPUs, this can be the result of too long an indirect

addressing chain. On these CPUs, you are advised to

keep your indirect addressing chains short while data

channel devices are active.

On the subject of word count (WC), some devices (such

as magnetic tape) allow the programmer to specify the

number of words to be transferred via data channel.

The disc, however, will always transfer a fixed number

of words: one sector, or 256 16-bit words. For each

DCHR, one 16-bit word is transferred. In between

requests from the disc (approx. 8 microseconds), other

data channel devices may also be making requests and

transferring data or, the CPU may be servicing an

interrupt or just executing programs. When the device

has completed its data transfers (WC = 0), it will

set its DONE flag and generate an interrupt (if

enabled). The device service routine should then

check the status of the device to determine if the

transfers took place properly. In the case of disc,

this may be done with a DIA AC,DSK instruction.

NOTE: DOA AC,DSK loads the disc address

buffer, but

DIA AC,DSK reads the disc status

buffer.

The information in the specified accumulator received

from the status register is as follows:

5.3

DATA

CHANNEL

(Continued)
; UNUSED

0 1 2 3 4 5 6

sec-

Shift | first] ond

reg- buf- buf- no

ister | fer fer writeiwritej|data | such | data

bit O]} full full data |error;jlate | disc | error | error

7 8 9 10 11 12 13 14 15

Bits 7 through 10 are for maintenance only and are not

discussed further here. Clear, Start and Pulse clear

all of these flags.

Bit

11

12

13

Meaning

The program has specified Write and the

selected track-sector is write-protected.

The setting of this bit clears Busy and

sets Done, requesting an interrupt if

Interrupt Disable is clear.

The data channel has failed to respond

in time to a request for access

(e.g., because of a long instruction or

preemption of the channel by faster devices).

The disc selected by the program is not

connected to the bus. The setting of this

bit clears Busy and sets Done, requesting

an interrupt if Interrupt Disable is clear.

5-21

563

DATA Bit Meaning
CHANNEL

(Continued) 14 In Read, the cyclic check word read from
the disc differed from that computed by
the control for the data in the block.

15 Bit 11, 12, 13, or 14 is 1.

Additional information about programming the disc or
other I/O devices may be found in another Data General
document entitled "Programmers Reference Manual for
Peripherals" (DG publication #015~000021).

5-22

APPENDIX A

SAMPLE PROGRAMS

The following programs illustrate some of the features

described in this document. You should examine them

for their operational merit, but also feel free to

modify them for your own personal applications. All

of the programs are written as independent subroutines

With page O linkages.

SAMPLE

PROGRAMS

(Continued)

slitle: GCHAR

;Routine to read characters from the

sleletype.

sthe parity bit is stripped off and the

;scharacter is placed right-justified in

This routine is called through its

link as follows:

;ACO.

spage 0
9

AGCHR:

GCHAR:

RET:

MSK:

JSR @AGCHR

GCHAR

STA 3, RET

NIOS TTI

SKPDN TTI

JMP o-1

DIAC 0,TTI

LDA 3,MSK

AND 3.0

JMP @.+1

0

177

As each character is read,

;Page 0 link to GCHAR.

soave the return

;address.

sotart the Teletype.

sCharacter ready?

;No, test again.

sGet Char. and idle

sITI.

sGet the mask.

;Keep right 7 bits.

;sReturn to calling

;program.

sReturn address held

;here.

;Mask for right 7 bits.

SAMPLE

PROGRAMS

(Continued)

sTitle: PCHAR

;Routine to print characters on the

sTeletype. If a character is a

scarriage return (CR), the program

sautomatically generates a line feed

;(LF). The program is called through its
spage O link as follows:

; JSR @APCHR ;Page O link to

;PCHAR.

PCHAR: STA 3,RET soave the return

;address.

JSR OUT ;Print the char-

;acter.

LDA 3,CR sGet ASCII CR.

SUB# 0,3,S5SZR ;Char = CR?

JMP @RET sNo, return to

scalling program.

LDA O,LF sYes, get ASCII

;LF.

JSR OUT ;Print a LF.

LDA 0,CR ;Restore the CR.

JMP @RET sReturn to calling

;program.

OUT: SKPBZ TTO ‘Device busy?

JMP 1 sYes, test again.

DOAS 0,TTO sNo, output char.

sand start TTO.

JMP 0,3 sReturn to PCHAR

sroutine.

RET: 0 ;Return address

;to calling

;routine.

CR: 15 ;sASCII carriage

;return.

LF: 12 sASCII line feed.

A-3

SAMPLE

PROGRAMS

(Continued)

sTitle: PRINT

;the following routine may be used to

;output text messages packed left to

;sright using Assembler pseudo-ops.

;sExample:

; ~ITXTM 1

s MSG:.TXT/MESSAGE/

3

;sMessages packed by .TXT automatically

;end with a NULL byte. When "PRINT"

;detects the NULL, it substitutes a

;carriage return (CR). When "PCHAR"
sreceives the CR, it automatically

;executes a carriage return (CR) and

;line feed (LF). To prevent this

;automatic CR LF, the message should end

;with the BELL character as follows:

; ~TXTM 1

; MSG:.TXT/MESSAGE <7>/

;lhis routine begins by saving the state

;of the machine (accumulators and Carry)
;before calling PCHAR to output the

smessage. At the completion of the

;smessage, the original state is restored.

;This program is called through its page

30 link as follows:

JSR @APRNT

MSG#2

MORE PROGRAM

sThe word following the call (MSG#2) is

3a trailing argument byte~pointer to

;the message to be printed.

owe we we

SAMPLE

PROGRAMS

(Continued)
slitle: PRINT

APRNT: PRINT

PRINT:

MORE:

OTA

STA

STA

INCL

STA

LDA

LDA

MOVZR

LDA

MOV

MOVS

LDA

AND

JSR

SUB#

JMP

MOV

JMP

INC

JMP

LDA

JSR

0,SACO

1,SAC1

2,SAC2

3,2

2,PC.CRY

1,BELL

2,0,3
2,3

0,0,3

0,0,SNC

3,MSK

3,0

@APCHR

0,1,SNR

DONE

0,0,SNR

+3

2,2

MORE

0,CR

@APCHR

ssave ACO

svave ACI

ssave AC2

;Combine return

saddress with

sCarry.

ssave both.

sGet ASCII BELL.

sGet MSG address.

sAdrs + 2, Byte

;Pointer to

sCarry.

;sGet first two

;char.

sWhich Byte?

;C=0, high byte

;first.

sGet low-byte

;mask.

;sMask for bits

59-15.

sGO print char-

sacter.

;Char=BELL?

sYes, done.

*Char=NULL?

;fes, substitute

sa CR.

;No, bump byte

;pointer.

;Go get more

;smessage.

sGet ASCII CR.

;Print CR and LF.

SAMPLE

PROGRAMS

(Continued)

DONE:

SACO:

SAC1:

SAC2:

PC.CRY

BELL:

MSK:

CR:

3,PC.CRY

3,3
2,SAC2

1,SAC1

0,SACO

0,3

sGet combined

;PC and Carry.

;sRestore Carry.

;sRestore AC2.

sRestore AC1.

;sRestore ACO.

;Return to

;calling program.

3

slemporary stor-

;age for ACs.

3

sCombined return

;address and

;Carry.

sASCII BELL.

;Mask to save

sbits 9-15.

;ASCII carriage

;return.

SAMPLE

PROGRAMS

(Continued)
slitle: BNOCT

;Binary to octal conversion routine.

*The routine converts a 16-bit binary

sinteger to an ASCII Character String

sfor output. The integer to be con-

sverted is assumed to be in ACi. This

sroutine calls "PCHAR:" for the printing

;of the octal digits. This routine is

scalled through its page O link as follows:

; LDA 1,DIGIT

JSR @ABOCT

ABOCT:BNOCT ;Page O link to

;BNOCT

BNOCT: STA 0,SACO ;Save ACO

OTA 2,SAC2 ;Save AC2

MOVL 3,3 ;Combine return

;saddress with

;Carry.

STA 3,PC.CRY;Save both.

SUBZR 2,2 sSet AC2=100000,

;octal constant.

LOOP: LDA 0,C60 sset ACO=ASCII

;zero.

SUBO 2,1,SNC sSubtract octal

sconstant from

;integer.

INC 0,0,SKP ;No underflow,

sinc ASCII Char.

ADD 2,1,SKP ;1lf underflow,

;add back.

JMP o-3 sNo underflow,

stry subtract

sagain.

JSR @APCHR ;Print the digit.

MOVZR 2,2 ;sGenerate next

;octal constant.

MOVZR 2,2 ; |
MOVZR 2,2,5ZR ;Last digit con-

sverted?

JMP LOOP ;No, continue.

LDA 3,PC.CRY;Get return

saddress and

sCarry.

MOVZR 3,3 ;Restore both.

LDA 2,csAC2 ;Restore AC2.

LDA O,SACO ;Restore ACO.

SAMPLE

PROGRAMS

(Continued)

A-8

JMP

SACO: 0

SAC2: 0
PC.CRY: O

C60: 60

0,3 sReturn to calling

;routine.

;slemporary stor-

sage for accumu-

slators, return

saddress and

;Carry.

sASCII ZERO.

SAMPLE

PROGRAMS

(Continued)

;litle: BNDEC

sBinary to decimal conversion routine.

‘This routine converts a 16-bit binary

sinteger to an ASCII character string

;sfor output. The integer to be con-

sverted is assumed to be in AC1. This

sroutine calls "PCHAR" for the printing

sof the decimal digit in ACO. This

sroutine is called through its page 0 link

;as follows:

; LDA 1,DIGIT

; JSR @ABDEC

ABDEC: BNDEC ;Page O link to

> BNDEC

BNDEC: STA 0,SACO ;Save ACO

STA 2,S9AC2 ;Save AC2

MOVL 3,3 ;Combine return

;address with

sCarry.

STA 3,PC.CRY;Save both.

LDA 3,INST ;Set up LDA

;command

STA 3,041 swith decimal

;constant.

LOOP; 0 ;AC2=Power of Ten.

LDA 0,C60 sACO=ASCII ZERO.

SUBO 2,1,SNC s;Subtract decimal

sconstant from

sinteger

INC 0,0,SKP ;No underflow,

sinc ASCII char.

ADD 2,1,SKP ;If underflow,

;add back.

JMP o-3 sNo underflow, try

ssubtract again.

JSR @APCHR ;Print the digit.

ISZ LOOP sinc LDA command.

MOVR 2,2,SNC s;Last digit con-

sverted?

JMP LOOP sNo, continue

LDA 3,PC.CRY;Get return and

;Carry.

MOVZR 3,3 ;Restore both.

LDA 2,SAC2 ;Restore AC2

LDA 0,SACO ;Restore ACO

JMP 0,3 ;Return to calling

;sroutine.

SAMPLE

PROGRAMS

(Continued)

A-10

TENS:

INST:

C60:

SACO:

SAC2:

PC.CRY:

« RDX 10

10000

10000

100

10

- RDX 8

LDA 2,417

ooo

sThe information

swhich follows

;is decimal.

;Decimal 10000 =

; Octal 23420.

;Decimal 1000 =

; Octal 1750.

;Decimal 100 =

; Octal 144

;Decimal 10 =

; Octal 12.

jPecimal 1 = Octal

; 1.

sReturn to octal

sinput mode.

sThis instr, gets

;executed from

sLOOP.

sASCII ZERO.

slemporary storage

;sfor accumulators,

sreturn address

sand Carry.

APPENDIX B

PROGRAMMING TRICKS

Clear AC and Carry.

SUBO AC, AC

Clear AC and preserve Carry.

SUBC AC, AC

Generate the indicated constants.

SUBZL AC, AC sgenerate +1

ADC AC, AC sgenerate -1

ADCZL AC, AC sgenerate -2

Inclusive OR the content of two accumulators.

COM 0,0

AND 0,1

ADC 0,1

Exclusive OR the content of two accumulators.

MOV 1,2

ANDZL 0,2

ADD 0,1
SUB 2,1

Let ACX by any accumulator whose contents are zero.

INCZL ACX, ACX sgenerate +2

INCOL ACX, ACX sgenerate +3

INCS ACX, ACX sgenerate +400
8

PROGRAMMING

TRICKS

(Continued)

Without using a constant from memory:

ae Subtract 1 from an accumulator.

NEG AC, AC

COM AC, AC

b. Add +3 to an AC.

INCR AC, AC
INCL AC, AC

c. Complement bit O in AC.

ADDOR AC,AC

Check if both bytes in an accumulator are equal.

MOVS ACS, ACD
SUB ACS, ACD,SZR

JMP --= snot equal

--- a ;equal

Check if two accumulators are both zero.

MOV ACS,ACS,SNR

MOV ACS, ACD,SZR

JMP <= snot both zero

“<= --- sboth zero

(This technique does not destroy either
accumulator, nor does it alter Carry.)

PROGRAMMING

TRICKS

(Continued)

10,

11.

12.

13.

14,

Check an ASCII character to make sure it is

a decimal digit. The character is in ACS

and is not destroyed by the test. Accumulators

ACX and ACY are destroyed.

LDA ACX,C60 sACX=ASCII

;zero

LDA ACY,C71 sACY=ASCII

shine

ADCZ# ACY,ACS,SNC ;skips if

s(ACS)> 9

ADCZ# ACX, ACX,SZC ;skips if

s(ACS)> O
JMP — snot digit

--- --- ;digit

C60 60 ;ASCII zero

C71 71 ;ASCII nine

Test an accumulator for zero.

MOV AC,AC,SZR

JMP -—<— snot zero

--- --- ;zero

Test an accumulator for <1.

COM# AC,AC,SZR

JMP --- snot -1

3

Test an accumulator for 2 or greater.

MOVZR# AC,AC,SNR

JMP --= ;less than 2

~-— -<- 32 or greater

Assume it is known that AC contains

0,1,2, or 3. Find out which one.

MOVZR# AC,AC,SEZ

JMP THREE swas 3

MOV AC, AC,SNR

JMP ZERO swas 0

MOVZR# AC,AC,SZR

JMP TWO swas 2

--- --- ;was 1

PROGRAMMING

TRICKS

(Continued)

15.

MOV

MOVZL

MOVZL

ADD

ADDZL

MOV

ADDZL

ADD

MOVZL

ADDZL

MOVZL

ADDZL

SUB

ADDZL

MOVZL

MOVZL

ADDZL

ADD

MOV

ADDZL

ADDZL

MOV ZL

ADDZL

MOV ZL

MOVZL

ADDZL

ADDZL

ACX, ACX

ACX, ACX

ACX, ACY

ACY, ACX

ACX, ACX

ACX, ACY

ACX, ACX

ACY, ACX

ACX, ACY

ACY, ACX

ACX, ACY

ACY, ACY

ACX, ACY

ACX, ACX

ACX, ACX

ACX, ACY

ACY, ACY

ACY, ACX

ACX, ACY

ACX, ACX

ACY, ACX

ACX, ACY

ACY, ACX

ACX, ACX

ACX, ACY

ACY, ACY

ACY, ACX

smultiply

smultiply

smultiply

smultiply

smultiply

smultiply

smultiply

sin ACY

smultiply

smultiply

smultiply

smultiply

smultiply

Multiply an AC by the indicated value.

by

by

by

by

by

by

by

by

by

by

by

by

10

10

12

10

18

10

NUMERIC

LISTING

APPENDIX C

INSTRUCTION MNEMONICS

000000

000001

000002

000003

000004

000005

000006

000007

000010

002000

004000

010000

014000

020000

040000

060000

060100

060177

060200

060277

060300

060400

060177

060500

060600

060800

061000

061100

061200

061300

061400

061477

061500

061600

061700

062000

062077

062100

062200

062300

JMP

SKP

SZC

SNC

SZR

SNR

SEZ

SBN

if

@

JSR

ISZ

DSZ

LDA

STA

NIO

NIOS

INTEN

NIOC

INTDS

NIOP

DIA

READS

DIAS

DIAC

DIAP

DOA

DOAS

DOAC

DOAP

DIB

INTA

DIBS

DIBC

DIBP

MSKO

DOBS

DOBC

DORP

062400

062500

062600

062677
062700

063000

063077
063100

063200

063300

063400

063500

063600

063700

073101

073301

100000

100000

10010

10020

10030

10010

10050

10060

10070

100110

100120

100130

100140

100150

100160

100170

100200

100210

100220

100230

100240

100250

100260

100270

DIC

DICS

DICC

IORST

DICP

DOC

HALT

DOCS

DOCC

DOCP

SKPBN

SKPBZ

SKPDN

SKPDZ

DIV

MUL

@

COM

COM#

COMZ

COMZ#

COMO

COMO#

COMC

COML

COM#

COMZL

COMZL#

COMOL

COMOL#

COMCL

COMCL#

COMR

COMR#

COMZR

COMZR#

COMOR

COMOR#

COMCR

COMCR#

NUMERIC

LISTING

(Continued)

C-2

100300

100310

100320

100330

100340

100350

100360

100370

100400

100410

100420

100430

100440

100450

100460

100470

100500

100520

100530

100540

100550

100560

100570

100600

100610

100620

100630

100640

100650

100660

100670

100700

100710

100720

1007 30

100750

100760

100770

101000

101010

101020

101030

101040

101050

101060

COMS

COMS#

COMZS

COMZS#

COMOS

COMOS#

COMCS

COMCS#

NEG

NEG#

NEGZ

NEGZ#

NEGO

NEGO#

NEGC

NEGC#

NEGL#

NEGZL

NEGZL#

NEGOL

NEGOL#

NEGCS#

MOV

MOV #

MOVZ

MOVZ#

MOVO

MOVO#

MOVC

101070

101100

101110

101120

101130

101140

101150

101160

101170

101200

101210

101220

101230

101240

101250

101260

101270

101300

101310

101320

101330

101340

101350

101360

101370

101400

101410

101420

101430

101440

101450

101460

101470

101500

101510

101520

101530

101540

101550

101560

101570

101600

101610

101620

101630

MOVC#

MOVL

MOVL#

MOV ZL

MOV ZL#

MOVOL

MOV OL #

MOVCL

MOVCL#

MOVR

MOV R#

MOVZR

MOVZR#

MOVOR

MOVOR#

MOVCR

MOVCR#

INCL

INCL#

INCZL

INCZL#

INCOLO

INCOL

INCCL

INCCL#

INCR

INCR#

INCRZR

INCZR#

NUMERIC

LISTING

(Continued)

101640

101650

101660

101700

101710

101720

101730

101740

101750

101760

101770

102000

102010

102020

102030

102040

102050

102060

102070

102100

102110

102120

102130

102140

102150

102160

102170

102200

102210

102220

102230

102240

102250

102260

102270

102300

102310

102320

102330

102340

102350

102360

102370

102400

102410

102420

102430

102440

102450

INCOR

INCOR#

INCCR

INCS

INCS#

INCZS

INCZS#

INCOS

INCOS#

INCCS

INCCS#

ADC

ADC#

ADCZ

ADCZ#

ADCO

ADCO#

ADCC

ADCC#

ADCL

ADCL#

ADCZL

ADCZL#

ADCOL

ADCOL#

ADCCL

ADCCL#

ADCR

ADCR#

ADCZR

ADCZR#

ADCOR

ADCOR#

ADCCR

ADCCR#

SUBO#

102460

102470

102500

102510

102520

102530

102540

102550

102560

102570

102600

102610

102620

102630

102640

102650

102660

102670

102700

102710

102720

1027 30

102740

102750

102760

102770

103000

103010

103020

103030

103040

103050

103060

103070

103100

103110

103120

103130

103140

103150

103160

103170

103200

103210

103220

103230

103240

103250

103260

SUBC

SUBC#

SUBL

SUBL#

SUBZL

SUBZL#

SUBOL

SUBOL#

SUBCL

SUBCL#

SUBR

SUBR#

SUZBR

SUBZR#

SUBOR

SUBOR#

SUBCR

SUBCR#

SUBS

SUBS#

SUBZS

SUBZS#

SUBOS

SUBOS#

SUBCS

SUBCS#

ADD

ADD#

ADDZ

ADDZ#

ADDO

ADDO#

ADDC

ADDC#

ADDL

ADDL#

ADDZL

ADDZL#

ADDOL

ADDOL#

ADDCL

ADDCL#

ADDR

ADDR#

ADDZR

ADDZR#

ADDOR

ADDOR#

ADDCR

C-3

NUMERIC

LISTING

(Continued)

CH4

103270
103300

103310

103320

103330
103340

103350

103360

103370
103400

103410

103420

103430

103440

103450

103460

103470

103500

103510

103520

103530

103540

103550

103560

103570
103600

103610

103620

103630

103640

103650

103660

103670
103700

103710

103720

103730
103740

103750
103760

103770

ADDCR#

ADDS

ADDS#

ADDZS

ADDZS#

ADDOS

ADDOS#

ADDCS

ADDCS#

AND

AND#

ANDCS#

ALPHABETIC

LISTING

ADC

ADCC

ADCCL

ADCCR

ADCCS

ADCL

ADCO

ADCOL

ADCOR

ADCOS

ADCR

102000

102060

102160

102260

102360

102100

102040

102140

102240

102340

102200

Add the complement of ACS to ACD;

use Carry as base for carry bit.

Add the complement of ACS to ACS;

use complement of Carry as base

for carry bit.

Add the complement of ACS to ACD;

use complement of Carry as base

for carry bit; rotate left.

Add the complement of ACS to ACD;

use complement of Carry as base

for carry bit; rotate right.

Add the complement of ACS to ACD;

use complement of Carry as base

for carry bit; swap halves of result.

Add the complement of ACS to ACD;

use Carry as base for carry bit;

rotate left.

Add the complement of ACS to ACD;

use 1 as base for carry bit.

Add the complement of ACS to ADC;

use 1 as base for carry bit;

rotate left.

Add the complement of ACS to ACD;

use 1 as base for carry bit;

rotate right.

Add the complement of ACS to ACD;

use 1 as base for carry bit;

swap halves of result.

Add the complement of ACS to ACD;

use Carry as base for carry bit;

rotate right.

C-5

ALPHABETIC

LISTING

(Continued)

C-6

ADCS

ADCZ

ADCZL

ADCZR

ADCZS

ADD

ADDC

ADDCL

ADDCR

ADDCS

102300

102020

102120

102220

102320

103000

103060

103160

103260

103360

Add the complement of ACS to ACD;

use Carry as base for carry bit;

swap halves of result.

Add the complement of ACS to ACD;

use 0 as base for carry bit.

Add the complement of ACS to ACD;

use 0 as base for carry bit;

rotate left.

Add the complement of ACS to ACD;

use 0 as base for carry bit;

rotate right.

Add the complement of ACS to ACD;

use 0 as base for carry bit;

Swap halves of result.

Add ACS to ACD; use Carry as base

for carry bit.

Add ACS to ACD; use complement of

Carry as base for carry bit.

Add ACS to ACD; use complement of

Carry as base for carry bit;

rotate left.

Add ACS to ACD; use complement of

Carry as base for carry bit;

rotate right.

Add ACS to ACD; use complement of

Carry as base for carry bit;

Swap halves of result.

ALPHABETIC

LISTING

(Continued)

ADDL

ADDO

ADDOL

ADDOR

ADDOS

ADDR

ADDS

ADDZ

ADDZL

ADDZR

ADDZS

AND

ANDC

103100

103040

103140

103240

103340

103200

103300

103020

103120

103220

103320

103400

103460

Add

for

Add

for

Add

for

Add

for

Add

for

ACS to ACD; use Carry as base

carry bit; rotate left.

ACS to ACD; use

carry bit.

ACS to ACD; use

1 as base

1 as base

carry bit; rotate left.

ACS to ACD; use 1 as base

carry bit; rotate right.

ACS to ACD; use

carry bit; swap

of result.

Add ACS to ACD; use

base for carry bit;

Add

for

Add

ACS to ACD; use

carry bit; swap

ACS to ACD; use

carry bit.

Add

carry bit;

Add

carry bit;

ACS to ACD; use

ACS to ACD; use

Add ACS to ACD; use

carry bit;

1 as base

halves

Carry as

rotate right.

Carry as base

halves of result.

O as base for

O as base for

rotate left.

O as base for

rotate right.

0 as base for

swap halves of result.

And ACS with ACD; use Carry as

carry bit.

And ACS with ACD; use complement

of Carry as carry bit.

C~7

ALPHABETIC

LISTING

(Continued)

C-8

ANDCL

ANDCR

ANDCS

ANDL

ANDO

ANDOL

ANDOR

ANDOS

ANDR

ANDS

ANDZ

ANDZL

ANDZR

ANDZS

103560

103660

103760

103500

103440

103540

103640

103740

103600

103770

103420

103520

103620

103720

And ACS with ACD; use complement

of Carry as carry bit; rotate left.

And ACS with ACD; use complement

of Carry as carry bit; rotate right.

And ACS with ACD; use complement

of Carry as carry bit; swap halves

of result.

And ACS with ACD; use Carry as

carry bit; rotate left.

And ACS with ACD; use 1 as

carry bit.

And ACS with ACD; use 1 as carry

bit; rotate left.

And ACS with ACD; use 1 as carry

bit; rotate right.

And ACS with ACD; use 1 as carry

bit; swap halves of result.

And ACS with ACD; use Carry as

carry bit; rotate right.

And ACS with ACD; use Carry as

carry bit; swap halves of result.

And ACS with ACD; use O as

carry bit.

And ACS with ACD; use 0 as

carry bit; rotate left.

And ACS with ACD; use O as

carry bit; rotate right.

And ACS with ACD; use O as

carry bit; swap halves of result.

ALPHABETIC

LISTING

(Continued)

COM

COMC

COMCL

COMCR

COMCR

COMCS

COML

COMO

COMOL

COMOR

COMOS

100000

100060

100160

100260

100260

100360

100100

100040

100140

100240

100340

Place the complement of ACS in

ACD; use Carry as carry bit.

Place the complement of ACS in

ACD; use complement of Carry as

carry bit.

Place the complement of ACS in

ACD; use complement of Carry as

carry bit; rotate bit.

Place the complement of ACS in

ACD; use complement of Carry as

carry bit; rotate right.

Place the complement of ACS in

ACD; use complement of Carry as

carry bit; rotate right.

Place the complement of ACS in

ACD; use complement of Carry as

carry bit; swap halves of result.

Place the complement of ACS in

ACD; use Carry as carry bit;

rotate left.

Place the complement of ACS in

ACD; use 1 as carry bit.

Place the complement of ACS in

ACD; use 1 as carry bit;

rotate left.

Place the complement of ACS in

ACD; use 1 as carry bit;

rotate right.

Place the complement of ACS in

ACD; use 1 as carry bit; swap

halves of result.

C-9

ALPHABETIC

LISTING

(Continued)

COMR

COMS

COMZ

COMZL

COMZR

COMZS

DIA

DIAC

DIAP

DIAS

DIB

DIBC

DIBP

DIBS

C-10

100200

100300

100020

100120

100220

100320

060400

060600

060700

060500

061400

061600

061700

061500

Place the complement of ACS in

ACD; use Carry as carry bit;

rotate right.

Place the complement of ACS in

ACD; use Carry as carry bit;

swap halves of result.

Place the complement of ACS in

ACD; use 0 as carry bit.

Place the complement of ACS in

ACD; use 0 as carry bit;

rotate left.

Place the complement of ACS in

ACD; use 0 as carry bit;

rotate right.

Place the complement of ACS in

ACD; use 0 as carry bit; swap

halves of result.

Data in, A buffer to AC.

Data in, A buffer to AC;

clear device.

Data in, A buffer to AC;

send special pulse to device.

Data in, A buffer to AC;

Start device.

Data in, B buffer to AC.

Data in, B buffer to AC;

clear device.

Data in, B buffer to AC;

send special pulse to device.

Data in, B buffer to AC;

Start device.

ALPHABETIC

LISTING

(Continued)

DIC

DICC

DICP

DICS

DIV

DOA

DOAC

DOAP

DOAS

DOB

DOBC

DOBP

DOBS

DOC

DOCC

DOCP

062400

062600

062700

062500

073101

061000

061200

061300

061100

062000

062200

062300

062100

063000

063200

063300

Data in, C buffer to AC.

Data in, C buffer to AC;

clear device.

Data in, C buffer to AC;

send special pulse to device.

Data in, C buffer to Ac;

start device.

If overflow, set Carry.

Otherwise divide ACO-AC1

by AC2. Put quotient in

AC1, remainder in ACO.

Data out, AC to A buffer.

Data out, AC to A buffer;

clear device.

Data out, AC to A buffer;

send special pulse to device.

Data out, AC to A buffer;

Start device.

Data out, AC to B buffer.

Data out, AC to B buffer;

clear device.

Data out, AC to B buffer;

send special pulse to device.

Data out, AC to B buffer;

Start device.

Data out, AC to C buffer.

Data out, AC to C buffer;

clear device.

Data out, AC to C buffer;

send special pulse to device.

ALPHABETIC

LISTING

(Continued)

DOCS

DSZ

HALT

INC

INCC

INCCL

INCCR

INCCS

INCL

INCO

INCOL

INCOR

063100

014000

063077

101400

10460

101560

101660

101760

101500

101440

101540

101640

Data out, AC to C buffer;

Start device.

Decrement location E by

1 and skip if result is zero.

Halt the processor

(= DOC 0,CPU).

Place ACS + 1 in ACD; use

Carry as base for carry bit.

Place ACS + 1 in ACD; use

complement of Carry as base

for carry bit.

Place ACS + 1 in ACD; use

complement of Carry as base

for carry bit; rotate left.

Place ACS + 1 in ACD; use

complement of Carry as base

for carry bit; rotate right.

Place ACS + 1 in ACD; use

complement of Carry as base

for carry bit; swap halves

of result.

Place ACS + 1 in ACD; use

Carry as base for carry bit;

rotate left.

Place ACS + 1 in ACD; use

1 as base for carry bit.

Place ACS + 1 in ACD; use

1 as base for carry bit;

rotate left.

Place ACS + 1 in ACD; use

1 as base for carry bit;

rotate right.

ALPHABETIC

LISTING

(Continued)

INCOS

INCR

INCS

INCZ

INCZL

INCZR

INCZS

INTA

INTDS

INTEN

IORST

ISZ

101740

101600

101700

101420

101520

101620

101720

061477

060277

060177

062677

010000

Place ACS + 1 in ACD; use

1 as base for carry bit;

swap halves of result.

Place ACS + 1 in ACD; use

Carry as base for carry bit;

rotate right.

Place ACS + 1 in ACD; use

Carry as base for carry bit;

swap halves of result.

Place ACS + 1 in ACD; use

O as base for carry bit.

Place ACS + 1 in ACD; use

O as base for carry bit;

rotate left.

Place ACS + 1 in ACD; use

O as base for carry bit;

rotate right.

Place ACS + 1 in ACD; use

O as base for carry bit;

swap halves of result.

Acknowledge interrupt by

loading code of nearest

device that is requesting

an interrupt into AC bits

10-15 (=DIB-,CPU).

Disable interrupt by

clearing interrupt On

(= NIOC CPU).

Enable interrupt by setting

Interrupt On (=NIOS CPU).

Clear all I/O devices, clear

Interrupt On, reset clock to

line frequence (=DICC 0,CPU).

Increment location E by 1 and

skip if result is zero.

ALPHABETIC

LISTING

(Continued)

C-14

JMP

JSR

LDA

MOV

MOVC

MOVCL

MOVCR

MOVCS

MOVL

MOVO

MOVOL

MOVOR

MOVOS

MOVR

000000

004000

020000

101000

101060

101160

101260

101360

101100

101040

101140

101240

101340

101200

Jump to location E (put

E in PC).

Load PC + 1 in AC3 and

subroutine at location E

(put E in PC).

Load contents of location

E into AC.

Move ACS to ACD; use

Carry as carry bit.

Move ACS to ACD; use

complement of Carry as

carry bit.

Move ACS to ACD; use

complement of Carry as

carry bit; rotate left.

Move ACS to ACD; use

complement of Carry as

carry bit; rotate right.

Move ACS to ACD; use

complement of Carry as carry

bit; swap halves of result.

Move ACS to ACD; use Carry

as carry bit; rotate left.

Move ACS to ACD; use 1 as

carry bit.

Move ACS to ACD; use 1 as

carry bit; rotate left.

Move ACS to ACD; use 1 as

carry bit; rotate right.

Move ACS to ACD; use 1 as

carry bit; swap halves

of result.

Move ACS to ACD; use Carry

as carry bit; rotate right.

ALPHABETIC

LISTING

(Continued)

MOVS

MOVZ

MOV ZL

MOVZR

MOVZS

MSKO

MUL

NEG

NEGC

NEGCL

NEGCR

NEGCS

101300

101020

101120

101220

101320

062077

073301

100400

100460

100560

100660

100760

Move ACS to ACD; use Carry

as carry bit; swap halves

of result.

Move ACS to ACD; use O as

carry bit.

Move ACS to ACD; use O as

carry bit; rotate left.

Move ACS to ACD; use O as

carry bit; rotate right.

Move ACS to ACD; use O as

carry bit; swap halves of

result.

set up Interrupt Disable

flags according to mask

in AC (=DOB -,CPU).

Multiply AC1 by AC2, add

product to ACO, put result

in ACO-AC1.

Place negative of ACS in

ACD; use Carry as base for

carry bit.

Place negative of ACS in

ACD; use complement of Carry

as base for carry bit.

Place negative of ACS in ACD;

use complement of Carry as

base for carry bit; rotate left.

Place negative of ACS in ACD;

use complement of Carry as

base for carry bit; rotate right.

Place negative of ACS in ACD;

use complement of Carry as base

for carry bit; swap halves of

result.

ALPHABETIC

LISTING

(Continued)

NEGL

NEGO

NEGOL

NEGOR

NEGOS

NEGR

NEGS

NEGZ

NEGZL

NEGZR

NEGZS

NIO

NIoc

100500

100440

100540

100640

100740

100600

100700

100420

100520

100620

100720

060000

060200

Place negative of

use Carry as base

bit; rotate left.

Place

use 1

Place

use 1

negative of

as base for

negative of

as base for

rotate left.

Place

use 1

negative of

as base for

rotate right.

Place negative of

ACS in ACD;

for carry

ACS in ACD;

carry bit.

ACS in ACD;

carry bit;

ACS in ACD;

carry bit;

ACS in ACD;

use 1 as base for carry bit;

Swap halves of result.

Place negative of ACS in ACD;

use Carry as carry bit;

rotate right.

Place negative of ACS in ACD;

use Carry as carry bit; swap

halves of result.

Place

use 0

Place
use 0

negative of

as base for

negative of

as base for

rotate left.

Place

use 0

negative of

as base for

rotate right.

Place negative of

ACS in ACD;

carry bit.

ACS in ACD;

carry bit;

ACS in ACD;

carry bit;

ACS in ACD;

use Q as base for carry bit;

Swap halves of result.

No operation.

Clear device.

ALPHABETIC

LISTING

(Continued)

NIOP

NIOS

READS

SBN

SEZ

SKP

SKPBN

SKPBZ

SKPDN

SKPDZ

SNC

SNR

STA

SUB

SUBC

060300

060100

060477

000007

000006

000001

063400

063500

063600

063700

000003

000005

040000

102400

102460

send special pulse to device.

Start device.

Read console data switches

into AC (=DIA -,CPU).

Skip if both carry and

result are nonzero (skip

function in an arithmetic

or logical instruction).

Skip if either carry or

result is zero (skip function

in an arithmetic or logical

instruction).

Skip (skip function in an

arithmetic or logical instruction).

Skip if Busy is 1.

Skip if Busy is 0.

Skip if Done is 1.

Skip if Done is O.

Skip if carry bit is 1

(skip function in an

arithmetic or logical

instruction).

Skip if result is nonzero

(skip function in an arithmetic

or logical instruction).

Store AC in location E.

Subtract ACS from ACD; use

Carry as base for carry bit.

Subtract ACS from ACD; use

complement of Carry as base

for carry bit.

ALPHABETIC

LISTING

(Continued)

SUBCL

SUBCR

SUBCS

SUBL

SUBO

SUBOL

SUBOR

SUBOS

SUBR

SUBS

SUBZ

SUBZL

102560

102660

102760

102500

102440

102540

102640

102740

102600

102700

102420

102520

Subtract ACS from ACD; use

complement of Carry as base

for carry bit; rotate left.

Subtract ACS from ADC; use

complement of Carry as base

for carry bit; rotate right.

Subtract ACS from ACD; use

complement of Carry as base

for carry bit; swap halves

of result.

Subtract ACS from ACD; use

Carry as base for carry bit;

rotate left.

Subtract ACS from ACD; use

1 as base for carry bit.

Subtract ACS from ACD; use

1 as base for carry bit;

rotate left.

Subtract ACS from ACD; use

1 as base for carry bit;

rotate right.

Subtract ACS from ACD; use

1 as base for carry bit;

swap halves of result.

Subtract ACS from ACD; use

Carry as base for carry bit;

rotate right.

Subtract ACS from ACD; use

Carry as base for carry bit;

Swap halves of result.

Subtract ACS from ACD; use

O as base for carry bit.

subtract ACS from ACD; use

O as base for carry bit;

rotate left.

ALPHABETIC

LISTING

(Continued)

SUBZR

SUBZS

SZC

i

102620

102720

000002

000004

002000

100000

000010

Subtract ACS from ACD; use

O as base for carry bit;

rotate right.

Subtract ACS from ACD; use

O as base for carry bit;

swap halves of result.

Skip if carry is 0 (skip

function in an arithmetic or

logical instruction).

Skip if result is zero

(skip function in an
arithmetic or logical

instruction).

When this character appears

in a memory reference

instruction, the assembler

places a 1 in bit 5 to

produce indirect addressing.

When this character appears

with a 15-bit address, the

assembler places a 1 in bit

QO, making the address indirect.

Appending this character to the

mnemonic for an arithmetic or

logical instruction places

a 1in bit 13 to prevent the

processor from loading the

17-bit result in Carry and

ACD. Thus the result of an

instruction can be tested

for a skip without affecting

Carry or the accumulators.

APPENDIX D

IN-OUT CODES

The table on the next two pages lists the in-out

devices, their octal codes, mnemonics, and DG

option numbers. 800 series options are for the
SUPERNOVA® * only, 8100 for the NOVA® * 1200,
8200 for the NOVA 800, and 4000 series options

are for all machines or the NOVA only. Codes 40
and above are used in pairs (40-41, 42-43...) for

receiver-transmitter sets in the high speed

communications controller.

The table beginning on page D-4 lists the complete

Teletype code. The lower-case character set (codes

140-176) is not available on the Model 33 or 35,

but giving one of these codes causes the tele-

typewriter to print the corresponding upper-case

character. Other differences between the 33-35 and

the 37 are mentioned in the table. The definitions

of the control codes are those given by ASCII. Most

control codes, however, have no effect on the

computer teletypewriter, and the definitions bear

no necessary relation to the use of the codes in

conjunction with the software.

*SUPERNOVA and NOVA are registered trademarks of Data General

Corporation, Southboro, Massachusetts.

IN-OUT

DEVICES

Priority

Octal Mask Option

Code Mnemonic Bit Device Number

01 MDV Multiply-divide A
02 MAPO

03 MAP1 Memory allocation and 8008
O4 MAP2 protection

05

06 MCAT 12 Multiprocessor adapter
transmitter 40 38

07 MCAR 12 Multiprocessor adapter
receiver

10 TTI 14 Teletype input 4010
11 TTO 15 Teletype output

12 PTR 11 Papertape reader 4011
13 PTP 13 Papertape punch 4012
14 RTC 13 Real-time clock 41008

15 PLT 12 Incremental plotter 4017

16 CRD 10 Card reader 4016

17 LPT 12 Line printer 4018

20 DSK 9 Dise 4019

21 ADCV 8 A/D converter 4032 4033

22 MTA 10 Industry compatible 40 33

- magnetic tape

23 DACV - D/A converter 4037

24 DCM 0 Data communications 4026

25 multiplexer

26 Other multiplexers and/

27 or control signal

options

30

31% IBM1 13 IBM 360 interface 4025
32 IBM2

33
34

35

36
37
40 8 Receiver 4015

44 8 Transmitter

uo

A SUPERNOVA, 8007; NOVA 1200, 8107; NOVA 800, 8207; NOVA, 4031

* Code returned by INTA

IN-OUT

DEVICES

(Continued)

Priority

Octal Mask

Code Mnemonic Bit Device

43
yy

4S

46

47
50 Second Teletype input

51 Second Teletype output

52 Second papertape

reader

53 Second papertape

54 punch

55

56

57

60 Second disc

61

62 Second magnetic tape
63

64

65

66

67

70

71%
Te Second IBM 360 interface

73
74

75

76
Central processor

TT CPU Power monitor and

: auto restart

* Code returned by INTA

Option

Number

4010

4011

4012

4019

4030

4025

B SUPERNOVA, 8001; NOVA 1200, 8101; NOVA 800, 8201; NOVA, 4001

C SUPERNOVA, 8006; NOVA 1200, 8106; NOVA 800, 8206; NOVA, 4006

D-3

TELETYPE

CODE

Even 7-Bit

Parity Octal

Bit Code

) 000

1 001

1 002

0 003

1 004

0 005

0 006,

1 007

1 010

0 011

0 012

D-4

Char-

acter

NUL

SOM

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

Remarks

Null, tape feed. Repeats on Model

37. Control shift P on Model 33
and 35.

Start of heading; also SOM, start of

message. Control A.

Start of text; also FOA, end of

address. Control B.

End of text; also FOM, end of message.

Control C.

End of transmission (END); shuts off

TWX machines. Control D.

Enquiry (ENORY); also WRU "who are you?"

Triggers identification. ("Here is

eee") at remote station if so equipped.

Control E.

Acknowledge; also RU, "Are you...?"

Control F.

Rings the bell. Control G.

Backspace, also EEO, format effector.

Backspaces some machines. Repeats

on Model 37. Control II on Model 33

and 35.

Horizontal tab. Control on Model 33
and 35.

Line feed or line space (NRE LINE);

advances paper to next line. Repeats

on Model 37. Duplicated by control I

on Model 33 and 35.

TELETYPE

CODE

(Continued)

Even 7-Bit
Parity Octal Char-

Bit Code acter Remarks

1 013 VT Vertical tab (VTAB). Control C on

Model 33 and 35.

0 014 FF Form feed to top of next page (PAGE).

Control L.

1 015 CR Carriage return to beginning of line.

Control M on Model 33 and 35.

1 016 S50 Shift out; changes ribbon color to red.

Control N.

0 017 oI Shift in; changes ribbon color to black.

Control O.

1 020 DLE Data link escape. Control P (DCO).

0 021 DC1 Device control 1, turns transmitter

(reader) on. Control Q (XON).

0 022 DC2 Device control 2, turns punch or

auxiliary on. Control R (TAPE,AUX ON).

1 023 DC3 Device control 3, turns transmitter

(reader) off. Control S (XOFF).

0 024 DC4 Device control 4, turns punch or

auxiliary off. Control T (AUX OFF).

1 025 NAK Negative acknowledge; also ERR, error.

Control U.

1 026 SYN Synchronous idle (SYNC). Control V.

0 027 ETB End of transmission block; also MM,

logical end of medium. Control W.

0 030 CAN Cancel (CANCL). Control X.

1 031 EM End of medium. Control Y.

D-5

TELETYPE

CODE

(Continued)

Even T-Bit

Parity Octal

Bit Code

1 032

0 033

1 034

0 035

0 036

1 037

1 O40

0 O44

0 O42

0 043

0 O44

1 O45

1 046

0 O47

0 050

1 051

1 053

D-6

Char-

acter

SUB

ESC

ES

GS

RS

US

SP

Remarks

Substitute. Control Z.

Escape, prefix. This code is also

generated by control shift K on

Model 33 and 35.

File separator. Control shift L on

Model 33 and 35.

Group separator. Control shift M and

Model 33 and 35.

Record separator. Control N on

Model 33 and 35.

Unit separator. Control shift O on

Model 33 and 35.

Space.

Accent acute or apostrophe.

Repeats on Model 37.

TELETYPE

CODE

(Continued)

Even 7-Bit

Parity Octal

Bit Code

0 053

0 054

0 055

0 056

1 057

0 060

1 061

1 062

0 063

1 064

0 065

0 066

1 067

1 070

0 071

0 072

1 073

0 074

1 075

1 076

Char-

acter

a ow NO _ © TM~ e
Co mn
WO

Remarks

Repeats on Model 37.

Repeats on Model 37.

Repeats on Model 37.

D-7

TELETYPE

CODE

(Continued)

Even 7=-Bit

Parity Octal Char-

Bit Code acter Remarks

0 O77 ?

1 100 @

0 101 A

0 102 B

1 103 C

0 104 D

1 105 E

1 106 F

0 107 G

0 110 H

1 111 I

1 W2 J

0 113 K

1 114 L

0 115 M

0 116 N

1 117 0

0 120 P

1 121 Q

1 122 R

0 123 S

D-8

TELETYPE

CODE

(Continued)

Even 7-Bit

Parity Octal

Bit Code

1 124

0 125

0 126

1 127

1 130

0 131

0 132

1 133

0 134

1 135

1 136

0 137

0 140

1 141

1 142

0 143

1 144

0 145

0 146

1 147

Char-

acter Remarks

T

U

V

W

X Repeats on Model 37.

Y

Z

[Shift K on Model 33 and 35.

\ Shift L on Model 33 and 35.

J Shift M on Model 33 and 35.

A

- Repeats on Model 37.

‘ Accent grave.

a

b

Cc

d

e

f

g

D-9

TELETYPE

CODE

(Continued)

Even 7T-Bit

Parity Octal Char-

Bit Code acter Remarks

1 150 h

0 151 i

0 152 j

1 153 k

0 154 1

1 155 m

1 156 n

0 157 Oo

1 160 p

0 161 q

0 162 r

1 163s

0 164 t

1 165 u

1 166 V

0 167 W

0 170 X Repeats on Model 37.

1 171 y

1 172 Z

0 173 {

1 174 |

D-10

TELETYPE

CODE

(Continued)

Even T-Bit

Parity Octal Char-

Bit Code acter

0 175 }

0 176 ~

1 177 DEL

REPT

PAPER ADVANCE

LOCAL RETURN

LOC LF

LOC CR

INTERRUPT, BREAK

PROCEED, BRK RLS

HERE IS

Remarks

On early versions of the Model 33 and

35, either of these codes may be

generated by either the ALT MODE or

ESC key.

Delete, rub out. Repeats on Model 37.

Keys That Generate No Codes

Model 33 and 35 only: causes any other

key that is struck to repeat continuously
until REPT is released.

Model 37 local line feed.

Model 37 local carriage return.

Model 33 and 35 local line feed.

Model 33 and 35 local carriage return.

Opens the line (machine sends a

continuous string of null characters).

Break release (not applicable).

Transmits predetermined 20-character

message.

q, DataGeneral
Data General Corporation, 4400 Computer Drive, Westboro, MA 01580

(617) 366-8911

